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ABSTRACT

MODULAR MODELING OF ENGINEERING SYSTEMS

USING FIXED INPUT-OUTPUT STRUCTURE

By

Brooks Philip Byam

Computer modeling is common in the design and development of complex

engineering systems. A system model is built up by connecting the inputs and outputs of

several subsystem models. This process requires flexible modeling tools. Models with

arbitrary input-output structure have this flexibility but must have their internal equations

reformulated to agree with the inputs and outputs used. The flexibility achieved with

arbitrary input-output structure occurs at the cost of globally reformulating the equations

of each subsystem and component model with every change. Each model equation

formulation requires performance verification because every formulation does not have

the same guaranteed performance. This can be particularly cumbersome in large models.

A fixed input-output structure allows elements to be used without modification oftheir

internal equations and eliminates equation reformulation. Modular modeling models

have the property that their elements have fixed input-output structure. The cost is a

connector to assemble elements adding complexity to the global model. Modular

modeling is a systematic realization of compatible standardized modular elements and

connectors that maintain modularity with the flexible assembly required in today’s large

complex modeling environments. Structural and automotive examples are given.
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INTRODUCTION

Increasingly large and complex computer models are becoming standard

practice in design and development of engineering systems. Models should have

sufficient complexity to predict actual behavior of complex engineering systems

(Ferris etal, 1994). Chrysler used a large computer model to completely design

and analyze the geometry of their 1998 Chrysler Concorde and 1998 Dodge

Intrepid. The Chrysler large car models were limited to mechanical geometry

studies and still contained representations of over 5500 interconnected physical

subsystems (”Computers In Engineering: Chrysler designs paperless cars”, 1998).

Chrysler engineers resolved design issues by developing this computer model

instead of physical prototypes reducing the cycle time from 39 to 31 months

saving the company more than $75 million (Jost, 1998). Efficient design,

development, and refinement of large computer models of complex engineering

systems are critical to engineers and their companies. A systematic approach to

design and development is the most efficient (Shigley and Mischke, 1989).

Several existing modeling methodologies use systematic techniques for

the design and development of engineering system computer models. Kinematic

and dynamic models of mechanical systems are developed using the systematic

method of generalized Cartesian coordinates (Haug, 1989 and Nikravesh, 1988).

Electrical system models are developed using the systematic method of applying

Kirchhoff Laws from a network topology (Chua and Lin, 1975, Vlach and

Singhal, 1983, and Calahan, 1972). These methods are useful but are limited to

their respective energy domains.

A systematic method that includes different energy domains is Finite

Element Analysis (FEA). FEA methods systematically construct grids of similar



elements to model engineering components and systems in mechanical and

thermal energy domains (Zienkiewiez, 1977). These methods are useful for

systematic generation of model equations and models grow to be quite large and

complex. However, FEA models are not generated with an input-output

structure that allows them to be easily interconnected. Therefore, assembling

several of these independent models requires refonnulating an entirely new

model or using special purpose software like PDESolve (PDESolve, BEAM

Technologies) to ”connect” them, which is both cumbersome and expensive.

Another systematic inter-energy domain modeling method is bond

graphs. Bond graphs have a systematic approach of using graphical multi-port

elements and junctions to develop component and system models in mechanical,

electrical, hydraulic, and thermal energy domains (Kamopp etal, 1990). System

model equations are systematically generated with some hierarchical design but

the assembly reformulation issue still exists due to arbitrary input-output

definitions (Karnopp etal, 1990). Recent research has further enhanced the

hierarchical design of bond graph models such that some reformulation can be

avoided (Hales, 1995). Reformulation of model equations is the practice that

prevents efficient development of large, complex, models.

A new approach to systematic modeling across multiple energy domains

provides a modular fixed input-output structure modeling method. Modular in

the sense that the physics that describes each subsystem model remains the same

whether the subsystems are separate or assembled into a system (Hogan, 1987).

Fixed input-output structure in the sense that the inputs and outputs are

standardized so the internal equations of mathematical subsystem models of

engineering systems have the same modularity as the engineering system.

Modular modeling with fixed input-output structure is a power-based physically

intuitive top-down methodology systematic modeling method that eliminates



equation reformulation from large model development across multiple energy

domains (Byam and Radcliffe, 1999).

Modular modeling is a top-down systematic equation assembly scheme

well suited to multi DOF components. Modeling efficiency is diminished for

development and assembly of idealized single DOF model components. This

method has a standardized input-output definition for all multi port multi

degree of freedom modular modeling elements resulting in a single standardized

element formulation. A single standardized formulation allows modelers to gain

performance verification experience enhancing the verification process. The

single standardized modular modeling element combined with the compatible

modular connector makes modular model realization a simple systematic

process. Modular modeling makes the large model design, development, and

refinement process systematic, functional, and physically intuitive.



Chapter 1

MODULAR MODELING: THE IMPACT OF CAUSALITY

Modular modeling is defined by a fixed input-output structure. This strict input-

output approach standardizes the internal equation formulation of multi degree of

freedom (DOF) subsystem models. The objective is mathematical models ofengineering

systems with equations that have the same modularity as the engineering system. This

method is not intended for single DOF model elements or single component modeling. It

is intended for large system models with many multi DOF subsystems. Modular

modeling is particularly advantageous for large system models because the multi DOF

subsystem models fixed formulation simplifies large model design, development, and

refinement.

Large complex models of engineering systems contain a large number of multi

DOF subsystem models (5500 in the Chrysler large car models). Each physical multi

DOF subsystem model has one or more connections through which it is attached to other

subsystem models. For example, the transmission subsystem model of a pick-up truck

has connections to the engine model, the flame model, the driver controls model, and the

drive shaft model. Each physical subsystem model connection has an input-output

definition, conveys input-output variables to interconnected subsystem models, and hence

defines the internal formulations of the subsystem models. Controlling the number of

internal formulations of interconnected multi DOF subsystem models is key for design,

development, and refinement of large models.

Subsystem model internal formulations result from input-output connections

defined here in two general forms: signal-type and natural-type. Signal-type model

connections contain single variables and can only be defined as input or an output. For

example, the driver controls-to-transmission model connection is a signal-type model



input connection. The only reasonable model is a selected-gear control signal input to the

transmission model. Indicator lights are an example of a signal-type model connection

only reasonably defined as a model output. Once defined, signal-type connections have

only one possible definition and their effects on the model’s internal equations is fixed.

Natural-type model connections may have many variables and many valid input-

output definitions resulting in many useful subsystem model equation formulations. For

example, a transmission-to-drive shaft model connection may have mechanical rotation

and mechanical translation variables. Each model must have an input-output definition

and hence internal formulation that provides the appropriate input and output variables at

the connection. An output ofone subsystem must be an input to the other. There are

many possible usefirl input-output definitions, which could be used to assemble these

elements. Each definition requires a different, useful, well-posed internal formulation of

the connected multi DOF subsystems’ internal equations.

Power-based models represent natural-type physical model connections with

power ports. A power port is a place where physical systems are connected and exchange

power. Power is commonly modeled as the product oftwo variables such as force and

velocity, pressure and volume flow rate, or voltage and current. The variable pairs are

often referred to as the effort-flow variable pair, erfi, at each power port (Karnopp etal,

1990). Power-based simulations pair these power variables at each port. Each port has

causality, an input-output definition (Karnopp etal, 1990). Causality manages connected

power port’s physical cause and effect between the variable pairs by defining one

variable as a port input and the other variable as a port output. Connected ports must

have reciprocal causality (Rosenberg and Karnopp, 1983). In other words, the input of

one port is the output of its connected port, and vice versa. Each port affects the model’s

internal formulation through its input-output causality definition.



1.1 The Impact of Causality: Model Internal Formulation

Causality has a great impact on the number ofpossible different, useful, internal

equation formulations of a computer model. Power port causality allows two possible,

different, reciprocal, input-output definitions. Let the two variables, e,- andj}; be the

input-output variables at the multi DOF element model port i. There are two possible

different input-output definitions at a multi DOF element port 1' (Fig. 1.1). For example,

the mechanical shaft of a pump can be modeled with a torque input and an angular

velocity output or with the reciprocal causality. Useful pump models can be formulated

with either causality.
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.
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Figure 1.1: Two Possible Different Input-Output Causal Definitions At A

Multi DOF Element Port 1'

A multi DOF element model with n power ports with arbitrary causality

permitting 2 possible reciprocal input-output definitions at each port will have Na

possible different internal equation formulations (Fig. 1.2).

N, = 2" (1.1)

Typical multi DOF subsystem models have 1 or more power ports. For example, a

simple hydraulic pump model may have 3 power ports (1 for the mechanical shaft, and 2

for the hydraulic high and low pressure connections). This leads to

23 = 8 (1.2)

possible specific causal formulations.
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Figure 1.2: 2 Possible Different Input-Output Causal Definitions At n Power

Ports Yields 2" Possible Different Useful Multi DOF Element

Formulations - Three Port Hydraulic Pump Example

2"possible useful different element formulations requires 2" different model

verifications. Verifying 2" possible correct element formulations is a staggering task.

Consider interconnecting 5500 multi DOF model elements (e.g. 1998 Chrysler large car

models) with reciprocal causality. In the most simplistic interconnected form, 2 power

ports per element, there are 5500x2 = 11,000 power ports. There is a 50% probability of

a perfect input-output causal match but the number of possible useful system model

formulations to verify is an impossible task.

50% of 2"°°° = 1.06885 x103310 (1.3)

For this reason users ofmodels with arbitrary causality have made the choice to verify at

the component level and reformulate the system equations after every change.

Fixing power port causality at every multi DOF element port selects a single

element internal equation formulation (Fig. 1.3). This standardized functionality

simplifies the design, deve10pment, and refinement of large models. There is only one

system configuration, which enables verification at the subsystem level. The key concept

ofmodular modeling is a physically intuitive fixed causality at every port ofevery

modular modeling element.



 

Single Element Formulation

Figure 1.3: 1 Possible Input-Output Causal Definition At n Power Ports Yields

A Single Multi DOF Element Formulation

1.2 Modular Modeling Elements

Modular modeling elements are multi-port multi DOF subsystem models with a

fixed causality at every power port and a single fixed formulation. The element internal

equation formulation fits the fixed causality and the number of ports. Since the causality

is fixed, the formulation of element’s equations does not change. Once formulated

modelers can gain validation experience with each specific element. The fixed causality

at every port leads to a standardized element functional form.

y = element(u ) (1.4)

~nXI ”"X|

n is the number of element power ports, u is a vector of inputs and y is a vector of

”"XI ~nXl

outputs. The multi port multi DOF element calculates a vector of outputs, y , given the

~nxl

vector of inputs, u , and some internal element parameters. This functional form can be

~nxl

generated for most engineering elements with any number ofpower ports.

Modular modeling standardizes the choice of causality for every port per energy

domain to realize the objective ofan internal equation formulation with the same

modularity as physical systems. The choice ofthe modular modeling element fixed port

causality is motivated by physical measurements. Ideal physical measurements occur at a

natural power port with a specific physical location and zero power flow such that there

is no effect on the response of the system. In other words, physical measurements have a

specific physical location, an externally sensed output at that location, and zero input at



that location to zero the power flow. This measurement perspective defines the fixed port

causality of modular modeling elements. The port output is the variable related to the

externally sensed physical quantity. The port input is the variable related to the internal

physical quantity typically assumed zero to attain zero power flow.

The measurement perspective modular modeling element fixed port causality for

engineering systems across multiple energy domains are shown in Table l. Externally

sensed physical quantities are electrical potential, curvilinear mechanical motion, angular

mechanical motion, hydraulic pressure, acoustic sound pressure, and temperature.

Internal physical quantities typically assumed to be zero are electrical current, mechanical

force, mechanical torque, hydraulic volume flow rate, acoustic volume velocity, and

thermal heat flux. The resulting measurement perspective modular modeling element

fixed port causality of electrical, mechanical translation, mechanical rotation, hydraulic,

acoustic, and heat transfer systems are current input-potential output, force input-velocity

output, torque input-angular velocity output, flow input-pressure output, flow input-

pressure output, and heat flux input-temperature output respectively.

 

 

 

 

 

 

    

MEASUREMENT PERSPECTIVE

ENGINEERING MODULAR MODELING ELEMENT

SYSTEM FIXED PORT CAUSALITY

Electrical Current Input — u = Current,

Potential Output y = Potential

Mechanical Force Input — u = Force,

Translation Velocity Output y = Velocity

Mechanical Torque Input - u = Torque ,

Rotation Angular Velocity Output y = Angular Velocity

Hydraulic Volume Flow Rate Input - u = Volume Flow Rate,

Pressure Output y = Pressure

Acoustic Volume Velocity Input - u = Volume Velocity,

Sound Pressure Output y = Sound Pressure

Heat Transfer Heat Flux Input — u = Heat Flux,

Temperature Output y = Temperature

 

Table 1.1: Measurement Perspective Modular Modeling Element Fixed Port

Causality Across Multiple Energy Domains

 



Measurement perspective causality is equivalent to implementing nonessential or

natural boundary conditions at every port (Meirovitch, 1967). This ensures an internal

formulation with a mathematical eigen-structure that does not change whether the model

is separate or assembled into a system model. Essential boundary conditions change the

model’s differential operators and impose specific geometric constraints. Modular

modeling implements essential boundary conditions with modeling elements. For

example, a mechanical fixed-point element would output a zero velocity regardless ofthe

force input. Measurement perspective fixed port causality enables modular modeling

elements with physical system modularity

A benefit ofmeasurement perspective fixed port causality is the flexibility to

maintain any number ofphysically “open” power ports at discretionary physical locations

without affecting the element internal formulation. A physically “open” power port i is

physically disconnected with zero input.

u, = 0 (1.5)

The input, up is zero to achieve no power flow but the output, y, , is open to be defined

by the element. For example, a modular (multi DOF) mechanical beam model element

whose ports are defined can maintain any number of“open” zero force-input ports

without changing the model’s mathematical formulation. A modular modeling beam

element will have the same internal formulation and the same performance regardless of

the modeling task. The response ofthe system can be “measured” at any “open” port

with the power port’s output variable. An element formulated from velocity input-force

output “fixed” causality does not have this flexibility. This flexibility enables the single

formulation ofmodular modeling elements to maintain a large number ofpower ports

with no reformulation or revalidation cost.

