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ABSTRACT

POPULATION GROWTH, DYNAMICS AND EVOLUTION IN ESCHERICHIA C01.1:

THEORETICAL AND EXPERIMENTAL STUDIES

By

Farida Vasi Attar

Studies of bacterial population growth and dynamics have focused primarily on

exponentially growing cells in chemostat cultures. In this dissertation, I focus on aspects

of population dynamics that are less well understood, i.e., lag phase and stationary phase,

and in a more complicated environment, i.e., batch culture. Simple mathematical models

are used to examine the effects of the lag phase, exponential grth rate, resource uptake

capacity and death rate on the population dynamics and evolution of Escherichia coli in a

periodic environment. I report on the following projects. I. Changes in life-history traits

during adaptation to a periodic environment. 11. Dynamical consequences of the lag

phase for population growth in a seasonal environment. 111. Two factors that may

influence the duration of the lag phase: starvation status and population density. IV.

Selection and analysis of life-history traits of mutants selected during prolonged

starvation.
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Chapter 1

LONG-TERM EXPERIMENTAL EVOLUTION IN ESCHERICHIA COLI: CHANGES

IN LIFE-HISTORY TRAITs DURING ADAPTATION TO A PERIOIDIC

ENVIRONMENT‘

INTRODUCTION

For decades, a major focus in evolutionary ecology has been to elucidate the

adaptive significance of variation in life histories (Fisher, 1930; Cole, 1954; Lack, 1966;

MacArthur & Wilson, 1967; Levins, 1968; Pianka, 1970; Luckinbill, 1978; Charlesworth,

1980; Mueller & Ayala, 1981; Reznick, 1983; Rose, 1984; Caswell, 1989; Partridge &

Sibly, 1991; Rose, 1991; Steams, 1992). Here, we intend life-histories to include not

only age-specific patterns of survivorship and reproduction but also differences in

demographic responses to such environmental factors as population density and resource

availability. According to all of these various formulations of life-history theory, a key

issue is the relative importance of different forms ofreproductive contributions made at

different ages or under different ecological circumstances to the overall grth of a

population. In an expanding age-structured population, for example, reproduction late in

life is discounted relative to reproduction at an earlier age, since the earlier progeny will

themselves begin to reproduce sooner than the later progeny (Fisher, 1930; Lenski &

Service, 1982).

Beyond distinguishing genetic and environmental influences, a fundamental

empirical challenge is determining the extent to which observed variation in life-history

* This chapter is presented verbatim from Vasi etal., 1994.

1
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traits actually reflects adaptation to different environments. Alternatives to strictly

"adaptationist" explanations for variation in life-history (or any other) traits include the

effects of independent genetic ancestries, which may constrain subsequent evolution, as

well as the effects of stochastic processes such as random mutation and genetic drift,

which can cause divergence even when initially identical populations evolve in identical

environments (Wright, 1932, 1982; Gould & Lewontin, 1979; Wade, 1979, Cohan, 1984;

Barton & Rouhani, 1987; Clarke et al., 1988; Lenski, 1988; Cohan & Hoffman, 1989;

Mani & Clarke, 1990; Harvey & Pagel, 1991; Lenski et al., 1991).

We are conducting a long-term experimental study of evolutionary adaptation and

divergence, using the bacterium Escherichia coli. Twelve populations, each founded

from the same clone, were serially propagated for 2,000 generations (300 d) in replicate

environments that subjected the bacteria to alternating periods of feast and famine

(Lenski et al., 1991). We have previously assessed the rate and extent of genetic

adaptation to this seasonal regime (see Stewart & Levin, 1973) by competing the

ancestral and derived genotypes in the experimental environment. (The ancestral

genotype was stored in a frozen state. Prior to each competition experiment, both

genotypes were allowed to acclimate physiologically to the experimental environment.)

Relative fitness was calculated as the ratio of the realized Malthusian parameters during

the competition experiments. Afier 2,000 generations, the mean fitness of the derived

populations relative to their common ancestor had increased by ~35%. However, any

divergence in competitive fitness among the replicate populations was quite small (and

might be explained simply by stochastic variation in the timing of equivalent favorable

mutations in the replicate populations). In other words, the replicate populations were

remarkably similar in the extent of their evolutionary improvement, even though the

genetic variation available for selection was derived entirely from new mutations that

occurred independently in each population.
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In this article, we seek to identify the changes in life-history traits that were

responsible for the demonstrable adaptation of these bacterial populations to the seasonal

environment. Our measure of relative fitness takes into account the differential survival

and reproductive success of the ancestral and derived genotypes over an entire grth

cycle consisting of several more or less distinct phases: (i) a lag phase upon transfer to

fresh medium, prior to the commencement of cell replication; (ii) a period of sustained

exponential growth, during which the available resource concentration is little affected

because ofthe low population density; (iii) a transition period, in which the limiting

resource becomes progressively depleted and the rate of population growth is

correspondingly diminished; and (iv) a stationary phase, in which the lack of resources

prevents replication but death may occur. The demographic parameters that govern these

phases can therefore be regarded as components of fitness, whereas fitness itself is

integrated over the entire grth cycle (just as the fitness of an organism with a complex

life cycle is an integrated function of its age- or stage-specific fitness components). In

addition to these fitness components, we measure certain other life-history traits,

including cell size and numerical yield in pure culture. We address whether the changes

in life-history traits were similar between the replicate populations, or whether the

populations achieved similar fitness gains but by quite different underlying changes in

their demography. We also examine whether the observed changes in life-history traits

correspond to the opportunity for selection on those traits that can be calculated from a

simple model of resource-based competition in a seasonal environment.
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MATERIALS AND METHODS

Bacterial Strains

The genotypes used in this study have been described previously (Lenski et al.,

1991). Briefly, the common ancestor is a strictly asexual strain ofEscherichia coli B.

The ancestor has two forms, Ara“ and Ara+, which differ from one another by a single

mutation and which can be distinguished by their colony color on tetrazolium-arabinose

(TA) indicator agar. Six populations of each arabinose marker type were founded from

single cells and then propagated in a serial transfer culture regime (see below).

Contamination fi'om external sources was excluded on the basis of genetic markers that

distinguished the common ancestor from wild bacteria. Cross-contamination was

excluded by propagating Ara‘ and Ara+ lines in a strictly alternating sequence and

observing no encroachment of genotypes with the inappropriate marker state. At 2,000

generations (300 d), genotypes were chosen at random from each of the 12 populations.

The ancestral and derived genotypes are stored indefinitely at —80°C, so that their

properties can be directly compared at any time.

In this study, we used a single clone (genotype) from each of the 12 populations.

Previous work has shown that there is very little within-population variation for fitness

(Lenski et al., 1991), consistent with the expectation of a purging effect caused by

selection in an asexual population. Our interest here is to evaluate the parallelism versus

divergence of demographic parameters and other life-history traits for independently

derived lineages rather than formally to partition genetic variation into its within- and

between-population components.
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Culture Conditions

Unless otherwise noted, the culture conditions used to measure life-history traits

in this study are the same as the conditions used during the long-term evolution of the

twelve populations (Lenski et al., 1991). Briefly, this standard environment consists of a

glucose-limited minimal salts medium (25 pg glucose ml") maintained in a shaking

incubator at 37°C. Each day, the populations were diluted IOO-fold into flesh medium;

they then grew until they had exhausted the available resources (within less than 10 h, as

compared to the 24-h transfer interval). The IOO-fold daily growth corresponds to ~66

(log2100) generations of binary fission. To ensure that genotypes were comparably

acclimated to the experimental regime prior to assays of competitive fitness or any of the

life-history traits, we cultured bacteria for 1 day in a rich broth afier removing them from

the freezer, and then they were conditioned for 1 day (one complete cycle of lag,

exponential growth, transition, and stationary phases) in the standard glucose-limited

minimal medium.

Assays ofRelative Fitness

The fitnesses of the derived genotypes relative to their common ancestor were

assayed in competition experiments under the standard culture conditions and using the

methods described previously (Lenski et al., 1991). Briefly, in each competition

experiment, a derived genotype was competed against the ancestral genotype of the

opposite marker state. The Ara marker itself is selectively neutral within :1% under the

standard culture conditions. Following separate conditioning in the standard culture

medium, the two competitors were each diluted 1:200 into fresh medium and allowed to

compete for 1 day; the competition experiment therefore encompassed the complete cycle

of lag, exponential growth, transition, and stationary phases. Initial and final densities of
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each competitor were estimated by plating onto TA agar. The Malthusian parameter for

each competitor is given by:

m = log, 1f—

N0

where Na and Nf are initial and final densities, respectively, and m is therefore a time-

average (geometric mean) over the entire grth cycle. The fitness, W, of a derived

genotype relative to the common ancestor is expressed as the ratio of their Malthusian

parameters during a competition experiment. (Lenski et al., (1991) describe the

relationship between relative fitness, which is dimensionless, and the selection rate

constant, which has units of inverse time.) Five estimates of Wwere obtained for each

derived genotype in sets of complete blocks. These same formulae were also used to

calculate relative fitnesses in numerical simulations (see below).

Estimation ofDemographic Parameters and Life-History Traits

Measurements ofpopulation density. Estimation of the various demographic parameters

required measurements of population density over time. Depending on the particular

experiment, we obtained population estimates from viable cell counts based on colony

forming units, from spectrophotometric measurements of optical density, or from particle

counts using a Coulter electronic particle counter (model ZM and channelyzer model

256). At fairly high cell densities, spectrophotometric measurements are easier to obtain,

while particle counts are probably the most accurate method. However, neither

spectrophotometry nor particle counts are effective at either very low density of in

distinguishing between viable and nonviable cells, when plate counts become necessary.
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Maximal growth rate. The maximal grth rate, Vm, for each genotype was estimated

under the standard culture conditions, except that the medium contained 1,000 pg glucose

ml'l. (This high glucose concentration is used for estimating V". in order to be very close

to the asymptotic maximal growth rate that is assumed by the Monod model. Afier the

bacteria were conditioned, they were diluted 1:100 into fresh medium, and the population

densities were sampled approximately every half-hour by measuring the absorbance

(proportional to density) of the culture with a spectrophotometer. The maximal growth

rate was estimated by regressing loge-transformed absorbance against time during

exponential grth phase. (Absorbance depends on the size of cells as well as their

number; however, this dependence does not affect the estimate of V,,, provided that cell

size remains constant during exponential growth. We will show later that cell size differs

between exponential growth and stationary phases; however, cell size appeared to be

constant within the period of exponential grth used to estimate Vm.) Seven estimates

of V,,, were obtained for each genotype (including both marker states for the ancestor) in

sets of complete blocks.

Resource concentration supporting growth at halfthe maximum rate. The glucose

concentration, Ks, that supports growth at half the maximum rate provides a measure of a

genotype's affinity for glucose as this limiting resource becomes depleted during the

transition phase. Preliminary experiments established 0.1 ug glucose ml'l as a

concentration at which all of the genotypes used in this study grew at roughly

V

2 9

which provided a suitable concentration for accurately estimating K5. After the bacteria

were conditioned at this concentration, they were diluted 1:100 into fiesh medium, and

the population densities were sampled approximately every half-hour by spreading
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diluted cultures on TA agar. Densities were log transformed, and a sub-maximal rate of

increase, V, was estimated for each genotype as the slope of the repression line during

exponential grth phase. Using the V", for each genotype (as estimated above), K5 was

then calculated from the model of Monod (1942, 1949):

 

 

V=Vm( S )

S+KS

sothat

V

K =S ’"s (H)

where S is the resource concentration (here, 0.1 pg ml'l). For each genotype (including

both marker states for the ancestor), we obtained two estimates ofK5 in sets of complete

blocks.

Duration ofthe lagphase. Each genotype was grown under standard culture conditions

and densities were estimated approximately every hour, using an electronic particle

counter. Cultures were diluted lOO-fold into an isotonic solution, and the particles in

0.05 ml of the resulting dilution were counted and sized. The frequency distributions for

particle sizes exhibited a distinct trough between background particles and bacterial cells.

The distributions were edited to eliminate the background counts, which yielded cell

densities that agreed well with densities based on viable plate counts. The duration of lag

phase, L, was estimated by subtraction, as fOllows. First, for each grth curve, we

measured the initial population density, No. Second, we assumed that a population was

near the midpoint of exponential-phase growth by the time that its density was ~10No.

The two population sizes sampled on either side of 10% were designated N1 and N2,

respectively, and the corresponding sample times at which they were observed, t1 and t2.
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Third, using the V,,, and Ks for each genotype (as estimated above), we inferred the

hypothetical times, TI and T2, required to reach densities Ni and N2, respectively, Ifthere

was no lag phase prior to exponential growth. That is,

 

N.

10g.(-—')

r. = _£’_o_
I V ’

where

V = Vm( S ).

S + K,

Finally, the duration of lag phase was then estimated as the average difference between

hypothetical and actual times to reach the densities on either side of 10%:

(ti—Ti'Hz-Ti)

2

L: 

We obtained three estimates ofL for each genotype (including both marker states for the

common ancestor), in sets of complete blocks.

Death rate during stationary phase. Death rates during stationary phase, D, were

estimated for each genotype under standard culture conditions. Death rates were

obtained over the period of 11-24 hours after transfer into fresh medium. By 11 hours, all

genotypes have entered stationary phase, as indicated by both direct observation of

population densities and computation of expected dynamics using the previously

estimated growth parameters. Densities of viable cells were measured by spreading

diluted samples onto TA plates approximately every 2 hours during this period. The

natural logarithm of cell density was regressed against time during stationary phase, and
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the regression coefficient provides an estimate of the corresponding death rate. Three

independent estimates ofD were obtained for each genotype (including both marker

states for the common ancestor), in sets of complete blocks.

