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ABSTRACT
SOLID FINITE ELEMENTS FOR SHEET METAL FORMING SIMULATION
By

Lorenzo M. Smith

Two finite el formulati itable for sheet metal forming simulation, are
proposed. The LNQS formulation features a linear and quadratic through thickness
variation of the normal and shear strain, respectively. The CNQS formulation features a
cubic and quadratic through thickness variation of the normal and shear stain, respectively.
The LNQS model exhibits the ability to deform without the consequences of shear,
Poisson’s or volume locking, while the CNQS model has been shown to exhibit some
locking mechanisms due to an inconsistent shear strain field. The proposed elements
exactly satisfy the shear strain (and stress) at the top and bottom of the element. These

features, therefore, help qualify the elements to be used in sheet metal simulation

procedures where shear strain is appreciable in the through-thick direction. The LNQS
in-plane strain due to both bending and membrane effects is accurately captured for plane

strain metal forming cases with and without friction. A system of evaluating and validating

the el which involves the introduction of a FORTRAN subroutine within a
commercial finite element software main program, has been established. In general, good

correlation is found among the proposed model solutions and those found in literature.
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Chapter 1

Introduction

1.1 Introduction

Historically, the process of forming sheet metal into useful tools and objects has
been carried out by highly experienced and accomplished craftsmen. The central aim of
their task is quite straight forward, they must economically deform the metal into

functional objects having an leasing to the eye. H , this process is not

PP P

always straight forward. For centuries, craftsmen have successfully carried out this mission

without a | understanding of the hani iated with sheet metal

forming. The spectacular work of these craft was, therefore, attributable to their

intuition based upon decades of trial and error. Because of this “sixth sense”, their work
is more accurately and appropriately defined as an art rather than a science. Indeed, they
were artists. Even today, elements of both the art and science of sheet metal forming
coexist. In today’s automobile industry, for example, engineers draw upon the expertise of
the tool and die makers to help direct the design of automobile components. For many
years, the marriage of science and art in the sheet metal forming industry has been
formally recognized by many as a necessary relationship. Where science fails, art must
prevail;, where art fails, science must prevail.

Today, however, there is an enthusiasti paign to rely exclusively upon the use

of computer models, to determine if a particular sheet metal forming process can be



successfully employed. Millions of dollars and decades of h have been d d to
this goal. Why? Although at first glance it may seem unreasonable to tamper with the
success of the past, it is necessary. The middle 20th century industrial climate brought
forth some harsh facts. First, there was less interest from young novices in the art of sheet
metal forming. Thus, the pool of experienced craftsmen was not being replenished.

Second, there was less lead time for production than there was in the past. Consequently,

the artists had less time to find the opti design p s. Third, b of cost,
weight and safety constraints, new materials were being introduced more often. The
artist’s expertise in successfully forming a particular metal was acquired over years of trial

and error. This was no longer practical in the i ingly fast paced industrial climate of

that time. By the mid 1950’s, industry slowly began to usher aside its once seemingly

immovable inertia of metal forming practice. A new era was born. Today, this new era is a

witness to industry’s depend upon p imulation of sheet metal forming. Since

the birth of this new era, there has been an intensifying effort by the research and industrial
community to improve the capability of modeling the metal forming process.

An und ding of the fund | of the micro and macromechanics

associated with metal forming has been realized for some time. However, the computing
tools, for many years, were not capable of efficiently accommodating the size and
complexity of many models. It was only since the early 1970’s, with the advent of more

histicated puters, that scientists were able to simulate relatively complex sheet

metal forming processes in a more practical manner. Procedures such as the finite element

method then b: more to solutions. R hers took full advantag



of the available tools of the time to model the sheet metal forming process. Today, with
the availability of workstations and supercomputers, new horizons have been opened to

for exploration. Nonetheless, the lope of this new research domain has been

pushed to its limit once again. As the pattern over the past several decades suggests,

hers find the plexity and size of their models being dictated by the availability

of computing power. The real chall to hers is to develop a theory that can be

cast into a computer model form that is both accurate and practical.

1.2 Background

The finite element method is the most popular and arguably most powerful means

of modeling the sheet metal forming process. B of the ki i ptions used
in the formulation of a finite el it has been that finite elements should be classified as
1 el by definition. He , for the sake of discussion, the names of three

categories of elements will be used in the vocabulary of this study; they are membrane,
shell and three-dimensional (3D).

Starting in the late 1970’s, membrane elements emerged as the first industrially
useful elements for sheet metal forming simulation (Wang, 1978, Toh, 1985, Nakamachi,
1988, Huang, 1994). With the exception of super-plasticity sheet metal forming (Argyris,
1984, Bellet, 1987, Bonet, 1990), the success of the membrane elements has been

restricted to thin cross section applications b of the el inability to model

strain changes due to bending. In an effort to model bending effects while simultaneously

preserving the simplicity of the b ! Yang (1995) proposed a bending-



energy-augmented-membrane (BEAM) element. By introducing a rotational energy

expression in terms of only degrees of freedom, Yang was able to introduce an

having the app of a b element, yet possessing the ability to

to bending. The putational results given in Yang’s paper were
used to compare different solution algorithms; the BEAM element was essentially a
“dummy” element. Accordingly, a rigorous assessment of the BEAM element’s

performance is not available. In introducing a shell element formulation, Wang (1987)

d the short ings of the t element with regards to sheet metal forming

P

pplications. Wang explained and d d the b element’s inability, and the

shell elements ability, to model variations in the in-plane strain with respect to the

hrough-thick di Many other shell element contributions have been made;

2h-

those introduced by Belytschko (1981), Lee (1991) and Boubakar (1996) are just a few
to be mentioned. These elements have proven to be quite useful in modeling a wide variety

of sheet metal forming processes. In particular, Belyschko’s element has been very

£ 1 N

ofit’s

d efficiency, and

In spite of the many advantages of the shell el , there are still many who are

not satisfied with the shell for a variety of applications of sheet metal forming; the
traditional shell cannot model double sided contact, for instance. Rebello (1990) and

Gontier (1994) point out needs for explicit and deling of thinning in order to

improve the workpiece/tool contact model. So, the relentless call for more improved
element performance continued. In light of the double sided contact concern, one

-

may be to ider a 3D element. Although, the 3D element tends to feature




more degrees of freedom than does the shell el the 3D el d ges in many
cases may justify the added expense of more degrees of freedom.
One challenge is to find a 3D element that comparably performs with the shell

without using multiple 3D el hrough the thick of the mod; ly thick sheet

metal domain. Using an enh d d strain formulation, Simo (1990,1992,1993)
was able to overcome that challenge. Korelc (1995) introduced a 3D element for small
strain and thin cross sections. Soon after, Wriggers (1996) unveiled a 3D element which
shows great promise for thin cross sections and large strain conditions. A variety of other
3D elements proposed for sheet metal forming simulation has been suggested by others
(Massoni, 1989, Onate, 1990, Oh, 1980, Butcher, 1994, Pian 1984,).

It should be obvious that there are advantages and disad ges to the use of shell

or 3D elements. Shimizu (1991) may have been the first to attempt to combine many of

the advantages of the membrane, shell and 3D el into one el itable for sheet

metal forming. The formulation features a four noded membrane element having the

outward appearance of an eight-noded brick. The brick topology is introduced in order to

enhance the contact model and to model thick hanges more ly. The idea is
very similar to that proposed in the work of Awverill, that is, the structural element is
disguised as a solid element. A trilinear interpolation is assigned to each transverse degree

of freedom. This most simple interpolation does not allow the element to model a

quadratic shear stress variation through the thick as ly as some of the
p ly di d el Furthermore, because the dilatational energy is integrated
independently of the deviatoric energy, the i pressibility int is enforced by the



penalty method. Therefi to calculate the p quired to intain the
incompressible behavior, an additional calculation involving the divergence of the velocity
needs to be made. Finally, Shimizu’s solution is obtained via an explicit time integration

scheme in conjunction with an updated y approach. Shimizu’s ical results

were in qualitative agreement with those from experiment.

In the spirit of Shimizu’s intentions, a new thrust has been made in order to
introduce an even more attractive element for sheet metal forming. A quest for improved
shear stress and normal strain accuracy in a solid element suitable for metal forming using
a total Lagrangian, implicit model is the primary goal of this thesis. A secondary focus is

to obtain the primary goal by blishing a soft infr that can be used to

study new finite elements for metal forming applications.

To this end, an excursion into the area of finite el for composite el is
taken. Not unlike finite elements for sheet metal forming, ming the chall with
finite el for i | analysis is also a formidable task. When material

.

delamination is to be modeled, a nonlinear material model must be developed for elements
for composite analysis. For certain applications such as aircraft skin behavior under flight
conditions kinematic nonlinearities must also be taken into account. Additionally, when
transverse squashing occurs in composite structures, a nonlinear contact condition may

possibly arise within the laminate structures of the body.

For composite el " deling the di i spliiagiail
stress and pi i i shear stress, while maintaining some
ble level of formulation simplicity, is a | challenge. These challenges



have been addressed by many (DeSciuva 1987, Reddy 1984, Averill 1996, Cho 1997,
Aitharaju 1997). One issue that is addressed in the work of Averill is that of Poisson’s
locking. The remedy used to eliminate Poisson’s locking in composite elements is the ideal
remedy to prevent volume locking for metal forming elements. Details of the locking
behavior will be discussed in detail in Chapter 5. As indicated above, a critical capability

for most el in i lysis is that which provides an imulation of

—p

the shear stress through the thickness. By introducing shear traction degrees of freedom at

the nodes, Averill satisfied the shear traction exactly at the top and bottom of the element,
while allowing a higher order variation through the thickness. This feature is remarkably

well suited for metal forming applications b of the complex frictional boundary
conditions imposed upon the sheet metal by the forming tools. Furthermore, another
consequence of the remedy used for Poisson’s locking is a form of the transverse normal
strain which is useful in modeling the effects of squashing. Details of this feature are given

in Chapter 5. It can be legitimately argued that the development of metal forming elements

is a natural extension of the development of the type of composite el developed by
Averill. Averill’s work in composite elements has served as a catalyst for the introduction

of a more description of the se shear strain and transverse normal strain

terms in the context of a 3D element for sheet metal forming applications.
Two new finite el formulations will be proposed in this thesis. Both elements

have only the dard lational degrees of freedom at each node. Accordingly, the

proposed elements lack some of the kinematic sophistication found in many shell elements,

as discussed in the previ ions. In the early devel of the proposed el a



special form of shell kinematics was considered. However, the price for including shell

ki ics was bly high; additional rotation degrees of freedom had to be

P

included, and some form of constraint (either penalty or Lagrange multiplier) used to

relate the displ and ion terms had to be imposed. In an effort to

present the proposed elements in the most convenient, unintimidating and useful way, it
was decided that the shell kinematics would not be included.

The first proposed element features normal strain terms having a linear variation in

the through-thick direction and shear strain terms having a quadratic
variation in the through-thick direction; this el will be referred to as the LNQS
(linear normal, quadratic shear) el for the inder of this thesis. The LNQS

A,

ly thick cross ions b of it’s linear

element is most suited for thin to
through-thickness variation of the in-plane normal strain. It is worth noting that shell

elements with the same through-thickness variation of the in-plane normal strain have been

used ively and fully in ive sheet metal forming simulation. The
quadratic through-thickness variation of the transverse shear stress is necessary in order to
exactly satisfy the shear stress at the top and bottom of the element. As will be discussed

in Chapter 2, the shear stress is often included in the yield function. In thin to moderatel

thick sheet metal forming analysis, the shear stress is generally several orders of magnitude
less than that of the normal in-plane stress; the exception is when the curvature is extreme
or when double sided contact conditions impose severe shear tractions. In such cases, an

accurate shear stress model is important.



