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ABSTRACT

PREDICTION OF AVAILABLE WATER IN CREEPING BENTGRASS AND
ANNUAL BLUEGRASS USING VISIBLE AND NEAR INFRARED
SPECTROSCOPY

By

Beau James McSparin

Site-specific management (SSM) of turfgrass based upon the specific
water needs of the turfgrass plant has the potential to save money and water for
waer resources that could be diverted for human use. Visible and near infrared
spectroscopy (VIS/NIRS) was evaluated as a rapid and indirect analysis
technique to determine water status of monostands of creeping bentgrass
(Agrostis palustris Huds. cv. ‘Penncross’) and annual bluegrass (Poa annua var.
reptans) grown in lysimeters containing either an Owosso sandy loam (fine-
loamy, mixed, mesic Typic Hapludalfs) or a United States Golf Association
(USGA) specification sand:peat (90:10, v/v). Field and greenhouse lysimeters
were allowed to dry from field capacity to near-wilt. Every two days, volumetric
soil moisture content (VSMC) and evapotranspiration (ET) were determined for
each lysimeter by time domain reflectometry (TDR) and gravimetric analysis,
respectively At the same time, a field modified monochromator (NIRSystems
6500, Silver Springs, MD) measured reflectance from the turfgrass canopy from
400 to 2500 nm at 2-nm increments. The explained variance (R?) for the

relationship between reflectance and water status ranged from 0.59 to 0.92 for



TDR and 0.39 to 0.97 for ET. Higher R? values were obtained under greenhouse
compared to field conditions where experimental error was minimized.
Wavelengths that contributed most to detection of water status occurred at 464
and 690 nm in the VIS region, and 1430 and 1900 nm in the NIR region which
corresponds to absorption peaks for free water. These results indicate the
potential for development of sensing technology using VIS/NIRS to detect turf

water needs on a site specific basis thereby leading to more efficient water use.
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INTRODUCTION

Turfgrass water use has recently become a highly debated issue due to
limitations of water for human consumption. As human populations continue to
grow, water for turf use becomes more limiting. Identifying when and how much
water the turf plant needs becomes an increasingly important task. Currently,
methods to determine plant water use can be tedious for the end-user.
Furthermore plant water status exhibits considerable variability that adds to the
difficulty of managing large areas. Localized spatial variability is not effectively
managed because management decisions are based on data from large
geographic locations and cannot account for localized variability. Often times, the
result is dead turf.

Over the years, scientists have searched for a fast, reliable, and non-
destructive method to monitor and manage turf water requirements. Developing
sensor technologies bring into possibility the use of localized data in a SSM
program. Sensor development using VIS/NIRS is a concept currently being
pursued for use in a SSM program. These sensors are very desirable because
they can provide instantaneous information about localized conditions where
variability is problematic. This approach would allow turf managers to more easily
determine and manage problem areas before irreversible conditions occur.

The objectives of this research were to: 1) determine the relationship
between turf spectral reflectance and water status as measured by VSMC and

water loss; 2) determine if that relationship is affected by turf species and soil



type; and 3) determine the important wavelengths necessary for predicting

moisture content.



Chapter 1

LITERATURE REVIEW

ELECTROMAGNETIC SPECTRUM

The electromagnetic spectrum (EMS) is composed of both electrical and
magnetic forces and is divided into several regions including visible light (Fig.
1.1) (Kemp, 1991). The EMS can be defined in terms of wavelength (a measure
of the length of the wave), frequency (number of waves per second), or
amplitude (the magnitude of the vertical peak or valley of the wavelength signal)
(Kemp, 1991). The EMS ranges from gamma rays, which have the shortest
wavelengths, highest frequencies, and highest energy to radio waves, which
have the longest wavelengths, lowest frequencies, and lowest energy. The three
transition states depicted in Fig. 1.1 categorize the type of distortion caused by
different magnitudes of energy exerted on an object.

As early as 1666, Sir Isaac Newton performed many basic experiments
involving light and its properties. His most widely recognized experiment involved
the separation of visible light into its component colors using a glass prism. From
that point forward, scientists have discovered more about the properties of light
and its effects on everyday life. Light is a form of energy that is described by two
theories: the wave theory and the corpuscular or particle theory (Kemp, 1991). In
the wave theory, the number of photons at that wavelength determines the
energy or amplitude measured at a specific wavelength of frequency (f). In the

corpuscular model, radiant energy is comprised of discrete
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packets of energy called photons. A photon’s energy is defined as E=hf where h
= Planck’s constant and f is the frequency of the energy. For example, the
amplitude (wave model) is equivalent to numbers of photons for the corpuscular
model. Some properties are best explained using the wave (magnetic) theory
while others are best explained using the corpuscular (particle) theory (Kemp,
1991) thus resulting in the nomenclature “electromagnetic spectrum.” Neither
theory alone completely explains all of light's properties because wave and
particle forces coexist. When both theories are used to explain light's energy, all
energy phenomena can be accounted for.

When energy strikes an object, it is absorbed, reflected, or transmitted.
Surfaces of varying composition and texture absorb energy in varying
magnitudes across the EMS. When an object absorbs energy, electrons may
become excited resulting in an electron shift to a higher energy level thereby
resulting in changes in the absorption properties of the object (Hatchell, 1999).
These energy shifts can be measured using a spectrometer and plotted to
produce an absorbance spectrum of the object. Peak absorbance regions
indicate the location and intensity of the energy shift in the EMS. Absorbance
spectra are often referred to as spectral signatures because the energy of that
particular object has been recorded at that instant (Shenk and Westerhaus,
1990). Spectral signatures for inanimate objects such as ceramics are
considered to be relatively stable and therefore constant and unchanging (Shenk
and Westerhaus, 1990). These objects serve as standards by which

instrumentation is calibrated while spectral information gathered from living



organisms such as plants often varies based on changing internal and external
conditions. Measuring the spectral properties of a plant can yield data that
directly correlates to laboratory derived values for protein, fat, nitrogen, or water
(Wetzel, 1983).

Within regions of the EMS, defined ranges of wavelengths called bands
have been found to represent specific chemical bonds and/or functional groups
to which the energies of electrons are restricted (Kemp, 1991). For example, the
NIR spectra may show absorption peaks that serve as indicators for functional
groups such as water (1430 and 1900 nm), amines (1550 and 2000 nm), or
carbonyl (1200 and 1780 nm) groups (Bowers and Hanks, 1965; Dalal and
Henry, 1986; Hatchell, D.C., 1999). Each functional group behaves
independently and absorbs energy at varying frequencies and in different
amounts (Shenk and Westerhaus, 1990). Plants possess these same functional
groups and therefore can be analyzed in a meaningful manner using

spectroscopy.