The modular modeling elements graphical notation represents a multi port multi

DOF physical subsystem model with a rectangle (Fig. 1.4). The bold lines represent the n

power ports with fixed measurement perspective causality (Table 1.1). Arrows on the

10



port lines define the standardized direction of positive power for modular modeling

elements, when u] and y1 are both positive, power flows into port 1. Port power

orientation has a similar 2" effect on model formulation but does not affect the eigen-

structure of the internal formulation. The fixed causality input variable, 14,, is always

shown on the top or to the lefi ofthe port. The fixed causality output variable, y,, is

always shown on the bottom or to the right of the port.

Port 2 Port n

 

Figure 1.4: Modular Modeling Element Graphical Notation

1.3 Connector for Element Interconnections

Modular modeling requires a connector to join incompatible modular modeling

element power ports. The connector provides the compatible port causality. Modular

modeling connectors provide the proper physical connection constraints for connecting

the ports of engineering subsystems. The connector is not a model ofa physical

connection subsystem. It is a power transmission mechanism that enforces constraints

between subsystems.

The connector graphical notation represents the connector with a circle (Fig. 1.5).

The bold lines represent the connected modular modeling element ports, 1' andj. Arrows

on the port lines define the standardized direction ofpositive power for connectors, when

u, and y, are both positive, power flows out of port i. The input variable, u, is always

shown on the top or to the lefi ofthe port. The output variable, y, is always shown on

the bottom or to the right of the port.

11



u,- u-

Porti ‘71011:» Portj

Figure 1.5: Modular Modeling Connector Graphical Notation

Modular modeling connectors provide a power constraint Power is conserved

across modular connectors because modular connectors are power transfer mechanisms.

The power at the connected modular modeling element ports sum to zero.

2P, :0 (1.6)

k=l.2

Recall that the product of port variables, u, and y, , is power.

P, = uiy, (1.7)

An additional constraint is required for the connected modular modeling element ports.

Connectors are defined to constrain connected modular modeling element ports’ outputs

to be the same implementing connections of elements.

y. =y,- (1.8)

From (1.6) - (1.8) the inputs at the connected ports must be equal and opposite.

u, = —uj (1.9)

The functional definition ofthe connector is a 2-port power constraint with port causality

compatible with modular modeling element port causality (1.4). In modular modeling,

(1.8) and (1.9) are the defining equations for all modular connectors.

There are two important characteristics ofmodular modeling elements and

connectors to aid in the assembly of a modular modeling system models. First, properly

connecting any number ofpower ports ofmodular modeling elements with the 2-port

connector requires a junction structure inside modular modeling elements for each port.

The internal junction structure has the affect of summing port inputs and constraining the

port outputs to have the same output. This is consistent with the measurement

perspective that defines the fixed modular modeling causality. For example, measuring a

voltage at a point on an electrical circuit will have one voltage but there may be several

currents input to that point. Second, the explicit difference between modular modeling

12



elements and connectors is that modeler defined equations are in modular modeling

elements. Modular connector equations are fixed (1.8) and (1.9). All modeling is done

in modular modeling elements, none in modular connectors. Modeling a physical

connection requires modular modeling elements.

Structural models of 3 bars connected with a shear pin will provide a

demonstration (Fig. 1.6). The simplest model (Fig. 1.6 b) neglects deflection of the pin.

In this simple case, no pin deflection model is required and the bars are connected with

displacement and force constraints. When the pin deflection is large (Fig. 1.6 c), a model

for the physical deflection ofthe pin is required and a pin modeling element is used.

BAR 2

      

 

Figure 1.6: Structural Models Of 3 Bars Connected With A Shear Pin: a)

Physical System b) Negligible Pin Deflection 0) Large Pin

Deflection

The first rigid pin modular model is a demonstration ofthe choice to not model

the pin. The pin is ignored and 2 modular connectors join the 3 bars. The modeler

defines the multi-port multi-DOF modular modeling elements BAR 1, BAR 2, and BAR 3.

The modular modeling element BAR 1 has a port 45 with two input-output pairs 4 and 5

where power is transferred from BAR 2 and BAR 3 respectively. Each modular connector
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is associated with a power transfer mechanism between subsystem models. More than

one power transfer mechanism can occur at a single port of a model element because of

the internal junction structure. Port 45 power pair variables 4 and 5 are input and output

from the same apparent geometric point on BAR 1. The internal junction structure has the

affect of summing the 4 and 5 inputs and constraining the 4 and 5 to have the same output

at that port. The right end ofBAR 1 has the input force as and the output velocity v45.

£15 = £1 + F;

V45 = V4 = Vs

(1.10)

Modular connectors 4,6 and 5,7 are the power transfer mechanisms that join port

45 ofBAR 1 to port 6 ofBAR 2 and port 7 ofBAR 3 respectively. The connectors enforce

the fixed power constraints (1 .8) and (1.9) to the power transfer such that the respective

outputs are the same and the respective inputs are equal and opposite. Two 2-port

modular connectors properly constrain the power transfer to join 3 modular modeling

element ports at the apparent same geometric point. This can be extended to any number

ofconnected modular modeling element ports. Multiple ports at one-point increases the

number of ports in the model but modular modeling elements can maintain any number

of “open” ports with no internal formulation change.

The second flexible pin modular model is a demonstration ofthe choice to model

the pin. The modeler defines the multi-port multi-DOF modular modeling elements PIN,

BAR 1, BAR 2 and BAR 3. PIN has three power ports 5, 6, and 8 at the connection or

power transfer points with BAR 1, BAR 2 and BAR 3 respectively. Modular connectors

4,5 , 6,7 , and 8,9 are the power transfer mechanisms that join the power ports 4, 7, and

9 ofBAR 1, BAR 2 and BAR 3 to the PINpower ports 5, 6, and 8 respectively. The

connectors facilitate the power transfer between power ports implementing (1.8) and

(1.9). For example, connector 4,5 enforces power conservation constraints on the power

transfer between power ports 4 and 5 such that v4 and v5 are equal and E, and F; are
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equal and opposite. Connectors 6,7 and 8,9 facilitate power transfer on their respective

ports enforcing the same constraints.

An automotive model of a conceptual rear-wheel drive power train (Fig. 1.7) is

another modular modeling example. The physical system (Fig. 1.7a) consists of an

engine, a transmission, three mounts, a flex plate, and a frame. The engine has physical

connections to the transmission through a flex plate and to the frame through mounts on

the either side of the engine. The transmission has physical connections to the engine

through a flex plate and to the frame through a transmission mount. The frame has

physical connections to the engine and the transmission through the mounts. The

modular model of the drive train (Fig. 1.7 b) shows the modeling choice not to model the

flex plate deflection. The deflection ofthe flex plate is small relative to the deflection of

three mounts. The rigid flex plate is not considered an element, so the engine and

transmission transfer power to one another through modular connectors. The flexible

mounts require modeler-defmed equations to describe their deflections and are

considered modular modeling elements. Modular connectors are power transfer

mechanisms composed of standard constraints to conserve power. This is quite different

from multi DOF modular subsystem elements, which implement all modeling analysis.

15



Engine

  Transmission
' l_‘l

a

) 3 Frame

Left& Flex Trans

Right Plate Mount

b)

 
Figure 1.7: A Conceptual Rear-Wheel Drive Power Train Model: a) Physical

System b) Modular Model

The modular connector can not implement the constraint (1.8) and (1.9) on ports

of different energy domains. For example, from Table 1.1 and constraint (1.8), an

electrical potential output and a mechanical velocity output can not be equal. The

solution is to define an appropriate modular transducer model element with fixed

measurement perspective port causality, then use modular connectors to join the modular

transducer element ports and the element ports in different energy domains. Modeler-

defined multi-port modular transducer elements have the same form and function as any

modular modeling elements and are simply another element in the modular model.

The standardized port causality and sign conventions ofmodular modeling give

modular connectors the exact same appearance (Fig. 1.7). The modular connector
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notation (Fig. 1.5) can be replaced with a single line. This simplified modular modeling

notation for the conceptual power train example has a traditional block diagram

appearance (Fig. 1.8). This simpler notation aids only in graphically communicating the

model. The power-based fixed measurement perspective port causality and sign

convention input-output structure implicit in every port line is critically important. For

example, implicit in the port line connecting the Engine and Transmission modeling

elements are two power variables E2“ and v1,” following the input-output causality in

Table 1.1 constrained by (1.8) and (1.9).

Input ={ F' = F‘; Output =>{ v, = v, = v,,‘ (1.11)

F: = ‘Fizc

The dogmatic input-output structure ofmodeling elements is the key concept ofmodular

modeling.

     

C C C C C C C C C C

F73 V78 F910 V910 F1112 V1112 F1314 V1314 F2324 V2324 F2526 V2526

C C

C C C C C C C C C C C

V1516 Fl718 V1713 F1920 V1920 F2122 V2122 F2728 ”2728 F2930 V2930F1516

Figure 1.8: Simplified Modular Modeling Notation of the Conceptual Power

Train Model in Figure 1.7
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Chapter 2

ASSENIBLY AND SOLUTION OF LINEAR MODULAR MODELS USING FIXED

INPUT-OUTPUT STRUCTURE

2.1 Modular Modeling

Modular modeling is a modeling method designed to eliminate model equation

reformulation and enhance model performance verification. Modular models are

constrained assemblies ofpower-based multi degree of freedom modular modeling

elements ofphysical systems with a single standardized equation formulation.

Standardized modular modeling elements enhance performance verification because their

formulation does not change. Modular modeling elements have incompatible power

ports by definition, which requires a compatible modular modeling connector for

assembly. Modular modeling connectors do NOTdescribe physical connection elements

like welds, shear pins, and bolts. Modular modeling elements implement all modeling

activity in modular models. Modular modeling connectors are two-port power transfer

mechanisms that implement standardized power constraints between connected modular

element ports (Byam and Radcliffe, 1999).

The key concept ofmodular modeling is the fixed measurement perspective -

input-output causality at every port of every multi degree offreedom modular modeling

element per energy domain. This causality is based on physical measurements. The port

output variables are defined as the typically sensed physical system response.

Development ofthe modular modeling method reveals that the port input variable can be

assumed zero for zero power transfer and zero effect on system performance. This

causality choice (Table 1.1) standardizes modular element formulations and allows

modular elements to maintain any number of“open” or physically disconnected power
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ports. Modular modeling elements with fixed measurement perspective causality have

physical system modularity.

Modular modeling elements have a standardized user-defined functional form that

does not change.

y = element(u ) (2.1)

_ pxl ~ pxl

Where p is the number of element power ports, u 1 is a vector of inputs at those ports
- px

and y is a vector of outputs at those ports defined by the fixed measurement

- pxl

perspective input-output power port causality. This ftmctional form can be generated for

any energy domain in Table 1.1 with any number ofpower ports.

Modular modeling element graphical notation represents user-defined multi-port

multi-DOF subsystem models with a rectangle (Fig 2.1). The bold lines represent the n

power ports with implicit standardized direction ofpositive power into the element and

standardized input-output port causality. Standardization of positive power direction and

input-output causality standardizes the modular modeling elements internal formulation,

which is the essence ofmodular modeling. All modeling equations in modular models

are in modular modeling elements by definition. Modeling the physical behavior of a

connection like an engine mount or a shear pin requires a modeling element.

Port 2 Port n

Port 1

 

Figure 2.1: Modular Modeling Element Graphical Notation. Power flows into

port 1 if uI and yI are both positive. The fixed causality input

variable, u,, is always shown on the top or to the left ofthe port.

The fixed causality output variable, y,, is always shown on the

bottom or to the right of the port.
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Modular modeling connectors implement standard output and power constraints.

There are no physical model equations in connectors. They simply connect modular

element ports by constraining their outputs to match and conserve power flow.

Connectors are used exclusively to implement output and power constraints between

ports ofmodular modeling elements.

The connector forces two connected modular element ports’, i andj, outputs to be

equal to connect the ports and their power flow to sum to zero to conserve power. The

power flow constraint is translated to equal and opposite inputs at connected modular

element ports since the product ofpower port variables is power. Connected modular

element ports, i andj, have the same output and equal and opposite inputs.

y, = y]. = ye (2.23)

_ C

(2.2b)
uj = —u‘

In modular modeling, the defining relationship for all connectors (2.2) does not change.

The modular modeling connector graphical notation represents connectors with a

bold port line between modular elements (Fig 2.2). By definition, connectors have the

compatible input-output structure to modular elements. The bold lines have implicit

standardized direction of positive power into the connected modular element ports, i andj

_..~__.~.__h
_ _..-.. .-._....

and modular connector constraints (2.2). The modular connecto: 1133196 flexibility to-

assembl’eub‘yppairs any number ofmodulaerer portsflbecause modular

modeling elements have an‘iritgrnaleungfion structure at each port (Byam andmRadcliffe,

1999). The only function ofmodular modeling connectors is to constrain connected

modular element ports.
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1 ' = 1 u‘ f ' '

1element—relement

J 53.23”}. ..

Figure 2.2: Modular Connector Graphical Notation. Power flows into the

connected elements if y‘ and u‘ are both positive. The input

variable, 11 , is always shown on the top or to the left of the port.

