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ABSTRACT

Skeletal Tissue as Physiological Agents in Turtles (Reptilia: Testudines)
By

Kenneth Dale Andrews

Neural bones from extant chelonians and fifteen bones from fossil chelonians were
observed in the Scanning Electron Microscope. The surface of the bones were examined
to determine possible taxonomic differences and physiological uses of the vascular canals
that interact with the surface of the shell. Different carapacial and plastral bones of one
individual were examined for individual variation. Neural sections were extracted from
extant turtles to make histologicaﬂ specimens. They were viewed to assess the
compatibility of the structure of the carapace with previous explanations and to determine
the shell’s use as a metabolic unit for chelonians. Femora from extant chélonians were
measured for total length and bisected at the narrowest margin. Measurements of the
inside and outside diameters of the bones at both the narrow and wide sections of the
bone were recorded. Calculations from these measurements were made for K (internal
diameter/external diameter), KR (radius of marrow cavity), R (radius of outside
measurement), t (thickness of bone), and R/t values.

The outer surface of the carapace was found to be similar in appearance. The other
parts of the carapace varied greatly in appearance and numbers of canals. Type A canals
(perpendicular to surface) were found to be the most common type of vascular canal

interacting with the outer surface of the carapace. Type B canals could be used as



indicators for the total area of the surface occupied by vascular canals. Small vascular
canals were found in the acellular outer layer of the carapace that was termed the subscute
blood layer. This subscute blood layer allowed the blood to be affected quickly by the
temperature of the outer surface (scutes) of the carapace. Cardiac shunting along with the
blood flowing through the subscute blood layer was determined to be an active
component of the thermoregulatory physiology of chelonians. Osteoclasts were observed
in the histology sections of the carapace giving evidence for the carapace as an active
storage area for Calcium.

The K value derived from the femora showed a much smaller K value than any others
reported in the literature. The lower K value indicated that the long bones had a very
thick bone wall to support the weight of the shell. The thickened bone wall of the femur
reflected the small amount of marrow that the long bone had and this lack of marrow was
compensated for in the shell bones. The shell was found to be an active part of the
metabolism of the chelonian as a thermoregulatory structure and a mineral storage area

for the animal.
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INTRODUCTION

The morphology of shell and long bones in turtles has
been studied in some detail, but little work has been
conducted to determine'if and how these elements are
involved in the physiology of this animal, encumbered as it
is by a massive shell. This study will examine the long
bones and shells of testudines to look for mechanisms of
physiological control exerted by these structures. The
surface of the carapace will be examined for morphological
structures used to regulate or control blood flow.
‘Physiological areas of study included will be temperature
control by blood flow throughout the carapace, the carapace
and long bones as an agent for calcium and phosphate
reserves, and weight constraints of the shell on both the
morphology of the limbs as well as a factor in the size of
the marrow cavity. As a prefix to the text that is to
follow, a general introduction to types of bone and a review
of previous turtle shell and long bone work is given as
follows.

Types of Bone

The skeleton of vertebrate animals is composed of

mineralized connective tissue commonly called bone. The

primary step in the formation of skeletal tissue is the



synthesis of collagen by fibroblasts. Collagen is a
proteinaceous fibril that aggregates to form bundles. These
bundles are woven into compact networks. It is on this
network that the Calcium Phosphate and collagen fibers are
deposited to form bone. The bony tissue of vertebrate
animals has been classified into six main groups (Kent,
1987). These groups are categorized as compact, spongy,
dentin, acellular, membrane, and replacement bone.

Compact bone (also called Haversian bone) 1is
characterized by lamallae of mineralized collagenous bundles
arranged concentrically around a Haversian canal. These
Haversian canals are the channels where the vascular tissue
brings blood to the bone cells.

Spongy bone (also called Cancellous bone) is
characterized by bony trabeculae and marrow. Trabeculae are
an assemblage of beams, bars, and rods that, like
architectural trusses, form a rigid framework that provides
maximum_strength at areas of stressT These trabeculae are
irregularly arranged lamellae without Haversian canals.

Dentin is the material that covers teeth of. vertebrates
and scales of ganoid and elasmobranch fishes. It has the
same constituents as compact and spongy bone except that the
odontoblasts (dentin forming cells) are not trapped during
osteogenesis. Thus, the odontoblasts are always at the

inner border of the bone. These odontoblasts leave behind



canaliculi which are the protoplasmic processes for the
dentin.

Acellular bone (also called Aspidin) is characterized
by the osteoblasts (bone forming cells) that retreat as they
deposit bone (as in dentin) and in addition leave no
canaliculi behind (Bloom and Fawcett, 1962).

Membrane and Replacement bone are characterized by
their different depositional patterns. Before bone can be
deposited, a preskeletal blastema must develop. A blastema
is an aggregation of mesenchyme that differentiates into
varied tissues. Once the preskeletal bléstema is formed,
some mesenchyme cells become fibroblasts and secrete
collagen while others become either osteoblasts or
chondroblasts (cartilage forming cells) and secrete enzymes
essential for the formation of bone or cartilage. The
collagenous matrix is then impregnated with hydroxyapatite
crystals.

Membrane bone is deposited directly within a membranous
blastema without having been preceded by a cartilaginous
model. Membrane bone may be compact or spongy, and lamellar
or non-lamellar. Because of the arrangement of the blood
vessels that participate in the deposition of the bone,
membrane bone lacks Haversian canals. Dermal bone is
derived either ontogenetically or phylogenetically from the

dermis of the skin . The term Dermal bone denotes its



history, not its histologic features. Dermal bone is a form
of membrane bone.

Replacement bone is deposited where hyaline cartilage
already exists. 1In this process, the cartilage degenerates
and eventually disappears. In replacement ossification, the
cartilage must be removed before the hydroxyapatite crystals
(bone) may be deposited. The cartilage is replaced by
spongy bone which may later be eroded and replaced‘by
compact bone, spongy bone, or a marrow cavity, depending on
its location.

Bones of Testudines

Suzuki (1963) grouped the bones of chelonians into
three major classifications. These classifications are
Primary Vascular bone, Endosteal Haversian bone, and
Avascular béne.

Primary vascular bone was subdivided into three
categories. These subdivisions were longitudinal,
reticular, and prothaversian. Longitudinal primary vascular
bone has vascular canals that are parallel to the long axis
of the osseous tissue. Reticular primary vascular tissue
has vascular canals that are patterned in a network.
Prothaversian primary vascular tissue has osseous lamellae
arranged concentrically around large irregularly shaped
primary vascular channels or marrow cavities simulating

Haversian canals.



Endosteal Haversian bone has concentric lamellae of
bone deposited around a rounded vascular channel and is
confined to the endosteal margin of the bone.

Avascular bone has no vascular canals and the
osteocytes are arranged concentrically around the marrow
cavity.

Carapace ana Plastron

The turtle shell (carapace and plastron) is
morphologically arranged as a domed carapace and a flat
plastron (Fig. 1). The outermost covering of shell
structures is a horny covering primarily composed of Keratin
called scutes. These scutes are periodically replaced as
the turtle grows (Cagle, 1950). Underlying the scutes are
the bony elements. The bony elements are comprised of two
layers, the superficial epithecal layer and the central
thecal layer. The epithecal layer is only present in marine
and some freshwater turtles (Suzuki, 1963). Adult
chelonians have apositional growth of the bony elements on
the inner and outer surface forming layers of compact bone
on both surfaces. These are called the inner and outer
tables while the thecal layer has been called the
intermediate diploe (Wallis, 1927). The outer table
consists of a primary longitudinal vascular pattern and the
inner table is a primary reticular vascular pattern. The

vascular channels near the sutures of the bones are arranged
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transversely to the plane of the sutures and gradually
modified as they anastomose with the more mature parts of
the carapace (Suzuki, 1963). Enlow and Brown (1957) noted
differences between the vascular patterns in the outer and
inner table of a dermal bone from a Cretaceous turtle,
Glyptops. No mention was made if such variation existed in
modern turtles.

The shell is composed of modified vertebral column

elements, ribs, and dermal bones except for Dermochelys

(Zangerl, 1939). The turtle body plan represents a major
‘exception of the structural “bauplan” (body plan) of the
vertebrates. This exception is that the girdle elements of
the chelonian skeleton are inside the ribs instead of
outside the ribs as in all other vertebrates (Burke, 1989).

