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ABSTRACT

SOLID FINITE ELEMENTS FOR SHEET METAL FORMING SIMULATION

By

Lorenzo M. Smith

Two finite element formulations, suitable for sheet metal forming simulation, are

proposed. The LNQS formulation features a linear and quadratic through thickness

variation of the normal and shear strain, respectively. The CNQS formulation features a

cubic and quadratic through thickness variation ofthe normal and shear stain, respectively.

The LNQS model exhibits the ability to deform without the consequences of shear,

Poisson’s or volume locking, while the CNQS model has been shown to exhibit some

locking mechanisms due to an inconsistent shear strain field. The proposed elements

exactly satisfy the shear strain (and stress) at the top and bottom of the element. These

features, therefore, help qualify the elements to be used in sheet metal simulation

procedures where shear strain is appreciable in the through-thickness direction. The LNQS

in-plane strain due to both bending and membrane efi‘ects is accurately captured for plane

strain metal forming cases with and without fi'iction. A system of evaluating and validating

the elements, which involves the introduction of a FORTRAN subroutine within a

commercial finite element software main program, has been established. In general, good

correlation is found among the proposed model solutions and those found in literature.
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Chapter 1

Introduction

1.1 Introduction

Historically, the process of forming sheet metal into useful tools and objects has

been carried out by highly experienced and accomplished craftsmen. The central aim of

their task is quite straight forward; they must economically deform the metal into

firnctional objects having an appearance pleasing to the eye. However, this process is not

always straight forward. For centuries, craftsmen have successfully carried out this mission

without a mathematical understanding of the mechanics associated with sheet metal

forming. The spectacular work of these craftsmen was, therefore, attributable to their

intuition based upon decades of trial and error. Because of this “sixth sense”, their work

is more accurately and appropriately defined as an art rather than a science. Indeed, they

were artists. Even today, elements of both the art and science of sheet metal forming

coexist. In today’s automobile industry, for example, engineers draw upon the expertise of

the tool and die makers to help direct the design of automobile components. For many

years, the marriage of science and art in the sheet metal forming industry has been

formally recognized by many as a necessary relationship. Where science fails, art must

prevail; where art fails, science must prevail.

Today, however, there is an enthusiastic campaign to rely exclusively upon the use

of computer models, to determine if a particular sheet metal forming process can be



successfirlly employed. Millions of dollars and decades of research have been devoted to

this goal. Why? Although at first glance it may seem unreasonable to tamper with the

success of the past, it is necessary. The middle 20th century industrial climate brought

forth some harsh facts. First, there was less interest from young novices in the art of sheet

metal forming. Thus, the pool of experienced craftsmen was not being replenished.

Second, there was less lead time for production than there was in the past. Consequently,

the artists had less time to find the optimum design parameters. Third, because of cost,

weight and safety constraints, new materials were being introduced more ofien. The

artist’s expertise in successfirlly forming a particular metal was acquired over years of trial

and error. This was no longer practical in the increasingly fast paced industrial climate of

that time. By the mid 1950’s, industry slowly began to usher aside its once seemingly

immovable inertia of metal forming practice. A new era was born. Today, this new era is a

witness to industry’s dependence upon computer simulation of sheet metal forming. Since

the birth ofthis new era, there has been an intensifying effort by the research and industrial

community to improve the capability of modeling the metal forming process.

An understanding of the fundamental concepts of the micro and macromechanics

associated with metal forming has been realized for some time. However, the computing

tools, for many years, were not capable of efficiently accommodating the size and

complexity of many models. It was only since the early 1970’s, with the advent of more

sophisticated computers, that scientists were able to simulate relatively complex sheet

metal forming processes in a more practical manner. Procedures such as the finite element

method then became more common avenues to solutions. Researchers took full advantage



 

of the available tools of the time to model the sheet metal forming process. Today, with

the availability of workstations and supercomputers, new horizons have been opened to

scientists for exploration. Nonetheless, the envelope of this new research domain has been

pushed to its limit once again. As the pattern over the past several decades suggests,

researchers find the complexity and size of their models being dictated by the availability

of computing power. The real challenge to researchers is to develop a theory that can be

cast into a computer model form that is both accurate and practical.

1.2 Background

The finite element method is the most popular and arguably most powerfirl means

of modeling the sheet metal forming process. Because of the kinematic assumptions used

in the formulation of a finite element, it has been that finite elements should be classified as

structural elements by definition. However, for the sake of discussion, the names of three

categories of elements will be used in the vocabulary of this study; they are membrane,

shell and three-dimensional (3D).

Starting in the late 1970’s, membrane elements emerged as the first industrially

usefirl elements for sheet metal forming simulation (Wang, 1978, Toh, 1985, Nakamachi,

1988, Huang, 1994). VVrth the exception of super-plasticity sheet metal forming (Argyris,

1984, Bellet, 1987, Bonet, 1990), the success of the membrane elements has been

restricted to thin cross section applications because of the elements inability to model

strain changes due to bending. In an effort to model bending effects while simultaneously

preserving the simplicity of the membrane element, Yang (1995) proposed a bending-



 

energy-augmented-membrane (BEAM) element. By introducing a rotational energy

expression in terms of only translation degrees of freedom, Yang was able to introduce an

element having the appearance of a membrane element, yet possessing the ability to

simulate resistance to bending. The computational results given in Yang’s paper were

used to compare difi‘erent solution algorithms; the BEAM element was essentially a

“dummy" element. Accordingly, a rigorous assessment of the BEAM element’s

performance is not available. In introducing a shell element formulation, Wang (1987)

exposed the short comings of the membrane element with regards to sheet metal forming

applications. Wang explained and demonstrated the membrane element’s inability, and the

shell elements ability, to model variations in the in-plane strain with respect to the

through-thickness coordinate. Many other shell element contributions have been made;

those introduced by Belytschko (1981), Lee (1991) and Boubakar (1996) are just a few

to be mentioned. These elements have proven to be quite useful in modeling a wide variety

of sheet metal forming processes. In particular, Belyschko’s element has been very

successful because of it’s combined efficiency, accuracy and robustness.

In spite of the many advantages of the shell element, there are still many who are

not satisfied with the shell for a variety of applications of sheet metal forming; the

traditional shell cannot model double sided contact, for instance. Rebello (1990) and

Gontier (1994) point out needs for explicit and accurate modeling of thinning in order to

improve the workpiece/tool contact model. So, the relentless call for more improved

element performance continued. In light of the double sided contact concern, one

inclination may be to consider a 3D element. Although, the 3D element tends to feature



more degrees of freedom than does the shell element, the 3D element advantages in many

cases may justify the added expense ofmore degrees offi'eedom.

One challenge is to find a 3D element that comparably performs with the shell

without using multiple 3D elements through the thickness of the moderately thick sheet

metal domain. Using an enhanced assumed strain formulation, Sirno (1990,1992,l993)

was able to overcome that challenge. Korelc (1995) introduced a 3D element for small

strain and thin cross sections. Soon after, Wriggers (1996) unveiled a 3D element which

shows great promise for thin cross sections and large strain conditions. A variety of other

3D elements proposed for sheet metal forming simulation has been suggested by others

(Massoni, 1989, Onate, 1990, Oh, 1980, Butcher, 1994, Pian 1984,).

It should be obvious that there are advantages and disadvantages to the use of shell

or 3D elements. Shimizu (1991) may have been the first to attempt to combine many of

the advantages of the membrane, shell and 3D element into one element suitable for sheet

metal forming. The formulation features a four noded membrane element having the

outward appearance ofan eight-noded brick. The brick topology is introduced in order to

enhance the contact model and to model thickness changes more accurately. The idea is

very similar to that proposed in the work of Averill; that is, the structural element is

disguised as a solid element. A trilinear interpolation is assigned to each transverse degree

of fieedom. This most simple interpolation does not allow the element to model a

quadratic shear stress variation through the thickness as accurately as some of the

previously discussed elements. Furthermore, because the dilatational energy is integrated

independently of the deviatoric energy, the incompressibility constraint is enforced by the



penalty method. Therefore, to calculate the pressure required to maintain the

incompressible behavior, an additional calculation involving the divergence of the velocity

needs to be made. Finally, Shimizu’s solution is obtained via an explicit time integration

scheme in conjunction with an updated geometry approach. Shimizu’s numerical results

were in qualitative agreement with those from experiment.

In the spirit of Shimizu’s intentions, a new thrust has been made in order to

introduce an even more attractive element for sheet metal forming. A quest for improved

shear stress and normal strain accuracy in a solid element suitable for metal forming using

a total Lagrangian, implicit model is the primary goal of this thesis. A secondary focus is

to obtain the primary goal by establishing a software infrastructure that can be used to

study new finite elements for metal forming applications.

To this end, an excursion into the area of finite elements for composite elements is

taken. Not unlike finite elements for sheet metal forming, overcoming the challenges with

finite elements for composite structural analysis is also a formidable task. When material

delamination is to be modeled, a nonlinear material model must be developed for elements

for composite analysis. For certain applications such as aircraft skin behavior under flight

conditions kinematic nonlinearities must also be taken into account. Additionally, when

transverse squashing occurs in composite structures, a nonlinear contact condition may

possibly arise within the laminate structures ofthe body.

For composite elements, accurately modeling the discontinuous in-plane normal

stress and piece-wise continuous transverse shear stress, while maintaining some

reasonable level of formulation simplicity, is a monumental challenge. These challenges



have been addressed by many (DeSciuva 1987, Reddy 1984, Averill 1996, Cho 1997,

Aitharaju 1997). One issue that is addressed in the work of Averill is that of Poisson’s

locking. The remedy used to eliminate Poisson’s locking in composite elements is the ideal

remedy to prevent volume locking for metal forming elements. Details of the locking

behavior will be discussed in detail in Chapter 5. As indicated above, a critical capability

for most elements in composite analysis is that which provides an accurate simulation of

the shear stress through the thickness. By introducing shear traction degrees offi'eedom at

the nodes, Averill satisfied the shear traction exactly at the top and bottom of the element,

while allowing a higher order variation through the thickness. This feature is remarkably

well suited for metal forming applications because of the complex fiictional boundary

conditions imposed upon the sheet metal by the forming tools. Furthermore, another

consequence of the remedy used for Poisson’s locking is a form of the transverse normal

strain which is useful in modeling the efi‘ects of squashing. Details ofthis feature are given

in Chapter 5. It can be legitimately argued that the development ofmetal forming elements

is a natural extension of the development of the type of composite elements developed by

Averill. Averill’s work in composite elements has served as a catalyst for the introduction

of a more accurate description of the transverse shear strain and transverse normal strain

terms in the context of a 3D element for sheet metal forming applications.

Two new finite element formulations will be proposed in this thesis. Both elements

have only the standard translational degrees of fieedom at each node. Accordingly, the

proposed elements lack some ofthe kinematic sophistication found in many shell elements,

as discussed in the previous sections. In the early development ofthe proposed elements, a



special form of shell kinematics was considered. However, the price for including shell

kinematics was unacceptably high; additional rotation degrees of freedom had to be

included, and some form of constraint (either penalty or Lagrange multiplier) used to

relate the transverse displacements and rotation terms had to be imposed. In an effort to

present the proposed elements in the most convenient, unintimidating and useful way, it

was decided that the shell kinematics would not be included.

The first proposed element features normal strain terms having a linear variation in

the through-thickness direction and transverse shear strain terms having a quadratic

variation in the through-thickness direction; this element will be referred to as the LNQS

(linear normal, quadratic shear) element for the remainder of this thesis. The LNQS

element is most suited for thin to moderately thick cross sections because of it’s linear

through-thickness variation of the in-plane normal strain. It is worth noting that shell

elements with the same through-thickness variation ofthe in-plane normal strain have been

used extensively and successfirlly in automotive sheet metal forming simulation. The

quadratic through-thickness variation ofthe transverse shear stress is necessary in order to

exactly satisfy the shear stress at the top and bottom of the element. As will be discussed

in Chapter 2, the shear stress is ofien included in the yield function. In thin to moderately

thick sheet metal forming analysis, the shear stress is generally several orders of magnitude

less than that ofthe normal in-plane stress; the exception is when the curvature is extreme

or when double sided contact conditions impose severe shear tractions. In such cases, an

accurate shear stress model is important.



