

LIBRARY Michigan State University

This is to certify that the

dissertation entitled

INFLUENCE OF BOVINE SOMATOTROPIN ADMINISTRATION TO HOLSTEIN STEERS ON GROWTH, LIPID METABOLISM, AND CARCASS CHARACTERISTICS

presented by

Michael L. Schlegel

has been accepted towards fulfillment of the requirements for

Ph.D. degree in ___Animal Science

Date 11-30-99

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

11/00 c/CIRC/DateDue.p65-p.14

INFLUENCE OF BOVINE SOMATOTROPIN ADMINISTRATION TO HOLSTEIN STEERS ON GROWTH, LIPID METABOLISM AND CARCASS CHARACTERISTICS

Ву

Michael Lynn Schlegel

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Animal Science

1999

ABSTRACT

INFLUENCE OF BOVINE SOMATOTROPIN ADMINISTRATION TO HOLSTEIN STEERS ON GROWTH, LIPID METABOLISM AND CARCASS CHARACTERISTICS

By

Michael Lynn Schlegel

Two experiments were conducted to study the effectiveness of bovine somatotropin (bST) to alter the growth, carcass characteristics and lipid metabolism of Holstein steers. The first evaluated the effectiveness of long-term (354 d) bST administration to growing-finishing Holstein steers at the beginning, end or during the entire feeding period on lean, skeletal, and carcass measurements. One hundred and sixty-eight Holstein steer calves (185 kg) were blocked into four body weight (BW) groups and randomly allocated to initial harvest (8 steers) or four treatments (10 steers/treatment) within a block. Treatments were control, no bST; bST d 0 to 182; bST d 183 to harvest; and bST d 0 to harvest. Doses were 320 mg bST/14-d injection from d 0 to 112 and 640 mg bST1/14-d injection from d 113 to harvest. Two steers from each block were harvested on d 199 with the remaining steers harvested when block BW averaged 615 kg. The last treatment was administered 31 d before harvest. Administering bST to young, light-weight Holstein steers increased skeletal growth and reduced carcass fat content producing a leaner product. Somatotropin increased noncarcass components without increasing carcass weight. Steers receiving bST during the entire study showed the greatest effects with the majority of lipid reduction occurring during the latter part of the study. Somatotropin increased protein accretion and therefore red meat yield.

The second study evaluated the effect of bST administration to Holstein steers on measures of lipogenesis and lipolysis during the latter half of the feeding period when fat deposition was the greatest. Twenty-eight Holstein steers (460 kg) were blocked by weight and randomly assigned to an initial harvest group (8 steers), or to 116 daily treatments of control (no bST, 10 steers) or bST (100 µg bST/kg BW, 10 steers). Three perirectal adipose tissue (AT) biopsies were collected from each steer (5 to 16 d before treatment and 40 to 49, and 103 to 112 d after treatment). Lipogenesis was measured in triplicate in vitro as tritium incorporation into fatty acids, fatty acid synthase activity, and NADP-isocitrate dehydrogenase activity. Lipolysis was measured in triplicate in vitro by glycerol release from AT and in vivo by a seven-dose epinephrine challenge administered intravenously beginning on d -24, 32 and 95. It was clear that somatotropin improved the efficiency of carcass protein accretion and content, while drastically reducing carcass lipid accretion and content. The decrease in lipid accretion was a result of depressed lipogenesis through inhibiting lipogenic enzymes and enhancing lipolysis in the adipocyte.

Bovine somatotropin was effective in reducing carcass fat and increasing edible lean in both experiments. Administering bST to young, light-weight steers increased skeletal growth and noncarcass weight, but did not increase the total carcass weight and reduced the quality grade of the carcass. Somatotropin decreased lipogenesis and increased lipolysis in AT of finishing-Holstein steers in positive energy balance.

Dedicated to my parents, Kay and G. Sidni Schlegel

ACKNOWLEDGMENTS

I would like to thank members of my committee, Dr. Romsos, Dr. Doumit, Dr. Banks, and Dr. Emery for their support, ideas, and perspective to make the project and the results meaningful. I owe a great deal of gratitude to Dr. Bergen and his staff, Patty Weber, Sharon Debar, and Michelle Mater. They allowed the use of the lab, equipment, time, and expertise in finishing this project. Without their help the study could not have been completed. I would like to thank Dr. VanderHaar and Bal Sharma for assistance in analyzing IGF-I concentrations and mRNA abundance.

I would like to thank Dr. Tucker and his staff, Larry Chapin, Dr. Paula Gaynor, Dr. Christine Simmons-West for allowing the use of the lab, and assistance with the somatotropin and insulin assays. I would like to thank the personnel of the Meats Lab and the Beef Cattle Teaching and Research Center and their managers Tom Forton and Ken Metz for their assistance and to Bob Burnnet for his lab expertise. I would like to thank Dr. Yokoyama for the use of his lab and plate reader.

Special thanks go to the many fellow graduate students for their assistance in sample collection at the processing plant, blood collection and analysis. I must thank Dr. Aubrey Schroeder and Lilly Research Labs for their contribution of the somatotropin and technical support.

To the faculty and administration of Delaware Valley College, thank you for your encouragement, support and patience. To Dr. Benson for her moral support and encouragement. To Dr. Steven Rest, my major professor, thank you for your insight, assistance and encouragement. It has been 11 years since I started my

graduate programs at Michigan State, thank you for help and friendship. And finally to my parents, family, and colleagues who were very supportive and asked "Is it done yet?"

TABLE OF CONTENTS

LIST OF TABLES	ix
LIST OF FIGURES	x ii
LIST OF ABBREVIATIONS	xv
INTRODUCTION	1
CHAPTER 1: LITERATURE REVIEW Regulation of endogenous somatotropin secretion Effect of somatotropin on plasma hormones and metabolites Effect of somatotropin on feedlot performance Effect of somatotropin on skeletal growth Effect of somatotropin on the carcass Lipogenesis Lipolysis	6 13 18 20
CHAPTER 2: EFFECTS OF LONG-TERM BOVINE SOMATOT ADMINISTRATION ON GROWTH, CARCASS CHARACTERISTICS, AND TWEIGHTS IN GROWING-FINISHING HOLSTEIN STEERS	TISSUE
Abstract Introduction Materials and Methods Results Discussion Implications	44 45 56
CHAPTER 3: LONG-TERM BOVINE SOMATOTROPIN ADMINISTRATION GROWING-FINISHING HOLSTEIN STEERS DECREASED LIPOGENESI INCREASED LIPOLYSIS	IS AND
Abstract Introduction Materials and Methods Results Discussion Implications	91 92 105
CONCLUSION	135

PPENDICES
APPENDIX A: Raw data and procedures from chapter 2 (Experiment BC9002)
APPENDIX B: Raw data and procedures from chapter 3 (Experiment BC9402)
SAS program to calculate area under the curve of epinephrine challenge and to calculate a segmented curve to a plateau (R _{max} response)
APPENDIX C: Approval letters from the All-University Committee on Animal Use and Care
TERATURE CITED

LIST OF TABLES

Table 1-1. Summary of recent studies on the effect of somatotropin on beef cattle feedlot performance
Table 1-2. Summary of recent studies on the effect of somatotropin on beef cattle carcass characteristics
Table 2-1. Guaranteed analysis and ingredients of medicated-supplement starter pellet
Table 2-2. Guaranteed analysis and ingredients of pelleted supplement 48
Table 2-3. Effect of bovine somatotropin on body weight, average daily gain, daily dry matter intake and feed efficiency
Table 2-4. Effect of bovine somatotropin on hip height and daily hip height gain
Table 2-5. Effect of bovine somatotropin on intermediate-harvest metacarpal bone characteristics
Table 2-6. Effect of bovine somatotropin on final-harvest metacarpal bone characteristics
Table 2-7. Effect of bovine somatotropin on intermediate-harvest carcass characteristics
Table 2-8. Effect of bovine somatotropin on final-harvest's carcass characteristics
Table 2-9. Effect of bovine somatotropin on intermediate-harvest semitendinosus muscle and internal organ weights
Table 2-10. Effect of bovine somatotropin on final-harvest semitendinosus muscle and internal organ weights
Table 2-11. Effect of bovine somatotropin on intermediate-harvest carcass composition and tissue accretion rates
Table 2-12. Effect of bovine somatotropin on final-harvest carcass composition and tissue accretion rates
Table 2-13. Effect of treatment on carcass premium, discounts and value 88

Table 3-1. Guaranteed analysis and ingredient content of the pelleted supplement
Table 3-2. Effect of bovine somatotropin treatment on feedlot performance . 110
Table 3-3. Effect of bovine somatotropin treatment on carcass characteristics
Table 3-4. Effect of bovine somatotropin treatment on carcass composition and accretion rates
Table 3-5. Effect of bovine somatotropin on tritium incorporation into fatty acids, fatty acid synthase activity, and isocitrate dehydrogenase activity 114
Table 3-6. Effect of somatotropin treatment on basal and epinephrine-stimulated glycerol release
Table 3-7. Estimates of R _{max} and ED ₅₀ of nonesterified fatty acids area epinephrine dose-response curves
Table A-1a. Initial harvest carcass characteristics for Experiment BC9002 . 141
Table A-1b. Initial harvest carcass composition for Experiment BC9002 141
Table A-2. Record of removal of steers from Experiment BC9002 and disposal
Table A-3. Steer weight for Experiment BC9002
Table A-4a. Weekly pen dry matter intake for pens 1 to 4 for Experiment BC9002
Table A-4b. Weekly pen dry matter intake for pens 5 to 8 for Experiment BC9002
Table A-4c. Weekly pen dry matter intake for pens 9 to 12 for Experiment BC9002
Table A-4d. Weekly pen dry matter intake for pens 13 to 16 for Experiment BC9002
Table A-5. Carcass characteristics of steers from Experiment BC9002 179
Table A-6. Ninth-tenth-eleventh rib composition from Experiment BC9002 . 183
Table A-7. Organ and muscle weights from Experiment BC9002 187

Table A-8. Steer hip height for Experiment BC9002
Table A-9. Metacarpal bone characteristics for Experiment BC9002 195
Table A-10. Serum IGF-I concentrations (ng/ml) following initial and subsequent control or bST treatments, and following the last control or bST treatment for Experiment BC9002
Table A-11. Serum IGF-I concentrations following the final control or bST treatment, and liver IGF-I mRNA abundance for Experiment BC9002 203
Table A-12. Steer equations predicting carcass composition using the 9-10-11 rib section (Hankins and Howe, 1946)
Table B-1. Time line of activities for Experiment BC9402
Table B-2. Steer weights for Experiment BC9402
Table B-3. Daily dry matter intake of steers from Experiment BC9402 212
Table B-4. Carcass characteristics of steers from Experiment BC9402 213
Table B-5. Ninth-tenth-eleventh rib composition from Experiment BC9402 . 215
Table B-6. Plasma glucose concentrations (mmol/ml) of steers for Experiment BC9402
Table B-7. Plasma glycerol concentrations (μmol/ml) of steers for Experiment BC9402 217
Table B-8. Plasma nonesterified fatty acid concentrations (mEq/L) of steers for Experiment BC9402
Table B-9. Plasma insulin concentrations (ng/ml) of steers for Experiment BC9402
Table B-10. Plasma IGF-I concentrations (ng/ml) of steers for Experiment BC9402
Table B-11. Plasma bovine somatotropin concentrations (ng/ml) for steers from day

Table B-12. Tritium incorporation into fatty acids, fatty acid synthase activity NADP-isocitrate dehydrogenase activity, and enzyme assay soluble protein content for fat biopsies from Experiment BC9402
Table B-13. Basal and epinephrine-stimulated glycerol release (nmol glycero released•2h-1•100 mg tissue-1) for fat biopsies from Experiment BC9402 224
Table B-14. Nonesterified fatty acid response (MEq/L) to seven epinephrine doses (μg/kg BW) during three different weeks for Experiment BC9402
Table B-15. Plasma glycerol response (μmol/L) to a 1.6 μg epinephrine /kg BW dose during the 15th week of treatment for Experiment BC9402 240

LIST OF FIGURES

Figure 2-1. Lateral and medial measurements of sectioned metacarpals, and total cross sectional area (TCA), marrow cavity area (MCA) and bone area 52
Figure 2-2. Effect of treatment, control (o) or bST (■) on serum IGF-I concentrations after initial treatment on d 0 and subsequent treatments as indicated by arrows. ^{a,b} Means with unlike letters differ (<i>P</i> < .01)
Figure 2-3. Effect of treatment, C-C (○), C-bST (●), bST-C (□), or bST-bST (■), on serum IGF-I concentrations after final treatment 31 d prior to harvest as indicated by the arrow. ^{a,b} Means with unlike letters differ (<i>P</i> < .05) 57
Figure 2-4. Top panel -Effect of treatment on liver IGF-I mRNA abundance from Block 1 final harvest steers. Bottom panel - Serum IGF-I concentrations 7 to 28 d following the last treatment in C-C (o), C-bST (●), bST-C (□), or bST-bST (■) Block 1 steers. ^{a,b,c} Means with unlike superscripts differ ($P < .05$)
Figure 3-1. Schedule of epinephrine challenges and adipose tissue biopsies 94
Figure 3-2 -Plasma bovine somatotropin concentrations over an 11.5-h period in Holstein steers treated with either a daily injection of sodium phosphate (○) or bovine somatotropin (■). *bST steers differ from control steers (<i>P</i> < .05) 106
Figure 3-3. Plasma IGF-1 concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (O) or bovine somatotropin (■). *bST steers differ from control steers ($P < .05$). ***bST steers differ from control steers ($P < .05$)
Figure 3-4. Plasma NEFA concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (O) or bovine somatotropin (\blacksquare). ***bST steers differ from control steers ($P < .01$). ***bST steers differ from control steers ($P < .01$)
Figure 3-5. Plasma glycerol concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (○) or bovine somatotropin (■). ***bST steers differ from control steers ($P < .01$). ***bST steers differ from control steers ($P < .01$)
Figure 3-6. Plasma glucose concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (O) or bovine somatotropin (E). *bST steers differ from control steers ($P < .05$). **bST steers differ from control steers ($P < .05$)

Figure 3-7. Plasma insulin concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare). *bST steers differ from control steers ($P < .05$). **bST steers differ from control steers ($P < .01$). ***bST steers differ from control steers ($P < .01$)
Figure 3-8. Response in plasma concentrations of NEFA to varying doses of epinephrine during 3 weeks prior to treatment (panel a) and after 6 (panel b) and 15 weeks (panel c) of control (○) and bST (■) treatment. Analyses of individual animal curves are in Table 3-7
Figure 3-9. Response in plasma glycerol concentrations to a 1.6 μ g/kg BW epinephrine infusion during the 15th week of treatment with either control (O) or bST (\blacksquare). Area under the response curve (0 to 20 min. after infusion) was calculated using data points -30 to 0 and 120 to 130 min. relative to infusion as the base line. Control area under the curve = 604 \pm 100 μ M•min and bST area under the curve = 648 \pm 94 μ M•min

LIST OF ABBREVIATIONS

ACC	anabel Ca A carbassilana
	acetyl CoA carboxylase
	acetyl CoA synthase
	average daily gain
AT	adipose tissue
AUF	Animal Use Form
	body weight
BAR	beta-adrenergic receptor
	bovine somatotropin
	Bovine Respiratory Syncytial Virus
	Bovine Viral Diarrhea
	control
	degree Celsius
cc	cubic centimeters
cDNA	chromosomal deoxyribonucleic acid
cm	centimeter
	square centimeters
	Coenzyme A
	crude protein
	counts per minute
ار الاستان ال	day(s)
	diethyl stilbestrol
	dry matter
DMI	daily dry matter intake
	dressing percent
DPM	disintegrations per minute
	efficiency of detection
ED ₅₀	one half of maximum response
EDTA	ethylenediaminetetraacetic acid
	ether-extractable lipid
	fatty acids
	fatty acid synthase
	gram
	inhibitory G protein
	stimulatory G protein
	guanosine diphosphate
GLM	general linear models
GHRF	growth hormone releasing factor
GDP	guanosine diphosphate
GTP	guanosine triphosphate
h	
	· · · · · · · · · · · · · · · · · · ·
	hot carcass weight
	not carcass weight

IBR ICD IGF-I i.m. INAD IU kg km KPH	hormone-sensitive lipase Infectious Bovine Rhinotracheitis NADP - isocitrate dehydrogenase insulin-like growth factor- I intramuscular(ly) Investigational New Animal Drug International Units kilogram kilometer kidney-pelvic-heart fat Krebs-Ringer-bicarbonate buffer
	liter pound(s)
	pound(s)
_	square meters
	square meters
	marrow cavity area of metacarpal bone
	microcurie
	metabolizable energy
	milliequivalent
•	microgram
. •	milligram
	minute
	millijoules
μl	microliter
ml	milliliter
•	micromolar
	millimeter
	millimolar
	messenger ribonucleic acid
	nicotinamide dinucleotide-phosphate
	nonesterified fatty acid
	non-carcass weight
•	nanogram
	nanometer
	ovine somatotropin
	probability
	egative logarithm of the hydrogen ion activity
	Parainfluenza 3-Virus
	phosphotidylinositol phospholipase C
	Priospriotidylinositor priospriotipase C
	porcine somatotropin
	recombinant bovine somatotropin
	ribeye area
	and and an analysis and an ana

RF																														Re	ect	us	fe	mo	ris	j
RIA .																												ra	di	oir	nn	nui	าดส	188	ay	ŗ
R _{max}																												ma	axi	m	un	ı re	esp	on	ıse	ļ
RNA																																				
s																																	se	co	nd	ļ
SA																													. \$	sp	ec	ific	: a	ctiv	/ity	,
s.c																																				
SE .		 																												st	ar	nda	ırd	er	ror	•
SED		 																			S	ta	an	da	are	d (eri	ror	0	f tl	ne	di	ffei	er	ıce	ļ
SEM		 																					9	ita	n	da	ırd	i e	rrc	r	of	the	m	ea	ıns	į
SRIF		 					9	30	m	a	to	S	ta	tir	1 ((s	or	na	at	ot	rc	p	ir	r	ele	ea	si	ng	ir	ıhi	bit	or	y fa	act	or))
SS																•						•						_								
ST																															•		•			
STM																																				
t																																				
TB																																				
TBA																																•				
TCA																																				
wt																																•				

INTRODUCTION

After nearly 25 years (1974 to 1995) of selecting for lean, growth-type cattle, carcass characteristics have changed (NCBA, 1995). Carcass weight (HCW) and ribeye area (REA) have increased 10 and 8.5%, respectively, with backfat and kidney-pelvic heart (KPH) fat decreasing 24 and 30%, respectively (NCBA, 1995). With these changes, yield grades have improved but marbling score and the number of carcasses grading USDA choice or higher have decreased. It has been estimated that it costs the beef industry \$2.4 billion per year to put excess fat on cattle and another \$2 billion per year for the retail food industry to trim the excess fat from beef (H.D. Ritchie, personal communication). Carcass backfat has decreased from 1.6 cm (.62 in) to 1.2 cm (.47 in; NCBA, 1995). To meet consumer preference most packers and retailers trim carcasses to a fat trim of .64 cm (.25 in) or less (H.D. Ritchie, personal communication). Therefore, there is a need for leaner carcasses.

Second generation growth promotants (e.g., zeranol, and estradiol) have been shown to increase (P < .05) ADG (9.8%), HCW (7.5%), and REA (6.8%) over non-implanted Holstein steers (Apple et al., 1991). Trenbolone acetate (TBA), a synthetic androgen with 50 times the potency of testosterone (Preston, 1987), does not increase ADG to the same extent as the estrogenic-growth promotants. The benefit of TBA is in combination with the estrogenic implants and increases (P < .05) the ADG of Holstein steers up to 14.8%, HCW by 9.6% and REA by 16.5% over non-implanted steers (Apple et al., 1991).

Reducing the waste fat of beef carcasses is a major industry goal.

Estrogenic implants or the combination of estrogen and TBA have increased growth of Holstein steers, but the study by Apple et al. (1991) demonstrated no significant effect on carcass fat thickness, KPH fat, or marbling score (Apple et al., 1991). Although in crossbred beef steers which received an estradiol benzoate-progesterone implant, KPH fat, marbling score and the number of steers grading choice or higher decreased compared to non-implanted control steers (Preston et al., 1995).

Recently, interest in another growth promotant, somatotropin (ST), to alter growth and carcass composition has increased. The primary goal has been to increase circulating serum levels of ST to increase milk production, increase muscle mass or increase the protein:fat ratio of the final product (Etherton and Kensinger, 1984; Etherton and Smith, 1991). When exogenous ST was administered to pigs, ADG increased 10 to 20%, feed efficiency improved 15 to 30%, lipid accretion decreased 20 to 80% with a 20 to 50% increase in protein deposition (Etherton and Smith, 1991). Responses varied in cattle administered ST.

In cattle, ADG may increase 6 to 24% (McBride and Moseley, 1991). The most pronounced effect of ST treatment is the decrease in carcass fat (McBride and Moseley, 1991). Moseley et al. (1992) showed a linear decrease in carcass fat of steers given increasing levels of ST administration (0, 33, 100 300 µg/kg BW per day). The most dramatic decease in carcass fat (55% less than control steers) was from steers treated daily with 300 µg ST/kg BW. Early et al. (1990a) did not observe a decrease in backfat thickness but the lean to fat ratio was increased.

Even though bST increases growth and decreases carcass fat in cattle, Early

et al. (1990a) found that bST had no effect on HCW, but observed an increase (P < .05) in non-carcass weight and lower (P < .05) dressing percent (DP) as compared to control steers. The bST steers had 19.9% greater (P < .10) digesta weight. Furthermore, 75% of the non-carcass weight was due to greater gut fill which accounted for 64% of the greater live weight. Early et al. (1990a) hypothesized that by giving younger cattle ST over a longer period might increase not only non-carcass tissue, but the more economically important, carcass tissue.

A review article by Etherton et al. (1993), proposed that the decrease in adipose tissue growth from pST-treated pigs was the result of a decrease in lipogenesis rather than an increase in lipolysis. The review further stated that "metabolic effects of ST in adipose tissue of cattle and pigs are a function of energy balance . . . (and when) . . . animals are in positive energy balance, ST decreases lipid synthesis whereas the effects of lipolysis are modest at best."

Both Mikel et al. (1993) and Dunshea et al. (1992a) demonstrated increased non-esterified fatty acid (NEFA) concentrations in plasma of growing pigs administered ST. Evidence exists that plasma NEFA concentrations are elevated in ST treated animals, thus indicating an increase in lipolytic capacity (Eisemann et al., 1986). In a 266 d study, beef heifers treated with ST had plasma NEFA concentrations 26 to 46% greater than control heifers (Schwarz et al., 1993). A greater increase in lipolytic capacity of adipose tissue of bST-treated steers was shown by Boisclair et al. (1989) and Peters (1986), who demonstrated a 43 and 86% increase in NEFA response to an epinephrine challenge following 15 and 28 d of ST treatment, respectively. Few studies have been completed investigating

the effect of long-term bST administration on lipolysis in finishing steers.

With the increased use of biotechnology, researchers are able to elucidate and define the mechanisms of cell action. With an understanding of the basic mechanisms of cellular lipid metabolism, new methods of modulating this system can be evaluated. Somatotropin modulates lipid metabolism by decreasing carcass fat and lipid accretion. Evidence suggests that ST uncouples insulin from its secondary messengers (Roupas, et al., 1991), producing insulin resistance (Walton et al., 1987), therefore, reducing lipogenesis and enhancing lipolysis.

The first series of objectives were to test a hypothesis by Early et al. (1990a), that administering ST to younger animals for a longer period might increase growth of carcass as well as noncarcass tissue. The second set of objectives were to further elucidate the role of ST in modulating lipid metabolism of the growing-finishing Holstein steer.

Therefore, the objectives of this dissertation were:

- 1) To evaluate the effectiveness of long-term ST administration to growing-finishing Holstein steers at the beginning, end or during the entire feeding period on:
 - a) feedlot performance
 - b) skeletal growth
 - lean and adipose tissue accretion and body composition
 - d) carcass trait characteristics
 - e) internal organ growth
 - f) serum IGF-1 concentration
 - g) and, liver IGF-1 mRNA abundance

- 2) To determine the effect of long-term ST administration to finishing Holstein steers on:
 - a) lipogenesis as measured by in vitro tritium incorporation into fatty acids, fatty acid synthase activity and isocitrate dehydrogenase activity
 - b) lipolysis as measured by in vitro basal and epinephrine stimulated glycerol release into the media, and by in vivo NEFA and glycerol dose response to epinephrine challenges
 - c) and, changes in lipogenesis and lipolysis during the finishing period

Chapter one will review the current literature regarding the use of bovine somatotropin to improve growth, reduce carcass lipid content and modulate lipid metabolism. Chapter two will outline the methodology, results and discussion of the experiment which addresses objective one. Objective two will be discussed in chapter 3, and both experiments will be reviewed in the conclusion. Raw data, detailed methodology, and animal use approval letters are contained in the appendices.

Chapter 1

LITERATURE REVIEW

Regulation of endogenous somatotropin secretion

Somatotropin (ST) is a single polypeptide chain of 191 amino acids (Kopchick and Cioffi, 1991) stored and secreted by acidophile cells of the anterior pituitary gland (Bennet and Whitehead, 1983). Regulation of ST is under both positive and negative control as well as feedback inhibition. The hypothalamus produces a ST releasing factor (growth hormone releasing factor, GHRF) and an inhibitor of ST release (somatostatin, SRIF). Growth hormone releasing factor and SRIF are neurally regulated by serotonin, dopamine and catecholamines. The hypothalamus is under negative feedback control by ST and other factors of this Plouzek and Trenkle (1991a) determined that overall plasma ST system. decreases with age (5 - 15 months) in beef cattle. This was due to a decrease in ST baseline, amplitude of secretory periods, the number of ST spikes, and the amplitude of ST spikes. They further determined that the reason ST decreases with age may be due to decreased responsiveness to GHRF. Additionally, Plouzek and Trenkle (1991a) found that bulls have greater overall plasma ST concentrations, greater baseline concentrations, greater amplitude of secretory periods, and greater amplitude of ST spikes than steers. The number of secretory periods and spikes in a 12-h period were similar between bulls and steers (Plouzek and Trenkle, 1991a). This may explain, in part, why bulls gain faster and are leaner than steers. Unlike humans, plasma ST concentrations do not increase during puberty in bulls, but decreases from birth to maturity (Plouzek and Trenkle, 1991a; McAndrews et al., 1993).

Somatotropin acts directly through binding receptors on precursor bone, muscle, and adipose cells causing their proliferation, or indirectly by binding hepatocytes causing production and release of insulin-like growth factor-I (IGF-I) which acts on peripheral tissue to stimulate growth (Kopchick and Cioffi, 1991)

Although ST plays a major role in partitioning nutrients for support of physiological and developmental processes (Bauman et al., 1982), many functions are indirect and are medicated by IGF-I (Campion and Novakofski, 1990). Even though Plouzek and Trenkle (1991a) demonstrated a decrease in plasma ST concentration with age in beef cattle, plasma IGF-I concentrations increased more than three-fold in bulls and steers from 5 to 12 mo of age (Plouzek and Trenkle, 1991b). Additionally, bulls had greater plasma IGF-I concentrations than steers after 5 mo of age. Plouzek and Trenkle (1991b) suggest that IGF-I in cattle appears to be controlled by many regulator hormones including ST along with the sex hormones, insulin and thyroid hormones.

Effect of exogenous somatotropin on plasma hormones and metabolites.

Somatotropin. Boisclair et al. (1994) demonstrated that within 1 h after exogenous bovine ST (bST) administration (29.2 IU bST/d), plasma bST increased to its peak above the control and then decreased in the remaining 12 h. Eisemann et al. (1986a) and Enright et al. (1990) saw plasma bST increase to its peak within 2 h after exogenous administration with 40 µg bST/kg BW and 120 µg bST/kg BW, respectively.

Although, mean and baseline plasma bST concentrations increased with bST administration, Enright et al. (1990) determined that the number and amplitude of endogenous bST pulses decreased. Roeder et al. (1994) observed over a twofold increase in serum bST baseline with administering 160 mg bST/wk, and observed a decrease in peak amplitude and a trend towards a decrease in the frequency of bST spikes. The decrease in frequency of bST spikes and amplitudes observed by Roeder et al. (1994) were not evident in steers receiving bST in a study by Moseley et al. (1982). Moseley et al. (1982) did observe an increase in baseline serum bST concentration and an increase in the number of bST spikes, but amplitude of the spikes was not changed. One reason for the discrepancy maybe in the mode of administration. Moseley et al. (1982) evaluated three patterns of administration; infusion, pulse (six pulses per day), or a combination. When all bST patterns were compared to the control, the number of spikes were increased (7.5 vs. 11.2 for the control and bST treatment, respectively), but only the pulse method increased the number of spikes per day as compared with infusion (13.3 vs. 9.8 spikes per 24 h, respectively) and the combination was intermediate (10.4 spikes per 24 h).

Preston et al. (1995) demonstrated a quadratic response in serum bST concentration with exogenous bST administration of 0, 80, and 160 mg bST/wk. But bST concentrations were lower for steers receiving bST than control steers. This could be explained by differences in the procedures utilized. Blood samples were collected prior to the weekly bST implant, therefore, blood was collected when the implant was depleted and combined with the fact that exogenous bST reduces

endogenous secretions, could explain why bST-treated animals had reduced serum bST concentrations.

Insulin-like growth factor-I. Previous research (Enright et al., 1990; Dalke et al., 1992; Moseley et al., 1992; Boisclair et al., 1994; Roeder et al., 1994; Preston et al., 1995) has demonstrated that bST administration increased blood IGF-I concentrations 13 to 150% in cattle. In growing lambs, plasma IGF-I concentration increased after one week of treatment and increased three-fold after ten weeks of ST administration (Pell et al., 1990). Both Dalke et al. (1992) and Moseley et al. (1992) observed linear increases in serum IGF-I concentration with increasing doses of bST (0 to 160 mg bST/wk and 0 to 300 µg bST/kg BW, respectively).

The increase in serum IGF-I concentrations occurs rapidly after bST administration. Roeder et al. (1994) observed a 7.8% increase in serum IGF-I concentration 8 h after a 160 mg/wk dose was administered to steers and the IGF-I concentration continued to increase to 35.8% over controls at 32 h post-administration, with the elevated concentrations maintained for 88 h after the initial implantation of bST.

The liver is the main source of IGF-I in the blood (Pell, 1997). Grant et al. (1991), Coleman et al. (1994) and Ramsay et al. (1995) demonstrated a 100 to 300% increase in liver IGF-I mRNA with ST administration to pigs. Mathews et al. (1986) demonstrated an increase in liver mRNA within 2.5 h after mice were injected intraperitoneally with human ST. The increase in IGF-I mRNA abundance is transient. In both the liver (Mathews et al., 1986) and gastrocnemius muscle (Isgaard et al., 1989), IGF-I mRNA abundance decreased after reaching its peak

within 12 h after a single ST injection in mice. Ramsay et al. (1995) demonstrated in pST-treated pigs, that IGF-I mRNA quantity increased 4 h after a single injection of pST, remained elevated for 12 h and began to decrease by 20 h after treatment. Grant et al. (1991) showed a 270 to 300% increase in liver IGF-I mRNA in pigs 24 h following the last pST injection of a 24-d treatment period.

Insulin. Somatotropin induced increase in plasma insulin has been observed in cattle (60 and 114%; Eisemann et al., 1986a; Boisclair et al., 1994, respectively), sheep (81 and 150%; Johnsson et al., 1985; Pell et al., 1990; respectively), and pigs (502 and 514%; Dunshea et al., 1992a; Hansen et al., 1997b; respectively). Schwarz et al. (1993) demonstrated a ST-dose-dependent increase in plasma insulin concentration of 15 to 84% and 37 to 118% in heifers with doses of 62 and 126 µg ST/kg BW, respectively. The drastic increase observed in pigs, described above, occurred 7 (Dunshea et al., 1992a) and 28 d (Hansen et al., 1997b) following the start of pST treatment. There is evidence that ST decreased insulin sensitivity. Hart et al. (1984) observed a reduction in the insulin-induced decrease of plasma glucose during an insulin tolerance test and Roupas et al. (1991) suggested that insulin uncouples from its second messengers.

Nonesterified fatty acids and glycerol. Eisemann et al. (1986a) observed a chronic elevation in plasma nonesterified fatty acids (NEFA) in growing beef heifers with bST administration, but Enright et al. (1990) and Peters (1986) observed no increase in plasma NEFA of growing steers. Pell et al. (1986) demonstrated plasma NEFA levels were unaffected by ST administration to growing lambs. Dunshea et al. (1992a) demonstrated an increase in plasma NEFA of barrows within 7 h of the

first pST injection and the response increased on the second and seventh day of treatment.

It has been suggested by Boisclair et al. (1997) that the increase in plasma NEFA concentration with bST treatment of animals in positive energy balance is a result of mild disturbances or stress during blood collection. This was suggested because bST causes an increase in β-adrenergic receptor (βAR) number in rat adipocyte membranes (Watt et al., 1990), therefore, these animals respond to catecholamines to a greater extent than non-treated animals. Houseknecht et al. (1995) determined that bST increased the maximum binding of a βAR agonist to the βAR without a change in the binding affinity. Boisclair et al. (1997) cautions that proper protocol is required to prevent inadvertent responses which may suggest lipolytic activity. Eisemann et al. (1986a) demonstrated both an increase in irreversible loss and oxidation of NEFA with bST treatment in heifers. Their data further suggested that NEFA are used as an energy source and perhaps this spares oxidation of other metabolites (e.g. amino acids) during bST treatment.

Plasma glycerol concentrations were increased 31% in sheep (Doris et al., 1996) and 79% in barrows (Dunshea et al., 1992a) after receiving ST. This may be the result of triacylglycerol breakdown as suggested by Pell et al. (1990). Sechen et al. (1990) stated that because adipose tissue has very low glycerol kinase activity, alteration in plasma glycerol concentration relates to lipolysis whereas changes in NEFA concentration reflects mobilization (i.e., the difference between lipolysis and NEFA re-esterification). A consistent increase in blood NEFA and glycerol concentrations has been shown to occur in animals that are in

negative energy balance. Plasma NEFA and glycerol concentrations increased 743% and 46%, respectively, in steers under a prolonged fast (Rule et al., 1985). Sechen et al. (1990) saw a 372% increase in plasma NEFA and 119% increase in plasma glycerol concentration in bST-treated lactating dairy cattle. Additionally, Peters et al. (1986) observed a 63% increase in basal-plasma NEFA with feed restriction.

Glucose. Plasma glucose was increased 5 and 11%, respectively, in bSTtreated growing cattle (Boisclair et al., 1994) and in ST-treated lambs (Pell et al., 1990). Dunshea et al. (1992a) observed an increase in plasma glucose within 2 h after an initial injection of porcine ST (pST) to barrows. Early et al. (1990a) and Enright et al. (1990) in steers and Sechen et al. (1990) in lactating dairy cattle, did not observe an increase in plasma glucose with ST administration. Pell et al. (1990) stated that the increase in plasma glucose could be due to an increase rate of gluconeogenesis, or a decrease in peripheral glucose utilization. Boisclair et al. (1994) demonstrated a decrease in hindlimb glucose uptake in growing steers administered bST. Additionally, Hart et al. (1984) demonstrated that bST had diabetogenic activity and reduced insulin's depression of plasma glucose during an insulin tolerance test and suggested that bST decreased glucose uptake by body tissues as seen by Dunshea et al. (1992c) in pST-treated pigs. Pell et al. (1990) suggests they have unpublished data which demonstrates an increase in aluconeogenic potential by hepatocytes isolated from ST-treated lambs and therefore, glucose production may be increased, but would require an adequate supply of gluconeogenic precursors, glycerol being one.

Effect of somatotropin on feedlot performance

Growth. Additional evidence since the study by Evans and Simpson (1931) has shown a growth response in rats due to chronic ST administration. Administering ST to farm animals is of interest because as animals grow older, the proportion of fat in weight gain increases and there is a need to produce meat with less fat (Etherton and Smith, 1991). When administered exogenously, ST increased ADG 10 to 20% in pigs (Etherton and Smith, 1991) and 19 to 24% in sheep (Wise et al., 1988; and Beermann et al., 1990a, respectively). Excellent tabular summaries of the effect of ST on beef cattle feedlot performance can be found in McBride and Moseley (1991) and Moseley et al. (1992) which summarize data from heifers, steers, and bulls from 1959 to 1990. The following review will primarily focus on the effects ST has on steers. A summary of recent research on the affects of ST on beef cattle feedlot performance is presented in Table 1-1. The range in growth (ADG, kg) response to ST as compared to controls varies from -6.3 to +26%. Three studies have looked at ST dose response on feedlot performance (Dalke et al., 1992; Moseley et al, 1992; and Preston et al., 1995). Moseley et al. (1992) demonstrated ST increased ADG in crossbred steers up to a daily dose of 33 µg ST/kg BW, and decreased ADG with doses of 66 to 300 µg ST/kg BW with the 300 µg dose having the greatest reduction in gain. Observations by Dalke et al. (1992) and Preston et al. (1995) showed similar results in bST-treated cattle. In sheep, ovine ST (oST) increase lamb weight gain 19 to 24% (Beermann et al., 1990b; Wise et al., 1988), although early work by Muir et al. (1983) did not show

Table 1-1. Summary of recent studies on the effect of somatotropin on beef cattle feedlot performance

Reference (animals used)	Initial wt., kg	Daily ST dose, µg/kg BW	Duration of treatment, d	ADG, kg ^a	DMI, kg ^a	Feed efficiency, g/kg ^a
Dalke et al., 1992 ^b (steers)	378	0	28	1.70	10.5 °	161 ^c
	10	12	28	-1.2	-5.7	+4.9
	0	24	28	+1.1	-4.0	+6.0
	0	49	28	+5.3	-7.0	+13.8
Moseley et al., 1992, Exp. 1 (steers)	392	0	131	1.14	6.9 ^c	165 ^d
	0	33	121	+7.9 [¶]	-5.8	+13.7 [¶]
	0	100	131	-7.0 [¶]	-13.0 [¶]	+7.3
	+.01 [¶]	300	151 [¶]	-37.7 ¶	-17.4 [¶]	-26.2 [¶]
Moseley et al., 1992, Exp. 2 (steers)	417	0	132	1.10 ^d	8.7 ^c	126 ^d
	01	8.25	133	01	-6.9 [†]	+5.9
	0	16.5	121	+9.0	-3.4	+14.4 [†]
	0	33	121	+10.8 [†]	-5.7 [†]	+17.8 [†]
	0	66	135	-3.6	-12.6 [†]	+10.7 †
Preston et al., 1995 ^e (steers)	379	0	84/119 ^f	1.44 ^c	8.1 ^c	177 ^c
	01	25	84/119	+3.5	-3.7	+6.8
	0	51	84/119	+4.9	-4.9	+10.2
Rathmacher et al., 1996 ^g (steers)	357	0	140	1.44	8.26	171
	+1.4	49.6	140	6	+2.7	-2.9
Rumsey et al., 1996 (steers)	182	0	56	1.37	5.40	249
	+.01	100	56	+24.4**	+2.3 †	+23.2**
Schwarz et al., 1993 (heifers)	286	0	257	.91	7.40	122.8 ^h
	0	62	239	+8.5 [†]	-3.9	+12.9
	+.73	124	232	10.6 [†]	+.5	+10.0

Table 1-1. (cont'd)

*Control values are given in actual units, bST doses are percent change from controls; a difference does not indicate a statistical significance.

bST dose was given as 40, 80, and 160 mg/wk.

^cSignificant linear response (*P* < .10) with increasing bST dose.

^dSignificant quadratic response (P < .10) with increasing bST dose.

*A 2 x 3 factorial experiment was conducted; with or without an estradiol benzoate progesterone-trenbolone acetate and bST doses of 0, 80, 160 mg/wk.

^fDuration of treatment was determined by initial body-weight block.

 ^{9}A 2 x 2 factorial experiment was conducted; with or without 120 mg trenbolone acetate and 24 mg estradiol-17 β and with or without 160 mg bST/wk.

^hEnergy consumption, MJ of ME/kg of gain was decreased (P < .05) 11.7% with treatment of 62 µg ST/kg BW .

[¶]Different from control (P < .20).

[†]Different from control (*P* < .10).

**Different from control (P < .01).

an improvement in ADG of oST-treated lambs.

Dry matter intake. In the reviews by McBride and Moseley (1991) and Moseley et al. (1992), the effect of ST on dry matter intake (DMI) varies greatly. Swine treated with ST show a marked depression in DMI (Bonneau, 1991). Based on the review by McBride and Moseley (1991) and Table 1-1, when ST is given to cattle with initial weights less than 260 kg, DMI is increased and when BW is over 260 kg, DMI is decreased. There are exceptions, for example, Fabry et al. (1987) and Rathmacher et al. (1996) demonstrated a 1.5% and 2.7% increase in DMI in 439 kg heifers and 357 kg steers, respectively. Schwarz et al. (1993) did not observe an effect on DMI of heifers administered ST with a beginning weight of 286 kg. Groenewegen et al. (1990) observed a 24% increase in DMI of ST-treated bull calves and also noted an increase in digestive tract volume. The reticulo-rumen. small intestine and large intestine weights were 24, 28 and 19% greater, respectively, in ST-treated bull calves (45 kg BW, Groenewegen et al., 1990). This is also supported by Early et al. (1990b) who observed a 2% increase in DMI with ST treatment in steers (231 kg BW) and an increase in gut fill.

In the three dose response studies summarized in Table 1-1, DMI decreased linearly with increasing daily doses of bST from 3.4 to 17.4%. Cattle in those studies weighed greater than 370 kg. One plausible reason for the discrepancy in ruminants is suggested by the quote from McBride and Moseley (1991).

"A hypothesis to explain this depression in DMI, might be that the abundance of nutrients from mobilized fat stores cannot be utilized by growing tissues at a rate fast enough to reduce circulating nutrient concentrations, therefore that animal responds by reducing DMI and bringing body to homeorhesis. On the other hand, in young growing cattle and sheep treated with somatotropin, it would be expected that the protein and energy requirement

cannot be met by mobilization of energy reserves, therefore DMI may be increased to help support the stimulated metabolic response to somatotropin."

Feed Efficiency (gain/feed). In cattle and sheep, the most consistent ST response is improved feed efficiency (McBride and Moseley, 1991). Studies by Enright et al. (1990) demonstrated a 4% increase in feed efficiency over controls, although in the same study steers receiving an estradiol implant exhibited a 8% increase in feed efficiency. Moseley et al. (1992) reported an improvement in feed efficiency of 14 and 7.3% when daily treatments of 33 and 100 μg bST/kg BW were administered to steers, respectively. When the daily bST dosage was increased to 300 μg bST/kg BW, feed efficiency was reduced 26.2% as compared to control steers (Table 1-1). The other two dose response studies, Dalke et al. (1992) and Preston et al. (1996) demonstrated similar results. The effect of ST treatment on feed efficiency in sheep is consistent with that of cattle. Feed efficiency was shown to increase 8 to 24% in oST-treated lambs (Muir et al., 1983; Wise et al., 1988; Beermann et al., 1990b).

The above findings are supported by studies by Early et al. (1990a) in which ST-treated steers exhibited a 12.2% increase in the efficiency of metabolizable energy (ME) intake used for gain as compared to control steers. Early et al. (1990a) showed that 75% of the noncarcass weight (NCW) of bST-treated steers was due to greater gut fill, while rumen and intestine weights were numerically 4.8% greater, than control steers. From this data, one can infer that bST-treated animals may have a greater capacity to digest and absorb nutrients. This concept is supported by a study by Moseley et al. (1982) which showed a 5% increase in dry

matter digestibility and a 7% increase in nitrogen digestibility in bST-treated steers. These findings are corroborated by Lapierre et al. (1992) which demonstrated a 2% increase in dry matter (DM), energy, nitrogen, and organic matter digestibility with GHRF administration. Wray-Cohen et al. (1991) found a 3 to 4% increase in apparent nitrogen digestibility in pST-treated pigs. These researchers (Wray-Cohen et al., 1991) hypothesized that the increase was due to decreased feed intake. In other studies DM digestibility of bST-treated steers (Eisemann et al., 1986b) and N digestibility of ST-treated lambs (Pell et al., 1990) were similar to control animals.

Effect of somatotropin on skeletal growth

Somatotropin is considered to be the main regulator of long-bone growth (Scheven and Hamilton, 1991) and has direct effects on cartilage and indirect effects on cartilage through IGF-I (Slootweg, 1993). Both ST and IGF-I increased fetal and neonatal longitudinal metatarsal bone growth in vitro, with the response arrested with the addition of IGF-I monoclonal antibody (Scheven and Hamilton, 1991). Because anti-IGF-I antibody decreased bone growth, this suggests that ST may work through locally produced IGF-I (Scheven and Hamilton, 1991). Martinez et al. (1991) demonstrated that systemic injection of ST caused an increase in bone-protein synthesis in the tibia of normal female rats without an increase in IGF-I concentrations, again, suggesting that the actions of ST have a direct effect on bone or mediated by autocrine or paracrine mechanism, independently.

Early et al. (1990b) demonstrated that ST administration to steers increased

humerus length 4.5% and rate of growth in length 45%, and femur circumference growth by 18.7%. In steers which were treated with bST from 231 to 384 kg, the increase in bone growth with bST is possible because the proximal epiphysis of cattle ossifies when cattle are 18 to 24 months of age (Emara, 1937, Sisson, 1953). Johnsson et al. (1985) observed an increase in bone circumference of the femur and humerus of ST-treated lambs, and Butler-Hogg and Johnsson (1987) demonstrated an increase in bone weight in ST-treated lambs.

Although ST stimulates growth when given exogenously, research by Greiner (1993) showed that endogenous bST and IGF-I concentrations may not reflect differences in height. For example, unselected Hereford steers had an average frame score of 1.6 which was significantly lower than the average frame score of 5.3 for Herefords selected for growth. Although frame scores were different, plasma bST and IGF-I concentrations were greater in the unselected Herefords (3.70 and 880.5 ng/ml, respectively) than in Herefords selected for growth (3.31 and 795.3 ng/ml, respectively).

In human medicine, the focus of ST treatment is to prevent osteoporosis in the elderly (Slootweg, 1993). Johnsson et al. (1985) did not find a change in bone density of ST-treated lambs. Hardt et al. (1995) in a study evaluating the relationship between estrogenic implants, ST, IGF-I and skeletal characteristics did observe an increase in circulating ST concentrations with implantation of estradiol-benzoate progesterone and tended to see an increase in the breaking load of metacarpals of implanted steers which suggest an increase bone density. Hardt et al. (1995) also observed a decrease in metacarpal length with the estrogenic

implant due to the fact the estrogens inhibit long bone growth.

Effect of somatotropin on the carcass

Carcass Characteristics. A review of recent studies on the effect of ST administration on beef cattle carcass characteristics is summarized in Table 1-2. In the two studies by Moseley et al. (1992), hot carcass weight (HCW) decreased with increasing ST doses. This effect was evident in studies by Dalke et al. (1992) and Preston et al. (1995). Conversely, HCW increased in the study by Rumsey et al. (1996). Carcass weight was increased 7.4% in prepubertal heifers given ST for 15 wk in a study by Vestergaard et al. (1995), but not in an earlier study (Vestergaard et al., 1993). The difference in the response may be due to dose, Moseley et al. (1992) used the highest doses and Rumsey et al. (1995) used the lightest-weight cattle. In the summary by McBride and Moseley (1991), research demonstrated there was a positive response in carcass tissue accretion with ST administration, although, not necessarily statistically significant. There was also an increase in weights of non-carcass tissues (McBride and Moseley, 1991). Early et al. (1990a) and Johnsson et al. (1985) observed significant increases in noncarcass weight (NCW) in ST-treated steers and lambs, respectively.

Early et al. (1990b) attributed 75% of the increase in NCW to an increase weight of the gastro-intestinal tract. Early et al. (1990a) theorized that by administering bST to younger, light-weight cattle, the carcass component could be increased to a greater extent than the non-carcass components. If final weight does not change, but HCW decreases and NCW increases, changes in dressing

Table 1-2. Summary of recent studies on the effect of somatotropin on beef cattle carcass characteristics ^a

Reference	Daily ST dose, µg/kg BW	HCW, kg ^b	Dressing percent ^B	Back fat, mm ^b	Ribeye area cm ^{2,b}	Marbling score ^{b,c}	Yield grade ^b
Dalke, et al., 1992 ^d	0	331	60.1	14.0 °	80.6	510°	3.2 °
	12	0	+1.2	-2.1	+3.6	-3.9	-9.4
	24	+1.5	+.2	-1.4	+2.5	-9.8	-6.3
	49	+1.8	+.2	-19.3	+4.1	-13.7	-15.6
Moseley et al., 1992, Exp. 1	0	334 °	62.7 ^e	19.4 ^{e,f}	52.7 ^f	NG ^g	NG
	33	-2.1 [¶]	-2.2 [¶]	-9.3 [¶]	+7.4 [¶]	NG	NG
	100	-2.7 [¶]	-2.2 [¶]	-28.4 [¶]	+7.2 [¶]	NG	NG
	300	-9.0 ¶	-6.4 [¶]	-62.4 [¶]	+6.6 [¶]	NG	NG
Moseley et	0	356 °	63.2 °	23.2 °	71.8 ^{e,f}	NG	NG
al., 1992, Exp. 2	8.25	-1.1 [†]	9 [†]	-6.0 [†]	+4.1 [†]	NG	NG
·	16.5	-1.4 [†]	-1.1 [†]	-6.5 [†]	+7.8 [†]	NG	NG
	33	8 [†]	9 [†]	-4.7 [†]	+8.8†	NG	NG
	66	-3.1 [†]	-2.1 [†]	-22.8 [†]	+7.0 [†]	NG	NG
Preston et al., 1995 ^h	0	329	63.1	11.2°	86.1	490 °	2.4 °
	25	+.9	+3.2	-8.0	+2.7	-4.1	-8.3
	51	+.6	5	-15.2	+1.7	-6.1	-12.5
Rathmacher et al., 1996 i	0	353	62.5	6.6	83.5	NG	2.5
	49.5	4	0	-17.3	-1.9	NG	-4.0
Rumsey et al., 1996	0	147	NG	NG	NG	NG	NG
	100	+5.5 [†]	NG	NG	NG	NG	NG
Schwarz et al., 1993	0	287	57.7	NG	NG	NG	NG
	62	+1.8	+1.2	NG	NG	NG	NG
	124	+.7	+.7	NG	NG	NG	NG

Table 1-2. (cont'd)

*Duration of dose and initial body weight is presented in Table 1-1.

^bControl values are given in actual units, bST doses are percent. change from controls; a difference does not indicate a statistical significance.

^c400 = slight, 500 = small, 600 = modest.

^dbST dose was given as 40, 80, and 160 mg/wk.

• Significant linear response (*P* < .10) with increasing bST dose.

^f Significant quadratic response (*P* < .10) with increasing bST dose.

⁹Not given in tabular form or not determined.

^hA 2 x 3 factorial experiment was conducted, with or without an estradiol benzoate progesterone-trenbolone acetate and bST doses of 0, 80, 160 mg/wk.

ⁱA 2 x 2 factorial experiment was conducted; with or without 120 mg trenbolone acetate and 24 mg estradiol-17β and with or without 160 mg bST/wk.

[¶]Different from control (P < .20).

†Different from control (P < .10).

percent (DP) would occur. Although, Dalke et al. (1992) and Preston et al. (1995) did not see a change in DP with increasing ST doses, both Moseley et al. (1992) and Early et al. (1990a) observed a decrease when an increasing ST dose was administered.

The greatest effect of ST treatment on carcass characteristics is the decrease in carcass fat (McBride and Moseley, 1991; Table 1-2). Dalke et al. (1992), Moseley et al. (1992), and Preston et al. (1995) showed a linear decrease in carcass backfat of steers with increasing doses of ST administration. The most dramatic was a 62.4% decrease in backfat with a daily ST dose of 300 µg/kg BW. Peters (1986) observed a 24% reduction in backfat with bST administration following 29 d of treatment, but Early et al. (1990a) did not see a difference in backfat of steers administered ST for 112 d. Additionally, Enright et al. (1990) and Preston et al. (1995) demonstrated a decrease in kidney-pelvic-heart (KPH) fat with bST administration.

In regards to marbling score, intramuscular fat content, Preston et al. (1995), Dalke et al. (1992), and Schwarz et al. (1993) observed a dose-dependent decrease in marbling score with increasing concentrations of ST (see Table 1-2 for data from Preston et al., 1995 and Dalke et al., 1992). The study by Schwarz et al. (1993) determined a 13 to 28% reduction in marbling with 62 and 124 µg ST/kg BW, respectively, with controls having a marbling score of 3.83 on a scale of 1 to 5 where 1 is poor fat and 5 is extremely fat. In conjunction with the decrease in marbling observed by Schwarz et al. (1993), they also determined that the percentage of intramuscular fat was reduced (P < .05) 46.6% with a daily dose of

124 µg ST/kg BW. The decrease in marbling score was translated into a decrease number of animals achieving the USDA choice quality grade (Dalke et al., 1992; Moseley et al., 1992; Preston et al., 1995), although, Early et al. (1990a) did not see a change in Canadian carcass grade with bST administration.

There was a trend towards increased ribeye area (REA) with ST administration (Table 1-2). A significant linear or quadratic response in REA due to ST was only evident in the studies by Moseley et al. (1992). The greatest response in REA was observed with a daily ST dose of 33 µg/kg BW (Table 1-2). With a decrease in carcass backfat and KPH fat, and an increase in REA, there were improvements in carcass yield grade (Dalke et al, 1992; and Preston et al, 1995; Table 1-2). Moseley et al. (1992) did not demonstrate an effect on carcass yield grade with increasing dose of ST, but as mentioned previously, did observe an decrease in backfat and an increase in REA.

Individual muscles and internal organs. Butler-Hogg and Johnsson (1982) observed greater muscle weight throughout the carcasses of ewe lambs treated with bST. In regards to muscle groups (primal cuts of the carcass), Early et al. (1990b) observed an increase in the flank and shank primals, and hypothesized that the flank increased to accommodate the larger gastro-intestinal tract in bST animals. Elsasser et al. (1998) observed an increase in the Rectus femoris (RF), Triceps brachii (TB), and Supraspinatus (SS) muscles with bST or in combination with 20 mg 17-β estradiol benzoate plus 200 mg progesterone. The Semitendinosus (STMUS) and Psoas major (PM) were less responsive to the hormonal modifiers which may be related to the functions of the muscle. Elsasser

et al., (1998) theorized the differences in response of muscles to ST treatment may be due to 1) the muscles are already increasing in size to their maximum potential given the nutrients available and 2) in relation to function, e.g. the RF, TB and SS are involved in locomotion and therefore may respond in conjunction with long bone growth as compared to the STMUS and PM which are involved with hindlimb flexor and vertebral posture, respectively.

Early et al. (1990b) did not see a significant affect of bST on the STMUS, but the Vastus lateralis muscle exhibited a 42% increase in growth. Also, Eisemann et al. (1989) did not observe an increase in STMUS weight with bST, but did observe a 11% increase in Longissimus weight but not relative to empty BW. Brameld et al. (1996) observed an increase in IGF-I mRNA in STMUS of pigs but not the Longissimus muscle after 7 d of bST administration, but neither muscle increased in weight. Beermann et al. (1990a) did show an increase in STMUS with pST administration up to 120 μg pST/kg BW which was due to individual muscle fiber hypertrophy.

As discussed previously, NCW was increased with long-term bST administration. Part of this increase would be increases in internal organs. Moseley et al. (1992), Early et al. (1990b) and Rumsey et al. (1996), reported increases in liver and kidney weights in bST-treated steers and Schwarz et al. (1993) in bST-treated heifers. Rumsey et al. (1996) observed an increase in spleen and heart weight, but Early et al. (1990b) did not. Early et al. (1990b) did however observe an increase in lung and trachea weight with bST treatment.

Carcass composition and accretion rates. A consistent effect of ST administration to growing animals is increased nitrogen retention (Eisemann et al., 1986b). In the study by Eisemann et al. (1986b), they reported a 500% increase in nitrogen retained by ST-treated heifers. The increase was due to a 11% decrease in urinary nitrogen loss. These findings are supported by a 16% increase in nitrogen retention in steers (Moseley et al., 1982), and a 19% increase in nitrogen retention in lambs (Pell et al., 1990) receiving ST. Wallace and Bassett (1966) believed that the increase in nitrogen retention shown with ST administration is dependent on the associated increase in plasma insulin. The increase in plasma insulin would drive more nutrients (e.g. amino acids and glucose) into cells fueling the anabolic effects.

Early et al. (1990c) observed a greater whole-body protein accretion with bST administration, but this was due to greater noncarcass protein accretion rather than in the carcass. Protein accretion was increased 22% with bST administration in Angus-Hereford crossbred steers (Rumsey et al., 1996). Rumsey et al. (1996) demonstrated a 23.5% decrease in lipid accretion after 56 d of bST administration in light-weight cattle (182 kg initial weight, and 266 kg average final weight.) and 100 µg bST/kg BW dose. Boisclair et al. (1994) demonstrated a greater protein accretion in the hindlimb of bST-treated steers.

In conjunction with the decrease in fat, the percent protein and water increased linearly with increasing levels of bST administration (Moseley et al., 1992). Early et al. (1990b) did not see a significant decrease in total steer carcass fat, but the total lean to fat ratio was increased with ST administration. A similar

response was exhibited in lambs treated with ST (Pell et al., 1990). Treated lambs had carcasses with lower fat content, increased protein, and an increased lean to fat ratio (Pell et al., 1990).

Product quality. Growth modifiers may increase ADG, improve feed efficiency, increase protein and decrease fat, but if the product produced is not acceptable to the public, the point is mute. Moseley et al. (1992) saw a 17 to 95% reduction in the percent of carcasses grading choice. The 95% reduction was seen in steers receiving 300 μg bST/kg BW and they did not reach market weight. At 100 μg bST/kg BW, 70% fewer carcasses graded choice. Preston et al. (1995) documented a linear decrease in marbling score (6%), and percent carcasses grading USDA choice (58%) with increased bST dosages.

Few studies have evaluated the effect of ST in cattle on the resulting tenderness of the product. In young, light-weight (223 kg at harvest) prepubertal-Friesian heifers, treated with bST for 15 weeks, lean and fat color was improved and closer to the Danish ideal (Vestergaard et al., 1995). Additionally, there was a tendency for decreased intramuscular fat percentages with bST treatment, but bST did not affect tenderness (Vestergaard et al., 1995). Vestergaard et al. (1993) observed no effect of bST treatment on Longissimus dorsi muscle pigmentation, meat color, shear force or cooking loss. They did observe a decrease in intramuscular fat. Additionally, a trained-taste panel found no differences between loins prepared as steaks from control or bST-treated heifers (Vestergaard et al., 1993).

Allen and Enright (1989), as reported by Vestergaard et al., (1993), reported

taste-panel scores for tenderness and overall acceptability to be slightly lower for bST-treated animals as compared to controls. An absence of difference in panel acceptability is consistent in the lack of affect of bST-treatment on collagen content and solubility (Vestergaard et al., 1993), and glycogen content of the meat (Vestergaard et al., 1995). Bovine ST administered for eight weeks to East Friesland, Oxford, and Texel sheep did not affect meat quality in regards to ultimate pH, lightness, hue, or saturation in the loin joint (Sinnett-Smith et al., 1989). In barrows, pST administered for 18 wk reduced sensory-panel scores for juiciness of loin chops and overall tenderness (Klindt et al., 1995). There was a linear decrease in juiciness of loin chops from boars as length of pST treatment increased. Loin chops from boars receiving pST for 18 weeks had lower boar taint intensity than control boars.

Somatotropin does not always show an affect on tenderness, but when there is an effect, it is negative (Klindt, 1995). Goodband et al. (1990), Solomon et al. (1988), and Beermann et al. (1990a) observed an increase in shear force values of pork chops with pST treatment. Hagen et al. (1991) and Goodband et al. (1990) demonstrated a decrease in tenderness scores assigned by a sensory panel to meat from pST-treated pigs. A consumer study demonstrated that consumers showed no difference in preference for loin roasts from control or pST-treated pigs, but consumers did prefer ham roasts from control versus pST-treated pigs (Prusca et al., 1993).

Combination of ST and other anabolic agents. When ST is combined with another anabolic agents such as estradiol (Enright et al., 1990), TBA plus estradiol

(Preston et al., 1992; Rathmacher et al., 1996), or a β-agonist (Maltin et al., 1990; Hansen et al., 1997b); the combined affect is additive for specific traits. The use of estradiol and ST in feedlot steers increased ADG 12.8% and 19.3% over only ST-treatment and control steers, respectively. Also, the addition of estradiol to ST-treated steers improved feed efficiency 10% and 14.5% over only ST-treated and control steers, respectively (Enright et al., 1990).

Combining ST and TBA plus estradiol did not increase feedlot performance or alter carcass characteristics as compared to these compounds given separately (Rathmacher et al., 1996). In the study by Rathmacher et al. (1996), implanting cattle with TBA plus estradiol improved feedlot performance (ADG and feed efficiency), HCW, and REA more than administration of bST. Administering bST did alter carcass composition by increasing the weight of muscle and decreasing the fat when combined with TBA plus estradiol. Preston et al. (1995) demonstrated an additive response between ST and TBA plus estradiol on ADG and feed efficiency. Although alone, the steroid implant increased ADG and feed efficiency to a greater extent than ST alone.

In veal calves, the use of the β-agonist, clenbuterol, and ST improved feed efficiency over clenbuterol-treated calves, but only tended to improve feed efficiency over ST-treated calves. Average daily gain was not significantly different between the clenbuterol, ST plus clenbuterol, and ST treatments; although, clenbuterol plus ST tended to increase ADG 6.6% over the growth promotants individually (Maltin et al., 1990). Hansen et al. (1997b) showed additive effects of pST and the β-agonist, salbutamol, given to pigs as evidenced by increased feed

efficiency, carcass protein and water accretion, longissimus muscle area, and STMUS weight.

Lipogenesis

Adipose tissue is responsible for more than 90% of the fatty acid (FA) synthesis in the ruminant and the majority of FA synthesis in the pig and guinea-pig (Vernon, 1980). This differs from man and birds where the liver is the main site of FA synthesis and the rat, mouse, and rabbit in which both the liver and AT synthesize substantial amounts of FA (Vernon, 1980). Acetate is the primary carbon source for FA synthesis in ruminants unlike rats, where glucose is the primary precursor. In mature ruminants, most glucose is derived from gluconeogenesis rather than derived from carbohydrate digestion and absorption in the small intestine as in monogastric animals (Vernon, 1980; Fahey, 1988). Therefore, glucose is needed to be spared for basal metabolism (Vernon, 1980). Lactate, pyruvate, propionate, methylmalonate, butyrate, and β-hydroxybutyrate are used to some extent for FA synthesis (Vernon, 1980). The use of propionate leads to odd-chained fatty acids and methylmalonate produces branched-chain FA (Vernon, 1980).

The three critical (or control) enzymes in the pathway of FA synthesis are acetyl CoA synthase (ACS), acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS; Vernon, 1980). The process of FA synthesis (palmitic acid, 16 carbons) requires 8 acetyl CoA and 14 molecules of nicotinamide dinucleotide-phosphate (NADPH; Vernon, 1980). The primary source of NADPH is from the pentose-

phosphate pathway. NADP-isocitrate dehydrogenase (ICD) provides the additional NADPH needed for FA synthesis above what can be produced from the pentose-phosphate pathway (Vernon, 1980).

Regulation of lipogenesis. Lipogenesis is regulated by both plasma metabolites and hormones (Vernon, 1980). Increased plasma acetate and glucose will increase FA synthesis. Increased plasma glucose is rarely observed in ruminants (Vernon, 1980). The increase in dietary FA reduces FA synthesis in the adipocyte of the ruminant (Vernon, 1980).

Acetyl-CoA carboxylase is regulated by both phosphorylation/dephosphorylation and by changes in enzyme concentration (Wolf, 1996). Fatty acid synthase is only regulated by a change in enzyme concentration (Wolf, 1996). The change in enzyme concentration was found to occur via the action on the rate of mRNA transcription. Although in a summary by Girard et al. (1994), they suggest that the increase in FAS mRNA may be due to post-translational stabilization rather than only an increase in transcription. Vernon (1980) states that changes in NADPH production is determined by the rate of FA synthesis.

Total fat content of steers increases as the age at harvest increases (Koch et al., 1979; Cianzio et al., 1985; Loy et al., 1988). Associated with the increase in quantity of adipose tissue is the decrease in the number of adipocytes per gram of tissue (Cianzio et al., 1985). Pothoven et al. (1975) observed a 62% decrease in in vitro lipogenesis as crossbred steers increased in BW from 363 to 505 kg. The decrease in lipogenesis as BW increases is associated with an increase in adipocyte size and fewer cells per unit weight of tissue (Hood and Allen, 1973).

Effect of somatotropin on lipogenesis.

Somatotropin has been found to decrease FA synthesis in adipose tissue (AT) treated in vitro (Vernon, 1982; Sinnett-Smith and Woolliams, 1989) and Walton and Etherton (1986) demonstrated that ST can antagonize insulin's stimulation of lipogenesis in cultured porcine AT. Kramer et al. (1993) observed a 35% decrease in FA synthesis, as measured by tritium incorporation into FA, and a 56% decrease in malic enzyme activity in pigs treated with pST for 24 d. Just as with ICD, malic enzyme generates NADPH to be used in FA synthesis (Zubay, 1988).

Glucose transport. Harris et al. (1993) observed an 86% reduction in glucose incorporated in FA after barrows were treated 11 d with pST and reduced FAS and ICD activity (67 and 31%, respectively). Because AT biopsies are in a net degradative state a soon as they are collected, in vitro measurements of lipogenesis may be underestimates (Kramer et al., 1993). Dunshea et al. (1992c) utilized an in vivo method to determine glucose utilization rates for lipogenesis and the effect which pST had on them. Rates of glucose incorporated into lipids were reduced 76%. Specifically, glucose incorporated into triglyceride-FA was reduced 78% as compared to glucose incorporated into triglyceride-glycerol which was reduced 66%. Donkin et al. (1996) found the mRNA abundance of GLUT 4, the major insulin regulated glucose transporter in adipocytes, was not decreased with pST administration, but Kilgour et al. (1995) determined that altering plasma ST concentration in the rat caused the GLUT 4 protein to translocate from the intracellular pool to the plasma membrane when ST was decreased.

Insulin and insulin resistance. Blood insulin concentrations increase in ruminants that are treated with ST (Davis et al., 1969; Wagner and Veenhuizen, 1978; Hart et al., 1984; Eisemann et al., 1986a). If insulin stimulates lipid accretion, ST must be blocking insulin's affect by making the adipocytes insulin resistant. Insulin resistance is the subnormal biologic response to a specific insulin level (Moller and Flier, 1991). Insulin resistance is observed in genetically obese mice following ST administration (Roupas et al., 1991).

Studies by Walton et al. (1987) support the results of Roupas et al. (1991). Walton et al. (1987) used dose response curves to demonstrate that pST decreases the sensitivity of AT explants to insulin. Both the basal and maximally-stimulated conversion of glucose to lipid were reduced 50% and the insulin concentration which produced the half-maximum response was increased 10 fold. In addition, Walton et al. (1987) demonstrated that not only had the adipose tissue from ST-treated animals become insulin resistant, but IGF-I resistant as well. An experiment by Vernon et al. (1991a) can in part explain how lipogenesis is decreased in insulin-resistant AT.

Vernon et al. (1991a) determined the effect of insulin, dexamethasone (a synthetic glucocorticoid) and ST on FA synthesis and ACC activity of AT from wethers. Insulin and dexamethasone acted synergistically to increase FA synthesis, but this affect was blocked by ST. Although ST clearly decreased insulin's effect of FA synthesis, the total activity of ACC was unchanged. The proportion of ACC in the active state correlated to the effects seen in FA synthesis. Insulin increased activation of ACC whereas the addition of dexamethasone did not.

Somatotropin did not inhibit ACC activation after 24 h of incubation, but completely blocked the effect of insulin and dexamethasone following a 48 h incubation. The mechanism for ST blockage of insulin's action is unclear, but it is not due to a decrease in insulin binding or insulin receptor kinase activity as determined by Magri et al. (1990) in pig adipocytes. These findings suggest that a post-receptor mediator of insulin action may be affected (Roupas et al., 1991; Vernon et al., 1991; Magri et al., 1990).

GTP-binding proteins. One way ST may induce insulin resistance is to uncouple the insulin receptor from its signal transduction GTP-binding protein (G protein). The G proteins are heterotrimeric proteins comprised of α , β , γ subunits (Simon et al., 1991). The action of ligand binding to a receptor activates the G protein which induces the exchange of guanosine diphosphate (GDP) bound to the α subunit for guanosine triphosphate (GTP). The binding of GTP causes the α subunit to dissociate from the β y heterodimer. The α subunit-GTP complex and By heterodimer can interact with effector proteins that are second messengers. Examples of second messengers are phosphodiesterase, phospholipase C, adenylate cyclase, phospholipase A2, and ion channels. Each second messenger is stimulated by a stimulatory G, protein and inhibited by an inhibitory G, protein (Simon et al., 1991). Work done by Roupas et al. (1991) demonstrated that ST antagonized the phosphotidylinositol phospholipase C (PI-PLC) stimulation by insulin. Although PI-PLC activity was unchanged, the results suggested ST interfered with the mechanism of signaling. As stated above, G proteins require GTP to become activated. Roupas et al. (1991) demonstrated the activation of PI- PLC by the addition of GTP[γ S], a hydrolyzable GTP analog, to the membranes from saline-treated mice. When GTP[γ S] was incubated with membranes of adipocytes from ST-treated mice, PI-PLC was not stimulated. This finding suggests ST interferes with G_i protein activation of PI-PLC by insulin. What happens to the G_s protein of the PI-PLC pathway is unknown. In addition, ST effects on the G_s proteins of the adenylate cyclase pathway are unclear.

Change in hormone activity and amount. Vernon et al. (1991a) determined in culture, ST decreased the activation of ACC of AT from wethers. Magri et al. (1990) demonstrated a decrease in the lipogenic enzyme activities of FAS, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme in AT of barrows treated for 7 d with pST. Additionally, Magri et al. (1990) determined that glucose transport into adipocytes was reduced 62% with pST administration, but insulin binding to the adipocyte nor the insulin receptor's tyrosine kinase activity were affected. Roupas et al. (1991) discovered that ST interferes with the signal transmission of a G protein between the insulin receptor and PI-PLC, thereby, even though insulin binding is not inhibited (Magri et al., 1990) its signal is being interrupted. Borland et al. (1994) determined that a shortlived protein may also be needed for ST to inhibit lipogenesis in sheep AT. This was determined after actinomycin D, an inhibitor of protein synthesis, blocked ST depression of lipogenesis in vitro. Ornithine carboxylase activity was shown to increase during ST treatment and coincided with the decrease in lipogenesis (Borland et al., 1994). Additionally, a polyamine may be needed for the full ST affect (Borland et al., 1994).

In addition to decreasing enzyme activation and interfering with signal transduction, ST alters ACC (Liu et al, 1994) and FAS (Mildner and Clarke, 1991; Harris et al., 1993; Donkin et al., 1996) synthesis. Liu et al. (1994) observed a 40% decrease in ACC mRNA in pST-treated barrows. Similarly, Harris et al (1993) demonstrated a 74% decrease in FAS mRNA with pST treatment for 11 d and Donkin et al. (1996) determined that FAS mRNA decreased in a linear fashion in porcine adipocytes with increased dosage of pST.

No change in ICD activity was observed in lactating ewes (Vernon et al., 1991a) and lactating cows (Lanna et al., 1995), although FAS activity decreased. In a similar fashion, Ingle et al. (1973) observed a decrease in in vitro lipogenesis, as measured by acetate incorporation into FA, with significant reduction in ACS and ACC with fasting; but did not show a significant decrease in ICD although, numerically activity decreased 15 to 30%. Additionally, Ingle et al. (1972) observed a tendency in ruminant AT for the dehydrogenase to have greater activity when rates of FA synthesis were greater.

Lipolysis

Lipolysis is the mobilization of AT lipids for use by other tissues of the body and requires the hydrolytic cleavage of triacylglycerols to glycerol and free FA (Vernon, 1980). Hormone-sensitive lipase (HSL) catalyzes the rate limiting step of lipolysis in adipocytes (Cordle et al., 1986), and hydrolyzes triacylglycerol to diacylglycerol and free fatty acids. The last step is the conversion of 2-monoacylglycerol to free fatty acids and glycerol and is catalyzed by

monoacylglycerol lipase (Belfrage, 1985).

Reversible phosphorylation controls the activity of HSL. Activation of HSL results from phosphorylation catalyzed by cyclic AMP-dependent protein kinase (Cordle et al., 1986) and deactivated by dephosphorylation with protein phosphatase 2C (Sztalryd and Kraemer, 1994). Egan et al. (1992) demonstrated that the lipolytic stimulation of adipocytes caused the translocation of HSL from the cytosol to the lipid droplet resulting in an increase in lipolysis.

Catecholamines such as epinephrine and norepinephrine result in an almost immediate increase in plasma NEFA with a corresponding increase in plasma glycerol concentration. These compounds interact with the adipocytes β AR to increase the rate of lipolysis. Catecholamine stimulation of lipolysis can be decreased with both α - and β -adrenergic blocking agents (Vernon, 1980). Norepinephrine can be increased by stimulation of the sympathetic nervous system due to handling, injecting experimental animals, cold exposure, or hypoxia, and therefore, increase lipolysis.

Insulin is the primary antilipolytic hormone in ruminants and causes a reduction in plasma NEFA and glycerol concentration within minutes after being administered (Vernon, 1980). Insulin not only decreases the rate of lipolysis, but also decreases the rate of FA release from AT by stimulating glucose uptake and FA re-esterification. The actions of insulin on lipolysis may act through a low-K_m phosphodiesterase or by inhibiting adenylate cyclase activity (Vernon, 1980). Glucose decreases plasma glycerol concentration and glycerol entry rates in sheep when administered intravenously. This effect is primarily due to an increase in

insulin (Vernon, 1980). Unlike insulin and glucose, glucagon is a mild lipolytic stimulator (Vernon, 1980).

Pothoven et al. (1975) found no correlation between basal and stimulated lipolysis. Rule et al, (1992) observed a 134% increase in basal glycerol release per mg protein with increased BW of Holstein steers, from 277 to 528 kg. Because the main control of HSL activity is by phosphorylation/dephosphorylation (Vernon, 1980), an increase in basal glycerol release without an increase in epinephrine-stimulated lipolysis suggests a change in enzyme activity without a change in enzyme concentration. The same quantity of enzyme when maximally stimulated would have similar glycerol release rates. Greater lipolytic rates with changes in BW were observed in AT from perirenal (309%), omental (200%), and intermuscular (111%) depots than inner or outer backfat (Rule et al., 1992) without a change in stimulated lipolysis. Pothoven et al. (1975) observed an increase in basal glycerol release as crossbred steers increased in weight from 363 to 505 kg, but a decrease in epinephrine-stimulated lipolysis.