The carapace of most turtles is composed of six
different bony elements arranged in an ovoid shape. A
central row of bones (nuchal, neurals, suprapygal, and
pygal) are surrounded by rectangular bones (costals).
Finally, arranged around the outer rim of the costals are
the peripherals (Ernst and Barbour, 1989) (Fig. 2).

The plastron of most chelonians is composed of four
paired bony plates (epiplastron, hyoplastron, hypoplastron,
and xiphiplastron) and a single entoplastron between the
epiplastra and hyoplastra (Fig. 3).

The number and arrangement of these bones has some



familial and species specific variations (Hay, 1908;
McDowell, 1964). There are also extra bones that are
present in some groups. Examples of this is the presence of
a mesoplastron between the hyoplastra and hypoplastra in
some taxa of the Family Pelomedusidae and in Claudius of the
Kinosternidae.

Previous Shell Work

The testudine carapace has been widely used in
taxonomic studies. The main characters that have been used
are scute pattern, bone suture pattern, and relationship of
scutes to the underlying bone (Pritchard, 1979; Ernst and
Barbour, 1989).

There are occasional reports of bone abnormalities in
the shell. These anomalous bones are almost always reported
the abnormalities with no explanation as to cause or effect
of the abnormalities (Newman, 1906; Procter, 1922).

Turtles have one of the largest body mass to body
volume ratios of the vertebrates (Hall, 1924). This is
caused mainly by the bony shell. The extra weight that
chelonians carry causes major changes in the animals habits
and mode of locomotion. The testudinal gait reflects the
need to exert enough force to move a body along with the
burden of a heavy shell (Jayes and Alexander, 1980). The
shell restricts the range of motion in many turtles and

forces the animals to move in short strides. This gait



Figure 2. Diagram of the bony elements of the carapace
including the nuchal (Nu), neurals (Ne), costals

(C), peripherals (Pe), suprapygals (S), and pygal
(Py) .



Hyo

' Hypo

Figure 3. Diagram of the bony elements of the plastron
including the epiplastron (Epi), entoplastron
(En), hyoplastron (Hyo), hypoplastron (Hypo),
and xiphiplastron (X).



allows the weight of the shell to reside almost entirely on
one leg at a time (Alexander, 1982). Marvin and
Lutterschmidt (1997) determined that the stride length of

Terrapene carolina was affected by their body mass. The

more weight that the chelonian carried, the shorter the
length of the stride.

The shell has generally been assumed to be
metabolically inert (Hall, 1924; Benedict, 1932; Hutton, et
al., 1960; Hughes, et al., 1971; Dunson, 1986). However,
using regression equations, Bennett and Dawson (1976) failed
to detect any significant differences in body weight versus
metabolic rate in lizards, snakes, and turtles. This
indicates either (1) that the shell is metabolically active
or (2) that the metabolic rate of other tissues in turtles
is enough higher (20-40%) than other reptiles to compensate
exactly for the inert character of the shell in the total
metabolism (Bennett and Dawson, 1976). The carapace has
been reported to have no seasonal change in density,
(Suzuki, 1963), thus supporting the hypothesis that the
carapace is metabolically inert.

In a study of Pseudemys and Chelydra shells,
application of radiant heat to the carapace increased local
blood flow; whereas cooling of the carapace decreased it,
implying that local blood flow can be controlled by the

animal (Avery, 1982). Changes in heart rate also aid in
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rapid absorption or radiation of heat (Zug, 1993). Zug
(1993) also stated that to retard cooling, reptiles reduce
heart rate and peripheral circulation. The reduction of the
heart rate and reduction of the peripheral circulation or
the pulmonary circulation is commonly called cardiac
shunting (Hicks and Wang, 1996).

Long Bones |

The limb bones of chelonians allow growth only on the
inner surface of the marrow filled cavity. This leads to
reduction in the size of the marrow cavity over time.
Reabsorption of bone tissue acting as a calcium reserve in
the long bones occurs for metabolic purposes (Suzuki, 1963).
It is known that the endosteal long bones have lamellar
layers of growth (Enlow, 1969). This allows the assumption
that the marrow cavity of the long bones of turtles is
reduced over time.

Long bones are much stronger or resistant to bending if
the center section (marrow cavity) is hollow or filled with
a material less dense than the bone (Alexander, 1982). The
strength of these long bones can be calculated if the
material in the cavity is known (Currey énd Alexander,
1985). .Turtle long bone cavities are filled with marrow
which is about 0.44% as dense as bone.

The direction from which pressure is exerted on a long

bone also determines its strength or resistance to bending.
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These "stresses" can also alter the shape of the long bone
during growth (Currey, 1984). Additional pressure on
chelonian limb bones is caused by the excess weight of the
shell.

Comparison of the size of the marrow cavity to the
thickness of the bone wall (Currey and Alexander, 1985) is
labeled as K (Fig. 4). K may range from 0.0 (where the bone
is solid) to near 1.0 (where the bone is very thin with a
large marrow cavity). This value depends on whether it is

selected for yield strength, fatigue strength, ultimate

strength, impact strength, or stiffness. Yield strength is

described as the tissue being strong enough not to yield
under the greatest bending moments likely to act on it.

Fatigue strength is described as the tissue being strong

enough not to fail by fatigue under the bending moments

expected to act repeatedly on it. Ultimate strength is

described as the tissue being strong enough not to fracture
under the greatest bending moments likely to act on it.

Impact strength is described as the tissue being strong

enough in bending under impact loading. Stiffness is
described as the tissue being stiff enough in bending. The
optimum values for these were computed so that the K values
would reflect the limiting factor on the limb being

examined. These optimum values are 0.67 (Yield or Fatigue

Strength); 0.56 (Ultimate Strength); 0.75 (Stiffness); and
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0.55 (Impact Strength).

Currey and Alexander (1985) also compared the K values
in limb bones of mammals, birds, and reptiles. They
concluded that air filled bones of birds have very high K
values due to the fact that bird bones require much bending
strength and require a minimized mass for flight. Mammals
have lower values of K as they increase in size. Aquatic
animals like the alligator and marine mammals have low
values of K, as this loss of marrow size is thought to aid
the animal in attaining neutr;l buoyancy.

Currey and Alexander (1985) examined the ratio of the
ratio of the radius of the complete bone (R) to the
thickness of the bone wall (t), which yields the value R/t.
This value is used to emphasize how greatly the shape
changes as K approaches one. The value (R/t) is often used
as well as or instead of K. R/t equals 1/(1-K).

If the marrow cavities of the long bones of testudines
were the only place for the reabsorption of calcium, one
would assume that the long bones would be reduced over time
(ontogeny) and the strength of the bone would be greatly
affecfed by the current calcium status of the turtle in
question.

Previous Long Bone Work

The long bones of the unique pelagic turtle Dermochelys

coreacea (Rhodin, et al., 1981) were studied relative to the
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quantity of vascular canals in their cartilaginous plates.

It was found that the chondro-osseous plates of Dermochelys

has many vascular canals, a characteristic that is shared
among many different marine vertebrates, but that is unique
among the reptiles.

The osseous growth marks of long bones have been
studied to indicate the age of turtles (Castanet and
Cheylan, 1979) and it has been shown that the growth marks
are useful in determining the age of turtles up to about

twenty years.
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MATERIALS AND METHODS

Turtle shell bones were studied under the SEM to reveal
the minute canalicular vascular system within them and
histological slides were made to detect cells, such as
osteoclasts, that would reflect metabolic activity in the
shell. Long bones (femora) were sectioned and analyzed to
reflect mechanical and physiological factors related to the
restraints imposed by the shell.

SEM Methods

The neural plates of 44 specimens from 9 families of
Testudines were viewed in the Scanning Electron Microscope
(SEM) in order to view their minute canalicular vascular
system within them. Carapacial bones from 15 fossil turtles
were also viewed in the SEM. Varied skeletal elements
(neural, peripheral, costal, and plastral) from one

Chrysemys picta specimen (MSU-H 2025) were viewed.

Moreover, several different areas of the outer surface of
the above neural were examined to evaluate variability
within it.

The neural plates of the extant species were either
taken as a complete neural bone from disarticulated
specimens or a section of the neural bone was cut from whole

specimens by using a dremel tool.

