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ABSTRACT

POPULATION GROWTH, DYNAMICS AND EVOLUTION IN ESCHERICHIA COLI:
THEORETICAL AND EXPERIMENTAL STUDIES

By

Farida Vasi Attar

Studies of bacterial population growth and dynamics have focused primarily on
exponentially growing cells in chemostat cultures. In this dissertation, I focus on aspects
of population dynamics that are less well understood, i.e., lag phase and stationary phase,
and in a more complicated environment, i.e., batch culture. Simple mathematical models
are used to examine the effects of the lag phase, exponential growth rate, resource uptake
capacity and death rate on the population dynamics and evolution of Escherichia coli in a
periodic environment. I report on the following projects. 1. Changes in life-history traits
during adaptation to a periodic environment. II. Dynamical consequences of the lag
phase for population growth in a seasonal environment. III. Two factors that may
influence the duration of the lag phase: starvation status and population density. IV.
Selection and analysis of life-history traits of mutants selected during prolonged

starvation.
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Chapter 1

LONG-TERM EXPERIMENTAL EVOLUTION IN ESCHERICHIA COLI: CHANGES
IN LIFE-HISTORY TRAITS DURING ADAPTATION TO A PERIOIDIC
ENVIRONMENT®

INTRODUCTION

For decades, a major focus in evolutionary ecology has been to elucidate the
adaptive significance of variation in life histories (Fisher, 1930; Cole, 1954; Lack, 1966;
MacArthur & Wilson, 1967; Levins, 1968; Pianka, 1970; Luckinbill, 1978; Charlesworth,
1980; Mueller & Ayala, 1981; Reznick, 1983; Rose, 1984; Caswell, 1989; Partridge &
Sibly, 1991; Rose, 1991; Stearns, 1992). Here, we intend life-histories to include not
only age-specific patterns of survivorship and reproduction but also differences in
demographic responses to such environmental factors as population density and resource
availability. According to all of these various formulations of life-history theory, a key
issue is the relative importance of different forms of reproductive contributions made at
different ages or under different ecological circumstances to the overall growth of a
population. In an expanding age-structured population, for example, reproduction late in
life is discounted relative to reproduction at an earlier age, since the earlier progeny will
themselves begin to reproduce sooner than the later progeny (Fisher, 1930; Lenski &

Service, 1982).

Beyond distinguishing genetic and environmental influences, a fundamental

empirical challenge is determining the extent to which observed variation in life-history
* This chapter is presented verbatim from Vasi et al., 1994.
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traits actually reflects adaptation to different environments. Alternatives to strictly
"adaptationist" explanations for variation in life-history (or any other) traits include the
effects of independent genetic ancestries, which may constrain subsequent evolution, as
well as the effects of stochastic processes such as random mutation and genetic drift,
which can cause divergence even when initially identical populations evolve in identical
environments (Wright, 1932, 1982; Gould & Lewontin, 1979; Wade, 1979, Cohan, 1984;
Barton & Rouhani, 1987; Clarke et al., 1988; Lenski, 1988; Cohan & Hoffman, 1989;
Mani & Clarke, 1990; Harvey & Pagel, 1991; Lenski et al., 1991).

We are conducting a long-term experimental study of evolutionary adaptation and
divergence, using the bacterium Escherichia coli. Twelve populations, each founded
from the same clone, were serially propagated for 2,000 generations (300 d) in replicate
environments that subjected the bacteria to alternating periods of feast and famine
(Lenski et al., 1991). We have previously assessed the rate and extent of genetic
adaptation to this seasonal regime (see Stewart & Levin, 1973) by competing the
ancestral and derived genotypes in the experimental environment. (The ancestral
genotype was stored in a frozen state. Prior to each competition experiment, both
genotypes were allowed to acclimate physiologically to the experimental environment.)
Relative fitness was calculated as the ratio of the realized Malthusian parameters during
the competition experiments. After 2,000 generations, the mean fitness of the derived
populations relative to their common ancestor had increased by ~35%. However, any
divergence in competitive fitness among the replicate populations was quite small (and
might be explained simply by stochastic variation in the timing of equivalent favorable
mutations in the replicate populations). In other words, the replicate populations were
remarkably similar in the extent of their evolutionary improvement, even though the
genetic variation available for selection was derived entirely from new mutations that

occurred independently in each population.
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In this article, we seek to identify the changes in life-history traits that were
responsible for the demonstrable adaptation of these bacterial populations to the seasonal
environment. Our measure of relative fitness takes into account the differential survival
and reproductive success of the ancestral and derived genotypes over an entire growth
cycle consisting of several more or less distinct phases: (i) a lag phase upon transfer to
fresh medium, prior to the commencement of cell replication; (ii) a period of sustained
exponential growth, during which the available resource concentration is little affected
because of the low population density; (iii) a transition period, in which the limiting
resource becomes progressively depleted and the rate of population growth is
correspondingly diminished; and (iv) a stationary phase, in which the lack of resources
prevents replication but death may occur. The demographic parameters that govern these
phases can therefore be regarded as components of fitness, whereas fitness itself is
integrated over the entire growth cycle (just as the fitness of an organism with a complex
life cycle is an integrated function of its age- or stage-specific fitness components). In
addition to these fitness components, we measure certain other life-history traits,
including cell size and numerical yield in pure culture. We address whether the changes
in life-history traits were similar between the replicate populations, or whether the
populations achieved similar fitness gains but by quite different underlying changes in
their demography. We also examine whether the observed changes in life-history traits
correspond to the opportunity for selection on those traits that can be calculated from a

simple model of resource-based competition in a seasonal environment.
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MATERIALS AND METHODS

Bacterial Strains

The genotypes used in this study have been described previously (Lenski ez al.,
1991). Briefly, the common ancestor is a strictly asexual strain of Escherichia coli B.
The ancestor has two forms, Ara" and Ara™, which differ from one another by a single
mutation and which can be distinguished by their colony color on tetrazolium-arabinose
(TA) indicator agar. Six populations of each arabinose marker type were founded from
single cells and then propagated in a serial transfer culture regime (see below).
Contamination from external sources was excluded on the basis of genetic markers that
distinguished the common ancestor from wild bacteria. Cross-contamination was
excluded by propagating Ara- and Ara* lines in a strictly alternating sequence and
observing no encroachment of genotypes with the inappropriate marker state. At 2,000
generations (300 d), genotypes were chosen at random from each of the 12 populations.
The ancestral and derived genotypes are stored indefinitely at —80°C, so that their

properties can be directly compared at any time.

In this study, we used a single clone (genotype) from each of the 12 populations.
Previous work has shown that there is very little within-population variation for fitness
(Lenski ez al., 1991), consistent with the expectation of a purging effect caused by
selection in an asexual population. Our interest here is to evaluate the parallelism versus
divergence of demographic parameters and other life-history traits for independently
derived lineages rather than formally to partition genetic variation into its within- and

between-population components.
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Culture Conditions

Unless otherwise noted, the culture conditions used to measure life-history traits
in this study are the same as the conditions used during the long-term evolution of the
twelve populations (Lenski et al., 1991). Briefly, this standard environment consists of a
glucose-limited minimal salts medium (25 pg glucose ml")’ maintained in a shaking
incubator at 37°C. Each day, the populations were diluted 100-fold into fresh medium;
they then grew until they had exhausted the available resources (within less than 10 h, as
compared to the 24-h transfer interval). The 100-fold daily growth corresponds to ~6.6
(log,100) generations of binary fission. To ensure that genotypes were comparably
acclimated to the experimental regime prior to assays of competitive fitness or any of the
life-history traits, we cultured bacteria for 1 day in a rich broth after removing them from
the freezer, and then they were conditioned for 1 day (one complete cycle of lag,
exponential growth, transition, and stationary phases) in the standard glucose-limited

minimal medium.

Assays of Relative Fitness

The fitnesses of the derived genotypes relative to their common ancestor were
assayed in competition experiments under the standard culture conditions and using the
methods described previously (Lenski ef al., 1991). Briefly, in each competition
experiment, a derived genotype was competed against the ancestral genotype of the
opposite marker state. The Ara marker itself is selectively neutral within +1% under the
standard culture conditions. Following separate conditioning in the standard culture
medium, the two competitors were each diluted 1:200 into fresh medium and ailowed to
compete for 1 day; the competition experiment therefore encompassed the complete cycle

of lag, exponential growth, transition, and stationary phases. Initial and final densities of
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each competitor were estimated by plating onto TA agar. The Malthusian parameter for

each competitor is given by:

m = log, if-
N 0

where N, and N ,are initial and final densities, respectively, and m is therefore a time-
average (geometric mean) over the entire growth cycle. The fitness, #, of a derived
genotype relative to the common ancestor is expressed as the ratio of their Malthusian
parameters during a competition experiment. (Lenski et al., (1991) describe the
relationship between relative fitness, which is dimensionless, and the selection rate
constant, which has units of inverse time.) Five estimates of # were obtained for each
derived genotype in sets of complete blocks. These same formulae were also used to

calculate relative fitnesses in numerical simulations (see below).

Estimation of Demographic Parameters and Life-History Traits

Measurements of population density. Estimation of the various demographic parameters
required measurements of population density over time. Depending on the particular
experiment, we obtained population estimates from viable cell counts based on colony
forming units, from spectrophotometric measurements of optical density, or from particle
counts using a Coulter electronic particle counter (model ZM and channelyzer model
256). At fairly high cell densities, spectrophotometric measurements are easier to obtain,
while particle counts are probably the most accurate method. However, neither
spectrophotometry nor particle counts are effective at either very low density of in

distinguishing between viable and nonviable cells, when plate counts become necessary.
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Maximal growth rate. The maximal growth rate, V,,, for each genotype was estimated
under the standard culture conditions, except that the medium contained 1,000 pg glucose
ml™. (This high glucose concentration is used for estimating ¥,, in order to be very close
to the asymptotic maximal growth rate that is assumed by the Monod model. After the
bacteria were conditioned, they were diluted 1:100 into fresh medium, and the population
densities were sampled approximately every half-hour by measuring the absorbance
(proportional to density) of the culture with a spectrophotometer. The maximal growth
rate was estimated by regressing log -transformed absorbance against time during
exponential growth phase. (Absorbance depends on the size of cells as well as their
number; however, this dependence does not affect the estimate of ¥, provided that cell
size remains constant during exponential growth. We will show later that cell size differs
between exponential growth and stationary phases; however, cell size appeared to be
constant within the period of exponential growth used to estimate V,,.) Seven estimates
of ¥, were obtained for each genotype (including both marker states for the ancestor) in

sets of complete blocks.

Resource concentration supporting growth at half the maximum rate. The glucose
concentration, Ky, that supports growth at half the maximum rate provides a measure of a
genotype's affinity for glucose as this limiting resource becomes depleted during the
transition phase. Preliminary experiments established 0.1 pg glucose ml” as a

concentration at which all of the genotypes used in this study grew at roughly

|4

2 b
which provided a suitable concentration for accurately estimating K. After the bacteria

were conditioned at this concentration, they were diluted 1:100 into fresh medium, and

the population densities were sampled approximately every half-hour by spreading
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diluted cultures on TA agar. Densities were log_transformed, and a sub-maximal rate of
increase, V¥, was estimated for each genotype as the slope of the repression line during
exponential growth phase. Using the V,, for each genotype (as estimated above), Ks was
then calculated from the model of Monod (1942, 1949):

S
V=V
”'(S+Ks)
so that
vV
K.=8(—=
s =S()

where S is the resource concentration (here, 0.1 pg ml™"). For each genotype (including
both marker states for the ancestor), we obtained two estimates of K in sets of complete

blocks.

Duration of the lag phase. Each genotype was grown under standard culture conditions
and densities were estimated approximately every hour, using an electronic particle
counter. Cultures were diluted 100-fold into an isotonic solution, and the particles in
0.05 ml of the resulting dilution were counted and sized. The frequency distributions for
particle sizes exhibited a distinct trough between background particles and bacterial cells.
The distributions were edited to eliminate the background counts, which yielded cell
densities that agreed well with densities based on viable plate counts. The duration of lag
phase, L, was estimated by subtraction, as follows. First, for each growth curve, we
measured the initial population density, No. Second, we assumed that a population was
near the midpoint of exponential-phase growth by the time that its density was ~10Np.
The two population sizes sampled on either side of 10N, were designated N, and N,,

respectively, and the corresponding sample times at which they were observed, #; and #,.
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Third, using the V,, and K for each genotype (as estimated above), we inferred the
hypothetical times, T and T3, required to reach densities N, and N, respectively, if there
was no lag phase prior to exponential growth. That is,
N,
log,(—
_ 8.( No)
' 14

9

where

V=V(

S+Ks)'

Finally, the duration of lag phase was then estimated as the average difference between

hypothetical and actual times to reach the densities on either side of 10Ny:

('1_7;""2"7;)
2

L=

We obtained three estimates of L for each genotype (including both marker states for the

common ancestor), in sets of complete blocks.

Death rate during stationary phase. Death rates during stationary phase, D, were
estimated for each genotype under standard culture conditions. Death rates were
obtained over the period of 11-24 hours after transfer into fresh medium. By 11 hours, all
genotypes have entered stationary phase, as indicated by both direct observation of
population densities and computation of expected dynamics using the previously
estimated growth parameters. Densities of viable cells were measured by spreading
diluted samples onto TA plates approximately every 2 hours during this period. The

natural logarithm of cell density was regressed against time during stationary phase, and
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the regression coefficient provides an estimate of the corresponding death rate. Three
independent estimates of D were obtained for each genotype (including both marker

states for the common ancestor), in sets of complete blocks.