The second element features normal strain terms having a cubic variation in the

hrough-thick direction and se shear strain terms having a quadratic variation
in the through-thick direction. For the inder of this thesis, the second element will
be referred to as the CNQS (Cubic Normal Quadratic Shear) el The derivation of
the CNQS el formulation involves an initial pti iated with shell

kinematics. However, as Chapter 6 reveals, a critical omission of the rotation terms allows

the CNQS formulation to take the form of a solid element with only translational degrees

of freedom. With a through-thick cubic variation of the in-plane strain, the CNQS
element has a more realistic in-plane strain model than that of the LNQS element. Like the
LNQS element, the CNQS element also can model the shear stress with more accuracy
than the typical thin shell element.

Some preliminary information needs to be presented prior to the introduction of

the d el formulati The three nonlinearities present in most sheet metal

"op

forming operations (ie. kinematic, material and contact) are discussed in a general sense in
Chapter 2. Care is taken to review how the nonlinearities arise and how they can be
handled in a finite element model. Details of the two major integration techniques (the
implicit and explicit method) are discussed.

Chapter 2 also includes a brief discussion of contact and friction models. The

contact nonlinearity has two p The first is the normal component. As the sheet

metal slides over the tool, portions of the sheet metal come in and out of contact with the
tool. This change in boundary condition obviously affects the normal stress, but also the

shear stress if friction is non-zero. Therefore, the second component of the contact
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nonlinearity arises; this second component is due to friction. Consideration of the
appropriate models is made in Chapter 2.

An element formulation is useful in the industrial environment when it is cast into a
finite element model and used in finite element software package which offers a powerful
pre and post processor. To this end, the LNQS and CNQS finite element models have
been defined in a FORTRAN subroutine which is called by the commercial finite element

o MARC. Miscell dq ion is included in Appendix A.

In Chapter 3 and 4, details of the LNQS and CNQS finite element derivations are
provided. The elements share the same topology and degrees of freedom. Only the
interpolation of the degrees of freedom is different among the two elements.

In addition to defining the finite element models, Chapter 5 is used to highlight the
issues of locking mechanisms. The root of the potential shear, Poisson’s and volume

locking will be exposed and eliminated. A thorough review of locking is essential in most

any new finite element formulation. Recall that the entire model is based upon assumed

displacement (or stress/strain) fields within the element. These assumed fields are a

manifestation of the y promises that the scientist makes in order to mimic
reality more precisely. In the end, the imposture of reality will always be convicted of
some weakness. Many locking weaknesses inherent to new element formulations may be

avoided by either underintegrating the el or gically ipulating certain strain

fields. This is to h ically “turning one’s heads to the problem”.

Nonetheless, the literature has shown in many cases that this works quite well!
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The benchmark problems are introduced in Chapter 6. A deliberate and methodical

assessment of the element is made by first considering simple academic cases, such as

cantilevered ions under t; and in-plane loads. Much information can be
extracted from such a study, as will be shown in the results. Some simple academic double
sided contact cases are also studied. In these studies, the friction model is assessed.
Finally, a plane strain sheet metal forming simulation with and without friction is carried
out. The LNQS and CNQS solutions will be compared to MARC and experimental data.
The thesis will be concluded with a summary of the results and future work in Chapter 7

and 8, respectively.




Chapter 2
Mathematical Preliminaries
In general, solving a set of nonlinear equations in the context of a finite element
model requires three basic steps. The first is to, upon defining the equilibrium equations,
specify the form of integration necessary to obtain the desirable solution (usually
displacement). There are many questions that need to be answered when approaching this
first step. Are the material properties deformation rate dependent? If so, can this
dependence be ignored? Are inertial effects involved? Are there any heat transfer
considerations that need to be made? How important is accuracy.? How important is

speed? Can the nonli terms be formulated in a ical manner? Answers to all of

these questions can be used to help determine the appropriate technique of integration of
the eqﬁilibrium equations. Direct integration procedures are common in many finite
element programs. The basis of direct integration is two fold. First, a solution to the
equilibrium equation is sought for a specific time interval. Therefore, within each time
interval, the objective is simply to solve a static equilibrium set of equations which may
include inertia and damping effects. Second, a variation of the displacement, velocity and
acceleration within each time interval is assumed. The assumptions of such variations
dictate accuracy, stability and efficiency. Two types of direct integration methods will be
discussed in subsequent sections.

Once the integration of the equilibrium equations is established, a reference frame
must be defined. Again many questions need to be answered. Does the problem involve

large strain or large rotations, or both? Does the deformation fit the mode of fluid or
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solid? Once such questions are answered, a determination of the model formulation can be

made. The equilibrium equations can be defined in the initial frame or current frame. These

;1 : di q

are in

N

Finally, once the integration and frame of the equilibrium equations are defined,

1o 4,

then a p must be

b

Since the equilibrium equations are

generally nonlinear in nature for metal forming problems, an iterative solution scheme
usually is necessary. The full Newton-Raphson solution scheme is a common method. This
method is used in the currently proposed model. Chapter 2 will include more detailed
explanations of direct integration, reference frames, Newton-Raphson iterative solution

procedure and also the nonlinear aspects of the material and contact models.

2.1  Explicit and Implicit Methods

For the explicit method, a solution to the displacement vector at time, t + At, is
sought based upon the equilibrium conditions at time , t. If the central difference method is
assumed then equilibrium equations take on the following form:

where: M, C,K are the mass, damping and stiffness matrices, respectively.

U and R are the displacement and external load vectors, respectively.
For the implicit method, the solution for the displacement vector at time, t + At, is sought
based upon equilibrium conditions based upon time, t + At. If the Houbolt method is

assumed then equilibrium equations take on the following form:



fgriogaliyy the stoyas
(—2—M+—€‘+K)U”A'
At 61

IR T JC R G LRPE N, et RGN 17
o +(—2M+—C)U‘—(—2M+—C‘)u' A‘+(—2M+—E‘)U’ 240 Ram
At At At 2M1 At 3At

It is noted that in the implicit method, 2.1.2 can be utilized even when the damping and
inertia matrices are neglected.

Two schools of thought dominate the issue of which solution (from implicit or
explicit means) is superior. One school of thought embraces the implicit form because,
from an equilibrium standpoint, it is more reliable and rigorous at each step. However,
convergence is not always guaranteed. The other school of thought supports the explicit
form because, in spite of the fact that it is less rigorous from an equilibrium standpoint at
each step, it has much more favorable convergence properties, provided that the
appropriate time step is assumed. Ultimately, the nature of the application should drive the
decision. Yang (1995) has shown that for various cases, both approaches provided

comparable solutions.

2.2 Stress/Strain Measures

As mentioned previously, there is an array of frames from which the stress and
strain (or equilibrium) can be defined. One side of the array is the spatial description,
where the stress and strain measures are defined with respect to the current configuration.
One advantage to the reference of the current frame is that because the geometry of the

element is updated, some of the higher order terms in the strain measures need not be
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included. One form of this approach is called the “updated Lagrangian method”.
Additionally, the stress and strain terms correspond to the true stress and strain. The
spatial description of the equilibrium equation is given as
o, +f,=0 224
where: o is the true or Cauchy stress acting on the deformed body
under external traction.
/; is the body forces vector
The energy conjugate to the Cauchy stress is the Almonsi strain.
On the other side of the array is the material description. In this description, the
stress and strain measures are defined with respect to the original configuration. Solution

accuracy can be achieved if the appropriate higher order terms in the strain tensors are

defined. The stress and strain correspond to the engineering stress and strain. Typically
this approach is called the “total Lagrangian” approach. Care must be taken when
comparing the computed solutions from that of the total Lagrangian model to

experimental data because of the lack of physical pond: b the

mathematics and practice. The equilibrium equation is given as

7,4+ £, =0 221
where: 7, is the 2nd Piola Kirchhoff stress acting on the undeformed body

The energy conjugate to the 2nd Piola-Kirchhoff stress is the Green-Lagrange strain. The

total Lagrangian method is used for the current model.



2.3 Newton-Raphson Solution Procedure

Defining the Newton-Raphson solution p dure for a nonli function with

one independent variable is straight forward. H , the Ni Raphson soluti
procedure, for a functional can be somewhat less straight forward. Therefore, it is worth

the time to begin the introduction of the general Newton-Raphson method by considering

the following functional.
F(e)=3(X,+€t)=0 2:3:%
where: 3 is an arbitrary functional such as an expression for the p | energy

X, is an arbitrary position vector in space
# is an arbitrary displacement vector in space

€ is an artificial parameter used as a vehicle for differentiation
F is some function of e

A Taylor series expansion of F about €=0 is given as

2

F(e):F(0)+£E‘ RN C 0 Gt 232

del., 2de|,
Using 2.3.1 in 2.3.2 and preserving only the first order terms yields
TR % d PRA

(%, + eu)—‘:!(x,)med Nz, + i) 234

€=0
The right hand side of 2.3.4 is called the directional derivative of 3 at x, =0

in the direction of # and is written as
N2 d s
D%, ] ae—‘ (%, + i) 235
del.,

Setting € equal to unity and using the notation of 2.3.5, 2.3.4 becomes
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N, +7) = X%, ) + DX, )[#] 236
Then from 2.3.1, 2.3.6 becomes
DY(%, )] = -3(%,) 237
From the above equation, the general Newton-Raphson procedure can be expressed as
D%, #,.,] = -%.): B =, T 238
In the context of a finite element model, the terms on the left hand side of the above

equation are identified as the tangent stiffness matrix and displacement vector.

24 Material Model
For sheet metal forming analysis, the material model is nonlinear in nature. It may

vary with stress/strain itude, strain path, temp and many other factors. This

section will introduce the three p of the material model used in the LNQS and

CNQS element models; they are yield surface, hardening law and flow rule.

2.4.1 Yield Surface

The yield surface is a functi ly exp d in stress space, which defines

the boundary between the elastic and plastic deformation modes in a material. Most yield

surfaces are described by simple polynomials as shown in Figure 2.1. The appropriate

order of the polynomial for sheet metal forming analysis is debatable. For an 1l

account of how the shape of the yield surface affects the formability of sheet metal, the
reader is referred to Barlat (1987). The most common yield surface used in industry for

sheet metal forming simulation is Hill’s 1948 anisotropic surface (Hill, 1948). Although



there is little experimental evidence that the Hill 48 model is accurate (Hosford, 1993), it
is used extensively in many finite element programs. In fact numerous studies (Barlat,
1991, Bramley, 1978) have led to the conclusion that the Hill 48 yield surface is
inadequate for many sheet metal forming applications. Barlat, in fact, presents an
argument which supports the use of a higher order yield surface, referencing solutions

Q. +

produced by polycrystal plasticity models. In to such perspectives, gh

(1997) presents a formidable case which, indeed, supports the use of the Hill 48 model if
(and only if) the yield surface is not assumed to be equivalent to the plastic potential. One
of the more simple yield surfaces, the von Mises yield surface, will be used in this study.
The von Mises yield surface, F, which is given below, is limited to isotropic material
conditions.
1

F= [%(a, -0, + %(o’, -a,)! +%(a’, -0,)? +30% +30% + 30:]5 -0, 2411

where subscripts 1,2,3 refer to the normal stress

subscripts 4,5,6 refer to corresponding shear stress

and o, is the yield strength in uniaxial tension
2.4.2 Flow Rule

The “flow rule” is the expression that governs the relationship between the strain

and the stress state during plastic deformation. It may be derived through plastic work

PP

considerations (Mendelson,1968) or by the introduction of a plastic p
(Melan,1938).

f:ﬁdl 2421
=&
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where: ( is a plastic potential function of stress, &
dA is the magnitude of the plastic strain increment, dz .
If the plastic potential and yield surface are equivalent, then the flow rule is characterized

as “associated”. Bland (1957) showed that the plastic potential and yield surface must be

the same function from a theoretical standpoint. H , Stoughton (1997) poignantl
resurrects the old disclaimer put forth by Hill in 1948; there is little or no experimental
evidence which shows that the yield surface and plastic potential are necessarily the same

function! Yet, many i i ies b experimental data and analytical solutions

based upon the Hill 48 theory have been attributed to the inadequacies of the Hill 48
model. Much of the blame has been directed towards the Hill 48 yield surface while little
attention has been paid to the fact that an associated flow rule may not be appropriate.
Stoughton lobbies that if a certain non-associated flow rule is used, then the alleged Hill

48 inconsistency would not be seen. Hence, credence to the Hill 48 model for sheet metal

Lliched i

ng to Stoughton. What argument is one to

forming simulation can be gh
accept? This issue is recognized. However, it is not the primary focus of this dissertation.
For convenience the associated flow rule in conjunction with the Hill 48 (von Mises model
is a special case of the Hill 48) model yield surface will be used as a basis in a plasticity

model for the proposed element.