Effect of somatotropin on lipolysis

Hart et al. (1984) did not find an increased lipolytic activity in AT incubated with bST as measured by glycerol release per 4 h/g of tissue. Doris et al. (1996) found that basal glycerol release in AT was increased 59% in vitro with in vivo ST administration to sheep for 7 d. The AT from ST-treated sheep also responded to a greater extent to the β -agonist, isoproterenol, than AT from control sheep. Additionally, AT from ST-treated sheep responded less to the antilipolytic agent, N⁶-

phenylisoproyladenosine (PIA), an adenosine analog, than control AT (Doris et al., 1996). Doris et al. (1996) did not find an increase in glycerol response to a catecholamine with ST administration. An increase in glycerol release was not observed when sheep (Vernon, 1982; Hart et al., 1984) and swine (Walton and Etherton, 1986) AT were treated in vitro with ST. Additionally, Kramer et al. (1993) and Sinnett-Smith and Woolliams (1989) did not observe an increase in glycerol release from AT of pigs and sheep treated with ST in vivo.

Dunshea et al. (1992a) suggested that the increase in lipolytic activity may in part be related to decreased insulin sensitivity, which would decrease the inhibition of lipolysis. Increased lipolytic activity may also be the result of a heightened sensitivity or responsiveness to lipolytic stimuli as suggested by Boisclair et al. (1997) and discussed previously. Through calculating grams of triglyceride mobilized per day, Dunshea et al. (1992b) determined a nearly 50% increase in lipid mobilization with pST (56 to 109 g of triglyceride mobilized per day). Although when compared to the reduction in lipid accretion (> 200 g/d), enhanced lipolysis would constitute approximately 25% of the reduction in daily lipid accretion, the balance being reduced lipogenesis.

Peters (1986) observed an increase in plasma NEFA response area to a single epinephrine challenge with ST administration, although Peters (1986) saw a greater response with feed restriction than with ST treatment. Likewise, Sechen et al. (1990) found that lactating cows receiving bST had greater response in circulating levels of NEFA at all doses of epinephrine, and an increase in the maximum response of plasma glycerol from epinephrine challenges. As discussed

earlier, glycerol response relates to lipolysis, whereas, NEFA alterations reflect mobilization (Sechen et al., 1990). Lanna et al. (1995) did not observe a increase in basal glycerol release in vitro, but an increase in HSL activity of AT was observed with bST administration to lactating cows (Lanna et al., 1995 and Liesman et al., 1995).

Beta and alpha-2 adrenergic system. The second possible mechanism ST enhances lipolysis of AT is to increase the number of β -receptors as compared to α_2 receptors. Beta receptors are mediated through G_s proteins and stimulate cyclic AMP through the adenylate cyclase pathway (Levitzki, 1988) and would stimulate lipolysis. Alpha-2 receptors inhibit cyclic AMP and therefore inhibit lipolysis (Levitzki, 1988). Watt et al. (1991) showed that the binding of β -receptors increased as compared to α_2 receptors when sheep AT was incubated with ST.

Roupas et al. (1991) suggests that if ST inhibits the G_i protein, then the G_s protein axis would allow greater activation and subsequent stimulation of lipolysis. Doris et al. (1994) demonstrated in rats that ST alters the amount of G_{i2} proteins in rat AT, which inhibits the cyclic AMP signaling systems and inhibits HSL. Decreased suppression of HSL allows greater stimulation of the enzyme producing increased lipolysis. Doris et al. (1996) did not find altered quantities of the G_i protein, but found that ST alters the cyclic AMP-based signaling systems of AT by several mechanisms. The first, by increasing the maximum rate of β -adrenergic-stimulated lipolysis, due to an increase in the number of β AR; and the second by decreasing the inhibition of antilipolytic agents.

Inhibition of antilipolytic agents. Lipolysis might be enhanced by decreasing the response of AT to antilipolytic agents such as adenosine and prostaglandin E₁ or the local production of the antilipolytic agent, prostaglandin E₂ by the adipocyte (Doris et al., 1996). Adenosine's actions on AT mimic those of insulin and include increased glucose uptake, inhibition of lipolysis and enhanced lipoprotein lipase activity (Carey, 1995). Extracellular adenosine in AT could originate as adenine nucleotides from purinergic neurons, as adenosine transported out of endothelial cells and adipocytes, or adenine nucleotides transported out of adipocytes (Carey, 1995). Doris et al. (1996) demonstrated that AT from bST-treated sheep responded less (a higher rate of lipolysis) to the adenosine analog PIA than control sheep.

As with PIA, lipolysis in AT from bST-treated sheep was inhibited by prostaglandin E₁ (PGE) to a lesser extent than AT from control sheep. (Doris et al., 1996). Additionally, PGE₂ concentrations were lower in bST-treated sheep (Doris et al., 1996). Adipocytes release arachidonic acid when stimulated with catecholamines which can be used to synthesize PGE₂ by the stromal-vascular cells of AT (Richelsen, 1992). Although there was an associated increase in plasma glycerol with the decrease in PGE₂, the cause and effect is not clear (Doris et al., 1996).

It is clear that ST is a potent modifier of growth when given to feedlot cattle. In some circumstances ST increases ADG, decreases DMI and improves feed efficiency. Research has shown that ST can alter the composition of the carcass by decreasing the lipid content and increasing protein. Early et al., (1990a) suggested that ST should be given early in the feeding period and for a longer

period of time to observe its full potential and to reap the benefits of increased red meat yield. Previous research has demonstrated the effect ST has on lipid metabolism. The majority of the decrease is through a decrease in lipogenesis but enhancement of lipolysis is possible. The question remains, what portion of the reduced lipid accretion can be attributed to lipolysis and at what point does it occur. The two studies which follow will try to answer these questions.

Chapter 2

USE OF GROWTH PROMOTING SUBSTANCES FOR INCREASED SKELETAL AND LEAN TISSUE GROWTH OF HOLSTEIN STEERS¹

Abstract

A study was conducted to evaluate the effectiveness of long-term bovine somatotropin (bST) administration to growing-finishing Holstein steers at the beginning, end or during the entire feeding period on lean, skeletal, and carcass measurements. One hundred-sixty Holstein steer calves (185 kg) were blocked into four weight groups to determine the long-term (354 d) effect. Steers were randomly allocated to four treatments (10 steers/treatment) within a block. Treatments were control, no bST (C-C); bST d 0 to 182 (bST-C); bST d 183 to harvest (C-bST); and bST d 0 to harvest (bST-bST). Steers received a s.c. injection of bST or placebo at 14-d intervals. Doses were 320 mg bST/injection from d 0 to 112 and 640 mg bST/injection from d 113 to harvest. The last treatment was administered 31 d before harvest. Steers received a 14% CP diet from d 0 to 182 and 11.5% CP from d 183 to harvest consisting of dry, whole-shelled corn and a pelleted proteinmineral supplement. Steers were harvested when BW per block averaged 615 kg. During the first 182 d, bST-C and bST-bST steers were heavier, with greater (P < .05) ADG, feed efficiency, hip height and hip height gain as compared with C-C and C-bST steers. Steers receiving bST during the first part of the study had lower (P < .10) carcass fat measurements but similar protein composition than control steers. From d 183 to harvest, cattle on all treatments had similar ADG, but C-bST steers

¹This study was funded in part by Lilly Research Laboratories, Greenfield, IN and the Michigan Agricultural Experiment Station

had reduced (P < .05) daily DMI and greater feed efficiency than bST-C steers. Steers receiving bST (C-bST, bST-C, and bST-bST) had greater (P < .05) hip height and skeletal growth than C-C steers. Noncarcass weight was increased and dressing percent reduced (P < .05) in C-bST and bST-bST steers as compared with C-C and bST-C steers. Measurements of carcass fatness including quality grade was reduced (P < .05) the greatest in bST-bST steers as compared to C-C while bST-C and C-bST carcasses were intermediate. Steers receiving bST had greater (P < .05) carcass bone, protein and water composition and greater (P < .05) protein accretion than C-C steers. Bovine somatotropin was effective in reducing carcass fat and increasing edible lean. Administering bST to young, light-weight steers increased skeletal growth and noncarcass weight, but did not increase the total carcass weight and reduced the quality of the carcass.

Key words: Somatotropin, Steers, Lean, Skeletal growth, Carcass measurements

Introduction

A greater awareness and demands by the consumer for healthier beef products has prompted the beef industry to wage a "war on fat". Emphasis on producing lean beef which maintains consumer acceptance is a key objective. Identification of production strategies which accomplish this goal has led researchers to investigate exogenous growth promotants such as somatotropin (ST).

Research has documented ST ability to stimulate growth and reduce carcass lipid content in pigs (Krick et al. 1993), lambs (Butler-Hogg and Johnsson, 1987),

and cattle (Early et al., 1990a; Moseley et al., 1992; Preston et al., 1995; Rumsey et al., 1996). Previous results in beef cattle administered bovine ST (bST) have demonstrated greater increases in noncarcass weight than lean and skeletal tissue (Early et al., 1990a). Additionally, as cattle on high-concentrate diets increase in weight and age, carcass lipid mass increases at a greater rate than carcass protein (Owens et al., 1995). To alter carcass lipid and protein content, administration of bST to younger animals during peak periods of lean and skeletal tissue growth may increase the effectiveness of the exogenous hormone on economically important tissues. Therefore, a study was designed to evaluate the effectiveness of long-term bST administration to growing-finishing Holstein steers at the beginning, end or during the entire feeding period on lean, skeletal and organ growth; carcass characteristics and composition; serum IGF-I concentrations; and liver IGF-I mRNA abundance.

Materials and Methods

Animal Management. This study was completed under the approval of the Michigan State University All University Committee on Animal Use and Care (AUF # 10/90-308-02) and under an INAD (6673-C004 - Bovine Somatotropin) issued to Michigan State University. Sixty-four to 71 d prior to the start of the study, 243 Holstein steers (116 kg) were received from Indiana and Wisconsin at the Beef Cattle Teaching and Research Center at East Lansing, MI. Upon arrival, steers were placed in partially-covered pens (4.3 m x 11.9 m, 10 to 12 steers/pen) and fed 1.36 kg of dry, whole-shelled corn, .91 kg medicated-pelleted supplement (Table

Table 2-1 - Guaranteed analysis and ingredients of medicated-supplement starter pellet^{a,b,c}

Nutrient	Guaranteed analysis
Crude protein, minimum	25.0%
Crude fat, minimum	1.0%
Crude fiber, maximum	9.0%
Calcium, minimum	1.5%
Calcium, maximum	2.5%
Phosphorus, minimum	1.0%
Salt (NaCl), minimum	2.0%
Salt (NaCl), maximum	3.0%
Vitamin A, minimum	110,000 IU/kg
Vitamin D ₃ , minimum	55,000 IU/kg
Vitamin E, minimum	220 IU/kg

*Ingredients: Processed grain by-products, soybean meal, meat and bone meal, linseed meal, sunflower meal, dehydrated alfalfa meal, ethoxyquin (a preservative), molasses products, monocalcium phosphate, dicalcium phosphate, calcium carbonate, sodium bicarbonate, salt, vitamin A acetate, D-activated animal sterol (source of vitamin D₃), vitamin E supplement, riboflavin supplement, calcium pantothenate, niacin supplement, choline chloride, vitamin B₁₂ supplement, ethylenediamine dihydriodide, menadione dimethylpyrimidinol bisulfite (source of vitamin K activity), manganous oxide, iron sulfate, copper sulfate, cobalt carbonate, magnesium oxide, zinc oxide, potassium chloride, and sodium selenite.

^bContains 2.2 g oxytetracycline/ kg of supplement.

^cRebound® supplement, Kent Feeds, Inc., Muscatine, IA.

2-1), and had ad libitum access to second cutting alfalfa hay and water. Steers were ear-tagged, vaccinated against IBR, PI₃, BVD, BRSV, and were mass medicated with 10 cc of an antibiotic mixture (225 ml long-acting penicillin, 225 ml of spectinomycin, and 50 ml of vitamin B complex). Animals with rectal temperatures of 40 °C or higher were treated for two additional days with the described antibiotic mixture.

Two weeks after arrival, steers received a booster vaccination against IBR, PI₃, BVD, BRSV, and initial vaccinations against *Hemophilus somnus* and *Clostridial* organisms. Steers were mass medicated with oxytetracycline (10 cc/steer, 100 mg/ml oxytetracycline), checked for growth promotant implants, dehorned and castrated as needed.

Thirty-four days prior to the initiation of the study, the medicated supplement was removed from the diet, and replaced by a 50% CP pellet (Table 2-2), and steers were given a 2 ml injection of Vitamin E and Selenium (Mu-SE®, Schering-Plough Animal Health, Kenilworth, NJ). The steers were fed a 14% CP diet consisting of 86% dry, whole-shelled corn and 14% pelleted supplement until the initiation of the study.

One hundred and sixty eight steers (185 kg) were selected from the initial 243 animals based on breed characteristics, ADG, and health history. Eight steers were used as an initial harvest group to determine initial tissue weights (Table A-1a) and body composition (Table A-1b). The remaining 160 steers were divided into four weight blocks and randomly assigned to one of four treatments (10 steers-treatment⁻¹-block⁻¹). The four treatments were:

Table 2-2. Guaranteed analysis and ingredients of pelleted supplement^a

Nutrient	Guaranteed anal	ysis
Crude protein, minimum ^b		50.0%
Crude fat, minimum		.4%
Crude fiber, maximum		4.0%
Active drug ingredient	Content	
Monensin sodium		330 mg/kg
Tylosin phosphate		132 mg/kg

^{*}Ingredients: soybean meal, calcium carbonate, urea, flash dried blood meal, com distillers dried grains with solubles, salt, vitamin A acetate, D-activated animal sterol (source of vitamin D_3), vitamin E supplement, ethylenediamine dihydriodide, manganous oxide, ferrous sulfate, copper sulfate, cobalt carbonate, zinc oxide, and sodium selenite.

^bIncludes no more than 10.0% equivalent crude protein from non-protein nitrogen.

1)	Control: no bST, d 0 to harvest	C-C
2)	Control: d 0 to 182, bST: d 183 to harvest	C-bST
3)	bST: d 0 to 182, Control: d 183 to harvest	bST-C
4)	bST: d 0 to harvest	bST-bST

Steers were housed in partially covered pens (4.3 m x 11.9 m) with ad libitum access to feed and water. The diet consisted of dry, whole-shelled corn and a pelleted supplement (Table 2-2); and formulated to meet or exceed NRC (1984) requirements. During the first 182 d, steers received a 14% CP diet and a 11.5% CP diet from d 183 to harvest, based on component analyses.

Two steers from each pen (32 steers total, 16 control, 16 bST treated) were randomly selected for harvest when treatments were changed (intermediate harvest). These steers received their last treatment injection on d 168 and remained with their treatment group until d 199 when steers were transported to a commercial-harvest facility for processing. In order to address the objective of strategic timing of bST administration, 64 steers remained on their initial treatment after d 182, or were switched to the opposite treatment to provide the four different treatment groups as previously described. Steers were harvested when weight blocks were predicted to reach 615 kg and a 31 d withdrawal period from last treatment was observed. Blocks were harvested on d 322, 350, 364, and 377, with final weights of 611, 609, 602, and 619 kg, respectively. The INAD required a 31 d withdrawal period from the last bST dose before cattle went to harvest.

If a steer gained (ADG) less than 50% of its pen-mates for two consecutive weight periods (28 d), the steer was removed from the study. Thirty steers were removed from the study. These included: 22 for gaining 50 % less than their pen

mates, 3 for respiratory problems, 2 died, 1 was lame, 1 was not completely castrated, and 1 was incorrectly treated prior to harvest (see Appendix A-2).

Preparation and administration of treatments. Bovine somatotropin (Lilly Research Laboratories, Greenfield, IN) and control treatments were preloaded in 10 cc syringes and frozen till used. The carrier agent was white wax. One hour before administration, the required number of bST and control treatments were thawed at room temperature. Steers received a s.c. bST or control (placebo) injection (16 gauge needle) at 14-d intervals beginning on d 0. From d 1 to 42, injections were administered in the mid-thoracic region just caudal to the shoulder, on alternating sides. From d 43 to harvest, treatments were given s.c. in the perirectal area. Dosages of bST administered were 320 mg bST/injection (22.9 mg/d, lot # 48631) from d 0 to 112 and 640 mg bST/injection (45.7 mg/d, lot # 48632) from d 113 to harvest. The change in dosage after 112 d were as directed by the sponsor and helped maintain the bST dose relative to BW. Control steers received a similar volume of carrier agent as the bST treatment steers. Treatments were administered between 0730 and 1100.

Feedlot performance. Initial, intermediate (d 182), and final weights were calculated as the average of weights taken on two consecutive days. Interval weights were determined every 14 d. Orts were weighed weekly to determine daily DMI. Feed efficiency was calculated as ADG (g) divided by daily DMI (kg/d) for a specific time period.

Skeletal growth. Skeletal growth was assessed through hip-height measurements (Altitude Stick, NASCO, Fort Atkinson, WI) on d 0, and 1 (averaged

for initial hip height), 181, 183 (averaged for d 182 hip height), and on two consecutive days prior to harvest (averaged for final hip height). Skeletal growth (cm/d) was calculated for each period (d 0 to 182, d 183 to harvest, and d 0 to harvest) of the study.

At harvest, the right front limb was separated from the carcass proximal to the carpo-metacarpal joint (knee), placed in a labeled-plastic bag and returned to the Michigan State University Meat Laboratory for dissection. The hide, tendons, ligaments, muscle, and fat were removed from the bones, and the metacarpal bone was separated from the carpus and phalanges. The metacarpus was frozen for future analyses. Third metacarpal bone length was determined and the bones were sectioned at their midpoint and measurements obtained according to Coble et al. (1971). Medial and lateral width and depth (Figure 2-1), and circumference of the bone section were determined. Total cross-sectional area (TCA) and marrow cavity area (MCA) were determined using a compensating polar planimeter (Keuffel and Esser Co., Germany). Bone area was determined by difference (TCA - MCA). Bone volume was determined by water displacement and used to calculate bone density (g/cc).

Carcass measurements. At harvest, hot carcass (HCW), lungs, liver, spleen, heart, kidney, and semitendinosus muscle (STMUS) were weighed. Samples of the liver were collected from the last weight block (Block 1, lowest initial BW) to be harvested, frozen in liquid N for mRNA analysis and stored at -80 °C until analysis. After a 24-h, post-harvest chill; ribeye area (REA), 12th-rib backfat, kidney-pelvicheart fat (KPH), marbling score, and USDA quality grade were determined.

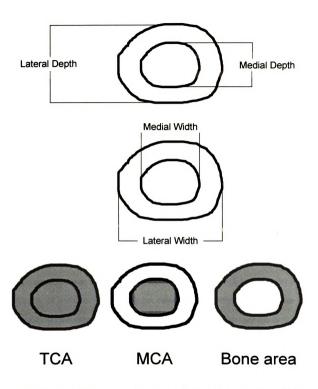


Figure 2-1. Lateral and medial measurements of sectioned metacarpals, and total cross sectional area (TCA), marrow cavity area (MCA) and bone area.

Noncarcass weight (NCW), dressing percent (DP) and yield grade were calculated. Noncarcass weight was calculated as the difference between the final harvest weight and HCW. The 9th through 13th rib sections were removed from the left side of the carcass for compositional determination and transported to the Michigan State University Meats Laboratory. The 9-10-11 rib sections were separated from the larger rib portion (Hankins and Howe, 1946), weighed and the soft tissue was separated from bone. The bones and soft tissue from each rib were weighed. The soft tissue was ground three times (once coarsely, and twice finely) with mixing in between each grind to ensure uniformity. Approximately 500 g of sample was collected and placed into a Whirlpak bag (NASCO, Fort Atkinson, WI) and stored at -30 °C. The frozen sample was homogenized with liquid N in an industrial Waring blender. Tissue samples were analyzed for DM, CP and ether-extractable lipid (EEL).

Tissue sample DM was determined in triplicate by placing 2 g of homogenized tissue in a desiccated-labeled aluminum pan (5 cm diameter) and dried for 48 h in a 55 °C oven. Tissue moisture was determined by difference. Ether-extractable lipid was determined in triplicate using samples previously dried. A cotton ball was placed in the center of each aluminum pan and the sides folded inward to prevent loss of sample and the cotton ball. The dried samples were placed in a Soxhalet apparatus and extracted with petroleum ether for 24 h. Ether-extractable lipid was calculated as the loss of weight during ether extraction.

Crude protein was analyzed in duplicate for total-Kjeldahl N (CP = N * 6.25, AOAC, 1984) using a Technicon auto-analyzer system (Bran + Luebbe Inc..

Tarrytown, NY). Percent carcass bone, lipid, protein and moisture were calculated based on equations by Hankins and Howe (1946, Table A-10). Accretion rates of lipid and protein were determined from equations developed by Anderson et al. (1988) using initial harvest data and average treatment intermediate harvest data.

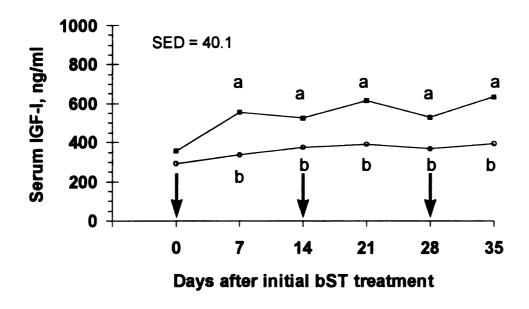
Blood collection and Serum IGF-I assay. Blood samples were collected on d 0, 7, 14, 21, 28, and 35 at the beginning of the study and prior to final harvest 7, 14, 21, and 28 d following the last treatment. To reduce influence of ST spikes on IGF-I concentrations, the evening prior to blood collection, steers were removed from feed for 16 h, and the following morning, fed .5 h prior to having blood collected by jugular venipuncture. Blocks (4 pens) were staggered every 1 h with feeding started at 0700. Blood was collected in a 10 ml, sterile blood-collection tube (Vacutainer Brand, Becton Dickinson and Co., Rutherford, NJ). Blood samples were allowed to coagulate at room temperature for .5 h and then stored at 4 °C overnight. Serum was harvested after centrifugation (959 x g, Beckman J2-21 refrigerated centrifuge, Beckman Instruments Inc. Palo Alto, CA) for 15 min at 5 °C and stored in 12 x 75 mm polypropylene tubes (Sarstedt, Newton, NC) at -20 °C until analyzed. Serum IGF-I concentrations were measured on 2 steers from each pen by radioimmunoassay (Sharma et al., 1994) after removal of insulin-like growth factor binding proteins by formic acid-ethanol extraction (Bruce et al., 1991; Sharma et al., 1994).

Liver IGF-I mRNA abundance. Liver IGF-I mRNA abundance was determined by Northern-blot hybridization as described by Sharma et al. (1994). Total liver RNA was isolated from 1 g of tissue using the RNA STAT-60™ reagents

and procedure (Tel-Test "B", Inc. Friendswood, TX). Concentration of single-stranded RNA was determined spectrophotometrically at a wavelength of 260 nm. Samples of total RNA (20 µg) were electrophoresed on agarose-formaldehyde gels, and the separated RNA bands were electrophoretically transferred to nylon membranes. Membranes containing liver RNA were hybridized with a ³²P-labeled human IGF-I cDNA (Bell et al., 1984), and the abundance of mRNA for IGF-I was quantified by densitometric scanning of the resulting band. Liver mRNA abundance was expressed as arbitrary densitometric units.

Statistical analysis. The study was designed as a completely randomized block. Feedlot performance (BW, ADG, DMI, and feed efficiency) was analyzed with the GLM procedure of SAS (1994) with block and treatment in the model and the pen as the experimental unit. Means for traits evaluating performance from d 0 to 182 were separated using a contrast statement to determine the difference between control (C-C and C-bST) and bST (bST-C and bST-bST) treatments during the first part of the study. Performance trait means from d 183 to harvest, were separated using a Tukey's test for all pair-wise comparisons and a contrast statement to determine the difference between control (C-C and bST-C) and bST (C-bST and bST-bST) treatments during the last part of the study.

Hip height, hip-height gain, metacarpal bone characteristics, carcass characteristics, carcass composition and tissue weights were analyzed with the GLM procedure of SAS (1994) with block and treatment in the model and the animal as the experimental unit. Least square treatment means were calculated and separated using the probability of difference function. Differences between control


and bST treatments for each part of the study were evaluated with contrast statements as before.

Serum IGF-I concentrations were analyzed using the univariate repeated-measures analysis of SAS (1994) with block and treatment in the model and using the animal as the experimental unit. Treatment means within a day were separated by procedure outlined in Gill (1987). In the case of serum IGF-I concentrations from the last weight block to be harvested, concentrations were analyzed with only treatment in the model. Liver IGF-I mRNA abundance was analyzed with the GLM procedure of SAS (1994) with treatment in the model and least square means separated with the probability of difference function.

One control steer, from the intermediate harvest group, was removed from the study because it received an incorrect treatment three days prior to harvest. All individual data was omitted. As discussed previously, an additional 30 steers were removed from the study and individual data omitted (see Table A-2). Raw data is provided in Tables A-3 to A-11.

Results

Serum IGF-I Concentrations. Steers receiving bST had 151% greater (P < .01) serum IGF-I concentrations from d 7 through d 35 of the study as compared to control steers (Figure 2-2). Following the final treatment injection, 31 d prior to harvest, C-bST and bST-bST steers had 298 and 223 % greater (P < .05) serum IGF-I concentrations 7 and 14 d following the last treatment, respectively, than C-C

and bST-C steers (Figure 2-3). Twenty-one days following the last treatment, bST-Figure 2-2. Effect of treatment, control (○) or bST (■), on serum IGF-I concentrations after initial treatment on d 0 and subsequent treatments as indicated by arrows. ^{a,b}Means with unlike letters differ (*P* < .01).

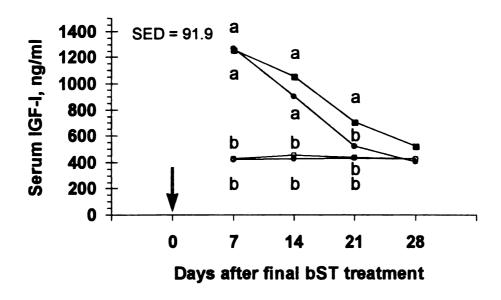


Figure 2-3. Effect of treatment, C-C (\circ), C-bST (\bullet), bST-C (\square), or bST-bST (\blacksquare), on serum IGF-I concentrations after final treatment 31 d prior to harvest as indicated by the arrow. ^{a,b}Means with unlike letters differ (P < .05).

bST steers had 163 % greater (P < .05) serum IGF-I concentrations than C-C, bST-C, and C-bST steers. All steers had similar serum IGF-I concentrations 28 d following the last treatment injection.

Feedlot performance. Steers receiving bST during the first 182 d of the study (bST-C and bST-bST) had 5% greater BW (P < .01) than control steers (C-C and C-bST, Table 2-3). However, at the end of the experiment, steers had similar BW. Average daily gain during the first 182 d was 8.9% greater (P < .01) in steers receiving bST (bST-C and bST-bST) than control steers (C-C and C-bST). Treatment had no effect on ADG during the latter part of the study or overall.

Dry matter intake was similar among treatments for the first 182 d of the study. During the latter part of the study, C-bST steers had 9.4, 11.6, and 9.7% lower (P < .05) DMI compared with C-C, bST-C and bST-bST steers, respectively. Overall, C-bST steers had 7% lower (P < .01) DMI than C-C and bST-C steers. Steers receiving bST during the latter part of the study (C-bST and bST-bST) had lower DMI (P < .05) during that same period and over the entire study.

Feed efficiency was 9% greater (P < .01) in bST treated steers (bST-C and bST-bST) during the first 182 d as compared to control steers (C-C and C-bST). Steers receiving bST only during the latter part of the study (C-bST) had 25.6% greater (P < .05) feed efficiency during the latter part of the study and 6.8 % greater feed efficiency overall than bST-C steers. Steers receiving bST during the latter phase (C-bST and bST-bST) of the study had greater (P < .01) feed efficiency during the latter part of the study and over the entire study than C-C and bST-C steers.

Table 2-3. Effect of bovine somatotropin on body weight, average daily gain, daily dry matter intake and feed efficiency

			Treatments			Prol	pability
Trait	C-C	C-bST	bST-C	bST-bST	SEM	Model	Contrast
No. of pens	4	4	4	4	,		
			— Body weigh	t, kg			
Initial	185	185	185	185	1.5	.0001	.81 ^a
d 183	419	419	440	439	4.8	.0002	.002 ^a
Final	599	608	611	622	6.3	.21	.13 ^b
_	·		Average daily	gain, kg ——			
d 0 to d 182	1.29	1.29	1.41	1.40	.03	.08	.004 ^a
d 183 to Final	1.06	1.10	1.00	1.06	.03	.07	.11 ^b
d 0 to Final	1.17	1.20	1.21	1.24	.02	.14	.21 ^b
		Da	aily dry matter i	intake, kg ——			· ·
d 0 to d 182	6.79	6.52	6.61	6.68	.09	.0005	.93 ^a
d 183 to Final	8.29 *	7.51 ^x	8.50 ^w	8.32 w	.15	.01	.01 ^b
d 0 to Final	7.54 ^w	7.02 ^x	7.56 w	7.50 wx	.11	.01	.03 ^b
		——Fee	d efficiency, g	gain/kg DMI —			
d 0 to d 182	190	198	214	209	3.4	.0006	.001 ^a
d 183 to Final	128 ^{wx}	147 ^w	117×	128 ^{wx}	4.6	.01	.009 ^b
d 0 to Final	156 *	171 ^y	160 ^{wx}	165 ^{xy}	3.0	.01	.007 b

^{*}C-C and C-bST versus bST-C and bST-bST.

^bC-C and bST-C versus C-bST and bST-bST.

 $^{^{\}text{w.x.y}}$ Means with unlike superscript letters differ (P < .05).

Skeletal growth. On d 182, hip height was increased 1.2% (P < .01) in steers receiving bST during the first part of the study (bST-C and bST-bST) as compared to control steers (C-C and C-bST, Table 2-4). Steers receiving bST during the entire study (bST-bST) had 3.3, 1.4, and 2.2% greater (P < .05) hip heights at harvest than C-C, C-bST, and bST-C, respectively. Steers receiving bST during only one part of the study, C-bST and bST-C, had 1.8 and 1.1% greater (P < .05) hip heights at harvest than C-C steers, respectively. At harvest, steers receiving bST during the latter part of the study (C-bST and bST-bST) had 8.8% greater (P < .01) hip heights than control steers (C-C and bST-C). Daily hip height gain was increased (P < .01) 8% in steers receiving bST during the first 182 d (bST-C and bST-bST) than control steers (C-C and C-bST). Steers receiving bST during the latter part of the study (C-bST and bST-bST) had 66% greater (P < .01) daily hip height gain from d 182 to harvest than C-C and bST-C steers. Overall (d 0 to harvest), bST-bST steers had 15, 7, and 10% greater (P < .05) daily hip height gain than C-C, C-bST and bST-C steers, respectively. Steers receiving bST during one part of the study (C-bST and bST-C) had 8 and 5% greater (P < .05) daily hip height gain than C-C steers.

Intermediate-harvest metacarpal bone characteristics were similar for all treatments (Table 2-5). Steers receiving bST throughout the entire experiment had greater (P < .05) lateral bone depth than bST-C steers at harvest. Bone area tended to be 4% greater (P < .10) in bST-bST steers than C-C steers. Bones of C-C steers were 3% denser (P < .05) than C-bST steers. (Table 2-6). At harvest, steers receiving bST during the latter part of the study (C-bST and bST-bST)

Table 2-4. Effect of bovine somatotropin on hip height and daily hip-height gain*

				Treatments	ents				Prot	Probability
Trait	၁-၁	SE	C-bST	SE	bST-C	SE	bST-bST	SE	Model	Contrast
				— Hip hei	Hip height, cm					
0 P	109.4	4	109.7	4	109.3	4	109.3	4.	.000	.47 b
d 182	132.4	κύ	132.2	ĸċ	133.6	κί	134.1	ις	.00	° 100.
Final	136.7 ^y	ø.	139.2×	œ.	138.2×	φ	141.2 ^w	7.	.002	.0001°
	!		Da	illy hip heigl	Daily hip height gain, mm —					
d 0 -182	1.26	.02	1.24	.02	1.34	.02	1.36	.02	.000	.0001 ^b
d 183 - Final	.2 4 ×	.02	.42 w	.02	.26 ×	.02	¥14.	.02	.000	.0001
d 0 - Final	.78	.	48 .	9.	× 28.	.00	* 06.	9.	.000	.0001

*Least square means.

*C-C and C-bST versus bST-C and bST-bST.

*C-C and bST-C versus C-bST and bST-bST.

***/Means with unlike superscript letters differ (P < .05).

Table 2-5. Effect of bovine somatotropin on intermediate-harvest metacarpal bone characteristics *

		Tre	eatments		Pr	obbility
Trait	Control (C-C, C-bST)	SE	bST (bST-C, bST-bST)	SE	Model	Contrast b
Length, cm	21.8	.1	21.8	.14	.28	.89
Medial width, mm	18.6	.6	18.9	.6	.63	.77
Lateral width, mm	35.1	.6	36.0	.6	.28	.30
Medial depth, mm	14.0	.4	13.7	.4	.54	.67
Lateral depth, mm	26.1	.5	25.7	.4	.59	.55
Circumference, mm	108.5	1.5	110.1	1.5	.22	.45
TCA, cm ^{2, c}	8.3	.3	8.3	.3	.63	.94
MCA, cm ^{2, d}	2.9	.2	2.9	.2	.90	.90
Bone area, cm ²	5.4	.1	5.4	.1	.32	.75
TCA/MCA	2.9	.1	2.9	.1	.98	.99
Density, g/cc	2.0	.02	2.0	.02	.98	.58

^{*}Least square means.

^bProbability of difference: control versus bST.

^cTotal cross-sectional area of metacarpal bone.

^dMarrow cavity area.

Table 2-6. Effect of bovine somatotropin on final-harvest metacarpal bone characteristics

				Treat	Treatments				Prot	Probability
Trait	၁-၁	SE	C-bST	SE	bST-C	SE	bST-bST	SE	Model	Contrast ^b
Length, cm	22.44	L .	22.55	1.	22.59	.12	22.51	.12	80.	.85
Medial width, mm	19.3	4.	19.4	4.	18.9	₹.	19.7	4	99.	.58
Lateral width, mm	38.6	4.	39.2	4	38.5	4.	39.4	4	4 .	.29
Medial depth, mm	13.8	ω	14.1	κi	13.9	က	14.4	ĸ;	.21	.45
Lateral depth, mm	27.5 WX	ω	28.0 WX	κi	27.3×	က	28.3 ₩	κi	.20	9 6.
Circumference, mm	116.6	1.0	118.2	1.0	116.2	1.0	118.6	1.1	.56	9 6.
TCA, cm ^{2,c}	9.3	7	9.6	4	9.3	7	9.6	6	99.	80.
MCA, cm ^{2,d}	2.9	₹.	3.1	₹.	5.9	₹.	3.0	- .	99.	.26
Bone area, cm ²	6.4 ^k	<u></u>	6.5 ^{jk}	₹.	6.4 Jk	Ψ.	6.6 ^j	τ.	89.	5.
TCAMCA	3.3	- -	3.2	₹.	3.3	Ψ.	3.3	- .	3 9.	. 61
Density, g/cc	1.98 W	.02	1.92×	.02	1.94 wx	.02	1.93 wx	.02	.0001	.22

*Least square means.

*Probability of difference: C-C and bST-C versus C-bST and bST-bST.

Total cross-sectional area of metacarpal bone.

^dMarrow cavity area. $^{\text{l,k}}$ Means with unlike superscript letters differ (P < .10).

">Means with unlike superscript letters differ (P < .05).

tended to have greater lateral bone width (P < .10) lateral bone depth (P < .10), bone circumference (P < .01), and TCA (P < .10) than control steers (C-C and bST-C).

Carcass characteristics, composition and organ weights. After 182 d, harvest weight, HCW, NCW, DP, measures of REA or backfat were similar among treatments as determined in the intermediate harvest group (d 199, Table 2-7). Steers receiving bST for 182 d had 30% lower (P < .05) KPH, 10% lower (P < .10) marbling score, 6% lower (P < .05) USDA quality grade, and 12% lower (P < .05) calculated yield grade than control steers.

At final harvest, C-bST and bST-bST had 5.5% greater (P < .01) NCW, and 3% lower (P < .01) DP (Table 2-8). Steers receiving bST only during the latter part of the study (C-bST) tended to have greater carcass (P < .10) REA expressed as cm²/kg HCW than bST-C steers at the final harvest. Backfat thickness at final harvest was 24% lower (P < .05) in bST-bST carcass than C-C and bST-C carcasses. Steers receiving bST during the latter part of the study (C-bST and bST-bST) had 40% less KPH than C-C and bST-C carcasses. Marbling score decreased (P < .05) 21, 19, and 31% in C-bST, bST-C, and bST-bST carcasses, respectively, as compared to C-C carcasses. Steers receiving bST throughout the study (bST-bST) had 13% lower (P < .05) marbling scores than steers receiving bST during only one part of the study (C-bST and bST-C). Quality grade was decreased (P < .05) 7, 7 and 12% in C-bST, bST-C, and bST-bST carcasses, respectively, as compared to C-C carcasses. Steers receiving bST throughout the study (bST-bST) had 5% lower (P < .05) quality grade than C-bST and bST-C.

Table 2-7. Effect of bovine somatotropin on intermediate-harvest carcass characteristics *a,b*

		Tr	eatments		Pro	bability
Trait	Control (C-C, C-bST)	SE	bST (bST-C, bST-bST)	SE	Model	Contrast ^c
Number of steers	15		16			
Harvest wt., kg	439	5	448	5	.0001	.20
HCW, kg	247	4	251	3	.0006	.45
NCW, kg	192	3	197	3	.001	.15
DP, %	56.3	.4	55.9	.4	.57	.50
Ribeye area, cm²	64.9	1.3	66.4	1.2	.84	.41
Ribeye area, cm²/kg HCW	.263	.005	.266	.004	.03	.73
Backfat, mm	3.4	.3	3.0	.3	.3	.37
KPH, %	3.4	.16	2.4	.15	.004	.001
Marbling score ^d	461	18	413	17	.26	.06
Quality grade*	16.9	.3	15.9	.3	.21	.04
% Choice	26.7		12.5			
% Select	60.0		43.8			
% Standard	13.3		43.8			
Calculated yield grade	2.4	.08	2.1	.08	.04	.02

^{*}Least square means.

^bd 199 of study, steers received last treatment on d 168.

[°]Probability of C-C and C-bST versus bST-C and bST-bST.

^d400 = slight, 500 = small.

^{*15 =} high standard, 16 = low select, 17 = high select.

Table 2-8. Effect of treatment on final-harvest carcass characteristics

Trait C-C SE C-bST SE No. of steers 25 25 3.5 25 3.5 HCW, kg 358 4.4 355 4.3 39 NCW, kg 240 ^x 3.5 253 ^w 3.5 2 NCW, kg 240 ^x 3.1 58.4 ^x 3.0 2 PCW, kg 78.2 1.5 80.3 1.5 2 REA, cm² ² /kg HCW .219 ^k .004 .226 .004 .50 KPH, % .33 ^w .1 2.0 ^x .1 5 Mgarbling score 657 ^w 17 517 ^x .2 .7 % Prime 16.0 0 0 .2 17.77 ^x .2 % Choice 80.0 65.4 .3 .2 .2 .2 % Select 4.0 3.0 .3 .8 .2 .3 .2 % Standard 0 .3 .3 .3 .3 .3 .3 .3 % Standard 0 .3 .3 .3 <th></th> <th></th> <th></th> <th></th> <th>Treat</th> <th>Treatments</th> <th></th> <th></th> <th></th> <th>Prot</th> <th>Probability</th>					Treat	Treatments				Prot	Probability
25 253 4.3 358 4.3 358 60.0 w 31 58.4 x 35 253 w 3.5 253 w 3.5 253 w 3.5 250.0 w 3.1 58.4 x 3.0 3.2 1.5 80.3 1.5 80.3 1.5 80.3 1.5 80.3 1.5 80.3 1.5 80.3 1.5 80.3 1.5 80.0 1.0 0 1.	Trait	ပု	SE	C-bST	SE	bST-C	SE	bST-bST	SE	Model	Contrast b
358 4.4 355 4.3 3 240 x 3.5 253 w 3.5 2 60.0 w .31 58.4 x .30 .30 78.2 1.5 80.3 1.5 .004 6.80 w .51 5.64 w .50 .1 .50 6.80 w .51 5.64 w .50 .1 .50 19.1 w .2 17.7 x .2 .2 16.0 .2 17.7 x .2 .2 16.0 .2 17.7 x .2 .2 80.0 .65.4 .30.8 .2 4.0 .30.8 .30.8 .2	No. of steers	25		25		5 6		24			
240 x 3.5 253 w 3.5 2 60.0 w .31 58.4 x .30 78.2 1.5 80.3 1.5 78.2 1.5 80.3 1.5 6.80 w .51 5.64 w .50 3.3 w .1 2.0 x .1 657 w 17 517 x 17 19.1 w .2 17.7 x .2 16.0 0 0 80.0 65.4 30.8 4.0 30.8 0 38.8	HCW, kg	358	4.4	355	4 .3	362	4.4	360	4.5	.	75
60.0 w .31 58.4 x .30 78.2 1.5 80.3 1.5 .219 lk .004 .226 l .004 6.80 w .51 5.64 w .50 3.3 w .1 2.0 x .1 657 w 17 517 x 17 19.1 w .2 17.7 x .2 16.0 0 0 80.0 65.4 .2 4.0 30.8 .2 0 30.8 .2	NCW, kg	240×	3.5	253 W	3.5	248 ×	3.5	262 W	3.6	.0003	.00
78.2 1.5 80.3 1.5 .219 Ik .004 .226 J .004 6.80 W .51 5.64 W× .50 3.3 W .1 2.0 × .1 657 W 17 517 × 17 19.1 W .2 17.7 × .2 16.0 0 0 80.0 65.4 .2 4.0 30.8 .2 0 33.8	DP, %	% 0.09	.31	58.4 ×	.30	59.4 w	.31	57.9 ×	.3 .	.000	.00
6.80 w .51 5.64 wx .50 3.3 w .1 2.0 x .1 657 w 17 517 x 17 19.1 w .2 17.7 x .2 16.0 0 0 80.0 65.4 .2 4.0 30.8 .38	REA, cm ²	78.2	1.5	80.3	1.5	6.77	5.	79.0	9:1	2 2.	29.
6.80 W .51 5.64 Wx .50 3.3 W .1 2.0 x .1 657 W 17 517 x 17 5 19.1 W .2 17.7 x .2 .2 16.0 0 0 65.4 .2 4.0 30.8 30.8 .2 0 3.8 .3 .2	REA, cm ² /kg HCW	.219 ^{jk}	.004	.226 ^j	.004	.216 ^k	.004	.219 ^{jk}	.004	51.	.26
3.3 w .1 2.0 x .1 657 w 17 517 x 17 5 19.1 w .2 17.7 x .2 2 17.7 x .2 0 16.0 0 0 65.4 65.4 0 30.8 0 0 3.8 s 30.8 30.8 0 3.8 0	Backfat, mm	6.80 W	15.	5.64 wx	.50	6.59 w	15.	5.09 ×	.52	.03	.07
657** 17 517* 17 519.1 19.1** .2 17.7* .2 16.0 0 80.0 65.4 4.0 30.8 0 33.8	KPH, %	3.3*	- .	2.0×	₹.	3.1 w	۳.	1.8 ×	₹.	.000	.001
19.1 W .2 17.7 × .2 16.0 0 0 80.0 65.4 30.8 4.0 30.8 0 0 3.8	Marbling score	657 w	17	517×	17	533 ×	17	456 ^y	8	.000	.001
16.0 0 80.0 65.4 4.0 30.8	Quality grade ^d	19.1 w	4	17.7×	7	17.8×	4	16.8 ^y	4	.000	.001
80.0 65.4 4.0 30.8 rd 0 3.8	% Prime	16.0		0		0		0			
4.0 30.8 0 3.8	% Choice	80.0		65.4		72.0		25.0			
0	% Select	4 .0		30.8		28.0		2.99			
	% Standard	0		3.8 8.		0		8 9			
Calculated 3.0 ° .1 2.5 ° .1 yield grade	Calculated yield grade	3.0 **	₹.	2.5 ×	- .	3.0 %		2.5 ×		.0001	.001

*Least square means.

Probability of contrast: C-C and bST-C vs. C-bST and bST-bST.

°400 = slight, 500 = small, 600 = modest, 700 = moderate. °16 = low select, 17 = high select, 18 = low choice, 19 = average choice.

^{J,k}Means with unlike superscript letters differ (P < .10). ***Means with unlike superscript letters differ (P < .05).

Calculated yield grade of C-bST and bST-bST carcasses were 16.7% lower (P < .05) than C-C and bST-C carcasses.

Semitendinosus muscle, liver, lung, and spleen weights did not differ between treatments of the intermediate-harvest group (Table 2-9). Steers receiving bST during the first part of the study had smaller hearts relative to BW than control steers, but bST steers tended to have larger (P < .10) kidney weights on an absolute (9.2%) and relative (7.1%) basis than control steers.

At the conclusion of the study, C-bST and bST-bST steers had 6.9% greater (P < .05) STMUS than C-C steers (Table 2-10). Relative to BW, C-bST steers had 5.2 % greater (P < .05) STMUS than C-C steers. Relative to HCW, bST-C and bST-bST steers had 7.8 and 6.3% greater (P < .05) STMUS than C-C steers. Liver weights of bST-bST steers were 7.5% greater (P < .05) than C-C steers. Steers receiving bST throughout the entire study (bST-bST) had 16.3, 12.5, and 11.1% greater (P < .05) spleen weight than C-C, C-bST, and bST-C steers, respectively. When expressed on a carcass weight basis, bST-bST steers had 11.4 and 9.6% greater spleen weights than C-C and C-bST steers. The bST-bST steers had 23, 10.4, and 12.6% greater (P < .05) kidney weight than C-C and C-bST and bST-C steers. Absolute kidney weights of C-bST steers were 11.3% greater (P < .05) than C-C steers. Relative to BW, bST-bST steers had 18.9 and 9.6% greater (P < .05) kidney weight than C-C and bST-C steers.

Carcass bone content of the intermediate-harvest group was similar among treatments (Table 2-11). Lipid content of bST carcasses were 11% less

Table 2-9. Effect of bovine somatotropin on intermediate-harvest semitendinosus muscle and internal organ weights^{a,b}

		Tr	eatments		Pro	bability
Basis	Control (C-C, C-bST)	SE	bST (bST-C, bST-bST)	SE	Model	
		Ser	mitendinosus muscle wt.			
g	1610	44	1626	42	.16	.79
g/kg BW	3.66	.08	3.63	.08	.28	.75
g/kg HCW	6.51	.13	6.48	.12	.31	.89
			Liver wt			
g	5918	189	6034	182	.86	.66
g/kg BW	13.54	.45	13.49	.44	.28	.94
			Lung wt			
g	6000	179	5775	173	.80	.37
g/kg BW	13.73	.40	12.92	.39	.08	.16
			Spleen wt			· · · · · · · · · · · · · · · · · · ·
g	929	45	1011	43	.36	.20
g/kg BW	2.11	.10	2.26	.09	.64	.31
			Heart wt			
g	1653	.03	1550	45	.12	.13
g/kg BW	3.78	.10	3.46	.10	.08	.03
			Kidney wt			
g	1172	35	1280	35	.28	.04
g/kg BW	2.67	.08	2.86	.08	.16	.08

<sup>Least square means.
d 199 of study, steers received last treatment on d 168.
for contrast Control versus bST.</sup>

Table 2-10. Effect of treatment on final-harvest semitendinosus muscle and internal organ weights.

				Tre	Treatments				Pro	Probability
Basis	၁	SE	C-bST	SE	bST-C	SE	bST-bST	SE	Model	Contrast ^b
				- Semitendi	Semitendinosus muscle, wt.					
5)	2289×	51	2447 w	51	2393 WX	51	2446 W	52	6	4 0.
g/kg BW	3.83 ×	.07	4.03 W	70.	3.92 WX	.07	3.93 WX	20.	.17	<u>4</u> .
g/kg HCW	6.39 ×	12	6.89 ₩	12	6.61 wx	12	6.79 w	.12	.03	.005
					– Liver, wt. —					
5)	6935 ×	161	7130 wx	159	7159 WX	161	7453 W	164	.23	£.
g/kg BW	11.61	24	11.74	24	11.76	2 2	11.97	.25	12.	.50
					– Lung, wt. —					
53	7098	174	7308	172	7320	175	7360	182	70.	84.
g/kg BW	11.90	.29	12.04	.29	12.01	.29	11.87	.30	.27	66.
					Spleen, wt					
D	1098 [×]	39	1135×	39	1149×	40	1278 W	40	.03	40.
g/kg BW	1.84 ×	8 .	1.87 ×	90:	1.89 WX	.07	2.05 W	.07	11.	4

Table 2-10. (cont'd)

Basis C-C SE g 2005 50 g/kg BW 3.36 .08	SE		Irea	Treatments				Prot	Probability
2005 50 Kg BW 3.36		C-bST	SE	bST-C	SE	bST-bST	SE	Model	Model Contrast ^b
2005 50 Ng BW 3.36				- Heart, wt					
3.36	_	2076	49	2104	20	2122	51	60.	.38
	80.	3.43	80.	3.46	80.	3.41	60:	60	.92
				Kidney, wt					
g 1210 42		1347 ^X	14	1322 ^{xy}	4	1488 W	42	.0001	.001
g/kg BW 2.01 ^x .07	.07	2.21 WX	90:	2.18 ×	90.	2.39 W	.07	.0002	.002

*Least square means.

*Probability of contrast C-C and bST-C versus C-bST and bST-bST.

****Means with unlike superscript letters differ (P < .05).

Table 2-11. Effect of bovine somatotropin on intermediate-harvest carcass composition and tissue accretion rates^{a,b}

		Tre	eatments		Pro	bability
Trait	Control (C-C, C-bST)	SE	bST (bST-C, bST-bST)	SE	Model	Contrast c
		— Car	cass composition, % –			
Bone	16.7	.3	17.4	.3	.41	.12
Protein	14.2	.2	14.3	.2	.71	.69
Lipid	21.2	.8	18.7	.8	.20	.03
Water	48.8	.5	50.1	.5	.14	.07
		Prot	ein accretion rates, g/d			
d 0 to 199	85.7	3.7	90.6	3.5	.65	.34
		Lip	id accretion rates, g/d –			
d 0 to 199	220.9	10.3	193.8	9.9	.17	.07

^{*}Least square means.

^bd 199 of study, steers received last treatment on d 168.

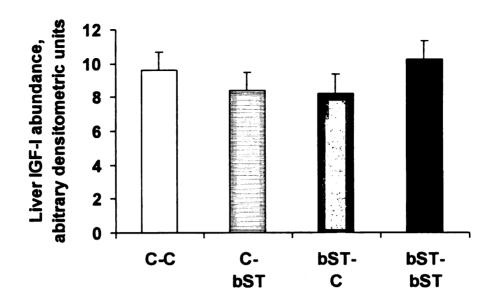
[°]Probability of contrast Control versus bST.

(P < .05) and water content 4% greater (P < .10) than control carcasses. Carcass protein accretion rates were similar among treatments, but lipid accretion of bST carcasses from d 0 to 199 tended to be 11% lower (P < .10) than in control steers.

Steers receiving bST throughout the entire experiment had the greatest increase (P < .05) in carcass bone, protein, and water composition and the greatest decrease (P < .05) in carcass lipid relative to C-C carcasses (Table 2-12). Steers which received bST during only one part of the study (C-bST and bST-C) had greater (P < .05) carcass bone, protein, and water; and lower (P < .05) lipid content than C-C steers, but not to the extent of the bST-bST treatment. Steers receiving bST only during the latter part of the study had greater bone and less lipid than bST-C steers.

Steers receiving bST during the latter part of the study (C-bST and bST-bST) had 18.6 and 14.3% greater (P < .05) protein accretion from d 199 to harvest than C-C steers. Overall, bST-bST had the greatest protein accretion, followed by bST-C steers, C-bST steers and C-C steers. Lipid accretion was reduced (P < .05) 39.8% for steers receiving bST during the latter portion of the study as compared to C-C and bST-C steers from d 199 to harvest. Overall, bST-bST had the lowest lipid accretion (P < .05) followed by C-bST, bST-C, and C-C steers.

Abundance of IGF-I mRNA in the liver was similar for all treatments following final harvest of Block 1 steers (Figure 2-4, top panel). Serum IGF-I concentrations were 310% greater (P < .05) in C-bST and bST-bST steers 7 d after final treatment as compare to C-C and bST-C steers (Figure 2-4, bottom panel). Fourteen days following final treatment, bST-bST and C-bST steers had 268% and


Table 2-12. Effect of treatment on final-harvest carcass composition and tissue accretion rates

				Treatments	nents				Pro	Probability
Trait	ပ	SE	C-bST	SE	bST-C	SE	bST-bST	SE	Model	Contrast ^b
				- Carcas	Carcass composition, %	on, % —				
Bone	14.92	7	16.1×	6	15.4 ^y	6	16.8	6	.000	.00
Protein	13.6 ^y	<u></u>	14.3×	-	14.2×	<u> </u>	14.7 "	√.	.000	.00
Lipid	27.5	ĸ	22.6	ινί	24.5×	73.	20.12	.	.000	.00
Water	45.9 ^y	4	48.5×	4	47.4×	4	49.5	4	.000	.00
				- Protein	Protein accretion rates, g/d	ates, g/d				
d 199 to harvest ^c	88.7×	4.1	101.4*	4 .0	94.3 wx	4 .	105.2 "	4.2	.007	.005
d 0 to harvest	86.0 ^y	2.1	92.6×	2.1	93.6 wx	2.1	» 0 [.] 66	2.1	.0005	.005
				- Lipid a	Lipid accretion rates, g/d	es, g/d -				
d 199 to harvest ^c	302.0*	4.4	183.3×	14.2	267.8	4.4	159.4×	14.7	.000	.001
d 0 to harvest	253.6	8.0	203.4 v	6.7	226.3×	8 .	180.8²	6.9	.000	.00

^{*}Least square means.

*Probability of contrast C-C and bST-C versus C-bST and bST-bST

^cAverage intermediate harvest treatment values were used to calculate d 199 composition. $^{\text{wxyz}}$ Means with unlike superscript letters differ (P < .05).

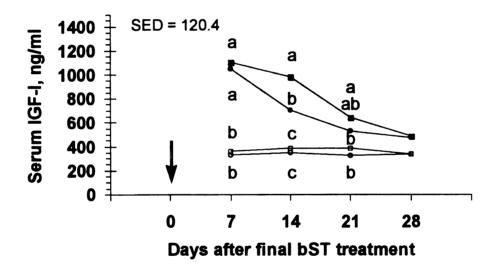


Figure 2-4- Top panel -Effect of treatment on liver IGF-I mRNA abundance from Block 1 final harvest steers. Bottom panel - Serum IGF-I concentrations 7 to 28 d following the last treatment in C-C (\circ), C-bST (\bullet), bST-C (\square), or bST-bST (\blacksquare) Block 1 steers. ^{a,b,c}Means with unlike superscripts differ (P < .05).

192%, respectively, greater serum IGF-I concentrations than C-C and bST-C steers. Serum IGF-I concentrations of bST-bST steers was 181% greater 21 d after final treatment than C-C and bST-C steers. All treatments had similar serum IGF-I concentrations 28 d after final harvest.

Discussion

IGF-I Concentration. An increase in serum IGF-I concentration in bST-treated steers is consistent with previous research (Enright et al., 1990; Moseley et al., 1992; Roeder et al. 1994; Preston et al., 1995). Roeder et al. (1994) observed elevated IGF-I concentrations with peak concentrations (30% above pretreatment values) being reached 40 h after an initial 160 mg bST/kg BW treatment. Preston et al. (1995) saw a 20% increase in serum IGF-I concentration after 14 d of administration. This increase is considerably less than the present study's 151% increase. In Roeder et al. (1994), serum bST concentrations peaked one day after a single bST treatment and were back to pretreatment values after three days, but serum IGF-I concentrations did not drop as rapidly. After 22 wk of bST administration to steers, Enright et al. (1990) demonstrated that IGF-I concentrations returned to control concentrations five days after the last treatment of 40 µg/kg BW. In the present study, IGF-I concentration returned to base line 14 to 28 d after the last bST treatment, with the difference due to an increased dosage.

Feedlot performance. Preston et al. (1995) did not find a difference in final BW after 84 or 119 d of bST treatment. Moseley et al. (1992) found a decrease in final BW with bST concentrations above 33 µg/kg BW, because ADG was significantly

reduced, and at a dose of 300 µg/kg BW, the severe reduction in ADG prevented harvest at a similar weight endpoint.

Previous research has shown a 4 to 24% increase in ADG of feedlot cattle with bST administration (Early et al., 1990, Moseley et al., 1992, Preston et al., 1995, Rumsey et al., 1996). Moseley et al. (1992) found that ADG increased in cattle receiving up to 33 µg bST/kg BW but no further increase was observed with 66, 100, or 300 µg bST/kg BW. Rumsey et al. (1996) observed the greatest increase in ADG with 100 µg bST/kg BW, whereas, Preston et al. (1995) saw a modest 4% increase in ADG with 12.5 and 25 µg bST/kg BW daily.

The present study only observed an increase in ADG within the first 182 d of the study. This is consistent with Early et al. (1990a) which reported an increase in ADG during the first 8 d of a 112 d study. Both Rumsey et al. (1996) and Preston et al. (1995) used short-study periods (56 and 84 to 119 d, respectively). Therefore, it appears that bST may increase in ADG in the short term, but may not show improvement in longer-term studies (> 300 d).

The lack of response in ADG during the latter part of the study may be a function of dietary CP content. Rumsey et al. (1996), Early et al. (1990a), Moseley et al. (1992), and Preston et al. (1995) used diets containing 21, 16.7, 16.5 and 13.9% CP, respectively. These values are considerably higher than the 11.5% used by the author during the latter part of this study. The CP content used by the author was sufficient to allow .85 to 1.37 kg of ADG based on the low and high treatment DMI, respectively (NRC, 1984). The compounding effect of reduced intakes associated with bST is discussed later.

The effect of bST on DMI is not consistent among previous studies. Rumsey et al. (1996) observed an increase in DMI with bST administration, Preston et al. (1995) and Moseley et al. (1992) reported a decrease with increasing levels of bST, and Early et al. (1990a) saw no effect. McBride and Moseley (1991) suggest that in animals which may have deposited fat, the administration of bST increases the amount of circulating nutrients which can not be fully utilized by the animal, therefore, the animal reduces its DMI to compensate. Conversely, animals which are growing rapidly and have little body fat may need to increase intake to satisfy nutrient demand as a result of bST administration. Rumsey et al. (1996) started with light-weight cattle (182 kg), whereas, Preston et al. (1995) and Moseley et al. (1992) used cattle that were heavier (378 kg and 393 kg, respectively), and Early et al. (1990a) used cattle which were intermediate (229 kg) in size. In the present study, DMI intake was not affected by bST treatment during the initial 182 d of the study. The largest decrease in intake was observed in C-bST steers which only received bST during the latter part of the study. These steers had greater body fat than the bST-bST and bST-C steers after 182 d of bST administration, and therefore, would fit the theory suggested by McBride and Moseley (1991).

As discussed previously, the lower CP concentration of the diet and reduced DMI associated with bST treatment may have prevented expression of increased gain with bST administration. Research in pigs have shown that the supplementation of additional lysine and CP allows greater bST-mediated gains (Krick et al., 1993). Additionally, there is evidence that cattle implanted with anabolics have greater potential for growth if fed diets higher in CP content (Bartle

and Preston, 1994).

Either by increasing ADG, decreasing DMI, or both, feed efficiency increases with bST administration. The present study demonstrated an increase in efficiency during the latter part of the study which is in agreement with Preston et al. (1995), Rumsey et al. (1996), and Early et al. (1990a). Moseley et al. (1991) saw an increase in feed efficiency with increasing bST concentration up to 100 μg bST/kg BW. At 300 μg bST/kg BW, ADG was reduced so drastically in relation to DMI, that efficiency decreased.

Skeletal and bone growth. Although hip height increased 5 cm (3.3%) from C-C to bST-bST steers, increased length of the metacarpal (front limb bone) was not apparent. Loy et al. (1988) also observed an increase in hip height in estrogenic-implanted steers over controls steers without a corresponding increase in metacarpal length. Early et al. (1990b) observed a 1.3 cm increase in humerus length in steers administered bST, but not in the length of the femur, tibia or radius. The question then arises whether there was differential bone growth rates between the front and rear limbs; do non-significant increases in length occur in multiple bones with an additive effect; or do changes in the angle of joints occur to increase hip height?

Bovine ST administration increased lateral width, lateral depth, circumference, and bone surface area of the metacarpal bone; and the percent bone in the carcass. This is in agreement with research in ewe lambs receiving bST (Johnsson et al., 1985). In contrast to the present study, Johnsson et al. (1985) did not see a change in bone density. Johnsson et al. (1985) observed an

increase in bone circumference of the femur and humerus. Daily growth in circumference was also observed in the femur of bST-treated steers (Early et al., 1990b). In the current study, increased skeletal growth was evident after 182 d of bST administration by greater hip height, although no other measure were affected at that time.

The proximal epiphysis of cattle ossifies when cattle are 18-24 months of age (Emara, 1937 and Sisson, 1953 as referenced by Grant et al., 1972). Therefore, bST should have been able to stimulate long-bone growth throughout the study. This is supported by the fact that the bST-bST steers had the greatest hip height for the entire experiment, bST-C and C-bST steers were intermediate, and C-C has the shortest hip height. There was no difference in daily hip height gain between C-bST and bST-bST during the latter part of the study, suggesting that bST continued to have the ability to stimulate long-bone growth. It is obvious that long-bone growth decreased by two-thirds from the first part of the study to the second, which is in agreement with the sigmoidal growth curve of meat animals in which bone matures first (Boggs and Merkel, 1993).

Using data from both the intermediate and final harvest groups, hip height was positively correlated with metacarpal length (r = .53, P < .01), lateral width (r = .50, P < .01), lateral depth (r = .51, P < .01), TCA (r = .53, P < .01), and MCA (r = .23, P < .01). Metacarpal length was negatively correlated with bone density (r = .28 P < .002), positively correlated with lateral width (r = .28 P < .002) lateral depth (r = .32 P < .001), bone circumference (r = .32 P < .001), TCA (r = .36, P < .001), and bone area (r = .38, P < .001).

Carcass measurements. Moseley et al. (1992) observed a significant linear decrease in HCW with increasing amount of bST administration (0 to 300 µg bST/kg BW). Preston et al. (1995) found no affect of bST on HCW, but Rumsey et al. (1996) found an increase in HCW with bST treatment. Moseley et al. (1992) and Early et al. (1990a) found a decrease in DP with bST administration. The present study did not see an affect on HCW but did see a decrease in DP. The cause for the decrease in DP was a result of an increase in NCW at final harvest. Early et al. (1990b) attributed 75% of the increase in NCW to an increased weight of the gastrointestinal tract (GIT), but this was not evident in Rumsey et al. (1996) data and was not measured in the present study. Therefore most of the weight gained as a result of bST treatment would end up in the offal bin and not on the rail.

Early et al. (1990a) theorized that by administering bST to younger, light-weight cattle, the carcass component could be increased to a greater extent than the noncarcass components. The present study started with cattle that were 45 kg lighter and used a higher dose of bST throughout the study than Early et al. (1990a). Not only did the present study not see an increase in the carcass component as compared to NCW, but NCW was increased to a greater extent than that observed by Early et al. (1990a) which may be the result of harvesting Holstein steers 226 kg heavier than the Herefords used by Early et al. (1990a).

Ribeye area was only greater in C-bST steers as compared with bST-C steers, and there was not difference between control and bST-treated steers. Preston et al (1995) and Peters (1986) did not see an increase in REA with bST administration, but Moseley et al (1996) observed a 4 to 8% increase with bST

doses of 8.25 to 300 µg bST/kg BW.

As discussed, bST was a potent modifier of carcass fat. After 182 d of treatment, bST reduced KPH fat percent, marbling score, USDA quality grade, and the number of carcasses grading USDA choice. At the conclusion of the study, backfat was also reduced. Peters (1986) observed a 24% reduction in backfat with bST administration following 29 d of treatment. Moseley et al. (1992) saw a 9 to 62% reduction in backfat and a 17 to 95% reduction in the percent of carcasses grading USDA choice. The 95% reduction was in steers receiving 300 µg bST/kg BW which failed to reach market weight. At 100 µg bST/kg BW, 70% fewer carcasses graded USDA choice. Preston et al. (1995) documented a linear decrease in backfat (15%), KPH fat (28%), marbling score (6%), and percent USDA choice (58%) with daily treatments of 0, 25 and 51 µg bST/kg BW. However, Early et al. (1990a) did not see a difference in backfat or Canadian carcass grade in bSTtreated cattle. As fat decreased, red meat yield increased in the present study as evidenced by a reduction in yield grade. This agrees with Preston et al. (1995) in which bST reduced yield grade scores by 12.5%.

In this experiment, long-term bST administration increased the weight of STMUS both in absolute and relative terms, but did not increase REA, as discussed. Early et al. (1990b) and Eisemann et al. (1989) did not see a significant effect of bST on the STMUS. Early et al. (1990b) demonstrated that bST increased vastus lateralis daily muscle growth 42%. Eisemann et al. (1989) observe an 11% increase in longissimus weight but not relative to empty BW. In regards to muscle groups (primal cuts of the carcass), Early et al. (1990b) observed an increase in the

flank and shank primals, and hypothesized that the flank increased to accommodate the larger GIT in bST animals. Additionally, Butler-Hogg and Johnsson (1982) observed greater muscle weight in ewe lambs treated with bST. Beermann et al. (1990) showed an increase in STMUS with porcine ST administration up to 120 µg pST/kg BW which was due to individual muscle fiber hypertrophy.

Noncarcass weight was increased with long-term bST administration. A portion of this increase occurred in the internal organs. In this study, the liver, spleen, and kidney were increased in absolute values and the spleen and kidney increased in relative value with bST administration. This agrees with Moseley et al. (1992), Early et al. (1990b) and Rumsey et al. (1996), who reported increased liver and kidney weights with bST treatment. Rumsey et al. (1996) observed an increase in spleen and heart weight, but Early et al. (1990b) did not. Early et al. (1990b), however, observed an increase in lung and trachea weight with bST administration.

Early et al. (1990c) observed a greater whole-body protein accretion with bST administration, but this was due to greater noncarcass protein accretion and not that of the carcass. In another study, protein accretion was increased 22% with bST administration in Angus-Hereford crossbred steers (Rumsey et al., 1996). The lower dietary CP in the present study may not have allowed the greatest nutrient repartioning to take place and limited protein gain and total ADG as discussed.

Somatotropin decreased lipid accretion to a greater extent when lipid accumulation was the greatest (12.5% from d 0 to 199 and 43% from d 199 to harvest). Rumsey et al. (1996) demonstrated a 23.5% decrease in lipid accretion

after 56 d of bST administration in light-weight cattle (182 kg initial weight, and 266 kg average final weight.) with a 100 µg bST/kg BW dose. Even though bST does decrease lipid accretion, it does not prevent it entirely.

Liver IGF-I mRNA concentration. No differences were found in liver IGF-I mRNA at harvest. Insulin-like growth factor-I mRNA abundance has been shown to increase in the porcine liver (Grant et al. 1991; Coleman et al., 1994; Ramsay et al., 1995), adipose tissue (Coleman et al., 1994; Ramsay et al., 1995), and to a smaller extent in the vastus lateralis muscle (Ramsay et al., 1995) of pigs following pST treatment. Brameld et al. (1996) observed an increase in IGF-I mRNA in STMUS of pST-treated pigs, whereas Ramsay et al., (1995) found no response. Both Coleman et al. (1994) and Ramsay et al. (1995) observed no increase in IGF-I mRNA in the longissimus muscle of pST-treated pigs. Additionally, Johnson et al. (1998) demonstrated a 150% increase in liver IGF-I mRNA in wether lambs 24 days after implantation of a combined trenbolone acetate-estradiol implant with a concomitant increase in blood IGF-I concentrations. In the present study, serum IGF-I concentrations were similar to control steers 28 d post-administration of bST and would explain the lack of difference in mRNA abundance. The abundance of IGF-I mRNA decreases rapidly after reaching its peak stimulation by ST. Matthews et al. (1986) and Isgaard et al. (1989) demonstrated the rise to peak quantities and a return to pretreatment values of IGF-I mRNA abundance in the liver and gastrochemius muscle, respectively, within 12 h after a single ST injection in mice.

Carcass Value. On an economic basis, the goal of using bST is to produce greater quantities of red meat without sacrificing the quality of the product which

would make it unacceptable to the consumer. Using an average grid pricing system (USDA, 1998) based on quality grade, yield grade and HCW; Table 2-13 demonstrates the premiums and discounts using average treatment values. All carcasses fell within the acceptable HCW range (250 to 431 kg, 550 to 950 lb). Although C-bST and bST-bST carcasses had lower yield grades and therefore greater cutability, the added value of the increased lean did not compensate for the reduced quality grade, and would be valued at \$41.64 less than C-C carcasses. Carcasses from bST-C steers are not only discounted for quality grade, but also are discounted for yield grade and, therefore, had \$50.26 lower carcass value than C-C carcasses.

Some of the loss in carcass value could be offset by the lowered DMI and reduced feed cost, but handling charges (every two weeks) or cost of the product would need to be accounted for as well. A leaner carcass that contains an acceptable quality is difficult to produce especially when marbling is the last fat to be deposited and its during this period that bST has its greatest negative influence on fat accretion. Before the use of bST is looked at seriously, the premium between yield grades 2 and 3 needs to be increased to be adequately rewarded for production of lean meat.

Implications

Administering bovine somatotropin to young, light-weight Holstein steers did increase skeletal growth and reduce carcass fat content, thereby producing a leaner product. Somatotropin increased weight of noncarcass components

Table 2-13. Effect of treatment on carcass premium, discounts, and value a,b

		Treatn	nents —	
Criteria	C-C	C-bST	bST-C	bST-bST
Car	cass Value Ad	ljustments, \$/k	(g ———	
Quality grade ^c	0	14	14	14
Yield grade ^d	002	.022	002	.022
Total	002	118	142	118
	Carcass V	alue, \$		
Deviation from base •	72	-42.36	-50.98	-42.36

^{*}Based on the National carcass premiums and discounts for harvest steers and heifers (USDA Market News, June 29, 1998).

^bUSDA choice base.

^cAdjustments for quality grade: Select (\$-.14/kg).

^dAdjustments for yield grade: 2.5 - 3.0 (\$+ .022/kg), 3.0 - 3.5 (\$- .002/kg).

^{*}Based on total carcass value adjustments x 359 kg average carcass weight and represents the deviation from the value of a USDA choice carcass.

without increasing carcass weight. Steers receiving somatotropin during the entire study showed the greatest effects with the majority of lipid reduction occurring during the latter part of the study. Somatotropin did increase protein accretion and therefore red meat yield, but not to the extent that would compensate, economically, for the loss in carcass quality. Additionally, the use of bovine somatotropin would not be practical until a longer delivery mechanism is developed.

Chapter 3

LONG-TERM BOVINE SOMATOTROPIN ADMINISTRATION TO GROWING-FINISHING HOLSTEIN STEERS DECREASED LIPOGENESIS AND INCREASED LIPOLYSIS^{1,2}

Abstract

The objective of this study was to determine whether long-term bovine somatotropin (bST) administration to Holstein steers would alter measures of lipogenesis and lipolysis in growing-finishing Holstein steers. Twenty-eight Holstein steers (460 kg) were blocked by weight (2 replicates /block) and randomly assigned to initial harvest (8 steers), control (no bST, C; 10 steers) or bST (100 µg/kg BW, 10 steers) treatment. Treatments were administered daily via s.c. injection during the 115 d study. Steers were individually penned indoors (3.9 m²) with ad libitum access to water and a diet containing whole-shelled corn, soybean meal, and a pelleted supplement. Blood was collected via jugular venipuncture on d 0, 3, 17, 30, 52, and 87 and analyzed for plasma IGF-I, insulin, glucose, glycerol and NEFA. Three perirectal adipose tissue (AT) biopsies were collected from each steer, one during each of the periods 5 to 16 d prior to treatment, 40 to 49 d, and 103 to 112 d of the trial. Lipogenesis was measured in triplicate in vitro as tritium incorporation into fatty acids, fatty acid synthase activity, and NADP-isocitrate dehydrogenase activity. Lipolysis was measured in triplicate in vitro by glycerol release into the

¹ The author would like to acknowledge the contribution of bovine somatotropin to the study by Lilly Research Laboratories, Greenfield, IN.

² The author would like to thank Patty Weber, Sharon Debar, and Michelle Mater for their laboratory assistance and expertise.

medium with and without epinephrine stimulation. In vivo lipolytic potential was determined by dose response-epinephrine challenges administered intravenously beginning on d -24, 32 and 95, with a single epinephrine concentration $(0, .1, .2, .4, .8, 1.2, and 1.6 \,\mu g/kg \,BW)$ administered each day for seven consecutive days. Plasma NEFA responses were measured over a 20 min period after the epinephrine challenge. Bovine ST chronically increased (P < .05) plasma glucose, glycerol, IGF-I, insulin, and NEFA concentrations. Lipogenesis, measured as tritium incorporation and fatty acid synthase activity in AT, was reduced (P < .10) after 40 d of treatment in the bST group. Basal glycerol release was increased (P < .05) after 103 d of bST treatment. Maximum response to the epinephrine challenge was increased in bST steers during challenges after 6 and 15 weeks of treatment. Based on this study, bST treatment decreased lipogenesis and increased lipolysis in AT of growing-finishing Holstein steers in positive energy balance.

Key Words: Steers, Somatotropin, Lipogenesis, Lipolysis

Introduction

The initial experiment conducted by this author (Chapter 2) demonstrated a decrease in carcass lipid, backfat, kidney-pelvic-heart (KPH) fat, marbling score, USDA quality grade, and calculated yield grade of bovine somatotropin (bST)-treated steers. Treatment with bST reduced daily lipid accretion 12% during the first 182 d of treatment, and 20 to 29% the last 172 d of the study as compared to controls. Fat accretion increased 37% in control steers as time on feed increased whereas fat accretion decreased 18% for steers receiving bST. Clearly, bST had

a significant effect on the lipid deposition of steers, especially during the period when fat accretion was accelerated.

The decrease in carcass lipid can be accomplished through decreased lipogenesis or increased lipolysis. Somatotropin treatment has been shown to reduce fatty acid synthesis (Vernon, 1982; Walton and Etherton, 1986; Sinnett-Smith and Woolliams, 1989), fatty acid synthase activity (FAS, Harris et al., 1993; Kramer et al., 1993), and fatty acid sythase mRNA protein (Harris et al., 1993). In more recent studies, ST has been shown to increase lipolysis through increased number of β -adrenergic receptors (Watt et al., 1990) and the reduced inhibitory effects of adenosine and prostaglandin E_1 and E_2 (Doris et al., 1996). While most studies have concentrated on the ruminant at maintenance or lactation, this study will evaluate the influence of bST on growing animals in positive energy balance. Specifically, the objective of this experiment was to determine the effects of long-term bST administration to Holstein steers on lipogenesis and lipolysis throughout the growing-finishing period.