Death rate during prolonged starvation. During the 2,000 generations of evolution of
the experimental populations, cells were transferred into fresh medium every 24 hours,
and so death rates over longer periods of starvation, D', were not directly subject to
natural selection. Nonetheless, these death rates might have changed as a correlated
response to selection on some other traits, and so we also assayed the death rates of all
genotypes over the period of 1-14 days (24-336 hours) after transfer into fresh medium.
Densities of viable cells were measured by spreading appropriately diluted cultures onto
TA plates at least every other day during this period. The natural logarithm of cell
density was regressed against time during prolonged starvation, and the regression
coefficient provides an estimate of the corresponding death rate. Four independent
estimates of D’ were obtained for each genotype (including both marker states for the

common ancestor), in sets of complete blocks.

Numerical yield in pure culture. We define the numerical yield, Y, of a genotype as the
number of viable cells per unit of limiting resource, when that genotype is grown in
isolation (i.e., in the absence of any competitor). The reciprocal of this yield therefore
provides a measure of the efficiency of conversion of the limiting resource into cell
numbers during population growth. Yields in the standard culture medium were
estimated at 24 hours after transfer into fresh medium by viable cell counts on TA agar
plates. In principle, one could adjust the yield obtained at the end of the growth cycle for
cell death that occurred during stationary phase. In fact, however, there was no
discernible cell death during this period (see Results), and so no adjustment was made.
Five independent estimates of Y were obtained for each genotype (including both marker

states for the common ancestor), in sets of complete blocks.

10
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Average cell size. Cell sizes were measured electronically (see above), which indicated
the volume displaced by a particle rather than its mass. Size distributions were edited to
remove background particles, which were generally distinctly smaller than the cells (see
above). The particle-sizer was calibrated using the modal size of highly uniform Coulter
latex microspheres with 0.82 pm diameter (0.29 fl, where 1 fl = 1072 ml). Three
independent estimates of the average cell size at the end of stationary phase, Zs, where
obtained for each genotype (included both marker states for the ancestor), in sets of
complete blocks. We also obtained three independent estimates of the average cell size
during the middle of exponential-phase growth, Z,, for each genotype (including both

marker states for the ancestor), in sets of complete blocks.

Statistical Considerations

In evaluating whether the derived genotypes had, as a group, changed relative to
their common ancestor, the twelve independently derived lineages were the appropriate
unit of replication. In this context, the repeated measures obtained for each genotype
were averaged, and they served only to improve the realized precision of our
measurements. (We also averaged measurements across the two marker-state variants of
the common ancestor.) Except for relative fitness, we employed two-tailed s-tests for
comparing one value (the average of two marker states for the common ancestor) with the
mean of many values (for the 12 independently derived genotypes), which provides n, +
n, -2 =11 df (Sokal & Rohlf, 1981, pp. 229-231). For relative fitness, we simply
compared the mean for the derived genotypes with the value of 1.0 (by definition, the

relative fitness of the ancestor), which also provides n- 1 =11 df.

In evaluating whether the derived lineages had diverged significantly from one

another, the replicate measures were essential for estimating the relevant error variance.

11
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Analyses of variance were performed to test for the significance of between-genotype
variation, Var, which was estimated as the difference in the group and error mean-
squares, divided by the number of replicates assays (=blocks) performed per group (Sokal
& Rohlf, 1981, pp. 217). Of course, the common ancestor was not included in these

ANOVAs, because the question concerns the divergence of the derived lineages.

Model of Bacterial Population Dynamics

The model used in this study is one of resource-based population growth in a
seasonal environment (Stewart & Levin, 1973), which has been modified to take into
account a lag phase prior to exponential growth and to allow cell death during stationary
phase. Let the density of bacteria be denoted by N (cells ml™") and the concentration of
the limiting resource by S (ug glucose ml™"). For numerical analysis, we integrate the
dynamics in three parts. The first part consists of the lag phase, during which time we

assume that a population neither grows nor consumes resources:

The second part consists of both the exponential and transitional growth phases,
during which time the population increases and resources are consumed at rates

depending on the parameters of the Monod model:

dN=|:Vm s }N
dt (s +K5)

and

e
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where V,, (h™), K (ug glucose ml™"), and ¥ (cells ug" glucose) are the maximal growth
rate, the resource concentration at which growth rate is half maximum, and the numerical
yield, respectively. The third part consists of the stationary phase, during which time the

cell population may decline due to death, while the resource concentration remains

constant:
ﬂ =-DN
dt
and
-Ed—‘—g— — 0’
dt

where D (h™') is the death rate.

The first part runs from ¢ = 0 to ¢ = L, where L (h) is the duration of the lag phase
and ¢ is the time after transfer into fresh medium. The second part then runs until S =0,
that is, until the resource has been exhausted. The third part runs until # = 24 h, at which
time the cycle is completed. If two genotypes are competing, they may enter the second
part at distinct times, depending on the duration of their lag phases. Because competing
genotypes share the same pool of limiting resource, they necessarily enter the third part

simultaneously.

In our numerical analyses we sought to duplicate the conditions of our
experiments. We therefore began with a medium containing 25 pg ml”, then added to
this 1/100"™ of a corresponding volume of a stationary phase cell culture. Thus the initial

resource concentration and population density were
S(0) = 0.99(25)

13
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and

N(0) = 0.01 ¥(25).

In the case of two competing genotypes, each one has an initial density of only

N(0) = 0.005 Y (25).

Equations were integrated numerically using SOLVER.SWYV, which uses the
fourth-order Runge-Kutta method of integration and allows discrete switch-points in
dynamic models (Blythe et al., 1990). We used time-steps of 0.0005 - 0.01 h in the
numerical integrations, depending on the precision required for solution of a particular
problem. The criterion for the end of the second part, S = 0, is approached asymptotically
in a truly continuous model, so that one must begin the third part when the resource
concentration reaches some arbitrary threshold criterion. In a simulation involving two
competing genotypes, their relative fitness over the entire cycle can be expressed using

the same formulae used to estimate relative fitness empirically (see above).

RESULTS

Ancestral Traits and Opportunity for Selection

Table 1 gives estimates of the growth parameters for the common ancestor. The
maximal growth rate ¥, corresponds to a doubling time (log 2 / V) of a little less than

one hour. The duration of the lag phase prior to growth, L, is well over one hour. Also

14
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Table 1. Ancestral Fitness Components and Proportional Selection Gradients

Fitness Ancestral Selection gradient, = Maximum
Component Value, X (X/W)(oW/oX) Fitness

L 1.5264 h -0.2554 1.3051 (L=0)
Vim 0.7726 h'! 1 w (V=)

Ks 0.0727 pg ml’! -0.0066 1.0069 (K =0)
D’ (0) b 0 1 (D=0)

* The actual estimate of D was negative, but this value was not significantly different
from zero. The population dynamic model does not allow negative death rates (i.e.,
growth after the glucose has been exhausted), and so D has been set to zero in these
analyses.

K is very low relative to the initial resource concentration (25 pg glucose ml™"); in fact,
the ancestral genotype is predicted to grow at half its maximum rate when 99.7% of the
glucose has been used. The estimated death rate during stationary phase, D, is slightly
negative, suggesting the possibility of continued growth at a slow rate (and hence some
deficiency in the model of population dynamics). However, this trend is not statistically
significant. (It is also possible that some cell death occurred but was offset by continued
cell division. However, the methods we employed do not allow this distinction to be
made.) Figure |1 shows a numerical simulation of the dynamics of the ancestral genotype
and the limiting resource over the course of one 24 hour cycle, assuming neither growth

nor death during stationary phase.

15
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Figure 1. Numerical integration of the dynamics of a bacterial population (left axis, solid
line) and the limiting resource (right axis, dashed line), using the parameters
estimated for the common ancestor (Table 1) and the standard culture conditions.

Some, but not all published estimates of K for E. coli strains grown in minimal
media with glucose as the sole carbon source are more than an order of magnitude higher
than our own estimates (Monod, 1949; Shehata & Marr, 1971; Luckinbill, 1984); but see
Shehata & Marr 1971 for an estimate within a few percentage points of our estimate).
Therefore, we were concerned with the possibility that our method of estimating K
might somehow be biased. One possible bias is that we might have measured cell
division without concomitant cell growth, which may occur transiently after transfer into
fresh medium. This explanation would imply that the ancestral genotype could not
indefinitely sustain population growth consistent with our estimate of K. A second
possible bias is that we might have measured growth on some organic contaminants of

the medium or the glassware, or slight growth on citrate that is included in the medium
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(which some bacteria other than E. coli can utilize as a carbon source), rather than on
glucose. This explanation would imply that our ancestral genotype could grow at a
similar rate in a medium with less or even no added glucose. We excluded both of these
artifacts by showing that our bacteria can indefinitely sustain a 100-fold daily increase at
glucose concentrations 0.04 pg mi™ and higher, but not at concentrations of 0.02 g mI"*
and below. The 100-fold daily increase implies V> log 100 /24 h=0.192 h'. Given
that V=V S/(S+Kg)andwith ¥V =0.77 h™', this rate of increase can be sustained in
medium that contains 0.04 pg glucose ml" only if K¢ <0.12 pg glucose ml’. By the
same logic, the failure of the bacteria to persist in medium containing 0.02 pg glucose
ml™ implies that K > 0.06 pg glucose ml". If K were lower than this value, then the
bacteria should have persisted even at this low concentration. We conclude that our low

estimate of K is quite accurate.

One can formalize the intensity of selection acting directly on each fitness
component as follows. We begin with a genotype having the growth parameters
estimated for the common ancestor (except death rate during stationary phase, which is
set to zero, since the model does not allow for continued growth after the limiting
resource has been exhausted). We then introduce a second genotype that is identical
except for a very small change in one parameter. Next, we simulate competition between
these two genotypes over an entire growth cycle and compute the fitness of the improved
genotype relative to the ancestor, as described in the Materials and Methods. The
selection gradient for any trait X is defined as the partial derivative of fitness with respect
to that trait (cf. Lande, 1982), 0/ / 0X, which we have obtained by the limit of AW/ AX
as X goes to zero. This gradient therefore reflects the direct selection acting on each
fitness component, with the other components held constant. (In effect this method
ignores any interaction between the demographic parameters by assuming that each one

can be changed independently of the others.) To facilitate comparisons among the

17



!

selection gra
have scaled t!

rendering the’

where # =1 f{
gradients for L

proportional sc

The pre
projection mat
models of met
frequently the
10 one (deK ro,
however thay i
SCléCliou grad
10 sum 10 on e
N“Ienon-(}j

MONequilibriy,

nle pr
four Umeg Steg
han 100 time,
e a5 the res,

according 1o



selection gradients for the several fitness components (which have different units), we
have scaled these to reflect the proportional sensitivity of fitness to each component,

rendering them all dimensionless quantities:

o35

where W = 1 for the ancestor (by definition). (One can obtain the proportional selection
gradients for L and ¥V, analytically; D. E. Dykhuizen, personal communication.) The

proportional selection gradients are given in Table 1.

The proportional selection gradients are equivalent to “elasticities” in population
projection matrices (deKroon et al., 1986) and to “control coefficients” in biochemical
models of metabolic flux (Kacser & Burns, 1979; Dykhuizen et al., 1987). Itis
frequently the case in such analyses that the sum of the proportional sensitivities is equal
to one (deKroon et al., 1986; Dykhuizen et al., 1987; Mesterton-Gibbons, 1993);
however that is not always true, and is demonstrably not the case for the proportional
selection gradients considered here (Table 1). The failure of the proportional sensitivities
to sum to one implies that ¥ is not a homogeneous function of the fitness components
(Mesterton-Gibbons, 1993); this inhomogeneity may be a consequence of the

nonequilibrium nature of the population dynamics in a seasonal environment.

The proportional selection gradient for the maximum growth rate, Vi, is about
four times steeper than the corresponding gradient for the duration of lag, L, and more
than 100 times steeper than the gradient for K, which governs the reduction in growth
rate as the resource becomes depleted. The death rate, D, cannot be reduced below zero

according to the model, and so its proportional selection gradient is zero.

18
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The selection gradient for the numerical yield, Y, is also zero. This result may
seem puzzling at first glance, but in fact it is straight-forward: any increase in the
efficiency of conversion of resources into cell numbers that does not simultaneously
increase growth rate cannot enable one genotype to out-compete another, because such a
change would (in a physically unstructured environment) concomitantly leave more
resource for use by the competitor. One might reformulate the model by replacing ¥, in
the equation of population growth with the product of a maximum rate of resource uptake
(Unm = V/Y) and yield (Y), such that selection would act both on U, and Y. We have not

done so because we did not measure U,.

In addition to these proportional selection gradients, we can calculate the
theoretical maximum improvement in fitness that could be achieved by changing any one
of the parameters from the ancestral state (Table 1). There is no theoretical limit to ¥,
nor to the fitness that can be achieved by increasing V.. But L, K, and D cannot be less
than zero. Hence, there is a maximum improvement in fitness that can be achieved by
changing any of these parameters, with the greatest room for improvement in L (~30%),
only slight room for improvement in K5 (<1%), and no room whatsoever for

improvement in D.

Of course, average cell sizes (Zs and Z,) and the death rate during prolonged
starvation (D') do not enter directly into the dynamic model, and hence selection
gradients are not applicable, unless specific couplings between fitness components and
these traits are assumed. Also, these selection gradients do not take into account possible
tradeoffs or other couplings between the demographic parameters that do enter into the
model. However, one can readily see that selection might favor an allele that improved
one of the parameters subject to strong selection (e.g., V), even if it compromised one of

the other parameters subject to weaker selection (e.g., Ks).
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Changes in Life-History Traits

Table 2 compares the average values of the life-history traits for the ancestral and
derived genotypes. The derived genotypes improved, on average, by ~35% in fitness
relative to the common ancestor. Contributing to this fitness increase were ~15%
improvement in the maximal growth rate (V,,) and ~20% shorter lag phase (L). The
resource concentration at which growth rate was half maximum (Ks) was ~20% higher in
the derived genotypes, which has a negative impact on fitness. The death rate during
stationary phase (D) did not change significantly. Thus, the improvements were in the

two demographic parameters with the greatest opportunity for selection.