The output variable, y, is always shown on the bottom or to the

right of the port.

The objective ofmodular modeling is single standardized modular formulations

for all user-defined multi-port multi-degree offreedom modeling elements. This requires

separate connector constraints, which adds complexity to models. However, each

standardized modular modeling element has a single formulation. A single fixed

formulation allows modelers to gain experience verifying their formulation’s

performance. Modular models, which are constrained assemblies of n modular modeling

elements, are also used with no reformulation and no reverification. Modular models in

pre-assembled form are simply a concatenation of n modular modeling elements.

‘ (y, - (element1 (ul ).

y2 element2 (1:2)

“ = : " (2.3)

    
y, element, (u,)

The standardized input-output structure enables a systematic direct-insertion realization

ofmodular models fiom modular elements and connectors.

2.2 Linear Modular Modeling Analysis

Linear modular modeling analysis is a systematic direct-insertion realization of

linear modular models ofthe form (2.3). Using a known input-output topology

constrained by the output and power constraints ofthe modular modeling connector (2.2)

the constrained modular model is realized. Linear modular modeling elements are

independently user-formulated power-based multi-port multi-degree of fieedom linear
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modeling equations with a standardized input-output causality and sign convention.

Connectors are two-port output and conservative power constraints between modular

modeling element ports. Modular connector constraints are known. Modular elements

have a known form but their equations are user-defined.

The possible user-defined linear modular element equations are linear algebraic

differential equations and algebraic equations. The linear algebraic differential equations

can be represented in a form convenient for the application of the modular modeling

fixed input-output functional form. A state-space form is the best fit because inputs and

outputs are explicit. Any algebraic differential equation model can be written in state-

space form. Algebraic equation models are typically expressed in an explicit input-

output form.

2.2.] Linear Algebraic Differential Equations

Modular modeling elements with user-defined linear algebraic differential equations

have a traditional state-space form where the inputs and outputs are explicit.

x = Ax+ Bu

" “ "' (2.4)

y = Qx+ l_)u

The fixed input-output functional form (2.1) ofmodular elements is seen in (4), where u

is a vector of port inputs and y is a vector ofport outputs ordered in port pairs. x is a

vector of states. A , B , g, and Q are matrices with time invariant coefficients

independent ofthe x-variables and u-variables.

Consider a modular model in unconnected form as a concatenation of n

independently formulated user-defined linear modular elements ofthe form (2.4). Let

this model have s total states andp total input-output power ports.
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{1 ”fl Q Q‘ ’35:- ‘5 Q 9‘ ”If

.-. = 9.5:» :2 .924” “.2
‘ ' " 9 ' ° 9 ' (2.5a)

' 9 9 A. x. 9 9. B. ,.
x" - _-sxs - “ -sxl _ —..sxp L. ~ _pxl

-"'—.rxl

R=¢AX+3U

{’1 ”g Q .. Q' F351 '13, Q .. 9‘ 1:;

Y2 9 C2 x, 9 D2 i “2

‘I = . I_. " + . .—‘. 1'
. . .. Q . . .. Q . (2.5b)

yr: L9 Q Ca xn Q 9 D" u"

L. " -pxl —-sz- " Jsxl - —..po - " -pxl

Y=CX+aU

For example, the modular model vector X is the concatenation ofthe n modular element

state vectors with a total size 3 X1 and U is the concatenation ofthe n modular element

input vectors with a total size p X]. The fixed input-output functional form (2.3) ofa

modular model is seen in (2.5). The modular model (2.5) has an equal number of inputs

and outputs because all modular elements power ports always has one input and one

output. Each modular element of (2.5) is completely independent and uncoupled fi'orn

the other modular elements. Given the element’s input-output topology the modular

connector constraints (2.2a-2.2b) provide the coupling between the modular element

equations.

The key concept ofmodular model analysis is isolating the internal element input-

output power ports from the external element input-output power ports in a known input-

output topology. External input-output power ports have known inputs. Internal input-

output power ports are ports joined to other element ports through connectors (Fig. 2.2).

The input-output topology of (2.5) has a total ofp input-output power ports from the n

modular elements. Let m be the number of connectors, hence there are 2m internal

element input-output power ports, which leaves q = p — 2m external element input-

output power ports. The standardized form ofmodular elements (2.1) and modular
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connectors (2.2) makes isolating external and internal element ports in the unconnected

modular model (2.5) a simple reordering of the systems’ concatenated input and output

vectors U and Y.

A transformation matrix reorders the concatenated input and output vectors of

(2.5). The vectors are reordered so all external ports’ variables appear first in the vectors

followed by all the internal ports’ variables. The internal ports’ variables are ordered

such that connected port pairs’ appear together. For example, if port i and portj are

connected u, should be followed immediately by uj , similarly for the outputs y, and yj.

The reordered input and output vectors are the input and output vectors of (2.5) pre-

multiplied by the transformation matrix T
-Um

IY=

 
w] (2.6b)

_ w

The transformation matrix I does not add, remove, or combine variables ofthe original

vectors; it only changes the order in which variables appear. This makes _7__' a linear and

nonsingular reordered p x p identity matrix 1.

11’ = l (2.7)

The external input Um is the q x1 vector ofexternal port inputs. The internal input U,"

is the 2m x1 vector of internal port inputs. The external output Y”, is the q x1 vector of

external port outputs. The internal output Yb, is the 2m x1 vector of internal port

outputs. The mechanism for reorganizing the input-output topology of (2.5) to isolate the

external and internal ports is the matrix (12),”.

The reordered modular model equations are written in terms of the external and

internal inputs and outputs where U = TT[U,,,U,,,]T.

 

. U...-

X = AX+ 31’[U. (2,8a)

TY- Y‘“ -T X T :f-U‘” 28b"-Y... -_C +_@__UW (-)
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Using the transformation matrix I the matrices in (2.8) are partitioned to further isolate

internal and external equations. The 3 matrix is partitioned by IT into coefficients of

the external and internal inputs. The C matrix is partitioned by 1‘ into the states’

coefficients of the external and internal outputs. The ,9 matrix is partitioned by IT and

1‘ into external and internal inputs’ coefficients of the external and internal outputs.

31" = [3. .15.] (2.9a)

c...
T = 2.9b

_c [cw] ( )
,_ a... .5...

L91 -[am‘ .7. . ] (2.9c)

The external partition of the 3 matrix 3,, is a s x q matrix. The internal partition of

the 3 matrix 3,, is a s x 2m matrix. The external partition of the C matrix C", is a

q x 3 matrix. The internal partition ofthe C matrix Q," is a 2m x 3 matrix. The sizes

ofthe partitions ofthe ,9 matrix @ww, am, an”, and and," are qu, qx2m,

2m x q , and 2m X 2m respectively. The reordered unconnected modular model

equations are rewritten in terms of the external and internal inputs and outputs and the

partitioned matrices.

it: Gamay, +3,U,,, (2.10a)

Y“, = Q,X+@waw +gmUw (2.10b)

Y," = QNX +5,,wa +QMMUW (2.10c)

The internal outputs Y," of (2.10c) are ordered in connected internal port pairs.

At each connected pair, the two output values are constrained by (2.2a) to have equal

values. In order to apply the outputs of (2.10c) to the constraint (2.2a) the connected

output pairs need to be selected from the matrix equation (2. 10c). Define two m x 2m

equation selector matrices .5, and .5, to select the odd and even equations of (2.10c)

respectively.
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5:2202...52 s=iiiomis (2.11)

2155 05 5355 50

_000010j _0000 01    MXZm .me2m

Pre-multiplying (2.10c) by ,3, selects the odd (1”, 3rd, 5th, , m — 1") internal port

output equations. Pre-multiplying (2. 10c) by §, selects the even (2“, 4th, 6th, , m'h)

internal port output equations. Substitute selected equations in the output constraint

(2.2a).

gm=r an»

gym = Y‘ (2.12b)

The constrained internal ports’ output Y‘ is a m x1 vector ofthe m constrained inputs at

the 2m connected internal ports (Fig. 2.2) ofthe system (2.5a-2.5b). Rewrite the output

constraint (2.12a-2.12b) in terms ofa difference to eliminate the constrained internal

port’s output.

(a. - m... = 9,, (2.13)

Substituting the internal output equation (2.10c) into the internal output constraint (13)

results in the output constraints of the modular model.

(a.-§.)c...X+(§.-§.).a...U..+(§.-§.).a....U.-.. =9. (2.14)

The three output constrained modular system equations are written in terms ofthe states,

X , the external inputs, U
ext ’

the external outputs, Ya, , and the internal inputs, Um.

it = 0er + 3,0,, +3M" (2.15a)

Y“, = CmX +@mew +awn, (2.15b)

(a. - r.)c...X + (a - small... + (a. - swam... = 9 (2.159

The three output constrained modular model equations (2.15a-2.15c) have three

unknowns, the states, X , the external outputs, Ya, , and the internal inputs, Um . The state

equation (2. 15a) and the output constraint equation (2.15c) are independent ofthe

external outputs, Ya, , and can be solved for the states, X, and the internal inputs, Um, ,
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then substituted in the external output equation to find the external outputs, Ya“. Rewrite

(2.15a) and (2.150) as a system oftwo equations with the two unknowns the states, X ,

and the internal inputs, UW.

Sr— 021x — (gym = 3,,U,, (2.16a)

-(§. — r.)c.-..X - (a. - steamy... = (.5. — steamy... (2.161))

The objective is to find the internal input, U.
rnt ’

in terms of the states, X , and external

inputs, Um, that satisfies (2.16b).

The internal input, Um , ofthe output constrained modular system model is

dependent on the state response of the system.

X(t) = <D(t,to)Xo + j <I>(t,0')(3,,U,-,..(O') + 3,,Uw(o))do (2.17)

The state response ofthe output constrained modular system (2.17) at some time t

involves the state transition matrix d>(t,to) from some initial time to and an initial state

X0. Substitute the state response ofthe system (2.17) into the output constraint equation

(2.16b).

‘0
] (2.1 8)

= (£0 — g: )anturrUint + (go — £2)anran

Group the internal inputs, U," , and the external inputs, Um together using the screening

-(§. - §. )c..{<1>(t. t.)Xo + j <D(t,0')(3,,U,,,(0') + 3,,Uw(a))do'

property ofthe Dirac delta.

i (g, - £:)(C..¢(t,0)3.. + .21....60 — a))U,,,(a)da =

‘0

1 (2.19)

-(_S.. - é.)[C-flwvxo + j(C-..<I>(t.o).z, +amao— o))U,,,(o)do]

The internal input, Um , that satisfies the constrained output equation (2.19) requires the

definition oftwo matrices.

Q(O)=(§. -§..)(c..¢(t.o)oz..+.a....8(t-o)) (ma)

:0) = Imogen: (2.201»)
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Rewrite 10‘) using the screening property of the Dirac delta and the identity

(

(119‘ = Elf.

l 1 i l C

:0) = (r. - s.)(.e...-..e>..... 5; + .21....03. c... + $3.22.... )(5... — a)’

+ (£0 _ §e )C‘m Kim (‘09 t)cnt.(§o - E: )T

(2.21a)

Lung» = j<I>(t,o)3,,3,,'<l>‘(t,a)do. (2.21b)

The * represents the complex conjugate transpose of a matrix, 8 is arbitrarily small

positive constant, 3.1.100”) is the system’s “internal controllability grammian”. The

internal input is defined by the construction of (2.19).

U...(a) = -§‘(a)r‘ (r)(§. - .5.)-

' (2.22)

[ammo + j(c..,<1>(r. axe... + .23....60 — 0))Uw(o)do]

The internal input, Um, exists if the matrix ___Y__(t) is nonsingular. The matrix _Y_(t) is

nonsingular if it is positive definite. This derivation is similar to derivation of output

controllability in Skelton, 1988, which defines a positive definite matrix made up from

the system matrices and state transition matrix similar to (2.21a). The derivation here is

concerned with the controllability the internal inputs have over the internal outputs or its

internal output controllability. If a modular system model (2.5a-2.5b) has a positive

definite matrix 10), it is internally output controllable and the internal input U," exists.

The condition of existence of UW is less restrictive using the output

controllability approach ofmodular modeling then previous methods. Hogan found that

assembling linear modular component models with simple “nonenergic” connections

required either the invertability of a matrix involving only the D matrix or that the D

matrix be zero. Modular modeling clearly is less restrictive because the invertability of

X(t) is dependent on the A, B, C, and D matrices where all can be nonzero.

28



The internal port input pairs, U. are ordered the same way as the internal port
mt ’

output pairs, so the m x 2m equations selector matrices _.S_‘, and _S, can be used to define

the m x1 constrained input Uc. The constrained input Uc is the result of the modular

connector power constraint (2.2b) constraining internal port input pairs to be equal and

opposite.

U... = (a. —MW (223)

Isolate the constrained input Uc by pre-multiplying (2.23) by (§, — §,).

(§. - SW... = 21.0" (2.24)

The matrix 1, is an m x m identity matrix. Substitute the internal input (2.22) into (2.24)

and solve for the constrained internal input, Uc .

U‘(o) = for. - anion-Rod. - s.)-

. (2.25)

[C490, t(0X0 + I(Gm¢(t,0)& +awdo- 0))U,,,(a)da]

The fully connected modular system equations are realized by substituting (2.23)

into (2.15a-2.15c).

X = aqX+3nUw +3,(§, -§,)TUC (2.26a)

Y... =c..X+2>.....U..+.e.....(§.—§.)’U‘ (2.261»

(a. — s.)c.-..X + (r. — shaman. + (a. - EJQWU. -aft!“ = 9 (2.26.)

Solving the three equations (2.26a-2.26c) for the three unknowns, X , UC, and Y“,

requires the modular system (2.5a-2.5b) to be internally output controllable where Uc is

given by (2.25). The connected modular system (2.26a-2.26c) has maintained its

modularity using “nonenergic” connectors with less restrictive conditions for solution

then previous methods designed to maintain modularity (Hogan, 1987).