2.4.3 Hardening Law
Of course, the mechanics of plastic flow can be precisely described by referring to

the mi hanics or crystal hanics of the metal. In this arena, such concepts as
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lip, latent hardening, twinning, and preferred slip systems come into play. A
detailed discussion of polycrystal mechanics of sheet metal is beyond the scope of this
study. Nonetheless, it is worth noting that the interaction among the crystals of the metal
as plastic deformation occurs dictates not only the shape of the yield surface, but the
evolution of the yield surface centroid as well. A description of the yield surface evolution
is more commonly referred to as hardening of the yield surface. As illustrated in Figure
2.2a and 2.2b, there are two major types of hardening. The first type, kinematic hardening,
involves a “rigid body type” of change in the yield surface in stress space. The second
type, i pic hardening, involves a “dilatational type” of change in the yield surface in

stress space. Neither type is able to closely capture details of the actual hardening behavior
of the metal. The true hardening description is likely some combination of the two as
Dafalios (1982) points out. For many sheet metal forming problems, the elastic strain
response is approximately one order of magnitude less than that of the plastic response.

The following rough values for modulus and yield strength are given for example

(Callister, 1997):
Modulus (MPa) Yield Strength (MPa)
Aluminum 69,000 400
Steel 207,000 1,500

From the above values, a simple calculation shows that the elastic strain for aluminum and
steel is approximately 0.5%. This is a significant amount of strain when it is noted that the
maximum strains generated in the current study are about 10%. One consequence of a
rigid plastic model, therefore, is that it will tend to overestimate the compliance of the

structure. The current proposed material model assumes an elastic-plastic response.
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Q h.d
L-4

due to hardening can be significant for many metals. Therefore, an
overestimation of the structural compliance can also be attributed to the zero-hardening
assumption if a rigid-perfectly plastic model were to be used. For this reason, a linear
hardening model is assumed for the current material model. In theory, the slope of the
tangent modulus can be varied from zero to the initial elastic modulus in numerical
models. The transition from the elastic to plastic regime is, in general, smooth in stress
strain space in metal forming practice. On the contrary, the proposed elastic-plastic
numerical model imposes a rather sharp transition. This is particularly true when the
tangent modulus is defined to be less than, say, one half that of the elastic modulus. In

11

such cases, convergence or y P are likely. Ni hniques have been

proposed to circumvent such numerical difficulties. Cook (1989), for example, suggests a
“corner rounding” technique where the current modulus is some function of the previous
modulus. Such features have not been implemented into the current model. For this
reason, some convergence difficulties have been observed for cases of very sharp elastic-
to-plastic transitions. Figure 2.3 describes a theoretical stress-strain model for a uniaxially

loaded member.

2.4.4 Elasto-Plastic Relation
Using the flow rule and yield surface, the stress may be related to the strain in a
convenient form which resembles the linear stress-strain relation. The difference is that the

components of the material matrix are functions of stress and hardening parameters
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(Zienkiewicz, 1969). To derive the elasto-plastic matrix, the total strain increment is
simply defined in terms of its elastic and plastic incremental components as follows:

d%, =dE, +dE, 2441
Next using the elastic and plastic strains, the total strain is defined in terms of an inverted

linear material matrix and the flow rule, respectively.

~ aF
dg, =C,'do +—dA 2442
¢, =C,'do =

In 2.4.4.2, the plastic p ial function, Q, is d to be the yield function, F. (This is

a statement of the associated flow rule.) For plastic deformation, the yield function, F, is

defined to be zero. Therefore, -Z:—; is equal to zero. Accordingly, we have in addition to

2442,
&F aF a aF
—do,+——do, + —do,+.—dx, =0
2, e e
where: «k is a hardening p which rep a change in stress due to either
kil ic or i pic hardening. If no hardening is d, then « is set to zero.
or
a‘. T
— d{c}+42=0 2443
{£} 4@

&F, 1
here: A=—dx-—
Ve

Equations 2.4.4.2 and 2.4.4.3 can be combined and written in matrix form as (for two

dimensions)



e
wl
de, B a |[do,
ds, | éo, do,
de,, I F dgu
0 o = n o, A
& £ £
&l %1 wll
Inverting 2.4.4.4 yields
J&:@,FJE

where:

9]

co-c-cfef ooofaf fal]

where: C is the elastic material matrix
A is the plastic modulus of a uniaxial stress-strain curve

For a two-dimensional case, 2.4.4.2 can be expanded as follows:

(o oodin &) b i o e i ot
0
e cegeplesy cO cozz ! 11: : cO coco
33 rxx 23 33
ee=lC," C, 90 |- -
Fyx CII CH 0 Fu
D=0 ¢,
Fu CII Cn 0 Fu +A
F, 03,0 76, | F..

sxz

2444

2441

2442

2443



24

where: the subscripts x,z,and xz refer to differentiation with respect to the

corresponding stress comp

and for a two dimensional case without shear stress consideration in the

yield function:
1 1
[Un "2'(‘712 +0n):| [0'12 "2‘(‘7-1 +a',,):|
. aos a}"u > L R ay-u
Expanding 2.4.4.3 yields:
2 2
Ce=C~ CilFoe) +CalFe) +2CuCoF Py 2444
C,F, . +Cy,F, +2C,F, F, +A
2 2
cz-c, - Ch(F,.)' +CL(F,,)' +2C,C\F, F,, A
CyyF, +CyF,,+2C,F, F, +A
o7 —c. - CuCulF.n) +CoaFyr FutCuCuFy, FutCuCu(F) 1
2 Snie CyF,,+CyF, +2C,F, F, +4 g
cp=cg 2447
crae 2448

With the assumption of a von Mises yield criterion, Bathe (1982) conveniently expressed
the same elastoplastic material matrix as follows:

1-v 2 1-v

l—2v_ﬁo-" l_zv'ﬂanan 0
~ E |1-v 1-v
C,=— - ———- po; 0 2449
LR po,0y, o Porn :
0 0 'Z_‘ﬂo':z
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31 1

where: f=——| ———M———
Y > WY
3E-A E

2.5  Contact Model
Perhaps the most important reason why the MARC subroutine procedure was
implemented, is the availability of the contact model. MARC imposes a non-penetration
constraint which is given in it’s general form as
U-Ai<D 25.1
where: {7 is the nodal displacement vector of the deformable body (sheet metal)
7 is the normal vector of the of the rigid body (die or punch)
D the distance between the node and the rigid surface.
Within the context of a finite element model, this constraint can be imposed by several
methods; three are the Lagrange multiplier method, the penalty method and the solver
constraint method. MARC uses the solver constraint method. MARC will determine
which deformable body nodes are close enough to the rigid body nodes to be considered
candidates for penetration. Whenever the constraint is not satisfied for a given load step,
MARC will impose a corrective displacement (not force) upon the deformable body node.

Impl ion of the p d el into MARC, in order that the contact model

P

can be used is, one of the fruits of the current research.
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2.6 Friction Models
In the field of sheet metal forming, various compromises in modeling detail are
made, often in the name of computational cost. Arguably, the most glaring example of
such a compromise is the typical friction model used in commercial codes for industrial
use. Two of the most prominent types of friction models noted in literature are the
cohesive and adhesive models.
The cohesive (Coulomb) model defines the tangential force to be a fraction of the normal
load.
F, = uNé, 26.1
where: p is the coefficient of friction (need not be constant)
N is the normal force
€, is the direction of the force which is determined by the relative sliding velocities
of the work piece and tool.
The adhesive model defines the tangential force to be a fraction of a shear yield strength.
Si=mz 8 262
where: m is the coefficient of friction (need not be constant)
7, is the shear yield strength of the material being formed
In order to appreciate why an accurate and efficient friction model has been so elusive, a
study of the local contact mechanics is in order. From Figure 2.4, it is shown that there are
two load carrying devices at the sheet metal/tool interface; they are the lubrication film

and the metallic asperity peaks.

S
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Accounting for the local contact conditions is not a trivial matter (Ronda, 1996).
On one hand, the normal load can be totally carried by the lubrication film, if the film is
relatively thick. On the other hand, the normal load can be totally carried by the asperity
peaks if the peak heights are relatively large. Yet another scenario is when the normal load
is carried by both the lubrication film and asperity peaks.

If, indeed, the normal load is carried by the asperity peaks, then what is the
slipping mechanism? In other words, will the peaks shear through or slide over each other?
If shear is the mechanism, then which peaks will fail? To answer this question, both the

material property and local y must be idered. If sliding is the mechanism,

though, then the elastic response of the apserities and local normal forces may become
more important. Another issue is that of relative velocity among the apserities of the sheet
metal and tool. At low velocities, much of the load may be carried by the asperities. At
high velocities, the load is more likely to be carried by the lubrication film.

Carleer (1996) has suggested a dimensionless lubrication number that is useful in
providing helpful insight.

y A 263

where: n, v, p and R are the dynamic viscosity of the lubricant, the relative sliding
velocity, the mean contact pressure and the effective asperity height, respectively. From
Figure 2.5, three main regimes which dictate the value of the friction coefficient are
noticed. In region A and B, the normal load is carried by the asperity peaks and lubrication
film, respectively. Region C is considered a mixed regime where both the asperity peaks

and lubrication film carry the normal load.
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In a finite element model, Liu (1994) introduced a variable coefficient of friction.

Liu obtained good agreement with experimental data. Liu’s model further suggests

h

dramatic changes in the friction coefficient are produced, in resp to

boundary conditions.

Schweizerhof (1991) has proposed a modified form of the classical Coulomb
friction model (Figure 2.6). A limit coefficient has been established in order to more

realistically model the local contact conditions of friction. Many types of models have been

proposed (Ronda, 1996, Carleer, 1996, Wilson, 1988, N I, 1988, Scheizerhof,

1991, Liu, 1994). Some models are based upon hydrodynamics, while others are based
only upon shear yield strength. In spite of the wide array of approaches, nearly all
proposed models were driven by the apparent inadequacies of a Coulomb’s model with a
constant coefficient of friction. There seems to be no singular approach that works

satisfactorily for all cases. Careful discernment of the mechanics of the particular fi

problem should be made. In addition to the traditional Coulomb’s model, Nagtegaal has
also endorsed a simple adhesive model. Additionally, Wilson has proposed that until a
more universal and efficient model is found, a simple adhesive model is reasonable for
general applications.

Having obtained an approximation for the friction force at the element surface, the
next step is to introduce the force into the nodal equivalent loads vector. Chandrasekaran
(1987) proposes that if Coulomb’s model is used, then when the local and global
coordinate systems are not aligned, a coordinate transformation must be performed on the

force vector. Haber (1996) asserts that some difficulties may arise if the Total Lagrangian
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(T.L.) method is used because the contact area is not known until punch contact is

dh,

blished. One key ad: ge to using the ive model in conjunction with the T.L.

method is that force transformations are not required b the friction force is not a

function of the normal load; it is a function of whether or not the punch is in contact.

The friction forces will be treated as distributed nodal loads (Wertheimer, 1991)
and introduced to the nodal equivalent loads vector at the element level. As Haruff (1995)
explains, much care must be taken when determining the appropriate friction coefficient.
Without great research into the local contact conditions of the metal forming problems
used for benchmarks in this study, a realistic variable friction model coefficient is nearly
impossible to attain. Therefore, a typical constant friction coefficient for the adhesive and

cohesive model will be impl; d into the proposed model.

In the proposed model, the shear strain is partly a function of the shear stress due
to the friction, which is defined via the friction model. A C” continuity constraint is
allowed for the shear stress due to friction. This constraint is not offensive because the
shear stress due to friction, in theory, is not a degree of freedom; it is a specified
correction term for the shear strain field. The friction contribution to the shear strain field

is not included in the shear strain energy. Rather it is simply utilized for post-processing

purposes. H , as stated previously, the friction contribution to the externally applied

load is included in the nodal equivalent loads vector.