17



The fossil turtle specimens were taken as whole
fragments of “scrap” fossil chelonian specimens from the MSU
Museum collection. Scrap fossils are pieces that are
usually identifiable only to the generic level.

The neural plates were cut to sizes compatible with
mounting on stubs. After cutting, the bones were mounted on
the stubs with an adhesive. The mounted bones were critical
point dried (Balzers Critical Point Dryer). After critical
point drying, the mounted bones were sputter-coated with
gold (Emscope Sputter Coater).

Each mounted bone was then viewed in a Scanning
Electron Microscope (SEM) (model JEOL JSM-35C). Micrographs
were taken with the SEM at sixty times normal size to allow
for maximal viewing of the neural with the best clarity.
These micrographs also could be enlarged to many times the
current magnification with little or no reduction in the
clarity of the micrographs.

Some neurals were examined under high magnification to
assess the type of bone growth on the_surface of the shell
as well as the lining of the vascular canal.

The different shell elements from one specimen of

Chrysemys picta (MSU-H 2025) were observed to determine if

variation occured in the different surfaces of each bone.
SEM micrographs were taken from each elements outer, edge

and inner surfaces to assess the variation of these
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elements.

The SEM micrographs were digitized by scanning into
computer formats (TIFS). The computer files were then used
in area analysis using Bioscan Optimas. The area analysis
was collected using two different light intensity
thresholds. The first threshold was set at a standard of
one hundred‘(loo) for all specimens for control purposes.
The accurate method used a variable light intensity
threshold that filled all of the holes allowing no bleeding
of light into the bony tissue. The resulting numbers
yielded percentages of the area of the micrograph that was
occupied by canals.

The vascular canals of the bones were divided into
three categories. These were Types A, B, and C (Fig. 5).
Type A vascular canals have a perpendicular arrangement with
the outer surface of the carapace with no retreating
vascular canal from the surface (Figs. 6 and 7). Type B
‘vascular canals have a nearly perpendicular arrangement with
the outer surface and an immediately adjacent retreating
vascular canal (Figs. 8 and 9). Type C vascular canals have
a tangential arrangement with the outer shell with a long
parallel junction with the outer surface before the
retreating tangential vascular canal (Figs. 10 and 11).

A Z-distribution analysis of canal types compared with

each other was conducted for all testudines (Table 1). T-
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TYPE A CANAL

TYPE B CANAL

TYPE C CANAL

Figure 5. Diagrammatic representation of the three different canals and their
arrangement with the surface of the carapace.
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' Figure 6.

Scanning Electron Microscope (SEM) micrograph of
the outer surface of a neural bone of Chrysemys

picta (MSU-H 14309) showing an example of a Type
A canal. 60X magnification.

Figure 7.

Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide from Chrysemys picta
(MSU-H 14309) showing an example of a Type A
canal. 40X magnification.
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Figure 8. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H ) showing an example of a Type B
canal. 60X magnification.

Figure 9. Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide from Chrysemys picta
(MSU-H ) showing an example of a Type B canal.
40X magnification.
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Figure 10. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H ) showing an example of a Type C
canal. 60X magnification.

Figure 11. Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide from Chrysemys picta
(MSU-H ) showing an example of a Type C canal.
40X magnification.
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distribution analyses of the canal types compared to each
other were conducted for the families Emydidae (Table 2) and
Testudinidae (Table 3).

Linear regressions were performed for each type of
canal (A, B, and C) compared to the percent area‘of the
canals. The tests were performed for all turtles examined,
the members of the family Emydidae, the members of Chrysemys
picta, and the members of the family Testudinidae. These
data were derived from the SEM photographs previously
scanned into the TIF files. The level of significance was
placed at .05. All statistical analyses were conducted
using the Softstat program (Softstat, 1996).

Histological Specimens

Histological slides of turtle bones were made in order
to identify cells capable of physiological activity. Neural
bones (N2) of a formalin preserved specimen of Trachemys

scripta elegans, Chelydra serpentina, and Terrapene carolina

carolina were cut from the complete individual using a
dremel tool. The pieces were then decalcified using the
formic acid method (Sheehan and Hrapchak, 1980). The
specimens were placed in a formic acid solution to allow for
the tissues decalcification. The formic acid solution
contained 500 ml of 88% formic acid and 500 ml of 10%
neutral buffered formalin. The bones were washed in the

solution for 24-48 hours. The bones were then washed with
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Table 1. Z distribution analysis data on significant differences in number of canal types
for all testudines examined. Sample variances were not significantly different.

Taxa Average Variance Z-value Prob>T
Type A Canals 44.02 29.57

Vs. 14.26 0.00
Type B Canals 3.64 10.01
Type A Canals 44.02 350.89

Vs. 11.19 0.00
Type C Canals 9.69 72.49
Type B Canals 3.64 10.01

Vs. -4.46 0.00
Type C Canals 9.69 72.49

Table 2. T distribution analysis data on significant differences in number of canal types
for the family Emydidae. Sample variances were not significantly different.

Taxa N Mean T DF Prob>T
Type A Canals 28 51.36

Vvs. 18.24 27 0.00
Type B Canals 28 3.21
Type A Canals 28 51.36

Vs. 12.80 27 0.00
Type C Canals 28 10.28
Type B Canals 28 3.21

vs. 4.79 27 0.00
Type C Canals 28 10.28

Table 3. T distribution analysis data on significant differences in number of canal types
for the family Testudinidae. Sample variances were not significantly different.

Taxa N Mean T DF Prob>T
Type A Canals 7 29.57

Vvs. 439 6 0.00
Type B Canals 7 4.00
Type A Canals 7 29.57

vs. 3.09 6 0.02
Type C Canals 7 743
Type B Canals 7 4.00

Vvs. 1:29 6 0.23

Type C Canals 7 7.43
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running water for 3 to 8 hours. After washing, the bones
were mounted in paraffin and then sectioned to 4
micrometers. The sections were mounted and stained with
Hematoxylin and Eosin using Sheehan and Hrapchak'’s method
(1980) .

These histological slides were compared with
descriptions of the histological arrangement of carapacial
bones in Suzuki (1963). The slides were viewed for the
presence of cells that indicate metabolic activity in the
shell such as osteoclasts and were viewed for the presence
of other structures associated with physiological
activities.

Long Bone Specimens

Long bones were sectioned and analyzed to reflect
mechanical and physiological factors related to the burden
of the shell. Femora from 49 specimens from 6 families were
obtained from skeletal collection specimens of the Michigan
'State University Museum (MSU-H). The femora were cut at the
narrowest point of diaphyses using a dremel tool.

The greatest total length of the femur was measured
before the specimens were cut with the dremel tool. The
femora were measured using vernier calipers to the nearest
hundredth of a millimeter. The femora of chelonians are not
round as the cross section of the bone has a roughly

triangular shape (Fig. 12). This triangular shape gives the
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bone both a narrowest and widest point. This allowed for
two complete sets of measurements. Sets of measurements
were made of the bisected femora at the inside diameter of
the marrow cavities and the outside diameter of the femora.
Inside measurements were made by inserﬁing the vernier
calipers into the outermost section of marrow cavity in the
long bone.

The measured values of the bisected femora allowed for
many other values to be calculated (Appendix 3). Both sets
of data were used for each set of calculations. These
calculations start with the value K, which is defined as the
ratio of the outer bone diameter to the inner bone diameter.
The bone has a fadiﬁs R (half the measured diameter) and a
marrow cavity of radius KR (half the measured inside
diameter). The thickness of the bone wall (t) results from
subtracting the inside diameter from the outside diameter.
Finally, the ratio of the radius of the complete femur (R)
to the thickness of the bone wall (t), will yield R/t.

Linear regressions were performed of the different
measurements and calculatioﬁs from the long bones to
determine which of the measurements or calculations would be
most useful in determining relationships of turtles on the
basis of their long bones. The measurements and
calculations used in the linear regressions were total

length of the bone, K (large), K (small), KR (large), KR
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Figure 12. Scanning Electron Microscope (SEM) photograph
of the bisected femur of Chrysemys Eicta (MSU-
H 2025). 30X magnification.