2.2.2 Linear Algebraic Equations

Modular modeling elements with user-defined linear algebraic equations have the

same form as (2.4) but the matrices A , B, and g, are zero.
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y = Qt} (2.27)

Following the same procedure as in (2.5a—2.5b), consider a modular model in

unconnected form as a concatenation of n independently formulated user-defined

modular modeling elements in the algebraic form (2.27) with p total input-output power

      

ports. _ _ _ _

{1 "g Q 9‘ 'f'

y. g _D_, s “2

' — 5 " . Q 5 (2.28)

y. 9 9 D. ..

_"..1pxl '- —-PXPL"_pxl

Y=@U

The same input-output topology, reordering, and output constraint analysis applies to the

algebraic output constrained modular system equations. These equations are written in

terms ofthe external inputs, Um, the external outputs, Ya, , and the internal inputs, UW.

(§.—§.).a...v..+(§.-.S..)a....U.-.. =_.,.. (2.29a)

Y”, =@mUw +@WUW (2.29b)

Solving (2.29a) for internal inputs, U," , in terms ofthe Um, the external outputs

using the same techniques as the linear algebraic differential case (2.22).

-1

U...(o> = «am-.50. - a)’((§. — shaman-.50., - sf) (5. - immune)

(2.30)

The internal input, Um, exists if the matrix (5', - §,)ammam‘(§, - §,)T is

nonsingular. This matrix is nonsingular if it is positive definite or the modular system

(2.28) is internally output controllable. The constrained internal input, U‘, for the

algebraic modular system is found following the same analysis in (2.23)»( 2.24).

U‘(a) = —%(§. — §.)~flm'(§. — s.)’((§. -anaemia. - r.)’)"(§. - a)

$11.91!... (a)

(2.31)
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The fully input and output constrained algebraic modular system equations are

written in terms of the two unknowns constrained internal input, UC, and the external

outputs, Y“, , where UC is given by (2.31).

(§.—§.).a.....v..+(§. -§.).a....(§.-§.)’Uc =9 (232a)

Y, = amt/w +5mg, - §,)TU‘ (2.32b)

2.2.3 Linear Algebraic Boundary Value Problem Equations

The linear algebraic equations that result from a boundary value problem (BVP)

has the form of the generalized responses, x, pre-multiplied by a stiffness matrix, Li ,

equal to the generalized excitations, w (Segerlind, 1984).

Kx = w (2.33)

Without boundary conditions the stiffness matrix, K, is singular. These equations occur

in structural, solid mechanics, heat transfer, and irrotational flow models typically

developed by Finite Element Analysis (FEA). Consider a modular model in unconnected

form as a concatenation of n of these modeling elements without boundary conditions

      

applied. _ _ _

”_Igl 9 9 1 {51“ '81

Q E, E J‘2 W2

5 '° . Q ‘ — ‘ (2.34)

Q Q K, x, w,

- —-:xs- " -.rxl _ " dsxl

fl=W

The generalized responses, X , and the generalized excitations, W , are defined by

element dependent geometry’s which differ for each ofthe n modeling elements. In

order to maintain modularity, the n modeling elements in (34) will be connected through

inputs, U, and outputs, Y, that are linear interpolations ofthe generalized responses, X ,

and the generalized excitations, W.
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PE]- 9 ‘0- " _f3— FPYI- —C1T Q Q 1 ”1:!“

Q {:2 x2 W2 9 C2T : “2

= '- 0 s " ' = '- 9 5 (2.35a)

Q 9 K. x, Wu 9 9 Cf n

_ —_sx:_ " _rxl — " asxl L _ 'SXPL - _pxl

.zX= W= c’U

P” 'C. 9 0 ‘ ‘1

Y2 Q 2% x2

3 ' 5 ' . Q - (2.35b)

y" 9 Q C" x"

.m‘jpxl - —_pxs—"-sxl

Y=CX

Notice the input-output matrix C is the same in both (2.35a) and (2.35b). This is

because the co-located inputs and outputs are defined as ports. BVP modeling elements

in this form (2.35a-2.35b) can be connected together maintaining modularity.

The fixed input-output functional form (2.3) of a modular model is seen in (2.35a-

2.35b). The modular BVP model (2.35a-2.35b) has an equal number of inputs and

outputs because all modular elements power ports always has one input and one output.

Each modular BVP element of (2.35a-2.35b) is completely independent and uncoupled

from the other modular elements. Given the element’s input-output topology the modular

connector constraints (2.2a-2.2b) provide the coupling between the modular element

equations.

The same input-output topology, reordering scheme, and input-output constraint

analysis applied to the algebraic differential and algebraic equations applies to the

modular BVP system equations (2.35a-2.35b). These fully connected equations are

written in terms of the external inputs, Um, the external outputs, Ya, , and the constrained

internal inputs, U‘, using the equation selector matrices, S, and _S_',.

.zX=c...’U.,.+c..’(§.-§.)’U‘ (2.36a)

Y... = CwX (2.36b)

(so - é: )CintX = me1
(2.360)
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The input constraint is applied immediately to the BVP equation (2.36a) where

U,“ = (§, — §,)TUC. This realization is different then the state equations (2.26a-2.26c)

and (2.32a-2.32b) because the stiffness matrix 3 is singular prior to application of

boundary conditions.

Solving (2.36a-2.36c) for the generalized responses, X , the constrained inputs,

Uc, and the external outputs, Ya, , in terms ofthe external inputs, U,, requires finding a

set of generalized responses that satisfy the output constraints (2.36c). Any basis ofthe

nullspace of (.5, - s,)Q, will define a set of output constrained generalized responses

that satisfy (2.36c). The nullspace of (§, - §,)C.,, has dimension 3 - m because it has

rank of m (Leon, 1986). It has rank of m because it represents m connectors at m

different physical locations resulting in m independent rows seen in the structure of

(s, - §,). Define a s X s — m matrix, ’9', that is a basis ofthe nullspace of (S, - _.S_',)C,,

to transform the output constrained generalized responses, X‘, to the generalized

responses, X .

X = 12X" (2.37)

This procedure is similar to the procedure Meirovitch uses to eliminate rigid body modes

from differential equations (Meirovitch, 1967). In Meirovitch a basis of the nullspace of

the rigid body modes eigenvectors defines the transformed responses. Substitute (2.37)

into (2.36a) and pre-multiply by 12’ with the knowledge that VTCWTQ, - §, )7 = 9

because ofthe orthogonality of nullspaces (Leon, 1986).

v’xyX‘ = VTQTU... (2-38)

The matrix 117ng has dimension 3 - m x s - m. The matrix V combines rows and

columns ofthe system stiffness matrix .3 connecting the otherwise independent

element stiffness matrices g. This pre and post multiplication has the same efl‘ect as

applying the direct stiffness method. The direct stiffness method is used to build up

stiffness matrices in BVP (Segerlind, 1984). Solving for X‘ requires the matrix

1,731) to be nonsingular. This requires the elimination of all rigid body modes,
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which can be done by applying more output constraints or a further coordinate

transformation. The solution of (2.38) Xc can be substituted in (2.37) and then used in

(2.36b) to find the external outputs Ym. Solving for the constrained internal inputs U"

requires pre-multiplying (2.36a) by (,3, — §,)Q,, .

(a. —snafu. - .S..)"U‘ = (.51. —annex- (a. - anew... (2.39)

The matrix (5', - §,)Q,,Q,,T(§, - §,)T is nonsingular because (§, — §,)C,, has rank of

m. This solves the modular linear BVP (2.36a-2.36c).

The linear algebraic differential, linear algebraic, and linear BVP constrained

modular system equations (2.26a-2.26c), (2.32a-2.32b), and (2.36a-2.36c) respectively

are written in terms of independently formulated modular modeling elements. The

reordering and selector matrices, _7_‘ and (3‘, — §,), are comprised ofones and zeros and

defined by the size and input-output topology ofthe modular system model. The

modular modeling element matrices all, 3, C, a, and ‘3 can be directly inserted

into the constrained modular system equations and solved like any other system of

equations. The advantage ofmodular modeling is that each multi DOF modeling element

is independent and can be connected together with simple connectors and assembled with

a simple physically intuitive top—down direct insertion method.

2.3 Guaranteed Computational Sparseness

Linear modular models have a guaranteed diagonal modular structure because of

their standardized input-output formulation. This guaranteed modular structure defines

an advantageous guaranteed Sparseness for computation at the cost of additional

constraint equations not found in an arbitrary input-output structure or non-modular

formulated models. These extra equations add computations to modular models but

enable an advantageous modular construction for computation.

A number ofcomputations (NOC) analysis shows the computational advantages

ofthe modular construction. A NOC analysis is a count ofthe number of multiplications
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and additions in a linear system.. The modular system NOC is determined by analyzing

the constrained modular system equations (2.26a-2.26c). Each ofthe n modular

elements has states, internal port inputs, external port inputs, and external port outputs.

Let a modular element i have 3, states, 2m, internal ports, and q, external ports. The

contribution from (2.26a) to the modular system NOC comes from the state matrix times

the states plus the internal input matrix times the constrained internal inputs plus the

external input matrix times the external inputs (Redish, 1961). Because of modular

construction the state matrix times the states and the external input matrix times the

external inputs can be computed on an element basis which is the modular advantage.

The internal input matrix times the constrained internal inputs must be computed on a

system basis where m is the number of connectors in the modular system.

(2.26a) NOC = 23,2 + ZS..q, + In: 3, (2.403)

i=1 i=1

Modular AdvantageNOC PerElem Constraints NOE Per System

 

Similarly, the contributions from equations (2.26b-2.26c) add to the system NOC.

 

 

(2.26b) NOC: 2.1-q, +23, + miq, (2.40b)

ModulaijdvantageNi: Per Element Common :1 Per System

(2.26c) NOC: mzs, +m+m2q, (2.40c)

k 3.1.1... uneasy; ‘

Summing the NOC contributions (2.40a-2.40c) together and then simplifying results in an

expression for the NOC for a modular system model.

NOCMm,sy,,m = 2(3 +q,.)2 + m2+2m2:((s. +q,.) (2.41)

i=1

W

ModulaAdvantageNOCPerElemeu WNiScrasm

 

The NOC for a modular system (2.41) is guaranteed by the construction ofmodular

models.

The guaranteed computational Sparseness of a modular system results in

comparable computational efficiency when there are a large number of interconnected

multi DOF subsystems. A non-modular system model of the form (2.4) has a NOC of
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(s + p)2 where s is the number of states and p is the number of input-output power

ports. In this case, there are no guarantees about the system’s Sparseness. So, s is the

number of states for the entire system and p is the number ofpower ports for the entire

system. In other words, the NOC is determined by summing the number of all subsystem

states and ports and squaring the sum. Notice in modular advantage portion of (2.41) that

the number ofmulti-DOF elements’ states and ports are first squared and then summed.

Modular modeling is not, by any means, the minimal realization of a system. Other non-

modular methods can realize models for the same complex multi-port multi DOF systems

with fewer states and fewer ports with some effort. Modular models have a guaranteed

Sparseness, which results in a comparable and in some cases better computational

efficiency.

For example, consider a system model with n =10 multi DOF elements with

s, = 5 states each. A modular model requires at least m = 9 connectors to connect the 10

10

elements and, say, 2 external ports for a total of 2p, = 20 ports. Each element will have

i=1

p, = 2 ports. Two elements will have 1 external port and 1 internal port leaving 8

elements with 2 internal ports. The modular model NOC has 3, = 5 , q, = qlo =1, and

q2-9 = 2'

10 10

NOCM,,,,,,, = 2(5 + (1,.)2 + 92 + 2(9)Z(5 + 4,.) = 1289 (2.42)

i=1 i=1

A non-modular model ofthe same system may require only, say 75% ofthe states in the

modular model s = 0.75 * 50 = 37.5 and only the external ports p = 2 . The non-modular

model NOC, with 75% the modular model states and a tenth ofthe modular model ports

is larger.

NOCN _,,,,,,,, = (37.5+2)2 = 1560.25 (2.43)

Consider the same system but with n = 2 elements, m = 1 connector, and external ports

q, = q2 = 1 for the modular model. The NOC for modular and non-modular models

become closer in magnitude with the non-modular being less.
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2 2

N0C,,,,,,, = 2(5+1)2 +12 +2(1)2(5+ 1) = 97 (2.44a)

i=1 i=l

NOCN,,_M,,,,,, = (7.5+2)2 = 90.25 (2.44b)

The above NOC examples show cases where the computational efficiency for modular

models is better and comparable then non-modular methods. Guaranteed computational

Sparseness makes modular modeling one ofthe modeling methods of choice for large

systems.

2.4 Examples

An electric automotive vehicle power train example model is used to illustrate

modular modeling of linear algebraic differential modular models and linear algebraic

modular models. A structural three bar and connecting shear pin fixed to a point example

model is used to illustrate modular modeling of linear algebraic BVP modular model. The

electric automotive vehicle power train example model is a combination ofthree simple

dynamic models found in Phillips and Harbor, 1996 and Minor, 1996. The three bar and

connecting shear pin example model is a combination of four simple BVP models fi'om

Segerlind, 1984.

The electric automotive vehicle power train example model contains three simple

modular modeling elements, an electric motor model, a clutch model, and a transmission

model. The three modular modeling elements are all defined with standardized modular

modeling causality (Iable 1.1). The electric motor modular modeling element has one

electrical power port with current input i voltage output e causality and one rotational

mechanical power port with torque input I angular velocity output a) causality (Fig.