Death rate duringprolonged starvation. During the 2,000 generations of evolution of

the experimental populations, cells were transferred into fresh medium every 24 hours,

and so death rates over longer periods of starvation, D’, were not directly subject to

natural selection. Nonetheless, these death rates might have changed as a correlated

response to selection on some other traits, and so we also assayed the death rates of all

genotypes over the period of 1-14 days (24-336 hours) after transfer into fresh medium.

Densities of viable cells were measured by spreading appropriately diluted cultures onto

TA plates at least every other day during this period. The natural logarithm of cell

density was regressed against time during prolonged starvation, and the regression

coefficient provides an estimate of the corresponding death rate. Four independent

estimates ofD' were obtained for each genotype (including both marker states for the

common ancestor), in sets of complete blocks.

Numerical yield in pure culture. We define the numerical yield, Y, of a genotype as the

number of viable cells per unit of limiting resource, when that genotype is grown in

isolation (i.e., in the absence of any competitor). The reciprocal of this yield therefore

provides a measure of the efficiency of conversion of the limiting resource into cell

numbers during population growth. Yields in the standard culture medium were

estimated at 24 hours after transfer into fresh medium by viable cell counts on TA agar

plates. In principle, one could adjust the yield obtained at the end of the growth cycle for

cell death that occurred during stationary phase. In fact, however, there was no

discernible cell death during this period (see Results), and so no adjustment was made.

Five independent estimates of Y were obtained for each genotype (including both marker

states for the common ancestor), in sets of complete blocks.

10
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Average cell size. Cell sizes were measured electronically (see above), which indicated

the volume displaced by a particle rather than its mass. Size distributions were edited to

remove background particles, which were generally distinctly smaller than the cells (see

above). The particle-Sizer was calibrated using the modal size of highly uniform Coulter

latex microspheres with 0.82 pm diameter (0.29 fl, where 1 fl = 10'12 ml). Three

independent estimates of the average cell size at the end of stationary phase, ZS, where

obtained for each genotype (included both marker states for the ancestor), in sets of

complete blocks. We also obtained three independent estimates of the average cell size

during the middle of exponential-phase growth, Ze, for each genotype (including both

marker states for the ancestor), in sets of complete blocks.

Statistical Considerations

In evaluating whether the derived genotypes had, as a group, changed relative to

their common ancestor, the twelve independently derived lineages were the appropriate

unit of replication. In this context, the repeated measures obtained for each genotype

were averaged, and they served only to improve the realized precision of our

measurements. (We also averaged measurements across the two marker-state variants of

the common ancestor.) Except for relative fitness, we employed two-tailed t-tests for

comparing one value (the average of two marker states for the common ancestor) with the

mean of many values (for the 12 independently derived genotypes), which provides nl +

n2 - 2 = 11 df(Sokal & Rohlf, 1981, pp. 229-231). For relative fitness, we simply

compared the mean for the derived genotypes with the value of 1.0 (by definition, the

relative fitness of the ancestor), which also provides n - l = 11 df.

In evaluating whether the derived lineages had diverged significantly from one

another, the replicate measures were essential for estimating the relevant error variance.

ll
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Analyses of variance were performed to test for the significance ofbetween-genotype

variation, VarG, which was estimated as the difference in the group and error mean-

squares, divided by the number of replicates assays (=blocks) performed per group (Sokal

& Rohlf, 1981, pp. 217). Of course, the common ancestor was not included in these

ANOVAs, because the question concerns the divergence ofthe derived lineages.

Model ofBacterial Population Dynamics

The model used in this study is one of resource-based population growth in a

seasonal environment (Stewart & Levin, 1973), which has been modified to take into

account a lag phase prior to exponential growth and to allow cell death during stationary

phase. Let the density of bacteria be denoted by N (cells ml!) and the concentration of

the limiting resource by S (ug glucose ml"). For numerical analysis, we integrate the

dynamics in three parts. The first part consists of the lag phase, during which time we

assume that a population neither grows nor consumes resources:

111-515-,
dt dt

The second part consists of both the exponential and transitional grth phases,

during which time the population increases and resources are consumed at rates

depending on the parameters ofthe Monod model:

gin—S1N
dt (5+K,)

and

iidilf’i-l

12
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where V,,.(h'1), Ks (pg glucose ml"), and Y(cells pg'l glucose) are the maximal growth

rate, the resource concentration at which grth rate is half maximum, and the numerical

yield, respectively. The third part consists of the stationary phase, during which time the

cell population may decline due to death, while the resource concentration remains

constant:

fl. = -DN

dt

and

9E .. 0,
dt

where D (h") is the death rate.

The first part runs from t = 0 to t = L, where L (h) is the duration of the lag phase

and t is the time after transfer into fresh medium. The second part then runs until S = 0,

that is, until the resource has been exhausted. The third part runs until t = 24 h, at which

time the cycle is completed. If two genotypes are competing, they may enter the second

part at distinct times, depending on the duration of their lag phases. Because competing

genotypes share the same pool of limiting resource, they necessarily enter the third part

simultaneously.

In our numerical analyses we sought to duplicate the conditions of our

experiments. We therefore began with a medium containing 25 pg ml'l, then added to

this 1/100‘h of a corresponding volume of a stationary phase cell culture. Thus the initial

resource concentration and population density were

S(0) = 0.99(25)
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and

MO) = 0.01 Y(25).

In the case of two competing genotypes, each one has an initial density of only

N(0) = 0.005 Y(25).

Equations were integrated numerically using SOLVERSWV, which uses the

fourth-order Runge-Kutta method of integration and allows discrete switch-points in

dynamic models (Blythe et al., 1990). We used time-steps of 0.0005 - 0.01 h in the

numerical integrations, depending on the precision required for solution of a particular

problem. The criterion for the end of the second part, S = 0, is approached asymptotically

in a truly continuous model, so that one must begin the third part when the resource

concentration reaches some arbitrary threshold criterion. In a simulation involving two

competing genotypes, their relative fitness over the entire cycle can be expressed using

the same formulae used to estimate relative fitness empirically (see above).

RESULTS

Ancestral Traits and Opportunityfor Selection

Table 1 gives estimates of the growth parameters for the common ancestor. The

maximal growth rate V”, corresponds to a doubling time (logeZ/ Vm) of a little less than

one hour. The duration of the lag phase prior to growth, L, is well over one hour. Also

14
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Table 1. Ancestral Fitness Components and Proportional Selection Gradients

 

 

Fitness Ancestral Selection gradient, Maximum

Component Value, X (X/W)(6W/BX) Fitness

L 1.5264 h 02554 1.3051 (L = 0)

V... 0.7726 h" 1 oo (Vm = 00)

K5 0.0727 pg ml" -0.0066 1.0069 (K, = 0)

D ° (0) h" 0 1 (D = 0)
 

* The actual estimate ofD was negative, but this value was not significantly different

from zero. The population dynamic model does not allow negative death rates (i.e.,

growth after the glucose has been exhausted), and so D has been set to zero in these

analyses.

Ks is very low relative to the initial resource concentration (25 pg glucose ml'l); in fact,

the ancestral genotype is predicted to grow at half its maximum rate when 99.7% of the

glucose has been used. The estimated death rate during stationary phase, D, is slightly

negative, suggesting the possibility of continued growth at a slow rate (and hence some

deficiency in the model of population dynamics). However, this trend is not statistically

significant. (It is also possible that some cell death occurred but was offset by continued

cell division. However, the methods we employed do not allow this distinction to be

made.) Figure 1 shows a numerical simulation of the dynamics of the ancestral genotype

and the limiting resource over the course of one 24 hour cycle, assuming neither growth

nor death during stationary phase.
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Figure 1. Numerical integration of the dynamics of a bacterial population (left axis, solid

line) and the limiting resource (right axis, dashed line), using the parameters

estimated for the common ancestor (Table l) and the standard culture conditions.

Some, but not all published estimates ofKs for E. coli strains grown in minimal

media with glucose as the sole carbon source are more than an order of magnitude higher

than our own estimates (Monod, 1949; Shehata & Marr, 1971; Luckinbill, 1984); but see

Shehata & Marr 1971 for an estimate within a few percentage points of our estimate).

Therefore, we were concerned with the possibility that our method of estimating K3

might somehow be biased. One possible bias is that we might have measured cell

division without concomitant cell growth, which may occur transiently after transfer into

fresh medium. This explanation would imply that the ancestral genotype could not

indefinitely sustain population growth consistent with our estimate ofKs. A second

possible bias is that we might have measured growth on some organic contaminants of

the medium or the glassware, or slight growth on citrate that is included in the medium

16
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(which some bacteria other than E. coli can utilize as a carbon source), rather than on

glucose. This explanation would imply that our ancestral genotype could grow at a

similar rate in a medium with less or even no added glucose. We excluded both of these

artifacts by showing that our bacteria can indefinitely sustain a 100-fold daily increase at

glucose concentrations 0.04 pg ml'1 and higher, but not at concentrations of 0.02 g ml'1

and below. The 100-fold daily increase implies V> log8100/ 24 h = 0.192 h'l. Given

that V= V». S/ (S + Ks) and with Vm = 0.77 h], this rate of increase can be sustained in

medium that contains 0.04 pg glucose m1.l only ifK, < 0.12 pg glucose ml’l. By the

same logic, the failure of the bacteria to persist in medium containing 0.02 pg glucose

ml'l implies thath > 0.06 pg glucose ml'l. IfK5 were lower than this value, then the

bacteria should have persisted even at this low concentration. We conclude that our low

estimate ofKS is quite accurate.

One can formalize the intensity of selection acting directly on each fitness

component as follows. We begin with a genotype having the growth parameters

estimated for the common ancestor (except death rate during stationary phase, which is

set to zero, since the model does not allow for continued growth after the limiting

resource has been exhausted). We then introduce a second genotype that is identical

except for a very small change in one parameter. Next, we simulate competition between

these two genotypes over an entire growth cycle and compute the fitness of the improved

genotype relative to the ancestor, as described in the Materials and Methods. The

selection gradient for any trait X is defined as the partial derivative of fitness with respect

to that trait (of. Lande, 1982), aW/ 6X, which we have obtained by the limit ofAW / AX

as Xgoes to zero. This gradient therefore reflects the direct selection acting on each

fitness component, with the other components held constant. (In effect this method

ignores any interaction between the demographic parameters by assuming that each one

can be changed independently of the others.) To facilitate comparisons among the

17
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selection gradients for the several fitness components (which have different units), we

have scaled these to reflect the proportional sensitivity of fitness to each component,

rendering them all dimensionless quantities:

X 0W

G = — — ,

. 01 ex]

where W= l for the ancestor (by definition). (One can obtain the proportional selection

gradients for L and V,,. analytically; D. E. Dykhuizen, personal communication.) The

proportional selection gradients are given in Table 1.

The proportional selection gradients are equivalent to “elasticities” in population

projection matrices (deKroon et al., 1986) and to “control coefficients” in biochemical

models of metabolic flux (Kacser & Burns, 1979; Dykhuizen et al., 1987). It is

frequently the case in such analyses that the sum of the proportional sensitivities is equal

to one (deKroon et al., 1986; Dykhuizen et al., 1987; Mesterton-Gibbons, 1993);

however that is not always true, and is demonstrably not the case for the proportional

selection gradients considered here (Table 1). The failure of the proportional sensitivities

to sum to one implies that W is not a homogeneous function of the fitness components

(Mesterton-Gibbons, 1993); this inhomogeneity may be a consequence of the

nonequilibrium nature of the population dynamics in a seasonal environment.

The proportional selection gradient for the maximum grth rate, Vm', is about

four times steeper than the corresponding gradient for the duration of lag, L, and more

than 100 times steeper than the gradient for KS, which governs the reduction in growth

rate as the resource becomes depleted. The death rate, D, cannot be reduced below zero

according to the model, and so its proportional selection gradient is zero.
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The selection gradient for the numerical yield, Y, is also zero. This result may

seem puzzling at first glance, but in fact it is straight-forward: any increase in the

efficiency of conversion of resources into cell numbers that does not simultaneously

increase grth rate cannot enable one genotype to out-compete another, because such a

change would (in a physically unstructured environment) concomitantly leave more

resource for use by the competitor. One might reformulate the model by replacing V,,. in

the equation of population growth with the product of a maximum rate ofresource uptake

(U... = V,,,/Y) and yield (Y), such that selection would act both on U,,. and Y. We have not

done so because we did not measure Um.

In addition to these proportional selection gradients, we can calculate the

theoretical maximum improvement in fitness that could be achieved by changing any one

of the parameters from the ancestral state (Table 1). There is no theoretical limit to Vm,

nor to the fitness that can be achieved by increasing Vm. But L, Ks, and D cannot be less

than zero. Hence, there is a maximum improvement in fitness that can be achieved by

changing any of these parameters, with the greatest room for improvement in L (~30%),

only slight room for improvement in Ks (<1%), and no room whatsoever for

improvement in D.

Of course, average cell sizes (25 and 2,.) and the death rate during prolonged

starvation (U) do not enter directly into the dynamic model, and hence selection

gradients are not applicable, unless specific couplings between fitness components and

these traits are assumed. Also, these selection gradients do not take into account possible

tradeoffs or other couplings between the demographic parameters that do enter into the

model. However, one can readily see that selection might favor an allele that improved

one ofthe parameters subject to strong selection (e.g., Vm), even if it compromised one of

the other parameters subject to weaker selection (e.g., Kg).
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Changes in Life-History Traits

Table 2 compares the average values ofthe life-history traits for the ancestral and

derived genotypes. The derived genotypes improved, on average, by ~35% in fitness

relative to the common ancestor. Contributing to this fitness increase were ~15%

improvement in the maximal grth rate (Vm) and ~20% shorter lag phase (L). The

resource concentration at which growth rate was half maximum (K5) was ~20% higher in

the derived genotypes, which has a negative impact on fitness. The death rate during

stationary phase (D) did not change significantly. Thus, the improvements were in the

two demographic parameters with the greatest opportunity for selection.