The second element features normal strain terms having a cubic variation in the

through-thickness direction and transverse shear strain terms having a quadratic variation

in the through-thickness direction. For the remainder ofthis thesis, the second element will

be referred to as the CNQS (Cubic Normal Quadratic Shear) element. The derivation of

the CNQS element formulation involves an initial assumption associated with shell

kinematics. However, as Chapter 6 reveals, a critical omission of the rotation terms allows

the CNQS formulation to take the form of a solid element with only translational degrees

of freedom. With a through-thickness cubic variation of the in-plane strain, the CNQS

element has a more realistic in-plane strain model than that ofthe LNQS element. Like the

LNQS element, the CNQS element also can model the shear stress with more accuracy

than the typical thin shell element.

Some preliminary information needs to be presented prior to the introduction of

the proposed element formulations. The three nonlinearities present in most sheet metal

forming operations (ie. kinematic, material and contact) are discussed in a general sense in

Chapter 2. Care is taken to review how the nonlinearities arise and how they can be

handled in a finite element model. Details of the two major integration techniques (the

implicit and explicit method) are discussed.

Chapter 2 also includes a brief discussion of contact and fiiction models. The

contact nonlinearity has two components. The first is the normal component. As the sheet

metal slides over the tool, portions ofthe sheet metal come in and out of contact with the

tool. This change in boundary condition obviously afl‘ects the normal stress, but also the

shear stress if fiiction is non-zero. Therefore, the second component of the contact
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nonlinearity arises; this second component is due to fiiction. Consideration of the

appropriate models is made in Chapter 2.

An element formulation is usefirl in the industrial environment when it is cast into a

finite element model and used in finite element software package which offers a powerfirl

pre and post processor. To this end, the LNQS and CNQS finite element models have

been defined in a FORTRAN subroutine which is called by the commercial finite element

software MARC. Miscellaneous documentation is included in Appendix A

In Chapter 3 and 4, details of the LNQS and CNQS finite element derivations are

provided. The elements share the same topology and degrees of freedom. Only the

interpolation ofthe degrees offreedom is different among the two elements.

In addition to defining the finite element models, Chapter 5 is used to highlight the

issues of locking mechanisms. The root of the potential shear, Poisson’s and volume

locking will be exposed and eliminated. A thorough review of locking is essential in most

any new finite element formulation. Recall that the entire model is based upon assumed

displacement (or stress/strain) fields within the element. These assumed fields are a

manifestation of the necessary compromises that the scientist makes in order to mimic

reality more precisely. In the end, the irnposture of reality will always be convicted of

some weakness. Many locking weaknesses inherent to new element formulations may be

avoided by either underintegrating the element or strategically manipulating certain strain

fields. This is tantamount to mathematically “turning one’s heads to the problem”.

Nonetheless, the literature has shown in many cases that this works quite well!



ll

The benchmark problems are introduced in Chapter 6. A deliberate and methodical

assessment of the element is made by first considering simple academic cases, such as

cantilevered sections under transverse and in-plane loads. Much information can be

extracted fi'om such a study, as will be shown in the results. Some simple academic double

sided contact cases are also studied. In these studies, the fiiction model is assessed.

Finally, a plane strain sheet metal forming simulation with and without fiiction is carried

out. The LNQS and CNQS solutions will be compared to MARC and experimental data.

The thesis will be concluded with a summary of the results and future work in Chapter 7

and 8, respectively.

 



Chapter 2

Mathematical Preliminaries

In general, solving a set of nonlinear equations in the context of a finite element

model requires three basic steps. The first is to, upon defining the equilibrium equations,

specify the form of integration necessary to obtain the desirable solution (usually

displacement). There are many questions that need to be answered when approaching this

first step. Are the material properties deformation rate dependent? If so, can this

dependence be ignored? Are inertial effects involved? Are there any heat transfer

considerations that need to be made? How important is accuracy? How important is

speed? Can the nonlinear terms be formulated in a practical manner? Answers to all of

these questions can be used to help determine the appropriate technique of integration of

the equilibrium equations. Direct integration procedures are common in many finite

element programs. The basis of direct integration is two fold. First, a solution to the

equilibrium equation is sought for a specific time interval. Therefore, within each time

interval, the objective is simply to solve a static equilibrium set of equations which may

include inertia and damping effects. Second, a variation of the displacement, velocity and

acceleration within each time interval is assumed. The assumptions of such variations

dictate accuracy, stability and efiiciency. Two types of direct integration methods will be

discussed in subsequent sections.

Once the integration of the equilibrium equations is established, a reference fi’arne

must be defined. Again many questions need to be answered. Does the problem involve

large strain or large rotations, or both? Does the deformation fit the mode of fluid or
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solid? Once such questions are answered, a determination of the model formulation can be

made. The equilibrium equations can be defined in the initial flame or current frame. These

considerations are discussed in subsequent sections.

Finally, once the integration and frame of the equilibrium equations are defined,

then a solution procedure must be established. Since the equilibrium equations are

generally nonlinear in nature for metal forming problems, an iterative sohrtion scheme

usually is necessary. The firll Newton-Raphson solution scheme is a common method. This

method is used in the currently proposed model. Chapter 2 will include more detailed

explanations of direct integration, reference frames, Newton-Raphson iterative solution

procedure and also the nonlinear aspects ofthe material and contact models.

2.1 Explicit and Implicit Methods

For the explicit method, a solution to the displacement vector at time, t + At, is

sought based upon the equilibrium conditions at time , t. Ifthe central difference method is

assumed then equilibrium equations take on the following form:

where: A7 , 5 , I? are the mass, damping and stiffiress matrices, respectively.

(7 and E are the displacement and external load vectors, respectively.

For the implicit method, the solution for the displacement vector at time, t + At, is sought

based upon equilibrium conditions based upon time, t + At. If the Houbolt method is

assumed then equilibrium equations take on the following form:



(fifi+%6+fi)fi”m

= Rt+Ar +[i21g+_3_@)0" _(—42—1t7+—3—-C‘)l7'—A‘ +[—i2—A~l +—l—C)l7t_2N 2.1-2

At A! A; 2A: Ar 3A!

It is noted that in the implicit method, 2.1.2 can be utilized even when the damping and

inertia matrices are neglected.

Two schools of thought dominate the issue of which solution (from implicit or

explicit means) is superior. One school of thought embraces the implicit form because,

from an equilibrium standpoint, it is more reliable and rigorous at each step. However,

convergence is not always guaranteed. The other school of thought supports the explicit

form because, in spite of the fact that it is less rigorous from an equilibrium standpoint at

each step, it has much more favorable convergence properties, provided that the

appropriate time step is assumed. Ultimately, the nature ofthe application should drive the

decision. Yang (1995) has shown that for various cases, both approaches provided

comparable solutions.

2.2 Stress/Strain Measures

As mentioned previously, there is an array of fi'ames from which the stress and

strain (or equilibrium) can be defined. One side of the array is the spatial description,

where the stress and strain measures are defined with respect to the current configuration.

One advantage to the reference of the current frame is that because the geometry of the

element is updated, some of the higher order terms in the strain measures nwd not be
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included. One form of this approach is called the “updated Lagrangian method”.

Additionally, the stress and strain terms correspond to the true stress and strain. The

spatial description ofthe equilibrium equation is given as

aw +f, = 0 2.2.1

where: 0,]. is the true or Cauchy stress acting on the deformed body

under external traction.

f, is the body forces vector

The energy conjugate to the Cauchy stress is the Almonsi strain.

On the other side of the array is the material description. In this description, the

stress and strain measures are defined with respect to the original configuration. Solution

accuracy can be achieved if the appropriate higher order terms in the strain tensors are

defined. The stress and strain correspond to the engineering stress and strain. Typically

this approach is called the “total Lagrangian” approach. Care must be taken when

comparing the computed solutions from that of the total Lagrangian model to

experimental data because of the lack of physical correspondence between the

mathematics and practice. The equilibrium equation is given as

7w +f, =0 2.2.1

where: r, is the 2nd Piola Kirchhoff stress acting on the undeformed body

The energy conjugate to the 2nd Piola-Kirchhoff stress is the Green-Lagrange strain. The

total Lagrangian method is used for the current model.



2.3 Newton-Raphson Solution Procedure

Defining the Newton-Raphson solution procedure for a nonlinear function with

one independent variable is straight forward. However, the Newton-Raphson solution

procedure, for a functional can be somewhat less straight forward. Therefore, it is worth

the time to begin the introduction of the general Newton-Raphson method by considering

the following functional.

F(e)=3(ic'o+ er7)=0 2.3.1

where: 3 is an arbitrary fimctional such as an expression for the potential energy

2,, is an arbitrary position vector in space

17 is an arbitrary displacement vector in space

e is an artificial parameter used as a vehicle for difi‘erentiation

F is some function of e

A Taylor series expansion ofF about e=0 is given as

dF 1 d’F
F(E)= F(0)+fie=o E+§EL:O 62 +.... 2..32

Using 2.3.1 in 2.3.2 and preserving only the first order terms yields

~ ~ ~ d ~ ~
Sixo+ eu)-3(xo)~ed—J 2(xo+ eu) 2.3.4

5:0

The right hand side of 2.3.4 is called the directional derivative of 3 at x0 = 0

in the direction of i7 and is written as

0307 )[a]~ei{ :(r + at?) 2.3.5
o d e no °

Setting 6 equal to unity and using the notation of 2.3.5, 2.3.4 becomes
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:(SEO +r7)z 21(20)+D3('fo)[z7] 2.3.6

Then fi'om 2.3.1, 2.3.6 becomes

DSKYOXE] = {(350) 2.3.7

From the above equation, the general Newton-Raphson procedure can be expressed as

DSKF,)[17,H] = —21(Y,,); in, = if, +17, 2.3.8

In the context of a finite element model, the terms on the lefi hand side of the above

equation are identified as the tangent stiffness matrix and displacement vector.

1 2.4 Material Model

For sheet metal forming analysis, the material model is nonlinear in nature. It may

vary with stress/strain magnitude, strain path, temperature and many other factors. This

section will introduce the three components of the material model used in the LNQS and

CNQS element models; they are yield surface, hardening law and flow rule.

2.4.1 Yield Surface

The yield surface is a fimction, commonly expressed in stress space, which defines

the boundary between the elastic and plastic deformation modes in a material. Most yield

surfaces are described by simple polynomials as shown in Figure 2.1. The appropriate

order of the polynomial for sheet metal forming analysis is debatable. For an excellent

account of how the shape of the yield surface afi‘ects the forrnability of sheet metal, the

reader is referred to Barlat ( 1987). The most common yield surface used in industry for

sheet metal forming simulation is Hill’s 1948 anisotropic surface (Hill, 1948). Although
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there is little experimental evidence that the Hill 48 model is accurate (Hosford, 1993), it

is used extensively in many finite element programs. In fact numerous studies (Barlat,

1991, Bramley, 1978) have led to the conclusion that the Hill 48 yield surface is

inadequate for many sheet metal forming applications. Barlat, in fact, presents an

argument which supports the use of a higher order yield surface, referencing solutions

produced by polycrystal plasticity models. In contrast to such perspectives, Stoughton

(1997) presents a formidable case which, indeed, supports the use of the Hill 48 model if

(and only it) the yield surface is not assumed to be equivalent to the plastic potential. One

of the more simple yield surfaces, the von Mises yield surface, will be used in this study.

The von Mises yield surface, F, which is given below, is limited to isotropic material

conditions.

1

F =|:%(0'1—02)2 +%(0‘2 —0'3)2 +%(0'3 —o,)2 +30: +30: +30%]: —a, 2.4.1.1

where subscripts 1,2,3 refer to the normal stress

subscripts 4,5,6 refer to corresponding shear stress

and a, is the yield strength in uniaxial tension

2.4.2 Flow Rule

The “flow rule” is the expression that governs the relationship between the strain

and the stress state during plastic deformation. It may be derived through plastic work

considerations (Mendelson,1968) or by the introduction of a plastic potential function

(Melan,1938).

69(3)
f=—d1 2.4.2.1

g as
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where: Q is a plastic potential fimction of stress, 5

d). is the magnitude ofthe plastic strain increment, d5 .

Ifthe plastic potential and yield surface are equivalent, then the flow rule is characterized

as “associated”. Bland (1957) showed that the plastic potential and yield surface must be

the same function from a theoretical standpoint. However, Stoughton (1997) poignantly

resurrects the old disclaimer put forth by Hill in 1948; there is little or no experimental

evidence which shows that the yield surface and plastic potential are necessarily the same

function! Yet, many inconsistencies between experimental data and analytical sohrtions

based upon the Hill 48 theory have been attributed to the inadequacies of the Hill 48

model. Much of the blame has been directed towards the Hill 48 yield surface while little

attention has been paid to the fact that an associated flow rule may not be appropriate.