:5, = [0])., + [514 51:] (2.45a)

[211313313

2.3a).
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The motor model has a state, Jr”, a lumped motor-shaft rotational inertia, J , a motor coil

resistance, R , a motor back emf constant, K1,: and a motor torque constant, K,. The

transmission modular modeling element has two rotational mechanical power ports with

torque 1', and 1,, input angular velocity to, and to, output causality (Fig. 2.3b).

O T

x,=—ix,+ g i “ (2.46a)
J J J, r,

0) ”GR v 0 0 t

[wzHllxvio 011:] W
The transmission model a state, x,,, a lumped transmission rotational inertia, J”, an

equivalent transmission damping, 0,, and a transmission gear ratio, GR . The clutch

modular modeling element has two rotational mechanical power ports with torque 1",, and

1, input angular velocity co,I and to, output causality (Fig. 2.3c).

 

 

. 0 o —Kc' i 0

xcl KJcl cl Jcl 1 1'

x,2 = 0 0 6' x,2 + 0 — "' (2.47a)

' Jcl Jcl T!

x., 1 -1 0 x,, 0 0

co, 100x"+00¢, 247,,

62,—010x‘2001, (')
x
03

The clutch model has three states, [x,l,x,2,x,3]7 , a lumped clutch rotational inertia, J,,,

and an equivalent torsional stiffness, K,, .

 

a) b) c)
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Figure 2.3: Electric Automotive Vehicle Power Train Modular Modeling

Elements a) Electric Motor b) Transmission c) Clutch

These three modular modeling elements are assembled in two different

configurations to illustrate the flexibility ofmodular modeling. The first configuration

considers a power train with the modular motor modeling element and modular

transmission modeling element (Fig. 2.4).

1 2 3 4
fig]. 1):". -_>._ .1 , '1'." ii§.-‘.fi.'- .- .Ijra' “ 1.3:: c Rfil‘n: x :1 (h a" -,... .faj‘fi

—,electric motor 9

‘6. ‘ : : C , , '

wt war untrue-W1! wry-Load nirvana! 3 1   

Figure 2.4: Electric Automotive Vehicle Power Train Modular Model With An

Electric Motor And A Transmission Modular Modeling Elements

The unconnected two element modular system is built up'from directly inserting the

motor and transmission modular element matrices into (2.5a-2.5b).

  

     

,-,_[_2_.]= .sz3U:[9.5.__9__.I§g]{Min-.1111"?.....9-1 (2.43.)
; 0:-C.,/J.. x. 0 0 :GR/J. 1/J._ T.

. _r._

fe' '19,! 0' "R 050 01’1“

Y: 59- =CX+@U= -1--i--9-- ”51+ 3342-9 5- (2.48b)
a), OgGR_x, 0 0:001,

Law,“ _0: 1_ _0 0:0 O__r',_  

The input-output topology of the two element power train modular model defines

the size and structure ofthe modular modeling reordering and equation selector matrix 1‘

and (§, - §,) respectively. This modular model has four power ports and one connector.

This results in a 4 x 4 reordering matrix 1' and a 1x 2 equation selector matrix

(ta-5.).

1
"
]

ll ---------- . (3.3.141 —11 (2.49)
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Ports 1 and 4 are the external power ports so I reorders the input U = [i, 1', I“, TAT and

output Y = [e, a), a)“, (0dr so i, rd, e, and 0’4 appear first in the vectors. Ports 2 and 3

are connected internal power ports reordered to appear in connected pairs afier the

external ports. Apply the reordering matrix I to the modular model (2.48a—2.48b) to

partition the inputs and outputs internally and externally.

[£1351] = T’U = 3‘1.

1

T

T

-61
 

a":

(0

La)   
o :—1/J

1/J. E 0
0T

 

amen
T TT =

‘0‘ [22...

am]:

a...

 

 

0

GR/1,,

 

l

(2.50a)

(2.50b)

(2.50c)

(2.50d)

(2.50e)

The two element electric automotive vehicle power train modular model (2.48a-2.48b) is

now in the form to apply modular modeling constraints (2.23-2.2b).

Apply the internal input and output constraints to the two element electric power

train modular model (Fig. 2.4) and rewrite in the fully connected modular system form

(2.26a-2.26c).

5c: 04X+£nUw +3..(§. —§.)’UC

x'm_o o x, K,/J o i -1/J

[Jio -c,,/J,,Ix,]+[ o l/JIrd]+[ o
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O

GR/J"

(2.51a)

lun‘



=C¢er + anarUext + $mim(§a -' £8 )T UC

53+: mM :r]
(S0 _Se)c7mX+(So -5e)'ameerw+(So——Se)'9mrinr(So——Ser) Uc =9

[1 it (Eel:]v «[3 EL][1 «[3 31:11.2

The internal input uzf exists if (2.51a-2.5 1c) is internally output controllable or the

matrix (2.21) is positive definite. Since am." is zero, in this example, showing C213":

has rank equal to the number of internal outputs shows positive definiteness of (2.21).

This is typical practice to show output controllability (Skelton, 1988).

_ l 0 -1/1 0 _ —1/J 0 252

““73" ’ 0 GR 0 GR/J, ’ o GRz/J, ( ' )

Clearly CW3" has a rank of 2, which is the number of internal outputs. The internal

input u23‘ exists and the modular two element electric vehicle model (2.51a-2.51c) can be

solved like any other state system model.

The second configuration considers a power train with the modular motor

modeling element, a modular compliant clutch modeling element, and modular

transmission modeling element (Fig. 2.5).

 

1 2 3 4 5 . . p v 6
u] EM»?WWW?“2 f'\\2'hfrnfég “2 c rim-{F-Fs‘;534g! u45c ‘ ; «maxim yrfifigflhnlew ”6

#eIeCIricmotor_°clutch—gransmzsszonb
. ' 3;" . I;

y] fit“? ‘3: w:Lava fry:Tit-92$ y23c bar22; "3:975; yljc in:ir -;~.27re«and y6

Figure 2.5: Electric Automotive Vehicle Power Train Modular Model With An

Electric Motor, A Compliant Clutch, And A Transmission

The unconnected three element modular system is built up from directly inserting the

motor, clutch, and transmission modular element matrices into (2.5a—2.5b).

41



 

[1
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(2.21).
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modular system form (2.26a-2.26c).

x.

xd.
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Apply reordering, internal input and output constraints, and rewrite in the fully connected

The internal input [u,;, u45‘]T exists if (2.54a-2.54c) is internally output controllable or

the matrix (2.21) is positive definite. Since am is zero, in this example, showing

CW3," has rank equal to the number of internal outputs shows positive definiteness of

] (2.54b)

] (2.54c)
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(2.55)

  
 

 

Clearly Q3,” has a rank of 4, which is the number of internal outputs. The internal

input [u23‘, 1445‘]? exists and the modular 3 element electric vehicle model (2.54a-2.54c)

can be solved like any other state system model.

The linear algebraic modular model example equations are defined by taking the

Laplace transform ofthe linear algebraic differential model equations. The two element

electric automotive vehicle power train modular model equations (2.48a-2.48b) after a

Laplace transformation have the form of the unconnected linear algebraic modular model

(2.28).

Y @U

  

 

 

'K,K,/J+R Kb/J

S S

K,/J —l/J

-...._-_5'........S..-_

o o

o o 

 

 

I

I 0 0
I

l

5 o o

.- ———————————————

; GR’]J,, GR/J,

E s+c,,/J,, s+c,,/J,,

: 0122/], IN,

I s+c,,/J,, s+c,,/J,,J 
 

(2.56)

The two element linear algebraic electric vehicle power train modular model (2.56) has

the same input-output topology (Fig. 4) as the linear algebraic differential system (2.48a-

2.48b). So, (2.56) can be reordered and constrained with the I and (£0 — S.) in (2.49) to

obtain the fully connected linear algebraic modular model form (2.32a-2.32b).

(.s... — £3.22..wa + (r. — emu-Ar. - .3.)’U° = 9

K,/J

[1 -1

o

GR/J,
1d +[1 -1

s+c,,/J,,
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0

018/1,

5' + c”/1,, _

q

 

(2.57a)



T

Yer! = exrexIUexr + $extint (£0 _ ée) UC

K,K,/J+R Kb/J
e _ ——S——— 0 ,- + S 0 1 c (2.57b)

cod - o _1/_Je_ 1' 0 _QML -1 “23
CH

s+c./J. s+c.,/J.

 

The internal input uzf exists if (2.57a-2.57b) is internally output controllable or the

matrix (S, - §,).a,m&m‘(§o - §,)T is positive definite.

_U] 0 —UJ 0

a T S S 1

_ . . - = 1 -1(£0 §.)$m&m (~30 25:) I 0 GRz/J" 0 GRz/J, -1]

s+c,,/J,, s+c,,/J,,

_ l/J2 + arr/1,2
> 0

S2 (s + c;,/J,,)2

 

(2.58)

The internal input uu" exists and the modular linear algebraic two element electric

vehicle power train model (2.57a-2.57b) can be solved like any other linear algebraic

system model. A similar analysis can be done for the modular three element electric

vehicle power train model.

The linear algebraic BVP modular model example is a structural BVP model with

three bars and connecting shear pin fixed to a point. This structural modular BVP model

example contains three simple modular modeling elements, an axial force bar model, a

bending pin model, and a fixed point model. The three modular modeling elements are

all defined with standardized modular modeling causality (Table 1.1). Structural BVP

models do not have traditional power ports because the output variable is a displacement

instead of velocity. They are representations ofphysical points with two variables that

require a causal definition, which fits the application ofmodular modeling and the

measurement perspective standardized causality (Byam and Radcliffe, 1999).

The axial force bar modular modeling element is a two node Finite Element

Model (FBA) from Segerlind, 1984. This model has two mechanical ports with force



input F axial displacement output 5 causality (Fig. 2.6a), which is written in linear

algebraic BVP modular modeling form (2.35a-2.35b).

Ex =Q u

AE 1 —l x, _ 1 o F, (2.59a)

7L ill-[o in]
y=§x

6, _ 1 o x, (25%)

[62]_[0 11%]

The modular bar BVP (2.59a-2.59b) has two states [xv xb]T, a cross-sectional area A , a

modulus of elasticity E, and a length L.

The bending pin modular modeling element is a three node FEA from Segerlind,

1984. This model has three mechanical ports with force input F transverse displacement

output 5 causality and three mechanical rotational ports with torque input 7: angular

displacement output 0 causality (Fig. 2.6b), which is written in linear algebraic BVP

modular modeling form (2.35a—2.35b).

      

_{c=_C_‘th

r12 6L —12 6L 0 on; '1 o o o 0 0‘7;

6L4L2—6L2L20 0xd01000013

E]—12—6L240—126Lx,001000F4

76L 2L2 0 8L2 —6L 2L2 x,=0001001,

00-12—6L12—6Lx8000010F,

_o 0 6L 2112 —6L 4L2J_x,,_ _o o o o o l__'t,‘

(2.60a)

y=£§

”63‘ '1 o o o o Ol'xcl

l9, 010000x,

6, o 010 o o x, (2.6011)

0,=000100x,

5, 00001015

-95. _o o o o 01__x,,_     
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The modular pin BVP (2.60a-2.60b) has 6 states [xv xd, x,, xi, x8, thTa 3 modulus of

elasticity E, a length L, and a 2“d moment of area I.

The fixed point modular modeling element is unique to modular modeling

because of the standardized measurement perspective causality. The one port fixed point

modular modeling element outputs a zero displacement regardless of the input and

applies to any energy domain (Fig. 2.6c). The fixed point modular modeling element is

written in linear algebraic BVP modular modeling form (2.35a—2.35b).

Ex = 9’ u

' " (2.61 a)

[1119- = [011%

y = 9’ x ’

~ " (2.61b)

66 = [01x1

The modular fixed point modular modeling element has one state x,

 
Figure 2.6: Three Structural Linear Algebraic BVP Modular Modeling

Elements: a) Axial Force Bar b) Bending Pin c) Fixed Point

Two example linear algebraic BVP modular models will use the three modular

modeling elements (Fig. 2.6) in two configurations. First, three axial force bars and a

fixed point will be connected together in a bracket-pin-clevis configuration with no pin

bending deflection (Fig. 2.7). Second, the three axial force bars will be connected with

the bending pin (Fig. 2.8).
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Figure 2.7: Three Axial Force Bar And A Fixed Point Modular Modeling

Elements In A Bracket-Pin-Clevis Configuration With No Pin

Deflection

The input-output topology of the three bar no pin modular model shows ports 6

and 8 are external ports and three connectors. The internal ports are connected in pairs 1

to 2, 3 to 5, and 4 to 7. This simple topology analysis defines the reordering matrix I

and the equation selector matrix (g, — §,) .

to 0 0 0 0 l 0 0‘

0 0 0 0 0 0 0 1

i"6"6'0"6"6"0"0 ,

01000000 140000
1:6"6.....100000, (£0-§¢)= O 0 1 _1 0 0 (2.62)

00001000 00001—1
0""0W0.....1""0W0W0W0

_0 0 0 0 0 0 l 0_  
The first two rows of I identify the external ports and the remaining six rows order the

internal ports in connected pairs.

Build up the unconnected modular model from the three axial force bar and fixed

point modular modeling elements and write in linear algebraic BVP modular form

(2.35a-2.35b).
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”0:0 0 0:0 0:0 0'“1

_ Ix ,' 07'1'"0’0'F0"670"0 “2
r....:9:9:0_f‘f_ : : : u,
----- 1------1-----I----- x 0'0 1 1'0 0'0 0

9 1...: 9 : 9 ..., --:-------- u. (2.63a)
.......----2—_-__e_-—- ——-- = 0.0 0 0.1 0.0 0

9 I 9 15m: 9 In", I l I “5

"6“r‘o""."o"rk"‘ 9_:.9_.<1-9_u.9--1.19.-9
~ ‘ ' ‘ ' " '_b“"-x"_“’3 0:0 0 0:0 0:10 "‘5

" "' I I I

_0:0 0 0:0 0:01_“’

-“s-

Y=cx

"u,' ”0:0 0:0 0:0 0“
"I-"'-T"""I"""

u2 0:10:0 0:0 0- -

I I I xfixpt

u3 0:01:00:00__.__.

u, 0:01:0 0:0 0 x... (2.63b)
= --L----L----4..... -;;_

us 0E0 011050 0 x...

u, 0:0 0:01:0 o 33‘
--P-"-f'--'fl----- 3

u7 0:0 0:0 0:10- " .

