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ABSTRACT

SOLVING POLYNOMIAL SYSTEMS
IN C* BY POLYHEDRAL HOMOTOPIES

By

Xing Li

In the last two decades, the homotopy continuation method has been developed
into a reliable and efficient numerical algorithm for solving all isolated zeros of poly-
nomial systems. During the last few years, a major computational breakthrough has
emerged in the area. Based on the Bernshtein theory on root count, the polyhedral ho-
motopy is established to considerably reduce the number of homotopy paths that need
to be traced to find all the isolated roots, making the method much more powerful.

The main goal of this dissertation is to present a strategy which uses homotopy

continuation method efficiently to solve polynomial systems via mixed cell calculation.
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Introduction

Polynomial systems arise quite commonly in many fields of science and engineering,
such as formula construction, geometric intersection, inverse kinematics, power flow
with PQ-specified bases, computation of equilibrium states, etc., see [10]. Elimination
theory-based methods, most notably the Buchberger algorithm [5] for constructing
Grobner bases, are the classical approach to solving multivariate polynomial systems,
but their reliance on symbolic manipulation makes those methods somewhat unsuit-
able for all but small problems.

In 1977, Garcia and Zangwill [14] and Drexler [11] independently presented the-
orems suggesting that homotopy continuation could be used to find the full set of
isolated zeros of a polynomial system numerically. During the last two decades this
method has been developed into a reliable and efficient numerical algorithm for ap-
proximating all isolated zeros of polynomial systems. See [23] for a survey.

Let P(x) = 0 be a system of n polynomial equations in n unknowns. Denoting

P = (p1,...,pn), we want to find all isolated solutions of
iz, ..nzp) = 0
(1)
pn(mla "'12:11) = 01
for x = (z1,...,2,). The classical homotopy continuation method for solving (1) is

to define a system that is easy to solve Q(x) = (¢1(x), .., gn(x)) = 0 and then follow



the curves in the real variable ¢ which make up the solution set of
0= H(x,t) = (1 -t)Q(x) + tP(x). (2)

More precisely, if the system @Q(x), known as the start system, is chosen correctly,

the following three properties hold:
e Property 1 (Triviality). The solutions of Q(x) = 0 are known.

e Property 2 (Smoothness). The solution set of H(x,t) = 0 for 0 < t < 1 consists

of a finite number of smooth paths, each parametrized by ¢ in [0, 1).

e Property 3 (Accessibility). Every isolated solution of H(x,1) = P(x) = 0 can
be reached by some path originating at ¢t = 0. It follows that this path starts
at a solution of H(x,0) = Q(x) = 0.

When the three properties hold, the solution paths can be followed from the initial
points (known because of Property 1) at ¢ = 0 to all solutions of the original problem
P(x) =0 at t = 1 using standard numerical techniques [1, 2]. A homotopy H(x,t) =
0 with H(x,0) = Q(x) and H(x,1) = P(x), which may not be in the form of (2), is
considered to be successful if it satisfies these three properties.

A typical choice (8, 22, 24, 30, 46, 47] of the system Q(x) = (g1(x), ..., gn(x)) which

satisfies Properties 1-3 is,

@1,y Zn) = ale‘ -b
3)
@n(T1, .y Tn) = anzd — by,
where d, ..., d, are the degrees of p;(x), ..., pn(x) respectively, and a;, b; are random
complex numbers (and therefore nonzero with probability one). So in one sense, the
original problem posed is solved. All solutions of P(x) = 0 are found at the end of

d; - - - d, paths that make up the solution set of H(x,t) =0,0<t < 1.
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Solutions to Solutions to
Start System
Px)=0 > infinity
Q(x) =0

\/—/

=0 t=1 t

Figure 1: Solution curves of H(z,t) =0

The reason the problem is not satisfactorily solved by the above considerations is
the existence of extraneous paths. Although the above method produces d =d, ---d,
paths since Q(x) = 0 in (3) has d isolated nonsingular solutions, the system P(x) = 0
may have fewer than d solutions. We call such a system deficient. In this case, some
of the paths produced by the above method will be extraneous paths.

More precisely, even though Properties 1-3 imply that each solution of P(x) = 0
will lie at the end of a solution path, it is also consistent with these properties that
some of the paths may diverge to infinity as the parameter ¢ approaches 1 (the
smoothness property rules this out for ¢t — ¢, < 1). In other words, it is quite
possible for Q(x) = 0 to have more solutions than P(x) = 0. In this case, some
of the paths leading from roots of Q(x) = 0 are extraneous, and diverge to infinity
when t — 1 (See Figure 1).

Empirically, we find that most systems arising in applications are deficient. A great

majority of the systems have fewer than, and in some cases only a small fraction of,



the ezpected number of solutions. For a typical example of this sort, let us look at the

following Cassou-Nogues system

pr = 15b%cd® + 6b4c® + 21b%c?d — 144b%c — 8b*c?e
—28b%cde — 648b%d + 36b*d%e + 9b4d® — 120,

p2 = 30b%c3d — 32cde? — T20b%cd — 24b2cPe — 432b%c? + 576¢ce — 576de
+16b%cd?e + 16d%e? + 16c%e? + 9b*c? + 39b4c?d? + 18b*cd®
—432b%d? + 24b%d%e — 16b2c2de — 240c + 5184, (4)

ps = 216b%cd — 162b%d? — 81b%*c? + 1008ce — 1008de + 15b%c?de
—15b2c%e — 80cde? + 40d%e? + 40c%e? + 5184,

ps = 4b’cd — 3b%d? — 4b*c® + 22ce — 22de + 261.

Since d; = 7,d; = 8,d3; = 6 and d4 = 4 for this system, the system Q(x) in (3) will
produce d; X d; X d3 x dy = 7 x 8 x 6 x 4 = 1344 paths for the homotopy in (2).
However, the system (4) has only 16 isolated zeros. Consequently, a major fraction
of the paths are extraneous. Sending out 1344 paths in search of 16 solutions is a
highly wasteful computation.

The choice of Q(x) in (3) to solve the system P(x) = 0 requires an amount of
computational effort proportional to d,---d,, known as the Bézout number, which
bounds the number of isolated zeros, counting multiplicities, of P(x) in C*[39]. We
wish to derive methods for solving deficient systems for which the computational
effort is instead proportional to the actual number of solutions.

In the last few years, a major computational breakthrough has emerged in the area.
The new idea takes a great advantage of the Bernshtein theory [4] which provides a

much tighter bound, compared to the Bézout bound, for the number of isolated zeros



of P(z) in the algebraic tori (C*)", where C* = C\ {0}. The so called polyhedral
homotopy [18] is then established for the new method and the homotopy paths so
produced is much fewer. Accordingly, the required computation effort is considerably
reduced. The new algorithm is very promising. In particular, for polynomial systems
without special structures, the new algorithm outperformed the existing methods by
a big margin.

The purpose of this dissertation is to present a strategy of solving polynomial sys-
tems by polyhedral homotopy efficiently via newly developed mixed cell calculation.
The polyhdreal homotopy and some necessary terminologies are introduced in Chap-
ter 1. In Chapter 2, we give a basic linear programming algorithm which serves as
a main tool for the mixed cell calculation presented in Chapter 3. Our algorithms
have been implemented successfullly, the numerical results on substantial variety of

examples are presented in Chapter 4.



CHAPTER 1

Polyhedral Homotopy

The Bernshtein theory on root count of polynomial systems is essential for our attempt
to reduce the number of homotopy curves need to be traced when the homotopy
continuation method is employed to find all isolated zeros of polynomial systems.

In the first section of this chapter, the Bernshtein theory on root count in (C*)",
where C* = C\ {0}, as well as its extension to root count in C" are presented. In the
second section, the polyhedral homotopy, based on the Bershtein theory, for finding
all isolated zeros of a polynomial system is introduced. In the last section, we will
disscuss how to solve a binomial system to obtain initial solutions of a polyhedral

homotopy.

1.1 Bernshtein Theory

Let the given polynomial system be P(x) = (p1(x),-:- ,pn(x)) € C[x], where x =
(z1,-++ ,z,). With x* = z7* - .- 2% where a = (a;,--- ,a,), write

pl(x) = ZC;'..’Ba,

acs;
(1.1)

pa(x) = Y chazt,

aGSu



where Si,---,S, are fixed subsets of N* with cardinals k; = #S;, and c}, € C°
forac S;,j=1,---,n. We call S; the support of p;(x), denoted by supp(p;), its
convex hull K; = conv(S;) in R® the Newton polytope of p;, and S = (Sy,---,S,)
the support of P(x), denoted by supp(P).