Stoughton lobbies that if a certain non-associated flow rule is used, then the alleged Hill

48 inconsistency would not be seen. Hence, credence to the Hill 48 model for sheet metal

forming simulation can be established, according to Stoughton. What argument is one to

accept? This issue is recognized. However, it is not the primary focus of this dissertation.

For convenience the associated flow rule in conjunction with the Hill 48 (von Mises model

is a special case of the Hill 48) model yield surface will be used as a basis in a plasticity

model for the proposed element.

2.4.3 Hardening Law

Of course, the mechanics of plastic flow can be precisely described by referring to

the micro-mechanics or crystal mechanics of the metal. In this arena, such concepts as

 



20

crosspslip, latent hardening, twinning, and preferred slip systems come into play. A

detailed discussion of polycrystal mechanics of sheet metal is beyond the scope of this

study. Nonetheless, it is worth noting that the interaction among the crystals of the metal

as plastic defamation occurs dictates not only the shape of the yield surface, but the

evolution ofthe yield surface centroid as well. A description of the yield surface evolution

is more commonly referred to as hardening of the yield surface. As illustrated in Figure

2.2a and 2.2b, there are two major types of hardening. The first type, kinematic hardening,

involves a “rigid body type” of change in the yield surface in stress space. The second

type, isotropic hardening, involves a “dilatational type” of change in the yield surface in

stress space. Neither type is able to closely capture details ofthe actual hardening behavior

of the metal. The true hardening description is likely some combination of the two as

Dafalios (1982) points out. For many sheet metal forming problems, the elastic strain

response is approximately one order of magnitude less than that of the plastic response.

The following rough vahies for modulus and yield strength are given for example

(Callister, 1997):

Modulus (MPa) Yield Strength (MPa)

Aluminum 69,000 400

Steel 207,000 1,500

From the above values, a simple calculation shows that the elastic strain for aluminum and

steel is approximately 0.5%. This is a significant amount of strain when it is noted that the

maximum strains generated in the current study are about 10%. One consequence of a

rigid plastic model, therefore, is that it will tend to overestimate the compliance of the

structure. The current proposed material model assumes an elastic-plastic response.



21

Strength increase due to hardening can be significant for many metals. Therefore, an

overestimation of the structural compliance can also be attributed to the zero-hardening

assumption if a rigid-perfectly plastic model were to be used. For this reason, a linear

hardening model is assumed for the current material model. In theory, the slope of the

tangent modulus can be varied from zero to the initial elastic modulus in numerical

models. The transition from the elastic to plastic regime is, in general, smooth in stress

strain space in metal forming practice. On the contrary, the proposed elastic-plastic

numerical model imposes a rather sharp transition. This is particularly true when the

tangent modulus is defined to be less than, say, one half that of the elastic modulus. In

such cases, convergence or accuracy problems are likely. Numerous techniques have been

proposed to circumvent such numerical dificulties. Cook (1989), for example, suggests a

“corner rounding” technique where the current modulus is some function of the previous

modulus. Such features have not been implemented into the current model. For this

reason, some convergence difiiculties have been observed for cases of very sharp elastic-

to-plastic transitions. Figure 2.3 describes a theoretical stress-strain model for a uniaxially

loaded member.

2.4.4 Elasto-Plastic Relation

Using the flow rule and yield surface, the stress may be related to the strain in a

convenient form which resembles the linear stress-strain relation. The difference is that the

components of the material matrix are fimctions of stress and hardening parameters
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(Zienkiewicz, 1969). To derive the elasto-plastic matrix, the total strain increment is

simply defined in terms of its elastic and plastic incremental components as follows:

f, = d2, +dEp 2.4.4.1

Next using the elastic and plastic strains, the total strain is defined in terms of an inverted

linear material matrix and the flow rule, respectively.

d”, = are +gar 2.4.4.2

In 2.4.4.2, the plastic potential function, Q, is assumed to be the yield function, F. (This is

a statement of the associated flow rule.) For plastic deformation, the yield function, F, is

defined to be zero. Therefore, :5 rs equal to zero. Accordingly, we have in addition to

2.4.4.2,

d? (T a7 a:

——d +——d +—d +...——d =0
50, 0'1 50,2 0'2 $3 03 6k, Kr

where: x is a hardening parameter which represents a change in stress due to either

kinematic or isotropic hardening. Ifno hardening is assumed, then x is set to zero.

or

a T
{E} d{3} + AA = 0 2.4.4.3

67 l
h :A=—d-—were 0hr).

Equations 2.4.4.2 and 2.4.4.3 can be combined and written in matrix form as (for two

dimensions)
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Inverting 2.4.4.4 yields

d5=5¢dE 2.4.4.1

where:

—1

.. ~ ~ a? a? ’ 5!? ’~ 6F

C = -C— — A — C— 2.4.4.2

... C {eiiaeifl +{65} {45”

where: C is the elastic material matrix

A is the plastic modulus of a uniaxial stress-strain curve

For a two-dimensional case, 2.4.4.2 can be expanded as follows:

 

C.. .2 o F... F... ' C.. C” o

C C 0 F,I F,‘ C C 0

C" C" ° 5‘ n c F F 3' 32 c
60),: C21 C22 0 " 133 m m 33 2.4.4.3

o 0 C33 ’1: C11 C12 0 Fax

0

F

F,z C2, C22 0 17,, +A

F F
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where: the subscripts x,z,and xz refer to differentiation with respect to the

corresponding stress component.

and for a two dimensional case without shear stress consideration in the

yield function:

1

[an — 5(022 + 033)]

sx_ , s;—

afield

[an—aw]
0'yield

Expanding 2.4.4.3 yields:

(p C121(F’x)2 +C122(Fu)2 +2C12C11F’r Fix

C" =C"_ C F +C F +2C F F +A 2'4'4'4
11 ’x 22 ’2 12 ’x ’x

., C3.(F..)’ + C3.(F,.)’ + 26..C..F,. F...

C” =C”_ C F +C F +2C F F +A 2'4'4'5
11 ’x 22 ’2 12 ’x ’z

C11C12(F9x)2 +Cl21F’x Fax+C22C11sz Fix+C12C22(F!x)2 2 4 4 6

 
C" = C -

‘2 '2 C,,F,,+C,,F,,+2C,,F,, F,,+A

0;: = cg 2.4.4.7

cg = C,, 2.4.4.3

With the assumption of a von Mises yield criterion, Bathe (1982) conveniently expressed

the same elastoplastic material matrix as follows:
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31 1

Where. fl— 5'0—32” Tm

1+ ~——

3E—A E

2.5 Contact Model

Perhaps the most important reason why the MARC subroutine procedure was

implemented, is the availability of the contact model. MARC imposes a non-penetration

constraint which is given in it’s general form as

fl . a s D 2.5.1

where: (7 is the nodal displacement vector ofthe deformable body (sheet metal)

ti is the normal vector ofthe ofthe rigid body (die or punch)

D the distance between the node and the rigid surface.

Within the context of a finite element model, this constraint can be imposed by several

methods; three are the Lagrange multiplier method, the penalty method and the solver

constraint method. MARC uses the solver constraint method. MARC will determine

which deformable body nodes are close enough to the rigid body nodes to be considered

candidates for penetration. Whenever the constraint is not satisfied for a given load step,

MARC will impose a corrective displacement (not force) upon the deformable body node.

Implementation of the proposed elements into MARC, in order that the contact model

can be used is, one ofthe fruits ofthe current research.
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2.6 Friction Models

In the field of sheet metal forming, various compromises in modeling detail are

made, ofien in the name of computational cost. Arguably, the most glaring example of

such a compromise is the typical fiiction model used in commercial codes for industrial

use. Two of the most prominent types of fiiction models noted in literature are the

cohesive and adhesive models.

The cohesive (Coulomb) model defines the tangential force to be a fi'action of the normal

load.

F, = We“, 2.6.1

where: u is the coefficient offriction (need not be constant)

N is the normal force

2, is the direction ofthe force which is determined by the relative sliding velocities

ofthe work piece and tool.

The adhesive model defines the tangential force to be a fraction ofa shear yield strength.

f. =1"? 6 2.6.2
y t

where: m is the coefficient of fiiction (need not be constant)

I, is the shear yield strength ofthe material being formed

In order to appreciate why an accurate and eflicient fiiction model has been so elusive, a

study ofthe local contact mechanics is in order. From Figure 2.4, it is shown that there are

two load carrying devices at the sheet metal/tool interface; they are the lubrication film

and the metallic asperity peaks.

‘-
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Accounting for the local contact conditions is not a trivial matter (Ronda, 1996).

On one hand, the normal load can be totally carried by the lubrication film, if the film is

relatively thick. On the other hand, the normal load can be totally carried by the asperity

peaks ifthe peak heights are relatively large. Yet another scenario is when the normal load

is carried by both the lubrication film and asperity peaks.

If, indeed, the normal load is carried by the asperity peaks, then what is the

slipping mechanism? In other words, will the peaks shear through or slide over each other?

If shear is the mechanism, then which peaks will fail? To answer this question, both the

material property and local geometry must be considered. If sliding is the mechanism,

though, then the elastic response of the apserities and local normal forces may become

more important. Another issue is that of relative velocity among the apserities ofthe sheet

metal and tool. At low velocities, much of the load may be carried by the asperities. At

high velocities, the load is more likely to be carried by the lubrication film.

Carleer (1996) has suggested a dimensionless lubrication number that is useful in

providing helpfiil insight.

L = 1". 2.6.3

where: n, v, p and R are the dynamic viscosity of the lubricant, the relative sliding

velocity, the mean contact pressure and the efi‘ective asperity height, respectively. From

Figure 2.5, three main regimes which dictate the value of the fiiction coeficient are

noticed. In region A and B, the normal load is carried by the asperity peaks and lubrication

film, respectively. Region C is considered a mixed regime where both the asperity peaks

and lubrication film carry the normal load.
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In a finite element model, Liu (1994) introduced a variable coeflicient of fiction.

Liu obtained good agreement with experimental data. Liu’s model fiirther suggests

dramatic changes in the fiiction coefficient are produced, in response to changing

boundary conditions.

Schweizerhof (1991) has proposed a modified form of the classical Coulomb

friction model (Figure 2.6). A limit coefficient has been established in order to more

realistically model the local contact conditions offiiction. Many types ofmodels have been

proposed (Ronda, 1996, Carleer, 1996, Wilson, 1988, Nagtegaal, 1988, Scheizerhof,

1991, Liu, 1994). Some models are based upon hydrodynamics, while others are based

only upon shear yield strength. In spite of the wide array of approaches, nearly all

proposed models were driven by the apparent inadequacies of a Coulomb’s model with a

constant coeficient of friction. There seems to be no singular approach that works

satisfactorily for all cases. Careful discernment of the mechanics of the particular forming

problem should be made. In addition to the traditional Coulomb’s model, Nagtegaal has

also endorsed a simple adhesive model. Additionally, Wilson has proposed that until a

more universal and efficient model is found, a simple adhesive model is reasonable for

general applications.

Having obtained an approximation for the friction force at the element surface, the

next step is to introduce the force into the nodal equivalent loads vector. Chandrasekaran

(1987) proposes that if Coulomb’s model is used, then when the local and global

coordinate systems are not aligned, a coordinate transformation must be performed on the

force vector. Haber (1996) asserts that some difficulties may arise if the Total Lagrangian
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(TL) method is used because the contact area is not known until punch contact is

established. One key advantage to using the adhesive model in conjunction with the TL.

method is that force transformations are not required because the fiiction force is not a

function ofthe normal load; it is a fiinction ofwhether or not the punch is in contact.

The fiiction forces will be treated as distributed nodal loads (Wertheimer, 1991)

and introduced to the nodal equivalent loads vector at the element level. As Haruff (1995)

explains, much care must be taken when determining the appropriate fiiction coeficient.

Without great research into the local contact conditions of the metal forming problems

used for benchmarks in this study, a realistic variable fiiction model coefficient is nearly

impossible to attain. Therefore, a typical constant fiiction coefficient for the adhesive and

cohesive model will be implemented into the proposed model.

