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ABSTRACT

SOLVING POLYNOMIAL SYSTEMS

IN C" BY POLYHEDRAL HOMOTOPIES

By

Xing Li

In the last two decades, the homotopy continuation method has been developed

into a reliable and efficient numerical algorithm for solving all isolated zeros of poly-

nomial systems. During the last few years, a major computational breakthrough has

emerged in the area. Based on the Bernshtein theory on root count, the polyhedral h0-

motopy is established to considerably reduce the number of homotopy paths that need

to be traced to find all the isolated roots, making the method much more powerful.

The main goal of this dissertation is to present a strategy which uses homotopy

continuation method efficiently to solve polynomial systems via mixed cell calculation.
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Introduction

Polynomial systems arise quite commonly in many fields of science and engineering,

such as formula construction, geometric intersection, inverse kinematics, power flow

with PQ-specified bases, computation of equilibrium states, etc., see [10]. Elimination

theory-based methods, most notably the Buchberger algorithm [5] for constructing

Griibner bases, are the classical approach to solving multivariate polynomial systems,

but their reliance on symbolic manipulation makes those methods somewhat unsuit-

able for all but small problems.

In 1977, Garcia and Zangwill [14] and Drexler [11] independently presented the-

orems suggesting that homotopy continuation could be used to find the full set of

isolated zeros of a polynomial system numerically. During the last two decades this

method has been developed into a reliable and efficient numerical algorithm for ap-

proximating all isolated zeros of polynomial systems. See [23] for a survey.

Let P(x) = 0 be a system of n polynomial equations in n unknowns. Denoting

P = (p1, ..., p"), we want to find all isolated solutions of

p1($1,...,$n) = 0

(1)

1),,(231, ...,:cn) = 0,

for x = ($1, ..., :12"). The classical homotopy continuation method for solving (1) is

to define a system that is easy to solve Q(x) = (q1(x), ..., qn(x)) = 0 and then follow



the curves in the real variable t which make up the solution set of

0 = H(x, t) = (1 — t)Q(x) + tP(x). (2)

More precisely, if the system Q(x) , known as the start system, is chosen correctly,

the following three properties hold:

a Property 1 (Triviality). The solutions of Q(x) = 0 are known.

0 Property 2 (Smoothness). The solution set of H(x, t) = 0 for 0 S t S 1 consists

of a finite number of smooth paths, each parametrized by t in [0, 1).

0 Property 3 (Accessibility). Every isolated solution of H(x, 1) :2 P(x) = 0 can

be reached by some path originating at t = 0. It follows that this path starts

at a solution of H(x, 0) = Q(x) = 0.

When the three properties hold, the solution paths can be followed from the initial

points (known because of Property 1) at t = 0 to all solutions of the original problem

P(x) = 0 at t = 1 using standard numerical techniques [1, 2]. A homotopy H(x, t) =

0 with H(x,0) = Q(x) and H(x, l) = P(x), which may not be in the form of (2), is

considered to be successful if it satisfies these three properties.

A typical choice [8, 22, 24, 30, 46, 47] of the system Q(x) = (q1(x), ..., q,,(x)) which

satisfies Properties 1-3 is,

q1(:1:1,...,:c,,) = alx‘f‘ — b1

(3)

q,,(:r1, ..., as") = anzf‘," — I)",

where d1, ..., d,, are the degrees of p1(x), ..., pn(x) respectively, and a,, b,- are random

complex numbers (and therefore nonzero with probability one). So in one sense, the

original problem posed is solved. All solutions of P(x) = 0 are found at the end of

d1 - - - (1,, paths that make up the solution set of H(x, t) = 0,0 5 t S 1.

2
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Figure 1: Solution curves of H(2:, t) = 0

The reason the problem is not satisfactorily solved by the above considerations is

the existence of extraneous paths. Although the above method produces d = d1 - - - d"

paths since Q(x) = 0 in (3) has d isolated nonsingular solutions, the system P(x) = 0

may have fewer than d solutions. We call such a system deficient. In this case, some

of the paths produced by the above method will be extraneous paths.

More precisely, even though Properties 1-3 imply that each solution of P(x) = 0

will lie at the end of a solution path, it is also consistent with these properties that

some of the paths may diverge to infinity as the parameter t approaches 1 (the

smoothness property rules this out for t —> to < 1). In other words, it is quite

possible for Q(x) = 0 to have more solutions than P(x) = 0. In this case, some

of the paths leading from roots of Q(x) = 0 are extraneous, and diverge to infinity

when t —) 1 (See Figure 1).

Empirically, we find that most systems arising in applications are deficient. A great

majority of the systems have fewer than, and in some cases only a small fraction of,



the expected number of solutions. For a typical example of this sort, let us look at the

following Cassou-Nogues system

p1 = 15b4cd'z + 6b4c3 + 21b4c2d — 144b’c — 8b2c2e

—28b2cde — 648b2d + 36b2d28 + 9b40l3 -— 120,

p2 = 30b4c3d -— 32cde2 — 720b2cd — 24b2c3e — 432b2c2 + 576ce — 576de

+16b2cd2e + 16d2e2 + l6c2e2 + We + 39b4c2cz2 + 18b4cd3

—432b2d2 + 24b2d3e — 16b2c2de — 240c + 5184, (4)

p3 = 216b2cd — 162b2d2 — 81b2c2 + 1008ce — 1008de + 15b2c2de

—15b2c3e — 80cde2 + 40dze2 + 40c2e2 + 5184,

p4 = 4b2cd — 3b2d'z — 4b2c2 + 22ce — 22de + 261.

Since d1 = 7, d2 = 8,d3 = 6 and d4 = 4 for this system, the system Q(x) in (3) will

produce d1 x d2 x d3 x d; = 7 x 8 x 6 x 4 = 1344 paths for the homotopy in (2).

However, the system (4) has only 16 isolated zeros. Consequently, a major fraction

of the paths are extraneous. Sending out 1344 paths in search of 16 solutions is a

highly wasteful computation.

The choice of Q(x) in (3) to solve the system P(x) = 0 requires an amount of

computational effort proportional to dl - - - d”, known as the Bézout number, which

bounds the number of isolated zeros, counting multiplicities, of P(x) in C" [39]. We

wish to derive methods for solving deficient systems for which the computational

effort is instead proportional to the actual number of solutions.

In the last few years, a major computational breakthrough has emerged in the area.

The new idea takes a great advantage of the Bernshtein theory [4] which provides a

much tighter bound, compared to the Bézout bound, for the number of isolated zeros



of P(x) in the algebraic tori (C‘ )", where C“ = C \ {0}. The so called polyhedral

homotopy [18] is then established for the new method and the homotopy paths so

produced is much fewer. Accordingly, the required computation effort is considerably

reduced. The new algorithm is very promising. In particular, for polynomial systems

without special structures, the new algorithm outperformed the existing methods by

a big margin.

The purpose of this dissertation is to present a strategy of solving polynomial sys-

tems by polyhedral homotopy efficiently via newly developed mixed cell calculation.

The polyhdreal homotopy and some necessary terminologies are introduced in Chap-

ter 1. In Chapter 2, we give a basic linear programming algorithm which serves as

a main tool for the mixed cell calculation presented in Chapter 3. Our algorithms

have been implemented successfullly, the numerical results on substantial variety of

examples are presented in Chapter 4.



CHAPTER 1

Polyhedral Homotopy

The Bernshtein theory on root count of polynomial systems is essential for our attempt

to reduce the number of homotopy curves need to be traced when the homotopy

continuation method is employed to find all isolated zeros of polynomial systems.

In the first section of this chapter, the Bernshtein theory on root count in (0')”,

where C“ = C\ {O} , as well as its extension to root count in C" are presented. In the

second section, the polyhedral homotopy, based on the Bershtein theory, for finding

all isolated zeros of a polynomial system is introduced. In the last section, we will

disscuss how to solve a binomial system to obtain initial solutions of a polyhedral

homotopy.

1.1 Bernshtein Theory

Let the given polynomial system be P(x) = (p1(x), - -- ,pn(x)) E C[x], where x =

(2:1,n- ,3“). With at" = 22‘," ”4:3," where a = (a1,--- ,an), write

p1(X) : 26111238:

aESI

(1.1)

pn(x) = 2 Clay,

:6Sn



where 51,-” ,5" are fixed subsets of N" with cardinals k,- = #Sj, and c}... E C“

for a E S,-,j = 1,--- ,n. We call S,- the support of pJ-(x), denoted by supp(p,-), its

convex hull K,- = conv(.S'j) in IR" the Newton polytope of p,-, and S = (5'1, - - - ,3”)

the support of P(x), denoted by supp(P).