We now embed the system (1.1) in the system P(c,x) = (pi(c,x), - ,pa(c,x))

where
n(ex) = Y ciaz,
acs,;
(1.2)
pr(eX) = ) cnazt
acSny
and the coefficients c;, with a € S;, for j =1,--- ,n in the system are taken to be

aset of M = k; +--- +k, variables. Namely, the system P(x) in (1.1) is considered
as a system in (1.2) corresponding to a set of specified values of coefficients € = (c},
or P(x) = P(g,x).

We shall refer to the total number of isolated zeros, counting multiplicities, of a

polynomial system as the root count of the system.

Lemma 1.1 [17] For polynomial systems P(c,x) in (1.2), there ezists a polynomial
system G(c) = (gi(c), - ,9n(c)) in the variables ¢ = (cja) for a € S; and j =
1,---,n such that for those coefficients € = (c},) for which G(€) # 0, the root count
in (C*)* of the corresponding polynomial systems in (1.2) is a fired number. And the
root count in (C*)* of any other polynomial systems in (1.2) is bounded above by this

number.

Remark 1.2 Since the zeros of the polynomial system G(c) in the above lemma form
an algebraic set with dimension smaller than M, its complement is open and dense

with full measure in CM . Therefore, with probability one, G(€) # 0 for randomly



chosen coefficients ¢ = (c},) € CM. Hence, polynomial systems P(T,x) in (1.2)

with G(C) # 0 are said to be in general position.

Theorem 1.3 ([4], Theorem A) The root count in (C*)* of a polynomial system
P(x) = (p1(x),-..,Pa(X)) in general position equals to the mized volume of its
support.

The terminology in this theorem needs explanation. For non-negative variables
A1,°** , An and the Newton polytopes K of p;,for j =1,--- ,n,let A} K +---+A K,
denote the Minkowski sum of \K;,---, A\, K,, that is,

AlKl+"'+/\nKn={A11‘1+"'+A,.1‘,,|7‘jEKj,j=1,“' ,n}.

It can be shown that the n-dimensional volume of this polytope Vol,(\ Ky +---+
AnK,) is a homogeneous polynomial of degree n in A;,--- ,A,. The coefficient of
the term A; X --- x A, in this homogeneous polynomial is called the mized volume of
the polytopes Ki,::- , K,, denoted by M(K,---,K,), or the mixed volume of the
support of the system P(x) = (p;(x),:--,pa(x)), denoted by M(S;,---,S,) where
S; = supp(p;) for j = 1,--- ,n. Sometimes, when no ambiguities exist, it is called
the mixed volume of P(x).

In [6], this root count was nicknamed the BKK bound after its inventors, Bern-
shtein [4], Kushnirenko [21] and Khovanskii [20]. In general, it provides a much
tighter bound compared to variant Bézout bounds [32, 39]. An apparent limitation of
the theorem is that it only counts the isolated zeros of polynomial systems in (C*)"
rather than all the isolated zeros in the affine space C*. For the purpose of finding all
the isolated zeros of a polynomial system in C", a generalized version of the theorem
which counts the roots in C" is strongly desirable. This problem was first attempted
in [36] where the notion of the shadowed sets was introduced and a bound for the root
count in C* was obtained. Later, a significantly much tighter bound was discovered

in the following theorem.



Theorem 1.4 [27] The root count in C* of a polynomial system P(x) =
(p1(x), -+ ,Pn(x)) with supports S; = supp(p;),j = 1,--+ ,n is bounded above by
the mized volume M(S; J{0},...,S. U{0}).

In other words, the theorem says that the root count in C* of a polynomial system
P(x) = (p1(x), -+ ,pn(x)) is bounded above by the root count in (C*)" of the poly-
nomial system P(x) in general position obtained by augmenting the constant term to
those p/;s in P(x) in which the constant term is absent. As a corollary, when 0 € S;
for all j =1,--- ,n, namely, all p;(x) in P(x) have constant terms, then the mixed
volume of P(x) also serves as a bound for the root count of P(x) in C*, rather than
in (C*)* as Theorem 1.3 asserts.

This theorem was further extended in several different ways (19, 37).

1.2 Polyhedral Homotopy

In light of Theorem 1.4 given in the last section, to find all isolated zeros of a given
polynomial system P(x) = (p1(x), -+ ,pPn(x)) in C* with support S = (S;,---,Sn),
we first augment the monomial x° (=1) to those p;’s which do not have constant
terms. Followed by choosing coefficients of all the monomials in the system generically,
a new system Q(x) = (q1(x),- - ,gn(x)) with support S’ = (S3,-:-,S,) is obtained,
where, of course, S; = S; U {0} for j = 1,--- ,n. We will solve this system in the
first place, and the details will be discussed in this section. Afterwards, in Chapter

4, we will present our algorithm to solve P(x) = 0.



To begin, we write

4
a(x) = Z CraX",
aES]
Qx)=4q (1.3)
gn(x) = Z Cn,aX".
\ acs;,
Since all those coefficients ¢;,, for a € S}, j =1, ,n, are chosen generically, this

system may be considered as a system in general position. Namely, there exists a

polynomial system

G(c) = (91(c), -+ 1 gm(c)) (1.4)

in the variables ¢ = (cja), for a € S}, j = 1,---,n, such that polynomial sys-
tems with G(c) # 0 reach the maximum root count in (C*)" for the support
S" = (Sy,--,S,) and we have G(¢) # 0 for the set of coefficients ¢ = (;a) in
(1.3).

Let ¢ denote a new complex variable and consider the polynomial system Q(x,t) =

(G1(x,t),- -+ ,Gn(x,t)) in the n + 1 variables (x,t) given by

)
él (xa t) = z él,ax‘tu” (a)’
acs]
Ox,t) =4 (1.5)
dn(X,t) = ) Cnax®t"®),
\ acs;,
where each w; : S; = R for j = 1,--- ,n is chosen generically and known as a lifting

on §;. For a fixed ¢y, we rewrite the system in (1.5) as

4

Qi(x,t0) = ) (Graty™)x",

acs]
Q(x, tO) =
dn(x,t0) = D (Caaty"™)x".
\ IGS;‘

10



This system is in general position if for G(c) in (1.4),
T(to) = G(¢;ate’™) #0, forac Siand j=1,---,n.

The system T'(t) = 0 can have at most finitely many solutions, since T'(¢) is not

identically 0 because T(1) = G(Cj,a) # 0. Let
t1 =11, oty = e

be the solutions of T'(t) = 0. Then, for any 6 # 6, for j = 1,--- , k, the systems

Q(x7 t) = (‘h(x) t)’ T ’qn(xa t)) given by

r .
q-l (xv t) = Z (El’.e'wl (')o)x‘t“’l (a) ,
acs;

Q(x,t) = ¢

Gn (x, t) — Z ( é-n’. eiw,.(n)a)xatw,. (a) ,
\ acs,

are in general position for all ¢ > 0 because

6] .eiw,' (l)atw,' (a) — EJ .(teio)wj (a)

and,
G(C;a(te®)¥i®) = T(te) # 0.

Therefore, without loss of generality, (choose an angle 6 at random and change the
coefficients & to &;ae™(®)? if necessary) we may suppose the systems Q(x,t) in
(1.5) are in general position for all ¢ > 0. Together with Lemma 1.1 given in the last
section, it follows that for all ¢ > 0 the systems Q(x, t) in (1.5) have the same number
of isolated zeros in (C*)*. This number, say k, should equal to the mixed volume
of the support of Q(x) in (1.3) by Theorem 1.3. We shall skip this fact temporarily
and will reach this assertion at the end of this section.