In the proposed model, the shear strain is partly a fimction of the shear stress due

to the fiiction, which is defined via the fiiction model. A C'1 continuity constraint is

allowed for the shear stress due to fiiction. This constraint is not ofi‘ensive because the

shear stress due to friction, in theory, is not a degree of fieedom; it is a specified

correction term for the shear strain field. The fiiction contribution to the shear strain field

is not included in the shear strain energy. Rather it is simply utilized for post-processing

purposes. However, as stated previously, the friction contribution to the externally applied

load is included in the nodal equivalent loads vector.

One obvious question that arises, then, is ‘Vvhat fiiction coefficient value is

appropriate”? As illustrated in the previous paragraphs, the complexity of the fiiction

force dynamics can be overwhelming. The cost of accounting for all of the significant
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details is simply prohibitive with the current state of technology. It seems that the most

efiicient method of determining a friction coefficient value is to assume a relatively simple

model, then calibrate the model to match experimental data. Wang and Wenner (1978)

took such an approach; they selected a coefficient of fiiction which best reproduced the

experimentally observed data. Stoughton (1985) also selected a coefficient of fiiction by

considering that coefficient which best represents experimental data.

A sophisticated fiiction model is not the focus of this study. The use of fiiction

values in the shear stress model is one of the foci of this study, though. Therefore, the

fiiction coeficient for both the adhesive and cohesive fiiction models will be selected in a

manner similar to that demonstrated in the published literature of Stoughton, Wang and

Wenner. Unless otherwise stated, the LNQS results provided in the following sections for

metal forming problems with fiiction are based upon an adhesive coeflicient of fiiction of

approximately 0.8 and a constant cohesive (Coloumb) coefiicient offiiction of 0.5.
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Stress

ET

 
 

Strain

Figure 2.3: Elastic - Linear Hardening Constitutive Model.
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AsperityPeak _\ Lubrication Film _\

Work Piece

Tool

 

Figure 2.4: Localized peaks and valleys at the workpiece/tool interface create

load carrying mechanisms. The normal load can be carried by the

lubricant, metal or both.



Coefiicient

of Friction
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Figure 2.5

L (log)

Coefiicient offiiction is not constant in general for metal forming

problems. The experimentally determined Stribeck curve indicates

that the fiiction coefficient is a fimction ofthe parameter, L.

where: L = fl

pR

and r], u , p and R are the dynamic coefficient of friction, relative

sliding velocity, mean contact pressure and average asperity height,

respectively.

Region A and B identify regimes where load is carried

predominantly by apserity peaks and lubrication film, respectively.

Region C identifies a mixed regime.
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Friction ‘

Force

 

Fina

 L

a

Normal Force

Figure 2.6: In order to better represent the fiiction behavior, the Coulomb

fiiction model may be modified to feature a limit force.



Chapter 3

LNQS Element Kinematics

The outstanding features of the LNQS element are revealed not in it’s displacement

interpolation. Rather, it is the improved transverse normal and shear strain models. It is

the combination of the special kinematics and the application of the element in the

commercial code via a user subroutine that makes the element attractive for many practical

applications. In Chapter 3, the displacement field is first defined. A standard in-plane shear

strain expression is given, followed by two assumed quadratic algebraic expressions for

both of the transverse shear strains. Boundary conditions and Reissner’s principle are

applied in order to explicitly define the transverse shear strain in terms ofknown variables.

The transverse shear strain terms are carefully examined and liberated fi'om any field

inconsistent terms which may cause shear locking under certain geometric and loading

conditions. Along with the assumption that the transverse normal stress is constant in the

through thickness direction, Reissner’s principle is again implemented to obtain an

improved form ofthe transverse normal strain which accommodates isochoric deformation

and prevents Poisson’s locking. The topology will be that of an eight-noded brick element

as shown in Figure 3.1. The origin ofthe x-y-z triad axis is at the centroid ofthe element.
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Displacement Field3.1

A trilinear displacement field for the LNQS element is defined as follows:

3.1.1

3.1.2

313
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3.2 Shear Strain Field

For each ofthe shear strain definitions, a, small shear strain assumption is imposed.

Therefore, higher order terms are not included in the shear strain models. Notice that the

transverse shear strains are defined to vary quadratically in the through thickness direction.

7:); : Whyur' + thvr'
3.2.1

1%,. = ¢y +20, +2’fl, 3.2.2

W... = ¢. +20. +223. 3.2.3

There are six unknowns in the algebraic expressions of the transverse shear strain. Four

boundary conditions are now established; they are the shear stress at the top and bottom

of the element. The shear stress terms can be defined in numerous ways. At this point in

the derivation, they remain generally defined. The following equations were obtained by

considering the value of z and the corresponding shear stress value at the top and bottom

ofthe element. The stress and strain are assumed to be proportionally related by the shear

modulus. Accordingly, we have

t' H H2
€=¢y—-2—ay+7 y 3.24

r’ H H2
€=¢y+iay+7flr 3.2.5

1 2

%=¢,--§ia,+—’:—px 3.2.6

2 2

iiiz¢ +£a +fl—fl, 3.2.7

G‘2’4

Solve for B and or using equations 3.2.4-3.2.7. Substitute into assumed shear strain terms.



  

 

. 422 —z 222 z 222

r... =¢’[I"IF)+T;‘(—GTI'+GH’)H:‘(_G§+GH’) 3'2'8

2 _ 2 2

7,. =¢.[l-igj+.;,[_:+ 22,)..;[L+.22_2) 3.2.9
H OH CH OH CH

A form of the Hellinger-Reissner variational principle is now used to define the

transverse shear strain. In a more traditional approach, the displacements and transverse

shear strain are assumed to be related by a certain kinematic relationship. Here, however,

the assumed transverse shear strain is defined as (initially) independent ofthe displacement

field. The assumed form of the transverse shear strain is then equated to the traditionally

defined kinematic form of the transverse shear strain. This equation is enforced by treating

it as a constraint which is to be satisfied in the integral sense through the thickness.

'
-
-
w
|
~

(n. -rf.,)iz=0 3.2.10

h
”I

Use 3.2.9 in 3.2.10. Carry out integration. Solve for «b. Substitute into 3.2.9. The result is

a shear strain model which, when used with the appropriate constitutive model, can satisfy

the shear traction exactly at the top and bottom ofthe element.

7),, = Afw, +B,v, +Carya 3.2.11

7.. = Afrv. +B.u. +C.,rm 3.2.12
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3.3 Normal Strain Field

The in-plane normal strain expressions are defined below. Here, the higher order

von Karmon terms are included.

3.0: : Wigui +%(Wl,xui)2 +%(Wi,xvi )2 +%(Wi,xwi)2 3H3]

8)? : Whyvr' +é-(Vi,yvi)2 +£(Wi,yui)z +-;'(l//i.yW'-)2
3..32

Using the elastic material matrix, the transverse normal strain is assumed to be defined as

s = —l—(a,, —C,,e',‘,r —— C235”) 3.3.3

33 _

Similar to the application ofReissner’s principle for the shear strain, the transverse normal

strain is treated.

W
i
t
:

(8,, -s:,)dz= 0 3.3.4

i
"I

where: 8; = mei +%(mei)2 +-;—(y/mu‘)2 +%(W’.xv,)2

Assuming that (321 is constant in z, substituting 3.3.3 into 3.3.4, and finally solving for on

yields:

3.3.5
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022 = C33{(W1.2Wr)+ %(V"‘w‘)2 «1%(1/2211, )2 +%(V’1.2%)2} +

u, +-é[(1)h%)2 +(1),..,,221,)2 +-;—(D,,u,)(1),.xu,)+-;—(D,,,u,)(1),,u,)]} +_C
'} b

N
I

1'
?

 

 

r

C13{% (03,321")2 +(07.1:er +% Dali’s Dr,xvr) + %(Dr,xvr DB’va {I} +

r

C13{% (DB'ow )2 +(DT'J‘WT)2 +%(D8.xw8XDT.wa)+%(DT.waXDBJWB):l}+

C23{% Di'yv‘ + %[(DB-Yv3 )2 + (071va )2 + %(Da.yv8XDT.va) + %(Dr.yvrXDB.va):l} +

F

c,{.;. (D,_,2,)’ +(D,,2,)’ 2%(D,,2,)(D,,2,)+%(D,_,2,)(D,,2,)]} .2

C22 {.1 (wa,)2 +(D,,,w,)’ +%(D,.,w,XD,.,w,)+—;-(D,,,w,)(1),.,w,)]}

. _ 1 _ 1 1 _ 1]

Where' D’ ’ (2 L)(2 ' B

1241229111)2 L 2 B

.3 41411221)2 L 2 B

.. 41-31121)2 L 2 B
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5;: : {(V11w1)+%(wuwr) + é'ol’uur) +§(Vi.xvi) }+

{,LE “,2, 2 (14(1))2 2(13,,2,)* 2%(13,,2,)(13,,2,)2%(13,,2,)(13,,2,)]} 2

"g‘i{% r( “agvs )2 311511193)2 + %(Da.xvaXbmvr) + %(Dr.xvrXDB.va ):l} +

33 _

,

%{% ( ‘13ow )2 + (127.12“? )2 + £023.owXDT.wa) + %(Dr.xwrXDABJWB ):l} +

33 L

€21;13,2, 2 %[(13,,,2,)2 2(13,2, )2 ., %(13,,2, )(13,,2, ) 2 5(3,,,2,)(13,,2,)]} 2.

%{% F( ,2,)‘ 2(13,,2,)' 2;.(13,,2,)(13,,2,)+%(13,,,2,)(13,,2,)]} 2
33 ..

%—3-{% R *,,2,)’ 2(13,,.2,)’ 2513,22,)(13,,2,)+§(13,,2,)(13,,2, )]}
33 -

3.3.6

where

D3: = Du V, x

A

Du: = D” ‘ Wu

and B= 1,4 , T=S,8

It is worth noting that there are multiple ways of carrying out the algebra required in

equation 3.3 .4. Consequently, the final form of the transverse normal strain is dependent

upon the algebraic manipulations used in 3.3.4 prior to integration. For example, the

gradient g— is defined as 9637’ + 26;} , where the subscripts T and B refer to top and

bottom, respectively. As a result the square of% would feature only three terms. Namely
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2

The above expression is much more manageable than that which would arise if (g)

were to be expanded in terms of all eight nodal degrees offreedom; sixty-four terms could

potentially arise!
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 u,v,w

 

  
  

Figure 3.1: The topology ofthe proposed element makes it attractive

to the applications oriented user.



Chapter 4

CNQS Element Kinematics

The LNQS element features normal strain models which vary linearly in the

through thickness direction. Accuracy in simulating the normal strain values can be

improved if the normal strain is allowed to vary cubically in the through thickness

direction. This is apparent as bending becomes severe. The CNQS element features a

normal strain that varies cubically in 2. To derive this model, a slightly difl‘erent approach

is taken. Instead of beginning with a standard set of trilinearly interpolated displacement

functions, a form which varies cubically in z is assumed a priori. Boundary conditions are

set and a special assumption is made to define the in plane displacement in terms of known

variables. Similar to the LNQS model, a constant transverse normal stress in the through-

thickness direction is assumed. Aside from the higher order normal strains, the CNQS

element is identical to the LNQS element. The topology will be that of an eight-noded

brick element. The x-y axis is at the centroid of the element, while 2 = 0 at the bottom of

the element.

4.1 Displacement Field

First, cubic polynomials are assumed for the in plane displacements.

u=uo+7txz+fixzz+77);3 4.1.1

v = V, +rt'y2'5'4-flyz2 + 77,23 4.1.2

I

W=Zyliw 4.1.3

-
.—

where: 1:43,, and 112 are rotation terms and are functions of x.
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1:28, and n, are rotation terms and are functions ofy.

u and v are the in-plane displacements

u. and v. are the in-plane displacements at some reference line

w is the transverse displacement

w, are the trilinear shape fiinction defined in Chapter 3.

From equations 4.1. 1-4. 1.3, the strain field is given below.

a! 0% 2 519 3 0"")
= —°+ ——"+ —-"-+ —i‘- 4.1.48,, a: z a: z a: z 232

at

e”=—l+z—1+z’@+z3@—’— 4.1.5

03’ 03' 4’ 03’

3

£1: = ZViJwi
416

i=1

722 = 7r, +2213, + 322772 + V1.2”: (sum implied on i) 41.7

7,, = 7:, +225, +3227), + WWW, (sum implied on i) 4.1.8

It follows that the shear traction at the top and bottom surfaces are defined as

722(0) = 072(0) = r32 4.1.9

r20!) = 072.0!) = r; 4.1.10

92(0) = 072(0) = ti. 4.1.11

rn(h)=07y,(h)=r’y, 4.1.12

A pivotal assumption will now be made. If equations 4.1.7 and 4.1.8 are inserted into the

above equations, the presence of a derivative of w, with respect to either x or y, will be

introduced. Consequently, in order to develop a C0 continuous theory, rotation terms
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would need to be introduced. One aim of this study is to explore the behavior of a CNQS

element which features no rotational degrees of freedom. Accordingly, putting 4.1.7 and

4.1.8 into 4.1.9 - 4.1.12 and making the following assumption

W22... ->0 4.1.13

w,,,, —20 4.1.14

yields

b

.75.“,3 4.1.15

1,!

