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ABSTRACT

RESPONSE OF THE CONDUCTANCE AND TUNNELING SYSTEM DYNAMICS

IN MESOSCOPIC BISMUTH TO APPLIED MECHANICAL STRAIN

By

David William Hoadley

We have introduced mechanical strain to mesoscopic bismuth wires at low

temperature as a new experimental tool. Typical samples have dimensions of 1.5pm x

70nm x 25mm and electrical resistances of 10-20 k0. We introduce strain by attaching

the substrate to a PZT-SA piezoelectric wafer. Our observations showed that the

conductance of the wires varies randomly but reproducibly with strain, in a manner

reminiscent of Universal Conductance Fluctuations. Surprisingly, application of strains

(AL/L) as small as 10"6 can change the conductance by order of e2 / h below

temperatures of 100 mK. In addition to these static fluctuations, the wires exhibit

dynamic fluctuations seen as random telegraph signals in the conductance. These

dynamic fluctuations, due to the motion of two-level tunneling systems (TLS), vary in

both amplitude and switching rate under strain. The amplitude variation is random, while

the ttmneling rates vary in a systematic way. The response of a TLS to strain in lowest

order is described by the deformation potential for the asymmetry, s: y a 5—? , where o

a



is dimensionless strain. We have made the first observations of this response to strain for

individual TLS’s, and compare our results to those of measurements in bulk glass

samples. In our experiments, 7 varied from 0 to 1.7 eV.



To Leah, my love
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Chapter 1

Introduction

Before the 1970’s, it had been expected that at low temperatures, the differences

in physical properties between crystalline and amorphous solids would disappear. As

temperature was lowered, the dominant phonon wavelengths would become much longer

than the average inter-atomic spacing. At very low temperatures, insulating glasses could

then be described as Debye solids, with phonon specific heat proportional to T3 [Ashcroft

& Mermin]. Experiments on a glass in 1971 showed, however, that there was a

contribution to the specific heat linear with temperature below 1K [Zeller and Pohl]. This

was the first evidence that amorphous solids contain a fundamental set of excitations not

present in their highly ordered, crystalline counterparts. The disordered nature of such

solids produces many atomic-sized configurations with two or more potential energy

local minima. The tunneling model [Phillips, 1972] [Anderson, et al.] describes these

excitations as two-level systems (TLS) that tunnel between configurations with a broad

probability distribution in energy and tunneling matrix element. At very low

temperatures, these tunneling systems produce an observable quasi-linear contribution to

the specific heat of glasses.

The tunneling model predicts other features of the low-temperature thermal and

acoustic properties ofamorphous materials. The distribution ofTLS excitations gives



rise to anomalous thermal conductivity [Zaitlin and Anderson], phonon attenuation

[Amold, et al.], and sound velocity dispersion [Piché, et al.]. Another dramatic result was

the observation ofphonon echoes produced with a series of ultrasonic pulses [Golding

and Graebner].

Disordered metals also exhibit properties that can be explained by a broad

distribution of disorder-induced excitations. The presence of quasiparticles in normal

metals makes it difficult to measure the effects ofTLS on thermal and acoustic

properties, however. The TLS linear specific heat contribution, for example, is much

smaller than that of electrons. Successful measurements ofthe TLS contributions were

made in disordered metals below the normal-superconductor transition temperature

[Graebner et al., 1977] [Weiss and Golding].

A large body of experimental work supports the tunneling model idea and shows

that disorder produces a fimdamental set of excitations in solids [Phillips, 1981].

Thermal and acoustic measurements provide information about the distribution of these

excitations and also about their interactions with phonons. These bulk experiments can

only probe the average parameters of the TLS, however. Any such bulk measurement

returns information that is averaged over the distribution oftunneling parameters for the

TLS’s. Therefore, 20 years after their discovery, little was known about the detailed

nature of these two-level systems.

In the late 1980’s, advances in the fabrication and understanding of sub-micron

sized metallic samples opened the door to a new approach to studying TLS. In a metallic

sample at low-temperature, the electrical conductance becomes sensitive to the motion of

scatterers, such as impurities or lattice dislocations. Long-range electron phase coherence



enhances the change in conductance produced by mobile defects. This enhancement is

maximized when electrons can coherently travel through a sample for most or all of its

extent, a situation known as the mesoscopic regime. There, the motion of individual,

atomic-sized scatterers can produce measurable changes in the conductance of a sample,

as predicted by the theories of Quantum Transport [Al’tshuler and Spivak] [Feng, et al.].

It is in a mesoscopic metallic sample that we have the unique opportunity to observe the

motion of an individual TLS.

The dynamics of individual mobile defects have been successfully studied in this

decade. The variation ofTLS tunneling rates with temperature has been observed

[Golding et al., 1992] [Chun and Birge, 1993]. As we will discuss in chapter 2, these

tunneling rates can have a novel temperature dependence in a dissipative environment,

such as that provided by the quasiparticles in a metal [Leggett et al.]. Once the TLS

dynamics were understood, observations focused on the effects of external perturbations.

Magnetic fields were shown to modify TLS dynamics in a mesoscopic metal through

changes induced in their environments [Zirnmerman, et al.]. The energy coupling of a

TLS to the quasiparticle bath was observed and the TLS was used as a thermometer in an

electron heating experiment [Chun and Birge, 1994].

To probe the TLS more deeply, we have examined their response to externally

applied mechanical strain. From thermal and acoustic measurements on bulk samples, we

have seen that the TLS have a strong coupling to strain realized as phonons [Beret and

Meissner]. By studying the dynamics of individual two-level systems, we can

unambiguously see how the microscopic potential of a TLS couples to strain.



I will also describe here the first observation of strain-induced conductance

fluctuations in a mesoscopic metallic sample [Birge, et al., 1996]. These fluctuations are

random, reproducible changes in conductance similar in character to those induced by

varying chemical potential [Skocpol, et al.] [Licini, et al.] or applied magnetic field

[Umbach, et al.].