Materials and Methods

Animal management. This project was approved by the Michigan State University All-University Committee on Animal Use and Care (AUF# 06/94-141-01) and conducted under an INAD (6673-C004 - Bovine somatotropin) issued to Michigan State University. Twenty-eight Holstein steers (460 kg) were individually identified; vaccinated against IBR, Pl₃, and Clostridial organisms; and implanted with estradiol benzoate-progesterone (Implus, The Upjohn Co., Kalamazoo, MI).

Steers were selected from a larger group of 40 steers to provide experimental units that were uniform in BW, frame size and body condition. The steers were blocked by weight and randomly assigned to 1 of 3 groups; initial harvest (8 steers); placebo-treated (control, 10 steers), or bST-treated (10 steers). The initial harvest group was used to determine initial carcass characteristics and composition. The remaining 20 steers were housed in an environmentally controlled room (12 h light: 12 h dark) in individual slotted-floor pens (2.0 m x 1.8 m, 3.6 m²) with ad libitum access to feed and water.

Steers were adapted to the environment and fed a whole-shelled corn and pellet diet for 10 d prior to initiation of the study (Figure 3-1). On a DM basis, the diet contained 86.3% dry, whole-shelled corn; 12.4% protein-mineral pellet (Table 3-1); and 1.3% soybean meal. The diet was formulated to contain 14% CP (13.4% actual CP) and met NRC (1984) requirements for minerals and vitamins. Steers were fed twice daily, 60% at 0800 and 40% at 1500. Sufficient feed was offered to allow 5% to remain. Orts were weighed daily. Steers were removed from their pens weekly, weighed, had blood collected, and turned into a common outdoor dirt exercise lot for two hours.

To assess in vivo lipolysis, epinephrine challenges were conducted on d -24 to -18, d 32 to 38, and d 95 to 101 (Figure 3-1). In vitro measures of lipogenesis and lipolysis were performed on adipose tissue (AT) from biopsies collected between d -16 to -5, d 40 to 49, and d 103 to 112 of the study. Details of the epinephrine challenge and AT biopsies are discussed later. One control steer was

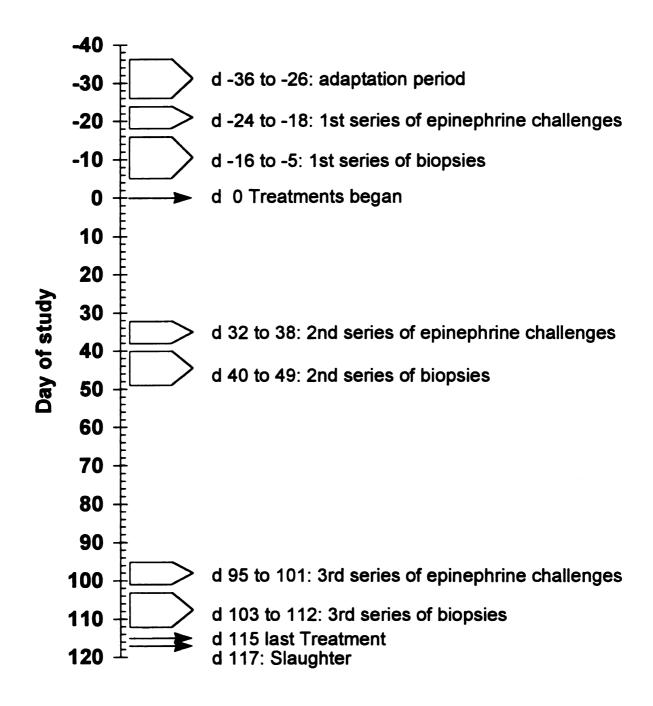


Figure 3-1 - Schedule of epinephrine challenges and adipose tissue biopsies.

Table 3-1. Guaranteed analysis and ingredient content of the pelleted supplement ^a

Nutrient	Guaranteed analysis
Crude protein, minimum b	50.0%
Crude fat, minimum	.4%
Calcium, minimum	5.0%
Calcium, maximum	6.0%
Phosphorus, minimum	1.0%
Salt (NaCl), minimum	2.0%
Salt (NaCl), maximum	2.5%
Potassium, minimum	2.0%
Vitamin A, minimum	22000 IU/kg
Active Drug Ingredient	Content
Monensin Sodium	220 mg/kg
Tylosin phosphate	66 mg/kg

^{*}Ingredients: soybean meal, calcium carbonate, urea, flash dried blood meal, corn distillers dried grains with solubles, salt, vitamin A acetate, D-activated animal sterol (source of vitamin D_3), vitamin E supplement, calcium iodate, manganous oxide, ferrous sulfate, copper sulfate, cobalt carbonate, zinc oxide, sodium selenite.

^bDoes not included more than 18.5% equivalent CP from non-protein nitrogen.

removed from the study on d 17 due to lameness.

Treatments. A daily placebo or bST injection (100 µg/kg BW, Lilly Research Laboratories, Greenfield, IN) were administered subcutaneously in the mid-thoracic region just caudal to the shoulder between 0800 and 0900. The treatment was divided between two injection sites each day and alternated daily between the left and right side of the animal. Every two days, crystalline bST (Somidobove, Elanco Products Co., Indianapolis, IN, 92% potent, Lot # 014BM3) was dissolved in .01 M sodium phosphate buffer and adjusted to pH 7 at a concentration of 1 mg bST/ml. Control steers received .1 cc of .01 M sodium phosphate buffer /kg BW. Dosages of treatments were adjusted weekly based on BW and continued through d 115 (116 treatments). Treatment concentration remained constant and volume of treatment varied to deliver the required dose.

Bovine somatotropin absorption time course. Prior to the third series of epinephrine challenges (d 94), the rate at which bST was absorbed from a s.c. injection into the peripheral circulation was determined. The animals were fitted with an indwelling jugular catheter on the previous day. Blood samples were collected every 30 min beginning at 0630 and continued to 1800 for a total of 24 samples. Steers received treatments between 0730 and 0800 and were fed at 0930 and 1500. The blood was collected in a 10 cc syringe and dispensed into a 7 ml, sterile blood-collection tubes containing 10.5 mg EDTA and .014 mg potassium sorbate (Vacutainer Brand, Becton Dickinson and Co., Rutherford, NJ) to prevent coagulation. The filled tube was inverted several times and chilled in an ice water bath until centrifugation. Plasma was separated by centrifugation at 959 x g

(Beckman J2-21 refrigerated centrifuge, Beckman Instruments Inc. Palo Alto, CA) for 20 min at 4 °C and stored in 12 x 75 mm polypropylene tubes (Sarstedt, Newton, NC) at -20 °C until analyzed. Plasma bST concentration was determined with a double antibody radioimmunoassay (RIA, Gaynor et al., 1995).

Plasma metabolite and hormone analyses. Blood samples were collected on d 0, 3, 10, 17, 24, 30, 52, 59, 73, and 87 by jugular venipuncture into 7 ml, sterile blood-collection tubes containing 10.5 mg EDTA and .014 mg potassium sorbate (Vacutainer Brand, Becton Dickinson and Co., Rutherford, NJ); and processed and stored as described earlier.

Plasma insulin-like growth factor-I (IGF-I) was measured by RIA (Sharma et al., 1994) after removal of insulin-like growth factor binding proteins by formic acid-ethanol extraction (Bruce et al., 1991; Sharma et al., 1994). Plasma nonesterified fatty acid (NEFA) concentrations were analyzed with an enzymatic kit (WAKO Chemicals, Dallas, TX) using a 96-well, micro-plate as described by Johnson and Peters (1993) and used the procedures of McCutcheon and Bauman (1986) to dilute reagents. Plasma glycerol concentrations were determined with a enzymatic kit (Procedure No. 337, Sigma Chemicals, St. Louis, MO) by placing 20 µl of sample into 1 ml of triglyceride (GPO-Trinder) blank reagent. Concentrations of plasma glucose were assayed by a enzymatic kit (Procedure 510, Sigma Chemicals, St. Louis, MO). Plasma insulin was analyzed using an ImmuChem™ Coated Tube ¹²⁵I RIA kit (ICN Pharmaceuticals, Inc., Costa Mesa, CA).

Animal performance. Animal performance was characterized by body weight (BW), average daily gain (ADG), daily dry matter intake (DMI) and feed efficiency.

Initial and final weights were determined from the average of weights taken on two consecutive days (d -1 and 0, and d 115 and 116). Feed intake was determined daily and averaged across the periods d 0 to 30 and d 31 to 115. Samples of all feed ingredients were collected daily, composited weekly, and analyzed for dry matter (DM, 48 h in a 55 °C oven) and crude protein (CP, total-Kjeldahl N, CP = N *6.25, Technicon auto-analyzer system, Bran + Luebbe Inc., Tarrytown, NY). Feed efficiency was calculated as grams of gain divided by kilograms of DMI over the same intervals as daily DMI.

Carcass characteristics, composition, and accretion rates. The initial harvest group and the 20 treated steers were harvested at a commercial packing plant. At the time of harvest, liver weight and hot carcass weight (HCW) were determined. After a 24-h, post-harvest chill; ribeye area (REA), 12th-rib backfat, KPH fat, marbling score, and USDA quality grade were determined. Non-carcass weight (NCW), dressing percent (DP) and yield grade (Boggs and Merkel, 1984) were calculated. Non-carcass weight was calculated as the difference between final weight and HCW.

The 9th through 13th ribs section was removed from the left side of each carcass for compositional determination and transported to the Michigan State University Meats Laboratory. The 9-10-11 rib portion was separated from the larger rib section (Hankins and Howe, 1946), weighed and the soft tissue was separated from bone. The bones and soft tissue from each rib were weighed. The soft tissue was ground three times (once coarsely, and twice finely) with mixing in between each grind to ensure uniformity. Approximately 500 g of sample was collected and

placed into a Whirlpak bag (NASCO, Fort Atkinson, WI) and stored at -30 °C. The frozen sample was homogenized with liquid N in an industrial Waring blender. The samples were analyzed for DM, CP and ether-extractable lipid (EEL).

Tissue sample DM was determined in duplicate by placing 2 g of homogenized tissue in a desiccated-labeled aluminum pan and dried for 48 h in a 55 °C oven. Tissue moisture was determined by difference. Crude protein was analyzed in duplicate for total-Kjeldahl N (CP = N * 6.25, AOAC, 1984) using a Technicon auto-analyzer system (Bran + Luebbe Inc., Tarrytown, NY). Etherextractable lipid was determined in triplicate by placing 2 g of sample in a desiccated-weighed and numbered #1 filter paper circle (Whatman Inc., Fairfield, NJ). The filter paper was folded to prevent loss of sample, secured with paper clips, and dried for 48 h in a 55 °C oven. The dried samples were placed in a Soxhalet apparatus and extracted with petroleum ether for 24 h. Ether-extractable lipid was calculated as the amount of dry weight lost after ether extraction. Percent carcass bone, lipid, protein and moisture were calculated based on equations by Hankins and Howe (1946). Accretion rates of lipid and protein were determined from equations developed by Anderson et al. (1988).

Adipose tissue biopsy procedure. Adipose tissue biopsies were collected from steers within a 10 d period with 4 steers (1 block) biopsied every second day. Steers were moved from their pens prior to the morning feeding and treatment, and placed in individual stalls. The left or right perirectal area was clipped and scrubbed clean. Under the direction of a veterinarian, the animal was given epidural anesthesia (2% Lidocaine hydrochloride, - without epinephrine) to effect.

Using sterile technique and instruments, an incision was made over the sacral-siatic ligament. Using forceps and blunt scissors, 3 to 5 g of AT was excised. The excised AT was divided between Krebs-Ringer-bicarbonate buffer (KRBB, pH 7.4), or .25 M sucrose solution (pH 7.4) each maintained at 37 °C for transport to the laboratory.

The subcutaneous tissues of the biopsy site were sutured with #2 chromic gut and the skin was closed with #3 monofilament suture. Steers received an i.m. injection of penicillin G procaine (22,000 units/ kg BW, Anthony Products Co., Arcadia CA) in the neck and were monitored closely to prevent complications. One bST steer (#184) developed an infected biopsy site after the second biopsy. The site was flushed with a warm Betadine® solution for three days (twice a day), then with warm water, six days, until the wound closed. The wound healed and the steer finished the study.

In vitro lipogenesis. In vitro lipogenesis was assessed as the amount of ³H incorporated into fatty acids (FA, Mulvaney, 1984). Triplicate samples (100 mg) from each biopsy sample were sliced with a microtome and placed in 25 ml Erlenmeyer flasks containing oxygenated- KRBB with 100 μCi ³H₂O/ml and incubated for 2 h at 37 °C. Following incubation, the tissue slices were rinsed three times with saline solution and placed in 50 ml culture tubes containing 10 ml of a KOH:ethanol solution (3:7 vol/vol; 30% KOH: 95% ethanol) for digestion and saponification overnight in a 60 °C water bath. Lipids were extracted from each sample with 5 ml of petroleum ether and vortexed for 1 min. The petroleum ether which contained the nonsaponifiable lipids was aspirated and discarded. This

extraction procedure was repeated to ensure complete separation of the lipid fraction. The remaining soaps were converted to FA with 1.5 ml of 12 N HCI. Fatty acids were extracted three times with the addition of 5 ml petroleum ether followed by 1 min of vortexing. After each extraction, the petroleum ether, top layer, was aspirated off and transferred to a scintillation vial. The ether was evaporated under a hood overnight and 10 ml of a non-aqueous scintillation fluid (ScintiVerse®, Fisher Scientific, Pittsburgh, PA) was added. Radioactivity was determined in a liquid-scintillation counter (efficiency for counting ³H = 65.6%).

Based on equations of Mulvaney (1984), the assumption that pure water in the incubation media has a molarity of 55, and the specific radioactivity (DPM/mol) of the media; the nanomoles of ³H converted to FA per minute per gram of tissue could be calculated from:

$$FA = CPM \times (1/E) \times (1/t) \times (1000/wt) \times (1/SA)$$

where CPM = the counts/minute of the samples

E = the efficiency of the liquid scintillation counter counting tritium

t = time of incubation in minutes

wt = weight of the AT slice in milligrams

SA = specific activity of the media

In vitro lipolysis. Glycerol release into the media in the absence and presence of epinephrine was used as a measure of in vitro lipolysis. Six AT slices (100 mg) cut as previously described were placed into 25 ml Erlenmeyer flasks containing 3 ml of KRBB media (prepared as before with the addition of 30 mg/ml of essentially fatty acid free bovine serum albumin; A-6003, Sigma Chemical Co., St. Louis, MO). Three of the flasks contained 25 μM epinephrine-HCl (E-4642, Sigma Chemical Co., St. Louis, MO). The slices were incubated for 2 h in a

shaking water bath at 37 °C. After incubation, the KRBB was removed by aspiration and transferred into glass test tubes (12 x 75 mm) and chilled on ice until assayed in triplicate for glycerol with the glycerol enzymatic food analysis kit (No. 148270, Boehringer Mannheim Biochemicals, Indianapolis, IN). The reagents were diluted 1:3 with Milli-Q water (Dickerson, 1990) and the change in NADH was read at 340 nm (Varian® Cary 2200 UV-VIS spectrophotometer, Sugarland, TX).

Enzyme activity. Five hundred milligrams of AT were homogenized (Polytron, Brinkmann Instruments, Westbury, NY) in 5 ml of .25 M sucrose solution (37 °C) in a 15 ml Corex tube for 10 s bursts and centrifuged at 20,000 x g (Sorvall RC-5, DuPont Instruments, Newtown, CT) at 4 °C for 20 min. The supernatant was removed and placed in 12 x 75 mm glass test tubes for enzyme activity measurements. Triplicate analyses were performed for each AT sample.

Fatty acid synthase (EC 2.3.1.85) activity (Muesing and Porter, 1975) was measured as the conversion of acetyl CoA and malonyl CoA to palmitate utilizing NADPH. The disappearance of NADPH over time was measured as the change in absorbance over time at 340 nm and 30 °C (Varian® Cary 3 UV-VIS spectrophotometer, Sugarland, TX).

NADP-isocitrate dehydrogenase (ICD, EC 1.1.1.42) activity (Plaut, 1962) was measured as the conversion of isocitrate to α-ketoglutarate producing NADPH. The appearance of NADPH over time was measured as the change in absorbance over time measured at 340 nm and 30 °C. Following both enzyme assays, the tissue supernatant was frozen until soluble protein content was determined by folin-phenol procedure (Lowry et al., 1951). Enzyme activity was expressed as units/mg

protein.

Epinephrine challenges. Steers were fitted with an indwelling jugular cannula on the day before initiation of each series of epinephrine challenges. Epinephrine challenges (0, .1, .2, .4, .8, 1.2, and 1.6 µg/ kg BW) were administered over seven days, with one dose concentration administered per day (Sechen et al., 1990). Epinephrine HCI (1 mg/ml, The Butler Co., Columbus OH) was diluted with sterile saline (.15 M NaCl) to a concentration of 100 µg/ml. Epinephrine challenges (2-5 ml) were injected via the jugular catheter immediately followed by 4 ml of sterile saline. Epinephrine challenges were administered to nine steers at 0930 and the other ten at 1030. The latter group was treated and fed an hour later on days challenges were administered. Blood samples were withdrawn from cannulas at -30, -15, -10, -5, 0, 2.5, 5, 10, 15, 20, 30, 45, and 120, 125, and 130 min postepinephrine infusion (starting at 1000 and 1100 for each group of 10 steers, respectively) into a 10 cc syringe. Collected whole blood was dispensed into a 7 ml, sterile blood-collection tube containing 10.5 mg EDTA and .014 mg potassium sorbate (Vacutainer Brand, Becton Dickinson and Co., Rutherford, NJ) to prevent coagulation. The filled tube was inverted several times and chilled in an ice-water bath until centrifugation. Plasma was separated by centrifugation at 959 x g (Beckman J2-21 refrigerated centrifuge, Beckman Instruments Inc., Palo Alto, CA) for 20 min at 4°C and stored in 12 x 75 mm polypropylene tubes (Sarstedt, Newton, NC) at -20 °C until analyzed for NEFA, glycerol and glucose concentrations. Plasma NEFA concentrations were assayed as previously outlined on all samples. Plasma glycerol and glucose concentrations were analyzed on samples from the third series of challenges using the 1.6 µg epinephrine/ kg BW dose.

Non-esterified fatty acid and glycerol responses to the epinephrine challenge were calculated as area under the response curve from 0 to 20 min post-challenge (SAS program provided in Figure B-1). Response areas were corrected for differences in base-line concentration (the average of samples collected -30, -15, -10 , -5, 0, 120, 125, and 130 min relative to the challenge). The NEFA response area for each dose was used to construct a dose-response curve for each animal utilizing the non-linear regression procedure of SAS (1994). A segmental curve was fitted to each set of challenges comprised of a quadratic curve to a plateau (maximum response, R_{max}, Figure B-1). When developing curves, the response of the 0 µg/kg BW was set at 0. If a plateau was not reached, within the range of epinephrine dosages, the responses for the 1.2 and 1.6 µg/kg BW dose (6 curves) or the .8 to 1.6 µg/kg BW doses (4 curves) were averaged and the curve recalculated. The epinephrine dose which gave half of R_{max}, the ED₅₀, was calculated using the quadratic portion of the curve. Of the 19 steers completing the study, one steer did not have the first two series of epinephrine challenges completed due to problems with the catheter.

Statistical analysis. This study was designed as a completely randomized block. Animal performance was analyzed using the GLM procedure of SAS (1994) with treatment and block in the model as class variables. Least square means were calculated and separated with probability of difference function. Plasma hormones and metabolites were analyzed using the univariate repeated-measures analysis of SAS (1994) with treatment and block in the model as class variables and least

square means, treatment and day within treatment, separated by a procedure outlined by Gill (1987). Tritium incorporation, enzyme activity, and glycerol release were analyzed using the mixed procedure of SAS (Littell et al., 1996) with the spatial power law covariance structure to account for the unequally spaced repeated measures. The epinephrine challenge maximum response, R_{max} , and ED_{50} were analyzed using the mixed procedure of SAS (Littell et al., 1996) with an autoregressive covariance structure assuming equally spaced repeated measures. Measures of lipogenesis and lipolysis utilized treatment and block in the model as class variables, whereas R_{max} , and ED_{50} utilized treatment and replicate in the model as class variables.

Results

Bovine somatotropin time course and blood metabolites. Plasma bST concentrations began to increase (P < .05) above baseline within .5 h after the s.c. injection of bST and remained elevated 10 h when blood collection stopped (Figure 3-2). Somatotropin concentrations peaked 1.5 h after bST administration. Prior to treatment, bST concentrations were similar between treatments for at least 1.5 h.

Prior to the start of treatment, bST steers had 34% greater (P < .05) plasma IGF-I concentration than control steers (Figure 3-3). Three days following initial bST treatment and continuing throughout the entire study, bST steers had 112 to 157% greater plasma IGF-I concentration than control steers. Steers receiving bST averaged 88% greater (P < .01) plasma NEFA concentration and 45% greater (P < .01) plasma glycerol concentration from d 3 to 87 than control steers (Figure 3-4)

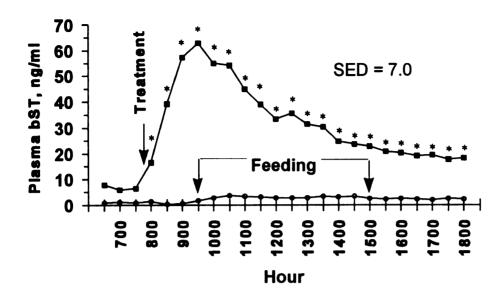


Figure 3-2 - Plasma bovine somatotropin concentrations over an 11.5-h period in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare) . *bST steers differ from control steers (P < .05).

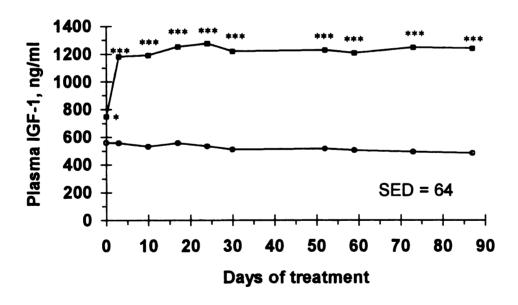


Figure 3-3 - Plasma IGF-I concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare). *bST steers differ from control steers (P < .05). ***bST steers differ from control steers (P < .05).

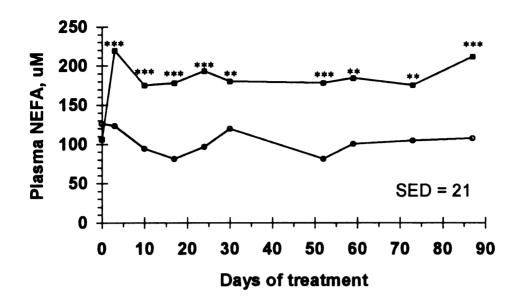


Figure 3-4 - Plasma NEFA concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare). ***bST steers differ from control steers (P < .01). ***bST steers differ from control steers (P < .01).

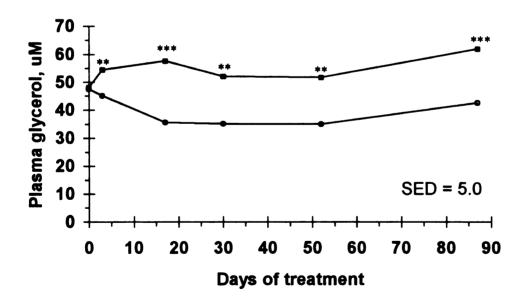


Figure 3-5 - Plasma glycerol concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare). ***bST steers differ from control steers (P < .01). ***bST steers differ from control steers (P < .01).

and 3-5, respectively). On average, bST steers had 11% greater (P < .05) plasma glucose concentration from d 3 to 87 than control steers (Figure 3-6). From d 17 to 87, bST steers had 665% greater (P < .05) plasma insulin concentration than control steers (Figure 3-7).

Feedlot performance. Steers receiving bST tended to have 3% greater (P < .10) live weight than control steers after 30 d of treatment (Table 3-2). Any advantage gained in the first 30 d was not maintained throughout the entire study. The greater BW after 30 d of treatment was due to bST steers having 43% greater (P < .05) ADG during this period, but as with BW, no improvement in ADG was evident from d 31 to d 115.

Dry matter intake was similar for treatments during the first 30 d of the study, but during the remaining 85 d, DMI tended to be 9% lower (P < .10) in bST steers than controls. Over the entire study, treatments had similar daily DMI and protein intake. Feed efficiency of bST steers was 47% greater (P < .01) during the initial 30 d of the study and 19% greater (P < .05) over the entire study.

Carcass characteristics, composition and accretion. Steers had similar HCW, but steers receiving bST tended to have 6% greater (P < .10) NCW and 2% lower DP (P < .10) than control steers (Table 3-3). There was no difference between treatments in liver weight. Ribeye area, as expressed on a HCW basis was 9% larger (P < .05) in bST steers than control steers. Measures of carcass fatness were reduced with bST administration. Bovine somatotropin decreased backfat 28% (P < .05), KPH fat percentage 50% (P < .001), marbling score 21% (P < .001), and USDA quality grade 9% (P < .001). Administration of bST decreased

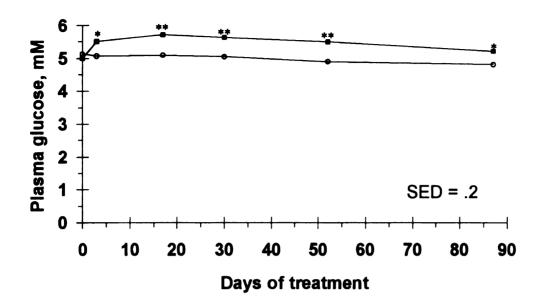


Figure 3-6 - Plasma glucose concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare). *bST steers differ from control steers (P < .05). **bST steers differ from control steers (P < .05).

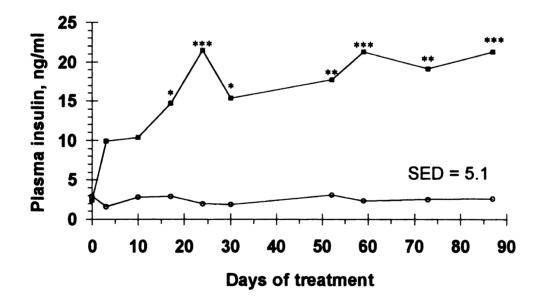


Figure 3-7 - Plasma insulin concentrations versus days of treatment in Holstein steers treated with either a daily injection of sodium phosphate (\bigcirc) or bovine somatotropin (\blacksquare). *bST steers differ from control steers (P < .05). **bST steers differ from control steers (P < .05). ***bST steers differ from control steers (P < .05).

Table 3-2. Effect of bovine somatotropin on feedlot performance a

	Treatments			Pro	Probability	
Trait	Control	SE	bST	SE	Model	Contrast b
No. of steers	9		10			
		Во	ody weight, kg			
Day 0	460	3.9	460	3.6	.91	.97
Day 30	502	6.6	519	6.2	.20	.08
Day 115	594	11.3	608	10.6	.38	.37
		Avera	ge daily gain, l	kg		
Days 0 to 30	1.38	.17	1.97	.16	.15	.03
Days 31 to 115	1.09	.08	1.05	.07	.60	.74
Days 0 to 115	1.15	.08	1.28	.08	.35	.28
		—— Dry ma	itter intake, kg	/d		
Days 0 to 30	9.81	.36	9.52	.34	.29	.57
Days 31 to 115	9.78	.34	8.88	.32	.19	.07
Days 0 to 115	9.79	.33	9.05	.31	.21	.12
Days 0 to 115	1312	44	1214	41	.21	.12
Feed efficiency, g gain/kg DMI						
Days 0 to 30	140	15	206	14	.09	.007
Days 31 to 115	110	5	116	5	.35	.47
Days 0 to 115	118	5	140	5	.07	.01

^aLeast square means. ^bProbability of difference: Control versus bST.

Table 3-3. Effect of bovine somatotropin on carcass characteristics a

		Trea	tments		Pro	bability
Characteristic	Control	SE	bST	SE	Model	Contrast b
Hot carcass wt., kg	355	7.1	355	6.6	.45	.98
Noncarcass wt., kg	240	5.8	254	5.4	.36	.10
Dressing percent	59.7	.51	58.3	.48	.51	.07
Liver wt.,						
g	8634	228	9029	213	.11	.22
% of BW	1.45	.03	1.48	.03	.32	.43
Ribeye area,						
cm ²	77.1	2.7	83.7	2.7	.66	.11
cm ² /kg HCW	.216	.006	.236	.006	.20	.03
Backfat, mm	6.1	.58	4.4	.54	.29	.04
KPH, %	2.2	.06	1.1	.06	.0001	.001
Marbling score ^c	560	12.3	445	11.5	.0003	.001
Quality grade ^d	18.1	.19	16.4	.18	.0008	.001
% Choice	78		0			
% Select	22		100			
Calculated yield grade	2.7	.14	2.0	.13	.03	.002

^aLeast square means.

^bProbability of difference for Control versus bST.

^c400 = slight, 500 = small.

d19 = Choice^o, 18 = Choice⁻ 17 = Select⁺, 16 = Select⁻.

(P < .01) calculated yield grade 26% and therefore increased red meat yield.

Carcass composition was altered significantly with bST administration (Table 3-4). Steers administered bST had 11% greater (P < .001) bone, 9% greater (P < .001) protein, and 10% greater (P < .001) water composition of the carcass and 38% greater protein accretion than control steers. Lipid composition of the carcass was decreased 32% (P < .001) with 70% lower (P < .001) lipid accretion in bST steers than control steers. Efficiency of protein accretion was increased (P < .001) 50% with bST administration.

Lipogenesis. Measures of in vitro lipogenesis, tritium incorporation, and enzyme activity are presented in Table 3-5. Tritium incorporation into AT was decreased (P < .05) by 54 and 56% for control and bST steers, respectively, from pretreatment through 103 d of the study. Tritium incorporation was decreased 45% (P < .05) in AT from bST steers than control steers during the second biopsy period, 40 d of treatment, but treatments were similar during the last biopsy period. Similarly, FAS and ICD decreased (P < .10) throughout the study in AT from control and bST steers. Fatty acid synthase activity tended to be lower (P < .10) in AT of bST steers than controls during the second biopsy period. Isocitrate dehydrogenase activity was similar between treatments throughout the study, but activity in AT of bST steers decreased sooner than controls. The correlations between tritium incorporation and FAS and ICD activity were r = .41 (P = .002) and r = .40 (P < .001), respectively. The correlation between FAS and ICD was r = .77 (P < .001).

Table 3-4. Effect of bovine somatotropin on carcass composition and accretion rates *

	Treatments			Probability		
Variable	Control	SE	bST	SE	Model	Contrast ^b
		Carcass o	composition	, %		
Bone	15.0	.3	16.6	.2	.09	.001
Protein	13.2	.2	14.4	.2	.007	.001
Lipid	25.6	.7	17.3	.7	.0001	.001
Water	47.1	.5	52.0	.4	.0002	.001
Carcass accretion rates, g/d						
Protein	92	8	127	8	.09	.01
Lipid	355	29	106	27	.0009	.001
Efficiency of protein accretion						
Day 0 to 115°	70	6	105	5	.02	.001

^{*}Least square means.

^bProbability of difference for Control versus bST.

^cdaily g protein accretion/ kg daily dietary protein intake.

Table 3-5. Effect of bovine somatotropin on tritium incorporation into fatty acids, fatty acid synthase activity, and isocitrate dehydrogenase activity a

Period	Control	bST				
	nmol ³ H converted to fatty acid•min ⁻¹ •100 mg ^{-1b}					
d -16 to -5	3.44 ^x	3.15 ^x				
d 40 to 49	2.50 ^{xy}	1.37 ^y *				
d 103 to 112	1.59 ^y	1.39 ^y				
	Fatty acid synthase activity, units•m	g protein ^{-1c}				
d -16 to -5	10.96 ^j	13.29×				
d 40 to 49	6.83 ^k	3.12 ^{yt}				
d 103 to 112	7.62 ^{jk}	4.57 ^y				
NADF	P-Isocitrate dehydrogenase activity, u	nits•mg protein ^{-1d} ————				
d -16 to -5	281.6 ×	284.5 ×				
d 40 to 49	210.5 ^{xy}	153.8 ^y				
d 103 to 112	160.9 ^y	135.8 ^y				

^{*}Least square means.

^bSED = .47.

^cSED = 2.25.

^dSED = 41.1.

 $^{^{}j,k}$ Means within columns and response variable with unlike superscripts differ (P < .10).

x,yMeans within columns and response variable with unlike superscripts differ (P < .05).

[†]Differs from Control within period (P < .10).

^{*}Differs from Control within period (P < .05).

Lipolysis. Basal-glycerol release (Table 3-6) was increased (P < .05) 42% in AT from bST steers after 103 d of treatment as compared to AT from control steers. Epinephrine-stimulated glycerol release was similar between treatments at all biopsy periods. Nonesterified fatty acid response to an epinephrine challenge was used as an in vivo measure of lipolysis. Response curves for NEFA are presented in Figure 3-8 with descriptive statistics in Table 3-7. The maximum NEFA response (R_{max}) to an epinephrine challenge was 84 and 40% greater (P < .01) in bST steers during the 6th and 15th week of treatments as compared to control steers. Within bST steers, the R_{max} (P < .05) was 76 and 65% greater than pretreatment values during the 6th and 15th week of treatment, respectively. The ED_{50} dose was higher (P < .05) in bST steers prior to the start of the study, but during treatment, the ED₅₀ dose was similar between treatments at both series of challenges. The plasma glycerol response to a 1.6 µg epinephrine/kg BW response (Figure 3-9) was similar between treatments. The correlation between basal glycerol release and R_{max} was r = .32 (P = .02). There was not a significant correlation between basal glycerol release in vitro nor R_{max} with the area under the glycerol response curve.

Discussion

Bovine somatotropin time course and blood metabolites. Plasma ST concentrations were similar between controls and bST treatment for 1.5 h prior to each daily treatment. Peak plasma ST concentrations occurred within 2 h after the s.c. injection. This is a similar pattern to Eisemann et al. (1986a), Enright et al.

Table 3-6. Effect of somatotropin treatment on basal and epinephrinestimulated glycerol release ^a

Period	Control	bST		
Basal, n	mol glycerol released• 2h -1•10	0 mg tissue -1b —————		
d -16 to -5	73.5	93.6		
d 40 to 49	95.4	106.5		
d 103 to 112	83.4	118.5 *		
Stimulated, nmol glycerol released• 2h -1•100 mg tissue -1c				
d -16 to -5	261.4	284.1		
d 40 to 49	261.1	274.9		
d 103 to 112	265.2	282.2		

^{*}Least square means.

bSED = 16.5.

^cSED = 29.6.

^{*}Differs from Control within period (P < .05).

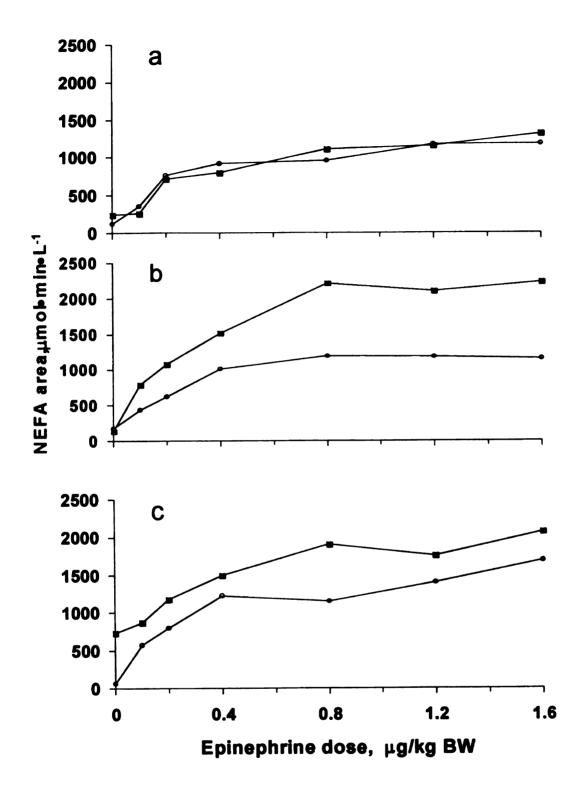


Figure 3-8 - Response in plasma concentrations of NEFA to varying doses of epinephrine during 3 weeks prior to treatment (panel a) and after 6 (panel b) and 15 weeks (panel c) of control (○) or bST (■) treatment. Analyses of individual animal curves are in Table 3-7.

Table 3-7. Estimates of R_{max} and ED₅₀ of nonesterified fatty acids area epinephrine dose-response curves ^a

Week	Control	bST
	R _{max} , μmol•min•L ^{-1b} –	
-3	1094	1246×
6	1192	2198 ^{y,***}
15	1465	2056 ^{y,**}
	ED ₅₀ , μg epinephrine•kg BV	V ^{-1c}
-3	.16	.27 *
6	.19	.24
15	.19	.22

^{*}Least square means.

^bSED = 206.

[°]SED = .05.

 $^{^{}x,y,z}$ Means within columns and response variable with unlike superscripts differ (P < .05).

^{*}Differs from Control within week (P < .05).

^{**}Differs from Control within week (P < .01).

^{***}Differs from Control within week (*P* < .001).

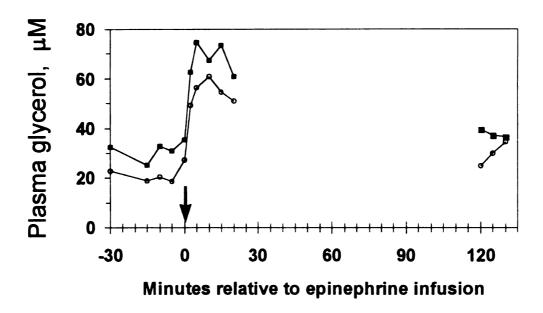


Figure 3-9 - Response in plasma glycerol concentrations to a 1.6 μ g/kg BW epinephrine infusion (arrow) during the 15th week of treatment with either control (O) or bST (\blacksquare). Area under the response curve (0 to 20 min. after infusion) was calculated using data points -30 to 0 and 120 to 130 min. relative to infusion as the base line. Control area under the curve = 604 \pm 100 μ M•min and bST area under the curve = 648 \pm 94 μ M•min.

(1990) and Boisclair et al. (1994) with 29.2 IU bST/d, 40 μg bST/kg BW and 120 μg bST/kg BW, respectively. Enright et al. (1990) and Boisclair et al. (1994) observed a peak in plasma ST concentrations 1 h after administration with a gradual decline to baseline by 12 h. In the present study, elevated plasma ST concentrations persisted for 11.5 h after injection.

Similar to the first study (Chapter 2), and consistent with previous research (Moseley et al., 1992; Roeder et al., 1994; Preston et al., 1995; and Enright et al., 1990) bST administration increased plasma IGF-I concentrations. In growing lambs, plasma IGF-I concentration increased after one week of treatment and increased three-fold after ten weeks of ST administration (Pell et al., 1990).

Both plasma NEFA and glycerol concentrations increased dramatically in the present study. This is in agreement with Eisemann et al. (1986) who observed a chronic elevation in plasma NEFA in growing beef heifers, but Enright et al. (1990) and Peters (1986) observed no plasma NEFA increase in growing steers, and Pell et al. (1990) demonstrated no effect in growing lambs treated with ST. Dunshea et al. (1992a) demonstrated an increase in plasma NEFA and glycerol of barrows within 7 and 10 to 12 h, respectively, of the first porcine ST (pST) injection and the response increased on the second and seventh day of treatment. In agreement with the present study, Doris et al. (1996) observed a 31% increase in plasma glycerol concentration growing sheep treated with ST for 7 d.

It is suggested by Boisclair et al. (1997) that the increase in plasma NEFA concentration with bST treatment of animals in positive energy balance is a result of mild disturbances or stress during blood collection. This is suggested because

bST causes an increase in β-adrenergic receptor (βAR) number in rat adipocyte membranes (Watt et al., 1990) and therefore respond to catecholamines to a greater extent than non-treated animals. Houseknecht et al. (1995) determined that bST increased the maximum binding of a βAR agonist to the βAR without a change in the binding affinity. Boisclair et al. (1997) cautions that proper protocol is required to prevent inadvertent responses which may suggest lipolytic activity. It is true that the animals in the current study were disturbed during blood collection. They were removed from their pens, taken outside, worked through a typical beef cattle-handling facility and placed into a squeeze chute for jugular venipuncture.

Eisemann et al. (1986) demonstrated both an increase in irreversible loss and oxidation of NEFA with bST treatment in heifers. The data further suggested that NEFA are used as an energy source and perhaps this spares oxidation of other metabolites (e.g. amino acids) during bST treatment. It could also be theorized that the adipocytes are stimulated continuously due to the increased adrenergic receptors causing elevated plasma NEFA concentrations. Without measures of stress (e.g. cortisol) one can not determine if the animal experienced a mild disturbance. Plasma cortisol was not different in the study by Peters (1986), but NEFA concentrations were not elevated either.

Plasma NEFA and glycerol concentrations increase 743 and 46%, respectively, in steers under a prolonged fast (Rule et al., 1985). This is significantly greater then the increase In plasma NEFA observed in the present study. These changes were in response to decreased plasma glucose, insulin, and ST concentrations and were used for homeostatic control of plasma glucose.

utilizing glycerol for gluconeogenesis (Rule et al., 1985). In the present study where plasma glucose concentrations were elevated, glycerol would not be needed for gluconeogenesis, but may be elevated due to increased lipolysis. This is in agreement with Sechen et al. (1990), where a 372% increase in plasma NEFA and 119% increased plasma glycerol concentration in bST-treated lactating dairy cattle were observed. Additionally, Peters et al. (1986) observed a 63% increase in basal plasma NEFA with feed restriction.

Plasma glucose was chronically increased from d 3 and thereafter in bSTtreated steers. This increase in plasma glucose is supported by Boisclair et al. (1994) in bST-treated growing cattle and Pell et al. (1990) in ST-treated lambs where increases of 5 and 11% were observed, respectively. Dunshea et al. (1992a) observed an increase in plasma glucose and insulin within 2 and 4 h, respectively. after an initial injection of pST to barrows. Early et al. (1990a) and Enright et al. (1990) in steers, and Sechen et al. (1990) in lactating dairy cattle, did not observe an increase in plasma glucose with ST administration. Pell et al. (1990) stated, that the increase in plasma glucose could be due to an increased rate of gluconeogenesis, or a decrease in peripheral glucose utilization. Boisclair et al. (1994) demonstrated a decrease in hindlimb glucose uptake in growing steers administered bST. Additionally, Hart et al. (1984) demonstrated that bST had diabetogenic activity and decreased the insulin depression in plasma glucose during an insulin tolerance test and suggested that bST decreased glucose uptake by body tissues. Glucose uptake was decreased in pigs treated with pST (Dunshea et al., 1992c).

There is evidence that ST decreases insulin sensitivity. Hart et al. (1984) observed a reduction in the insulin-induced decrease of plasma glucose during an insulin tolerance test and Roupas et al. (1991) suggested that insulin is uncoupled from its second messengers in the presence of ST. If insulin sensitivity is reduced, that would explain the increase in plasma insulin observed in this study. Somatotropin induced increase in plasma insulin has been observed by Wallace and Bassett (1966), Johnsson et al. (1985), Eisemann et al. (1986), Pell et al. (1990) and Boisclair et al. (1994) in ruminants and by Hansen et al. (1997a) in pigs. Pell et al. (1990) suggests they have unpublished data which demonstrates an increase in gluconeogenic potential by hepatocytes isolated from ST-treated lambs and therefore, glucose production may be increased, but would require an adequate supply of gluconeogenic precursors, glycerol being one. Plasma glycerol concentrations were increased in the present study and Doris et al. (1996) in growing animals and may be the result of triacyglycerol breakdown as suggested by Pell et al. (1990). Wallace and Bassett (1966) believed that the increase in nitrogen retention with ST administration is dependent on the associated increase in plasma insulin. The increase in plasma insulin would drive more nutrients (AA. glucose) into cells and stimulate anabolism.

Feedlot performance. Just as in the previous study, bST increased ADG and BW early during treatment, but the increase was not maintained throughout the entire study. Early et al. (1990a) reported an increase in ADG during the first 8 d of a 112-d study, but Rumsey et al. (1996) and Preston et al. (1995) demonstrated increased ADG throughout their 56 and 84 to 119-d studies, respectively. In the

current study, the dietary CP concentration was increased to 13.4% as compared to the 11.5% in the previous study (Chapter 2). There was not a sustained increase in ADG of bST steers with the increased dietary CP. Daily gains exhibited by both treatments in this study are similar to the previous study (Chapter 2), although adequate undegraded intake protein (518 g/d and 482 g/d for the control and bST-steers, respectively) was available to achieve ADG of 2.02 and 1.73 kg, respectively (NRC, 1996). Based on the NRC (1996) diet evaluator, energy would limit ADG to 1.68 and 1.5 kg for the control and bST-steers, respectively.

Dry matter intake was reduced in bST-treated steers. This is in agreement with Dalke et al. (1992), Moseley et al. (1992) and Preston et al. (1995) who reported a decrease in DMI of steers with increasing levels of bST administration. Early et al. (1990a) observed no effect of bST on intake and Rumsey et al. (1996) demonstrated an increase in DMI with bST treatment. The decrease in DMI suggests that as an animal mobilizes lipids and energy due to bST, these nutrients are directed away from lipogenesis, the animal compensates for the extra circulating nutrients by reducing its intake (McBride and Moseley, 1991). The effect may be dependent on BW and lipid content of the animal. In light-weight cattle which have less body-fat reserves, such as those used by Rumsey et al. (1996), the increased growth observed may stimulate intakes to supply the increased energy needs. Animals that have been on feed for some time (Preston et al., 1995; Moseley et al., 1992) have added body-fat reserves and the action of bST to enhance lipolysis increases circulating blood nutrients thereby decreasing DMI.

Although, ADG did not increase significantly and DMI decreased marginally.

feed efficiency increased. This is supported Early et al. (1990a), Moseley et al. (1992), Preston et al. (1995), and Rumsey et al. (1996) who all observed increased feed efficiency with bST administration.

Carcass measurements. In the present study, HCW was not influenced by bST treatment. Hot carcass weight has been shown to decrease linearly with increasing bST doses from 0 to 300 µg bST/kg BW (Moseley et al., 1992), although Rumsey et al. (1996) observed a 5.5% increase in HCW with bST administration. The increase in NCW and the decrease in DP observed in the present study is consistent with previous research. The increase in NCW is supported by Early et al. (1990a) and the decrease in DP by Early et al. (1990a) and Moseley et al. (1992), but Preston et al. (1995) did not observe an effect of bST on DP. Early et al., (1990a) estimated that the increase in NCW was primarily due to an increase in the GIT, but this was not observed in the study by Rumsey et al. (1996).

Ribeye area when expressed on a HCW basis did increase in the present study and was similar to the response observed in the previous experiment (Table 2-8) in steers receiving bST during the latter part of the study as compared to control steers. This increase in REA is supported by Moseley et al. (1992) which observed a 4 to 8.7% linear and quadratic increase in REA with increasing bST doses (8.25, 16.5, 33, and 66 µg bST/kg BW), and a 7.2 and 6.6% increase in REA at doses of 100 and 300 µg bST/kg BW. An increase in REA with bST administration was not observed by Peters (1986) or Preston et al. (1995). The increase in REA is consistent with the increased protein composition and accretion of bST-treated steers. Rumsey et al. (1996) demonstrated a 22% increase in

carcass protein accretion with bST administration in young steers and Early et al. (1990c) determined whole-body protein accretion was increased with bST administration by not of the carcass. Eisemann et al., (1989) demonstrated increased protein synthesis of the biceps femoris, longissimus dorsi, gastrocnemius and triceps brachii muscles. The increase in efficiency of protein accretion estimated in the present study is in agreement with Eisemann et al. (1986) who demonstrated a marked improvement in the efficiency of protein deposition (a decrease in the grams of protein synthesized / grams of protein deposited), and a 5.7% increase in whole-body protein synthesis. Additionally, these results would be consistent with the findings that ST reduces blood urea nitrogen suggesting reduced amino acid degradation and increased nitrogen retention and protein deposition (Wallace and Bassett, 1966; Eisemann et al., 1986b, and Sinnett-Smith et al., 1989)

All measures of carcass lipid content (backfat, KPH, marbling score, USDA quality grade, lipid composition and accretion rates) were decreased with bST administration. Peters (1986) observed a 24% reduction in backfat with bST administration following 29 d of treatment. Moseley et al. (1992) reported a 9 to 62% reduction in backfat and a 17 to 95% reduction in the percent of carcasses grading USDA Choice. The 95% reduction was in steers receiving 300 µg bST/kg BW, growth rate was reduced and these steers did not reach market weight. At 100 µg bST/kg BW, 70% fewer carcasses graded USDA Choice (Moseley et al., 1992). Preston et al. (1995) documented a linear decrease in backfat (15%), KPH fat (28%), marbling score (6%), and percent grading USDA choice (58%) with

increased bST dosage. Early et al. (1990a) did not see a difference in backfat or Canadian carcass grade. As fat decreased, the percentage of lean tissue increased in the present study as shown by reduced yield grade. This agrees with Preston et al. (1995) in which bST reduced yield grade by 12.5%.

In the present study, carcass lipid composition and accretion were decreased to a greater extent in bST-treated steers than in steers receiving bST only during the latter part of the previous experiment (Chapter 2, 18 vs. 32%, and 39 vs. 70% reductions, respectively). The average bST dose was different between the two studies and may explain these differences. In the current study, 100 µg bST/kg BW was administered, but in the previous study a set quantity per 14 d was given and averaged 89 µg bST / kg BW for steers only receiving bST during the latter part of the study. This finding would be consistent with bST dose-response studies (Dalke et al., 1992 and Moseley et al., 1992). Total carcass lipid was decreased in steers treated with bST (Peters, 1986) and Rumsey et al. (1996) demonstrated a 23.5% decrease in lipid accretion after 56 d of bST administration. Early et al. (1990b) did show a statistically-significant reduction in carcass fat or lipid accretion with bST treatment, although, numerically this values decreased 11.5% and 11%, respectively.

Lipogenesis. All three measures of lipogenesis demonstrated a decrease over the period of the study. Pothoven et al. (1975) observed a 62% decrease in in vitro lipogenesis as crossbred steers increased in BW from 363 to 505 kg. The decrease in lipogenesis as BW increases is associated with an increase in adipocyte size and fewer cells per unit weight of tissue (Hood and Allen, 1973).

In the present study, after 40 d of treatment, both tritium incorporation into FA and FAS activity were reduced in bST-treated steers as compared to control steers. Somatotropin has been found to decrease fatty acid synthesis in AT treated in vitro with ST (Vernon, 1982; Sinnett-Smith and Woolliams, 1989). Walton and Etherton (1986) demonstrated that ST can antagonize insulin's stimulation of lipogenesis in cultured porcine AT. Kramer et al. (1993) observed a 35% decrease in fatty acid synthesis, as measured by tritium incorporation into FA, and a 56% decrease in malic enzyme activity in pigs treated with pST for 24 d. Additionally, Harris et al. (1993) reported a correlation between FAS and lipogenesis was r = .45, which is similar to the correlation between FAS activity and measures of lipogenesis in the present study. Harris et al. (1993) observed an 86% reduction in glucose incorporated in FA after barrows were treated 11 d and reduced FAS and ICD activities of 67 and 31%, respectively. Because AT enters a net degradative state after biopsy, in vitro measurements of lipogenesis may be underestimates (Kramer et al., 1993). Dunshea et al. (1992c) utilized an in vivo method to determine glucose utilization rates for lipogenesis and the concurrent effects of pST. Rates of glucose incorporated into lipids was reduced 76%. Specifically, glucose incorporated into triglyceride-FA was reduced 78% as compared to glucose incorporated into triglyceride-glycerol which was reduced 66%.

Vernon et al. (1991a) determined that ST decreased the activation of acetyl-CoA carboxylase (ACC) when AT from wethers was treated with ST in vitro. Magri et al. (1990) demonstrated a decrease in the lipogenic enzyme activities of FAS, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and

malic enzyme in AT of barrows treated for seven days with pST. Additionally, Magri et al. (1990) determined that glucose transport into adipocytes was reduced 62% with pST administration, but insulin binding to the adipocyte nor the insulin receptor's tyrosine kinase activity was affected. Donkin et al. (1996) found GLUT 4 mRNA abundance, the major insulin regulated glucose transporter in adipocytes, was not decreased with pST administration, but Kilgour et al. (1995) determined that a decreased in plasma ST concentration in the rat caused the GLUT 4 protein to translocate from the intracellular pool to the plasma membrane.

Roupas et al. (1991) discovered that ST interferes with the signal transmission of a G protein between the insulin receptor and phosphoinositolphospholipase C, thereby, even though insulin binding is not inhibited (Magri et al., 1990) its signal is being interrupted. Borland et al. (1994) determined that a shortlived protein may also be needed for ST to inhibit lipogenesis in sheep AT. This was determined after actinomycin D, a protein synthesis inhibitor, blocked ST depression of lipogenesis in vitro. Ornithine carboxylase activity was shown to increase during ST treatment and coincided with the decrease in lipogenesis (Borland et al., 1994). Additionally, a polyamine may be needed for maximal ST expression (Borland et al., 1994). In addition to decreasing enzyme activation and interfering with signal transduction, Harris et al. (1993) and Donkin et al. (1996) have shown that ST can alter enzyme synthesis. Harris et al. (1993) demonstrated a 74% decrease in FAS mRNA with pST treatment for 11 d and Donkin et al. (1996) determined that FAS mRNA decreased in a linear fashion in porcine adipocytes with increased dosages of pST.

In the present study, ICD was numerically lower (16 to 26%) in AT of bST-treated steers as compared to control. In support of these findings, similar ICD activity was observed in lactating ewes (Vernon et al., 1991a) and lactating cows (Lanna et al., 1995). In a similar fashion, Ingle et al. (1973) observed a decreased in vitro lipogenesis, as measured by acetate incorporation into FA, and a significant reduction in acetyl CoA synthase (ACS) and ACC with fasting; but did not show a significant decrease in ICD (although, numerically activity decreased 15 to 30%). Additionally, Ingle et al. (1972) observed a tendency in ruminant AT for the dehydrogenase to have greater activity when rates of FA synthesis were greater.

Lipolysis. Basal-glycerol release was increased in AT from bST steers after 103 d of treatment. Stimulated-glycerol release was not affected by treatment or time on feed. This agrees with Jones and Marchello (1983) who demonstrated that basal and epinephrine-stimulated lipolysis did not change with the length of time on feed from 166 to 214 d. Pothoven et al. (1975) found no correlation between basal and stimulated lipolysis which appears to be the same as in the present study. Rule et al. (1992) observed a 134% increase in basal glycerol release per mg protein with increased BW of Holstein steers, from 277 to 528 kg. Greater lipolytic rates with changes in BW were observed in AT from perirenal (309%), omental (200%), and intermuscular (111%) depots than inner or outer backfat (Rule et al., 1992) without a change in stimulated lipolysis. Pothoven et al. (1975) observed an increase in basal-glycerol release as crossbred steers increased in weight from 363 to 505 kg, but a decrease in epinephrine-stimulated lipolysis. An increase in basal-glycerol release without an increase in epinephrine-stimulated lipolysis would

suggest a change in enzyme activity without a change in enzyme quantity (Vernon, 1980). Egan et al. (1992) demonstrated that the lipolytic stimulation of adipocytes caused the translocation of hormone-sensitive lipase (HSL) from the cytosol to the lipid droplet resulting in an increase in lipolysis.

Hart et al. (1984) found similar lipolytic activity of AT incubated with rbST as measured by glycerol release. Doris et al. (1996) found basal-glycerol release in AT was increased 59% in vitro in sheep given ST for seven days. The AT from ST-treated sheep also responded to a greater extend to the β-agonist, isoproterenol, than AT from control sheep. Additionally, AT from ST-treated sheep responded less to the anti-lipolytic agent, N⁶-phenylisoproyladenosine, an adenosine analog, than control AT (Doris et al., 1996). Like in the present study, Doris et al. (1996) did not find an increase in glycerol response to a catecholamine with ST administration. Vernon (1982), Hart et al. (1984), and Walton and Etherton (1986) did not observe an increase in glycerol release when sheep and swine AT, respectively, were treated in vitro with ST. Additionally, Kramer et al. (1993) and Sinnett-Smith and Woolliams (1989) observed similar glycerol release in AT from pigs and sheep treated with ST in vivo.

Dunshea et al. (1992a) suggested that the increase in lipolytic activity may in part be related to decreased insulin sensitivity, which would decrease the inhibition of lipolysis. Increased lipolytic activity may also be the result of a heightened sensitivity or responsiveness to lipolytic stimuli as suggested by Boisclair et al. (1997). Through calculations, grams of triglyceride mobilized per day, Dunshea et al. (1992b) determined a 50% increase in lipid mobilization with

pST (56 to 109 g of triglyceride mobilized per day). Although when compared to the reduction in lipid accretion (> 200 g/d), the increase in lipolysis would constitute approximately 25% of the reduction in daily lipid synthesis, the balance being reduced lipogenesis.

Measures of in vivo lipolytic activity were increased in bST steers after 40 d of treatment as seen by the increased response to the epinephrine challenge. This is in agreement with Peters (1986) who observed an increase in plasma NEFA response area to a single epinephrine challenge with ST administration. Although, Peters (1986) saw a greater response with feed restriction than with ST treatment. Likewise, Sechen et al. (1990), found that lactating cows receiving bST had greater response in circulating levels of NEFA at all doses of epinephrine. In the current study, plasma glycerol did not increase in response to the highest dose of epinephrine. In contrast, Sechen et al., (1990) observed an increased maximum response in plasma glycerol from epinephrine challenges. Adipose tissue has very low glycerol kinase activity, so alterations in glycerol response relates to lipolysis, whereas, NEFA alterations reflect mobilization (i.e. the difference between lipolysis and NEFA re-esterification, Sechen et al., 1990). The ED₅₀ for the NEFA response in the present study and in Sechen et al., (1990) was not altered by bST. Sechen et al. (1990) suggests that the absence of any changes in ED₅₀ make it unlikely that the elevated glycerol response was due to changes in epinephrine clearance rate or the number of epinephrine receptors, and further suggest that a change in a post-receptor mechanism enhanced lipolysis. Lanna et al. (1995) did not observe an increase in basal-glycerol release in vitro, but an increase in HSL activity of AT was observed with bST administration to lactating cows (Lanna et al., 1995 and Liesman et al., 1995).

Roupas et al. (1991) suggested that if ST inhibits a G inhibitory protein (G_i), then the G stimulatory protein axis may allow greater activation and subsequent stimulation of lipolysis. Doris et al. (1994) demonstrated in rats that ST alters the amount of G₁₂ proteins in rat AT, which inhibit the cAMP-signaling systems which inhibit HSL. Less repression of HSL will allow greater stimulation of the enzymes involved in lipolysis. Although in a follow-up study in sheep, Doris et al. (1996) did not find altered quantities of the G_i protein. Based on work by Doris et al. (1996) it can be hypothesized that ST alters the cAMP-based signaling systems of AT by several mechanisms. The first, by increasing the maximum rate of β-adrenergicstimulated lipolysis, due to an increase in the number of βAR . Secondly, decrease the response of AT to lipolytic agents such as adenosine and prostaglandin E_1 , and lastly, decreasing the production of the anti-lipolytic agent prostaglandin E2 by the adipocyte. These factors would explain why Hansen et al. (1997b) observed an additive effect in the reduction of carcass lipid content when both pST and the βagonist, salbutamol, were administered together.

Implications

Bovine somatotropin is a potent modifier of growth in cattle that alters the composition of beef. It is clear that somatotropin increases carcass protein accretion, and efficiency, while drastically reducing carcass lipid accretion and content. The majority of the reduction in lipid accretion is a result of depressed lipogenesis through decreased glucose utilization and decreased activity and

quantity of acetyl CoA carboxylase and fatty acid synthase. In conjunction, lipolysis is enhanced through suppression of antilipolytic factors such as adenosine, insulin, and prostaglandins. Although, the mechanism in which somatotropin stimulates lipolysis in growing animals is less clear.

CONCLUSION

Based on the results from the previous discussed studies, the following conclusions can be drawn. Both studies showed somatotropin (ST) decreased dry matter intake (DMI) later in the feeding program and improved feed efficiency. Both affects would be beneficial to the economic feasibility of using ST. Although, due to the decrease in DMI, increased nutrient density may be necessary to obtain the full growth potential of ST. The increase in dietary CP content from 11.5% in Chapter 2 to 13.5% in Chapter 3 did not increase daily gains of either the control or ST-treated steers. Estimates of undegradeable intake protein supplied, would have allowed gains to be higher than observed. Houseknecht et al. (1992) suggest that due to limitations in amino acids supplied from microbial and ruminal escape protein in young-growing cattle, amino acid supply may limit nitrogen retention response to ST.

Before ST becomes commercially available, a better delivery system with a longer payout period needs to be developed to reduce the frequent injections used in this study. The author understands that a subdermal pump is in development that would allow longer treatment periods and the pump could be removed at harvest.

Contrary to the assumptions by Early et al. (1990a), giving ST to light-weight steers, for a longer period, did not increase the carcass components in relation to the noncarcass component of the animal. Noncarcass weight (NCW) was greater in ST-treated steers as compared to control steers in both studies, although, steers receiving ST only during the first part of the feeding program (bST-C, Chapter 2)

had similar NCW as control steers at harvest.

Red meat yield was improved in both studies with the administration of ST. Somatotropin increased ribeye area, carcass protein composition, protein accretion and improved yield grade. As expected, ST reduced measures of carcass lipid content (backfat, kidney-pelvic-heart fat, marbling score, carcass lipid composition, and lipid accretion). Unfortunately, on an economic basis, the reduction in carcass value due to the decreased USDA quality grade was greater than the premiums associated with increasing red meat yield and decreasing yield grade.

At the start of this research there was a drive to decrease the fat content of beef to compete with the healthy image of poultry. Additionally, there has been a drive to increase the economic efficiency of bringing beef to the table. As mentioned in the Introduction, it costs about \$2 billion to remove the fat from beef carcasses that producers spent \$2.4 billion to put on (H.D. Ritchie, personal communication). The reduction in external fat would be a clear example where ST would be beneficial to the beef industry.

The resurgence of steak houses in the U.S. has poised another problem. Although the need to reduce external fat is apparent, consumers still demand a quality steak which requires a carcass to grade USDA choice or higher. Therefore, a genetic or a pharmacological method needs to be developed to minimize external fat but maintain marbling in the muscle. It does not appear that ST is the answer for this production segment. Somatotropin would be useful to produce cattle that, overall, have a reduced amount of carcass fat with increased red meat yield.

Consistent with previous research, the decrease in lipid accretion was

primarily due to a decrease in lipogenesis with some added benefit from increased lipolysis. As discussed previously, ST administration decreases the activation state of lipogenic enzymes (Vernon et al., 1990a), decreases enzyme activity (Chapter 3), and reduces enzyme quantity (Harris et al., 1993; Donkin et al., 1996) contributing to the decrease in lipid accretion. Adipose tissue samples collected from the author's study are being used by another colleague to look at changes in lipogenic enzyme mRNA abundance.

In the author's study, there was a problem with limited adipose tissue during the third biopsy. Using the initial-harvest steers to get a baseline value would have been possible and would have eliminated one biopsy per animal. Consequently, the first and third biopsy would hot have been taken from the same location. Although, using the initial-harvest steers to establish the base line would have eliminated the opportunity for each animal to serve as its own control

The present study did observe an increase in lipolysis with ST administration as measured by in vitro glycerol release and in vivo with a series of epinephrine challenges. Consistent with the understanding of the control of hormone-sensitive lipase (HSL), the quantity of the enzyme did not change as evidence by the lack of response in the values for epinephrine-stimulated glycerol release. Therefore, the change in lipolysis would be due to change in HSL activity. A phosphorylation site on HSL has been identified for the β-adrenergic agonist, isoproterenol, and showed the associated increase in lipolysis (Anthonsen et al., 1998). No such site has yet to be demonstrated for ST, and would be an area for future research. Also, Egan et al. (1992) demonstrated that lipolytic stimulation of adipocytes caused HSL to

translocate from the cytosol to the lipid droplet increasing lipolysis. This has not been shown, to date, with ST. Further research must be aware of the problems associated with excitability of the animals and the possible rise in plasma NEFA and glycerol due to excitability as compared with the effects of ST. In the present study, the author may have been overly ambitious to conduct the epinephrine challenges on ten steers at one time. By reducing the number of animals, the human participants would not need to be as hurried in the collection and possibly reduce the potential excitability of the steers, and improve the results.

Regarding both lipogenesis and lipolysis, changes in the number of cells per gram of adipose tissue over time and with ST administration should have been documented. This would have allowed the in vitro measures of lipid metabolism to be expressed on a per cell and a per gram of tissue basis.

As with any new technology, its acceptance by the consumer is required. Researchers and producers must be aware of effects the new technology has on tenderness, palatability and shelf-life of the resulting product. For example, the introduction of the callipyge gene in sheep, although it adds significant quantities of red meat to the carcass, the carcass is less tender and is unacceptable to the consumer. Somatotropin can fit into a beef production system that produces lean red meat from decreased lipogenesis and increased lipolysis, but further evaluation of the end product must be completed.