Now, consider Q(x,t) = 0 as a homotopy, known as the polyhedral homotopy,
defined on (C*)" x [0, 1]. We have Q(x,1) = Q(x), and the zero set of this homotopy

11



is made up of k homotopy paths, say, x!(¢),--- ,x*(t), since for each 0 < t < 1,
Q(x,t) has exactly k isolated zeros from the argument given above. Since each
gj(x,t) has nonzero constant term for all j = 1,--- ,n, by a standard application
of generalized Sard’s Theorem (7], all those homotopy paths are smooth with no
bifurcations. Therefore, both Property 2 (Smoothness) and Property 3 (Accessibility)
introduced earlier hold for this homotopy. However, at ¢t = 0, Q(x, 0) = 0, see Figure
1.1. Consequently, the starting points x!(0),---,x"(0) of those homotopy paths
can not be identified, causing the breakdown of the standard homotopy continuation

algorithm. This major obstacle can be overcome by the devise we describe below.

A
Q(x,0) =0 Q(x) =0

=0 t=1 t

Figure 1.1: Solution curves of Q(z,t) =0

For a = (a4, ,a,) € R*, consider the transformation y = t~®x defined by
h = t—alxl)
(1.6)
Yn = 7Oz,

12



For a = (a;,- - ,a,) € N™, we have

a _ g%...z9n
x* = I} o,

= (nt™)™ - (yat™)*

= y‘;l cee y:n talan+"‘+anﬂn

(1.7)

— ynt(a,a) .

Here, (-,-) stands for the usual inner product in R*. Substituting (1.7) into (1.5)

yields, for j=1,--- ,n

hi(y,t) = Gi(yt®,t) =) Gay t®Mees®
aEs;
= Y Gaytilen e
aEs;
(1.8)
= Z Ej’.y.t«i'i),
aEs;
where & = (@,1) € R**!, and & = (a,wj(a)) for a € S}. The new homotopy

retains most of the properties of the homotopy Q(x, t) =0, in particular, H(y,1) =
Q(y,1) = Q(y) and both Properties 2 (Smoothness) and 3 (Accessibility) stand. Let

B; = min(&,a), j=1,---,n (1.10)
aEs;
and define the homotopy
Ha(y’t) = (h'?(y,t))"' ahz(yvt)) =0 (111)

13



n (C*)" x [0,1] where, for j=1,--- ,n

he(y,t) = tPhi(y,t) =) Giay"ti&® A

-GS;-
= ) Gay"t+ ), Gyt A (1.12)
acs; nes;
(&’i>=ﬂj (&.i))ﬁj

Evidently, for any path y(¢t) defined on [0, 1], we have, for all ¢ > 0,
Ho(y(t),t) =0 <= H(y(t),t)=0.

Therefore, the zero set of H,(y,t) = 0 consists of the same homotopy paths of the
homotopy H(y,t) = 0 in (1.9). The difference is, the starting points of the homotopy

paths considered in the homotopy H,(y,t) = 0 are solutions of the system

4
h(y,0) = ) Gay* =0,

acs]
(&1i)=ﬂl

Ha(y,0)=q (1.13)

h(y,0) = ) Gay* =0
acs;,
L (6,8)=Pn

As shown below, when this system is in certain desired form, its isolated nonsingular
solutions that lie in (C*)" can be constructively identified. In those situations, Prop-
erty 1 (Triviality) becomes partially valid for those homotopy paths of H,(y,t) =0
that emanate from those nonsingular solutions of (1.13) in (C*)*, and we may follow
those paths to reach a partial set of isolated zeros of Q(y) at t = 1.
The system (1.13) is known as the binomial system if each h$(y,0) consists of
exactly two terms, that is,
h(y,0) = ay™ +cdyt =
(1.14)

Il
]

$
+
S
‘Q

P
II

hg(y,0)



where aj,a; € S, ¢; = Cja; and ¢; = ) for j = 1,---,n. And in this
case, ({a;,a}}, - -,{an,a,}) is called a mixed cell (of type (1,---,1)) of S’ =

Si,---,8") associated with inner normal &.
1 n

Proposition 1.5 The binomial system in (1.14) has

!

det : (1.15)

bl
8
]

nonsingular solutions in (C*)".

The number k, is called the volume of the mixed cell ({a;,a}},---,{as,al}).
The proof of this proposition is constructive and therefore provides an algorithm for
solving the binomial system (1.14) in (C*)". We will come back to this matter in the
next section.

In summary, for given a = (e, - ,a,) € R*, by changing variables y = t7°x, as
in (1.6), in the homotopy Q(x,t) = (4i(x,t),* -+ ,da(x,t)) = 0 in (1.5), the homotopy
H(y,t) = (hi(y,t),*-* , ha(y,t)) = 0 in (1.9) is obtained, where h;(y,t) = §;(yt,1).
Followed by factoring out the lowest power t% of ¢t among all monomials in each
individual h;(y,t) = 0 for j = 1,---,n we arrive at the homotopy H,(y,t) = 0
in (1.11). When the start system H,(y,0) = 0 of this homotopy is binomial, its
nonsingular solutions in (C*)", k, (as given in (1.15)) of them, become available.
We may then follow those homotopy paths of H,(y,t) = 0 originated from those
ko regular solutions of H,(y,0) = 0 in (C*)*, and reach k, isolated zeros of Q(y)
at t = 1. Worth notifying here is the fact that the system Q(x), or Q(y), stays
invariant at ¢ = 1 during the process. Now, the existence of o € R™ for which the

start system H,(y,0) = 0 is binomial is warranted by the following

15



Proposition 1.6 For all the real functions w; : S; » R, j=1,--- ,n being gener-
ically chosen, there must ezist a € R", for which the start system H,(y,0) = 0 of
the homotopy H,(y,t) =0 in (1.12) is binomial with a nonempty set of nonsingular
solutions in (C*)", i.e., ko #0 in (1.15).

The assertion of this proposition was proved implicitly in [18] with terminologies
and machineries developed in combinatorial geometry, such as, random liftings, fine
mized subdivisions, lower facets of convez polytopes, etc., see also [23]. Here, we elect
to reinterpret the result without those specialized terms.

Now, different a € R™ given in Proposition 1.6 leads to different homotopy
H,(y,t) = 0 in (1.11). Henceforth, following homotopy paths of those different
homotopies will reach different sets of isolated zeros of Q(y). By taking the Puiseux
series expansions of those homotopy paths of H,(y,t) = 0 originated at (C*)" into
consideration, it is not hard to see that those different sets of isolated zeros of Q(y)
reached by different sets of homotopy paths actually disjoint from each other. Most
importantly, it can be shown that every isolated zero of Q(y) can be obtained this
way by following certain homotopy curve of the homotopy H,(y,t) = 0 associated
with certain a € R" given by Proposition 1.6. Thus the total number of isolated zeros
of Q(y) must equal to the sum of those k,’s corresponding to all the possible a’s
provided by Proposition 1.6, respectively. In [18], it was shown that this sum actually
equal to the mixed volume of Q(y). This yields an alternative proof of Theorem 1.3,

it is very different from Bernshtein’s original approach [4].

1.3 Solve Binomial System

Another major step in solving polynomial systems by using the polyhedral homo-

topy method as we described in the previous section is finding the solutions of the

16



corresponding binomial system
ay™ +Gy* =0,
(1.16)
Cny® + Coy* =0,
produced by the mixed cell ({a;,a}},---,{an,al}) asin (1.14). We now discuss the

method for solving (1.16) in (C*)". Let

—a. _—a

5 j=1"")na

and, with y € (C*)" in mind, we rewrite the system (1.16) as

yvl = bl)
(1.17)
y"" = bn)
where b; = —;"- for j=1,---,n. Let
J
V= vf va v,T,' (1.18)
and for brevity, write
yV.__(yw’“_’yvu) and b=(bla°")bn)-
Then, (1.17) becomes,
yV =b. (1.19)

With this notation, it is easy to verify that for an n x n integer matrix U, we have,
(") =y,
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Now, when the matrix V in (1.18) is an upper triangular matrix, i.e.,

Vi1 V12 - Vin
0 v -+ v

V = ,
0 -+ 0 v,

then the equation in (1.19) becomes

un" = by,
iy = by,

v (1.20)
YT Yt = b

By forward substitutions, all the solutions of the system (1.20) in (C*)™ can be found,
and the total number of solutions is |vy;| X -+ X |vp,| = |det V.