The Thesis is organized as follows: Chapter 2 gives an introduction to the

Tunneling Model and identifies many of its consequences for the thermal and acoustic

properties of amorphous solids. Predictions based on the distribution of TLS’s in glasses

and their interactions with phonons are described, and examples are given of observations

of these. The theory of Dissipative Quantum Tunneling is also presented in Chapter 2. It

describes the modifications of the dynamics of a tunneling TLS due to the presence of

quasiparticles in a metal. Chapter 3 focuses on the implications of long-range electron

phase-coherence in a disordered metal. There I describe in detail several Quantum

Transport theories, including the mechanism that allowed us to observe individual TLS

tunneling from state to state via changes in the sample’s conductance. Chapter 4

describes some details about the experimental techniques and sample preparation. In

Chapter 5, I describe the first observation of random, reproducible strain-induced

conductance fluctuations. Chapter 6 is the main result of the work, and in it I present

detailed results on the first measurements ofthe effect of strain on the dynamics of

individual TLS. Chapter 7 concludes the body ofthe Thesis, and the Appendix describes

the low-temperature calibration process for strain that was applied to the sample.



Chapter 2

Tunneling, Two-Level Systems

I. Tunneling Model

There is a large body ofwork, which began in the early 19705, that is concerned

with the thermal and acoustic properties of amorphous insulators at low temperatures.

There we see the effects of a fundamental set of excitations not present in crystalline

solids, which have long range order. For example, the linear specific heat anomaly,

observed first in vitreous silica glass below 1K [Zeller and Pohl], can not be described by

conventional lattice contributions. The well-known result for the (Debye) phonon

specific heat in a crystal lattice at very low temperatures is

2 3

c, z 2—755- “(Eff-J [Ashcroft and Mermin]. (2.1)

c

Prior to the work of Zeller and Pohl, it had been expected that as the phonon wavelength

became much larger than the inter-atomic spacing, disorder would become decreasingly

important. The amorphous state of a material, at low enough temperatures, would feature

the same specific heat as its crystalline counterparts. After 1971 , however, the specific

heat ofmany amorphous solids was seen to vary nearly linearly with temperature below

1K. In 1972, a model was developed by two groups [Anderson et al., 1972] [Phillips,

1972], that described the observed specific heat anomaly. There they show a specific

heat contribution nearly linear with temperature arising from a broad distribution of



excitations. These excitations are present due to the disorder inherent to the amorphous

state and are identified as tunneling two-level systems (TLS). In a disordered solid, there

are a vast number of structural configurations with energies very close to each other.

Even at very low temperatures, the model assumes that some of these configurational

states feature low enough potential barriers that transitions can occur via tunneling.

For simplicity, we will consider the problem of a single particle in a double-well

potential. We model a TLS as shown in Figure 2.1. The abscissa represents a general

configurational coordinate for the system, arising perhaps from the rearrangement of a

few atoms in the solid. The two local minima differ in energy by e, the asymmetry of the

TLS potential. At low temperature, i.e. where kT << V, the dynamics are dominated by

quantum mechanical tunneling. The Hamiltonian is given concisely by

1 1

H=—ao ——-A 0' , 2.2
2 Z 2 0 x ( )

where 0, are the Pauli spin matrices. We can express the tunneling matrix element as

A0 = hwo 6‘, (2.3)

 where coo is the oscillation frequency in the well, and ,1 w d . " 2:12V is given in one

dimension by the WKB approximation, where m and d are the mass and separation

between wells for the model single-particle problem. The energy eigenstates of this

problem are readily determined. In the energy eigenstate basis, we have H = é—Eaz , and

the energy eigenvalues are

i

M
H
z
-
J

= 1%(32 + A1)? (2.4)
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1 2

Defect Configuration

Figure 2.1 - Schematic of the Potential of a Two-Level System. Here we see a realization

of the type of potential described by the tunneling model in amorphous solids. The

abscissa represents a generalized configuration coordinate. In order that this describes a

two-level system, we require that the potential barrier, V is much greater than hooo for

either well. In addition, the asymmetry, a, and kT must be much smaller than V.



The eigenstates are linear combinations of the left and right states, given by

‘I’ = I '

I +> cosB| >+Smg|r),where tan26=&.

|‘P_)=sin6|I)—cos9|r) E

(2.5)

Note that the in the zero-bias case (a = 0) we recover the familiar symmetric and anti-

symmetric combinations.

11. Thermal Properties

The Tunneling Model contains assumptions about the distribution ofTLS present

in an amorphous solid. The idea is that there is a wide distribution of such TLS, and that

in the relevant range of energies and parameters, we can consider it to be constant as a

function of asymmetry and tunneling parameter, P(£, l) = I—’ . TLS will exist that display

asymmetries from zero to some fraction of the glass transition temperature, since this

indicates the energy scale for the disorder present in the glassy state [Phillips, 1972].

Due also to the disordered nature of the solid, we expect a broad distribution of barrier

heights ranging from 0 to the energy associated with the glass transition temperature ( z

0.1 eV in vitreous silica) [Anderson et al., 1972]. With this assumption, we can derive

the contribution to the specific heat due to these excitations. For a single TLS, we have

 

F(E) = —kBTln[2cosh(E/kBT)], (2.6)

and

C(E)—-T‘32F — El sech2(E/k T) (2 7)

6T2 Ic,,T2 B ' '

For a distribution of independent tunneling states, n(E), we have that

E2

k T2 sech2(E/kBT)n(E)dE. (2.8)

B

 C = ]C(E)n(E)dE = j

0

co

0



The integrand is large only when E z kT. If n(E)=no is constant (or nearly so) near kT,

we find, upon substitution with x = E/kBT, that

no 2

C e nokBZT x2 sech xdx {$311,521 [Phillips, 1972]. (2.9)

0

This approximation for n(E) deserves further exposition. Recall that E = E(e, A0)

(Equation 2.4). It is clear that for a given E, the maximum value of A0 is B, when 3:0.

This implies that the minimum value of A. for a given E is

1min = 111(th

E

 ), (2.10)

Since Ao/h is the tunneling rate for the system, we should ignore those states that relax

only after times longer than the measurement’s duration when calculating the specific

heat. This implies that there is also a physical cutoff for a maximum A. We can consider

the probability density of states as a function of e and 71. for a fixed E (Figure 2.2).

E xmin A. max

 
 

      
 

Figure 2.2 - Probability Density ofTLS as a Function ofthe Parameters a and it.

From Equation 2.4 we see that for a given E, a can vary fi'om 0 to E. The Tunneling

Model assumes that P(s) for the distribution ofTLS is constant. We have seen that there

are minimum and maximum values of A allowed, and P0») is assumed constant within



those bounds. As we increase B, we add more states proportionally to E due to the

increase in the maximum value of a. This produces the specific heat’s linear temperature

dependence we saw above. The fact that Ami“ decreases logarithmically as energy

increases implies that the specific heat should increase faster than that by a logarithmic

term. This “superlinear” specific heat more closely describes the observations

[Stephens].

