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ABSTRACT

PREDICTION OF AVAILABLE WATER IN CREEPING BENTGRASS AND

ANNUAL BLUEGRASS USING VISIBLE AND NEAR INFRARED

SPECTROSCOPY

By

Beau James McSparin

Site-specific management (SSM) of turfgrass based upon the specific

water needs of the turfgrass plant has the potential to save money and water for

waer resources that could be diverted for human use. Visible and near infrared

spectroscopy (VlS/NIRS) was evaluated as a rapid and indirect analysis

technique to determine water status of monostands of creeping bentgrass

(Agrostis palustn's Huds. cv. ‘Penncross’) and annual bluegrass (Poa annua var.

neptans) grown in Iysimeters containing either an Owosso sandy loam (fine-

loamy, mixed, mesic Typic Hapludalfs) or a United States Golf Association

(USGA) specification sandzpeat (90:10, v/v). Field and greenhouse Iysimeters

were allowed to dry from field capacity to near-wilt. Every two days, volumetric

soil moisture content (VSMC) and evapotranspiration (ET) were determined for

each lysimeter by time domain reflectometry (TDR) and gravimetric analysis,

respectively At the same time, a field modified monochromator (NIRSystems

6500, Silver Springs, MD) measured reflectance from the turfgrass canopy from

400 to 2500 nm at 2-nm increments. The explained variance (R2) for the

relationship between reflectance and water status ranged from 0.59 to 0.92 for



TDR and 0.39 to 0.97 for ET. Higher R2 values were obtained under greenhouse

compared to field conditions where experimental error was minimized.

Wavelengths that contributed most to detection of water status occurred at 464

and 690 nm in the VIS region, and 1430 and 1900 nm in the NIR region which

corresponds to absorption peaks for free water. These results indicate the

potential for development of sensing technology using VIS/NIRS to detect turf

water needs on a site specific basis thereby leading to more efficient water use.
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INTRODUCTION

Turfgrass water use has recently become a highly debated issue due to

limitations of water for human consumption. As human populations continue to

grow, water for turf use becomes more limiting. Identifying when and how much

water the turf plant needs becomes an increasingly important task. Currently,

methods to determine plant water use can be tedious for the end-user.

Furthermore plant water status exhibits considerable variability that adds to the

difficulty of managing large areas. Localized spatial variability is not effectively

managed because management decisions are based on data from large

geographic locations and cannot account for localized variability. Often times, the

result is dead turf.

Over the years, scientists have searched for a fast, reliable, and non-

destructive method to monitor and manage turf water requirements. Developing

sensor technologies bring into possibility the use of localized data in a SSM

program. Sensor development using VIS/NIRS is a concept currently being

pursued for use in a SSM program. These sensors are very desirable because

they can provide instantaneous information about localized conditions where

variability is problematic. This approach would allow turf managers to more easily

determine and manage problem areas before irreversible conditions occur.

The objectives of this research were to: 1) determine the relationship

between turf spectral reflectance and water status as measured by VSMC and

water loss; 2) determine if that relationship is affected by turf species and soil



type; and 3) determine the important wavelengths necessary for predicting

moisture content.



Chapter 1

LITERATURE REVIEW

ELECTROMAGNETIC SPECTRUM

The electromagnetic spectrum (EMS) is composed of both electrical and

magnetic forces and is divided into several regions including visible light (Fig.

1.1) (Kemp, 1991). The EMS can be defined in terms of wavelength (a measure

of the length of the wave), frequency (number of waves per second), or

amplitude (the magnitude of the vertical peak or valley of the wavelength signal)

(Kemp, 1991). The EMS ranges from gamma rays, which have the shortest

wavelengths, highest frequencies, and highest energy to radio waves, which

have the longest wavelengths, lowest frequencies, and lowest energy. The three

transition states depicted in Fig. 1.1 categorize the type of distortion caused by

different magnitudes of energy exerted on an object.

As early as 1666, Sir Isaac Newton performed many basic experiments

involving light and its properties. His most widely recognized experiment involved

the separation of visible light into its component colors using a glass prism. From

that point forward, scientists have discovered more about the properties of light

and its effects on everyday life. Light is a form of energy that is described by two

theories: the wave theory and the corpuscular or particle theory (Kemp, 1991 ). In

the wave theory, the number of photons at that wavelength determines the

energy or amplitude measured at a specific wavelength of frequency (f). In the

corpuscular model, radiant energy is comprised of discrete
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packets of energy called photons. A photon’s energy is defined as E=hfwhere h

= Planck’s constant and f is the frequency of the energy. For example, the

amplitude (wave model) is equivalent to numbers of photons for the corpuscular

model. Some properties are best explained using the wave (magnetic) theory

while others are best explained using the corpuscular (particle) theory (Kemp,

1991) thus resulting in the nomenclature “electromagnetic spectrum.” Neither

theory alone completely explains all of light’s properties because wave and

particle forces coexist. When both theories are used to explain light’s energy, all

energy phenomena can be accounted for.

When energy strikes an object, it is absorbed, reflected, or transmitted.

Surfaces of varying composition and texture absorb energy in varying

magnitudes across the EMS. When an object absorbs energy, electrons may

become excited resulting in an electron shift to a higher energy level thereby

resulting in changes in the absorption properties of the object (Hatchell, 1999).

These energy shifts can be measured using a spectrometer and plotted to

produce an absorbance spectrum of the object. Peak absorbance regions

indicate the location and intensity of the energy shift in the EMS. Absorbance

spectra are often referred to as spectral signatures because the energy of that

particular object has been recorded at that instant (Shenk and Westerhaus,

1990). Spectral signatures for inanimate objects such as ceramics are

considered to be relatively stable and therefore constant and unchanging (Shenk

and Westerhaus, 1990). These objects serve as standards by which

instrumentation is calibrated while spectral information gathered from living



organisms such as plants often varies based on changing internal and external

conditions. Measuring the spectral properties of a plant can yield data that

directly correlates to laboratory derived values for protein, fat, nitrogen, or water

(Wetzel, 1983).

Within regions of the EMS, defined ranges of wavelengths called bands

have been found to represent specific chemical bonds and/or functional groups

to which the energies of electrons are restricted (Kemp, 1991). For example, the

NIR spectra may show absorption peaks that serve as indicators for functional

groups such as water (1430 and 1900 nm), amines (1550 and 2000 nm), or

carbonyl (1200 and 1780 nm) groups (Bowers and Hanks, 1965; Dalal and

Henry, 1986; Hatchell, DC, 1999). Each functional group behaves

independently and absorbs energy at varying frequencies and in different

amounts (Shenk and Westerhaus, 1990). Plants possess these same functional

groups and therefore can be analyzed in a meaningful manner using

spectroscopy.