In general, we may upper triangularize V' in (1.18) by the following process. Recall
that the greatest common divisor d of two nonzero integers a and b, denoted by

gecd(a, b), can be written as
d = ged(a, b) = ka + 1b,

for certain nonzero integers k and l. Let

k1
M=
—b a
d d
We have det(M) =1, and
a k1 a d
M = =

b -2 21 |b 0

Similar to using Givens rotation to produce zeros in a matrix for its QR factorization,

the matrix M may be used to upper triangularize V' as follows. For v € Z™, let a
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and b be its i-th and the j-th (nonzero) components where i < j, that is,

a — i-th
Vv =
b | — j-th
With d = gcd(a, b), we let
i-th j-th
1
1
k l i-th
1
Ui, j) = (1.21)
1
- ; b
1
- 1 -
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Evidently, U(¢, ) is an integer matrix with |det(U(¢,5))| =1 and

d | ith

Ui, jv=

0| jth

Thus a series of matrices in the form of U(%, j) in (1.21) may be used to successively
produce zeros in the lower triangular part of the matrix V' in (1.18), resulting in an
upper triangular matrix. In simple terms, we may construct an integer matrix U , as
a product of those U(i, j)’s, with |det U| = 1 and UV is an upper triangular integer
matrix.

Now, as mentioned above, the solutions of the system
2V =2z"=0b (1.22)

in (C*)" can be found by forward substitutions, since UV is an upper triangular

integer matrix. And the total number of solutions in (C*)" is
|det(UV)| = | det(U)| - | det(V)| = | det(V)].

By letting y = zV for each solution z of (1.22) in (C*)", we obtain all the solutions

of the system (1.22) in (C*)", and hence, solve the system (1.16) in (C*)".
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CHAPTER 2

Linear Programming

As outlined in the last chapter, when the polyhedral homotopy is employed to find all
the isolated zeros of a polynomial system P(x) = (p;(x),- - ,pn(x)) with supports
S1,°** ,Sn, one major step is to indentify the mixed cells ({a;,a}}, - ,{an,a}})
induced by generic liftings w; : S; =+ R for j =1,.-- ,n. As a point of departure in
developing our algorithms for finding all mixed cells in the next chapter, we introduce
in this chapter some basic terminologies and algorithms in linear programming (3] that
will be used in the method.
Consider the model problem

min (f,x) 2.1)

st. (ciy,x) < b, i=1---,m
where f € R*, ¢; € R*, b = (b1, - ,bm)T € R™, x = (21, ,2,), m > n. The
feasible region of (2.1), denoted by R, defines a polyhedral set. By a nondegenerate
extreme point of R we mean a vertex point of R with exactly n active constraints.
Let x° be a nondegenerate extreme point of R and J = {ji, -+ ,ja} be the set of
indices of currently active constraints at x°, that is,
(€;,x) =0b;, ifieJ

(c;,xo) <b, if i ¢ J.
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Let DT = [cj,, - .cj,]. Since x° is a vertex point, D must be nonsingular. Let
D! =[uy,--+,u,). Then for any ¢ >0 and 1 < k < n, we have
(cjiy X0 — ouy) = (c;,X%) — a(cj,, ) = (c;,x%) = b;, if i # F, 22)
(Cjs X0 — o) = (c;,, X% — o(c),, i) = bj, — o < b,
and for small ¢ > 0 ,
(ci, X0 — oup) = (c;,x°) — o{c;, wi) < by, fori ¢ J.
0

Thus the n edges of the feasible region R emanating from x” can be represented in

the form
x*—ow, >0, k=1,---,n.

These edges provide possible search directions to minimize the objective function

(f,x). Let x! = x? — ou; with o > 0. Then the value of the cost function at x! is
(£, x') = (£,x°) — o(f, ),

and it decreases when (f,w;) > 0. It can be easily shown that x° is an optimal
solution of (2.1) if (f,u;) <0 forall i =1,-.- ,n. If some of the (f,u;)’s are positive,
then the greatest rate of decrease of the cost function is obtained by choosing & such

that
(f,ux) = max {(f,w;) | 1 <i<n}.

Let s = u; be the next search direction. From (2.2), for all positive o, the i-
th constraint is still active at x! = x° — os for every i € J\{ji}, and the ji-th
constraint becomes inactive but stays feasible. To make x! feasible, we must choose

o > 0 such that

(c;,x° — os) = (c;,x°) — o(c;,s) < b, fori ¢ J. (2.3)
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If (c;,s) > Oforall i ¢ J, then the inequalities in (2.3) are valid for all ¢ > 0 and
problem (2.1) is unbounded from below with no solution. Otherwise, from (2.3), the

largest possible o for x! to stay feasible is

(C,’, x0> - bi

. 8) all i ¢ J with (c;,s) < O} .

09 = min {

Let I be the smallest integer such that

(C[, xO) - bl

7= (cl ) S)

0 — g¢s is a new extreme point of the feasible region R in (2.1) with

Then x! = x
reduced value of the objective function. This procedure can be continued until either
an optimal solution is reached or the problem is determined to be unbounded from

below.

We summarize the above discussion in Algorithm 1 below [3].
Algorithm 1 Solving the model problem (2.1) .

Step 0: Initialization.
Start with an extreme point x° of (2.1), J = {i1,*-- ,in}, And D! =
[wi;] = [y, ,u,), where DT = [dy,--- ,d,] = [¢i;,*** ,¢;,] is nonsingu-

lar.

Step 1: Computation of the search direction s.
Determine the smallest index k such that
(f,ux) = max{(f,w;) |i=1,--- ,n}.
If (f,u,) < 0, stop with optimal solution x°. Otherwise, set s = u, and

go to Step 2.

Step 2: Compute the maximum feasible step size o.
If (c;ys) > Oforalli = 1,--- ;m, print the message “problem is un-

bounded from below” and stop. Otherwise, compute the smallest index |
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Step 3:

and o such that

0\ _ %0\ _ B,
_ {en,x) bxzmin{(cnx) b;

(cy, 8) ) all i ¢ J with (c;,s) < 0}.

and go to Step 3.

Update.
Set x° := x° — os. Replace k-th column of DT by c; and update the

inverse D~1. Replace the k-th element of J by l. Go to Step 1.

The process of obtaining next feasible solution from a given feasible solution with

one execution round of Step 1, 2 and 3 is called a pivot operation in Linear Program-

ming.
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CHAPTER 3

Find Mixed Cells

In this chapter we will elaborate our algorithms for finding all mixed cells by solving
a series of linear programming problems.
For i =1,--- ,n, let S; be the support of p;(x) in the polynomial system P(x) =

(p1(x),- - ,pa(x)) and w; : S; & R be a generically chosen function. Let
Si={a=(awi(a) |a€ S}, fori=1,---,n

and for a = (g, -+ ,a,) € R*, write @ = (a,1). Recall that a mixed cell of

S =(S1, -+ ,8S,) induced by the lifting w = (w;,--- ,w,) is a collection of pairs
{alya'l}a"' v{an)a:;}7 with aha: € Sia 1= 1:"' 7

such that there exists an a = (o, ,a,) € R* for which

~

(aud) = (ﬁ:)é)) 1= 17"' yn
and
(a,a) > (&;,6) for a € S;)\{4;,a},i=1,---,n.

The geometric meaning of finding those mixed cells is that with generic lifting w;

on lattice points S; C N" for each i = 1,--- ,n, we are looking for hyperplanes with
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Y

Figure 3.1: A lifting on lattice points

normal & = (a,1) where a € R", and each hyperplane supports the convex hull of
S; at exactly two points {&;,4;} of 5'.-, for each i = 1,--- ,n, as shown in Figure 3.1.
For1<i<n,é={aa}cC S; is called a lower edge of S; if there is a vector
& = (a,1) with a € R™ such that
(8.6) = (&)
(a,4a) < (B, a), b e 8\{aa'}.
For1<k<n, E, = (&1, -+ , &) where & = {&;,a!} C S;,fori=1,--- k, is called
a level-k subface of S = (S, ,8,) if there is a vector & = (a,1) with a € R" such
that foralli=1,-.- ,k,
(&,a) = (&;,4)
(8,8) < (B,a), BeS\{a &)}
Obviously, a level-1 subface of $ is just a lower edge of S; and a level-n subface of

S induces a mixed cell of S. Thus, to find the mixed cells of S, one may proceed
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by finding all the lower edges of $ for ¢ = 1,--- ,n in the first place, followed by
extending the level-k subfaces of § from k=1 to k = n.