We now embed the system (1.1) in the system P(c,x) = (p1(c,x), - -- ,pn(c,x))

where

p1(c,X) = Z cum“.

aESI

(1.2)

pn(C.X) = Z amar‘,

lESn

and the coemcients 01',- with a E Sj, for j = 1,-o- ,n in the system are taken to be

a set of M E k1 + - - - + kn variables. Namely, the system P(x) in (1.1) is considered

as a system in (1.2) corresponding to a set of specified values of coefficients 6 = (egg)

or P(x) = P(c,x).

We shall refer to the total number of isolated zeros, counting multiplicities, of a

polynomial system as the root count of the system.

Lemma 1.1 [17] For polynomial systems P(c, x) in (1.2), there exists a polynomial

system G(c) = (gl(c),--- ,g,,(c)) in the variables c = (9,.) for a E S,- and j =

1, - - . ,n such that for those coefi‘icients E: = (c;,.) for which G(E) 75 0, the root count

in (C‘ )u of the corresponding polynomial systems in (1.2) is a fixed number. And the

root count in ((C" )" of any other polynomial systems in (1.2) is bounded above by this

number.

Remark 1.2 Since the zeros of the polynomial system G(c) in the above lemma form

an algebraic set with dimension smaller than M, its complement is open and dense

with full measure in CM . Therefore, with probability one, G(é) 75 0 for randomly



chosen coefficients 6 = (ch) 6 (CM . Hence, polynomial systems P(é,x) in (1.2)

with G(c) # 0 are said to be in general position.

Theorem 1.3 ([4], Theorem A) The root count in (0')" of a polynomial system

P(x) = (p1(x),...,p,,(x)) in general position equals to the mixed volume of its

support.

The terminology in this theorem needs explanation. For non-negative variables

A1, - - . , A" and the Newton polytopes KJ- ofpj, for j = l, - -- ,n, let A1K1+- - -+/\,,K,,

denote the Minkowski sum of A1K1,- -- , AnKn, that is,

AlKl +"°+AnKn = {A1r1+---+Anr,,|rj E Kj,j = I,’” ,n}.

It can be shown that the n-dimensional volume of this polytope Voln(A1K1 +- - ° +

[\nKn) is a homogeneous polynomial of degree n in A1, - - - , A”. The coefficient of

the term Al x - - - x A“ in this homogeneous polynomial is called the mixed volume of

the polytopes K1, - - - , Kn, denoted by M(K1, ' - - ,Kn), or the mixed volume of the

support of the system P(x) = (p1 (x), - -- , pn(x)), denoted by M(Sl, - - - ,3“) where

53- = supp(p,—) for j = 1, - -- ,n. Sometimes, when no ambiguities exist, it is called

the mixed volume of P(x).

In [6], this root count was nicknamed the BKK bound after its inventors, Bern-

shtein [4], Kushnirenko [21] and Khovanskii [20]. In general, it provides a much

tighter bound compared to variant Bézout bounds [32, 39]. An apparent limitation of

the theorem is that it only counts the isolated zeros of polynomial systems in (C‘ )"

rather than all the isolated zeros in the amne space C”. For the purpose of finding all

the isolated zeros of a polynomial system in C", a generalized version of the theorem

which counts the roots in C" is strongly desirable. This problem was first attempted

in [36] where the notion of the shadowed sets was introduced and a bound for the root

count in C" was obtained. Later, a significantly much tighter bound was discovered

in the following theorem.



Theorem 1.4 [27] The root count in C" of a polynomial system P(x) =

(p1(x),--- ,pn(x)) with supports 5', = supp(p,~),j = 1,~-- ,n is bounded above by

the mixed volume M(Sl U{0}, . . . , Sn U{0}).

In other words, the theorem says that the root count in C“ of a polynomial system

P(x) = (p1 (x), - - - , pn(x)) is bounded above by the root count in (C‘ )” of the poly-

nomial system P(x) in general position obtained by augmenting the constant term to

those p33 in P(x) in which the constant term is absent. As a corollary, when 0 E S,-

for all j = 1, - - - ,n, namely, all p,- (x) in P(x) have constant terms, then the mixed

volume of P(x) also serves as a bound for the root count of P(x) in C", rather than

in (C‘)” as Theorem 1.3 asserts.

This theorem was further extended in several different ways [19, 37].

1.2 Polyhedral Homotopy

In light of Theorem 1.4 given in the last section, to find all isolated zeros of a given

polynomial system P(x) = (p1(x), - - - ,p,,(x)) in C" with support S = ($1, - - - , Sn),

we first augment the monomial x° (=1) to those 12,- ’s which do not have constant

terms. Followed by choosing coefficients of all the monomials in the system generically,

a new system Q(x) = (q1(x), - - . ,q,,(x)) with support 5" = (Si, - - - ,S,’,) is obtained,

where, of course, 8'; = Sj U {0} for j = l, - -- ,n. We will solve this system in the

first place, and the details will be discussed in this section. Afterwards, in Chapter

4, we will present our algorithm to solve P(x) = 0.



To begin, we write

(11(X) = 251,96.

36$;

Q(X) = 5 (1-3)

Qn(x) = Z Emlxa'

aES;

Since all those coeficients 6,3,, for a E S}, j = 1, - - ~ ,n, are chosen generically, this

system may be considered as a system in general position. Namely, there exists a

polynomial system

0(0) = (91(C)w-- ,gm(<=)) (1-4)

in the variables c = (cw), for a E S}, j = l,--- ,n, such that polynomial sys-

tems with G(c) 74 0 reach the maximum root count in (C‘ )" for the support

5’ = (Si,"' ,5;) and we have 0(5) 79 0 for the set of coefficients 6 = (5,3,) in

(1.3).

Let t denote a new complex variable and consider the polynomial system Q(x, t) =

(61(x, t), - - - ,cjn(x,t)) in the n + 1 variables (x, t) given by

@109 t) _____ Z Elfixatwfla),

.653

520“) = s (1.5)

(Mint) = Z 5n..X‘t“"‘“’,

365%

where each w,- : S; —-> R for j = 1, - .. ,n is chosen generically and known as a lifting

on S}. For a fixed to, we rewrite the system in (1.5) as

Z(51,.t301(8))xa
:

the S]

61(xa t0)

Q(X,to) =

qn(x, t0) = Z (5",.t3’n(l))xa
.

1165;,

10



This system is in general position if for G(c) in (1.4),

T(to) ..=. G(a,,.t;,""(") 7e 0, for a e 5;. and j = 1, . .- ,n.

The system T(t) = 0 can have at most finitely many solutions, since T(t) is not

identically 0 because T( 1) = G(Ej,.) 75 0. Let

t1 = rlewli ' ' ' )tk : rkewh

be the solutions of T(t) = 0. Then, for any 0 75 0,- for j = 1, - -- ,k, the systems

Q(x,t) = (q1(x3 t): ' ' ' tq-fl(xit)) given by

q'1(x,t) ___ 2(El’aeiw1(a)9)xatw1(a),

36$]

Q(x, t) =

q"(x, t) = Z (en’aeiuh; (3)0)th‘Wn (a) ,

:6 5;,

are in general position for all t > 0 because

Ej neiwj (a)0tw,- (a) : Ej a(tei9)tvj (a)

and,

G(Ej,.(te‘9)"’1'(‘)) = T(te‘a) 7s 0.

Therefore, without loss of generality, (choose an angle 6 at random and change the

coeficients 6,3. to éj,.e“"1'(“)9 if necessary) we may suppose the systems Q(x, t) in

(1.5) are in general position for all t > 0. Together with Lemma 1.1 given in the last

section, it follows that for all t > 0 the systems Q(x, t) in (1.5) have the same number

of isolated zeros in (C‘ )“. This number, say It, should equal to the mixed volume

of the support of Q(x) in (1.3) by Theorem 1.3. We shall skip this fact temporarily

and will reach this assertion at the end of this section.

Now, consider Q(x, t) = 0 as a homotopy, known as the polyhedral homotopy,

defined on (C‘ )" x [0, 1]. We have Q(x, 1) = Q(x), and the zero set of this homotopy

11



is made up of k homotopy paths, say, x1(t),--- ,x’°(t), since for each 0 < t S 1,

Q(x, t) has exactly I: isolated zeros from the argument given above. Since each

q“,-(x, t) has nonzero constant term for all j = 1, - - - ,n, by a standard application

of generalized Sard’s Theorem [7], all those homotopy paths are smooth with no

bifurcations. Therefore, both Property 2 (Smoothness) and Property 3 (Accessibility)

introduced earlier hold for this homotopy. However, at t = 0, Q(x, 0) E 0, see Figure

1.1. Consequently, the starting points x1(0), . - - ,x"(0) of those homotopy paths

can not be identified, causing the breakdown of the standard homotopy continuation

algorithm. This major obstacle can be overcome by the devise we describe below.