APPENDICES

APPENDIX A:

Raw data and procedures from Chapter 2 (Experiment BC9002)

Table A-1a. Initial harvest carcass characteristics for Experiment BC9002

Steer	Harvest	Hide wt.,	Liver wt.,	Harvest Hide wt., Liver wt., Spleen wt., Heart wt.,	Heart wt.,	Kidney wt., g	M., g	Semitendinosus	REĄ.	Back	Hot carcass wt., kg	s wt., kg
Š	M., kg	9	5 0	5	6	Left	Right	muscle wt., g		fat, mm	fat, mm Right side Left side	Left side
ဖ	216	14.9	3865	477	895	484	476	890	25.8	1.2	55.2	57.5
7	202	14.1	3750	420	102	340	342	793	36.8	1.2	55.8	57.7
29	191	13.2	3829	362	286	392	346	703	28.4	1.2	51.1	54.1
74	157	10.7			809	323	309	581	25.8	1.2	41.0	43.4
92	225	15.5	3925		1063	406	394	904	28.4	1.2	6.09	64.1
150	193	13.2		453	996	331	294	808	27.1	1.2	52.5	54.1
1 64	189	13.2	3420	44	926	314	327	805	25.8	1.2	49.4	53.0
202	184	14.1	3611	418	880	352	366	777	25.9	1.2	53.5	51.8

Table A-1b. Initial harvest carcass composition for Experiment BC9002

į	Right side	side		Soft tissue	ens			Car	Carcass	
Steer	Total bone, Total soft	Total soft	% of Side	Water, %	Protein, %	Ether	Bone, %	Water, %	Protein, %	Ether
<u>.</u>	k g	tissue, kg			-	extractable lip i d, %				extractable lipid, %
ဖ	11.4	41.7	75.5	71.2	•	20.1	20.6	53.8	13.5	
7	11.5	42.4	76.0	71.2	•	19.2	20.6	54.1	14.6	
29	8.2	39.3	76.8	70.2	•	23.7	16.1	53.9	13.3	
74	9.5	30.4	74.0	73.2		17.7	23.1	54.1	12.9	13.1
92	12.1	46.7	76.7	70.7	•	21.5	19.9	54.2	12.7	
150	11.1	39.8	75.8	69.3	17.1	24.0	21.1	52.5	13.0	18.2
164	12.3	37.5	75.8	72.4	•	18.0	24.9	54.9	13.3	
202	23.6	80.9	68.8	72.3	17.5	20.7	20.1	49.7	12.1	14.2

Table A-2. Record of removal of steers from Experiment BC9002 and disposal

17 4/13/92 Harvest #2 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #4 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #3 Killed 4/27/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 4/3/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #1 Killed 3/16/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 4/27/92 47 4/27/92 Harvest #3 Killed 11/11/91 48 3/16/92 Harvest #3 Killed 11/11/91 49 5/25/91 Below 50% ADG Killed 3/16/92 50 3/16/92 Harvest #1 Killed 3/16/92 51 10/26/91 Below 50% ADG Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 10/26/91 Below 50% ADG Killed 4/13/92	04	Data	Pagan	Dianasal	Data
2 4/13/92 Harvest #2 Killed 4/13/92 4 7/21/91 Below 50% ADG Killed 3/16/92 5 3/16/92 Harvest #1 Killed 4/23/91 6 4/23/91 Initial Kill Kill Killed 4/23/91 7 4/30/91 Initial Kill Killed 4/23/91 8 11/11/91 Intermediate Harvest Killed 11/11/91 9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #4 Killed 5/11/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 11/11/91 17 4/13/92 Harvest #3 Killed 4/27/92 18 4/27/92 Harvest #3 Killed 4/27/92 18 4/27/92 Harvest #3 Killed 4/1/39/2 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 25 5/11/92 Harvest #4 Killed 11/11/91 29 4/27/92 Harvest #4 Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #4 Killed 11/11/91 34 4/13/92 Harvest #4 Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 37 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 39 11/9/91 Injected before harvest Killed 11/11/91 40 11/11/91 Intermediate Harvest Killed 11/11/91 41 3/16/92 Harvest #2 Killed 4/13/92 42 4/27/92 Harvest #3 Killed 4/27/92 43 4/3/92 Harvest #3 Killed 4/27/92 44 4/3/92 Harvest #3 Killed 4/27/92 44 4/3/92 Harvest #3 Killed 4/27/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/13/92 47 4/27/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #1 K					
4 7/21/91 Below 50% ADG Killed 3/16/92 5 3/16/92 Harvest #1 Killed 3/16/92 6 4/23/91 Initial Kill Killed 4/23/91 7 4/30/91 Initial Kill Killed 4/23/91 8 11/11/91 Intermediate Harvest Killed 11/11/91 9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #2 Killed 11/11/91 18 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 3/16/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 3/16/92 31 4/27/92 Harvest #3 Killed 3/16/92 31 4/27/92 Harvest #4 Killed 5/11/92 31 4/27/92 Harvest #4 Killed 5/11/92 31 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 37 4/27/92 Harvest #3 Killed 4/27/92 39 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 39 11/11/91 Intermediate Harvest Killed 11/11/91 40 3/16/92 Harvest #3 Killed 4/27/92 41 4/13/92 Harvest #3 Killed 4/27/92 42 4/27/92 Harvest #3 Killed 11/11/91 42 3/16/92 Harvest #2 Killed 11/11/91 43 4/13/92 Harvest #2 Killed 3/16/92 44 4/13/92 Harvest #3 Killed 3/16/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 4/27/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 5/11/92 Harvest #4 Killed 5/11/92 59 5/11/92 Harvest #4 Killed 5/11/92 50 3/16/92 Harvest #4 Killed 5/11/92 51 5/11/92 Harvest #4 Killed 5/11/92 52 5/11/92 Harvest #4					
5 3/16/92 Harvest #1 Killed 3/16/92 6 4/23/91 Initial Kill Killed 4/23/91 7 4/30/91 Initial Kill Killed 4/23/91 8 11/11/91 Intermediate Harvest Killed 11/11/91 9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #4 Killed 5/11/92 14 11/11/91 Intermediate Harvest Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #3 Killed 4/27/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 3/16/92 27 11/11/91 Intermediate Harvest Killed 3/16/92 37 4/27/92 Harvest #3 Killed 5/11/92 31 4/27/92 Harvest #4 Killed 5/11/92 31 4/27/92 Harvest #3 Killed 11/11/91 29 4/27/92 Harvest #3 Killed 11/11/91 29 4/27/92 Harvest #3 Killed 11/11/91 30 4/27/92 Harvest #3 Killed 4/27/92 31 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 39 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 39 11/9/91 Injected before harvest Killed 11/11/91 40 11/11/91 Intermediate Harvest Killed 11/11/91 41 42 3/16/92 Harvest #2 Killed 4/13/92 42 Harvest #3 Killed 4/27/92 43 4/27/92 Harvest #2 Killed 11/11/91 44 4/13/92 Harvest #2 Killed 11/11/91 45 3/16/92 Harvest #3 Killed 4/27/92 46 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 11/11/91 47 4/27/92 Harvest #3 Killed 3/16/92 48 4/13/92 Harvest #1 Killed 3/16/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 11/11/91 57 4/27/92 Harvest #4 Killed 5/11/92 58 10/26/91 Below 50% ADG Killed 4/27/92					
6 4/23/91 Initial Kill Killed 4/23/91 7 4/30/91 Initial kill Killed 4/30/91 8 11/11/91 Intermediate Harvest Killed 11/11/91 9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #3 Killed 4/27/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/92 29 4/27/92 Harvest #3 Killed 5/11/92 31 4/27/92 Harvest #3 Killed 11/11/92 31 4/27/92 Harvest #3 Killed 11/11/92 32 11/11/91 Intermediate Harvest Killed 11/11/92 33 4/27/92 Harvest #3 Killed 11/11/93 34 4/27/92 Harvest #3 Killed 11/11/94 34 4/13/92 Harvest #3 Killed 11/11/94 45 3/16/92 Harvest #3 Killed 11/11/94 46 3/16/92 Harvest #1 Killed 11/11/94 47 4/27/92 Harvest #1 Killed 11/11/94 48 3/16/92 Harvest #1 Killed 11/11/95 49 5/25/91 Below 50% ADG Killed 11/11/95 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 57 4/27/92 Harvest #3 Killed 4/27/92 57 5/11/92 Harvest #3 Killed 3/16/92 57 5/11/92 Harvest #4 Killed 3/16/92 57 5/11/92 Harvest #3 Killed 3/16/92 57 4/27/92 Harvest #3 Killed 4/27/92					
7 4/30/91 Initial kill Killed 4/30/91 8 11/11/91 Intermediate Harvest Killed 11/11/91 9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #2 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 5/11/92 31 4/27/92 Harvest #3 Killed 11/11/91 31 4/27/92 Harvest #3 Killed 11/11/91 32 11/11/91 Intermediate Harvest Killed 11/11/91 33 4/27/92 Harvest #3 Killed 4/27/92 31 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #2 Killed 4/13/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 11/11/91 40 11/11/91 Intermediate Harvest Killed 11/11/91 41 4/3/6/92 Harvest #2 Killed 4/13/92 42 3/16/92 Harvest #2 Killed 11/11/91 43 4/27/92 Harvest #2 Killed 11/11/91 44 4/13/92 Harvest #2 Killed 11/11/91 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 4/27/92 47/92 Harvest #1 Killed 3/16/92 47/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92					
8 11/11/91 Intermediate Harvest Killed 5/11/92 9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #3 Killed 4/27/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #4 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 3/16/92 27 11/11/91 Intermediate Harvest Killed 5/11/92 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 5/11/92 32 11/11/91 Intermediate Harvest Killed 4/27/92 33 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #2 Killed 4/13/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 1/11/91 Intermediate Harvest Killed 3/16/92 42 11/92 Harvest #2 Killed 4/13/92 43 4/27/92 Harvest #2 Killed 3/16/92 44 4/13/92 Harvest #2 Killed 3/16/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 4/27/92 47/92 Harvest #3 Killed 4/27/92 48 4/27/92 Harvest #3 Killed 11/11/91 49 5/25/91 Below 50% ADG Killed 3/16/92 50 3/16/92 Harvest #1 Killed 3/16/92 51 11/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 3/16/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92					
9 5/11/92 Harvest #4 Killed 5/11/92 10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #3 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/13/92 19 8/31/91 Below 50% ADG Killed 3/16/92 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #4 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/27/92 35 11/11/91 Intermediate Harvest Killed 4/27/92 36 11/11/91 Intermediate Harvest Killed 4/27/92 37 4/27/92 Harvest #2 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/27/92 39 11/9991 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 Harvest #2 Killed 4/27/92 42 Harvest #3 Killed 4/27/92 43 4/13/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #3 Killed 4/27/92 45 11/11/91 Intermediate Harvest Killed 3/16/92 45 11/11/91 Intermediate Harvest Killed 3/16/92 46 3/16/92 Harvest #3 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 3/16/92 48 4/27/92 Harvest #3 Killed 3/16/92 49 5/25/91 Below 50% ADG Killed 3/16/92 50 3/16/92 Harvest #1 Killed 3/16/92 51 10/26/91 Below 50% ADG Killed 5/11/92 55 5/11/92 Harvest #4 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 5/11/92 Harvest #4 Killed 5/11/92 59 5/11/92 Harvest #4 Killed 5/11/92 50 5/11/92 Harvest #4 Killed 5/11/92 51 5/11/92 Harvest #4 Killed 5/11/92 52 5/11/92 Harvest #4 Killed 5/11/92 53 5/11/92 Harvest #4 Killed 5/11/92 54 5/11/92 Harvest #4 Killed 5/11/92 55 5/11/92 Harvest #3 Killed 5/11/92					
10 11/11/91 Intermediate Harvest Killed 11/11/91 11 11/11/91 Intermediate Harvest Killed 11/11/91 12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #2 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 37 4/27/92 Harvest #2 Killed 11/11/91 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 Injected before harvest Killed 3/16/92 43 4/27/92 Harvest #2 Killed 3/16/92 44 4/13/92 Harvest #2 Killed 3/16/92 45 11/11/91 Intermediate Harvest Killed 3/16/92 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 11/11/91 46 3/16/92 Harvest #3 Killed 11/11/91 47 4/27/92 Harvest #3 Killed 3/16/92 48 5/25/91 Below 50% ADG Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #1 Killed 5/11/95 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #3 Killed 5/11/95 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #3 Killed 5/11/95					
11 11/11/91 Intermediate Harvest Killed 5/11/92 13 3/16/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #2 Killed 4/13/92 17 4/13/92 Harvest #3 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/13/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #2 Killed 4/13/92 43 4/27/92 Harvest #2 Killed 4/13/92 44 4/13/92 Harvest #2 Killed 11/11/91 45 3/16/92 Harvest #1 Killed 3/16/92 46 11/11/91 Intermediate Harvest Killed 11/11/91 47 4/27/92 Harvest #3 Killed 11/11/91 48 3/16/92 Harvest #1 Killed 3/16/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #1 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 5/11/92 Harvest #1 Killed 5/11/92 59 5/11/92 Harvest #1 Killed 5/11/92 50 3/16/92 Harvest #1 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 5/11/92 Harvest #4 Killed 5/11/92 59 5/26/91 Below 50% ADG Killed 5/11/92					
12 5/11/92 Harvest #4 Killed 5/11/92 13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #3 Killed 4/27/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #4 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #2 Killed 4/13/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #2 Killed 4/13/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #3 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 11/11/91 47 4/27/92 Harvest #3 Killed 11/11/91 48 4/27/92 Harvest #3 Killed 11/11/91 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #3 Killed 5/11/95 57 4/27/92 Harvest #4 Killed 5/11/95 57 4/27/92 Harvest #3 Killed 5/11/95 57 4/27/92 Harvest #4 Killed 5/11/95					
13 3/16/92 Harvest #1 Killed 3/16/92 14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #2 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/13/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 11/11/91 44 4/13/92 Harvest #1 Killed 11/11/91 45 3/16/92 Harvest #1 Killed 3/16/92 46 11/11/91 Intermediate Harvest Killed 11/11/91 47 4/27/92 Harvest #3 Killed 4/27/92 48 4/27/92 Harvest #1 Killed 3/16/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #4 Killed 3/16/92 57 4/27/92 Harvest #3 Killed 4/13/92 57 4/27/92 Harvest #4 Killed 3/16/92 58 5/11/92 Harvest #4 Killed 3/16/92 59 5/11/92 Harvest #1 Killed 3/16/92 50 3/16/92 Harvest #1 Killed 3/16/92 50 3/16/92 Harvest #4 Killed 3/16/92 51 5/11/92 Harvest #4 Killed 3/16/92 52 5/11/92 Harvest #4 Killed 3/16/92 57 4/27/92 Harvest #3 Killed 4/27/92					
14 11/11/91 Intermediate Harvest Killed 11/11/91 16 4/27/92 Harvest #3 Killed 4/27/92 17 4/13/92 Harvest #2 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/13/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 4/27/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #1 Killed 11/11/91 42 3/16/92 Harvest #1 Killed 11/11/91 44 4/13/92 Harvest #1 Killed 11/11/91 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 4/27/92 47 4/27/92 Harvest #3 Killed 11/11/91 48 3/16/92 Harvest #1 Killed 3/16/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 11/11/92 57 4/27/92 Harvest #4 Killed 3/16/92 57 4/27/92 Harvest #3 Killed 4/13/92 57 4/27/92 Harvest #4 Killed 3/16/92 57 4/27/92 Harvest #3 Killed 4/27/92					
16					
17 4/13/92 Harvest #2 Killed 4/13/92 18 4/27/92 Harvest #3 Killed 4/27/92 19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #4 Killed 5/11/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #3 Killed 4/27/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 4/13/92 Harvest #1 Killed 3/16/92 42 4/13/92 Harvest #1 Killed 4/27/92 43 4/27/92 Harvest #1 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 4/27/92 47 4/27/92 Harvest #3 Killed 11/11/91 48 3/16/92 Harvest #3 Killed 11/11/91 49 5/25/91 Below 50% ADG Killed 3/16/92 50 3/16/92 Harvest #1 Killed 3/16/92 51 10/26/91 Below 50% ADG Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 10/26/91 Below 50% ADG Killed 5/11/92					
18					4/27/92
19 8/31/91 Below 50% ADG Killed 11/11/91 20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #3 Killed 4/27/92 39 11/991 Injected before harvest Killed 11/11/91 40 11/11/91 Intermediate Harvest Killed 3/16/92 41 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 11/11/91 44 4/13/92 Harvest #1 Killed 11/11/91 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #2 Killed 11/11/91 47 4/27/92 Harvest #3 Killed 11/11/91 48 3/16/92 Harvest #1 Killed 11/11/91 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 4/27/92					4/13/92
20 3/16/92 Harvest #1 Killed 3/16/92 21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 11/11/91 34 4/13/92 Harvest #2 Killed 11/11/91 34 4/13/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #3 Killed 4/27/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/19/1 42 3/16/92 Harvest #1 Killed 11/11/19/1 43 4/27/92 Harvest #1 Killed 3/16/92 44 4/13/92 Harvest #3 Killed 4/27/92 45 11/11/91 Intermediate Harvest Killed 3/16/92 46 3/16/92 Harvest #3 Killed 4/27/92 47 4/27/92 Harvest #3 Killed 4/27/92 48 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #3 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92		4/27/92			4/27/92
21 3/16/92 Harvest #1 Killed 3/16/92 25 5/11/92 Harvest #4 Killed 5/11/92 27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #3 Killed 11/11/91 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 11/11/91 47 4/27/92 Harvest #1 Killed 3/16/92 48 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/13/92 57 4/27/92 Harvest #4 Killed 4/13/92		8/31/91	Below 50% ADG		11/11/91
25 5/11/92 Harvest #4 Killed 5/11/92 27 11//11/91 Intermediate Harvest Killed 11//11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11//11/91 Intermediate Harvest Killed 11//11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11//11/91 Intermediate Harvest Killed 11//11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #3 Killed 4/27/92 45 11//11/91 Intermediate Harvest Killed 11//11/91 46 3/16/92 Harvest #2 Killed 4/13/92 47 4/27/92 Harvest #1 Killed 3/16/92 48 5/25/91 Below 50% ADG Killed 11//11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 4/27/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #4 Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	20		Harvest #1	Killed	3/16/92
27 11/11/91 Intermediate Harvest Killed 11/11/91 29 4/27/92 Harvest #3 Killed 4/27/92 31 4/27/92 Harvest #3 Killed 4/27/92 32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/27/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #2 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 11/11/91 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #3 Killed 11/11/91 47 4/27/92 Harvest #3 Killed 11/11/91 <	21	3/16/92	Harvest #1	Killed	3/16/92
29	25	5/11 /92	Harvest #4	Killed	5/11/92
31	27	11/11/91	Intermediate Harvest	Killed	11/11/91
32 11/11/91 Intermediate Harvest Killed 11/11/91 34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92	29	4/27/92	Harvest #3	Killed	4/27/92
34 4/13/92 Harvest #2 Killed 4/13/92 37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 3/16/92 48 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 4/27/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 10/26/91 Below 50% ADG Killed 4/13/92	31	4/27/92	Harvest #3	Killed	4/27/92
37 4/27/92 Harvest #3 Killed 4/27/92 38 4/13/92 Harvest #2 Killed 4/13/92 39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #3 Killed 4/27/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 10/26/91 Below 50% ADG Killed 4/13/92 59 4/27/92 Harvest #3 Killed 4/27/92	32	11/11 / 91	Intermediate Harvest	Killed	11/11/91
38 4/13/92	34	4/13/92	Harvest #2	Killed	4/13/92
39 11/9/91 Injected before harvest Killed 3/16/92 40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 58 10/26/91 Below 50% ADG Killed 4/13/92 59 4/27/92 Harvest #3 Killed 4/27/92	37	4/27/92	Harvest #3	Killed	4/27/92
40 11/11/91 Intermediate Harvest Killed 11/11/91 42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #1 Killed 3/16/92 56 10/26/91 Below 50% ADG Killed 5/11/92 57 4/27/92 Harvest #4 Killed 5/11/92 57 4/27/92 Harvest #3 Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/13/92	38	4/13/92	Harvest #2	Killed	4/13/92
42 3/16/92 Harvest #1 Killed 3/16/92 43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/13/92	39	11/9/91	Injected before harvest	Killed	3/16/92
43 4/27/92 Harvest #3 Killed 4/27/92 44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	40	11/11 / 91	Intermediate Harvest	Killed	11/11 <i>/</i> 91
44 4/13/92 Harvest #2 Killed 4/13/92 45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	42	3/16/92	Harvest #1	Killed	3/16/92
45 11/11/91 Intermediate Harvest Killed 11/11/91 46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	43	4/27/92	Harvest #3	Killed	4/27/92
46 3/16/92 Harvest #1 Killed 3/16/92 47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	44	4/13/92	Harvest #2	Killed	4/13/92
47 4/27/92 Harvest #3 Killed 4/27/92 49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	45	11/11/91	Intermediate Harvest	Killed	11/11/91
49 5/25/91 Below 50% ADG Killed 11/11/91 50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	46	3/16/92	Harvest #1	Killed	3/16/92
50 3/16/92 Harvest #1 Killed 3/16/92 54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	47	4/27/92	Harvest #3	Killed	4/27/92
54 3/16/92 Harvest #1 Killed 3/16/92 55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	49	5/25/91	Below 50% ADG	Killed	11/11/91
55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	50	3/16/92	Harvest #1	Killed	3/16/92
55 5/11/92 Harvest #4 Killed 5/11/92 56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92	54		Harvest #1	Killed	3/16/92
56 10/26/91 Below 50% ADG Killed 4/13/92 57 4/27/92 Harvest #3 Killed 4/27/92			Harvest #4		
57 4/27/92 Harvest #3 Killed 4/27/92					4/13/92
JU 4/2//32 Mai vost 73 Milleu 4/2//92	58	4/27/92	Harvest #3	Killed	4/27/92

Table A-2. (cont'd)

er no. Da	ate removed	Reason	Disposal	Date
59	5/11 /9 2	Harvest #4	Killed	5/11 <i>/</i> 92
60	11/11 / 91	Intermediate Harvest	Killed	11/11 <i>/</i> 91
62	4/13/92	Harvest #2	Killed	4/13/92
63	5/11 /9 2	Harvest #4	Killed	5/11 <i>/</i> 92
65	4/13/92	Harvest #2	Killed	4/13/92
67	4/23/91	Initial kill	Killed	4/23/91
70	4/13/92	Harvest #2	Killed	4/13/92
72	11/11/91	Intermediate Harvest	Killed	11/11 <i>/</i> 91
73	4/17/92	Below 50% ADG	Killed	4/27/92
74	4/23/91	Initial kill	Killed	4/23/91
75	4/27/92	Harvest #3	Killed	<i>4/</i> 27 <i>/</i> 92
76	4/27/92	Harvest #3	Killed	4/27/92
77	3/16/92	Harvest #1	Killed	3/16/92
78	11/11 <i>/</i> 91	Intermediate Harvest	Killed	11/11 <i>/</i> 91
79	10/21/91	Died	Necropsy/Incine	erated
80	3/16/92	Harvest #1	Killed	3/16/92
83	3/16/92	Harvest #1	Killed	3/16/92
84	10/21/91	Died	Necropsy/Incine	erated
85	11/11/91	Intermediate Harvest	Killed	11/11/91
86	5/11/92	Harvest #4	Killed	5/11/92
87	4/13/92	Harvest #2	Killed	4/13/92
88	10/26/91	Below 50% ADG	Killed	3/16/92
89	5/11/92	Harvest #4	Killed	5/11/92
90	4/13/92	Harvest #2	Killed	4/13/92
91	3/29/92	Below 50% ADG	Killed	5/11/92
92	4/30/91	Initial kill	Killed	4/30/91
94	12/21/91	Below 50% ADG	Killed	4/13/92
95	11/11/91	Intermediate Harvest	Killed	11/11/91
97	4/27/92	Harvest #3	Killed	4/27/92
98	11/11/91	Intermediate Harvest	Killed	11/11/91
99	10/15/91	Respiratory problems	Killed	3/16/92
100	11/11/91	Intermediate Harvest	Killed	11/11/91
101	4/13/92	Harvest #2	Killed	4/13/92
102	3/16/92	Harvest #1	Killed	3/16/92
103	5/11/92	Harvest #4	Killed	5/11/92
104	5/11/92	Harvest #4	Killed	5/11/92
105	8/31/91	Below 50% ADG	Killed	11/11/91
106	11/11/91	Intermediate Harvest	Killed	11/11/91
107	4/27/92	Harvest #3	Killed	4/27/92
108	4/27/92	Harvest #3	Killed	4/27/92
109	3/16/92	Harvest #1	Killed	3/16/92
110	11/11/91	Intermediate Harvest	Killed	11/11/91

Table A-2. (cont'd)

Steer no.	Date removed	Reason	Disposal	Date
111	1 10/14/91	Respiratory problems	Killed	4/13/92
113	2 <i>4/</i> 27 <i>/</i> 92	Harvest #3	Killed	4/27/92
114	4 6/22/91	Below 50% ADG	Died	7/1/91
119	5 4/13/92	Harvest #2	Killed	4/13/92
110	6 4 /13 /9 2	Harvest #2	Killed	4/13/92
11	7 3/16/92	Harvest #1	Killed	3/16/92
118	8 11/11/91	Intermediate Harvest	Killed	11/11/91
119	9 4/13/92	Harvest #2	Killed	4/13/92
12	0 11/11 / 91	Intermediate Harvest	Killed	11/11/91
12	1 <i>4/</i> 27 <i>/</i> 92	Harvest #3	Killed	4/27/92
12:	2 3/16/92	Harvest #1	Killed	3/16/92
12:	3 2/17 <i>/</i> 92	Below 50% ADG	Killed	3/16/92
124	4 11/23/91	Below 50% ADG	Killed	3/16/92
12	7 8/31/91	One testicle/Not castrated	Killed	11/11/91
128	8 11/11 / 91	Intermediate Harvest	Killed	11/11/91
129	9 11/11/91	Intermediate Harvest	Killed	11/11/91
130	0 4/13/92	Harvest #2	Killed	4/13/92
13:	3 5/11/92	Harvest #4	Killed	5/11/92
13	5 8/31 <i>/</i> 91	Below 50% ADG	Killed	11/11/91
130	6 4/27/92	Harvest #3	Killed	4/27/92
13	7 7/5/91	Below 50% ADG	Killed	11/11/91
139	9 4/13/92	Harvest #2	Killed	4/13/92
14	0 8/3/91	Below 50% ADG	Killed	11/11/91
14	1 11/9/91	Below 50% ADG	Killed	3/16/92
143	2 5/11 /92	Harvest #4	Killed	5/11/92
14:	3 3/16/92	Harvest #1	Killed	3/16/92
144	4 4/13/92	Harvest #2	Killed	4/13/92
14	7 4 /13 /9 2	Harvest #2	Killed	4/13/92
148	8 4/26/91	Poor health	Killed	11/11/91
150	0 4/23/91	Initial Kill	Killed	4/23/91
15	1 5/11/92	Harvest #4	Killed	5/11/92
15	3 11/11 / 91	Intermediate Harvest	Killed	11/11/91
15	5 5/11/92	Harvest #4	Killed	5/11/92
15	7 11/11 / 91	Intermediate Harvest	Killed	11/11/91
15	7 4/13/92	Harvest #2	Killed	4/13/92
15	8 5/11/92	Harvest #4	Killed	5/11/92
15	9 4/13/92	Harvest #2	Killed	4/13/92
16	1 4/27/92	Harvest #3	Killed	4/27/92
16:	3 4/27/92	Harvest #3	Killed	4/27/92
16	4 4/30/91	Initial kill	Killed	4/30/91
16	5 5/11/92	Harvest #4	Killed	5/11/92
16	6 4/27/92	Harvest #3	Killed	4/27/92

Table A-2. (cont'd)

Steer no.	Date removed	Reason	Disposal	Date
170	0 4/27/92	Harvest #3	Killed	4/27/92
17	1 11/11/91	Intermediate Harvest	Killed	11/11/91
172	2 11/11/91	Intermediate Harvest	Killed	11/11/91
173	3 11/11/91	Intermediate Harvest	Killed	11/11 <i>/</i> 91
180	5/11/92	Harvest #4	Killed	5/11/92
183	3 3/16/92	Harvest #1	Killed	3/16/92
184	4 3/16/92	Harvest #1	Killed	3/16/92
187	7 11/11/91	Intermediate Harvest	Killed	11/11/91
192	2 3/16/92	Harvest #1	Killed	3/16/92
194	4 5/11/92	Harvest #4	Killed	5/11/92
19	5 4/13/92	Harvest #2	Killed	4/13/92
196	6 4/13/92	Harvest #2	Killed	4/13/92
197	7 3/16/92	Harvest #1	Killed	3/16/92
198	3/16/92	Harvest #1	Killed	3/16/92
199	9 5/11/92	Harvest #4	Killed	5/11/92
20°	1 11/11/91	Intermediate Harvest	Killed	11/11/91
202	2 4/30/91	Initial kill	Killed	4/30/91
203	3 5/25/91	Below 50% ADG	Died	6/4/91
20	5 4/13/92	Harvest #2	Killed	4/13/92
206	5 5/25/91	Below 50% ADG	Killed	11/11/91
208	6/22/91	Below 50% ADG	Killed	3/16/92
210	5/25/91	Below 50% ADG	Died	7/8/91
21	1 11/11/91	Intermediate Harvest	Killed	11/11/91
212	2 <i>4/27/</i> 92	Harvest #3	Killed	4/27/92
213	3 11/11/91	Intermediate Harvest	Killed	11/11 <i>/</i> 91
215	5 3/16/92	Harvest #1	Killed	3/16/92
216	3/4/92	Severe Inflammation of R. foot	Killed	5/11/92
217	7 3/16/92	Harvest #1	Killed	3/16/92
218	8 4/13/92	Harvest #2	Killed	4/13/92
22 ⁻	1 5/11/92	Harvest #4	Killed	5/11/92
222	2 3/16/92	Harvest #1	Killed	3/16/92
22	5 3/16/92	Harvest #1	Killed	3/16/92
22	7 11/11/91	Intermediate Harvest	Killed	11/11/91
228	8 4/13/92	Harvest #2	Killed	4/13/92
23	1 11/9/91	Below 50% ADG	Killed	4/13/92
232	2 3/16/92	Harvest #1	Killed	3/16/92
234	4 5/11/92	Harvest #4	Killed	5/11/92
236	6 4/27/92	Harvest #3	Killed	4/27/92
237	7 1/18/92	Below 50% ADG	Killed	4/27/92
238	3/16/92	Harvest #1	Killed	3/16/92
239	9 4/27/92	Harvest #3	Killed	4/27/92
24	1 3/16/92	Harvest #1	Killed	3/16/92

Table A-2. (cont'd)

Steer no.	Date removed	Reason	Disposal	Date
24	3 4/13/92	Harvest #2	Killed	4/13/92

Table A-3. Steer weight for Experiment BC9002

07/05/91	Day 70		640	545	705	615	505	069	595	490	810	585	615	999	645	200	710	069	580	290	595	695	900	900	605
		2	610	540	670	280	470	099	260	450	760	545	565	009	95	470	089	099	535	550	555	630	550	260	585
06/21/91	Day 56		9	Ŋ	9	Ω.	4	Ø	Ď	4	7	Ŝ	Ŋ	9	5	4	9	Ø	5	S	Ŝ	9	3	Ŋ	40
06/07/91	Day 42	620	555	510	605	520	430	900	485	405	99	495	510	580	545	425	610	615	475	480	505	595	200	510	505
5/24/91	Day 28	580	525	475	555	470	390	565	485	375	605	465	475	520	505	400	570	260	450	430	440	535	460	465	470
05/10/91	Day 14	505	460	440	520	430	345	510	440	330	580	410	420	460	435	350	515	525	390	370	405	470	400	440	425
Average 05/10/91 05/24/91	Initial *	470	443	420	463	388	343	470	393	300	493	390	378	430	411	328	473	455	350	348	380	415	348	418	393
4/27/91	On trial #2	475	445	410	465	390	340	465	395	300	485	395	375	430	416	330	475	455	345	350	380	420	385	420	395
4/25/91	On trial #1	465	440	430	460	385	345	475	390	300	200	385	380	430	405	325	470	455	355	345	380	410	310	415	390
4/19/91	Pre-trial	450	415	420	430	370	325	435	385	290	465	375	355	405	390	310	455	430	325	325	355	405	370	400	370
3/22/91	<u> </u>	370	335	350	390	330	305	365	325	245	365	320	305	330	310	275	375	375	305	305	320	365	300	330	345
2/23/91	Receiving	260	235	310	290	250	240	5 92	235	230	275	255	220	240	260	220	280	275	235	220	225	270	225	245	310
	Treatment	100 000	100	4 bST-bST	- - -	3 C-bST	4 bST-bST	4 bST-bST	1 ဂ	-1 -0 -0 -0	2 bST-C	2 bST-C	1 0 0	4 bST-bST	2 bST-C	3 C-bST	2 bST-C	2 bST-C	1 ဂ	2 bST-C	1 0 0	2 bST-C	2 bST-C	3 C-bST	4 bST-bST
	3lock	4	ო	ო	4	8	-	4	8	-	4	8	7	ო	7	-	4	4	-	-	7	7	-	က	2
	Pen Block	13	_	7	13	∞	O	16	9	9	4	7	9	7	7	12	4	4	9	7	ဖ	7	7	က	ß
	Steer	-	7	4	S	6 0	0	9	11	12	13	4	16	17	18	19	20	21	25	27	29	31	32	34	37

Table A-3. (cont'd)

07/05/91 Day 70	wt., lb	565	675	625	685	585	999	705	700	635		725	730	260	715	625	620	565	595	630	595	620	650	909	540	630	585
06/21/91 (Day 56	wt., Ib	525	645	575	650	540	610	650	620	290		980	980	520	99	570	265	520	540	295	260	575	630	260	202	575	220
06/07/91 (Day 42	wt, lb	495	585	495	900	480	265	605	900	540		605	615	465	610	530	515	460	475	220	495	520	220	490	455	505	490
05/24/91 Day 28	wt., lb	200	525	455	545	445	200	545	230	485	340	550	540	415	525	480	460	435	450	490	460	475	505	455	420	470	440
Average 05/10/91 05/24/91 Initial Day 28	wt., lb	455	505	405	505	410	465	495	495	445	390	505	520	365	490	410	385	385	405	460	405	405	470	375	375	435	400
Average	wt., lb	423	468	378	463	400	430	448	448	400	388	465	453	315	435	393	388	340	383	420	353	408	428	348	355	398	375
4/27/91 On trial #2	wt., lb	420	470	380	465	400	420	450	445	400	390	465	450	315	430	400	390	340	390	420	350	405	425	345	355	395	370
4/25/91 On trial #1	wt., lb	425	465	375	460	400	440	445	450	400	385	465	455	315	440	385	385	340	375	420	355	410	430	350	355	400	380
4/19/91 Pre-trial		410	430	350	445	375	415	430	430	380	360	440	435	295	420	365	325	310	370	395	345	385	410	320	330	375	355
3/22/91	wt., lb	325	355	305	355	300	335	350	340	290	320	345	370	255	330	285	315	280	330	340	265	330	335	260	290	305	315
	wt., lb	255	260	260	265	245	250	290	270	280	260	280	286	220	245	225	245	215	265	255	220	235	250	210	225	235	240
2/23/91 Steer Pen Block Treatment Receiving		3 C-bST	3 C-bST	4 bST-bST	1 0 0	- ဂ	2 bST-C	1 0 0	2 bST-C	4 bST-bST	၂ ၁	3 C-bST	2 bST-C	3 C-bST	4 bST-bST	1 0-0 0-	3 C-bST	3 C-bST	1 0-0 1	၂ ၁-	10-0	4 bST-bST	3 C-bST				
3lock		3	4	7	4	7	က	က	4	7	7	4	4	_	က	7	7	_	7	က	-	က	က	-	-	7	7
Steer Pen Block	5	က	15	2	13	9	4	-	4	2	9	15	4	=	4	7	7	12	2	_	12	က	-	9	9	2	∞
Steer	2 5	38	39	4	42	43	4	45	46	47	49	20	\$	22	26	57	28	29	9	62	63	65	2	72	73	75	92

Table A-3. (cont'd)

	wt., lb	695	575	510	069	695	585	645	265	725	490	525	655	645	502	655	595	655	900	655	200	770	900	550	695	069	009
£ 83	wt., lb	099	220	485	635	069	540	615	515	655	445	495	625	595	490	295	555	615	550	610	635	740	555	545	675	655	585
l	wt., lb	900	485	430	575	630	475	220	465	290	385	450	555	540	445	530	515	260	200	565	570	929	485	475	615	290	530
Average 05/10/91 05/24/91 06/07/91 Initial Day 14 Day 28 Day 42	wt., lb	240	455	400	515	280	465	520	420	555	330	405	495	200	430	490	465	505	455	510	530	615	435	440	565	535	485
05/10/91 Day 14	wt. lb	495	415	345	475	535	415	475	375	475	325	380	445	445	380	450	410	460	400	440	460	575	385	400	515	510	430
Average Initial	wt., lb	455	368	323	448	473	390	443	360	435	298	345	408	410	348	425	373	408	358	403	415	520	348	365	473	465	395
4/27/91 On trial #2	₩., Ib	460	365	320	445	470	395	440	365	430	300	345	405	415	345	425	370	410	360	400	415	525	350	360	485	470	395
4/25/91 On trial #1	₩., Ib	450	370	325	450	475	385	445	355	440	295	345	410	405	320	425	375	405	355	405	415	515	345	370	460	460	395
4/19/91 Pre-trial	₩., Ib	435	355	310	400	460	370	420	335	415	285	330	390	390	335	400	340	385	325	375	385	505	325	345	460	445	380
3/22/91	wt. lb	360	300	280	370	390	345	345	300	330	265	305	305	345	325	325	275	315	305	310	310	405	285	325	375	390	320
2/23/91 Receiving	₩., lb	265	235	240	270	275	260	250	245	240	255	240	220	245	250	230	240	215	245	230	230	305	250	245	280	290	225
Treatment F		4 bST-bST	3 C-bST	2 bST-C	4 bST-bST	4 bST-bST	4 bST-bST	1 0 0	1 0-0 0-	4 bST-bST	2 bST-C	4 bST-bST	4 bST-bST	3 C-bST	3 C-bST	2 bST-C	2 bST-C	10-C	4 bST-bST	2 bST-C	3 C-bST	3 C-bST	2 bST-C	1 0 0	100	3 C-bST	3 C-bST
Slock		4	-	-	4	4	7	က	_	ო	_	-	ო	7	-	က	7	7	-	7	ო	4	-	-	4	4	7
Pen Block		16	12	=	16	16	2	-	9	7	=	တ	7	œ	12	4	7	9	တ	7	က	15	1	5	13	15	∞
Steer	2	77	78	79	80	83	8	82	98	87	88	83	06	91	8	95	97	86	66	100	101	102	103	104	105	106	107

Table A-3. (cont'd)

07/05/91	Day 70 wt., Ib	665	735	222	555	585		999	670	685	620	630	715	290	069	605	900	720	099	725	650	570	545	635	530	630
06/21/91	Day 56 wt., lb	625	695	510	490	535	435	615	635	645	900	280	685	260	999	260	545	670	620	999	605	520	510	290	545	605
06/07/91	Day 42 wt., lb	550	630	460	435	460	515	522	280	595	530	535	625	485	635	202	525	630	260	900	522	465	465	515	220	555
	Day 28 wt., lb	520	575	425	380	480	470	495	520	535	485	200	260	460	585	465	485	2 92	510	545	510	415	440	485	200	495
05/10/91	Day 14 wt., lb	465	535	370	320	445	395	445	465	505	435	460	535	410	525	420	420	510	445	505	465	345	400	415	455	445
Average 05/10/91 05/24/91	Initial wt., Ib	415	465	320	315	395	368	430	440	468	398	443	473	385	485	373	385	473	425	455	430	315	370	375	420	413
4/27/91	On trial #2 wt., lb	420	460	350	315	395	370	430	440	465	400	440	475	385	485	370	390	470	420	455	430	315	375	375	415	405
4/25/91	On trial #1 wt., lb	410	470	350	315	395	365	430	440	470	395	445	470	385	485	375	380	475	430	455	430	315	365	375	425	420
4/19/91	Pre-trial wt., Ib	400	465	330	290	375	345	425	415	440	365	415	450	360	455	345		455	405	430	415	305	345	355	400	390
3/22/91	wt., Ib	325	370	285	270	315	315	350	330	345	300	370	375	325	370	310	315	390	330	350	330	260	320	290	330	325
2/23/91	Receiving wt., lb	240	285	240	225	230	255	265	245	260	255	285	295	260	280	235	255	300	240	235	265	280	260	235	250	240
	Treatment F	4 bST-bST	2 bST-C	4 bST-bST	4 bST-bST	4 bST-bST	2 bST-C	3 C-bST	3 C-bST	4 bST-bST	3 C-bST	1 0 0	၂ ၁	4 bST-bST	- - -	2 bST-C	3 C-bST	4 bST-bST	3 C-bST	4 bST-bST	3 C-bST	2 bST-C	1 0-0 0-0	10°C	2 bST-C	4 bST-bST
	Block	2	4	-	-	7	-	က	က	4	7	က	4	7	4	7	7	4	က	4	က	-	-	7	က	က
	Pen	5	4	တ	O	2	1	ო	က	16	∞	~	13	2	13	7	∞	16	က	16	က	1	9	ဖ	4	7
	Steer Pen Block no.	108	109	110	111	112	114	115	116	117	118	119	120	121	122	123	124	127	128	129	130	133	135	136	137	139

Table A-3. (cont'd)

91 07/05/91	ody 70 wt., lb	685	220	202	705	099	635	585	099	625	555	695	265	670	630	645	290	640	640	250	615	265	620	710	695	745	069
06/21/91	oay 30 wt., lb	615	230	485	980	615	290	265	625	290	520	655	540	635	585	900	522	605	620	445	550	545	575	700	099	700	675
ı	oay 42 wt., lb	580	490	425	610	260	255	510	565	520	460	009	470	565	535	535	200	220	220	425	505	200	520	635	290	635	595
05/24/91	Ody 20 wt., lb	550	445	395	570	505	200	460	520	480	435	540	430	535	200	200	460	200	495	400	475	450	475	570	545	585	555
Average 05/10/91 05/24/91 06/07/91	wt., Ib	515	415	365	535	450	455	390	480	440	385	505	390	475	430	440	390	435	445	350	395	385	415	535	200	550	505
Average	wt., ib	470	380	313	475	428	420	360	440	415	358	453	345	443	385	405	370	413	408	318	368	403	380	478	470	475	448
4/27/91	on trial #2 wt., Ib	465	380	310	475	425	425	365	435	410	355	445	345	440	385	405	370	420	410	315	370	395	390	480	470	475	440
4/25/91	on trial #1 wt., lb	475	380	315	475	430	415	355	445	420	360	460	345	445	385	405	370	405	405	320	365	410	370	475	470	475	455
4/19/91 Pro trial	wt., lb	475	375	325	470	395	410	330	425	390	345	445	310	430	365	375	360	400	410	300	355	395	360	455	440	450	430
3/22/91 4/	wt., lb	365	330	280	390	335	345	250	375	365	285	360	310	345	280	315	295	320	300	260	265	355	315	385	370	375	365
2/23/91 Bossiting	receiving wt., lb	285	230	265	285	280	265	235	295			270	245	255	220	270	225	250	245	245	200	275	260	290	285	300	270
	i reaument	2 bST-C	1 င	3 C-bST	3 C-bST	3 C-bST	1 င	2 bST-C	3 C-bST	<u>၂</u> ၁	4 bST-bST	2 bST-C	3 C-bST	2 bST-C	1 ဂ	3 C-bST	2 bST-C	3 C-bST	3 C-bST	3 C-bST	4 bST-bST	4 bST-bST	4 bST-bST	1 ဂ	3 C-bST	2 bST-C	4 bST-bST
300	SIOCK	4	7	-	4	က	က	-	က	ო	_	4	-	က	7	7	_	7	7	-	-	က	-	4	4	4	4
Joold and		4	9	12	15	က	-	=	က	-	တ	4	7	4	9	∞	=	Φ	œ	12	တ	7	တ	5	15	14	16
doda and and	DO.	140	141	142	143	144	147	151	153	154	155	157	158	159	161	163	165	166	170	171	172	173	180	183	184	187	192

Table A-3. (cont'd)

07/05/91	Day 70	540	670	655	705	069	610	240		630				710	295	675	089	715	675	099	605	670	720	645	680	999	635
06/21/91	Day 56	505	640	900	670	992	565	510		625		475		655	530	645	630	650	650	605	545	640	99	615	635	630	805
06/07/91	Day 42	445	580	575	610	580	505	440		575		455		595	510	580	580	595	610	260	485	900	290	260	570	575	560
05/24/91	Day 28	415	520	515	260	530	450	405	415	515	310	465	365	202	455	530	535	525	260	515	435	525	535	490	515	525	535
05/10/91	Day 14	370	470	460	525	200	385	340	435	455	315	430	390	445	385	455	505	470	505	450	385	495	480	460	465	485	510
Average	Initial	333	430	418	460	460	358	313	428	420	318	385	385	413	388	440	455	430	470	430	348	458	455	468	413	445	458
4/27/91	On trial #2	325	425	405	460	460	360	310	430	415	315	390	385	410	385	435	460	425	470	425	320	450	455	465	415	445	455
4/25/91	On trial #1	340	435	430	460	460	355	315	425	425	320	380	385	415	390	445	450	435	470	435	345	465	455	470	410	445	460
4/19/91	Pre-trial	315	415	395	430	450	340	300	400	395	315	365	380	390	380	410	460	405	450	405	335	445	420	440	390	415	435
3/22/91	<u>=</u>	305	340	345	335	355	275	280	280	340	325	325	340	355	310	345	365	305	385	365	325	355	335	370	340	325	355
2/23/91	Receiving	260	280	275	275	280		230	265	260	245	220	270	265	260	270	290	265	315	260	295	290	255	290	275	275	300
	Treatment	3 C-bST	2 bST-C	2 bST-C	3 C-bST	1 ပ	1 ၀	1 ဂ	- ဂ	2 bST-C	4 bST-bST	4 bST-bST	3 C-bST	2 bST-C	၂ ဂ	4 bST-bST	3 C-bST	4 bST-bST	4 bST-bST	4 bST-bST	1 ဂ	2 bST-C	4 bST-bST	1 ငှင	4 bST-bST	1 0-0 0-	10-0
	Block	-	က	က	4	4	-	-	က	က	-	7	7	က	7	က	4	ო	4	က	_	4	4	4	က	က	4
	Pen	12	4	4	15	13	10	5	_	4	တ	2	∞	4	9	7	15	7	16	7	9	14	16	13	7	_	13
	Steer	<u>\$</u>	195	196	197	198	199	201	203	205	206	208	210	211	212	213	215	216	217	218	221	222	225	227	228	231	232

Table A-3. (cont'd)

 	_		0	O	ō	Ň	o	ñ	ŵ
07/05/91	Day 70	wt., lb	540	650	290	725	620	695	635
06/21/91	Day 56	wt., lb	520	605	555	069	565	675	580
06/07/91	Day 42	wt., lb	470	555	490	630	530	615	520
05/24/91	Day 28	wt., lb	425	505	450	555	465	565	470
Average 05/10/91 05/24/91	Day 14	wt., lb	395	450	390	515	430	520	425
Average	Initial	wt., lb	320	395	373	465	400	465	405
4/27/91	On trial #2	wt., lb	350	400	370	460	405	465	400
4/25/91	On trial #1	wt., lb	350	390	375	470	395	465	410
4/19/91	Pre-trial	wt., lb	340	365	360	460	380	435	405
3/22/91		wt., Ib	315	330	340	375	340	355	340
2/23/91	Receiving	wt, lb	285	265	280	275	290	295	260
	Steer Pen Block Treatment		4 bST-bST	2 bST-C	3 C-bST	3 C-bST	2 bST-C	3 C-bST	2 bST-C
	Block		-	7	-	4	7	4	က
	Pen		တ	7	12	15	7	15	4
	Steer	<u>ا</u>	234	236	237	238	239	241	243

Table A-3. (cont'd)

11/22/91 Day 210	wt. lb	1075	1040		1100		820			805	1190		970	1075	1045		1095	1030	970		945	1020		905	1010	935
harvest	11/11/91					945		1055	940			902								945			910			
11/08/91 Intermediate harvest 11/22/91 Day 196 wt. lb Day 210	11/10/91 11					945		1055	940			905								925			910			
11/08/91 Day 196	wt, lb	1015	980		1030	935	835	1045	930	785	1170	006	925	1030	980		1015	970	945	940	920	985	890	860	970	890
Average Dav 182	wt, lb	982.5	942.5		1010	006	795	1032.5	882.5	762.5	1102.5	882.5	902.5	995	096		066	952.5	892.5	905	890	995	905	845	955	850
10/27/91 Day 183	wt., lb	980	940		995	895	790	1025	880	760	1095	885	905	1000	955		985	950	885	895	890	980	006	845	096	845
10/25/91 Day 181	wt, lb	985	945		1025	905	800	1040	885	765	1110	880	006	066	965		995	955	900	915	890	1010	910	845	950	855
10/11/91 Day 168	wt., lb	096	915		1015	880	780	1005	835	725	1055	860	800	965	925		970	935	855	865	875	970	880	825	925	825
09/27/91 Day 154	wt. lb	935	875		965	830	755	955	815	680	1030	820	835	915	895		950	900	840	810	845	930	815	790	895	790
09/13/91 Day 140		910	845		920	800	710	930	785	665	995	770	795	890	835		905	880	775	785	790	006	780	755	835	745
08/30/91 Day 126	¥t, lb	845	795		855	765	675	860	735	630	930	725	745	835	802	610	865	825	730	750	740	870	730	720	775	715
08/16/91 Day 112	₩t, lb	825	760		835	730	620	815	695	605	955	069	710	790	755	605	825	765	695	710	705	835	685	705	725	675
07/19/91 08/02/91 (Dav 84 Dav 98		785	705		810	700	595	770	675	260	890	650	655	740	710	595	765	760	655	685	069	765	645	655	700	640
19/91	₩t, lb	755	675	560	720	675	550	735	650	525	850	630	645	715	695	540	755	745	620	610	99	745	625	640	650	610
07/19/9 Steer Day 84	no. ₩.	-	7	4	5	œ	တ	9	7	12	13	4	16	17	18	19	20	21	22	27	53	31	32	34	37	38

Table A-3. (cont'd)

11/22/91 Day 210 wt., lb			1095	965	1045		1080	1045		1145	1205	975		1010	1010	066		945	066	915	1015		885	1005	096
ite harvest 1 Ib 11/11/91		096				1010											096					955			
11/08/91 Intermediate harvest 11/22/91 Day 196 wt., lb Day 210 wt., lb 11/10/91 11/11/91 wt., lb	066	950				1020											980					922			
11/08/91 Day 196 wt., lb	066	940	1030	910	985	1000	1020	1000		1055	1179	945		965	975	930	995	940	975	875	950	965	860	965	945
Average Day 182 wt., Ib	962.5	947.5	995	890	970	992.5	987.5	962.5		1030	1120	912.5	982.5	930	930	875	920	880	905	850	927.5	915	830	940	917.5
10/27/91 Day 183 wt., lb	995	940	995	885	970	066	980	955		1025	1110	902	980	925	920	865	915	875	006	845	930	915	820	930	905
10/25/91 Day 181 wt., lb	930	955	995	895	970	995	995	970		1035	1130	920	985	935	940	885	925	885	910	855	925	915	840	950	930
10/11/91 Day 168 wt., lb	905	905	955	820	930	975	950	920		995	1095	870	1080	006	006	840	905	885	885	825	930	910	815	915	870
	865	875	925	830	885	910	006	910		960	1035	825	1010	860	860	775	875	830	850	810	885	865	770	885	840
09/13/91 09/27/91 Day 140 Day 154 wt., lb wt., lb	835	820	885	760	865	880	870	870		915	1010	795	985	810	810	770	820	795	810	785	860	830	740	870	800
۱	770	785	830	730	805	840	815	820		865	935	745	920	775	775	725	775	770	755	730	805	775	685	790	760
07/19/91 08/02/91 08/16/91 08/30/91 Day 84 Day 98 Day 112 Day 126 wt., lb wt., lb wt., lb	765	755	805	700	775	800	790	765		845	885	705	865	730	740	685	730	730	735	705	785	750	99	750	715
08/02/91 Day 98 wt., lb	725	705								810											735	710	620	700	069
07/19/91 Steer Day 84 no. wt., lb	700	665	755	615	710	750	735	680		785	790	605	775	665	645	620	640	670	645	9	705	665	290	675	645
Steer I	39	4	42	43	4	45	46	47	49	20	3	52	26	57	28	29	9	62	63	65	20	72	73	75	9/

Table A-3. (cont'd)

11/22/91 Day 210 wt., lb	1130			1150	1110			935	1150		006	1045	1055	855		1015				1100	1195	1080	950		
te harvest 11 lb D 11/11/91		880					1005								066		1010		066						1010
Intermediate harvest 11/22/91 wt., lb Day 210 11/10/91 11/11/91 wt., lb		885					1010								066		1000		995						1010
11/08/91 Day 196 wt., lb	1070	882		1135	1085		980	910	1100		925	1015	995	815	066	945	1005		980	1030	1150	1030	935		1010
Average Day 182 wt., lb	1040	860		1082.5	1042.5		945	870	1057.5	732.5	877.5	985	957.5	775	980	927.5	962.5		937.5	985	1105	987.5	897.5		985
10/27/91 Day 183 wt., lb	1045	860		1080	1030		940	865	1050	725	875	980	950	770	970	915	096		935	985	1105	975	890		985
10/25/91 Day 181 wt., lb	1035	860		1085	1055		950	875	1065	740	880	066	965	780	066	940	965		940	985	1105	1000	905		985
10/11/91 Day 168 wt., lb	995	830	765	1030	1010	765	920	840	1005	730	810	955	920	745	955	890	965	800	935	950	1080	955	840		940
09/27/91 Day 154 wt., lb	950	780	750	975	975	735	865	810	975	765	820	006	890	710	915	855	006	785	905	915	1020	905	815		006
9/13/91 Day 140 wt., lb	920	755	725	930	935	710	840	765	940	750	755	850	815	675	865	790	845	790	850	880	975	870	765		885
08/30/91 0 Day 126 [wf., lb	855	730	99	850	875	705	790	725	890	675	730	820	800	620	825	780	810	770	795	820	920	800	710	750	820
lt .	825	695	620	805	835	999	765	610	840	620	700	765	760	900	770	740	750	720	760	810	880	745	695	745	790
07/19/91 08/02/91 08/16/91 Day 84 Day 98 Day 112 wt., lb wt., lb wt., lb	765																740				835	715	645	765	775
07/19/91 r Day 84 wt., lb	745	640	535	735	770	900	695	615	770	540	595	705	069	560	695	645	695	640	9	730	805	670	620	750	720
07/19/9 Steer Day 84 no. wt., lb	11	78	79	80	83	8	82	88	87	88	88	6	9	9	92	97	86	66	100	101	102	103	104	105	106

Table A-3. (cont'd)

11/22/91 Day 210	₩, lb	096	1045	1155			066		1045	1075	1100		950		995	965	1005	865				1025	1025		066	
e harvest b	1/11/91				875							980		1075						935	1120					
Intermediate harvest 11/22/91 wt., lb Day 210	11/10/91 11/11/91				880							970		1080						945	1125					
	₩ ., Þ	945	1015	1110	890		965		980	1020	1070	975	915	1095	945	940	940	860		935	1125	066	975		940	
Average Day 182	wt., Ib	905	066	1085	842.5		927.5		937.5	977.5	1025	930	880	1042.5	910	887.5	912.5	867.5		915	1072.5	952.5	940		920	
10/27/91 Day 183	₩., IÞ	905	985	1075	840		920		935	970	1015	930	880	1045	006	885	905	860		910	1070	945	930		910	
l	wt., lb	905	995	1095	845		935		940	985	1035	930	880	1040	920	890	920	875		920	1075	096	950		930	
I	₩., ID	875	096	1045	810	805	006		905	935	975	006	840	1040	860	890	855	835		880	1010	905	895		880	
l	wt., lb	835	925	1005	805	805	855		870	910	925	865	825	985	820	865	835	815		850	096	875	845		820	
١ _	₩, lb	805	895	970	740	765	805		840	865	905	830	785	920	745	835	785	725		835	915	845	815		805	
l _ ′o	₩, Ib	770	840	895	705	725	770		810	795	845	770	745	870	755	795	760	750		775	835	800	750	565	805	
_ ~	₩., lb	725	780	860	680	069	715		780	780	785	745	715	860	700	775	720	720	820	770	845	775	710	570	775	
	₩., Ib	069	735	830	645	630	99		750	745	775	715	685	815	655	760	670	695	800	735	795	740	099	595	720	
7/19/91 ay 84	<u>අ</u>	655	700	795	610	610	620		705	710	735	675	650	775	615	745	650	650	780	715	770	700	615	560	695	
07/19/9 Steer Day 84	no. wt., lb	107	108	109	110	111	112	114	115	116	117	118	119	120	121	122	123	124	127	128	129	130	133	135	136	<u> </u>

Table A-3. (cont'd)

11/22/91 Day 210	wt., Ib	1060			775	1080	1075	1010	1030		1000	945		950	1045	1085	1050	980	1005	1025				1065	1135	1080
harvest 1 b	11/11/91									066			1025								890	965	930			
1 63 7	11/10/91 1									985			1030								880	066	920			
11/08/91 Day 196	wt., Ib	1000		845	725	1025	1025	955	955	985	945	905	1025	895	1025	1040	985	900	980	995	885	066	935	1030	1065	1040
	wt., Ib	957.5		830	717.5	066	970	930	096	957.5	910	852	995	847.5	975	982.5	935	882.5	940	970	852.5	947.5	927.5	977.5	1040	1015
l	Wt., Ib	965		830	710	066	965	930	950	955	910	820	985	845	975	975	930	870	935	970	820	945	925	970	1035	1020
10/25/91 Day 181	Mt., Ib	950		830	725	066	975	930	970	096	910	860	1005	820	975	066	940	895	945	970	855	950	930	985	1045	1010
10/11/91 Day 168	wt., Ib	925		870	705	970	935	895	920	935	895	815	066	835	925	096	905	850	910	915	800	905	880	940	1000	980
	wt., Ib	865		755	675	920	915	860	880	890	845	780	955	795	865	900	875	795	895	895	770	840	830	890	066	925
	wt., Ib	830		710	655	895	855	825	815	845	820	740	925	770	830	840	835	780	840	820	725	810	820	840	945	905
08/30/91 Day 126	wt., Ib	775		670	920	845	815	805	785	790	785	705	830	720	790	800	805	730	820	795	680	775	750	795	880	835
08/16/91 Day 112	wt., Ib	745		645	630	820	785	755	730	770	755	675	835	670	775	750	765	695	770	770	640	755	685	760	860	810
07/19/91 08/02/91 08/16/91 Day 84 Day 98 Day 112	wt., Ib	720	630		595																620					780
	₩f., <u>I</u> D	670	620	605	570	745	705	680	635	700								630		705			610		775	725
Steer	<u>ė</u>	139	140	141	142	143	4	147	151	153	154	155	157	158	159	161	163	165	166	170	171	172	173	180	183	184

Table A-3. (cont'd)

1/22/91 Day 210	wt., lb		1180	890	1045	1020	1155	1120	096			1010					890		1025	1105	1105	1060	1000	1110	1210
e harvest 1 Ib	11/11/91	1115								895						1055		995							
11/08/91 Intermediate harvest 11/22/91 Day 196 wt., lb Day 210	11/10/91	1120								006						1060		995							
11/08/91 Day 196	wt., lb	1125	1135	845	1000	980	1075	1065	925	895		096				1075	865	1000	980	1015	1060	1020	066	1050	1135
Average Day 182	wt., Ib	1095	1107.5	802	985	947.5	1027.5	1017.5	897.5	862.5		920				1060	840	982.5	006	1005	1027.5	1012.5	942.5	1005	1095
10/27/91 Day 183	wt., lb	1085	1105	795	980	945	1030	1020	895	860		915				1045	835	980	895	1000	1030	1005	940	995	1095
	wt., Ib	1105	1110	815	066	950	1025	1015	006	865		925				1075	845	985	902	1010	1025	1020	945	1015	1095
	wt., Ib	1055	1055	800	940	915	995	985	860	815		895				1040	802	955	885	965	1005	965	905	970	1055
09/27/91 Day 154	wt., Ib	1000	066	770	905	875	945	920	835	785		855				096	775	910	820	905	930	006	875	940	1010
3/91	₩., ib	965	955	725	865	830	865	915	815	755		795				945	750	870	835	910	910	860	845	915	965
	wt., Ib	006	880	069	835	800	845	850	765	715		780				890	710	830	770	865	825	810	795	835	875
07/19/91 08/02/91 08/16/91 08/30/91 Day 84 Day 98 Day 112 Day 126	wt., lb	875	830	992	790	765	800	830	715	680		740				840	069	785	765	825	800	775	765	810	840
08/02/91 Day 98	₩., Ib	820	805	630	735	730	770	795	720	620		740								785					
7/19/91 ay 84	t., 15	790	750	595	725	69 0	735	745	99	900		695				760	630	715	700	755	745	685	099	725	765
07/19/9 Steer Day 84	ĕ	187	192	194	195	196	197	198	199	201	203	205	206	208	210	211	212	213	215	216	217	218	221	222	225

Table A-3. (cont'd)

11/22/91 Day 210	wt., lb		1110		1025	930	1030	995	1130	975	1090	1110
e harvest ' Ib		920										
Intermediate harvest 11/22/91 wt., lb Day 210	11/10/91 11/11/91	940										
11/08/91 Day 196	wt., Ib	935	1040	955	955	885	980	945	1070	935	1030	1075
Average Day 182		905	1010	942.5	920	840	925	907.5	1032.5	910	1005	1032.5
10/27/91 Day 183	wt., lb	895	1015	935	920	835	920	905	1030	902	1005	1025
10/25/91 Day 181		915	1005	950	920	845	930	910	1035	915	1005	1040
0/11/91 Day 168	wt., Ib	875	965	935	890	820	890	890	1020	880	975	066
09/27/91 1 Day 154	wt., lb	845	915	880	835	785	855	855	955	835	920	935
09/13/91 Day 140		830	006	830	800	735	802	815	930	815	895	890
	wt., ib	775	820	790	765	695	780	750	865	775	855	820
	wt., Ib	755	790	765	745	670	780	710	835	730	810	780
	wt., lb	730	755	740	705	625	725	099	795	695	780	740
07/19/91 Day 84	no. wt., lb		745									
Steer	2	227	228	231	232	234	236	237	238	239	241	243

Table A-3. (cont'd)

	Avg.	1180	1392.5		1320		1280			1150	1440		1317.5	1382.5	1295		1315	1240	1372.5		1297.5	1300		1190	1322.5	1275
Final wt., lb	#2	1175	1385		1315		1265			1150	1430		1320	1380	1290		1300	1230	1365		1295	1290		1185	1325	1265
Ę	#	1185	1400		1325		1295			1150	1450		1315	1385	1300		1330	1250	1380		1300	1310		1195	1320	1285
Days	on Trial	322	320		322		377			377	322		364	350	364		322	322	377		364	364	•	320	364	350
4/24/92	Jay 364 wt., Ib						1235			1105									1320							
4/10/92 0)ay 350 [wt., lb						1230			1105			1290		1280				1300		1275	1285			1305	
3/27/92 0	Day 336 Day 350 Day 364 wt., lb wt., lb wt., lb		1345				1200			1085			1260	1385	1270				1270		1305	1280		1155	1275	1250
3/13/92 0	Day 322 E wt., lb		1315				1155			1080			1225	1380	1245				1240		1245	1250		1150	1280	1245
2/28/92 0	Day 308 [wt., lb	1215	1290		1335		1120			1050	1390		1200	1355	1210		1305	1213	1220		1225	1205		1115	1230	1195
2/14/92 0	Day 294 [wt., lb	1220	1260		1315		1090			1030	1370		1170	1310	1195		1250	1190	1175		1175	1165		1100	1225	1155
1/31/92 0		1190	1200		1250		1055			985	1330		1125	1260	1180		1215	1135	1125		1145	1140		1070	1200	1130
1/17/92 0	Day 266 Day 280 wt., lb wt., lb	1170	1170		1230		1010			955	1310		1090	1230	1150		1180	1130	1115		1110	1120		1040	1140	1070
12/06/91 12/20/91 01/03/92 01/17/92 01/31/92 02/14/92 02/28/92 03/13/92 03/27/92 04/10/92 04/24/92	Day 252 wt., lb	1120	1125		1155		980			925	1230		1030	1150	1125		1130	1050	1075		1040	1100		1000	1052	1040
2/20/91 0		1095	1090		1140		930			895	1245		1015	1125	1090		1115	1080	1050		1045	1085		970	1100	1005
2/06/91 1	Day 224 Day 238 wt., lb wt., lb	1085	1065		1135		895			820	1210		066	1120	1090		1085	1050	1005		985	1030		940	1065	975
1	Steer I	-	7	4	2	©	တ	9	7	12	13	14	16	17	18	19	20	21	25	27	53	31	32	34	37	38

Table A-3. (cont'd)

	Avg.			1357.5	1327.5	1352.5		1260	1412.5		1432.5	1462.5	1382.5		1295	1295	1442.5		1237.5	1435	1225	1340			1312.5	1362.5
Final wt., lb	¥			1355	1330	1345		1255	1400		1410	1450	1375		1300	1295	1435		1235	1415	1215	1340			1315	1360
Ë	#			1360	1325	1360		1265	1425		1455	1475	1390		1290	1295	1450		1240	1455	1235	1340			1310	1365
Days	on Trial			322	364	350		322	364		322	322	377		364	364	377		350	377	350	350			364	364
4/24/92	Day 364 wt., lb												1325				1425			1355						
1/10/92 0	Day 350 [wt., lb				1310				1400				1305		1265	1280	1410			1325				1080	1315	1360
3/27/92 0-	Day 336 D wt., lb				1280	1335			1400				1290		1265	1265	1380		1210	1305	1190	1325		1100	1315	1325
V13/92 03	Day 322 D wt., lb				1250	1340			1365				1265		1260	1245	1335		1220	1275	1185	1305		1145	1280	1290
2/28/92 03	Day 308 D wt., lb			1350	1240	1315		1240	1320		1430	1425	1230		1200	1205	1300		1175	1235	1150	1290		1125	1240	1275
2/14/92 02				1325	1180	1275		1205	1280		1395	1395	1185		1185	1190	1260		1140	1190	1115	1240		1095	1215	1215
1/31/92 0	Day 280 Day 294 wt., lb wt., lb			1285	1155	1240		1200	1240		1320	1355	1125		1150	1160	1210		1100	1155	1075	1200		1060	1190	1165
1/17/92 0	Day 266 D wt., lb			1255	1110	1180		1150	1200		1280	1350	1125		1135	1135	1155		1080	1150	1050	1160		1035	1135	1140
12/06/91 12/20/91 01/03/92 01/17/92 01/31/92 02/14/92 02/28/92 03/13/92 03/27/92 04/10/92 04/24/92	Day 252 [wt., lb			1200	1060	1165		1115	1130		1220	1285	1070		1095	1100	1105		1040	1095	1000	1130		985	1090	1095
2/20/91 0				1135	1050	1110		1115	1110		1180	1265	1045		1065	1060	1050		1015	1080	066	1080		920	1060	1055
2/06/91 1	Day 224 Day 238 wt., lb wt., lb			1130	1010	1085		1095	1090		1145	1235	995		1040	1025	1010		1010	1035	955	1055		920	1040	1015
	Steer [39	4	42	43	4	45	46	47	49	20	\$	22	20	22	28	29	9	62	63	65	20	72	73	75	9/

Table A-3. (cont'd)

	12/06/91	12/20/91	01/03/92 (<u>`</u>	1/17/92 01/31/92	02/14/92	02/28/92	/92 02/14/92 02/28/92 03/13/92 03/27/92 04/10/92 04/24/92	03/27/92	04/10/92	10/92 04/24/92	Days	Fir	Final wt., lb	
Steer no.		Day 224 Day 238 wt., lb wt., lb	Day 252 wt., lb	Day 266 wt., lb	Day, ≰f.,	280 Day 294 lb wt., lb	Day 308 wt., lb	Day 308 Day 322 Day 336 Day 350 Day 364 wt., lb wt., lb wt., lb wt., lb	Day 336 wt., lb	Day 350 wt., lb	Day 364 wt., lb	on Trial	#	¥	Avg.
11	1170	1180	1225	1270	1290	1330	1350					322	1400	1365	1382.5
78															
79															
80	1215				1305	1380	1395					322	1440	1405	1422.5
83	1195	1215	1235	1270		1340	1370					322	1375	1345	1360
\$															
85															
86	970	1020	1050	1100		1145	1190	1220	1240	1285	1305	377	1365	1345	1355
87	1190	1190	1205	1230	1295	1360	1370	1400	1410			320	1410	1405	1407.5
88															
88	975	1015	1070			1170	1225	1250	1255	1290	1310	377	1340	1300	1320
06	1080	1110	1135	1150		1290	1315	1330	1360			320	1320	1310	1315
91	1085	1110	1165	1240	1250	1310	1345	1340	1330						
96	860	860													
95															
97	1035	1070	1080	1090	1125	1130	1145	1200	1235	1250		364	1290	1265	1277.5
86															
66															
100															
101	1150	1195	1230	1270		1355	1365	1415	1400			320	1400	1400	1400
102	1240		1310	1360		1470	1480					322	1505	1475	1490
103	1100	1110	1150	1215		1265	1305	1350	1355	1390	1430	377	1495	1455	1475
104	1000	1020	1065	1115	1145	1180	1220	1270	1280	1330	1325	377	1370	1345	1357.5
105															
106															

Table A-3. (cont'd)

Final wt., lb	Avg.	1305	1382.5	1372.5			1385		1355	1442.5	1350		1245		1295	1160						1385	1357.5		1362.5
Final wt., lb	#	1295	1370	1365			1375		1350	1425	1340		1240		1295	1160						1375	1355		1370
	#	1315	1395	1380			1395		1360	1460	1360		1250		1295	1160						1395	1360		1355
Days	on Trial	364	364	322			364		350	320	322		320		364	322						350	377		364
4/24/92	Day 364 wt., lb																						1310		
4/10/92 (Jay 350 wt., lb	1285	1375				1395								1295								1315		1350
92 02/14/92 02/28/92 03/13/92 03/27/92 04/10/92 04/24/	Jay 336 [wt., lb	1270	1340				1355		1320	1410			1220		1295							1350	1310		1325
3/13/92 0	Day 280 Day 294 Day 308 Day 322 Day 336 Day 350 Day 364 wt., lb wt., lb wt., lb wt., lb wt., lb wt., lb	1250	1320				1350		1345	1395			1195		1270							1335	1270		1300
)2/28/92 (Day 308 wt., lb	1215	1250	1325			1290		1295	1365	1350		1175		1200	1115						1295	1240		1290
12/14/92 (Day 294 wt., lb	1160	1220	1315			1260		1255	1320	1350		1150		1215	1120	1125					1265	1175		1245
1/31/92 (Day 280 wt., lb	1105	1210	1290			1225		1225	1275	1290		1110		1175	1100	1155					1225	1145		1215
01/17/92 (Day 266 wt., lb	1065	1180	1270			1180		1170	1225	1270		1065		1160	1075	1145					1230	1130		1160
12/06/91 12/20/91 01/03/92 01/17/92 01/31/92 02/14/92 02/28/92 03/13/92 03/27/92 04/10/92 04/24/92	Day 252 wt., lb	1040	1150	1225			1110		1135	1170	1220		1035		1095	1040	1095					1145	1055		1110
12/06/91 12/20/91 01/03/92		1005	1115	1205			1070		1110	1155	1170		1000		1020	1010	1035					1120	1050		1095
12/06/91	Day 224 Day 238 wt., lb wt., lb	975	1105	1180			1045		1070	1105	1145		970		1040	995	1020					1090	1015		1020
	Steer no.	107	108	109	110	111	112	114	115	116	117	118	119	120	121	122	123	124	127	128	129	130	133	135	136

Table A-3. (cont'd)

	12/06/91	12/20/91	01/03/9	12 01/17/92 01/31/92 02/14/92 02/28/9	01/31/92	02/14/92 (0 9	03/13/92 (3/27/92 (34/10/92 (Days		Final wt., lb	
Steer no.		Day 224 Day 238 wt., lb wt., lb	Day 252 wt., lb	Day 266 wt., lb	Day 280 wt., lb	Day 294 wt., lb	Day 308 wt., lb	Day 322 wt., lb	Day 336 wt., lb	Day 350 Day 364 wt., lb wt., lb	Day 364 wt., lb	on Trial	#	4	Avg.
139	1100	1105	1150	1190	1245	1280	1290	1340	1380			350	1380	1380	1380
140															
141															
142	810	845	905	096	1030	1055	1120	1160	1170	1230	1265	377	1330	1330	1330
143	1100	1105	1130	1210	1250	1310	1335					322	1360	1330	1345
144	1105	5 1135	1165	•	1205	1240	1230	1290	1275			350	1315	1300	1307.5
147	1040	•	1090	•	1175	1205	1245	1265	1285			350	1295	1300	1297.5
151	1055	5 1075	1115	1180	1195	1255	1305	1340	1315	1360	1415	377	1435	1425	1430
153															
154	1030	1070	1105	1185	1205	1245	1280	1310	1335			320	1360	1360	1360
155	970	1010	1045	1070	1105	1155	1195	1195	1225	1235	1275	377	1310	1295	1302.5
157															
158	970	995	1025	1085	1125	1175	1200	1245	1245	1290	1320	377	1355	1345	1350
159	1085	•	1150	1195	1240	1275	1315	1350	1340			320	1355	1350	1352.5
161	1120		1170	1260	1310	1360	1400	1430	1480	1470		364	1495	1500	1497.5
163	1065		1125	1190	1225	1245	1270	1310	1285	1290		364	1295	1270	1282.5
165	1000	•	1075	1110	1120	1170	1225	1235	1220	1255	1280	377	1325	1315	1320
166	•		1100	1155	1195	1250	1295	1330	1370	1400		364	1400	1390	1395
170	1070	•	1150	1190	1220	1225	1260	1275	1265	1285		364	1260	1270	1265
171															
172															
173															
180	•	1180		•	•	1365	1410	1450	1460	1490	1520	377	1585	1535	1560
183	1160			•		1340	1340					322	1390	1380	1385
184	1095		1145	1185	1235	1265	1300					322	1320	1280	1300

Table A-3. (cont'd)

Day 252 Day wt., lb wt. 1300 1155 1100 11100 1210 1075		Jay 280 L	Jay 294	30% >60	1							
1300 935 1155 1100 1210	1	J., 15	wt., lb	wt., lb	wt, lb	vt., lb	Day 260 Day 294 Day 308 Day 322 Day 336 Day 350 Day 364 wt., lb wt., lb wt., lb wt., lb wt., lb	Uay 364 wt., lb	on Trial	ž	¥	Avg.
1300 935 1155 1100 1210 1075	101											
935 1155 1100 1190 1210	13/5	1390	1445	1450					322	1430	1395	1412.5
1155 1100 1190 1210	980	066	1020	1050	1100	1120	1150	1180	377	1215	1195	1205
1100 1190 1210 1075	1195	1225	1270	1310	1345	1340			320	1380	1370	1375
1190	1130	1180	1205	1240	1265	1280			320	1310	1310	1310
1210	1260	1265	1320	1350					322	1365	1340	1352.5
1075	1260	1280	1280	1345					322	1385	1370	1377.5
	1120	1155	1195	1230	1277	1270	1305	1320	377	1365	1350	1357.5
1035 1095 1	1125	1155	1205	1215	1260	1270			320	1295	1300	1297.5
960 970 1	1015	1060	1095	1120	1135	1160	1205		364	1215	1225	1220
1100	1155	1180	1245	1255					322	1285	1260	1272.5
•	1190	1225	1285	1300								
1210	1250	1250	1330	1340					322	1340	1315	1327.5
1110	1160	1195	1235	1265	1270	1275			320	1275	1245	1260
1110	1170	1200	1225	1290	1310	1335	1390	1400	377	1470	1450	1460
1130	1180	1185	1250	1265					322	1295	1280	1287.5
1350	1395	1410	1460	1505					322	1515	1480	1497.5

Table A-3. (cont'd)

Table A-4a. Weekly pen dry matter intake for pens 1 to 4 for Experiment BC9002

Period		P	Pen 1					Pen 2					Pen 3					Pen 4		
	No. of Corn, Pellet,	E, P			Daily	of of C	_	Pellet,	₩,	Daily N	lo. of C	_	Pellet,	Š,	Daily	Daily No. of Corn.	_	Pellet,	WB,	Daily
	steers	<u> </u>		<u>•</u>		DMI, steers lb		੦			DMI, steers lb		<u>o</u>	മ	DMI, steers Ib	steers		<u>a</u>	٩	₽.
day 1 to 7	10.0	48	\$	80.0	9.78	10.0	685	185	81.4	9.80	10.0	685	ह	83.2	9.80	10.0	739	113	2.09	10.62
day 8 to 14	10.0	749	114	Z Z	NR ND C	10.0	685	8	Z	2	10.0	673	ই	X X	2	10.0	738	113	X X	2
day 15 to 21	10.0	717	110 109.4 10.22	9.41	0.22	10.0	88	123	131.8 11.42	1.42	10.0	88	133	128.7 11.43	11.43	10.0	760	117	157.3	10.76
day 22 to 28	10.0	803	123 101.5 11.48	M.51	1.48	10.0	8	139	94.6 12.92	12.92	10.0	857	132	72.4 12.32	12.32	10.0	802	123	50.5	11.55
day 29 to 35	9.1	856	111 123.6 13.10	23.61	3.10	10.0	834	110	58.5 11.78	1.78	10.0	834	6	154.9 11.63	1.83	10.0	922	19,	135.9	12.79
day 36 to 42	9.0	945	8	28.0 14.68	4 .68	10.0	86	113	9	0 13.87	10.0	924	108	0	0 12.94	10.0	1012	116	16	14.16
day 43 to 49	0.6	06	\$	69.8 13.91	3.91	10.0	<u>\$</u>	122.2	62.6 14.07	4.07	10.01	1835	119	26.2 14.47	14.47	10.0	1136	117.2	21.3	15.73
day 50 to 56		901	1 62	1.0 14.01	4.01	10.0	296	111	1.51	1.5 13.55	10.0	4	108 80	15.4 13.21	13.21	10.0	862	98 .	15.9	12.06
day 57 to 63	9.0	897	5	5.0 13.93	3.93	10.0	1052	116	3.9 14.68	4.68	10.01	1831	113	19.4 14.36	14.36	10.0	8	108.5	3.1	13.48
day 64 to 70	9.0 10	1056	115	45.0 16.29	6.29	10.01	191	128	41	41 16.53	10.01	1146	123	37	37 15.91	10.0	1124	121	8	15.57
day 71 to 77	0.6	921		32.1 14.23	4.23	10.0	1056	113	16.7 14.67	4.67	10.01	986	113	2.3	14.69	0.6	921	8	49.7	14.18
day 78 to 84	9.0 11	1168	126	90.9 17.95	7.95	10.0	1260	133	79.1 17.41	7.41	10.01	1191	127	61.3 16.49	16.49	9.0	1214	129	41.4	18.70
day 85 to 91	9.0	933		24.7 14.20	4.20	9.3	1945	88	79.6 15.37	15.37	10.01	1052	97	23.9 14.41	14.41	0.6	8	8	8 .5	15.25
day 92 to 98	9.0 11	1120	8	42.1 16.96	6.96	9.0	166	182	44.3 17.65	7.65	10.01	189	\$	2.7	2.7 16.24	9.0	1166	102	23.1	17.68
day 99 to 105	9.0 10	1074	2	88.4 16.20	6.20	0.6	982	8	1.3	1.3 14.91	10.01	<u>1</u>	102	60	0.9 15.93	9.0	1120	8	33.2	16.97
day 106 to 112	9.0 12	1212	106 165.3 18.21	85.31	8.21	9.0	189	\$	110.1 17.92	7.92	10.01	1281	112	4	140 17.36	9.0	1212	,	157.1	18.22
day 113 to 119	9.0 11	1182	98 2	98 214.6 17.63	7.63	9.0	<u>=</u>	8	49.8 16.61	16.61	10.01	159	-	121.4 15.65	15.65	9.0	1136	8	134.2	17.02
day 120 to 126	9.0 10	1093	2	84 181.6 16.24	6.24	9.0	2 89	\$	93.8 16.33	6.33	10.01	1083	8	82.1 14.71	14.71	9.0	1093		100.8	16.32
day 127 to 133	9.0 12	1217	6	52.0 18.29	8.29	9.0	1217	97	51	51 18.29	10.01	1256	86	8	69 16.94	0.6	932	75	0	14.05
day 134 to 140	9.0 11	1185	8	45.2 17.79	7.79	9.0	162	8	25 1	25 17.48	10.01	208	8	13.4 16.37	16.37	9.0	1208	8	84.8	18.11
day 141 to 147	9.0 12	1223		46.5 18.29	8.29	9.0	1157	87	62.5 17.30	7.30	10.01	1087	82	2	14.68	9.0	1064	80	74	15.89
day 148 to 154	9.0 10	1043	82	0.0 15.64	5.64	9.0	<u> </u>	78	9	0 15.64	10.01	206	8	-	16.28	9.0	194	11	0	15.60
day 155 to 161	9.0 11	1167	88	0.0 17.52	7.52	9.0	1321	8	6.51	6.5 19.81	10.01	1414	6	87.9 19.02	19.02	9.0	1191	8	93.3	17.78
day 162 to 168	9.0 11	1112	83	26.6 16.65	6.65	9.0	111	82	4.91	4.9 16.64	10.0	1113	83	0	15.02	9.0	1160	80	13.8	17.42

Table A-4a -(cont'd)

_		5							2 10					
97	No. of Corn, steers lb	orn, Pellet, Ib Ib	it. WB,	ద్ద	ily No. of Corn,	n, Pellet, Ib	WB, Daily I	No. of Corn steers Ib	, Pellet, Ib	WB, Daily N Ib DMI, s	No. of Corn, steers Ib	Pellet, Ib	WB, D	Daily DMI.
			!				Q		!	lb				<u>p</u>
day 169 to 175	9.0 11	1129 7	74 23.4	16.76	9.0 1129	9 74	10 16.78	10.0 1107		20.9 14.80	9.0 1106	72	49.6 16	16.39
day 176 to 182	9.0 11	1194 7	76 80.6	17.	9.0 1285		93.2 18.99	10.0 1227		54.9 16.34	9.0 1071	68.2	74.2 15	15.83
day 183 to 189	9.0 10	1077 6	90.0	0.0 15.99	9.0 1147	.7 73	2.4 17.02	10.0 1216	3 77.5	0 16.24	8.1 1029	66.5	12.3 16	16.88
day 190 to 196	9.0 11	1124 7	_	13.3 16.60	9.0 1112	2 69.5	61.5 16.43	10.0 1172		183.2 15.50	8.0 1041	65.5	83.3 17	7.29
day 197 to 203	7.3 10	1090 7	71 30.0	30.0 19.98	7.9 929	09 6	20 15.78	8.9 1029	99 (13 15.51	6.9 913	29	97 17	17.68
day 204 to 210				46.5 18.16	7.0 1013	3 63	38.5 19.26	8.0 1013		46.5 16.84	6.0 989	6	34.5 21	21.93
day 211 to 217		924 5		61.5 20.41	7.0 1162	12 69	86.5 21.99	8.0 1030	61.5	75 17.06	6.0 841	49.5	0 18	18.63
day 218 to 224				15.5 20.21	7.0 1089	9 64	0 20.68	8.0 973		26 16.17	6.0 995	29	62.5 21	21.98
day 225 to 231		822 4	49 6.0	6.0 18.21	7.0 93	2 55.5	8.5 17.70	8.0 837	50.5	0 13.92	6.0 884	53.5	11 19	19.60
day 232 to 238		767 45.5		0.0 16.99			0.5 15.10	8.0 1100		32 18.25	6.0 889	25	0 19	19.69
day 239 to 245		790 4	47 60.0	60.0 17.44	7.0 920	0 54	0 17.47	8.0 965	58.5	4 16.06	6.0 814	49	0 18	18.05
day 246 to 252			53 0.0	0.0 19.58	7.0 96		16 18.26	8.0 1024		24 17.00		25	0 15	19.56
day 253 to 259		939 5	57 33.5	33.5 20.80	7.0 1019	9 61	9.5 19.36	8.0 1009	09	18.5 16.76	6.0 997	29	82 21	21.99
day 260 to 266		879 5	55 50.0	50.0 19.48	7.0 1022		0 19.42	8.0 1072		3.3 17.82	6.0 961	28	47.2 21	21.26
day 267 to 273	6.0		51 0.0	0.0 18.87	7.0 1044	4 63.5	2.5 19.86	8.0 1023		3.5 16.99	6.0 1000	6	2 22	22.20
day 274 to 280			60 117.5	17.5 21.97	7.0 111		43 21.24	8.0 1119		66 18.57	6.0 997		28 22	22.08
day 281 to 287		68 48.5		3.5 17.08	7.0 1013	3 65.5	19.7 19.32	8.0 780	49.5	0 13.01	6.0 780	49.5	0 17	17.35
day 288 to 294	6.09	69 62.5		55.0 21.51	7.0 1111	1 71.5	47.5 21.16	8.0 1125		17.5 18.77	6.0 1029	99	10.5 22	22.90
day 295 to 301	6.0	14 49.5		0.0 18.06	7.0 1056		0 20.13	8.0 910		0 15.17	6.0 814	49.5	0 18	18.06
day 302 to 308		947 60.3		53.0 21.01	7.0 1043	3 57.5	7 19.73	8.0 1067		0 17.84	6.0 1113	72	111 24	24.65
day 309 to 315		23 51.8		3 18.24	6.7 99	8 63	49.5 19.78	8.0 998		6.5 16.64	6.0 870	55.5	10.5 19	19.35
day 316 to 322				47.5 21.57	6.0 949	09 6	1.521.11	8.0 1161		16 19.35	6.0 983	63	39 21	21.84
day 323 to 329		922 5	58 55.0	55.0 20.43	6.0 98	7 62	97 21.83	8.0 1086	69	92 18.04	6.0 865	24	0 15	19.23
day 330 to 336	6.0	901 5	_	7 19.91	6.0 942	2 60	74 20.87	8.0 1030	99 (91.5 17.11	6.0 901	22	76.2 19	19.95
day 337 to 343	6.0 7		51 58.0	58.0 16.99	6.0 818	8 55	26 18.23	8.0 933	3 63	0 15.63	6.0 818	22	64 18.	3.18

Table A-4a -(cont'd)

Period		_	Pen 1					Pen 2					Pen 3					Pen 4		
	No. of Corr steers Ib	orn, Ib	No. of Corn, Pellet, WB, Daily steers Ib Ib Ib	WB, ₽	Daily N DMI, s	to. of C	orm, I Ib	Pellet, Ib	WB, ₽	Daily N DMI, st	lo. of the	Corn, Ib	ily No. of Corn, Pellet, WB, Daily No. of Corn, Pellet, WB, Daily No. of Corn, Pellet, All, steers Ib Ib DMI, steers Ib Ib Ib Ib Ib	₩	Daily P DMI, s	No. of steers	Corn, Ib		₩ ₽ □	Daily DMI,
lay 344 to 350 6.0 745	6.0	745	52	52 0.0 16.6	16.67	6.0 745	745	25	0	0 16.67 8.0 1234	8.0	1234	2	79.7	84 79.7 20.61 6.0 739	6.0	739	53	0	0 16.57

*Weigh-back. bNot recorded. •Not determined, missing weighback, the average of the two adjacent weeks was used as the DMI for this week.