INSTRUMENTS THAT MEASURE THE EMS

Several types of spectrometers can be used to measure the EMS. These

instruments all convert energy into electrical units. These units can then be

plotted to determine functional groups present or concentration of functional

groups. Commercially available spectrometers that measure the UV, VIS, and

NIR regions of the EMS are affordable and have proven extremely accurate.

These spectrometers are available as filter instruments that measure pre-



determined wavelengths or as monochromators that measure across a series of

wavelengths. Monochromators are more expensive and less common.

Spectrometers generally consist of a light source, dispersing element (grating),

filter, detector, and a plotter. Typically, the light source and detector are

composed of specific materials for the spectral region being analyzed. For

example, when measuring the visible light spectrum, “white light” is provided by

means of a tungsten quartz bulb while a sulfur diode is often used as the detector

(Hatchell, 1999).

Spectrometers that measure the EMS are sensitive to fluctuations in

power supply, humidity, scatter light and the path radiance angle. These

variables must be calculated and instrumentation adjusted to provide accurate

and repeatable measurements (Hatchell, 1999). Post-dispersive spectroscopy

uses a supplemental light source to illuminate the target area. Light scattered off

or transmitted through the sample is then collected and delivered to the detector.

Ambient light that strays into the sample area is also measured. However, the

stray ambient light represents a very small fraction of the total light signal

measured by the detector (Hatchell, 1999).

The photosynthetically active radiation (PAR), between 400 and 700 nm,

is frequently measured and reported because these wavelength regions are

important for photosynthesis to occur. Energy that is absorbed by the plant can

be redirected into the environment, used in plant functions, or released in the

form of heat. Plant pigments, such as chlorophyll or carotenoids, absorb energy

in differing amounts across the light spectrum. In the majority of plant species,



These pigments absorb more blue and red light. Plants appear green because

the plant least utilizes green light. The result is a plant that most often appears

green in color. By measuring the reflectance of a plant, a relationship with plant

health can be determined (Salisbury and Ross, 1992).

NEAR INFRARED SPECTROSCOPY

The use of near infrared spectroscopy (NIRS) has many advantages over

traditional laboratory analysis. These advantages include 1) little or no sample

preparation; 2) rapid analysis of multiple functional groups from the spectra

collected; 3) high precision, and 4) the absence of hazardous chemicals (Shenk

and Westerhaus, 1993). Spectroscopy software used for data analysis in this

paper is provided by lnfrasoft International, Inc. (Port Matilda, PA) and is

accepted for use by the Association of Analytical Chemists (AOAC). This

particular software provides information about the key wavelengths chosen for

prediction however, the software primarily operates through the creation of an

algorithm that is based on all spectral data collected. In the research papers

refereed here, few disclose the actual wavelengths chosen, but rather

concentrate on the algorithm for equation performance.

Near infrared reflectance spectroscopy has been used by the forage

industry for many years for prediction of plant nutrient content such as proteins,

fats, and oils (Roberts et al., 1997; Shank et al., 1984, Wetzel, 1983). The NIRS

has also been used to predict moisture, organic carbon, and N in soils (Dalal and

Henry, 1986) as well as determining botanical composition of legumes in



monostands (Coleman et al., 1990) and of mixed samples of tall fescue and

clover (Peterson et al., 1987). Roberts et al. (1997) concluded that NIRS could

accurately quantify ergovaline in tall fescue with precision similar to that of high

performance liquid chromatography (HPLC). Ergovaline is organic compound

composed of alkaloids produced by endophytic fungi in certain grass species and

has been shown to be disruptive to the digestive tracts of herbivores (Roberts et

al., 1997).

The water molecule is a symmetrical bent molecule that gives rise to two

absorption bands in the infrared spectrum. There is one band for each mode of

vibration (or electronic transition): symmetrical stretching (1930 nm),

asymmetrical stretching (1450 nm), and symmetrical bending (650 nm) (Wetzel,

1983). The O-H stretch is generally very broad in the near infrared spectrum due

to the diversity of O-H configurations (Hatchell, 1999). These configurations can

confound the characteristics of proteins, lipids, and nitrogen levels that possess

lower intensity absorption properties.

As previously mentioned, NIRS has been utilized for soil moisture

prediction. Within a narrow range of soil color and at moderate amounts of

organic matter, NIRS was found to provide a rapid and nondestructive method for

moisture measurement (Couillard et al, 1997; Sudduth et al., 1991). Couillard et

al. (1997) demonstrated the ability of NIRS to predict soil moisture content with

high accuracy using spectral bands at 1450, 1930, and 2200 nm. Soil samples

that previously had not been measured with NIR spectra were used to quantify

physical soil characteristics such as SOM and total N (Couillard et al., 1997).



Bowers and Hanks (1965) also reported these same wavelengths for determining

soil water content. They examined the spectral reflectance of soils and found the

moisture content of soils to be predictable at spectral reflectance levels of 1400,

1900, and 2200 nm. Sudduth et al. (1997) found that this spectral region

provided a statistically more accurate analysis than traditional laboratory

methods when analyzing soils thereby providing a reliable method of

quantification. Couillard et al. (1997) concluded that expanding and developing a

comprehensive database is necessary if NIRS is to be used across a broad

spectrum of sample profiles. Finally, research conducted by Ben-Gera and Norris

(1968) demonstrated that NIRS could be used to accurately measure and predict

the moisture content of soybean leaves.

Fenstennaker-Shaulis et al. (1997) evaluated the usefulness of remotely

sensed data to detect turf stress and found visible reflectance from tall fescue to

be sensitive to stress caused by moisture content when using a multispectral

scanner. In that study, moisture content was calculated through the use of

Iysimeters for determining evapotranspiration, clipping mass for determining

percent tissue moisture content, and a neutron probe for measuring soil moisture

content. An indice called the normalized difference vegetative index (NDVI) was

used to correlate stress measurements with the spectral data using the red (600

- 650 nm) and near infrared (800 - 890 nm) regions. The NDVI was calculated

as (NIR — red ) / ( NIR + red). Fenstennaker-Shaulis et al. (1997) found a linear

correlation using the NDVI indice for both tissue moisture content and canopy

temperatures. As tissue moisture increased, so did NDVI values (R2=0.90) and

10



as canopy temperature increased, NDVI values decreased (R2=0.74). A

quadratic relationship was found to exist between NDVI and ET (R2=0.81).

TURFGRASS WATER USE

Water use is defined as the amount of water required from rainfall and

irrigation in addition to losses from ET to meet specific performance quality

standards without consideration to yield standards (Waddington et al., 1992).