INSTRUMENTS THAT MEASURE THE EMS

Several types of spectrometers can be used to measure the EMS. These
instruments all convert energy into electrical units. These units can then be
plotted to determine functional groups present or concentration of functional
groups. Commercially available spectrometers that measure the UV, VIS, and
NIR regions of the EMS are affordable and have proven extremely accurate.

These spectrometers are available as filter instruments that measure pre-



determined wavelengths or as monochromators that measure across a series of
wavelengths. Monochromators are more expensive and less common.
Spectrometers generally consist of a light source, dispersing element (grating),
filter, detector, and a plotter. Typically, the light source and detector are
composed of specific materials for the spectral region being analyzed. For
example, when measuring the visible light spectrum, “white light” is provided by
means of a tungsten quartz bulb while a sulfur diode is often used as the detector
(Hatchell, 1999).

Spectrometers that measure the EMS are sensitive to fluctuations in
power supply, humidity, scatter light and the path radiance angle. These
variables must be calculated and instrumentation adjusted to provide accurate
and repeatable measurements (Hatchell, 1999). Post-dispersive spectroscopy
uses a supplemental light source to illuminate the target area. Light scattered off
or transmitted through the sample is then collected and delivered to the detector.
Ambient light that strays into the sample area is also measured. However, the
stray ambient light represents a very small fraction of the total light signal
measured by the detector (Hatchell, 1999).

The photosynthetically active radiation (PAR), between 400 and 700 nm,
is frequently measured and reported because these wavelength regions are
important for photosynthesis to occur. Energy that is absorbed by the plant can
be redirected into the environment, used in plant functions, or released in the
form of heat. Plant pigments, such as chlorophyll or carotenoids, absorb energy

in differing amounts across the light spectrum. In the majority of plant species,



These pigments absorb more blue and red light. Plants appear green because
the plant least utilizes green light. The result is a plant that most often appears
green in color. By measuring the reflectance of a plant, a relationship with plant

health can be determined (Salisbury and Ross, 1992).

NEAR INFRARED SPECTROSCOPY

The use of near infrared spectroscopy (NIRS) has many advantages over
traditional laboratory analysis. These advantages include 1) little or no sample
preparation; 2) rapid analysis of muitiple functional groups from the spectra
collected; 3) high precision, and 4) the absence of hazardous chemicals (Shenk
and Westerhaus, 1993). Spectroscopy software used for data analysis in this
paper is provided by Infrasoft International, Inc. (Port Matilda, PA) and is
accepted for use by the Association of Analytical Chemists (AOAC). This
particular software provides information about the key wavelengths chosen for
prediction however, the software primarily operates through the creation of an
algorithm that is based on all spectral data collected. In the research papers
refereed here, few disclose the actual wavelengths chosen, but rather
concentrate on the algorithm for equation performance.

Near infrared reflectance spectroscopy has been used by the forage
industry for many years for prediction of plant nutrient content such as proteins,
fats, and oils (Roberts et al., 1997; Shank et al., 1984, Wetzel, 1983). The NIRS
has also been used to predict moisture, organic carbon, and N in soils (Dalal and

Henry, 1986) as well as determining botanical composition of legumes in



monostands (Coleman et al., 1990) and of mixed samples of tall fescue and
clover (Peterson et al., 1987). Roberts et al. (1997) concluded that NIRS could
accurately quantify ergovaline in tall fescue with precision similar to that of high
performance liquid chromatography (HPLC). Ergovaline is organic compound
composed of alkaloids produced by endophytic fungi in certain grass species and
has been shown to be disruptive to the digestive tracts of herbivores (Roberts et
al., 1997).

The water molecule is a symmetrical bent molecule that gives rise to two
absorption bands in the infrared spectrum. There is one band for each mode of
vibration (or electronic transition): symmetrical stretching (1930 nm),
asymmetrical stretching (1450 nm), and symmetrical bending (650 nm) (Wetzel,
1983). The O-H stretch is generally very broad in the near infrared spectrum due
to the diversity of O-H configurations (Hatchell, 1999). These configurations can
confound the characteristics of proteins, lipids, and nitrogen levels that possess
lower intensity absorption properties.

As previously mentioned, NIRS has been utilized for soil moisture
prediction. Within a narrow range of soil color and at moderate amounts of
organic matter, NIRS was found to provide a rapid and nondestructive method for
moisture measurement (Couillard et al, 1997; Sudduth et al., 1991). Couillard et
al. (1997) demonstrated the ability of NIRS to predict soil moisture content with
high accuracy using spectral bands at 1450, 1930, and 2200 nm. Soil samples
that previously had not been measured with NIR spectra were used to quantify

physical soil characteristics such as SOM and total N (Couillard et al., 1997).



Bowers and Hanks (1965) also reported these same wavelengths for determining
soil water content. They examined the spectral reflectance of soils and found the
moisture content of soils to be predictable at spectral reflectance levels of 1400,
1900, and 2200 nm. Sudduth et al. (1997) found that this spectral region
provided a statistically more accurate analysis than traditional laboratory
methods when analyzing soils thereby providing a reliable method of
quantification. Couillard et al. (1997) concluded that expanding and developing a
comprehensive database is necessary if NIRS is to be used across a broad
spectrum of sample profiles. Finally, research conducted by Ben-Gera and Norris
(1968) demonstrated that NIRS could be used to accurately measure and predict
the moisture content of soybean leaves.

Fenstermaker-Shaulis et al. (1997) evaluated the usefulness of remotely
sensed data to detect turf stress and found visible reflectance from tall fescue to
be sensitive to stress caused by moisture content when using a multispectral
scanner. In that study, moisture content was calculated through the use of
lysimeters for determining evapotranspiration, clipping mass for determining
percent tissue moisture content, and a neutron probe for measuring soil moisture
content. An indice called the normalized difference vegetative index (NDVI) was
used to correlate stress measurements with the spectral data using the red (600
— 650 nm) and near infrared (800 — 890 nm) regions. The NDVI was calculated
as (NIR —red ) / ( NIR + red). Fenstermaker-Shaulis et al. (1997) found a linear
correlation using the NDVI indice for both tissue moisture content and canopy

temperatures. As tissue moisture increased, so did NDVI values (R?=0.90) and

10



as canopy temperature increased, NDVI values decreased (R?=0.74). A

quadratic relationship was found to exist between NDVI and ET (R?=0.81).