Table A-4b. Weekly pen dry matter intake for pens 5 to 8 for Experiment BC9002

No of Com Pellet, WB, Daily No. of Com Pellet, WB, Dai	Period			Pen 5					Pen 6					Pen 7					Pen 8		
steers b b DMI, steers b DMI, steers b b DMI, steers b b DMI, steers b b DMI, steers b DMI, steers b DMI, steers b DMI, steers b b DMI, steers b b DMI, steers b <th< th=""><th></th><th>No. of</th><th></th><th>Pellet,</th><th>_</th><th>Daily</th><th>No. of</th><th>Corn,</th><th>Pellet,</th><th>WB,</th><th>Daily P</th><th>do. of C</th><th>_</th><th>Pellet,</th><th></th><th>Daily A</th><th>No. of</th><th>_</th><th>Pellet,</th><th>_</th><th>Daily</th></th<>		No. of		Pellet,	_	Daily	No. of	Corn,	Pellet,	WB,	Daily P	do. of C	_	Pellet,		Daily A	No. of	_	Pellet,	_	Daily
10.0 642 97 9.14 10.0 684 104 112.8 9.72 10.0 777 119 145.2 10.0 693 10.0 694 104 10.0 673 106 NR ND 10.0 673 10.0 10.0 674 106 NR ND 10.0 673 10.0 675 10.0 673 10.0 674 106 NR ND 10.0 674 106 NR ND 10.0 673 10 77 10 10.0 77 10 00 90 10 67 10 77 10 90 10 90 10 90 10 90 10 90 10 90 10 90 10 90 10 </th <th></th> <th>steers</th> <th></th> <th>٩</th> <th></th> <th>`. •</th> <th>steers</th> <th><u>a</u></th> <th>ā</th> <th><u> </u></th> <th>`, • •</th> <th>steers</th> <th></th> <th><u>a</u></th> <th></th> <th></th> <th>steers</th> <th></th> <th><u>a</u></th> <th></th> <th></th>		steers		٩		`. •	steers	<u>a</u>	ā	<u> </u>	`, • •	steers		<u>a</u>			steers		<u>a</u>		
10.0 716 110 NR* ND 10.0 704 106 NR ND 10.0 704 106 NR ND 10.0 704 106 NR ND 10.0 704 106 704 108 41.0 71 10.1 20.3 10.0 706 10.0 706 10.0 70.0 70.0 10.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 <td>day 1 to 7</td> <td>10.0</td> <td>642</td> <td>97</td> <td>93.8</td> <td>9.14</td> <td>1</td> <td>684</td> <td></td> <td>112.8</td> <td>9.72</td> <td>10.0</td> <td>771</td> <td>119</td> <td>145.2</td> <td>10.95</td> <td>10.0</td> <td>695</td> <td>108</td> <td>93.8</td> <td>9.94</td>	day 1 to 7	10.0	642	97	93.8	9.14	1	684		112.8	9.72	10.0	771	119	145.2	10.95	10.0	695	108	93.8	9.94
10.0 695 107 134.3 9.86 10.0 716 109 1414 10.14 10.0 717 110 120.3 10.20 60.5 127 240.3 10.0 706 108 4 10.23 10.0 683 108 33.3 9.89 10.0 705 111 0 10.27 10.0 641 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 97 10.0 98 10.0 97 10.0 97 10.0 98 10.0 97 10.0 97 10.0 98 10.0 99 10.0 99 10.0 99 10.0 99 10.0 99 10.0 90 90 10.0 99 10.0 90 10.0 90 10.0 90 10.0 90 10.0 90 10.0 90 10.0 90 10.0 90	day 8 to 14	10.0	716	110	Z Z	_	•	705	107	ž	2	10.0	673	18	¥	2	10.0	704	106	ĸ	2
10.0 706 108 4 10.23 10.0 683 108 33.3 9.89 10.0 705 111 0 10.27 10.0 706 10.0 700 10.0 700 10.0 700 10.0 700 10.0 700 10.0 700 10.0 700 10.0 10.0 700 10.0 700 10.0 700 10.0 700 10.0 700 10.0 20.1 10.0 70.0 10.0	day 15 to 21	10.0	695	107	134.3	9.86	~	716	109	141.4	10.14	10.0	717	110	120.3	10.20	10.0	825		240.31	1.56
10.0 790 103 118.411.05 9.1 749 86 46.811.41 10.0 790 103 20 11.20 9.1 790 103 20 11.20 9.0 790 103 20 11.20 9.0 790 10.0 924 107 8 12.95 9.0 875 98 7.8 13.30 10.0 924 107 8 12.95 9.0 975 10.0 900 114 37.4 13.83 9.0 923 107 6.2 107 8 2.3 11.89 10.0 924 107 8 1.9 9.0 923 107 8 2.3 107 9 2.3 107 9 2.3 <td>day 22 to 28</td> <td>10.0</td> <td>902</td> <td>108</td> <td>4</td> <td>10.23</td> <td>~</td> <td>683</td> <td>108</td> <td>33.3</td> <td>9.89</td> <td>10.0</td> <td>705</td> <td>11</td> <td>0</td> <td>10.27</td> <td>10.0</td> <td>641</td> <td>97</td> <td>0</td> <td>9.28</td>	day 22 to 28	10.0	902	108	4	10.23	~	683	108	33.3	9.89	10.0	705	11	0	10.27	10.0	641	97	0	9.28
10.0 721 83 0 1011 9.0 786 88 2311.89 10.0 924 107 812.95 9.0 874 107 812.95 9.0 875 10.0 900 114 37.413.83 9.0 875 10.0 900 114 37.413.83 9.0 875 10.0 900 114 37.413.83 9.0 875 10.0 900 114 37.413.83 9.0 923 107 67.51 900 114 37.413.83 9.0 923 107 87.81 900 924 10.0 920 <th< td=""><td>day 29 to 35</td><td>10.0</td><td>790</td><td>103</td><td>118.4</td><td>11.05</td><td></td><td>749</td><td>88</td><td>46.8</td><td>11.41</td><td>10.0</td><td>790</td><td>103</td><td>20</td><td>11.20</td><td>9.1</td><td>790</td><td>103</td><td>95.11</td><td>2.13</td></th<>	day 29 to 35	10.0	790	103	118.4	11.05		749	88	46.8	11.41	10.0	790	103	20	11.20	9.1	790	103	95.11	2.13
10.0 900 103 65.412.52 9.0 855 98 7.8 13.30 10.0 990 114 37.4 13.83 9.0 923 107 6.2 10.0 944 108 12.113.21 9.0 851 94 2.9 13.19 10.0 941 105 5.4 13.14 9.0 856 97 15.2 9.1 784 88 2.9 11.38 9.0 851 94 2.9 13.19 10.0 941 105 5.4 13.14 90 783 86 0 9.0 1012 109 7115.56 9.0 1034 111 59 15.91 10.0 144 123 60 15.93 90 1923 112 38 9.0 831 18.5 9.0 1034 11 59 15.91 10.0 144 123 60.7 15.88 90 195 114 193 9.0 831 15.2 10.0 14 12.3 10.148 12.9 11.44 19.3 <td>day 36 to 42</td> <td>10.0</td> <td>721</td> <td>83</td> <td></td> <td>10.11</td> <td>9.0</td> <td>186</td> <td>88</td> <td></td> <td>11.89</td> <td>10.0</td> <td>924</td> <td>107</td> <td>6</td> <td>12.95</td> <td>0.6</td> <td>878</td> <td>101</td> <td>0</td> <td>3.67</td>	day 36 to 42	10.0	721	83		10.11	9.0	186	88		11.89	10.0	924	107	6	12.95	0.6	878	101	0	3.67
10.0 944 108 12.113.21 9.0 832 95 38.712.89 10.0 856 98 011.99 9.0 856 97 15.2 9.1 784 88 2.911.98 9.0 851 94 2.913.19 10.0 941 105 5.413.14 90 783 96 0 9.0 1012 109 7115.66 9.0 1034 111 5915.91 10.0 146 123 2015.93 9.0 1033 112 38 9.0 1034 116 57.616.60 10.0 146 123 2015.88 9.0 108 109 114 19.3 9.0 108 114 19.3 9.0 108 114 19.3 9.0 108 114 19.3 9.0 108 114 19.3 9.0 108 114 19.3 9.0 108 114 19.3 9.0 108 114 19.3 9.0 114	day 43 to 49	10.0	006	103		12.52	0.6	855	86	7.8	13.30	10.0	066	114	37.4	13.83	0.6	923	107	6.21	4.38
91 784 88 2.911.98 9.0 851 94 2.913.19 10.0 941 105 5.413.14 9.0 783 86 0 9.0 1012 109 7115.56 9.0 1034 111 5915.91 10.0 146 123 2015.93 9.0 1033 112 38 9.0 831 86.512.78 9.0 953 9.1 114 57.6 16.60 10.0 144 123 2015.93 9.0 105 9.0 1078 116 57.6 16.60 10.0 143 10.0 47.13.49 9.0 96 10.0 143 10.0 47.13.49 9.0 96 11.4 19.3 90.1054 11.4 19.3 90.1054	day 50 to 56	10.0	944	108		13.21	9.0	832	95	38.7	12.89	10.0	856	86	0	11.99	0.6	856	97	15.21	3.29
90 1012 109 7115.56 9.0 1034 111 5915.91 10.0 146 123 2015.93 9.0 1033 112 38 9.0 831 89 46.512.78 9.0 853 93 24.113.18 10.0 967 107 4.713.49 9.0 966 106 1944 9.0 989 107 615.20 9.0 1087 96 3.116.65 10.0 1044 102 967 10.4 95 189 14.0 14.0 967 114 19.3 90 19.0 96 3.116.65 10.0 1044 90 96 10.0 96 3.116.65 10.0 1044 90 96 1.0 143 100 28.215.5 90 19.0 19.0 96 3.116.65 10.0 143 100 28.215.5 90 19.0 19.0 10.0 14.0 10.0 10.0 10.0 10.0 10.0 10.0	day 57 to 63	9.1	784	88	2.9	11.98	9.0	851	9	2.9	13.19	10.0	941	105	5.4	13.14	9.0	783	88	0	2.14
9.0 831 89 46.512.78 9.0 853 93 24.113.18 10.0 967 107 4.713.49 9.0 968 106 194 9.0 989 107 615.30 9.0 1078 116 57.6 16.60 10.0 1146 123 60.7 15.88 9.0 1054 114 19.3 9.0 899 83 33.8 13.67 9.0 1097 96 3.1 16.65 10.0 1143 100 49.4 15.57 90 15.9 90 1.9 9.0 1051 92 38.1 15.91 90 1120 98 61.7 16.93 10.0 143 100 28.2 15.59 90 15.0 19.1 100 100 19.2 18.1 100 18.2 19.0 15.0 19.0 10.0 11.0 10.0 19.0 19.0 10.0 19.0 19.0 10.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	day 64 to 70		1012	109	71		0.6	1034	111		15.91	10.01	1146	123	•	15.93	0.6	1033	112	38 1	5.94
9.0 989 107 615.30 9.0 107 116 57.616.60 10.0 1146 123 60.715.88 9.0 1054 114 19.3 9.0 899 83 33.81367 9.0 955 89 25.814.54 10.0 1024 95 18.914.04 90 953 90 1.9 9.0 1005 88 1.615.26 9.0 1097 96 3.116.65 10.0 1443 100 28.215.57 90 1051 92 18.1 9.0 1055 96 3.216.748 9.0 1130 96 27.717.9 10.0 1558 96 27.515.74 90 1051 92 18.1 9.0 1056 74 1186 14.24 9.0 1001 78 67.7 14.98 10.0 12.5 10.0 10.5 10.0 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	day 71 to 77	9.0	831	88	46.5	-	9.0	853	93	24.1	13.18	10.0	296	107	4.7	13.49	0.6	996	106	19.4 1	4.95
9.0 83 33.813.67 9.0 955 89 25.814.54 10.0 1024 95 18.914.04 9.0 953 90 1.9 9.0 1005 88 1.615.26 9.0 1097 96 3.116.65 10.0 1143 100 28.215.59 9.0 1051 92 3.3 9.0 1051 92 3.116.65 10.0 1143 100 28.215.57 9.0 1051 92 18.1 9.0 1235 108 161.218.56 9.0 1139 90 3.16.78 10.0 128.215.79 9.0 1051 92 18.1 9.0 153 90 1139 90 7717.07 10.0 1156 90 100 78 77 10.0 1136 90 77 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	day 78 to 84	9.0	686	107	9	15.30	0.6	1078	116	57.6	16.60	•	1146	123	60.7	15.88	•	1054	114	19.31	6.29
9.0 1055 88 1.615.26 9.0 1097 96 3.116.65 10.0 1443 100 49.415.57 90 1051 92 3.3 9.0 1051 92 38.115.91 9.0 1120 98 61.716.93 10.0 143 100 28.215.59 90 1051 92 18.1 9.0 1055 108 61.216.99 10.0 143 100 128.217.04 90 1051 92 18.1 9.0 155 74 118.6 14.24 9.0 1001 78 76.714.98 10.0 155 96 27.515.74 90 107 78 77.17.07 10.0 116 88 53.15.07 90 1001 78 74 16.3 12.91 90 103 74 0.514.57 10.0 113 88 53.15.07 90 103 74 0.514.57 10.0 113 88 53.15.07 90 103 10.0 10	day 85 to 91	9.0	899	83	33.8	13.67	0.6	955	89	25.8	14.54	•	1024	95	18.9	14.04	0.6	953	06	1.91	4.56
9.0 1051 92 38.115.91 9.0 1120 98 61.716.93 10.0 143 100 28.215.59 9.0 1051 92 181 9.0 1235 108 161.218.56 9.0 1189 104 229.417.79 10.0 158 109 128.217.04 9.0 1166 102 111.6 9.0 159 96 32.517.48 9.0 1113 92 34 16.78 10.0 159 96 27.515.74 9.0 102 11 9.0 955 74 118.6 14.24 9.0 1001 78 76.7 14.98 10.0 155 74 16.3 12.91 9.0 1001 78 37.9 9.0 1001 78 37.9 9.0 1001 78 71.0 116 88 53.15.07 9.0 1001 74 0.5 14.57 10.0 103 72 10 9.0 103 74 0.5 14.57 10.0 113 86 21.5 15.25 9.0 103 10.0	day 92 to 98		1005	88	1.6	15.26	-	1097	8	3.1	16.65	10.01	1143	5	49.4	15.57	•	1051	92	3.31	5.95
9.0 1159 96 32.517.48 9.0 1189 104.229.417.79 10.0 1258 109128.217.04 9.0 1166 102111.6 9.0 1159 96 32.517.48 9.0 1113 92 34.16.78 10.0 1159 96 27.515.74 9.0 1127 92 16 9.0 955 74 118.614.24 9.0 1001 78 76.714.98 10.0 955 74 16.312.91 9.0 1001 78 37.9 9.0 987 77 2614.82 9.0 1039 90 77.17.07 10.0 1116 88 5315.07 9.0 1033 81 97 9.0 1024 81 21.215.40 9.0 1070 84 13.816.09 10.0 1024 81 2.113.88 9.0 1038 79 85 9.0 899 68 2113.47 9.0 1135 85 34.816.99 10.0 1136 86 11.315.25 9.0 1038 79 85 9.0 911 69 32.13.67 9.0 1135 85 34.816.99 10.0 1136 86 11.315.34 9.0 1136 86 22.14.43 9.0 1136 85 20.136 9.0 1136 9.0 971 73 22.14.57 9.0 1144 83 2.616.70 10.0 104 66 22.13.56 9.0 1086 81 60.136 70.5 77 70.0 108	day 99 to 105		1051	92	38.1		0.6	1120	86	61.7	16.93	10.01	1143	5	28.2	15.59	•	1051	92	18.11	5.94
9.0 9.0 11.59 9.6 22.517.48 9.0 1113 9.2 34.16.78 10.0 159 96 27.515.74 9.0 1127 92 16.315.74 9.0 1127 92 16.315.74 9.0 1001 78 37.9 90 1001 10.0 955 74 16.315.91 9.0 1001 77 74 16.315.91 9.0 1001 78 37.9 97 90 90 77 17.07 10.0 1116 88 5315.07 9.0 90 90 77 17.07 10.0 1136 81 2.113.88 9.0 90 72 0 9.0 899 68 2113.47 9.0 970 74 0.514.57 10.0 1136 86 11.315.34 9.0 1136 85 34.816.99 10.0 1136 86 11.315.34 9.0 1136 89 11.315.34 9.0 1136 89 11.315.34 9.0 1136<	day 106 to 112		1235	108	161.2	-:	0.6	1189		229.4	17.79	•	1258	109		17.04	0.6	1166	102	111.61	7.57
9.0 955 74 118.6 14.24 9.0 1001 78 76.7 14.98 10.0 955 74 16.3 12.91 9.0 1001 78 37.9 9.0 987 77 26 14.82 9.0 1139 90 77 17.07 10.0 1116 88 53 15.07 9.0 1033 81 97 9.0 1024 81 21.13.87 9.0 1070 84 13.8 16.09 10.0 1024 81 2.1 13.88 9.0 909 72 0 9.0 899 68 21 13.47 9.0 97 74 0.5 14.57 10.0 1136 86 11.3 15.34 9.0 1136 86 21.5 15.25 9.0 1136 86 23.8 16.99 10.0 1136 86 11.3 15.34 9.0 1136 89 22.5 14.43 9.0 1136 89 114.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 </td <td>day 113 to 119</td> <td></td> <td>1159</td> <td>86</td> <td>32.5</td> <td></td> <td>0.6</td> <td>1113</td> <td>92</td> <td>₹</td> <td>16.78</td> <td>10.01</td> <td>1159</td> <td>8</td> <td>27.5</td> <td>15.74</td> <td>0.6</td> <td>1127</td> <td>92</td> <td>161</td> <td>7.00</td>	day 113 to 119		1159	86	32.5		0.6	1113	92	₹	16.78	10.01	1159	8	27.5	15.74	0.6	1127	92	161	7.00
9.0 987 77 2614.82 9.0 1139 90 77717.07 10.0 1116 88 5315.07 9.0 1033 81 97 9.0 1024 81 21.13.88 9.0 909 72 0 9.0 899 68 21.13.47 9.0 970 74 0.514.57 10.0 1131 85 21.515.25 9.0 1038 79 85 9.0 1065 80 22.815.96 9.0 1135 85 34.816.99 10.0 1136 86 11.315.34 9.0 1136 86 23 9.0 911 69 3.213.67 9.0 934 70 014.01 10.0 1122 85 17.215.14 9.0 1136 85 26.16.70 10.0 10.68 81 5.614.43 9.0 10.68 81 0.0 10.69 81 0.0 10.69 9.0 10.0 10.0 10.0 10.0 <td< td=""><td>day 120 to 126</td><td>0.6</td><td>955</td><td>74</td><td>118.6</td><td>14.24</td><td>0.6</td><td>1001</td><td>78</td><td>76.7</td><td>14.98</td><td>10.0</td><td>955</td><td>74</td><td>16.3</td><td>12.91</td><td>•</td><td>1001</td><td>78</td><td>37.91</td><td>5.02</td></td<>	day 120 to 126	0.6	955	74	118.6	14.24	0.6	1001	78	76.7	14.98	10.0	955	74	16.3	12.91	•	1001	78	37.91	5.02
9.0 1024 81 21.13.47 9.0 1070 84 13.816.09 10.0 1024 81 2.113.88 9.0 909 72 0 9.0 899 68 2113.47 9.0 970 74 0.514.57 10.0 1131 85 21.515.25 9.0 1038 79 85 9.0 1065 80 22.815.96 9.0 1135 85 34.816.99 10.0 1136 86 11.315.34 9.0 1136 86 23 9.0 911 69 3.213.67 9.0 934 70 014.01 10.0 1122 85 17.215.14 9.0 1130 85 0 9.0 971 73 2.214.57 9.0 1114 83 2.616.70 10.0 1068 81 5.614.43 9.0 1068 81 0 0 9.0 990 64 3.114.70 9.0 1247 81 69.718.47 10.0 1014 66 2.213.56 9.0 1086 70.5 7	day 127 to 133	9.0	987	77	5 8	14.82	0.6	1139	06	. 11	17.07	10.01	1116	88	53	15.07	•	1033	8	97 1	5.45
9.0 899 68 2113.47 9.0 970 74 0.514.57 10.0 1131 85 21.515.25 9.0 1038 79 85 9.0 1065 80 22.815.96 9.0 1135 85 34.816.99 10.0 1136 86 11.315.34 9.0 1136 86 23 9.0 911 69 3.213.67 9.0 934 70 014.01 10.0 1122 85 17.215.14 9.0 1130 85 0 9.0 971 73 2.214.57 9.0 1114 83 2.616.70 10.0 1068 81 5.614.43 9.0 1068 81 0 9.0 990 64 3.114.70 9.0 1247 81 69.718.47 10.0 1014 66 2.213.56 9.0 1086 70.5 7	day 134 to 140		1024	81	21.2	٠.	0.6	1070	8	13.8	16.09	•	1024	∞	2.1	13.88	0.6	606	72	0	3.69
9.0 1065 80 22.815.96 9.0 1135 85 34.816.99 10.0 1136 86 11.315.34 9.0 1136 86 23 80 21.815.34 9.0 1136 86 23 9.0 911 69 3.2 13.67 9.0 934 70 0.14.01 10.0 1122 85 17.2 15.14 9.0 1130 85 0 9.0 971 73 2.2 14.57 9.0 1114 83 2.6 16.70 10.0 1068 81 5.6 14.43 9.0 1068 81 0 9.0 990 64 3.1 14.70 9.0 1247 81 69.7 18.47 10.0 1014 66 2.2 13.56 9.0 1086 70.5 7	day 141 to 147	9.0	899	68	2	13.47		970	74	0.5	14.57	10.0	1131	82	•	15.25	•	1038	79	85 1	5.50
9.0 911 69 3.213.67 9.0 934 70 014.01 10.0 1122 85 17.215.14 9.0 1130 85 0 9.0 971 73 2.214.57 9.0 1114 83 2.616.70 10.0 1068 81 5.614.43 9.0 1068 81 0 9.0 990 64 3.114.70 9.0 1247 81 69.718.47 10.0 1014 66 2.213.56 9.0 1086 70.5 7	day 148 to 154		1065	80	22.8	15.96		1135	82	34.8	16.99	10.01	1136	80	11.3	15.34	•	1136	89	23 1	7.03
9.0 971 73 2.214.57 9.0 1114 83 2.616.70 10.0 1068 81 5.614.43 9.0 1068 81 0 9.0 990 64 3.114.70 9.0 1247 81 69.718.47 10.0 1014 66 2.213.56 9.0 1086 70.5 7	day 155 to 161	9.0	911	69	3.2	13.67		934	20	0	14.01	10.01	1122	82		15.14	0.6	1130	82	0	96.9
9.0 990 64 3.114.70 9.0 1247 81 69.7 18.47 10.0 1014 66 2.2 13.56 9.0 1086 70.5 7	day 162 to 168	0.6	971	73	2.2	14.57	0.6	1114	83	7.6	16.70	•	1068	2		14.43	•	1068	8	0	6.03
	day 169 to 175	9.0	066	8	3.1	14.70	0.6	1247	8	. 2.69	18.47	•	1014	99	2.2	13.56	•	1086	70.5	7.1	16.13

Table A-4b. (cont'd)

Period			Pen 5				Pen 6				Pen 7				Pen 8		
	No. of Corn,	Sorn,	Pellet,		Daily No. of Corn.	f Corn,	Pellet,	WB, Daily	Daily No. of Corn	-	Pellet,	WB, Daily N	No. of Corn,	_	Pellet, \	WB, C	Daily
	steers	<u> </u>	ā	리 전 편	steers	ā S	<u> </u>	면 () ()	DMI, steers Ib	٩	<u>o</u>	th DMI, s	steers	٩	<u>a</u>	ല	E ⊠ E
day 176 to 182	8.0	983	63	60.7 16.36	9.0	1232	79.7	58.1 18.25	10.0	1006	65	87.6 13.38	9.0	1157	73	92 1	17.08
day 183 to 189	8.0	937	90	23.5 15.62	0.6	1120	72.25	15.5 16.62	10.0	1123	71.5	14.5 14.99	9.0	1054	? 29	20.4 1	15.62
day 190 to 196	8.0	892	26	48.4 14.83	0.6	1147	74.5	151.1 16.91	10.0	1215	79 1	118.2 16.16	0.6	986	64.5	67.4 1	14.60
day 197 to 203	6.9	913	29	121 17.66	7.3	960	62	62.5 17.54	6.8	1121	72	0 16.91	7.9	868	22	14.5 1	14.73
day 204 to 210	0.9	749	46	35 16.59	0.0	751	46	17.5 16.65	9.0	1174	20	66 19.46	6.9	810	49	101	15.61
day 211 to 217	0.9	989	42	0 15.23	9.0	841	20	26 18.61	8.0	984	9	0 16.38	0.9	634	37.5	66.5 1	13.96
day 218 to 224	0.9	782	47	42.5 17.29	6.0	758	45	0 16.80	8.0	1162	99	0 19.30	6.0	269	45	0	15.46
day 225 to 231	0.9	744	44.5	5.5 16.49	9.0	829	49.5	6 19.00	8.0	1100	65	1 18.28	0.9	730	43	6.5 1	16.16
day 232 to 238	0.9	747	4	0 16.54	0.0	889	25	5.5 19.68	8.0	1093	65	0 18.17	0.9	717	45	0	15.87
day 239 to 245	0.9	712	4	5 15.74	6.0	723	42	2 16.00	8.0	1016	9	0 16.88	0.9	287	33	0	12.96
day 246 to 252	0.9	714	41.5	0 15.80	6.0	714	41.5	6 15.79	8.0	993	29	7 16.50	0.9	750	4	2 1	16.60
day 253 to 259	0.9	765	47	8.5 16.97	6.0	916	29	58 20.26	8.0	1009	9	2 16.77	6.0	755	47	2 1	16.77
day 260 to 266	0.9	863	53	29 19.13	6.0	923	20	80 20.38	8.0	1118	99	4.2 18.58	0.9	863	53	57 1	19.09
day 267 to 273	0.9	805	49	0 17.86	0.0	873	23	16 19.35	8.0	1185	20	3 19.69	0.0	825	49.5	16.5 1	18.27
day 274 to 280	0.9	863	52.5	34.5 19.11	0.0	1001	61	63.5 22.14	8.0	1190	71	64.5 19.73	0.9	828	25	11 1	18.40
day 281 to 287	6.0	627	39.5	0 13.94	6.0	929	58.5	20.7 20.63	8.0	1001	64.5	0 16.72	0.0	815	25	0	18.14
day 288 to 294	0.9	826	53.5	0 18.40	0.9	606	29	0 20.25	8.0	1065	69	5 17.79	0.9	874	56.5	52 1	19.40
day 295 to 301	9.0	814	49.5	14.5 18.05	0.9	777	49.5	0 17.29	7.4	945	60.5	12.5 16.98	0.9	777	49.5	4.75 1	17.28
day 302 to 308	0.9	1 92	48.5	5 17.05	0.0	957	60.5	69 21.20	0.7	980	63	0 18.71	0 .0	957	61.5	71 2	1.22
day 309 to 315	0.0	919	57.5	82 20.33	6.0	854	54.5	30 18.97	7.0	991	62	40.5 18.84	0.9	801	50.5 1	13.75 1	17.80
day 316 to 322	0.0	200	29	44.5 20.15	0.0	830	54	4 18.49	0.7	1103	69	83 20.93	0.9	889	28	44	19.76
day 323 to 329	0.9	821	25	1 18.26	6.0	862	55	7 19.18	7.0	943	9	35 17.95	0.9	904	22	76 2	20.01
day 330 to 336	0.9	813	21	0 18.07	6.0	899	22	7.2 19.99	0.7	1143	72	106 21.68	0.9	805	20	0	17.89
day 337 to 343	0.9	724	49	9.2 16.16	6.0	795	23	5.8 17.73	7.0	885	29	5.6 16.92	5.3	794	54 140.1	_	19.92
day 344 to 350	0.9	705	48	5.1 15.75	0.9	721	20	3 16.13	7.0	836	22	2 16.01	2.0	269	4	38.2 1	18.64

Table A-4b. (cont'd)

Period			Pen 5					Pen 6					Pen 7					Pen 8		
	No. of (steers	Com, e	No. of Corn, Pellet, WB, Daily No. of Corn, Pellet, steers lb lb DMI, steers lb lb	₽, WB,	Daily P DMI, s	No. of (Com B		e 🦓	Daily b DMI, s	do. of (teers	Corn, -	WB, Daily No. of Corn, Pellet, Ib DMI, steers Ib Ib	₩ P	WB, Daily No. of Corn, Pellet, WB, Ib DMI, steers Ib Ib Ib	lo. of C teers	orn, F	ellet, Ib	WB, ₽	Daily DMI,
					٩				ļ	۵					٩					Q
day 351 to 357	6.0 884	884	9	66 19.	19.66	9.0	837	28	06	90 18.60 7.0 977	7.0	211	99	49 18.65	18.65	5.0 705	202	48	71	71 18.79
day 358 to 364		6.0 822	55	0.94	55 0.94 18.35	6.0 822	822	55	8.6	8.6 18.34 7.0 885	7.0	885	9	4	4 16.94 5.0 729	5.0	729	20	38.6	38.6 19.49

Weighback.
 bNot recorded.
 cNot determined, missing weighback, the average of the two adjacent weeks was used as the DMI for this week.

Table A-4c. Weekly pen dry matter intake for pens 9 to 12 for Experiment BC9002

Period			Pen 9					Pen10					Pen 11					Pen 12		
	No. of Corn,	Sorn,	Pellet,	WB,	Daily	ily No. of Corn	_	Pellet,	WB,	Daily N	Daily No. of Corn.		Pellet,	₩,	Daily N	Daily No. of Corn,		Pellet,	₩.	Daily
	steers	<u>a</u>	<u>a</u>	•	<u>≅</u> ₹	steers		<u>a</u>	<u>a</u>	DMI, s	steers		٩	<u>a</u>	DMI, steers	steers		<u>a</u>		Marian
day 1 to 7	10.0	647	99.0	99.0 134.8	9.15	10.0	640	97.0	90.2	9.12	10.0	673	102.0	87.1	09.6	10.0	598	91.0 114.0	14.0	8.47
day 8 to 14	10.0	674	102.0	102.0 15.1 b N		10.0	640	97.0	Z B	2		549.5	84.5	X X	2	10.0	287	91.0	X X	2
day 15 to 21	10.0	587	90.0	96.3	8.35	10.0	673	103.0	133.7	9.53	10.0	630	97.0	296.7	8.98	10.0	651	100.0	82.8	9.30
day 22 to 28	10.0	640	97.0	39.5	9.20	10.0	662	101.0	9.7	9.58	10.0	749	115.0	110.11	10.68	10.0	663	102.0	83.0	9.48
day 29 to 35	9.1	724	95.0	95.0 102.3 11	11.10	10.0	790	103.0	73.0 11.12	11.12	10.0	190	103.0	86.7 11.10	11.10	10.0	790	103.0 140.2	40.2	11.02
day 36 to 42	9.0	166	87.0	8.0	8.0 11.90	10.0	811	94.0	0.0	11.38	10.0	924	107.0	49.01	12.90	10.0	767	88.0	0.0	10.75
day 43 to 49	9.0	811	93.0	14.3 12.6	12.60	10.0	923	105.0	27.21	12.89	9.4	788	89.0	3.8	11.69	10.0	878	101.0	45.6	12.25
day 50 to 56	0.6	720	83.0	0.0	0.0 11.21	10.0	900	104.0	37.0 12.57	12.57	9.0	788	89.0	38.9 1	12.19	10.0	834	95.0	12.3	11.66
day 57 to 63	9.0	738	81.0	51.2 11.3	11.36	10.0	919	103.0	27.1 12.81	12.81	9.0	739	82.0	0.0	0.0 11.46	10.0	940	103.0	51.9	3.04
day 64 to 70	0.6	875	95.0	5.0	5.0 13.54	10.0	1011	111.0	13.01	14.09	9.0	868	98.0	44.0 13.85	13.85	10.0	875	95.0	0.5	12.19
day 71 to 77	9.0	876	96.0	20.4 13.5	13.55	10.0	996	106.0	21.0 13.45	13.45	9.0	808	87.0	58.7 12.42	12.42	10.0	287	107.0	19.8	13.73
day 78 to 84	0.6	988	106.0	40.0 15.2	15.22	10.0	1169	125.0	66.1 16.18	16.18	9.0	898	98.0	0.9 13.91	13.91	-	1033	111.0	4.014.38	4.38
day 85 to 91	9.0	962	87.0	42.6 14.5	14.59	10.0	1001	94.0	34.2 13.72	13.72	9.0	942	89.0	27.6 14.36	14.36	10.0	955	89.0	28.8 13.09	3.09
day 92 to 98	9.0	982	86.0	13.2 14.8	14.89	10.0	1051	92.0	2.6	2.6 14.36	9.0	936	82.0	1.9	1.9 14.21		1005	88.0	36.21	13.69
day 99 to 105	9.0	1005	88.0	45.3 15.2	15.21	10.0	1212	106.0	52.1 16.51	16.51	9.0	913	80.0	31.4 13.82	13.82	10.0	929	84.0	30.8 13.07	3.07
day 106 to 112	0.6	1143	100.0	100.0 105.4 17.2	17.23	10.0	1166	102.0	94.8 15.83	15.83	9.0	074	94.0	125.6 16.16	16.16	10.01	1120	98.01	21.11	15.18
day 113 to 119	9.0	1067	88.0	23.0 16.1	16.10	10.0	1113	92.0	37.0 15.10	15.10	9.0	975	80.0	23.0 14.70	14.70	10.01	1090	90.0	91.01	4.73
day 120 to 126	9.0	863	70.0	35.3 12.9	12.98	10.0	1001	78.0	10.3 13.54	3.54	9.0	955	74.0	64.0 14.29	14.29	10.0	955	74.0	73.2 12.86	2.86
day 127 to 133	0.0	8/6	78.0	32.0 14.7	14.70	9.1	1116	88.0	22.0 16.52	16.52	9.0	<u>100</u>	78.0	9.01	9.0 15.05	9.1	978	77.0	27.0 14.47	4.47
day 134 to 140	0.0	955	75.0	12.1 14.3	14.36	0.6	1162	90.0	50.9 17.42	17.42	9.0	116	88.0	34.2 16.77	16.77	0.6	932	73.0	8.9 14.02	4.02
day 141 to 147	0.6	938	71.0	25.3 14.0	14.05	9.0	923	70.0	2.8	13.85	9.0	1063	80.0	15.0 15.94	15.94	0.6	875	67.0	17.31	13.13
day 148 to 154	9.0	1000	74.5	15.8 14.9	14.98	0.6	1042	78.0	17.1 15.61	15.61	0.6	935	70.0	9.1	9.1 14.01	0.6	948	71.0	0.0 14.22	4.22
day 155 to 161	9.0	934	70.0	17.4 13.9	13.99	0.6	1098	83.0	80.1 16.40	16.40	9.0	960	83.0	78.0 16.40	16.40	9.0	1004	75.01	94.31	14.95
day 162 to 168	0.6	950	71.0	16.0 14.2	14.23	9.0	296	76.0	2.91	14.55	9.0	916	72.0	6.1	6.1 13.78	0.6	995	75.0	23.0 14.91	4.91
day 169 to 175	8.0	693	44.0	0.0	0.0 11.56	9.0	897	58.0	0.0	13.32	9.0	897	58.0	11.21	13.31	0.6	886	57.0	7.31	3.15

Table A-4c. (cont'd)

Period Per			Pen 9				۵	Pen10				1	Pen 11				a.	Pen 12		
	No. of Corn,		Pellet,		Saily N	lo. of C	orn, P	Pellet,		Daily No. of	o. of C	ċ	Pellet,		Daily N	No. of Corn,		Pellet,		Daily
	Steers	<u>□</u>	₽	ם	ي. اآگا آگا	DMI, steers ID Ib	<u> </u>	₽	<u>-</u>	SE COM	steers	<u> </u>	<u>0</u>	<u> </u>	M, St 15 15	steers	٥	٥	<u> </u>	<u>₹</u> ₽
day 176 to 182	7.0	939	58.0	58.0 128.2 17	7.74	9.0 1	181	75.0	79.3 1	17.46	8.0	948	59.5	20.5 15	15.79	9.0	9001	65.5	48.7 14.91	4.91
day 183 to 189	7.0	891	57.0	36.0 16.	96.9	9.0 1.	216	77.5	17.61	18.03	7.1	891	57.0	7.9 16	16.65	0.0	983	63.5	43.41	14.56
day 190 to 196	7.0	8 41	53.3	40.7 15.	5.99	9.0 1	033	65.5	9.7 15.32	5.32	_	893	57.5	24.1 17.02	7.02	0.0	880	54.5	47.7 12.99	2.99
day 197 to 203	5.9	673	43.0	43.0 102.0 15	5.21	6.7	913	59.0	28.01	15.50	5.9	9//	49.0	30.5 17	7.64	7.9	798	51.0	63.0 13.50	3.50
day 204 to 210	5.0	617	37.0	71.5 16.	6.31	7.0	797	49.0	0.0 15.17	5.17	5.0	723	44.5	15.0 19.	3.24	7.0	741	45.2	53.5 1	14.04
day 211 to 217	5.0	622	36.5	53.0 16.	6.45	7.0	396	53.5	2.51	7.02	5.0	622	36.5	2.5 16.52	3.52	7.0	481	28.5	0.0	9.13
day 218 to 224	5.0	734	44.0	67.0 1	9.43	7.0	970	57.5	4.0 18.42	8.42	5.0	793	46.0	26.02	1.02	7.0	804	48.0	7.01	15.27
day 225 to 231	9.0	645	37.5	25.5 17	7.09	7.0	948	52.5	0.0	17.99	5.0	726	42.0	0.0 18	19.27	7.0	704	40.0	8.01	13.33
day 232 to 238	5.0	663	39.0	21.5 1	7.59	7.0	943	55.0	0.01	17.90		713	40.0	4.5 18.89	3.89	7.0	111	44.0	2.01	14.72
day 239 to 245	5.0	585	32.5	0.0 1	5.49	7.0	342	50.0	0.0	15.99		674	39.5	0.0 17.91	7.91	6.1	209	36.0	2.01	13.13
day 246 to 252	5.0	960	38.5	20.01	7.50	7.0	926	59.0	0.0 18.56	8.56		671	39.0	0.0 17.82	7.82	6.0	629	36.5	0.0 13.92	3.92
day 253 to 259	5.0	969	42.5	83.0 1	8.41		997	59.0	69.0 18.87	8.87		744	46.5	18.0 19	19.82	0.9	792	49.0	59.5 1	7.52
day 260 to 266	5.0	723	44.0	36.0 19	9.20	7.0	980	58.0	49.5 18.56	8.56		815	50.5	47.621.66	99.1	0.9	791	49.5	103.3 1	17.45
day 267 to 273	5.0	682	42.0	0.0 1	8.17		970	59.0	20.0 18.43	8.43		750	45.5	2.0 19.96	96.6	5.1	869	42.01	122.51	17.88
day 274 to 280	5.0	792	49.5	49.5 116.5 20.95	0.95	7.0	875	54.0	0.0 16.66	99.9	5.0	738	45.0	36.0 19.60	9.60	5.0	643	38.5	95.0 16.96	96.9
day 281 to 287	5.0	615	39.0	0.0 16	5.41		201	64.5	6.9	19.10		287	43.5	0.0 18.34	3.34	5.0	583	36.5	7.5 15.53	5.53
day 288 to 294	5.0	886	57.5	57.5 114.5 23	3.51	7.0 1(1004	64.0	3.01	19.15		777	49.5	6.020	20.74	5.0	682	44.0	76.5 18.10	8.10
day 295 to 301	5.0	729	44.0	24.3 19	9.37	7.0	826	50.5	5.5 15.71	5.71		742	45.5	0.0 19.77	3.77	5.0	672	42.0	7.0 17.91	7.91
day 302 to 308	2.0	752	48.0	24.5 20.	0.04	7.0 10	1042	67.0	46.01	19.84	5.0	787	50.0	29.0 20.97	76.0	5.0	648	41.0	9.51	7.28
day 309 to 315	5.0	9/9	44.5	43.5 18.	8.02	7.0	968	56.5	21.0 17.06	90.7	5.0	724	46.5	20.0 19	9.31	5.0	653	42.5	19.01	7.43
day 316 to 322	2.0	200	49.0	65.0 20.		7.0 1(1062	67.0	84.0 20	0.16	5.0	965	43.0	6.0 17	17.76	5.0	899	43.0	11.51	7.83
day 323 to 329	5.0	999	42.0	17.0 17.		7.0	901	26.0	10.0 17.15	7.15	2.0	208	46.0	1.0 18.92	3.92	5.0	999	42.0	34.0 17.72	7.72
day 330 to 336	5.0	744	48.0	66.5 19.		7.0	919	58.0	11.91	17.51	5.0	724	46.0	46.8 19.26	3.26	5.0	1 92	50.0	47.32	20.44
day 337 to 343	2.0	771	52.0	91.0 20.		7.0	171	52.0	64.0 14.68	4.68	2.0	748	51.0	55.0 19.97	3.97	5.0	653	42.0	4.21	17.44
day 344 to 350	5.0	610	42.0	0.0 16.	5.36	7.0	357	57.0	0.0	16.39	5.0	527	42.0	0.0 16	16.79	2.0	604	40.0	0.0	16.16

Table A-4c. (cont'd)

Period			Pen 9					Pen10	10					Pen 11					Pen 12		
	No. of Corn steers lb	Sorn, Ib	No. of Corn, Pellet, WB, Daily steers Ib Ib Ib Ib	₩ •	, Dail	y No. , stee	No. of Corn, steers lb	No. of Corn, Pellet, steers Ib Ib	et, v	₽, ₽	Daily I DMI, s Ib	Daily No. of Corn, DMI, steers Ib Ib	Corn, Ib	WB, Daily No. of Corn, Pellet, Ib DMI, steers Ib Ib Ib	₩B, ab	, Daily DMI,	/ No. o steers	Corn,	Daily No. of Corn, Pellet, DMI, steers Ib Ib Ib	WB, ₽	Daily DMI,
day 351 to 357	5.0	5.0 674	İ	127.8	45.0 127.8 17.84		7.0 1023	l	0.0	18.31	9.43	70.0 148.3 19.43 5.0 703	703		95.4	1 18.72	49.0 95.4 18.72 5.0 743	743		50.0 102.0 19.74	19.74
day 358 to 364	5.0	682	47.0	2.5	47.0 2.9 18.30		0 705		3.0	2.61	48.0 2.6 15.75	5.0	635		31.7	44.0 31.7 16.99	5.0	595		41.0 55.1 15.87	15.87
day 365 to 371	5.0	728	50.0	43.7	50.0 43.7 19.46		6.0 81	814 56	56.0 2	29.8 1	29.8 18.16	5.0	674		14.1	47.0 14.1 18.08	5.0	720		49.0 8.5 19.29	19.29
day 372 to 378	5.0 728	728	51.0	5.5	51.0 5.9 19.55		6.0 814		1.0.7	18.61	57.0 18.6 18.20	5.0 718	718		52.3	50.0 52.3 19.19	5.0	718		50.0 66.8 19.17	19.1

Weighback.
 Weighback from sick pen.
 Not determined, missing weighback, the average of the two adjacent weeks was used as the DMI for this week.
 Not recorded.

Table A-4d. Weekly pen dry matter intake for pens 13 to 16 for Experiment BC9002

Period Pen 13			en 13				٦	Pen14				۵	Pen 15				Pen 16		
	No. of Corn,		Pellet,	₩,	Daily N	ily No. of C	Ę	Pellet,	¥ ₩	Daily N	No. of	Corn, F	₩,	WB, Daily	ly No. of		Pellet,	₩	Daily
	steers	<u>a</u>		<u>a</u>		steers		<u>a</u>		DMI, s	steers				II, steers	a s		<u> </u>	<u>₹</u> •
day 1 to 7	10.0	804	124	78.111.54	11.54	10.0	889	136	112.3 12	12.71	10.0	793	122	86.6 11.3	.36 10.0	171	119	75	117
day 8 to 14	10.0	836	129	NR P	Š	10.0	878	1 34	X X	2	10.0	006	138	X X	ND 10.0	858	132	X X	2
day 15 to 21	10.0	825	127	127 152.9 11.7	11.72	10.0	901	138	146.8 12	12.82	10.0	922	1411	26.4 13.1	6 10.0	835	127	102.7	11.93
day 22 to 28	10.0	006	139	48.3 12.99	12.99	10.0	814	126	2.3	2.3 11.82	10.0	836	130	1.8 12.15	5 10.0	879	136	7.4	7.4 12.76
day 29 to 35	10.0	877	112	90.4	12.30	10.0	856	112	61.9 12.08	12.08	10.0	834	109	43.5 11.79	9 10.0	856	112	60.3 12.08	12.08
day 36 to 42	10.0	1079	125	40 15.0	15.08	10.0	1035	119	2.0 14.	14.51	10.0	1035	119	3.0 14.51	10.0	1012	115	ò	0 14.17
day 43 to 49	10.0	1056	122	26.4	26.4 14.78	10.0	1013	117	10.1 14.	14.19	10.0	1102	128	0 15.47	17 10.0	•	•	0	0 16.09
day 50 to 56	10.0	1057	123	13	13 14.82		1146	132	47.91	16.01		1057	122	35.5 14.78	8 10.0	196	111	3.8	3.8 13.55
day 57 to 63	10.0	1144	125	22.4	15.93	10.0	1053	115	10.71	74.67	10.0	1053	115	42.6 14.63	3 10.0	1053		28.5 14.65	14.65
day 64 to 70	10.0	1124	120	21.	15.61	10.0	1146	124	œ	15.96	10.0	1146	124	16 15.95	5 10.0	1190		ò	0 16.57
day 71 to 77	10.0	1145	124	32.1 15.91	15.91	10.0	1057	115	22.11	14.71	10.0	1147	123	6.6 15.96	10.0		128	4.5	4.5 16.56
day 78 to 84	10.0	1213	130	•	16.88	10.0	1260	133	33.51	17.47	10.0	1235	133	28.4 17.16	6 10.0	1326	143	23.2 18.44	8.44
day 85 to 91	10.0	1159	109	4.2	15.93	10.0	926	92	3.8	3.8 13.42	10.0	1069	9	11.2 14.68	38 10.0	1068	100	2.8	2.8 14.67
day 92 to 98	10.0	1281	112	75.4	17.43		1189	10	8.0	8.9 16.24		1120	86	7.7 15.30	30 10.0	1212	106	11.7 16.55	16.55
day 99 to 105	10.0	1304	114	8.7 17.8	17.81		1074	9	76.9 15.96	15.96	10.0	1074	9	9.6 14.66	36 10.0	1120	86	<u>+</u> :	1.1 15.30
day 106 to 112	10.0	1363	120.2	97.3 18.5	18.54	_	1350	121,	182.32	20.32		1258	1101	129.6 17.0	.05 10.0		129	161.4 19.70	19.70
day 113 to 119	10.0	1265	107.2	41.5 17.2	17.20	8 .	1201	103,	157.31	19.25	10.0	1274	106	27.5 17.31	10.0	1410	123	'n	19.26
day 120 to 126	10.0 1062.8	062.8	86.4	11.9 14.4	14.42	8.0 10	051.2	84.8	91.7 17.73	17.73	10.01	0.070	84.0	53.8 14.44	10.0	1206.2	96.4	75.4 16.29	16.29
day 127 to 133	9.11	9.1 1116.0	88.0	22.0 16.5	16.52	9.0 11	116.0	88.0	22.0 16.78	16.78	10.01	1047.0	82.0	2.0 14.18	8 9.1	1116.0	88.0	4.0	4.0 16.54
day 134 to 140	9.01	9.0 1208.0	96.0	17.6 18.		9.0 11	116.0	88.0	6.8	6.8 16.80	10.0 1208.0	208.0	96.0	22.1 16.36	9.0	1231.0	97.0	34.6 18.50	18.50
day 141 to 147	9.01	9.0 1087.0	82.0	31.0 16.2	16.28	9.0	923.0	70.0	20.3 1	13.84	10.0 1087.0	0.780	82.0	2.9 14.68	9.0	1134.0	85.0	2.0,	2.0 17.01
day 148 to 154	9.0 1	9.0 1160.0	87.0	0.0 17.4	17.40	9.0 10	1090.0	82.0	0.0	16.36	10.0 1183.0	183.0	88.0	0.0 15.96	9.0	1183.0	88.0	0.0	0.0 17.74
day 155 to 161	9.01	9.0 1191.0	0.06	18.5 17.8	17.86	9.0 11	1144.0	86.0	20.8 1	17.14	10.01	1214.0	92.0	35.5 16.37	0.6 7	1238.0	94.0	21.8 18.57	18.57
day 162 to 168	9.01	9.0 1182.0	88.0	4.9 17.7	17.72	9.0 11	134.0	84.0	0.0	17.00	10.01	1205.0	89.0	9.6 16.24	.4 9.0	1182.0	88.0	0.3	17.72
day 169 to 175	9.01	9.0 1015.0	66.5	37.8 15.0	15.05	9.0 11	1129.0	74.0	14.91	16.77	10.0 1105.0	105.0	73.0	2.1 14.79	9.0	1200.0	78.0	0.0	17.83

Table A-4d. (cont'd)

Period		Pen 13			Pen14		<u>u</u>	Pen 15		a	Pen 16		
	No. of Corn,	Pellet,	WB, Daily P	y No. of Corn, I	Pellet,	WB, Daily I	Daily No. of Corn,	Pellet,	WB, Daily No. of	Com,	Pellet,	WB, D	Daily
	steers lb	<u>a</u>	DMI, s		٩		<u> </u>	ā	lb DMI, s	മ	੦	<u>e</u>	<u>₹</u>
day 176 to 182	9.0 1100.0	70.0		9.0 1111.0	70.0	38.5 16.44	10.0 1227.0	78.0	63.2 16.34	9.0 1261.0	81.0	65.4 18	18.67
day 183 to 189	9.0 1204.0	77.0	1.7 17.87	9.0 1169.0	74.5	6.6 17.34	10.0 1214.0	77.0	12.5 16.20	9.0 1297.0	83.0	5.5 19.25	9.25
day 190 to 196	9.0 1124.0	73.0	47.3 16.66	9.0 1332.0	84.0	2.7 19.75	10.0 1125.0	71.0	27.2 15.00	9.0 1241.0	78.5	0.5 18.41	8.41
day 197 to 203	7.9 971.0	62.0	50.0 16.4	7.9 1030.0	0.99	89.0 17.43	8.9 936.0	0.09	22.5 14.10	7.9 1075.0	0.69	29.5 18.25	8.25
day 204 to 210	7.0 1033.0	62.0	30.0 19.6	7.0 1058.0	65.0	21.5 20.12	8.0 939.0	55.0	0.0 15.60	7.0 841.0	51.0	0.0 15.99	5.99
day 211 to 217	7.0 1113.0	99.0	66.0 175.5 20.96	7.0 1019.0	61.0	20.0 19.35	8.0 841.0	50.5	0.0 13.99	7.0 958.0	56.5	4.5 18.19	8.19
day 218 to 224	7.0 1099.0	65.0	4.5 20.87	7.0 1068.0	65.0	0.0 20.32	8.0 1090.0	65.0	38.0 18.09	7.0 1114.0	0.99	21.021.14	1.14
day 225 to 231	7.0 982.0	59.0	85.0 18.58	7.0 1076.0	65.0	18.5 20.44	8.0 807.0	47.0	0.0 13.40	7.0 807.0	47.0	1.0 15.31	5.31
day 232 to 238	7.0 887.0	51.0	1.5 16.82	7.0 1006.0	60.0	16.5 19.10	8.0 911.0	52.0	0.5 15.11	7.0 955.0	26.0	0.5 18.13	8.13
day 239 to 245	7.0 910.0	54.0	0.0 17.29	7.0 962.0	57.5	0.0 18.28	8.0 887.0	53.0	2.0 14.75	7.0 1023.0	62.0	0.0 19.46	9.46
day 246 to 252	7.0 943.0	56.0	5.0 17.91	7.0 793.0	47.5	0.0 15.07	8.0 873.0	51.0	0.0 14.50	7.0 908.0	54.0	0.0 17.25	7.25
day 253 to 259	7.0 1009.0	60.0	49.0 19.12	7.0 939.0	57.0	10.5 17.85	8.0 916.0	52.5	6.5 15.24	7.0 986.0	58.5	8.0 18.72	8.72
day 260 to 266	7.0 1071.0	64.0	70.5 20.28	7.0 1094.0	65.0	59.7 20.72	8.0 1112.0	0.99	24.8 18.46	7.0 1118.0	67.0	5.02	21.25
day 267 to 273	7.0 1068.0	65.0	30.5 20.29	7.0 946.0	57.0	8.5 17.98	8.0 999.0	0.09	3.0 16.61	7.0 1045.0	62.0	0.0 19.85	9.85
day 274 to 280	7.0 900.0	55.0	2.5 17.12	7.0 1064.0	%	0.0 20.23	8.0 1024.0	62.0	10.5 17.03	7.0 968.0	60.0	0.0 18.44	8.44
day 281 to 287	7.0 1001.0	64.5	22.0 19.09	7.0 791.0	50.0	0.0 15.08	8.0 1059.0	68.0	59.5 17.63	7.0 1119.0	71.5	35.52	21.31
day 288 to 294	7.0 1075.0	68.5		7.0 1054.0	67.5	6.0 20.11	8.0 1076.0	0.69	0.0 17.97	7.0 991.0	64.5	2.0 18.93	8.93
day 295 to 301	7.0 858.0	53.5	5.0 16.34	7.0 814.0	49.5	6.0 15.48	8.0 886.0	57.0	44.0 14.75	7.0 1125.0	72.0	89.02	21.37
day 302 to 308	7.0 993.0	64.5	64.5 121.7 18.83	7.0 1087.0	69.5 1	101.1 20.63	8.0 1079.0	70.5	80.5 17.96	7.0 1225.0	79.8	76.823	23.32
day 309 to 315	7.0 882.0	56.0	56.0 118.0 16.69	7.0 1038.0	65.5	93.0 19.69	8.0 959.0	0.09	16.0 15.98	7.0 829.0	52.5	0.0 15	15.81
day 316 to 322	7.0 968.0	62.0	82.6 18.38	7.0 1130.0	70.01	113.1 21.40	8.0 1270.0	80.0	80.0 182.3 21.02	7.0 1279.0	81.01	76.7 24.20	4.20
day 323 to 329	7.0 432.0	28.0	0.0 8.24	7.0 432.0	28.0	0.0 8.24	8.0 432.0	28.0	0.0 7.21	7.0 432.0	28.0	0.0	8.24
	- t t.												

*Weighback.
bNot recorded.
cNot determined, missing weighback, the average of the two adjacent weeks was used as the DMI for this week.

Table A-5. Carcass characteristics of steers from Experiment BC9002

no.			HCW,	REA,	Backfat,		Marbling		Calculated
	harvested	wt., kg	kg	CIII	mm	KPH, %		grade b	yield grade ^c
1	03/16/92	535	313.1	62.6	2.45	2.0	690	19	2.67
2	04/13/92	632	367.8	78.4	8.58	3.0	540	18	3.17
. 5	03/16/92	599	336.0	71.0	6.13	2.5	630	19	2.92
8	11/11/91	424	246.7	58.1	3.68	3.5	460	17	2.75
9	05/11/92	581	336.9	74.2	3.68	1.5	480	17	2.32
10	11/11 <i>/</i> 91	479	269.0	71.0	2.45	2.5	430	16	1.97
11	11/11 <i>/</i> 91	426	234.6	67.1	2.45	2.5	430	16	1.88
12	05/11/92	522	316.3	74.8	9.80	3.5	950	22	3.14
13	03/16/92	653	375.4	81.3	14.70	2.5	540	18	3.61
14	11/11/91	411	226.4	63.2	2.45	2.0	310	14	1.90
16	04/27/92	598	361.0	85.8	4.90	3.0	510	18	2.37
17	04/13/92	627	353.7	81.6	3.06	2.0	380	15	2.13
18	04/27/92	587	357.3	80.6	2.45	2.5	460	17	2.24
20	03/16/92	596	347.3	83.5	7.96	3.0	540	18	2.68
21	03/16/92	562	309.1	67.1	6.13	3.0	570	18	2.99
25	05/11/92	623	371.8	69.7	6.74	3.5	880	21	3.55
27	11/11 <i>/</i> 91	424	235.4	67.7	2.45	3.0	460	17	1.95
29	04/27/92	589	352.5	80.6	4.90	2.0	480	17	2.35
31	04/27/92	590	352.5	64.5	4.90	3.0	500	18	3.35
32	11/11/91	413	232.0	60.6	2.45	2.0	420	16	2.07
34	04/13/92	540	324.6	74.8	9.80	2.5	520	18	3.01
37	04/27/92	600	353.6	76.1	2.45	1.5	440	16	2.24
38	04/13/92	578	335.2	95.5	3.68	1.5	390	15	1.25
40	11/11 <i>/</i> 91	433	245.8	69.0	2.45	2.5	340	15	1.87
42	03/16/92	616	381.9	91.6	3.68	2.5	770	20	2.03
43	04/27/92	602	358.0	77.4	4.90	3.5	530	18	2.86
44	04/13/92	613	364.9	83.5	4.90	3.5	550	18	2.61
45	11/11/91	460	254.7	60.6	3.68	3.5	500	18	2.69
46	03/16/92	572	349.3	78.0	6.13	3.0	440	16	2.78
47	04/27/92	641	387.3	89.0	4.90	2.0	440	16	2.23
50	03/16/92	650	377.4	79.7	8.58	2.0	490	17	2.98
54	03/16/92	663	389.0	79.0	10.41	2.5	530	18	3.40
55	05/11/92	627	374.8	80.6	3.68	3.0	550	18	2.62
57	04/27/92	587	357.0	79.7	7.35	3.5	620	19	2.99
58	04/27/92	587	360.9	68.4	5.39	3.0	460	17	3.28
59	05/11/92	654	382.8	86.4	7.96	2.0	510	18	2.63
60	11/11/91	440	234.9	56.8	3.68	2.0	350	15	2.42
62	04/13/92	561	328.0	82.6	9.80	3.5	550	18	2.85
63	05/11/92	651	367.2	77.4	7.35	2.5	510	18	2.99
65	04/13/92	556	316.9	82.6	2.45	2.0	520	18	1.71
70	04/13/92	608	356.0	78.0	4.90	3.5	610	19	2.81

Table A-5. (cont'd)

Steer	Date	Harvest	HCW,	REA,	Backfat,		Marbling	Quality	Calculated
no.	harvested	wt., kg	kg	cm ²	mm	KPH, %	_	grade	yield grade
72	11/11/91	433		67.1	2.45		410	16	1.86
75	04/27/92	595		76.8	3.68		420	16	2.34
76	04/27/92	618		76.8	2.45		500	18	2.34
77	03/16/92	627	364.2	72.2	4.29	3.0	500	18	3.00
78	11/11/91	400		59.3	4.90	4.5	560	18	2.85
80	03/16/92	645	356.0	73.2	4.90	1.5	480	20	2.65
83	03/16/92	617	370.7	86.1	4.90	2.0	450	17	2.23
85	11/11/91	457	265.7	71.0	6.13	3.5	610	20	2.52
86	05/11/92	615	358.0	80.0	6.13	3.0	560	18	2.76
87	04/13/92	638	385.4	91.6	4.90	1.5	460	17	1.98
89	05/11/92	599	340.1	75.5	9.19	1.5	460	17	2.84
90	04/13/92	596	343.4	74.2	3.68	2.0	430	16	2.47
95	11/11/91	449	250.9	62.6	2.45	3.5	510	18	2.44
97	04/27/92	579	343.9	74.8	3.68	3.0	500	18	2.64
98	11/11 / 91	456	245.6	67.1	2.45	3.0	440	16	2.07
100	11/11/91	450	250.7	72.2	3.68	3.0	520	18	1.98
101	04/13/92	635	382.3	86.1	10.41	2.0	420	16	2.89
102	03/16/92	676	392.2	78.7	6.13	3.5	620	19	3.21
103	05/11/92	669	395.3	78.7	6.74	3.0	550	18	3.20
104	05/11/92	616	372.3	69.0	11.64	5.0	570	18	4.38
106	11/11/91	458	251.0	59.3	4.90	3.0	530	18	2.75
107	04/27/92	592	336.6	65.1	4.41	1.5	470	17	2.84
108	04/27/92	627	375.9	79.3	2.94	1.5	430	16	2.31
109	03/16/92	623	370.7	78.7	10.41	3.5	730	20	3.46
110	11/11 <i>/</i> 91	398	222.9	67.7	2.45	2.5	390	15	1.74
112	04/27/92	628	366.2	80.6	4.41	2.0	600	19	2.42
115	04/13/92	615	366.7	87.1	3.68	2.0	540	18	2.03
116	04/13/92	654		94.2	4.90	1.5	520	18	1.87
117	03/16/92		340.7	66.4	4.29	1.0	510	18	2.70
118	11/11/91		247.0	67.7	2.45	3.0	450	17	2.05
119	04/13/92		334.8	73.5	6.13		930	22	3.08
120	11/11 <i>/</i> 91		289.2	68.4	3.68		460	17	2.79
121	04/27/92		350.1	89.7	7.35		360	15	2.13
122	03/16/92		343.5	66.4	4.90		740	20	3.28
128	11/11 <i>/</i> 91		250.2	66.4	4.90		450	17	2.49
129	11/11 <i>/</i> 91		281.1	65.8	2.45		430	16	2.33
130	04/13/92		358.3	87.7	6.13		560	18	2.07
133	05/11/92		372.0	85.1	6.74		500	18	2.58
136	04/27/92		364.8	81.3	4.90		630	19	2.72
139	04/13/92		374.7	72.2	7.11	2.5	430	16	3.28
142	05/11/92		341.1	72.2	2.45		430	16	2.32
143	03/16/92		363.6	75.1	9.19		490	17	3.06
144	04/13/92	593	354.8	91.6	4.29	2.5	510	18	1.87

Table A-5. (cont'd)

Steer	Date harvested	Harvest	HCW,	REA, cm ²	Backfat, mm	KPH, %	Marbling score	Quality grade	Calculated yield grade
<u>no.</u> 147	04/13/92	<u>wt., kg</u> 589	kg 357.3	74.5	6.74	3.5	760	<u>grade</u> 20	3.18
151	05/11/92	649	391.9	84.5	7.96	3.0	440	16	3.10
153	11/11/91	448	243.1	67.1	7. 9 0 2.94	3.0	360	15	2.09
154	04/13/92	617	370.1	80.6	6.74	3.0	550	18	2.89
155	05/11/92	591	332.5	82.6	5.51	2.0	450	17	2.05
157	11/11/91	466	260.8	66.4	4.90	2.0	460	17	2.13
158	05/11/92	612		68.4	7.35	1.5	450	17	3.15
159	04/13/92		372.2	80.6	5.51	4.0	560	18	2.98
161	04/27/92		415.0	90.3	11.52		640	19	3.47
163	04/27/92	582	337.8	77.4	3.68	2.0	480	17	2.26
165	05/11/92	599	351.0	74.2	6.74	2.5	510	18	2.95
166	04/27/92	633	387.7	89.7	6.86	2.5	630	19	2.50
170	04/27/92	574	330.1	76.8	5.39	1.5	520	18	2.31
171	11/11 <i>/</i> 91	401	225.2	66.4	1.23	3.0	450	17	1.80
172	11/11/91	443	254.7	74.8	3.68	2.5	440	16	1.78
173	11/11/91	420	232.3	57.4	3.68	2.0	340	15	2.36
180	05/11/92	708	403.2	82.6	13.48	1.5	430	16	3.46
183	03/16/92	628	367.6	79.0	7.35	4.5	730	20	3.31
184	03/16/92	590	344.4	81.3	7.35	1.5	550	18	2.40
187	11/11 / 91	507	278.5	69.7	2.45	1.5	390	15	1.91
192	03/16/92	641	375.5	62.6	6.74	1.5	640	19	3.53
194	05/11/92	547	316.7	67.7	3.06	2.0	610	19	2.51
195	04/13/92	624		71.0	9.19	3.5	490	17	3.77
196	04/13/92	594	359.6	85.8	4.90	4.5	570	18	2.66
197	03/16/92	613	354.8	78.7	3.06	2.5	730	20	2.38
198	03/16/92	625	382.9	77.4	9.19	3.0	680	19	3.41
199	05/11/92	616	359.5	81.9	2.45	2.5	520	18	2.20
201	11/11/91	407	221.8	58.1	2.45	3.5	310	14	2.42
205	04/13/92	589		73.9	7.35	3.0	500	18	3.09
211	11/11/91		283.1	69.0	4.90	2.5	390	15	2.43
212	04/27/92		341.1	76.8	7.35	3.5	580	18	3.00
213	11/11/91	451		68.4	1.84	2.0	440	16	1.82
215	03/16/92		342.4	82.6	4.29	2.5	570	18	2.21
217	03/16/92		352.9	81.3	4.90	1.0	420	16	2.12
218	04/13/92		333.8	80.3	4.29	2.0	410	16	2.15
221	05/11/92 03/16/92		405.6	87.1 77.4	4.90	4.0	820 770	21	2.88
222 225	03/16/92		344.8 388.1	108.0	4.90 4.90	3.0 1.5	770 510	20 18	2.65
	11/11/91		241.4	68.4	4. 9 0 2.45		480	17	1.19
227	04/13/92		241.4 374.7	71.3	2. 4 5 2.45		440		2.17
228 232	04/13/92		374.7 337.8	83.9	2. 4 5 14.09	3.0	640	16 19	2.85 3.21
232 234	05/11/92		339.7	68.4	4.29		420	16	3.21 2.79
23 4 236	04/27/92		362.6	83.9	4.2 9 2.45	3.5	450	17	
230	U4/21/32	010	JUZ.0	03.5	2.45	3.5	430	17	2.33

Table A-5. (cont'd)

Steer no.	Date harvested	Harvest wt., kg	HCW, kg	REA, cm ²	Backfat, mm	KPH, %	Marbling score	Quality grade	Calculated yield grade
238	03/16/92	628	378.4	71.6	8.58	1.5	470	17	3.29
239	04/27/92	561	331.3	79.3	7.35	2.5	450	17	2.59
241	03/16/92	603	345.6	87.1	4.90	2.0	540	18	1.98
243	04/13/92	669	388.8	75.5	6.13	2.5	560	18	3.14

*Marbling score:300 = traces, 400 = slight, 500 = small, 600 = modest, 700 = moderate, 800 = slightly abundant, and 900 = moderately abundant.

^bUSDA quality grade:14 = low standard, 15 = high standard, 16 = low select, 17 = high select, 18 = low choice, 19 = average choice, 20 = high choice, 21 = low prime, 22 = average prime.

°Calculated yield grade equation:YG = 2.5 + (2.5 * backfat) + (.0038 * HCW) + (.2 * KPH) - (.32 * REA).