Managing turfgrass irrigation is an attempt to balance root growth with canopy

density and color without compromising aesthetics. Lack of water can result in

the inability of the turf to withstand heat stress, traffic, soil compaction, nutrient

allocation, and turgor pressure while too much water can result in increased

disease pressure, lush growth, soil compaction, and anaerobic soil conditions

(Waddington et al., 1992). Fry and Butler (1989) studied the ET rates of annual

bluegrass and creeping bentgrass and found ET differences to be small and that

water requirements did not vary considerably between the two species.

Three general factors affecting turf water use rates are: 1) evaporative

demand of the air, 2) quantity of water supplied, and 3) evapotranspiration levels

(Waddington et al., 1992). An understanding of the interaction of these three

factors is critical if water use is to be evaluated by performance and quality

standards, rather than yield standards. Replacement of soil water, regardless of

the deficit level, saturates a portion of the soil profile from the surface downward.

Even deficit irrigation that provides shallow applications of water, re-wets a

substantial portion of the fibrous root zone, where much of the water uptake

11



occurs (Waddington et al., 1992). The turf manager must therefore take several

environmental factors into consideration regarding when and how much water is

needed to provide optimal turf conditions. Due to the large acreage of turf

managed on golf courses, over-watering is a common occurrence which often

times results in turf loss. Even with today’s advanced irrigation systems that

monitor changing environmental conditions, turfgrass problems still occur due to

over-irrigation (Waddington et al., 1992).

MEASUREMENT TECHNIQUES FOR DETERMINING WATER USE

Several techniques have been utilized for measuring turf water use and

soil water content. These techniques include the use of Iysimeters, time domain

reflectometry (TDR), and infrared therrnometry (IRT).

A lysimeter is a closed-system containing both soil and turfgrass. Water

can be added to the lysimeter and water loss calculated by measuring the

amount of water applied and the amount of water lost from the lysimeter.

Lysimetry is a relatively inexpensive method, however, Iysimeters can be very

labor intensive and bulky. Using Iysimeters to calculate ET for turfgrass is,

however, very common. Evapotranspiration is a measure of the total amount of

water lost through transpiration and evaporation from the plant and soil surfaces

(Waddington et al., 1992). Solar radiation is a major force causing evaporation

and is a function of climate, season, altitude, and latitude. Data from all these

measurements are used to estimate ET rates. Two common methods used to

estimate ET are the open pan method and the Penman equation. The open pan

12



method is a measure of the evaporative loss of water from an exposed surface.

When the water level drops below a pre-determined level due to evaporation,

then irrigation is necessary. On the other hand, the Penman equation uses

estimates to determine water use that are derived by additional factors as a

means of calculating water loss from an exposed surface (Waddington et al.,

1992). Factors in the Penman equation include wind speed, net radiation,

temperature, and vapor pressure deficit (VPD). However, local calibration of the

Penman equation is often required because VPD and net radiation are often

estimated (Waddington et al., 1992). For estimating ET, the Penman equation

has proven to be a very accurate and reliable method in dry, arid climates of the

western United States.

Time domain reflectometry is a measure of the electrical conductivity of

the soil and is used to calculate volumetric soil moisture content (VSMC) (Topp

et al., 1980). To accomplish this, an electrical signal is transmitted through the

soil by a series of probes and the velocity of the signal is determined by TDR as

a measure of the dielectric soil constant. The dielectric constant is a measure of

the ability of the soil to resist the formation of an electric field within itself. Water

is the major factor that alters the dielectric soil constant (Topp et al., 1984). Also

important, TDR measurements are independent of temperature, soil type, bulk

density, or salt content (Waddington et al., 1992), Topp et al. (1980) found that

on-site determination of water content could lead to improved efficiency in the

characterization of soil properties. Research conducted by Saffel (1994) found

TDR to be especially useful in monitoring the top 10 cm of the turf soil profile

13



since this soil volume has the greatest root mass and therefore the greatest root

activity. Saffel (1994) also emphasized the ability of TDR to determine the water

status of the soil for the application of the correct amount of water needed to

restore turf to optimal performance conditions. Therefore, TDR is a useful tool for

the measurement of soil water content. This technology is relatively new but

affordable and highly reliable.

Infrared thennometry (IRT) uses the infrared region of the energy

spectrum to calculate the temperature difference of the canopy versus air

temperature. This information is then used to determine the transpirational

efficiency of the turf. Several methods have been developed to utilize IRT. One

method involves the use of the NDVI. Unstressed turfgrasses were found to have

lower canopy temperatures (high NDVI values) due to the cooling effect of

transpiration, while stressed turfgrasses had higher canopy temperatures (lower

NDVI values) due to lower levels of transpiration (Fenstennaker-Shaulis, 1997;

Throssell, 1987). However when the cause of stress has been focused solely on

water requirements, limitations exist. When using IRT, Hatfield (1990) found an

increase in surface temperature variability as soil water decreased. This surface

temperature variability was attributed to interference caused by different soil

backgrounds. Stanghellini and DeLorenzi (1994) found IRT to be suitable for

early detection of water stress, but added that sustained stress reduces the

efficacy of IRT; in contrast, the accuracy of soil-based stress indicators such as

TDR increased over IRT as the stress period progressed. Jackson et al. (1977)

developed the stress-degree-day (SDD) concept utilizing IRT. This index uses
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midday canopy temperatures that are summed until a pre—deterrnined level is

reached, whereby irrigation is required. ldso et al. (1981) developed the crop

water stress index (CWSI) that was intended to normalize SDD for environmental

changes in vapor pressure gradient. The use of IRT has proved that certain

regions of the EMS can be used as indicators of plant water status.

Overall, the use of Iysimeters and TDR is a highly accurate means for

calculating available water for the turfgrass and determining irrigation scheduling.

Although each method has its own shortcomings, each has unique advantages.