A TLS interacts with its surroundings via distortions in its local environment

produced by phonons. The dominant effect of strain on the TLS potential is through first

order changes in asymmetry, 8, induced by long-wavelength strain fields [Phillips, 1981]

[Halperin]. The interaction with the phonon bath takes the form

2 0
H1=1[6g ° ]=(yx6a)a.. (2.11)

—68

(2.12)V

Il
l

0
2

c
.
)

q
l
m

[
O
I
-
—

is the deformation potential for 8, and 0 represents dimensionless strain. For simplicity,

the tensor nature of7 has been suppressed. The relaxation rate for a single TLS can be

calculated from this interaction using Fermi’s Golden Rule [Jackle]:

2 2

r" = ——1;-+—25- Lfl—ficotlr(—fl—§], (2.13)

v, v, 27rph 2

where v" is the sound velocity for longitudinal or transverse phonon modes, p is the

density ofthe solid, and B is the inverse temperature.

Now we can discuss the probability distribution for TLS as a function of energy

and relaxation time. Jackle gives

10



 , 2.14

r" (1 —z-‘ n," (15))“2 ( )

where P is the (constant) P(s ,7t), and 1,, (E) = 1'(E,Ao = E) is the minimum relaxation

time for a given energy E, which corresponds to s = 0. These symmetric states are the

ones most strongly coupled to phonons. The derivation of this probability density is

straightforward, since the infinitesimal element of probability must be the same

regardless of the choice of variables. P(E,r")dEdr'l = P(£,/1)dall , so

P(E, r“) = EJ(8,11, E, r" ) , where J is the Jacobian, the determinant of the matrix of

as all

partial derivatives: J(a, A, E, r“) = det 21: gig . The remarkable feature of this

at“ at"

distribution in Equation 2.14 (see Figure 2.3) is the increase in the number of states at

very long relaxation times. This leads to a logarithmic increase in specific heat as a

function of time. Changing the measurement time fiom 1 microsecond to 1 second

increases the observed specific heat by a factor ofthree (Jackle). This is an important

prediction of the Tunneling Model assumptions that has been experimentally confirmed

[MeiBner and Spitzrnann] [Loponen et al.].

11



 

 
P
(
E
,

t
'
l
)

 L
-
-
-
-
-
-
-
-
.
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-
-
.

 

0 1,-1 1:m. (E)

Figure 2.3 Probability Density ofTLS as a Emotion of Relaxation Rate at Fixed Energy

The divergence of P as 1:" approaches 0 gives rise to a time-dependent increase in the

TLS specific heat contribution

Another consequence ofthis broad distribution of tunneling levels can be seen in

the temperature dependence of the low-temperature thermal conductivity of amorphous

insulators. Observations suggested that the thermal conductivity varied as nearly T2 [Pohl

and Salinger]. We will now show that the tunneling model predicts this. The phonon

mean free path through the TLS scatterers is given by [Phillips, 1972], [Black]

— ha)

r‘: 1’3 P ztanh , 2.15

a [WZJ 7a [2kaT] ( )

 

where or is for transverse or longitudinal modes. Here p is the (mass) density, 7,, is the

appropriate TLS deformation potential, and vcl the mode’s sound velocity. Starting from

Kinetic Theory, we can express the thermal conductivity through the bath ofphonons as

1

x = 3c,,,,,,,,v1. (2.16)
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For these TLS, summing over one longitudinal and two transverse phonon modes

[Golding, Graebner, and Kane], one finds that

__1_ °° £5122 zflhw a” 162:2 92-1x(T)—3kB;6[dw[( 2 )csch( 2 )[zflzvz]}x'a[pv2Pyatanh 2 ] .(2.17) 

[3 = (kT)'l and the bracketed terms represent Cphmn and 1, respectively. After integration,

we have

 _ pk}, _va_ 2x(T) _ 6M2 [2 1372 )T (2.18)

Experimentally, K(T) varies as T“, where or z 1.8-2.0 for many amorphous insulators

[Stephens].

III. Acoustic Properties

Many low-temperature acoustic phenomena in amorphous insulators result from

the coupling ofTLS to phonons. Ultrasonic attenuation, velocity of sound shift, and,

most strikingly, phonon echoes provide evidence of the presence ofthese excitations.

TLS-phonon scattering is a source of ultrasonic absorption in amorphous solids.

These excitations couple to phonons through the deformation potential, which shows how

spatial distortions in the lattice affect the energy of the two-level systems. We can

estimate the acoustic power input at which saturation effects become apparent following

Jtickle [Jfickle]. The absorption rate ofphonon mode k,ot is given by

— 2

1;; = £312.“: tarm(’—3"f’-] a a; tanh(£”ifl) (2.19)

pva 2 2

where a) = vak and B" = kT. rm" depends on temperature through the population factor

 tanh(—’62£) = 1— 2120 (E), no (E) = . no is the distribution function for the TLS in

eflg+1
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thermal equilibrium. Note that resonant absorption decreases with increasing

temperature as the population difference decreases. We should therefore see the resonant

absorption saturate at sufficient input power levels. Starting from the phonon emission

rate, we can find the saturation absorption, since, in the stationary saturated case, these

two are equal. The recombination rate of the TLSj is

 

.j = nj(1+N0(Ej)):(l-nj)N0(Ej), (2.20)

T}

1

whereN E = .
0( ) eflk

. The left side of the numerator is the contribution from
 

spontaneous phonon emission, the right is that from stimulated absorption, and E}. is the

temperature-independent part of the TLS relaxation time (Equation 2.19). The maximum

for this rate occurs at n, = ‘/2, so the stationary (maximum) absorption is given by

- ., 110 ~_
Qs=hw Zn§>=_2_ er'. (2.21)

j-lEj-hw|<r leI-hwld‘

The sum is over all states within F (the level width) of the incident frequency. We can

also incorporate (experimental) phonon frequency uncertainty in F. We can evaluate this

sum with Equation 2.14:

9', = 521’ 21“ [d(r“ )?"P(hw, 1") . (2.22)

0

This becomes

- l 2 P 2Fa)4
Q5 = [7. + 7.]_7__, (2.23)

v, v, 27rp

Now we can estimate the input power at which saturation effects become important by

setting the linear absorption equal to this maximum rate. The linear absorption rate is j,-/l,
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wherej,- is the incident power and I is the phonon mean fi'ee path (Equation 2.15). The

saturation value of input power, j)‘, becomes

3 3

f: = Q] = [is + 3] I‘caa) coth(&q)-) . (2.24)

v, v,’ 272‘2 2

 

Jtickle evaluated this for fused silica at 1K and found that for a 1 GHz incident frequency,

the saturation incident power is of the order of 10'8 W/cmz. This small power level made

experimental confirmation of resonant saturation absorption difficult, but not impossible

[Hunklinger et al., 1972] [Golding et al., 1973].