It can be shown that the mixed volume of S

n
M(S) = (=) Vol (Ki) + (=1)"7* Y Vola(K; + K;)
i=1 i<j
+---+ Vol (K1 + -+ + Ky),
where K; = conv(S;),7 = 1,--- ,n. Thus non-extreme points of any of the S;’s play
no role in the mixed volume of S.

To identify non-extreme points of S;, notice that a non-extreme point of S; is a
convex combination of other points of S;. Namely, if a;, € S; is a non-extreme point
of S;, the following system of equations

a1+ + Aeo18ik-1 T Mer1Bike+1 7+ AmyBim, = Bk
A+ i F 1+ Ay =1
ALy Ak=1y Akt 5 Amg 2 0

must have a solution. Testing the existence of solutions of the above system con-
stitutes a standard Phase I problem in linear programming, and algorithms for this
problem can be found in many standard Linear Programming books, e.g. [35]. When
we compute the mixed cells of S we will eliminate all those non-extreme points in
the first place and assume throughout this chapter that S; has only extreme points
foralli=1,---,n.

3.1 Find all lower Edges of a lifted Lattice Set

For w = (w,,- -+ ,w,) with generically chosen w;, ¢ =1,--- ,n, and
S; = {é = (a,w;(a)) | ac S,-} for i=1,--- ,n,

denote the set of all lower edges of S; by £(5;). In this section, we will describe

our algorithm for finding L',(S'.-) for ¢ = 1,.-- ,n efficiently. For this purpose, let
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B = {ag,8a;, - ,8,} C N represent general S;’s, and w : B — R be a generic
lifting function. Let B(w) = {4 = (a,w(a))|a € B}. Consider the following system

in the n + 1 unknowns ag,a;, - ,a,

(4;,8) > ap, 1=0,---,m (3.1)
where & = (a3, -+ ,an,1) € R*!. Immediately, we have

Lemma 3.1 If system (3.1) has a solution ag,a;,-:- ,a, such that (&;,&) =

(a;,a) = ag for 0 < 1,5 <m, then {&;,a;} is a lower edge of B.

With a; = (a1, ,a:,) for i =1,--- ,m, rewrite system (3.1) as

- - - - - -

1 —ay; —Q1,n Qg w(al)
1 —a;; - —azn a) w(az)
<
(3.2)
| 1 _am,l ’_am,n i _w(am) i

Suppose the rank of the coefficient matrix in (3.2) is v < n. Without loss of
generality, we may assume the first v rows are linearly independent. By Gaussian

eliminations, there exists L € R(®+1)x(n+1) gych that

[ ] i -
1 —ajy -+ —a1n i 0 - 0 0 .- 0
1 —Gz1 - —Q2n C2,1 C22 *°° 0 0 --- 0
L= ’
1 _av,l Y av,n cU,l CU,2 oo CU,U 0 oo 0
i 1 —Qm,1 *** —Gmpn i i Cm1l Cm2 *** Cmy 0 --- 0 ]
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where ¢;; #0 for i = 1,--- ,v. With (z1,--+ ,2p41)T := L }ag, 01+ ,0,)T in

1 —a;; —Q1.n Qo w(al)
1 —az; -+ —azn L[ o < w(ag)
(3.3)
Cog Cu2 't Cum | an | w(ay)
| 1 —Qm,1 °°* —Amgn i 5 w(am) j
we obtain the following system:
C1,1 0 oo 0 F I bl
€21 C22 -+ 0 T3 ba
<
, (34)
Cu1  Cu2 Cow |z, | by
| Cm1 Cm2 t Cmp | | bm
with b; = w(a;), i =0,--- ,m.
Lemma 3.2 System (3.1) has a solution ag, a1, - - ,a, satisfying (&;,a) = (a,,a) =

ay if and only if System (3.4) has a solution z,,--- ,z, satisfying c;1z1 + ci2T2 +

coo 4+ CiwTy = b and cj1T1 + cjaT2 + - + CjuTy = bj.

Inequality system in (3.4) defines a polyhedron R in R”, and for an extreme point,
or a vertex, of R, there are at least v active constraints. It follows from Lemma 3.1

and Lemma 3.2 that
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Lemma 3.3 If xo is an extreme point of R and J = {iy,--- ,i,} is the indices of
active constraints of the system at xo with u > v, then {&;,,4;} is a lower edge of

B for any i, 1, € J.

On the other hand, if {&;,4;} is a lower edge of B, there is a lower facet of conv(B)
with inner normal & = (a,1) where a = (ay,--- ,a,) € R* which contains the line
segment of {&;,a;}. Let ap = (&;,&) = (4;,&) and xo be the first v components
Ty, ,z, of L7} (ag, 0, ,0a,) in (3.3). Apparently, x, is an extreme point of R.

Therefore, in order to find all the lower edges of B, it suffices to locate all the
extreme points of the polyhedral R defined by the inequalities in (3.4). To reach this
goal, our main strategy is to find an initial extreme point of R at the first step and
generate all other extreme points of R from this extreme point thereafter.

To find an initial extreme point of R, we may first solve the triangular system

C1,1T1 = b

2,11 + C22%2 = by

CoaT1 + CuaTz + o+ CypZy = by

in (3.4). Let the solution be xo = (zo1, Zo2,* - , Zov), and let
d; = b — (ciaZTo1 + CigToz + -+ +CipToy) for i=v+1,---,m.

Ifd= min d; > 0, then xq is already an extreme point of R. Otherwise we apply

v+1<i<m

Algorithm 1 to the following linear programming problem
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mzn €

€1,171 < b
c21Z1 + C22T2 < by
Cy,1Z1 + Cv,2T2 + e + Cv,uly S bv
Cv+11Z1 + Cu+1,2T2 + - + Cut1,0Ty — Cu+1,0+1€ < bv+1 (35)
Cm1T1 + CmaT2 + *** +  CmyTy — Cmyt+1€ < by
- < 0
0, ifd;>0 )
where ¢; 41 = , forv<i<m,
1, ifd; <0

in the variable (z,,---,z,,€) with initial extreme point (x,€¢) = (x9,—d;) of (3.5)
and initial indices of constraints J = {1,2,--- ,v,l}. The optimal solution of this
problem gives an initial extreme point of R that we need.

Let x¢ be an initial extreme point of R. To generate all other extreme points, we

first introduce the following linear programming problem:

Two-Point Test Problem:

MIN = (Cigr + Cjo1)T1 — (Cio2 + Cio2)T2 — *++ — (Ciow + Cjow)To

C11T1 b,

IN

IA
g

C21T1 + C2.2T2

(3.6)

Co1ZTy t+ Cu2T2 t+ ottt CaZTy < by

Cmi1T1 + Cm2T2 + -+ CmeuTy < by
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where 1 < ig,jo < m.

Lemma 3.4 Given 1 < iy, jo < m, if the optimal value of the problem in (3.6) is

—bi, — bj,, then {&;,,4;,} is an lower edge of B.

PROOF: If the optimal value —b;, — bj, is attained at (zo,:-- ,z,), then

—(Cigs1 + €jo1)Z1 — (Cig2 + €jo,2)T2 — +++ — (Cigw + Cjo,u)Tw
= (—Cig1T1 = Cig2T2 — *** — CiguTy) + (—Cjo1T1 = Cjg2Ta — *** — CjouTv)
= —b;, — bj,.

But (zo,---,z,) also satisfies constraints

CiOylzl + q0'2m2 + e+ Cip,vTy < bio)

Cjo,1T1 + Cjp2T2 + -+ Cjy Ty < bj0'
Therefore,
Cig,1T1 + Cip 22 + ++* + CiguTy = by,
Cio1Z1 + Cjp2T2 + - + CjopTov = bjy.
By Lemma 3.1 and Lemma 3.2, {4, 4,,} is a lower edge of B. 0

The constraint in (3.6) is the same inequality system in (3.4) which defines poly-
hedron R. Since an initial extreme point xy of R is available, we may use Algorithm
1 on the Two-Point Test Problem in (3.6) to test if {&;,,4,,} for given 1 < iy, jo < m
is a lower edge of B. By using Algorithm 1, the optimal value of the problem is
reached by moving from one extreme point of R to another extreme point of R in
the direction where the objective function decreases. By Lemma 3.3, a newly ob-
tained extreme point of R in the process provides a new collection of lower edges of
B. This important feature keeps us away from exhaustive testings on all the possible
pairs in B for identifying all the lower edges of B.