Time domain reflectometry is becoming more widely utilized as it emerges from

the developmental stage. Prices for TDR units have remained steady with units

easily affordable, safe to use, and very mobile. Utilization of Iysimeters is very

inexpensive and reliable, however it remains a very labor intensive method. Qian

and Fry (1997) compared soil water content with ET rate and found the resulting

measurements closely associated. Also, IRT is easy to use however it is limited

due to its shortcomings of determining the actual cause of stress. The use of IRT

technology is very similar to the goals of this project with the exception that a

broader region of the EMS will be examined. Examination of the NIR region will

determine if a more direct relationship exists between spectral reflectance and

water status. Ideally, this study will lead to the development of a sensor system

that will simplify the input of environmental variables while increasing

management reliability.
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Chapter 2

PREDICTION OF AVAILABLE WATER IN CREEPING BENTGRASS AND

ANNUAL BLUEGRASS USING VISIBLE AND NEAR INFRARED

SPECTROSCOPY

ABSTRACT

Site-specific management (SSM) of water based upon the specific needs

of the turfgrass plant has the potential to save money and water for human

consumption. Visible and near infrared spectroscopy (VIS/NIRS) was evaluated

as a rapid and indirect analysis technique to determine water status of

monostands of creeping bentgrass (Agmstis palustn's Huds. cv. ‘Penncross’) and

annual bluegrass (Poa annua var. reptans) grown in Iysimeters containing either

an Owosso sandy loam (fine-loamy, mixed, mesic Typic Hapludalfs) or a United

States Golf Association (USGA) specification sandzpeat (90:10, vlv). Field and

greenhouse Iysimeters were allowed to dry from field capacity to near-wilt. Every

two days, volumetric soil moisture content (VSMC) and evapotranspiration (ET)

were determined for each Iysimeter by time domain reflectometry (TDR) and

gravimetric analysis, respectively. At the same time, a field modified

monochromator (NIRSystems 6500, Silver Springs, MD) measured reflectance

from the turfgrass canopy from 400 to 2500 nm at 2-nm increments. The

explained variance (R2) for the relationship between reflectance and water status

ranged from 0.59 to 0.92 for TDR and 0.39 to 0.97 for ET. Higher R2 values were

obtained under greenhouse compared to field conditions where experimental

error was minimized. Wavelengths that contributed most to detection of water
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status occurred at 464 and 690 nm in the VIS region, and 1430 and 1900 nm in

the NIR region which corresponds to absorption peaks for free water. These

results indicate the potential for development of sensing technology using

VIS/NIRS to detect turf water needs on a site specific basis thereby leading to

more efficient water use.

Additional index words: Agrostis palustn's, Evapotranspiration, Poa

annua, Site-specific Management, Time Domain Reflectometry, Volumetric Soil

Moisture Content.
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Turfgrass water use has recently become a highly debated issue due to

limitations of available water for human consumption. As a result of these

limitations, identifying when and how much water the turf plant needs becomes

an increasingly important task. Currently, methods to determine plant water use

can be tedious for the end-user; furthermore plant water status exhibits

considerable spatial and temporal variability which adds to the difficulty of

managing large areas. Many times, water use information is not fully optimized

because it is based on data from large geographic locations that cannot account

for localized variability. Over the last few years, scientists have searched for a

method to manage turf water use that is fast, reliable, and non-destructive.

Current methods for determining water use are not universally feasible for turf

managers due to time and budgetary constraints. Even with today’s advancing

technology, the problem of applying too much or too little water is still a problem

that can result in loss of turf.

Several techniques have been utilized for determining turf water use and

soil moisture content. These techniques include the use of Iysimeters, time

domain reflectometry (TDR), and infrared thennometry (IRT). A Iysimeter is a

closed-system containing soil and turfgrass whereby water can be added and

water loss calculated in terms of evapotranspiration. By measuring the amount of

water applied to the Iysimeter, an estimate of water use can be determined. The

use of Iysimeters is a relatively low cost method, however, very labor intensive

and bulky to maneuver or install. Evapotranspiration is a measure of the total

18



amount of water lost through transpiration and evaporation from the soil and

plant surfaces (Waddington et al., 1992). Solar radiation is the major force behind

evaporation and is dependent on climate, season, altitude, and latitude. Data

from these four components are used to determine ET rates. Two common

methods utilizing ET are the open pan method and the Penman equation. Time

domain reflectometry (TDR) has been successfully used to measure the moisture

content of soils. This technique is important in determining the amount of water in

the turf rootzone. Time domain reflectometry uses parallel stainless steel rods

inserted into the soil to measures the electrical conductivity of the soil (Topp et

al., 1980). Electrical conductivity measurements are then used to calculate

percent volumetric soil moisture content (VSMC). The advantages to using TDR

are that all measurements are independent of temperature, soil texture, bulk

density, and salt content (Waddington et al., 1992). Research conducted by

Saffel (1994) found TDR to be especially useful in monitoring soil moisture in the

top 10-cm of the turf profile since this area has the greatest root mass and

therefore the greatest water absorption capabilities. Saffel emphasized the ability

of TDR technology to determine the water status of the soil, thereby allowing for

the application of the correct amount of water needed to restore a turf population

to its field capacity.

The concept of remote sensing for application in a SSM program is not

new. However, determining which wavelengths should be utilized in sensor

construction has been a challenge. Sensors that have the durability and flexibility

to be mounted on turf equipment could allow information about the current turf
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status to be downloaded and viewed spatially on a computer so that golf course

managers could more easily manage large properties at the localized level. In

this specific application, sensor use in a site-specific management program has

the potential to save water, money, and time for turf managers.

Near infrared reflectance spectroscopy has been used by the forage

industry for many years for prediction of plant nutrient content such as proteins,

fats, and oils (Roberts et al., 1997; Wetzel, 1983). Spectral energy shifts can be

measured with a spectrometer and plotted to produce an absorbance spectrum

of the object. The locations of peak absorbance regions serve as fingerprints of

key components of the sample (turf) at that instant. These components can

indicate turf variables such as water or nitrogen content. The advantages of

NIRS include 1) a rapid analysis of functional groups within seconds requiring

little or no sample preparation, 2) high precision, and 3) the absence of

hazardous chemicals (Shenk and Westerhaus, 1993).

Research by Ben-Gera and Norris (1968) demonstrated that NIRS could

be used to accurately measure and predict the moisture content of soybean

leaves. Fenstermaker-Shaulis et al. (1997) evaluated the usefulness of remotely

sensed data to detect turf stress and found visible reflectance from tall fescue to

be sensitive to stress from tissue moisture content when using a multispectral

scanner. A normalized difference vegetative index (NDVI) was calculated using

the red (600 - 650 nm) and near infrared (800 — 890 nm) regions. The NDVI was

calculated as (NIR — red ) /( NIR + red). Fenstennaker-Shaulis et al. (1997)

found a linear correlation for NDVI with tissue moisture content and canopy
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temperature. The NIR spectrum has also been used to predict moisture, organic

carbon, and nitrogen in soils (Dalal and Henry, 1986). Roberts et al. (1997)

concluded that NIRS could accurately quantify ergovaline in tall fescue with

precision similar to that of high performance liquid chromatography (HPLC).

Research by Coleman et al (1990) determined the botanical composition

of legumes in monostands while Peterson et al. (1987) determined the

composition of mixed samples of tall fescue and clover. Within a narrow range of

soil color and at moderate amounts of organic matter, NIR spectroscopy was

found to be a rapid and nondestructive method for soil moisture content

(Couillard et al, 1997; Sudduth et al., 1991). Couillard et al. (1996) demonstrated

the ability of NIRS to predict moisture content of soils with high accuracy at 1450,

1930, and 2200 nm. Soil samples that previously had not been measured with

NIR spectrum were used to quantify physical soil characteristics such as soil

organic matter (SOM) and total N (Couillard et al., 1997). Couillard et al. (1996)

concluded that expanding and developing a comprehensive database is

necessary for NIRS to be used across a broad spectrum of sample profiles.