The most striking acoustic property due to TLS may be phonon echoes [Golding

and Graebner]. At temperatures below about 100 mK, the relaxation time of a TLS

(Equation 2.13) can be longer than the duration of a typical ultrasonic pulse of 100 us.

This implies that coherent effects can be observed. Above (Equation 2.2), we saw that

the problem of a two-level system can be expressed in terms of that of a spin system.

Specifically, we can write the Hamiltonian as

H = H0 + HI = $150, —[M0', +—;-D0',)e (2.25)

where M = 22—0 and D = 27:53 This shows formal correspondence between the TLS and

a spin-1/2 object in a magnetic field. We can therefore define a pseudopolarization

vector, P, and discuss the effects of external fields in terms of the expectation value of

this operator. The x and y components of P are related to the components of stress in

phase and out ofphase with the applied strain field, analogous to the transverse

components of spin in the magnetic case. Components of <P> must satisfy the coupled
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Bloch and wave equations, analogous to the case of light traveling through a resonantly

absorbing medium [Allen and Eberly].

Upon application of a strain e=eocos(a)t — k2), we find that the nutation frequency

 

. . . . . Me .

1n the usual rotatmg coordrnate frame 1s grven by a), = ° . The maxunum echo

amplitude occurs with a sequence of pulses of ‘areas’ 1t/2 and 1C. The 1r/2 pulse rotates

polarizations initially along the z-axis (for those TLS that are resonant with the pulse

frequency) into the x-y plane. The spread in frequencies of the excited states causes rapid

dephasing of those rotated polarization vectors. The second pulse rotates the

polarizations by 1: radians, and now they tend to become phase-coherent again, doing so

after a length oftime that is equal to the separation between the two pulses. Once the

polarizations become coherent again, a spontaneous echo is produced. Note that the time

between pulses must be shorter than the relaxation time for the TLS in order to observe

echoes. In the simple case of the symmetric TLS problem, E = A0 and M = 7 (see

Equation 2.4). The pulse area for a rectangular pulse of duration 1 is given by

w 790
6 = ardt =—r . 2.26I h ( >

Since the symmetric TLS scatter most strongly, we can use Equation 2.26 to determine y,

the deformation potential. Experiments measured deformation potentials for Suprasil-W

of 1.5 eV, consistent with earlier expectations [Phillips, 1972] [Anderson et al., 1972]

[Jtickle] and values inferred from other experiments [Zaitlin and Anderson] [Berret and

MeiBner]. Other experimental determinations of7 actually measure the product E7 2
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(see Equations 2.15, 2.18 for example) and so “consistency” is a more accurate

description of the situation than “agreement”.

IV. TLS in Metals

The behavior of tunneling, two-level systems is quite different in amorphous

metals. Electron-hole excitations can interact strongly with tunneling lattice defects that

we can describe as TLS. The theory of Dissipative Quantum Tunneling describes the

dynamics of a two-level system in contact with a thermal bath of excitations [Kondo]

[Leggett et al.]. Interaction with conduction electrons can change even the qualitative

behavior of the TLS dynamics, as we shall see.

The Hamiltonian for an isolated TLS was given above as Equation 2.2. We have

already discussed the effects of interaction between that system and phonons through the

strain dependence of the TLS potential. We will now model the interaction of the TLS

with conduction electrons and its effects on the tunneling parameters and dynamics. This

interaction renormalizes the effective tunneling parameters, removes the coherence of the

tunneling process (when A0 << kT), and can alter the temperature dependence ofthe

tunneling rates in a dramatic fashion, leading to an increase of tunneling rate with

decreasing temperature [Leggett et al.] [Grabert and Weiss] [Fisher and Dorsey]. This

inverse temperature dependence is a signature phenomenon of dissipative quantum

tunneling.

In this treatment, we are concerned with a limited range ofthe full parameter

space available to the problem. Our TLS model implies that we need to consider only

configurations where the wavefunction overlap is much smaller than the ground state

energy in a potential well: A0 << from. This is due in part to the nature of the experiments
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in question. We resolve defects switching states in the time domain on the order of

seconds, where the vibrational frequency in a well is on the order of 1012 s'IICukier et

al.]. Faster defects have been observed and give rise to anomalies in the I-V

characteristic of ultrasmall samples [Ralph and Buhrrnan]. In addition, we require that

kT<<V,hcoo, resulting in a true two-level system in the tunneling regime. We have no a

priori relation between the energy splitting, a, and kT to consider. In fact, the relative

magnitude of these two energies will play an important role in the dynamics ofthe TLS

in the presence of dissipation. Finally, the TLS tunnels in an incoherent manner, due to

the rapid dephasing effect of interactions with thermal electron-hole excitations. This

implies that the well occupation states form the correct basis with which to consider the

problem of a TLS in a metal, rather than the energy eigenstate basis that is appropriate in

insulators.

There are three regimes into which we can divide the electron-hole excitations for

consideration of their interaction with the TLS. Two of these, excitations with energy

much larger or much smaller than hA, are excluded from the Hamiltonian by

renormalization of the tunneling rate, which I will describe below. The third,

intermediate group produces interactions that can be modeled with a bath of harmonic

oscillators [Caldiera and Leggett]. What results is then a truncated spin-boson

Hamiltonian:

H=-:-a,—%a,+a,2c;j(bj +b;)+Zha)jb}bj. (2.27)

i I

Here the bf and bj are the creation and annihilation operators for the model harmonic

oscillators, Gj are the interaction between the defect and the harmonic oscillator state j,
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and Ar is the renorrnalized tunneling matrix element. This problem is tractable [Leggett

et al.], and one finds that the thermal bath only affects the dynamics of the TLS through

the spectral density of its excitations,

2 2
J(co) = (32—)2G,. 6(a) — (0c). (2.28)

1

For a metal, the form of J(oo) = orco for oo<o)c , which gives Ohmic dissipation

[Chakravarty and Leggett]. The parameter or is very important; it determines the

coupling of the TLS to the bath of interactions. In metals, or lies between 0 and ‘/2

[Yamada et al.].