The numerical yield (Y) of the derived genotypes was reduced by ~30% relative

to the common ancestor. That is, whereas the derived genotypes increase in abundance

relative to the common ancestor during competition (as indicated by their higher relative

fitness), the derived genotypes yieldfewer cells per unit resource when they are grown in

isolation. At least two distinct hypotheses could account for this result: the derived

genotypes may produce larger cells, so that the total biovolume is not reduced; or in the

course of their more rapid growth, the derived genotypes may burn the glucose less

efficiently or produce more metabolites that inhibit growth, so that the total biovolume is

also reduced. Table 2 shows that the derived genotypes were in fact, ~85% larger in

average cell volume in stationary phase (ZS). Thus, the total biovolume produced over

the entire grth cycle (expressed as the product of Y and 2,, was even greater (~100%)

than the difference in stationary phase.
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Table 2. Changes in Fitness Components and Other Life-History Traits during 2,000

Generations of Evolution in a Seasonal Environment

 

 

Mean for Mean for

Common Derived

Life-History Trait Ancestor Genotypes t, P

Relative fitness

W (1 ) 1.3486 12.450 ***

Fitness components:

L (h) 1.5264 1.2470 -2.458 *

V... (11") 0.7726 0.8887 5.504 ***

K, (pg m1“) 0.0727 0.0880 2.215 *

D (11") -0.0127 0.0029 1.243 ns

Other life-history traits:

”X 106 pg-I) 2.6352 1.8386 -5137 m

D' (11") 0.0216 0.0156 -2745. ..

25 (11) 0.3546 0.6549 4.412 **

z. (n) 0.5678 1.1357 4.704 ***

 

NOTE. -- For all traits except relative fitness, the null hypothesis is that the

mean values are equal for the common ancestor and the derived genotypes. For

relative fitness, the null hypothesis is that mean fitness of the derived genotypes is 1.

Significance is based on two-tailed probability of rejecting the null hypothesis using

the t—distribution with 11 degrees of freedom. ns P > 0.05, * 0.01 < P < 0.05, **

0.001 < P < 0.01, *** P < 0.001.
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Although the death rate during stationary phase (D) did not change significantly,

the derived genotypes had ~30% lower death rate during prolonged starvation (D').

Parallelism Versus Divergence in Life-History Traits

Table 3 summarizes the ANOVAs to test for variation among the twelve

independently derived genotypes in each of the fitness components and other life-history

traits. There was no significant heterogeneity among the derived genotypes in their

fitnesses relative to the common ancestor (W).

The derived genotypes also showed no significant genetic variation in their

maximal growth rates (Vm), which contributed to their fitness improvement, or in the

resource concentrations that allow half maximum grth rate (Ks), which were uniformly

worse than that of their ancestor. There was, however, significant heterogeneity in the

duration of lag phase (L), which improved, on average, relative to the ancestor, and in

death rates during stationary phase (D), which did not change on the average from the

ancestral state.

Among other life-history traits, numerical yield (Y), death rate during prolonged

starvation (D'), and average cell sizes (25 and 2,.) all exhibited significant heterogeneity

among the independently derived genotypes.

Sufficiency ofthe Demographic Model

Are the demonstrable improvements in maximal growth rate (V,,.) and duration of

lag phase (L) sufficient to explain the ~35% improvement in fitness relative to the

common ancestor? Using our demographic model, we simulated competition between a

genotype with the ancestral parameters and each of 12 genotypes with parameters

22
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corresponding to the independently derived types. Overall, the mean fitness of the

derived competitors relative to their common ancestor, using the model and the

corresponding parameter estimates, was 1.21, compared with the mean fitness of 1.35

obtained from the actual competition experiments. For all 12 derived genotypes, the

simulated fitness was less than the actual fitness, which is highly unlikely by chance (p =

0.5l2 < 0.001).

One potentially artifactual explanation for this effect is that all of the simulations

use the same parameters for the common ancestor, and so all share some errors in

estimation that might produce concordance in the deviations between simulated and

actual competitions. This explanation is not tenable, however, since the uncertainties in

the parameter estimates for the ancestral genotype are too small to account for any of the

deviations between simulated and actual fitnesses. To see this, recall that the fitness

components for the common ancestor were independently estimated for each of the two

marker-state variants of the common ancestor (Ara' and Ara+). The simulated relative

fitness for these two ancestral competitors differs by only ~0.01 from the measured

relative fitness (data not shown), whereas the simulations between the derived and

ancestral genotypes differ by > 0.09 in all twelve cases. Evidently, the discrepancy

between the relative fitnesses predicted by the estimated parameters in the simple model

of competition and the observed fitnesses is real, with the model accounting for ~60%

[(1.21 - 1) / (1.35 - 1)] of the actual improvement in competitive ability. In the

Discussion, we will consider possible explanations for the remaining 40% of the fitness

gain.
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Genetic Correlations between Traits

We calculated the product-moment correlations between the estimated values of

the eight fitness components and other life-history for the 12 independently derived

genotypes. Only two of the 28 pairwise correlations are individually significant, and only

one of these (between Z5 and Z.) is significant at P < 0.05 after correcting for multiple

tests using the sequential Bonferroni criterion (Rice, 1989). However, these genetic

correlations between extant populations do not necessarily tell us very much about the

correlated responses that occurred within populations in the past.

DISCUSSION

We have been investigating the changes that occur during long-term evolution in

a simple experimental system. Twelve bacterial populations, founded from the same

ancestral genotype, were propagated for 2,000 generations in replicate environments,

which subjected the bacteria to alternating periods of feast and famine. The derived

genotypes increased in their competitive fitness in this seasonal environment by ~35%,

on average, relative to their common ancestor (Lenski et al., 1991). There was very little

divergence among the derived genotypes in their competitive fitnesses relative to one

another, despite their dramatic gains relative to their common ancestor and even though

their improvements depended entirely on new mutations that occurred independently in

the replicate populations (Lenski et al., 1991). However, the populations may have

attained similar fitnesses, but by different underlying changes in their life-histories.

Therefore, in this study, we sought to determine which demographic parameters

were responsible for the improved competitive fitness of the derived genotypes relative to
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their common ancestor, and whether similar life-history changes had occurred among the

independently evolving populations. We also addressed whether the observed changes

corresponded to those expected from the relative opportunities for selection acting on the

various parameters in a simple mathematical model of resource-based population growth

in a seasonal environment. In addition, we examined whether the observed changes were

sufficient, within the context of this model, to account for the improvements in fitness

that were measured by the competition experiments.

Changes in Fitness Components and Other Life-History Traits during Adaptation to a

Seasonal Environment

We believe it is important to distinguish two types of life-history traits. First,

there are fitness components per se, which are those demographic parameters that directly

determine rates of change in the relative abundance ofcompeting genotypes. If one has

sufficient knowledge of these demographic parameters, then one should be able to predict

the outcome of competition between genotypes, provided that one's demographic model

is sufficiently realistic to encompass the relevant dynamics. In age-structured models of

life-history evolution, the age-specific survivorship and fecundity schedules provide these

fitness components (Service & Lenski, 1982). In models based on Lotka-Volterra

dynamics, the fitness components are subsumed by exponential growth rates, carrying

capacities, and competition (Pianka, 1970; Gill, 1972). In this paper, fitness components

are represented by the terms defining population dynamics in a resource-based model of

competition in a seasonal environment: the duration of lag (L), the maximum growth rate

(Vm), the resource concentration at which the growth rate is half maximum (Ks) and the

death rate during stationary phase (D). Fitness itself is therefore some function of these

parameters, but it need not be equally sensitive to all of them. Moreover, the effect of
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each parameter on fitness will depend upon features of the environment (including the

initial resource concentration, the dilution factor, and the frequency of transfers into fresh

medium) as well as on the values of the other parameters.

Second, one may believe that other traits underlie fitness (based on intuition,

empirical data, or other knowledge of the organism), but lack any theoretical basis to

predict the outcome of competition. Traits such as body size or running speed, for

example, may correlate with, and even predict empirically, survival and reproductive

success. But these traits do not enter into any population dynamic model, except to the

extent that they may be used to predict one or more fitness components that do (Arnold,

1983).

Populations of Escherichia coli that were maintained for 2,000 generations in a

seasonal environment showed systematic changes in several fitness components as well

as other traits that are presumably physiologically relevant to these components. In

particular, the derived genotypes adapted by increasing their maximum grth rates (Vm)

and by reducing their‘lags prior to growth upon renewal of a previously exhausted

resource (L).

The derived genotypes also had increased the resource concentration necessary to

sustain growth at half the maximum rate (KS), seemingly a maladaptive response.

However, the grth rate asymptotically approaches VmS/Ks, as S goes to zero, so thath

becomes more important at low resource concentrations, but Vm does not become any less

important. In fact, the average ration, Vm/Ks, for the derived genotypes is very close to

that ratio for the ancestral genotype. Thus, the derived genotypes are not actually less fit

that the ancestors, but they are better adapted to exploiting abundant glucose.

The derived genotypes also showed no improvement in their death rate during

stationary phase (1 1-24 h); if anything, they are worse than their progenitor in this
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respect. However, the derived genotypes do have improved survival during prolonged

starvation (1-14 (1). But this trait cannot be considered a fitness component per se, since

it is manifest only in environments different from the environment in which the

populations evolved. (Had they evolved in an environment in which transfers were made

only every 14 days, then this would properly be a fitness component and would enter into

a dynamic model of competition in that environment.)

The derived genotypes also had much lower numerical yields (1") than their

common ancestor. Yield enters into the dynamic model of competition, but it does not

directly affect fitness in a mass-action environment. However, in a structured

environment, in which the probability of extinction of a local deme or the number of

dispersing propagules may be functions of population size, numerical yield could well

affect the outcome of competition. Our results therefore suggest a possible conflict

between intrademic selection, favoring demographic traits that evidently correlate with a

reduction in numerical yield, and interdemic selection, favoring higher (Wade, 1979;

Wade, 1980). This reduction in numerical yield is evidently due to a change in the size

of the individual bacteria, which became systematically larger in the derived genotypes,

rather than by less efficient conversion of resource into biomass. In fact, the total

biovolume, expressed as the product of numerical yield and average cell size at stationary

phase (YZS), was greater for the derived genotypes than for their common ancestor.

Our preconception had been that evolving cells would become smaller (and more

numerous), in order to increase the ratio of surface area to volume and hence the effective

rate of uptake of the limiting resource. But clearly, this preconception was wrong. We

can imagine at least four (post hoc) explanations for the evolution of larger cell size.

First, survival during stationary phase may have improved for larger cells. The derived

genotypes, which had larger cells, survived better during prolonged starvation. However,

there was no measurable cell death (or improvement therein) over the length of stationary
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phase that the cells experienced during their experimental evolution. Hence, this

hypothesis cannot account for the evolution of larger cells, even if it does plausibly

explain the observed reduction in death rate during prolonged starvation. Second, larger

cell size may provide the physiological basis for the shorter duration of lag phase upon

transfer into fresh medium. That is, larger cells may be less depleted of metabolic

reserves during stationary phase (even if the smaller celled ancestor does not actually

die), which would allow the derived genotypes to respond more quickly upon renewal of

resource. Third, larger cells, by virtue of their greater surface area, may have a higher

rate of resource uptake per cell (rather than per unit volume), which might enable the

derived cells to sequester resources that could later be converted into progeny. This

explanation is consistent with the difference in average cell size between exponential and

stationary phases, which is larger in the derived genotypes than in the common ancestor;

this difference may account for some of the increase in relative fitness (see below).

However, Luckinbill (1984) observed a similar evolutionary trend toward larger cells,

even in populations that never experienced stationary phase or resource limitation, that

does not support any of the preceding hypotheses. Finally, cell size may have increased

simply because of its allometry with growth rate. Several studies of E. coli and related

bacteria have documented an allometric relationship between growth rate and cell size, in

which growth rate is manipulated phenotypically by altering the environment (Schaechter

et al., 1958; Neidhardt et al., 1990). Our results indicate a genetic relationship between

growth rate and cell size. This hypothesis suggests experiments to determine whether the

observed genetic relationship is simply an extension of the phenotypic relationship or

whether the allometry between growth rate and cell size has been genetically altered.
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Parallelism versus Divergence in Life-History Traits

Did all 12 independently derived genotypes exhibit the same suite of adaptive

changes in their life-histories, or did they find alternative solutions to the challenges

imposed by the seasonal environment? At first glance, our results seem to imply

substantial divergence of the derived genotypes in the life-history bases of their improved

fitness. Two of four fitness components, and all four of the other life-history traits show

statistically significant heterogeneity (Table 3). However, it is equally important to

emphasize that the direction of evolutionary change was highly parallel for most ofthe

fitness components and other life-history traits. Three of the four fitness components and

all four of the other life-history traits showed significant directional trends in their mean

values (Table 2). In fact, all 12 independently derived genotypes showed the same

outcome of higher Vm, higher K5, lower 0', lower Y, higher Z5, and higher Ze than their

common ancestor. And 11 of the 12 derived genotypes had lower L and higher D than

the ancestor. Thus there was near-perfect uniformity in the directional responses

exhibited by replicate populations.

An index of the relative extent of divergence versus parallelism is given by the

following ratio:

VarG(X)

’* = 1424

where Varg(X) is the between-genotype variance for trait X, and AX is the average change

from the common ancestor. (By using the standard deviation corresponding to the

genetic variance, both the numerator and denominator have the same units.) This index

therefore provides a measure of the average difference among the independently derived

genotypes relative to the average evolutionary change from the ancestral state.
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Table 4. Divergence versus Parallelism in Fitness Components and Other Life-History

Traits for the Independently Derived Genotypes

 
 

 

Life-History Trait, X Varg(X) AX 1l VarG(X) IIAXI

Relative Fitness:

W 2.72 x 10“1 0.349 0.047

Fitness Components:

L (h) 6.79 x 10'3 -0279 0.295

V... (11“) 4.67 x 10'5 0.116 0.059

Ks (‘ug m1“) (0) 0.015 0

D (11") 8.40 x 10‘5 0.016 0.573

Other life-history traits:

Y (ug'l) 1.33 x 1010 -7.97 x 105 0.145

D' (11") 4.09 x 10'6 -0.006 0.337

mm 4.07 x 10'3 0.300 0.213

2. (H) 1.19 x 10'2 0.568 0.192

 

NOTE.—Varg(X) is the between-genotype variance for trait X (Table 3), and AX

is the mean change from the common ancestor (Table 2). The ratio lVarG(X) /|AX|

provides a measure of the average difference among derived genotypes (divergence)

relative to the average change from the ancestral state (parallelism).