Bowers and Hanks (1965) reported these wavelengths for determination of water

content in soils. Bowers and Hanks (1965) examined the spectral reflectance

from soils and found the moisture content of soils to be predictable at spectral

reflectance levels of 1400, 1900, and 2200 nm. Sudduth et al. (1997) found that

this spectral region provided a statistically more accurate analysis than laboratory

methods for analyzing soils thereby making a reliable method of quantification.
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The use of the EMS has been shown to contain characteristics that

correlate to chemical components of a sample. The advantage is a faster

procedure reducing analysis cost. The importance of this information is realized

when the data can be analyzed spatially for management in site-specific

management (SSM). Remotely sensed data using the EMS can be a powerful

tool to aid in water management practices while providing a means by which turf

health is optimized.

The objectives of this experiment were to: 1) determine the relationship

between turf canopy spectral reflectance and water status as measured by

VSMC and percent water loss; 2) determine how the relationship is affected by

turf species and soil type; and 3) determine the important wavelengths necessary

for predicting moisture content.
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MATERIALS AND METHODS

Plant Culture

Intact soil cores containing mature monostands of either Penncross

creeping bentgrass or annual bluegrass were harvested at the Hancock

Turfgrass Research Center (HTRC) in East Lansing, MI. The soil was an Owosso

sandy loam soil (fine-loamy, mixed, mesic Typic Hapludalfs) containing 82.7%

sand, 12.9% silt, 4.4% clay, and 6.8% organic matter with a pH of 7.4. The cores

were placed into poly-vinyl chlorinated (PVC) Iysimeters (22.5 cm tall x 25.0 cm

dia) containing a plug in the bottom. In addition, a 90/10 (v/v) mixture of sand

comprised of mainly medium sized particles and a Sphagnum peat moss was

packed into Iysimeters to a bulk density of 1.45 9 cc". The pH and CEO of the

sand mixture were 7.7 and 8.9 cmol(t) kg", respectively. Penncross creeping

bentgrass and annual bluegrass were harvested from a similar sand-based soil,

washed, and transplanted onto the Iysimeters.

Turf in the Iysimeters received regular irrigation and fertilization prior to the

initiation of the experiments in order to maintain adequate growth and color. Turf

was mowed at 1.3 cm during the experiments.

Field Experiment

A field experiment was conducted from 6 August 1998 to 22 August 1998

at the HTRC. To provide a microenvironment similar to what might occur in the

field, Iysimeters were placed into sleeves (30.5-cm dia) in the turf. Lysimeters
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were set so that the top of the canopy was even with that of the surrounding turf

for mowing. Mowing was performed with a walking greensmower to the same

height as the surrounding turf. Three replicates each of creeping bentgrass/soil,

creeping bentgrass/sand, and annual bluegrass/soil were evaluated. Average

daytime and nighttime air temperatures were 27.4 and 16.9 °C, respectively.

Greenhouse Experiment

A greenhouse experiment was conducted from 4 January 1999 to 9

February 1999 at the Plant Science Greenhouses in East Lansing, MI. Six

replicates of the aforementioned species and soils in addition to annual

bluegrass/sand were evaluated. Lysimeters were randomized on the greenhouse

bench every other day. Mowing was performed with electrical clippers to the

same height in the field experiment. Maximum and minimum air temperatures

were 29.4 and 11.1 C throughout the experiment. Supplemental lighting was

provided through the use of two high-pressure sodium bulbs with lighting placed

110 cm above the turf canopy to achieve a 16-h photoperiod. Supplemental light

intensity was measured with an integrating quantum sensor at 650 u mol m'2 s‘1

(Licor190-S; Lincoln, NE).

Dry-down

At the start of the experiment, the Iysimeters were watered to field

capacity (FC) and allowed to drain for three hours. Plugs were then inserted into

the bottoms of the Iysimeters and watering ceased for the duration of the
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experiment. The experiment was terminated when the turf reached severe wilt.

Lysimeter placement in the greenhouse was re-randomized every two days.

Measurements of spectral reflectance, volumetric moisture content, and water

loss by mass occurred every two days with mowing occurring after all

measurements were recorded.

Volumetric Soil Moisture Content

Volumetric soil moisture content (VSMC) was measured using a TRIME-

FM® (IMKO; Framingham, MA) time domain reflectometer (TDR). The TDR

probes were inserted vertically into the soil for each measurement. Volumetric

soil moisture content was measured across the soil profile to a depth of 11 cm.

Percent Water Loss

The Iysimeters were weighed at field capacity and subsequently every two

days during the dry-down period throughout the experiment using an electronic

balance (Sartorius Corp., Bohemia, NY). Percent water loss by mass was

calculated as [ ( FC - Iysimeter mass ) l FC ] * 100%.

Spectrometer

Spectral reflectance was obtained with a Model 6500 Spectrometer (NIRS

Systems, Silver Spring, MD). Reflectance from the turf canopy was collected

between 400 nm and 2500 nm at 2-nm increments and linearized in the form of

log (1/R) reflectance to represent linear absorption values.
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The spectrometer was modified in such a manner that the optics and light

source were contained in a housing unit suspended 12.0 cm above the turf

canopy. This setup provided a reduction in scatter radiation from the sun due to

its shading effect from direct sunlight. This housing unit was 12-cm above the

scanning surface. Within the spectrometer scanning unit, a tungsten-halogen

light source provided supplemental and continual reflectance for a target area of

5 cm2. A white calibration card was included in the housing unit. The calibration

card was used to calibrate the instrument before and after spectral

measurements to ensure integrity of the light source. To maintain spectral

integrity, measurements were adjusted for instrument conditions at the time of

recording. All measurements occurred between 1200 and 1400 h.

Data Analysis

Data were prepared for modeling using WlNlSl software (lnfrasoft

International; Port Matilda, PA). Data were analyzed using a Modified Partial

Least Squares (MPLS) regression and transformed by a 1, 4, 4, 1 (derivative

order, gap, 1“t smoothing, and de-trend value) mathematical treatment (Shenk

and Westerhaus, 1991). Analysis of the first derivative spectrum was performed

to increase the signal to noise ratio (SNR) (Talsky, 1994). The derivative spectra

indicate the locations where the most variability exists in the spectra with the

lowest instrument variability.