The numerical yield (Y) of the derived genotypes was reduced by ~30% relative
to the common ancestor. That is, whereas the derived genotypes increase in abundance
relative to the common ancestor during competition (as indicated by their higher relative
fitness), the derived genotypes yield fewer cells per unit resource when they are grown in
isolation. At least two distinct hypotheses could account for this result: the derived
genotypes may produce larger cells, so that the total biovolume is not reduced; or in the
course of their more rapid growth, the derived genotypes may burn the glucose less
efficiently or produce more metabolites that inhibit growth, so that the total biovolume is
also reduced. Table 2 shows that the derived genotypes were in fact, ~85% larger in
average cell volume in stationary phase (Zs). Thus, the total biovolume produced over
the entire growth cycle (expressed as the product of Y and Z,, was even greater (~100%)

than the difference in stationary phase.
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Table 2. Changes in Fitness Components and Other Life-History Traits during 2,000
Generations of Evolution in a Seasonal Environment

Mean for Mean for
Common Derived

Life-History Trait Ancestor Genotypes s p
Relative fitness
W (1) 13486 12450  #*

Fitness components:

L (h) 1.5264 1.2470 -2.458 *
Ve () 0.7726 0.8887 5.504 bl
K (ug ml™) 0.0727 0.0880 2.215 *
D (") -0.0127 0.0029 1.243 ns

Other life-history traits:

¥ (x 10° ug") 2.6352  1.8386 -5.137 e
D@ 0.0216  0.0156 -2.745. *
Zs (fl) 0.3546  0.6549 4.412 *
Z. (fl) 0.5678 1.1357 4.704 e

NOTE. -- For all traits except relative fitness, the null hypothesis is that the
mean values are equal for the common ancestor and the derived genotypes. For
relative fitness, the null hypothesis is that mean fitness of the derived genotypes is 1.
Significance is based on two-tailed probability of rejecting the null hypothesis using
the t-distribution with 11 degrees of freedom. ns P> 0.05, * 0.01 <P <0.05, **
0.001 <P <0.01, *** P <0.001.
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Although the death rate during stationary phase (D) did not change significantly,

the derived genotypes had ~30% lower death rate during prolonged starvation (D').

Parallelism Versus Divergence in Life-History Traits

Table 3 summarizes the ANOVAS to test for variation among the twelve
independently derived genotypes in each of the fitness components and other life-history
traits. There was no significant heterogeneity among the derived genotypes in their

fitnesses relative to the common ancestor (/).

The derived genotypes also showed no significant genetic variation in their
maximal growth rates (¥,,), which contributed to their fitness improvement, or in the
resource concentrations that allow half maximum growth rate (X;), which were uniformly
worse than that of their ancestor. There was, however, significant heterogeneity in the
duration of lag phase (L), which improved, on average, relative to the ancestor, and in
death rates during stationary phase (D), which did not change on the average from the

ancestral state.

Among other life-history traits, numerical yield (Y), death rate during prolonged
starvation (D'), and average cell sizes (Zs and Z,) all exhibited significant heterogeneity

among the independently derived genotypes.

Sufficiency of the Demographic Model

Are the demonstrable improvements in maximal growth rate (¥,,) and duration of
lag phase (L) sufficient to explain the ~35% improvement in fitness relative to the
common ancestor? Using our demographic model, we simulated competition between a

genotype with the ancestral parameters and each of 12 genotypes with parameters
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corresponding to the independently derived types. Overall, the mean fitness of the
derived competitors relative to their common ancestor, using the model and the
corresponding parameter estimates, was 1.21, compared with the mean fitness of 1.35
obtained from the actual competition experiments. For all 12 derived genotypes, the
simulated fitness was less than the actual fitness, which is highly unlikely by chance (p =
0.5'2 <0.001).

One potentially artifactual explanation for this effect is that all of the simulations
use the same parameters for the common ancestor, and so all share some errors in
estimation that might produce concordance in the deviations between simulated and
actual competitions. This explanation is not tenable, however, since the uncertainties in
the parameter estimates for the ancestral genotype are too small to account for any of the
deviations between simulated and actual fitnesses. To see this, recall that the fitness
components for the common ancestor were independently estimated for each of the two
marker-state variants of the common ancestor (Ara~ and Ara*). The simulated relative
fitness for these two ancestral competitors differs by only ~0.01 from the measured
relative fitness (data not shown), whereas the simulations between the derived and
ancestral genotypes differ by > 0.09 in all twelve cases. Evidently, the discrepancy
between the relative fitnesses predicted by the estimated parameters in the simple model
of competition and the observed fitnesses is real, with the model accounting for ~60%
[(1.21 - 1)/ (1.35 - 1)] of the actual improvement in competitive ability. In the
Discussion, we will consider possible explanations for the remaining 40% of the fitness

gain.
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Genetic Correlations between Traits

We calculated the product-moment correlations between the estimated values of
the eight fitness components and other life-history for the 12 independently derived
genotypes. Only two of the 28 pairwise correlations are individually significant, and only
one of these (between Zs and Z,) is significant at P < 0.05 after correcting for multiple
tests using the sequential Bonferroni criterion (Rice, 1989). However, these genetic
correlations between extant populations do not necessarily tell us very much about the

correlated responses that occurred within populations in the past.

DISCUSSION

We have been investigating the changes that occur during long-term evolution in
a simple experimental system. Twelve bacterial populations, founded from the same
ancestral genotype, were propagated for 2,000 generations in replicate environments,
which subjected the bacteria to alternating periods of feast and famine. The derived
genotypes increased in their competitive fitness in this seasonal environment by ~35%,
on average, relative to their common ancestor (Lenski er al., 1991). There was very little
divergence among the derived genotypes in their competitive fitnesses relative to one
another, despite their dramatic gains relative to their common ancestor and even though
their improvements depended entirely on new mutations that occurred independently in
the replicate populations (Lenski et al., 1991). However, the populations may have

attained similar fitnesses, but by different underlying changes in their life-histories.

Therefore, in this study, we sought to determine which demographic parameters

were responsible for the improved competitive fitness of the derived genotypes relative to
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their common ancestor, and whether similar life-history changes had occurred among the
independently evolving populations. We also addressed whether the observed changes
corresponded to those expected from the relative opportunities for selection acting on the
various parameters in a simple mathematical model of resource-based population growth
in a seasonal environment. In addition, we examined whether the observed changes were
sufficient, within the context of this model, to account for the improvements in fitness

that were measured by the competition experiments.

Changes in Fitness Components and Other Life-History Traits during Adaptation to a

Seasonal Environment

We believe it is important to distinguish two types of life-history traits. First,
there are fitness components per se, which are those demographic parameters that directly
determine rates of change in the relative abundance of competing genotypes. If one has
sufficient knowledge of these demographic parameters, then one should be able to predict
the outcome of competition between genotypes, provided that one's demographic model
is sufficiently realistic to encompass the relevant dynamics. In age-structured models of
life-history evolution, the age-specific survivorship and fecundity schedules provide these
fitness components (Service & Lenski, 1982). In models based on Lotka-Volterra
dynamics, the fitness components are subsumed by exponential growth rates, carrying
capacities, and competition (Pianka, 1970; Gill, 1972). In this paper, fitness components
are represented by the terms defining population dynamics in a resource-based model of
competition in a seasonal environment: the duration of lag (L), the maximum growth rate
(Vm), the resource concentration at which the growth rate is half maximum (Kj) and the
death rate during stationary phase (D). Fitness itself is therefore some function of these

parameters, but it need not be equally sensitive to all of them. Moreover, the effect of
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each parameter on fitness will depend upon features of the environment (including the
initial resource concentration, the dilution factor, and the frequency of transfers into fresh

medium) as well as on the values of the other parameters.

Second, one may believe that other traits underlie fitness (based on intuition,
empirical data, or other knowledge of the organism), but lack any theoretical basis to
predict the outcome of competition. Traits such as body size or running speed, for
example, may correlate with, and even predict empirically, survival and reproductive
success. But these traits do not enter into any population dynamic model, except to the
extent that they may be used to predict one or more fitness components that do (Amold,

1983).

Populations of Escherichia coli that were maintained for 2,000 generations in a
seasonal environment showed systematic changes in several fitness components as well
as other traits that are presumably physiologically relevant to these components. In
particular, the derived genotypes adapted by increasing their maximum growth rates (V)
and by reducing their-lags prior to growth upon renewal of a previously exhausted

resource (L).

The derived genotypes also had increased the resource concentration necessary to
sustain growth at half the maximum rate (K), seemingly a maladaptive response.
However, the growth rate asymptotically approaches V,,5/K, as S goes to zero, so that Kg
becomes more important at low resource concentrations, but ¥, does not become any less
important. In fact, the average ration, V,./Ks, for the derived genotypes is very close to
that ratio for the ancestral genotype. Thus, the derived genotypes are not actually less fit

that the ancestors, but they are better adapted to exploiting abundant glucose.

The derived genotypes also showed no improvement in their death rate during

stationary phase (11-24 h); if anything, they are worse than their progenitor in this
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respect. However, the derived genotypes do have improved survival during prolonged
starvation (1-14 d). But this trait cannot be considered a fitness component per se, since
it is manifest only in environments different from the environment in which the
populations evolved. (Had they evolved in an environment in which transfers were made
only every 14 days, then this would properly be a fitness component and would enter into

a dynamic model of competition in that environment.)

The derived genotypes also had much lower numerical yields (Y) than their
common ancestor. Yield enters into the dynamic model of competition, but it does not
directly affect fitness in a mass-action environment. However, in a structured
environment, in which the probability of extinction of a local deme or the number of
dispersing propagules may be functions of population size, numerical yield could well
affect the outcome of competition. Our results therefore suggest a possible conflict
between intrademic selection, favoring demographic traits that evidently correlate with a
reduction in numerical yield, and interdemic selection, favoring higher (Wade, 1979;
Wade, 1980). This reduction in numerical yield is evidently due to a change in the size
of the individual bacteria, which became systematically larger in the derived genotypes,
rather than by less efficient conversion of resource into biomass. In fact, the total
biovolume, expressed as the product of numerical yield and average cell size at stationary

phase (YZg), was greater for the derived genotypes than for their common ancestor.

Our preconception had been that evolving cells would become smaller (and more
numerous), in order to increase the ratio of surface area to volume and hence the effective
rate of uptake of the limiting resource. But clearly, this preconception was wrong. We
can imagine at least four (post hoc) explanations for the evolution of larger cell size.
First, survival during stationary phase may have improved for larger cells. The derived

‘genotypes, which had larger cells, survived better during prolonged starvation. However,

there was no measurable cell death (or improvement therein) over the length of stationary
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phase that the cells experienced during their experimental evolution. Hence, this
hypothesis cannot account for the evolution of larger cells, even if it does plausibly
explain the observed reduction in death rate during prolonged starvation. Second, larger
cell size may provide the physiological basis for the shorter duration of lag phase upon
transfer into fresh medium. That is, larger cells may be less depleted of metabolic
reserves during stationary phase (even if the smaller celled ancestor does not actually
die), which would allow the derived genotypes to respond more quickly upon renewal of
resource. Third, larger cells, by virtue of their greater surface area, may have a higher
rate of resource uptake per cell (rather than per unit volume), which might enable the
derived cells to sequester resources that could later be converted into progeny. This
explanation is consistent with the difference in average cell size between exponential and
stationary phases, which is larger in the derived genotypes than in the common ancestor;
this difference may account for some of the increase in relative fitness (see below).
However, Luckinbill (1984) observed a similar evolutionary trend toward larger cells,
even in populations that never experienced stationary phase or resource limitation, that
does not support any of the preceding hypotheses. Finally, cell size may have increased
simply because of its allometry with growth rate. Several studies of E. coli and related
bacteria have documented an allometric relationship between growth rate and cell size, in
which growth rate is manipulated phenotypically by altering the environment (Schaechter
et al., 1958; Neidhardt et al., 1990). Our results indicate a genetic relationship between
growth rate and cell size. This hypothesis suggests experiments to determine whether the
observed genetic relationship is simply an extension of the phenotypic relationship or

whether the allometry between growth rate and cell size has been genetically altered.
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Parallelism versus Divergence in Life-History Traits

Did all 12 independently derived genotypes exhibit the same suite of adaptive
changes in their life-histories, or did they find alternative solutions to the challenges
imposed by the seasonal environment? At first glance, our results seem to imply
substantial divergence of the derived genotypes in the life-history bases of their improved
fitness. Two of four fitness components, and all four of the other life-history traits show
statistically significant heterogeneity (Table 3). However, it is equally important to
emphasize that the direction of evolutionary change was highly parallel for most of the
fitness components and other life-history traits. Three of the four fitness components and
all four of the other life-history traits showed significant directional trends in their mean
values (Table 2). In fact, all 12 independently derived genotypes showed the same
outcome of higher V,,, higher K5, lower D', lower Y, higher Zg, and higher Z, than their
common ancestor. And 11 of the 12 derived genotypes had lower L and higher D than
the ancestor. Thus there was near-perfect uniformity in the directional responses

exhibited by replicate populations.

An index of the relative extent of divergence versus parallelism is given by the

following ratio:

VarG(X)
2|

X=

where Varg(X) is the between-genotype variance for trait X, and AX is the average change
from the common ancestor. (By using the standard deviation corresponding to the
genetic variance, both the numerator and denominator have the same units.) This index
therefore provides a measure of the average difference among the independently derived

genotypes relative to the average evolutionary change from the ancestral state.
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Table 4. Divergence versus Parallelism in Fitness Components and Other Life-History
Traits for the Independently Derived Genotypes
JVarg(X) f|ax|

Life-History Trait, X Varg(X) AX

Relative Fitness:
/4 2.72x 10 0.349 0.047

Fitness Components:

L (h) 6.79x 107 -0.279 0.295
Ve (0" 4.67x 107 0.116 0.059
Ks (ugml™) (0) 0.015 0

D™ 8.40x 107 0.016 0.573

Other life-history traits:

Y (ugh) 1.33x 10" -71.97x 10° 0.145
D’ (h") 4.09 x 10° -0.006 0.337
Zs(fl) 4.07 x 107 0.300 0.213
Z. (f1) 1.19x 107 0.568 0.192

NOTE.—Varg(X) is the between-genotype variance for trait X (Table 3), and AX
is the mean change from the common ancestor (Table 2). The ratio _ Varg (X) /|aX]|

provides a measure of the average difference among derived genotypes (divergence)
relative to the average change from the ancestral state (parallelism).