_u,d _oio oio 010 1_

The K matrices and x vectors in (2.63a-2.63b) are given in the modular modeling

element equations (2.59) and (2.61). Note that the Q matrix for bar; has an extra row to

accommodate the input output ports 3 and 4 on the right hand side ofthe bar. These two

ports occur at the same geometric point so they have the same output and the inputs sum

in the modular elements internal junction structure (Byam and Radcliffe, 1999). Apply

reordering and input output constraints and rewrite (2.63a-2.63b) in constrained BVP

modular form (2.36a-2.36c)

xx = cm’U... + cits. — s.)’U‘

   

0 0 '0 0 0

-'xfi, - 0 0 -1 0 0

I19” 9 Q Q ”m 0 0 0 l 1 " c
Q r... 0 9 xbgn 'u. “'2, (2.6420
0 O K 0 x = O 0 + O -l 0 1435

" """" ‘ b” 1 0 3“ 0 0 0 c
o o o r... x" 3‘”_ - — — 232‘ 0 0 0 0 -1

_o 1_ _0 o 0‘    
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xfiIPI-I

[y6]_[0 0 0 0 1 0 0' ‘er (2.64b)

y8 0000001_xbar2
~

xbar,

~

- d  
(£0 _ g: )Cian = Qua/2x1

xfixpt

0—10 0 0 0 o'xb; (2640)

001—1000~=0 '

xbarz

00100-10_~ 0

xbur,

~

- _  
Find the basis for the nullspace of (go — ,S_‘

J

(2.65)
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At this point the linear algebraic BVP modular system (2.63a-2.63b) can be solved using

(2.37), (2.38), and (2.39). Linear algebraic BVP modular modeling elements were

directly inserted into the modular model with given input output topology. The input

output topology determines the reordering and equation selector matrices. The modular

system model is rewritten in constrained form and the basis ofthe nullspace ofthe output

constraint is found with a computer software package. The model is solved like any other

linear algebraic BVP model.
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Figure 2.8:

 

Configuration

Three Axial Force Bar, Two Fixed Point, And A Bending Pin

Modular Modeling Elements In A Bracket-Pin-Clevis

The three bar bending pin modular BVP model (Fig. 2.8) is solved similarly to the

previous model. There are two fixed point modular modeling elements in the modular

model because the bending pin modular modeling element requires a rotational constraint

to eliminate the rotational rigid body mode. The modular modeling element fixed point2

eliminates the rotation.

The matrices in this example model are quite large and will be present separately.

The input-output topology ofthe three bar bending pin modular model shows ports 10

and 12 are external ports and five connectors. The internal ports are connected in pairs 1

to 2, 3 to 5, 4 to 9, 8 to 6, and 7 to 11. This simple topology analysis defines the

reordering matrix I and the equation selector matrix (so — § ).
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fy the external ports and the remaining ten rows order theThe first two rows of T identi

internal ports in connected pairs. The unconnected ‘3 matrix is built up from the

modular modeling elements _Ig matrices in (2.59a-2.59b), (2.60a-2.60b), and (2.61a-

2.61b).
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The C matrix and the 1} matrix complete the model.

'0

0 l

51

0



O A

(2.69)

O
O
O
O
O
O
O
O
O
O
O
O
O
r
—

O
O
O
O
O
O
O
O
O
O
v
—
O
O
O

O
O
O
O
O
O
O
t
—
O
O
O
O
O

O
O
O
O
O
O
H
O
O
O
H
O
O

O
O
C
O
r
—
O
O
O
O
O
O
O
O
O

O
O
—
‘
O
O
O
O
O
H
O
O
O
O

O
O
i
-
‘
O
O
O
O
O
O
O
O
O
O
O

C
H
O
O
O
H
O
O
O
O
O
O
O
O

H
O
O
O
O
O
O
O
O
O
O
O
O

O O O  — d

Note that in the C matrix the _Q matrix for the bending pin is missing the 2ml and 6‘”

rows because those inputs are zero. Using (2.37), (2.38), and (2.39) this example model

can be solved like any other linear algebraic BVP model.
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Chapter 3

ASSEMBLY AND SOLUTION OF NONLINEAR MODULAR MODELS USING

FIXED INPUT-OUTPUT STRUCTURE

3.1 Nonlinear Modular Modeling Analysis

Nonlinear modular modeling analysis is a systematic direct-insertion realization

of nonlinear modular models ofthe form (2.3). Using a known input-output topology

constrained by the output and power constraints of the connector (2.2) the constrained

modular model is realized. Nonlinear modular modeling elements are independently

user-formulated power-based multi-port multi-degree of freedom nonlinear modeling

equations with a standardized input-output causality and sign convention. Connectors are

two-port output and conservative power constraints between modular modeling element

ports. Modular connector constraints are known. Modular elements have a known form

but their equations are user-defined.

The possible user-defined nonlinear modular element equations are nonlinear

algebraic differential equations and algebraic equations. The nonlinear algebraic

differential equations can be represented in a form convenient for the application ofthe

modular modeling fixed input-output functional form. A state-space form is the best fit

because inputs and outputs are explicit. Any algebraic differential equation model can be

written in state-space 'for'm. Algebraic equation models are typically expressed in an

explicit input-output form.

3.1.1 Nonlinear Algebraic Differential Equations

Modular modeling elements with user-defined nonlinear algebraic differential

equations have a traditional state-space form where the inputs and outputs are explicit.
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5c = f(x, u)

” " ' ” (3.1)

y = 80}. If)

The fixed input-output functional form (2.1) of modular elements is seen in (3.1), where

u is a vector ofport inputs and y is a vector ofport outputs. x is a vector of states, f

and g are vectors of functions of the x-variables and u-variables.

Consider a modular model in unconnected form as a concatenation of n

independently formulated user-defined nonlinear modular elements in state space form.

Let this model have 3 total states andp total input-output power ports.

F o '

    

    

{I F.6(xjr 1:1)-

£2 = (202,1?) '1‘

'5 ‘ (3.2a)

1;" 4.09%..)

.. " usxl h ‘8)“

_ 22:!“ U) _

"1'2 €109"?

>:2 5.2%?)
' _ 3 (3.2b)

ya gn(xn’un)

_~-pxr -~ ~ - -pxr

Y= 9(X, U)

For example, the modular model vector X is the concatenation ofthe n modular element

state vectors with a total size s x1 and U is the concatenation ofthe n modular element

input vectors with a total size p x 1. The fixed input-output functional form (2.3) ofa

modular model is seen in (3.2). The modular model (3.2) has an equal number of inputs

and outputs because all modular elements power ports always has one input and one

output. Each modular element of (3.2) is completely independent and uncoupled from

the other modular elements. Given the element’s input-output topology the modular

connector constraints (2.2a-2.2b) provide the coupling between the modular element

equations.
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The key concept ofmodular model analysis is isolating the internal element input-

output power ports from the external element input-output power ports in a known input-

output topology. External input-output power ports have known inputs. Internal input-

output power ports are ports joined to other element ports through connectors (Fig. 2.2).

The input-output topology of (3.2) has a total ofp input-output power ports from the n

modular elements. Let m be the number of connectors, hence there are 2m internal

element input-output power ports, which leaves q = p — 2m external element input-

output power ports. The standardized form ofmodular elements (1) and modular

connectors (2.2) makes isolating external and internal element ports in the unconnected

modular model (3.2) a simple reordering of the systems’ concatenated input and output

vectors U and Y.

A transformation matrix reorders the vectors of (3.2). The vectors are reordered

so all external ports’ variables appear first in the vectors followed by all the internal

ports’ variables. The internal ports’ variables are ordered such that connected port pairs’

appear together. For example, if port i and portj are connected u, should be followed

immediately by uI. , similarly for the outputs y, and yj. The reordered input and output

vectors are the input and output vectors of (3.2) pre-multiplied by the transformation

matrix I. _

U...
[U = Um] (3.3a)

FY“

IY= .Yw] (3.3b)

 

The transformation matrix I does not add, remove, or combine variables ofthe original

vectors; it only changes the order in which variables appear. This makes 1 a linear and

nonsingular reordered p x p identity matrix.

LIT = l (3.4) ‘

The external input Um is the q x1 vector of external port inputs. The internal input U,"

is the 2m x1 vector of internal port inputs. The external output Y“, is the q x1 vector of
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external port outputs. The internal output Yin, is the 2m x1 vector of internal port

outputs. The mechanism for reorganizing the input-output topology of (3.2) to isolate the

external and internal ports is the matrix (1),,”-

The reordered modular model equations are written in terms of the external and

internal inputs and outputs where U = IT[Um,UW]T.

 

. in“)

X=f(X, 1: U ) (3.5a)

TY- Y‘” -T X :T-FU‘“ 35b

Using the transformation matrix I the function vector 9 in (3.5) is partitioned to firrther

isolate internal and external equations. The function vector 9 is partitioned by 1‘ into

Io=[°“‘] / (3.6)
an

The external partition of the 9 vector 9w is a q x1 vector. The internal partition ofthe

external and internal outputs.

9 vector 9," is a 2m x1 vector. The reordered modular model equations are rewritten in

terms ofthe external and internal inputs and outputs and the partitioned output function

VCCtOl'.

it = ear, 1’[ “']) (3.7a)

Y... = 9....(X. IT ) (3-7b)

Y2»: = MIX. .7." ) (3-70)

  
The internal outputs Yin, of (3.7c) are ordered in connected internal port pairs. At

each connected pair, the two output values are constrained by (2.2a) to have equal values.

In order to apply the outputs of (3.7c) to the constraint (2.2a) the connected output pairs

need to be selected from the matrix equation (3.7c). Define two m x 2m equation

selector matrices §0 and .3, to select the odd and even equations of(3.7c) respectively.
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"1000 00' ”0100 00:

0 . 1 . . . E O . 1 . .

so: 5 E 0 E E E §.= E E E 0 S E (3.8)

E E E I O E E E E E E 0

L0 0 0 0 1 0....2... _0 0 0 0 0 1-.....    
Pre—multiplying (3.70) by Q, selects the odd (1", 3", 5m, , m - 1“) internal port output

equations. Pre-multiplying (3.7c) by Q”, selects the even (2“, 4'”, 6‘“, , m‘“) internal

port output equations. Substitute selected equations in the output constraint (2.2a).

sax," = Y‘ (3.9a)

,5er = Y‘ (3.9b)

The constrained internal ports’ output Yc is a m x1 vector ofthe m constrained inputs at

the 2m connected internal ports (Fig. 2.2) ofthe system (3.2a-3.2b). Rewrite the output

constraint (3.9a-3.9b) in terms of a difference to eliminate the constrained internal port’s

output.

(.5. - £.)Y.-.. = 9,, (3.10)

Substituting the internal output equation (3.7c) into the internal output constraint (3.10)

results in the output constraints ofthe modular model.

(§.-§.)a..(X.I’[g“])=Q (3.11)

The three output constrained modular system equations are written in terms ofthe states,

X , the external inputs, Um, the external outputs, Ya, , and the internal inputs, Uh, .

1.-.“, zT[Zf”]) (3.12a)

TUm

Yw=9w(X,1_‘ U. ) (3.126)

(s —s) 7”“ -_0 —¢ ”(X91 U )‘Q (3.120)

The internal port input pairs, Um , are ordered the same way as the internal port

output pairs, so the m x 2m equations selector matrices .5. and .5, can be used to define

the m x1 constrained input U‘. The constrained input U‘ is the result ofthe modular
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connector power constraint (2.2b) constraining internal port input pairs to be equal and

opposite. The constrained internal port’s input Uc is a m x1 vector ofthe m constrained

inputs at the 2m connected internal ports (Fig. 2.2) of the system (3.2a-3.2b).

U... =(r. —§.)’U‘ (3.13)

Substitute the internal input (3.13) into (3.12a-3.12c).

. U
._ r an

X - f(X, I [(550 -§¢)TUC]) (3'14a)

Y — (x T’ U‘” 3 146
ext-ax! ’— (§0_§e)TUc ) ( ' )

(s s) (X TT U“ )—0 3140
_0 —¢ 3n: ’— (§O_§‘)TUC —— ( ' )

The three output constrained modular model equations (3.14a-3.14c) have three

unknowns, the states, X , the external outputs, Ya, , and the constrained internal inputs,

U‘. The objective is to find the constrained internal input, UC, in terms ofthe states, X ,

and external inputs, Um, that satisfies (3.14c).

The nonlinear modular system constraint equation (3.14c) is implicit in terms of

the constrained internal input, U‘ . Rewrite (3. 14c) in terms ofan error subtracting the

right-hand side from the lefi-hand side.

— S S X Tr UmO-(—o-_¢)am( 9_ (§0-§¢)TUC:|) (3.15)

The internal output constraint error, a, is a m x1 vector of internal output constraint

errors. These errors are a measure ofthe amount the constraint is violated at each

modular connector. The internal output constraint error, a, is driven to zero by the

constrained internal inputs, U‘. There are many approaches for solving (3.15). One

Option is using an iterative approach like Newton-Raphson (Burden and Faires, 1985).

Another option is a physical approach defining compliant functions to hold the error at

zero. Modular modeling chooses a control logic approach.