One obvious question that arises, then, is “what friction coefficient value is
appropriate™ As illustrated in the previous paragraphs, the complexity of the friction

force d ics can be overwhelming. The cost of accounting for all of the significant
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details is simply prohibitive with the current state of technology. It seems that the most
efficient method of determining a friction coefficient value is to assume a relatively simple
model, then calibrate the model to match experimental data. Wang and Wenner (1978)
took such an approach; they selected a coefficient of friction which best reproduced the
experimentally observed data. Stoughton (1985) also selected a coefficient of friction by
considering that coefficient which best represents experimental data.

A sophisticated friction model is not the focus of this study. The use of friction
values in the shear stress model is one of the foci of this study, though. Therefore, the
friction coefficient for both the adhesive and cohesive friction models will be selected in a

manner similar to that d d in the published literature of Stoughton, Wang and

‘Wenner. Unless otherwise stated, the LNQS results provided in the following sections for
metal forming problems with friction are based upon an adhesive coefficient of friction of

approxi ly 0.8 and a hesive (Coloumb) coefficient of friction of 0.5.
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Stress

Figure 2.3:
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ET

Strain

Elastic - Linear Hardening Constitutive Model.
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Asperity Peak _\ Lubrication Film _\

Work Piece

Tool

Figure 2.4:  Localized peaks and valleys at the workpiece/tool interface create
load carrying mechanisms. The normal load can be carried by the
lubricant, metal or both.



Coefficient
of Friction

35

Figure 2.5

Coefficient of friction is not constant in general for metal forming
problems. The experimentally determined Stribeck curve indicates
that the friction coefficient is a function of the parameter, L.

Eaf R Lk
where: L= 2R
and 7,v, p and R are the dynamic coefficient of friction, relative
sliding velocity, mean contact pressure and average asperity height,
respectively.

Region A and B identify regimes where load is carried
predominantly by apserity peaks and lubrication film, respectively.
Region C identifies a mixed regime.



Friction
Force

Figure 2.6:
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Fimic
Normal Force
In order to better rep: the friction behavior, the Coulomb

friction model may be modified to feature a limit force.



Chapter 3

LNQS Element Kinematics

The outstanding features of the LNQS element are revealed not in it’s displacement
interpolation. Rather, it is the improved transverse normal and shear strain models. It is
the combination of the special kinematics and the application of the element in the
commercial code via a user subroutine that makes the element attractive for many practical
applications. In Chapter 3, the displacement field is first defined. A standard in-plane shear
strain expression is given, followed by two assumed quadratic algebraic expressions for
both of the transverse shear strains. Boundary conditions and Reissner’s principle are
applied in order to explicitly define the transverse shear strain in terms of known variables.
The transverse shear strain terms are carefully examined and liberated from any field
inconsistent terms which may cause shear locking under certain geometric and loading
conditions. Along with the assumption that the transverse normal stress is constant in the
through thickness direction, Reissner’s principle is again implemented to obtain an
improved form of the transverse normal strain which accommodates isochoric deformation
and prevents Poisson’s locking. The topology will be that of an eight-noded brick element

as shown in Figure 3.1. The origin of the x-y-z triad axis is at the centroid of the element.

37
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3.2 Shear Strain Field
For each of the shear strain definitions, a small shear strain assumption is imposed.
Therefore, higher order terms are not included in the shear strain models. Notice that the

transverse shear strains are defined to vary quadratically in the through thickness direction.

71)' = Wl,yui + Wi,xvi 321
V,=9, +za,+2'p, 322
Ve=9.+za,+2'p, 323

There are six unknowns in the algebraic expressions of the transverse shear strain. Four
boundary conditions are now established; they are the shear stress at the top and bottom
of the element. The shear stress terms can be defined in numerous ways. At this point in
the derivation, they remain generally defined. The following equations were obtained by
considering the value of z and the corresponding shear stress value at the top and bottom
of the element. The stress and strain are assumed to be proportionally related by the shear

modulus. Accordingly, we have

T, H H?

-5”-=¢y—?ay+7ﬂy 324
T, H H

7! H H?

Z2=¢ -——a, +— 326
G ¢X 2 X 4 ﬂx

7’ H H?

Tebra o p,

Solve for B and a using equations 3.2.4-3.2.7. Substitute into assumed shear strain terms.
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. 4z -z 27 z 27
Vo :¢’(1—F)”;”('GTJ‘LGH’)”;(—G—EJ'GH’) 328
422) . ( -z 2% ) ) ( z 27 )
=@ |l-—|+7 | =—+ +1, | —+ 329
& ¢‘( )" "=\Gu " on?) " "=\Gu T G’

A form of the Hellinger-Reissner variational principle is now used to define the
transverse shear strain. In a more traditional approach, the displacements and transverse
shear strain are assumed to be related by a certain kinematic relationship. Here, however,
the assumed transverse shear strain is defined as (initially) independent of the displacement
field. The assumed form of the transverse shear strain is then equated to the traditionally
defined kinematic form of the transverse shear strain. This equation is enforced by treating

it as a constraint which is to be satisfied in the integral sense through the thickness.

Sy [t

(r-ri)yz=0 3210

L]

~f

Use 3.2.9 in 3.2.10. Carry out integration. Solve for ¢. Substitute into 3.2.9. The result is
a shear strain model which, when used with the appropriate constitutive model, can satisfy
the shear traction exactly at the top and bottom of the element.

Y.=4"w, +By,+C,7,, 3211

Ve =AW, +Bu +C,7, 3.2.12
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3.3 Normal Strain Field
The in-plane normal strain expressions are defined below. Here, the higher order

von Karmon terms are included.

Ex = Visl, +%(Wi.xui)2 +%(’/’i.xv:)z +‘;‘('l’uw.')2 33.1
£ = WiV, +%(w.—.,w)’ +%(w,,yu, ) +%(w.;,w.~)’ 332

Using the elastic material matrix, the transverse normal strain is assumed to be defined as

E, = El-(a,, -C€n -C,,e”) 333

33
Similar to the application of Reissner’s principle for the shear strain, the transverse normal

strain is treated.

A ada]

(6. -&t)=0 334

%

k

where: &y = Wi,xwi +%(VI.:WI)2 +%(Wl,xul)z +%(Wuvi )2

Assuming that ©,, is constant in z, substituting 3.3.3 into 3.3.4, and finally solving for o,
yields:

335
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u = {m)+ 2vm) 2y +2 ()

g_: {% DAiJu, + %l:(ﬁa,x"a )2 + (D T.Ur )z + -;- b .Y Xﬁ“u, ) + %(DA,Ju, Xﬁ”“% ) :l} *
g_z{.;_[ ‘hv R )2 + (f)r.."r )2 + %(DAHJVB Xl‘jmvr) + %(DAT_,Vr Xbb.xvﬂ )]} +
o [ (Buuwa) +(Br.we) + HBuawsNDrwr) + Dr.weYDuows) |
a3
%{% Di.yvi + %[(b 8.»Va )2 + (DT-)'VT) e —;-(Ij, Ve XE’"’ v,.) * %(DAT‘,VT XDBJVB )]} '
%{% [( “a.y“n )z + (ij ryUr )2 * —;-(ﬁ”-’ “s xﬁ’” u,) * %(13,_, “ XDA”% ) ]} *
%:—33-{% [( ~wwa)2 + (ijr.wa )’ * %(D\ ByWn XIS T-er) * -;_(D’ w“’r)(ﬁ"-’ Vs ) ]}
336
where:
D, x = Di.x 4 x

and B=14 , T=5_8
It is worth noting that there are multiple ways of carrying out the algebra required in
equation 3.3.4. Consequently, the final form of the transverse normal strain is dependent

upon the algebraic manipulations used in 3.3.4 prior to integration. For example, the

gradient g:—is defined as %+%, where the subscripts T and B refer to top and

bottom, respectively. As a result the square of % would feature only three terms. Namely
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(& -G%) -5 (&) A%
ﬂ)’

The above expression is much more manageable than that which would arise if (&

were to be expanded in terms of all eight nodal degrees of freedom,; sixty-four terms could

potentially arise!
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wVv,w

Figure 3.1:  The topology of the proposed element makes it attractive
to the applications oriented user.



Chapter 4

CNQS Element Kinematics

The LNQS element features normal strain models which vary linearly in the
through thickness direction. Accuracy in simulating the normal strain values can be
improved if the normal strain is allowed to vary cubically in the through thickness
direction. This is apparent as bending becomes severe. The CNQS element features a
normal strain that varies cubically in z. To derive this model, a slightly different approach
is taken. Instead of beginning with a standard set of trilinearly interpolated displacement
functions, a form which varies cubically in z is assumed a priori. Boundary conditions are
set and a special assumption is made to define the in plane displacement in terms of known
variables. Similar to the LNQS model, a constant transverse normal stress in the through-
thickness direction is assumed. Aside from the higher order normal strains, the CNQS
element is identical to the LNQS element. The topology will be that of an eight-noded
brick element. The x-y axis is at the centroid of the element, while z = 0 at the bottom of
the element.

4.1 Displacement Field

First, cubic polynomials are assumed for the in plane displacements.

u=u,+nx z+p,2" +n.2’ 411

v=v,+m,z+ 2" +n,2 412
3

w=3yw 413

where: 7,,B« and n, are rotation terms and are functions of x.
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~y,PBy and ny are rotation terms and are functions of y.

u and v are the in-plane displacements

u, and v, are the in-plane displacements at some reference line
w is the transverse displacement

v, are the trilinear shape function defined in Chapter 3.

From equations 4.1.1-4.1.3, the strain field is given below.

£, = é:’+z Py +z Py +z Py 415
'

Ex =2 V.., 4.1.6
i=1

Ya=n,+228, +32’n +y, . w, (sumimplied on i) 4.1.7

Y.=m,+2z8,+32’n, +y, w, (sum implied on i) 418

It follows that the shear traction at the top and bottom surfaces are defined as

7.(0)=Gr,(0) =1, 4.1.9

TN =Gy () =1, 4.1.10

7,,(0=Gr,(0) =1, 4.1.11

7, (N =Gy, (h)=1, 4.1.12

A pivotal assumption will now be made. If equations 4.1.7 and 4.1.8 are inserted into the
above equations, the presence of a derivative of w, with respect to either x or y, will be

introduced. Consequently, in order to develop a C, continuous theory, rotation terms
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would need to be introduced. One aim of this study is to explore the behavior of a CNQS
element which features no rotational degrees of freedom. Accordingly, putting 4.1.7 and

4.1.8 into 4.1.9 - 4.1.12 and making the following assumption

Wipe >0 4113
Wear,r =0 4.1.14
yields
b
c
Ta_ . 4.1.15
G x
Tf
-Gi‘;=7t, +2hB, +3h*n, 4.1.16
b
r
—G"—=7r, 41.17
rl
—(’;"-=7ry +2hp, +3h'7, 4.1.18

Note further manipulations of 4.1.13 - 4.1.16 will result in the derivation of higher order
in-plane strain corrections stemming from tangential friction at the top and bottom of the
element. Perhaps, some effectiveness in the formulation’s ability to model the influence of
friction on the in-plane strain terms can be expected. However, the shear strain model is

not compromised in any way by 4.1.13 and 4.1.14.