-(—’§-=7r,+2h,6,+3hznx 4.1.16

b1.

—(’—;—=7ry 4.1.17

1,!

y: _ 2

F-rty+2hfly+3h 1], 4.1.18

Note further manipulations of 4.1.13 - 4.1.16 will result in the derivation of higher order

in-plane strain corrections stemming fi'om tangential fiiction at the top and bottom of the

element. Perhaps, some effectiveness in the formulation’s ability to model the influence of

friction on the in-plane strain terms can be expected. However, the shear strain model is

not compromised in any way by 4.1.13 and 4.1.14.

Using 4.1.15 and 4.1.17 and solving for 17,, and r), in 4.1.16 and 4.1.18, and then

introducing these expressions to 4.1.4 and 4.1.5 gives the following result.



 

Tb 2 23 1" Tb

= + .a + 2,... _22__£__2h 4.1.19
u! ”a Z[G] 2 fix 3h2[G G fix]

Tb 2 23 T! Tb

v =v +z —’“— +z + n - "’ —2h 4.1.20
r o [G] fly 3h2 G G fly

Let u, and v0 be defined as u, and vb, respectively. Then at z = h, 4.1.19 and 4.1.20

become

1'" h r' 1’"
= + 4.2),! +_ 4-4-2}, 4.1.21

u! ”I: {0] fl: 3|:G G fix]

Tb h rt Tb

: + _’.'.'_+h2 +__:"1.__y_z__2h 4.1.22

v‘ 2, ’10] ’3’ 3[G G ’6’]

Solving the above expressions for [3,, and Byand inserting into 4.1.19 and 4.1.20, yields

a = A1": + A2142 + Clrf' + C21”; 4.1.23

v = A,v, + szz + Clrf' + C21? 4.1.24

w = 0,191 +D2w2 4.1.25

where: AI = ”(232—122 +(};2?1z3

3 2

’42 = (1721" (171

c. 212-132 +1212]



53

z

D = —

2 h

It is worth noting that the shape fiinctions, C, , are based upon a linear shear strain

assumption with no regards to rotation terms. Consequently, C, (and thus 2) may tend

to lose some degree of validity under large shear strain deformation. In the in-plane

directions, the degrees of fi'eedom u,, vi, 1:“ and 1,?” are assumed to vary linearly.

Accordingly,

u = 01,11. + 1,1? 4.1.26

v = a,v, + 1,1,?" 4.1.27

1 x l

W“ “1 437113—3141



2

D:—

2h

53

It is worth noting that the shape functions, C, , are based upon a linear shear strain

assumption with no regards to rotation terms. Consequently, C, (and thus 17) may tend

to lose some degree of validity under large shear strain deformation. In the in-plane

directions, the degrees of fi'eedom u,, v,, rf’ and I?" are assumed to vary linearly.

Accordingly,

II = at". +11???

_ 7’
v— av +z,r,

4.1.26

4.1.27
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112 B

+

2 319

+2.41

24 11ZB2 {-10
.1-

1X1 2),,

2 L 2 B

+2.41

24

24-1

W

311 2)..2 L 2 B

+_1.

’12 B2 311
1.

4.1.28V1”:

Shear Strain Field4.2

Using the displacement field, the shear strain field is given as

4.2.1
+ Vixwr'

1::

am”! + 11.: 7171:

4.2.2
y:

amvi + 11,111 + Whywr‘7,22

4.2.3
ai.yur' + at ’2: vi722
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4.3 Normal Strain Field

An identical procedure to that described in Section 3.3 for the assumed transverse

normal strain derivation results in a similar expression. Note that, in spite ofthe

assumptions of4.1. 10 and 4.1.11, the rotation terms are present in the shear strain terms

of4. 1.4 - 4.1.5. Recall, that the presence ofthe shear terms in the in-plane displacement

expressions was realized in an effort to develop a suitable shear strain model. The target of

this aim is not to improve the in-plane displacement model, but to enhance the shear strain

model. To this end, the x shape functions will be assumed to be active only in the shear

strain terms. Accordingly, we may re-write the in-plane displacements as

u = 62,11, 4.3.1

v = am. 4.3.2

Then we have,

a, = a,,u, +£(az,,u,)2 + 5122,92,)2 + %(w,,w,)’ 4.3.3

2, = 2,2, 2.2!.(2,,2,)’ 25(22): 2522,22,): 4.3.4
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F 2 2 2 1 2 2 2

(Duva) + (01.2%) + %(D,.,v,)(D,,vr) + %(Dmv,)

 

1r 2 1 2 1 1 2 2 1 a 2
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Chapter 5

Finite Element Models

5.1 Comparison of Features

As pointed out in Chapter 4, the LNQS and CNQS elements are similar in form,

yet different in function. In particular, the normal strain terms are of a difi‘erent order in 2.

To highlight this relationship, Table 5.1 is given for study. A column is provided to

describe the order of variation in particular directions for displacements and strains. From

the Table 5.1, it can be seen that the displacement and strain fields for both elements are

described in terms ofthe same degrees offreedom; only the interpolation ofthe degrees of

freedom differs between the two elements in some cases. Therefore, for brevity, only the

CNQS slmpe functions will be shown in the following section.

5.2 E, and EN, Matrices

The B matrix, which when multiplied by the displacement vector, defines the

element kinematics. The linear and nonlinear B matrices are provided below:

  

P at, O 0

O a 0

B, = 2 C: 2 G: 5.2.4

Wig: Wt! 0

0 an: Why

_ an: O Wi,x_j

5.2.5
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a,“ O O

,y o o.

PunIr 0 0 v” 0 w,x 0 0 - am 0 0

o u,, o o v,, o o w,, o 0 ... 0

E _ o o u,, o o v,z o o w,, 0 am 0

"L " o o o o o o o o o 0 a... 0

o o o o o o o o o o o 1921‘)”

o o o o o o o o o 2 C33 .

b d 0 19.313
i,x

2 C,,

_ o E, .

The above B matrices are further expanded in Appendix A. Note that the interpolation for

the shear traction terms is not included in the B matrices; the contribution of the shear

traction enters into the formulation through the force vector. As is shown in Appendix B,

upon defining the shear traction, it is multiplied by the appropriate stifi'ness terms and

brought into the force vector.

5.3 Direct Stiffness Matrix

In Chapter 2, a general form of a linearized set of equations that can be

manipulated in order to find a solution to a nonlinear problem via the Newton-Raphson

method, was provided. This form is now made specific to finite element modeling. The

total potential energy can be expressed as follows

U = I{a,a,}dV—It,u,d4—Ib,u,dV 5.3.]

V A V

where: a and e are the stress and strain measures

t is the externally applied traction

b is the body force (assumed zero for this study)
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The weak statement ofthe finite element model can be obtained by equating to zero the

directiorml derivative ofthe potential energy in the direction of 5:4.

a1=I{a,6£,}dV—It,&r,dA :0 5.3.2

V A

Alternatively 5.3.2 may be expressed as,

a]={ja,N,_,dV-J't,N,dA}&4=R&:=o 5.3.3

V A

where: N is the vector of interpolation functions

R is the residual

Equation 5.3.3 is the finite element discretization ofthe pointwise equilibrium equation.

Similar manipulation yields a more useful form of 5.3.2.

u={j[[§, +%§N,)Z]T5[[§L +%§,,)Z]W+{m} 5.3.4
V

6U={j[(§, +%§m)afi]rfi[(§, +-;—§n)Z}/V+£763dA}=o 5.3.5

V

The direct stifiiess matrix is defined below.

3:13 N, 5.3.6

Note that the direct stifiiess matrix is not necessarily symmetric.



5.4 Tangent Stiffness Matrix

Upon taking the directional derivative of equation 5.3.5 with respect to an

arbitrary A yields

1w =[ias]a+az[ia] 5.4.1
dA dA (115

=d‘i[(§+BNL)&A]a+[(B+§m)&]D:—[(Bz+—BNLJA] 5.4.2

= {13,343, +§m)’5(§, +11,» 5.4.3

The tangent stifiress matrix is defined below.

1?, = 5;,57+§{5§L +3132)?” +§§L5§L +§[5§NL 5.4.4

5.5 Finite Element Model

Using the notation used in previous sections, a standard description of the finite

element model is given below.

Efli =(7—ED)&'§ 5.5.1

5.6 Shear Traction Definitions

As mentioned in Chapter 2, neither the adhesive or cohesive model is particularly

accurate in modeling detailed aspects offiiction. However, from a macro perspective,

both models are adequate. One special feature ofthe proposed models is the ability to

satisfy the tangential traction, exactly, at the top and bottom ofthe element for non-zero

friction cases. This can be accomplished, in part, by accurately defining the shear traction.
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The standard Coulombs fiiction model can be used to define the tangential forces in terms

ofthe normal forces at each node. IfCoulomb’s cohesive fiiction model is used, then

knowledge ofthe global normal reaction load, and direction ofthe fiiction force need to

be obtained. However, if an adhesive model is used, only the direction ofthe fiiction needs

to be obtained. The shear yield strength and coeficient offiiction can be defined to be

constant. The contact forces (and direction offorces) can be determined fiom within the

subroutine. An example ofhow the shear strain is expanded for the case where contact

fiiction is present on the bottom surface ofthe element is given below.

_. as

7x2 - Wi,xwr‘ +ai,zui + 11.31301 5.6.1

h . n _l 1:: + 12+ a: + a:

Not only do the shear strain terms need to be adjusted for fiiction, but the nodal

equivalent loads vector must also be modified to reflect the nodal tangential nodal forces

due to fiiction. From within the subroutine, the global normal reaction loads are used to

approximate an effective normal force acting upon the element face. This efi‘ective normal

force is, first, divided by the element face area, then second, multiplied by a coeficient of

fiiction to yield an expression for the tangential force due to fiiction. This tangential force

is then appropriately distributed into the nodal equivalent force vector. (For some

unknown reason, the MARC main program will not recognize non-zero user-defined

nodal equivalent load vectors. Therefore, the program was “tricked”; the nodal equivalent

loads where subtracted from the internal force vector which is recognized by the main

program. Because the main program eventually adds the nodal equivalent load vector and

the internal force vector, no modeling errors are realized.)
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5.7 Shear Locking

One of the most common complications associated with finite element research is

that of locking. A locking mechanism may be defined as an increase in element stiffness

due to strain field incompatibilities. Shear locking will now be considered. A two

dimensional case is studied. All conclusions may be extended to three dimensions. For thin

cross sections under bending, the shear strain tends towards zero. From Table 5.1, the

following constraints imposed by a zero transverse shear strain condition are noted:

From constant terms: a) 1+1: 0

dc 62

From x terms: b) 1:— = O

Fromzzterms: c) év—+-a—‘=0

6% &

Constraint a and c are completely compatible with the zero transverse shear strain

condition. However, constraint b is not compatible with a zero transverse shear strain

condition. Notice that for in-plane loads, constraint b is compatible because the in-plane

displacement will not tend to vary in the through thickness direction. Bending, on the

other hand, requires that the in-plane displacement changes with respect to the transverse

coordinate. Consequently, constraint b will oppose bending action which results in locking

behavior. The current model features field consistent transverse shear strain by eliminating

constraint b. This is accomplished by removing all terms in the transverse shear strain

associated with the x coordinates.
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5.8 Volume Locking

One of the challenges of developing three-dimensional elements for sheet metal

forming is to model the isochoric nature of the defamation in the plastic mode. The

restriction placed upon the element is that the sum of the normal strains must add to zero

at each integration point used. Failure to do so likely will result in what is called numerical

‘Volume locking”. One method of avoiding volume locking is to underintegrate the

element. In the case of the proposed element, this would require that the strain be

evaluated only at the mid plane of the element. Such an integration plan would be very

detrimental to the element because the bending efi‘ects would not be modeled. Fortunately,

becausethetransversenormalstrainhasthesamevariationinzastheinplanestrain

terms, a filll integration scheme through thickness can be implemented without the

consequence of volume locking. This important feature is clearly seen when Table 5.1 is

considered. From Table 5.1, the through thickness variation ofthe transverse normal strain

is equal to that ofthe in-plane normal strain terms.