Modified Partial Least Squares was performed using the procedures

described as follows. Spectra for each treatment were randomly selected to
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create the algorithm model while the remaining data were used in cross-

validation (Shenk and Westerhaus, 1991). The algorithm was then tested against

all spectra by treatment. The analysis provides an equation that best predicts the

group to which the sample belongs. Only those spectra with the best fit were

eligible for consideration in equation development. Outliers were included in the

cross-validation statistics but removed from equation development. Performance

statistics represent the performance of the equation against all data within the

treatment group and are based on the number of terms incorporated into the

equation algorithm. This algorithm was created using principle component

analysis (PCA) based on analysis of the entire spectrum. The coefficient of

determination represents the relationship of the spectra using the number of

‘terms’ (wavelengths) that were used to create the algorithm. First derivative

spectra provided the best linear correlation between spectra and measured water

values. Analysis of the raw spectral data and second derivatives provided lower

correlation values than when using the first derivative.

Data were also separated by species and soil type and analyzed

separately to determine whether either had an over-riding influence of the

spectrum.
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RESULTS AND DISCUSSION

The visible and NIR spectra of turfgrass show a wide range of absorbance

(log 1/R) with respect to water status. Spectra for each treatment group are

shown in Fig. 2.1 — 2.4 and indicate that four regions of the spectrum (464, 690,

1430, and 1900 nm) varied greatly with changing water conditions. These four

wavelengths appeared to be strongly related to moisture content. An example of

transformed spectra is shown in Fig. 2.5 and its raw spectra in Fig. 2.6.

Comparison of Fig. 2.6 with Fig. 2.1 - 2.4 show that spectral data in the VIS

region do not always reflect a decreasing trend in water status while spectra in

the NIR region are more consistent with decreasing water trends.

Volumetric soil moisture content and water loss by mass during the dry-

down period ranged from 3.2 to 40.3% and 0.0 to 16.0%, respectively for all

treatment groups (Tables 2.1 - 2.2). These data indicate a strong linear

relationship between spectral reflectance and VSMC (0.82<R2<0.91) under

controlled greenhouse conditions with R2=0.80 across all treatment groups.

During the greenhouse experiment, this relationship was 0.69<R2<0.92 with a

combined R2= 0.59. These data indicate a stronger relationship between spectral

reflectance and percent water loss by mass (0.91<R2<0.97) under greenhouse

conditions with a combined R2=0.91. For the field study, the relationship was

0.39<R2<0.90 with a combined R2: 0.41. Differences in the relationship between

spectra and water status were attributed to: 1) a larger sample size and less

introduced variability in the greenhouse when compared to the field data;
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Table 2.1. Calibration and validation statistics for quantification of volumetric soil moisture content

using near infrared spectroscopy and modified partial least squares regression analysis

using a 1, 4, 4, 1 math treatment‘l'.

 

 

Treatment Nurgifber Nil: Rage 0:; “gee/05;" 2 SEC1]

Terms ’

GREENHOUSE

Sand: Poa annua 3 85 3.2 - 28.5 6.47 17.4 0.902 2.027

Sand: Agrostis

7 95 4.2 - 28.6 5.84 16.7 0.906 1.789

palustn's

Soil: Poa annua 5 83 15.8 - 38.6 5.16 27.7 0.874 1.833

Soil: Agrostis palustris 3 99 16.7 - 34.3 4.26 27.3 0.823 1.794

Combined 6 351 4.2 - 36.3 7.12 22.7 0.801 3.180

FIELD

Sand: Poa annua 4 35 23.1 - 40.3 4.95 31.9 0.734 2.550

Soil: Poa annua 3 31 20.5 - 37.6 4.35 30.7 0.687 2.506

Soil: Agrostis palustn's 3 23 30.3 - 37.6 1.45 38.5 0.924 0.612

Combined 3 93 16.5 - 39.10 4.62 32.4 I 0.586 2.975

 

1' Mathematical treatment = derivative order, gap, first smoothing, and de—trend value.

:I: Number of Repeated Measures.

§ Standard deviation of the range.

1] Standard Error of Calibration.
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Table 2.2. Calibration and validation statistics for quantification of water loss by mass using near

infrared spectroscopy and modified partial least squares regression analysis using a 1, 4, 4, 1

math treatment‘l'.

 

‘
1
.

 

 

St.

Treatment Number N21: Range Mean R2 SEC1I

of <%) Dev§ <%)
Terms '

GREENHOUSE

Sand: Poa annua 7 90 0.0 — 11.0 0.03 4.7 0.966 0.006

Sand: Agrostis

7 89 0.0 - 12.0 0.03 4.6 0.972 0.005

palustn's

Soil: Poa annua 8 93 0.0 - 12.0 0.03 4.7 0.956 0.007

Soil: Agrostis palustrr's 9 104 0.0 - 16.0 0.05 6.7 0.969 0.008

Combined 10 368 0.0 - 16.0 0.04 5.0 0.908 0.011

FIELD

Sand: Poa annua 3 20 0.0 - 6.1 1.94 1.9 0.903 0.604

Soil: Poa annua 1 18 0.0 - 7.4 2.43 2.5 0.387 1.679

Soil: Agrostis palustris 3 14 0.0 - 4.2 1.68 1.6 0.850 0.563

Combined 2 50 0.0 — 7.4 2.36 2.2 0.413 1.587

 

T Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.

1 Number of Repeated Measures.

§ Standard deviation of the range.

1] Standard Error of Calibration.
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rainwater that penetrated the field Iysimeters during the course of the dry-down

period (resulting in repeated measurements in modified partial least squares

regression at field capacity with few measurements at wilt-point); and 3) the

depth of water in the immediate rootzone during the experiment (Saffel, 1994).

For all treatment groups, higher spectral absorbance corresponded to greater

available water content levels while lower spectral absorbance corresponded to

lower available water content levels (Fig. 2.1-2.4). The major absorbance

fluctuations for raw spectra found at 464, 690, 1430, and 1900 nm were

consistent across all treatment groups and data confirm the results of Bower and

Hanks (1965) that absorbance increased as moisture content increased for soils.

Data were also separated and analyzed individually by soil and species

type for their contributing effects to spectra. For comparison between spectral

data and VSMC (Fig. 2.3), greenhouse data show a relationship of 0.75<R2<0.90

while field data reveal a relationship of 0.57<R2<0.97. When comparing spectral

data with percent water loss by mass (Fig. 2.4), greenhouse data show a

relationship of 0.90<R2<0.97 with the field data showing a relationship of

0.26<R2<0.90. Although greenhouse data indicate a strong relationship among

soil and species type with the spectra, there was no factor that could be isolated

as a main contributor to the changing spectral conditions.
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Comparison of Soil Type and Species with Spectra

Under greenhouse conditions, creeping bentgrass (R2=0.90, 0.90) was found to

have a more consistent relationship than annual bluegrass (R2=0.77, 0.97) for

VSMC and percent water loss, respectively (Tables 2.3, 2.4). The 90:10 sand

(R2=0.90, 0.95) was found to have a more consistent relationship than the native

soil (R2=0.75, 0.95). Differences in spectral relationships were attributed to the

textural consistency of a creeping bentgrass monostand as compared to the

variability of annual bluegrass.