Figure 13. Scanning Electron Microscope (SEM) photograph
of the outer surface of a neural bone of
Trachemys scripta elegans (MSU-H 2716). 3000X
magnification.
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(small), R/T (large), R/T (small). These regressions were
performed for all turtles examined, members of the family
Emydidae, and members of the family Testudinidae. The level
of significance for these regressions‘was placed at the .05
level.

Images in this dissertation are presented in color.

All Hematoxylin and Eosin (H+E) prepared photographs are

color photographs.
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RESULTS

This section presents the results of the SEM studies,
the histology work and the analyses of the long bone data.
Types of bone throughout the shell

Neurals that were examined under high magnification (up
to 6600X) showed that the outer layer of the shell was
composed of acellular bone composed of a fibrous matrix in
which the orientation of collaéenous fibers are in a random
arrangement (Enlow, 1969) (Figs. 13, 14, and 15). The lining
of the vascular canals were also composed of acellulaf bone
(those areas that couid be seen with the SEM) (Figs. 16, 17,
and 18).

The surfaces of the different chelonian neurals were
structurally diverse. They all had the same type of bone
(acellular) on their surface although the appearance of the
matrix was diverse. Acellular bone is characterized by a
unorganized aggregation of collagen fibril bundles (Bloom
and Fawcett, 1962). The collagen fibers in some photographs
were very large and gave the matrix a rugose appearance. ’

The Chelydra serpentina specimen is a good example of this

rugose matrix (Fig. 19). The collagen fibers in other

photographs were small and gave the matrix a smooth
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Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of
Kinosternon flavescens (MSU-H 2920). 320X
magnification.

Figure 14.

Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Clemmys
insculpta (MSU-H 4336). 2000X magnification.

Figure 15.
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Figure 16.

Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone showing the
lining of one of the vascular canals of
Trachemys scripta elegans (MSU-H 2716). 1000X
magnification.

Figure 17.

Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone showing the
lining of one of the vascular canals of

Chrysemys picta (MSU-H 2025). 600X
magnification.
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Figure 18. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone showing the
lining of one of the vascular canals of Chelydra
serpentina (MSU-H 3436). 360X magnification.

Figure 19. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chelydra
serpentina (MSU-H 3436). 60X magnification.



appearance. The Chrysemys picta specimens have a smooth

appearing matrix (Figs. 20, 21, and 22). A few neurals had
matrix that appeared granular. This appearance comes from
the lack of collagen fibers with the primary amount of
matrix being the calcium phosphate. The members of the
Family Kinosternidae are good examples of this type of
matrix (Figs. 23, 24, and 25).

The cross sectional slides of the shell in Trachemys

scripta elegans, Chelydra serpentina, and Terrapene carolina

carolina were similar in that they all had an outer table
and an inner table (diploe) of compact bone (Fig. 26) and a
middle section of spongy bone (Fig. 27). The outer and
inner tables wefe pfoportionally thin as the middle spongy
layer comprised most .of the shell. This spongy layer was
the location of the majority of the canals that carry blood
to the surface of the shell as seen in the SEM photos. The
canals are lined with acellular bone unlike the trabeculae
found in the spongy middle layer composed of trabecular bone
and marrow. The canals do not form a direct route to the
surface of the shell, but follow a tortuous winding path to
the surface and back down again to the marrow. 1In fact, it
is the type of connection of these canals to the surface
that defines the structural makeup of the different canal
types (see fig. 28).

A feature observed here that has not been previously
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‘Figure 20. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H 14309). 60X magnification.

Figure 21. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H 14310). 60X magnification.
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Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H 14312). 60X magnification.

Figure 22.

Figure 23. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of
Kinosternon flavescens (MSU-H 2920). 60X
magnification.
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Figure 24. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of
Kinosternon leucostomum (MSU-H 1414). 60X
magnification.

Figure 25. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of
Kinosternon subrubrum (MSU-H 2477). 60X
magnification.




Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing the bisected
carapace with the thin outer layer of compact
bone shown between the non-staining scute and
the deep spongy bone.

Figure 26.

Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing the spongy
middle layer of a carapace with the marrow
evident in the central areas.

Figure 27.
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Figure 28.

Photograph of a Hematoxylin and Eosin

(H+E)

prepared histological slide showing a close view
of the interconnection of the scute, compact
bone layer, and vascular canal

Figure 29.

Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing the
different paths for blood through the subscute
layer.
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discussed in the literature occurs between the outer table
of bone and the scutes of the shell as a thin layer of
blood. This blood moves from relatively large canals"Eo
canals of (as small as) a singlé blood cell in thickness.
These subscute blood flow is immediately beneath the scutes
with no bone between the capillary and the scute. This
arrangement would allow the blood in the capillary to absorb
or radiate heat with no interference from the thick
acellular bone. The scute would be the only interference
with the ambient temperature of the external environment.
Bone is much less dense than Scutes. This allows the
keratin of the scutes to change temperature in relationship
to its surroundings much faster than bone (Monteith, 1973).
The blood flowing through the capillaries was contiguous
with other blood in the system except that it was not
determined how its flow was directed through the subscute
layer of the shell (Figs. 29 and 30).
ﬁetabolic materials observed in the shell

There were no living cells detected in the thin inner
and outer tables. The middle layer of spongy bone was very
similar in appearance to the marrow cavity of a long bone as
trabeculae were present in large quantities. Osteocytes
were also observed in the trabeculae of the spongy middle
layer (Fig. 31). These “mature bone cells” maintain normal

bone structure by recycling the calcium salts in the bony
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Figure 30. Photograph of a Hematoxylin and Eosin (H+E

prepared histological slide showing the subscute
blood layer.

Figure 31. Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing the
osteocytes in the lacunae.
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matrix around themselves and assisting in repairs (Martini
and Bartholomew, 2000). Osteoclasts are large
Imultinucleated cells that secrete acids to break down bone
and release the calcium and phosphate that is bound in the
tissue (Martini and Bartholomew, 2000). Osteoclasts were
observed in the process of osteolysis (Fig. 32).

Osteoblasts are cells that produce the fibers and matrix of
bone or the production of new bone (Martini and Bartholomew,
2000). Osteoblasts were observed lining the marrow cavities
of the spongy bone (Fig. 33).

‘Variation of the shell of an individual Organism

The elements from a single specimen of Chrysemys picta

(MSU-H 2025) showed large variations in the number and types
of canals. The percentage of canals compared to the bony
tissue ranged from 5.34% to 42.35%. The only two
measurements that exceeded 15% occurred in the edge of the
peripheral bone (Fig. 34) and the inner surface of the
peripheral bone (Fig. 35) (Table 4). The photomicrographs of
the outer surfaces of the costal, peripheral, and neural
were all similar in appearance with large numbers of Type A
canals and moderate numbers of Types B and C canals (Figs.
30, 31, and 32). . The outer surface of the plastron had
differences in types of canals present. Only Type C canals
occurred in the outer surface photograph of the plastron

(Fig. 39). Cross cut edge photographs of all specimens were
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Figu:e.32. Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing an

osteoclast in the process of dissolving bone.

Figure 33. Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing osteoblasts
lining the trabeculae of spongy bone.
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Figure 34.

Scanning Electron Microscope (SEM) photograph of
the edge surface of a peripheral bone of
Chrysemys picta (MSU-H 2025). 60X

magnification

Figure 35.

Scanning Electron Microscope (SEM) photograph of
the inner surface of a peripheral bone of
Chrysemys picta (MSU-H 2025). 60X

magnification.



Table 4. Percentage area of the scanning electron microscope (SEM) images occupied by
canals at both a standard threshold and a variable threshold for different surfaces
of varied bony elements of a single Chrysemys picta specimen (MSU-H 2025).

Shell Element Surface % Area (100) % Area (Var.) Var.
Neural Outer 09.71 10.09 110
Neural Inner 16.86 06.83 40
Neural Edge 14.60 08.78 50
Peripheral Outer 20.71 12.34 57
Peripheral Inner 48.13 26.26 45
Peripheral Edge 66.22 42.35 45
Costal Outer 15.00 08.99 57
Costal Inner 26.55 12.83 46
Costal Edge 60.19 12.88 23
Plastral Outer 23.18 10.69 42
Plastral Inner 28.68 07.84 48
Plastral Edge 76.31 05.34 30

Table 5. Percentage area of the scanning electron microscope (SEM) images occupied by
canals at both a standard threshold and a variable threshold for fossil specimens.