Let us return to the renormalization of the tunneling rate and provide some

motivation. One can separate the high-energy excitations because above some cutoff

frequency, we, we expect the oscillators to be fast enough to follow the motion of the

defect adiabatically [Kagan and Prokofev]. (n6 is naturally between the tunneling rate

and oscillation frequency of the TLS well; A0 << on, < too. This adiabatic interaction

leads to a renormalization ofthe bare tunneling matrix element:

A = 130((0‘ J . (2.29)

(00

 

In addition, the oscillators with frequencies smaller than the tunneling rate of the TLS can

have little effect on its dynamics, since their periods are longer than the average dwell

time in any one well. This leads to a renormalization of A:

A, ={Ar = A,[-A—°]M . (2.30)
a) 020

C

Note that the final form of A, does not depend on the choice of me.
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One can now calculate the relaxation rate of the TLS by considering the transition

probability from the higher-energy to the lower-energy state, P(t)=< 03(t) >, given that

< 0',(t S 0) >= 1. One finds that

8 8

P(t > 0) = —tanh(———) +|:1 + tanh(—):|e" , (2.31)

2kT 2kT

where the total tunneling rate, 7, is given as

2

. (2.32)

2-rcosh—g—

A,2nkTa 2kT[.£)
— —— ————Fa+r—

2kT7 = 2h A, F(2a)  

Note that F(a + 11)) is the complex gamma function, P(z) = [e" x"‘dx. The transition

0

rates from the higher-energy state to the lower-energy state (”(059) and vice-versa(y,(10w))

must obey detailed balance. Therefore fl = eE , since the energy splitting between the

7’;

two levels is the asymmetry, a. The total tunneling rate is the sum of these rates, 7: 3+

7,, giving

2

and y, = 7, e77" (2.33)  

_ A, 27sz 2"" (if?

7’ 4h A, r(2a)  

F a+i-—£—)

( 2kT

[Leggett et al.] [Grabert and Weiss] [Fisher and Dorsey].

 

For 0 < a < %, the behavior of these rates is quite different depending on the

relative sizes of a and kT. For 8 < kT, the tunneling rates increase with decreasing

temperature; 7] , 7, at T2"“ [Kondo]. This is a signature feature of Dissipative Quantum

Tunneling. It has been experimentally verified, first in studies ofmuon diffusion in

'20



metals [Clawson et al.] [Kehr et al.] [Welter et al.]. When kT < a, the rates depend on

temperature following a simple model: decay (7}) can occur via stimulated or spontaneous

emission, while x, is due to stimulated absorption. As the temperature decreases, the fast

rate remains roughly constant, since the kT < a relationship implies that the spontaneous

emission process dominates relaxation. The slow rate decays as e72 as the thermal bath

excitations decrease in number.

V. Single Defect Studies

The coupling oftwo level systems to phonons in amorphous solids is through the

effect of strain on the local, microscopic potential. We have seen that Equations 2.15

(phonon mean free path), 2.18 (thermal conductivity), and 2.26 (phonon echo pulse area)

are examples of the influence ofthis strong coupling parameter, 7. All of these

measurements sample large numbers ofTLS parameters and therefore are affected by

assumptions about the distributions of those parameters. Mesoscopic, metallic samples in

the Quantum Transport (QT) regime (i.e., the quasiparticle de-phasing rate is less then the

total scattering rate) offer a new opportunity. At low temperatures in small samples,

electrical transport shows effects due to the interference of electrons as they travel

through a field of scatterers [Lee and Ramakrishnan]. These interference effects can lead

to a remarkable sensitivity of the electrical conductance on the location of these

scatterers. Even the small change due to the motion of an individual TLS can produce a

measurable effect on the conductance [Al’tshuler and Spivak] [Feng et al.].

In 1991, the first observation was made ofan individual TLS in a mesoscopic

metal [Zimmerman et a1]. Subsequently, the detailed form ofthe tunneling rates
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(Equation 2.33) was confirmed, establishing the validity of the Dissipative Quantum

Tunneling behavior ofTLS in metals [Golding et al., 1992] [Chun and Birge, 1993].

This approach provides our best opportunity to uncover information about the

nature of the TLS that pervade disordered systems. We can now observe a single defect

incoherently tunneling between two states. By applying perturbations that affect the

dynamics of a TLS, we can learn details about its microscopic potential.
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Chapter 3

Quantum Transport

1. Introduction

Electrical conduction in bulk metals at temperatures above a few K is accurately

described by the ideas of semi-classical, Boltzmann transport. Quasiparticles, which are

excitations of the filled Fermi sea of electrons, travel through the periodic potential of the

lattice under the influence of externally applied electrical fields. In the weakly-

disordered limit, they move diffusively, scattering fiom lattice imperfections and each

other [Lee and Ramakrishnan]. These imperfections include the thermally-induced

motion of lattice ions (phonons), structural defects, and impurities. We begin by

assuming that the scattering events are inelastic, isotropic, and random events, and that

the probability of a collision occurring in a tirrre dt is dP = dt/t, where 'c is the average

time between scattering events. We then find that the conductance in this model is given

by the familiar Drude formula,

 (3.1)

An interesting question is how this picture changes when we increase the disorder

present in the lattice. For the semi-classical, diffusive quasiparticle description to hold,

we require that kpl >> 1; that is, the elastic mean free path must be much longer than the

quasiparticle Fermi wavelength. Otherwise, the random-walk picture of diffusion breaks

down, since we can no longer consider the scatterers as independent point-scatterers. The
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goal of this chapter will be an explanation of some phenomena specific to disordered

metals. In particular, we will explore how elastic scattering with a rate larger than the

inelastic rate alters this simple picture.

Quasiparticle scattering in pure metals at temperatures above a few degrees K is

dominated by interaction with phonons. This can be seen in the resistance versus

temperature ofmetals from 10 K to room temperature [Zirnan]. Electron-phonon

scattering events are inelastic; in fact they represent the mechanism by which the

quasiparticle system comes to thermal equilibrium with the lattice. At low temperatures,

phonons become rare and other scattering mechanisms become more important to

conduction. Eventually the impurity scattering rate becomes larger than the phonon rate,

leading to a low-temperature residual resistivity common for metals [Zirnan]. Then, a

quasiparticle can travel through many elastic collisions before its energy has changed.