Under field conditions, creeping bentgrass (R2=0.97, 0.73) showed a

stronger relationship than annual bluegrass (R2=0.57, 0.47) for VSMC and

percent water loss, respectively. The USGA sand (R2=0.73, 0.90) demonstrated

a comparable relationship in the greenhouse (R2=0.72) but did not show a strong

relationship in the field (0.26).

During the course of the experiment, soil type appeared to play a role in

affecting the dry-down time. Lysimeters containing native soils held water more

tightly and restricted water uptake, causing a shorter dry-down period.

Lysimeters containing sand allowed the most water uptake as was observed by

the rooting depth (12 cm) in the sand-based Iysimeters while soil-based

Iysimeters contained very shallow roots (<5 cm). There were no noticeable

differences in rooting depth between species, however no rooting data was

collected in this study.
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Table 2.3. Calibration and validation statistics for quantification of volumetric soil moisture content

by mass using near infrared spectroscopy and modified partial least squares regression using a

1, 4, 4, 1 math treatment‘l'.

 

 

Treatment Number N1: Range St. Mean 2 SECfl

of Terms (%) Dev§ (°/°)

GREENHOUSE

P08 annua 4 159 5.1 - 38.6 6.87 23.767 0.777 3.247

Agrostis palustris 7 195 4.2 - 34.3 7.29 22.172 0.899 2.315

Sand 8 184 3.2 - 28.6 6.27 17.027 0.889 2.092

Soil 5 194 15.1 - 38.6 4.85 27.259 0.750 2.427

FIELD

Poa annua 1 29 16.5 — 37.4 5.01 29.662 0.570 3.283

Agrostis palustris 8 44 25.7 - 38.6 3.48 33.268 0.965 0.651

Sand 4 35 23.1 — 40.3 4.95 31.949 0.734 2.550

Soil 5 58 23.0 - 38.5 3.55 33.105 0.723 1.866

 

1' Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.

1 Number of Repeated Measures.

§ Standard deviation of the range.

1] Standard Error of Calibration.
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Table 2.4. Calibration and validation statistics for quantification of water loss by mass using near

infrared spectroscopy and modified partial least squares regression using a 1, 4, 4, 1 math

 

 

treatment‘r.

N mber
Treatment 1.2:“8 N21: R13)” St. Dev§. Ma?" R2 SEC1]

GREENHOUSE

Poa annua 10 160 0.0 - 11.0 0.03 4.3 0.970 0.005

Agrostis palustn‘s 6 190 0.0 — 16.0 0.04 5.4 0.899 0.009

Sand 8 184 0.0 - 12.0 0.03 4.4 0.945 0.007

Soil 10 202 0.0 —16.0 0.04 5.9 0.951 0.010

FIELD

Poa annua 1 18 0.0 - 9.0 2.43 3.182 0.456 1.788

Agrostis palustris 3 31 0.0 - 6.1 1.68 2.270 0.733 0.865

Sand 3 20 0.0 — 6.1 1.94 1.852 0.903 0.604

Soil 1 34 0.0 — 7.4 1.74 2.159 0.261 1.584

 

 

1' Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.

:I: Number of Repeated Measures.

§ Standard deviation of the range.

1] Standard Error of Calibration.
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Model Prediction

Prediction of soil moisture content with equations developed for each treatment

group were generally successful (0.79<R2<0.91) when predicted with VSMC,

however when predicting percent water loss, prediction models performed poorly

(0.36<R2<0.88) as show in Table 2.5 — 2.6. This was interpreted as meaning that

VSMC could be predicted with good accuracy, however prediction of percent

water loss was slightly more complicated because loss was being measured, not

the level of actual water present. Therefore, at field capacity, soils may appear to

be identical when they may differ by a few moisture percentages. This would

result in the formation of a more general equation with a much higher prediction

error.

Prediction of soil or species using an equation developed for another

treatment group was attempted to determined the closeness of spectral

relationships (Tables 2.7, 2.8). Treatment groups were found to be too diverse to

apply to another treatment group and no distinguishing trends were found that

allowed for the spectra to be separated by soil or species type (Tables 2.9 —

2.12). Each treatment group was found to possess slightly different spectral

signatures, thereby confounding interpretation. Examination of spectral

similarities determined that the data could not be used in a general prediction

equation for water content, species, or soil type. The relationship between

spectral reflectance and water status was poor when one treatment group was

used to predict another treatment group for comparisons among all treatment
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Table 2.5. Prediction of water content in creeping bentgrass with creeping bentgrass equation.

 
 

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM

SEP 2.30 0.05

Means 22.00 21.96 0.07 0.06

Bias 0.04 0.01

Bias Limit 1.38 0.01

SEP (C) 2.31 0.05”

SEP (C) Limit 3.00 0.01

Stand Devs 7.36 6.99 006* 0.04"

Slope 1.00 1.01

RSQ 0.90 036*

Average H 1.00 1.00

N 196 184  
* - Denotes values outside of range.
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Table 2.6. Prediction of water content in annual bluegrass with annual bluegrass equation.

  

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM

SEP 3.22 0.01

Means 23.24 23.27 0.05 0.05

Bias -0.03 0.00

Bias Limit 1.93 0.00

SEP (C) 3.23 0.01*

SEP (C) Limit 4.18 0.01

Stand Devs 7.14 6.40 0.03 0.03

Slope 1.00 1.04

RSQ 0.80 0.88

Average H 0.98 1.06

N 168 165  
* - Denotes values outside of range.
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groups of soil and species type. The poor predictability may be due to a number

of factors including but not limited to: 1) a small sampling size (approximately

1000 to 2000 spectra are considered a good library size); 2) seasonal variability

or sample textural inconsistencies; 3) instrument variability; and 4) that the

statistical software utilized was developed for laboratory analysis of dried and

ground forage tissue samples. Consequently, alternative methods of data

analysis may be more appropriate for these data and need to be explored further.