MSU-VP # % Area (100) % Area (Var.) (Var.)
847 08.36 09.04 135
849 09.04 07.91 91
Williston, FL. 10.06 06.13 70
Williston, FL 09.40 07.79 80
Keya Paha Co., NE 12.82 10.27 75
Keya Paha Co., NE 09.02 11.76 130
Keya Paha Co., NE 11.47 09.53 85
Keya Paha Co., NE 09.51 09.58 105
Keya Paha Co., NE 09.18 08.92 90
Keya Paha Co., NE 08.93 08.55 95
Keya Paha Co., NE 12.52 11.40 85
Keya Paha Co., NE 09.06 08.46 90
Keya Paha Co., NE 07.50 08.25 110
Keya Paha Co., NE 50.88 09.82 40
Keya Paha Co., NE 20.40 07.25 50
Keya Paha Co., NE 09.40 07.79 80
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Figure 36. Scanning Electron Microscope (SEM) photograph of
the outer surface of a costal bone of Chrysemys
picta (MSU-H 2025). 60X magnification.

Scanning Electron Microscope (SEM) photograph of
the outer surface of a peripheral bone of

Chrysemys picta (MSU-H 2025). 60X

magnification.

Figure 37.
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Figure 38. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H 2025). 60X magnification.

Scanning Electron Microscope (SEM) photograph of
the outer surface of a plastral bone of

Chrysemys picta (MSU-H 2025). 60X
magnification.

Figure 39.
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similar in appearance with low amounts of vascularization
near the outer and inner tables and high amounts in the
middle table. (Figs. 34, 40, 41, and 42).

Inner surface photographs were the most diverse in
appearance, as well as the size and type of canals. The
inner surface of the neural (Fig. 43) had 3 Type A canals
and 2 Type B canals (all small in size) within a very smooth
matrix. The inner surface of the peripheral (Fig. 23) had
one large Type B canal with several other smaller canals of
Type A and B. The matrix was rugose with the collagen
fibers easily seen in this view. The inner surface of the
costal (Fig. 44) had a large number of all types of canals
along with the bresénce of a rugose matrix. The inner
surface of the plastral (Fig. 45) had 5 moderately sized
Type B canals and one Type C canal. The matrix appeared
intermediate between the matrix of the neural and the
matrices of the peripheral and costal.

Variation of shells of different groups examined

Several families of turtles were so structurally
distinct that they could be identified from the photographs
without the use of statistics. These families include the
Trionychidae, Chelydridae, and Kinosternidae. The modern
Trionychid specimen (Fig. 46) had very few large canals
within a smooth matrix. The Chelydrid specimen (Fig. 19)

had a large number of large Type C canals (the only specimen
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Figure 40. Scanning Electron Microscope (SEM) photograph of
the edge surface of a costal bone of Chrysemys
picta (MSU-H 2025). 60X magnification.

Figure 41. Scanning Electron Microscope (SEM) photograph of
the edge surface of a neural bone of Chrysemys
picta (MSU-H 2025). 60X magnification.
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Figure 42. Scanning Electron Microscope (SEM) photograph of
the edge surface of a plastral bone of Chrysemys
picta (MSU-H 2025). 60X magnification.

Figure 43. Scanning Electron Microscope (SEM) photograph of
the inner surface of a neural bone of Chrysemys
picta (MSU-H 2025). 60X magnification.
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Figure 44.

Scanning Electron Microscope
the inner surface of a costal bone of Chrysemys

picta (MSU-H 2025).

(SEM) photograph of

60X magnification.

Figure 45.

Scanning Electron Microscope (SEM) photograph
of the inner surface of a plastral bone of

Chrysemys picta (MSU-H 2025). 60X

magnification.



with Type C canals equaling the number of Type A canals)
within a rugose matrix. The Kinosternid specimens (Figs.
23, 24, and 25) had generally small canals within a
primarily calcium phosphate matrix. One of the Kinosternid
specimens had a large number of Type C canals (the only
specimen with Type C canals exceeding the number of Type A
canals) .

The types of surface-reaching canals markedly differed
between taxonomic groups (Appendix 2), although all turtles,
both at the ordinal ana familial level, had significantly
more Type A canals than either of the other types of canals
(Tables 1,2, and 3). The average number of each canal type
was compared between the families Emydidae (Figure 47) and
Testudinidae (Fig. 48). Although the number of canals in
each family was different, the variance between the numbers
of each type of canal was similar. The Type A canals were
significantly larger than the other two types in both
families, but Type C canals were significantly larger than
the Type B canals in the family Emydidae but not in the

Testudinidae. All specimens of Chrysemys picta were

examined for comparisons of averages of canal types (T-
tests) (Table 5) with each type of canal significantly
different than the other (Fig. 49).

The area analysis of the SEM photographs was averaged

with the percentage of area occupied by canals in the
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Figure 46. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Trionyx
ferox (MSU-H 478). 60X magnification.

Figure 51. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chelus
fimbriatus (MSU-H 2613). 60X magnification.
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photographs. This data enabled the comparison of the
different families of chelonians by their percentage of area
occupied by canals (Fig. 50). Figure 50 is misleading
because the other catagory contains many of the testudines
that live in unique or unusual habitats. In fact, the
largest area occupied by canals was in a single individual

of the cheliid genus, Chelus fimbriatus (Fig. 51).

The linear regressions of the types of canals compared
to the area occupied by canals for all chelonia was
significant for type B canals but not for type A or C canals
(Table 6). The linear regressions of the types of canals
compared to the area occupied by canals for the family
Emydidae was significant for types A and B canals but not
for type C canals (Table 7). The linear regressions of the
types of canals compared to the area occupied by canals for
the family Testudinidae (Table 8) and for specimens of
Chrysemys picta (Table 9) were not significant for any of
the three canal types.

Fossil specimens examined and techniques applied to them

The fossil specimens photographed were examined for the
percentage area that the canals occupied compared to the
matrix of the bone (Table 10). Variable percentage area
occupied by the canals ranged from 6.13 percent to 11.76
percent.

The fossil specimens examined had the same general
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Table 6.

Linear regressions of neural (N2) Scanning
Electron Microscope (SEM) photograph area analysis
compared to the different canal types for all
Testudines.

Independ. Var. Dependent Var. R-squared Prob. Value
Percent Area Canal Type A 0.0073 0.5649
Percent Area Canal Type B 0.3027 0.0001
Percent Area Canal Type C 0.0166 0.3827
Table 7. Linear regressions of neural (N2) Scanning
Electron Microscope (SEM) photograph area analysis
compared to the different canal types for members
of the family Emydidae.
Independ. Var. Dependent Var. R-squared Prob. Value
Percent Area Canal Type A 0.2269 0.0106
Percent Area Canal Type B 0.3821 : 0.0005
Percent Area Canal Type C 0.0000 0.9928
Table 8. Linear regressions of neural (N2) Scanning
Electron Microscope (SEM) photograph area analysis
compared to the different canal types for members
of the family Testudinidae.
Independ. Var. Dependent Var. R-squared Prob. Value
Percent Area Canal Type A 0.0004 0.9643
Percent Area Canal Type B 0.1040 0.4718
Percent Area Canal Type C 0.0627 0.5811
Table 9. Linear regressions of neural (N2) Scanning
Electron Microscope (SEM) photograph area analysis
compared to the different canal types for members
of Chrysemys picta.
Independ. Var. Dependent Var. R-squared Prob. Value
Percent Area Canal Type A 0.0266 0.4947
Percent Area Canal Type B 0.1227 0.1247
Percent Area Canal Type C 0.1597 ' 0.0918
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structure of ground substance relative to the canal types
present as did the extant specimens (Fig. 52). Many
different problems were detected in viewing the fossil
specimens. All problems arose from foreign materials
associated with the fossil or from erosion of the specimen
at the microscopic level. In many specimens the canals were
covered or filled in with foreign material (Figs. 53, 54,
55, and 56). Foreign material occurred on the surface of
five different fossils (Figs. 57 and 58). Erosion of the
carapace occurred in one fossil specimen (Fig. 59) which
affected the canal area data for that specimen.