Table A-6. Ninth-tenth-eleventh rib composition from Experiment BC9002

Steer	9-10-11	bone	Soft tissue,	Bone in	,	Soft tissue	
no.	rib wt., g	wt., g	g	rib, %	Water, %	EEL, %	CP, %
1	4515.1	762.3	3752.8	16.88	45.57	40.72	12.11
2	5231.4	764.8	4466.6	14.62	45.41	40.53	14.01
5	5150.3	967.3	4183.0	18.78	50.86	31.95	14.98
8	3846.5	687.8	3158.7	17.88	47.64	37.34	12.64
9	4816.6	1034.3	3782.3	21.47	55.42	25.62	16.46
10	3495.3	718.8	2776.5	20.56	56.43	26.25	15.84
11	3471.2	658.0	2813.2	18.96	52.22	30.83	15.85
12	4809.6	683.1	4126.5	14.20	45.70	39.56	13.89
13	5242.0	912.6	4329.4	17.41	49.73	34.14	14.61
14	3404.6	705.9	2698.7	20.73	58.70	20.98	17.93
16	5368.5	836.5	4532.0	15.58	50.52	32.78	16.05
17	5499.3	1195.6	4303.7	21.74	57.22	24.80	17.22
18	4905.4	878.3	4027.1	17.90	54.23	27.90	16.91
20	4941.5	940.5	4001.0	19.03	48.93	35.20	14.83
21	4120.3	818.7	3301.6	19.87	47.20	36.55	14.23
25	5450.8	782.3	4668.5	14.35	41.39	45.57	12.07
27	3314.7	696.3		21.01	57.55	23.86	16.67
29	5108.2	977.7	4130.5	19.14	49.03	34.93	13.10
31	4698.9	913.1	3785.8	19.43	51.80	31.55	15.46
32	3288.5	658.4		20.02	57.63	24.33	16.17
34	5357.0	1082.7		20.21	48.91	37.12	13.12
37	4965.8	1035.7		20.86	57.04	24.60	17.76
38	4774.8	807.2		16.91	54.39	28.74	16.03
40	3560.8	696.6		19.56	59.18	19.69	17.13
42	5195.8	894.0		17.21	49.00	35.63	13.86
43	5354.8	916.5		17.12	43.01	44.73	12.11
44	4979.1	805.0		16.17	52.14	31.07	15.93
45	3625.1	702.9		19.39	51.00	31.71	14.49
46	4808.5	846.6		17.61	50.28	31.94	15.30
47	6135.5	1012.6		16.50	56.36	24.42	17.49
50	5477.3	1025.2		18.72	49.04	34.70	14.91
54	5484.9	1029.5		18.77	45.21	40.54	13.68
55	5417.2	891.1		16.45	50.09	31.93	14.90
57	5003.5	753.9		15.07	46.73	38.26	14.15
58	5452.2	799.5		14.66	45.30	39.66	14.46
59	5893.0	984.1		16.70	50.06	34.55	14.82
60	3056.8	735.4		24.06	49.58	35.09	13.85
62	5011.4	834.8		16.66	49.34	34.63	14.01
63	5370.4	814.7		15.17	52.91 52.45	30.71	15.63
65	5210.6	884.0		16.97	52.15	32.23	14.70
70	5519.5	937.7	4581.8	16.99	45.71	40.22	14.11

Table A-6. (cont'd)

Steer	9-10-11	bone	Soft tissue,	Rone in		Soft tissue	
no.	9-10-11 rib wt., g	wt., g	g	rib, %	Water, %	EEL, %	CP, %
72	3864.3	809.9		20.96	60.79	20.11	17.28
7 5	5103.7	1068.6		20.94	55.57	26.20	16.35
76	5002.8	1025.3		20.49	54.99	28.42	15.10
77	5234.9	1115.7		21.31	51.95	31.25	15.73
78	3308.5	572.2		17.29	48.49	35.98	13.86
80	5018.1	1105.6		22.03	52.70	28.64	15.76
83	5953.1	1224.8		20.57	56.79	26.15	16.84
85	3911.4	652.3		16.68	47.73	36.82	13.33
86	5063.6	696.5		13.76	46.02	38.87	13.03
87	5153.1	996.4		19.34	52.84	31.28	15.08
89	4981.1	984.5		19.76	54.41	27.20	16.69
90	4893.6	879.0	4014.6	17.96	52.64	30.59	15.82
95	3403.8	702.6	2701.2	20.64	51.80	31.81	14.47
97	5031.1	936.9	4094.2	18.62	49.73	34.58	13.94
98	3595.0	751.4	2843.6	20.90	54.98	26.55	17.14
100	3673.4	663.8	3009.6	18.07	55.44	26.69	14.32
101	5789.4	1156.2	4633.2	19.97	51.30	32.52	16.00
102	5647.9	994.0	4653.9	17.60	44.33	41.64	13.05
103	5422.1	1044	4378.1	19.25	48.25	35.62	14.11
104	5551.5	917.1	4634.4	16.52	42.11	44.49	11.85
106	3381.7	712.0	2669.7	21.05	50.38	33.19	14.92
107	4757.8	1010.7	3747.1	21.24	56.63	24.38	18.67
108	5406.8	1017.1	4389.7	18.81	59.01	21.60	17.86
109	5929.4	1262.3	4667.1	21.29	40.75	45.68	12.13
110	3144.1	704.1	2440.0	22.39	55.19	28.01	15.03
112	5064.6	855.8	4208.8	16.90	52.91	30.41	16.36
115	5587.0	987.4	4599.6	17.67	52.36	29.38	15.43
116	5341.0	931.3	4409.7	17.44	51.01	33.17	15.69
117	4775.6	1022.5	3753.1	21.41	51.32	32.36	15.12
118	3685.8	683.5	3002.3	18.54	53.51	28.89	15.88
119	4221.6	818.3	3403.3	19.38	42.09	44.70	12.47
120	3781.0	743.1		19.65	55.15	27.67	15.10
121	5444.3	1033.2	4411.1	18.98	55.37	25.77	17.62
122	4015.4	780.1	3235.3	19.43	50.46	34.14	14.09
128	3288.6	646.6		19.66	48.80	35.19	16.32
129	3818.6	786.5		20.60	55.42	28.00	14.44
130	5545.5	995.0		17.94	54.05	29.18	16.20
133	5125.3	893.7		17.44	50.12	32.43	15.31
136	4791.5	760.4		15.87	50.45	32.69	15.65
139	5069.9	1108.9		21.87	51.02	33.17	14.76
142	4624.8	989		21.38	57.57	24.09	17.81
143	5301.3	1017.3	4284.0	19.19	50.52	33.57	15.15

Table A-6. (cont'd)

Steer	9-10-11	bone	Soft tissue,	Bone in		Soft tissue	
no.	rib wt., g	wt., g	g	rib, %	Water, %	EEL, %	CP, %
144	5098.5	990.0	4108.5	19.42	47.17	38.60	16.21
147	5127.9	791.6	4336.3	15.44	46.56	38.70	13.81
151	5590.6	8 65.8	4724.8	15.49	52.74	29.20	16.60
153	3360.9	788.4	2572.5	23.46	57.67	22.95	17.44
154	5414.3	925.5	4488.8	17.09	43.21	43.59	12.41
155	5066.9	950.7	4116.2	18.76	57.53	23.59	17.57
157	3860.0	854.7	3005.3	22.14	55.43	26.96	14.49
158	4974.0	875.1	4098.9	17.59	50.68	32.86	14.30
159	5624.9	963.3	4661.6	17.13	47.93	37.22	14.71
161	6060.4	860.8	5199.6	14.20	45.43	40.18	13.94
163	4717.0	955.3	3761.7	20.25	53.01	28.85	16.82
165	5564.6	827.2	4737.4	14.87	49.00	33.51	16.56
166	5884.9	976.4	4908.5	16.59	50.53	32.71	15.27
170	5366.1	972.5	4393.6	18.12	50.72	31.44	15.32
171	3348.9	675.9	2673.0	20.18	58.38	21.92	16.92
172	3474.7	602.0	2872.7	17.33	54.05	28.44	15.44
173	3309.7	865.3	2444.4	26.14	57.31	24.55	15.87
180	6323.7	1119.1	5204.6	17.70	49.47	35.08	13.94
183	5250.9	774.9	4476.0	14.76	44.52	41.50	12.82
184	5203.0	1050.0	4153.0	20.18	50.62	33.65	14.03
187	3711.8	721.0	2990.8	19.42	58.41	22.87	16.93
192	5432.4	1064.6	4367.8	19.60	44.69	40.67	13.42
194	4429.7	777.1	3652.6	17.54	53.08	28.40	14.94
195	5492.4	872.3	4620.1	15.88	55.46	27.25	13.72
196	5349.7	820.6	4529.1	15.34	46.88	38.51	14.92
197	5191.5	1101.5	4090.0	21.22	54.04	28.12	16.32
198	5732.9	843.3	4889.6	14.71	41.94	44.87	11.70
199	5895.1	1026.8	4868.3	17.42	50.78	32.67	15.54
201	3087.2	600.1	2487.1	19.44	56.22	25.47	15.85
205	5471.1	1043.0	4428.1	19.06	48.00	36.42	14.21
211	4399.6	846.3	3553.3	19.24	56.51	24.71	16.88
212	4907.8	915.3	3992.5	18.65	46.92	37.68	13.39
213	3415.5	729.7	2685.8	21.36	57.22	23.89	16.41
215	4991.8	897.3	4094.5	17.98	48.77	35.62	13.51
217	5354.7	1254.8	4099.9	23.43	54.73	27.38	16.70
218	5101.1	946.6	4154.5	18.56	54.33	28.04	17.02
221	6024.4	984.9	5039.5	16.35	49.53	34.54	14.82
222	5472.4	945.3	4527.1	17.27	49.35	34.36	13.81
225	6098.0	1121.3	4976.7	18.39	59.09	21.79	18.10
227	3510.9	728.8	2782.1	20.76	53.10	30.57	13.67
228	5191.0	1071.2	4119.8	20.64	54.12	28.84	16.38
232	4706.9	731.4	3975.5	15.54	43.99	41.87	12.83

Table A-6. (cont'd)

Steer	9-10-11	bone	Soft tissue,	Bone in		Soft tissue	
no.	rib wt., g	wt., g	g	rib, %	Water, %	EEL, %	CP, %
234	4404.2	880.3	3523.9	19.99	57.53	24.91	17.29
236	5277.0	921.1	4355.9	17.45	53.35	28.30	16.94
238	5930.3	1072.7	4857.6	18.09	49.74	33.97	14.23
239	4526.6	744.9	3781.7	16.46	54.16	28.01	16.51
241	5296.9	981.0	4315.9	18.52	51.80	32.83	14.75
243	5311.8	948.1	4363.7	17.85	46.01	40.10	14.04

Table A-7. Organ and muscle weights from Experiment BC9002

Steer no.	Liver wt., g	Spleen wt., g	Kidney wt., g	Heart wt., g	Lung wt., g	ST muscle wt., g
1	8377	1414	1264	2290	6282	1958
2	7041	1273	1032	1880	7930	2658
5	8186	1173	1214	2159	7473	2587
8	5492	818	1096	1703	5420	1327
9	6350	968	1723	2298	9142	2600
10	6247	978	ND a	1652	5293	1852
11	5832	863	1013	1604	6115	1427
12	6159	945	ND	1758	7322	1922
13	7991	1132	1514	1876	7866	2576
14	5218	1104	1100	1502	5075	1413
16	6914	1241	973	2108	6441	2615
17	8127	1223	1286	2160	7358	2183
18	7759	1250	1277	2144	7167	2566
20	6809	1364	1286	1834	6573	2620
21	5955	1136	1800	2053	7126	2037
25	6536	1132	1341	1515	4191	2602
27	5930	1100	1352	1423	5509	1755
29	6432	895	1068	1821	7502	2294
31	6477	1268	1605	2396	7645	2279
32	5528	710	1054	1403	5374	1557
34	5550	1300	918	1916	7394	2067
37	7750	1236	1555	2247	8528	2490
38	7559	1218	1177	1960	7055	2314
40	6519	986	1403	1684	5556	1725
42	7132	1150	1409	1757	7932	2745
43	5764	918	1077	2318	5698	2394
44	7305	1177	1209	2312	7089	2477
45	5929	978	1208	1605	5780	1621
46	6736	1036	1386	1790	6412	2308
47	9032	1036	1300	2032	7488	2616
50	7186	1414	1873	2085	7396	1839
54	7159	1286	1541	2315	7790	2567
55	6391	1241	1327	2100	6928	2442
57	6627	868	1005	2731	7313	2249
58	7232	ND*	1059	2025	6069	2527
59	7800	1173	1368	2032	8424	2694
60	5906	1052	1342	1782	7067	1261
62	5959	1073	895	1879	6160	1886
63	7150	991	1395	1963	7896	2470
65	6205	1277	1200	2056	6161	2123
70	7318	1050	1100	2015	7775	2176

Table A-7. (cont'd)

Steer no.	Liver wt., g	Spleen wt., g	Kidney wt., g	Heart wt., g	Lung wt., g	ST muscle wt., g
72	5764	1026	1184	1593	6186	1809
75	6873	1405	1350	1940	6121	2171
76	7032	955	1195	2030	7150	2259
77	7068	1336	1909	1960	7943	2236
78	8673	788	1354	1572	5525	1462
80	7468	1545	1564	1291	ND	2675
83	7159	1114	1545	2036	6950	2795
85	6075	850	1308	1527	5582	1719
86	5973	1009	1027	2184	8575	1934
87	7618	1668	1441	2105	7983	2132
89	7195	1023	1700	2002	7412	2143
90	7700	1405	1318	1897	6298	2278
95	5330	994	1040	1692	5948	1432
97	7605	927	1209	2235	7042	2362
98	5580	1170	1146	1544	5497	1617
100	6646	980	1219	1812	6902	1675
101	7586	832	1659	2042	6396	2610
102	6527	1164	1355	2130	8037	2572
103	7205	1182	1314	2144	8788	2534
104	6309	955	1227	1950	8140	2603
106	5318	748	1266	1621	6405	1540
107	6032	1341	1559	1937	7099	2753
108	7709	1286	1409	2177	7410	2557
109	6950	1077	1273	2158	7440	2430
110	5892	794	1309	1224	6567	1510
112	7600	1377	1377	2302	7492	2460
115	7055	955	1000	2035	6508	2475
116	7877	1705	1018	1731	6719	2756
117	7455	1041	1405	1946	6348	2366
118	5878	1028	1310	1720	6583	1644
119	6559	1164	1141	1812	7368	1850
120	6555	922	1240	1945	6117	2030
121	7173	1459	1232	1896	6683	2163
122	6486	932	1255	1728	5670	1971
128	5810	1146	1058	1904	5591	1630
129	7130	1094	1390	1549	5476	1716
130	8473	1241	1364	2166	6681	2681
133	6582	909	1241	2110	7380	2327
136	8218	1200	1495	2441	7367	2376
139	7086	1018	1405	1922	6196	2257
142	8682	864	1745	2040	9096	2709
143	6459	1277	1359	2184	7678	2570
144	7123	1141	1641	1990	6946	2315

Table A-7. (cont'd)

Steer no.	Liver wt., g	Spleen wt., g	Kidney wt., g	Heart wt., g	Lung wt., g	ST muscle wt., g
147	7245	914	1200	2103	6197	2103
151	6691	1477	1273	2150	7696	2757
153	5776	1154	1270	1489	6188	1782
154	6582	1027	1027	1663	7265	2258
155	5977	1377	1127	1900	6509	2330
157	5981	1151	1083	1834	5255	1753
158	8714	891	1536	1873	9712	2638
159	7741	1027	1205	1585	8307	2050
161	8673	1082	1309	2593	7470	2260
163	7973	1395	1405	2016	6020	2562
165	6991	1145	1095	1947	6732	2224
166	7459	1218	1395	2301	6600	2566
170	7809	686	1041	2544	7860	2571
171	5158	724	1040	1669	7008	1580
172	6143	932	1410	1438	4936	1605
173	6509	1214	1355	974	4306	1460
180	7473	1295	1618	2218	6622	2665
183	7368	1091	1386	2105	7043	2000
184	6550	1059	1209	2023	7200	2358
187	6530	1454	1348	1665	6831	1836
192	7518	1055	1618	2100	7130	2640
194	7068	836	1186	2428	7162	1908
195	7468	977	1509	2035	7293	2389
196	6500	1136	1086	2098	6741	2216
197	7745	1291	1395	1953	7400	2352
198	7327	995	1523	2036	7718	2350
199	5632	1455	1195	2191	7235	2495
201	5586	981	980	1706	6037	1402
205	7300	1205	1236	2201	7225	2266
211	5396	716	1372	1733	6769	1867
212	6077	868	1064	1931	7254	2307
213	5631	924	1410	1436	5538	1596
215	5923	1227	1109	1934	6762	2252
217	6882	909	1318	1830	6130	2734
218	7073	1345	1259	2190	6632	2213
221	9100	1164	1686	1836	7610	2784
222	7445	1141	1295	1935	7095	2345
225	8677	1709	1859	2368	7655	3018
227	5186	706	1092	1506	5941	1435
228	8618	1618	1995	2975	7526	2751
232	5891	1368	1191	1979	7729	2121
234	7305	1295	1455	3048	11193	2207
236	8509	1036	1541	2316	7641	2487

Table A-7. (cont'd)

Steer no.	Liver wt., g	Spleen wt., g	Kidney wt., g	Heart wt., g	Lung wt., g	ST muscle wt., g
238	5914	1295	1436	2135	6696	2787
239	7795	1391	1705	2080	6750	1956
241	5818	982	1486	2102	6944	2254
243	7945	1277	1082	2050	8052	2829

^{*}Not determined.

Table A-8. Steer hip height for Experiment BC9002

	04/25/91	04/26/91	Average	08/30/01	10/25/91	10/27/91	Average	Fine	al hip h	in in
Steer	104/25/91	Initial #2	Initial	Day 112			Day 182	#1	#2	Avg.
no.	hip ht., in	hip ht., in		•	-	hip ht., in	•	π ι	#2	Avy.
1		44.00	44.06	50.25	52.13	52.88		55.00	55.69	55 35
2		43.75	44.03	50.13		53.25			56.44	
4		42.69	43.34	30.13	JZ.00	JJ.25	33.00	57.15	50.77	30.73
5		44.44	44.41	50.50	52.88	54.63	53 75	58 13	57.44	57 79
8		43.00	43.19	48.13	52.00	51.75	51.88		• • • • • • • • • • • • • • • • • • • •	00
9		43.25	42.75	48.94	52.38	52.75			56.38	56.82
10		47.00	46.66	52.50	55.00	56.06	55.53			
11		44.75	44.00	49.38		53.13	52.75			
12		42.19	42.03	48.56	49.88	50.69			54.81	54.85
13		43.19	43.69	50.13	52.81	53.56	53.19	55.38	55.00	55.19
14	42.63	42.13	42.38	47.50	50.38	50.25	50.31			
16	42.63	42.13	42.38	48.31	52.38	52.56	52.47	56 .13	55.44	55.79
17	42.56	43.44	43.00	50.38	53.50	53.63	53.56	59.13	58.50	58.82
18	42.94	43.81	43.38	50.19	52.25	53.75	53.00	57.81	57.50	57.66
19	40.50	42.13	41.31	47.50						
20	44.19	43.94	44.06	49.50	52.50	53.31	52.91	56.69	55.81	56.25
21	43.25	43.50	43.38	48.63	50.38	51.38	50.88	53.50	53.63	53.57
25	43.13	43.13	43.13	49.69	51.81	52.63	52.22	56.06	56.06	56.06
27	41.31	38.88	40.09	47.69	50.06	50.38	50.22			
29	42.81	43.25	43.03	48.88	51.88	52.56	52.22	56.63	56.81	56.72
31	44.56	45.13	44.84	50.56	54.00	54.63	54.31	58.50	58.88	58.69
32		42.88	42.66	49.00	51.38	52.50	51.94			
34		45.06	44.47	50.06	53.75	52.69			57.13	
37		43.06	42.97	48.44		52.13			56.94	
38		43.81	43.19	48.13	51.06	52.88		56.81	56 .75	56.78
39		43.81	43.41	49.00	52.00	51.63	51.81			
40		42.25	42.38	49.19	51.50	53.06	52.28			
42		44.19	44.53	51.50	52.75	53.44			56.94	
43		43.13	43.13	48.56	51.75	52.50			56.00	
44		42.63	43.06	49.19	51.38	52.63			56.06	56.47
45		43.88	43.91	49.56		51.75	51.47			
46		43.38	43.91	49.88					55.50	
47		43.19	42.88	49.06	51.88	52.25	52.06	58.25	58.19	58.22
49		43.63	43.56	P 4 40	F0 05	£0 05	50 OC	F6 6 :		50 T .
50		43.69	44.09	51.13	53.25	53.25			57.00	
54		44.44	43.91	50.44		54.00			56.19	
55		42.19	41.72	48.50		53.88		5/.81	57.38	57.60
56 57		42.56	42.66	49.13			52.31	EE 44	E0 75	F 4 00
57 50		42.00	42.09	47.50		51.50 53.35			53.75	
58	43.38	44.63	44.00	49.25	52.50	53.25	5∠.88	50.00	57.00	30.94

Table A-8. (cont'd)

	04/25/91	04/26/91	Average	08/30/91	10/25/91	10/27/91	Average	Fina	al hip h	t., in
Steer	Initial #1	Initial #2	Initial	Day 112	Day 181	Day 183	Day 182	#1	#2	Avg.
no.	hip ht., in									
59	40.00	40.13	40.06	47.25	49.25	50.56	49.91	55.13	55.63	55.38
60	42.50	41.00	41.75	48.94	52.75	53.13	52.94			
62	41.94	40.94	41.44	47.75	51.00	49.19	50.09	53.25	53.50	53.38
63	41.38	40.81	41.09	47.56		50.56	50.72	54.06	54.50	54.28
65	42.25	41.69	41.97	46.94	49.75	49.38	49.56	53.75	52.88	53.32
70	45.00	44.25	44.63	50.19	53.13	53.25	53.19	56.56	57.88	57.22
72	41.00	40.50	40.75	50.00	52.88	52.00	52.44			
73	42.44	42.25	42.34	47.31	51.13	51.56	51.34			
75	43.88	42.25	43.06	49.06	52.75	53.88	53.31	57.50	57.75	57.63
76		42.13	42.44	47.56		51.00	50.75	56.75	56.75	56.75
77		43.13	43.22			52.50	52.69	54.38	55.50	54.94
78		41.94	41.59	49.75		51.63	51.50			
79		39.69	39.78	47.50						
80		44.44	44.59	51.50		55.69			59.44	
83		44.00	43.72			52.94	53.16	56.31	57.31	56.81
84		43.94	44.59	50.00						
85		42.19	42.41	49.00		51.25	51.13			
86		42.56	42.28	49.00		52.00			56.25	
87		43.00	42.88	50.63		53.88			59.25	59.00
88		40.63	41.56	47.00		50.13	50.00			
89		41.75	41.78	49.25		53.13			57.38	
90		43.44	43.50	50.19	52.75	53.44			58.13	57.85
91	43.56	44.63	44.09	48.06			51.50			
94		42.56	42.47	48.63		52.25	52.38			
95		42.63	42.31	49.06	53.00	52.44	52.72			
97		41.06	41.28	47.38		53.13			55.50	55.28
98		43.38	43.63		52.00	52.50	52.25			
99		42.63	42.13	49.56						
100		43.88	43.88	49.69	52.00	52.38	52.19			
101		43.38				50.50			57.94	
102		45.44	45.69			53.50			58.00	
103		41.56							57.38	
104		42.19	42.03			51.25	51.22	55.81	55.50	55.66
105		45.44	45.03							
106		43.81	44.22			52.94	52.72			
107		42.69				53.25			59.00	
108		42.75							60.25	
109		44.50		51.00					56.25	56.47
110		43.19	42.47			51.56	51.75			
111	40.50	41.13	40.81	49.00						

Table A-8. (cont'd)

	0.4.00.00.00.00	0.4.00.00.0		000000	40055	40.07.01				
	04/25/91	04/26/91	•		10/25/91		Average		al hip h	
Steer		Initial #2	Initial	•	•	Day 183	•	#1	#2	Avg.
no.	hip ht., in	hip ht., in				hip ht., in				
112		42.94	42.88		52.00	52.94	52.47	58.06	57.81	57.94
114		40.94	41.19							
115		43.50	43.47						55.38	
116		44.69	44.66						59.06	
117		46.00	45.44						59.50	59.16
118		42.56	42.53		51.88		51.59			
119		43.44	43.59						56.50	56.28
120		44.75	44.63				53.78			
121		41.56	41.59						56.50	
122		43.38	43.44	49.13		51.50			53.06	53.06
123		43.13	42.66				53.09			
124		42.19	42.59			51.50	52.19			
127		42.69	43.19							
128		44.00	44.31	50.00			53.00			
129		43.75	44.06			53.75	53.31			
130		43.81	43.88	48.50		51.06			56.75	
133		42.13	42.31	49.75		52.69	52.63	56.19	56.75	56.47
135		43.00	42.72							
136		43.31	43.28		53.75	53.50	53.63	57.44	57.63	57.54
137		41.88	42.75							
139		44.31	43.41	49.88	52.50	52.25	52.38	57.19	56.94	57.07
140	44.94	46.88	45.91							
141	42.38	43.50	42.94	46.19	51.00	51.50	51.25			
142	42.63	40.44	41.53	47.25	49.50	49.81	49.66	56.00	56.50	56.25
143	46.25	45.19	45.72	51.00	53.25	54.44	53.84	59.25	58.38	58.82
144	41.63	41.44	41.53	47.88	50.50	52.13	51.31	56.25	55.88	56.07
147	43.94	45.00	44.47	51.38	53.75	53.50	53.63	57.06	57.75	57.41
151	42.00	41.69	41.84	50.19	51.19	53.50	52.34	58.00	57.38	57.69
153	44.25	44.63	44.44	48.69	52.06	52.69	52.38			
154	42.88	43.44	43.16	49.25	52.50	53.00	52.75	55.50	55.88	55.69
155	42.13	41.69	41.91	48.56	52.25	51.88	52.06	58.44	57.50	57.97
157	45.88	46.44	4 6.16	52.88	55.50	55.94	55.72			
158	41.38	40.38	40.88	49.00	52.75	52.25	52.50	57.50	53.25	55.38
159	43.63	43.13	43.38	49.19	52.50	52.50	52.50	56.38	55.88	56.13
161	42.44	41.00	41.63	48.19	52.38	52.88	52.63	55.63	55.63	55.63
163	43.25	43.13	43.19	48.13	53.25	53.06	53.16	58.38	58.44	58.41
165	42.94	42.31	42.63	48.19	51.75	52.56	52.16	55.31	55.00	55.16
166	44.50	43.94	44.22	49.75	52.88	53.13	53.00	59.00	59.00	59.00
170	43.00	43.38	43.19	49.56	52.50	52.50	52.50	57.00	56.63	56.82
171	41.94	42.31	42.13	48.19	52.00	52.06	52.03			

Table A-8. (cont'd)

	04/25/91	04/26/91	Average	08/30/91	10/25/91	10/27/91	Average	Fina	al hip h	t in
Steer	Initial #1	Initial #2	Initial	Day 112	Day 181	Day 183	Day 182	#1	#2	Avg.
no.	hip ht., in			•	-	hip ht., in	•	•••		
172	40.50	41.00	40.75	45.00	50.25	50.06	50.16			
173	43.13	42.56	42.84	49.38	53.00	53.50	53.25			
180	41.38	42.63	42.00	48.69	51.94	52.88	52.41	58.19	57.63	57.91
183	43.38	43.88	43.63	49.25	51.00	52.50	51.75	54.56	54.81	54.69
184	45.13	43.63	44.38	49.94	52.00	52.38	52.19	56.25	56.63	56.44
187	42.63	43.19	42.91	49.75	52.81	53.50	53.16			
192	44.13	43.31	43.72	50.50	52.88	54.44	53.66	57.63	58.06	57.85
194	41.88	42.00	41.94	47.44	51.00	52.00	51.50	56.06	56.50	56.28
195	43.13	44.00	43.56	48.94	52.38	53.88	53.13	57.13	57.50	57.32
196	43.19	42.31	42.75	48.19	51.25	52.19	51.72	55.13	54.69	54.91
197	44.25	43.94	44.09	50.75	52.94	53.44	53.19	56.50	57.00	56.75
198	44.00	43.88	43.94	48.69	51.00	50.00	50.50	54.06	54.00	54.03
199	43.00	42.94	42.97	45.75	52.56	52.25	52.41	57.13	56.75	56.94
201	41.25	41.69	41.47	48.63	51.38	51.69	51.53			
203	42.00	43.06	42.53							
205	43.63	43.13	43.38	49.88	52.75	54.00	53.38	57.56	57.25	57.41
206	42.88	40.88	41.88							
208	43.06	42.69	42.88							
210	43.13	42.75	42.94							
211	43.81	44.00	43.91	50.13	53.50	55.00	54.25			
212	42.75	42.19	42.47	47.25	52.00	51.81	51.91	54.38	54.56	54.47
213	43.81	43.88	43.84	49.81	53.50	53.88	53.69			
215	44.94	43.00	43.97	50.81	52.00	52.31		56.56	56.75	56.66
216	43.44	42.38	42.91	50.50	53.00	53.75	53.38			
217	43.69	43.13	43.41	48.25	52.00	52.25			55.38	
218	42.25	42.50	42.38	49.00	52.00	51.00			56.50	
221	43.75	40.88	42.31	50.00	52.88	53.50			57.88	
222	44.25	44.00	44.13	50.63	52.88	53.50	53.19	5 6.50	56.06	56.28
225	43.75	44.69	44.22	51.00	52.88	54.00		57.63	58.00	57.82
227	42.50	42.88	42.69		50.50	50.50	50.50			
228	42.50	43.50	43.00	49.44	52.50	51.63		57.31	57.31	57.31
231	43.75	44.13	43.94	51.50	53.60	53.38	53.49			
232	43.31	43.88	43.59	48.94	50.06	51.50			54.00	
234	42.94	43.31	43.13	49.19	52.25	53.63			57.81	
236	41.38	41.88	41.63	48.50	51.50	51.44		56.75	56.75	56.75
237	43.50	44.50	44.00	51.00	54.00	54.25	54.13			
238	44.44	44.06	44.25	50.00	51.75	53.13			56.88	
239	41.94	42.69	42.31	47.31	51.38	51.25			54.63	
241	45.00	44.38	44.69	51.63		53.75			56.63	
243	44.75	43.75	44.25	49.44	53.00	54.88	53.94	59.13	58.25	58.69

Table A-9. Metacarpal bone characteristics for Experiment BC9002

		:	:			Medial	Jial	Lateral	ral	į	Tota	Total area, in ²	in ²	Магго	Marrow area, in ²	a, in ²
Steer no.	Steer Metacarpal no. length, cm	Section wt., g	Section Volume, Density length, in cm g/cm	Volume, cm ³	Density, g/cm	width,	depth, in	width, in	depth, in	Circum., mm	#	4 2	Avg.	#	¥	Avg.
-	22.8	35.6993	1.165	18.91	1.89	0.725	0.530	1.456	1.100	110.0	1.32	1.37	1.35	0.40	0.43	0.42
7	22.0	38.3149	1.150	15.98	2.40	0.796	0.532	1.605	1.096	116.0	1.40	1.43	1.42	0.47	0.46	0.47
3	21.8	39.7904	1.184	19.51	2.04	0.782	0.573	1.600	1.175	121.0	1.55	1.55	1.55	0.55	0.55	0.55
9	19.4	19.1969	1.145	10.95	1.75	0.669	0.496	1.148	0.867	87.0	0.82	0.82	0.82	0.25	0.27	0.26
7	20.0	17.4251	1.121	10.45	1.67	0.755	0.560	1.155	0.886	87.5	0.85	0.83	0.84	0.30	0.34	0.32
∞	21.9	28.6208	1.124	14.82	1.93	0.694	0.532	1.300	1.025	103.5	1.20	1.18	1.19	0.44	0.40	0.42
တ	23.0	39.5085	1.113	22.28	1.77	0.721	0.575	1.506	1.172	115.5	4.	1.43	4 .	0.40	0.41	0.41
9	Cut	Cut at harvest, not	æ	Il characteristics	s measured	Je				116.5						
7	21.4	29.1171	1.132	14.43	2.02	0.642	0.504	1.329	1.011	99.0	1.07	1.10	1.09	0.35	0.32	0.33
12	22.3	33.1034	1.096	18.68	1.77	0.666	0.498	1.425	1.068	105.0	1.18	1.20	1.19	0.32	0.32	0.32
13	21.5	33.1576	1.145	16.88	1.96	0.816	0.575	1.488	1.061	113.5	1.33	1.35	4 .	0.46	0.45	0.46
4	Cot	Cut at harvest, not a		Il characterisitcs	s measured	<u>Je</u>										
16	23.1	38.0108	1.150	18.13	2.10	0.766	0.575	1.539	1.125	117.5	1.40	1.43	1.42	0.47	0.46	0.47
17	22.8	45.1849	1.182	23.92	1.89	1.061	0.763	1.816	1.280	133.0	1.86	1.90	1.88	0.73	0.73	0.73
18	22.3	41.5082	1.175	21.80	1.90	0.795	0.550	1.649	1.195	123.0	1.56	1.60	1.58	0.49	0.49	0.49
8	22.0	34.8800	1.134	18.95	1.84	0.762	0.571	1.510	1.013	110.5	1 .3	1.30	1.32	0.40	4 .0	0.42
2	22.8	38.2327	1.125	19.08	2.00	0.855	0.660	1.685	1.161	122.0	1.58	1.57	1.58	0.60	0.64	0.62
22	23.1	39.3600	1.125	21.35	1.84	0.762	0.533	1.505	1.088	116.0	1.40	1.40	1.40	0.44	0.41	0.43
27	21.1	32.9288	1.132	16.38	2.01	0.909	0.643	1.563	1.075	115.0	1.38	1.39	1.39	0.56	0.56	0.56
29	22.9	38.4400	1.115	20.19	1.90	0.786	0.605	1.590	1.136	118.0	1.48	1.48	1.48	0.50	0.49	0.50
31	23.5	38.3126	1.200	19.50	1.96	0.686	0.525	1.430	1.118	109.0	1.29	1.34	1.32	0.35	0.39	0.37
32	21.8	31.4460	1.141	15.61	2.01	0.767	0.571	1.467	1.005	110.0	1.27	1.25	1.26	0.43	0.43	0.43
8	23.2	35.6522	1.134	18.16	1.96	0.791	0.612	1.530	1.115	115.5	1.34	1.37	1.36	0.52	0.54	0.53

Table A-9. (cont'd)

		:	١.			Media	Jial	Latera	Tal	,	Tota	Total area,	in ²	Marro	Marrow area, in	a, in ²
Steer no.	Steer Metacarpal no. length, cm	Section wt., g	Section length, in	Volume,	Density, g/cm³	width,	depth, in	width,	depth, in	Circum.,	#	¥	Avg.	#	¥	Avg.
37	22.8	43.2300	1.194	22.42	1.93	0.885	0.655	1.694	1.210	123.0	1.56	1.57	1.57	0.55	0.50	0.53
38	23.4	38.3685	1.150	19.25	1.99	0.756	0.607	1.566	1.145	115.0	1.48	1.49	1.49	0.49	0.47	0.48
4	21.2	32.2135	1.206	15.75	2.05	0.746	0.579	1.445	1.004	107.0	1.24	1.25	1.25	0.46	0.43	0.45
42	Cut	Cut at harvest, not a	not all char	racterisitcs	s measured	9				120.0	1.53	1.52	1.53	0.54	0.54	0.54
43	22.8	39.9482	1.125	19.89	2.01	0.819	0.597	1.665	1.107	122.0	43.	1.54	4 2.	0.50	0.50	0.50
4	21.8	33.2568	1.087	16.29	2.04	0.797	0.558	1.538	1.167	111.0	1.34	1.31	1.33	0.42	0.43	0.43
45	22.3	30.9168	1.187	14.86	2.08	0.732	0.512	1.430	1.006	104.0	1.15	1.16	1.16	0.37	0.38	0.38
46	23.1	36.4087	1.150	19.79	1.84	0.691	0.542	1.510	1.010	115.5	1.30	1.33	1.32	0.35	0.35	0.35
47	21.8	39.0431	1.067	20.39	1.91	0.922	0.610	1.695	1.161	125.0	1.69	1.64	1.67	0.59	0.56	0.58
20	22.4	40.1803	1.175	20.59	1.95	0.785	0.557	1.650	1.134	121.5	1.55	1.50	1.53	0.45	0.45	0.45
2	23.0	37.8483	1.181	18.91	2.00	0.842	0.650	1.600	1.150	119.0	1.50	1.52	1.51	0.48	0.49	0.49
55	22.7	37.3216	1.088	20.97	1.78	0.816	0.612	1.579	1.175	118.5	1.52	1.51	1.52	0.57	0.59	0.58
22	22.3	39.0081	1.187	19.97	1.95	0.718	0.508	1.496	1.122	112.0	1.37	1.34	1.36	0.47	0.41	44.0
28	22.3	36.7722	1.206	18.80	1.96	0.698	0.470	1.460	1.025	110.0	1.32	1.29	1.31	0.35	0.35	0.35
29	21.6	37.1815	1.061	19.33	1.92	0.750	0.492	1.537	1.110	114.5	1.42	1.44	1.43	0.40	0.39	0.40
8	21.8	30.1430	1.119	15.80	1.91	0.771	0.575	1.422	1.057	107.0	1.20	1.24	1.22	0.50	0.46	0.48
62	21.7	36.4187	1.118	17.68	2.06	0.800	0.579	1.550	1.084	115.5	1.38	1.37	1.38	0.43	0.44	4.0
63	22.1	36.9345	1.116	21.01	1.76	0.660	0.454	1.540	1.061	108.0	1.28	1.31	1.30	0.33	0.33	0.33
65	21.5	35.0553	1.175	19.17	1.83	0.771	0.583	1.511	1.110	113.0	1.41	1.35	1.38	0.42	0.44	0.43
67	19.2	18.3208	1.150	10.61	1.73	0.581	0.495	1.061	0.871	82.5	0.80	0.78	0.79	0.28	0.23	0.26
20	22.0	37.8362	1.212	18.81	2.01	0.741	0.538	1.575	1.100	115.8	1.34	1.35	1.35	0.40	0.40	0.40
72	21.7	34.8502	1.125	18.96	1.84	0.741	0.631	1.432	1.159	111.5	1.37	1.37	1.37	0.45	0.45	0.45
74	19.5	17.7565	1.150	9.87	1.80	0.645	0.485	1.075	0.840	83.0	0.77	0.75	0.76	0.27	0.23	0.25

Table A-9. (cont'd)

		:	1			Ž	Medial	Latera	ral	i	Tota	Total area, in ²	in ²	Marro	Marrow area, in	a, in ²
Steer Metacarpal no. length, cm	<u>a</u> E	Section wt., g	Section length, in	Volume,	Density, g/cm ³	width, in	depth, in	width,	depth, in	Circum., mm	#	#	Avg.	#	#	Avg.
2	22.1	40.2980	1.132	20.85	1.93	0.692	0.544	1.561	1.132	116.5	1.46	1.43	1.45	0.39	0.39	0.39
7	22.6	37.8068	1.175	19.21	1.97	0.689	0.491	1.487	1.075	112.0	1.32	1.33	1.33	0.40	0.40	0.40
	Ħ	Cut at harvest, not all	cha	racterisitos	s measured	red				118.0	1.48	1.44	1.46	0.45	0.47	0.46
•	21.6	30.1885	1.150	15.12	2.00	0.722	0.638	1.384	1.097	105.5	1.24	1.21	1.23	0.42	0.43	0.43
	21.4	36.9410	1.093	18.05	2.05	0.750	0.556	1.578	1.100	116.0	1.43	1.39	1.41	0.49	0.50	0.50
•	22.3	40.6722	1.104	20.19	2.01	0.863	0.611	1.666	1.131	121.5	1.55	1.49	1.52	0.49	0.50	0.50
	21.2	29.2530	1.100	14.59	2.01	0.808	0.565	1.409	1.025	107.0	1.24	1.27	1.26	0.40	0.42	0.41
	22.8	36.8016	1.075	19.06	1.93	0.750	0.510	1.590	1.095	116.0	1.37	1.38	1.38	0.38	0.36	0.37
	22.5	41.2220	1.165	20.53	2.01	0.895	0.640	1.725	1.165	120.5	1.53	1.55	1.54	0.45	0.48	0.47
	CE	Cut at harvest, not all	_	characterisites	s measured	<u>e</u>				120.0	1.54	1.53	1.54	0.56	0.57	0.57
	22.5	40.7242	1.155	20.57	1.98	0.804	0.571	1.645	1.155	123.0	1.44	1.49	1.47	0.46	0.46	0.46
	20.3	19.2481	1.115	11.40	1.69	0.749	0.610	1.219	0.915	93.0	0.96	0.97	0.97	0.39	0.41	0.40
	20.8	32.8136	1.191	16.15	2.03	0.691	0.514	1.430	1.025	117.5	1.26	1.26	1.26	0.41	0.42	0.42
	21.7	41.1365	1.198	20.73	1.98	0.890	0.691	1.675	1.175	121.0	1.49	1.54	1.52	0.55	0.58	0.57
	22.3	31.6983	1.121	17.06	1.86	0.804	0.575	1.487	1.048	110.0	1.34	1.29	1.32	0.50	0.49	0.50
	21.7	28.3737	1.100	14.07	2.02	0.709	0.471	1.385	0.970	101.0	1.05	1.07	1.06	0.29	0.32	0.31
••	22.9	38.5283	1.125	19.37	1.99	0.880	0.591	1.632	1.165	121.0	1.62	1.61	1.62	0.55	0.60	0.58
	22.4	38.2163	1.106	19.19	1.99	0.800	0.594	1.634	1.156	119.5	1.50	1.52	1.51	0.51	0.55	0.53
	23.7	43.6988	1.108	24.75	1.77	0.831	0.639	1.650	1.235	127.5	1.78	1.75	1.77	0.60	0.56	0.58
•	22.5	35.0886	1.100	18.66	1.88	0.889	0.563	1.572	1.104	114.5	1.37	1.41	1.39	0.51	0.48	0.50
•	21.6	30.9000	1.179	15.66	1.97	0.770	0.536	1.432	1.036	108.0	1.26	1.24	1.25	0.40	0.43	0.42
	23.3	41.6452	1.175	21.66	1.92	0.975	0.690	1.695	1.208	129.0	1.79	1.79	1.79	0.76	0.76	0.76
•	23.0	37.4445	1.063	18.60	2.01	0.811	0.545	1.550	1.142	116.5	1.48	1.48	1.48	0.46	0.49	0.48

Table A-9. (cont'd)

-	;				Media	dial	Latera	<u>ra</u>		Tota	Total area, in	in ²	Marrow area, in ²	w are	1, in ²
Section wt., g	. 6	Section length, in	Volume, cm	Density, g/cm ³	width,	depth, in	width, in	depth, in	Circum., mm	#	¥	Avg.	#	¥	Avg.
38.1420	420	1.100	19.37	1.97	0.715	0.570	1.560	1.132	116.0	1.45	1.45	1.45	0.47	0.44	0.46
30.8418	418	1.138	16.21	1.90	0.740	0.540	1.415	1.035	105.0	1.18	1.19	1.19	0.38	0.38	0.38
43.5	43.5831	1.210	23.74	1.84	0.763	0.605	1.690	1.180	119.0	1.54	1.50	1.52	0.50	0.50	0.50
42.291	911	1.150	21.41	1.98	0.850	0.679	1.683	1.187	124.0	1.69	1.67	1.68	0.56	0.57	0.57
43.	43.9112	1.125	21.64	2.03	0.790	0.610	1.738	1.133	126.0	1.67	1.62	1.65	0.50	0.49	0.50
36.	36.4704	1.050	19.76	1.85	0.700	0.581	1.568	1.132	116.5	1. 4	1.40	1.42	0.40	0.39	0.40
30	30.7391	1.108	15.02	2.05	0.725	0.555	1.336	1.050	107.0	1.30	1.34	1.32	0.48	0.48	0.48
35.	35.8718	1.115	19.33	1.86	0.846	0.616	1.580	1.111	116.5	1.47	1.50	1.49	0.58	0.53	0.56
33.	33.1875	1.159	17.25	1.92	0.729	0.545	1.425	1.089	110.0	1.34	1.32	1.33	0.46	0.46	0.46
4	44.6694	1.175	22.50	1.99	0.865	0.608	1.675	1.209	124.0	1.60	1.64	1.62	0.49	0.48	0.49
37	37.3001	1.118	18.08	2.06	0.833	0.600	1.570	1.120	115.0	1.47	1.41	1.44	0.40	0.40	0.40
9	30.7115	1.106	16.64	1.85	0.840	0.602	1.441	1.059	110.0	1.32	1.32	1.32	0.49	0.49	0.49
8	34.5563	1.125	17.08	2.02	0.712	0.543	1.504	1.100	108.0	1.29	1.24	1.27	0.37	0.38	0.38
4	40.5349	1.075	20.21	2.01	0.667	0.518	1.644	1.162	117.0	1.41	1.40	1.41	0.40	0.37	0.39
3	38.5700	1.075	21.24	1.82	0.838	0.565	1.600	1.090	118.0	1.50	1.50	1.50	0.48	0.49	0.49
3	39.9231	1.203	19.36	2.06	0.766	0.525	1.615	1.100	118.0	1.40	1.38	1.39	0.37	0.38	0.38
4	44.3168	1.175	23.28	1.90	0.857	0.525	1.665	1.176	123.5	1.60	1.58	1.59	0.43	0.47	0.45
4	40.5339	1.084	22.32	1.82	0.754	0.575	1.581	1.211	119.0	1.45	1.49	1.47	0.38	0.40	0.39
36	39.9446	1.142	20.49	1.95	0.775	0.622	1.525	1.175	119.0	1.55	1.53	1.54	0.52	0.48	0.50
8	40.2143	1.170	21.00	1.91	0.793	0.580	1.612	1.110	119.5	1.53	1.53	1.53	0.49	0.51	0.50
36	39.2722	1.161	19.33	2.03	0.995	0.680	1.644	1.210	122.5	1.58	1.57	1.58	0.57	0.54	0.56
7	18.6659	1.100	11.12	1.68	0.745	0.542	1.190	0.875	89.5	0.90	0.87	0.89	0.35	0.35	0.35
43	43.1238	1.100	20.94	2.06	0.716	0.505	1.611	1.146	118.5	1.48	1.47	1.48	0.33	0.34	0.34

Table A-9. (cont'd)

Stoor Metacornal Contion			Cotion	Volume	Doneity	Medial	dial	Latera	ral	an loai	Tota	Total area, in	in ²	Marro	Marrow area, in ²	a, in ²
wt., g length, in cm ³	length, in cm ³	offith, in cm ³	_	-	g/cm ³	width, in	depth,	width,	depth,	ma	#	¥	Avg.	#	#	Avg.
22.2 33.8741 1.143 16.52	1.143		16.52		2.05	0.755	0.575	1.467	1.085	110.0	1.27	1.27	1.27	0.40	0.43	0.42
22.4 36.3100 1.100 19.86	36.3100 1.100		19.86		1.83	0.675	0.485	1.462	1.083	109.0	1.27	1.27	1.27	0.27	0.32	0.30
23.0 41.0699 1.070 20.10	41.0699 1.070		20.10		2.04	0.716	0.563	1.575	1.191	119.0	1.53	1.52	1.53	4 4.	4 4.	4 4.
23.7 33.8155 1.140 17.11	1.140		17.11		1.98	0.787	0.594	1.495	1.113	113.0	1.46	1.41	1.44	0.56	0.50	0.53
23.7 36.6295 1.100 20.35	36.6295 1.100		20.35		1.80	0.906	0.634	1.615	1.192	119.5	1.60	1.55	1.58	0.60	0.61	0.61
22.4 40.9271 1.150 20.11	40.9271 1.150		20.11		2.04	0.790	0.550	1.668	1.140	119.0	1.54	1.57	1.56	0.51	0.53	0.52
21.5 39.4287 1.086 18.37	39.4287 1.086		18.37		2.15	0.763	0.525	1.575	1.150	117.0	1.50	1.50	1.50	4.0	0.41	0.43
23.3 38.7686 1.175 19.96	38.7686 1.175		19.96		1.94	0.684	0.525	1.485	1.120	114.0	1.45	1.43	1.44	0.49	0.48	0.49
19.5 18.0092 1.135 9.41	18.0092 1.135		9.41		1.91	0.867	0.645	1.255	0.959	95.0	0.98	0.98	0.98	0.46	0.45	0.46
22.8 38.4186 1.125 21.50	38.4186 1.125		21.50		1.79	0.744	0.540	1.548	1.016	113.0	1.38	1.37	1.38	0.40	0.38	0.39
21.9 40.7556 1.199 20.67	40.7556 1.199		20.67		1.97	0.786	0.585	1.635	1.121	119.0	1.45	1.42	1.44	0.45	0.43	0.44
22.7 44.4750 1.197 21.77	44.4750 1.197		21.77		2.04	0.725	0.486	1.593	1.170	117.0	1.37	1.43	1.40	0.38	0.36	0.37
21.6 43.9622 1.125 22.22	43.9622 1.125		22.22		1.98	1.008	0.711	1.766	1.300	126.5	1.78	1.78	1.78	0.67	0.65	0.66
20.7 29.9243 1.157 14.62	29.9243 1.157		14.62		2.05	0.625	0.403	1.359	0.963	100.5	1.06	1.06	1.06	0.32	0.30	0.31
21.7 30.4343 1.130 15.97	30.4343 1.130		15.97		1.91	0.746	0.545	1.410	1.060	107.0	1.27	1.28	1.28	0.43	0.43	0.43
22.5 39.7614 1.130 20.54	39.7614 1.130		20.54		1.94	0.807	0.580	1.630	1.125	117.0	1.42	1.42	1.42	0.41	0.41	0.41
22.9 39.3711 1.125 20.72	39.3711 1.125		20.72		1.90	0.900	0.669	1.680	1.195	122.0	1.56	1.57	1.57	0.60	0.60	0.60
22.9 41.0754 1.125 21.77	41.0754 1.125		21.77		1.89	0.761	0.530	1.563	1.120	116.0	1.43	1.42	1.43	0.35	0.34	0.35
22.1 31.9673 1.094 15.77	1.094		15.77		2.03	0.861	0.603	1.525	1.079	112.5	1.34	1.36	1.35	0.50	0.49	0.50
21.8 40.6061 1.100 20.57	40.6061 1.100		20.57		1.97	0.865	0.600	1.627	1.206	121.0	1.58	1.59	1.59	0.50	0.52	0.51
23.2 33.1214 1.125 18.84	33.1214 1.125		18.84		1.76	0.812	0.611	1.581	1.080	113.0	1.30	1.35	1.33	0.49	0.50	0.50
21.9 38.0241 1.093 18.66	38.0241 1.093		18.66		2.04	0.740	0.605	1.575	1.138	114.0	1.36	1.40	1.38	0.37	0.41	0.39
22.7 36.7521 1.150 18.50	1.150		18.50		1.99	0.761	0.516	1.515	1.010	113.0	1.37	1.38	1.38	0.46	0.46	0.46

Table A-9. (cont'd)

Section Volume langth, in cm³ Width, depth, width, depth, width, depth, ling in langth, ling in langth	1		:	:			Media	Jial	Latera	ral		Total	Total area, in	in ²	Marro	Marrow area, in	a, in ²
38.2113 1.162 18.41 2.08 0.929 0.665 1.715 1.10 122.0 1.50 1.60 1.70	_	Metacarpal length, cm	Section wt., g	Section length, in	Volume, cm³	Density, g/cm ³	width,	depth,	width,	depth,	Circum.,	#	4	Avg.	#	#	Avg.
44,4113 1,075 22.87 1.94 0.836 0.625 1.746 1.212 126.0 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.71 1.71 1.71 1.72 1.72 1.72 1.73 1.74		22.1	38.2113	1.162	18.41	2.08	0.929	0.665	1.715	1.110	122.0	1.50	1.50	1.50	0.53	0.50	0.52
41.5683 1.143 22.81 1.82 0.746 0.534 1.571 1.135 1180 1.49 1.47 1.40 0.589 1.99 1.99 1.99 0.785 0.699 1.400 0.899 1.99 1.79 0.780 0.695 0.890 1.99 1.79 1.79 0.780 0.695 0.890 1.99 1.79 0.790 0.695 0.806 1.80 0.790 0.695 0.806 1.80 0.790 0.695 0.806 1.80 0.790 0.780 0.790		22.0	44.4113	1.075	22.87	1.94	0.836	0.625	1.746	1.212	126.0	1.69	1.69	1.69	0.55	0.50	0.53
30,4226 1.167 15.29 1.99 0.785 0.609 1400 0.889 109.5 1.28 1.29 1.78 0.570 0.406 1.065 0.830 830 0.78 1.29 0.78 0.695 0.605 0.893 </td <td></td> <td>23.0</td> <td>41.5683</td> <td>_</td> <td>22.81</td> <td>1.82</td> <td>0.746</td> <td>0.534</td> <td>1.571</td> <td>1.135</td> <td>118.0</td> <td>1.49</td> <td>1.47</td> <td>1.48</td> <td>0.43</td> <td>0.42</td> <td>0.43</td>		23.0	41.5683	_	22.81	1.82	0.746	0.534	1.571	1.135	118.0	1.49	1.47	1.48	0.43	0.42	0.43
17.2525 1.083 9.64 1.79 0.570 0.406 1.065 0.830 0.76 0.73 0.75 0.25 43.5791 1.217 22.90 1.90 0.695 0.506 1.557 1.133 117.0 1.50 1.51 1.51 0.40 34.1627 1.120 18.16 1.88 0.780 0.632 1.505 1.114 114.5 1.37 1.40 1.39 0.49 39.2383 1.175 19.22 2.04 0.714 0.513 1.506 1.144 114.5 1.37 1.40 1.39 0.49 39.2383 1.175 19.22 2.04 0.714 0.514 1.145 1.145 1.40 1.41 0.43 39.2383 1.120 1.88 2.02 0.740 0.548 1.50 1.165 1.45 1.41 0.48 39.0276 1.100 17.87 1.96 0.838 0.619 1.569 1.080 1.144 1.45 1.41 <		21.8	30.4226	1.167	15.29	1.99	0.785	0.609	1.400	0.989	109.5	1.28	1.29	1.29	0.47	0.52	0.50
43.5791 1.217 22.90 1.90 0.695 0.506 1.557 1.13 117.0 1.50 1.51 0.49 34.1627 1.120 18.16 1.88 0.780 0.632 1.505 1.114 114.5 1.37 1.40 1.39 0.49 39.2383 1.175 19.22 2.04 0.714 0.513 1.540 1.144 113.0 1.42 1.40 1.41 0.43 35.5432 1.175 19.22 2.04 0.714 0.513 1.540 1.145 1.42 1.40 1.41 0.43 33.0452 1.075 18.28 1.81 0.840 0.568 1.520 1.090 1.65 1.40 1.41 0.43 38.0636 1.120 1.129 1.46 0.744 0.492 1.644 1.136 1.45 1.41 1.41 0.48 35.0276 1.100 17.87 1.96 0.675 0.491 1.569 1.62 1.41 1.41 <		19.9	17.2525	1.083	9.64	1.79	0.570	0.406	1.065	0.830	83.0	92.0	0.73	0.75	0.25	0.24	0.25
34.1627 1.120 18.16 1.88 0.780 0.632 1.505 1.114 114.5 1.37 1.40 1.39 0.49 39.2383 1.175 19.22 2.04 0.714 0.513 1.540 1.144 113.0 1.42 1.40 1.41 0.43 35.5432 1.150 17.91 1.98 0.991 0.666 1.665 1.06 121.0 1.60 1.60 1.60 0.67 33.0452 1.075 18.28 1.81 0.814 0.595 1.520 1.090 116.5 1.45 1.47 1.46 0.56 35.0276 1.120 18.88 2.02 0.740 0.548 1.510 1.135 1.41 1.41 1.41 1.41 1.42 1.41 1.48 0.56 1.44 1.135 1.41 1.40 1.41 0.38 1.40 1.45 1.41 1.40 1.41 0.38 1.40 1.45 1.41 1.40 1.41 0.48 1.41 </td <td></td> <td>22.4</td> <td>43.5791</td> <td>1.217</td> <td>22.90</td> <td>1.90</td> <td>0.695</td> <td>0.506</td> <td>1.557</td> <td>1.133</td> <td>117.0</td> <td>1.50</td> <td>1.51</td> <td>1.51</td> <td>0.40</td> <td>0.40</td> <td>0.40</td>		22.4	43.5791	1.217	22.90	1.90	0.695	0.506	1.557	1.133	117.0	1.50	1.51	1.51	0.40	0.40	0.40
39,2383 1,175 19,22 2.04 0.714 0.513 1.540 1,144 113.0 1.42 1.40 1.41 0.43 35,5432 1,150 17.91 1.98 0.991 0.666 1.665 1.106 121.0 1.60 1.60 1.60 1.60 1.60 0.67 33,0452 1.075 18.28 1.81 0.814 0.595 1.520 1.090 116.5 1.45 1.47 1.46 0.56 38,0636 1.120 18.88 2.02 0.740 0.548 1.510 1.15 1.41 1.41 0.38 35,0276 1.100 17.87 1.96 0.838 0.619 1.569 1.082 1.45 1.41 1.48 0.78 37,1723 1.144 18.92 1.96 0.675 0.497 1.542 1.050 1.110 1.42 1.41 0.48 37,1723 1.144 18.92 1.96 0.675 0.491 1.406 0.975		22.2	34.1627	1.120	18.16	1.88	0.780	0.632	1.505	1.114	114.5	1.37	1.40	1.39	0.49	0.50	0.50
35.5432 1.150 17.91 1.98 0.991 0.666 1.665 1.106 121.0 1.60 1.60 1.60 1.60 0.67 0.67 0.991 0.666 1.665 1.106 1.120 1.8.88 2.02 0.740 0.548 1.510 1.135 1.45 1.47 1.46 0.56 3.6036 3.6036 1.603 1.603 1.603 1.603 1.403 1.41 1.40 1.41 1.40 1.41 1.40 1.41 1.40 1.41 1.40 0.56 3.603		22.2	39.2383	1.175	19.22	2.04	0.714	0.513	1.540	1.144	113.0	1.42	1.40	1.41	0.43	0.46	0.45
33.0452 1.075 18.28 1.81 0.814 0.595 1.520 1.090 116.5 1.45 1.47 1.46 0.56 38.0636 1.120 18.88 2.02 0.740 0.548 1.510 1.135 114.5 1.41 1.40 1.41 0.38 35.0276 1.100 17.87 1.96 0.838 0.619 1.569 1.082 115.0 1.40 1.41 0.38 44.5045 1.129 21.46 2.07 0.744 0.492 1.644 1.136 1.22.0 1.57 1.57 1.57 1.57 1.67 1.41 0.49 37.1723 1.144 18.92 1.96 0.675 0.497 1.542 1.050 1110 1.32 1.32 1.32 0.30 35.6800 1.070 19.43 1.84 0.775 0.530 1.491 1.060 1110 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.41 0.35 <td< td=""><td></td><td>21.8</td><td>35,5432</td><td>1.150</td><td>17.91</td><td>1.98</td><td>0.991</td><td>0.666</td><td>1.665</td><td>1.106</td><td>121.0</td><td>1.60</td><td>1.60</td><td>1.60</td><td>0.67</td><td>0.65</td><td>99.0</td></td<>		21.8	35,5432	1.150	17.91	1.98	0.991	0.666	1.665	1.106	121.0	1.60	1.60	1.60	0.67	0.65	99.0
38.0636 1.120 18.88 2.02 0.740 0.548 1.510 1.135 114.5 1.41 1.40 1.41 0.38 35.0276 1.100 17.87 1.96 0.838 0.619 1.569 1.082 115.0 1.40 1.42 1.41 0.48 44.5045 1.129 21.46 2.07 0.744 0.492 1.644 1.136 122.0 1.57 1.57 1.57 0.40 37.1723 1.144 18.92 1.96 0.675 0.497 1.542 1.050 111.0 1.32 1.32 1.32 0.30 35.6800 1.070 19.43 1.84 0.775 0.530 1.491 1.060 111.0 1.32 1.32 1.32 0.30 29.5905 1.118 14.90 1.99 0.666 0.481 1.406 0.975 104.5 1.09 1.11 0.35 34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 37.5453		22.5	33.0452	1.075	18.28	1.81	0.814	0.595	1.520	1.090	116.5	1.45	1.47	1.46	0.56	0.54	0.55
35.0276 1.100 17.87 1.96 0.838 0.619 1.569 1.082 115.0 1.40 1.42 1.41 0.48 44.5045 1.129 21.46 2.07 0.744 0.492 1.644 1.136 122.0 1.57 1.57 1.57 0.40 37.1723 1.144 18.92 1.96 0.675 0.497 1.542 1.050 111.0 1.32 1.32 1.32 0.30 29.5905 1.118 14.90 1.99 0.666 0.481 1.406 0.975 104.5 1.03 1.11 0.35 31.4352 1.175 15.75 2.00 0.650 0.550 1.387 1.050 104.5 1.09 1.11 0.33 34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 38.9675 1.114 20.59 1.89 0.765 0.587 1.56 1.175 1.45 1.45 1.45 0.45 37.5453 1.104 1.82		22.3	38.0636	1.120	18.88	2.02	0.740		1.510	1.135	114.5	1.41	1.40	1.41	0.38	0.38	0.38
44.5045 1.129 21.46 2.07 0.744 0.492 1.644 1.136 122.0 1.57 1.57 1.57 0.40 37.1723 1.144 18.92 1.96 0.675 0.497 1.542 1.050 111.0 1.32 1.32 1.32 0.30 35.6800 1.070 19.43 1.84 0.775 0.530 1.491 1.060 113.5 1.37 1.32 1.32 0.30 29.5905 1.118 14.90 1.99 0.666 0.481 1.406 0.975 104.5 1.02 1.12 1.11 0.35 31.4352 1.175 15.75 2.00 0.650 0.550 1.387 1.050 102.0 1.23 1.11 0.33 34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 38.9675 1.114 20.59 1.89 0.765 0.547 1.566 1.775 1.150 1.43 1.45 1.45 0.45 37.5453		22.5	35.0276	1.100	17.87	1.96	0.838		1.569	1.082	115.0	1.40	1.42	1.41	0.48	0.51	0.50
35.6800 1.04 18.92 1.96 0.675 0.497 1.542 1.050 111.0 1.32 1.32 1.32 0.30 35.6800 1.070 19.43 1.84 0.775 0.530 1.491 1.060 113.5 1.37 1.33 1.35 0.45 29.5905 1.118 14.90 1.99 0.666 0.481 1.406 0.975 104.5 1.09 1.11 0.11 1.11 0.35 34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.31 1.21 0.33 38.9675 1.114 20.59 1.89 0.765 0.547 1.566 1.175 115.0 1.43 1.45 1.44 0.46 37.5453 1.104 18.26 2.06 0.867 0.585 1.587 1.131 119.0 1.51 1.55 1.53 0.54 41.3334 1.150 20.50 0.730 0.493 1.579 1.150 116.5 1.45 1.45 0.43		23.2	44.5045	1.129	21.46	2.07	0.744	0.492	1.644	1.136	122.0	1.57	1.57	1.57	0.40	0.44	0.42
35,6800 1.070 19.43 1.84 0.775 0.530 1.491 1.060 113.5 1.37 1.33 1.35 0.45 29,5905 1.118 14.90 1.99 0.666 0.481 1.406 0.975 104.5 1.09 1.12 1.11 0.33 31,4352 1.175 15.75 2.00 0.650 0.550 1.387 1.050 102.0 1.23 1.19 1.21 0.33 34,1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 38,9675 1.114 20.59 1.89 0.765 0.547 1.566 1.175 115.0 1.43 1.45 1.44 0.46 37,5453 1.104 18.26 2.06 0.867 0.585 1.579 1.150 1.51 1.45 1.45 0.43 41,3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.45 1.45 0.43		22.0	37.1723	1.144	18.92	1.96	0.675	0.497	1.542	1.050	111.0	1.32	1.32	1.32	0.30	0.32	0.31
29.5905 1.118 14.90 1.99 0.666 0.481 1.406 0.975 104.5 1.09 1.11 0.11 1.11 0.35 31.4352 1.175 15.75 2.00 0.650 0.550 1.387 1.050 102.0 1.23 1.19 1.21 0.33 34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 38.9675 1.114 20.59 1.89 0.765 0.547 1.566 1.175 115.0 1.43 1.45 1.44 0.46 37.5453 1.104 18.26 2.06 0.867 0.585 1.587 1.131 119.0 1.51 1.55 1.53 0.54 41.3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.45 1.45 0.43 1.579 1.150 1.16.5 1.45 1.45 0.43		22.3	35.6800	1.070	19.43	1.84	0.775	0.530	1.491	1.060	113.5	1.37	1.33	1.35	0.45	0.41	0.43
31.4352 1.175 15.75 2.00 0.650 0.550 1.387 1.050 102.0 1.23 1.19 1.21 0.33 34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 38.9675 1.114 20.59 1.89 0.765 0.547 1.566 1.175 115.0 1.43 1.45 1.44 0.46 37.5453 1.104 18.26 2.06 0.867 0.585 1.579 1.150 1.16.5 1.46 1.43 1.45 0.43 41.3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.46 1.43 1.45 0.43		21.4	29.5905	1.118	14.90	1.99	0.666		1.406	0.975	104.5	1.09	1.12	1.1	0.35	0.34	0.35
34.1800 1.121 18.79 1.82 0.844 0.570 1.509 1.055 112.0 1.34 1.33 1.34 0.45 38.9675 1.114 20.59 1.89 0.765 0.547 1.566 1.175 115.0 1.43 1.45 1.44 0.46 37.5453 1.104 18.26 2.06 0.867 0.585 1.587 1.131 119.0 1.51 1.55 1.53 0.54 41.3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.46 1.43 1.45 0.43		23.6	31.4352	1.175	15.75	2.00	0.650		1.387	1.050	102.0	1.23	1.19	1.21	0.33	0.33	0.33
38.9675 1.114 20.59 1.89 0.765 0.547 1.566 1.175 115.0 1.43 1.44 0.46 37.5453 1.104 18.26 2.06 0.867 0.585 1.587 1.131 119.0 1.51 1.55 1.53 0.54 41.3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.46 1.43 1.45 0.43		22.9	34.1800	1.121	18.79	1.82	0.844	0.570	1.509	1.055	112.0	1.34	1.33	1.34	0.45	0.49	0.47
37.5453 1.104 18.26 2.06 0.867 0.585 1.587 1.131 119.0 1.51 1.55 1.53 0.54 41.3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.46 1.43 1.45 0.43		23.1	38.9675	1.114	20.59	1.89	0.765	0.547	1.566	1.175	115.0	1.43	1.45	1.44	0.46	0.48	0.47
41.3334 1.150 20.50 2.02 0.730 0.493 1.579 1.150 116.5 1.46 1.43 1.45 0.43		22.2	37.5453	1.104	18.26	2.06	0.867	0.585	1.587	1.131	119.0	1.51	1.55	1.53	0.54	0.55	0.55
		22.5	41.3334	1.150	20.50	2.02	0.730	0.493	1.579	1.150	116.5	1.46	1.43	1.45	0.43	0.43	0.43

Table A-9. (cont'd)

	-	:	:		:		Medial	Lateral	ral	Ċ	Total	area,	in ²	Total area, in ² Marrow area, in ²	w are	ı, in ²
Steer Metacarpal Sono. Iength, cm	,,	Section Wt., g	Section Volume, L length, in cm ³	Volume, cm³	Jensity, g/cm³	width, in	width, depth, width, depth, in in in	width, in	depth, in	Circum., mm	#1	#	Avg.	#1 #2 Avg. #1 #2 Avg.	4	Avg.
22.0	ı	22.0 37.5944	1.158	18.44	2.04	0.800	2.04 0.800 0.573 1.557	1.557	1.105	115.0 1.42 1.40 1.41 0.45 0.46	1.42	1.40	1.41	0.45	0.46	0.46
22.7		44.2191	1.111	23.72		0.975	1.86 0.975 0.690 1.746	1.746	1.284	127.0 1.62 1.58 1.60 0.55	1.62	1.58	1.60	0.55	0.54	0.55
23.5		23.5 39.6444	1.069	1.069 19.92		0.793	1.99 0.793 0.600 1.659	1.659	1.175	120.5 1.59 1.60 1.60 0.46	1.59	1.60	1.60	0.46	0.48	0.47

Table A-10. Serum IGF-I concentrations (ng/ml) following initial and subsequent control or bST treatments, and following the last control or bST treatment for Experiment BC9002 **

Steer		Days	after initi	al treatm	ent		Days	s after la	st treatm	ent
no.	0	7	14	21	28	35	-7	-14	-21	-28
13	467	710	NC b	928	950	776	500	500	536	523
17	378	497	442	660	570	660	1244	1094	648	628
18	333	608	394	622	565	666	407	510	465	428
37	252	378	483	480	519	537	1091	922	698	478
42	452	426	284	444	368	422	509	499	559	544
44	325	496	441	442	491	568	439	450	395	398
46	351	687	515	478	443	652	421	394	455	463
62	318	350	450	375	380	428	496	523	486	447
77	404	575	447	958	479	670	1661	900	510	498
86	227	323	288	322	256	348	282	267	296	304
87	391	629	NC	663	729	523	1103	1103	729	676
89	235	360	328	370	296	447	1305	1295	817	462
97	369	579	488	424	420	576	457	539	440	426
101	291	395	424	417	430	325	1307	954	487	442
102	282	396	358	398	349	286	1263	712	260	250
103	158	319	301	503	489	551	205	265	278	233
121	303	394	406	557	347	605	1129	785	504	355
130	303	442	392	495	436	458	1426	1044	617	506
136	330	283	343	370	450	430	427	515	448	517
142	101	141	257	344	256	336	1184	512	360	397
154	292	263	419	425	358	384	462	475	467	484
158	252	226	326	275	341	337	1308	979	453	363
163	353	366	460	455	476	485	1052	999	508	321
165	360	782	819	738	492	863	452	485	402	421
166	293	398	273	286	344	277	1118	1062	651	474
180	284	388	340	460	306	430	1299	967	697	480
183	329	396	427	364	336	506	328	307	305	297
195	405	619	546	704	545	728	529	507	525	507
199	283	275	359	360	377	421	440	400	446	448
212	284	346	308	461	417	455	448	409	457	394
225	654	848	1002	816	802	865	1244	1367	1069	614
238	284	358	621	434	328	419	1503	994	849	491

^{*}Two steers were sampled per pen. Steers were treatment on day 0, 14, and 28. Blood was collected prior to treatment.

^bNot collected.

Table A-11. Serum IGF-I concentrations following the final control or bST treatment, and liver IGF-I mRNA abundance for Experiment BC9002*

Steer	Days follow	ing last treat	tment, IGF-	l, ng/ml	Liver IGF-I mRNA
no.	-7	-14	-21	-28	abundance, densitometric units
9	593	753	819	617	111516
12	386	340	382	384	143915
25	251	383	298	314	88813
55	322	374	372	289	67567
59	987	1037	697	785	103413
63	475	396	710	457	62957
86	282	267	296	304	56249
89	1305	1295	817	462	96360
103	205	265	278	233	62135
104	225	312	183	224	104637
133	407	348	454	374	106711
142	1184	512	360	397	47797
151	424	450	434	383	70336
155	1086	848	423	499	98677
158	1308	979	453	363	100200
165	452	485	402	421	105150
180	1299	967	697	480	96664
194	1293	603	437	380	105541
199	440	400	446	448	111729
221	406	399	340	342	69999
234	1216	1058	462	373	107842

^aSteers from Block 1, the last group to be harvested.

Table A-12. Steer equations predicting carcass composition using the 9-10-11 rib section (Hankins and Howe, 1946)

Carcass moisture, $\% = 16.83 + .75 \times \text{Rib } \% \text{ H}_2\text{O}$

Carcass fat, % = 3.49 + .74 x Rib % EEL

Carcass protein, % = 6.19 + .65 x Rib % CP

Carcass bone, $% = 5.52 + .57 \times \%$ Bone in rib

APPENDIX B:

Raw data and procedures from Chapter 3 (Experiment BC9402)

Table B-1. Time line of activities for Experiment BC9402

Day of study	Date	Activity	
	3-3-94 3-9-94 3-18-94	360 Holstein steers received from Wisconsin	
	4-21-94	Steers adapted to a forage diet	
	5-6-94	Steers implanted with Implus implant	
		Steers adapted to a concentrate diet	
	,		
-36	9-27-94	Steers weighed and sorted into metabolism room pens	Adaptation period d -36 to d -26
-25	10-8-94	Jugular catherization	
-24	10-9-94	1 st day of 1 st series of epinephrine challenges	1 st epinephrine challenge series
-18	10-15-94	7 th day of 1 st series of epinephrine challenges	d -24 to -18
-16	10-17-94	1 st day of adipose tissue biopsies	1 *t adipose
-14	10-19-94	2 nd day of adipose tissue biopsies	tissue biopsy series
-9	10-24-94	3 rd day of adipose tissue biopsies	d -16 to -5
-7	10-26-94	4 th day of adipose tissue biopsies	
-5	10-28-94	5 th day of adipose tissue biopsies	
-1	11-1-94	1 st weight taken for initial weight	Initial weight
0	11-2-94	1 st treatment injection and 2 nd weight taken for initial weight	
3	11-5-94	Steers weighed, blood collected	
10	11-12-94	Steers weighed, blood collected	
17	11-19-94	Steers weighed, blood collected	
24	11-26-94	Steers weighed, blood collected	

Table B-1. (cont'd)

Day of study	Date	Activity	
30	12-2-94	Steers weighed, blood collected	
31	12-3-94	Jugular catherization	
32	12-4-94	1 st day of 2 nd series of epinephrine challenges	2 nd epinephrine challenge series
38	12-10-94	7 th day of 2 nd series of epinephrine challenges	d 32 to 38
39	12-11-94	Steers weighed	
40	12-12-94	1 st day of adipose tissue biopsies	2 nd adipose
42	12-14-94	2 nd day of adipose tissue biopsies	tissue biopsy series
44	12-16-94	3 rd day of adipose tissue biopsies	d 40 to 49
45	12-17-94	Steers weighed	
47	12-19-94	4 th day of adipose tissue biopsies	
49	12-21-94	5 th day of adipose tissue biopsies	
52	12-24-94	Steers weighed, blood collected	
59	12-31-94	Steers weighed, blood collected	
68	1-9-95	Steers weighed	
73	1-14-95	Steers weighed, blood collected	
80	1-21-95	Steers weighed	
87	1-28-95	Steers weighed, blood collected	
92	2-2-95	Steers weighed	
93	2-3-95	Jugular catherization	
94	2-4-95	bST absorption time course	
95	2-5-95	1 st day of epinephrine challenges	3 rd series of epinephrine
101	2-11-95	7 th day of epinephrine challenges	challenges d 95 to 101

Table B-1. (cont'd)

Day of study	Date	Activity	
102	2-12-95	Steers weighed	
103	2-13-95	1 st day of adipose tissue biopsies	3 rd adipose
105	2-15-95	2 nd day of adipose tissue biopsies	tissue biopsy series d 103 to
107	2-17-95	3 rd day of adipose tissue biopsies	112
110	2-20-95	4 th day of adipose tissue biopsies	
112	2-22-95	5 th day of adipose tissue biopsies	
115	2-25-95	Last treatment injection, 1 st weight taken for final weight	Final weight
116	2-26-95	2 nd weight taken for final weight	
117	2-27-95	Steers transported to Ada Beef for sl	aughter

Table B-2. Steer weights for Experiment BC9402

Steer	Weight	Pen	Building	Steer Weight Pen Building Treatment		Day -37	Day -36	Average	Day -25	Day -1	Day +0	Average	Day +3	Day +10
<u>و</u>	block	9	side		09/13/94	09/26/94	09/27/94	pretreat.	10/08/94	11/01/94	11/02/94	on-tr	11/05/94	11/12/94
					live wt., Ib	live wt., lb	live wt., lb	live wt., lb	re wt., Ib live wt., Ib	live wt., lb	live wt., Ib	live wt., lb	live wt., Ib	live wt., lb
15	ဗ	54	S	bST	915	920	915	917.5	925	995	1030	1013	1020	1055
33	-	4	z	Control	870	895	880	887.5	880	965	1035	1000	970	1000
53	4	47	ဟ	bST	895	920	915	917.5		1020	985	1003	1045	1070
22	7	4 8	ဟ	bST	845	890	890	890.0	920	1020	1030	1025	1045	1075
58	က	36	z	Control	915	915	920	917.5	920	096	1010	985	975	1000
69	-	20	ဟ	Control	875	895	890	892.5		1005	1095	1050	1005	1050
73	7	42	z	bST	890	910	910	910.0		1010	1010	1010	1030	1065
92	က	22	ဟ	Control	920	920	006	910.0	915	1040	1040	1040	1050	1075
114	7	49	တ	Control	865	910	915	912.5	950	1020	1000	1010	1025	1045
116	2	25	တ	Control	910	945	930	937.5		1040	980	1010	1040	1065
118	က	37	z	bST	820	905	895	900.0	920	975	1030	1003	1015	1020
133	4	4	z	bST	875	920	910	915.0	950	1030	1050	1040	1050	1075
157	2	39	z	bST	905	935	96	947.5		1065	1050	1058	1115	1150
184	-	51	တ	bST	855	900	905	902.5	945	1000	940	970	1020	1060
187	2	53	တ	bST	910	925	915	920.0	096	1000	1010	1005	1030	1050
199	4	45	z	Control	870	910	905	907.5		940	1020	980	945	925
202	7	43	z	Control	875	910	915	912.5	915	1020	1010	1015	1030	1065
217	4	46	တ	Control	910	935	945	940.0	950	995	980	988	1020	1035
222	2	38	z	Control	920	935	930	932.5	945	1030	1035	1033	1045	1080
307	-	4	z	bST	850	885	905	895.0	920	1000	1020	1010	1040	1085

Table B-2. (cont'd)

Day +103	02/12/95	wt., lb		1205		1275		1255	1295	1330	1250	1360		1360	1440	1285	1270		1245	1175	1260	
Day	92	live																				
Day +92	02/02/95	live wt., Ib	1250	1180	1250	1260	1225	1240	1285	1325	1235	1345	1215	1350	1425	1255	1230		1230	1200	1270	1230
Day +87	01/28/95	live wt., lb	1235	1180	1235	1255	1220	1220	1265	1300	1230	1330	1215	1315	1400	1245	1205		1225	1165	1250	1220
Day +80	01/21/95	live wt., lb	1230	1180	1230	1250	1190	1235	1275	1310	1235	1310	1195	1295	1410	1265	1220		1215	1165	1260	1235
Day +73	01/14/95	wt., Ib live wt., Ib	1215	1170	1225	1235	1170	1210	1250	1275	1230	1290	1190	1290	1390	1215	1200		1190	1160	1235	1210
Day +68	01/09/95	live wt., lb	1220	1150	1225	1230	1160	1215	1250	1260	1210	1280	1185	1275	1345	1205	1195		1180	1150	1215	1195
Day +59	12/31/94	live wt., Ib	1205	1135	1180	1210	1145	1185	1210	1230	1185	1245	1175	1240	1360	1200	1175		1170	1105	1220	1185
Day +52	12/24/94	ive wt., lb	1185	1120	1180	1200	1135	1190	1115	1220	1160	1220	1165	1220	1360	1175	1155		1145	1115	1205	1155
Day +45	12/17/94	live wt., lb	1160	1075	1165	1170	1100	1160	1145	1195	1135	1195	1130	1185	1315	1145	1115		1115	1115	1175	1160
12/11/94	12/13/94	-		1075	1140	1145	1060	1150	1125	1175	1130	1185	1090	1150	1290	1135	1125		1100	1095	1145	1145
Day +30 12/	12/02/94 12/	live wt., Ib live wt., Ib live wt., Ib live	1120	1050	1130	1145	1045	1100	1145	1165	1110	1155	1105	1150	1260	1145	1100		1120	1070	1150	1140
Day +17 Day +24	11/19/94 11/26/94	live wt., lb	1100	1045	1105	1125	1055	1100	1120	1120	1080	1120	1090	1125	1230	1100	1085		1105	1065	1120	1120
	11/19/94	live wt., lb	1070	1030	1100	1105	1030	1090	1110	1090	1075	1105	1070	1100	1200	1070	1055		1095	1045	1110	1100
Steer			15	33	53	22	28	69	73	95	114	116	118	133	157	2 8	187	199	202	217	222	307

Table B-2. (cont'd)

Steer no.	-	-	•	Day +116	Average off-trial
110.			02/25/95 live wt lh		live wt., lb
15	1260	1285	1290	1300	1295
	1200				
33	4070	1220	1260	1270	1265
53	1270	1290	1320	1335	1328
57		1275	1275	1285	1280
58	1205	1210	1235	1245	1240
69		1285	1330	1325	1328
73		1325	1360	1370	1365
92		1355	1380	1385	1383
114		1265	1300	1315	1308
116		1390	1415	1420	1418
118	1200	1220	1225	1220	1223
133		1390	1415	1420	1418
157		1480	1525	1535	1530
184		1310	1355	1360	1358
187		1285	1300	1310	1305
199					
202		1280	1300	1310	1305
217		1200	1220	1220	1220
222		1295	1320	1335	1328
307	1230	1260	1305	1315	1310

Table B-3. Daily dry matter intake of steers from Experiment BC9402

Steer		Total feed in	ntake, lb DM	
no.	d -36 to -1	d 0 to 30	d 31 to 115	d 0 to 115
15	615.65	590.26	1614.80	2205.07
33	674.55	566.44	1708.57	2275.02
53	722.18	561.75	1576.85	2138.60
57	778.43	663.92	1584.80	2248.72
58	629.01	602.06	1783.32	2385.38
69	638.72	641.61	1874.90	2516.51
73	673.73	663.24	1768.96	2432.19
92	726.03	718.28	2119.77	2838.05
114	705.41	653.77	1808.31	2462.08
116	689.07	691.70	2062.96	2754.66
118	675.25	582.81	1501.87	2084.68
133	728.89	653.68	1923.33	2577.01
157	763.03	778.88	2023.52	2802.40
184	661.99	609.39	1696.45	2305.85
187	667.12	545.80	1576.99	2122.79
202	675.49	651.40	1824.33	2475.72
217	634.70	534.50	1466.81	2001.31
222	727.19	819.78	2102.30	2922.08
307	694.67	636.14	1530.93	2167.07

Table B-4. Carcass characteristics of steers from Experiment BC9402

Steer	Steer Treatment	Slau	Slaughter wt., 1b	٩	Liver	Liver	Marbling	REA		HCW, Ib	Backfat	Quality	Calc.
10		#1	#2	Avg.	wt., lb	score a	score ^b	in. ²	KHP, %		i.	grade ^c	yield grade ^d
10	Initial	1000	1000	1000		0	480	10.0	1.5	564	0.10	17	1.99
25	Initial	1025	1030	1028		-	460	10.9	2.0	557	0.05	17	1.65
27	Initial	1000	1010	1005		0	450	11.1	2.0	268	0.20	17	2.01
47	Initial	985	975	980		0	490	8.0	2.0	551	0.10	17	2.11
90	Initial	1000	995	866		0	450	10.7	2.5	547	0.10	17	1.90
99	Initial	980	985	983		0	440	11.0	2.0	539	0.05	16	1.55
138	Initial	980	985	983		0	480	10.6	1.5	536	0.10	17	1.69
179	Initial	1000	1000	1000		0	390	12.5	2.0	595	0.10	15	1.41
15	bST	1290	1300	1295	18.09	0	425	13.40	1.0	779	0.18	16	1.81
33	Control	1260	1270	1265	18.53	0	290	11.70	2.0	782	0.25	18	2.75
53	bST	1320	1335	1328	19.07	0	475	11.20	1.3	758	0.20	17	2.55
57	bST	1275	1285	1280	20.64	0	420	11.15	1.3	757	0.18	16	2.50
28	Control	1235	1245	1240	16.53	_	580	12.25	2.3	733	0.13	18	2.13
69	Control	1330	1325	1328	18.99	7	645	12.30	2.3	781	0.30	19	2.73
73	bST	1360	1370	1365	19.81	-	470	14.45	1.3	821	0.15	17	1.62
92	Control	1380	1385	1383	19.48	_	260	11.65	2.0	817	0.28	18	2.96
114	Control	1300	1315	1308	17.06	0	525	11.60	2.3	768	0.20	18	2.66
116	Control	1415	1420	1418	20.67	_	520	13.70	2.6	998	0.15	18	2.30
118	bST	1225	1220	1223	16.93	-	425	12.55	6.0	8/9	0.15	16	1.61
133	bST	1415	1420	1418	21.75	0	490	15.30	1.3	835	0.20	17	1.53
157	bST	1525	1535	1530	22.6	-	450	12.60	1.0	872	0.20	17	2.48
184	bST	1355	1360	1358	20.64	_	410	12.60	0.1	781	0.13	16	1.95
187	bST	1300	1310	1305	19.69	2	440	12.25	1.0	763	0.18	16	2.12
199	Removed				12.28	0		10.15		635	0.15		
202	Control	1300	1310	1305	21.36	0	495	11.75	2.3	759	0.23	17	2.64
217	Control	1220	1220	1220	17.48	-	900	11.40	2.3	735	0.23	19	2.66

Table B-4 -(cont'd)

Steer	Treatment	Slauc	laughter wt., I	q	Liver	Liver	Marbling	REA	1	HCW, Ib	Backfat	Quality	Calc.
0		#1	#2	Avg.	wt., lb	_	score ^b	in. ²	KHP, %		ë.	grade	yield grade ^a
222	Control	1320	1335	1328	20.99	0	485	11.25	2.0	793	0.43	17	3.38
307	bST	1305	1315	1310	19.41	0	445	14.15	1.3	771	0.17	16	1.56

*Liver abscess score: 0 = no abscesses, 1 = only one or two very small abscesses or abscess scars are

present, 2 = two to four small, well-organized abscesses.

bMarbling score: 300 = traces, 400 = slight, 500 = small, 600 = modest.