A

Q(x.0) =0 Q(X) =0

 
  

Figure 1.1: Solution curves of Q(x, t) = 0

For a = (0:1,- -- ,an) E R", consider the transformation y = t‘ax defined by

3]] = t—Ollxl,

(1.6)

yn = t'“"z,,.

12



For a: (a1,--- ,an) E N“, we have

. — aloe. a"

: (yltai )ai , , , (ynt°")“"

— “1 . . . an aian+~~+a ayl n t n n

= yat(a,a) .

Here, (-, ) stands for the usual inner product in R". Substituting (1.7) into (1.5)

yields, for j: 1,--- ,n

My, t) E ij(yt°‘, t) = Z: Ej,ay‘t(°‘")t‘”"°’

:65;-

= Z Ej.yat<(a.1).(a.w,-(a))>

365;.

(1.8)

= Z Ej,ay.t<a'a)a

065;

where 61 = ((1,1) 6 Rn“, and a = (a, w,-(a)) for a E S]. The new homotopy

H(y,t)=(h(y1,t),°~- 1hn(ytt))=0 (1'9)

retains most of the properties of the homotopy Q(x, t) = 0, in particular, H(y, 1) =

Q(y, 1) = Q(y) and both Properties 2 (Smoothness) and 3 (Accessibility) stand. Let

[3; = min<c“r,é), 2': 1,~-- ,1: (1.10)
365;-

and define the homotopy

Ha(y1t) = (h?(ytt))... ,h:(y,t)) = 0 (1’11)

13



on (0‘)" x [0,1] where, for j = 1,--- ,n

ham 2 ream) = :a,,.yat<a.a>—aj

:65;-

= Z 52-..1"+ Z 5:..y‘t<“"""’l (1.12)

ass; ass;

(a,a)=s,- (61.5))[31'

Evidently, for any path y(t) defined on [0, 1], we have, for all t > 0,

H.(y(t),t) = 0 «=> Heart) = 0.

Therefore, the zero set of Ha(y, t) = 0 consists of the same homotopy paths of the

homotopy H(y, t) = 0 in (1.9). The difference is, the starting points of the homotopy

paths considered in the homotopy Ha, (y, t) = 0 are solutions of the system

f

h?(}’, 0) = 2 51,83" = O:

1165]

(ata)=Bl

Ha(y,0) = < i (1.13)

h:(yt 0) = Z grimy. : 0-

aESQ

l <a.a>=a. 
As shown below, when this system is in certain desired form, its isolated nonsingular

solutions that lie in (C‘ )" can be constructively identified. In those situations, Prop-

erty 1 (Triviality) becomes partially valid for those homotopy paths of Ha(y, t) = 0

that emanate from those nonsingular solutions of (1.13) in (C‘)", and we may follow

those paths to reach a partial set of isolated zeros of Q(y) at t = 1.

The system (1.13) is known as the binomial system if each h?(y,0) consists of

exactly two terms, that is,

hi’(y,0) = ciy‘“ + c’w"1 = 0,

(1.14)

h:(ya0) : Cnyan + any“; = 0a

14



where aha; E S}, c,- = 51.41,- and c; = 51's;- for j = 1,--- ,n. And in this

case, ({a1,a’1},--- ,{ama:,}) is called a mixed cell (of type (1,--- ,1)) of S’ =

(Si, - - - , 5;) associated with inner normal 07.

Proposition 1.5 The binomial system in (1.14) has

al —a’l

det f (1.15)a
.

D

“
I

  

nonsingular solutions in (0')".

The number kc is called the volume of the mixed cell ({a1,a’1},- .. , {a,,,a;}).

The proof of this proposition is constructive and therefore provides an algorithm for

solving the binomial system (1.14) in (C‘ )”. We will come back to this matter in the

next section.

In summary, for given a = (a1, - - - ,an) 6 R", by changing variables y = t‘ax, as

in (1.6), in the homotopy Q(x, t) = (61(x, t), - -- ,(jn(x,t)) = 0 in (1.5), the homotopy

H(y, t) = (h1(y,t), - -- ,hn(y,t)) = 0 in (1.9) is obtained, where hJ-(y,t) = q‘j(yt°‘,t).

Followed by factoring out the lowest power tfif of t among all monomials in each

individual h,-(y,t) = 0 for j = l,--- ,n we arrive at the homotopy Ha(y, t) = 0

in (1.11). When the start system Ha(y,0) = 0 of this homotopy is binomial, its

nonsingular solutions in (C‘ )“, kc (as given in (1.15)) of them, become available.

We may then follow those homotopy paths of Ho, (y, t) = 0 originated from those

ka regular solutions of Ha(y,0) = 0 in (0')", and reach kc. isolated zeros of Q(y)

at t = 1. Worth notifying here is the fact that the system Q(x), or Q(y), stays

invariant at t = 1 during the process. Now, the existence of oz 6 IR“ for which the

start system H,(y, 0) = 0 is binomial is warranted by the following

15



Proposition 1.6 For all the real functions wj : S; ——> R, j = 1, - -- ,n being gener-

ically chosen, there must exist a E R" , for which the start system Ha(y,0) = 0 of

the homotopy Ha(y, t) = 0 in (1.12) is binomial with a nonempty set of nonsingular

solutions in (C’)", i.e., ha 79 0 in (1.15).

The assertion of this proposition was proved implicitly in [18] with terminologies

and machineries developed in combinatorial geometry, such as, random liftings, fine

mixed subdivisions, lower facets of convex polytopes, etc., see also [23]. Here, we elect

to reinterpret the result without those specialized terms. V

Now, different a 6 IR" given in Proposition 1.6 leads to different homotopy

Ha(y,t) = 0 in (1.11). Henceforth, following homotopy paths of those difl'erent

homotopies will reach different sets of isolated zeros of Q(y). By taking the Puiseux

series expansions of those homotopy paths of Ho, (y, t) = 0 originated at (0‘)" into

consideration, it is not hard to see that those different sets of isolated zeros of Q(y)

reached by different sets of homotopy paths actually disjoint from each other. Most

importantly, it can be shown that every isolated zero of Q(y) can be obtained this

way by following certain homotopy curve of the homotopy Ha(y, t) = 0 associated

with certain a 6 IR“ given by Proposition 1.6. Thus the total number of isolated zeros

of Q(y) must equal to the sum of those ha ’8 corresponding to all the possible a’s

provided by Proposition 1.6, respectively. In [18], it was shown that this sum actually

equal to the mixed volume of Q(y). This yields an alternative proof of Theorem 1.3,

it is very different from Bernshtein’s original approach [4].

1.3 Solve Binomial System

Another major step in solving polynomial systems by using the polyhedral homo-

topy method as we described in the previous section is finding the solutions of the
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corresponding binomial system

cly‘ll + c’lyall = 0,

(1.16)

any“ + 61.31“ = 0.

produced by the mixed cell ({al, a’l}, - -- ,{am a“) as in (1.14). We now discuss the

method for solving (1.16) in (C‘ )“. Let

_ __’

J, 3:1:H'1n1

and, with y E (0)" in mind, we rewrite the system (1.16) as

   

yvl = b1:

(1.17)

yv" : bm

where b,- = ——j for j = 1,--- ,n. Let

1'

V = vf v; v: (1-18)

and for brevity, write

yV___(yv1,.H,yun) and b=(bli°°'ibn)-

Then, (1.17) becomes,

yV = b. (1.19)

With this notation, it is easy to verify that for an n X n integer matrix U, we have,

M)” = W”).
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Now, when the matrix V in (1.18) is an upper triangular matrix, i.e.,

F -

v11 012 ' ' ° Uln

0 022 ' ' ' ‘Uzn

V = ,

L O . . . 0 ”an d  
then the equation in (1.19) becomes

yin] : b1,

ymzyvzz : 02,

1 2 (1.20)

slimy?" - - - 3.13.“ = b...

By forward substitutions, all the solutions of the system (1.20) in (C‘ )“ can be found,

and the total number of solutions is |v11| x - - - x |v,,,,| = [det V|.

In general, we may upper triangularize V in (1.18) by the following process. Recall

that the greatest common divisor d of two nonzero integers a and b, denoted by

gcd(a, b), can be written as

d = gcd(a, b) = ka + lb,

for certain nonzero integers k and I. Let

k l

M =

__9 9.

d d

We have det(M) = 1, and

a k l a d

M = ::

b —g g b 0

Similar to using Givens rotation to produce zeros in a matrix for its QR factorization,

the matrix M may be used to upper triangularize V as follows. For v E Z“, let a
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and b be its i-th and the j-th (nonzero) components where i < j, that is,

  

a -—> i-th

v =

b -—> j-th.