Long Bone Data

The long bones of the chelonian samples provided data
on total length, inside diameter (small), inside diameter
(large), outside diameter (small), and outside diameter
(large) . These data were used to make multiple calculations
which include K (small), K (large), R (small), R (large), KR
(small), KR (large), t (small), t (large), R/t (small), and
R/t (large) [see Appendix 3].

Averages for K (small) and K (large) were compared
between the different families of turtles (Figs. 60 and 61)
and were larger for the families Trionychidae,
Kinosternidae, and Chelydridae. The averages of R/t (small)
and R/t (large) were compared between the different families

of turtles (Figs. 62 and 63) and were also lafger for the



Table 10. Percentage area of the scanning electron
microscope (SEM) images occupied by canals at both
a standard threshold and a variable threshold for
fossil specimens.

MSU-VP # % Area (100) % Area (Var.) (Var.)
847 08.36 09.04 135
849 09.04 07.90 91
Williston, FL 10.06 06.12 70
Williston, FL 09.39 07.78 80
Keya Paha Co., NE 12.82 10.27 75
Keya Paha Co., NE 09.02 11.76 130
Keya Paha Co., NE 11.47 09.53 85
Keya Paha Co., NE 09.51 09.57 105
Keya Paha Co., NE 09.18 08.92 90
Keya Paha Co., NE 08.93 08.55 95
Keya Paha Co., NE 12.52 11.39 85
Keya Paha Co., NE 09.06 08.46 90
Keya Paha Co., NE 07.49 08.24 110
Keya Paha Co., NE 50.88 09.81 40
Keya Paha Co., NE 20.40 07.25 50
Keya Paha Co., NE 09.39 07.78 80
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Figure 52. Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown chelonian bone.
60X magnification.

Figure 53. Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown chelonian bone.
60X magnification.
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Figure 54. Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown chelonian bone.
60X magnification.

Figure 55. Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown chelonian bone.
60X magnification.
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Figure 56. Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown chelonian bone.
60X magnification.

Figure 57. Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown chelonian bone
showing large foreign material on the surface of
the fossil. 60X magnification.



Figure 58.

Figure 59.

Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown testudine bone
showing foreign material on the surface of the
fossil. 60X magnification.

Scanning Electron Microscope (SEM) photograph of
a “scrap” fossil of an unknown testudine bone
showing erosion of the fossil material. 60X
magnification.
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families Trionychidae, Kinosternidae, and Chelydridae.

The linear regressions of total length of the femur
compared to the K values (small and large) for all
chelonians (Table 11), the family Emydidae (Table 12) and
the family Testudinidae (Table 13) were not significant at
the .05 level. The linear regressions for total length of
the femur compared to the KR values (smali and large) for
all chelonians were significant (Table 11), the family
Emydidae (Table 12), and the family Testudinidae (Table 13)
were significant at the .05 level. The linear regressions
for total length of the femur compared to the R/t (small and
large) for all chelonians (Table 11), the family Emydidae
(Table 12), and the family Testudinidae (Table 13) were not
significant at the .05 level. The linear regressions for
the K values (small and large) compared to the KR values
(small and large) for all chelonians (Table 11), the family
Emydidae (Table 12), and the family Testudinidae (Table 13)
were significant at the .05 level. The linear regressions
for the K values (small and large) compared to the R/t
values (small and large) for all chelonians (Table 11), the
family Emydidae (Table 12), and the family Testudinidae

(Table 13) were significant at the .05 level.
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Figure 60.

Frequency distribution of average K (small)
values for the families of Testudines.



Average K (large) Value

Figure 61.

Frequency distribution of average K (large)
values for the families of Testudines.
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Table 11. Linear regressions of femur measurements and calculations for all testudines.

Independent Variable Dependent Variable

R-squared Probability value

K (small)
K (large)
KR (small)
KR (large)
R/t (small)
R/t (large)
KR (small)
KR (large)
R/t (small)
R/t (large)

Total Length
Total Length
Total Length
Total Length
Total Length
Total Length
K (small)
K (large)
K (small)
K (large)

0.0022
0.0006
0.7626
0.7035
0.0049
0.0043
0.1594
0.1860
0.8847
0.9508

0.7438
0.8660
0.0000
0.0000
0.6222
0.6430
0.0046
0.0020
0.0000
0.0000

Table 12. Linear regressions of femur measurements and calculations for members of the

R-squared Probability value

family Emydidae.

Independent Variable Dependent Variable
K (small) Total Length
K (large) Total Length
KR (small) Total Length
KR (large) Total Length
R/t (small) Total Length
R/t (large) Total Length
KR (small) K (small)
KR (large) K (large)

R/t (small) K (small)
R/t (large) K (large)

0.0008
0.0164
0.6926
0.4743
0.0060
0.0110
0.1884
0.2417
0.8679
0.9425

0.8976
0.5504
0.0000
0.0003
0.7206
0.6264
0.0393
0.0176
0.0000
0.0000

Table 13. Linear regressions of femur measurements and calculations for members of the

R-squared  Probability value

family Testudinidae.

Independent Variable Dependent Variable
K (small) Total Length
K (large) Total Length
KR (small) Total Length
KR (large) Total Length
R/t (small) Total Length
R/t (large) Total Length
KR (small) K (small)
KR (large) K (large)

R/t (small) K (small)
R/t (large) K (large)

0.1547
0.1592
0.8230
0.7684
0.1400
0.1242
0.4877
0.4697
0.9737
0.9610

0.1697
0.1627
0.0000
0.0001
0.1943
0.2246
0.0081
0.0099
0.0000
0.0000
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DISCUSSION

A discussion of the results of the analysis if the SEM
data, histological slides, and long bone studies of turtle
skeletal tissues as physiological agents follows as well as
added comments on metabolic uses of the shell and its part
in thermoregulation.

Role of the Three Canal Types in Thermoregulation
The large differences bet&een surfaces of the varied

elements of a single shell of Chrysemys picta (MSU-H 2025)

show that only certain surfaces are similar enough to use
for a comparative anaiysis; these being the outer surfaces
of the neural, costal, and peripheral bones‘(see Figs. 36,
37, and 64). In fact, five photographs from the same neural
of this specimen (see Figs. 38, 64, and 65) were so similar
that without codes on the SEM negatives the specimens could
easily have been confused. Therefore, it was determined
that any outer surface of the carapace could have been used
for this study.

The three types of canals in the shell represent a
unique method of determining the amount of blood that is
exposed to the outside environment by controlling not only
the amount of blood that is exposed at one time to the

surface but how much change in temperature occurs over that
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Figure 64. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H 2025). 60X magnification.

Figure 65. Scanning Electron Microscope (SEM) photograph of
the outer surface of a neural bone of Chrysemys
picta (MSU-H 2025). 60X magnification.
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time.

Type A canals (Figs. 6 and 7) form a T with the surface
of the bone. These canals force blood into the subscute
blood capillary layers. The blood would have to flow across
the surface to another canal. This small amount of blood
flowing just under the surface of the scute would have a
high surface area to volume ratio that would allow all of
the blood to be affected by the temperature of the scute at
the same rate. This would make an excellent fine adjustment
to the temperature of the blood and thereby, the temperature
of the ectothermic turtle.

Type B canals (Figs. 8 and 9) form an inverted V with
the surface of the bone. This type of canal would not
provide much interaction of the blood with the temperature
of the scute and would have little or no effect on the
temperature of the chelonian.

Type C canals (Figs. 10 and 11) come to the surface of
the bone and follow along the surface for some time before
plunging back deep into the bone. This type of canal would .
allow large amounts of blood to come into contact with the
scute at one time and keep that contact for a moderate
amount of time. This type of canal would allow for large
amounts of temperature change in a relatively short amount

of time but with little fine control of the temperature.
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Actions of Temperature Control in the Carapace

All chelonians have significantly more type A canals
than any other type of canal (see Figs. 47, 48, and
49) (Tables 1, 2, 3, and 5). This fact combined with the
proposed function of type A canals would allow chelonians to
maintain exgell;nt fine control of their temperature by
determining the flow of blood to the carapace. The
regulatory mechanism for this was not discovered in this
study.

All chelonians except members of the family
Testudinidae (see Table 3) have significantly fewer type B
canals than any other type of canal (Tables 1, 2, and 5).
This fact when compared with the proposed lack of thermal
control for this type of canal'WOuld support the supposition
that this type of canal lacks a thermodynamic function.