For all eight fitness components and other life-history traits, this index is much
icss than one (Table 4), which indicates that the differences among the independently

derived genotypes are small relative to the average change in these characters from the
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ancestral state. However, the independently derived genotypes are somewhat more
variable in most of these traits than in their relative fitnesses (also based on this index),
which implies that they have acquired slightly different adaptations to a seasonal
environment. Evidently, the 12 replicate populations underwent similar adaptations in
terms of the fitness components and other life-history traits, but these were not identical,
as indicated by heterogeneity among the independently derived genotypes for some of the

characters.

Adequacy of the Dynamic Model Used to Amalgamate Fitness Components into a

Measure of Relative Fitness

The population model that we have used might be regarded as explanatory in two
different ways. First, how well does the model predict the outcome of competition
between ancestral and derived genotypes, when the relevant demographic parameters for
each genotype are estimated independently of the competition experiments? Second, did
the model provide any indication of the most likely evolutionary changes in these

parameters?

After 2,000 generations of evolution, the mean fitness of the derived genotypes
relative to their common ancestor was ~1.35, whereas the predicted mean fitness based
on the model and independently estimated parameters was only ~1.21. In other words,
the simple model of resource-based competition in a seasonal environment accounts for
only about 60% (0.21/0.35) of the observed adaptation. The discrepancy is not simply
due to a lack of statistical resolution, because all 12 derived genotypes gave actual and
predicted relative fitnesses that differed in the same direction and by amounts greater

than can be accounted for by uncertainty in the demographic parameters.
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We see two types of limitation of the simple model that might account for the
unexplained portion of the fitness differential between the ancestral and derived
genotypes. First, the description of the mechanistic basis for competition may be
inadequate. The model used here assumes that competition is mediated entirely by
scramble competition for glucose. However, bactéria may excrete metabolites that act as
either secondary resources or inhibitors of growth, and these metabolites may
differentially affect competing genotypes (Helling ez al., 1987; Levin, 1988). If excreted
metabolites are involved, then they must work to the advantage of the derived genotypes,
because the actual fitness advantages are greater than explained solely on the basis of
glucose-mediated competition. However, the fact that the population densities were
fairly low (~5 x 10° cells ml" to ~5 x 10’ cells ml" over the course of the growth cycle)
in the evolution experiment tends to weaken this explanation, because the concentration
of metabolites should be proportional to density. However, one can imagine experiments
(employing conditioned media or varying the initial frequency of competitions) to test

this possibility further.

Second, the description of the bacterial demography may be inadequate to
encompass all of the relevant dynamics. For example, the model implicitly assumes that
the rate at which bacteria increase in numbers is strictly proportional to the rate at which
they remove resources from the medium and, furthermore, that these two processes are
synchronous. The numerical yield, Y, scales the conversion of resources into bacterial
cells during exponential growth. But Y was estimated from stationary-phase
populations, which are composed of much smaller cells than exist during exponential
phase (Table 2). It seems likely, therefore, that the bacteria are taking up resources
during exponential growth faster than the ratio V_/Y (ug h™' per cell) would imply. If
so, then a more appropriate measure of maximum growth rate (in terms of accounting for

the observed fitness improvement) would be
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Vm.adj - Zs

The product V,, Z, reflects the rate of increase in biovolume during exponential
phase growth, whereas the denominator indicates the eventual (but asynchronous)
conversion of this biovolumetric increase into cells of size Zs. Vi, 44 therefore takes into
account the more rapid accumulation of biomass by the bacteria than would be apparent
from their numerical increase during exponential phase. We calculated ¥, .4 for each
genotype and then used these adjusted maximum growth rates (along with the other
demographic parameters) to compute the expected fitnesses of the derived genotypes
relative to their common ancestor. The mean expected fitness using the adjusted
maximum growth rates was 1.36, which was indistinguishable from the mean value of
1.35 measured in the competition experiments (P > 0.5 based on a t-test for paired
comparisons). Thus, the differential underestimation of resource accumulation for the
ancestral and derived genotypes can plausibly explain the "missing" 40% of the
improvement in fitness. We recognize that this adjustment will give an incorrect
trajectory for cell numbers during growth phase. Our intention here is not to provide a
realistic and complex description of population dynamics but rather to suggest a possible
explanation for the deviation between relative fitnesses estimated by direct competition
experiments and those predicted from the simple demographic model. To develop a more
formal model along the lines of this adjustment, one might model population biomass
(rather than cell numbers) or otherwise incorporate more complex functional

relationships between substrate concentration, growth rate and numerical yield.

The other application of the demographic model was to infer the relative
intensities of selection acting on the several fitness components. According to the model,
selection to increase maximum growth rate (V,,) and to reduce the duration of lag prior to

growth in fresh medium (L) was much stronger than selection to reduce the concentration
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of resource required to support half of the maximum growth rate (Ks) and to reduce death
rate during stationary phase (D). Indeed, we observed a good correspondence between
these theoretical selection gradients and the actual responses to selection: both ¥V, and L
improved substantially during the experimental evolution, whereas neither K5 or D

showed any improvement.

We note also, that V,, and L promote exploitation of the resource when it is
abundant, whereas K5 and D are relevant only when the resource has become depleted.
Therefore, it is fair to say that the bacteria in this study have adapted to the "feast," but
not the "famine," aspect of the seasonal environment. But it is also important to
emphasize that the opportunity for selection to act on the various demographic
parameters (Table 1) depends on the initial state of the life-history, as well as on the
environment. Had either K or D been much higher (worse) initially, their corresponding
selection gradients would have been steeper and there would have been more room for
improvement in these fitness components. As it was, however, Ks and D were both
already so low for the ancestral genotype that selection to improve them was very weak.
The fact that our ancestral bacterium was already so well adapted to famine conditions
may suggest strong selection in the past for the corresponding fitness components (see,

e.g., Koch, 1971; Koch, 1985; Mikkola & Kurland, 1992).

Of course, a genetic response depends not only on the intensity of selection but
also on the availability of genetic variation for that trait and on genetic correlations
between traits. Had we not observed significant improvements in either strongly selected
fitness component (¥, and L), this hypothetical outcome might have been due to either a
lack of genetic variation or a tradeoff with another fitness component. The fact that there
was substantial genetic variation in these fitness components (and no evidence for
intractable tradeoffs) is presumably because the experimental conditions represent a

novel environment for these bacteria, whereas in the ancestral environment one would
36



expect those substitutions that improve fitness to have been largely exhausted by prior

selection (Service & Rose, 1985; Lenski et al., 1991; Bennett et al., 1992).

In contrast to the results reported here, (Dykhuizen & Hartl, 1981) observed
significant improvements in both V., and K for Escherichia coli that evolved in glucose-
limited continuous culture (chemostats). This difference in outcomes is not unexpected,
however, in light of the difference in experimental environments imposed. In continuous
culture, bacteria hold the equilibrium concentration of limiting resource, S*, to a value
that is exactly sufficient to offset washout from the vessel (Stewart & Levin, 1973;
Hansen & Hubbell, 1980). In the study by Dykhuizen and Hartl (1981), the flow rates
through the culture vessels, f, were 20% or 40% of the founding bacterium's maximal
growth rate, V,,. Given that V="V, S*/(S* + K;s) = f, then $* would have been either
0.25 K5 or 0.67 Ks according to the Monod model. Here V is the actual Malthusian
parameter in continuous culture, and so the proportional selection gradients for V,, and K

differ by only a factor of

Thus, the proportional selection gradients for ¥, and K in the study by Dykhuizen and
Hartl (1991) differed by only a factor of 1.25 to 1.67 (depending on flow rate), in contrast
to the >100-fold difference in the corresponding gradients in the seasonal environment

used in this study (Table 1).

Also using E. coli in a glucose-limited medium as a model system, Luckinbill
(1978, 1984) employed two serial transfer environments to test for specific adaptations to

r- and K-selection regimes. In the r-selection regime, bacteria were kept in a state of
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perpetual exponential growth by repeated transfers well before the populations had
reached stationary phase; in the K-selection regime, bacteria were allowed to exhaust the
glucose and enter stationary phase before they were transferred into fresh medium.
Luckinbill demonstrated improvements in relative fitness in both environments, but he
found that the adaptations were non-specific with respect to the selection regime. That is,
bacteria that had evolved in the K-selection environment did as well, on average, in the r-
selection environment as bacteria that had evolved in the r-selection environment, and
vice versa. But the K-selection regime employed by Luckinbill was, in fact, quite similar
to the seasonal environment used in this study. And as we have discussed, this seasonal
environment selects most strongly for a higher maximal growth rate, with much weaker
selection for any traits that might be construed as K-selected (at least when the ancestral
genotype has life-history components similar to the strain used in this study). So
Luckinbill's intended K-selection regime may, in fact, have been another strongly r-
selecting regime. The changes in bacterial fitness components reported by Dykhuizen
and Hartl (1981) and by Luckinbill (1978, 1984), as well as those seen in this study,
appear to be consistent with the relative intensities of selection acting on those traits.
These analyses indicate to us the utility of an explicit demographic model for interpreting

evolutionary changes in life-history traits.

In conclusion, 12 bacterial populations that evolved independently for 2,000
generations in replicate seasonal environments underwent a similar suite of changes in
their life histories. The derived genotypes responded more quickly to resource renewal
and they had higher maximum growth rates than their common ancestor. Both of these
adaptations facilitate resource exploitation during the periods of feast in the seasonal
environment. But the derived genotypes showed no corresponding improvement in those
fitness components that would allow them to better tolerate the periods of famine that

' they also experienced. The differential adaptation to periods of feast and famine can be
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understood in terms of the relative opportunities for selection to act on the different
fitness components. In particular, the ancestral genotype used in this study was already
so well adapted to the periods of resource deprivation imposed by the experimental
regime that there was almost no room for improvement in the corresponding fitness
components, whereas there was substantial room for improvement in the fitness
components that mattered during the periods of resource abundance. Accompanying
these demographic adaptations was a dramatic change in the morphology of the bacteria,
with the derived genotypes having much larger cells than their common ancestor. The
significance of this morphological change with respect to their newly evolved life-history

is unclear.
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Chapter 2

THE LAG PHASE OF ESCHERICHIA COLI IN A PERIODIC ENVIRONMENT:
PREDICTIONS AND TESTS OF A MATHEMATICAL MODEL.

INTRODUCTION

The lag phase of the bacterial growth cycle describes the initial delay in the start
of exponential growth when bacteria encounter a fresh source of nutrient after a period of
starvation (Neidhardt et al., 1990). The lag is an intrinsic characteristic of a microbial
population, and it introduces a time delay in the response of individual bacteria to
environmental change. This time delay is caused by physiological changes necessary
before the bacteria are able to start growing and dividing. These changes include a
dismantling of the stationary phase apparatus (Huisman et al., 1996), as well as gearing
up the nutrient transport functions and metabolic systems involved in growth and cell
division (Cooper, 1991; Huisman er al., 1996). The lag phase has also been recently
shown to be dependent on the population density of the bacterial culture (Fuqua ez al.,

1994, Fuqua e al., 1996; Fuqua & Green, 1998).

Time delays have long been of considerable interest to population ecologists, as a
potential explanation for complex fluctuations observed in natural and laboratory
populations. For example, blowflies (Lucilia cuprina) exhibit oscillations produced by a
time lag between the response of life-history traits, such as fecundity and mortality, to the

population density (Nicholson, 1958). When food is abundant and adults are numerous,
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plenty of eggs are laid. However, when food runs out the eggs fail to develop, resulting
in a population crash. Time delays in reproduction may also result from the storage of
nutrients when resources are abundant. Daphnia species exhibit population cycles as
energy is stored as lipid, which is then used when food supplies become scarce due to
high population densities (Goulden & Hornig, 1980; Goulden et al., 1982; Tessier et al.,
1983).

Such intrinsic or density dependent causes may interact with extrinsic or
environmental causes of periodicity to result in complex dynamics. Simple theoretical
treatment of populations has shown that time delays may interact with periodic
environments to produce a range of complicated dynamics from limit cycles to chaos
(May, 1974; May, 1981; Nisbet & Gumney, 1982). The range of dynamical behaviors
produced by the interaction of intrinsic and extrinsic causes of periodicity is most
pronounced in models which include population structure (Caswell, 1989b; Constantino
et al., 1997; Tuljapurkar & Caswell, 1997). Cell cycle based demographic models for
phytoplankton growing in a periodic environment demonstrated non-periodic cycling at
frequencies different from that of the forcing variable (Pascual & Caswell, 1997).
Adding a nutrient storage based time delay term to the model also produced similar

results.

Laboratory populations of Escherichia coli provide a useful system in which to
test the interaction of intrinsic and extrinsic causes of periodicity, due to their short
generation times and relative ease of replication within treatment populations.
Escherichia coli populations also exhibit population structure, as the probability of
division in individual cells may vary with the time since last division (age-structure) or
the cell-size distribution (stage-structure) (Bramhill, 1997). A number of hypotheses

have been proposed for the mechanistic basis for this time dependence. These range
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from internal causes, such as the DNA replication cycle and cell division system, to
external factors, such as population density and mineral or nutrient abundance. Recent
advances in the understanding of the regulation of bacterial cell division suggests that
these mechanistic bases may be related through regulatory feedbacks (Rothfield et al.,
1999).