Using 4.1.15 and 4.1.17 and solving for 7, and 7, in 4.1.16 and 4.1.18, and then

introducing these expressions to 4.1.4 and 4.1.5 gives the following result.



b ] 3 [t b 7]

T 2 P A 5 T
u =u +z|—=|+z +—|=-—=-2h 41.19
t o _G- ﬂx 3h2_G G ﬂx-

.5 ] 3 [t b 7]

T 2 2|7 T
v, =v +2z| = |+2 +—|=--2=2_2h 4.1.20
G by M| G G ﬂ’J

Let u, and v, be defined as u, and v, respectively. Then at z = h, 4.1.19 and 4.1.20

become

u =u, + i-+h’,6 +£rf'£-—1:—’——2hﬂ - 4121

t (] G-‘ x 3-G G l- M
+ T;’-+h’ﬂ +h_r;,, it Zhﬂ- 4122

v, =V, _ |l A T 4 = e

P16 "7 316 G d

Solving the above expressions for B and B, and inserting into 4.1.19 and 4.1.20, yields

u=Au + A4,u, +Cr7 +C,77 4123
v=A4Av,+ A4y, +C77 +C,7) 4124
w=Dw, +D,w, 4125

where: 4, = l—(’%)z2 +(}%)z3
3 2
4= -(5)
oo (4]
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It is worth noting that the shape functions, C, , are based upon a linear shear strain

assumption with no regards to rotation terms. Consequently, C, (and thus # ) may tend

to lose some degree of validity under large shear strain deformation. In the in-plane

directions, the degrees of freedom u;, v;, 7z;"and7)’ are assumed to vary linearly.

Accordingly,

- xx
u= aiul +xl‘ri

v=ay, + 2,10

where: a, =(

4126

4127
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z
D, =—
*h
It is worth noting that the shape functions, C, , are based upon a linear shear strain
assumption with no regards to rotation terms. Consequently, C, (and thus # ) may tend

to lose some degree of validity under large shear strain deformation. In the in-plane

directions, the degrees of freedom u;, v;, 7,°and7)” are assumed to vary linearly.

Accordingly,
u=au, + 3,7’ 4126
v=ay, + 2,1 4.1.27
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V.,

Shear Strain Field

4.2

Using the displacement field, the shear strain field is given as

421

TV W

xz
QU+ X7,

Y=

422

+ Wi,ywi

»
al.zvl + Zi,zti

Y
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a,..yu, +a,,, v,
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4.3  Normal Strain Field

An identical procedure to that described in Section 3.3 for the assumed transverse
normal strain derivation results in a similar expression. Note that, in spite of the
assumptions of 4.1.10 and 4.1.11, the rotation terms are present in the shear strain terms
of 4.1.4 - 4.1.5. Recall, that the presence of the shear terms in the in-plane displacement
expressions was realized in an effort to develop a suitable shear strain model. The target of
this aim is not to improve the in-plane displacement model, but to enhance the shear strain
model. To this end, the y shape functions will be assumed to be active only in the shear

strain terms. Accordingly, we may re-write the in-plane displacements as

u=au, 43.1
v=a,V, 43.2
Then we have,
En =Q, U, +%(a, J,u,)z +%( ,..,v,)z +%(w,',,w,)2 433
£, =Q,V, +-2!-(¢z,.,,v,)2 +%( ,J,u,)2 +%(VUW,)2 434
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Chapter S

Finite Element Models

5.1 Comparison of Features

As pointed out in Chapter 4, the LNQS and CNQS elements are similar in form,
yet different in function. In particular, the normal strain terms are of a different order in z.
To highlight this relationship, Table 5.1 is given for study. A column is provided to
describe the order of variation in particular directions for displacements and strains. From
the Table 5.1, it can be seen that the displacement and strain fields for both elements are
described in terms of the same degrees of freedom, only the interpolation of the degrees of
freedom differs between the two elements in some cases. Therefore, for brevity, only the

CNQS shape functions will be shown in the following section.

52 B, and B,, Matrices
The B matrix, which when multiplied by the displacement vector, defines the

element kinematics. The linear and nonlinear B matrices are provided below:

a,. 0 0
0 a,, 0
1% 1Ca b, K
B, =12C,, 2C, 524
w,,, Vix 0
0 ai,z Wt,y
L ai.z 0 Vi,x_
525

57
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a, O 0
w 0 0
w,, 0 O v, 0 0 w, 0 O0J]a, O 0
0 v, 0 0 v, 0 0 w, 00 a, 0
5 |0 0w 0 0w 0 0 w, 0 «, 0
Mo o o0 o 0 o0 0 0 O0f0 a, 0
©o 0 0 0 0 0 0 0 0fjo o 1lup
0O 0 0 0 0 0 0 0 0 2Cs
" . 1C, &
0 —=2ph.
2C,, "
0 0 E, |

The above B matrices are further expanded in Appendix A. Note that the interpolation for
the shear traction terms is not included in the B matrices; the contribution of the shear
traction enters into the formulation through the force vector. As is shown in Appendix B,
upon defining the shear traction, it is multiplied by the appropriate stiffness terms and

brought into the force vector.

5.3  Direct Stiffness Matrix

In Chapter 2, a general form of a linearized set of equations that can be
manipulated in order to find a solution to a nonlinear problem via the Newton-Raphson
method, was provided. This form is now made specific to finite element modeling. The

total potential energy can be expressed as follows

U=[fo,s)av - [tudd-[budv 53.1
[ 4 A 4

where: ¢ and € are the stress and strain measures
t is the externally applied traction

b is the body force (assumed zero for this study)
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The weak statement of the finite element model can be obtained by equating to zero the

directional derivative of the potential energy in the direction of & .

& = [{o,85,}av - [1,8u,dA =0 53.2
| 4 A
Alternatively 5.3.2 may be expressed as,
w:{j oN, av-| t,N,dA}d‘u=R&=O 533
| 4 A

where: N is the vector of interpolation functions

R is the residual
Equation 5.3.3 is the finite element discretization of the pointwise equilibrium equation.
Similar manipulation yields a more useful form of 5.3.2.

U= { j[(EL +%§,,L)z]r5[(z %m)z]dm j ]M} 534

| 4

au:{j [(EL +%§n)az]rﬁ[(ig +%§NLJZ]¢V + !’ 7M}=o 53.5

4

The direct stiffness matrix is defined below.
BIDB,, 53.6

Note that the direct stiffness matrix is not necessarily symmetric.



5.4  Tangent Stiffness Matrix

Upon taking the directional derivative of equation 5.3.5 with respect to an

arbitrary A yields
d d |- [ d
—& =|—08¢ |0+ 0¢| — 54.1
dA [dA g]a “l aa a]
=2 1(5,+B, )l +[(B, + B, )a]pL|(B, + 15, )a 542
‘E[( Lt m)&]o+[( Lt NL)‘SA_ E L+'2‘ NL s
= {ENL3+(§L +§NL)15(§L +§,,,L)} 543
The tangent stiffness matrix is defined below.
R =BT &7 +B'DB, + B’ DB, + B’ DB, +B'DB,, 544

5.5 Finite Element Model
Using the notation used in previous sections, a standard description of the finite

element model is given below.

K8 =(f-K,)& 5.5.1

5.6  Shear Traction Definitions

As mentioned in Chapter 2, neither the adhesive or cohesive model is particularly
accurate in modeling detailed aspects of friction. However, from a macro perspective,
both models are adequate. One special feature of the proposed models is the ability to
satisfy the tangential traction, exactly, at the top and bottom of the element for non-zero

friction cases. This can be accomplished, in part, by accurately defining the shear traction.
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The standard Coulombs friction model can be used to define the tangential forces in terms
of the normal forces at each node. If Coulomb’s cohesive friction model is used, then
knowledge of the global normal reaction load, and direction of the friction force need to
be obtained. However, if an adhesive model is used, only the direction of the friction needs
to be obtained. The shear yield strength and coefficient of friction can be defined to be
constant. The contact forces (and direction of forces) can be determined from within the
subroutine. An example of how the shear strain is expanded for the case where contact

friction is present on the bottom surface of the element is given below.

— xz
Ve =VWisW, +a@, U+ 2, Tpor 5.6.1
here: 73 -1 y Ty Ty +Ty
where:  75or = (7 + 77 77 47

Not only do the shear strain terms need to be adjusted for friction, but the nodal
equivalent loads vector must also be modified to reflect the nodal tangential nodal forces
due to friction. From within the subroutine, the global normal reaction loads are used to
approximate an effective normal force acting upon the element face. This effective normal
force is, first, divided by the element face area, then second, multiplied by a coefficient of
friction to yield an expression for the tangential force due to friction. This tangential force
is then appropriately distributed into the nodal equivalent force vector. (For some
unknown reason, the MARC main program will not recognize non-zero user-defined
nodal equivalent load vectors. Therefore, the program was “tricked”; the nodal equivalent
loads where subtracted from the internal force vector which is recognized by the main
program. Because the main program eventually adds the nodal equivalent load vector and

the internal force vector, no modeling errors are realized.)
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5.7  Shear Locking

One of the most common complications associated with finite element research is
that of locking. A locking mechanism may be defined as an increase in element stiffness
due to strain field incompatibilities. Shear locking will now be considered. A two
dimensional case is studied. All conclusions may be extended to three dimensions. For thin
cross sections under bending, the shear strain tends towards zero. From Table 5.1, the

following constraints imposed by a zero transverse shear strain condition are noted:

From constant terms: a) él+é =0
& &

au

F terms: b —=0

rom x ) %
wv

F 2t 1 C —+—=0

rom z~ terms: c) %' a

Constraint a and c are completely compatible with the zero transverse shear strain
condition. However, constraint b is not compatible with a zero transverse shear strain
condition. Notice that for in-plane loads, constraint b is compatible because the in-plane
displacement will not tend to vary in the through thickness direction. Bending, on the
other hand, requires that the in-plane displacement changes with respect to the transverse
coordinate. Consequently, constraint b will oppose bending action which results in locking
behavior. The current model features field consistent transverse shear strain by eliminating
constraint b. This is accomplished by removing all terms in the transverse shear strain

associated with the x coordinates.
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5.8  Volume Locking

One of the challenges of developing three-dimensional elements for sheet metal
forming is to model the isochoric nature of the deformation in the plastic mode. The
restriction placed upon the element is that the sum of the normal strains must add to zero
at each integration point used. Failure to do so likely will result in what is called numerical
“volume locking”. One method of avoiding volume locking is to underintegrate the
element. In the case of the proposed element, this would require that the strain be
evaluated only at the mid plane of the element. Such an integration plan would be very
detrimental to the element because the bending effects would not be modeled. Fortunately,
because the transverse normal strain has the same variation in z as the in plane strain
terms, a full integration scheme through thickness can be implemented without the
consequence of volume locking. This important feature is clearly seen when Table 5.1 is
considered. From Table 5.1, the through thickness variation of the transverse normal strain

is equal to that of the in-plane normal strain terms.

5.9 Poisson’s Locking

To explain Poisson’s locking, the two dimensional case will be considered. Recall

the form of the transverse strain.
o C,

£, =—2-—lg 59.1
C22 C22

If Poisson’s ratio is assumed to 0.3, then the following material constants arise for plane

stress and plane strain.



C,, =(1L13)E
Plane Stress: " 9.
ane Stress C, = (038)E 592
. C,, =(150)E
Pl : n 9.
ane Strain C,, = (050)E 593

For a very thin cross section, the transverse stress will approach zero in the absence of
double-sided transverse loads. A zero transverse stress condition for a plane stress (or

plane strain) cross section is tantamount to the following.

=-=€ 594

The resulting constitutive relation for such a case is
o, =Eeg,_, for plane stress 5.9.5a
o, =133E¢_, for plane strain 5.9.5b
The finite element must satisfy 5.9.4. If the transverse strain field and in-plane strain field
are constant and cubic (or linear) in z, respectively, then 5.9.4 can only be satisfied when
the transverse strain field becomes zero. The resulting constitutive relation is
Plane Stress: o =(113)E¢_ 59.6
Plane Strain:. o _ = (150)E¢_ 5.9.7
Simple inspection 5.9.5 and 5.9.6-7 reveal approximately an 11.5% increase in stiffness for
both plane stress and plane strain. This effect is called Poisson’s stiffening effect (Prathap,
1994). The proposed formulation accommodates 5.9.5 with no difficulty because the
transverse and in-plane strain are both cubic (or linear) in the z direction. Therefore,

Poisson’s stiffening effect is eliminated.
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Table 5.1 Comparison of Features

LNQS Field Order
1 1 .1
u=y.u X,Y,2Z
1 1 1
V=¥, X,y .2
1 1 1
w= Wlwi x ’y ,Z
8:: = Wl,rul xo’yl ,Z'
Eyy = '/,i.yvi xl »yo:z'
1C, A 1C,, -~
€y = Ew +E—C+3 i Ui +EC_nDi.yvi x‘:yl,zl
33 33
— 1 1 1
7xy - Wl,yul +Wl,xvi x ’y »Z
1 1 .2
Yn=A"W, +Bv, +C,7, X,y ,z
1 1 2
Ya=AW,+Bu, +C,7__ X,y ,z
CNQS
u=a,u. xlsy,:zs
1 1 3
v=av, xX,),z
1 1 1
w=y.w, X,y,z
8.1: = al.xui xo’yl,z3
1 o 3
8”=a'~vv‘ x ’y ’z
1 CIJ A 1 C23 A 1 1 3
. =Ew +_C 1Yy +EC Dl'.yvl X,y ,z
33 33
1 1 .1
7xy = Wi.yul + wl,xvi x ,y ,Z
1 1 2
7yx = Wl.ywl +al.:vt +Z.~,:T.¥x x ,}' ,Z
1 1 .2
rn = Vi.xwl +ai.xui +Zl,zrin x ay ,z

Table 5.1: A summary of the displacement and linear strain expressions for each of
the two proposed elements is provided . Shape functions are defined in previous sections.
The superscripts in the comment column refer to the order of variation per coordinate.