USDA quality grade: 15 = high standard, 16 = low select, 17 = high select, 18 = low choice, 19 = average

choice. dCalculated yield grade equation: YG = 2.5 + (2.5 * backfat) + .0038 * HCW) + (.2 * KPH) - (.32 * REA).

Table B-5. Ninth-tenth-eleventh rib composition from Experiment BC9402

Steer	9-10-11	Bone wt.,	Soft	Bone		Soft Tissue	
no.	rib wt., g	g	tissue wt., g	in rib, %	H2O, %	EEL, %	CP, %
10	3750.0	750.5	2999.5	20.01	56.19	26.23	15.09
25	3809.6	646.7	3162.9	16.98	55.30	27.91	14.61
27	4081.7	781.0	3300.7	19.13	52.19	31.80	13.67
47	3531.2	664.8	2866.4	18.83	53.51	29.72	14.10
60	3933.8	690.6	3243.2	17.56	59.31	22.12	15.36
68	3719.4	716.6	3002.8	19.27	58.36	24.03	14.72
138	3587.9	700.2	2887.7	19.52	55.71	26.36	15.05
179	3972.8	718.9	3253.9	18.10	60.61	20.42	15.95
15	5384.7	1035.9	4338.1	19.24	58.72	21.73	16.80
33	5588.0	860.1	4719.8	15.39	48.83	36.10	12.70
53	5728.1	1093.3	4652.5	19.09	53.01	30.08	13.83
57	5136.6	1043.3	4085.9	20.31	58.20	22.94	16.37
58	5329.5	961.1	4356.9	18.03	45.89	40.02	11.53
69	6524.0	1073.6	5440.1	16.46	51.16	32.18	13.18
73	6029.7	1127.4	4940.6	18.70	57.34	25.09	15.20
92	6266.6	966.6	5279.6	15.42	46.39	38.79	12.51
114	5317.5	918.0	4385.4	17.26	49.78	33.80	13.35
116	6289.0	86 6.1	5374.9	13.77	47.38	37.24	13.35
118	4904.1	1019.6	3886.3	20.79	61.54	18.39	17.11
133	5985.1	1174.0	4805.7	19.62	58.56	22.76	15.55
157	5738.1	1161.3	4576.8	20.24	53.44	29.42	14.22
184	5351.1	1023.4	4301.2	19.13	62.35	18.13	16.64
187	5481.9	1062.8	4403.6	19.39	59.88	21.53	15.20
202	5332.0	1097.7	4257.0	20.59	51.65	31.68	14.68
217	5345.6	895.5	4456.7	16.75	48.77	35.85	12.97
222	5449.7	881.3	4587.8	16.17	48.37	35.41	13.06
307	5459.2	1006.3	4456.7	18.43	58.81	21.97	15.75

Table B-6. Plasma glucose concentrations (mmol/L) of steers for Experiment BC9402

Steer no.		Days	elative to fi	rst treatme	nt	
	0	3	17	30	52	87
15	4.74	4.89	5.13	5.25	5.27	4.98
33	5.03	5.10	5.02	4.74	4.94	4.86
53	4.87	5.43	5.26	5.42	5.22	5.35
57	5.32	5.68	6.02	5.42	5.73	5.30
58	4.73	4.57	4.63	4.45	4.89	4.51
69	4.92	4.60	4.63	4.60	4.69	4.59
73	5.62	6.43	6.86	6.70	5.61	6.38
92	5.51	5.26	5.56	5.72	4.88	4.97
114	4.92	5.04	4.55	4.85	4.65	4.61
116	4.89	5.14	5.31	5.33	4.92	5.01
118	5.17	5.43	6.03	5.49	5.20	5.10
133	5.20	6.21	5.42	5.96	5.71	5.66
157	5.00	5.48	6.39	5.65	6.87	4.86
184	4.46	4.78	5.02	5.07	4.88	4.57
187	4.80	5.13	5.64	5.88	5.11	4.91
202	5.71	5.92	6.12	5.53	5.69	5.54
217	4.93	4.89	4.98	4.92	4.49	4.29
222	5.61	4.90	5.27	5.21	5.05	4.65
307	4.71	5.53	5.31	5.46	5.24	4.89

Table B-7. Plasma glycerol concentrations (µmol/L) of steers for Experiment BC9402

Steer _		Days	relative to f	irst treatme	nt	
no.	0	3	17	30	52	87
15	55.39	58.85	76.16	48.47	58.85	62.32
33	44.14	47.08	26.48	29.43	35.31	44.14
53	52.31	76.84	67.03	49.05	65.39	60.49
57	32.93	49.39	69.14	60.91	62.56	77.37
58	51.50	53.34	38.62	44.14	34.94	38.62
69	48.83	34.88	26.16	40.11	36.62	36.62
73	45.20	59.32	56.50	36.73	22.60	73.45
92	36.35	38.08	36.35	34.62	25.97	38.08
114	34.57	27.99	16.46	19.76	14.82	37.86
116	71.50	64.52	41.85	36.62	43.60	45.34
118	44.14	58.85	49.66	45.98	57.01	58.85
133	53.67	48.02	53.67	64.98	50.85	67.80
157	42.38	50.85	42.38	59.32	53.67	62.15
184	48.83	59.29	52.31	41.85	45.34	59.29
187	73.24	78.47	62.78	55.80	57.55	47.08
202	45.20	31.08	28.25	28.25	22.60	39.55
217	39.24	34.33	34.33	29.43	42.51	39.24
222	50.85	42.38	39.55	39.55	28.25	4 5.20
307	35.31	50.03	47.08	47.08	44.14	41.20

Table B-8. Plasma nonesterified fatty acid concentrations (mmol/L) of steers for Experiment BC9402

Steer				Days r	elative to	first tre	atment			
no.	0	3	10	17	24	30	52	59	73	87
33	0.196	0.288	0.094	0.070	0.097	0.090	0.080	0.101	0.085	0.124
58	0.119	0.114	0.087	0.074	0.082	0.193	0.069	0.077	0.092	0.089
69	0.121	0.092	0.059	0.079	0.072	0.099	0.092	0.109	0.137	0.101
92	0.082	0.102	0.106	0.124	0.057	0.097	0.069	0.065	0.067	0.090
114	0.112	0.084	0.060	0.052	0.082	0.097	0.067	0.075	0.087	0.119
116	0.176	0.139	0.121	0.095	0.106	0.084	0.102	0.106	0.112	0.117
202	0.131	0.092	0.131	0.062	0.082	0.173	0.062	0.097	0.094	0.109
217	0.092	0.080	0.074	0.080	0.122	0.104	0.095	0.132	0.136	0.099
222	0.114	0.111	0.079	0.095	0.107	0.129	0.089	0.112	0.111	0.126
15	0.116	0.216	0.194	0.193	0.173	0.151	0.147	0.129	0.228	0.276
53	0.099	0.296	0.126	0.220	0.300	0.223	0.204	0.189	0.171	0.240
57	0.104	0.296	0.246	0.278	0.280	0.278	0.223	0.256	0.235	0.347
73	0.101	0.193	0.102	0.136	0.119	0.097	0.169	0.127	0.142	0.188
118	0.109	0.198	0.116	0.147	0.188	0.119	0.233	0.147	0.142	0.191
133	0.127	0.196	0.265	0.132	0.219	0.174	0.154	0.221	0.188	0.149
157	0.092	0.151	0.117	0.119	0.119	0.203	0.137	0.201	0.104	0.226
184	0.067	0.201	0.196	0.147	0.166	0.164	0.161	0.231	0.144	0.162
187	0.173	0.256	0.238	0.265	0.196	0.240	0.176	0.194	0.204	0.174
307	0.072	0.183	0.147	0.139	0.169	0.152	0.178	0.147	0.196	0:159

Table B-9. Plasma insulin concentrations (ng/ml) of steers for Experiment BC9402

Steer				Days r	elative to	first tre	atment			
no.	0	3	10	17	24	30	52	59	73	87
15	1.708	3.622	4.281	4.807	4.424	5.453	9.702	9.222	8.477	11.482
33	2.150	1.747	1.807	5.216	2.223	1.051	2.779	2.503	4.674	2.402
53	2.818	8.697	18.285	9.503	8.991	6.447	16.095	11.365	11.182	14.035
57	3.531	23.901	16.513	39.435	73.469	23.551	37.635	ND a	36.059	66.853
58	1.317	1.210	2.008	1.902	2.197	1.320	2.395	4.568	3.084	3.603
69	2.21	1.70	3.44	2.55	2.86	1.52	2.74	1.74	2.00	1.80
73	1.651	6.854	6.246	15.482	14.706	14.188	3.680	10.513	10.238	19.451
92	3.315	1.265	2.384	1.764	4.238	2.525	2.109	2.214	3.178	2.480
114	1.968	0.820	1.777	1.303	1.008	1.015	1.338	0.762	1.292	1.125
116	2.683	1.193	2.204	2.817	2.980	4.538	3.876	3.481	4.879	8.743
118	2.685	11.046	10.628	15.472	36.529	48.331	29.607	ND	54.292	51.697
133	1.942	10.794	3.036	8.509	6.986	8.102	13.754	12.699	10.688	17.904
157	2.285	9.715	23.766	34.517	32.663	17.371	41.543	ND	36.838	12.669
184	2.64	5.93	6.51	3.67	5.35	11.20	7.34	8.68	7.11	4.39
187	2.007	4.535	4.490	4.669	7.877	10.157	7.053	11.422	7.456	6.076
202	2.444	3.000	3.041	3.876	2.957	1.535	4.423	3.054	3.193	2.840
217	2.135	1.129	2.193	1.870	1.925	1.468	1.655	1.957	1.471	1.411
222	7.673	2.404	6.520	9.270	5.917	6.992	8.496	6.586	4.396	2.709
307	2.568	14.008	9.550	11.669	23.089	9.019	10.468	11.905	9.274	8.069

^aNot determined

Table B-10. Plasma IGF-I concentrations (ng/ml) of steers for Experiment BC9402

Stee	er _				Days re	lative to	first trea	tment			
no.	0		3	10	17	24	30	52	59	73	87
	15	580	1169	1220	1187	1205	1104	1206	1224	1227	1076
	33	585	581	482	491	476	464	458	491	534	459
	53	573	954	1108	1103	904	1075	1158	1198	1072	1083
	57	779	1426	1258	1674	1615	1677	1550	1558	1551	1514
	58	523	512	474	529	539	509	546	502	482	479
	69	549	518	538	572	538	546	546	455	477	474
	73	861	1368	1367	1568	1367	1468	1481	1458	1585	1598
	92	543	471	400	462	435	480	388	394	390	366
	114	522	589	543	541	519	413	506	529	459	433
	116	529	487	581	550	522	576	532	541	516	514
	118	758	1094	1137	1081	1293	1142	1218	1084	1087	1142
	133	618	1337	1308	1354	1551	1459	1388	1380	1565	1673
	157	802	1240	1141	1238	1276	1158	1078	1160	1050	1116
	184	673	1034	1104	1116	1154	1317	1175	1035	1183	1184
	187	1077	1103	1149	1092	1178	629	908	902	1136	988
:	202	803	809	684	750	746	669	669	697	595	631
	217	519	542	499	520	450	433	421	366	416	395
	222	555	524	564	601	608	498	572	529	533	524
	307	758	1086	1103	1111	1193	1162	1104	1046	1015	1019

Table B-11. Plasma bovine somatotropin concentrations (ng/ml) for steers from day 94 of Experiment BC9402

Steer								Hour	Hour of day						;	
no.	630	700	730	800	830	900	930	1000	1030	1100	1130	1200	1230	1300	1330	1400
15	7.556	7.294	6.846	19.307	43.187	72.380	110.812	108.344	115.996	83.616	56.535	45.799	58.968	61.446	59.269	59.948
33	1.510	2.066	1.789	1.789 10.247 5.490	5.490	2.825	3.086	2.958	1.535	2.435	3.851	2.766	0.979	0.766	0.859	1.579
53	5.877	5.103	4.864	4.864 17.444 26.021	26.021	32.505	39.980	39.628	35.014	22.981	19.712	17.645	18.660	19.374	19.052	13.420
57	5.452	5.634	5.346	5.346 13.221 19.142	19.142	30.515	35.049	38.674	26.772	19.355	18.260	16.230	15.192	14.576	11.670	11.403
69	0.638	0.504	0.707		0.576 0.682	2.638	1.859	0.954	1.875	0.902	0.772	0.547	0.581	0.534	0.664	0.579
73	5.138	4.987	14.436	14.436 26.536 31.667	31.667	44.514	42.558	37.938	30.286	26.915	28.465	28.223	25.656	19.583	13.719	11.201
92	0.661	1.187	0.783	0.627	1.295	1.188	1.138	0.947	0.896	1.055	0.592	0.728	0.742	0.650	0.827	0.914
114	0.597	0.484	0.558	0.561	0.488	0.514	0.481	0.523	1.050	1.167	2.253	0.819	0.690	0.592	0.589	0.524
116	0.550	0.656	0.677	0.640	0.649	0.564	1.161	0.788	0.909	1.203	0.849	0.999	0.767	0.600	0.738	1.204
118	10.667	9.804	6.810	3.717	32.476	57.488	65.090	69.883	86.725	93.641	101.665	89.076	996.06	79.268	79.697	59.470
157	5.146	3.719	2.479		5.835 14.859	17.466	18.722	17.639	18.578	21.722	19.121	15.377	14.257	12.239	10.867	10.848
184	16.971	5.043	6.495	6.382	59.131	117.290	118.894	77.192	78.719	55.503	40.362	33.084	38.602	28.798	34.418	23.261
187	4.596	4.871	4.481	41.312	86.246	74.405	62.519	51.866	43.266	44.811	37.387	29.766	30.998	24.758	19.696	15.711
202	0.645	0.551	0.517	1.044	0.954	1.761	0.807	0.773	1.979	1.899	1.149	0.717	0.572	0.479	0.432	0.463
217	0.620	0.565	0.559	0.418	0.524	0.530	0.504	0.612	0.536	Q	0.564	0.583	0.593	0.674	1.913	2.236
222	1.050	0.471	0.595	0.505	0.534	0.730	0.725	0.578	0.834	0.501	0.497	1.073	0.481	0.580	0.626	0.508
307	No samp	les colle	ected du	e to cat	307 No samples collected due to catheter problems	plems										

Table B-11. (cont'd)

Steer				Hour	of day			
no.	1430	1500	1530	1600	1630	1700	1730	1800
15	46.268	38.220	29.633	31.061	ND	28.461	30.768	28.983
33	2.113	1.657	0.910	1.015	2.780	1.610	1.531	0.822
53	11.689	12.920	14.000	14.630	10.540	10.546	8.723	11.245
57	9.837	13.967	14.183	13.944	15.223	11.678	11.816	11.967
69	1.197	0.457	0.414	0.514	ND	0.555	0.594	0.601
73	10.935	12.209	10.849	14.724	11.208	12.735	8.878	9.652
92	1.361	1.102	0.485	0.733	0.660	0.793	0.806	1.229
114	0.433	0.485	0.559	0.513	0.434	0.570	0.536	0.424
116	1.091	0.920	0.998	0.664	0.474	0.649	1.111	0.566
118	76.531	67.950	66.803	65.446	64.817	59.381	55.476	58.631
157	10.923	10.668	13.641	15.196	12.120	11.064	11.022	11.931
184	19.588	19.848	11.508	13.586	16.451	15.324	13.353	9.847
187	10.990	12.951	12.957	12.146	9.275	9.008	9.027	10.984
202	0.537	0.527	0.569	0.632	0.853	0.810	2.573	0.744
217	1.697	0.706	0.547	0.584	0.425	0.590	0.631	0.487
222	0.487	0.479	0.705	0.488	0.640	0.463	0.480	0.562
307	No sai	mples co	llected	due to ca	theter p	roblems		

^aNot determined

Table B-12. Tritium incorporation into fatty acids, fatty acid synthase activity, NADP-isocitrate dehydrogenase activity, and enzyme assay soluble protein content for fat biopsies from Experiment BC9402

<u>.</u>	-	Innoi no converte	erted to FA	unit	units/mg protein	acuvity, jin	dehyd	NADE-Sociuale dehydrogenase activity nits/mg protein	rrate ; activity ;tein	ň	Soluble protein mg/g tissue	, e
	Biopsy 1 Biopsy	W	2 Biopsy 3 Biopsy 1	Biopsy 1 B	Biopsy 2 Biopsy 3	liopsy 3	Biopsy 1 Biopsy 2 Biopsy 3	1 Biopsy 2 Biop	Biopsy 3	Biopsy 1	Biopsy 2	Biopsy 3
15	0.71	0.57	0.95	8.43	3.93	3.57	405.68	152.60	202.89	1.80	2.69	1.98
33	2.93	0.46	1.11	10.50	4.35	4.70	269.32	144.06	67.48	3.46	2.52	10.01
53	3.68	1.08	0.84	4.22	1.43	1.80	68.26	138.06	153.15	14.29		3.55
57	5.42	1.48	1.43	8.92	2.03	1.90	319.46	127.87	167.57	4.34		3.67
58	3.83	4.74	4 8.	16.59	11.92	18.31	535.79	338.15	387.10	2.92		
69	3.21	1.79	1.29	14.20	15.41	10.51	372.63	312.87	246.07	2.96		
73	1.93	1.02	1.32	19.74	2.60	11.80	265.78	227.03	225.10	4.43	3.77	3.83
92	3.18	2.30	2.14	16.57	6.25	1.45	260.72	135.30	167.47	3.97		6.14
114	4.46	1.94	0.80	10.06	8.46	3.58	229.84	227.58	144.54	6.72	4.82	4.06
116	3.22	3.81	3.06	1.8	6.41	12.00	175.41	210.93	137.12	4.45	6.78	5.45
118	2.65	1.38	0.79	23.40	1.17	3.39	340.14	104.64	136.56	3.79	4.45	4.12
133		3.65	2.56	16.72	1.09	6.57	317.53	105.32	86.73	3.52	6.21	9.49
157		2.95	1.17	21.81	9.17	1.94	488.38	296.28	103.89	3.42	3.92	3.42
18		0.54	1.44	11.14	3.44	2.22	290.62	112.48	53.83	3.20	5.74	7.92
187		0.0	1.24	6.37	1.09	6.64	122.92	112.39	121.71	5.97		6.11
199	0.67	• Q	2	6.82	2	2	163.20	2	2	2	2	2
202		1.72	1.20	99.9	4.15	4.78	223.40	178.85	95.18	4.54	5.02	7.55
217		3.99	1.58	7.12	2.73	9.80	158.54	148.65	139.30	8.61	8.31	3.69
222		1.08	0.63	16.85	3.55	5.26	363.96	253.14	118.41	3.24		6.87

Not Determined, steer removed from study.

Table B-13. Basal and epinephrine-stimulated glycerol release (nmol glycerol released•2h -1•100 mg tissue -1) for fat biopsies from Experiment BC9402

Steer no.		Basal		Epine	phrine stim	ulated
	Biopsy 1	Biopsy 2	Biopsy 3	Biopsy 1	Biopsy 2	Biopsy 3
15	93.8	50.8	105.5	240.3	292.3	255.0
33	127.8	109.3	87.7	416.0	223.0	294.6
53	23.0	127.7	54.5	283.8	235.2	325.2
57	51.8	187.5	151.4	ND a	331.5	288.9
58	63.1	65.1	68.5	224.0	411.5	260.8
69	106.3	34.9	99.9	295.0	143.0	316.7
73	86.3	149.1	203.7	277.7	319.2	325.9
92	51.0	69.3	54.5	355.5	340.9	244.0
114	75.3	115.1	75.0	199.8	308.7	265.8
116	14.5	67.9	58.6	167.1	187.3	235.5
118	51.1	105.7	162.1	192.0	338.5	295.8
133	83.2	151.4	103.3	340.8	284.6	213.0
157	232.0	58.9	132.9	199.1	293.5	268.0
184	74.6	105.6	47.5	273.2	312.6	330.7
187	104.2	32.9	139.9	333.8	131.0	293.0
199	83.8	ND	ND	245.4	ND	ND
202	99.6	52.7	84.5	229.5	281.7	352.5
217	53.2	178.7	101.2	256.9	314.2	235.9
222	90.7	82.3	102.4	206.7	137.1	179.0
307	135.5	95.2	84.6	359.4	210.4	226.9

*Not determined, steer no. 199 removed from study

Table B-14. Nonesterified fatty acid response (mmol/L) to seven epinephrine doses (µg/kg BW) during three different weeks for Experiment BC9402

	040	اً ا					Ž	in the re	loting to	the oring	Minister relative to the eninephtine challeng	proffed	ا			
Week	70. 10.	dose		-30	-15	9	-5-	0	2.5	5	10	15	្ត	120	125	130
 ç-		5	0	0.067	0.068	0.05	0.076	0.072	0.072	0.074	0.065	0.056	0.061	0.059	0.056	0.061
წ	4	2	0.1	0.083	0.088	0.077	0.067	0.059	0.119	0.099	0.083	0.077	0.072	0.061	0.076	0.072
ငှ	~	2	0.2	SC N	Š	Š	Š	S	S	S	S	Š	Š	Š	Š	Š
د -	4-	5	4 .0	0.076	0.103	0.041	0.079	0.083	0.076	0.159	0.168	0.119	0.124	0.058	0.050	0.052
ဇှ	<u>_</u>	2	0.8	0.094	0.097	0.095	0.088	0.07	0.177	0.234	0.220	0.200	0.146	0.088	0.108	0.077
ငှ	<u>-</u>	5	1.2	0.058	0.061	0.056	0.074	0.063	0.059	0.126	0.092	0.090	0.079	0.062	0.141	0.065
<u>د</u> -		5	9.	0.077	0.054	0.056	0.056	0.056	0.110	0.193	0.200	0.123	0.095	0.063	0.054	0.049
9	<u>-</u>	2	0	0.37	0.305	0.28	0.27	0.28	0.277	0.275	0.321	0.335	0.332	0.400	0.390	0.395
9	<u>-</u>	2	0.1	0.231	0.194	0.189	0.196	0.162	0.205	0.233	0.210	0.178	0.145	0.206	0.212	0.213
9		2	0.2	0.085	0.099	0.095	0.097	0.086	0.136	0.199	0.199	0.189	0.136	0.123	0.132	0.125
9	-	5	4.0	0.159	0.102	0.095	0.097	0.078	0.242	0.291	S	0.242	0.187	0.196	0.127	0.192
9	-	2	8 .	0.187	0.12	0.099	0.108	0.086	0.116	0.210	0.295	0.280	0.226	0.143	0.159	0.213
9	~	2	12	0.111	0.108	0.108	0.118	0.127	0.280	0.333	0.353	0.286	0.109	0.138	0.120	0.141
9	~	2	9.	S	S	S	S	Š	S	S	S	S	Š	Š	Š	ပ္
15	·~	2	0	0.052	2	S	S	0.073	S	S	0.082	0.080	0.080	0.150	S	S
15		2	0.7	0.093	0.089	0.062	0.073	0.073	0.155	0.162	0.130	0.119	0.102	0.155	0.109	0.130
15	·-	2	0.2	0.1	0.103	0.111	0.112	0.209	0.127	0.228	0.216	0.175	0.180	0.239	0.241	0.226
15		<u>2</u>	4.0	0.07	0.067	0.053	0.061	0.052	0.144	0.194	0.155	0.115	0.080	0.110	0.089	0.105
15	-	2	0 .8	0.057	0.062	0.064	0.059	0.05	0.139	0.184	0.198	0.159	0.073	0.100	0.114	0.121
15		15	1.2	0.08	0.068	0.082	0.096	0.064	0.164	0.232	0.234	0.175	0.107	0.102	960.0	0.118
15		15	1.6	0.078	0.073	0.068	0.07	0.08	0.250	0.212	0.248	0.178	0.152	0.110	0.103	0.114
ę.	(7)	33	0	0.053	2	0.037	0.033	0.047	0.053	0.051	0.076	0.068	0.062	0.035	0.053	0.051
£-	(r)	33	0.1	0.070	0.056	0.034	0.039	0.051	0.064	0.072	0.078	0.062	0.043	0.047	0.058	990.0
ဇှ	(7)	33	0.2	0.053	0.049	0.053	0.062	S	0.051	0.099	0.080	0.060	0.035	0.070	0.043	0.039
ç.	m	33	4.0	0.041	0.037	0.037	0.035	0.049	0.097	0.128	0.088	0.064	0.045	0.027	0.043	0.037

Table B-14. (cont'd)

, 	Steer	Epi.				Ĭ.	nutes re	Minutes relative to the epinephrine challenge	the epine	phrine c	halleng	60			
Week n	2	dose	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
ကု	က	3 0	.8 0.035	2	0.019	0.033	0.053	0.074	0.111	0.097	0.165	0.045	0.043	0.045	0.041
ကု	က	1	.2 0.039	Š	0.034	0.051	0.049	0.082	0.196	0.163	0.099	0.064	0.033	0.049	0.043
ကု	က	33 1.	9.000	090.0	0.043	0.039	0.049	0.109	0.109	0.136	0.080	0.047	0.041	0.051	0.043
9	n	33	0 0.037	0.035	0.035	0.032	0.028	0.048	0.030	0.042	0.046	0.035	0.032	0.037	0.030
ဖ	ന	13 0.1	.1 0.055	0.000	0.060	0.048	0.042	0.083	0.055	0.086	0.060	0.037	0.048	0.042	0.044
ဖ	ന	33 0	.2 0.046		0.048	0.048	0.043	0.046	0.053	0.055	0.042	0.039	0.042	0.032	0.045
ဖ	ന	33 0	4 0.042	0.044	0.041	0.037	0.046	0.074	0.102	0.104	0.071	0.086	0.045	2	0.034
9	ന		0.8 0.051		0.034	0.032	0.044	0.136	0.146	0.131	0.071	0.041	0.046	0.044	0.034
ဖ	m	33 1	1.2 0.037	S S	0.021	0.025	0.026	0.065	0.090	0.055	0.042	0.037	0.056	0.056	0.046
ဖ	m		1.6 0.039		0.030	0.055	0.032	0.079	0.173	0.122	0.076	0.046	0.028	0.032	0.044
15	ന	33	0 0.043	0.036	0.043	0.000	0.048	0.057	0.065	0.054	0.057	0.056	0.047	0.038	0.045
15	(L)		0.1 0.054	0.057	0.065	0.059	0.045	0.091	0.084	990.0	0.063	0.047	0.049	0.036	0.041
15	ന		0.2 0.052	0.048	0.048	0.052	S	0.077	990.0	0.093	0.079	0.036	0.049	0.029	0.025
15	m	33 0	0.4 0.043	0.041	0.068	0.052	0.057	0.106	0.116	0.102	0.072	0.057	0.047	0.038	0.047
15	(L)	3 0	.8 0.057	0.039	0.054	0.057	0.043	0.152	0.145	0.129	0.077	0.063	0.057	0.047	0.065
15	m	13 1	.2 0.054	0.047	0.052	0.056	S	S	0.143	0.115	0.00	0.057	0.047	0.054	0.048
15	n		1.6 0.054	0.038	0.039	0.050	0.041	0.086	0.140	0.152	0.124	0.099	0.047	0.039	0.032
ကု	ις.	53	0 0.038	0.050	0.029	0.033	0.026	0.144	0.059	0.069	0.038	0.055	0.062	0.028	0.028
ဇှ	40	53 0.1	.1 0.013	0.043	0.035	0.060	0.064	0.092	0.071	0.067	0.067	0.052	0.041	0.040	0.045
ကု	S	53 0	.2 0.033	0.033	0.038	0.040	0.024	0.079	0.117	0.074	0.074	0.048	0.060	0.047	0.036
က	S		0.4 0.035	0.040	0.041	0.043	0.034	0.079	0.126	0.088	0.074	0.057	0.044	0.029	0.040
ဇှ	S	53 0	.8 0.040	0.034	0.033	0.064	0.033	0.104	0.147	0.119	0.066	0.047	0.041	0.039	0.035
ဇ	S	13 1	.2 0.028	0.034	0.026	0.028	0.029	0.078	0.142	0.116	0.071	0.039	0.036	0.028	0.021
ကု	S	53 1	.6 0.058	0.051	0.043	0.050	0.033	0.136	0.121	0.111	0.107	0.064	0.040	0.035	0.047
9	S	33	0 0.049	0.072	0.045	0.056	0.049	0.054	0.052	0.054	0.066	0.049	0.047	0.061	0.056
9	r.	3 0	.1 0.061	0.055	0.042	0.059	0.092	0.044	0.105	S	0.066	0.058	0.037	0.038	0.045

Table B-14. (cont'd)

	Steer		Epi.				M	nutes re	lative to	the epin	Minutes relative to the epinephrine challeng	challeng	6			
Week	0	Ō	e eso	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
9		53	0.2	0.045	0.065	0.051	0.052	0.042	0.124	0.099	0.098	0.092	0.113	0.056	0.037	0.038
9		53	4.0	0.068	0.089	0.049	0.051	0.038	0.083	0.148	0.145	0.108	0.058	0.089	S	0.037
9		53	0.8	0.079	0.077	0.058	0.113	0.103	0.122	0.208	0.271	0.175	0.094	0.070	0.061	0.059
9		53	1.2	Š	0.077	0.058	0.051	0.040	0.089	0.160	0.223	0.141	0.089	0.056	0.047	0.031
9		53	1.6	0.056	0.058	0.045	0.058	0.033	0.00	0.098	0.143	0.094	960.0	0.028	0.053	0.049
15		53	0	0.067	0.046	0.029	0.043	0.036	0.051	0.043	0.058	0.046	0.043	0.056	0.113	0.080
15		53	0.1	0.036	0.055	0.041	0.038	0.041	0.108	0.108	0.096	0.072	0.077	960.0	0.077	0.077
15		53	0.2	0.029	0.029	0.032	0.036	0.029	960.0	0.116	0.091	0.080	0.055	0.079	0.079	0.068
15		53	4.0	0.036	0.031	0.029	0.041	0.050	0.121	0.115	0.121	0.048	0.051	0.039	0.041	0.038
15		53	0.8	0.092	0.085	0.094	0.106	0.101	0.156	0.226	0.253	0.315	0.272	0.215	0.227	0.191
15		53	1.2	0.085	0.084	960.0	0.072	0.067	0.157	0.186	0.217	0.168	0.138	0.087	0.082	0.103
15		53	1.6	0.050	0.044	0.056	0.044	0.058	0.109	0.193	0.227	0.202	0.120	0.060	0.056	0.063
ကု		22	0	0.045	0.052	0.052	0.048	0.041	0.057	0.057	0.045	0.056	0.054	0.075	0.063	0.073
ကု		22	0.1	0.050	0.036	0.034	0.041	0.036	0.066	0.056	0.054	0.045	0.039	0.041	0.057	0.056
ကု		22	0.2	0.070	0.073	0.075	0.084	0.073	0.118	0.151	0.267	0.105	0.109	0.050	0.063	0.056
ကု		22	4.0	0.050	0.032	0.023	0.048	0.027	0.068	0.127	0.079	0.056	0.061	0.045	0.047	0.045
ကု		22	0.8	0.077	0.078	0.027	0.067	0.030	0.131	0.127	0.120	990.0	0.052	0.054	0.036	0.054
ကု		22	1.2	0.045	0.025	0.043	0.036	0.027	0.077	0.122	0.100	0.072	0.059	0.038	0.036	0.076
ကု		22	1.6	0.038	0.045	0.043	0.032	0.038	990.0	0.137	0.116	0.115	0.062	0.039	0.048	0.057
9		22	0	0.076	0.069	0.059	0.073	0.057	0.076	0.051	0.051	0.074	0.051	0.119	0.080	0.048
9		22	0.1	0.055	0.073	0.110	0.103	0.085	0.170	0.183	0.181	0.144	0.119	0.167	0.161	0.117
9		22	0.2	0.057	0.062	0.060	0.060	0.064	0.140	0.183	0.139	0.093	0.115	0.064	0.101	0.098
9		22	4.0	0.117	0.090	0.098	0.099	0.206	960.0	0.261	0.229	0.197	0.144	0.236	0.186	0.160
9		22	0.8	0.184	0.204	0.234	0.225	0.218	0.309	0.415	0.395	0.300	0.252	0.238	0.204	0.257
9		22	1.2	0.197	0.249	0.246	0.227	0.197	0.270	0.441	0.470	0.461	0.441	0.255	0.255	0.301
9		22	1.6	0.122	0.080	0.076	0.099	0.088	0.106	0.152	0.199	0.152	0.133	0.174	0.164	0.128

Table B-14. (cont'd)

"	Steer	Epi.				Σ̈	nutes rel	lative to	the epine	Minutes relative to the epinephrine challenge	halleng	a			
Week	no.	dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
15	22	7 0	0.094	0.074	0.079	0.090	0.088	0.108	0.097	0.132	0.139	0.121	0.299	0.362	0.317
15	Ñ	7 0.1	0.171	0.150	0.175	0.157	0.162	0.247	0.250	0.236	0.223	0.220	0.395	0.402	0.416
15	57	7 0.2	0.074	0.056	0.065	0.058	0.050	0.108	0.173	0.169	0.128	0.085	0.175	0.178	0.189
15	Ωi	7 0.4	0.058	0.059	0.063	0.068	0.054	0.193	0.205	0.173	0.148	0.085	0.099	0.106	0.112
15	Ωí		0.034	0.035	0.022	0.032	0.027	0.198	0.209	0.187	0.086	0.059	0.072	0.077	0.076
15	ò	7 1.2	0.103	0.058	0.043	0.065	0.056	0.105	0.252	0.274	0.204	0.166	0.450	0.436	0.362
15	27	7 1.6		0.047	0.049	0.050	0.088	0.175	0.337	0.305	0.220	0.135	0.097	0.097	0.108
ကု	ũ	8	0.071	0.048	0.094	0.037	0.046	0.048	0.057	0.043	0.057	0.074	0.055	0.112	0.059
ကု	28	8 0.1	0.055	0.039	0.098	0.032	0.044	0.078	0.08	0.067	0.05	0.046	0.037	0.078	0.037
ကု	28	8 0.2	90.0	0.041	0.089	0.037	0.041	0.089	0.137	0.083	0.064	0.057	0.037	0.055	0.056
ကု	28	8 0.4		0.066	0.087	0.037	0.05	0.078	0.147	0.133	0.069	0.059	0.059	0.085	0.083
ကု	58	8 0.8		0.037	0.087	0.037	0.071	0.131	0.165	0.158	0.099	0.053	0.05	0.129	0.059
ကု	28	8 1.2		0.067	0.105	0.05	0.059	990.0	0.176	0.16	0.105	0.082	0.117	0.106	0.128
ကု	28	8 1.6		0.05	0.103	0.051	0.048	0.089	0.168	0.16	0.128	0.055	90.0	0.053	0.043
9	58	8	_	0.042	0.035	0.032	0.047	0.032	0.040	0.051	0.042	0.037	0.037	0.053	0.053
9	28	8 0.1	0.037	0.033	0.035	0.032	0.037	0.058	0.132	0.109	0.084	0.042	0.042	0.058	0.071
9	28	8 0.2		0.040	0.050	0.044	0.053	0.058	0.091	960.0	960.0	0.053	0.060	0.063	0.047
9	28	8 0.4	0.032	0.019	0.047	0.033	0.039	0.109	0.121	0.114	0.053	0.053	0.018	0.040	600.0
9	28	8 0.8	0.075	0.039	0.043	0.047	0.054	0.053	0.146	0.167	0.174	0.102	0.063	0.093	0.060
9	28	8 1.2	0.037	0.037	0.027	0.044	0.049	0.100	0.188	0.161	0.128	0.065	0.067	0.053	0.053
9	28	8 1.6		0.051	0.045	0.039	0.049	0.079	0.174	0.181	0.125	0.070	0.063	0.088	0.050
15	28	8	_	0.052	0.052	0.073	0.054	0.076	0.065	0.068	0.076	0.065	0.098	0.084	0.082
15	28	8 0.1	0.057	0.046	0.036	0.052	0.054	0.081	0.100	0.081	0.075	0.043	0.043	0.045	0.052
15	28	8 0.2	0.045	0.043	0.049	0.035	0.035	0.109	0.098	0.095	0.086	0.059	0.062	0.050	0.033
15	28	8 0.4	0.052	0.069	0.055	0.038	0.049	0.076	0.149	0.082	0.109	990.0	0.049	0.048	0.059
15	ũ	8 0.8	0.114	0.092	0.123	0.109	0.141	0.109	0.177	0.178	0.212	0.177	0.162	0.192	0.201

Table B-14. (cont'd)

Week no. dose** -30 -15 -10 -5 0 15 58 1.2 0.056 0.054 0.065 0.0		Steer	Ē					Ξ	Minutes relative to the epinephrine challenge	lative to	the epin	ephrine (challeng	9			
58 1.2 0.056 0.054 0.065 0.065 69 0 0.058 NC 0.036 0.036 69 0.1 0.047 0.043 0.036 0.036 69 0.1 0.045 0.048 0.036 0.036 69 0.2 0.045 0.048 0.050 0.052 69 0.4 0.154 0.127 0.136 0.052 69 1.2 0.039 0.045 0.041 0.056 69 0.1 0.048 0.047 0.041 0.056 69 0.2 NC NC NC NC 69 0.2 0.041 0.056 0.045 0.045 69 0.2 0.041 0.052 0.041 0.043 69 0.2 0.041 0.052 0.041 0.043 69 0.1 0.042 0.048 0.054 0.044 69 0.1 0.042	Week	0	ğ	se s	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
58 1.6 0.055 0.045 0.033 0.035 69 0 0.058 NC 0.036 0.038 69 0.1 0.047 0.043 0.036 0.038 69 0.2 0.045 0.048 0.050 0.055 69 0.4 0.154 0.127 0.136 0.056 69 1.2 0.039 0.062 0.041 0.056 69 0.1 0.048 0.047 0.047 0.047 69 0.1 0.047 0.049 0.050 0.045 69 0.4 0.067 0.049 0.045 0.045 69 0.1 0.041 0.052 0.041 0.043 69 0.1 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.056 0.048 69 0.1 0.047 0.048 0.045 0.041 69 0.2 0.050	15	4,	85	1.2	0.056	0.054	0.065	0.065	0.065	0.084	0.121	0.207	0.190	0.082	0.065	0.057	0.087
69 0 0.058 NC 0.036 0.038 69 0.1 0.047 0.043 0.036 0.038 69 0.2 0.045 0.048 0.036 0.038 69 0.4 0.154 0.127 0.136 0.058 69 1.2 0.039 0.045 0.041 0.036 69 0.1 0.047 0.047 0.047 0.041 69 0.1 0.047 0.048 0.045 0.045 69 0.2 NC NC NC NC 69 0.12 0.041 0.058 0.045 0.043 69 0.1 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.056 0.048 69 0.1 0.047 0.048 0.052 0.048 69 0.2 0.050 0.043 0.045 0.041 69 0.2 0.050 <td< td=""><td>15</td><td>ų,</td><td>82</td><td>1.6</td><td>0.052</td><td>0.045</td><td>0.033</td><td>0.035</td><td>0.041</td><td>0.143</td><td>0.173</td><td>0.141</td><td>0.106</td><td>0.088</td><td>0.043</td><td>0.057</td><td>0.043</td></td<>	15	ų,	82	1.6	0.052	0.045	0.033	0.035	0.041	0.143	0.173	0.141	0.106	0.088	0.043	0.057	0.043
69 0.1 0.047 0.043 0.036 0.038 69 0.2 0.045 0.048 0.050 0.052 69 0.4 0.154 0.127 0.136 0.138 69 0.8 0.043 0.045 0.048 0.056 0.039 69 1.2 0.039 0.062 0.041 0.036 0.041 69 0.1 0.048 0.047 0.047 0.047 69 0.2 NC NC NC 0.045 69 0.4 0.067 0.036 0.045 0.045 69 0.1 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.056 0.045 69 0.1 0.047 0.048 0.056 0.048 69 0.2 0.050 0.054 0.052 0.048 69 0.4 0.059 0.065 0.045 0.046 69	د -	w	39	0	0.058	Š	0.036	0.038	0.027	0.052	0.045	0.050	0.043	0.057	0.038	0.046	0.049
69 0.2 0.045 0.048 0.050 0.052 69 0.4 0.154 0.127 0.136 0.138 69 0.8 0.043 0.045 0.048 0.056 69 1.2 0.039 0.062 0.041 0.039 69 1.6 0.048 0.047 0.047 0.041 69 0.1 0.047 0.049 0.050 0.047 69 0.2 NC NC NC NC 69 0.8 0.050 0.045 0.045 0.045 69 1.2 0.032 0.049 0.045 0.045 69 0.1 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.052 0.046 69 0.2 0.050 0.065 0.046 0.048 69 0.4 0.050 0.065 0.046 0.046 69 0.4 0.050 0.043 0.047 0.046 69 0.4 0.050 0.043 <td>ငှ</td> <td>v</td> <td>39</td> <td>0.1</td> <td>0.047</td> <td>0.043</td> <td>0.036</td> <td>0.038</td> <td>0.038</td> <td>0.068</td> <td>0.059</td> <td>0.056</td> <td>0.047</td> <td>0.052</td> <td>0.056</td> <td>0.036</td> <td>0.039</td>	ငှ	v	39	0.1	0.047	0.043	0.036	0.038	0.038	0.068	0.059	0.056	0.047	0.052	0.056	0.036	0.039
69 0.4 0.154 0.127 0.136 0.138 69 0.8 0.043 0.045 0.048 0.056 69 1.2 0.039 0.062 0.041 0.039 69 1.6 0.048 0.047 0.047 0.041 69 0.1 0.047 0.049 0.050 0.047 69 0.2 NC NC NC NC 69 0.4 0.067 0.058 0.045 0.045 69 1.2 0.036 0.045 0.045 0.045 69 1.6 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.045 0.048 69 0.2 0.050 0.054 0.052 0.048 69 0.4 0.059 0.065 0.045 0.041 69 0.4 0.059 0.065 0.045 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 <td>ဇှ</td> <td>w w</td> <td>39</td> <td>0.2</td> <td>0.045</td> <td>0.048</td> <td>0.050</td> <td>0.052</td> <td>0.043</td> <td>0.068</td> <td>0.154</td> <td>0.152</td> <td>0.124</td> <td>0.084</td> <td>0.060</td> <td>0.047</td> <td>0.052</td>	ဇှ	w w	39	0.2	0.045	0.048	0.050	0.052	0.043	0.068	0.154	0.152	0.124	0.084	0.060	0.047	0.052
69 0.8 0.043 0.045 0.048 0.056 69 1.2 0.039 0.062 0.041 0.039 69 1.6 0.048 0.047 0.047 0.041 0.036 69 0.1 0.058 NC NC NC NC 69 0.2 NC NC NC NC 69 0.4 0.067 0.058 0.045 0.045 69 1.2 0.038 0.045 0.045 0.045 69 0.1 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.056 0.045 69 0.2 0.050 0.054 0.050 0.045 69 0.4 0.059 0.065 0.045 0.041 69 0.2 0.050 0.043 0.045 0.041 69 1.2 0.050 0.043 0.045 0.041 69 1.2 0.048 0.048 0.036 0.036 73 0.1	ငှ	¥	39	4.0	0.154	0.127	0.136	0.138	0.120	0.201	0.249	0.258	0.226	0.213	0.109	0.099	0.108
69 1.2 0.039 0.062 0.041 0.039 69 1.6 0.048 0.047 0.041 0.041 69 0 0.058 NC 0.036 0.038 69 0.1 0.047 0.049 0.050 0.047 69 0.2 NC NC NC NC 69 0.8 0.050 0.045 0.045 0.045 69 1.2 0.032 0.048 0.045 0.045 69 0.1 0.047 0.048 0.045 0.048 69 0.2 0.050 0.054 0.052 0.048 69 0.4 0.050 0.065 0.045 0.048 69 0.4 0.050 0.065 0.046 0.046 69 0.4 0.050 0.065 0.048 0.041 69 0.4 0.050 0.043 0.045 0.041 69 1.2 0.032 0.043 0.045 0.036 73 0 0.048 0.049	ငှ	w	39	0.8	0.043	0.045	0.048	0.056	0.049	0.093	0.179	0.174	0.113	0.079	0.051	0.054	0.045
69 1.6 0.048 0.047 0.047 0.041 69 0 0.058 NC 0.036 0.038 69 0.1 0.047 0.049 0.050 0.047 69 0.2 NC NC NC NC 69 0.4 0.067 0.058 0.063 0.067 69 1.2 0.038 0.049 0.056 0.049 69 1.6 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.056 0.048 69 0.2 0.050 0.054 0.052 0.048 69 0.4 0.059 0.065 0.053 0.041 69 0.4 0.059 0.065 0.038 0.041 69 1.2 0.032 0.043 0.045 0.045 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 0.045 0.036 73 0 0.103 0.100	ငှ	w w	99	1.2	0.039	0.062	0.041	0.039	0.048	0.082	0.210	0.219	0.179	0.095	0.077	0.057	0.057
69 0 0.058 NC 0.036 0.038 69 0.1 0.047 0.049 0.050 0.047 69 0.2 NC NC NC NC 69 0.4 0.067 0.058 0.063 0.049 69 1.2 0.038 0.049 0.045 0.045 69 1.6 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.059 0.048 69 0.2 0.050 0.054 0.052 0.041 69 0.4 0.059 0.065 0.045 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.6 0.048 0.048 0.036 0.036 73 0.1 0.048 0.048 0.042 73 0.1 0.044 0.040 0.033 73 0.2 0.071 0.044 0.040 0.033	6-	¥	99	9.	0.048	0.047	0.047	0.041	0.061	0.090	0.181	0.186	0.131	0.095	0.051	0.045	0.043
69 0.1 0.047 0.049 0.050 0.047 69 0.2 NC NC NC NC 69 0.4 0.067 0.058 0.063 0.067 69 1.2 0.036 0.045 0.049 69 1.2 0.038 0.049 0.045 0.045 69 0.1 0.047 0.052 0.041 0.043 69 0.2 0.050 0.054 0.052 0.048 69 0.2 0.050 0.065 0.052 0.048 69 0.4 0.059 0.065 0.052 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 0.045 0.036 73 0 0.103 0.100 0.100 0.036 73 0.1 0.044 0.044 0.040 0.033 73 0.2 0.071 0.044 0.040	9	T	99	0	0.058	S	0.036	0.038	0.027	0.035	0.035	0.038	0.043	0.151	0.038	0.046	0.049
69 0.2 NC NC NC 69 0.4 0.067 0.058 0.063 0.067 69 0.8 0.050 0.036 0.045 0.049 69 1.2 0.038 0.049 0.056 0.045 69 0. 0.032 0.038 0.041 0.043 69 0.1 0.047 0.048 0.059 0.048 69 0.2 0.050 0.054 0.052 0.041 69 0.4 0.059 0.065 0.038 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 0.045 0.041 69 1.2 0.032 0.043 0.027 0.030 73 0 0.103 0.100 0.100 0.042 73 0.1 0.054 0.052 0.038 0.042 73 0.2 0.071 0.044	9	T	99	0.1	0.047	0.049	0.050	0.047	0.034	0.068	0.059	0.038	0.068	0.061	0.046	0.061	0.061
69 0.4 0.067 0.058 0.063 0.067 69 0.8 0.050 0.036 0.045 0.049 69 1.2 0.038 0.049 0.056 0.045 69 1.6 0.041 0.052 0.041 0.043 69 0.1 0.047 0.048 0.059 0.048 69 0.2 0.050 0.054 0.052 0.041 69 0.4 0.059 0.065 0.041 0 69 1.2 0.032 0.043 0.041 0 69 1.2 0.032 0.043 0.041 0 69 1.2 0.032 0.043 0.036 0 73 0 0.103 0.048 0.039 0.036 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	9	w	39	0.2	Š	S	S	S	S	Š	S	Š	Š	S	Š	Š	S
69 0.8 0.050 0.036 0.045 0.049 69 1.2 0.038 0.049 0.056 0.045 0 69 1.6 0.041 0.052 0.041 0.043 0 69 0.1 0.047 0.038 0.041 0.043 0 69 0.2 0.050 0.054 0.052 0.052 0 69 0.4 0.059 0.065 0.038 0.041 1 69 1.2 0.032 0.043 0.041 1 69 1.2 0.032 0.043 0.041 1 69 1.2 0.032 0.043 0.036 0 0 73 0 0.103 0.100 0.100 0.002 0 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	9	J	39	4.0	0.067	0.058	0.063	0.067	0.067	0.148	0.168	0.137	0.095	0.068	0.050	0.049	0.049
69 1.2 0.038 0.049 0.056 0.045 0 69 1.6 0.041 0.052 0.041 0.043 0 69 0 0.032 0.038 0.041 0.043 0 69 0.1 0.047 0.048 0.059 0.048 0 69 0.4 0.050 0.065 0.038 0.041 1 69 1.2 0.032 0.043 0.041 1 69 1.2 0.032 0.043 0.027 0.030 0 69 1.6 0.048 0.048 0.039 0.036 0 73 0 0.103 0.100 0.100 0.042 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	9		39	8 .	0.050	0.036	0.045	0.049	0.040	0.092	0.148	0.133	0.103	0.065	0.049	0.040	0.035
69 1.6 0.041 0.052 0.041 0.043 69 0 0.032 0.038 0.041 0.043 69 0.1 0.047 0.048 0.059 0.048 69 0.2 0.050 0.054 0.052 0.052 69 0.4 0.059 0.065 0.041 0 69 1.2 0.032 0.043 0.041 0 69 1.6 0.048 0.048 0.039 0.036 0 73 0 0.103 0.100 0.100 0.042 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0 73 0.2 0.071 0.044 0.040 0.033 0	9	w	39	1.2	0.038	0.049	0.056	0.045	0.041	0.081	0.159	0.135	0.106	0.086	0.056	0.052	0.049
69 0 0.032 0.038 0.041 0.043 69 0.1 0.047 0.048 0.059 0.048 0 69 0.2 0.050 0.054 0.052 0.052 0 0 69 0.4 0.059 0.065 0.038 0.041 1 69 1.2 0.032 0.043 0.027 0.030 0 69 1.2 0.032 0.043 0.039 0.036 0 73 0 0.103 0.100 0.100 0.042 0 0 73 0.2 0.071 0.044 0.040 0.033 0 0 73 0.2 0.071 0.044 0.040 0.033 0	9	w w	39	1 .	0.041	0.052	0.041	0.043	0.086	0.115	0.182	0.148	0.114	0.046	0.036	0.029	0.038
69 0.1 0.047 0.048 0.059 0.048 0 69 0.2 0.050 0.054 0.052 0.052 0 0 69 0.4 0.059 0.065 0.038 0.041 0 <td< td=""><td>15</td><td>¥</td><td>39</td><td>0</td><td>0.032</td><td>0.038</td><td>0.041</td><td>0.043</td><td>0.081</td><td>0.050</td><td>0.043</td><td>0.048</td><td>0.065</td><td>0.043</td><td>0.075</td><td>0.036</td><td>0.048</td></td<>	15	¥	39	0	0.032	0.038	0.041	0.043	0.081	0.050	0.043	0.048	0.065	0.043	0.075	0.036	0.048
69 0.2 0.050 0.054 0.052 0.052 69 0.4 0.059 0.065 0.038 0.041 69 0.8 0.041 0.043 0.045 0.041 69 1.2 0.032 0.043 0.027 0.030 0 69 1.6 0.048 0.048 0.039 0.036 0 0 73 0 0.103 0.044 0.040 0.042 0 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	15	•	29	0.1	0.047	0.048	0.059	0.048	0.047	0.084	0.091	0.095	0.088	0.073	0.057	0.079	0.059
69 0.4 0.059 0.065 0.038 0.041 69 0.8 0.041 0.043 0.045 0.041 0 69 1.2 0.032 0.043 0.027 0.030 0 69 1.6 0.048 0.048 0.039 0.036 0 73 0 0.103 0.010 0.042 0.042 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	15	•	39	0.2	0.050	0.054	0.052	0.052	0.045	0.122	0.133	0.149	0.090	0.104	0.049	0.050	0.057
69 0.8 0.041 0.043 0.045 0.041 0 69 1.2 0.032 0.043 0.027 0.030 0 69 1.6 0.048 0.048 0.039 0.036 0 73 0 0.103 0.100 0.100 0.082 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	15	w	39	0 .4	0.059	0.065	0.038	0.041	Š	0.124	0.167	0.134	0.086	0.043	0.045	0.036	0.030
69 1.2 0.032 0.043 0.027 0.030 0 69 1.6 0.048 0.048 0.039 0.036 0 73 0 0.103 0.100 0.100 0.082 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	15	J	39	0.8	0.041	0.043	0.045	0.041	0.045	0.188	0.210	0.181	0.132	0.068	0.049	0.045	0.041
69 1.6 0.048 0.048 0.039 0.036 0 73 0 0.103 0.100 0.100 0.082 0 73 0.1 0.065 0.052 0.038 0.042 0 73 0.2 0.071 0.044 0.040 0.033 0	15	•	99	1.2	0.032	0.043	0.027	0.030	0.032	0.082	0.220	0.222	0.134	0.00	0.032	0.027	0.030
0 0.103 0.100 0.100 0.082 0 0.1 0.065 0.052 0.038 0.042 0 0.2 0.071 0.044 0.040 0.033 0	15	w w	39	1.6	0.048	0.048	0.039	0.036	0.029	0.093	0.168	0.177	0.136	0.095	0.036	0.030	0.048
0.065 0.052 0.038 0.042 c	ė,	-	73	0	0.103	0.100	0.100	0.082	0.102	0.123	0.121	0.142	0.153	0.128	0.063	0.069	0.079
2 0.071 0.044 0.040 0.033 0	ç.	-	73	0.1	0.065	0.052	0.038	0.042	0.040	0.086	0.086	0.071	0.077	0.065	0.073	0.100	0.105
	ė.	-	73	0.2	0.071	0.044	0.040	0.033	0.040	0.105	0.092	0.094	0.083	0.073	0.034	0.063	0.086

Table B-14. (cont'd)

	Steer	Epi.	;				Mi	nutes re	Minutes relative to the epinephrine challenge	the epine	ephrine c	halleng	0			
Week	10	dose	-	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
ကု	-	3	9.4	0.056	0.042	0.048	0.044	0.040	0.102	0.115	0.084	0.067	0.048	0.056	0.046	0.052
ကု	~	73	9.8	0.067	0.059	0.050	0.063	0.050	960.0	0.169	0.201	0.128	0.103	0.054	0.061	0.057
ကု	_	73	1.2	0.086	0.069	0.073	0.067	0.056	0.140	0.199	0.224	0.178	0.121	0.059	0.077	0.082
ကု	-	73	9.	0.090	0.079	0.069	0.067	0.065	0.128	0.190	0.213	0.195	0.117	990.0	0.069	0.063
9	-	73	0	S	S	S	Š	S	S	Š	S	S	Š	S	Š	S
9	-	73 (0.1	0.127	0.090	0.102	0.082	0.072	0.113	0.154	0.138	0.140	0.136	0.111	0.120	0.084
9	-	73 (0.2	0.095	0.090	0.100	0.116	0.131	0.222	0.204	0.197	0.147	0.142	0.090	0.084	0.075
9	-		4.0	0.077	0.073	0.086	0.070	0.086	0.176	0.222	0.233	0.219	0.190	0.970	0.751	0.647
9	-	73	9.0	S	0.154	0.156	0.136	0.111	0.190	0.242	0.360	0.305	0.238	0.253	0.215	0.188
9	1			0.115	0.143	0.244	0.278	0.319	0.360	0.392	0.391	0.303	0.253	0.201	0.167	0.147
9	-		1.6	0.088	0.109	0.104	0.100	0.097	0.224	0.254	0.294	0.228	0.210	0.104	0.082	0.095
15	-	ξ,	0	0.094	0.094	0.084	0.093	0.075	0.326	0.403	0.460	0.390	0.242	0.089	0.057	0.055
15	-	73 (0.1	S	0.107	0.098	960.0	0.107	0.162	0.152	0.153	0.130	0.118	0.123	0.139	0.111
15	-		0.2	0.084	0.094	0.086	0.070	0.073	0.128	0.157	0.150	0.128	0.118	0.127	960.0	0.084
15	-		4.0	0.098	0.118	0.121	0.109	0.087	0.198	0.219	0.205	0.155	0.118	0.084	0.066	0.064
15	-	73	9.8	0.089	0.107	0.093	0.112	0.121	0.196	0.235	0.273	0.260	0.255	0.171	0.139	0.143
15	-	رع 1	1.2	0.081	0.091	0.077	0.062	0.043	0.169	0.214	0.189	0.160	0.096	0.091	0.084	0.048
15	-		9.	0.062	0.057	0.073	0.062	0.053	0.148	0.230	0.207	0.155	0.077	0.046	0.052	0.053
ကု	J)	20	0	0.074	0.074	0.067	0.063	0.05	0.063	0.059	0.054	0.065	0.061	0.049	0.074	0.065
ကု	5 3	92 (0.1	0.045	0.052	0.061	0.052	0.038	0.059	0.083	0.072	0.076	0.058	0.049	0.047	0.059
ကု	5	92 (0.2	0.067	0.062	0.045	0.052	0.049	0.088	0.115	0.101	0.065	0.058	0.058	0.054	0.057
ကု	5)	92 (4.0	60.0	0.077	0.108	0.063	0.07	0.110	0.130	0.106	0.067	0.074	0.085	0.058	0.072
ကု	J) 7	8.0	0.092	0.065	0.061	0.065	0.059	0.139	0.123	0.094	0.063	0.059	0.067	0.065	0.056
ကု	J	7	1.2	0.09	0.077	0.085	0.076	0.083	0.090	0.169	0.123	0.085	0.063	0.056	0.068	0.083
ကု	S	12	6 .	0.056	0.059	0.054	0.047	0.045	0.077	0.160	0.119	0.067	0.074	0.068	0.065	0.063
9	ຫ	2	0	0.083	0.078	0.072	0.069	0.065	0.079	0.072	0.079	0.078	0.085	0.076	0.078	0.071

Table B-14. (cont'd)

	Steer	E P.				Ŋ.	nutes re	Minutes relative to the epinephrine challengo	the epine	sphrine c	challeng	9			
Week	0	dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
9	o o	2 0.1	0.093	0.09	0.088	0.099	0.085	0.116	0.092	0.092	0.083	0.090	0.079	0.078	0.081
9	O	92 0.2	0.092	0.085	0.088	0.095	0.078	0.171	0.153	S	0.116	0.093	0.076	0.083	0.071
9	92	2 0.4	0.086	0.076	0.072	0.078	0.063	0.085	0.122	0.131	0.116	0.078	0.083	0.098	0.076
9	92	2 0.8	0.136	0.136	0.122	0.095	0.065	0.129	0.164	0.122	0.115	0.097	0.078	0.086	0.088
9	92	2 1.2	0.106	0.104	0.104	0.088	0.074	0.162	0.213	0.155	0.129	0.108	0.086	0.101	0.102
9	92	1.6	0.071	0.074	0.076	0.071	0.076	0.143	0.148	0.138	0.109	0.085	0.063	0.076	0.092
15	92	2	0.043	0.078	0.07	0.064	0.045	0.064	0.078	0.000	0.071	0.062	0.059	0.077	0.077
15	92	12 0.1	0.062	0.061	0.077	0.096	0.057	0.066	0.120	0.123	0.102	0.075	0.068	0.061	0.059
15	92	2 0.2	0.071	0.089	0.08	0.078	Š	0.141	0.132	0.146	0.118	0.121	0.124	0.082	0.059
15	92	2 0.4	0.071	0.0	0.075	0.059	0.061	0.139	0.150	0.150	0.103	0.082	0.087	0.082	0.073
15	92	2 0.8	0.086	0.082	0.077	0.07	0.07	0.114	0.137	0.125	0.123	0.098	0.068	0.071	0.075
15	92	2 1.2	0.082	0.089	960.0	0.093	0.091	0.109	0.148	0.178	0.148	960.0	0.064	0.086	0.073
15	92	1.6	0.077	990.0	0.052	0.052	0.059	0.082	0.107	0.193	0.164	0.148	0.070	0.062	0.064
ç-	114	0	0.054	0.070	0.039	0.048	0.041	0.077	0.045	0.070	0.057	0.054	0.072	0.036	0.034
ç.	114	4 0.1	0.036	0.036	0.039	0.036	0.036	0.066	0.063	0.063	0.056	0.065	0.049	0.047	0.077
ς.	=	4 0.2	0.039	0.039	0.034	0.047	0.034	0.093	0.077	0.047	0.041	0.047	0.038	0.038	0.059
ဇှ	114	4 0.4	0.045	0.036	0.036	0.034	0.030	0.057	0.082	0.063	0.057	0.063	0.032	0.036	0.038
ဇှ	114	4 0.8	0.041	0.057	0.046	0.047	0.030	0.077	0.124	0.072	0.061	0.057	Š	0.045	0.045
ကု	114	4 1.2	0.038	0.050	0.045	0.045	0.034	0.065	0.113	0.088	0.081	0.054	0.054	0.047	0.045
ကု	114	4 1.6	0.050	0.040	0.013	0.030	0.022	0.030	0.089	0.091	0.072	0.030	0.036	0.038	0.030
9	114	4	0.053	0.051	0.044	0.050	0.043	0.062	0.037	0.048	0.046	0.046	0.048	0.050	0.048
9	114	4 0.1	0.041	0.041	0.048	0.050	0.044	0.073	0.082	0.062	0.080	0.062	0.044	0.048	0.046
9	114	4 0.2	0.051	0.053	0.059	0.060	0.062	0.099	0.105	0.083	0.066	0.062	0.082	0.105	0.101
9	114	4 0.4	0.037	0.043	0.025	0.030	0.028	0.039	0.101	0.094	0.087	0.041	0.035	0.025	0.041
9	114	4 0.8	0.032	0.039	0.044	0.041	0.044	0.106	0.128	0.112	0.085	0.059	0.059	0.050	0.050
9	7	4 1.2	0.035	0.043	0.050	0.037	0.035	0.071	0.094	0.126	0.087	0.066	0.037	0.032	0.035

Table B-14. (cont'd)

	Steer	Epi.				Mir	nutes rel	ative to t	he epine	Minutes relative to the epinephrine challenge	hallenge	6			
Neek	ПО.	dose	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
9	114	1.6	0.030	0.030	0.039	0.043	0.035	0.046	0.071	0.115	0.105	0.076	0.056	0.043	0.039
15	114	0	0.067	0.059	0.056	0.068	0.058	0.059	0.092	0.067	0.050	0.052	0.059	0.041	0.043
15	114	1.0.1	0.043	0.041	0.041	0.040	0.038	0.085	0.088	0.067	0.056	0.041	0.044	0.038	0.036
15	114	1 0.2	0.049	0.038	0.040	0.038	0.034	0.076	0.085	0.083	0.059	0.047	0.030	0.034	0.047
15	114	4.0	0.040	0.045	0.056	0.036	0.030	0.121	0.142	0.097	0.068	0.043	0.038	0.040	0.034
15	114	9.0	0.040	0.043	0.029	0.036	0.054	0.117	0.139	0.144	0.106	0.065	0.029	0.025	0.032
15	114	1.2	0.041	0.038	0.022	0.029	0.043	0.077	0.150	0.135	0.081	0.043	0.034	0.036	0.040
15	114	1.6	0.00	0.058	0.067	0.063	0.056	0.094	0.126	0.216	0.213	0.168	0.060	0.058	0.061
£-	116	0	0.044	0.051	0.075	0.056	0.040	0.051	0.053	0.068	0.068	0.054	0.047	0.061	0.081
ငှ	116	0.1	0.044	0.045	0.032	0.035	0.028	0.082	0.049	0.047	0.039	0.035	0.033	0.033	0.050
ဇှ	116	3 0.2	0.029	0.039	0.040	0.030	0.032	0.056	0.089	0.054	0.056	0.047	0.045	0.033	0.047
ငှ	116	\$ 0.4	0.040	0.042	0.049	0.040	0.033	0.067	0.128	0.123	0.00	0.058	0.033	0.032	0.044
ဇှ	116		0.046	0.058	0.028	0.033	0.033	0.072	0.123	0.091	0.073	0.077	0.046	0.053	0.071
ငှ	116	1.2	0.060	0.050	0.082	0.046	0.033	0.128	0.133	0.129	0.075	0.074	0.032	0.054	0.039
ငှ	116	1.6	0.070	0.063	0.056	0.056	0.042	0.089	0.128	0.153	0.082	0.068	0.039	0.037	0.037
9	116	0	2	0.046	0.055	0.046	0.037	0.118	0.111	0.094	0.061	0.043	0.038	0.032	0.036
9	116	0.1	0.045	0.050	0.045	0.045	0.039	0.075	0.053	Š	0.068	0.046	0.046	0.032	0.059
9	116	3 0.2	0.039	0.046	0.055	0.059	0.050	0.103	0.119	0.061	990.0	0.064	0.051	0.041	0.043
9	116	9.4	0.045	0.056	0.035	0.046	0.043	0.107	0.093	0.086	0.061	0.043	0.043	0.105	0.059
9	116	8.0.8	0.046	0.067	0.041	0.050	0.037	0.103	0.153	0.130	0.100	0.059	0.048	0.039	0.045
9	116	1.2	S	S	S	S	S	S	S	S	S	S	S	S	S
9	116	1.6	0.068	0.062	0.046	0.053	0.041	0.166	0.182	0.128	0.082	0.073	0.053	0.078	0.048
15	116	0	0.061	0.084	0.054	0.056	0.047	0.050	0.047	0.045	0.059	0.041	0.045	0.047	0.061
15	116	0.1	0.097	0.108	0.077	0.099	0.084	0.156	0.137	0.142	0.131	0.106	0.088	S	0.093
15	116	3 0.2	0.047	0.041	0.043	0.041	0.039	0.070	0.070	990.0	0.075	0.065	0.059	0.079	0.099
15	116	0.4	0.073	0.063	0.056	0.059	0.050	0.168	0.168	0.151	0.113	0.091	0.057	0.057	0.065

Table B-14. (cont'd)

	130	0.061	0.054	0.077	0.069	0.044	0.051	0.062	0.077	0.087	0.071	0.114	0.074	0.107	0.189	0.093	0.084	0.107	0.117	960.0	0.228	0.142	0.160	0.196	0.253	0.053	0.050
	125	0.047	0.047	0.072	0.09	0.089	0.055	0.074	990.0	0.057	0.053	0.105	0.063	0.118	0.163	0.093	0.100	0.130	0.149	0.109	0.193	0.190	0.147	0.272	0.278	0.041	0.050
	120	0.054	0.056	0.059	0.126	0.053	0.059	0.117	0.057	0.044	0.05	0.093	0.123	0.102	0.184	0.104	0.091	0.119	0.168	0.109	0.166	0.264	0.179	0.457	0.315	0.050	0.037
	20	0.073	0.088	0.140	0.115	0.044	0.059	0.08	0.062	0.046	0.078	0.123	0.089	0.074	0.135	0.144	0.118	0.193	0.158	0.092	0.114	0.144	0.201	0.171	0.295	0.048	0.046
hallenge	15	0.099	0.145	0.186	0.126	0.046	0.087	0.087	0.101	0.062	0.119	0.137	0.150	0.151	0.114	0.218	0.174	0.244	0.149	0.149	0.144	0.164	0.302	0.236	0.321	0.044	0.069
phrine c	5	0.136	0.176	0.217	0.08	90.0	0.117	0.119	0.138	0.14	0.165	0.156	0.133	0.182	0.211	0.246	0.219	0.286	0.154	0.141	0.165	0.198	0.307	0.234	0.086	0.046	0.069
Minutes relative to the epinephrine challenge	2	0.143	0.170	0.181	0.094	0.142	0.174	0.188	0.158	0.165	0.181	0.179	0.160	0.191	0.223	0.209	0.230	0.363	0.147	0.177	0.201	0.198	0.291	0.198	0.337	0.041	0.071
ative to t	2.5	0.045	0.140	0.127	0.053	0.064	0.103	0.117	0.087	0.108	0.074	0.167	0.128	0.132	0.144	0.102	0.125	0.253	0.128	0.133	0.174	0.166	0.225	0.139	0.220	0.051	990.0
nutes re	0	0.048	0.061	0.068	0.073	0.051	0.074	0.071	90.0	0.067	0.057	0.175	0.072	0.067	0.103	0.074	0.063	0.158	0.122	0.084	0.082	0.095	0.188	0.111	0.231	0.037	0.037
Ξ	ċ	0.050	0.084	0.065	0.08	0.039	0.051	0.074	90.0	0.053	0.044	0.133	0.046	0.068	0.084	0.058	0.079	0.135	0.101	0.078	0.068	0.079	0.130	0.117	0.234	0.048	0.043
	-10	0.045	0.059	0.066	0.103	0.094	0.089	0.115	0.110	0.110	0.101	0.145	0.050	0.071	0.063	0.076	0.048	0.121	0.090	0.065	0.051	0.071	0.126	0.092	0.190	0.050	0.048
	-15	0.052	0.061	0.059	0.076	0.046	0.064	990.0	0.078	0.062	0.057	0.121	0.051	0.086	0.074	0.068	0.050	0.123	0.126	0.064	0.054	0.071	0.109	0.084	0.217		0.059
	-30	0.068	0.068	0.057	0.082	0.067	0.087	960.0	0.089	0.069	0.066	0.109	0.077	0.065	0.072	0.084	0.074	0.119	0.117	0.095	0.073	0.090	0.128	0.122	0.188	0.053	0.055
Epi.	dose a	0.8	1.2	1.6	0	0.1	0.2	4.0	0.8	1.2	1 .6	0	0.1	0.2	0.4	0.8	1.2	1.6	0	0.1	0.2	4 .0	0.8	1.2	1.6	0	0.1
Steer E		116	116	116	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	133	133
ัง	Week no.	15	15	15	ကု	ဖ	ဖ	ဖ	ဖ	ဖ	ဖ	9	15	15	15	15	15	15	15	ကု	ကု						

Table B-14. (cont'd)