With d = gcd(a, b), we let

i-th j—th

r 1 -

l

k l i-th

1

U(i,j) = (1.21)

1

-3 3 j-th

1

- 1 .  
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Evidently, U(i, j) is an integer matrix with |det(U(i, j))| = 1 and

F' . T

d i-th

U(231)?)

o j-th

  h d

Thus a series of matrices in the form of U(i, j) in (1.21) may be used to successively

produce zeros in the lower triangular part of the matrix V in (1.18), resulting in an

upper triangular matrix. In simple terms, we may construct an integer matrix U , as

a product of those U(i, j) ’s, with |det U | = 1 and UV is an upper triangular integer

matrix.

Now, as mentioned above, the solutions of the system

(zU)V .—_ zUV = b (1.22)

in (C‘ )" can be found by forward substitutions, since UV is an upper triangular

integer matrix. And the total number of solutions in (0')" is

|det(UV)| = |det(U)| . |det(V)[ = |det(V)[.

By letting y = zU for each solution z of (1.22) in (C' )", we obtain all the solutions

of the system (1.22) in (C‘ )", and hence, solve the system (1.16) in (C‘ )”.
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CHAPTER 2

Linear Programming

As outlined in the last chapter, when the polyhedral homotopy is employed to find all

the isolated zeros of a polynomial system P(x) = (p1 (x), - - - , pn(x)) with supports

31,- -- ,5“, one major step is to indentify the mixed cells ({a1,a’1},--- ,{an,a:,})

induced by generic liftings w,- : Sj —> R for j = 1, - - - ,n. As a point of departure in

deve10ping our algorithms for finding all mixed cells in the next chapter, we introduce

in this chapter some basic terminologies and algorithms in linear programming [3] that

will be used in the method.

Consider the model problem

min (f, x) (2.1)

s.t. (c,,x) S b,-, i = 1,--- ,m

where f 6 IR", c, 6 1R“,b = (b1,--- ,bm)T 6 R“, x = (x1,--- ,xn), m > n. The

feasible region of (2.1), denoted by R, defines a polyhedral set. By a nondegenerate

extreme point of R we mean a vertex point of R with exactly n active constraints.

Let x0 be a nondegenerate extreme point of R and J = {j1, - -- , jn} be the set of

indices of currently active constraints at x°, that is,

(c,,x°) = b,-, ifi E J

(c,,x°) < 0;, ifz ¢ J.
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Let DT = [c,-,,- -- .cjn]. Since x0 is a vertex point, D must be nonsingular. Let

D"1 =[u1,-~- ,un]. Then for any a > 0 and 1 S k S n, we have

(cj,,x° - em.) = (c,-,,x°) — a(c,-,,u),) = (cinxo) = b,-, ifi at k, (2 2)

(Cijo — em.) = (cj,,x°) — o(c,,,u,,) = bit. - 0’ < bit.

and for small a > 0 ,

(c,-,x0 — em.) = (c,,x°) — o(c,-,u,.) < b,-, for i ¢ J.

0
Thus the n edges of the feasible region R emanating from x can be represented in

theform

xo—ouh, 0>0, k=1,--- ,n.

These edges provide possible search directions to minimize the objective function

(f, x). Let x1 = x0 — on.- with or > 0. Then the value of the cost function at x1 is

(f,x1) = (f,x°) — a(f,u,-),

and it decreases when (f, u.) > 0. It can be easily shown that x0 is an optimal

solution of (2.1) if (f, u.) S 0 for all i = 1, - - - ,n. If some of the (f, 11,-) ’s are positive,

then the greatest rate of decrease of the cost function is obtained by choosing k such

that

(f,u,,) = max{(f,u,-) | 1 S i g n}.

Let s = u), be the next search direction. From (2.2), for all positive a, the i-

th constraint is still active at x1 = x° - as for every i 6 J\{jk}, and the jk-th

constraint becomes inactive but stays feasible. To make xl feasible, we must choose

a > 0 such that

(c,,x° -— as) = (c,,x°) -— o(c,~,s) g b,, for i 5! J. (2.3)
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If (c,-,s) Z 0 for alli ¢ J, then the inequalities in (2.3) are valid for all a > 0 and

problem (2.1) is unbounded from below with no solution. Otherwise, from (2.3), the

largest possible a for x1 to stay feasible is

(cit X0) '— bi

(c,,s) all i 5! J with (c,,s) < 0}.

 

oo=min{

Let I be the smallest integer such that

(cl, X0) — bl

0° = <c..s>

° — cos is a new extreme point of the feasible region R in (2.1) withThen x1 = x

reduced value of the objective function. This procedure can be continued until either

an optimal solution is reached or the problem is determined to be unbounded from

below.

We summarize the above discussion in Algorithm 1 below [3].

Algorithm 1 Solving the model problem (2.1) .

Step 0: Initialization.

Start with an extreme point x0 of (2.1), J = {i1,--- ,in}, And D‘1 =

[u,,-] = [u1,--- ,ufl], where DT = [d1,--- ,d,,] = [c,-,,--- ,c,,,] is nonsingu-

lar.

Step 1: Computation of the search direction 3.

Determine the smallest index k such that

(f,u;,) = max{(f,u,-) |i= 1,--- ,n}.

If (f, uk) 5 0, stop with optimal solution x0. Otherwise, set s = u), and

go to Step 2.

Step 2: Compute the maximum feasible step size a.

If (c,,s) Z 0 for all i = l,--- ,m, print the message “problem is un-

bounded from below” and stop. Otherwise, compute the smallest index I
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Step 3:

and a such that

(m. X") - b1 (c..X°) - b.-

a : (C115) = min { (Ci, 3)

and go to Step 3.

 alli 6! J with (c,,s) < 0}.

 

Update.

Set x0 := x0 — as. Replace k-th column of DT by c; and update the

inverse D’l . Replace the k-th element of J by l . Go to Step 1.

The process of obtaining next feasible solution from a given feasible solution with

one execution round of Step 1, 2 and 3 is called a pivot operation in Linear Program-

ming.
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CHAPTER 3

Find Mixed Cells

In this chapter we will elaborate our algorithms for finding all mixed cells by solving

a series of linear programming problems.

For i = 1,- - - , n, let S,- be the support of p,-(x) in the polynomial system P(x) =

(p1(x), - -- ,pn(x)) and w,- : S, ——> IR be a generically chosen function. Let

A

S,-={a=(a,w,-(a)) |8€S§}, f01”l=1,°°° ,n

and for a = (ah-u ,an) E IR", write 6: = ((1,1). Recall that a mixed cell of

S = (51,- .. ,S,,) induced by the lifting w = (w1,~- ,m,.) is a collection of pairs

{a1,a'1},--- ,{an,a:,}, with aha] E S,, i = 1,--- ,n

such that there exists an a = (011,-.- ,an) 6 IR“ for which

(find) = (52:51), i: 1r” in

and

(as) > (“,a) for as s,\{a.-,a;}, 2': 1,... ,n.

The geometric meaning of finding those mixed cells is that with generic lifting w,

on lattice points S, C N“ for each i = 1, - . - ,n, we are looking for hyperplanes with
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Figure 3.1: A lifting on lattice points

normal 0‘: = ((1,1) where a 6 IR", and each hyperplane supports the convex hull of

S,- at exactly two points {5.35;} of S5, for each i = 1, - - - ,n, as shown in Figure 3.1.

For 1 S i S n, £2 = {as} C S,- is called a lower edge of S, if there is a vector

(3: = (a, 1) with a 6 R“ such that

(as) = (axes

(as) 5 (Ba), 6 e s.\{a,a'}.

For 1 _<_ k _<_ n, E). =(é1,--- ,ék) where e,- = {are} C S}, for i = 1,-~- ,k, is called

a level-k subface of S = (S1, - - - ,Sn) if there is a vector 61 = (a, 1) with 0: 6 R" such

that for alli=l,--- ,lc,

Obviously, a level- 1 subface of S is just a lower edge of S1 and a level-n subface of

S induces a mixed cell of S. Thus, to find the mixed cells of S, one may proceed
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by finding all the lower edges of S for i = l, - - - ,n in the first place, followed by

extending the level-k subfaces of S from k = 1 to k = n.

It can be shown that the mixed volume of S

M(S) = (—1)"‘1 ivomm) + (—1)"‘2 ZvoMK. + K,)

i=1 i<j

+~~~+Vol..(K1 +---+K,,),

where K,- = conv(S,-),i = 1, - -- ,n. Thus non-extreme points of any of the S, ’3 play

no role in the mixed volume of S.