For all eight fitness components and other life-history traits, this index is much

less than one (Table 4), which indicates that the differences among the independently

derived genotypes are small relative to the average change in these characters from the

32



ancestra

variable

which 11

envirom

terms 01

as indie.

characté

Ade

differer.

bemeer

each ge

the moc

Paramet

relative

011 the n

the sjm;

Only abc

due 10 a

PredicrEC

ban 0&1)



ancestral state. However, the independently derived genotypes are somewhat more

variable in most of these traits than in their relative fitnesses (also based on this index),

which implies that they have acquired slightly different adaptations to a seasonal

environment. Evidently, the 12 replicate populations underwent similar adaptations in

terms of the fitness components and other life-history traits, but these were not identical,

as indicated by heterogeneity among the independently derived genotypes for some ofthe

characters.

Adequacy ofthe Dynamic Model Used to Amalgamate Fitness Components into a

Measure ofRelative Fitness

The population model that we have used might be regarded as explanatory in two

different ways. First, how well does the model predict the outcome of competition

between ancestral and derived genotypes, when the relevant demographic parameters for

each genotype are estimated independently of the competition experiments? Second, did

the model provide any indication of the most likely evolutionary changes in these

parameters?

After 2,000 generations of evolution, the mean fitness of the derived genotypes

relative to their common ancestor was ~1.35, whereas the predicted mean fitness based

on the model and independently estimated parameters was only ~l .21. In other words,

the simple model of resource-based competition in a seasonal environment accounts for

only about 60% (021/035) of the observed adaptation. The discrepancy is not simply

due to a lack of statistical resolution, because all 12 derived genotypes gave actual and

predicted relative fitnesses that differed in the same direction and by amounts greater

than can be accounted for by uncertainty in the demographic parameters.
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We see two types of limitation of the simple model that might account for the

unexplained portion of the fitness differential between the ancestral and derived

genotypes. First, the description ofthe mechanistic basis for competition may be

inadequate. The model used here assumes that competition is mediated entirely by

scramble competition for glucose. However, bacteria may excrete metabolites that act as

either secondary resources or inhibitors of growth, and these metabolites may

differentially affect competing genotypes (Helling et al., 1987; Levin, 1988). If excreted

metabolites are involved, then they must work to the advantage of the derived genotypes,

because the actual fitness advantages are greater than explained solely on the basis of

glucose-mediated competition. However, the fact that the population densities were

fairly low (~5 x 105 cells ml'I to ~5 x 107 cells ml'1 over the course of the grth cycle)

in the evolution experiment tends to weaken this explanation, because the concentration

of metabolites should be proportional to density. However, one can imagine experiments

(employing conditioned media or varying the initial frequency of competitions) to test

this possibility further.

Second, the description of the bacterial demography may be inadequate to

encompass all of the relevant dynamics. For example, the model implicitly assumes that

the rate at which bacteria increase in numbers is strictly proportional to the rate at which

they remove resources from the medium and, furthermore, that these two processes are

synchronous. The numerical yield, Y, scales the conversion of resources into bacterial

cells during exponential growth. But Y was estimated from stationary-phase

populations, which are composed of much smaller cells than exist during exponential

phase (Table 2). It seems likely, therefore, that the bacteria are taking up resources

during exponential grth faster than the ratio Vm/ Y (ug h'1 per cell) would imply. If

so, then a more appropriate measure ofmaximum grth rate (in terms of accounting for

the observed fitness improvement) would be
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The product V”. Z, reflects the rate of increase in biovolume during exponential

phase growth, whereas the denominator indicates the eventual (but asynchronous)

conversion of this biovolumetric increase into cells of size Z5. dej therefore takes into

account the more rapid accumulation of biomass by the bacteria than would be apparent

from their numerical increase during exponential phase. We calculated meg for each

genotype and then used these adjusted maximum growth rates (along with the other

demographic parameters) to compute the expected fitnesses of the derived genotypes

relative to their common ancestor. The mean expected fitness using the adjusted

maximum growth rates was 1.36, which was indistinguishable from the mean value of

1.35 measured in the competition experiments (P > 0.5 based on a t-test for paired

comparisons). Thus, the differential underestimation of resource accumulation for the

ancestral and derived genotypes can plausibly explain the "missing" 40% of the

improvement in fitness. We recognize that this adjustment will give an incorrect

trajectory for cell numbers during growth phase. Our intention here is not to provide a

realistic and complex description of population dynamics but rather to suggest a possible

explanation for the deviation between relative fitnesses estimated by direct competition

experiments and those predicted from the simple demographic model. To develop a more

formal model along the lines of this adjustment, one might model population biomass

(rather than cell numbers) or otherwise incorporate more complex functional

relationships between substrate concentration, growth rate and numerical yield.

The other application of the demographic model was to infer the relative

intensities of selection acting on the several fitness components. According to the model,

selection to increase maximum growth rate (V,,,) and to reduce the duration of lag prior to

grth in fresh medium (L) was much stronger than selection to reduce the concentration

35



of resource required to support half of the maximum growth rate (KS) and to reduce death

rate during stationary phase (D). Indeed, we observed a good correspondence between

these theoretical selection gradients and the actual responses to selection: both V," and L

improved substantially during the experimental evolution, whereas neither Ks or D

showed any improvement.

We note also, that V,,, and L promote exploitation of the resource when it is

abundant, whereas K; and D are relevant only when the resource has become depleted.

Therefore, it is fair to say that the bacteria in this study have adapted to the "feast," but

not the "famine," aspect of the seasonal environment. But it is also important to

emphasize that the opportunity for selection to act on the various demographic

parameters (Table 1) depends on the initial state of the life-history, as well as on the

environment. Had either K; or D been much higher (worse) initially, their corresponding

selection gradients would have been steeper and there would have been more room for

improvement in these fitness components. As it was, however, Ks and D were both

already so low for the ancestral genotype that selection to improve them was very weak.

The fact that our ancestral bacterium was already so well adapted to famine conditions

may suggest strong selection in the past for the corresponding fitness components (see,

e.g., Koch, 1971; Koch, 1985; Mikkola & Kurland, 1992).

Of course, a genetic response depends not only on the intensity of selection but

also on the availability of genetic variation for that trait and on genetic correlations

between traits. Had we not observed significant improvements in either strongly selected

fitness component (V,,, and L), this hypothetical outcome might have been due to either a

lack of genetic variation or a tradeoff with another fitness component. The fact that there

was substantial genetic variation in these fitness components (and no evidence for

intractable tradeoffs) is presumably because the experimental conditions represent a

novel environment for these bacteria, whereas in the ancestral environment one would
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expect those substitutions that improve fitness to have been largely exhausted by prior

selection (Service & Rose, 1985; Lenski et al., 1991; Bennett et al., 1992).

In contrast to the results reported here, (Dykhuizen & Hartl, 1981) observed

significant improvements in both V,” and K5 for Escherichia coli that evolved in glucose-

limited continuous culture (chemostats). This difference in outcomes is not unexpected,

however, in light of the difference in experimental environments imposed. In continuous

culture, bacteria hold the equilibrium concentration of limiting resource, S*, to a value

that is exactly sufficient to offset washout fiom the vessel (Stewart & Levin, 1973;

Hansen & Hubbell, 1980). In the study by Dykhuizen and Hartl (1981), the flow rates

through the culture vessels,f, were 20% or 40% of the founding bacterium's maximal

growth rate, Vm. Given that V = Vm S* / (S* + Ks) =f, then S* would have been either

0.25 Ks or 0.67 K5 according to the Monod model. Here V is the actual Malthusian

parameter in continuous culture, and so the proportional selection gradients for V", and Ks

differ by only a factor of

 

  

Thus, the proportional selection gradients for Vm and K5 in the study by Dykhuizen and

Hartl (1991) differed by only a factor of 1.25 to 1.67 (depending on flow rate), in contrast

to the >100-fold difference in the corresponding gradients in the seasonal environment

used in this study (Table 1).

Also using E. coli in a glucose-limited medium as a model system, Luckinbill

(1978, 1984) employed two serial transfer environments to test for specific adaptations to

r- and K-selection regimes. In the r-selection regime, bacteria were kept in a state of
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perpetual exponential growth by repeated transfers well before the populations had

reached stationary phase; in the K-selection regime, bacteria were allowed to exhaust the

glucose and enter stationary phase before they were transferred into fresh medium.

Luckinbill demonstrated improvements in relative fitness in both environments, but he

found that the adaptations were non-specific with respect to the selection regime. That is,

bacteria that had evolved in the K-selection environment did as well, on average, in the r-

selection environment as bacteria that had evolved in the r-selection environment, and

vice versa. But the K-selection regime employed by Luckinbill was, in fact, quite similar

to the seasonal environment used in this study. And as we have discussed, this seasonal

environment selects most strongly for a higher maximal grth rate, with much weaker

selection for any traits that might be construed as K-selected (at least when the ancestral

genotype has life-history components similar to the strain used in this study). So

Luckinbill's intended K-selection regime may, in fact, have been another strongly r-

selecting regime. The changes in bacterial fitness components reported by Dykhuizen

and Hartl (1981) and by Luckinbill (1978, 1984), as well as those seen in this study,

appear to be consistent with the relative intensities of selection acting on those traits.

These analyses indicate to us the utility of an explicit demographic model for interpreting

evolutionary changes in life-history traits.

In conclusion, 12 bacterial populations that evolved independently for 2,000

generations in replicate seasonal environments underwent a similar suite of changes in

their life histories. The derived genotypes responded more quickly to resource renewal

and they had higher maximum growth rates than their common ancestor. Both of these

adaptations facilitate resource exploitation during the periods of feast in the seasonal

environment. But the derived genotypes showed no corresponding improvement in those

fitness components that would allow them to better tolerate the periods of famine that

. they also experienced. The differential adaptation to periods of feast and famine can be
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understood in terms of the relative opportunities for selection to act on the different

fitness components. In particular, the ancestral genotype used in this study was already

so well adapted to the periods of resource deprivation imposed by the experimental

regime that there was almost no room for improvement in the corresponding fitness

components, whereas there was substantial room for improvement in the fitness

components that mattered during the periods of resource abundance. Accompanying

these demographic adaptations was a dramatic change in the morphology of the bacteria,

with the derived genotypes having much larger cells than their common ancestor. The

significance of this morphological change with respect to their newly evolved life-history

is unclear.
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Chapter 2

THE LAG PHASE OF ESCHERICHIA COLI IN A PERIODIC ENVIRONMENT:

PREDICTIONS AND TESTS OF A MATHEMATICAL MODEL.

INTRODUCTION

The lag phase of the bacterial growth cycle describes the initial delay in the start

of exponential growth when bacteria encounter a fresh source of nutrient alter a period of

starvation (Neidhardt et al., 1990). The lag is an intrinsic characteristic of a microbial

population, and it introduces a time delay in the response of individual bacteria to

environmental change. This time delay is caused by physiological changes necessary

before the bacteria are able to start growing and dividing. These changes include a

dismantling of the stationary phase apparatus (Huisman et al., 1996), as well as gearing

up the nutrient transport functions and metabolic systems involved in growth and cell

division (Cooper, 1991; Huisman et al., 1996). The lag phase has also been recently

shown to be dependent on the population density of the bacterial culture (Fuqua et al.,

1994; Fuqua et al., 1996; Fuqua & Green, 1998).

Time delays have long been of considerable interest to population ecologists, as a

potential explanation for complex fluctuations observed in natural and laboratory

populations. For example, blowflies (Lucilia cuprina) exhibit oscillations produced by a

time lag between the response of life-history traits, such as fecundity and mortality, to the

population density (Nicholson, 1958). When food is abundant and adults are numerous,
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plenty of eggs are laid. However, when food runs out the eggs fail to develop, resulting

in a population crash. Time delays in reproduction may also result from the storage of

nutrients when resources are abundant. Daphnia species exhibit population cycles as

energy is stored as lipid, which is then used when food supplies become scarce due to

high population densities (Goulden & Homig, 1980; Goulden et al., 1982; Tessier et al.,

1983).

Such intrinsic or density dependent causes may interact with extrinsic or

environmental causes of periodicity to result in complex dynamics. Simple theoretical

treatment of populations has shown that time delays may interact with periodic

environments to produce a range of complicated dynamics from limit cycles to chaos

(May, 1974; May, '1981; Nisbet & Gurney, 1982). The range of dynamical behaviors

produced by the interaction of intrinsic and extrinsic causes of periodicity is most

pronounced in models which include population structure (Caswell, 1989b; Constantino

et al., 1997; Tuljapurkar & Caswell, 1997). Cell cycle based demographic models for

phytoplankton growing in a periodic environment demonstrated non-periodic cycling at

frequencies different from that of the forcing variable (Pascual & Caswell, 1997).

Adding a nutrient storage based time delay term to the model also produced similar

results.

Laboratory populations of Escherichia coli provide a useful system in which to

test the interaction of intrinsic and extrinsic causes of periodicity, due to their short

generation times and relative ease of replication within treatment populations.