5.9 Poisson’s Locking

To explain Poisson’s locking, the two dimensional case will be considered. Recall

the form ofthe transverse strain.

c, =g£_§ngn 5.9.1

C22 C22

If Poisson’s ratio is assumed to 0.3, then the following material constants arise for plane

stress and plane strain.



C,l = (1.13)E
Pl Str : . .ane ess Cu = (0.38)E 5 9 2

, C = (1.50)E
Pl Strain: " 5.9.3

m C,2 = (0.50)E

For a very thin cross section, the transverse stress will approach zero in the absence of

double-sided transverse loads. A zero transverse stress condition for a plane stress (or

plane strain) cross section is tantamount to the following.

= --1-8 5.9.4

3

The resulting constitutive relation for such a case is

on = Es,“ for plane stress 5.9.5a

on = 1.331518,“ for plane strain 5.9.5b

The finite element must satisfy 5.9.4. If the transverse strain field and in-plane strain field

are constant and cubic (or linear) in 2, respectively, then 5.9.4 can only be satisfied when

the transverse strain field becomes zero. The resulting constitutive relation is

Plane Stress: on = (1.13)E£n 5.9.6

Plane Strain: (7,,r = (1.50)E£n 5.9.7

Simple inspection 5.9.5 and 5.9.6-7 reveal approximately an 11.5% increase in stimress for

both plane stress and plane strain. This efi‘ect is called Poisson’s stiffening efi‘ect (Prathap,

1994). The proposed formulation accommodates 5.9. 5 with no difficulty because the

transverse and in-plane strain are both cubic (or linear) in the z direction. Therefore,

Poisson’s stifi'ening effect is eliminated.



65

Table 5.1 Comparison of Features
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Table 5. 1: A summary ofthe displacement and linear strain expressionsfor each of

the twoproposed elements isprovided . Shapefimctions are defined in previous sections.

77w superscripts in the comment column refer to the order ofvariationper coordinate.



Chapter 6

Results and Discussion

In order to verify the accuracy of the proposed elements, an array of academic-

type studies are undertaken. Three major features of the elements are examined; they are

the kinematic, material (plasticity) and fiiction models. When the kinematic model is

verified, the linear material model is used instead of the plasticity material model. The use

of the linear material model in the kinematics study allows the kinematic results to be

studied without any additional kinematic influences introduced by the nonlinear material

model. After the kinematic model is verified and validated, the nonlinear material model is

then introduced and studied. This sequence of feature introductions assures that each

feature can be studied most effectively. Following the kinematic and material model

verifications, the fiiction model is studied. Like the material model, the LNQS fiiction

model is based upon standard theory. (Recall that the CNQS element will not be evaluated

for reasons described in Chapter 6.)

It is appropriate to recall the main distinguishing features of the LNQS model.

They are as follows:

1. Higher order approximation of transverse normal strain in the through-thickness

direction. The benefit of this feature is the elimination of Poisson’s and volume

locking. Additionally, threebdimensional efi‘ects are more closely modeled when a

higher order transverse normal strain is included.
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2. Ability to satisfy transverse shear traction exactly at the top and bottom of the

element. This is perhaps most beneficial in cases of double (or single) sided contact for

moderately thick sections.

3. A quadratic variation of the transverse shear strain in the through thickness direction.

In cases where three dimensional effects become significant, as in very low R/t ratios,

accurate modeling ofthe shear strain can become important.

4. A development of an efiicient programming environment (commercial program

preprocessor, solver and post processor via FORTRAN subroutine). This network

serves as a useful and convenient testbed tool for research and development.

These four features will be evaluated in the context of several metal forming benchmark

problems. The initial intention of this study was to use three dimensional elements for all

of the benchmarks. Unfortunately, there exists some incompatibility with a user defined

three-dimensional element and the contact algorithm. Afier many unsuccessful attempts to

rectify the problem, it was decided that the two dimensional case would have to be

implemented. Therefore, the metal forming verification problems are in two dimensions

only.

Unless otherwise stated, the units for length, mass and time are as follows:

time: seconds

length: millimeters (mm)

mass: kilograms (kg)

Therefore, force and stress will be expressed as follows:

force: N
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where N represents one Newton

stress: _1Y_ = —N—2 = Pa x 106

mm2 (m x104)

where Pa represents one Pascal

6.1 Cantilevered Section Under In-Plane Tip Load

Figure 6.1 shows the boundary conditions of an axially loaded member subject to

an axial load. The nodal displacements at the wall are set to zero, while a positive

distributed force at the section tip is applied axially. The parameters of the problem are as

follows:

Length = l

(Area)(Y. Modulus) = 1

Load = 1

Figure 6.2 shows the results for an axially loaded specimen. In this case, the nonlinear

material model is not included. The exact linear and exact nonlinear solution are shown

along with that of the LNQS element. Noting that the only difference between the LNQS

and CNQS element is the through thickness interpolation of the in-plane strain terms, it is

clear that LNQS and CNQS solution would be identical for this particular load condition.

Accordingly, the CNQS solution is not shown. Excellent agreement is seen among the

exact nonlinear solution and that ofthe LNQS solution. This trend demonstrates the ability

of the element to accurately model in-plane response to in-plane loads. For most sheet

metal fornring conditions, the maximum allowable in-plane strain is approximately 20% -
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40%. Figure 6.2 shows that the in-plane kinematics easily accommodate such levels of

strain without an introduction of significant error.

6.2 Simply Supported Section Under Uniform Transverse Load

The parameters ofthe problems are as follows:

Length = 20

Heights = 1

Y. Modulus = 1e+06

Load = 100/unit length

Figure 6.3 illustrates the boundary conditions. Figure 6.4 quantifies the effect of shear and

Poisson’s locking in the absence of the strain field correcting mechanism (higher order

transverse normal strain assumption). Displacements were taken from the center of the

member for both the LNQS and analytical models. The results have been normalized to

the analytical solution. The first column shows that without a consistent transverse shear

strain field, shear locking can be very severe. The second column corresponds to a

modeling condition with a consistent transverse shear strain field, but without a higher

order transverse normal strain field. This solution is a result of Poisson’s locking. The

locking is much less severe, although it still remains significant. The third column shows

that with both the consistent transverse shear strain and transverse normal strain fields, the

LNQS element is able to accurately model bending behavior; all locking mechanisms have

been removed. In structural analysis, say for an aircraft wing section, the strain distribution

is often driven by force distributions. However, in most sheet metal forming cases, the
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strains are driven by displacement ofthe tools. The displacements ofthe nodes are almost

entirely dependent upon the geometry of the tools. However, the strain distribution is

heavily dependent upon both the tool geometry and strain models. Unrealistic strain

models may result in unrealistic reaction loads because of locking effects. In the end, shear

and Poisson’s locking can contribute to error-prone fiiction models (because of error-

prone reaction loads). Consequently, the consistent strain fields of the LNQS element help

promote more accurate metal forming results.

6.3 Transverse Shear Strain in Single Element

Figure 6.5 illustrates the boundary conditions on a single element along with

resulting transverse shear strain plotted out with respect to the z coordinate. Both

solutions of the LNQS and standard bilinear continuum element of MARC Program are

shown. The MARC.3 element is a four-noded quadrilateral element with no reduced

integration. The difference in solutions is quite pronounced; where the MARC element

fails to satisfy the transverse shear strain exactly at the top and bottom of the element, the

LNQS element succeeds in doing so. Admittedly, the transverse shear strain (stress) is

usually several order of magnitude less than that of the in-plane normal strain (stress) in

many sheet metal forming problems. (Exceptions may be localized regions near draw

beads or punch openings where the tool radius to sheet thickness is small.) However, the

relatively small shear strain that is developed in many sheet metal parts during forming,

does not suggest that the quadratic transverse shear model of the LNQS element is

without noteworthy merit. First, any accuracy improvement that can be obtained without
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compromising greatly the efficiency ofthe element should be promoted; the presence of an

accurate shear strain model represents one less variable that is potentially a source of

error. Second, as with most research elements, the LNQS element simultaneously rests

upon the foundation of many elements of the past and upholds a portion of fiamework

which many future elements may stand upon. So, although the quadratic shear strain

model advantages may not appear to be very pronounced in the context of sheet metal

forming, the LNQS quadratic shear strain model may help serve as a basis for research in

metal forming simulation where the shear energy may dominate the mechanics.

6.4 Cantilevered Section Under Transverse Tip Load

The parameters ofthe problem are as follows:

Length = 20

Height = 1

Y. Modulus = 1e+06

Figure 6.6 shows the boundary conditions of a cantilevered section under transverse tip

load.

Before the kinematics can be studied for this case, a mesh refinement study was

undertaken. Figure 6.7 shows the results corresponding to element discretizations which

vary in the lengthwise direction. Complete convergence appears to be obtained at 50

elements in the lengthwise direction. However, convergence within reasonable limits is

realized with about 20 elements in the lengthwise direction (about 5% difi‘erence from the

50 element solution). Figure 6.8 shows results for a mesh having 50 elements in the

lengthwise direction and varying number of elements in the transverse direction. Complete
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convergence is obtained with only two elements in the transverse direction. It is noted that

the difference between the one and two element solutions is approximately 3%.

Figure 6.9 provides solutions from the commercial finite element program, MARC,

and those from the LNQS and CNQS elements. The purpose of Figure 6.9 is to identify

the difi‘erence in solutions for a given mesh of 20 elements in X and 1 element in the Z

direction. As stated previously, the MARC.3 elements are four-noded quadrilateral

elements with no reduced integration. The MARC. 1 14 elements are four-noded elements

with reduced integration. The MARC. 114 element, therefore, has an improved bending

response (compared to the MARC.3 element). The most compliant elements were the

MARC. 1 14 and LNQS elements. Very good agreement is seen among these two elements.

As expected, the more stifi‘ elements were the MARC.3 and CNQS elements. It is worth

noting that for smaller deflections, the MARC.3 element is in better agreement with the

MARC. 1 14 element than is the CNQS element. However, for larger deflections, the

CNQS element is in better agreement with the MARC.114 element than is the MARC.3

element. The MARC. 1 14 element is well verified and generally accepted fi'om an accuracy

standpoint when kinematics are considered. The results show that the LNQS element

demonstrates a very favorable kinematic response not only for in-plane loads (as was

shown in the previous section) but for out-of-plane loads as well. Although the CNQS

element is quite accurate in modeling in-plane loads, it’s solution loses accuracy when out-

of-plane loads are applied. The CNQS element is considerably more stifl‘ in bending than

the LNQS element. The reason for this, of course, can be traced to the assumptions that

were used in the derivation of the CNQS formulation. Recall the % terms of the shear
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strain approximations were neglected during intermediate derivations of the formulation.

This was deliberately done so that a cubic variation in z of the in-plane strain could be

introduced without introducing rotation degrees of freedom. Because the CNQS element

exhibits such dramatic locking behavior, it will no longer be considered through-out the

remainder ofthis study.

An extreme case, where the tip deflection is approximately equal to the length of

the beam, is also studied for the LNQS and MARC.114 elements. From Figure 6.10, the

kinematic accuracy of the LNQS element is further verified; even for extremely large

deflections, the LNQS and MARC. 1 14 elements remain in very good agreement.

6.5 Material Model Study

The LNQS material behavior is modeled via an elasto-plastic material model which

features linear hardening. As described in the material model section of the thesis, the

material constants are, in part, fimctions of stress. For fully three dimensional cases, all

components of stress need to be included in the material model. However, for the typical

plane strain sheet metal forming problem, the stress field is typically dominated by the in-

plane normal stresses. In fact, according to Karafillis (1996), one may safely neglect the

transverse normal stress when considering a material’s constitutive response for sheet

metal forming problems, in general. It is not unrealistic to have the transverse normal

strain about two orders of magnitude less than that of the in-plane normal strain. Figure

6.11 illustrates the evolution of the material constants as the in-plane and transverse

normal stresses are increased (the transverse normal stress is two orders of magnitude less
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than that of the in-plane normal stress). The expressions for the material constants are

provided in the previous section and are plotted out with respect to the in-plane normal

sum; the applied stress is normalized to the yield stress (assumed to be two orders of

magnitude less than that ofYoung’s Modulus). The transverse normal stress is assumed to

be two orders of magnitude less than the in-plane stress. From Figure 6.11, we see that

C22 and C,2 are essentially constant for all applicable values of stress. However, Cll

varies considerably. Five different cases for Cu are considered. They correspond to

tangent modulii ofE, 0.2513, 0.55 and 0.75E and 1.013 (where E is Young’s modulus).