Important Spectral Wavelengths

Several wavelengths were identified for prediction of water, species, and soil

type. Utilizing five components for each prediction equation, wavelengths are

shown by order of importance for prediction (Fig. 2.7 - 2.9). Wavelengths that

explained the greatest overall variability were ranked by order of importance

using the 13t derivative spectra. Data were combined for both water

measurement techniques utilized in this study. Wavelengths found to be most

important in equation development for water prediction were found to be located

at 1838, 1394, 1898, 1498, 1906, 1938, and 1954 nm (Fig. 2.6). The most

important wavelengths for prediction of species (Fig. 2.7) were determined to be

located at 1846, 1898, 1906, 1918, and 1938 nm. The most important

wavelengths for the prediction of soil type independent of species (Figure 2.8)

were found to be located at 1394, 1846, 1906, 1894, 1498, 1938, 1874 nm. In

terms of model development in all treatment combinations, the 1898-nm
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wavelength region ranked as the most important wavelength region for water

determination.
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Table 2.7. Prediction of water content in sand with sand equation.

  

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM

SEP 1.74

Means 17.49 17.50

Bias -0.01

Bias Limit 1.05

SEP (C) 1.75

SEP (C) Limit 2.28

Stand Devs 5.71 5.42

Slope 1.00

RSQ 0.91

Average H 1.00

N 180   
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Table 2.8. Prediction of water content in soil with soil equation.

  

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM

SEP 2.29 0.05

Means 27.12 27.05 0.07 0.06

Bias 0.06 001*

Bias Limit 1.35 0.00

SEP (C) 2.29 005*

SEP (C) Limit 2.93 0.01

Stand Devs 4.96 4.39 006* 004*

Slope 1.00 0.95

RSQ 0.79 039*

Average H 0.98 1.11

N 195 192  
* - Denotes values outside of range.
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equafion.

Statistics

SEP

Means

Bias

Bias Limit

SEP (C)

SEP (C) Limit

Stand Devs

Slope

RSQ

Average H

N

VSMC

Pair 1

VSMC

 

 

2258*

786*

* - Denotes values outside of range.

9.61

-5.50*

1.38

790*

3.00

0.50

0.39*

181

48

2808*

987*

1.96

PWLM

Pair 2

Table 2.9. Prediction of water content in annual bluegrass with creeping bentgrass derived water

PWLM

 

 

0.05*

0.03"

0.03

0.02“

0.01

0.03*

0.01

0.63

0.72

176

0.03"

0.05"

2.13

 



equafion.

Statistics

SEP

Means

Bias

Bias Limit

SEP (C)

SEP (C) Limit

Stand Devs

Slope

RSQ

Average H

N

VSMC

Pair 1

VSMC PWLM

Pair 2

Table 2.10. Prediction of water content in creeping bentgrass with annual bluegrass derived water

PWLM

 
 

 

2187*

7.39

* - Denotes values outside of range.

8.07

-5.47*

1.93

5.94"

4.18

0.76

0.39"

202

27.35”

6.15

1.57

 

0.07*

0.06*

0.06

-0.02

0.00

0.05

0.01

1.37

0.30*

190

0.09*

0.03*

1.57



Table 2.11. Prediction of water content in sand with soil derived water equation.

  

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM

SEP 10.84 0.04

Means 1695* 2722* 0.05' 003*

Bias -10.27 0.02*

Bias Limit 1.35 0.00

SEP (C) 3.46* 0.03*

SEP (C) Limit 2.93 0.01

Stand Devs 6.19 5.49 0.04 0.04

Slope 0.94 0.66

RSQ 0.69 046*

Average H 1.65 1.64

N 189 177  
* - Denotes values outside of range.
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Table 2.12. Prediction of water content in soil with sand derived water equation.

 

Statistics Pair 1

VSMC VSMC

SEP 10.60

Means 2697* 1704*

Bias 9.93"

Bias Limit 1.05

SEP (C) 3.71*

SEP (C) Limit 2.28

Stand Devs 5.11 5.95

Slope 0.68

RSQ 0.62

Average H 1.15

N 199 
* - Denotes values outside of range.
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Conclusions

This study demonstrates the feasibility for field use of VIS/NIR spectroscopy to

predict water content for turfgrass. These data indicate that relationships exist

between spectra and species/soil type for specific wavelengths and can be

ranked by level of importance however, their exact interaction needs more study.

From results in this study, NIRS has the potential to be a reliable method to

monitor and manage turfgrass fairways for irrigation scheduling. Comparison of

the standard deviation of the range with the standard error of calibration shows

the ISI software to be a more accurate analysis method than traditional analysis

methods. However collecting the large number of spectra necessary to build an

accurate and reliable model is a major obstacle due to in large part to the

variability of species and soil types utilized on golf courses throughout the

country

Further research is needed to examine the combined effects of species,

soils, and other associated factors on the spectral reflectance of the turf canopy.

Although much more data will be required for model development than was

collected in this study, this technology has the potential to aid turfgrass managers

in a SSM program.
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APPENDIX

WEATHER CONDITIONS FOR FIELD EXPERIMENT AT HTRC

Date Relative Wind Solar Rain Minimum Maximum Adjusted

Humidity Velocity Radiation (in) Temp Temp ET

(%) (mph) (LY) (°C) (°C)

8/9/98 93.5 1.38 318.6 0.16 20.3 27.5 0.10

8/10/98 90.0 2.78 426.9 0.23 19.3 29.5 0.15

8/11/98 84.8 5.50 410.5 --- 16.9 24.3 0.14

8/12/98 77.4 3.16 548.7 --- 12.9 25.4 0.18

8/13/98 76.6 1.74 554.4 --- 13.4 26.1 0.17

8/14/98 76.7 2.24 493.3 --- 14.0 26.8 0.17

8/15/98 85.9 2.06 318.3 0.13 17.9 26.5 0.11

8/16/98 80.7 4.46 495.6 --- 16.1 27.8 0.17

8/17/98 83.8 3.35 413.2 --- 16.8 29.2 0.15

8/18/98 86.7 5.14 425.9 1.13 18.6 27.0 0.14

8/19/98 71.2 3.56 595.9 --- 9.4 23.9 0.19

8/20/98 75.5 3.10 461.5 --- 12.2 26.9 0.16

8/21/98 80.7 1.95 375.9 --- 19.7 30.1 0.14

8/22/98 75.2 3.69 516.0 --- 19.4 28.8 0.18

8/23/98 N/A N/A N/A N/A N/A N/A N/A

8/24/98 72.7 6.54 442.8 -- 22.7 31.5 0.21

8/25/98 80.8 6.43 397.9 0.40 19.7 27.9 0.17

8/26/98 74.3 2.86 519.4 --- 15.9 27.2 0.18

8/27/98 75.6 1.52 525.2 --- 14.9 29.4 0.17

8/28/98 86.2 1.93 165.5 0.12 18.8 23.4 0.07

8/29/98 80.9 5.87 414.0 0.01 18.8 28.4 0.17

8/30/98 69.5 3.59 419.6 --- 16.5 27.0 0.17
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