Chapter 6

Results and Discussion

In order to verify the accuracy of the proposed elements, an array of academic-
type studies are undertaken. Three major features of the elements are examined, they are
the kinematic, material (plasticity) and friction models. When the kinematic model is
verified, the linear material model is used instead of the plasticity material model. The use
of the linear material model in the kinematics study allows the kinematic results to be
studied without any additional kinematic influences introduced by the nonlinear material
model. After the kinematic model is verified and validated, the nonlinear material model is
then introduced and studied. This sequence of feature introductions assures that each
feature can be studied most effectively. Following the kinematic and material model
verifications, the friction model is studied. Like the material model, the LNQS friction
model is based upon standard theory. (Recall that the CNQS element will not be evaluated
for reasons described in Chapter 6.)

It is appropriate to recall the main distinguishing features of the LNQS model.
They are as follows:

1. Higher order approximation of transverse normal strain in the through-thickness
direction. The benefit of this feature is the elimination of Poisson’s and volume
locking. Additionally, three-dimensional effects are more closely modeled when a

higher order transverse normal strain is included.
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2. Ability to satisfy transverse shear traction exactly at the top and bottom of the
element. This is perhaps most beneficial in cases of double (or single) sided contact for
moderately thick sections.

3. A quadratic variation of the transverse shear strain in the through thickness direction.
In cases where three dimensional effects become significant, as in very low R/t ratios,
accurate modeling of the shear strain can become important.

4. A development of an efficient programming environment (commercial program
preprocessor, solver and post processor via FORTRAN subroutine). This network
serves as a useful and convenient testbed tool for research and development.

These four features will be evaluated in the context of several metal forming benchmark
problems. The initial intention of this study was to use three dimensional elements for all
of the benchmarks. Unfortunately, there exists some incompatibility with a user defined
three-dimensional element and the contact algorithm. After many unsuccessful attempts to
rectify the problem, it was decided that the two dimensional case would have to be
implemented. Therefore, the metal forming verification problems are in two dimensions
only.

Unless otherwise stated, the units for length, mass and time are as follows:

time: seconds
length: millimeters (mm)
mass: kilograms (kg)
Therefore, force and stress will be expressed as follows:

force: N
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where N represents one Newton

stress: N = N - = Pa x10°

mm’ (m x 10’3)

where Pa represents one Pascal

6.1 Cantilevered Section Under In-Plane Tip Load

Figure 6.1 shows the boundary conditions of an axially loaded member subject to
an axial load. The nodal displacements at the wall are set to zero, while a positive
distributed force at the section tip is applied axially. The parameters of the problem are as
follows:

Length =1

(Area)’Y. Modulus) = 1

Load =1
Figure 6.2 shows the results for an axially loaded specimen. In this case, the nonlinear
material model is not included. The exact linear and exact nonlinear solution are shown
along with that of the LNQS element. Noting that the only difference between the LNQS
and CNQS element is the through thickness interpolation of the in-plane strain terms, it is
clear that LNQS and CNQS solution would be identical for this particular load condition.
Accordingly, the CNQS solution is not shown. Excellent agreement is seen among the
exact nonlinear solution and that of the LNQS solution. This trend demonstrates the ability
of the element to accurately model in-plane response to in-plane loads. For most sheet

metal forming conditions, the maximum allowable in-plane strain is approximately 20% -
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40%. Figure 6.2 shows that the in-plane kinematics easily accommodate such levels of

strain without an introduction of significant error.

6.2  Simply Supported Section Under Uniform Transverse Load

The parameters of the problems are as follows:

Length =20

Heights = 1

Y. Modulus = 1e+06

Load = 100/unit length

Figure 6.3 illustrates the boundary conditions. Figure 6.4 quantifies the effect of shear and
Poisson’s locking in the absence of the strain field correcting mechanism (higher order
transverse normal strain assumption). Displacements were taken from the center of the
member for both the LNQS and analytical models. The results have been normalized to
the analytical solution. The first column shows that without a consistent transverse shear
strain field, shear locking can be very severe. The second column corresponds to a
modeling condition with a consistent transverse shear strain field, but without a higher
order transverse normal strain field. This solution is a result of Poisson’s locking. The
locking is much less severe, although it still remains significant. The third column shows
that with both the consistent transverse shear strain and transverse normal strain fields, the
LNQS element is able to accurately model bending behavior; all locking mechanisms have
been removed. In structural analysis, say for an aircraft wing section, the strain distribution

is often driven by force distributions. However, in most sheet metal forming cases, the
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strains are driven by displacement of the tools. The displacements of the nodes are almost
entirely dependent upon the geometry of the tools. However, the strain distribution is
heavily dependent upon both the tool geometry and strain models. Unrealistic strain
models may result in unrealistic reaction loads because of locking effects. In the end, shear
and Poisson’s locking can contribute to error-prone friction models (because of error-
prone reaction loads). Consequently, the consistent strain fields of the LNQS element help

promote more accurate metal forming results.

6.3  Transverse Shear Strain in Single Element

Figure 6.5 illustrates the boundary conditions on a single element along with
resulting transverse shear strain plotted out with respect to the z coordinate. Both
solutions of the LNQS and standard bilinear continuum element of MARC Program are
shown. The MARC.3 element is a four-noded quadrilateral element with no reduced
integration. The difference in solutions is quite pronounced, where the MARC element
fails to satisfy the transverse shear strain exactly at the top and bottom of the element, the
LNQS element succeeds in doing so. Admittedly, the transverse shear strain (stress) is
usually several order of magnitude less than that of the in-plane normal strain (stress) in
many sheet metal forming problems. (Exceptions may be localized regions near draw
beads or punch openings where the tool radius to sheet thickness is small.) However, the
relatively small shear strain that is developed in many sheet metal parts during forming,
does not suggest that the quadratic transverse shear model of the LNQS element is

without noteworthy merit. First, any accuracy improvement that can be obtained without
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compromising greatly the efficiency of the element should be promoted,; the presence of an
accurate shear strain model represents one less variable that is potentially a source of
error. Second, as with most research elements, the LNQS element simultaneously rests
upon the foundation of many elements of the past and upholds a portion of framework
which many future elements may stand upon. So, although the quadratic shear strain
model advantages may not appear to be very pronounced in the context of sheet metal
forming, the LNQS quadratic shear strain model may help serve as a basis for research in
metal forming simulation where the shear energy may dominate the mechanics.

6.4  Cantilevered Section Under Transverse Tip Load

The parameters of the problem are as follows:

Length = 20

Height = 1

Y. Modulus = 1e+06
Figure 6.6 shows the boundary conditions of a cantilevered section under transverse tip
load.

Before the kinematics can be studied for this case, a mesh refinement study was
undertaken. Figure 6.7 shows the results corresponding to element discretizations which
vary in the lengthwise direction. Complete convergence appears to be obtained at 50
elements in the lengthwise direction. However, convergence within reasonable limits is
realized with about 20 elements in the lengthwise direction (about 5% difference from the
50 element solution). Figure 6.8 shows results for a mesh having 50 elements in the

lengthwise direction and varying number of elements in the transverse direction. Complete
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convergence is obtained with only two elements in the transverse direction. It is noted that
the difference between the one and two element solutions is approximately 3%.

Figure 6.9 provides solutions from the commercial finite element program, MARC,
and those from the LNQS and CNQS elements. The purpose of Figure 6.9 is to identify
the difference in solutions for a given mesh of 20 elements in X and 1 element in the Z
direction. As stated previously, the MARC.3 elements are four-noded quadrilateral
elements with no reduced integration. The MARC.114 elements are four-noded elements
with reduced integration. The MARC.114 element, therefore, has an improved bending
response (compared to the MARC.3 element). The most compliant elements were the
MARC.114 and LNQS elements. Very good agreement is seen among these two elements.
As expected, the more stiff elements were the MARC.3 and CNQS elements. It is worth
noting that for smaller deflections, the MARC.3 element is in better agreement with the
MARC.114 element than is the CNQS element. However, for larger deflections, the
CNQS element is in better agreement with the MARC.114 element than is the MARC.3
element. The MARC.114 element is well verified and generally accepted from an accuracy
standpoint when kinematics are considered. The results show that the LNQS element
demonstrates a very favorable kinematic response not only for in-plane loads (as was
shown in the previous section) but for out-of-plane loads as well. Although the CNQS
element is quite accurate in modeling in-plane loads, it’s solution loses accuracy when out-
of-plane loads are applied. The CNQS element is considerably more stiff in bending than

the LNQS element. The reason for this, of course, can be traced to the assumptions that

were used in the derivation of the CNQS formulation. Recall the % terms of the shear
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strain approximations were neglected during intermediate derivations of the formulation.
This was deliberately done so that a cubic variation in z of the in-plane strain could be
introduced without introducing rotation degrees of freedom. Because the CNQS element
exhibits such dramatic locking behavior, it will no longer be considered through-out the
remainder of this study.

An extreme case, where the tip deflection is approximately equal to the length of
the beam, is also studied for the LNQS and MARC.114 elements. From Figure 6.10, the
kinematic accuracy of the LNQS element is further verified;, even for extremely large

deflections, the LNQS and MARC.114 elements remain in very good agreement.

6.5  Material Model Study

The LNQS material behavior is modeled via an elasto-plastic material model which
features linear hardening. As described in the material model section of the thesis, the
material constants are, in part, functions of stress. For fully three dimensional cases, all
components of stress need to be included in the material model. However, for the typical
plane strain sheet metal forming problem, the stress field is typically dominated by the in-
plane normal stresses. In fact, according to Karafillis (1996), one may safely neglect the
transverse normal stress when considering a material’s constitutive response for sheet
metal forming problems, in general. It is not unrealistic to have the transverse normal
strain about two orders of magnitude less than that of the in-plane normal strain. Figure
6.11 illustrates the evolution of the material constants as the in-plane and transverse

normal stresses are increased (the transverse normal stress is two orders of magnitude less
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than that of the in-plane normal stress). The expressions for the material constants are
provided in the previous section and are plotted out with respect to the in-plane normal
stress; the applied stress is normalized to the yield stress (assumed to be two orders of
magmitude less than that of Young’s Modulus). The transverse normal stress is assumed to
be twwo orders of magnitude less than the in-plane stress. From Figure 6.11, we see that
C,, and C,, are essentially constant for all applicable values of stress. However, C,,
varies considerably. Five different cases for C,, are considered. They correspond to
tangemt modulii of E, 0.25E, 0.5E and 0.75E and 1.0E (where E is Young’s modulus).