Elastic scattering does not destroy the phase coherence ofthe quasiparticles, and so we

must consider interference effects to determine the trajectory ofthe particle. As the

quasiparticle coherence length increases, conduction processes change character from

classical diffusion mechanisms (ifphase is always randomized at every collision) to

transmission of incident wavefunctions through a disordered medium [Landauer]. Phase-

coherence effects on conduction are described by the theories of Quantum Transport

(QT)-

One ofthe foundations upon which quantum transport theory is built is the early

work of Anderson [Anderson]. He considered the effects of disorder on a conductor by

trying to reason what the form ofa single electron state in a random potential would be.

He concluded that a sufficiently disordered potential should produce localized states,
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rather than extended, conducting ones. To lowest order, the electrons would be bound in

random potential wells, and the degree of mixture ofthese locally bound states would

determine whether the states would be ultimately localized or extended, as the sample

size was extended to infinity. The case of a crystalline lattice, in which neighboring

wells are identical to each other, is a very special case. There, the degeneracy of states

and their proximity induce large overlaps that produce extended Bloch states in metallic

crystal lattices. Anderson argued that in a random potential, the states in neighboring

wells have no special relationship in energy, thereby lowering their overlap integrals.

Degenerate states of course still exist, but they would in general be far removed spatially,

decreasing the amount of admixture exponentially with separation. If sufficient disorder

exists in the potential, single electron states will be localized and decay exponentially

beyond a localization length. Samples larger than this localization length would be

insulating, and this describes the metal-insulator transition as a function of sample size.

We can also consider this transition as a function of Fermi energy, for moderately

disordered samples. The critical energy above which states become extended represents

the mobility edge [Mott], since extended states give rise to nonzero conductance at zero

temperature.

Several years later, Thouless introduced the foundations for the scaling theory of

localization, based on Anderson’s work [for review, see Thouless, 1974]. Thouless

started by considering the assembly of a (2L)‘1 hypercube of material by placing Ld

samples together. He questioned whether the eigenstates ofthe larger system could be

easily related to those of the smaller system. States in the (2L)d sample are linear

combinations ofthose in the (L)‘1 system, and the degree of mixing is determined by the
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overlap of the wavefunctions and their energy differences. The level spacing in the

smaller region sets the scale of the perturbation theory energy denominator,

SW = (NoLd)", where No is the density of states. The overlap of wavefunctions is

identified as 8E. Thouless estimated 8E by observing that if periodic boundary

conditions are applied to the L‘1 region, its eigenstates will broaden into bands. He

surmised that the bandwidth would be a good estimate of the wavefunctions’ overlaps.

Consider again the transition from L‘1 to (2L)d: if states remain localized, then the overlap

integrals must be exponentially small, and therefore 5E/8W is small. If 8E/6W is large,

then the (Ld) states will be extended through the (2L)d region. Thouless observed that the

parameter 6E/5W determines the degree of localization of the electron states in the (Ld)

sub-regions. In fact, the zero-temperature conductance ofthe sample is directly related to

6E/8W [Anderson and Lee].

Thouless later argued that at non-zero temperature, inelastic scattering randomizes

the phase of electronic states and therefore destroys the interference that causes the

localization due to phase coherence [Thouless, 1977]. If the elastic scattering rate is

faster than the inelastic rate, then we define a diffusive phase-breaking length:

L‘ = ‘IDT‘ (3'2),

where D = (vav’d) is the diffusion constant, and Vf is the Fermi velocity, 1: is the elastic

scattering time, and d is the dimensionality. L¢ is the average distance that an electron

will diffuse before being de-phased by an inelastic scattering event. L4, determines the

length scale over which the effects of electron quantum interference can persist. At low

temperatures, L], can commonly extend over a micron in length in readily fabricated
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samples. This has allowed broad experimentation in mesoscopic physics, where samples

are fabricated that have dimensions less than the phase-breaking length.

Another important conceptual advance was made when a connection was

discovered between conductance and quantum interference effects in l-dimensional

metallic samples [Landauer]. In particular, he found a relationship between the

conductance of a metallic region with scatterers and the transmission matrix for incident

flux from one side of that region to the other. Conduction in coherent samples becomes a

scattering problem and can be calculated via the transmission of states in one perfect,

infinite lead to that on the other side ofthe disordered region. The Landauer equation

states that

_ 2e2
G——

h

Tr(tt’), (3.3)

where t is the transmission matrix across the disordered region. Conduction occurs

through quasiparticle ‘channels’, representing the quantization oftransverse momentum

states in the disordered region. The total number of channels is k]:2 times the cross-

sectional area of the region, and each channel has a maximum possible conductance of

em. Tr(tt+) is often identified as the number of effective conduction channels. The

factor oftwo comes from the spin-degeneracy of the quasiparticles. Note that we are

discussing the diffusive regime, and here Tr(tt+) is much less than the total number of

channels in the sample. The Landauer equation has also been generalized to higher

dimensions and multi-probe measurement geometries [Btittiker] [Stone and Szafer]. The

multi-dimensional form ofthe Landauer equation shares with Equation 3.3 the essential

feature that the conductance of the sample is a function of its transmission properties,

when it is considered as a scattering region for coherent incident electron flux. The
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Landauer idea has helped the understanding of some ofthe physical phenomena

attributed to quantum transport effects.

11. Weak Localization

I will now review some phenomena that result fiom quantum mechanical

corrections to the conductance of disordered metals at low temperature. First, I will

describe the physical picture that leads to the quantum transport phenomenon known as

Weak Localization (WL). WL corrections to the resistance of metals and 2-d electron

inversion layers are observed as low temperature resistance anomalies [Dolan and

Osheroff] [Kobayashi et al.] [Van den dries et al.] that feature a strong dependence on

applied magnetic field [Bergmann, 1979]. The observations [Bergmann, 1984] have been

very well described by an application ofquantum transport theory [for a review, see

Al’tshuler et al., 1987].

Imagine that the sample is a region of crystalline metal at low temperature with

some localized scatterers. These could be lattice dislocations, vacancies, impurities, etc.

We want to describe the motion ofthe quasiparticles, which are the excitations ofthe

electronic system without the disorder present. These quasiparticles move by diffusing

from one scatterer to another, traveling undisturbed between scattering events. If the

elastic scattering rate is higher than the inelastic scattering rate, then we must consider

the possibility that the various possible paths that a quasiparticle could traverse can

interfere. To determine the particle trajectories, the wavefunction amplitudes must be

added.