A control logic approach to driving an error to a zero set point is a control

stabilization problem (Khalil, 1996). Define a new m x1 constraint state vector, X‘, as
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the integral of the internal output constraint error, e. Let the constrained internal inputs,

U‘, be the results ofmultiplying constraint state vector Xc by a m x m matrix of constant

gains, _Ig',, (Fig. 3.1).

xc =. (3.16a)

U‘ = 5,)? (3.16b)

The internal constraint stabilizer (3.16a-3. 16b) defines the constrained internal inputs that

zero the internal output constraint error, e. Rewrite the internal constraint stabilizer by

substituting the internal constraint stabilizer output (3. 16b) into the internal output

constraint error (3.15) then substitute into internal constraint stabilizer state (3.16a)

eliminating the unknown, 0.

U...

XI: = (£0 '§e)5m(X’ ZT[(S _S )TKIXC]) (3'17)

The internal constraint stabilizer (3.17) may be solved for the constrained states, X‘, in

terms ofthe states, X , and the external inputs, Um. The constrained internal inputs, UC,

that satisfy the nonlinear modular system constraint equation (3.14c) are found from

(3.16b).

e XC Uc

K, V
  

 

U“, X
T

(§°-'S")"""(X"T' I(§.—§.)’I_¢,X‘]) U...

Figure 3.1: Nonlinear Modular Modeling Internal Constraint Stabilizer Block

Diagram

The internal output constraint error depends on the states, X , which depends on

initial conditions. In this environment where the error is dependent on joining outputs of

models presetting the initial conditions would not be unusual because knowledge ofthe

modular elements initial conditions exists. Presetting the initial conditions requires the

knowledge of all the states in of all the modular elements in the modular system model

(3.2a-3.2b).
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The internal constraint stabilizer (3.16a-3.l6b) is defined as dynamic function

with integral control logic. Using the integral control logic does three things. First,

integral control provides a robust stabilization if there are no perturbations in the

system’s parameters (Khalil, 1996). Since the internal constraint stabilizer is regulating

the outputs of models, there are no parameter perturbations in system parameters unless it

is part of the model. Second, it avoids having to define a physical compliant function

with “fast” eigenvalues to quickly reduce the error resulting in stiff systems (Aiken,

1985). Third, no iteration is required so the constraint equations are combined and solved

with the system equations. Combining the internal constraint stabilizer (3.17) with the

constrained modular system equations (3.14a-3.14b) results in the fully connected

modular system equations, which can be solved for the unknown states, X , the unknown

constrained states, X‘, and the unknown external outputs, Y“, , in terms ofthe known

external inputs, Um.

. U
_ T at

U...

o Um

X" = (r. -§.)a...(X. r’[(S _ S )1K,A) (3.180

The stability analysis of the feedback system in the nonlinear algebraic

differential modular system equations (3.18a-3.18c) is done with the passivity approach.

A passive system does not generate its own energy. The system absorbed energy must be

greater than or equal to the system stored energy. If the absorbed energy is greater than

the stored energy the difference must be the dissipated energy by the conservation of

energy and the system is strictly passive. A passive system is globally uniformly stable

and a strictly passive system is globally uniformly asymptotically stable (Khalil, 1996 &

Krstic etal, 1995). A feedback system is strictly passive if both systems are strictly
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passive and passive if at least one ofthe systems is passive (Khalil, 1996 & Krstic etal,

1995)

Stability proofs for feedback systems from Khalil and Krstic etal can be easily

applied to the nonlinear algebraic differential modular system (3.18a-3.18b)

nontraditional feedback connection with some simple relationships. These proofs use the

product of input and output and an instantaneous power inequality to show passivity

(Khalil, 1996 & Krstic etal, 1995). The nonlinear algebraic differential modular system

has a product of input and output with two inputs, the external inputs, Um, and

constrained internal inputs, U‘, and two outputs, the external outputs, Yw , and internal

output constraint error, 0.

WU: TT 1"” 1" U“ =[Y T .’]T1‘T U“ =Y TU +cTU‘ (319)
Uc a! UC at an '

The integrator feedback system’s input is the constraint error and outputs the constrained

internal input to the nonlinear algebraic differential modular system with a sign change

due to the standardized sign convention ofmodular modeling (Byam & Radcliffe, 1999)

Wu =-U". (3.20)

The input and output products for the algebraic differential modular system (3.19) and the ’

integrator feedback system (3.20) are in a form applicable to the passivity stability proofs

of Khalil or Krstic etal. If the algebraic differential modular system is passive and the

integrator feedback system is passive the feedback system (3.18a-3.18b) is globally

uniformly stable.

The assembly and solution of nonlinear modular models using the control logic

approach ofmodular modeling is less restrictive and avoids the stiff system problem of

previous methods. Hogan found thatassembling nonlinear modular component models

with simple “nonenergic” connections required theoutputtobejtotalfilystatedependent,

whichrs restrictive. Modular modeling clearlyrs less restrictive because the outputs can

be dependent on the inputs. Further Hogan stated that “energic” connections must be
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used to maintain modularity resulting in stiff systems. Modular modeling uses simple

“nonenergic” connections and a control logic approach to avoid stiff systems.

3.1.2 Nonlinear Algebraic Equations

Modular modeling elements with user-defined nonlinear algebraic equations have

the same form as (3.1) but .E: Q.

(3.21)

Following the same procedure as in (3.2a-3.2b), consider a modular model in

unconnected form as a concatenation of n independently formulated user—defined

modular modeling elements in the algebraic form (3.21) with p total input-output power

ports. -

'f.(x..u.) -

662.113)

.
.
I
O

I
O

(3.22a)

  n.-- 3X1  f,.(x,..u,.)

_ .. f<sz>=9 -

X! €105"?

{2 8392’"?

dSXI

(3.22b)

    ya gn(xn’ an)

_- - dPXI

Y=9(X. U)

.1le

The same input-output topology, reordering, and input-output constraint analysis applies

to the algebraic output constrained modular system equations. These equations are

written in terms of the states, X , the external inputs, Um, the external outputs, Ya, , and

the constrained internal inputs, Uc .

U...

U
_ 1- ext

Yen - 53(X9 I [(§0 _ §¢)TUC]) (323b)
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U...
(a. ‘5‘)“"’(X’ITI(§.- r.)’UCI)=9 (3.23c)

Solve (3.23c) for constrained internal inputs, Uc, in terms of external inputs Um

using the same techniques as the nonlinear algebraic differential case (3.17 & Fig. 3.1).

U...

[(6.—§.)’LX‘I’ (3'24)

The internal constraint stabilizer is defined in the same way as in the nonlinear algebraic

X’ = (E. -§.)a..( IT

differential equation case. The fully connected nonlinear algebraic modular system

equations can be solved for the unknown constrained states, X‘, the unknown states, X ,

and the unknown external outputs, Y... , in terms ofthe known external inputs, Um.

U
1- w _

f(X9 I [(S _ é, )TEIXC]) _ 9 (3.258)

U
_ 1- ex:

1:1! _ ”(X’ I [(éo _ §¢)T£[Xc]) (3'25b)

X‘ = (a. - .S..)a..(X. 1’ (3.250
U...

[(é. -afar}

The stability analysis ofthe feedback system ofthe nonlinear algebraic modular

system equations (3.25a—3.25c) is similar to the stability analysis done in the nonlinear

algebraic differential case (3.18a-3.18c, 3.19, 3.20). Ifthe algebraic modular system is

passive and the integrator feedback system is passive the feedback system (3.25a-3.25c)

is globally uniformly stable.

The nonlinear algebraic differential and algebraic constrained modular system

equations (3.18a-3.18c) and (3.25a-3.25c) respectively are written in terms of

independently formulated nonlinear modular modeling elements. The reordering and

constraint matrices, I and (_.So - §,) , are comprised ofones and zeros and defined by the

size and input-output topology ofthe modular system model. The modular modeling

element functions, f and 9, can be directly inserted into the constrained modular system

equations and solved like any other nonlinear system ofequations. The advantage of

modular modeling is that each multi DOF modeling element is independent and can be
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connected together with simple connectors and assembled with a simple physically

intuitive top-down direct insertion method.

3.2 Some Modular Computational Advantages

Nonlinear modular models have a guaranteed modular structure because of their

standardized input-output formulation. Modular models never condense the model

topology relative to the input-output structure. This uncondensed guaranteed modular

structure has an advantage of ease of computation at a cost of additional computations.

The additional computations come from the constraint equations not found in an arbitrary

input-output structure or non-modular formulated models.

The ease of computation advantage arises from the modular construction.

Modular construction enables evaluations to be performed for each uncondensed element

independently. Independent evaluation is set up to avoid complex multi-step solutions

and separate convergence problems. Modular modeling does not completely eliminate

multi-step solutions and convergence problems but it does ease the computation by

maintaining model element modularity.

Another computational advantage ofmodular modeling is parallel computation.

Parallel computation is a perfect fit for modular modeling because the elements can be

evaluated independently. Modular element evaluation can be run on separate networked

processors. Evaluation of modular models on networked processors will be a subject of a

future paper. Each multi-port multi-DOF element in a modular model can be distributed

to separate processors. The constraint equations (3.18c) or (3 .23b) must reside on a

single processor.

The constraint equations add computations to modular models and another

computational advantage. These extra dynamic equations have stability defined by the

constraint control gains, Er Manipulating the constraint control gains in the constraint



equations, modularity allows for convergence control and adaptation. Convergence

control and adaptation will be a subject of a future paper.

3.3 Examples

An electric automotive vehicle power train example model is used to illustrate

modular modeling of nonlinear algebraic differential modular models. A structural three

bar configuration fixed to a point example model is used to illustrate modular modeling

ofnonlinear algebraic modular models. The electric automotive vehicle power train

example model is a combination ofthree simple dynamic models found in Phillips and

Harbor, 1996 and Minor, 1996. The three bar structural example model is a combination

of a simple nonlinear model from Ross, 1990.

The electric automotive vehicle power train example model contains three simple

modular modeling elements, an electric motor model, a fluid clutch model, and a

transmission model. The three modular modeling elements are all defined with

standardized modular modeling causality (Table 1.1). The electric motor modular

modeling element has one electrical power port with current input 1' voltage output e

causality and one rotational mechanical power port with torque input 1' angular velocity

output a) causality (Fig. 3.2a).

K 1

x; = [0]x,,, + [-f 71:] (3.26a)

e - K" + R 0 i 3 266
a) ' 1 "' 0 0 r ( ' )

The motor model has a state, xm, a lumped motor-shaft rotational inertia, J , a motor coil

resistance, R, a motor back emfconstant, Kb, and a motor torque constant, K, . The

transmission modular modeling element has two rotational mechanical power ports with

torque 1'“ and “rd input angular velocity (0, and and output causality (Fig. 3.2b).
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J Jer
Ir tr Ir

a)“ _ GR 0 0 r“

1.1-1.161001.)
The transmission model a state, x", a lumped transmission rotational inertia, J an

tr’

0 T

x” = —ix,, +[Q i][ "] (3.27a)

equivalent transmission damping, c", and a transmission gear ratio, GR. The fluid

clutch modular modeling element has two rotational mechanical power ports with torque

rm and 1', input angular velocity (am and 0), output causality (Fig. 3.2c).

xcl = —&(xcl — xc2)2 + it!!!

Jcl Jcl

(3.28a)
I l

xcz = (xcl — xc2) + —Tt

J rJcl c

(0,,l __ l 0 xcl 3 28b

60, _ O 1 xc2 ( ° )

The clutch model has three states, [xcl,xc2]T, a lumped clutch rotational inertia, 10,, and

an equivalent resistance, Rd.

 

a) b) c)

Figure 3.2: Electric Automotive Vehicle Power Train Modular Modeling

Elements a) Electric Motor b) Transmission c) Fluid Clutch

These three modular modeling elements are assembled in a motor—clutch-

transmission configuration to illustrate the flexibility ofmodular modeling. The modular

motor modeling element is connected to the modular fluid clutch modeling element,

which is connected to the modular transmission modeling element (Fig. 3.3).

66



l 2 3 4 5 6
..... ..- - .. '.. an. .- I >. .I.,.ro..5 - .

“a

.. q _, . . . _ . ._ C S’

“I 3: “23M ' =1 “45 “6

—:;i electric motor—fluzdclutch—transmzssron_

’1; C 3: ‘ ' , :1

y] Err-1:6 :vrn. win: y23 E"?" ‘1 “‘1 -‘°‘ y45c 55" “-"I‘r- “3“”‘33'4 y6

Figure 3.3: Electric Automotive Vehicle Power Train Modular Model With An

Electric Motor, A Fluid Clutch, And A Transmission Modular

Modeling Elements

The unconnected three element modular system is built up from directly inserting the

motor, clutch, and transmission modular element matrices into (3 .2a-3.2b).

 

 

  
  

' W

_ I %i-%r

5'! - f" (xcl - xc2)2 ...—Tm

=f(X.U)= x.“ = Rj’ 2 1" (3.29a)

EC? JO (xcl-xCZ) +—Tr

--rJ__________d --.

_ tr_ C”

-—x +—r +—r

J. " J. " . "

' e ' 'Kbxm+Rr

a) x,"

Y (XU)- 0”” — x" - 3296-9 . - 91:, — “-133"- (. )

a), GRx"

Lwd_ _ xtr d    
The input-output topology ofthe three element modular power train model shows

ports 1 and 6 are external ports and two connectors (Fig. 3.3). The internal ports are

connected in pairs 2 to 3 and 4 to 5. This simple topology analysis defines the reordering

matrix T and the equation selector matrix_0(_S_‘--S).