Escherichia coli populations also exhibit population structure, as the probability of

division in individual cells may vary with the time since last division (age-structure) or

the cell-size distribution (stage-structure) (Bramhill, 1997). A number of hypotheses

have been proposed for the mechanistic basis for this time dependence. These range
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from internal causes, such as the DNA replication cycle and cell division system, to

external factors, such as population density and mineral or nutrient abundance. Recent

advances in the understanding of the regulation of bacterial cell division suggests that

these mechanistic bases may be related through regulatory feedbacks (Rothfield et al.,

1999).

In this chapter, I present a simple mathematical model for the growth of bacterial

populations in a periodic environment. In this model, the limiting resource is depleted by

the organisms and then replenished at some later time, where replenishment is driven by

some external periodicity. I assume that there is a lag phase of constant duration, L time

units, such that any population that exhausts the limiting resource requires L time units

afier resource renewal to begin growing again. I show by numerical simulations that the

existence of this lag phase may interact with the environmental periodicity to generate

dynamics ranging from simple equilibria to high order periodic cycles. Finally, I present

and analyze the results of some experiments with populations of E. coli that were

designed to determine if such complex dynamics, could, in fact, be seen in a biological

system.

MATERIALS AND METHODS

Bacterial Strain and Culture Conditions.

The E. coli B (REL606) strain used in this study has been used in several other

ecological and evolutionary studies in our laboratory (Lenski et al., 1991; Lenski &

Travisano, 1994; deVisser et al., 1999). Its growth parameters have been characterized in
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previous work (Vasi et al., 1994). All experiments were started from a single clone

isolated from a culture stored indefinitely at -80° C.

Bacteria were grown in Davis minimal medium (DM) (Carlton & Brown, 1981)

supplemented with 25 pg ml'l glucose in a shaking incubator at 37°C. The populations

were diluted lOO-fold into fresh medium, where they typically went through an entire

growth cycle consisting of lag, exponential and stationary phases, and exhausted the

available resources; when transfers were very frequent, the populations might still been

growing when diluted into fresh medium. The populations typically grew from an initial

population density of ~5 x 105 cells ml'1 to a final density of ~5 x 107 cells ml". The

lOO-fold daily growth corresponds to ~66 (logz 100) generations of binary fission. To

ensure acclimation to the experimental regime, bacteria were cultured for one day in DM

supplemented with 1000 pg ml'l glucose after removal from the freezer. They were then

conditioned for one day in DM supplemented with 25 pg ml'l glucose.

Model ofBacterial Population Growth in a Periodic Environment.

The model used in this study is one of resource-based population growth

(Monod, 1949; Kubitschek, 1970; Stewart & Levin, 1973; Hansen & Hubbell, 1980;

Tilman, 1982), modified to take into account a lag phase prior to exponential growth.

This model has been used in previous work with this strain (Vasi et al., 1994). The

density of bacteria is denoted N (cells ml") and the concentration of the limiting resource

S (pg glucose ml'l).

The bacterial growth cycle is integrated in three discrete parts, as illustrated in

Figure 2. The first part consists of the lag phase, during which a population neither

grows 1101' consumes resource:
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Figure 2. Simulation of a bacterial population during an 8 h growth cycle. The curves

represent bacterial density plotted on a logarithmic scale (solid line) and the

resource concentration plotted on a linear scale (dashed line).

411-43-.)
dt dt

The second part consists of the exponential phase, during which the population increases

and resources are consumed at rates depending on the parameters of the Monod model:

fl=[vm__5_]N,
dz (S+Ks)

and
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f = lilflla Y m

Vm (h") is the maximal grth rate, [(5 (pg glucose ml'l) is the resource concentration at

which the growth rate is half of maximum and Y (cells pg'l glucose) is the numerical

yield. The numerical yield is the number of viable cells produced by the population per

unit of limiting resource utilized during a growth cycle, when all resources are depleted.

The third part consists of the. stationary phase, during which time the cell population may

decline due to death, while the resource concentration remains constant:

1N_=_DN

dt

and

555:6.
a

Model parameters were estimated in previous work (Vasi et al., 1994); the

estimates of the parameter values used for the simulations are repeated in Table 5. In

numerical analyses, I duplicated the experimental serial transfer conditions so that direct

comparisons with experiments could be made. In experimental tests of the periodic

model, populations were started by inoculating 1/100th volume of a 10 ml stationary

phase culture into 9.9 ml of medium containing 25 pg ml'I glucose. Therefore, each

nutrient cycle in each simulation was begun with medium containing 99% of 25 pg

glucose ml'l (S = 0.99(25) = 24.95 pg ml'l glucose) to which 1/100th of the density of a

stationary phase culture was added. The initial population density was given by N =

0.01 Y (25). The equations were simulated with time steps of 0.001 b, using the Euler

method.

45



Table 5. Model parameter values, using parameter estimates from Vasi et al.

 

 

Parameter Mean

L 1.5264 b

V... 0.7726 h"

K, 0.0727 pg glucose ml'l

Y 2.6352 x loécells pg'l glucose

D‘ (0)

 

‘ The actual estimate ofD was negative but its value was not significantly

different from zero. D was set to zero in this model.

The first part runs from t = 0 to t = L, where L (h) is the lag time and t is the time after

transfer into fresh medium. The second part runs until one of the following conditions

are met:

t =t,,, where tm is the length of the transfer cycle. In this case, the population does

not go through the third part.

S ~ 0 (or the arbitrarily low threshold of 10'6 pg ml’l glucose).

The third part runs from the end of the second until t = rm. After each nutrient cycle, the

populations are diluted into fresh medium once again.

The simulations used nutrient cycles that ranged in duration from t", = 5 h to 8 h

in increments of 0.01 h. Each population was simulated for 1000 transfer cycles (6.00 —
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6.4 h), or 50 cycles (5.00 - 5.99 h and 6.40 —- 8.00 h). All simulations ran long enough to

give a complete picture of the population dynamics for each nutrient cycle.

Experimental Tests ofthe Periodic Model.

Thirty replicate bacterial populations were maintained in serial transfer culture for

approximately 100 hours, with six populations at each of five transfer cycles: 5, 6, 7, 8 or

9 h. Pairs of replicate populations were maintained in a staggered fashion over the

nutrient cycles, to minimize correlated errors due to uncontrolled environmental variation

(e.g., slight fluctuation in temperature). For example, in the 5 h treatment one pair of

replicates was initiated at t = 0 h. The second pair was started at t = 5 h, and the final pair

was begun at t = 10 h. Bacterial densities were estimated prior to transfer into flesh

media every cycle using an electronic particle counter. Cultures were diluted 100-fold

into an isotonic medium. Bacteria in 0.05 ml of the resulting dilution were counted using

a Coulter particle counter, and the average cell size was measured twice. The frequency

distribution for particle sizes exhibited a distinct trough between background particles

and bacterial cells. The distributions were edited to eliminate the background counts.

Each edited distribution provided estimates of the population density and total

biovolume. The two estimates were averaged to get final estimates of the population

density and total biovolume.

Autocorrelation analyses

Autocorrelation analyses were carried out on the populations growing in 7, 8 and

9 h nutrient cycles. The beginning of each series was removed for all autocorrelation

analyses to remove any transient effects. The autocorrelation at time interval k is simply
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the Pearson correlation between a series of data at time t, and the same series at time t+k

time units. It is calculated as the ratio of covariance between data at time t and t+k and

the variance of the data at time t (Box, 1994). Autocorrelation plots showing the

autocorrelation at time intervals 1 - 8 h were computed separately for each population.

The autocorrelation coefficients were averaged across the 6 replicate populations for each

time interval. Each autocorrelation coefficient was compared with 0 using one tailed t-

tests; I used one-tailed tests because I was specifically looking for negative

autocorrelations indicative of cycling. Bonferroni corrections for multiple tests were

applied to the significance probabilities to correct for 8 tests applied within each

treatment (Rice, 1989).

RESULTS

Simulations ofthe Periodic Modelfor Bacterial P0pulation Growth.

Figure 3(a) shows the results of simulations for populations that are transferred at

5 h intervals. The first cycle exhibits a lag phase, in which no growth occurs. After 5 h,

the population is in mid-exponential phase. The population goes through a 100-fold

dilution and is transferred to fresh medium. As the population has not entered stationary

phase in the previous cycle, there is no lag phase. The population continues to grow

exponentially throughout the second batch, but at the end of 10 h the population is less

dense than at 5 h. It is once again diluted into fresh medium and this cycle continues.

The population is unable to keep up with successive dilutions every 5 h and eventually

goes extinct.
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Figure 3(a). Simulation results of a bacterial population growing in batch culture with

transfers every 5 h (solid line). The population does not grow enough in each

batch cycle to make up for the dilution, and goes extinct. The expected endpoint

stationary phase density is also shown (dashed line).

When populations are transferred at 6 h intervals, the dynamics are different.

Figures 3(b) and (c) show the early and late portion of the trajectory of a population

transferred at 6 h intervals. In Figure 3(b) the first cycle has a lag phase, and again at the

end of 6 h the population is in mid-exponential phase. Following dilution, the population

continues to grow exponentially, and at 12 h, it reaches a density that is slightly higher

than at 6 h. The population is diluted into fresh medium, and continues to grow

exponentially, reaching a density at 18h which is higher than at 12 h. At the end of each

cycle, the population density is slightly greater than at the end of the previous cycle. The

expected end-point stationary density (25* Y = 6.59 x 107 cells ml") is shown with a

dashed line on both graphs. The density of the population growing in 6 h cycles
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Figure 3(d). Simulation results of a bacterial population (solid line) growing in batch

culture with transfers every 6.4 h. The population dynamics repeat themselves

every 4 cycles. The expected endpoint stationary phase population density is also

shown (dashed line).

approaches the expected stationary density asymptotically but does not ever quite reach

this density (Figure 3(c)). Instead it stabilizes at a slightly lower density of 6.57 x 107

cells ml", where it remains in a state of perpetual near-exponential growth, neither

increasing nor decreasing at the end of each cycle. Glucose is never quite depleted at the

end of any transfer cycle.

Figure 3(d) shows the dynamics of a bacterial population growing in batches

transferred every 6.4 h. The population experiences a lag phase in the first cycle, and is

diluted into fresh medium after 6.4 h while it is still growing. The population grows for

the next three cycles, without a lag phase, finally reaching the end-point stationary

density of 6.59 x 107 cells ml'l. The population dynamics then follow a periodic cycle

that repeats every four nutrient cycles.
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Figure 3(e). Simulation results of a bacterial population growing in batch culture with

transfers every 7 h (solid line). The population exhibits a two point limit cycle.

The expected endpoint stationary phase population density is shown (dashed line).
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Figure 3(1). Simulation results of a bacterial population growing in batch culture with

transfers every 8 h (solid line). The population exhibits a single equilibrium at

the endpoint stationary phase density. The expected endpoint stationary phase

population density is also shown (dashed line).
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Figure 3(c) shows the population density dynamics of a population growing in

batches that are transferred at 7 h intervals. The populations cycle between the expected

endpoint stationary density and a lower value at the end of each cycle, exhibiting a 2

point limit cycle.

Figure 3(f) shows the population density dynamics of a population growing in

batches transferred at intervals of 8 h. There is enough time in each interval for the

population to complete the full growth cycle from lag to stationary phase, and utilize all

available resources.

The results of all the simulations are shown combined in Figure 4. The full range

of dynamics predicted by the model can be observed. From 5 - 5.99 h, there is a single
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stable equilibrium, that of extinction. From 6.00 — 6.04 h the population has a single

equilibrium which is slightly lower than the expected endpoint stationary phase density.

From 6.05 — 6.37 h the population cycles stably between 22 and 5 values. When grown

in cycles from 6.38 to 6.51 h the population cycles between four values, from 6.52 h to

6.77 h between three values, and from 6.78 h to 7.57 h between two values. For batch

transfer cycles 7.58 h and longer, the population has a single equilibrium, at the expected

endpoint stationary phase density.

Empirical Tests ofthe Periodic Model

Population density, mean cell volume and total biovolume dynamics. Figure 5 shows the

density dynamics of all the treatment populations. Only the population density at the end

of each transfer cycle is plotted. in the cultures that were transferred every 5 h, the

population declined exponentially during the first several cycles, as expected, but then

stabilized unexpectedly at a low density of~3.09 x 105 cells ml". Populations in the 6 h

transfer cycle treatment group declined exponentially until they stabilized at ~4 x 105

cells ml". There was an error in the experimental procedures for the 6 h treatment, in

which some populations were transferred into fresh medium 1 h too early (i.e., in 5 h

instead of 6 h). The transfer occurred at 35 h (instead of 36 h) in the first two replicates,

at 29 h (instead of 30 h) in the third and fourth replicate and at 23 h (instead of 24 h) in

the fifth and sixth replicate. The missing hour of growth was offset by letting the

population grow for an extra hour in the next transfer cycle (i.e., 7 h instead of 6 h).

Populations in the 7 h transfer group exhibited considerable noise during the first

part of the experiment. This was in part due to another error in experimental procedures.

Replicates one and two were transferred at 22 h instead of 21 h, replicates three and four

were transferred at 29 h instead of 28 h and replicates five and size were transferred at 36
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Figure 5. Population density dynamics of experimental population grown in batch

culture with transfers every 5 h (squares), 6 h (circles), 7 h (triangles), 8 h

(diamonds) and 9 h (crosses). Data points represent densities for a representative

population from each series. The expected endpoint stationary phase population

density is also shown (dashed line).

h instead of 35 h. Aside from this perturbation (evident in Figure 5), the population

density also drifted slowly upwards by the end of the experiment. Populations grown in

batches transferred every 8 h increased during the early part of the experiment, then

stabilized at approximately 4 x 105 cells ml". There was considerable noise in the data.