In this chapter, I present a simple mathematical model for the growth of bacterial
populations in a periodic environment. In this model, the limiting resource is depleted by
the organisms and then replenished at some later time, where replenishment is driven by
some external periodicity. I assume that there is a lag phase of constant duration, L time
units, such that any population that exhausts the limiting resource requires L time units
after resource renewal to begin growing again. I show by numerical simulations that the
existence of this lag phase may interact with the environmental periodicity to generate
dynamics ranging from simple equilibria to high order periodic cycles. Finally, I present
and analyze the results of some experiments with populations of E. coli that were
designed to determine if such complex dynamics, could, in fact, be seen in a biological

system.

MATERIALS AND METHODS

Bacterial Strain and Culture Conditions.

The E. coli B (REL606) strain used in this study has been used in several other
ecological and evolutionary studies in our laboratory (Lenski er al., 1991; Lenski &

Travisano, 1994; deVisser et al., 1999). Its growth parameters have been characterized in
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previous work (Vasi et al., 1994). All experiments were started from a single clone

isolated from a culture stored indefinitely at -80° C.

Bacteria were grown in Davis minimal medium (DM) (Carlton & Brown, 1981)
supplemented with 25 pg mi" glucose in a shaking incubator at 37°C. The populations
were diluted 100-fold into fresh medium, where they typically went through an entire
growth cycle consisting of lag, exponential and stationary phases, and exhausted the
available resources; when transfers were very frequent, the populations might still been
growing when diluted into fresh medium. The populations typically grew from an initial
population density of ~5 x 10° cells ml”' to a final density of ~5 x 10 cells ml”'. The
100-fold daily growth corresponds to ~6.6 (log, 100) generations of binary fission. To
ensure acclimation to the experimental regime, bacteria were cultured for one day in DM
supplemented with 1000 pg ml™ glucose after removal from the freezer. They were then

conditioned for one day in DM supplemented with 25 pg ml” glucose.

Model of Bacterial Population Growth in a Periodic Environment.

The model used in this study is one of resource-based population growth
(Monod, 1949; Kubitschek, 1970; Stewart & Levin, 1973; Hansen & Hubbell, 1980;
Tilman, 1982), modified to take into account a lag phase prior to exponential growth.
This model has been used in previous work with this strain (Vasi et al., 1994). The
density of bacteria is denoted N (cells ml™") and the concentration of the limiting resource

S (ug glucose ml™).

The bacterial growth cycle is integrated in three discrete parts, as illustrated in
Figure 2. The tirst part consists of the lag phase, during which a population neither

grows nor consumes resource:

43



1x10% -25

1 LILIJJ

|
N
o

1107
] - 15

Population density (cells ml'l)
Glucose concentration (pug ml'l)

—-10
1x10%
. -5
\
\
\
1x10° T T T T T T T 0
0 1 2 3 4 5 6 7 8

Time (h)
Figure 2. Simulation of a bacterial population during an 8 h growth cycle. The curves
represent bacterial density plotted on a logarithmic scale (solid line) and the
resource concentration plotted on a linear scale (dashed line).

dN _dS

—=—=0.

dt  dt

The second part consists of the exponential phase, during which the population increases

and resources are consumed at rates depending on the parameters of the Monod model:

aN _ly SN,
dt (S+Kj)

and
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a9

dt Y ) at
Vnm (h") is the maximal growth rate, K5 (ug glucose ml™) is the resource concentration at
which the growth rate is half of maximum and ¥ (cells pg™ glucose) is the numerical
yield. The numerical yield is the number of viable cells produced by the population per
unit of limiting resource utilized during a growth cycle, when all resources are depleted.

The third part consists of the stationary phase, during which time the cell population may

decline due to death, while the resource concentration remains constant:

ﬂ!=_DN
dt
and
ds
—=0.
dt

Model parameters were estimated in previous work (Vasi et al., 1994); the
estimates of the parameter values used for the simulations are repeated in Table 5. In
numerical analyses, I duplicated the experimental serial transfer conditions so that direct
comparisons with experiments could be made. In experimental tests of the periodic
model, populations were started by inoculating 1/100™ volume of a 10 ml stationary
phase culture into 9.9 ml of medium containing 25 pg ml” glucose. Therefore, each
nutrient cycle in each simulation was begun with medium containing 99% of 25 pg
glucose mi™ (S = 0.99(25) = 24.95 ug ml"' glucose) to which 1/100th of the density of a
stationary phase culture was added. The initial population density was given by N =
0.01 Y (25). The equations were simulated with time steps of 0.001 h, using the Euler

method.
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Table 5. Model parameter values, using parameter estimates from Vasi et al.

Parameter Mean

L 1.5264 h

Vin 0.7726 h"

K; 0.0727 pg glucose ml™

Y 2.6352 x 10°cells pg™' glucose
D’ )

* The actual estimate of D was negative but its value was not significantly
different from zero. D was set to zero in this model.

The first part runs from =0 to r = L, where L (h) is the lag time and ¢ is the time after
transfer into fresh medium. The second part runs until one of the fdllowing conditions

are met:

t =t,, where ¢, is the length of the transfer cycle. In this case, the population does
not go through the third part.
S ~ 0 (or the arbitrarily low threshold of 10" pg ml™' glucose).

The third part runs from the end of the second until ¢ =t,. After each nutrient cycle, the

populations are diluted into fresh medium once again.

The simulations used nutrient cycles that ranged in duration from t,=5hto 8 h

in increments of 0.01 h. Each population was simulated for 1000 transfer cycles (6.00 —
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6.4 h), or 50 cycles (5.00 — 5.99 h and 6.40 — 8.00 h). All simulations ran long enough to

give a complete picture of the population dynamics for each nutrient cycle.

Experimental Tests of the Periodic Model.

Thirty replicate bacterial populations were maintained in serial transfer culture for
approximately 100 hours, with six populations at each of five transfer cycles: 5, 6, 7, 8 or
9 h. Pairs of replicate populations were maintained in a staggered fashion over the
nutrient cycles, to minimize correlated errors due to uncontrolled environmental variation
(e.g., slight fluctuation in temperature). For example, in the 5 h treatment one pair of
replicates was initiated at = 0 h. The second pair was started at £ = 5 h, and the final pair
was begun at = 10 h. Bacterial densities were estimated prior to transfer into fresh
media every cycle using an electronic particle counter. Cultures were diluted 100-fold
into an isotonic medium. Bacteria in 0.05 ml of the resulting dilution were counted using
a Coulter particle counter, and the average cell size was measured twice. The frequency
distribution for particle sizes exhibited a distinct trough between background particles
and bacterial cells. The distributions were edited to eliminate the background counts.
Each edited distribution provided estimates of the population density and total
biovolume. The two estimates were averaged to get final estimates of the population

density and total biovolume.

Autocorrelation analyses

Autocorrelation analyses were carried out on the populations growing in 7, 8 and
9 h nutrient cycles. The beginning of each series was removed for all autocorrelation

analyses to remove any transient effects. The autocorrelation at time interval & is simply
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the Pearson correlation between a series of data at time ¢, and the same series at time t+k
time units. It is calculated as the ratio of covariance between data at time ¢ and ¢+k and
the variance of the data at time ¢ (Box, 1994). Autocorrelation plots showing the
autocorrelation at time intervals 1 - 8 h were computed separately for each population.
The autocorrelation coefficients were averaged across the 6 replicate populations for each
time interval. Each autocorrelation coefficient was compared with 0 using one tailed -
tests; I used one-tailed tests because I was specifically looking for negative
autocorrelations indicative of cycling. Bonferroni corrections for multiple tests were
applied to the significance probabilities to correct for 8 tests applied within each

treatment (Rice, 1989).

RESULTS

Simulations of the Periodic Model for Bacterial Population Growth.

Figure 3(a) shows the results of simulations for populations that are transferred at
5 hintervals. The first cycle exhibits a lag phase, in which no growth occurs. After S h,
the population is in mid-exponential phase. The population goes through a 100-fold
dilution and is transferred to fresh medium. As the population has not entered stationary
phase in the previous cycle, there is no lag phase. The population continues to grow
exponentially throughout the second batch, but at the end of 10 h the population is less
dense than at 5 h. It is once again diluted into fresh medium and this cycle continues.
The population is unable to keep up with successive dilutions every 5 h and eventually

goes extinct.
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Figure 3(a). Simulation results of a bacterial population growing in batch culture with
transfers every 5 h (solid line). The population does not grow enough in each
batch cycle to make up for the dilution, and goes extinct. The expected endpoint
stationary phase density is also shown (dashed line).

When populations are transferred at 6 h intervals, the dynamics are different.
Figures 3(b) and (c) show the early and late portion of the trajectory of a population
transferred at 6 h intervals. In Figure 3(b) the first cycle has a lag phase, and again at the
end of 6 h the population is in mid-exponential phase. Following dilution, the population
continues to grow exponentially, and at 12 h, it reaches a density that is slightly higher
than at 6 h. The population is diluted into fresh medium, and continues to grow
exponentially, reaching a density at 18h which is higher than at 12 h. At the end of each
cycle, the population density is slightly greater than at the end of the previous cycle. The
expected end-point stationary density (25* ¥ =6.59 x 10 cells ml") is shown with a

dashed line on both graphs. The density of the population growing in 6 h cycles
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Figure 3(d). Simulation results of a bacterial population (solid line) growing in batch
culture with transfers every 6.4 h. The population dynamics repeat themselves
every 4 cycles. The expected endpoint stationary phase population density is also
shown (dashed line).

approaches the expected stationary density asymptotically but does not ever quite reach
this density (Figure 3(c)). Instead it stabilizes at a slightly lower density of 6.57 x 10’
cells ml™', where it remains in a state of perpetual near-exponential growth, neither
increasing nor decreasing at the end of each cycle. Glucose is never quite depleted at the

end of any transfer cycle.

Figure 3(d) shows the dynamics of a bacterial population growing in batches
transferred every 6.4 h. The population experiences a lag phase in the first cycle, and is
diluted into fresh medium after 6.4 h while it is still growing. The population grows for
the next three cycles, without a lag phase, finally reaching the end-point stationary
density of 6.59 x 107 cells ml". The population dynamics then follow a periodic cycle

that repeats every four nutrient cycles.

52



1x108'§

1x107-E

el ol

—
>
o
(=)
T

Population density (cells ml'l)

dedend bl

lxlos T T T T T T T T T T 1
0 7 14 21 28 35 42 49 56 63 70 77

Time (h)
Figure 3(e). Simulation results of a bacterial population growing in batch culture with
transfers every 7 h (solid line). The population exhibits a two point limit cycle.
The expected endpoint stationary phase population density is shown (dashed line).
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Figure 3(f). Simulation results of a bacterial population growing in batch culture with
transfers every 8 h (solid line). The population exhibits a single equilibrium at
the endpoint stationary phase density. The expected endpoint stationary phase
population density is also shown (dashed line).
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Figure 4. Simulation results of a bacterial population growing in batch culture with
transfers ranging form 5.5 — 9 h. Data points represent equilibrium population

densities at each period length. Multiple data points for the same period represent
limit cycles.

Figure 3(e) shows the population density dynamics of a population growing in
batches that are transferred at 7 h intervals. The populations cycle between the expected

endpoint stationary density and a lower value at the end of each cycle, exhibiting a 2

point limit cycle.

Figure 3(f) shows the population density dynamics of a population growing in
batches transferred at intervals of 8 h. There is enough time in each interval for the

population to complete the full growth cycle from lag to stationary phase, and utilize all

available resources.

The results of all the simulations are shown combined in Figure 4. The full range

of dynamics predicted by the model can be observed. From 5 — 5.99 h, there is a single
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stable equilibrium, that of extinction. From 6.00 — 6.04 h the population has a single
equilibrium which is slightly lower than the expected endpoint stationary phase density.
From 6.05 — 6.37 h the population cycles stably between 22 and 5 values. When grown
in cycles from 6.38 to 6.51 h the population cycles between four values, from 6.52 h to
6.77 h between three values, and from 6.78 h to 7.57 h between two values. For batch
transfer cycles 7.58 h and longer, the population has a single equilibrium, at the expected

endpoint stationary phase density.

Empirical Tests of the Periodic Model

Population density, mean cell volume and total biovolume dynamics. Figure S shows the
density dynamics of all the treatment populations. Only the population density at the end
of each transfer cycle is plotted. In the cultures that were transferred every S h, the
population declined exponentially during the first several cycles, as expected, but then
stabilized unexpectedly at a low density of ~3.09 x 10° cells ml”'. Populations in the 6 h
transfer cycle treatment group declined exponentially until they stabilized at ~4 x 10°
cells ml”'. There was an error in the experimental procedures for the 6 h treatment, in
which some populations were transferred into fresh medium 1 h too early (i.e.,in5Sh
instead of 6 h). The transfer occurred at 35 h (instead of 36 h) in the first two replicates,
at 29 h (instead of 30 h) in the third and féurth replicate and at 23 h (instead of 24 h) in
the fifth and sixth replicate. The missing hour of growth was offset by letting the

population grow for an extra hour in the next transfer cycle (i.e., 7 h instead of 6 h).

Populations in the 7 h transfer group exhibited considerable noise during the first
part of the experiment. This was in part due to another error in experimental procedures.
Replicates one and two were transferred at 22 h instead of 21 h, replicates three and four

were transferred at 29 h instead of 28 h and replicates five and size were transferred at 36
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Figure 5. Population density dynamics of experimental population grown in batch
culture with transfers every 5 h (squares), 6 h (circles), 7 h (triangles), 8 h
(diamonds) and 9 h (crosses). Data points represent densities for a representative
population from each series. The expected endpoint stationary phase population
density is also shown (dashed line).

h instead of 35 h. Aside from this perturbation (evident in Figure 5), the population
density also drifted slowly upwards by the end of the experiment. Populations grown in
batches transferred every 8 h increased during the early part of the experiment, then
stabilized at approximately 4 x 10° cells ml’. There was considerable noise in the data.
Populations growing in batches that were transferred every 9 h also exhibited a lot of
noise throughout the experiment. The bacteria stabilized at a density of approximately

4.5 x 10" cells ml™".
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Figure 6. Mean cell volume dynamics of experimental populations grown in batch
culture with transfers every 5 h (squares), 6 h (circles), 7 h (triangles), 8 h
(diamonds) and 9 h (crosses). Data points represent densities for a representative
population. The expected mean cell volume for exponentially growing
populations (dashed-dotted line) and for stationary phase populations is also
shown (dashed line).