Suppose for simplicity that we can construct a fihn with thickness t < Lq,, making

the sample quasi-2D. This geometry is not required to observe WL effects, but it is
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useful for making the usual magnetoconductance measurements described below. Now

we must consider interference effects when describing electrical transport through any

region of size roughly M} in the sample. Consider the special subset of quasiparticle

Feynman paths that contain closed loops.

14/”>/

Figure 3.1 Quasiparticle Trajectories in a Small Part of a Weakly Disordered Conductor.

The paths only differ in the direction oftraversal of the closed loop. Lateral dimensions

ofthe region shown are smaller than the phase-breaking length. The average distance

between scattering centers is the mean free path, I.

In Figure 3.1, we see a schematic representation of a weakly disordered region of a

conductor, with scattering centers represented by the filled circles. Two possible

quasiparticle trajectories are drawn that differ only by the direction of traversal of the

closed loop portion ofthe path. A quasiparticle can traverse such a loop either clockwise

or counterclockwise. These two traversals have exactly the same accumulated phase at

29



the end of the trip around the loop, as long as their energy remains constant. Thus, the

wavefunctions add constructively at the return vertex. (This constructive interference

persists regardless ofthe impurity configuration. Hence, WL survives impurity

averaging.) The net result of this constructive interference is to increase the probability

that any quasiparticle will return to its origin during its diffusive motion, leading to a

decrease in conductance:

e2 3L2 .
AG = —Eln(-—") (quasr-2D result). (3.4)

square ,2

As inelastic scattering becomes more rare, 1., and therefore L,p increase, leading to a

decrease in conductance as sample temperature is lowered.

The detailed temperature dependence of 1., depends on the dominant quasiparticle

de-phasing mechanism. Above a few K, this appears to be electron-phonon scattering

and below that low-energy-transfer electron-electron scattering [Bergmann, 1984].

Electron-electron interaction in a disordered metal also decreases the conductivity as

temperature is lowered [Al’tshuler et al., 1987] [Lee and Rarnakrishnan], but WL has a

definitive magnetic field dependence that sets its contribution apart. Since the interfering

quasiparticle paths traverse closed loops in opposite directions, introduction of a

perturbation that breaks the time-reversal symmetry of that process destroys this

constructive interference. Magnetic flux threading the loop introduces a relative phase

shift between the paths of

A¢=%¢IAodr (3.5)

via the Aharonov-Bohm effect. This flux is depicted as the circled ‘X’ in Figure 3.1. If

the applied field is perpendicular to our 2-D example, then this phase shift is roughly e/h
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(B * L¢2). When this phase shift is of order 1t/2, then the interference at the paths’

crossing-point is no longer constructive.

In precisely the same way, the conductance of a metallic cylinder or ring with

diameter smaller that L, features oscillations in conductance as a function of magnetic

field along its axis [Sharvin and Sharvin]. Paths that traverse the circumference in

opposite directions get a relative phase shift from the Aharonov-Bohm effect, implying

that the conductance is periodic in applied magnetic flux, with the period of (I) = h/2e.

The 2 in the denominator is due to the fact that the area is enclosed twice by the

interfering partial waves. Rings exhibit oscillations with period h/e as well [Webb et al.],

but their physical origins are different (they are due to a different interference process,

closely related to Universal Conductance Fluctuations and described below). The h/e

oscillations are sample-specific and therefore ensemble-average to zero in structures such

as long tubes or arrays of rings.

In a metal film at a few K, L, is on the order of 1pm, implying that fields less that

100 Gauss would begin to affect the conductance. As the strength ofthe field is

increased, the constructive interference in smaller and smaller loops is quenched, leading

to the following expression for the magnetoconductance due to WL of a quasi-2D

conductor:
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AO'(a):O,B)=— e2 W(1+_BJ)+1W(1+§;)_3W(1+5) ,

27th 2 B 2 2 B 2 2 B

where

BI = Bo + BSD

B2 = Bw

B3 — g-Bso + B,

and w is the digamma function.

Note that Bozo = 43—hD’ and for B. and B50,

e

B}, = 1—

4eD (3.6)

Dr, = Li,

where D is the diffusion constant.

B0 is due to elastic scattering, while Bso and B, are from spin-orbit and inelastic

scattering, respectively. This quantum transport correction to the conductance is

calculated by using the Kubo formalism and evaluating the appropriate diagrams with

impurity-averaged perturbation theory. The above results are based on the work of

several groups [Al’tshuler et al., 1980] [Maekawa and Fukuyama] [Hikami et al]. The

expression is valid when there is no appreciable magnetic impurity (spin-flip) scattering,

which would be a further source ofdephasing [Bergmann, 1984].

Notably, strong spin-orbit (SO) scattering changes the sign of the interference in

zero field, giving an impurity-averaged correction (when 1,," >> 76’) of—1/2 of the

previous WL correction to the conductance (Equation 3.4). In a system with strong spin-
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orbit scattering, the resistance anomaly becomes an increase in conductance proportional

to ln(T) [Bergmann, Phys. Rev. Lett., 1982] [Bergmann, Solid State Comm, 1982].

When the spin-orbit scattering rate is higher than the dephasing rate, the SO scattering

effectively rotates the spin of the quasiparticles without destroying the coherence

between a path and its time-reverse. The direction of rotation is opposite for the two

paths, however. When the relative rotation is 21:, one spin wavefunction picks up a factor

of—1 relative to the other, and so the partial waves interfere destructively.

111. Universal Conductance Fluctuations

III A. Introduction

Starting in 1984, observations of the low-temperature conductance of small

metallic wires revealed fluctuations as a function of magnetic field [Umbach et al., 1984]

[See Figure 5.1b for an example ofG vs B]. These fluctuations are random, reproducible

changes in conductance versus field that are in detail unique to a particular sample. G(B)

vs. B has therefore been called the magnetofingerprint. The average magnitude ofthe

fluctuations for any sufficiently small sample (i.e., smaller than LP) is seen to have the

universal amplitude of e2/h, regardless ofthe size of the conductance in zero field. This

led to the naming ofthe phenomenon as Universal Conductance Fluctuations (UCF).