The details of our algorithm for finding all lower edges of B is given in the following
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Algorithm 2 Given B = {,4;, - ,am}, construct L(B).

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Initialization.

Set up inequality system (3.4). Let P = {{&;,a;}|1 <i,j <m} be all
the possible pairs of B. If v = m, set L(B) := P and stop. Otherwise
find an initial extreme point xo of system (3.4) with J = {4,,--- ,i,} and
D! = [u,---,u,), where DT = [¢;,, -+ ,c;,] by applying Algorithm 1

to the optimization problem (3.5). Set L(B) = 0, go to step 1.
Set up objective function for the Two-Point Test
If P = 0, stop. Otherwise select {&;,,4;,} € P, set f := (—cip1 —
Cjo,1s"** » —Cigw — Cjon), and P := P\{{4s,,4;,}}, go to Step 2.
Apply Algorithm 1
Determine the smallest index k such that
(f,ux) = max{(f,u;) |¢=1,---,v}
If (f,u) <0, go to Step 1. Otherwise, set s = u; and go to Step 3.

Compute the smallest index | and o such that

e, x®) —b . (e, x%) — b
T s m‘“{ (c8)

Go to Step 4.

alli ¢ J with (c;,s) < 0}.

Set xg := Xo — os and update J = {iy,--- ,i,} and D~!. Set L(B) :=
L(B) U (P N {{a,a}|k,l € J}), and P := P\ {{ar, a}lk,l € J} Go to
Step 2.

3.2 Extend level-k Subfaces

For a level-k subface E; = (1, ,€x) of S = (5’1,.-- ,5',.) with 1 < k < n where

é ={a,a)} € L(S) for i=1,--- ,k, we say &1 = {fks1,8},,} € L(Sks1) estends
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E, if E,.+1 = (&1, " ,€k+1) is a level-(k + 1) subface of S. Let
5(Ek) = {{ﬁk+1,é;=+1} € £(§k+1) {5k+1’5;‘+1} extends Eh} .

E, is called eztendible if E(E:) # 0, it is nonextendible otherwise. To find
all mixed cells of S = (S;,-:-,S,), we will start from £k = 1 and extend E
step by step. If Ej, is nonextendible, there is no mixed cell of S which contains
({a1,a’},-- -, {ar,a}}), and extension attempt will be repeated on the next Ej. Ob-
viously, when k = n — 1, an extendible Ej yields mixed cells of S with elements in
E(E,) (possibly several).

In this section, we describe our algorithm to calculate £(E}) efficiently for a given

level-k subface Ej = (€1,--- ,€x) where & = {&;,a}} C S fori=1,--- k.

Now, consider the following system in the n + 1 unknowns ag,a;, - ,ay,
(8,6) > a,  &€8n
(8;,6) < (a,a4), aeS;, fori=1,---,k 3.7

(éhd> = <a:,a)) 1= 11"' ’ka
where & = (a;,-+- ,ap,1) € R*1,
The following lemma is obvious.
Lemma 3.5 For a level-k subface £} = (€1, ,8k), where & = {&;,al} C S;,

if system (3.7) has a solution (ap, 1, - ,a,) such that (&,6) = (a4;,a) = ag for

a,8; € Siy1, then {&y,a;} extends E,.

With S; = {ai1, - ,aim} fori=1,--- 'n and a = (a4, ,a,) we may rewrite

system (3.7) as

IA

(ﬂk+u,a) — Qo —wk+1(8k+1.j) J=1 mgpn

A

(i —aija) < wi(ay)—wi(a) j=1,---,m; a;; € S\{a,a}, i=1,---,k

(a; — &}, ) wi(a)) —wi(a;) i=1,---,k
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By using the last k equality constraints to eliminate k variables of a, the above

system can be reduced to the following general inequality system :

Qa% T %+t ayo, < b
D% + Gp% t+o Tt G 0, < b 5.8)
C;‘:J'lajl + c:m'zajﬂ toeee c:t.j,,raj,,l < by
k+1
where p= 3 m; —2kand n' =n—-k+1.
As befor::by a coordinate transformation (z1,--+ ,zy) = (@, ,a;,,)L, where

L € R"*7 is nonsingular, the system can be further reduced to the following inequal-

ity system:
€1,171 < b
C21Z1 + C22% < b
(3.9)
CpaZ1 + CpaZz + ccr + CppZy < by
Cu1T1 + Cu2T2 + -0+ CunTyn < by

Lemma 3.6 System (3.9) has a solution (ag,01,---,a,) satisfying (8x.14,8) =
(Bk41,4,8) = ag for i < 4,5 < miy1 if and only if system (3.9) has a solution

Ty, , Ty such that c;1T1+cioTa+- - - +CiyTy = by and cj1T14+Cj2T2+ - +CjpTy = b;.

Inequalities in (3.9) defines a polyhedron R in R”, and for an extreme point, or
a vertex, of R, there are at least 7 active constraints. From Lemma 3.5 and Lemma

3.6, it follows that

Lemma 3.7 If x is an extreme point of R and J = {i;,--- ,i,} is the indices of
active constraints of the system at xo with t > 1, then {8x;1,,8k+1,4,} eTtends E,

for any i,,ig € JN{1, - ,mpi1}.
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Similar to the discussion following Lemma 3.3, if {&x+1,,8%+15} € L(S';,.,.l) for
{i,j} cI={1,--- ,mp,}, it will lead to a corresponding point xo of R, its indices
of active constraints includes {i,3}. Hence, to construct £(E;) C £(Sk+1), we may
look for all those extreme points of R whose indices of active constraints contain at
least a pair of {%,7} in I. To achieve this, we may certainly apply the Two-Point
Test introduced in the last section and confine to I the indices of the “two points” to
be tested. However, it is very likely that most of the &4 ;’s that appeare in the pairs
in E(S’Hl) fail to extend E, with their associated pairs in L(S‘,,H). Namely, those
points do not exist in any of the pairs in £ (E’,,). This phenomenon never occurs when
we compute the set of lower edges 5(3) of B in the last section since all the points
in B are extreme points. Consequently, every point of B appears in certain pairs of
L(B). From this important observation, we introduce the following One-Point Test

to be used in additional to the Two-Point Test in our algorithm.

One-Point Test Problem:

MIN  —cp1Tt — Cigaa — ***— CignTn
€1,1Z1 < b
C21ZT1 + C22T2 < by
(3.10)
Cp1T1  + CpaZTz + it CppZy < by
Cu1ZTi + Cu2Tz + -+ CupZTp, < by

where 1 < 5 < Mp4y.

Lemma 3.8 Given 1 < iy < mg41, if the optimal value of system (3.10) is greater

than —b;,, then {84414, Aks1:} does not extend Ey, for all i € {1,--- ,me1}\{io}-

PROOF: Suppose there exists 1 < jo < My for which {axi1,,, 8k+1,5,} €xtends Ey.
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By Lemmas 3.5 and 3.6, system (3.9) has a solution (z,,--- ,z,) satisfying

Cig1ZT1 + Cig2T2 *** + Cig Ty = byg,

CjonZ1 + Cjo2T2 *** + Cjo Ty = by
Hence the objective function value at (z1,-:- ,z,) is
—Cip1T1 — Cig2Ta — *** — Cignyn = —bi,

which contradicts the fact that the optimal value of the system (3.10) is greater than

—bio . o

From the above lemma, points appeared in the pairs in £(S’k+1) may be tested
systematically by using One-Point Test to check the possibilities of their appearances
in the pairs in £ (E,.) When the optimal value obtained is not as desired for a
particular point &41,,, all the pairs associated with &4, in L(Sk+1) should be
deleted from further considerations. In the meantime, in the process of reaching the
optimal value of the problem, newly obtained extreme points of R provide a collection
of new pairs of £(E}) as long as their active constraints contain a pair of {4,;} in
I={1,--- ,my4,}. Furthermore, we no longer test points &4, in £(.§'k+1) whose
index ¢ have appeared in any of the indices of the active constraints of the extreme
points of R being obtained.

The system of constraints in problem (3.10) is the same inequality system in (3.9)
which defines the polyhedron R in R”. To find an initial extreme point of R to start
Algorithm 1 on the problem, we may employ the same strategy by augmenting a new
variable € > 0 as in calculating £(B) of B in the last section.