The 7 — 9 h treatment populations all stabilized at densities below the stationary

phase density expected after a 24 h growth cycle from previous data (Vasi ez al., 1994).

The reason for this discrepancy can be seen from the mean cell volume dynamics (Figure

6). All the treatment populations showed larger cells than expected from previous data

(Lenski & Travisano, 1994; Vasi et al., 1994). The cells in 5 and 6 h cycles are larger

than the 7 h treatment populations. The 5, 6 and 7 h populations were all larger than

expected from previous data or exponentially growing cells (~0.57 fl). The 8 and 9 h
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Figure 7. The total population biovolume dynamics of experimental populations grown
in batch culture with transfers every § h (squares), 6 h (circles), 7 h (triangles), 8 h
(diamonds) and 9 h (crosses). Data points represent densities for a representative
population from each series. The expected endpoint stationary phase total
population biovolume is also shown (dashed line).

treatment populations are smaller than the S — 7 h treatments. These long-cycle
populations are still slightly larger than expected for 24 h stationary phase populations
(~0.37 fl), but they are smaller than exponentially growing cells. There is a decreasing
trend in cell volumes from 5—~9h (5-6 h> 7 h> 8 -9 h) in the treatment populations.
Evidently, the cells continue to divide without actually growing after the glucose is
depleted, leading to cells that are more numerous but also smaller the longer time they

spend in stationary phase.

The data for the total population biovolume (product of cell number and average
cell volume) showed similar trends to the population density data (Figure 7). The Sh

treatment populations decline and stabilize at a low total biovolume of ~ 3 x 10° fl ml™".
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The 6 h treatment populations declined and stabilized at a biovolume of ~ 3.5 x 10° fl
ml”. The 7 h treatment populations had an intermediate total biovolumes ranging from
~0.5 x10” to ~1.5 x 10" flml"". The total biovolume of the 8 - 9 h treatment cultures was
approximately 2.1 x 107 fl ml"', similar to that expected from previous data of 24 h
stationary phase populations, and thus confirming the explanation (above) that there is

continued cell division without net growth after glucose is depleted.

Autocorrelation analysis. Autocorrelation analyses were performed on the series of
biovolume dynamics, as these combined both the density and cell volume effects. They
were also less noisy than the population density dynamics. The biovolume data were first
transformed by “differencing” (Box et al., 1978; Box et al., 1994). Each point was
subtracted from the next point, thus removing the curvilinear trend in the data. Each
biovolume series was then “detrended” to remove the linear decline in the data. The
transformed series showed no curved or linear trend. The autocorrelation coefficients of
order ranging from lag 1 to lag 8 were then estimated. The autocorrelation coefficients of
each replicate population were treated as one “observation”; thus the six replicate
populations provided 6 independent estimates of the autocorrelation coefficient at each
time lag. Figures 8(a)-(c) show the autocorrelation functions of the 7, 8 and 9 h cycle
populations. The autocorrelation coefficients were tested against a null value of zero
using a one-tailed #-test. Qualitative assessment of the curves fitted to the data suggest
that the 7 and 8 h cycle populations show autocorrelation functions that exhibit cyclical
tendencies as illustrated by the alternation of positive and negative values. However, a
Bonferroni correction was applied to the P-values, to correct for the multiplicity of s-tests
(Rice, 1989). No significant autocorrelations were found after applying the Bonferroni

criterion.
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Figure 8(a). Autocorrelation function for the total biovolume dynamics of bacterial
populations grown in batch culture with transfers every 7 h. Symbols represent
means and standard errors. A spline curve is fitted to the autocorrelation function

using least squares (solid line).

Autocorrelation
o

S
'

o
N

Autocorrelation
(e}

S
N

-0.4
1 2 3 4 5 6 7 8

Lags
Figure 8(b). Autocorrelation functions for the total biovolume dynamics of bacterial
populations grown in batch culture with transfers every 8 h. Symbols represent
means and standard errors. A spline curve is fitted to the autocorrelation function

using least squares (solid line).
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Figure 8(c). Autocorrelation functions for the total biovolume dynamics of bacterial
populations grown in batch culture with transfers every 9 h. Symbols represent
means and standard errors. A spline curve is fitted to the autocorrelation function
using least squares (solid line).

DISCUSSION

In this Chapter, I have presented a simple model for bacterial growth in a periodic
environment, in which there is a lag phase of constant duration during which no growth
occurs. The lag phase occurs only when the population has previously undergone a
period of resource depletion. Numerical simulations showed that for relatively short
transfer cycles the populations are diluted to extinction. For longer cycles, the population
has a single equilibrium where it remains in a perpetual state of near-exponential growth.
For still longer transfer cycles, the population exhibits limit cycles ranging from very

high to low periodicity. For the longest transfer cycles, there was a single equilibrium.

However, experiments to test this model did not reveal the striking periodic
behavior predicted. The experiments showed discrepancies from the model predictions in
a number of ways. Firstly, the populations that exhibited declining density dynamics did

not decline to extinction but stabilized at some low density (5 and 6 h transfer
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treatments). Also, populations that reached and maintained intermediate densities did so
at densities lower than expected (7 h treatment). Finally populations that reached the
expected endpoint biovolumes had cells that were considerably larger than expected, and

had a considerably lower population density than expected (8 and 9 h treatments).

There are two classes of possible reasons for the discrepancies between the
predictions of the lag phase model and the experimental results. The first of these
assumes that the basic model is correct, but there were problems with experimental
design and noise. It is possible that the model for the lag phase is generally correct, but
the time frame chosen for the experimental test was incorrect. The predicted periodicity
in the population dynamics may occur in a small portion of the range of serial transfer
intervals chosen. Thus, the experiments did not have the resolution in the necessary
range to reveal the predicted dynamics. It is also possible that the lag phase model is
generally correct, but the data are too messy due to measurement errors, or there is too
much environmental noise. There has been considerable reéearch on the use of time
series analysis (Box ez al., 1994) to elucidate periodicity in data series. However, the
length of the time series necessary to reveal such patterns of non-linear temporal
dependencies is typically longer than measured in these experiments (Box ez al., 1994).
The length of the series required to generate a useful autocorrelation function is a
minimum of 4 times the length of the periodicity expected in the series. Thus, in order to
reveal a periodic cycle of 4, population density data are required for at least 16 serial
transfer cycles. The population densities were measured in these experiments for only
about 12 serial transfer cycles. The lack of suitable length for the population series was
one of the reasons I chose to treat replicate populations as single “observations” for the
time-series analysis. The experiments were logistically difficult as a result of the
replication and suitable randomization of treatments. Such long series of population data

are generally unfeasible for actual populations. Also, for long series, the dynamics may
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change over the course of the experiment due to evolutionary changes occurring in the

population.

Finally, it is possible that the simple model for lag phase described in this Chapter
is incorrect. The assumption of a discrete "switch" for the all or none occurrence of the
lag phase is probably incorrect. The lag phase may change over the course of the
experiments due to physiological changes within the populations. The lag phase is a
relatively poorly understood part of the bacterial growth cycle, because the bacterial cells
in lag phase do not remain uniform in internal physiology or age-structure and have
therefore proven difficult to study (Campbell, 1957; Cooper, 1991). In order to construct
a better model for bacterial population dynamics, it is essential to better understand the
physiology of the lag phase, and whether it may be affected by other demographic factors
such as the initial population density or the time spent in stationary phase. Empirical

evaluation of whether these factors affect the lag phase is presented in the next Chapter.
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Chapter 3

EXPERIMENTAL TESTS OF TWO FACTORS THAT MAY INFLUENCE THE
DURATION OF LAG PHASE.

INTRODUCTION

In the previous chapter, I presented a mathematical model of population growth in
a periodic environment. In this model, the limiting resource is depleted by the organisms
and then replenished only at some later time; this resource renewal is driven by some
external periodicity. I showed that the existence of a ciiscrete lag phase, associated with a
switch from non-growing to growing organisms, may interact with the environmental
periodicity to generate complex dynamics, including limit cycles, etc. However,
experiments to test the predictions of this model largely failed, presumably because some
assumption of the model was not fulfilled. One assumption used in the model is that the
lag phase has a constant length, which is independent of such factors as the time the
organisms spent in a non-growing state (prior to resource renewal) or the population’s
initial density (after resource renewal). In this chapter, [ examine the validity of this

assumption experimentally by manipulating these two factors.

The lag phase is the early portion of the bacterial growth cycle, during which the
population gears up its metabolic machinery for exponential growth. For the purposes of
empirical evaluation, the time that elapses between the provision of fresh medium and the
initiation of exponential growth is the lag time. During the lag phase, bacterial

populations presumably shut down systems used during stationary phase and induce
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processes necessary for cell growth and division. One can imagine that if either of these
processes could be sensitive to the amount of time a population has starved; and the latter
process could be sensitive to initial population density if cells modify the medium by

excreting enzymes or metabolites.

There has been considerable research on the biochemical and physiological
changes that occur in bacterial cells during stationary phase. Many of these changes are
activated by 6°, a transcription factor encoded by the rpoS gene. G is a master
regulator of the expression of a large number of other genes involved in starvation
survival (Lange & Hengge-Aronis, 1991). ¢ has also been shown to activate regulatory
systems involved in resistance to other environmental stresses, such as nitrogen starvation
and osmotic, oxidative and temperature stresses (Groat et al., 1986). This research has
been the subject of reviews detailing how ° activates specific regulatory systems and

genes activated by these regulatory units (Hengge-Aronis, 1996; Huisman er al., 1996).

Escherichia coli populations recovering from starvation have been analyzed for
global protein synthesis using two-dimensional gel electrophoresis. Siegele & Guynn
(1996) isolated nine proteins specific to the lag phase, which they called outgrowth or
recovery from starvation. Five other proteins whose rate of synthesis was greatly
accelerated during lag phase were also identified. Another study (Kus;j et al., 1998)
looked at the functional stability of total mRNA during the culture cycle of E. coli
populations. They found that mRNA half-lives are long during lag phase, decrease
during exponential phase and are long again during stationary phase. Further
investigation showed that the amount of a specific type of mRNA (for chloramphenicol
acetyltransferase) does not change over the growth cycle. This suggests that the

transcription rate is compensated to offset the long half-life of mRNA. The long half-life
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of mRNA during stationary phase means that the mRNA is immediately available for

transcription during recovery from starvation when nutrients become available.

Staphylococcus aureus populations starved for 7 days in a glucose-limited
medium exhibited a lag time of 120 — 150 minutes when medium containing glucose and
amino acids was added. The lag time was found to be independent of the length of
starvation survival (Clements & Foster, 1998). Starvation specific proteins were down-
regulated within 30 minutes. RNA synthesis increased immediately, followed by protein
synthesis within 5§ minutes, cell enlargement within 30 minutes and initiation of

chromosome replication within 90 minutes.

Recently, E. coli populations have been shown to use small extra-cellular
molecules released into the medium to “communicate” the cell density and the metabolic
potential of the environment (Surette & Bassler, 1998). These extra-cellular molecules
were produced at maximum concentration during late exponential and early stationary
phase in glucose containing medium. By late stationary phase, the signal was no longer
detectable. These molecules have not as yet been characterized, but have been shown to
interact with the Type II signaling system of Vibrio (Fuqua et al., 1994; Fuqua et al.,
1996; Fuqua & Green, 1998). This is one of the two well studied types of signaling
systems used by Vibrio species for “quorum-sensing”, which uses an acyl-homoserine
lactone (HSL) molecule for inter-cellular signaling. Typically, HSL’s are used by Vibrio
populations to signal induction of luminescence when the population reaches a certain

critical density.

An extra-cellular factor has also been shown to inhibit the initiation of
chromosomal DNA replication in E. coli (Withers & Nordstrom, 1998) via a “quorum-
sensing” mechanism. The factor has a transient effect and is produced maximally at high

population densities. HSL’s have also been proposed for involvement in the activation
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of the stationary phase systems in E. coli (Huisman & Kolter, 1994). Exponentially
growing E. coli cells were found to release an extra-cellular factor into the culture
medium, which reduced the lag phase of bacteria in minimal glucose medium by several

hours (Nikolaev, 1997).

In this Chapter, I describe experiments that test whether the lag phase is a
function of either starvation time or initial population density. A positive answer to
either of these questions would demonstrate that the assumption that the lag phase has a
fixed length is not valid. Such a finding might help explain discrepancies between
experimental results and model predictions, which were based on that assumption, in

Chapter 2.

MATERIALS AND METHODS

Bacterial strain and Culture Conditions

The E. coli B (REL 606) strain used in this study has been used in several other
ecological and evolutionary studies in our laboratory (Lenski et al., 1991; Lenski &
Travisano, 1994; de Visser et al., 1999). Its growth parameters have been characterized
previously (Vasi et al., 1994). All experiments were started from a single clone isolated

from a culture stored indefinitely at —80° C.

Bacteria were grown in Davis minimal medium (DM) (Carlton & Brown, 1981)
supplemented with 25 pg ml'l glucose in a shaking incubator at 37°C. Under the

standard conditions, the populations were diluted 100-fold into fresh medium, where they
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Figure 9. Estimation of the lag time. Log-transformed data points represent a sample
growth curve in medium with 25 ug ml” glucose. A regression line was fit
through the exponential part (2 - 6 h) of the growth cycle (solid line). The point at
which this line intersects the initial population density (dashed line) is the
estimated lag time (L).

grew until they reached stationary phase and had exhausted the available resources. The
populations grew from an initial population density of ~5 x 10° cells ml-1 to a final
density of ~5 x 107 cells ml"'. The 100-fold daily growth corresponds to ~6.6 (logz 100)

generations of binary fission.