TURFGRASS WATER USE

Water use is defined as the amount of water required from rainfall and
irrigation in addition to losses from ET to meet specific performance quality
standards without consideration to yield standards (Waddington et al., 1992).
Managing turfgrass irrigation is an attempt to balance root growth with canopy
density and color without compromising aesthetics. Lack of water can result in
the inability of the turf to withstand heat stress, traffic, soil compaction, nutrient
allocation, and turgor pressure while too much water can result in increased
disease pressure, lush growth, soil compaction, and anaerobic soil conditions
(Waddington et al., 1992). Fry and Butler (1989) studied the ET rates of annual
bluegrass and creeping bentgrass and found ET differences to be small and that
water requirements did not vary considerably between the two species.

Three general factors affecting turf water use rates are: 1) evaporative
demand of the air, 2) quantity of water supplied, and 3) evapotranspiration levels
(Waddington et al., 1992). An understanding of the interaction of these three
factors is critical if water use is to be evaluated by performance and quality
standards, rather than yield standards. Replacement of soil water, regardless of
the deficit level, saturates a portion of the soil profile from the surface downward.
Even deficit irrigation that provides shallow applications of water, re-wets a

substantial portion of the fibrous root zone, where much of the water uptake
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occurs (Waddington et al., 1992). The turf manager must therefore take several
environmental factors into consideration regarding when and how much water is
needed to provide optimal turf conditions. Due to the large acreage of turf
managed on golf courses, over-watering is a common occurrence which often
times results in turf loss. Even with today’s advanced irrigation systems that
monitor changing environmental conditions, turfgrass problems still occur due to

over-irrigation (Waddington et al., 1992).

MEASUREMENT TECHNIQUES FOR DETERMINING WATER USE

Several techniques have been utilized for measuring turf water use and
soil water content. These techniques include the use of lysimeters, time domain
reflectometry (TDR), and infrared thermometry (IRT).

A lysimeter is a closed-system containing both soil and turfgrass. Water
can be added to the lysimeter and water loss calculated by measuring the
amount of water applied and the amount of water lost from the lysimeter.
Lysimetry is a relatively inexpensive method, however, lysimeters can be very
labor intensive and bulky. Using lysimeters to calculate ET for turfgrass is,
however, very common. Evapotranspiration is a measure of the total amount of
water lost through transpiration and evaporation from the plant and soil surfaces
(Waddington et al., 1992). Solar radiation is a major force causing evaporation
and is a function of climate, season, altitude, and latitude. Data from all these
measurements are used to estimate ET rates. Two common methods used to

estimate ET are the open pan method and the Penman equation. The open pan
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method is a measure of the evaporative loss of water from an exposed surface.
When the water level drops below a pre-determined level due to evaporation,
then irrigation is necessary. On the other hand, the Penman equation uses
estimates to determine water use that are derived by additional factors as a
means of calculating water loss from an exposed surface (Waddington et al.,
1992). Factors in the Penman equation include wind speed, net radiation,
temperature, and vapor pressure deficit (VPD). However, local calibration of the
Penman equation is often required because VPD and net radiation are often
estimated (Waddington et al., 1992). For estimating ET, the Penman equation
has proven to be a very accurate and reliable method in dry, arid climates of the
western United States.

Time domain reflectometry is a measure of the electrical conductivity of
the soil and is used to calculate volumetric soil moisture content (VSMC) (Topp
et al., 1980). To accomplish this, an electrical signal is transmitted through the
soil by a series of probes and the velocity of the signal is determined by TDR as
a measure of the dielectric soil constant. The dielectric constant is a measure of
the ability of the soil to resist the formation of an electric field within itself. Water
is the major factor that alters the dielectric soil constant (Topp et al., 1984). Also
important, TDR measurements are independent of temperature, soil type, bulk
density, or salt content (Waddington et al., 1992), Topp et al. (1980) found that
on-site determination of water content could lead to improved efficiency in the
characterization of soil properties. Research conducted by Saffel (1994) found

TDR to be especially useful in monitoring the top 10 cm of the turf soil profile
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since this soil volume has the greatest root mass and therefore the greatest root
activity. Saffel (1994) also emphasized the ability of TDR to determine the water
status of the soil for the application of the correct amount of water needed to
restore turf to optimal performance conditions. Therefore, TDR is a useful tool for
the measurement of soil water content. This technology is relatively new but
affordable and highly reliable.

Infrared thermometry (IRT) uses the infrared region of the energy
spectrum to calculate the temperature difference of the canopy versus air
temperature. This information is then used to determine the transpirational
efficiency of the turf. Several methods have been developed to utilize IRT. One
method involves the use of the NDVI. Unstressed turfgrasses were found to have
lower canopy temperatures (high NDVI values) due to the cooling effect of
transpiration, while stressed turfgrasses had higher canopy temperatures (lower
NDVI values) due to lower levels of transpiration (Fenstermaker-Shaulis, 1997;
Throssell, 1987). However when the cause of stress has been focused solely on
water requirements, limitations exist. When using IRT, Hatfield (1990) found an
increase in surface temperature variability as soil water decreased. This surface
temperature variability was attributed to interference caused by different soil
backgrounds. Stanghellini and DelLorenzi (1994) found IRT to be suitable for
early detection of water stress, but added that sustained stress reduces the
efficacy of IRT; in contrast, the accuracy of soil-based stress indicators such as
TDR increased over IRT as the stress period progressed. Jackson et al. (1977)

developed the stress-degree-day (SDD) concept utilizing IRT. This index uses
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midday canopy temperatures that are summed until a pre-determined level is
reached, whereby irrigation is required. Idso et al. (1981) developed the crop
water stress index (CWSI) that was intended to normalize SDD for environmental
changes in vapor pressure gradient. The use of IRT has proved that certain
regions of the EMS can be used as indicators of plant water status.

Overall, the use of lysimeters and TDR is a highly accurate means for
calculating available water for the turfgrass and determining irrigation scheduling.
Although each method has its own shortcomings, each has unique advantages.
Time domain reflectometry is becoming more widely utilized as it emerges from
the developmental stage. Prices for TDR units have remained steady with units
easily affordable, safe to use, and very mobile. Utilization of lysimeters is very
inexpensive and reliable, however it remains a very labor intensive method. Qian
and Fry (1997) compared soil water content with ET rate and found the resulting
measurements closely associated. Also, IRT is easy to use however it is limited
due to its shortcomings of determining the actual cause of stress. The use of IRT
technology is very similar to the goals of this project with the exception that a
broader region of the EMS will be examined. Examination of the NIR region will
determine if a more direct relationship exists between spectral reflectance and
water status. Ideally, this study will lead to the development of a sensor system
that will simplify the input of environmental variables while increasing

management reliability.
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Chapter 2