Two-Point Tests will be used only after One-Point Tests have exhausted all the
testings on possible candidates. Our experiences show that the Two-Point Test only
plays a minor role in constructing &(Ej), namely, when we finish the One-Point Tests,

most of the pairs in £(E}) have been found.
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Combining the One-Point Test and the Two-Point Test, we list the following al-

gorithm for constructing £(E}).
Algorithm 3 Given Ej, construct £(E}).

Step 0: Initialization.
Set up the inequality system (3.9). Start from an extreme point xo with
J = {i1,-+ ,in} and D! = [uy,--- ,u,], where DT = [¢;,,---,¢c; ], and

set ﬁ'k+l = E(S'k+1).
Step 1: One-Point Test Problems.
Step 1.0 Set i := 0, go to Step 1.1.

Step 1.1 Set up objective function
Find 7 = min {j l J > o and {@k41,4,8k+1,5} C F} 1 for some j' }
If such T does not exists, go to Step 2. Otherwise set ig := T

a‘nd f = (_cio,lj ftt _cio.n): g0 to Step 1.2

Step 1.2 Determine the smallest index k such that
(f,ur) = max{(f,w;) |i=1,--- ,n}.

If (f,u;) <0, go to Step 1.5. Otherwise, set s = u; and go to
Step 1.3.

Step 1.3 Compute the smallest index | and o such that

c;,x%) — i, X°) — b

Go to Step 1.4.

Step 1.4 Set xo := Xo — os and update J = {i,--,i,} and D7!.

If | < M4, check if any lower edge {@kt14,8k415} in Fipr

38



extends Fi,,. Collect these lower edges, if they exist, and
delete them from 13‘,,,,1.

Go to Step 1.2.

Step 1.5 If the current value of objective function is not equal to —b;,,
delete all lower edges containing point &1, from F’Hl.

Go to Step 1.1.
Step 2: Two-point Test Problems.

Step 2.1 Set up objective function.

If ooy = 0, stop. Otherwise select a lower edge
{8k+1,i0) Br+1,40} € Fiy1. Set £ := (—cipq — Cjo,1s"** » —Cigp —

Ciom), a0d Fii1 := Fip1\{8k+1,i0, 8k+10} , &0 to Step 2.2.

Step 2.2 Determine the smallest index k such that
(f,ux) = max{(f,w;) |i=1,--- ,n}.

If (f,u,) <0, go to Step 2.1. Otherwise, set s = u; and go to
Step 2.3.

Step 2.3 Compute the smallest index | and o such that

e, x%) =b min (ci,x%) —b; ; wi ‘
o= s {—(c.-,s) I alli ¢ J with (c;,s) < O} .

Go to Step 2.4.

Step 2.4 Set xo := Xo — 0s and update J = {i1,--- ,i,} and D'.
If | < my41, check if any lower edge {@k41,,8k+1,} in ﬁ‘k+l
extends ﬁ’k+1. Collect those lower edges, if they exist, and
delete them from Fk+l-

Go to Step 2.2.
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Remark 1 Numerical testing shows that setting up the inequality system (8.9) is
very time consuming. One strategy we employ is to save the inequality systems at all
previous levels. Thus the inequality system in the current level can be set up by using

the inequality system that already eist.

3.3 Find All Fine Mixed Cells

For § = (S1,:-+,Ss) with S; = {a;1,-** ,@im;} CN*, i =1,--. ,n and generically

chosen w = (wy, -+ ,w,) with

S = {é:(a,w,-(a)) aes,.}, i=1,--,n,

we combine our algorithms described in the last two sections in the following algorithm

for finding all the mixed cells in § = (5, ,S,).
Algorithm 4 Find all mized cells in S = (Sy, - ,Sn).
Step 0: Initialization.

Find L(S;), foralli=1,--- ,n.
Set Fy := L(S), k:=1.

Step 1: Backtracking.
If k =0 Stop.
If i, =0, set k := k — 1 and go to Step 1.

Otherwise go to Step 2.

Step 2: Select next level-k subface to extend.
Select &, € f-';., and set Fy := f',.\{é,.}.

Let B, = (é1,--- ,€) and go to Step 3.
Step 3: Extending the level-k subface.
Find £(E).
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If £(E;) = 0, go to Step 1, otherwise set Fi,q = E(Ex), k:=k+ 1 then

go to Step 4.

Step 4: Collect mixed cells.
Ifk=n,al C = (e, ,eq,1,€),&€ F,. are fine mixed cells, pick up all
these mixed cells, then set k := k — 1, go to Step 1.

Otherwise go to Step 2.

Remark 2 In finding E(E.) at Step 3, inequalities associated with the points in
S, which never appear in 8(E,~) for i =1,.-- 'k — 1 should not be considered as

constraints, since these points will never enter the level-k subface.
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CHAPTER 4

Numerical Implementation

4.1 Algorithm

For finding all isolated zeros of a polynomial system P(x) = (pi(x),:-: ,pa(x)) in
C*, where

pt(x) = E C.',.x., fOr 1= 1, cee,m,
acs;

we outline the major steps in brief terms as follows:
(A) Set up the polyhedral homotopy Q(x,t) : C* x [0,1] = C* as

Qi(xa t) = Z (Ci,. + (1 - t)e,-'.)t""(‘)x“, fori=1,---,n,
acS;u{0}

where w; : S; U {0} — R are chosen generically and ¢;, are randomly chosen

complex numbers.

(B) Find all mixed cells of extended support S; U{0},---,S, U {0}. For each inner
normal a associated with a mixed cell, define the homotopy
H,(y,t) =t PQ(yt*,t) =0,
where 3 = (61, ,0») and G; is the lowest order in ¢ among all the terms in
% (yt®,t).
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(C) Solve the binomial system H,(y,0) =0 in C*, then follow homotopy paths of
H,(y,t) = 0 to find all the isolated zeros of P(x).

We set up our initial system Q(x) = (§1(x),--- ,d.(x)) by perturbating the coef-
ficients of P(x), that is
gi(x) = Z (Cia+ €ia)x®, i=1,---,n
aeS;u{0}

where ¢€; 4 € R* are randomly chosen small complex numbers, and let
Q(x,t) = (1 - t)Q(x) + tP(x).

The homotopy Q(x,t) in (A) is obtained by setting up the polyhedral homotopy for
Q(x,t) instead with the same variable t.

Apparently, we have Q(x,1) = P(x) and for each t € [0,1], Q(x,t) and Q(x)
have the same support. Let

di(x,t) = Z (Cip + €)X "™ i=1,-.. | n.
acS;u{0}

It is clear that, for any a € R", the lowest order terms in ¢ of both g;(xt*,t) and
g;(yt*,t) are the same. Hence the mixed cells and their associated inner normals stay

invariant, and the start system of the homotopy
H,(y,t) =t7?Q(yt*,t) = 0 (4.1)

is the same as that of the H,(y,t) = tPQ(yt>,t) = 0 with Q(yt*,t) =
(q1(yt*,t),--- ,dn(yt*,t)). Here, again, 8 = (B1,---,0,) and for j = 1,---,n,
B; is the lowest order in ¢ among all the terms in g;(yt,t). Thus, when nonsingular
solutions of H,(y,t) in (C*)" are available, we may follow those homotopy paths of

H,(y,t) in (4.1) instead with those starting points.
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4.2 Implementation

In this section, we will briefly describe our software environment that has been de-
veloped.

Currently there are several publically available software packages dedicated to solv-
ing polynomial systems by homotopy continuations. HOMPACK [45] and CONSOL
[31] are written in FORTRANY77, pss [28] and Pelican [16] are written in C and PHC
[42] is written in Ada. Some of these software packages are integrated multi-purpose
packages.

Our package is designed as a high-performance polynomial system solver, focused
on better efficiency, portability and simplicity. Our program is written in C++, a
standard programming language which provides excellent support for object-oriented
programming, abstraction, and encapsulation.

The following UML diagrams illustrate the structure of our polynomial system
solver system. Diagram 4.2 shows that our polynomial system solver relys on two
packages. One of them provides utility tools such as linear programming and lin-
ear system solvers. The other one may not be critical, it is mainly used for parsing
polynomial expressions and performing simple polynomial manipulation to provide
certain degree of user friendly interface. The class diagram 4.2 shows our Polyno-
mialSolver uses four major components: PolyhedralHomotopy, MixedCell, Binomial-
SystemSolver, and Continuation (which uses Newton’s iteration). The state diagram

4.2 shows the transitions among states in the execution of our program.