To identify non-extreme points of 8,, notice that a non-extreme point of S,- is a

convex combination of other points of Si. Namely, if an. E S,- is a non-extreme point

of S,-, the following system of equations

Alan + ' °' + Ale-laik—l + Ak+18tk+1°°' + Amiaim; = ail:

A] +~~+A,._1+/\,.+1+---+Am, = 1

A1, ' ' °,/\k-1,/\k+1,' ° ' Am. 2 0.

must have a solution. Testing the existence of solutions of the above system con-

stitutes a standard Phase I problem in linear programming, and algorithms for this

problem can be found in many standard Linear Programming books, e.g. [35]. When

we compute the mixed cells of S we will eliminate all those non-extreme points in

the first place and assume throughout this chapter that S,- has only extreme points

forall i = 1,-u ,n.

3.1 Find all lower Edges of a lifted Lattice Set

For w = (w1,- - - ,m,.) with generically chosen 211,-, i = 1, - - . ,n, and

S.- = {a = (a,w,~(a)) I a E 5,} for i = 1,--- ,n,

denote the set of all lower edges of S,- by £(S,). In this section, we will describe

our algorithm for finding C(Sg) for i = 1, - -- ,n efficiently. For this purpose, let
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B = {ao,a1,--- ,a,,,} C N" represent general Si’s, and w : B —-+ IR be a generic

lifting function. Let 3(a)) = {a = (a, w(a)) [a e 8}. Consider the following system

in the n+ 1 unknowns ao,a1,-~- ,0"

(51360200) i=0,-°-,m (3'1)

where 6: = (011,- - - ,an, 1) 6 HP“. Immediately, we have

Lemma 3.1 If system (3.1) has a solution ao,oz1,--- ,an such that (as) =

5,6: =ao for0$i,j$m, then 5,,5- isalower edge ofB.
J .1

With a,- = (a,,1,- -- ,n,-m) for i = 1, - - - ,m, rewrite system (3.1) as

- I p - F q

  

    

1 -a1,1 -a1,.. ao w(al)

1 ’02,1 ‘02m 01 111(32)

S

(3.2)

nan-I

b 1 _am,l _am,n J _ w(a-m) .1

Suppose the rank of the coefficient matrix in (3.2) is v S n. Without loss of

generality, we may assume the first 1) rows are linearly independent. By Gaussian

eliminations, there exists L E R("+1)"("+1) such that

   

r - - '1

1 —a1,l . . . —al,n 01,1 0 . . . 0 0 . . . O

1 _02’1 . . . -02,n 62,1 62,2 . . . 0 0 . . . 0

. L = ,

1 at; av... Cv,l Cu,2 Cum 0 0

_ 1 —am,1 -am,.. _ _ 6...,1 6...,2 Cm,v 0 0 . 
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where ct, 75 0 for i: 1,--- ,1). With (x1,--- ,m,,+1)T :2 L‘1(ao,al ,an)T in

  

    

  

1 —01,1 ' ' ' —01,n ao w(al)

1 —0.2,1 ° ° ' —a2,,, L . L—1 (11 S 10(82)

(3.3)

Cv,1 60,2 cu... _ an _ w(a..)

1 -am,l ' ' ‘ ”amm . w(a"‘)

we obtain the following system:

61,1 0 ' ° ° 0 [- 31 b1

02,1 62,2 ' ' ° 0 $2 02

S

, (3.4)

Cv,l cv,2 ' ° ' Cum _ xv _ bu

_ Cm,1 Cm,2 cm,v . _ bm _    
with b,- =w(a,-), i=0,--- ,m.

Lemma 3.2 System (3.1) has a solution ao,a1, - -- ,an satisfying (as) 2 (£1,361) =

an if and only if System (3.4) has a solution x1, - -- ,xv satisfying c.-,1x1 + 6,,2x2 +

+ qvxv = b, and chxl + 9,2932 + + cj,,,x,, = b,-.

Inequality system in (3.4) defines a polyhedron R in R”, and for an extreme point,

or a vertex, of R, there are at least 2) active constraints. It follows from Lemma 3.1

and Lemma 3.2 that
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Lemma 3.3 If x0 is an extreme point of R and J = {i1, - .. ,iu} is the indices of

active constraints of the system at 1:0 with u 2 u, then {é.-,,a,-,} is a lower edge of

3 for any ihiz E J.

On the other hand, if {5.4, 5,} is a lower edge of B , there is a lower facet of conv(3)

with inner normal 6: = (a, 1) where a = (011,- - - ,an) E R" which contains the line

segment of {é.-,é,-}. Let a0 = (5,361) = (5,,5.) and x0 be the first 12 components

x1, - - - ,x,, of L‘1(ao,a1,- - - ,an) in (3.3). Apparently, x0 is an extreme point of R.

Therefore, in order to find all the lower edges of 3 , it suffices to locate all the

extreme points of the polyhedral R defined by the inequalities in (3.4). To reach this

goal, our main strategy is to find an initial extreme point of R at the first step and

generate all other extreme points of R from this extreme point thereafter.

To find an initial extreme point of R, we may first solve the triangular system

01,131 = b1

62,131 + 62,232 = 02

cam + cam + + cave” = bu

in (3.4). Let the solution be x0 = (x01,x02, - - - ,xoU), and let

d1: bi — (0.313301 +Cr,21002 + +Ci,u130v) for i: ”U + 1"" ,m.

If d; = +1111}: d,- 2 0, then x0 is already an extreme point of R. Otherwise we apply

v _i_m

Algorithm 1 to the following linear programming problem
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min 6

61,131 S b1

02,1501 + C2,2332 S 02

60,1231 + €0,232 '1’ ' ° ' + 61.50331) S bu

cv+1,lxl + c11+1,2x2 + ' ' ' + cv+l,vxv — Cv+l,v+l€ S bv+l (3'5)

6...,121 + Cm,2z2 + + ems. - came S bm

—e S 0

0, if d,- 2 O .

where em,“ = , for v S i S m,

L fi¢<0

in the variable (x1, - - - ,xme) with initial extreme point (x, e) = (x0, —d;) of (3.5)

and initial indices of constraints J = {1,2, - - - ,v,l}. The optimal solution of this

problem gives an initial extreme point of R that we need.

Let x0 be an initial extreme point of R. To generate all other extreme points, we

first introduce the following linear programming problem:

Two-Point Test Problem:

mzn _ (CiOtl + cj031)$1 — (611012 + Cj092)$2 — o o o — (C10,!) + chtv)xv

C1.11131 S bl

02,131 + 62,232 S 02

(3.6)

cam + cu,2:v2 + ---+ Cv,v$v < bu

cam + 6...,2922 + ---+ cmm S b...

31



where 1 S io,jo S m.

Lemma 3.4 Given 1 3 i0, jo g m, if the optimal value of the problem in (3.6) is

—b,-0 — bjo , then {5,0, 5,0} is an lower edge of 3.

PROOF: If the optimal value —b,- — bjo is attained at (130,- -- ,xv), then

’(CioJ + Cjo,1)$1 — (010,2 + Cjo,2)$2 ‘ — (010,11 + Cjo,u)$v

= (—Cio,1$1 — 0:0,2332 — — 610.0%) + (—Cjo,1$1 — 90,2332 - °° ' — Cjo,u$u)

= —b,-0 — bJ-o.

But (x0, - -- ,xv) also satisfies constraints

Q0431 + “0.232 + ' ' ° + 6101va S- bio,

010.1171 + 010.2332 + "'+ 610.12% S bio-

Therefore,

gmlxl + 050,232 + ' ° ' 'l“ €120,031) = bio:

610.131 + 0:11.202 + + 010.11% = bio-

By Lemma 3.1 and Lemma 3.2, {{1,-0, 5,0} is a lower edge of B. D

The constraint in (3.6) is the same inequality system in (3.4) which defines poly-

hedron R. Since an initial extreme point x0 of R is available, we may use Algorithm

1 on the Two-Point Test Problem in (3.6) to test if {5.0, an} for given 1 5 i0, jo S m

is a lower edge of B . By using Algorithm 1, the optimal value of the problem is

reached by moving from one extreme point of R to another extreme point of R in

the direction where the objective function decreases. By Lemma 3.3, a newly ob—

tained extreme point of R in the process provides a new collection of lower edges of

B . This important feature keeps us away from exhaustive testings on all the possible

pairs in B for identifying all the lower edges of B .

The details of our algorithm for finding all lower edges of B is given in the following

32



Algorithm 2 Given 3 = {30,511, -- ,am}, construct [.(3).

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Initialization.