PREDICTION OF AVAILABLE WATER IN CREEPING BENTGRASS AND
ANNUAL BLUEGRASS USING VISIBLE AND NEAR INFRARED
SPECTROSCOPY

ABSTRACT

Site-specific management (SSM) of water based upon the specific needs
of the turfgrass plant has the potential to save money and water for human
consumption. Visible and near infrared spectroscopy (VIS/NIRS) was evaluated
as a rapid and indirect analysis technique to determine water status of
monostands of creeping bentgrass (Agrostis palustris Huds. cv. ‘Penncross’) and
annual bluegrass (Poa annua var. reptans) grown in lysimeters containing either
an Owosso sandy loam (fine-loamy, mixed, mesic Typic Hapludalfs) or a United
States Golf Association (USGA) specification sand:peat (90:10, v/v). Field and
greenhouse lysimeters were allowed to dry from field capacity to near-wilt. Every
two days, volumetric soil moisture content (VSMC) and evapotranspiration (ET)
were determined for each lysimeter by time domain reflectometry (TDR) and
gravimetric analysis, respectively. At the same time, a field modified
monochromator (NIRSystems 6500, Silver Springs, MD) measured reflectance
from the turfgrass canopy from 400 to 2500 nm at 2-nm increments. The
explained variance (R?) for the relationship between reflectance and water status
ranged from 0.59 to 0.92 for TDR and 0.39 to 0.97 for ET. Higher R? values were
obtained under greenhouse compared to field conditions where experimental

error was minimized. Wavelengths that contributed most to detection of water
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status occurred at 464 and 690 nm in the VIS region, and 1430 and 1900 nm in
the NIR region which corresponds to absorption peaks for free water. These
results indicate the potential for development of sensing technology using
VIS/NIRS to detect turf water needs on a site specific basis thereby leading to

more efficient water use.

Additional index words: Agrostis palustris, Evapotranspiration, Poa
annua, Site-specific Management, Time Domain Reflectometry, Volumetric Soil

Moisture Content.
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Turfgrass water use has recently become a highly debated issue due to
limitations of available water for human consumption. As a result of these
limitations, identifying when and how much water the turf plant needs becomes
an increasingly important task. Currently, methods to determine plant water use
can be tedious for the end-user; furthermore plant water status exhibits
considerable spatial and temporal variability which adds to the difficulty of
managing large areas. Many times, water use information is not fully optimized
because it is based on data from large geographic locations that cannot account
for localized variability. Over the last few years, scientists have searched for a
method to manage turf water use that is fast, reliable, and non-destructive.
Current methods for determining water use are not universally feasible for turf
managers due to time and budgetary constraints. Even with today’s advancing
technology, the problem of applying too much or too little water is still a problem
that can result in loss of turf.

Several techniques have been utilized for determining turf water use and
soil moisture content. These techniques include the use of lysimeters, time
domain reflectometry (TDR), and infrared thermometry (IRT). A lysimeter is a
closed-system containing soil and turfgrass whereby water can be added and
water loss calculated in terms of evapotranspiration. By measuring the amount of
water applied to the lysimeter, an estimate of water use can be determined. The
use of lysimeters is a relatively low cost method, however, very labor intensive

and bulky to maneuver or install. Evapotranspiration is a measure of the total
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amount of water lost through transpiration and evaporation from the soil and
plant surfaces (Waddington et al., 1992). Solar radiation is the major force behind
evaporation and is dependent on climate, season, altitude, and latitude. Data
from these four components are used to determine ET rates. Two common
methods utilizing ET are the open pan method and the Penman equation. Time
domain reflectometry (TDR) has been successfully used to measure the moisture
content of soils. This technique is important in determining the amount of water in
the turf rootzone. Time domain reflectometry uses parallel stainless steel rods
inserted into the soil to measures the electrical conductivity of the soil (Topp et
al., 1980). Electrical conductivity measurements are then used to calculate
percent volumetric soil moisture content (VSMC). The advantages to using TDR
are that all measurements are independent of temperature, soil texture, bulk
density, and salt content (Waddington et al., 1992). Research conducted by
Saffel (1994) found TDR to be especially useful in monitoring soil moisture in the
top 10-cm of the turf profile since this area has the greatest root mass and
therefore the greatest water absorption capabilities. Saffel emphasized the ability
of TDR technology to determine the water status of the soil, thereby allowing for
the application of the correct amount of water needed to restore a turf population
to its field capacity.

The concept of remote sensing for application in a SSM program is not
new. However, determining which wavelengths should be utilized in sensor
construction has been a challenge. Sensors that have the durability and flexibility

to be mounted on turf equipment could allow information about the current turf
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status to be downloaded and viewed spatially on a computer so that golf course
managers could more easily manage large properties at the localized level. In
this specific application, sensor use in a site-specific management program has
the potential to save water, money, and time for turf managers.

Near infrared reflectance spectroscopy has been used by the forage
industry for many years for prediction of plant nutrient content such as proteins,
fats, and oils (Roberts et al., 1997; Wetzel, 1983). Spectral energy shifts can be
measured with a spectrometer and plotted to produce an absorbance spectrum
of the object. The locations of peak absorbance regions serve as fingerprints of
key components of the sample (turf) at that instant. These components can
indicate turf variables such as water or nitrogen content. The advantages of
NIRS include 1) a rapid analysis of functional groups within seconds requiring
little or no sample preparation, 2) high precision, and 3) the absence of
hazardous chemicals (Shenk and Westerhaus, 1993).

Research by Ben-Gera and Norris (1968) demonstrated that NIRS could
be used to accurately measure and predict the moisture content of soybean
leaves. Fenstermaker-Shaulis et al. (1997) evaluated the usefulness of remotely
sensed data to detect turf stress and found visible reflectance from tall fescue to
be sensitive to stress from tissue moisture content when using a multispectral
scanner. A normalized difference vegetative index (NDVI) was calculated using
the red (600 — 650 nm) and near infrared (800 — 890 nm) regions. The NDVI was
calculated as (NIR —red ) / ( NIR + red). Fenstermaker-Shaulis et al. (1997)