Populations growing in batches that were transferred every 9 h also exhibited a lot of

noise throughout the experiment. The bacteria stabilized at a density of approximately

4.5 x 107 cells ml".
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Figure 6. Mean cell volume dynamics of experimental populations grown in batch

culture with transfers every 5 h (squares), 6 h (circles), 7 h (triangles), 8 h

(diamonds) and 9 h (crosses). Data points represent densities for a representative

population. The expected mean cell volume for exponentially growing

populations (dashed-dotted line) and for stationary phase populations is also

shown (dashed line).

The 7 —— 9 h treatment populations all stabilized at densities below the stationary

phase density expected after a 24 h growth cycle from previous data (Vasi et al., 1994).

The reason for this discrepancy can be seen from the mean cell volume dynamics (Figure

6). All the treatment populations showed larger cells than expected from previous data

(Lenski & Travisano, 1994; Vasi et al., 1994). The cells in 5 and 6 h cycles are larger

than the 7 h treatment populations. The 5, 6 and 7 h populations were all larger than

expected from previous data on exponentially growing cells (~0.57 fl). The 8 and 9 h
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Figure 7. The total population biovolume dynamics of experimental populations grown

in batch culture with transfers every 5 h (squares), 6 h (circles), 7 h (triangles), 8 h

(diamonds) and 9 h (crosses). Data points represent densities for a representative

population from each series. The expected endpoint stationary phase total

population biovolume is also shown (dashed line).

treatment populations are smaller than the 5 — 7 h treatments. These long-cycle

populations are still slightly larger than expected for 24 h stationary phase populations

(~0.37 fl), but they are smaller than exponentially growing cells. There is a decreasing

trend in cell volumes from 5 - 9 h (5 — 6 h > 7 h > 8 - 9 h) in the treatment populations.

Evidently, the cells continue to divide without actually growing after the glucose is

depleted, leading to cells that are more numerous but also smaller the longer time they

spend in stationary phase.

The data for the total population biovolume (product of cell number and average

cell volume) showed similar trends to the population density data (Figure 7). The 5 h

treatment populations decline and stabilize at a low total biovolume of ~ 3 x 105 fl ml".
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The 6 h treatment populations declined and stabilized at a biovolume of ~ 3.5 x 105 fl

ml". The 7 h treatment p0pulations had an intermediate total biovolumes ranging from

~05 x107 to ~1.5 x 107 fl ml". The total biovolume of the 8 - 9 h treatment cultures was

approximately 2.1 x 107 fl ml", similar to that expected from previous data of 24 h

stationary phase populations, and thus confirming the explanation (above) that there is

continued cell division without net growth after glucose is depleted.

Autocorrelation analysis. Autocorrelation analyses were performed on the series of

biovolume dynamics, as these combined both the density and cell volume effects. They

were also less noisy than the population density dynamics. The biovolume data were first

transformed by “differencing” (Box et al., 1978; Box et al., 1994). Each point was

subtracted from the next point, thus removing the curvilinear trend in the data. Each

biovolume series was then “detrended” to remove the linear decline in the data. The

transformed series showed no curved or linear trend. The autocorrelation coefficients of

order ranging from lag 1 to lag 8 were then estimated. The autocorrelation coefficients of

each replicate population were treated as one “observation”; thus the six replicate

populations provided 6 independent estimates of the autocorrelation coefficient at each

time lag. Figures 8(a)-(c) show the autocorrelation functions of the 7, 8 and 9 h cycle

populations. The autocorrelation coefficients were tested against a null value of zero

using a one-tailed t-test. Qualitative assessment of the curves fitted to the data suggest

that the 7 and 8 h cycle populations show autocorrelation functions that exhibit cyclical

tendencies as illustrated by the alternation of positive and negative values. However, a

Bonferroni correction was applied to the P-values, to correct for the multiplicity of t-tests

(Rice, 1989). No significant autocorrelations were found after applying the Bonferroni

criterion.
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Figure 8(a). Autocorrelation function for the total biovolume dynamics of bacterial

populations grown in batch culture with transfers every 7 h. Symbols represent

means and standard errors. A spline curve is fitted to the autocorrelation firnction

using least squares (solid line).
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Figure 8(b). Autocorrelation functions for the total biovolume dynamics of bacterial

populations grown in batch culture with transfers every 8 h. Symbols represent

means and standard errors. A spline curve is fitted to the autocorrelation function

using least squares (solid line).
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DISCUSSION

In this Chapter, I have presented a simple model for bacterial growth in a periodic

environment, in which there is a lag phase of constant duration during which no growth

occurs. The lag phase occurs only when the population has previously undergone a

period of resource depletion. Numerical simulations showed that for relatively short

transfer cycles the populations are diluted to extinction. For longer cycles, the population

has a single equilibrium where it remains in a perpetual state of near-exponential growth.

For still longer transfer cycles, the population exhibits limit cycles ranging from very

high to low periodicity. For the longest transfer cycles, there was a single equilibrium.

However, experiments to test this model did not reveal the striking periodic

behavior predicted. The experiments showed discrepancies from the model predictions in

a number of ways. Firstly, the populations that exhibited declining density dynamics did

not decline to extinction but stabilized at some low density (5 and 6 h transfer
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treatments). Also, populations that reached and maintained intermediate densities did so

at densities lower than expected (7 h treatment). Finally populations that reached the

expected endpoint biovolumes had cells that were considerably larger than expected, and

had a considerably lower population density than expected (8 and 9 h treatments).

There are two classes of possible reasons for the discrepancies between the

predictions of the lag phase model and the experimental results. The first ofthese

assumes that the basic model is correct, but there were problems with experimental

design and noise. It is possible that the model for the lag phase is generally correct, but

the time frame chosen for the experimental test was incorrect. The predicted periodicity

in the population dynamics may occur in a small portion of the range of serial transfer

intervals chosen. Thus, the experiments did not have the resolution in the necessary

range to reveal the predicted dynamics. It is also possible that the lag phase model is

generally correct, but the data are too messy due to measurement errors, or there is too

much environmental noise. There has been considerable research on the use oftime

series analysis (Box et al., 1994) to elucidate periodicity in data series. However, the

length of the time series necessary to reveal such patterns of non-linear temporal

dependencies is typically longer than measured in these experiments (Box et al., 1994).

The length of the series required to generate a useful autocorrelation function is a

minimum of 4 times the length of the periodicity expected in the series. Thus, in order to

reveal a periodic cycle of 4, population density data are required for at least 16 serial

transfer cycles. The population densities were measured in these experiments for only

about 12 serial transfer cycles. The lack of suitable length for the population series was

one of the reasons I chose to treat replicate populations as single “observations” for the

time-series analysis. The experiments were logistically difficult as a result of the

replication and suitable randomization of treatments. Such long series of population data

are generally unfeasible for actual populations. Also, for long series, the dynamics may
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change over the course of the experiment due to evolutionary changes occurring in the

population.

Finally, it is possible that the simple model for lag phase described in this Chapter

is incorrect. The assumption of a discrete "switch" for the all or none occurrence of the

lag phase is probably incorrect. The lag phase may change over the course of the

experiments due to physiological changes within the populations. The lag phase is a

relatively poorly understood part of the bacterial growth cycle, because the bacterial cells

in lag phase do not remain uniform in internal physiology or age-structure and have

therefore proven difficult to study (Campbell, 1957; Cooper, 1991). In order to construct

a better model for bacterial population dynamics, it is essential to better understand the

physiology of the lag phase, and whether it may be affected by other demographic factors

such as the initial population density or the time spent in stationary phase. Empirical

evaluation of whether these factors affect the lag phase is presented in the next Chapter.
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Chapter 3

EXPERIMENTAL TESTS OF TWO FACTORS THAT MAY INFLUENCE THE

DURATION OF LAG PHASE.

INTRODUCTION

In the previous chapter, I presented a mathematical model of population growth in

a periodic environment. In this model, the limiting resource is depleted by the organisms

and then replenished only at some later time; this resource renewal is driven by some

external periodicity. I showed that the existence of a discrete lag phase, associated with a

switch from non-growing to growing organisms, may interact with the environmental

periodicity to generate complex dynamics, including limit cycles, etc. However,

experiments to test the predictions of this model largely failed, presumably because some

assumption of the model was not fulfilled. One assumption used in the model is that the

lag phase has a constant length, which is independent of such factors as the time the

organisms spent in a non-growing state (prior to resource renewal) or the population’s

initial density (after resource renewal). In this chapter, I examine the validity of this

assumption experimentally by manipulating these two factors.

The lag phase is the early portion of the bacterial growth cycle, during which the

population gears up its metabolic machinery for exponential growth. For the purposes of

empirical evaluation, the time that elapses between the provision of fresh medium and the

initiation of exponential growth is the lag time. During the lag phase, bacterial

populations presumably shut down systems used during stationary phase and induce
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processes necessary for cell growth and division. One can imagine that if either of these

processes could be sensitive to the amount of time a population has starved; and the latter

process could be sensitive to initial population density if cells modify the medium by

excreting enzymes or metabolites.

There has been considerable research on the biochemical and physiological

changes that occur in bacterial cells during stationary phase. Many of these changes are

activated by 0’5 , a transcription factor encoded by the rpoS gene. Us is a master

regulator of the expression of a large number of other genes involved in starvation

survival (Lange & Hengge-Aronis, 1991). 0’3 has also been shown to activate regulatory

systems involved in resistance to other environmental stresses, such as nitrogen starvation

and osmotic, oxidative and temperature stresses (Groat et al., 1986). This research has

been the subject of reviews detailing how 0'3 activates specific regulatory systems and

genes activated by these regulatory units (Hengge-Aronis, 1996; Huisman et al., 1996).

Escherichia coli populations recovering from starvation have been analyzed for

global protein synthesis using two-dimensional gel electrophoresis. Siegele & Guynn

(1996) isolated nine proteins specific to the lag phase, which they called outgrowth or

recovery from starvation. Five other proteins whose rate of synthesis was greatly

accelerated during lag phase were also identified. Another study (Kusj et al., 1998)

looked at the functional stability of total mRNA during the culture cycle ofE. coli

populations. They found that mRNA half-lives are long during lag phase, decrease

during exponential phase and are long again during stationary phase. Further

investigation showed that the amount of a specific type ofmRNA (for chloramphenicol

acetyltransferase) does not change over the growth cycle. This suggests that the

transcription rate is compensated to offset the long half-life of mRNA. The long half-life
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ofmRNA during stationary phase means that the mRNA is immediately available for

transcription during recovery from starvation when nutrients become available.

Staphylococcus aureus populations starved for 7 days in a glucose-limited

medium exhibited a lag time of 120 — 150 minutes when medium containing glucose and

amino acids was added. The lag time was found to be independent of the length of

starvation survival (Clements & Foster, 1998). Starvation specific proteins were down-

regulated within 30 minutes. RNA synthesis increased immediately, followed by protein

synthesis within 5 minutes, cell enlargement within 30 minutes and initiation of

chromosome replication within 90 minutes.

Recently, E. coli populations have been shown to use small extra-cellular

molecules released into the medium to “communicate” the cell density and the metabolic

potential of the environment (Surette & Bassler, 1998). These extra-cellular molecules

were produced at maximum concentration during late exponential and early stationary

phase in glucose containing medium. By late stationary phase, the signal was no longer

detectable. These molecules have not as yet been characterized, but have been shown to

interact with the Type II signaling system of Vibrio (Fuqua et al., 1994; Fuqua et al.,

1996; Fuqua & Green, 1998). This is one of the two well studied types of signaling

systems used by Vibrio species for “quorum-sensing”, which uses an acyl-homoserine

lactone (HSL) molecule for inter-cellular signaling. Typically, HSL’s are used by Vibrio

populations to signal induction of luminescence when the population reaches a certain

critical density.

An extra-cellular factor has also been shown to inhibit the initiation of

chromosomal DNA replication in E. coli (Withers & Nordstrom, 1998) via a “quorum-

sensing” mechanism. The factor has a transient effect and is produced maximally at high

population densities. HSL’s have also been proposed for involvement in the activation
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of the stationary phase systems in E. coli (Huisman & Kolter, 1994). Exponentially

growing E. coli cells were found to release an extra-cellular factor into the culture

medium, which reduced the lag phase of bacteria in minimal glucose medium by several

hours (Nikolaev, 1997).

In this Chapter, I describe experiments that test whether the lag phase is a

function of either starvation time or initial population density. A positive answer to

either of these questions would demonstrate that the assumption that the lag phase has a

fixed length is not valid. Such a finding might help explain discrepancies between

experimental results and model predictions, which were based on that assumption, in

Chapter 2.

MATERIALS AND METHODS

Bacterial strain and Culture Conditions

The E. coli B (REL 606) strain used in this study has been used in several other

ecological and evolutionary studies in our laboratory (Lenski et al., 1991; Lenski &

Travisano, 1994; de Visser et al., 1999). Its growth parameters have been characterized

previously (Vasi et al., 1994). All experiments were started from a single clone isolated

from a culture stored indefinitely at —80° C.

Bacteria were grown in Davis minimal medium (DM) (Carlton & Brown, 1981)

supplemented with 25 pg ml.l glucose in a shaking incubator at 37°C. Under the

standard conditions, the populations were diluted 100-fold into fresh medium, where they
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Figure 9. Estimation of the lag time. Log-transformed data points represent a sample

growth curve in medium with 25 pg ml" glucose. A regression line was fit

through the exponential part (2- 6 h) of the growth cycle (solid line). The point at

which this line intersects the initial population density (dashed line) is the

estimated lag time (L).

grew until they reached stationary phase and had exhausted the available resources. The

populations grew from an initial population density of ~5 x 105 cells ml.1 to a final

density of~5 x 107 cells ml". The lOO-fold daily growth corresponds to ~66 (log; 100)

generations of binary fission.

To ensure acclimation to the experimental regime, bacteria were cultured for one

day in DM supplemented with 1000 pg ml" glucose after removal from the freezer.

They were then conditioned for one day in DM supplemented with 25 pg ml" glucose.