Set up inequality system (3.4). Let P = {{5.,a,-}|1 _<_ i,j S m} be all

the possible pairs of B. If v = m, set [3(3) := P and stop. Otherwise

find an initial extreme point x0 ofsystem (3.4) with J = {i1, - -- ,iv} and

D'1 = [u1,~-- ,uv], where DT = [c,-,,- -- ,c,u] by applying Algorithm 1

to the optimization problem (3.5) Set £(B) = 0, go to step 1.

Set up objective function for the Two-Point Test

If P = 0, stop. Otherwise select {awash} E P, set 1' :2 (—c,-o,1 —

cjo,1,--- ,—c,-o,,, — cjw), and P := P\{{a.,,a,-,}}, go to Step 2.

Apply Algorithm 1

Determine the smallest index k such that

(f,u,,) = max{(f,u,-) | i = 1,--- ,v}

If (f, 11;.) S 0, go to Step 1. Otherwise, set s = u), and go to Step 3.

Compute the smallest index I and a such that

a = <c..x°> —b. 2 min {<c.,x°> -b.

((31, 8) (Ci: 8)

Go to Step 4.

  alli ¢ J with (c,,s) < 0}.

 

Set Xo == Xo — as and update J = {i1,--- ,iv} and D4. Set 5(8) :=

as) 11 (Pm {{a.,a,}|k,z e J}), and ’P := r\{{a,.,a,}|k,z 6 J} Go to

Step 2.

3.2 Extend level-k Subfaces

For a level-h subface E). = (é1,--- ,ék) of S =(S1,o~ ,Sn) with l g k < n where

éi = {5:35;} 6 £(S'i) for i = 13 ° ' ' 1k) we say élc-i-l = {ék+ltélc+l} E £(§k+1) extends
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E), if EH1 = (é1,~- ,ék+1) is a level-(k + 1) subface of S. Let

6(a) = {strain} E as“) {attain} extends a}.

E). is called extendible if 8(1331.) 96 (b, it is nonextendible otherwise. To find

all mixed cells of S = (Sh-u ,5“), we will start from k = 1 and extend E).

step by step. If E). is nonextendible, there is no mixed cell of S which contains

({a1,a’1},- - - ,{ah afl) , and extension attempt will be repeated on the next Eh. Ob-

viously, when k = n -— 1, an extendible E). yields mixed cells of S with elements in

8(BE) (possibly several).

In this section, we describe our algorithm to calculate £(Ek) efficiently for a given

level-k subface E), = (é1,--- ,él.) where e,- = {54,53 C S,- for i = 1, - -- ,k.

Now, consider the following system in the n + 1 unknowns 00,011, - - - ,an

(a, a) 2 010, a e s...

(and) S (é,d), 563i) fOIi=1,°'°,k (37)

(éhé) : ($16!): 7:: 11'” ,k,

where 61 = (011,- -- ,an, 1) E Rn“.

The following lemma is obvious.

Lemma 3.5 For a level-k subface E). = (é1,--- ,ék), where 6,- = {$4,512} C S,,

if system (3. 7) has a solution (ao,a1, - .. ,0“) such that (as) = (6,307) = 0:0 for

s,,s, 6 31.4.1, then {aha} extends 137)..

With S,- = {a,-,1,--~ ,n,,mi} for i = 1,... ,n and a = (011,”- ,an) we may rewrite

system (3.7) as

|
/
\

(ah+1,j,0‘> — 00 —’wk+1(3k+1,j) j = 11' " amlc+1

(at—aijia) S wi(ai,j)—wi(ai) j: 1"” 1mi1 aid 6 Si\{aiia~:}a z=l,--- 3k

(as-aha) = w.-(a$)-w.-(aa) i=1.--- .k-

34



By using the last lc equality constraints to eliminate k variables of a, the above

system can be reduced to the following general inequality system :

c’ldlaj, + c’uaaj, + + Cid-way", 5 b1

62.13091 + 62¢th + + C’2,j,,.‘1j.,: S 02 (3.8)

c’,,,J-loz,-1 + cimaj, + + c’p’jncjn, S by

k+1

wherep= Emi—Zk and n’=n—k+1.

As beforbfby a coordinate transformation (x1, ~ -- ,x,,:) = (ah, - - - ,a,-fl,)L, where

L 6 IR”, x", is nonsingular, the system can be further reduced to the following inequal-

ity system:

01,1331 S b1

02,131 + 02,232 S 02

(3.9)

ens-’01 + 672.2932 + + comma S 5»

cmlxl + Cp,2$2 + + c,,,,,x,7 g by.

Lemma 3.6 System (3.9) has a solution (ao,al,--- ,an) satisfying (infirm-,3) =

(5h+1,j,&) = 0:0 for i S i, j g ml.“ if and only if system (3.9) has a solution

x1, - - . ,x,, such that c,-,1x1+c.-,2x2+- - ~+c.,,,x,, = b,- and cj,1x1+c,-,2x2+- ' ~+c,-,,,x,, = b,-.

Inequalities in (3.9) defines a polyhedron R in R” , and for an extreme point, or

a vertex, of R, there are at least 17 active constraints. From Lemma 3.5 and Lemma

3.6, it follows that

Lemma 3.7 If x0 is an extreme point of R and J = {i1, - .. ,it} is the indices of

active constraints of the system at x0 with t Z n, then {a.+,,,p,a,.+,,-,} extends E),

forany e Jn{1,---.m...}.
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Similar to the discussion following Lemma 3.3, if {a.+1,,-,s,.+1,,.} E £(Sk+1) for

{i,j} C I E {1, - - - ,m,.+1}, it will lead to a corresponding point x0 of R, its indices

of active constraints includes {i, j}. Hence, to construct £(Ek) C [.(SkH), we may

look for all those extreme points of R whose indices of active constraints contain at

least a pair of {i, j} in I. To achieve this, we may certainly apply the Two-Point

Test introduced in the last section and confine to I the indices of the “two points” to

be tested. However, it is very likely that most of the 61,111,,- ’s that appeare in the pairs

in £(SH1) fail to extend E). with their associated pairs in £(S).+1). Namely, those

points do not exist in any of the pairs in 8(Eh). This phenomenon never occurs when

we compute the set of lower edges £(B) of B in the last section since all the points

in B are extreme points. Consequently, every point of 3 appears in certain pairs of

5(3). From this important observation, we introduce the following One-Point Test

to be used in additional to the Two-Point Test in our algorithm.

One-Point Test Problem:

min —C.-.,la:1 — 610.2932 — ---— 6.0.01»,

01,131 S 01

02,1501 + 62,2502 S 02

(3.10)

cmlxl + (3,7,2232 + ---+ cmxn S b,,

cmlxl + cmxg + + cmx" S by

where 1 3 i0 < my“.

Lemma 3.8 Given 1 5 i0 < my“, if the optimal value of system (3.10) is greater

than -b,-o, then {a.+1,,-,,a,.+l,,-} does not extend E), for all i E {1, - -- ,mk+1}\{io}.

PROOF: Suppose there exists 1 S jo 3 ml,“ for which {ak+1,,o,a,.+1 .10} extends Eh.
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By Lemmas 3.5 and 3.6, system (3.9) has a solution (x1, . -- ,xfl) satisfying

610,131 + 010,232 ' ° ' "r' 0&0,an = bio:

010,131 + 011.3932 +Cjom$n = bjo~

Hence the objective function value at (x1, - - - :30) is

_ci01131 — 63-01232 — . o o — €10,713" = _biO’

which contradicts the fact that the optimal value of the system (3.10) is greater than

—bio . D

From the above lemma, points appeared in the pairs in £(S1.+1) may be tested

systematically by using One-Point Test to check the possibilities of their appearances

in the pairs in £(Ek) . When the optimal value obtained is not as desired for a

particular point £119,130 , all the pairs associated with aptly-0 in £(Sk+1) should be

deleted from further considerations. In the meantime, in the process of reaching the

Optimal value of the problem, newly obtained extreme points of R provide a collection

of new pairs of £(Ek) as long as their active constraints contain a pair of {i, j} in

I = {1,--- ,m,.+1}. Furthermore, we no longer test points am,- in £(Sk+1) whose

index i have appeared in any of the indices of the active constraints of the extreme

points of R being obtained.

The system of constraints in problem (3.10) is the same inequality system in (3.9)

which defines the polyhedron R in IR". To find an initial extreme point of R to start

Algorithm 1 on the problem, we may employ the same strategy by augmenting a new

variable 6 Z 0 as in calculating 16(8) of B in the last section.