The cantilevered section is next considered with nonlinear kinematics and a

nonlinear material (plasticity) model. When studying the plasticity model for this case,

carefial consideration of the number of integration points in the thickness direction is

paraxnount. The MARC and LNQS elements are compared for difi‘erent integration point

and mesh conditions. Both plasticity models feature elasto-plastic behavior with linear

hardening as described in Figure 2.3. The key material parameters are given below:

Young’s Modulus, E = 1e+06

Tangent Modulus, E. = 0.5e+06

Yield Strength, Y = le+04

The MARC program does not allow the user to define the number ofintegration points for

the elements in it’s library. Consequently, the only way to increase the number of

integration points in the transverse direction is to increase the number of elements in the

transverse direction. The LNQS user-defined element, of course allows the luxury of

3Mthe integration point strategy. Because the MARC element discretization is not
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the same as that of the LNQS, the comparison is not completely fair. For a given number

of integration points, the MARC results are expected to be slightly more compliant; based

upon the results shown in Figure 6.8, the difference should be approximately 4%. Indeed,

Figure 6.13 shows that the MARC model, for 4 integration points in the transverse

direction, is about 3.5%.

A few interesting observations are worth noting. First, if the MARC curve is

extrapolated back to two integration points, the LNQS and MARC solutions will match to

within 1%. This excellent agreement is expected not only because the integration points

are the same, but the number in elements in Z are the same as well. The second interesting

observation is that the solution for the LNQS element becomes slightly more stifi‘ as the

number of lobatto integration points increases fi'om 3 to 5. This behavior is rather

uncommon, but nevertheless possible. Figure 6.14 is a description of the Gauss and

Lobatto point distribution with respect to natural coordinate in Z. On the ordinate axis are

labels identifying the location ofthe Gauss and Lobatto points. To the left and right of the

ordinate axis are the Lobatto and Gauss weights, respectively. The thick solid line

represents a stress distribution. Following the dotted lines extending from the elastic-to-

plastic transition point ofthe stress distribution, one can observe the following:

3 point Lobatto Rule: 33% (1 of3) ofthe points are in the elastic range

5 point Lobatto Rule: 60% (3 of 5) ofthe points are in the elastic range

This qualitatively explains why it is possible for the LNQS solution (for the Lobatto rule)

to become slightly more stifl‘ as the number ofintegration points is increased from 3 to 5; a
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higher percentage of integration points remain elastic (in stifl‘er region). It is noted,

though, that in the limit, the stimless will decrease as the number of Lobatto integration

points is increased for plasticity analysis.

Bathe (1982) provides a more rigorous explanation with a simple example. Figure 6.15

shows a two-noded bar element with a varying cross section. A state of stress is proposed

such that the domain is in the plastic regime for the left side and elastic regime for the right

side. If a one point integration rule is used, then the entire element is assumed to be in the

plastic regime. This results in a very small stiffness. If a two point rule is employed, then

50% of the element is assumed to be plastic regime. This results in a much more stiff

solution. If a three points rule is used, then 66% of the element is in the plastic regime.

This results in a solution less stifi‘ than that ofthe two point rule. However, if a four point

rule is used, then 50 % ofthe points are again in the plastic regime (location of the points

are difl‘erent from that ofthe two point rule). This results in a stifl’er solution than that of

the three point. The exact solution is provided at the bottom of Figure 6.15. Figure 6.14

and Figure 6.15 help verify that the results shown in Figure 6.13 are reasonable.

Recall Figure 2.3 which describes the constitutive assumption for a uniaxially

loaded member. Assume the parameters to be as follows:

Length = 20

Area = 0.01

Y. Modulus = 100

Yield Stress = l
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Tangent Modulus = 50

Load = 0.5

Then, the tip deflection based upon the analytical solution for the bilinear material model is

20. The LNQS finite element solution for the same case is 20.5. These results which are in

good agreement, help to further demonstrate that the plasticity model used in conjunction

with the LNQS element formulation is correct and accurate.

6.6 Preliminary Commercial Element Investigation

The commercial finite element code, MARC, ofi‘ers a variety of elements from

which to choose. The plane strain MARC 11 (MARC Eleven) element, in particular, may

be used with a standard strain or an assumed strain fomrulation. The essential difference

between the two is the variation of the transverse normal strain in the through thickness

direction. In order to investigate the behavior of the elements in the context of a metal

fornring application, one element was isolated and studied. This element corresponds to

the region of peak bending in Stougton’s square cylinder stretch problem which will be

investigated in more detail in later sections. Figure 6.16s and Figure 6.16b show the

transverse coordinate versus the in-plane normal strain solution for the following element

formulations and meshes. .

M.rest : MARC 11, refined mesh (5 elements in 2), standard strain

This element features a strain field that is defined fiom the bilinear

displacement field.

M.re.as: MARC 11, refined mesh (5 elements in z), assumed strain
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This element features a transverse normal strain field that is not

defined directly fiom the bilinear displacement field. Rather, it takes

on an assumed form such that Poisson’s locking and volume

locking are not possible.

M.co.st : MARC 11, coarse mesh (1 element in 2), standard strain

M.co.as: MARC 11, coarse mesh (1 element in z), assumed strain

The results reveal that the elastic solution is, for most practical purposes, linear in z. The

solutions using the assumed formulation tend to predict a slightly higher strain than that of

the standard (kinematically correct) formulation. It is safe to conclude that the refined

kinematically correct solution most closely approximates the correct solution. Without

specific information about the MARC element formulation, it is diflicult to explain the

difference. However, comments on the LNQS results for this same test case may serve as

useful insight into the behavior of the MARC assumed elements; these comments will be

offered in the following sections. The plasticity results are very similar to the elastic results

in that the assumed formulation solutions tend to show higher strains than those of the

standard formulation.

6.7 Lee’s Benchmark: Plane Strain Stretch with Zero Friction

In 1990, Lee introduced the benchmark geometry described in Figure 6.21a and

6.21b. The MARC.11 with assumed strain and LNQS solutions are compared. The same

mesh discretization (one element through the thickness) is used for both the MARC and

LNQS models. Both the LNQS and MARC results are based upon an elastic-plastic model
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with linear hardening. The hardening is characterized by a tangent modulus of 0.5 times

Young’s modulus. The material parameters and geometry for both finite element models

are as follows:

Young’s Modulus = l.0e+06

Yield Stress = 1.0e+04

Poisson’s Ratio = 0.3

Sheet thickness, t = 1.0

Length, L = 59

Punch Radius, R, = 50.8

Unless otherwise stated, the material properties assumed for the MARC and LNQS

models are the same as those specified above. Anisotropic material condition is assumed

for all cases in this study.

As mentioned previously, most sheet metal forming simulations are displacement

driven. That is, the boundary conditions imposed upon the work piece are defined or

constrained by the specified position ofthe tools. It is understood that some finite element

contact algorithms apply a force imposed by a penalty or lagrangian constraint. But, these

forces are defined ultimately such that the work piece satisfies some geometric contour.

As a prelude to a closer study of the numerical results for this metal forming case, Figure

6.12 is considered. The results confirm that for the metal fornring simulations considered

in this study, key material properties (such as Young’s modulus and Tangent Modulus)

have a minimal impact on the distribution of the strain. Of course, the reaction loads, as

mentioned previously may be vastly different. It is important to point out that it is not
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being suggested that the strain distributions are totally independent of Young’s modulus

or the tangent modulus. For example, a material with zero hardening would show

dramatically difi’erent results. Because the material is unable to resist deformation at the

“point” where yielding occurs, the other unyielded points will tend to remain unyielded.

The result can be a highly nonhomogeneous strain distribution.

Figure 6.22a shows a plot of the in-plane strain solution for the MARC 11 and

LNQS model. Without fiiction, the problem is essentially reduced to geometric issues

only. The membrane strain is constant in the x direction, as expected. (The top and bottom

strains may be averaged to obtain the membrane strain.) At the end of the punch stroke,

the sheet metal conforms closely to the contour of the punch fi'om x = 0 to x = 17. Since

thepunchradiusisconstarrt,thepeakstrainisalsoconstantfiomx=0tox= 17. The

bending action may be thought of as a mechanism that perturbs the in-plane membrane

strain. On one hand, when the bending causes tension (top fiber), the in-plane strain will

increase. On the other hand, when the bending causes compression (bottom fiber), the in-

plane strain will decrease. Both elements demonstrate an ability to capture bending effects

for this metal forming case. Note that a very small difi‘erence in the top and bottom strain

is noticed for most of the punch contact region among the MARC and LNQS solutions.

This small difi'erence is attributed to the difference in contact conditions.

When the sheet metal comes out of contact with the punch, the bending action is

no longer imposed upon the sheet metal. Under such a boundary condition, the sheet metal

is simply stretched between two points. Thus, the deformation mode which assumes the

least amount of internal energy is purely membrane in nature. For this reason, the top and
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bottom in-plane strain solutions tend to converge. The solutions depart somewhat as the

metal comes out of contact with the punch (17 < x < 25). This departure of solutions

suggests a difference in stifiress between the LNQS and MARC 11 models. Limited

information is provided in the MARC manuals with regards to the exact element

formulation for the assumed MARC 11 element. For this reason, it is difiicult to ascertain

exactly why the models perform differently in this region. However, one obvious

conclusion can be made with regards to the LNQS solution in this region; the LNQS

solution is incorrect. The top strain cannot exceed the bottom strain for this particular

application. The author has extensively investigated this problem by varying the number of

load steps, convergence criterion, mesh discretization, material ' property, element

kinematics. No legitimate explanation was found. This problem remains to be an

unexplained anomaly. This behavior is unique to this particular application. As will be

shown in the Stoughton’s Benchmark problem, the anomaly disappears. With the

exception ofthe problem described above, the solutions are in good agreement.

6.8 Lee’s Benchmark: Plane Strain Stretch with Non-Zero Friction

In the finite element simulation of sheet metal forming using Coulomb’s constant

friction model, the normal reaction force may be recovered directly or indirectly. The

direct method is to calculate the normal reaction loads at the beginning of each load step.

An indirect method is to calculate the nermal reaction force fi'om the transverse normal

stress at the boundary ofthe element. Figure 6.17 shows the MARC results using both the

force based and stress based models along with the force based LNQS model. Contrary to
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expectation, the LNQS forced based and MARC stress based model results are in very

good agreement, while the MARC force based model results depart significantly from the

other two results. The effect of fiiction seems to be much less apparent for the MARC

force based model. The solutions can be justified via Figure 6.18 which reveals the actual

nodal fiiction forces that are applied to the sheet at the conclusion of the last step. Details

of the exact method used in the commercial MARC program to calculate (which may

include smoothing and redistributing) are not available in published literature. Without a

complete understanding of the smoothing techniques employed by MARC in it’s

commercial code, a fill] explanation ofthe difl'erences cannot be obtained.

On one hand, the MARC stress based forces seem to be over estimated. The

approximation shown below suggests that the nodal forces based upon the transverse

normal stress should be about one order ofmagnitude less than that shown in Figure 6.18.

Young’s modulus = 1e+06

Yield Strength z 1e+04 z 03,,r

0::

0'“ z —

100

Let Friction Coeficient, v = 0.5

Friction Force or A,van , which is on the order of 10.

On the other hand, the MARC force based forces appear to be somewhat low when

compared to those of the LNQS. Literature published by MARC explains the normal

reaction loads are to be used in the calculation of fiiction forces. Nonetheless, certain

latitude within the fi'amework of the “standard” Coulomb’s model was likely taken (and

maintained as a trade secret) by the developers. Because of the close correlation among
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the MARC stress based model and the LNQS force based model, the MARC stress based

model will be used as the benchmark cohesive model for the remainder ofthis study.

Withtheformofthecohesivemodels established,itisnecessaryto makea

comparison with the adhesive model. As discussed in the previous sections, either a

cohesive or adhesive model can be used for metal forming with fiiction. Figure 6.23 shows

the results for both models for Lee’s benchmark case. Very poor agreement is found

among the two adhesive solutions. A study ofthe output file fiom the adhesive model runs

revealed that the nodal fiiction forces applied in the MARC adhesive model were not

constant. In light of the traditional definitions described in the previous sections, this

finding is puzzling. Because of the correlation and lack of insight into the MARC adhesive

fiiction model, the cohesive model is the preferred friction model to be employed in this

study.