24 h represents a complete cycle of lag phase, exponential phase and stationary phase in

these strains.
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Estimation ofthe lag time

Densities were estimated approximately every 1 — 2 h by viable cell counts on

tetrazolium arabinose plates (TA) indicator plates (Levin et al., 1977). The lag time was

estimated by regression as follows (see Figure 9). The densities were log-transformed

and a regression line was fit to the exponential (log-linear) portion of the growth curve.

This line was then extrapolated back to where it intersected the initial population density.

The time at the point of intersection was the estimated lag time. Although the actual

transition may be more gradual than this procedure implies, it effectively calculates the

time that has been “lost” by a population prior to its achieving exponential growth.

Eflects ofStarvation

The populations were conditioned for 2 days in standard medium to ensure that all

treatment populations went through one complete growth cycle (lag, exponential and

stationary phases) during the conditioning step. Earlier data (Vasi et al., 1994) showed

that the bacterial populations enter stationary phase at approximately 8 h after 1:100

dilution into fresh medium. Populations were transferred into fresh media 8, 24 and 48 h

after they began this second conditioning cycle. This resulted in treatment populations

that had starved for approximately 0 h, 16 h and 40 h. Six independent estimates of the

lag time were obtained for each treatment, in sets of complete blocks. The exponential

phase grth regression was computed for population densities between 7 x 105 cells

ml" and 3 x 106 cells ml". One replicate from the 40 h treatment had only a single

sample between these densities; this replicate was not used in this analysis.
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Efl'ects ofInitial Population Density

These experiments were carried out in DM supplemented with 1000 pg ml"

glucose, in order that a greater range of initial population densities might be compared.

The conditioning step was carried out in DM + 1000 pg ml" glucose, which supports

population densities of ~3 x 109 cells ml". The experimental populations were started

using dilutions of 1:106, 1:104 and 1:102 from the conditioned populations, with expected

initial densities of~3 x 103 cells ml", ~3 x 105 cells ml" and ~3 x 107 cells ml",

respectively. Six independent estimates of the lag time were obtained for each treatment,

in sets of complete blocks. The regressions were carried out from 4 h to 10 h after

culture inoculation in the ~3 x 103 cells ml.1 and ~3 x 105cells ml.1 treatment populations,

and from 2 h to 7 h in the ~3 x 107 cells ml" initial inoculum treatment populations.

Different intervals had to be chosen since the duration of exponential phase was

considerably different for the different treatment populations. The ~3 x 103 cells ml"

treatment populations had to go through 6.6 (log2100) generations more growth than the

~3 x 105cells ml" treatment, which had to go through 6.6 generations (log2100) more

growth than the ~3 x 105 cells ml" treatment populations.

RESULTS

The mean lag time varied among starvation treatments (Table 6, Figure 10). The

0 h treatment populations had a lag that was shorter than the 16 h population, and the 16

h population had a lag that was shorter than the 40 h population. Planned comparisons

showed that the 0 h treatment populations were different from the 16 h treatment

populations, but that 16 h populations were not significantly different from the 40 h

treatment populations. Since these planned comparisons were not orthogonal, the error
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Figure 10. The effect of starvation time on the lag phase. Data points represent means

and standard errors for six replicate populations in the 0 and 16 h treatments, and

five replicate populations in the 40 h treatment.

rates for each were adjusted using the Sidak multiplicative inequality so that the

experimentwise error rate remained 0.05 (Sokal & Rohlf, 1982, pp. 242).

A closer look at the actual grth curves showed that the 0 h treatment

populations started the growth cycle at densities of~ 2 x 105 cells ml", which is lower

than expected from previous data (Figure lla-c). These cultures were started 8 h after

the beginning of the conditioning cycle. 8 h may be an underestimate ofthe time

required to reach the expected endpoint stationary phase density. Thus it is likely that the

0 h populations were started during late exponential or transitional phase, not stationary

Table 6. Analysis of variance of the effects of starvation time on the lag time.

 

 

Source Sum of df Mean F Sig

Squares Squares

Among treatments 10.66 2 5.33 13.21 ***

Treatment 0 h vs 16 h 5.79 1 5.79 14.35 **

Treatment 16 h vs 40 h 0.62 1 0.62 1.56 ns

Within treatments 5.64 14 0.40

Total 16.30 16
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Figure 12. The effects of initial population densities on the lag time. Data points

represent the means of six replicate populations. Error bars show standard errors.

phase itself. This could also explain the rather large error bars in the estimates for lag

phase for the 0 h treatments, as the initial inoculum was probably in a transitional phase

between exponential and stationary phase.

There was a significant effect of the initial inoculum on the lag time (Figure 12,

Table 7). Planned comparisons showed that the ~3 x 103 cells ml" initial inoculum

treatment populations were significantly different from the ~3 x 105 initial inocolum

treatment populations which were in turn different from the ~3 x 107 initial inoculum

treatment. Since these planned comparisons were not orthogonal, the error rates for each

were adjusted using the Sidak multiplicative inequality so that the experimentwise error

rate remained 0.05 (Sokal & Rohlf, 1982, pp. 242).

. Table 7: Analyses of variance of the effects of initial inoculum size on the lag time.

 

 

Source Sum of df Mean F Sig

Squares Squares

Among treatments 1.39 2 0.69 5.46 *

103 vs 105 treatment 1.22 l 1.22 9.61 *

105 vs 107 treatment 0.82 1 0.82 6.44 *

Within treatments 1.90 15 0.13

Total 3.29 17
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DISCUSSION

In this chapter, I sought to test the assumption made in the lag phase model, that

the lag phase is a discrete function (“on” or “off” depending on whether the population

entered stationary phase) that is independent of other physiological factors. Experimental

tests oftwo factors, namely starvation time and initial population density, showed that lag

phase is prolonged by the former, and affected by the latter in a non-linear way.

Extending the periodic model by adding the effects of the starvation time and initial

inoculum size may help to explain the discrepancies of the model with the experiments

reported in Chapter 2. Simulations of a lag phase model extended to incorporate the lag

phase as a linear function of starvation time did not exhibit the complicated dynamics

predicted by the “discrete” lag phase model. (The lag-starvation model was based on a

linear regression fit to the data in Figure 10 in which L=0.0061*Starvation time (Vasi,

unpublished data).) Instead, populations either went extinct at very short transfer cycles

(less than 6 h) or had a single equilibrium at longer transfer cycles (greater than 6 h).

Thus the incorporation of factors affecting the lag phase into a mathematical model of

bacterial grth may help to explain the lack of periodicity in the experiments presented

in Chapter 2.

Natural populations of bacteria live in a “feast or famine” (Koch, 1971)

environment, in which fluxes of nutrients become available for short periods of time,

with long periods of intervening starvation. Thus, bacterial populations living in soil,

water or as parasites must spend long periods of time recovering from starvation, going

through the lag phase. Also microbial populations in nature occur at variable densities,

also affecting the duration of lag phase when nutrients become available. These factors

may produce considerable variability in population dynamics. The potential destabilizing
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influence of lag phase on microbial population dynamics may be an important

consideration in the understanding of fluctuations of microbial populations.

75



Chapter 4

ECOLOGICAL STRATEGIES AND FITNESS TRADEOFFS IN ESCHERICHIA COLI

MUTANTS ADAPTED TO PROLONGED STARVATION”

INTRODUCTION

In nature, most bacterial populations are thought to experience periods of famine.

Yet, until recently, studies of bacterial physiology and genetics have focused on cells that

were rapidly growing on abundant nutrients. In the past decade, however, there has been

heightened interest in the properties ofbacteria under starvation. Some ofthis recent

research emerged from the “directed mutation” debate (Cairns et al., 1988; Lenski &

Mittler, 1993; Sneigowski, 1995; Foster, 1998) and has examined the rate and nature of

mutations during starvation (Stahl, 1988; Boe, 1990; Hall, 1990; Mittler & Lenski, 1990;

Foster & Cairns, 1992; Mittler & Lenski, 1992; MacPhee, 1993; Foster & Cairns, 1994;

Maenhaut-Michel & Shapiro, 1994; Rosenberg et al., 1994; Jayaraman, 1995; Sneigowski,

1995; Foster, 1997; Harris et al.; Bhattacharjee & Mahajan, 1998). Another interesting

line of research seeks to understand the physiological and genetic bases of adaptation to

prolonged starvation (Koch, 1971; Lange & Hengge-Aronis, .1991; Siegele & Kolter,

1992; Hengge-Aronis, 1993; Zambrano et al., 1993; Huisman & Kolter, 1994; Hengge-

Aronis, 1996; Huisman et al., 1996; Zambrano & Kolter, 1996; Cotter & Miller, 1997;

Joux et al , 1997; Thorne & Williams, 1997; Uhde et al., 1997; Lazar et al., 1998; Pratt &

Silhavy, 1998; You et al., 1998). Our paper builds upon this second line of research.

* This chapter is presented verbatim from Vasi & Lenski (1999)

76



In this paper, “stationary phase” refers to the period after a bacterial population has

ceased growth owing to the depletion of limiting nutrients. Zambrano et al. (1993)

isolated some mutants ofEscherichia coli that could spread through populations

maintained for approximately two weeks in a formerly rich medium (LB) without further

addition of nutrients. By mixing together previously starved and freshly grown cells

(carrying different genetic markers), Zambrano et al. demonstrated the existence of

mutants that could grow even while the progenitor was dying. These mutants were later

termed GASP mutants — for grth advantage in stationary phase — and they are presumed

to have an advantage in scavenging the nutrients released by dying cells (Zambrano &

Kolter, 1996). Some GASP mutants have alterations in the rpoS gene that reduce, but do

not eliminate, the activity of (1’S (Zambrano et al., 1993), a transcription factor that is

induced by starvation and regulates the expression of many other genes (Lange & Hengge-

Aronis, 1991; Hengge-Aronis, 1993; Hengge-Aronis, 1996). Mutations in other genes

may also produce a GASP-like phenotype (Huisman et al., 1996).

In this study, we obtained five GASP-like mutants of E. coli by prolonged

starvation in a minimal medium. Rather than characterizing these mutants in terms of

genetic and physiological properties, as have previous studies, we sought to elucidate the

ecological “strategies” employed by these mutants. Specifically, we conducted several

experiments to measure the net death rate (i.e., death rate minus growth rate) of the

starvation-selected mutants and their progenitors during prolonged starvation under

several treatments. In one experiment, we compared the death rates of the mutants and

progenitors in pure culture. This experiment tests whether the mutants have evolved a

greater intrinsic ability to tolerate prolonged starvation. In other experiments, we

compared death rates measured in various mixtures to determine whether the mutants have

a lower net death rate in the presence of their progenitors, and whether the mutants cause

the progenitors to die faster than their intrinsic rate. The former effect would suggest a
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cross-feeding relationship, whereas the latter effect would indicate an allelopathic

interaction. We also sought to determine whether starvation-selected mutants are

competitively inferior to their progenitors under conditions of abundant nutrients. To that

end, we placed the mutants and their progenitors in competition with one another for fresh

medium.

MATERIALS AND METHODS

Bacterial Strains

The bacterial strains used as progenitors in this study have been described

previously (Lenski et al., 1991). Briefly, they are all asexual clones ofEscherichia coli B,

and are stored in glycerol at ~80°C. The five progenitors are referred to in this paper

simply as “original” strains 01, 02, O3, O4, and OS, and have strain numbers REL1176,

REL1180, REL1192, REL1193, and REL607, respectively. Progenitor OS is an Ara+

strain that has no prior history of adaptation to the DM25 medium used in this study. The

four other progenitors are Ara‘ strains that evolved independently for 300 days (= 2000

generations) in the same DM25 medium used in this study (see below) except by serial

transfer into fresh medium every day.

The five mutants are designated in this paper as S1, S2, S3, S4, and SS, where S

denotes “starvation” selected and the numeral corresponds to the original progenitor.

These mutants have strain numbers REL6426, REL6432, REL6430, REL6434, and

REL6428, respectively. All five mutants retain the Ara marker state of their progenitors,

but each one has noticeable and heritable differences in colony morphology (when spread
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on TA agar plates: see below) that allow it to be distinguished from its progenitor. Like

their progenitors, the mutants are stored at -80°C.

Media and Culture Conditions

The same liquid culture medium was used in all experiments, including for

prolonged starvation as well as growth. That medium is Davis minimal broth

supplemented with 25 pg of glucose per ml (Carlton & Brown, 1981; Lenski, 1988),

which we refer to as DM25. Experimental populations were maintained in a shaking

incubator at 120 rpm and 37°C. In all experiments, bacteria were enumerated by standard

dilution methods onto tetrazolium arabinose (TA) agar plates (Lenski, 1988). During

experiments in which mutants and their progenitors were mixed, the two types were

distinguished by differences in their colony morphology on these plates.

Prior to starting every experiment, the following procedures were performed to

ensure that all strains were similarly acclimated, so that any reproducible difference must

be heritable. Each mutant or progenitor was removed from the freezer; an aliquot of the

freezer stock was transferred into a rich broth (LB), where the cells grew for 24 h; that

culture was diluted 10,000-fold into DM25, where the cells grew for another 24 h; and

then the experiment proper began.

Derivation ofStarvation-Selected Mutants

The starvation-selected mutants were obtained in either one (SI, 32, and S4) or

two (S3 and S5) stages. First, a number of strains, including 03 and 05, were subjected to

starvation for 30 days in DM25 without added nutrients. Preliminary characterization of

isolates derived from this first-stage experiment found no compelling evidence for
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reductions in their death rates measured in pure culture. Therefore, we began a second

stage of starvation selection. A number of strains — including 01, 02, O4, and first-stage

isolates of O3 and OS — were inoculated into fresh DM25 again without adding any

nutrients. (The use of screw-capped culture tubes during both stages minimized

evaporation, but some occurred nonetheless; sterile distilled water was added to cultures

periodically to maintain the original volume. It is unlikely that the bacteria experienced

anaerobic conditions, because the culture tubes were opened every second day, there was

substantial head space above the culture medium, and the maximum density supported by

DM25 is only ~5 x 107 cells per ml.)