found a linear correlation for NDVI with tissue moisture content and canopy
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temperature. The NIR spectrum has also been used to predict moisture, organic
carbon, and nitrogen in soils (Dalal and Henry, 1986). Roberts et al. (1997)
concluded that NIRS could accurately quantify ergovaline in tall fescue with
precision similar to that of high performance liquid chromatography (HPLC).
Research by Coleman et al (1990) determined the botanical composition
of legumes in monostands while Peterson et al. (1987) determined the
composition of mixed samples of tall fescue and clover. Within a narrow range of
soil color and at moderate amounts of organic matter, NIR spectroscopy was
found to be a rapid and nondestructive method for soil moisture content
(Couillard et al, 1997; Sudduth et al., 1991). Couillard et al. (1996) demonstrated
the ability of NIRS to predict moisture content of soils with high accuracy at 1450,
1930, and 2200 nm. Soil samples that previously had not been measured with
NIR spectrum were used to quantify physical soil characteristics such as soil
organic matter (SOM) and total N (Couillard et al., 1997). Couillard et al. (1996)
concluded that expanding and developing a comprehensive database is
necessary for NIRS to be used across a broad spectrum of sample profiles.
Bowers and Hanks (1965) reported these wavelengths for determination of water
content in soils. Bowers and Hanks (1965) examined the spectral reflectance
from soils and found the moisture content of soils to be predictable at spectral
reflectance levels of 1400, 1900, and 2200 nm. Sudduth et al. (1997) found that
this spectral region provided a statistically more accurate analysis than laboratory

methods for analyzing soils thereby making a reliable method of quantification.
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The use of the EMS has been shown to contain characteristics that
correlate to chemical components of a sample. The advantage is a faster
procedure reducing analysis cost. The importance of this information is realized
when the data can be analyzed spatially for management in site-specific
management (SSM). Remotely sensed data using the EMS can be a powerful
tool to aid in water management practices while providing a means by which turf
health is optimized.

The objectives of this experiment were to: 1) determine the relationship
between turf canopy spectral reflectance and water status as measured by
VSMC and percent water loss; 2) determine how the relationship is affected by
turf species and soil type; and 3) determine the important wavelengths necessary

for predicting moisture content.
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MATERIALS AND METHODS

Plant Culture

Intact soil cores containing mature monostands of either Penncross
creeping bentgrass or annual bluegrass were harvested at the Hancock
Turfgrass Research Center (HTRC) in East Lansing, MI. The soil was an Owosso
sandy loam soil (fine-loamy, mixed, mesic Typic Hapludalfs) containing 82.7%
sand, 12.9% silt, 4.4% clay, and 6.8% organic matter with a pH of 7.4. The cores
were placed into poly-vinyl chlorinated (PVC) lysimeters (22.5 cm tall x 25.0 cm
dia) containing a plug in the bottom. In addition, a 90/10 (v/v) mixture of sand
comprised of mainly medium sized particles and a sphagnum peat moss was
packed into lysimeters to a bulk density of 1.45 g cc™'. The pH and CEC of the
sand mixture were 7.7 and 8.9 cmol(t) kg™, respectively. Penncross creeping
bentgrass and annual bluegrass were harvested from a similar sand-based soil,
washed, and transplanted onto the lysimeters.

Turf in the lysimeters received regular irrigation and fertilization prior to the
initiation of the experiments in order to maintain adequate growth and color. Turf

was mowed at 1.3 cm during the experiments.

Field Experiment
A field experiment was conducted from 6 August 1998 to 22 August 1998
at the HTRC. To provide a microenvironment similar to what might occur in the

field, lysimeters were placed into sleeves (30.5-cm dia) in the turf. Lysimeters
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were set so that the top of the canopy was even with that of the surrounding turf
for mowing. Mowing was performed with a walking greensmower to the same
height as the surrounding turf. Three replicates each of creeping bentgrass/soil,
creeping bentgrass/sand, and annual bluegrass/soil were evaluated. Average

daytime and nighttime air temperatures were 27.4 and 16.9 °C, respectively.

Greenhouse Experiment

A greenhouse experiment was conducted from 4 January 1999 to 9
February 1999 at the Plant Science Greenhouses in East Lansing, MI. Six
replicates of the aforementioned species and soils in addition to annual
bluegrass/sand were evaluated. Lysimeters were randomized on the greenhouse
bench every other day. Mowing was performed with electrical clippers to the
same height in the field experiment. Maximum and minimum air temperatures
were 29.4 and 11.1 C throughout the experiment. Supplemental lighting was
provided through the use of two high-pressure sodium bulbs with lighting placed
110 cm above the turf canopy to achieve a 16-h photoperiod. Supplemental light
intensity was measured with an integrating quantum sensor at 650 p mol m?s™

(Licor 190-S; Lincoin, NE).

Dry-down
At the start of the experiment, the lysimeters were watered to field
capacity (FC) and allowed to drain for three hours. Plugs were then inserted into

the bottoms of the lysimeters and watering ceased for the duration of the
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experiment. The experiment was terminated when the turf reached severe wilt.
Lysimeter placement in the greenhouse was re-randomized every two days.
Measurements of spectral reflectance, volumetric moisture content, and water
loss by mass occurred every two days with mowing occurring after all

measurements were recorded.

Volumetric Soil Moisture Content

Volumetric soil moisture content (VSMC) was measured using a TRIME-
FM® (IMKO; Framingham, MA) time domain reflectometer (TDR). The TDR
probes were inserted vertically into the soil for each measurement. Volumetric

soil moisture content was measured across the soil profile to a depth of 11 cm.

Percent Water Loss

The lysimeters were weighed at field capacity and subsequently every two
days during the dry-down period throughout the experiment using an electronic
balance (Sartorius Corp., Bohemia, NY). Percent water loss by mass was

calculated as [ ( FC — lysimeter mass ) / FC ] * 100%.

Spectrometer

Spectral reflectance was obtained with a Model 6500 Spectrometer (NIRS
Systems, Silver Spring, MD). Reflectance from the turf canopy was collected
between 400 nm and 2500 nm at 2-nm increments and linearized in the form of

log (1/R) reflectance to represent linear absorption values.
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The spectrometer was modified in such a manner that the optics and light
source were contained in a housing unit suspended 12.0 cm above the turf
canopy. This setup provided a reduction in scatter radiation from the sun due to
its shading effect from direct sunlight. This housing unit was 12-cm above the
scanning surface. Within the spectrometer scanning unit, a tungsten-halogen
light source provided supplemental and continual reflectance for a target area of
5 cm?. A white calibration card was included in the housing unit. The calibration
card was used to calibrate the instrument before and after spectral
measurements to ensure integrity of the light source. To maintain spectral
integrity, measurements were adjusted for instrument conditions at the time of

recording. All measurements occurred between 1200 and 1400 h.

Data Analysis

Data were prepared for modeling using WINISI software (Infrasoft
International; Port Matilda, PA). Data were analyzed using a Modified Partial
Least Squares (MPLS) regression and transformed by a 1, 4, 4, 1 (derivative
order, gap, 1% smoothing, and de-trend value) mathematical treatment (Shenk
and Westerhaus, 1991). Analysis of the first derivative spectrum was performed
to increase the signal to noise ratio (SNR) (Talsky, 1994). The derivative spectra
indicate the locations where the most variability exists in the spectra with the
lowest instrument variability.