The cantilevered section is next considered with nonlinear kinematics and a
nonlixaear material (plasticity) model. When studying the plasticity model for this case,
carefual consideration of the number of integration points in the thickness direction is
parammount. The MARC and LNQS elements are compared for different integration point
and mesh conditions. Both plasticity models feature elasto-plastic behavior with linear
hardening as described in Figure 2.3. The key material parameters are given below:

Young’s Modulus, E = 1e+06

Tangent Modulus, E; = 0.5¢+06

Yield Strength, Y = 1e+04
The MLARC program does not allow the user to define the number of integration points for
the elemments in it’s library. Consequently, the only way to increase the number of
integration points in the transverse direction is to increase the number of elements in the
transverse direction. The LNQS user-defined element, of course allows the luxury of

specifying the integration point strategy. Because the MARC element discretization is not
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the same as that of the LNQS, the comparison is not completely fair. For a given number
of integration points, the MARC results are expected to be slightly more compliant; based
upon the results shown in Figure 6.8, the difference should be approximately 4%. Indeed,
Figure 6.13 shows that the MARC model, for 4 integration points in the transverse

direction, is about 3.5%.

A few interesting observations are worth noting. First, if the MARC curve is
extrapolated back to two integration points, the LNQS and MARC solutions will match to
within 1%. This excellent agreement is expected not only because the integration points
are the same, but the number in elements in Z are the same as well. The second interesting
observation is that the solution for the LNQS element becomes slightly more stiff as the
number of /obatto integration points increases from 3 to S. This behavior is rather
uncommon, but nevertheless possible. Figure 6.14 is a description of the Gauss and
Lobatto point distribution with respect to natural coordinate in Z. On the ordinate axis are
labels identifying the location of the Gauss and Lobatto points. To the left and right of the
ordinate axis are the Lobatto and Gauss weights, respectively. The thick solid line
represents a stress distribution. Following the dotted lines extending from the elastic-to-
plastic transition point of the stress distribution, one can observe the following:

3 point Lobatto Rule: 33% (1 of 3) of the points are in the elastic range

5 point Lobatto Rule: 60% (3 of 5) of the points are in the elastic range
This qualitatively explains why it is possible for the LNQS solution (for the Lobatto rule)

to become slightly more stiff as the number of integration points is increased from 3 to 5; a
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higher percentage of integration points remain elastic (in stiffer region). It is noted,
though, that in the limit, the stiffness will decrease as the number of Lobatto integration

points is increased for plasticity analysis.

Bathe (1982) provides a more rigorous explanation with a simple example. Figure 6.15
shows a two-noded bar element with a varying cross section. A state of stress is proposed
such that the domain is in the plastic regime for the left side and elastic regime for the right
side. If a one point integration rule is used, then the entire element is assumed to be in the
plastic regime. This results in a very small stiffness. If a two point rule is employed, then
50% of the element is assumed to be plastic regime. This results in a much more stiff
solution. If a three points rule is used, then 66% of the element is in the plastic regime.
This results in a solution less stiff than that of the two point rule. However, if a four point
rule is used, then 50 % of the points are again in the plastic regime (location of the points
are different from that of the two point rule). This results in a stiffer solution than that of
the three point. The exact solution is provided at the bottom of Figure 6.15. Figure 6.14
and Figure 6.15 help verify that the results shown in Figure 6.13 are reasonable.

Recall Figure 2.3 which describes the constitutive assumption for a uniaxially
loaded member. Assume the parameters to be as follows:
Length = 20
Area=0.01
Y. Modulus = 100

Yield Stress =1



Tangent Modulus = 50

Load=0.5

Then, the tip deflection based upon the analytical solution for the bilinear material model is
20. The LNQS finite element solution for the same case is 20.5. These results which are in
good agreement, help to further demonstrate that the plasticity model used in conjunction

with the LNQS element formulation is correct and accurate.

6.6 Preliminary Commercial Element Investigation
The commercial finite element code, MARC, offers a variety of elements from
which to choose. The plane strain MARC 11 (MARC Eleven) element, in particular, may
be used with a standard strain or an assumed strain formulation. The essential difference
between the two is the variation of the transverse normal strain in the through thickness
direction. In order to investigate the behavior of the elements in the context of a metal
forming application, one element was isolated and studied. This element corresponds to
the region of peak bending in Stougton’s square cylinder stretch problem which will be
investigated in more detail in later sections. Figure 6.16a and Figure 6.16b show the
transverse coordinate versus the in-plane normal strain solution for the following element
formulations and meshes. |
Mre.st : MARC 11, refined mesh (5 elements in z), standard strain
This element features a strain field that is defined from the bilinear
displacement field.

M.re.as: MARC 11, refined mesh (5 elements in z), assumed strain
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This element features a transverse normal strain field that is not
defined directly from the bilinear displacement field. Rather, it takes

on an assumed form such that Poisson’s locking and volume

locking are not possible.
M.co.st : MARC 11, coarse mesh (1 element in z), standard strain
M.co.as: MARC 11, coarse mesh (1 element in z), assumed strain

The results reveal that the elastic solution is, for most practical purposes, linear in z. The
solutions using the assumed formulation tend to predict a slightly higher strain than that of
the standard (kinematically correct) formulation. It is safe to conclude that the refined
kinematically correct solution most closely approximates the correct solution. Without
specific information about the MARC element formulation, it is difficult to explain the
difference. However, comments on the LNQS results for this same test case may serve as
useful insight into the behavior of the MARC assumed elements; these comments will be
offered in the following sections. The plasticity results are very similar to the elastic results
in that the assumed formulation solutions tend to show higher strains than those of the

standard formulation.

6.7 Lee’s Benchmark: Plane Strain Stretch with Zero Friction

In 1990, Lee introduced the benchmark geometry described in Figure 6.21a and
6.21b. The MARC.11 with assumed strain and LNQS solutions are compared. The same
mesh discretization (one element through the thickness) is used for both the MARC and

LNQS models. Both the LNQS and MARC results are based upon an elastic-plastic model
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with linear hardening. The hardening is characterized by a tangent modulus of 0.5 times
Young’s modulus. The material parameters and geometry for both finite element models
are as follows:

Young’s Modulus = 1.0e+06

Yield Stress = 1.0e+04

Poisson’s Ratio = 0.3

Sheet thickness, t=1.0

Length, L = 59

Punch Radius, R, = 50.8
Unless otherwise stated, the material properties assumed for the MARC and LNQS
models are the same as those specified above. An isotropic material condition is assumed
for all cases in this study.

As mentioned previously, most sheet metal forming simulations are displacement
driven. That is, the boundary conditions imposed upon the work piece are defined or
constrained by the specified position of the tools. It is understood that some finite element
contact algorithms apply a force imposed by a penalty or lagrangian constraint. But, these
forces are defined ultimately such that the work piece satisfies some geometric contour.
As a prelude to a closer study of the numerical results for this metal forming case, Figure
6.12 is considered. The results confirm that for the metal forming simulations considered
in this study, key material properties (such as Young’s modulus and Tangent Modulus)
have a minimal impact on the distribution of the strain. Of course, the reaction loads, as

mentioned previously may be vastly different. It is important to point out that it is not
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being suggested that the strain distributions are totally independent of Young’s modulus
or the tangent modulus. For example, a material with zero hardening would show
dramatically different results. Because the material is unable to resist deformation at the
“point” where yielding occurs, the other unyielded points will tend to remain unyielded.
The result can be a highly nonhomogeneous strain distribution.

Figure 6.22a shows a plot of the in-plane strain solution for the MARC 11 and
LNQS model. Without friction, the problem is essentially reduced to geometric issues
only. The membrane strain is constant in the x direction, as expected. (The top and bottom
strains may be averaged to obtain the membrane strain.) At the end of the punch stroke,
the sheet metal conforms closely to the contour of the punch from x = 0 to x = 17. Since
the punch radius is constant, the peak strain is also constant from x = 0 to x = 17. The
bending action may be thought of as a mechanism that perturbs the in-plane membrane
strain. On one hand, when the bending causes tension (top fiber), the in-plane strain will
increase. On the other hand, when the bending causes compression (bottom fiber), the in-
plane strain will decrease. Both elements demonstrate an ability to capture bending effects
for this metal forming case. Note that a very small difference in the top and bottom strain
is noticed for most of the punch contact region among the MARC and LNQS solutions.
This small difference is attributed to the difference in contact conditions.

When the sheet metal comes out of contact with the punch, the bending action is
no longer imposed upon the sheet metal. Under such a boundary condition, the sheet metal
is simply stretched between two points. Thus, the deformation mode which assumes the

least amount of internal energy is purely membrane in nature. For this reason, the top and
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bottom in-plane strain solutions tend to converge. The solutions depart somewhat as the
metal comes out of contact with the punch (17 < x < 25). This departure of solutions
suggests a difference in stiffness between the LNQS and MARC 11 models. Limited
information is provided in the MARC manuals with regards to the exact element
formulation for the assumed MARC 11 element. For this reason, it is difficult to ascertain
exactly why the models perform differently in this region. However, one obvious
conclusion can be made with regards to the LNQS solution in this region; the LNQS
solution is incorrect. The top strain cannot exceed the bottom strain for this particular
application. The author has extensively investigated this problem by varying the number of
load steps, convergence criterion, mesh discretization, material _property, element
kinematics. No legitimate explanation was found. This problem remains to be an
unexplained anomaly. This behavior is unique to this particular application. As will be
shown in the Stoughton’s Benchmark problem, the anomaly disappears. With the

exception of the problem described above, the solutions are in good agreement.

6.8 Lee’s Benchmark: Plane Strain Stretch with Non-Zero Friction

In the finite element simulation of sheet metal forming using Coulomb’s constant
friction model, the normal reaction force may be recovered directly or indirectly. The
direct method is to calculate the normal reaction loads at the beginning of each load step.
An indirect method is to calculate the normal reaction force from the transverse normal
stress at the boundary of the element. Figure 6.17 shows the MARC results using both the

force based and stress based models along with the force based LNQS model. Contrary to
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expectation, the LNQS forced based and MARC stress based model results are in very
good agreement, while the MARC force based model results depart significantly from the
other two results. The effect of friction seems to be much less apparent for the MARC
force based model. The solutions can be justified via Figure 6.18 which reveals the actual
nodal friction forces that are applied to the sheet at the conclusion of the last step. Details
of the exact method used in the commercial MARC program to calculate (which may
include smoothing and redistributing) are not available in published literature. Without a
complete understanding of the smoothing techniques employed by MARC in it’s
commercial code, a full explanation of the differences cannot be obtained.

On one hand, the MARC stress based forces seem to be over estimated. The
approximation shown below suggests that the nodal forces based upon the transverse
normal stress should be about one order of magnitude less than that shown in Figure 6.18.

Young’s modulus = 1e+06

Yield Strength =~ 1let04 = o,

an
o, & =
100

Let Friction Coefficient, v = 0.5

Friction Force «« 4,vo,, , which is on the order of 10.
On the other hand, the MARC force based forces appear to be somewhat low when
compared to those of the LNQS. Literature published by MARC explaing the normal
reaction loads are to be used in the calculation of friction forces. Nonetheless, certain
latitude within the framework of the “standard” Coulomb’s model was likely taken (and

maintained as a trade secret) by the developers. Because of the close correlation among
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the MARC stress based model and the LNQS force based model, the MARC stress based
model will be used as the benchmark cohesive model for the remainder of this study.

With the form of the cohesive models established, it is necessary to make a
comparison with the adhesive model. As discussed in the previous sections, either a
cohesive or adhesive model can be used for metal forming with friction. Figure 6.23 shows
the results for both models for Lee’s benchmark case. Very poor agreement is found
among the two adhesive solutions. A study of the output file from the adhesive model runs
revealed that the nodal friction forces applied in the MARC adhesive model were not
constant. In light of the traditional definitions described in the previous sections, this
finding is puzzling. Because of the correlation and lack of insight into the MARC adhesive
friction model, the cohesive model is the preferred friction model to be employed in this
study.