To ensure acclimation to the experimental regime, bacteria were cultured for one
day in DM supplemented with 1000 pg ml™' glucose after removal from the freezer.
They were then conditioned for one day in DM supplemented with 25 pg ml" glucose.
24 h represents a complete cycle of lag phase, exponential phase and stationary phase in

these strains.
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Estimation of the lag time

Densities were estimated approximately every | — 2 h by viable cell counts on
tetrazolium arabinose plates (TA) indicator plates (Levin et al., 1977). The lag time was
estimated by regression as follows (see Figure 9). The densities were log-transformed
and a regression line was fit to the exponential (log-linear) portion of the growth curve.
This line was then extrapolated back to where it intersected the initial population density.
The time at the point of intersection was the estimated lag time. Although the actual
transition may be more gradual than this procedure implies, it effectively calculates the

time that has been “lost” by a population prior to its achieving exponential growth.

Effects of Starvation

The populations were conditioned for 2 days in standard medium to ensure that all
treatment populations went through one complete growth cycle (lag, exponential and
stationary phases) during the conditioning step. Earlier data (Vasi et al., 1994) showed
that the bacterial populations enter stationary phase at approximately 8 h after 1:100
dilution into fresh medium. Populations were transferred into fresh media 8, 24 and 48 h
after they began this second conditioning cycle. This resulted in treatment populations
that had starved for approximately 0 h, 16 h and 40 h. Six independent estimates of the
lag time were obtained for each treatment, in sets of complete blocks. The exponential
phase growth regression was computed for population densities between 7 x 10° cells
ml™ and 3 x 10%cells mI”'. One replicate from the 40 h treatment had only a single

sample between these densities; this replicate was not used in this analysis.

69



Effects of Initial Population Density

These experiments were carried out in DM supplemented with 1000 pg ml™
glucose, in order that a greater range of initial population densities might be compared.
The conditioning step was carried out in DM + 1000 pg ml™ glucose, which supports
population densities of ~3 x 10° cells ml”'. The experimental populations were started
using dilutions of 1:10°, 1:10* and 1:10? from the conditioned populations, with expected
initial densities of ~3 x 10° cells mi", ~3 x 10° cells mI" and ~3 x 10’ cells mI",
respectively. Six independent estimates of the lag time were obtained for each treatment,
in sets of complete blocks. The regressions were carried out from 4 h to 10 h after
culture inoculation in the ~3 x 10° cells ml” and ~3 x 10%cells ml" treatment populations,
and from 2 h to 7 h in the ~3 x 10 cells ml" initial inoculum treatment populations.
Different intervals had to be chosen since the duration of exponential phase was
considerably different for the different treatment populations. The ~3 x 10° cells ml™
treatment populations had to go through 6.6 (log2100) generations more growth than the
~3 x 10°cells ml"' treatment, which had to go through 6.6 generations (logz100) more

growth than the ~3 x 10° cells ml" treatment populations.

RESULTS

The mean lag time varied among starvation treatments (Table 6, Figure 10). The
0 h treatment populations had a lag that was shorter than the 16 h population, and the 16
h population had a lag that was shorter than the 40 h population. Planned comparisons
showed that the 0 h treatment populations were different from the 16 h treatment
populations, but that 16 h populations were not significantly different from the 40 h

treatment populations. Since these planned comparisons were not orthogonal, the error
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Figure 10. The effect of starvation time on the lag phase. Data points represent means
and standard errors for six replicate populations in the 0 and 16 h treatments, and
five replicate populations in the 40 h treatment.

rates for each were adjusted using the Sidak multiplicative inequality so that the

experimentwise error rate remained 0.05 (Sokal & Rohlf, 1982, pp. 242).

A closer look at the actual growth curves showed that the 0 h treatment
populations started the growth cycle at densities of ~ 2 x 10° cells m1™', which is lower
than expected from previous data (Figure 11a-c). These cultures were started 8 h after
the beginning of the conditioning cycle. 8 h may be an underestimate of the time
required to reach the expected endpoint stationary phase density. Thus it is likely that the

0 h populations were started during late exponential or transitional phase, not stationary

Table 6. Analysis of variance of the effects of starvation time on the lag time.

Source Sum of df Mean F Sig
Squares Squares
Among treatments 10.66 2 5.33 13.21 *e
TreatmentOhvs 16 h 5.79 1 5.79 14.35 **
Treatment 16 h vs 40 h 0.62 1 0.62 1.56 ns
Within treatments 5.64 14 0.40
Total 16.30 16
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Figure 12. The effects of initial population densities on the lag time. Data points
represent the means of six replicate populations. Error bars show standard errors.

phase itself. This could also explain the rather large error bars in the estimates for lag
phase for the 0 h treatments, as the initial inoculum was probably in a transitional phase

between exponential and stationary phase.

There was a significant effect of the initial inoculum on the lag time (Figure 12,
Table 7). Planned comparisons showed that the ~3 x 10 cells ml™ initial inoculum
treatment populations were significantly different from the ~3 x 10° initial inocolum
treatment populations which were in turn different from the ~3 x 107 initial inoculum
treatment. Since these planned comparisons were not orthogonal, the error rates for each
were adjusted using the Sidak multiplicative inequality so that the experimentwise error

rate remained 0.05 (Sokal & Rohlf, 1982, pp. 242).

Table 7: Analyses of variance of the effects of initial inoculum size on the lag time.

Source Sum of df Mean F Sig
Squares Squares
Among treatments 1.39 2 0.69 5.46 *
10° vs 10° treatment 1.22 1 1.22 9.61 .
10° vs 10’ treatment 0.82 1 0.82 6.44 .
Within treatments 1.90 15 0.13
Total 3.29 17
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DISCUSSION

In this chapter, I sought to test the assumption made in the lag phase model, that
the lag phase is a discrete function (“on” or “off” depending on whether the population
entered stationary phase) that is independent of other physiological factors. Experimental
tests of two factors, namely starvation time and initial population density, showed that lag
phase is prolonged by the former, and affected by the latter in a non-linear way.
Extending the periodic model by adding the effects of the starvation time and initial
inoculum size may help to explain the discrepancies of the model with the experiments
reported in Chapter 2. Simulations of a lag phase model extended to incorporate the lag
phase as a linear function of starvation time did not exhibit the complicated dynamics
predicted by the “discrete” lag phase model. (The lag-starvation model was based on a
linear regression fit to the data in Figure 10 in which L=0.0061*Starvation time (Vasi,
unpublished data).) Instead, populations either went extinct at very short transfer cycles
(less than 6 h) or had a single equilibrium at longer transfer cycles (greater than 6 h).
Thus the incorporation of factors affecting the lag phase into a mathematical model of
bacterial growth may help to explain the lack of periodicity in the experiments presented

in Chapter 2.

Natural populations of bacteria live in a “feast or famine” (Koch, 1971)
environment, in which fluxes of nutrients become available for short periods of time,
with long periods of intervening starvation. Thus, bacterial populations living in soil,
water or as parasites must spend long periods of time recovering from starvation, going
through the lag phase. Also microbial populations in nature occur at variable densities,
also affecting the duration of lag phase when nutrients become available. These factors

may produce considerable variability in population dynamics. The potential destabilizing
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influence of lag phase on microbial population dynamics may be an important

consideration in the understanding of fluctuations of microbial populations.
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Chapter 4

ECOLOGICAL STRATEGIES AND FITNESS TRADEOFFS IN ESCHERICHIA COLI
MUTANTS ADAPTED TO PROLONGED STARVATION*

INTRODUCTION

In nature, most bacterial populations are thought to experience periods of famine.
Yet, until recently, studies of bacterial physiology and genetics have focused on cells that
were rapidly growing on abundant nutrients. In the past decade, however, there has been
heightened interest in the properties of bacteria under starvation. Some of this recent
research emerged from the “directed mutation” debate (Cairns et al., 1988; Lenski &
Mittler, 1993; Sneigowski, 1995; Foster, 1998) and has examined the rate and nature of
mutations during starvation (Stahl, 1988; Boe, 1990; Hall, 1990; Mittler & Lenski, 1990;
Foster & Cairns, 1992; Mittler & Lenski, 1992; MacPhee, 1993; Foster & Cairns, 1994;
Maenhaut-Michel & Shapiro, 1994; Rosenberg et al., 1994; Jayaraman, 1995; Sneigowski,
1995; Foster, 1997; Harris et al.; Bhattacharjee & Mahajan, 1998). Another interesting
line of research seeks to understand the physiological and genetic bases of adaptation to
prolonged starvation (Koch, 1971; Lange & Hengge-Aronis, 1991; Siegele & Kolter,
1992; Hengge-Aronis, 1993; Zambrano et al., 1993; Huisman & Kolter, 1994; Hengge-
Aronis, 1996; Huisman et al., 1996; Zambrano & Kolter, 1996; Cotter & Miller, 1997;
Joux et al , 1997, Thorne & Williams, 1997; Uhde et al., 1997; Lazar et al., 1998; Pratt &

Silhavy, 1998; You et al., 1998). Our paper builds upon this second line of research.

* This chapter is presented verbatim from Vasi & Lenski (1999)
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In this paper, “stationary phase” refers to the period after a bacterial population has
ceased growth owing to the depletion of limiting nutrients. Zambrano et al. (1993)
isolated some mutants of Escherichia coli that could spread through populations
maintained for approximately two weeks in a formerly rich medium (LB) without further
addition of nutrients. By mixing together previously starved and freshly grown cells
(carrying different genetic markers), Zambrano et al. demonstrated the existence of
mutants that could grow even while the progenitor was dying. These mutants were later
termed GASP mutants — for growth advantage in stationary phase — and they are presumed
to have an advantage in scavenging the nutrients released by dying cells (Zambrano &
Kolter, 1996). Some GASP mutants have alterations in the rpoS gene that reduce, but do
not eliminate, the activity of 6° (Zambrano er al., 1993), a transcription factor that is
induced by starvation and regulates the expression of many other genes (Lange & Hengge-
Aronis, 1991; Hengge-Aronis, 1993; Hengge-Aronis, 1996). Mutations in other genes
may also produce a GASP-like phenotype (Huisman et al., 1996).

In this study, we obtained five GASP-like mutants of E. coli by prolonged
starvation in a minimal medium. Rather than characterizing these mutants in terms of
genetic and physiological properties, as have previous studies, we sought to elucidate the
ecological “strategies” employed by these mutants. Specifically, we conducted several
experiments to measure the net death rate (i.e., death rate minus growth rate) of the
starvation-selected mutants and their progenitors during prolonged starvation under
several treatments. In one experiment, we compared the death rates of the mutants and
progenitors in pure culture. This experiment tests whether the mutants have evolved a
greater intrinsic ability to tolerate prolonged starvation. In other experiments, we
compared death rates measured in various mixtures to determine whether the mutants have
a lower net death rate in the presence of their progenitors, and whether the mutants cause

the progenitors to die faster than their intrinsic rate. The former effect would suggest a

77



cross-feeding relationship, whereas the latter effect would indicate an allelopathic
interaction. We also sought to determine whether starvation-selected mutants are
competitively inferior to their progenitors under conditions of abundant nutrients. To that
end, we placed the mutants and their progenitors in competition with one another for fresh

medium.

MATERIALS AND METHODS

Bacterial Strains

The bacterial strains used as progenitors in this study have been described
previously (Lenski et al., 1991). Briefly, they are all asexual clones of Escherichia coli B,
and are stored in glycerol at —80°C. The five progenitors are referred to in this paper
simply as “original” strains O1, 02, O3, O4, and OS, and have strain numbers REL1176,
REL1180, REL1192, REL1193, and REL607, respectively. Progenitor OS5 is an Ara”
strain that has no prior history of adaptation to the DM25 medium used in this study. The
four other progenitors are Ara" strains that evolved independently for 300 days (= 2000
generations) in the same DM25 medium used in this study (see below) except by serial

transfer into fresh medium every day.

The five mutants are designated in this paper as S1, S2, S3, S4, and S5, where S
denotes “starvation” selected and the numeral corresponds to the original progenitor.
These mutants have strain numbers REL6426, REL6432, REL6430, REL6434, and
REL6428, respectively. All five mutants retain the Ara marker state of their progenitors,

but each one has noticeable and heritable differences in colony morphology (when spread
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on TA agar plates: see below) that allow it to be distinguished from its progenitor. Like

their progenitors, the mutants are stored at —80°C.

Media and Culture Conditions

The same liquid culture medium was used in all experiments, including for
prolonged starvation as well as growth. That medium is Davis minimal broth
supplemented with 25 pg of glucose per ml (Carlton & Brown, 1981; Lenski, 1988),
which we refer to as DM25. Experimental populations were maintained in a shaking
incubator at 120 rpm and 37°C. In all experiments, bacteria were enumerated by standard
dilution methods onto tetrazolium arabinose (TA) agar plates (Lenski, 1988). During
experiments in which mutants and their progenitors were mixed, the two types were

distinguished by differences in their colony morphology on these plates.

Prior to starting every experiment, the following procedures were performed to
ensure that all strains were similarly acclimated, so that any reproducible difference must
be heritable. Each mutant or progenitor was removed from the freezer; an aliquot of the
freezer stock was transferred into a rich broth (LB), where the cells grew for 24 h; that
culture was diluted 10,000-fold into DM25, where the cells grew for another 24 h; and

then the experiment proper began.

Derivation of Starvation-Selected Mutants

The starvation-selected mutants were obtained in either one (S1, S2, and S4) or
two (S3 and S5) stages. First, a number of strains, including O3 and OS, were subjected to
starvation for 30 days in DM25 without added nutrients. Preliminary characterization of

isolates derived from this first-stage experiment found no compelling evidence for
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reductions in their death rates measured in pure culture. Therefore, we began a second
stage of starvation selection. A number of strains — including O1, 02, 04, and first-stage
isolates of O3 and O5 — were inoculated into fresh DM25 again without adding any
nutrients. (The use of screw-capped culture tubes during both stages minimized
evaporation, but some occurred nonetheless; sterile distilled water was added to cultures
periodically to maintain the original volume. It is unlikely that the bacteria experienced
anaerobic conditions, because the culture tubes were opened every second day, there was
substantial head space above the culture medium, and the maximum density supported by
DM25 is only ~5 x 107 cells per ml.)