Modified Partial Least Squares was performed using the procedures

described as follows. Spectra for each treatment were randomly selected to
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create the algorithm model while the remaining data were used in cross-
validation (Shenk and Westerhaus, 1991). The algorithm was then tested against
all spectra by treatment. The analysis provides an equation that best predicts the
group to which the sample belongs. Only those spectra with the best fit were
eligible for consideration in equation development. Outliers were included in the
cross-validation statistics but removed from equation development. Performance
statistics represent the performance of the equation against all data within the
treatment group and are based on the number of terms incorporated into the
equation algorithm. This algorithm was created using principle component
analysis (PCA) based on analysis of the entire spectrum. The coefficient of
determination represents the relationship of the spectra using the number of
‘terms’ (wavelengths) that were used to create the algorithm. First derivative
spectra provided the best linear correlation between spectra and measured water
values. Analysis of the raw spectral data and second derivatives provided lower
correlation values than when using the first derivative.

Data were also separated by species and soil type and analyzed
separately to determine whether either had an over-riding influence of the

spectrum.

27



RESULTS AND DISCUSSION

The visible and NIR spectra of turfgrass show a wide range of absorbance
(log 1/R) with respect to water status. Spectra for each treatment group are
shown in Fig. 2.1 — 2.4 and indicate that four regions of the spectrum (464, 690,
1430, and 1900 nm) varied greatly with changing water conditions. These four
wavelengths appeared to be strongly related to moisture content. An example of
transformed spectra is shown in Fig. 2.5 and its raw spectra in Fig. 2.6.
Comparison of Fig. 2.6 with Fig. 2.1 - 2.4 show that spectral data in the VIS
region do not always reflect a decreasing trend in water status while spectra in
the NIR region are more consistent with decreasing water trends.

Volumetric soil moisture content and water loss by mass during the dry-
down period ranged from 3.2 to 40.3% and 0.0 to 16.0%, respectively for all
treatment groups (Tables 2.1 — 2.2). These data indicate a strong linear
relationship between spectral reflectance and VSMC (0.82<R?<0.91) under
controlled greenhouse conditions with R?=0.80 across all treatment groups.
During the greenhouse experiment, this relationship was 0.69<R?<0.92 with a
combined R?= 0.59. These data indicate a stronger relationship between spectral
reflectance and percent water loss by mass (0.91<R?<0.97) under greenhouse
conditions with a combined R?=0.91. For the field study, the relationship was
0.39<R?<0.90 with a combined R?= 0.41. Differences in the relationship between
spectra and water status were attributed to: 1) a larger sample size and less

introduced variability in the greenhouse when compared to the field data;
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Table 2.1. Calibration and validation statistics for quantification of volumetric soil moisture content
using near infrared spectroscopy and modified partial least squares regression analysis

using a 1, 4, 4, 1 math treatmentt-.

St.
Treatment Number Nt Range Mean R? SECq
of (%) Dev§. (%)
Terms ’

GREENHOUSE
Sand: Poa annua 3 85 3.2-285 6.47 17.4 0.902 2.027
Sand: Agrostis

7 95 42-28.6 5.84 16.7 0.906 1.789
palustnis
Soil: Poa annua 5 83 15.8 - 38.6 5.16 27.7 0.874 1.833
Soil: Agrostis palustris 3 99 16.7 - 34.3 4.26 27.3 0.823 1.794
Combined 6 351 42-36.3 7.12 22.7 0.801 3.180
FIELD
Sand: Poa annua 4 35 23.1-40.3 4.95 319 0.734 2.550
Soil: Poa annua 3 31 20.5-376 4.35 30.7 0.687 2.506
Soil: Agrostis palustris 3 23 30.3-376 1.45 38.5 0.924 0.612
Combined 3 93 16.5-39.10 462 324 0.586 2.975

1 Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.
1 Number of Repeated Measures.
§ Standard deviation of the range.

11 Standard Error of Calibration.
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Table 2.2. Calibration and validation statistics for quantification of water loss by mass using near

infrared spectroscopy and modified partial least squares regression analysis using a 1, 4, 4, 1

math treatmentt.

St.
Number Range Mean 2
N
Treatment of b s %) Dev§ (%) R SECY
Terms ’
GREENHOUSE
Sand: Poa annua 7 90 00-11.0 0.03 47 0.966 0.006
Sand: Agrostis
7 89 0.0-120 0.03 46 0.972 0.005
palustris
Soil: Poa annua 8 93 0.0-12.0 0.03 47 0.956 0.007

Soil: Agrostis palustris 9 104 0.0-16.0 0.05 6.7 0.969 0.008

Combined 10 368 00-16.0 0.04 50 0.908 0.011
FIELD

Sand: Poa annua 3 20 0.0-6.1 1.94 19 0903 0.604
Soil: Poa annua 1 18 00-74 243 25 0387 1.679
Soil: Agrostis palustris 3 14 0.0-42 1.68 16 0.850 0.563
Combined 2 50 0.0-74 2.36 22 0413 1.587

1 Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.
1 Number of Repeated Measures.
§ Standard deviation of the range.

9 Standard Error of Calibration.
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rainwater that penetrated the field lysimeters during the course of the dry-down
period (resulting in repeated measurements in modified partial least squares
regression at field capacity with few measurements at wilt-point); and 3) the
depth of water in the immediate rootzone during the experiment (Saffel, 1994).
For all treatment groups, higher spectral absorbance corresponded to greater
available water content levels while lower spectral absorbance corresponded to
lower available water content levels (Fig. 2.1-2.4). The major absorbance
fluctuations for raw spectra found at 464, 690, 1430, and 1900 nm were
consistent across all treatment groups and data confirm the results of Bower and
Hanks (1965) that absorbance increased as moisture content increased for soils.
Data were also separated and analyzed individually by soil and species
type for their contributing effects to spectra. For comparison between spectral
data and VSMC (Fig. 2.3), greenhouse data show a relationship of 0.75<R?<0.90
while field data reveal a relationship of 0.57<R?<0.97. When comparing spectral
data with percent water loss by mass (Fig. 2.4), greenhouse data show a
relationship of 0.90<R?<0.97 with the field data showing a relationship of
0.26<R?<0.90. Although greenhouse data indicate a strong relationship among
soil and species type with the spectra, there was no factor that could be isolated

as a main contributor to the changing spectral conditions.
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Comparison of Soil Type and Species with Spectra

Under greenhouse conditions, creeping bentgrass (R?=0.90, 0.90) was found to
have a more consistent relationship than annual bluegrass (R?=0.77, 0.97) for
VSMC and percent water loss, respectively (Tables 2.3, 2.4). The 90:10 sand
(R?=0.90, 0.95) was found to have a more consistent relationship than the native
soil (R%=0.75, 0.95). Differences in spectral relationships were attributed to the
textural consistency of a creeping bentgrass monostand as compared to the
variability of annual bluegrass.