Lee’s benchmark case is considered, now, with friction effects. The material
parameters used by Lee are as follows:

Hardening Coefficient, K = 589 MPa

Elastic Strain, e, = 0.0001

N-value, n=0.216

where: o = K(eo + s,)"

and ¢, is the plastic strain

Coefficients of Friction, u = 0.3 for Lee’s solution

i = 0.5 for LNQS cohesive solution

p = 0.5 for MARC 11 cohesive solution
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From Figure 6.24, it is shown that the MARC and LNQS solutions are in excellent
agreement. As the punch displacement increases, so too does the normal reaction load
which acts upon the sheet metal surface. Coulomb’s model then dictates an increase in
friction force which acts tangent to the metal. In the absence of friction the in-plane strain
will increase due to the stretching action imposed upon the sheet metal by the punch. With
friction, the stretching is encumbered slightly as the frictional forces counter act the
stretching. All three models are successful in capturing this feature. As the metal comes
out of contact with the punch, the friction forces no longer are able to restrain the
stretching motion. For this reason, the maximum in-plane (membrane) strain is reached.
Because Wang’s solution is based upon an implicit formulation with an updated
Lagrangian solution scheme and Coulomb’s constant friction model, Wang’s friction
model is not equivalent to that of the LNQS or MARC model. The solution differences are

attributed to the difference in friction models.

6.9 Stoughton’s Benchmark: Plane Strain Stretch with Zero Friction

Figure 6.25a and 6.25b describe the geometry of the benchmark proposed by
Stoughton. The main difference between Stoughton’s geometry and that of Lee’s is the
flat shape of the punch on Stoughton’s model. The MARC and LNQS solution are
provided in Figure 6.26. Refer to the previous section for material information. Unlike
Lee’s case, though, the punch does not feature a constant radius. The Lee solutions
showed that the peak strain was constant along the entire punch/work piece interface.

However, in Stoughton’s benchmark solutions, the peak strain is confined only to the



85

punch surface with the highest curvature (or smallest radius). The sheet metal near the line
of symmetry is essentially under a membrane load because there is no bending constraint.
Likewise, in the region where the metal is not in contact with the metal, a membrane
solution arises. Perhaps most noteworthy of all is that there is nearly perfect agreement
(unlike the Lee solutions) among the two solutions as the metal comes out of contact with

the die. Very good agreement is seen among the LNQS and MARC solutions.

6.10 Stoughton’s Benchmark: Plane Strain Stretch with Non-Zero Friction

Figure 6.27 provides results for the MARC, LNQS and Wang model. Wang
implemented an implicit, updated Lagrangian model. Reasonable agreement is found
among the three solutions. All three solutions are in nearly perfect agreement where the
punch is not in contact with the metal. Yet, the strain is significantly lower for the Wang
model than it is for the other two. This is possible because the contact region seems to be
smaller for the Wang model. The result for Wang’s model is (with respect to the LNQS
and MARC models) a lower strain from along the punch flat, and a higher strain along the
circular region. These two effects apparently cancel each other out resulting in the strong
agreement with the LNQS and MARC models from x > 11. The solutions are in

reasonable agreement.
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6.11 Thick Section Benchmark: Pinching Boundary Condition

Up to this point, only relatively thin sections have been considered. The proposed
element is primarily intended to be used for cases where three dimensional effects do not
prevail. However, for the sake of research, an extreme case, which stretches the element’s
performance well beyond it’s intended limit is considered. Figure 6.19 describes the
boundary conditions imposed. The length, thickness and modulus are 10, 1 and 1e+06,
respectively. A single point load represents, perhaps, the most extreme case of single
sided contact that a finite element domain can experience in sheet metal forming problems.
Solutions from a MARC model with five elements in the thickness direction and a LNQS
model with one element in the thickness direction are given in Figures 6.20. The region of
study is that directly beneath the applied displacement of -0.04. The transverse effects are
nicely captured by the refined MARC model. The transverse normal strain is relatively
great near the top surface (-12%). However, it begins to decline prodigiously at the center
of the element. The cubically varying solution finally settles to a small value of about -
0.75%. The LNQS solution, on the other hand, poorly represents the actual solution. The
smallest strain is at the top while the greatest is at the bottom. The linearly varying
solution bares witness to the fact that the LNQS model is not appropriate for use in cases

where transverse effects, such as those shown in Figure 6.20, prevail.
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Figure 6.1:

Cantilevered Section Under Axial Tip Load
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Figure 6.3:  Simply Supported Section Under Uniform Transverse Distributed
Load
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Figure 6.6:  Cantilevered Section Under Transverse Tip Load
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One point integration

Two point integration

Three point integration

Four point integration

Exact integration

Figure 6.15:
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CALCULATED STIFFNESS FOR BAR ELEMENT
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For plasticity analysis of the two noded bar element, Bathe (1982)
shows that for certain stress distributions, increasing the number of
integration points does not always increase the accuracy of the
plasticity model.
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Figure 6.19:  Section Under Double-sided Transverse Pinching Load
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Figure 6.21a: Geometry for Lee’s Benchmark Problem.
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Figure 6 21b : Final Mesh for Lee’s Benchmark Plane Strain Stretch Problem
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Figure 6 22b : Final Mesh for Lee’s Modified Benchmark Plane Strain Stretch Problem
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Figure 6.25a: Geometry for Stoughton’s Benchmark Problem.
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Figure 6 25b : Final Mesh for Stoughton’s Benchmark Plane Strain Stretch Problem




117

RN = =

#0+81=0A ‘90+9G°0=Ue}3 ‘Z u| Wewsaje | ‘x U} SUSWaI8 0S ‘}'8E=1 ‘6'0=H
'90+81=3 ‘We|qold Wewyouag SUoYBNOIS 0} UOROLL INOUYM YOJBNS UIRAS BUB|d :9Z'9 8inBi4

8l 9l 14 43 ol 8 9 L4

® O N~ © v € o

T
- o

€ M N = O
- - - - -

(je/w doy) uieng sueid-u %



118

Ll

$0+31=0A '90+8G'0=UE}3 'Z U} JuBWA|a | ‘X U SjuBWale 0 '} '8E=T '6'0=H '90+0}=3
‘wajqoid Mewyoueg s,uolyBnojs Joj UoKoU S,QWIOIN0D INOUYM YDJRNS UIBNS BuB|d :LZ'9 ainbiy

oL L. 4 €l (43 13 ol 6 8 L 9 S v €

k3
=)

uiensg sueiquiey suejd-u| %

zl




Chapter 7

Conclusions

As demonstrated in the previous chapters, the first step in validating a new finite
element is the academic test; a series of very simple tests such as axially, or transversely
loaded members under small loads is in order. The results from such simple tests can be
compared withlreadily available analytical solutions. Eventually, large displacements are
introduced which may require a previously accepted numerical solution from another
model. However, for sheet metal forming, the element must be evaluated under sheet
metal forming conditions for legitimate element validation. An established and proven
contact model must be used. The solution algorithm has to be robust and reliable.
Effective post-processing is essential. To this end, a very large portion of the research
presented in this dissertation has been dedicated to simply establishing the software
infrastructure necessary to evaluate the proposed element under realistic sheet metal
forming boundary conditions.

Reliable, useful and efficient means of evaluating a new finite element formulation
is often times more difficult to obtain than is the actual new formulation itself. Indeed,
such was the case for this study. The research described in this thesis has proven out a
method to efficiently evaluate new finite element formulations. The LNQS model, with
geometric and material nonlinearities, has been cast into a8 FORTRAN subroutine which is
used interactively in a powerful commercial model. New formulations can be implemented

quite efficiently by simply modifying the LNQS source code.
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Rarely will all of the initial goals of an investigation be fulfilled as planned. The
research carried out by the author was no exception. A full understanding of the
interaction among the subroutine and the MARC main program is still yet to be realized.
This problem has certainly made it more difficult for the author to make meaningful
contributions to the finite element technology base. Nonetheless, some contribution was
made, the goal of establishing an infrastructure, limited as it may be, has been
accomplished. Additional research in this area is now more approachable and inviting than
ever before. The fruits of this research have made it possible for a new investigator to
spend much less time developing infrastructure and more time evaluating their elements
and applying creativity to make improvements. From this standpoint alone, this research
has been a success.

As outlined in the introduction, there are numerous finite elements that are
sufficiently accurate and practical for a limited range of sheet metal forming applications.
The Belytschko-Tsai shell element is a good example. The LNQS and CNQS elements
were not introduced to compete with such elements as the Belytschko-Tsai element which
has proven to be successful for very large models such as automotive door frame
stamping. The strength of the proposed elements is revealed in smaller models which can
afford more detailed descriptions of transverse normal strain and shear stress.

For small deformations, the proposed elements are shown to be accurate. Shear
and Poisson’s locking issues have been resolved. Because of the assumed transverse stress
assumption, the transverse normal strain features a through-thickness interpolation which

has the same order of variation as the in-plane normal strain. This relationship allows for
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isochoric deformation. These features make the LNQS and CNQS elements field
consistent. Thus, a reduced or selective integration procedure is not required.

For large deformations, the LNQS and CNQS elements are shown to be accurate
and reasonably accurate, respectively. The deformation imposed upon the element mesh
for the large deflection studies were large compared to what the elements would typically
experience in sheet metal forming applications. Only under severe deformations did the
CNQS and LNQS solutions significantly depart. Both elements exhibit the ability to
exactly satisfy the shear transverse shear strain (or stress) at the top and bottom of the
element surface. At element surfaces, when friction is zero or non-zero, the transverse
shear strain is zero or non-zero, respectively. This is important when the order of shear
strain approaches that of the normal strains. The shear strain model takes advantage of the
MARC user subroutine to obtain appropriate values for the shear traction. This feature is
unique to the LNQS and CNQS elements. The advantage of this feature is that not only is
the nodal equivalent loads vector modified (in response to tangential friction forces), but
the shear strain model is also modified in order to more accurately simulate the transverse
shear strain approximation.

Two plane strain metal forming problems were studied. The first was for and
frictionless case. Overall, good agreement was found among the LNQS and MARC
models for frictionless cases. In particular, the proposed models were able to capture the
membrane and bending effects quite well. Reasonable agreement was found among the

LNQS, MARC and experimental results for cases with friction. When friction was present,
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the LNQS model was able to satisfy the shear traction exactly at the top and bottom of the
element.

With their shear strain models and unique application to the MARC program, the
LNQS and CNQS elements can play an instrumental part in simulating various metal
forming processes which involve boundary conditions with and without friction. An
infrastructure has been established in order that scientists may consider the MARC
subroutine procedure a viable option for both evaluating academic-type elements and

solving practical metal forming problems encountered in industry today.




Chapter 8

Future Work

Below is a short list of possible follow-up research activities that would be appropriate:

Continue development and refinement of MARC subroutine infrastructure. Determine
methods of obtaining the global normal reaction loads directly from the main program.
Determine how to implement a three dimensional version of the LNQS and CNQS
element into the MARC subroutine.

From a material model standpoint, make a detailed study of the advantages of a more
accurate strain field description within the element. Compare the LNQS, CNQS and
various commercially available elements.

Make a detailed study of what the optimum definition of the shear traction at the top
and bottom of the element should be (Coulombs model currently being used).
Compare the explicit version of the LNQS and CNQS element to the implicit version.
Study other types of metal forming such as forging or rolling.

Apply the LNQS and CNQS formulation to a time dependent case.

Investigate the issue of associated or non-associated flow rules that Stoughton
addresses.

Apply a polycrytstal-based failure criterion to the LNQS element.

Apply a stress-based failure critertion to the LNQS element.

Apply an energy-based failure criterion to the LNQS element.

Investigate the contributions of bending to material failure in sheet metal forming.

Apply proposed post-process stress models to draw bead load boundary conditions.
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APPENDIX A

All details regarding the subroutine implementation can be found in the MARC user
manuals. The input decks are in the K6.2 version format. However, these input decks can
be read into the newest version (K7.2) without any errors. The following flow diagram is
offered to explain the general flow of information for the program.

K6.2

Subroutine USELEM

Global Displacement Vector

>

|Calculate Element
Retum K, R and F Tangent Stiffness (K),
Int. Force Vector (R)
and Nodal Equivelant
Loads Vector (F)

The source codes, “2d.f’ and “3d.f’, and also the input decks, “mlllee.dat” and
“m1 1tangmod.dat” can be found in the following directory:
/home/d6/uc/smith/angela
To execute compile and execute the program, the following command is required:
launch -j (inputfile) -u (subroutine)
where the inputfile.dat and subroutine.f are the input deck and subroutine names,
respectively.
and “launch” is a unix alias for ‘/path.../marck62”
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