Figure 13 shows the overall population dynamics of the second-stage starvation-
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Figure 13. Dynamics of the five populations during the starvation-selection experiment.
A separate line indicates each population; the population densities have been logo-
transformed. The populations were founded with five different strains of E. coli B,
which had already diverged from one another as part of another evolution
experiment (Lenski et al., 1991). At day 49 of the starvation-selection experiment,
we isolated from each population a clone that showed a heritable difference in
colony morphology from its progenitor.
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selection experiment for the five populations that gave rise to the mutants S1-S$5, based on
colony counts obtained on TA agar. All of the populations declined by several orders of
magnitude, with the steep decline commencing a few days after the experiment began, but
then decelerating about day 30 and leveling off at a density of ~10* cells per ml. Mutants
S1-SS were all obtained on day 49 of the experiment, and they were chosen on the basis of
atypical colony morphology (relative to their progenitors) as well as their survival to this
point of the experiment. The atypical colony morphology bred true when these mutant
clones were re-streaked onto fresh TA agar, and these morphological differences gave us
confidence that indeed we had genetic mutants (as opposed to any progenitor cells that

might have survived without mutations).

Estimation of Death Rates

Three different experiments were performed to compare the death rates of mutants
and their progenitors under various treatments. All three experiments were performed
with cultures in screw-capped tubes grown at 37°C in DM25. Each experiment lasted 15
days; this duration was chosen because it includes a substantial decline (Fig. 13), but it
does not extend into the period when mutants with altered colony morphologies became
abundant in the selection experiment. Samples from experimental populations were
spread every second day on TA agar plates, starting the first day after they grew to
stationary phase. The natural logarithm of the viable population density (based on colony-
forming units) was regressed against time, and the time-averaged death rate was estimated
as the slope of the regression. This procedure provides an estimate of the net death rate,
i.e., the rate of death minus any residual growth. The first experiment compares the death

rates of the starvation-selected mutants and their progenitors in pure culture (i.e., each in
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the absence of the other). The second experiment compares death rates of the mutants
measured at two initial frequencies (10% and 90%) in mixed culture with the progenitors.
The third experiment compares the death rates of the progenitors in the absence and
presence (50%) of their derived mutants. For the last two experiments, the treatment
frequencies are based on the ratio of the stationary-phase culture volumes at the time of

mixing.

Measurements of Cell Size

We used a Coulter particle counter (model ZM and channelyzer model 256) to
measure average cell volume for each mutant and its progenitor. The raw data were edited
to remove debris in very small-size channels (Lenski & Bennett, 1993). Measurements
were made 24 h after each strain was diluted 1:100 into fresh DM25 medium; this
corresponds to about 8-16 h after the bacteria exhausted the glucose in DM25 and entered

into stationary phase (Vasi et al., 1994).

Estimation of Relative Fitness in Fresh Medium

To test whether the starvation-selected mutants had become less fit than their
progenitors in fresh medium, we performed short-term competition experiments in DM25
(Lenski et al., 1991). In brief, each mutant and its progenitor were separately grown for
one day in DM25, then they were mixed 1:1 volumetrically and diluted 1:100 in DM25.
An initial sample of the mixture was diluted and spread on TA agar, and a final sample
was similarly taken after 24 h. During this period, the mixed population increased ~100-
fold in density before entering stationary phase; no discernible death occurs during early

stationary phase (Vasi et al., 1994). For each competitor, we calculated its net rate of
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population increase from its initial and final densities, and we then computed relative
fitness as the ratio of these values for the derived mutant and its progenitor (Lenski et al.,

1991).

RESULTS

Ecological Strategies of the Starvation-Selected Mutants

Death rate in pure culture. We measured the net death rate (i.e., death minus growth) of
the starvation-selected mutants and their progenitors in pure culture for 15 days. This

experiment was replicated five-fold in complete blocks. Figure 14 shows that two
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Figure 14. Death rate in pure culture of starvation-selected mutants (S1-S5) and their
progenitors (O1-O5). Rates were measured over 15 d. Error bars represent one
standard error. For each mutant and progeritor, a one-tailed paired r-test was done
to test the hypothesis that the mutant had a lower death rate in pure culture than did
its progenitor. Results are summarized above each strain pair by: ns 0.1 <P; +
0.05<P<0.1; * 0.01 <P<0.05; ** 0.001 <P<0.01.
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mutants, S1 and S3, had significantly lower death rates in pure culture than did their
progenitors; a third mutant, S5, had a marginally significant reduction. Evidently, at least
part of the selective advantage of some of the mutants can be explained without invoking
specific pairwise interactions among genotypes, hence implying an evolutionary reduction

in the “intrinsic” death rate.

One plausible explanation for a reduction in the intrinsic death rate is that the
starvation-selected mutants might produce larger cells, and contain greater metabolic
reserves, than their progenitors. To test this hypothesis, we measured the average cell
volume of starvation-selected mutants and their progenitors after they were grown in fresh
medium and soon after they entered stationary phase. Replicate estimates of average cell
volume were obtained for three independent cultures of each mutant and progenitor in a

complete block design. Figure 15 shows that two of the mutants, S3 and S4, made
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Figure 15. Average cell volume (1 fl = 10" 1) of starvation-selected mutants (S1-S5) and
their progenitors (O1-O5) in early stationary phase. Error bars indicate one
standard error. For each mutant and progenitor, a one-tailed paired ¢-test was done
to test the hypothesis that the mutant produced larger cells than did its progenitor.
Results are summarized above each strain pair by: ns 0.1 <P;- + 0.05 <P <0.1;
* 0.01 <P<0.05.
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significantly larger cells than their progenitors; the size difference between S5 and its
progenitor was marginally significant. However, there was no significant correlation
between the evolutionary changes in average cell volume and intrinsic death rate (r =
—=0.123, n =5, one-tailed P = 0.4223). Hence, larger cell size does not seem to be the main
factor responsible for the lower intrinsic death rate in pure culture of the starvation-

selected mutants.

Survival advantage when rare in mixed culture. We compared death rates for the
starvation-selected mutants at two different initial frequencies, 10% and 90%, in mixed
culture with their progenitors for 15 days. The measurements were replicated five-fold in
complete blocks. Figure 16 shows that three mutants — S1, S4, and S5 — had
significantly lower degth rates when they were rare than when they were the predominant
genotype in the assays. This outcome suggests a cross-feeding interaction, in which the
mutants obtain nutrients from their progenitors (including lysed cells) that they cannot
obtain so readily from their own type; these nutrients either reduce the death rate of the

mutants or permit some offsetting growth.

Killing effect of mutants against their progenitors. We compared death rates over 15 days
of the progenitors in pure culture (100%) and in mixed culture (50%) with their derived
mutants. Rate estimates were replicated five-fold, but not in a blocked design (the first
treatment used data obtained in the first experiment above). Figure 17 shows that two
progenitors, O1 and OS5, were subject to significant killing effects; this result indicates that

the corresponding derived mutants, S1 and S5, were allelopathic.

Figures 14, 16, and 17 summarize a total of 15 statistical tests: three possible .
strategies for each of five starvation-selected mutants. It would not be surprising,

therefore, if one or two of the tests were “significant” at the 0.05 level by chance alone.
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Figure 16. Death rates in mixed culture of starvation-selected mutants (S1-S5) at two
different initial frequencies (10% and 90%) with their progenitors. Rates were
measured over 15 days. Error bars indicate one standard error. For each mutant, a
one-tailed paired t-test was done to test the hypothesis that it had a lower death rate
when in the minority (10%) than when in the majority (90%). Results are
summarized above each mutant by: ns 0.1 <P; * 0.01 <P <0.05; ** 0.001 <P <
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Figure 17. Death rates of progenitors (O1-O5) in pure culture (100%) and mixed (50%)
with their starvation-selected mutants. Rates were measured over 15 days. Error
bars are standard errors. For each progenitor, a one-tailed ¢-test was dore to test
the hypothesis that its death rate was lower when in pure culture (100%) than when
mixed (50%) with its derived mutant. Results are summarized above each
progenitor by: ns 0.1 <P; ** 0.001 <P <0.01; *** P<0.001.
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However, seven of 15 tests were significant at the 0.05 level, which itself has an
associated probability of <0.00001 based on the binomial distribution. Thus, the data

overall indicate that the mutants have adapted genetically to prolonged starvation.

Starvation-Selected Mutants are Inferior Competitors in Fresh Medium

To address the question of an evolutionary tradeoff in performance between
conditions of feast and famine, we estimated the fitness of each starvation-selected mutant
relative to its progenitor in fresh DM25 medium. We ran one-day competition
experiments in which the combined population grew 100-fold before the glucose was
depleted. The competitions were replicated five-fold for each pair of strains. Figure 18
shows that four mutants — S1, S2, S4, and S5 — were significantly less fit in competition

for fresh medium than were their progenitors; mutant S3 also seemed less fit, but the
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Figure 18. Fitness of each starvation-selected mutant (S1-S5) relative to its progenitor
during a one-day competition in fresh DM25 medium. Error bars correspond to
one standard error. For each mutant strain, a one-tailed s-test was done to test the
hypothesis that its relative fitness in competition for fresh medium was less than
1.0. Results are summarized above each mutant by: +, 0.05 < P <0.1; **, 0.001 <
P <0.01; *** P<0.001.
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effect was only marginally significant. Averaging over the five starvation-selected
mutants, the mean relative fitness in fresh medium is 0.767 and is significantly below one
overall (s-statistic = 3.43, 4 degrees of freedom, one-tailed P = 0.0133), despite variation
among the five mutants. Evidently, there is a common tradeoff between evolutionary
adaptations to prolonged starvation and competitive ability under favorable growth

conditions.

DISCUSSION

Previous research on bacterial adaptation to prolonged starvation has focused on
the genetic and physiological properties of starvation-adapted bacteria. In this study, we
sought to characterize the ecological strategies employed, and tradeoffs engendered, by E.
coli mutants selected during prolonged starvation in a minimal medium. Four of the five
starvation-selected mutants showed one or more significant advantages (Table 8). Mutant
S1 exhibited all three ecological strategies that we tested: (i) it had a lower intrinsic death
rate in pure culture than did its progenitor; (ii) it had an even lower death rate when mixed
with its progenitor; and (iii) it increased the death rate of its progenitor in mixed culture.
SS may also have used all three strategies, although its intrinsic death rate was only
marginally significantly lower than its progenitor. S3 had a lower intrinsic death rate than
its progenitor, while S4 had a significantly lower death rate when it was rare than when it
was common. Only S2 showed no significant survival advantage in any of the ecological
respects that we tested. Perhaps S2 carries only deleterious mutations. Alternatively, S2
may have certain advantages that are manifest only after very long periods of starvation,
because the death-rate assays ran for two weeks, whereas the selection experiment itself
lasted seven weeks. In any case, our results confirm prior findings (Siegele & Kolter,

1992; Zambrano et al., 1993; Zambrano & Kolter, 1996) that E. coli can evolve enhanced
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Table 8. Summary of the ecological strategies of five starvation-selected mutants of E.

coli.
Starvation-selected mutant
Strategy S1 S2 S3 S4 S5
Lower intrinsic death rate than *x ns * ns +
progenitor
Survival advantage when rare * ns ns ** **
Killing effect against progenitor b ns ns ns e

ns 0.1 <P; + 0.05<P<0.1; * 0.01 <P<0.05; ** 0.001 <P<0.01; *** P<0.001.
All tests were one-tailed, in the direction predicted by the hypothesis.
survival capacity under prolonged starvation, and they extend these findings from a
depleted rich medium to a depleted minimal medium. Moreover, our study demonstrates
that these starvation-adapted mutants exhibit diverse ecological strategies, either singly or
in combination. These diverse strategies presumably indicate distinct mutations in various
loci affecting different biochemical pathways, but confirmation of this conjecture awaits

formal genetic analysis of the mutants.

Our study also demonstrated an evolutionary tradeoff associated with the
mutations that conferred resistance to starvation. Most, if not all, of the starvation-
selected E. coli mutants were inferior to their progenitors during competition in fresh
medium (Fig. 18). These tradeoffs were typically severe, with the starvation-selected
mutants averaging >20% reductions in their rate of population increase in fresh medium.
Tradeoffs in fitness across environments have often been hypothesized as a means for
maintaining genetic diversity in spatially and temporally varying environments (Levins,
1968; Slatkin & Lande, 1976). Testing for the existence of such tradeofts is usually

difficult, but selection experiments-offer a powerful way to do so in suitable organisms
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such as Drosophila melanogaster (Mueller & Ayala, 1981; Rose & Charlesworth, 1984;
Rose et al , 1987; Chippindale et al , 1996) and E. coli.

Whether evolutionary tradeoffs exist in E. coli appears to depend very much on the
nature of the environments that are contrasted. Mutants selected for resistance to certain
phages (Lenski & Levin, 1985; Lenski, 1988) and antibiotics (Schrag & Perrot, 1996) are
inferior competitors in the absence of those agents. Mutants adapted to low temperature
also typically lose fitness at high temperature (Mongold ef al., 1996), although the
reciprocal is not true (Bennett & Lenski, 1993). Thus, genetic correlations that govern
responses to selection in different environments can be asymmetrical. Indeed, E. coli lines
that adapted for 2000 generations to an environment with abundant glucose usually
became better at surviving prolonged starvation (Vasi et al., 1994), whereas we have
shown here that most starvation-selected mutants became worse in competition for
abundant glucose. Such asymmetrical patterns are unexpected from the standpoint of
simple models in which tradeoffs arise from the allocation of internal resources to
competing demands. However, asymmetries are less surprising when one considers the
several thousand genes and myriad regulatory interactions that are present even in a

“simple” organism like E. coli.
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