Under field conditions, creeping bentgrass (R?=0.97, 0.73) showed a
stronger relationship than annual bluegrass (R?>=0.57, 0.47) for VSMC and
percent water loss, respectively. The USGA sand (R?=0.73, 0.90) demonstrated
a comparable relationship in the greenhouse (R?=0.72) but did not show a strong
relationship in the field (0.26).

During the course of the experiment, soil type appeared to play a role in
affecting the dry-down time. Lysimeters containing native soils held water more
tightly and restricted water uptake, causing a shorter dry-down period.
Lysimeters containing sand allowed the most water uptake as was observed by
the rooting depth (12 cm) in the sand-based lysimeters while soil-based
lysimeters contained very shallow roots (<56 cm). There were no noticeable
differences in rooting depth between species, however no rooting data was

collected in this study.

38



Table 2.3. Calibration and validation statistics for quantification of volumetric soil moisture content
by mass using near infrared spectroscopy and modified partial least squares regression using a

1, 4, 4, 1 math treatmentt.

St.

Treatment gqrn;gi; Nt R?ozge Dev§ “?oe/oa)" R? SECY
GREENHOUSE
Poa annua 4 169 5.1-38.6 6.87 23.767 0.777 3.247
Agrostis palustris 7 195 42-343 7.29 22172 0.899 2.315
Sand 8 184 3.2-286 6.27 17.027 0.889 2.092
Soil 5 194 156.1-38.6 4.85 27.259 0.750 2427
FIELD
Poa annua 1 29 16.5-37.4 5.01 29.662 0.570 3.283
Agrostis palustris 8 44 25.7-38.6 3.48 33.268 0.965 0.651
Sand 4 35 23.1-403 495 31.949 0.734 2.550
Soil 5 58 23.0-385 3.55 33.105 0.723 1.866

1 Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.
1 Number of Repeated Measures.
§ Standard deviation of the range.

1 Standard Error of Calibration.
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Table 2.4. Calibration and validation statistics for quantification of water loss by mass using near

infrared spectroscopy and modified partial least squares regression using a 1, 4, 4, 1 math

treatmentt.
Treatment Nur:fber Nt R?;)ge St.Dev§. M(Z?" R? SECY
Terms

GREENHOUSE
Poa annua 10 160 0.0-11.0 0.03 43 0970 0.005
Agrostis palustris 6 190 0.0-16.0 0.04 54 0.899 0.009
Sand 8 184 0.0-12.0 0.03 44 0.945 0.007
Soil 10 202 0.0-16.0 0.04 59 0.951 0.010
FIELD
Poa annua 1 18 0.0-9.0 243 3.182 0.456 1.788
Agrostis palustris 3 31 0.0-6.1 1.68 2270 0.733 0.865
Sand 3 20 0.0-6.1 1.94 1.852 0.903 0.604
Soil 1 34 00-74 1.74 2.159 0.261 1.584

1+ Mathematical treatment = derivative order, gap, first smoothing, and de-trend value.
1 Number of Repeated Measures.
§ Standard deviation of the range.

11 Standard Error of Calibration.
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Model Prediction

Prediction of soil moisture content with equations developed for each treatment
group were generally successful (0.79<R?<0.91) when predicted with VSMC,
however when predicting percent water loss, prediction models performed poorly
(0.36<R?<0.88) as show in Table 2.5 — 2.6. This was interpreted as meaning that
VSMC could be predicted with good accuracy, however prediction of percent
water loss was slightly more complicated because loss was being measured, not
the level of actual water present. Therefore, at field capacity, soils may appear to
be identical when they may differ by a few moisture percentages. This would
result in the formation of a more general equation with a much higher prediction
error.

Prediction of soil or species using an equation developed for another
treatment group was attempted to determined the closeness of spectral
relationships (Tables 2.7, 2.8). Treatment groups were found to be too diverse to
apply to another treatment group and no distinguishing trends were found that
allowed for the spectra to be separated by soil or species type (Tables 2.9 -
2.12). Each treatment group was found to possess slightly different spectral
signatures, thereby confounding interpretation. Examination of spectral
similarities determined that the data could not be used in a general prediction
equation for water content, species, or soil type. The relationship between
spectral reflectance and water status was poor when one treatment group was

used to predict another treatment group for comparisons among all treatment
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Table 2.5. Prediction of water content in creeping bentgrass with creeping bentgrass equation.

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM
SEP 2.30 0.05
Means 22.00 21.96 0.07 0.06
Bias 0.04 0.01
Bias Limit 1.38 0.01
SEP (C) 2.3 0.05*
SEP (C) Limit 3.00 0.01
Stand Devs 7.36 6.99 0.06* 0.04*
Slope 1.00 1.01
RSQ 0.90 0.36*
Average H 1.00 1.00
N 196 184

* - Denotes values outside of range.
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Table 2.6. Prediction of water content in annual bluegrass with annual bluegrass equation.

Statistics Pair 1 Pair 2
VSMC VSMC PWLM PWLM

SEP 3.22 0.01

Means 23.24 23.27 0.05 0.05
Bias -0.03 0.00

Bias Limit 1.93 0.00

SEP (C) 3.23 0.01*

SEP (C) Limit 418 0.01

Stand Devs 7.14 6.40 0.03 0.03
Slope 1.00 1.04

RSQ 0.80 0.88

Average H 0.98 1.06
N 168 165

* - Denotes values outside of range.
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groups of soil and species type. The poor predictability may be due to a number
of factors including but not limited to: 1) a small sampling size (approximately
1000 to 2000 spectra are considered a good library size); 2) seasonal variability
or sample textural inconsistencies; 3) instrument variability; and 4) that the
statistical software utilized was developed for laboratory analysis of dried and
ground forage tissue samples. Consequently, alternative methods of data

analysis may be more appropriate for these data and need to be explored further.