Figure 13 shows the overall population dynamics ofthe second-stage starvation-
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Figure 13. Dynamics of the five populations during the starvation-selection experiment.

A separate line indicates each population; the population densities have been log")-

transformed. The populations were founded with five different strains ofE. coli B,

which had already diverged from one another as part of another evolution

experiment (Lenski et al., 1991). At day 49 of the starvation-selection experiment,

we isolated from each population a clone that showed a heritable difference in

colony morphology from its progenitor.
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selection experiment for the five populations that gave rise to the mutants S l-SS, based on

colony counts obtained on TA agar. All of the populations declined by several orders of

magnitude, with the steep decline commencing a few days after the experiment began, but

then decelerating about day 30 and leveling off at a density of ~104 cells per ml. Mutants

Sl-SS were all obtained on day 49 of the experiment, and they were chosen on the basis of

atypical colony morphology (relative to their progenitors) as well as their survival to this

point of the experiment. The atypical colony morphology bred true when these mutant

clones were re-streaked onto fresh TA agar, and these morphological differences gave us

confidence that indeed we had genetic mutants (as opposed to any progenitor cells that

might have survived without mutations).

Estimation ofDeath Rates

Three different experiments were performed to compare the death rates of mutants

and their progenitors under various treatments. All three experiments were performed

with cultures in screw-capped tubes grown at 37°C in DM25. Each experiment lasted 15

days; this duration was chosen because it includes a substantial decline (Fig. 13), but it

does not extend into the period when mutants with altered colony morphologies became

abundant in the selection experiment. Samples from experimental populations were

spread every second day on TA agar plates, starting the first day after they grew to

stationary phase. The natural logarithm of the viable population density (based on colony-

forming units) was regressed against time, and the time-averaged death rate was estimated

as the slope of the regression. This procedure provides an estimate of the net death rate,

i.e., the rate of death minus any residual growth. The first experiment compares the death

rates of the starvation-selected mutants and their progenitors in pure culture (i.e., each in
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the absence of the other). The second experiment compares death rates of the mutants

measured at two initial frequencies (10% and 90%) in mixed culture with the progenitors.

The third experiment compares the death rates of the progenitors in the absence and

presence (50%) of their derived mutants. For the last two experiments, the treatment

frequencies are based on the ratio of the stationary-phase culture volumes at the time of

mixing.

Measurements ofCell Size

We used a Coulter particle counter (model ZM and channelyzer model 256) to

measure average cell volume for each mutant and its progenitor. The raw data were edited

to remove debris in very small-size channels (Lenski & Bennett, 1993). Measurements

were made 24 h after each strain was diluted 1:100 into fresh DM25 medium; this

corresponds to about 8-16 h after the bacteria exhausted the glucose in DM25 and entered

into stationary phase (Vasi et al., 1994).

Estimation ofRelative Fitness in Fresh Medium

To test whether the starvation-selected mutants had become less fit than their

progenitors in fresh medium, we performed short-term competition experiments in DM25

(Lenski et al., 1991). In brief, each mutant and its progenitor were separately grown for

one day in DM25, then they were mixed 1:1 volumetrically and diluted 1:100 in DM25.

An initial sample of the mixture was diluted and spread on TA agar, and a final sample

was similarly taken after 24 h. During this period, the mixed population increased ~100-

fold in density before entering stationary phase; no discernible death occurs during early

stationary phase (Vasi et al., 1994). For each competitor, we calculated its net rate of
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population increase from its initial and final densities, and we then computed relative

fitness as the ratio of these values for the derived mutant and its progenitor (Lenski et al.,

1991).

RESULTS

Ecological Strategies ofthe Starvation-Selected Mutants

Death rate in pure culture. We measured the net death rate (i.e., death minus growth) of

the starvation-selected mutants and their progenitors in pure culture for 15 days. This

experiment was replicated five-fold in complete blocks. Figure 14 shows that two
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Figure 14. Death rate in pure culture of starvation-selected mutants (SI-SS) and their

progenitors (OI-OS). Rates were measured over 15 (1. Error bars represent one

standard error. For each mutant and progenitor, a one-tailed paired t-test was done

to test the hypothesis that the mutant had a lower death rate in pure culture than did

its progenitor. Results are summarized above each strain pair by: ns 0.1 < P; +

0.05 < P < 0.1; * 0.01< P < 0.05; ** 0.001< P < 0.01.
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mutants, S1 and 83, had significantly lower death rates in pure culture than did their

progenitors; a third mutant, S5, had a marginally significant reduction. Evidently, at least

part ofthe selective advantage of some of the mutants can be explained without invoking

specific pairwise interactions among genotypes, hence implying an evolutionary reduction

in the “intrinsic” death rate.

One plausible explanation for a reduction in the intrinsic death rate is that the

starvation-selected mutants might produce larger cells, and contain greater metabolic

reserves, than their progenitors. To test this hypothesis, we measured the average cell

volume of starvation-selected mutants and their progenitors after they were grown in fresh

medium and soon after they entered stationary phase. Replicate estimates of average cell

volume were obtained for three independent cultures of each mutant and progenitor in a

complete block design. Figure 15 shows that two of the mutants, S3 and S4, made
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Figure 15. Average cell volume (1 fl = 10"5 l) of starvation-selected mutants (SI-S5) and

their progenitors (01-05) in early stationary phase. Error bars indicate one

standard error. For each mutant and progenitor, a one-tailed paired t-test was done

to test the hypothesis that the mutant produced larger cells than did its progenitor.

Results are summarized above each strain pair by: ns 0.1 < P; + 0.05 < P < 0.1;

* 0.01< P < 0.05.
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significantly larger cells than their progenitors; the size difference between SS and its

progenitor was marginally significant. However, there was no significant correlation

between the evolutionary changes in average cell volume and intrinsic death rate (r =

-0.123, n = 5, one-tailed P = 0.4223). Hence, larger cell size does not seem to be the main

factor responsible for the lower intrinsic death rate in pure culture of the starvation-

selected mutants.

Survival advantage when rare in mixed culture. We compared death rates for the

starvation-selected mutants at two different initial frequencies, 10% and 90%, in mixed

culture with their progenitors for 15 days. The measurements were replicated five-fold in

complete blocks. Figure 16 shows that three mutants — S1, S4, and S5 — had

significantly lower death rates when they were rare than when they were the predominant

genotype in the assays. This outcome suggests a cross-feeding interaction, in which the

mutants obtain nutrients from their progenitors (including lysed cells) that they cannot

obtain so readily from their own type; these nutrients either reduce the death rate of the

mutants or permit some offsetting growth.

Killing eflect ofmutants against their progenitors. We compared death rates over 15 days

of the progenitors in pure culture (100%) and in mixed culture (50%) with their derived

mutants. Rate estimates were replicated five-fold, but not in a blocked design (the first

treatment used data obtained in the first experiment above). Figure 17 shows that two

progenitors, O] and 05, were subject to significant killing effects; this result indicates that

the corresponding derived mutants, S1 and S5, were allelopathic.

Figures 14, 16, and 17 summarize a total of 15 statistical tests: three possible I

strategies for each of five starvation-selected mutants. It would not be surprising,

therefore, if one or two of the tests were “significant” at the 0.05 level by chance alone.
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Figure 16. Death rates in mixed culture of starvation-selected mutants (Sl-S5) at two

different initial frequencies (10% and 90%) with their progenitors. Rates were

measured over 15 days. Error bars indicate one standard error. For each mutant, a

one-tailed paired t-test was done to test the hypothesis that it had a lower death rate

when in the minority (10%) than when in the majority (90%). Results are

summarized above each mutant by: ns 0.1 < P; * 0.01 < P < 0.05; ** 0.001 < P <
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Figure 17. Death rates of progenitors (01-05) in pure culture (100%) and mixed (50%)

with their starvation-selected mutants. Rates were measured over 15 days. Error

bars are standard errors. For each progenitor, a one-tailed t-test was done to test

the hypothesis that its death rate was lower when in pure culture (100%) than when

mixed (50%) with its derived mutant. Results are summarized above each

progenitor by: ns 0.1 < P; ** 0.001 < P < 0.01; *** P < 0.001.
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However, seven of 15 tests were significant at the 0.05 level, which itself has an

associated probability of <0.00001 based on the binomial distribution. Thus, the data

overall indicate that the mutants have adapted genetically to prolonged starvation.

Starvation-Selected Mutants are Inferior Competitors in Fresh Medium

 
To address the question of an evolutionary tradeoff in performance between

conditions of feast and famine, we estimated the fitness of each starvation-selected mutant

relative to its progenitor in fresh DM25 medium. We ran one-day competition

experiments in which the combined population grew 100-fold before the glucose was

depleted. The competitions were replicated five-fold for each pair of strains. Figure 18

shows that four mutants — S1, S2, S4, and SS — were significantly less fit in competition

for fresh medium than were their progenitors; mutant S3 also seemed less fit, but the
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Figure 18. Fitness of each starvation-selected mutant (S l-SS) relative to its progenitor

during a one-day competition in fresh DM25 medium. Error bars correspond to

one standard error. For each mutant strain, a one-tailed t-test was done to test the

hypothesis that its relative fitness in competition for fresh medium was less than

1.0. Results are summarized above each mutant by: +, 0.05 < P < 0.1; **, 0.001 <

P < 0.01; *** P < 0.001.
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effect was only marginally significant. Averaging over the five starvation-selected

mutants, the mean relative fitness in fresh medium is 0.767 and is significantly below one

overall (t-statistic = 3.43, 4 degrees of freedom, one-tailed P = 0.0133), despite variation

among the five mutants. Evidently, there is a common tradeoff between evolutionary

adaptations to prolonged starvation and competitive ability under favorable growth

conditions.

DISCUSSION

Previous research on bacterial adaptation to prolonged starvation has focused on

the genetic and physiological properties of starvation-adapted bacteria. In this study, we

sought to characterize the ecological strategies employed, and tradeoffs engendered, by E.

coli mutants selected during prolonged starvation in a minimal medium. Four of the five

starvation-selected mutants showed one or more significant advantages (Table 8). Mutant

8] exhibited all three ecological strategies that we tested: (i) it had a lower intrinsic death

rate in pure culture than did its progenitor; (ii) it had an even lower death rate when mixed

with its progenitor; and (iii) it increased the death rate of its progenitor in mixed culture.

S5 may also have used all three strategies, although its intrinsic death rate was only

marginally significantly lower than its progenitor. S3 had a lower intrinsic death rate than

its progenitor, while S4 had a significantly lower death rate when it was rare than when it

was common. Only 82 showed no significant survival advantage in any of the ecological

respects that we tested. Perhaps S2 carries only deleterious mutations. Alternatively, S2

may have certain advantages that are manifest only after very long periods of starvation,

because the death-rate assays ran for two weeks, whereas the selection experiment itself

lasted seven weeks. In any case, our results confirm prior findings (Siegele & Kolter,

1992; Zambrano et al., 1993; Zambrano & Kolter, 1996) that E. coli can evolve enhanced
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Table 8. Summary of the ecological strategies of five starvation-selected mutants of E.

 

  

 

coli.

Starvation-selected mutant

Strategy 81 82 S3 S4 S5

Lower intrinsic death rate than ** ns * ns +

progenitor

Survival advantage when rare * ns ns ** **

Killing effect against progenitor *** ns ns ns **

 

ns 0.1<P; + 0.05 <P< 0.1; * 0.01<P< 0.05; ** 0.001<P< 0.01; *** P < 0.001.

All tests were one-tailed, in the direction predicted by the hypothesis.

survival capacity under prolonged starvation, and they extend these findings from a

depleted rich medium to a depleted minimal medium. Moreover, our study demonstrates

that these starvation-adapted mutants exhibit diverse ecological strategies, either singly or

in combination. These diverse strategies presumably indicate distinct mutations in various

loci affecting different biochemical pathways, but confirmation of this conjecture awaits

formal genetic analysis of the mutants.

Our study also demonstrated an evolutionary tradeoff associated with the

mutations that conferred resistance to starvation. Most, if not all, of the starvation-

selected E. coli mutants were inferior to their progenitors during competition in fresh

medium (Fig. 18). These tradeoffs were typically severe, with the starvation-selected

mutants averaging >20% reductions in their rate of population increase in fresh medium.

Tradeoffs in fitness across environments have often been hypothesized as a means for

maintaining genetic diversity in spatially and temporally varying environments (Levins,

1968; Slatkin & Lande, 1976). Testing for the existence of such tradeoffs is usually

difficult, but selection experiments [offer a powerful way to do so in suitable organisms
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such as Drosophila melanogaster (Mueller & Ayala, 1981; Rose & Charlesworth, 1984;

Rose et al , 1987; Chippindale et al , 1996) and E. coli.

Whether evolutionary tradeoffs exist in E. coli appears to depend very much on the

nature of the environments that are contrasted. Mutants selected for resistance to certain

phages (Lenski & Levin, 1985; Lenski, 1988) and antibiotics (Schrag & Perrot, 1996) are

inferior competitors in the absence of those agents. Mutants adapted to low temperature

also typically lose fitness at high temperature (Mongold et al., 1996), although the

reciprocal is not true (Bennett & Lenski, 1993). Thus, genetic correlations that govern

responses to selection in different environments can be asymmetrical. Indeed, E. coli lines

that adapted for 2000 generations to an environment with abundant glucose usually

became better at surviving prolonged starvation (Vasi et al., 1994), whereas we have

shown here that most starvation-selected mutants became worse in competition for

abundant glucose. Such asymmetrical patterns are unexpected from the standpoint of

simple models in which tradeoffs arise from the allocation of intemal resources to

competing demands. However, asymmetries are less surprising when one considers the

several thousand genes and myriad regulatory interactions that are present even in a

“simple” organism like E. coli.
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