I1 0 O 0

O l -l 0 0

0’ (§o_§¢)=[0 O 1 _1] (3.30)

0

O

I
"
)

II

oooooooooooooooooooooooooooooooo
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Ports 1 and 6 are the external power ports so I reorders the input U = [i, 1', twtntu, rd]?

and output Y = [e, a), wwwnwu, (DAT so i, rd, e, and and appear first in the vectors.

Ports 2 and 3 and ports 4 and 5 are connected internal power ports reordered to appear in

connected pairs after the external ports. Apply the reordering matrix 1’ to the modular

model (3.29a-3.29b) to partition the inputs and outputs internally and externally.
i -

  

7.:

Um "z"
[UIMI] -_- l‘U = 1'... (3.3la)

TI

TI

' e ' - _ Kbxm + R:

a), x,

[323.] = 17 = w = [939%9)] = x," (3.3 lb)

You 0),, 3,,(X,U) xcl
20.:........xc; ......

_a), .. .. GRx, .    
The two element electric automotive vehicle power train modular model (3.29a-3.29b) is

now in the form to apply modular modeling constraints (2.2a-2.2b).

The constraints are applied to the internal inputs and outputs. The internal inputs

are constrained to be equal and opposite (3.13).

r 1. -

    

 

  

' 1

1,, T -1 0 ”a;
U. = = S —S U‘= 3.32
W 1.: (—0 -—¢) 0 1 Lu‘sc] ( )

_r,_ _0 -1_

The internal outputs are constrained to be equal using integral control logic (3.16a-3.16b)

xfll

- 'c 1 -1 0 0‘ x x -x
c= x23 = = _S X = cl = m cl

X LC . (9. ...)a...( .U) [0 0 1 _1_ x. [x,,—6Rx,](3'33’)

45

LGRx,_

c k 0 c

Uc =l:u23¢]=_K_,Xc =[ II 11230] (3.331))

u” 0 kn x45
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Apply the internal input and output constraints to the three element electric power train

modular model (Fig. 3.3) and rewrite in the fully connected modular system form (3.18a-

  
  

3.18c).

_ K, , l c -

_ . .. 7‘ " 'jknxzs

. U 3:? ““IlicLhcr ch )2 + ( knxzac)

X = f(X, IT[ “’7 {I} = fl = é’ 2 ‘1’ (3.34a)

(£0 _ §,) K’X x 2 4(xcr " ch) + Tk12x45‘

' -..-cl_________ CL .......

_ rr_ C" GR f c

”7% +J—Tu + ( knx45 )

_ tr tr tr -

Y = 9,,(X :rT U"; )= e = K’x'" + Ri (3.346)

en , — (£0 —§e) KIXC m4 xrr

U x - x
c = _ 1‘ ex! = x23 = m c]

X (£0 g: )ant(Xr I [(S _ §¢)TKIXC]) x. c [x62 _ GRX’] (3.340)

—0 4s

The fully connected 3 element electric vehicle power train modular model (3.34a-

3.34c) can be solved like any other nonlinear algebraic differential model. Thethree
WW4;

.J

modular modeling elements1n this modular model are all strictly passive because they all .
__ww- _._u

havepositivedamping. Any model with positive dampingrs strictly passive (Khalil,

B 4m+ Do Nab (1611601 96%

1996 & Krstic etal, 1995). The integrator ofthe output constraint (36a-36b), as are all

integrators, is passive (Khalil, 1996). The modular model is then passive and globally

uniformly stable (Khalil, 1996).

The nonlinear algebraic modular model example is a structural model with three

bars fixed to a point. This structural modular model example contains two simple

modular modeling elements, an axial force bar model and a fixed point model. The two

modular modeling elements are all defined with standardized modular modeling causality

(Table 1.1). These structural models do not have traditional power ports because the

output variable is a displacement instead ofvelocity. They are representations of

physical points with two variables that require a causal definition, which fits the
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application of modular modeling and the measurement perspective standardized causality

(Byam and Radcliffe, 1999).

The axial force bar modular modeling element is a four node Finite Element

Model (FBA) from Ross, 1990. This model has four mechanical ports with force input F

displacement output 5 causality (Fig. 3.4a), which is written in nonlinear algebraic

modular modeling form (3.22a-3.22b)L

    

xa-xc-F; T ’0-

xc-xa x -x -F 0

{<§.g)=0=if- ( _xX+; _2 " I: 0 (3.35.1)

_(xc-an—xb+xd)—E,d _O_

'51- ”x“-

62 xb

y=8(f.l_¢)= 5 = x (3.35b)

" "' 3 c

-54- -xd-    
The modular bar (3.35a—3.35b) has four states [x,, x,, xc, xd]T, a cross-sectional area A, a

modulus of elasticity E, and a length L.

The fixed point modular modeling element is unique to modular modeling

because ofthe standardized measurement perspective causality. The one port fixed point

modular modeling element outputs a zero displacement regardless ofthe input and

applies to any energy domain (Fig. 3.46). The fixed point modular modeling element is

written in nonlinear algebraic modular modeling form (3.22a-3.22b).

f(in?) = Q = x. = 0 (3368)

y = 8(frlf) = 55 = O (3.361))

The modular fixed point modular modeling element has one state x, .
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a) b)

Figure 3.4: Three Structural Nonlinear Algebraic Modular Modeling

Elements: a) Axial Force Bar b) Fixed Point

The example nonlinear algebraic modular model will use the two modular

modeling elements (Fig. 3.4) in a bracket—pin-clevis configuration. Three axial force bars

and a fixed point will be connected together in configuration with no pin bending

deflection (Fig. 3.5).

 

Figure 3.5: Three Axial Force Bar And A Fixed Point Modular Modeling

Elements In A Bracket-Pin-Clevis Configuration With No Pin

Deflection

The unconnected five element modular system is built up from directly inserting the bar

and fixed point modular elements into (3.22a-3.22b) where the f, g, if, y, and If of

each element are found in the element equations (3.35a—3.35b) and (3.36a-3.36b).
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  g... (f. 1})

(3.37a)

(3.376)

The input-output topology ofthe three bar no pin modular model shows ports 11,

12, 15, and 16 are external ports and six connectors. The internal ports are connected in

pairs 1 to 3, 2 to 4, 5 to 9, 6 to 13, 7 to 10, and 8 to 14. This simple topology analysis

defines the reordering matrix I and the equation selector matrix (S, — §.)-

To
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(3.38a)



 

'1—10000000000‘

001—100000000

00001-1000000

(§°—§‘)=0000001—10000 (33%)

000000001-100

_00000000001—1j 
Ports 11, 12, 15, and 16 are the external power ports so I reorders the input

1' T

Uzlfirfirfivmrl‘id and output Y=[61’62’53’°”’616] 309 E12 Fiz’ Es: FIG’ 6119 512:

5,5, and 5,6 appear first in the vectors. Ports 1 and 3, 2 and 4, 5 and 9, 6 and 13, 7 and

10, and 8 and 14 are connected internal power ports reordered to appear in connected

pairs after the external ports. Apply the reordering matrix I to the modular model

(3 .37a-3.37b) to partition the inputs and outputs internally and externally.

[if -] = 111 = ..... _ (3.39a)
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The five element structural three bar modular model (3.37a-3.37b) is now in the form to

apply modular modeling constraints (2.2a-2.2b).

The constraints are applied to the internal inputs and outputs. The internal inputs

_ -

are constrained to be equal and opposite (3.13).

 

 

F; 1 0 0 0 0 0“

F; —1 0 0 0 0 0

F, 0 1 0 0 0 0

F; 0 -1 0 0 0 0 ”...,"

F, 0 0 1 0 0 0 u,;

F, ,. . 0 0 -1 0 0 0 a;

U...=-,;- =(§.—§.)U= 0 0 O 1 0 0 u...‘ (3.40)

17,, 0 0 0 -1 0 0 a“;

F; 0 0 0 0 1 0 (um:

E, 0 0 0 0 —1 0

F; 0 0 0 0 0 1

_F;,, L0 0 0 0 0 -1,   
The internal outputs are constrained to be equal using integral control logic (3.24)
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(3.41a)

(3.41b)

Apply the internal input and output constraints to the five element electric power train

modular model (Fig. 3.5) and rewrite in the fully connected modular system form (3.25a-

2.25c).

. U
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X — “X, I [(§ - §¢)T£1Xc:l) Q —
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(3.42c)

The fully connected five element three bar structural modular model (3.42a-3.42c)

can be solved like any other nonlinear algebraic differential model. The two modular

modeling elements in this modular model are all strictly passive because they all

memoryless functions that do not generate energy (Khalil, 1996). The integrator ofthe

output constraint (3.41a—3.41b), as are all integrators, is passive (Khalil, 1996). The

modular model is then passive and globally uniformly stable (Khalil, 1996).
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Chapter 4

CONCLUSIONS

4.1 Contributions

We have successfully developed mechanisms for modular modeling of

engineering systems with fixed input-output structure. Modular modeling elements with

a power-based fixed input-output structure have fixed power port input-output causality,

fixed sign convention, and a fixed internal equation formulation. Modular modeling

connectors join modular element ports with fixed power constraints. The standardized

internal formulation ofmodular modeling elements enables top-down modeling and

enhances model verification via modularity. Because a modular modeling element’s

formulation does not change, modular modeling yields more easily verified models.

Unverified models are ofno use in today’s industrial environment. A model with

n power ports has 2" possible formulations. The performance of all 2" formulations

simply cannot be simultaneously verified. Reducing the number ofverifications flour 2"

different verifications to a single verification is an enhancement in modeling technology.

Modular modeling elements with a known physically validated performance are an asset

to modelers of engineering systems.

Model complexity increases with the modular modeling method because ofthe

connector requirement. Modular connectors have a fixed definition, which is compatible

with the modular modeling element’s fixed functional definition. The compatible fixed

functional definitions enable a systematic assembly method for modular models with a

fixed mathematical formulation and a fixed computational sparseness.

The measurement perspective fixed port causality used in modular modeling has

the ability to avoid using energic junctions to maintain modularity upon assembly.

Hogan concluded that use of energic junctions guaranteed modularity at the cost of “stiff”
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system equations with widely spread eigenvalues. Modular modeling can assemble

modular modeling elements with fixed measurement perspective causality and maintain

modularity with the simple power constraint ofthe modular modeling connector.

Modular modeling reduces the verification task of large model design,

development, and refinement by standardizing the functional form of all multi degree of

freedom modeling elements. The fixed power-based measurement perspective port

causality results in a standardized multi degree of freedom modular modeling element

with a single mathematical model formulation. This formulation has the flexibility to

support any number ofphysically disconnected ports without reformulation. Assembling

incompatible modular modeling elements requires a causally compatible 2-port modular

connector that facilitates a standardized constrained power transfer between modular

modeling element ports. The separate modular modeling elements and connectors with

explicitly different functions enable subsystem level modeling with no reformulation.

Fixed formulation enhances model verification. Modular modeling has the flexibility to

model any engineering system across multiple energy domains with the benefits ofa

fixed input-output structure.

The solution to linear modular models is a systematic direct insertion solution.

Modular modeling elements with nonlinear equations are the subject ofa future paper.

Given n modular modeling elements and an input-output topology oftheir

interconnections a systematic reordering and constraint analysis realizes a built up

modular model that can be solved like any other linear system ofequations. Modular

modeling elements maintain their modularity in the assembled modular model. This

method’s maintenance of element modularity while assembling with simple connectors

with a less restrictive condition on the modular elements is previously unavailable in

other methods. The reordering and constraint processes add complexity to the solution

process but the modular model has a fixed computational Sparseness. This formulation
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results in cases where the number ofcomputations for modular models is less or

comparable to non-modular models.

The solution to nonlinear modular models is a systematic direct insertion solution.

Given n modular modeling elements and an input-output topology oftheir

interconnections a systematic reordering and constraint analysis realizes a built up

modular model that can be solved like any other nonlinear system of equations. Modular

modeling elements maintain their modularity in the assembled modular model. This

method’s maintenance ofelement modularity while assembling with simple connectors

with a less restrictive condition on the modular elements and no stiff equations is

previously unavailable in other methods. The reordering and constraint processes add

complexity to the solution process but the modular model has some computational

advantages. This formulation results in cases where the parts ofthe computation can be

done on separate processors.

4.2 Future Work

Future work in this new modeling technology has several exciting possibilities.

Application ofadaptivecoritrol strategies to the control logic solution of nonlinear

modular models. Using modulflgrkmodeling with fixed input-output structure to connect

complex Finite Element Analysis (FEA) models with incompatible meshes. Modular

modeling using Statistical Energy Analysis (SEA) techniques. Utilization ofmodular

modeling technology in intemet-based or web-based modeling.

Adaptive control strategies such, gain scheduling, could be applied to the

assembly and solution ofnonlinear modular models. Each modular modeling element

may have a unique response requiring a unique feedback gain to reduce the assembly

error.
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Connecting complex FEA models typically requires remeshing for connection.

Modular modeling with fixed input-output structure is formulated to avoid this problem.

The Q matrix in the boundary value problem formulation provides for interpolation

between mesh node points and the inputs and outputs. Interpolated outputs of different

FEA models from number ofmesh node points could be connected through a modular

modeling connector.

Statistical Energy Analysis (SEA) models, which are an equal sharing of high

fiequency vibration and sound energy between modes, are applicable to modular

modeling with fixed input-output structure (Lyon, 1975). SEA models have elements and

connectors the store and distribute energy. SEA models have grown to be quite large and

complex with numerous elements and interconnections. Modular SEA models would be

an advancement in SEA modeling technology.

Internet-based or web-based modeling is an emerging modeling technology well

suited for modular modeling with fixed input-output structure. A key design

specification ofweb-based modeling in security of proprietary model information. A

fixed input-output structure enables such security by restricting the type of input and

output. Reverse engineering is not a trivial exercise when restricted to input and output

information only.
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