Two-Point Tests will be used only after One-Point Tests have exhausted all the

testings on possible candidates. Our experiences show that the Two-Point Test only

plays a minor role in constructing 8(Ek) , namely, when we finish the One-Point Tests,

most of the pairs in £(Ek) have been found.
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Combining the One-Point Test and the Two-Point Test, we list the following al-

gorithm for constructing 8(173),)

Algorithm 3 Given Eh, construct E (1:31,)

Step 0: Initialization.

Set up the inequality system (3.9). Start from an extreme point x0 with

J = {i1,--~ ,in} and D“1 = [u1,--- ,u,,], where DT = [c,',,~- ,c,-,,], and

set PHI := [.(SHI).

Step 1: One-Point Test Problems.

Step 1.0 Set i0 := 0, go to Step 1.1.

Step 1.1 Set up objective function

Find 1' = min {j I j > i0 and {ak+,,,-,a,.+l,j.} C F1,“ for some j’}.

If such 7' does not exists, go to Step 2. Otherwise set i0 := 1'

and f = (—c,-0,1,--- ,—c,-0,,,), go to Step 1.2.

Step 1.2 Determine the smallest index k such that

(1311),) : max{(f:ui> Ii: 13' ' '17)}-

If (f,u),) S 0, go to Step 1.5. Otherwise, set s = u)c and go to

Step 1.3.

Step 1.3 Compute the smallest index 1 and a such that

0 _ . 0 ...,_(cbx) b1=min{(c,,x) b,
_ (cbs) (c,,s) alli ¢ J with (c,,s) < 0}.

 

Go to Step 1.4.

Step 1.4 Set x0 := x0 — as and update J = {i1,--- ,in} and D‘l.

If I < mkH, check if any lower edge {5k+1,1,5k+1J} in 13),“
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extends 13).“. Collect these lower edges, if they exist, and

delete them from EH1.

Go to Step 1.2.

Step 1.5 If the current value of objective function is not equal to -b,o,

delete all lower edges containing point 6H1,“ from 13),“.

Go to Step 1.1.

Step 2: Two-point Test Problems.

Step 2.1 Set up objective function.

If R1.“ = 0, stop. Otherwise select a lower edge

{ék+1.iovél¢+1.jo} 6 13hr Set f == (_C‘ioJ — €30.11“ 1-CioJI —

010.17): and 13”,“ :2 13“,,1\{a,.+1,,-0,a,.+1,,-,}, go to Step 2.2.

Step 2.2 Determine the smallest index k such that

(f,u;,) = max{(f,u,~) I i: 1,--- ,n}.

If (f, uk) 3 0, go to Step 2.1. Otherwise, set s = u), and go to

Step 2.3.

Step 2.3 Compute the smallest index I and a such that

0' : (chx0) - bl = min { (c,,x°) _ bi
 

(Cl, 8) (Cg, S)  

alli a! J with (c,,s) < 0}.

Go to Step 2.4.

Step 2.4 Set x0 := x0 - as and update J = {i1,-~- ,in} and D‘l.

If I < my“, check if any lower edge {a,,1,,,a,.+,,,-} in F1,“

extends 1:1“. Collect those lower edges, if they exist, and

delete them from PHI.

Go to Step 2.2.

39



Remark 1 Numerical testing shows that setting up the inequality system (3.9) is

very time consuming. One strategy we employ is to save the inequality systems at all

previous levels. Thus the inequality system in the current level can be set up by using

the inequality system that already exist.

3.3 Find All Fine Mixed Cells

For S =(S1,---,S,,) with S,- = {a.-,1,~- ,a,,m,} C N", i = 1,--- ,n and generically

chosen w = (w1,--- ,wn) with

.63.}, i=1,...,..,
 

s,- = {a = (a, ...,-(1.))

we combine our algorithms described in the last two sections in the following algorithm

for finding all the mixed cells in S = (S1, - - - ,Sn).

Algorithm 4 Find all mixed cells in S = (51,- -- ,5").

Step 0: Initialization.

Find us.) for alli = 1,--- ,n.

Set .71 1: 16(31), ’6 I: 1.

Step 1: Backtracking.

If k = 0 Stop.

Iffih=0,set k:=k—1 andgo toStep 1.

Otherwise go to Step 2.

Step 2: Select next level-k subface to extend.

Select e). E .73)., and set P). := P).\{é,.}.

Let E), =(é1, - - - ,ék) and go to Step 3.

Step 3: Extending the level-k subface.

Find £(Ek).

40



If 8(3),) = 0, go to Step 1, otherwise set .73).“ = 8(Ek), k := k + 1 then

go to Step 4.

Step 4: Collect mixed cells.

Ifk = n, all C' = (e1, - - - ,en_1,e),é E f}, are fine mixed cells, pick up all

these mixed cells, then set k := k — 1, go to Step 1.

Otherwise go to Step 2.

Remark 2 In finding £(Ek) at Step 3, inequalities associated with the points in

S,- which never appear in E(13),) for i = 1, - - - ,k - 1 should not be considered as

constraints, since these points will never enter the level-k subface.
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CHAPTER 4

Numerical Implementation

4.1 Algorithm

For finding all isolated zeros of a polynomial system P(x) = (p1(x), - -- , p,,(x)) in

C", where

pi(x) = Z €5,3X‘, for i = 1: ' ' ' in:

365;

we outline the major steps in brief terms as follows:

(A) Set up the polyhedral homotopy Q(x, t) : C” x [0,1] ——> C" as

q,(x, t) = Z (c,-,. + (1 — t)e,,,)t""(‘)x‘, for i = 1, ~ -~ ,n,

a€S¢U{O}

where w,- : S,- U {0} —> R are chosen generically and 6,3,. are randomly chosen

complex numbers.

(B) Find all mixed cells of extended support 51 U {0}, - - - , 3,, U {0}. For each inner

normal (1 associated with a mixed cell, define the homotopy

Ha(y,t) E t-5Q(yt°‘,t) = 0,

where 6 = (61,- -- ,6“) and fl,- is the lowest order in t among all the terms in

qi (yta: t) °
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(C) Solve the binomial system Ha(y, 0) = 0 in C", then follow homotopy paths of

Ha(y,t) = 0 to find all the isolated zeros of P(x).

We set up our initial system Q(x) = (q1(x), - -- ,q'n(x)) by perturbating the coef-

ficients of P(x), that is

6.0:) = Z (61,. +e.-,.)X‘. 2': 1.--° .71

aESiU{0}

where 5,3. 6 IR" are randomly chosen small complex numbers, and let

Q(XJ) = (1 - t)Q(X) + tP(X)-

The homotopy Q(x, t) in (A) is obtained by setting up the polyhedral homotopy for

Q(x, t) instead with the same variable t.

Apparently, we have Q(x, 1) = P(x) and for each t 6 [0,1], Q(x, t) and Q(x)

have the same support. Let

{1,-(x, t) = Z (c,-,. + c,,.)x‘t‘”‘(‘), i = 1, - -- ,n.

.es.u{o}

It is clear that, for any a 6 1R“, the lowest order terms in t of both qJ-(xt°‘,t) and

q“,- (yta, t) are the same. Hence the mixed cells and their associated inner normals stay

invariant, and the start system of the homotopy

H.(y, t) = t""Q(yt°.t) = 0 (4.1)

is the same as that of the Ra(y, t) E t’5Q(yt°‘,t) = 0 with Q(yt°,t) =

(61(yt°.t),°-- .(in(yt°‘.t))- Here. again. 0 = (fi1,---,fi.) and for j = l.--- ,n.

6,- is the lowest order in t among all the terms in q,- (yta, t). Thus, when nonsingular

solutions of Ho, (y, t) in (C‘ )” are available, we may follow those homotopy paths of

Ha(y, t) in (4.1) instead with those starting points.
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4.2 Implementation

In this section, we will briefly describe our software environment that has been de-

veloped.

Currently there are several publically available software packages dedicated to solv-

ing polynomial systems by homotopy continuations. HOMPACK [45] and CONSOL

[31] are written in FORTRAN77, pss [28] and Pelican [16] are written in C and PHC

[42] is written in Ada. Some of these software packages are integrated multi—purpose

packages.

Our package is designed as a high-performance polynomial system solver, focused

on better eficiency, portability and simplicity. Our program is written in C++, a

standard programming language which provides excellent support for object-oriented

programming, abstraction, and encapsulation.

The following UML diagrams illustrate the structure of our polynomial system

solver system. Diagram 4.2 shows that our polynomial system solver relys on two

packages. One of them provides utility tools such as linear programming and lin-

ear system solvers. The other one may not be critical, it is mainly used for parsing

polynomial expressions and performing simple polynomial manipulation to provide

certain degree of user friendly interface. The class diagram 4.2 shows our Polyno-

mialSolver uses four major components: PolyhedralHomotopy, MixedCell, Binomial-

SystemSolver, and Continuation (which uses Newton’s iteration). The state diagram

4.2 shows the transitions among states in the execution of our program.