	Steer	Epi	·=				Ž	Minutes relative to the epinephrine challenge	ative to	the epine	ephrine o	halleng	6			
Week	<u>و</u>	op	dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
<u>د-</u>	-	33	0.2	0.059	0.046	0.046	0.050	0.041	0.087	0.099	0.062	0.074	0.062	0.035	0.048	990.0
ကု	_	33	4 .0	0.060	0.051	0.046	0.044	0.037	0.135	0.133	0.083	0.071	0.048	0.037	0.050	0.050
ဇှ	_	33	0.8	0.059	0.046	0.050	0.060	0.068	0.106	0.135	0.099	0.062	0.048	0.041	0.039	0.035
Ÿ	~	33	1.2	0.051	0.037	0.039	0.044	0.046	0.108	0.170	0.152	0.101	0.062	0.059	0.043	0.050
ŋ	_	33	1.6	0.060	0.039	0.046	0.041	0.046	0.082	0.142	0.138	0.073	0.059	0.043	960.0	0.051
9	_	33	0	0.106	0.101	0.112	0.112	0.138	0.138	0.131	0.133	0.131	0.124	0.183	0.179	0.188
9	_	33	0.1	0.064	0.050	0.064	0.089	0.083	0.168	0.156	0.129	0.094	0.085	0.113	0.105	0.113
9		133	0.2	0.055	0.050	0.051	0.046	0.043	0.057	0.103	0.110	0.085	0.059	0.073	0.067	0.083
9	_	33	4.0	0.073	0.062	0.069	0.087	0.067	0.215	0.213	0.168	0.105	0.090	0.168	0.137	0.191
9	•	133	0 .8	0.067	0.067	0.073	0.067	960.0	0.232	0.270	0.268	0.209	0.147	0.160	0.165	0.183
9	•	133	1.2	0.112	0.119	960.0	0.103	0.085	0.105	0.211	0.284	0.241	0.165	0.099	0.121	0.129
9		133	9.	0.071	0.069	0.076	0.060	0.055	0.223	0.284	0.262	0.200	0.094	0.106	0.080	0.131
16		33	0	0.072	0.034	0.041	0.035	0.034	0.049	0.039	0.041	0.060	0.055	0.049	0.056	0.049
16		133	0.1	S	Š	S	0.078	0.063	0.122	0.120	0.085	0.055	0.044	0.101	0.155	0.159
1		133	0.2	0.037	0.037	0.044	0.048	0.035	0.141	0.131	0.115	0.081	0.048	0.190	0.157	0.141
16		33	4 .0	0.049	0.053	0.051	0.049	0.062	0.238	0.238	0.182	0.138	0.093	0.099	0.152	0.141
15		133	0.8	0.035	0.023	0.032	0.032	0.035	0.138	0.194	0.213	0.131	0.067	0.120	0.113	0.122
15	•	33	1.2	0.055	0.048	0.048	0.049	0.051	0.245	0.220	0.201	0.106	0.079	0.120	0.104	0.097
15		33	1.6	0.037	0.039	0.044	0.034	0.034	0.113	0.236	0.183	0.153	0.065	0.037	0.035	0.046
Ÿ	~	157	0	0.030	0.030	0.020	0.051	0.047	0.047	0.040	0.056	0.043	0.035	0.034	0.035	0.045
ကု	•	157	0.1	0.031	0.021	0.024	0.021	0.023	0.054	0.059	0.045	0.033	0.038	0.045	0.089	0.092
Ÿ	~	157	0.2	0.035	0.033	0.035	0.038	0.050	0.063	S	0.043	0.052	0.040	0.039	0.028	0.030
Ÿ	~	157	0.4	0.026	0.024	0.030	0.028	0.031	0.035	0.111	990.0	0.059	0.040	0.044	0.031	0.047
Ÿ	~	22	0.8	S	0.047	0.033	0.024	0.031	0.057	0.090	0.087	0.062	0.036	0.034	0.038	0.026
9	~	22	1.2	0.035	0.016	0.028	0.040	0.060	0.097	0.149	0.135	0.056	0.036	0.030	0.043	0.030
Ÿ	~~	22	1.6	0.045	0.042	0.045	0.043	0.035	0.116	0.148	0.106	0.078	0.052	0.052	0.036	0.042

Table B-14. (cont'd)

ัช	Steer	Epi.				Ψ	nutes re	Minutes relative to the epinephrine challeng	the epine	ephrine c	challeng	6			
0		dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
	157	0 ,	0.055	0.040	0.036	0.037	0.039	0.050	0.039	0.039	0.039	0.037	0.050	0.043	0.048
	157	0.1	0.061	0.055	0.066	0.057	0.053	0.116	0.127	0.093	0.080	0.078	0.139	0.137	0.164
	157	0.2	0.057	0.048	0.041	990.0	0.135	0.196	0.191	0.130	0.089	0.057	0.041	0.037	0.037
	157	4.0	0.062	0.075	0.094	0.077	0.061	0.114	0.207	0.159	0.125	0.084	0.036	0.053	0.080
	157	0.8	0.052	0.030	0.032	0.037	0.039	0.148	0.194	0.123	0.078	0.071	0.114	0.112	0.102
	157	1.2	0.041	0.048	0.057	0.055	0.059	0.091	0.162	0.178	0.144	0.091	0.059	0.057	0.057
9	157	1.6	0.071	0.064	0.064	0.061	0.059	0.075	0.173	0.241	0.235	0.175	0.173	0.225	0.155
2	157	0	0.058	0.085	0.074	0.095	0.088	0.101	0.094	0.081	0.092	0.119	0.150	0.178	0.180
2	157	0.1	0.085	0.076	0.092	0.065	0.128	0.169	0.254	0.193	0.209	0.191	0.088	0.106	0.123
2	157	0.2	0.083	0.041	0.047	0.043	0.348	0.463	0.441	0.326	0.240	0.231	0.114	0.126	0.112
2	157	4.0	0.058	0.045	0.041	0.047	0.141	0.249	0.254	0.213	0.126	0.105	0.092	0.074	0.067
2	157	0.8	0.059	0.079	0.094	0.072	0.052	0.160	0.234	0.223	0.141	0.106	0.108	0.117	0.128
2	157	1.2	0.041	0.052	0.054	0.050	0.041	0.099	0.216	0.247	0.173	0.00	0.103	0.086	0.095
2	157	1.6	0.058	0.077	0.056	0.059	0.070	0.099	0.213	0.240	0.196	0.126	0.088	0.083	0.095
ကု	184	0	0.115	0.093	0.097	0.086	0.075	0.081	0.091	0.089	0.097	0.108	0.201	0.188	0.204
ကု	184	1 0.1	0.036	0.040	0.032	0.061	0.032	0.077	0.045	0.041	0.039	0.059	0.029	0.027	0.011
ကု	2	1 0.2	0.043	0.040	0.061	0.029	0.027	0.063	0.052	0.082	0.032	0.076	0.041	0.034	0.029
က္	<u>\$</u>	4.0	0.090	0.145	0.122	0.108	0.095	0.122	0.154	0.168	0.163	0.136	0.113	0.131	0.156
ကု	<u>\$</u>	8.0	0.125	0.068	0.068	0.075	0.095	0.140	0.176	0.154	0.124	0.095	0.100	0.125	0.104
က္	<u>\$</u>	1.2	0.030	0.029	0.029	0.035	0.027	0.065	0.120	0.091	0.047	0.050	0.030	0.027	0.029
က္	<u>\$</u>	1.6	0.027	0.030	0.054	0.039	0.027	0.038	0.061	0.056	0.052	0.043	0.045	0.039	0.030
9	<u>\$</u>	0	0.070	0.088	0.043	0.034	0.049	0.058	0.049	0.054	0.052	0.050	0.061	0.063	0.081
9	1 8	1 0.1	0.056	0.054	0.047	0.046	0.043	0.105	0.108	0.095	0.088	0.081	0.060	0.070	0.070
9	184	1 0.2	0.168	0.135	0.200	0.142	0.072	0.137	0.135	0.130	0.126	0.092	0.128	0.063	0.135
	1 84	4.0	0.040	0.032	0.117	0.032	0.031	0.146	0.133	0.105	0.077	0.043	0.032	0.023	0.027
	184		0.090	0.105	0.108	0.099	0.123	0.202	0.241	0.243	0.196	0.198	0.166	0.214	0.173

Table B-14. (cont'd)

	Steer	Epi.				Ž	nutes rel	lative to	the epin	Minutes relative to the epinephrine challenge	halleng	9			
Week	no.	dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
မ	184	1.2	0.045	0.045	0.047	0.040	SC	0.050	0.067	0.094	0.142	0.124	0.063	0.079	0.079
9	184	1.6	0.085	0.077	0.076	0.077	0.081	0.119	0.196	0.274	0.306	0.192	0.106	0.090	0.077
15	<u>8</u>	0	0.045	0.050	0.045	0.041	0.027	0.048	0.057	0.056	0.057	0.048	0.054	0.057	0.066
15	<u>8</u>	1 0.1	0.061	0.048	0.027	0.034	0.038	0.091	0.090	0.075	0.056	0.036	0.065	0.056	0.065
15	48	1 0.2	0.041	0.043	0.039	0.039	0.041	0.145	0.115	0.106	0.075	0.059	0.049	0.061	0.068
15	<u>8</u>	4.0	0.070	0.063	0.050	0.059	0.056	0.154	0.167	0.162	0.108	0.093	0.116	0.086	0.099
15	<u>\$</u>	8.0	0.027	0.038	0.022	0.027	0.022	0.120	0.131	0.113	0.075	0.057	0.056	0.052	0.063
15	<u>\$</u>	1.2	0.034	0.023	0.027	0.030	0.022	0.109	0.140	0.115	0.111	0.082	0.041	0.030	0.048
15	<u>8</u>	1.6	0.039	0.033	0.029	0.029	0.036	0.093	0.108	0.133	0.099	0.073	0.039	0.054	0.070
ကု	187	0	0.030	0.030	0.042	0.039	0.044	0.056	0.055	0.051	0.046	0.068	0.050	0.056	0.049
ņ	187	7 0.1	0.056	0.054	0.049	0.042	0.053	0.058	0.074	0.067	0.058	0.053	0.042	0.035	0.044
ကု	187	7 0.2	0.072	0.063	0.049	0.088	0.049	0.114	0.109	0.108	0.075	0.049	0.044	0.054	0.049
ကု	187	4.0	0.068	0.049	0.047	0.042	0.033	0.054	0.119	0.127	0.074	0.053	0.051	0.056	0.049
ς,	187	8.0	0.056	0.061	0.051	0.044	0.037	0.075	0.135	0.137	0.091	0.070	0.037	0.046	0.035
r,	187	1.2	0.051	0.061	0.051	0.047	0.042	0.053	0.109	0.168	0.156	0.112	0.051	0.056	0.056
ငှ	187	1.6	0.070	0.060	0.046	0.054	0.035	0.082	0.179	0.177	0.142	0.068	0.035	0.040	0.039
9	187	0	0.048	0.053	0.057	0.066	0.055	0.071	0.075	0.075	0.082	0.080	0.176	0.134	0.157
9	187	0.1	0.073	0.065	0.061	0.055	0.073	0.152	0.144	0.127	0.094	0.055	0.066	0.059	0.064
9	187	, 0.2	0.057	0.051	0.032	0.043	0.037	0.153	0.166	S	0.107	0.064	0.061	0.089	0.086
9	187	4.0	0.089	0.075	0.093	0.077	0.078	0.178	0.239	0.230	0.176	0.137	0.103	0.160	0.125
9	187	8.0	0.116	0.114	0.143	0.178	0.196	0.191	0.296	0.351	0.512	0.282	0.166	0.128	0.148
ဖ	187	1.2	0.148	0.166	0.093	0.102	0.078	0.089	0.127	0.219	0.216	0.160	0.068	0.062	0.064
ဖ	187	1.6	0.061	0.045	0.043	0.041	0.046	0.094	0.139	0.219	0.209	0.144	0.065	0.068	0.077
15	187	0	0.047	0.057	0.045	0.036	0.035	0.066	0.061	0.050	0.059	0.057	0.059	0.073	0.056
15	187	0.1	0.066	0.047	0.041	0.039	0.034	0.091	0.118	0.106	0.116	0.057	0.043	0.056	0.054
15	187	0.2	0.109	0.061	0.079	0.072	0.052	0.081	0.145	0.118	0.104	0.068	0.118	0.102	0.061

Table B-14. (cont'd)

	Steer	Щ Э				Ē	nutes re	Minutes relative to the epinephrine challenge	the epine	phrine c	halleng	a			
Week	no.	dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
15	187	7 0.4	0.054	0.057	0.047	0.054	0.038	0.115	0.134	0.147	0.118	0.084	0.059	0.054	0.050
15	187	7 0.8	0.059	0.059	0.065	0.059	0.073	0.159	0.190	0.186	0.131	0.097	0.102	0.113	0.111
15	187		0.102	0.081	0.097	0.070	0.072	0.158	0.158	0.179	0.113	0.082	0.094	0.076	0.081
15		7 1.6	0.070	0.052	0.068	0.056	0.039	0.131	0.201	0.203	0.195	0.111	0.065	0.084	0.084
ကု		0	0.121	0.107	0.088	0.075	0.063	0.102	0.107	0.125	0.126	0.111	0.071	0.069	0.054
ကု			S	Š	0.105	0.094	0.067	0.138	0.132	0.136	0.094	0.077	0.054	0.071	0.057
ကု			0.096	0.094	0.115	0.122	0.119	0.188	0.232	0.241	0.165	0.134	0.055	0.086	0.077
ဇှ		2 0.4	0.057	0.059	0.046	0.073	0.063	0.142	0.190	0.130	0.115	0.080	0.058	0.065	0.063
ကု			0.102	0.098	0.102	0.084	0.065	0.192	0.193	0.113	0.065	0.063	0.058	0.079	0.077
ကု		1.2	0.061	0.052	0.048	0.050	0.033	0.136	0.203	0.184	0.088	0.073	0.046	0.075	0.065
ကု			0.123	0.123	0.088	0.094	0.077	0.190	0.247	0.236	0.197	0.121	0.067	0.077	0.071
Ø		0	0.127	0.066	0.061	0.059	0.048	0.059	0.047	0.050	0.050	0.045	0.057	0.059	0.048
9		2 0.1	S	Š	S	2	Š	S	Š	2	S	S	2	Š	2
9			0.156	0.109	0.113	0.104	0.105	0.219	0.213	0.197	0.165	0.143	0.086	0.091	0.095
9		4.0	0.070	0.054	0.059	0.079	0.073	0.134	0.210	0.204	0.151	0.122	0.047	0.047	0.048
9		2 0.8	0.111	0.073	0.056	0.056	0.056	0.124	0.195	0.201	0.147	0.097	0.065	0.082	0.091
9		1.2	0.054	0.00	990.0	0.056	0.041	0.097	0.134	0.176	0.172	0.124	0.054	0.057	0.057
9			0.095	0.045	0.045	0.203	0.068	0.158	0.057	0.188	0.147	0.109	0.052	0.050	0.041
15	20,	0	0.061	0.070	0.062	0.059	0.039	0.066	0.050	0.050	0.055	0.053	0.052	0.062	0.078
15	20,	2 0.1	0.048	0.00	990.0	0.071	0.048	0.119	0.114	0.103	0.071	0.105	0.061	0.053	0.082
15	202	2 0.2	0.057	0.050	0.052	0.048	0.039	0.121	0.111	0.102	0.070	0.050	0.041	0.053	0.055
15	20,	9.0	0.071	0.059	0.039	0.039	0.030	0.109	0.143	0.119	0.089	0.046	0.041	0.066	0.045
15	20,	2 0.8	0.094	0.066	0.055	0.057	0.052	0.128	0.132	0.152	0.094	0.064	0.052	0.048	0.057
15	20,	2 1.2	0.062	0.077	0.070	0.061	0.053	0.144	0.160	0.146	0.132	0.077	0.043	0.055	0.061
15	20,	2 1.6	0.059	0.053	0.053	0.055	0.041	0.102	0.164	0.152	0.127	0.066	0.045	0.032	0.041
ņ	217	0	0.035	0.035	0.045	0.040	0.026	0.043	0.047	0.040	0.040	0.031	0.028	0.054	0.055

Table B-14. (cont'd)

	Steer	Epi.				Ž	nutes re	Minutes relative to the epinephrine challenge	the epine	aphrine c	halleng	8			
Week	no.	dose a	-30	-15	-10	-5	0	2.5	5	10	15	20	120	125	130
-3		7 0.1	0.040	0.048	0.047	0.041	0.044	0.093	0.098	990.0	0.062	0.060	0.041	0.036	0.040
ငှ	217	7 0.2	0.055	0.035	0.035	0.043	0.031	0.065	0.097	0.073	990.0	0.042	0.028	0.031	0.029
ကု	21.	7 0.4	0.036	0.052	0.041	0.052	0.029	0.086	0.131	0.097	0.062	0.055	0.045	0.031	0.031
ငှ	21.	7 0.8	0.033	0.024	0.021	0.035	0.031	0.078	0.109	0.139	0.062	0.052	0.034	0.026	0.031
ကု	21.	7 1.2	0.048	0.055	0.045	0.045	0.031	0.133	0.128	0.098	0.064	0.054	0.043	0.033	0.043
ကု	217	7 1.6	0.045	0.078	0.071	0.069	0.041	0.097	0.157	0.107	0.081	0.043	0.050	0.045	0.071
9	21.	0 2	0.026	0.042	0.024	0.026	0.029	0.031	0.047	0.052	0.061	0.042	0.040	0.045	0.030
9	21.	7 0.1	0.038	0.038	0.033	0.037	0.029	0.065	0.075	0.072	0.051	0.044	0.014	0.019	0.026
9	217	7 0.2	0.042	0.055	0.029	0.044	0.026	0.077	0.092	0.059	0.056	0.045	0.044	0.035	0.040
9		7 0.4		0.038	0.033	0.030	0.026	0.065	0.126	0.105	0.084	0.063	0.044	0.031	0.033
9				0.034	0.038	0.037	0.037	0.099	0.112	0.112	0.075	0.110	0.045	0.052	0.037
9	217	7 1.2	0.037	0.035	0.040	0.031	0.028	0.073	0.126	0.122	0.098	0.054	0.029	0.040	0.049
9	21.	7 1.6	0.026	0.021	0.024	0.026	0.059	0.034	0.147	Š	0.077	0.073	0.029	0.026	0.024
15	21.	0 2	0.036	0.044	0.027	0.043	0.046	0.039	0.039	0.038	0.058	0.050	0.039	0.043	0.034
15	21.	7 0.1	0.038	0.039	0.046	0.038	0.031	0.067	0.075	0.070	0.070	0.051	0.049	0.027	0.032
15	21.	7 0.2	0.038	0.036	0.043	0.039	0.041	0.091	0.116	0.113	0.099	0.074	0.051	0.043	0.050
15	21.	7 0.4	0.046	0.046	0.036	0.050	0.058	0.068	0.076	0.111	0.074	0.115	0.041	0.039	0.046
15	21.	7 0.8	0.048	0.039	0.031	0.046	0.041	0.053	0.074	0.115	0.087	0.077	0.055	0.058	0.053
15	21.	7 1.2	0.050	0.036	0.041	0.038	0.031	0.062	0.075	0.124	0.130	0.101	0.051	0.036	0.063
15	21.	7 1.6	0.038	0.031	0.039	0.032	0.015	0.074	0.121	0.140	0.104	0.079	0.044	0.044	0.051
ς.	22,	2 0	0.061	0.038	0.040	0.040	0.036	0.052	0.047	0.049	0.045	0.054	0.042	0.059	0.045
ကု	22,	2 0.1	0.094	0.049	0.056	0.057	0.050	0.094	0.085	0.087	0.064	0.059	0.064	0.050	0.043
ငှ	22,	2 0.2	0.085	0.060	0.083	0.082	0.062	0.113	0.130	0.112	0.111	0.083	0.057	0.075	0.059
ç.	22,	2 0.4	0.061	0.040	0.063	0.064	0.045	0.089	0.044	0.116	0.080	0.050	0.036	0.056	0.040
£-	22,	2 0.8	0.081	0.071	0.079	0.049	0.049	0.073	0.113	0.116	0.068	0.068	0.050	0.056	0.036
6-	22,	2 1.2	0.102	0.085	0.189	0.085	0.097	0.101	0.207	0.104	0.104	0.083	0.037	0.068	0.075

Table B-14. (cont'd)

Week no. d -3 222 6 222 6 222 6 222 6 222 7 15 222 15 222 15 222 15 222 15 222 15 222	0.1 0.1 0.2 0.2 0.4 0.4 0.3 0.4 0.4 0.5 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.087 0.059 0.066 0.052	-15	-10	-5	0	2.5	Ļ		!	ć	•		130
6 6 6 22 22 22 22 22 22 22 22 22 22 22 2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.087 0.059 0.066 0.052		0.047				n	10	15	70	120	125	
0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 2 4 8 2 1 0 0	0.059 0.066 0.052	0.057	5	0.056	0.061	0.094	0.161	0.179	0.132	0.094	0.082	0.087	0.094
0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.066 0.052	0.052	0.057	0.053	0.055	0.070	0.061	0.057	0.057	0.061	0.078	990.0	0.064
0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.052	0.000	0.068	0.057	0.048	0.094	0.107	0.084	0.089	0.073	0.040	0.061	0.055
0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.0 8.0 1.2 0	2	0.050	0.053	0.057	0.052	0.105	0.111	0.105	0.073	0.062	0.055	0.043	0.064
6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.8 1.2 0.0	ر 2	S	S	S	S	2	Š	2	S	2	Š	S	S
6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1. 0 0. 0	0.062	990.0	0.064	0.00	0.024	0.068	0.143	0.146	0.123	0.103	990.0	0.064	0.062
6	0.0	0.050	0.045	0.055	0.048	0.053	0.127	0.162	0.141	0.102	0.080	0.068	0.059	0.064
\$1 \$1 \$1 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$3 \$3 \$4 \$4 \$5 \$4 \$5 \$4 \$5 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6	0	0.000	0.059	0.061	0.055	0.045	0.078	0.134	0.125	0.137	0.078	0.052	0.059	0.062
5 6 5		0.124	0.076	0.081	0.085	0.072	0.081	0.094	0.085	0.083	0.081	0.072	0.072	0.101
15 222 15 15 222 15 15 222 15 15 222 15 15 222 15 15 222 15 15 222 15 15 15 15 15 15 15 15 15 15 15 15 15	0.1	0.094	0.085	0.083	0.079	0.056	0.086	0.112	0.105	0.115	0.081	0.052	0.063	0.076
15 222 15 222 22 22 22 22 22 22 22 22 22 22 22 2	0.2	0.068	0.063	0.063	0.056	0.056	0.092	0.121	0.115	0.086	0.072	0.072	0.056	0.054
15 222 15 222	4.0	0.054	0.054	0.076	0.058	0.054	0.099	0.142	0.441	0.108	0.076	0.051	0.061	0.050
15 222	0.8	0.058	0.068	0.056	0.045	0.038	0.068	0.114	0.148	0.123	0.076	0.054	0.040	0.050
4.5	1.2	0.090	0.056	0.061	0.068	0.063	0.067	0.106	0.169	0.146	0.119	0.054	0.072	0.058
777 61	1.6	0.094	S	0.088	0.097	0.065	0.110	0.157	0.193	0.157	0.146	0.061	0.074	0.067
15 307	0	0.116	S	Š	S	0.088	0.102	0.095	0.108	0.100	0.118	0.199	Š	0.190
15 307	0.1	0.170	0.154	0.104	0.109	0.120	0.177	0.177	0.177	0.149	0.129	0.142	0.127	0.138
15 307	0.2	0.122	0.100	0.102	0.099	0.115	0.168	0.183	0.183	0.154	0.159	0.186	0.199	0.192
15 307	4.0	0.070	0.099	0.072	0.059	0.048	0.086	0.138	0.129	0.102	0.065	0.045	0.050	0.052
15 307	0.8	0.108	0.079	0.082	0.084	0.095	0.116	0.163	0.244	0.208	0.124	0.113	0.116	0.082
15 307	1.2	0.061	0.034	0.062	0.048	0.046	0.131	0.185	0.142	0.111	0.099	0.056	0.036	0.077
15 307	1.6	0.073	0.068	990.0	0.061	0.063	0.108	0.186	0.188	0.143	0.113	0.124	0.111	0.075

^aEpinephrine dose, µg/kg BW. ^bSample not collected.

Table B-15. Plasma glycerol response (µmol/L) to a 1.6 µg epinephrine/kg BW dose during the 15th week of treatment for Experiment BC9402

Steer				Min	ites re	ative to	Minutes relative to epinephrine challenge	phrine	challe	nge			
10.	-30	-15	-10	-5	0	2.5	2	10	15	20	120	125	130
15	42.32	30.93	34.18	32.56	32.56	58.60	58.60	68.37	55.34	50.46	60.23	47.21	42.32
33	24.24	19.39	17.77	19.39	17.77	40.40	56.56	58.17	56.56	54.94	33.93	25.85	24.24
53	41.87	24.16	27.38	30.60	25.77	67.64	101.45	83.74	69.25	54.75	35.43	40.26	35.43
57	22.82	11.41	14.67	21.19	24.45	53.79	60.31	63.57	45.64	37.49	26.08	22.82	27.71
28	35.89	45.68	52.20	37.52	92.98	148.45	122.35		138.66	125.61	42.41	61.99	73.41
69	21.88	15.15	15.15	18.51	15.15	47.13	67.32		48.81	37.03	20.20	15.15	23.56
73	30.98	17.04	23.23	13.94	21.68	99.99	72.79	69.70	77.44	71.24	21.68	32.52	21.68
92	29.30	21.16	27.67	21.16	34.18	40.69	58.60		45.58	40.69	21.16	24.42	27.67
114	19.56	9.78	13.04	11.41	13.04	27.71	27.71		45.64	32.60	19.56	16.30	17.93
116	17.01	17.01	13.61	10.21	20.42	22.12	17.01		17.01	17.01	23.82	52.74	25.52
118	55.46	63.62	101.14	63.62	79.93	120.72	141.92		205.54	106.03	106.03	70.15	60.36
133	24.19	27.41	25.80	29.02	24.19	62.89	70.95	58.05	49.99	41.92	37.09	22.57	61.27
157	42.10	24.29	35.63	29.15	48.58	63.16	71.25	134.41	90.69	108.50	27.53	30.77	30.77
184	15.15	11.78	20.20	20.20	20.20	40.39	48.81		47.13	45.44	25.25	28.61	28.61
187	25.52	23.82	20.42	45.93	45.93	49.34	57.84	37.43	51.04	47.64	25.52	30.62	32.32
202	17.04	4.65	10.84	13.94	9.29	35.62	41.82	37.17	46.46	49.56	12.39	7.74	37.17
217	20.93	14.49	17.71	14.49	11.27	30.60	57.97	57.97	41.87	41.87	17.71	27.38	19.32
222	19.43	S N	14.57	19.43	32.39	50.20	56.68	95.54	50.20	58.30	34.01	37.25	61.54
307	24.24	17.77	24.24	22.62	30.70	43.63	61.40	48.48	40.40	45.25	30.70	46.86	25.85

*Sample not collected.

SAS program to calculate area under the curve of epinephrine challenge and to calculate a segmented curve to a plateau (Rmax response)

Data area:

```
title1 'Animal 114 weeks -3, 6, 15, area under curve';
input week anno dose 12a5 t5 t10 t15 t20 baseline;
baseline=baseline*1000;
TH = baseline:
t2a5=t2a5*1000;
t5=t5*1000;
t10=t10*1000;
t15=t15*1000;
120=120*1000;
cards:
                                   0.070
                                            0.057
                                                     0.054
                                                             0.050
-3
            0
                  0.077
                           0.045
     114
                           0.063
                                   0.063
                                            0.056
                                                     0.065
                                                             0.037
-3
                  0.066
     114
            0.1
-3
     114
            0.2
                  0.093
                           0.077
                                   0.047
                                            0.041
                                                     0.047
                                                             0.039
                           0.082
                                            0.057
                                                     0.063
                                                             0.036
-3
     114
            0.4
                  0.057
                                   0.063
-3
     114
            8.0
                  0.077
                           0.124
                                   0.072
                                            0.061
                                                     0.057
                                                             0.044
-3
                  0.065
                           0.113
                                   0.088
                                            0.081
                                                     0.054
                                                             0.042
     114
           1.2
-3
                           0.089
                                   0.091
                                            0.072
                                                     0.030
                                                             0.031
     114
                  0.030
           1.6
                  0.062
                           0.037
                                   0.048
                                            0.046
                                                     0.046
                                                             0.048
6
     114
            0
                           0.082
                                   0.062
                                            0.080
                                                     0.062
                                                             0.045
     114
            0.1
                  0.073
6
                                                             0.057
6
     114
            0.2
                  0.099
                           0.105
                                   0.083
                                            0.066
                                                     0.062
6
     114
            0.4
                  0.039
                           0.101
                                   0.094
                                            0.087
                                                     0.041
                                                             0.033
                           0.128
                                   0.112
                                            0.085
                                                     0.059
                                                             0.040
6
     114
            8.0
                  0.106
                           0.094
                                            0.087
                                                             0.040
6
     114
            1.2
                  0.071
                                   0.126
                                                     0.066
                                            0.105
                                                             0.035
6
                  0.046
                           0.071
                                   0.115
                                                     0.076
     114
            1.6
                           0.092
                                   0.067
                                            0.050
                                                     0.052
                                                             0.062
15
     114
                  0.059
            0
                           0.088
                                            0.056
                                                             0.041
            0.1 0.085
                                   0.067
                                                     0.041
15
     114
15
     114
            0.2 0.076
                           0.085
                                   0.083
                                            0.059
                                                     0.047
                                                             0.040
            0.4 0.121
                           0.142
                                   0.097
                                            0.068
                                                     0.043
                                                             0.041
15
     114
            0.8 0.117
                                            0.106
                                                             0.040
                           0.139
                                   0.144
                                                     0.065
15
     114
                           0.150
                                   0.135
                                            0.081
                                                     0.043
                                                             0.035
15
     114
            1.2 0.077
                           0.126
                                            0.213
                                                     0.168
                                                             0.063
15
            1.6 0.094
                                   0.216
     114
Proc print data = area;
Data auc; set area;
/* Calculation of Area 1 */
       If t2a5 <=th then a1=0;
         else a1=(2.5*(.5*(t2a5-th)));
/* Calculation of Area 2 */
       If t5 <=th and t2a5<=th then a2=0;
        If t5 <=th and t2a5<=th then a2c=1;
       If t5>th and t2a5<th then a2=((((t5-th)/t5)*2.5)*(.5*(t5-th)));
       If t5>th and t2a5<th then a2c=2;
        If t5>th and th=<t2a5<=t5 then a2=(2.5*(t2a5+(.5*(t5-t2a5)))-(2.5*th));
        If t5>th and th=<t2a5<=t5 then a2c=3;
        If t5>th and t2a5>t5 then a2=(2.5*(t5+(.5*(t2a5-t5)))-(2.5*th));
        If t5>th and t2a5>t5 then a2c=4;
        If t5<=th and t2a5>th then a2=((((t2a5-th)/t2a5)*2.5)*(.5*(t2a5-th)));
```

```
If t5<=th and t2a5>th then a2c=5;
/* Calculation of Area 3 */
        If t10 <=th and t5<=th then a3=0:
        If t10 <=th and t5<=th then a3c=1:
        If t10>th and t5a3=((((t10-th)/t10)*5))*(.5*abs(t10-th));
        If t10>th and t5<th then a3c=2:
        If t10>th and th=<t5<=t10 then a3=(5*(t5+(.5*(t10-t5)))-(5*th));
        If t10>th and th=<t5<=t10 then a3c=3;
        If t10>th and t5>t10 then a3=(5*(t10+(.5*(t5-t10)))-(5*th)):
        If t10>th and t5>t10 then a3c=4:
        If t10<=th and t5>th then a3=((((t5-th)/t5)*5)*((.5*(t5-th))));
        If t10<=th and t5>th then a3c=5;
/* Calculation of Area 4 */
        If t15 <=th and t10<=th then a4=0:
        If t15 <=th and t10<=th then a4c=1:
        If t15>th and t10<th then a4=((((t15-th)/t15)*5)*(.5*abs(t15-th))):
        If t15>th and t10<th then a4c=2:
        If t15>th and th=<t10<=t15 then a4=(5*(t10+(.5*(t15-t10)))-(5*th));
        If t15>th and th=<t10<=t15 then a4c=3:
        If t15>th and t10>t15 then a4=(5*(t15+(.5*(t10-t15)))-(5*th));
        If t15>th and t10>t15 then a4c=4:
        If t15<=th and t10>th then a4=((((t10-th)/t10)*5)*(.5*(t10-th)));
        If t15<=th and t10>th then a4c=5;
/* Calculation of Area 5 */
        If t20 <=th and t15<=th then a5=0:
        If t20 <=th and t15<=th then a5c=1;
        If t20>th and t15<th then a5=((((t20-th)/t20)*5)*(.5*abs(t20-th)));
        If t20>th and t15<th then a5c=2:
        If t20>th and th=<t15<=t20 then a5=(5*(t15+(.5*(t20-t15)))-(5*th));
        If t20>th and th=<t15<=t20 then a5c=3;
        If t20>th and t15>t20 then a5=(5*(t20+(.5*(t15-t20)))-(5*th));
        If t20>th and t15>t20 then a5c=4;
        If t20<=th and t15>th then a5=((((t15-th)/t15)*5)*(.5*(t15-th)));
        If t20<=th and t15>th then a5c=5:
/* Summation of all areas */
        areauc=sum(a1, a2, a3, a4, a5);
        drop t2a5 t5 t10 t15 t20 bl1 bl2 th;
Proc print data = auc:
Proc plot data = auc;
by week:
plot areauc*dose;
run;
data curve; set auc;
/* Fitting a Segmented Model using NLIN */
        if dose = 0 then areauc = 0;
        proc nlin method=marquardt;
        by week:
        parms a= 437 b= 1603 c=-911;
        file print:
        dose0=-.5*b / c; /* Estimate Join Point */
```

```
db=-.5 / c; /* Deriv of dose0 wrt B
       dc=.5*b / c**2; /* Deriv of dose0 wrt C */
       if dose<dose0 then /* Quadratic Part of Model */
         do:
          model areauc=a+b*dose+c*dose*dose;
          der.a=1:
          der.b=dose;
          der.c=dose*dose;
         end:
          /* Plateau Part of Model */
else
 do:
  model areauc=a+b*dose0+c*dose0*dose0;
  der.a=1;
  der.b=dose0+b*db+2*c*dose0*db;
  der.c=b*dc+dose0*dose0+2*c*dose0*dc;
 end:
if _obs_=1 & _model_=1 then /* Print out if 1st obs */
  plateau=a+b*dose0+c*dose0*dose0;
  put dose0=plateau=;
output out=b predicted=aucplat;
run;
proc plot;
by week;
plot areauc*dose aucplat*dose="" / overlay;
run;
```

APPENDIX C

Approval letters from the All-University Committee on Animal Use and Care

MICHIGAN STATE UNIVERSITY

ALL-UNIVERSITY COMMITTEE ON ANIMAL USE AND CARE

EAST LANSING . MICHIGAN . 48824-1313

R.J. andrick

C BUILDING • CLINICAL CENTER
TELEPHONE (517) 353-5664

MEMORANDUM

TO:

RUST, S.

ANIMAL SCIENCE
113 ANTHONY

FROM:

Richard J. Aulerich, Chairperson

All-University Committee on Animal Use and Care

DATE:

12/06/91

SUBJECT:

APPROVAL OF APPLICATION TO USE VERTEBRATE ANIMALS IN RESEARCH

This is to notify you that your recent application to use animals in research or teaching has been approved by the All-University Committee on Animal Use and Care. This approval is for a one-year period, beginning on the date of approval by the committee. *** For external funding agencies, if the Office of the Vice President for Research and Graduate Studies, or the Dean's Office notifies us of a funding date, your approval will be extended for one year following the funding date. ***

Should your project extend beyond one year, you should resubmit your request to the committee. For your convenience, the new Yearly Renewal Form is designed so that resubmissions maybe accomplished by merely identifying the earlier proposal and assuring that the proposal is being resubmitted with revisions.

The title of your approved proposal, the date of approval and the tracking numbers assigned (both ORD and AUF numbers) are given below. You should retain this information for future use. Please note that, according to University policy, no significant changes may be made to your animal-use plan without prior approval from the AUCAUC. Requests for review of proposed revisions may be made by submitting a new Animal Use Form or by sending a letter to the AUCAUC, C103 Clinical Center.

Title USE OF GROWTH PROMOTING SUBSTANCES FOR INCREASED SKELETAL

AND TEAR TISSUE GROWTH OF HOLSTEIN CATTLE

AUF Number: 10/90-308-02 ORD Number:

Funded By: ELI LILLY LABORATORIES

Approved: 12/06/91 Expires: 12/06/92

RJA/cjf

CC: Maynard G. Hogberg, Chairperson

ANIMAL SCIENCE 102 ANTHONY HALL

MSU is an Affirmative Action/Equal Opportunity Institution

MICHIGAN STATE UNIVERSITY

ALL-UNIVERSITY COMMITTEE ON ANIMAL USE AND CARE
C BUILDING • CLINICAL CENTER
TELEPHONE (517) 353-3664

EAST LANSING . MICHIGAN . 48824-1313

a.T. Evans DUM

MEMORANDUM

TO:

SCHLEGEL, MICHAEL L.

ANIMAL SCIENCE 233 ANTHONY HALL

FROM:

A. Thomas Evans, Chairperson

All-University Committee on Animal Use and Care

DATE:

06/24/94

SUBJECT:

APPROVAL OF APPLICATION TO USE VERTEBRATE ANIMALS IN RESEARCH

This is to notify you that your recent application to use animals in research or teaching has been approved by the All-University Committee on Animal Use and Care. This approval is for a one-year period, beginning on the date of approval by the committee. *** For external funding agencies, if the Office of the Vice President for Research and Graduate Studies, or the Dean's Office notifies us of a funding date, your approval will be extended for one year following the funding

Should your project extend beyond one year, you should resubmit your request to the committee. For your convenience, the new Yearly Renewal Form is designed so that resubmissions maybe accomplished by merely identifying the earlier proposal and assuring that the proposal is being resubmitted with revisions.

The title of your approved proposal, the date of approval and the tracking numbers assigned (both ORD and AUF numbers) are given below. You should retain this information for future use. Please note that, according to University policy, no significant changes may be made to your animal-use plan without prior approval from the AUCAUC. Requests for review of proposed revisions may be made by submitting a new Animal Use Form or by sending a letter to the AUCAUC, C103 Clinical Center.

Title

UNDERSTANDING CHANGES IN LIPOGENESIS AND LIPOLYSIS IN HOLSTEIN STEERS TREATED WITH BOVINE SOMATOTROPIN THROUGHOUT

THE FINISHING PERIOD

AUF Number: 06/94-141-01

ORD Number: N/A

Funded By: DEPARTMENT

Approved: 06/24/94

Expires: 06/24/95

ATE/cjf

cc: I

Dr. Haynard G. Hogberg, Chairperson

ANIMAL SCIENCE
102 ANTHONY HALL

MSU is an Affirmative Action/Equal Opportunity Institution

LITERATURE CITED

LITERATURE CITED

- Allen, P., and W.J. Enright. 1989. Effects of administration of somatotropin on meat quality in ruminants: A review. In: K. Sejrsen, M. Vestergaard, and A. Neimann-Sørensen (Eds.) Use of Somatotropin in Livestock Production. pp 201-209. Elsevier Applied Science, London.
- Anderson, P.T., D.R. Hawkins, W.G. Bergen, and R.A. Merkel. 1988. A note on drymatter intake and composition of gain of Simmental bulls and steers fed to the same weight or age. Anim. Prod. 47:493–496.
- Anthonsen, M.W., L. Rönnstrand, C. Wernstedt, E. Degerman, and C. Holm. 1998. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J. Biol. Chem. 273:215-221.
- Apple, J.K., M.E. Dikeman, D.D. Simms, and G. Kuhl. 1991. Effects of synthetic hormone implants, singularly or in combinations, on performance, carcass traits, and longissimus muscle palatability of Holstein steers. J. Anim. Sci. 69:4437-4448.
- Bartle, S.J., and R.L. Preston. 1994. Role of dietary protein level and source on the response of feedlot steers to anabolic implants. J. Anim. Sci. 72:(Suppl. 2):44 (Abstr.).
- Bauman, D.E., J.H. Eisemann, and W.B. Currie. 1982. Hormonal effects on partioning of nutrients for tissue growth: Role of growth hormone and prolactin. Fed. Proc. 41:2538-2544.
- Beermann, D.H., V.K. Fishell, K. Roneker, R.D. Boyd, G. Armbuster, and L. Souza. 1990a. Dose-response relationships between porcine somatotropin, muscle composition, muscle fiber characteristics and pork quality. J. Anim. Sci. 68:2690-2697.
- Beermann, D.H., D.E. Hogue, V.K. Fishell, S. Aronica, H.W. Dickson, and B.R. Schricker. 1990b. Exogenous human growth hormone-releasing factor and ovine somatotropin improve growth performance and composition of gain in lambs. J. Anim. Sci. 68:4122:4133.
- Belfrage, P. 1985. Hormonal control of lipid degradation. In: A. Cryer and R.L.R. Van (Eds.) New Perspectives in Adipose Tissue: Structure, Function, and Development. Butterworths, Boston.

- Bell, G.I., J.P. Merryweather, R. Sanchez-Pescador, M.M. Stempein, L. Priestley, J. Scott, and L.B. Rall. 1984. Sequence of cDNA clone encoding human preproinsulin-like growth factor II. Nature. 310:775-777.
- Bennet, G.W., and S.A. Whitehead. 1983. Mammalian Neuroendocrinology. Oxford University Press. New York. pp 154-176.
- Boggs, D.L., and R.A. Merkel. 1993. Live Animal Carcass Evaluation and Selection Manual (4th Ed.). Kendall/Hunt Publishing Co., Dubuque, IA.
- Boisclair, Y.R., D.E. Bauman, A.W. Bell, F.R. Dunshea, and M. Harkins. 1994. Nutrient utilization and protein turnover in the hindlimb of cattle treated with bovine somatotropin. J. Nutr. 124:664-673.
- Boisclair, Y.R., F.R. Dunshea, B.A. Crooker, K.B. Johnston, D.E. Bauman, A.W. Bell, and K. Sejrsen. 1989. Increased response of adipose tissue to lipolytic stimuli in bovine somatotropin treated growing cattle. J. Anim. Sci. 67(Suppl. 1):216 (Abstr.).
- Boisclair, Y.R., K.B. Johnston, D.E. Bauman, B.A. Crooker, F.R. Dunshea, and A.W. Bell. 1997. Paradoxical increases of circulating nonesterified fatty acids in somatotropin treated cattle undergoing mild disturbances. Dom. Anim. Endocrinol. 14:251-262.
- Bonneau, M. 1991. The effects of exogenous growth hormone-releasing factor or somatotropin administration on growth performance, carcass characteristics, meat quality and reproductive function in poultry and pigs. In: P. Van der Wal, G.M. Weber, and F.J. van der Wilt (Eds.). Biotechnology for Control of Growth and Product Quality in Meat Production: Implications and Acceptability. Proceedings of an International Symposium. Pp. 67-89. Washington, D.C. Pudoc: Wageningen, Netherlands.
- Borland, C.A., M.C. Barber, M.T. Travers, and R.G. Vernon. 1994. Growth hormone inhibition of lipogenesis in sheep adipose tissue: Requirement for gene transcription and polyamines. J. Endocrinol. 142:235-243.
- Brameld, J.M., J.L. Atkinson, J.C. Saunders, J.M. Pell, P.J. Buttery, and R.S. Gilmour. 1996. Effects of growth hormone administration and dietary protein intake on insulin-like growth factor I and growth hormone receptor mRNA expression in porcine liver, skeletal muscle, and adipose tissue. J. Anim. Sci. 74:1832-1841.
- Bruce, L.A., T. Atkinson, J.S.M. Hutchinson, R.A. Shakespear, and J.C. MacRae. 1991. The measurement of insulin-like growth factor I in sheep plasma. J. Endocrinol. 128:R1-R4.

- Butler-Hogg, B.W., and I.D. Johnsson. 1987. Bovine growth hormone in lambs: Effects on carcass composition and tissue distribution in crossbred females. Anim. Prod. 44:117-124.
- Campion, D.R., and J. Novakofski. 1991. Technical perspective of biotechnology for control of growth and quality in meat production. In: Biotechnology for Control of Growth and Product Quality in Meat Production: Implications and Acceptability. Proceedings of an International Symposium. P. van der Wal, G.M. Weber, and F.J. van der Wilt (Eds.). Washington, DC. Pudoc: Wageningen, Netherlands.
- Carey, G.B. 1995. Adenosine regulaiton of adipose tissue metabolism. In: S.B. Smith and D.R. Smith (Eds.) The Biology of Fat in Meat Animals: Current Advances. pp 35-52. American Society of Animal Science. Champaign, IL.
- Cianzio, D.S., D.G. Topel, G.B. Whitehurst, D.C. Beitz, and H.L. Self. 1985. Adipose tissue growth and cellularity: Changes in bovine adipocyte size and number. J. Anim. Sci. 60:970-976.
- Coble, D.S., L.L. Wilson, J.P. Hitchcock, H. Varela-Alvarez, and M.J. Simpson. 1971. Sire, sex, and laterality effects on bovine metacarpal and metatarsal characteristics. Growth. 35:65-77.
- Coleman, M.E., L. Russell, and T.D. Etherton. 1994. Porcine somatropin (pST) increases IGF-I mRNA abundance in liver and subcutaneous adipose tissue, but not in skeletal muscle of growing pigs. J. Anim. Sci. 72:918-924.
- Cordle, S.R., R.J. Colbran, and S.J. Yeaman. 1986. Hormone-sensitive lipase from bovine adipose tisssue. Biochim. Biophys. Acta. 887:51-57.
- Dalke, B.S., R.A. Roeder, T.R. Kasser, J.J. Veenhuizen, C.W. Hunt, D.D. Hinman, and G.T. Schelling. 1992. Dose-response effects of recombinant bovine somatotropin implants on feedlot performance in steers. J. Anim. Sci. 70:2130-2137.
- Davis, S.L., U.S. Garrigus, and F.C. Hinds. 1969. Metabolic effects of growth hormone and diethylstilbestrol in lambs. II. Effects of daily ovine growth hormone injections of plasma metabolites and nitrogen retention in fed lambs. J. Anim. Sci. 30:236-240.
- Dickerson, P.S. 1990. Effect of the phenethanolamine, ractopamine, on the adipogenic cell line, TA1. Ph.D. Dissertation. Michigan State University. East Lansing.

- Donkin, S.S., P.Y. Chiu, D. Yin, I. Louveau, B. Swencki, J. Vockroth, C.M. Evock-Clover, J.L. Peters, and T.D. Etherton. 1996. Porcine somatotropin differentially down-regulates expression of the GLUT4 and fatty acid synthase genes in pig adipose tissue. J. Nutr. 126:2568-2577.
- Doris, R.A., G.E. Thompson, E. Finley, E. Kilgour, M.D. Houslay, and R.G. Vernon. 1996. Chronic effects of somatotropin treatment on response of subcutaneous adipose tissue lipolysis to acutely acting factors in vivo and in vitro. J. Anim. Sci. 74:562-568.
- Doris, R., R.G. Vernon, M.D. Houslay, and E. Kilgour. 1994. Growth hormone decreases the response to anti-lipolytic agonists and decreases the levels of G₁₂ in rat adipocytes. Biochem J. 297:41–45.
- Dunshea, F.R., D.E. Bauman, R.D. Boyd, and A.W. Bell. 1992a. Temporal response of circulating metabolites and hormones during somatotropin treatment of growing pigs. J. Anim. Sci. 70:123-131.
- Dunshea, F.R., D.M. Harris, D.E. Bauman, R.D. Boyd, and A.W. Bell. 1992b. Effects of somatotropin on nonesterified fatty acid and glycerol metabolism in growing pigs. J. Anim. Sci. 70:132-140.
- Dunshea, F.R., D.M. Harris, D.E. Bauman, R.D. Boyd, and A.W. Bell. 1992c. Effect of pST on in vivo glucose kinetics and lipogenesis in growing pigs. J. Anim. Sci. 70:141-151.
- Early, R.J., B.W. McBride, and R.O. Ball. 1990a. Growth and metabolism in somatotropin-treated steers: I. Growth, serum chemistry and carcass weights. J. Anim. Sci. 68:4134-4143.
- Early, R.J., B.W. McBride, and R.O. Ball. 1990b. Growth and metabolism in somatotropin-treated steers: II. Carcass and non-carcass tissue components and chemical composition. J. Anim. Sci. 68:4144-4152.
- Early, R.J., B.W. McBride, and R.O. Ball. 1990c. Growth and metabolism in somatotropin-treated steers: III. Protein synthesis and tissue energy expenditures. J. Anim. Sci. 68:4153-4166.
- Egan, J.J., A.S. Greenberg, M. Change, S.A. Wek, and M.C. Moos, Jr. 1992. Mechanism of hormone-stimulated lipolysis in adipocytes in adipocytes: Translocation of hormone-sensitive lipase to the lipid storage droplet. Proc. Natl. Acad. Sci. USA. 89:8537-8541.

- Eisemann, J.H., A.C. Hammond, D.E. Bauman, P.J. Reynolds, S.N. McCutcheon, H.F. Tyrrell, and G.L. Haaland. 1986a. Effect of bovine growth hormone administration on metabolism of growing Hereford heifers: Protein and lipid metabolism and plasma concentrations of metabolites and hormones. J. Nutr. 116:2504-2515.
- Eisemann, J.H., A.C. Hammond, and T.S. Rumsey. 1989. Tissue protein synthesis and nucleic acid concentrations in steers treated with somatotropin. Br. J. Nutr. 62:657-671.
- Eisemann, J.H., H.F. Tyrrell, A.C. Hammond, P.J. Reynolds, D.E. Bauman, G.L. Haaland, J.P. McMurtry, and G.A. Varga. 1986b. Effect of bovine growth hormone administration on metabolism of growing Hereford heifers: Dietary digestibility, energy and nitrogen balance. J. Nutr. 116:157-163.
- Elsasser, T.H., T.S. Rumsey, S. Kahl, S.M. Czerwinski, W.M. Moseley, Y. Ono, M.B. Solomon, F. Harris, and J.M. Fagan. 1998. Effects of Synovex-S® and recombinant bovine growth hormone (Somavubove®) on growth reponse of steers: III. Muscle growth and protein responses. J. Anim. Sci. 76:2346-2353.
- Emara, M. 1937. Some observations on epiphyseal union of long bones in young Egyptian cattle and its importance as an aid in the estimation of age. Vet. Record 49:1534-1537.
- Enright, W.J., J.F. Quirke, P.D. Gluckman, B.H. Breier, L.G. Kennedy, I.C. Hart, J.F. Roche, A. Coert, and P. Allen, 1990. Effects of long-term adminstration of pituitary-derived bovine growth hormone and estradiol on growth in steers. J. Anim. Sci. 68:2345-2356.
- Etherton, T.D., and R.S. Kensinger. 1984. Endocrine regulation of fetal and postnatal meat animal growth. J. Anim. Sci. 59:511-528.
- Etherton, T.D., I. Louveau, M.T. Sørensen, and S. Chaudhuri. 1993. Mechanisms by which somatotropin decreases adipose tissue growth. Am. J. Clin. Nutr. 58(Suppl. 2):287S-295S.
- Etherton, T.D., and Smith, S.B. 1991. Somatotropin and β-adrenergic agonist: their efficacy and mechanisms of action. J. Anim. Sci. 69(Suppl. 2):2-26.
- Evan, H.M., and M.E. Simpson. 1931. Hormones of the anterior hypophysis. Am. J. Physiol. 98:511- 546.
- Fabry, J., V. Claes, and L. Ruelle. 1987. Effect of growth hormone on heifer meat production . Reprod. Nutr. Develop. 27:591-600.

- Gaynor, P.J., K.J. Lookingland, and H.A. Tucker. 1995. 5-hydroxytruptaminergic receptor-stimulated growth hormone secretion occurs independently of changes in peripheral somatostatin concentration. Pro. Soc. Exp. Biol. Med. 209:79-85.
- Gill, J.L. 1988. Standard errors for split-split-plot experiments with repeated measurements of animals. J. Anim. Breed. Genet. 105:329-336.
- Girard, J., D. Perdereau, F. Foufelle, C. Prip-Buss, and P. Ferre. 1994. Regulation of lipogeneic enzyme gene expression by nutrients and hormones. FASEB J. 8:36-42.
- Goodband, R.D., J.L. Nelssen, R.H. Hines, D.H. Kropf, R.C. Thaler, B.R. Schricker, G.E. Fitzner, and A.J. Lewis. 1990. The effects of porcine somatotropin and dietary lysine on growth performance and carcass charactersitics of finishing swine. J. Anim. Sci. 68:3261-3276.
- Grant, A.L., W.G. Helferich, S.A. Kramer, R.A. Merkel, and W.G. Bergen. 1991. Administration of growth hormone to pigs alters the relative amount of insulin-like growth factor-I mRNA in liver and skeletal muscle. J. Endocrinol. 130:331-338.
- Grant, D.L., H.J. Tuma, R.C. Covington, and A.D. Dayton. 1972. Radii epiphyseal closure as an idicator of physiological maturity in beef carcasses. J. Anim. Sci. 34:42-45.
- Greiner, S.P. 1993. Relationship between endocrine factors and rate, efficiency and composition of gain of beef from four biological types. M.S. thesis. Michigan State Univ., East Lansing.
- Groenewegen, P.P., B.W. McBride, J.H. Burton, and T.H. Elsasser. 1990. Effect of bovine somatotropin on growth rate, hormone profiles and carcass composition of Holstein bull calves. Domest. Anim. Endocrinol. 7:43-54.
- Hagen, D.R., E.W. Mills, K.A. Bryan, and A.M. Clark. 1991. Effects of exogenous porcine growth hormone (pGH) on growth, carcass traits, reproductive charactersitics and meat sensory attributes of young boars. J. Anim. Sci. 69:2472-2479.
- Hankins, O.G. and P.E. Howe. 1946. Estimation of the composition of beef carcasses and cuts. Technical Bulletin, United States Department of Agriculture. No. 926.

- Hansen, J.A., J.T. Yen, J. Klindt, J.L. Nelssen, and R.D. Goodband. 1997a. Effects of somatotropin and salbutamol in three genotypes of finishing barrows: Blood hormones and metabolites and muscle characteristics.J. Anim. Sci. 75:1810-1821.
- Hansen, J.A., J.T. Yen, J.L. Nelssen, J.A. Nienaber, R.D. Goodband, and T.L. Wheeler. 1997b. Effects of somatotropin and salbutamol in three genotypes of finishing barrows: Growth, carcass, and calorimeter criteria. J. Anim. Sci. 75:1798-1809.
- Hardt, P.F., L.W. Greene, and D.K. Lunt. 1995. Alterations in metacarpal characteristics in steers and heifers sequentially implanted with Synovex from 45 days of birth. J. Anim. Sci. 73:55-62.
- Harris, D.M., F.R. Dunshea, D.E. Bauman, r.D. Boyd, S.Y. Wang, P.A. Johnson, and S.D. Clarke. 1993. Effect of in vivo somatotropin treatment of growing pigs on adipose tissue lipogenesis. J. Anim. Sci. 71:3293-3300.
- Hart., I.C., P.M.E. Chadwick, T.C. Boone, K.E. Langley, C.Rudman, and L.M. Souza. 1984. A comparison of the growth-promoting, lipolytic, diabetogenic and immunological properties of pituitary and recombinant-DNA derived bovine growth hormone (somatotropin). Biochem. J. 224:93-100.
- Hood, R.L., and C.E. Allen. 1973. Cellularity of bovine adipose tissue. J. Lipid Res. 14:605-610.
- Houseknecht, K.L., D.E. Bauman, G.B. Carey, and H.J. Mersmann. 1995. Effect of bovine somatotropin and food deprivation on β-adrenergic and A1 adenosine receptor binding in adipose tissue of lactating cows. Dom. Anim. Endocrinol. 12:325-336.
- Houseknecht, K.L., D.E. Bauman, D.G. Fox, and D.F. Smith. 1992. Abomasal infusion of casein enhances nitrogen retention in somatotropin-treated steers. J. Nutr. 122:1717-1725.
- Ingle, D.L., D.E. Bauman, and U.S. Garrigus. 1972. Lipogenesis in the ruminant: In vivo site of fatty acid synthesis in sheep. J. Nutr. 102:617-624.
- Ingle, D.L., D.E. Bauman, R.W. Mellenberger, and D.E. Johnson. 1973. Lipogenesis in the ruminant: Effect of fasting and refeeding on fatty acid synthesis and enzymatic activity of sheep adipose tissue. J. Nutr. 103:1479-1488.

- Isgaard, J., A. Milsson, K. Vikman, and O.G.P. Isaksson. 1989. Growth hormone regulates the level of insulin-like growth factor-I mRNA in rat skeletal muscle. J. Endorcinol. 120:107-112.
- Johnson, B.J., M.E. White, M.R. Hathaway, C.J. Christians, and W.R. Dayton. 1998. Effect of a combined trendbolone acetate and estradiol implant on steady-state IGF-I mRNA concentrations in liver of wethers and the longissimus muscle of steers. J. Anim. Sci. 76:491-497.
- Johnson, M.M., and J.P. Peters. 1993. Technical Note: An improved method to quantify nonesterfied fatty acids in bovine plasma. J. Anim. Sci. 71:753-756.
- Johnsson, I.D., I.C. Hart, and B.W. Butler-Hogg. 1985. The effects of exogenous bovine growth hormone and broocriptine on growth, body development, fleece weight and plasma concentrations of growth hormone, insulin and prolactin in female lambs. Anim. Prod. 41:207-217.
- Jones, S.J. and J.A. Marchello. 1983. Lipolysis in subcutaneous adipose tissue from cattle varying in frame size and length of time on a finishing diet. J. Anim. Sci. 57:343-348.
- Kilgour, E., S.A. Baldwin, and D.J. Flint. 1995. Divergent regulation of rat adipocyte GLUT1 and GLUT4 glucose transporters by GH. J. Endocrinol. 145:27-33.
- Klindt, J., F.C. Buonomo, J.T. Yen, and C.A. Baile. 1995. Growth performance, carcass characteristics, and sensory attributes of boars administered porcine somatotropin by sustained-release implant for different lengths of time. J. Anim. Sci. 73:3585-3595.
- Koch, A.R., R.P. Kromann, and T.R. Wilson. 1979. Growth of body protein, fat, and skeleton in steers fed on three planes of nutrition. J. Nutr. 109:426-436.
- Kopchick, J.J., and J.A. Cioffi. 1991. Exogenous and endogenous effects of growth hormone in animals. Livestock Prod. Sci. 27:61-75.
- Kramer, S.A., W.G. Bergen, A.L. Grant, and R.A. Merkel. 1993. Fatty acid profiles, lipogenesis, and lipolysis in lipid depots in finishing pigs treated with recombinant porcine somatotropin. J. Anim. Sci. 71:2066-2072.
- Krick, B.J., R.D. Boyd, K.R. Roneker, D.H. Beermann, D.E. Bauman, D.A. Ross, and D.J. Meisinger. 1993. Porcine somatotropin affects the dietary lysine requirement and net lysine utilization for growing pigs. J. Nutr. 123:1913-1922.

- Lanna, D.P.D., K.L. Houseknecht, D.M. Harris, and D.E. Bauman. 1995. Effect of somatotropin treatment on lipogenesis, lipolysis and related cellular mechanisms in adipose tissue of lactating cows. J. Dairy Sci. 78:1703-1712.
- Lapierre, H., C. Farmer, C. Girard, and P. Brazeau. 1992. Effect of age and intake on growth hormone kinetics in dairy heifers. Domest. Anim. Endocrinol. 9:199-207.
- Levitzki, A. 1988. From epinephrine to cyclic AMP. Science 241:800-806.
- Liesman, J.S., J.P. Mcnamara, A.V. Capuco, M.Binelli, W.K. Vanderkooi, R.S. Emery, H.A. Tucker, and W.M. Moseley. 1995. Comparison of growth hormone-releasing factor and somatotropin: Lipid and glucose metabolism in dairy cattle. J. Dairy Sci. 78:2159-2166.
- Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolfinger.1996. SAS® System for Mixed Models. SAS Inst. Inc., Cary, NC.
- Liu, C.Y., A.L. Grant, K.H. Kim, and S.E. Mills. 1994. Porcine somatotropin decreases acetyl-CoA carboxylase gene expression in porcine adipose tissue. Domest. Anim. Endocrinol. 11:125-132.
- Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.
- Loy, D.D., H.W. Harpster, and E.H. Cash. 1988. Rate, compostion and efficiency of growth in feedlot steers reimplanted with growth stimulants. J. Anim. Sci. 66:2668-2677.
- Magri, K.A., M. Adamo, D. Leroith, and T.D. Etherton. 1990. The inhibition of insulin action and glucose metabolism by porcine growth hormone on porcine adipocytes is not the result of any decrease in insulin binding or insulin receptor kinase activity. Biochem. J. 266:107-113.
- Maltin, C.A., M.I. Delday, S.M. Hay, G.M. Innes, and P.E.V. Williams. 1990. Effects of bovine pituitary growth hormone alone or in combination with the β-agonist clenbuterol on muscle growth and composition in veal calves. J. Nutr. 63:535-545.
- Martinez, J.A., A.S. Del Bario, and J. Larralde. 1991. Evidence of a short-term effect of grwoth hormone on in vivo bone protein synthesis in normal rats. Biochimica et Biophysica Acta. 1093:111-113.

- Matthews, L.S., G. Norstedt, and R.D. Palmiter. 1986. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc. Natl. Acad. Sci. USA. 83:9343-9347.
- McAndrews, J.M., C.M. Stroud, R.D. MacDonald, W.C. Hymer, and D.R. Deaver. 1993. Age-related changes in the secretion of growth hormone in vivo and in vitro in infantile and prepubertal Holstein bull calves. J. Endocrinol. 139:307-315.
- McBride, B.W. and W.M. Moseley. 1991. Influence of exogenous somatotropin on the components of growth in ruminants. In: P. Vander Wal, G.M. Weber, and F.J. van der Wilt (Eds.) Biotechnology for Control of Growth and Product Quality in Meat Production: Implications and Acceptability. Proceedings of an International Symposium. Washington, D.C. p 91-103. Pudoc, Wageningen, The Netherlands
- McCutcheon, S.N., and D.E. Bauman. 1986. Effect of chronic growth hormone treatment on responses to epinephrine and thyroid-releasing hormone in lactating cows. J. Dairy Sci. 69:44-51.
- Mikel, W.B., T.G. Althen, R.W. Rogers, A.B. Moore, H.W. Miller, and L.F. Miller. 1993. Effects of exogenous porcine somatotropin on the carcass composition, hormonal and metabolic profiles, lipogenic capacity, and binding of insulin to erythrocyte receptors of fast- versus slow-growing swine. J. Anim. Sci. 71:1786-1795.
- Mildner, A.M, and S.D. Clarke. 1991. Porcine fatty acid synthase: Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein. J. Nutr. 121:900-907.
- Moller, D.E., and J.S. Flier. 1991. Insulin resistance-mechanisms, syndromes, and implications. N. Engl. J. Med. 325:938-948.
- Moseley, W.M., L.F. Krabill, and R.F. Olsen. 1982. Effects of bovine growth hormone adminstered in various patterns on nitrogen metabolism in the Holstein steer. J. Anim. Sci. 55:1062-1070.
- Moseley, W.M., J.P. Paulissen, M.C. Goodwin, G.R. Alaniz, and W.H. Clafin. 1992. Recombinant bovine somatotropin improves growth performance in finishing steers. J. Anim. Sci. 70:412-425.
- Muesing, R.A., and J.W. Porter. 1975. Fatty acid synthase from pigeon liver. Methods Enzymol. 35:45-59.

- Muir, L.A., S. Wien, P.F. Duquette, E.L. Rickes, and E.H. Cordes. 1983. Effects of exogenous growth hormone and diethlstibestrol on growth and carcass composition of growing lambs. J. Anim. Scie 56:1315-1323.
- Mulvaney, D.R. 1984. Effects of castration and administration of androgens to castrated male pigs upon growth and carcass composition. PhD. Dissertation. Michigan State Univ. East Lansing.
- NCBA. 1995. The National Beef Quality Audit, Executive Summary 1995. National Cattlemen's Beef Association, Englewood, CO.
- NRC. 1984. Nutrient Requirements of Beef Cattle (6th Ed.), National Academy Press, Washington, D.C.
- NRC. 1996. Nutrient Requirements of Beef Cattle (6th Ed.), National Academy Press, Washington, D.C.
- Pell, J.M. 1997. Regulation of insulin-like growth factor I bioavailability in growing animals. J. Anim. Sci. 75(Suppl. 2):20-31.
- Pell, J.M., C. Elock, R.L. Harding, D.J. Morrell, A.D. Simmonds, and M. Wallis, 1990. Growth, body composition, hormonal and metabolic status in lambs treated long-term with growth hormone. Br. J. Nutr. 63:431-445.
- Peters, J.P. 1986. Consequences of accelerated gain and growth hormone administration for lipid metabolism in growing beef steers. J. Nutr. 116:2490-2503.
- Plaut, G.W.E. 1962. Isocitrate dehydrogenase (TPN-linked) from pig heart (revised procedure). Methods Enzymol. 5:645-651.
- Plouzek, C.A., and A. Trenkle. 1991a. Growth hormone parameters at four ages in intact and castrated male and female cattle. Domest. Anim. Endocrinol. 8:63-72.
- Plouzek, C.A., and A. Trenkle. 1991b. Insulin-like growth factor-I concentrations in plasma of intact and castrated male and female cattle at four ages. Domest. Anim. Endocrinol. 8:73-79.
- Pothoven, M.A., D.C. Beitz, and J.H. Thornton. 1975. Lipogenesis and lipolysis in adipose tissue of ad libitum and restricted-fed beef cattle during growth. J. Anim. Sci. 40:957-962.

- Preston, R.L., S.J. Bartle, T.R. Kasser, J.W. Day, J.J. Veenhuizen, and C.A. Baile. 1995. Comparative effectiveness of somatotropin and anabolic steroids in feedlot steers. J. Anim. Sci. 73:1038-1047.
- Preston, R.L. 1987. Role of anabolic and repartioning agents in the production of lean beef. In: Proc. Southwest Nutrition and Management Conference. Pp 12-25.
- Prusca, K.L., C.A. Fedler, and L.F. Miller. 1993. National in-home consumer evaluation of pork roasts from pigs administered porcine somatotropin (pST). J. Food Sci. 58:480-481, 496.
- Rathmacher, J.A., F.J. Bonilla, c. Nizzi, J.C. liams, A. Al-Owaimer, D.C. Beitz, S.L. Nissen, and A. Trenkle. 1996. Effects of bovine somatotropin and Revalor-S[®] on growth performance and carcass leanness in beef cattle. Iowa State Beef Res. Rpt. AS-632. Pp 97-101.
- Richelsen, B. 1992. Release and effects of prostaglandings in adipose tissue. Prostaglandins Leukot Essent Fatty Acids 47:171-182.
- Roeder, R.A., M.J. Garber, B.S. Dalke, T.R. Kasser, J. Veenhuizen, and G.T. Schelling. 1994. Effects of recombinant bovine somatotropin implants on serum concentrations of somatotropin, insulin-like growth factor-I and blood urea nitrogen in steers. Growth Regulation. 4:101-107.
- Roupas, P., S.Y. Chou, R.J. Towns, and J.L. Kostyo. 1991. Growth hormone inhibits activation of phosphatidylinositol phospholipase C in adipose plasma membranes: Evidence for a growth hormone-induced change in G protein function. Proc. Natl. Acad. Sci. USA. 88:1691-1695.
- Rule, D.C., D.C. Beitz, G. De Boer, R.R. Lyle, A.H. Trenkle, and J.W. Young. 1985. Changes in hormone and metabolic concentrations in plasma of steers during a prolonged fast. J. Anim. Sci. 61:868-875.
- Rule, D.C., J.H. Thornton, A.D. McGilliard, and D.C. Beitz. 1992. Effect of adipose tissue site, animal size, and fasting on lipolysis in bovine adipose tissue in vitro. Int. J. Biochem. 24:789-793.
- Rumsey, T.S., t.H. Elsasser, S. Kahl, W.M. Moseley, and M.B. Solomon. 1996. Effects of Synovex-S[®] and recombinant bovine growth hormone (Somavubove[®]) on growth responses of steers: I. Performance and composition of gain. J. Anim. Sci. 74:2917-2928.
- SAS. 1994. SAS/STAT® User's Guide (Ver. 6, 4th Ed.) Vol. 2. SAS Inst. Inc. Cary, NC.

- Scheven, B.A.A., and N.J. Hamilton. 1991. Longitudinal bone growth in vitro: Effects of insulin-like growth factor I and growth hormone. Acta Endocrinol (Copenh). 124:602-607.
- Schwarz, F.J., D. Schams, R. Ropke, M. Kirchgessner, J. Kogel, and P. Matzke. 1993. Effects of somatotropin treatment on growth performance, carcass traits, and the endocrine system in finishing beef heifers. J. Anim. Sci. 71:2721-2731.
- Sechen, S.J., F.R. Dunshea, and D.E. Bauman. 1990. Somatotropin in lactating cows: Effects on response to epinephrine and insulin. Am. J. Phys. 258:E582-E588.
- Sharma, B.K., M.J. VandeHaar, and N.K. Ames. 1994. Expression of insulin-like growth factor-I in cows at different stages of lactation and in late lactation cows treated with somatotropin. J. Dairy Sci. 77:2232-2241.
- Simon, M.I., M.P. Strathmann, and N. Gautam. 1991. Diversity of G proteins in signal transduction. Science. 252:802-808.
- Sinnett-Smith, P.A., and J.A. Wolliams, 1989a. Atilipogenic by not lipolytic effects of recombinant DNA-derived bovine somatotropin treatment on ovine adipose tissue; variation with genetic type. Int. J. Biochem. 21:535-540.
- Sinnett-Smith, P.A., J.A. Woolliams, P.D. Warriss, and M. Enser. 1989b. Effects of recombinant DNA-derived bovine somatotropin on growth, carcass characteristics and meat quality in lambs from three breeds. Anim. Prod. 49:281-289.
- Sisson, S. 1953. Osteology arthology. In: J.D. Grossman (Ed.) In the Anatomy of the Domestic Animals. Saunders. Philadelphia.
- Slootweg, M.C. 1993. Growth hormone and bone. Horm. Metab. Res. 25:335-343.
- Solomon, M.B., R.G. Campbell, N.C. Steele, T.J. Caperna, and J.P. McMurtry. 1988. Effect of feed intake and exogenous porcine somatotropin on longissimus fiber characteristics of pigs weighing 55 kilograms live weight. J. Anim. Sci. 66:3279-3284.
- Sticker, L.S., D.L. Thompson, Jr., L.D. Bunting, and J.M. Fernandez. 1996. Dietary protein and energy restriction in mares: Rapid changes in plasma metabolite and hormone concentrations during dietary alterations. J. Anim. Sci. 74:1326-1335.

- Sztalryd, C., and F.B. Kraemer. 1994. Regulation of hormone-sensitive lipase during fasting. Am. J. Physiol. 266:E179-E185.
- Turner, N.D., L.W. Greene, F.M. Byers, and D.C. Kenison. 1995. Influence of incremental zeranol implant doses on the chemical and physical characteristics of third metacarpal bone and chemical composition of liver and soft tissue from feedlot steers. J. Anim. Sci. 73:1-8.
- USDA. 1998. National carcass premiums and discounts for slaughter steers and heifers, June 29, 1998. USDA Market News, Des Moines, IA
- Van Sickle, D.C. 1985. Control of postnatal bone growth. J. Anim. Sci. 61(Suppl. 2):76-91.
- Vernon, R.G. 1980. Lipid metabolism in the adipose tissue of ruminant animals. Prog. Lipid. Res. 19:23-106.
- Vernon, R.G. 1982. Effects of growth hormone on fatty acid synthesis in sheep adipose tissue. Int. J. Biochem. 14:255-258.
- Vernon, R.G., M.C. Barber, and E. Finley. 1991a. Modulation of the activity of acetyl-CoA carboxylase and other lipogenic enzymes by growth hormone, insulin, and dexamethasone in sheep adipose tissue and relationship to adaptations to lactation. Biochem. J. 274:543-548.
- Vestergaard, M., S. Purup, P. Henckel, E. Tonner, D.J. Flint, L.R. Jensen, and K. Sejrsen. 1995. Effects of growth hormone and ovariectomy on performance, serum hormones, insulin-like growth factor-binding protein, and muscle fiber properties of prepuertal Friesian heifers. J. Anim. Sci. 73:3574-3584.
- Vestergaard, M., K. Sejrsen, J. Foldager, S. Klastrup, and D.E. Bauman. 1993. The effect of bovine growth hormone on growth, carcass composition, and meat quality of dairy heifers. Acta Agric. Scand. 43:165-172.
- Wagner, J.F. and E.L. Veenhuizen. 1978. Growth performance, carcass deposition and plasma hormone levels in wether lambs when treated with growth hormone and thyroprotein. J. Anim. Scie. 47(Suppl. 1):397 (Abstr.).
- Wallace, A.L.C. and J.M. Bassett. 1966. Effect of sheep growth hormone on plasma insulin concentration in sheep. Metabolism. 15:95-97.
- Walton, P.E., and T.D. Etherton. 1986. Stimulation of lipogenesis by insulin in swine adipose tissue: Antagonism by porcine growth hormone. J. Anim. Sci. 62:1584-1595.

- Walton, P.E., T.D. Etherton, and C.S. Chung. 1987. Exogenous pituitary and recombinant growth hormones induce insulin and insulin-like growth factor 1 resistance in pig adipose tissue. Domest. Anim. Endocrinol. 4:183-189.
- Watt, P.W., E. Finley, S. Cork, R.A. Clegg, and R.G. Vernon. 1991. Chronic control of the β and α_2 -adrenergic systems of sheep adipose tissue by growth hormone and insulin. Biochem. J. 273:39-42.
- Watt, P.W., R.J. Madon, D.J. Flint, and R.G. Vernon. 1990. Effects of growth hormone on the β-adrenergic receptor number of rat adipocyte membranes. Biochem. Soc. Trans. 18:486.
- Wise, D.F., R.S. Kensinger, H.W. Harpster, B.R. Schricken, and D.E. Carbaugh. 1988. Growth performance and carcass merit of lambs treated with growth hormone releasing factor (GRF) or somatotropin (ST). J. Anim. Sci. 66(Suppl. 1):275 (Abstr.).
- Wolf, G. 1996. Nutritional and hormonal regulation of fatty acid synthase. Nutr. Rev. 54:122-123.
- Wray-Cahen, W., R.D. Boyd, D.E. Bauman, and D.A. Ross. 1993. Effect of porcine somatotropin on the response of growing pigs to acute challenges of glucose, insulin and epinephrine and during a hyperinsulinemic-euglycemic clamp. Domest. Anim. Endocrinol. 10:103-115.
- Zubay, G.L. 1988. Biochemistry (2nd Ed.). p 673. Macmillan Publishing Co., New York.