4.3 Numerical Results

Our software package has solved many well-known polynomial systems successfully.

In this section we present some of our numerical results.
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1

Linear Algebra
Linear Programming

Polynomial system Solver

Figure 4.1: Package Diagram

PolynomialSolver
load()
run()
1
[PolyhedralHomotopy BinomialSystemSolver MixedCellFinder Continuation

getLiftedSupport () load() first() operator () ()
getBinomialSystem() first() next ()
evaluateValue() next () getCell ()
evaluateJocobian() luti
noralize(); getSolution()

Figure 4.2: Class Diagram

1
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[ Setting Up
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Transformin t o .
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l

J

A 4
Solving [get the next solution)
Binomial System Following Curve
next () J L

Figure 4.3: State Diagram

1. System of Trinks from the PoSSo test suite[40]

(
45y + 35u — 165v — 36,

35y + 25z + 40t — 274,

25yu — 16502 + 15z — 182 + 30t,
P(z,y,z,u,v,t) = <
15yz + 20tu — 9z,

—11v3 + zy + 22t,

—11uv + 3v? + 99z,
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2. Generalized eigenvalue problem(9]

4

\

—10z,72 + 27272 — 7322 + 7472 + 3T572 + 7176 + 22276 + T3T6
+2z4z¢ + 56 + 10z + 229 — T3 + 224 — 275,

2z17¢ — 112,73 + 27322 — 22473 + 2572 + 22126 + T2T6 + 22376
+z4z¢ + 3T5T6 + 227 + 92 + 323 — T4 — 275,

—z122 + 22023 — 122323 — z47¢ + 522 + 7176 + 27276 — 22476
—2zgT¢ — T) + 373 + 1023 + 224 — T5,

T173 — 2773 — 2322 — 102423 + 27572 + 22176 + T2T6 — 27376
+2z4z¢ + 3T526 + 277 — T3 + 223 + 1274 + x5,

32122 + 1272 + 372 + 22472 — 112572 + 2126 + 32226 — 27376
+3z42¢ + 3T526 — 277 — 222 — T3 + T4 + 10z5,

Ty+ T+ T3+ T4+ 25— 1,

3. A system from economics modeling [31]

The following formulates the system for general dimension n.

n-k-1
Tk + E T4k | Tn —Cky k=1,--- ,n—1.
P(x) =

=1
Shta+ 1

The constant ¢, can be chosen at random. This problem has solved for dimension

up 12.
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4. Totally mixed Nash equilibria for 5 players with two pure strategies|29]

[ 1.390350657p3 + 0.4641393136pyp; — 0.6266605268p; — 1.400171891p,
—2.090683800p,p3p; + 4.089263882pps + 1.129827638p4p,
+1.881614464p5p,p3p; + 0.4716169661p5p3p; — 0.8625849122p5p4po
—1.398871056p5p2 + 0.9599693844ps + 0.0714025397ps5p,
++0.1073802376psps — 0.9259664538pspaps — 0.2067814278,
—1.196136754ps — 0.9249804195p, + 0.3188761009pps — 1.045301323psp;
—0.0306661782p; + 0.5987012929p,psp; — 0.4448182692p,p,
—0.3908068031pspapsp; — 1.212939725ps + 2.586129779psps
—0.1180169224p5ps — 1.051519507p5paps + 2.134979375pspsp:
—1.337061849pspap;, — 0.2961272671psp; + 0.7316111016,
2.272943163p, — 0.4131564265p, — 1.920446680p4p, -+ 0.0080509234p,
+1.342851102p,p; — 2.979502184p,p; + 3.391571834p,pap:

P(p) = { —0.5975693742pspsp; + 0.3002794716psp; — 0.7893445350p5
+1.276948001psps — 4.601376311pspp; + 2.356804322psp;
+3.498840190psp4pap; — 1.355375015p5p,p; — 1.231070236,
—2.206336116p; + 2.318673689psp, — 1.267478048p, + 1.110654516p3p,
+1.533592098p; — 1.872504375p,p; + 0.3299103675p3p2p:
—3.400750472p5psp, + 2.093674516psps — 1.772874182p5
+2.993821915p5ps — 1.356762392p5psp; + 0.0637534233psp,
+0.5870371377pspap; + 1.018269743p5pspap; + 1.400431557,
—2.522718869p; + 0.8323646978p;p, — 1.375039881p, — 0.3055443755p,
+0.6760632172ppsps — 0.4262974456pps + 1.268255245psp;
+0.5352674901pp, — 1.024495558p; + 1.818275404p,psp;
—1.354832512p,p; — 1.595112039pp; + 2.237956242p4p2p1
+3.370102170p3pap; — 3.465040669p,p3pap; + 2.132631128,
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5. Benchmark il from the Interval Arithmetics Benchmarks [15]

T — 0.25428722 — 0.183247571!423239,
Ty — 0.37842197 — 0.16275449z,z10%6,
z3 — 0.27162577 — 0.16955071z1z2210,
x4 — 0.19807914 — 0.15585316x7z, x6,
zs — 0.44166728 — 0.19950920z7z¢x3,
P(x) =
zg — 0.14654113 — 0.18922793x5x5210,
z7 — 0.42937161 — 0.21180484x,z5x5,
zg — 0.07056438 — 0.17081208z, 7,

zg — 0.34504906 — 0.19612740zx,¢z6xs,

L Z10 — 0.42651102 — 0.21466544z 425z, ,

This system is very sparse, the mixed volume is much smaller than the total degree.
6. Cyclic-n problem [13]

The general formulation goes as follows:

n k

ZH“‘(M)M", k=1,---,n-1

P(x) = =1 j=1

n
[[=-1
=1

This system is widely considered as a benchmark problem for polynomial system

solving. We have solved this system up to dimension 11.
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7. The construction of Virasoro algebras(38]

P(x) = {

The test results are summarized in the following table. In the table, M(.A°)
denotes the mixed volume of the extended support A° = (A4; U {0},...,.4, U {0}).
The number of zeros in the examples are obtained from the numerical results of our
algorithm. It is well-known that homotopy curves may converge to solutions in an
algebraic variety with nonzero dimension, i.e., they may lead to non-isolated zeros of
the target polynomial systems. In our root count, we do not exclude those numerical
solutions at which the Jacobian matrices of the corresponding polynomial systems are

almost singular. And our computation were carried out on a 400Mhz Intel Pentium

8z3 + 871z, + 8z173 + 22124 + 27,75 + 27176 + 22127
—8z,23 — 2x4T7 — 225T6 — T3,

87172 — 82173 + 823 + 8z273 + 22224 + 27275 + 27276
422977 — 27476 — 22527 — X3,

—8z1%; + 82123 + 82573 + 823 + 2374 + 27375 + 22376
+2z327 — 22475 — 22627 — T3,

22,4 — 221T7 + 2T3T4 — 223Tg + 2T3T4 — 2T3T5 + 82
+8z4x5 + 2476 + 2x4T7 + 62423 — 65T — T4,

22125 — 221Tg + 2T2T5 — 222T7 — 2Z3T4 + 2T3Ts + 8T4Ts
—6z47g + 822 + 22576 + 27577 + 6528 — T35,

—221T5 + 221%g — 22274 + 22276 + 22376 — 2T3T7 + 2T4Z¢
+2z576 + 822 + 82627 + 6Tgzs — 62725 — T,

=224 + 2217 — 2225 + 2T2%7 — 2T3Tg + 223T7 + 2427

+2z5z7 + 86Ty — 6T6Ts + 822 + 62728 — T7,

—6z475 + 62475 + 6528 — 6TgT7 + 62628 + 678 + 823% — Tg,

II CPU with 256 MB of RAM, running SunOS 5.6.
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System Total Degree | M(A") | # of Zeros in C* CPU Time
Trinks 24 10 10 290ms
Eigenvalue 243 10 10 430ms
Economics-13 354294 2048 2048 8m2s200ms
Economics-14 1062882 4096 4096 22m35s620ms
Nash equilibia 1024 44 44 45240ms
Benchmark il 59049 66 50 4s5100ms
Cyclic-10 3628800 35940 34940 1h33m46s
Cyclic-11 39916800 184756 184756 8h55m36s
Virasoro 256 256 256 37s 690 ms

Table 4.1: Numerical Results
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