4.3 Numerical Results

Our software package has solved many well-known polynomial systems successfully.

In this section we present some of our numerical results.
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1. System of 'Ih'inks from the PoSSo test suite[40]

f

45y + 35a — 165v — 36,

353/ + 252 + 40t — 27u,

25yu — 165v2 + 15x — 182 + 30t,

P(xlyiztutvtt) =<

l5yz + 20tu — 9x,

—11v3 + xy + Zzt,

 —11uv + 31)2 + 99x,
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2. Generalized eigenvalue problem[9]

r

 L

—10x1x§ + 2x2x§ -— x3x§ + x4x§ + 3x5x§ + xlxe + 2x2x6 + x3x6

+2x4x6 + x5x3 + 10x1 + 2x; — x3 + 2x; — 2x5,

2x1x§ - 11222:: + 2x3x§ -— 2x4x§ + 2:52: + 2x1x6 + xgxe + 2x3x6

+x4x5 + 3x5x6 + 2x1 + 9x2 + 3x3 - x4 — 2x5,

—x1x§ + 2x2x§ — 12x3x§ — x4x§ + x5x§ + xlxa + 2x2x6 — 2x4x6

—2x5x5 — x1 + 3x; + 10x3 + 2x.; — x5,

2:133, — 2x2x§ — 23x: — 10x4x§ + 2x5x§ + 2x1x5 + xzxs — 2x3x6

+2x4x5 + 3x5x5 + 2x1 — x2 + 2x3 + 12x4 + x5,

3x1x§ + $225; + x3x§ + 2x4x§ — llxsxfi + $12.35 + 3x2x5 — 2x3x6

+3x4x5 + 3x5x5 — 2x1 — 2x2 — x3 + x4 + 10x5,

$1+$2+$3+$4+$5—1,

3. A system from economics modeling [31]

The following formulates the system for general dimension n.

n—k-l

xk+ xix”). x,,—c,,,k=1,---,n—1.

P(X)= ( Z )l=l

2?: $1 + I.

The constant c), can be chosen at random. This problem has solved for dimension

up 12.
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4. Totally mixed Nash equilibria for 5 players with two pure strategies[29]

 

r

1390350657193 + 0.4641393136113192 - 0.6266605268p2 — 1.400171891p4

—2.090683800p4p3p2 + 4.089263882p4p3 + 1.129827638124192

+1.881614464p5p4p3p2 + 0.4716169661p5p3p2 — 0.8625849122125154};2

—1.398871056P5P2 + 09599693844125 + 0.071402539712515.

+0.1073802376p5p3 — 0.0259664538125114153 — 0.2067814278,

—1.196136754p3 — 09249804195114 + 0.3188761009p4p3 - 1.045301323193451

—0.0306661782p1 + 0.5987012929p4p3p1 - 0.4448182692p4p1

—0.3908068031p5p4p3p1 - 1.212939725p5 + 2.586129779p5p4

4.1180169224125193 — 1.0515195071251941»... + 2.13497937515512315l

4.337061849125124). — 0.2961272671P5P1 + 0.7316111016,

22729431631;2 —- 04131564265124 — 1.920446680104122 + 000805092341;1

+1.342851102p4p1 — 2.979502184p2p1 + 3.3915718341541521;1

4.5975693742195114)». + 0.3002794716125192 — 0.7893445350p5

+1.276948001p5p4 — 4.601376311P5P4P1 + 23568043221551»1

+3.498840190p5p4p2p1 — 1.3553750151251521;1 — 1.231070236,

—2.206336116p3 + 2.318673689p3p2 — 1.267478048p2 + 1.110654516p3p1

+1.533592098p1 — 1.872504375p2P1 + 0.3299103675p3p2p1

4.4007504721951931». + 2.0936745161551112 — 1.772874182p5

+2.993821915p5p3 — 1.356762392p5P3P1 + 0.0637534233p5p1

+0.5870371377P5P2P1 + 1.018269743P5P3P2P1 + 1.400431557,

—2.522718869p3 + 0.8323646978p3p2 — 1.375030881p2 — 0.3055448755p4

+0.6760632172p4p3p2 -— 0.4262974456134193 + 1.268255245p3p1

+0.5352674901P4P2 — 1024495558121 + 1.8182754041941531;1

4.354832512194121 — 1.595112039122111 + 2.2379562421241521),

+3.370102170p3p2p1 — 3.465040669p4p3p2p1 + 2.132631128,
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5. Benchmark i1 from the Interval Arithmetics Benchmarks [15]

x1 — 0.25428722 - 0.18324757x4x3x9,

x2 — 0.37842197 - 0.16275449x1x10x5,

x3 — 0.27162577 — 0.16955071x1x2x10,

x4 —- 0.19807914 — 0.15585316x7x1x5,

x5 — 0.44166728 — 0.19950920x7x5x3,

x5 — 0.14654113 — 0.18922793x3x5x10,

x7 — 0.4293716] — 0.21180484x2x5x3,

x8 — 0.07056438 — 0.17081208x1x7x5,

x9 — 0.34504906 — 0.19612740x10x6x3, [ x10 — 0.42651102 - 0.21466544x4x8x1,

This system is very sparse, the mixed volume is much smaller than the total degree.

6. Cyclic-n problem [13]

The general formulation goes as follows:

a I:

ZH$(i+j)modn,
k: 1,... ,n-1

P(X) ____ i=1 j=l

n

11%“ " 1,
i=1

This system is widely considered as a benchmark problem for polynomial system

solving. We have solved this system up to dimension 11.
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7. The construction of Virasoro algebras[38]

The test results are summarized in the following table. In the table, M(A°)

denotes the mixed volume of the extended support A0 = (A1 U {0}, . . . , .A" U {0}).

The number of zeros in the examples are obtained from the numerical results of our

algorithm. It is well-known that homotopy curves may converge to solutions in an

algebraic variety with nonzero dimension, i.e., they may lead to non-isolated zeros of

the target polynomial systems. In our root count, we do not exclude those numerical

solutions at which the Jacobian matrices of the corresponding polynomial systems are

almost singular. And our computation were carried out on a 400Mhz Intel Pentium

f

 

8x? + 8x1x2 + 8x1x3 + 2x1x4 + 2x1x5 + 2x1x6 + 2x1x7

—8x2x3 — 2x4x7 — 2x5x6 — x1,

8x1x2 — 8x1x3 + 8x3 + 8x2x3 + 2x2x4 + 2x2x5 + 2x2x5

+2x2x7 — 2x4x3 — 2x5x7 — x2,

—8x1x2 + 8x1x3 + 8x2x3 + 8x3 + 2x3x4 + 2x3x5 + 2x3x6

+2x3x7 — 2x4x5 — 2x6x7 - x3,

2x1x4 — 2x1x7 + 2x2x4 — 2x2x5 + 2x3x4 — 2x3x5 + 8x2

+8x4x5 + 2x4x3 + 2x4x7 + 6x4x3 — 6x5x3 — x4,

2x1x5 — 2x1x5 + 2x2x5 — 2x2x7 — 2x3x4 + 2x3x5 + 8x4x5

—6x4x3 + 8x3 + 2x5x5 + 2x5x7 + 6x5x3 — x5,

—2x1x5 + 2x1x5 — 2x2x4 + 2x2x5 + 2x3x6 —- 2x3x7 + 2x4x6

+2x5x5 + 8x: + 8x6x7 + 6x5x3 - 6x7x3 - x5,

—2x1x4 + 2x1x7 — 2x2x5 + 2x2x7 — 2x3x5 + 2x3x7 + 2x4x7

+2x5x7 + 8x5x7 — 6x6x3 + 8x-2, + 6x7x3 — x7,

—6x4x5 + 6x4x8 + 6x5x3 — 6x5x7 + 6x3x8 + 6x7x3 + 8x3 — x3,

II CPU with 256 MB of RAM, running SunOS 5.6.
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System Total Degree M(A°) # of Zeros in C" CPU Time

Trinks 24 10 10 290ms

Eigenvalue 243 10 10 430ms

Economics-13 354294 2048 2048 8m28200ms

Economics-14 1062882 4096 4096 22m35s620ms

Nash equilibia 1024 44 44 48240ms

Benchmark i1 59049 66 50 48100ms

Cyclic-10 3628800 35940 34940 lh33m46s

Cyclic-11 39916800 184756 184756 8h55m36s

Virasoro 256 256 256 378 690 ms    
 

Table 4.1: Numerical Results
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