Important Spectral Wavelengths

Several wavelengths were identified for prediction of water, species, and soil
type. Utilizing five components for each prediction equation, wavelengths are
shown by order of importance for prediction (Fig. 2.7 — 2.9). Wavelengths that
explained the greatest overall variability were ranked by order of importance
using the 1% derivative spectra. Data were combined for both water
measurement techniques utilized in this study. Wavelengths found to be most
important in equation development for water prediction were found to be located
at 1838, 1394, 1898, 1498, 1906, 1938, and 1954 nm (Fig. 2.6). The most
important wavelengths for prediction of species (Fig. 2.7) were determined to be
located at 1846, 1898, 1906, 1918, and 1938 nm. The most important
wavelengths for the prediction of soil type independent of species (Figure 2.8)
were found to be located at 1394, 1846, 1906, 1894, 1498, 1938, 1874 nm. In

terms of model development in all treatment combinations, the 1898-nm
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wavelength region ranked as the most important wavelength region for water

determination.
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Table 2.7. Prediction of water content in sand with sand equation.

Statistics Pair 1 Pair 2
VSMC VSMC PWLM PWLM

SEP 1.74

Means 17.49 17.50

Bias -0.01

Bias Limit 1.06

SEP (C) 1.75

SEP (C) Limit 2.28

Stand Devs 5.71 5.42

Slope 1.00

RSQ 0.91

Average H 1.00

N 180
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Table 2.8. Prediction of water content in soil with soil equation.

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM
SEP 2.29 0.05
Means 27.12 27.05 0.07 0.06
Bias 0.06 0.01*
Bias Limit 1.35 0.00
SEP (C) 229 0.05*
SEP (C) Limit 2.93 0.01
Stand Devs 496 4.39 0.06* 0.04*
Slope 1.00 0.95
RSQ 0.79 0.39*
Average H 0.98 1.1
N 195 192

* - Denotes values outside of range.
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Table 2.9. Prediction of water content in annual bluegrass with creeping bentgrass derived water

equation.
Statistics Pair 1 Pair 2
VSMC VSMC PWLM PWLM
SEP 9.61 0.03
Means 22.58* 28.08* 0.05* 0.03*
Bias -5.50* 0.02*
Bias Limit 1.38 0.01
SEP (C) 7.90* 0.03*
SEP (C) Limit 3.00 0.01
Stand Devs 7.86* 9.87* 0.03* 0.05*
Slope 0.50 0.63
RSQ 0.39* 0.72
Average H 1.96 2.13
N 181 176

* - Denotes values outside of range.
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Table 2.10. Prediction of water content in creeping bentgrass with annual bluegrass derived water

equation.
Statistics Pair 1 Pair 2
VSMC VSMC PWLM PWLM
SEP 8.07 0.06
Means 21.87* 27.35* 0.07* 0.09*
Bias -5.47* -0.02
Bias Limit 1.93 0.00
SEP (C) 5.94* 0.05
SEP (C) Limit 418 0.01
Stand Devs 7.39 6.15 0.06* 0.03*
Slope 0.76 1.37
RSQ 0.39* 0.30*
Average H 1.57 1.57
N 202 190

* - Denotes values outside of range.
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Table 2.11. Prediction of water content in sand with soil derived water equation.

Statistics Pair 1 Pair 2

VSMC VSMC PWLM PWLM
SEP 10.84 0.04
Means 16.95* 27.22* 0.05* 0.03*
Bias -10.27 0.02*
Bias Limit 1.356 0.00
SEP (C) 3.46* 0.03*
SEP (C) Limit 2.93 0.01
Stand Devs 6.19 5.49 0.04 0.04
Slope 0.94 0.66
RSQ 0.69 0.46*
Average H 1.65 1.64
N 189 177

* - Denotes values outside of range.
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Table 2.12. Prediction of water content in soil with sand derived water equation.

Statistics Pair 1

VSMC VSMC
SEP 10.60
Means 26.97* 17.04*
Bias 9.93*
Bias Limit 1.05
SEP (C) 371"
SEP (C) Limit 2.28
Stand Devs 5.11 5.95
Slope 0.68
RSQ 0.62
Average H 1.16
N 199

* - Denotes values outside of range.
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Conclusions
This study demonstrates the feasibility for field use of VIS/NIR spectroscopy to
predict water content for turfgrass. These data indicate that relationships exist
between spectra and species/soil type for specific wavelengths and can be
ranked by level of importance however, their exact interaction needs more study.
From results in this study, NIRS has the potential to be a reliable method to
monitor and manage turfgrass fairways for irrigation scheduling. Comparison of
the standard deviation of the range with the standard error of calibration shows
the ISI software to be a more accurate analysis method than traditional analysis
methods. However collecting the large number of spectra necessary to build an
accurate and reliable model is a major obstacle due to in large part to the
variability of species and soil types utilized on golf courses throughout the
country

Further research is needed to examine the combined effects of species,
soils, and other associated factors on the spectral reflectance of the turf canopy.
Although much more data will be required for model development than was
collected in this study, this technology has the potential to aid turfgrass managers

in a SSM program.
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APPENDIX
WEATHER CONDITIONS FOR FIELD EXPERIMENT AT HTRC

Date Relative @ Wind Solar Rain Minimum Maximum Adjusted
Humidity Velocity Radiation (in) Temp Temp ET

(%) (mph) (Ly) (°C) (°C)
8/9/98 93.5 1.38 318.6 0.16 20.3 27.5 0.10
8/10/98 90.0 2.78 426.9 0.23 19.3 29.5 0.15
8/11/98 84.8 5.50 410.5 - 16.9 24.3 0.14
8/12/98 77.4 3.16 548.7 - 12.9 25.4 0.18
8/13/98 76.6 1.74 554 .4 - 13.4 26.1 0.17
8/14/98 76.7 2.24 493.3 - 14.0 26.8 0.17
8/15/98 85.9 2.06 318.3 0.13 17.9 26.5 0.11
8/16/98 80.7 4.46 495.6 - 16.1 27.8 0.17
8/17/98 83.8 3.35 413.2 - 16.8 29.2 0.15
8/18/98 86.7 5.14 4259 1.13 18.6 27.0 0.14
8/19/98 71.2 3.56 595.9 - 94 23.9 0.19
8/20/98 75.5 3.10 461.5 --- 12.2 26.9 0.16
8/21/98 80.7 1.95 375.9 - 19.7 30.1 0.14
8/22/98 75.2 3.69 516.0 - 19.4 28.8 0.18
8/23/98 N/A N/A N/A N/A N/A N/A N/A
8/24/98 72.7 6.54 442.8 -— 22.7 315 0.21
8/25/98 80.8 6.43 397.9 0.40 19.7 27.9 0.17
8/26/98 743 2.86 519.4 - 15.9 27.2 0.18
8/27/98 75.6 1.52 525.2 - 14.9 294 0.17
8/28/98 86.2 1.93 165.5 0.12 18.8 234 0.07
8/29/98 80.9 5.87 414.0 0.01 18.8 28.4 0.17
8/30/98 69.5 3.59 419.6 - 16.5 27.0 0.17
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