Lee’s benchmark case is considered, now, with friction effects. The material

parameters used by Lee are as follows:

Hardening Coeficient, K = 589 MPa

Elastic Strain, e. = 0.0001

N-value, n = 0.216

where: o = 1((3o + 5p)"

and a, is the plastic strain

Coeficients ofFriction, u = 0.3 for Lee’s solution

it = 0. 5 for LNQS cohesive solution

p = 0.5 for MARC 11 cohesive solution
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From Figure 6.24, it is shown that the MARC and LNQS solutions are in excellent

agreement. As the punch displacement increases, so too does the normal reaction load

which acts upon the sheet metal surface. Coulomb’s model then dictates an increase in

fiiction force which acts tangent to the metal. In the absence of fiiction the in-plane strain

will increase due to the stretching action imposed upon the sheet metal by the punch. With

fiiction, the stretching is encumbered slightly as the fiictional forces counter act the

stretching. All three models are successful in capturing this feature. As the metal comes

out of contact with the punch, the fiiction forces no longer are able to restrain the

stretching motion. For this reason, the maximum in-plane (membrane) strain is reached.

Because Wang’s solution is based upon an implicit formulation with an updated

Lagrangian solution scheme and Coulomb’s constant fiiction model, Wang’s fiiction

model is not equivalent to that ofthe LNQS or MARC model. The solution difl‘erences are

attributed to the difference in fiiction models.

6.9 Stoughton’s Benchmark: Plane Strain Stretch with Zero Friction

Figure 6.25a and 6.25b describe the geometry of the benchka proposed by

Stoughton. The main difl‘erence between Stoughton’s geometry and that of Lee’s is the

flat shape of the punch on Stoughton’s model. The MARC and LNQS solution are

provided in Figure 6.26. Refer to the previous section for material information. Unlike

Lee’s case, though, the punch does not feature a constant radius. The Lee solutions

showed that the peak strain was constant along the entire punch/work piece interface.

However, in Stoughton’s benchmark solutions, the peak strain is confined only to the
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punch surface with the highest curvature (or smallest radius). The sheet metal near the line

of symmetry is essentially under a membrane load because there is no bending constraint.

Likewise, in the region where the metal is not in contact with the metal, a membrane

solution arises. Perhaps most noteworthy of all is that there is nearly perfect agreement

(unlike the Lee solutions) among the two solutions as the metal comes out of contact with

the die. Very good agreement is seen among the LNQS and MARC solutions.

6.10 Stoughton’s Benchmark: Plane Strain Stretch with Non-Zero Friction

Figure 6.27 provides results for the MARC, LNQS and Wang model. Wang

implemented an implicit, updated Lagrangian model. Reasonable agreement is found

among the three solutions. All three solutions are in nearly perfect agreement where the

punch is not in contact with the metal. Yet, the strain is significantly lower for the Wang

model than it is for the other two. This is possible because the contact region seems to be

smaller for the Wang model. The result for Wang’s model is (with respect to the LNQS

and MARC models) a lower strain from along the punch flat, and a higher strain along the

circular region. These two effects apparently cancel each other out resulting in the strong

agreement with the LNQS and MARC models from x > 11. The solutions are in

reasonable agreement.
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6.11 Thick Section Benchmark: Pinching Boundary Condition

Up to this point, only relatively thin sections have been considered. The proposed

element is primarily intended to be used for cases where three dimensional efi’ects do not

prevail. However, for the sake ofresearch, an extreme case, which stretches the element’s

performance well beyond it’s intended limit is considered. Figure 6.19 describes the

boundary conditions imposed. The length, thickness and modulus are 10, 1 and 1e+06,

respectively. A single point load represents, perhaps, the most extreme case of single

sided contact that a finite element domain can experience in sheet metal forming problems.

Solutions from a MARC model with five elements in the thickness direction and a LNQS

model with one element in the thickness direction are given in Figures 6.20. The region of

study is that directly beneath the applied displacement of -0.04. The transverse efl‘ects are

nicely captured by the refined MARC model. The transverse normal strain is relatively

great near the top surface (~12%). However, it begins to decline prodigiously at the center

of the element. The cubically varying solution finally settles to a small value of about -

0.75%. The LNQS solution, on the other hand, poorly represents the actual solution. The

smallest strain is at the tap while the greatest is at the bottom. The linearly varying

solution bares witness to the fact that the LNQS model is not appropriate for use in cases

where transverse effects, such as those shown in Figure 6.20, prevail.
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Figure 6.1: Cantilevered Section Under Axial Tip Load
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Figure 6.3: Simply Supported Section Under Uniform Transverse Distributed

Load
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Figure 6.6: Cantilevered Section Under Transverse Tip Load
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CALCULATED STIFFNESS FOR BAR ELEMENT

l —1

One point integration K = 0.0005El: 1 1 :l

l —1

Two point integration K = 0.04164El: l 1 :l

l —l

Threcpoint integration K = 0.02700E[ l 1 J

' 1 —1

Four point integration K = 0.0402615[ l 1 :I

l —l

Exact integration K = 0.03973E[ l l ]

Figure 6.15 : For plasticity analysis ofthe two nodcd bar element, Bathe (1982)

shows that for certain stress distributions, increasing the number of

integration points does not always increase the accuracy ofthe

plasticity model.
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Figure 6.19: Section Under Double-sided Transverse Pinching Load
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Figure 6.21a: Geometry for Lee’s Benchmark Problem.
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Figure 6 2 lb : Final Mesh for Lee’s Benchmark Plane Strain Stretch Problem
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Figure 62% : Final Mesh for Lee’s Modified Benchmark Plane Strain Stretch Problem
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Figure 6.25a: Geometry for Stoughton’s Benchmark Problem.
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Figure 6.25b : Final Mesh for Stoughton’s Benchmark Plane Strain Stretch Problem
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Chapter 7

Conclusions

As demonstrated in the previous chapters, the first step in validating a new finite

element is the academic test, a series of very simple tests such as axially, or transversely

loaded members under small loads is in order. The results from such simple tests can be

compared with‘readily available analytical solutions. Eventually, large displacements are

introduced which may require a previously accepted numerical solution from another

model. However, for sheet metal forming, the element must be evaluated under sheet

metal forming conditions for legitimate element validation. An established and proven

contact model must be used. The solution algorithm has to be robust and reliable.

Efl‘ective post-processing is essential. To this end, a very large portion of the research

presented in this dissertation has been dedicated to simply establishing the software

infrastructure necessary to evaluate the proposed element under realistic sheet metal

forming boundary conditions.

Reliable, useful and efiicient means of evaluating a new finite element formulation

is often times more difiicult to obtain than is the actual new formulation itself. Indeed,

such was the case for this study. The research described in this thesis has proven out a

method to eficiently evaluate new finite element formulations. The LNQS model, with

geometric and material nonlinearities, has been cast into a FORTRAN subroutine which is

used interactively in a powerful commercial model. New formulations can be implemented

quite eficiently by simply modifying the LNQS source code.
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Rarely will all of the initial goals of an investigation be fulfilled as planned. The

research carried out by the author was no exception. A fiill understanding of the

interaction among the subroutine and the MARC main program is still yet to be realized.

This problem has certainly made it more diflicult for the author to make meaningful

contributions to the finite element technology base. Nonetheless, some contribution was

made; the goal of establishing an infrastructure, limited as it may be, has been

accomplished. Additional research in this area is now more approachable and inviting than

ever before. The fi'uits of this research have made it possible for a new investigator to

spend much less time developing infrastructure and more time evaluating their elements

and applying creativity to make improvements. From this standpoint alone, this research

has been a success.

As outlined in the introduction, there are numerous finite elements that are

suficicntly accurate and practical for a limited range of sheet metal forming applications.

The Belytschko-Tsai shell element is a good example. The LNQS and CNQS elements

were not introduced to compete with such elements as the BelytschkooTsai element which

has proven to be successful for very large models such as automotive door fiame

stamping. The strength of the proposed elements is revealed in smaller models which can

aflord more detailed descriptions oftransverse normal strain and shear stress.

For small deformations, the proposed elements are shown to be accurate. Shear

and Poisson’s locking issues have been resolved. Because ofthe assumed transverse stress

assumption, the transverse normal strain features a through-thickness interpolation which

has the same order of variation as the in-plane normal strain. This relationship allows for
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isochoric deformation. These features make the LNQS and CNQS elements field

consistent. Thus, a reduced or selective integration procedure is not required.

For large deformations, the LNQS and CNQS elements are shown to be accurate

and reasonably accurate, respectively. The deformation imposed upon the element mesh

for the large deflection studies were large compared to what the elements would typically

experience in sheet metal forming applications. Only under severe deformations did the

CNQS and LNQS solutions significantly depart. Both elements exhibit the ability to

exactly satisfy the shear transverse shear strain (or stress) at the top and bottom of the

element surface. At element surfaces, when fiiction is zero or non-zero, the transverse

shear strain is zero or non-zero, respectively. This is important when the order of shear

strain approaches that ofthe normal strains. The shear strain model takes advantage ofthe

MARC user subroutine to obtain appropriate values for the shear traction. This feature is

unique to the LNQS and CNQS elements. The advantage ofthis feature is that not only is

the nodal equivalent loads vector modified (in response to tangential fiiction forces), but

the shear strain model is also modified in order to more accurately simulate the transverse

shear strain approximation.

Two plane strain metal forming problems were studied. The first was for and

fiictionless case. Overall, good agreement was found among the LNQS and MARC

models for frictionless cases. In particular, the proposed models were able to capture the

membrane and bending effects quite well. Reasonable agreement was found among the

LNQS, MARC and experimental results for cases with fiiction. When fiiction was present,
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the LNQS model was able to satisfy the shear traction exactly at the top and bottom ofthe

element.

Mth their shear strain models and unique application to the MARC program, the

LNQS and CNQS elements can play an instrumental part in simulating various metal

forming processes which involve boundary conditions with and without fiiction. An

infi'astructure has been established in order that scientists may consider the MARC

subroutine procedure a viable option for both evaluating academic-type elements and

solving practical metal forming problems encountered in industry today.

  



Chapter 8

Future Work

Below is a short list ofpossible follow-up research activities that would be appropriate:

0 Continue development and refinement ofMARC subroutine infrastructure. Determine

methods of obtaining the global normal reaction loads directly from the main program.

Determine how to implement a three dimensional version of the LNQS and CNQS

element into the MARC subroutine.

c From a material model standpoint, make a detailed study of the advantages of a more

accurate strain field description within the element. Compare the LNQS, CNQS and

various commercially available elements.

0 Make a detailed study of what the optimum definition of the shear traction at the top

and bottom ofthe element should be (Coulombs model currently being used).

0 Compare the explicit version ofthe LNQS and CNQS element to the implicit version.

0 Study other types ofmetal forming such as forging or rolling.

0 Apply the LNQS and CNQS formulation to a time dependent case.

0 Investigate the issue of associated or non-associated flow rules that Stoughton

addresses.

0 Apply a polycrytstal-based failure criterion to the LNQS element.

0 Apply a stress-based failure critertion to the LNQS element.

0 Apply an energy-based failure criterion to the LNQS element.

0 Investigate the contributions ofbending to material failure in sheet metal forming.

0 Apply proposed post-process stress models to draw bead load boundary conditions.
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APPENDIX A

All details regarding the subroutine implementation can be found in the MARC user

manuals. The input decks are in the K62 version format. However, these input decks can

be read into the newest version (K7.2) without any errors. The following flow diagram is

ofl‘ered to explain the general flow ofinformation for the program.
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Subroutine USELEM
 

Global Displacement Vector

 

 

ICalculate Element

Return K. R and F Tangent Stifiness (K),

‘ Int. Force Vector (R)

and Nodal Equivelant

Loads Vector (F)

 

 

  
 

  
 

The source codes, “2d.f’ and “3d.f’, and also the input decks, “m1 llee.dat” and

“ml ltangmoddat” can be found in the following directory:

lhome/d6/uc/srnith/ange1a

To execute compile and execute the program, the following command is required:

launch -j (inputfile) -u (subroutine)

where the inputfiledat and subroutinef are the input deck and subroutine names,

respectively.

and “launch” is a unix alias for “/path. . ./marck62”
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