The linear regression of the type B canals compared to
the total area occupied by canals of the neural was
.significant for all chelonians (0.0001) (Table 6) and the
family Emydidae (0.0005) (Table 7). This suggests that this
low number of type B canals can be used to predict the total
area of canals in the bone (Figs. 63, 64, and 65). But, the
fact that type B canals are not significant predictors of
percent area occupied by all canals for members of the

family Testudinidae (Table 8) and members of Chrysemys picta

(Table 9) would argue against that prediction.
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A possible explanation for Type B significance when
used to predict percent area occupied by all canals could be
that the type A canals are extensions or processes of the
type B canal. This hypothesis is not supported by further
testing. A linear regression of type A canals compared to
type B canals resulted in a rejection of the hypothesis
(0.0838) at the 0.05 level (Fig. 66).

The most numerous type of canal in all chelonians
examined were the type A canals. It would be logical to
assume that this type of canal would be a good predictor of
the total area occupied by canals. This assumption is
incorrect in all groups (Figs. 67, 68, and 69) (Tables 6, 8,
and 9) except the Family Emydidae (Figs. 70) (Tables 7). The
fact that the linear regressions of the type A canals
compared to the total area of canals is significant only for
the family Emydidae (0.0106) does not support the hypothesis
that type B canals are primary sources of type A canals.

The area of anastomosis between different canal types would
be an area that would benefit from further research.

Linear regressions of type C canals compared to total
area were not significant for any group examined (Figs. 71,
72, 73, and 74). As type C canals are the largest type of
canal, it lends evidence to the proposed function of type C
canals. If a single type C canal has the ability to

greatly modify the temperature of the organism, there would
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be little need for large numbers of them in the shell.

The subscute blood layer is as small as one cell layer
thick in some places which could enhance the ability of
the outside environment to affect the blood, and could
become the exact temperature of the scute in a short amount
of time. Anatomical structures for the control of blood
flow through the carapace (Avery, 1982) were not detected
either in the SEM specimens or in the histoiogy specimens.
The extent of ability of the blood to fan out from the type
A canal and thus gain or lose even more heat is unknown
because the histological slides were sagittally sectioned at
this level. My work shows that it flows across ‘the shell
(Fig. 75), but the ability of the blood to flow in more than
two directions is unknown. Shallower transverse sections
may have answered this question, but unfortunately, the
transverse sections were made deeper in this study.
The shape of the shell optimizes the amount éf heat that can
be obtained from the environment. The shape allows the sun
to contact at least part of the carapace no matter what
direction the light is coming from. This allows the
subscute thin layer of blood to obtain heat from that area
of the shell that is currently under direct sunlight.
Bartholomew (1982) found that peripheral vasomotor activity
was locally controlled independent of the core temperature

and heart beat, although he did not discuss how this control
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Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing the subscute
blood flow.

Figure 75.

Figure 76. Photograph of a Hematoxylin and Eosin (H+E)
prepared histological slide showing an
osteoclast dissolving bone.
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occurred. This mechanism would allow the organism to
control where on the shell blood would flow and thereby
where the subscute blood would be optimally heated by the
radiant heat.

The hemispherical shape of the carapace gives
chelonians a relatively small surface to volume ratio when
compared with other reptiles of the same size (Bartholomew,
1982). Some chelonians are large enough that their mass
endows them with an inertial homeothermy similar.to
crocodilians (Bartholomew, 1982). This small surface to
volume ratio allows these very successful reptiles to retain
more heat in their systems due to smaller amounts of heat
lost through surface radiation. This retention of heat
means that even small amounts of heat gain are kept for long
periods of time. This would mean that a method of forcing
or enhancing temperature control of the shell would be of
great value to this animal’s natural ability to retain heat.
Actions of Temperature Control in the Plastron

The large Type C canals on the plastral outer surface
photograph (see Fig. 39) are exceptionally noteworthy. The
proposed function of type C canals is to allow large
quantities of blood over the thermodynamic surface in a
relatively short amount of time. The arrangement of Type C
canals next to the surface upon which this basking chelonian

rests his weight, would allow the turtle to gain or lose
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large amounts of heat rapidly. Obviously, the control of
blood to this area would be of great importance. Though no
mode of blood flow control was detected in this study, Hicks
and Wang (1996) discuss the role cardiac shunting in
reptiles. This ability to shunt most of the blood to either
the pulmonary or systemic circulation is a perfect way to
control large amounts of blood flow with relatively little
physiological effort. Cardiac shunting in conjunction with
the large numbers of Type C canals in the plastron would
allow the chelonian to control temperature rapidly.
Carapace as a Reservoir for Calcium and Phosphate

The presence of osteoclasts in the spongy bone of
carapace (Fig. 76) is solid evidence that the shell is a
storage reservoir for calcium and phosphate. This reserve
is in addition to any that the long bones provide. This
leads to the supposition that osteoblasts are also present
in the spongy bone of the carapace; leading to the constant
'remodeling of the shell as dictated by the needs of the
organism. The process of remodeling of the shell is
primarily a metabolic function and not a structural one, as
the strength of the shell is determined primarily by the
structure of the bridge that connects the carapace with the
plastron (Currey, 1967).

Red eared sliders need a minimum of two percent dietary

calcium during growth for the carapace to develop properly
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(Kass, et al, 1982). This calcium can be taken directly
from the aquatic medium and used in carapace structure
(Jeffree, 1991). The ability to extract calcium from the
environment and lay it down as Calcium Phosphate in the
carapace facilitated by the presence of osteoclasts in the
spongy bone of the carapace suggests a process of gaining
calcium from the surrounding environment.
Other Metabolic uses of the Shell

The shell has been determined to be an agent for
hematopoesis in the spongy middle layer of the shell (Vasse
and Beaupain, 1981). It has also been suggested that
chelonians are capable of increasing bone marrow production
in cases of cerfain diseases (Garner, et. al., 1996). These
factors give additional evidence for the metabolic
activities of the chelonian shell.
Reduced Size of Long Bone Marrow Cavities for Support

Currey and Alexander (1985) state that the median R/t
for terrestrial mammals is 2.0. This value (even though it
is for an endothermic animal) is of value for comparison
with the testudine data. The terrestrial mammals have a R/t
value that is optimal for impact strength but lower than the
expected value for static strength and stiffness. The
Average value for the family Testudinidae is 2.0784 for the
smaller width and 2.1299 for the larger width, which is

similar to the terrestrial mammals (Appendix 3). The
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average R/t (2.0298 for the large and 2.0163 for the small)
for the family Emydidae was also similar to terrestrial
mammals even though they are primarily aquatic. It should
be noted that they use their limbs extensively to climb out
of the water frequently for basking purposes as well as
excursions out of water for multiple purposes.

The marine turtle Eretmochelys imbricata had a R/t of

1.7826 for the smaller width and 1.6847 for the large width,
which is much different than the R/t of 1.0 that Currey and
Alexander (1985) found in the endothermic manatee

" (Trichechus manatus).

Excluding the sole marine turtle examined, important
correlation occurs between chelonian shell size and the R/t
of their long bones. The Emydidae and Testudinidae both
have extensive shells and their R/t values are the lowest of
the chelonians. The Kinosternidae have a somewhat reduced
shell and their R/t value is larger. The Chelydridae have
an even more reduced shell and their R/t value is higher
yet. Finally, the Trionychidae have no external shell, only
a much reduced internal shell, and their R/t value is the
largest of all. This inverse correlation between the amount
of shell that a chelonian has and its R/t value generally
indicates the amount of metabolic activity that occurs in
the shell. The higher the R/t value, the more marrow the

long bone possesses. Therefore, the smaller the shell (and
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consequently, the amount of bone in the shell), the larger
the marrow cavity of the long bone.

The K value, which is considered to be at optimum
strength at 0.67 (Currey and Alexandef, 1985), is lower than
the optimum strength value in almost every turtle examined
(Appendix 3). Exceptions occur in two measurements of the
smaller K value (one Kinosternid and one Trionychid) and
three measurements.of the larger K value (one Chelydrid, one
Testudinid, and one Emydid). The ultimate strength value of
K was calculated as 0.55 and a large number of the turtles
examined have K numbers lower than this ultimate strength
number. The terrestrial turtles (Terrapene and family
Testudinidae) have K(large) values of 0.3146 to 0.6966 with
an average of 0.5122. The Marine turtle Eretmochelys has a
K (large) value of 0.4064. This very low value for the rear
leg (which is not used in propelling the turtle through the
water) is not surprising considering that this organism is
marine and propels itself through the ocean with its
anterior limbs. The rear limbs trail the body and may act
as a rudder. Females also use them to dig the hole when
nesting, but even when on land, the rear limbs are not used
to propel the animal.

The linear regressions of the total length of the
femora compared to the KR values (small and large) were the

most informative of all the regressions performed on the
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long bones (Tables 11, 12, and 13) (Figs. 77, 78, 79, 80, 81,
and 82). The KR value is the radius of the marrow cavity in
the femur. The fact that it can be used to determine the
length of the bone is of great interest. This would suggest
that the marrow cavity is affected by the length of the
bone. This correlation should be examined more closely to
determine if this is a true or a chance (stochastic)
correlation.

The linear regressions of the K values (small and
large) compared to the KR values (large and small) (Figs. 83
and 84), and compared to the R/t values (large and
small) (Figs. 85 and 86) were primarily run as controls. The
K value is the radius of the femur. The KR value is the
radius of the marrow cavity. The R/t value is the ratio of
the radius of the complete bone to the thickness of the bone
wall. These are all derivatives of the same measurements
and should therefore be highly correlated. |
Comments on Metabolic Uses of the Shell

Without mention of the shell, Edgren (1960) stated that
the long bones are used as a calcium reserve for the egg

shell production in Sternotherus odoratus. Another well

known use of calcium in animals is to bind to troponin,
[activating the movement of tropomyosin and the exposure of
active sites on the thin (actin) filaments] resulting in the

contraction of muscles (Martini and Bartholomew, 2000).
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These are both areas of metabolic activity that require high
amounts of calcium. If turtles did not use the shell as a
source of calcium, the animals would not only be stressed by
having to acquire enough calcium to maintain metabolic
activities, but also by having to lay down the calcium of
the shell’s bone as well. Although the amount of marrow of
most vertebrate long bones is quite large when compared to
the total skeletal mass (Alexander, 1982), it is generally
very small when compared to the overall skeletal size of
testudines. The reason for the relatively small amount of
turtle long bone marrow reflects the fact that their shells
act as an additional large hemopoetic source. This extra
hemopoetic sourée aliows the animals to remodel their long
bones for maximum stress resistance to carry the extra mass
of the shell.

Some blood that flows throughout the carapace must feed
the epithelial cells that produce the keratin the comprises
the scutes. An alternative theory for the blood canals
would be as a nutrient and gas source for these stem cells.
The amount of blood that flows through the type C canals is
much more than is needed to feed this single layer of cells
under the scutes (Fig. 87).

Conclusions/Summation
Citations and references of the shell as a

metabolically inert structure has been continuously stated
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in the chelonian literature as recently as December of 1999
(Stone and Iverson, 1999; Dunson, 1986).

My work found that the carapace was used as a calcium
reserve as indicated by the presence of osteoclasts that
reabsorb bone for metabolic purposes. Previous studies
(Vasse and Beaupain, 1981) found that the chelonian shell is
used in hematopoeisis. The presence of the vascular canals
with their different types of interactions with the surface
of the shell affect the thermodynamics of the organism. The
subscute blood layer between the carapace and the plastron
" have rapid affects on the temperature of the blood that
flows through those areas. All outer surfaces of the
carapace were similar in appearance when these diverse areas
were compared. Moreover, photographs of different outer
surface areas of the same neural showed no significant
differences between the numbers and types of canals present
in them. This uniformity of the outer surface of the
carapace and the significant numbers of Type A canals
suggests that they are highly used in thermoregulation.

The marrow cavity size of the long bones in chelonians is
primarily restricted by the weight of the carapace and the
mode of locomotion of the chelonian in question. The fact
that the K value of most chelonians falls below the optimum
strength values of Currey and Alexander (1985) means that

the long bones of chelonians have much thicker walls than
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Figure 87. Hematoxylin and Eosin (H+E) photograph of a
carapace showing the single cell layer that
produces the scute of the shell.



other vertebrate animals. These thicker walls are needed to
carry the weight of the heavy bony shell along with the soft
tissues of the chelonian.

The much reduced marrow cavities of the long bones of
chelonians requires that they must gain the calcium through
their other bony structures, primarily the carapace and
plastron. The calcium could not be lost from the long bones
or risk reduced ability of the bones to supﬁort the animal.
The carapace and plastron of chelonians has long been known
as a source for thermoregulatioh although mechanisms for
this thermal control were not known. The interaction of the
ability of the chelonian for blood flow control to the shell
and the surface arrangement of the vascular canals allows
the chelonian to thermoregulate with little energy

expenditure and fine control of the temperature c¢hange.
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APPENDIX A
SPECIMENS EXAMINED
All Michigan State University Museum specimens have locality
data on file in the museum data base.
Family Chelidae

Chelodina longicollis (MSU-H 12987).

Chelus fimbriatus (MSU-H 2613).

Family Cheloniidae

Eretmochelys imbricata (MSU-H 2117).

Family Chelydridae

Chelydra serpentina (MSU-H 3010); (MSU-H 3436); (MSU-H 3773).

Family Dermatemydidae

Dermatemys mawei (MSU-H 2330).

Family Emydidae, Subfamily Batagurinae

Siebenrockiella crassicollis (MSU-H 3054).

Family Emydidae, Subfamily Emydinae.

Chrysemys picta (MSU-14309); (MSU-H 14310); (MSU-H 14312);

(MSU-H 14314); (MSU-H 14316); (MSU-H 14325); (MSU-H 14326);
(MSU-H 14335); (MSU-H 14344); (MSU-H 14345); (MSU-H 14346);
(MSU-H 14351); (MSU-H 13406); (MSU-H 1109); (MSU-H 2930);
(MSU-H 3247); (MSU-H 967); (MSU-H 2025); (MSU-H 3306).

Clemmys insculpta. (MSU-H 598); (MSU-H 3257); (MSU-H 4324);

(MSU-H 4336).

Emydoidea blandingii (MSU-H 2231); (MSU-H 3955); (MSU-H

13021).
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Graptemys geographica (MSU-H 2911); (MSU-H 3303).

Graptemys pseudogeographica. USA. IL. Jackson County. (KDA

117) .

Pseudemys floridana (MSU-H 522); (MSU-H 3183).

Pseudemys floridana peninsularis (MSU-H 3927).

Terrapene carolina bauri (MSU-H 629); (MSU-H 1306).

Terrapene carolina carolina (MSU-H 1696); (MSU-H 2379);

(MSU-H 4053); (MSU-H 13019).

Terrapene carolina triunguis (MSU-H 4349); (MSU-H 12977).

Trachemys scripta (MSU-H 1730); (MSU-H 2929); (MSU-H 14307).

Trachemys scripta elegans (MSU-H 2716); (MSU-H 2721).

Family Kinosternidae

Kinosternon flavescens (MSU-H 2918); (MSU-H 2920); (MSU-H

2924).

Kinosternon leucostomum (MSU-H 1414).

Kinosternon subrubrum (MSU-H 2477); (MSU—H 2768); (MSU-H

4337).
Family Pelomedusidae

Pelusios derbianus (MSU-H 2100).

Family Testudinidae

Geochelone agassizi (MSU-H 1707).

Geochelone carbonaria (MSU-H3526).

Geochelone elegans (MSU-H 3238).

Geochelone elongata (MSU-H 3123).

Geochelone pardalis (MSU-H 2931); (MSU-H 3216).
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Gopherus berlandieri (MSU-H 1400); (MSU-H 2220); (MSU-H

2221).

Gopherus polyphemus (MSU-H 497); (MSU-H 2102); (MSU-H 3221).

Kinixys belliana (MSU-H 4350).

Kinixys erosa (MSU-H 2077).

Malacochersus tornieri (MSU-H 4150).

Testudo graeca (MSU-H 4143); (MSU-H 4152); (MSU-H 4156);

(MSU-H 4158).
Family Trionychidae

Apalone mutica (MSU-H 1442).

Apalone spinifera (MSU-H 1443); (MSU-H 2767).

Trionyx ferox (MSU-H 478); (MSU-H 2419).
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