Small metallic rings also exhibit UCF in addition to the Aharonov-Bohm oscillations due

to the magnetic flux through the rings [Webb et al] [Washbum et al.] [Chandrasekhar et

al.] [Umbach et al., 1986]. The UCF were also observed in semiconductors, and there the

fluctuations exist in conductance as a function of chemical potential as well as magnetic

field, with similar amplitude [Skocpol et al] [Licini et al.].
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The UCF in a given sample were seen to increase in amplitude as the temperature

was lowered until they reached the universal amplitude of eZ/h. This indicated that a

possible mechanism to explain the insensitivity to sample size was that a temperature-

dependent length scale increased until it exceeded the dimensions of the sample, at which

point the scale ofthe phenomenon would be set by the sample size. It was known that

quantum interference effects generate length scales that increase as temperature is

lowered (L,, e.g.) and this provided impetus to theoretical investigations in quantum

transport as a source ofUCF. In addition, interference effects could explain the sample-

specific nature of the detailed behavior of conductance versus field or chemical potential,

since they depend on the microscopic details of the region’s impurity potential.

UCF theoretical studies began by considering the possible statistical fluctuations

in conductance between members ofan ensemble of disordered metallic regions that

differ only in their microscopic impurity potentials. An ergodic hypothesis was

formulated to connect these statistical deviations with the sample-specific observations of

conductance versus field or chemical potential [Lee and Stone] [Al’tshuler and

Khmel’nitskii]. This was essential in comparing the statistical theoretical results to

experiments, where only a limited number of samples could be measured. The basic

tenet of this hypothesis is that once the applied magnetic field or chemical potential has

been changed by an amount large enough to significantly alter the quasiparticle

interference pattern in the sample, the new conductance should be no more related to the

old one than it is to any other member of its ensemble ofpossible impurity

configurations.
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Fig 3.2 A Region of a Disordered Conductor in the UCF Regime. Two possible diffusive

quasiparticle paths are illustrated from point A to point B. Filled circles represent

scattering centers. The region shown is smaller than the phase-breaking length, L,.

In Figure 3.2, we see a section of a UCF sample, where two possible quasiparticle

paths are highlighted from points A to B. The average spacing of scatterers represents

the elastic mean free path, which is much smaller than the phase-breaking length. The

total conductance from A to B is derived from adding the amplitudes for all possible

(Feynman) paths between the two points, as long as kpl >> 1. By adding magnetic flux,

this interference pattern is changed in a random way due to the particular relative

locations ofthe scatterers. Each path gets a unique relative Aharonov-Bohm phase shift

due to the applied flux, and the conductance changes. This is the physical mechanism

behind the variation of the conductance with magnetic field. This interference

mechanism makes clear why the observed fluctuations are random and sample-specific.

The finite size of the interfering region sets the scale of the correlation field, similar to
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the WL phenomenon. If the center ofthe region were hollow, this diagram would

represent the case of a ring structure rather than a film. Such mesoscopic rings (diameter

5 Lq,) also exhibit h/e periodicity with applied magnetic flux, due to the periodic phase

shifts induced between paths along the top and bottom portions ofthe ring. Random

phase shifts within each arm ofthe ring still provide aperiodic changes in conductance.

We must add other considerations to this simple picture to explain the universal

amplitude ofthe fluctuations, however. I will describe in the following sections three

approaches to understanding UCF. The first is an heuristic physical argument that will

show that the UCF arise quite naturally from correlations between energy levels in a

disordered region. In the next section, I will discuss more rigorously the unusual

statistics observed among the eigenvalues of the transmission matrices of disordered

conductors. Here, we will find an origin for the correlations between transmission

eignestates and also some predictions for UCF relative amplitudes as a function of the

symmetry ofthe transmission matrix. By applying external perturbations to a given

sample to change that symmetry, experiments can verify the predictions of the Random

Matrix Theory description ofUCF. The third UCF section describes a perturbation

theory calculation for UCF. By using diagrammatic techniques to calculate the ensemble

average conductance and conductance correlation functions for Fermi energy and

magnetic field, the greatest number of details about UCF measurements are described.

UCF amplitude as a function of sample size, sample dimensionality, and temperature are

revealed. Also, the correlation magnetic field and Fermi energy can be derived. These

correlation fields set the scale for applied perturbations that alter the conductance of the
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sample and allow a theoretical connection between experimental fingerprint data and

ensemble average quantities.

III B. Thouless Argument

Recall the Landauer idea that conduction occurs through quasiparticle channels

that cross the sample. These effective channels are extended states that couple lead states

from one side of the region to the other. Since electrons spend a finite time diffusing

across the sample, there is an associated energy uncertainty that broadens the energy level

of the electron while it is in the sample. This uncertainty is h/tp, where 1]) is the time to

diffuse across the sample: To = (LE/D), where L" is the sample length. This energy

uncertainty has been called the Thouless energy,

Ec = h/(rnin {1:0, 13¢» (3.7)

Ec is either set by the sample length or LP, whichever is shorter. (Recall that 1., is the

maximum time for which a quasiparticle can travel and remain coherent, and the levels

are broadened only by the coherent time spent within them.) In this picture of

conduction, the sample conductance is set by the number of channels with energy within

Ec of the chemical potential ofthe measuring lead. The number of effective conduction

channels is then given by EJSE, where SE is the average level spacing. Equation 3.3

reduces to

2e2 E,

= 77 615' (3'8)

 

The expected fluctuation of the conductance when chemical potential or impurity

configuration is varied would be 2e2/h times the change in the number of effective

channels in the broadened energy scale. If the energy levels obeyed Poisson statistics, the
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expected fluctuation would be Nchmrsm. Even in a mesoscopic sample, the number of

effective channels is typically very large; a 100 Ohm sample has hundreds of effective

conduction channels. Observations show that in sufficiently small samples (i.e., Lx < L4,),

the observed change in number of effective channels is always of order 1. This indicates

that some other statistical ensemble must describe the spectrum of energy eigenvalues in

the sample.

It should be pointed out, however, that we have assumed that the entire sample is

phase-coherent. For larger samples, we effectively have several independently

fluctuating regions. The relative size of fluctuations then decreases normally as the

square root of the number of independent regions.

III C. Transmission Matrix Eigenvalue Statistics

Consider the origin of the transmission eigenstates, which are determined by the

transmission matrix through the sample. This matrix is in general quite large, since it has

terms for flux between every state in the ideal leads on one side of the sample and the

other. The statistics of the eigenvalues of large, random matrices have been studied,

however, first in the context ofthe excitation spectra ofcompound nuclei [Wigner]

[Dyson]. The eigenstates of such matrices follow different statistical ensembles based on

the symmetry properties ofthe matrix. The symmetry classes are Gaussian Orthogonal

Ensemble for time-reversal and spin symmetry, Gaussian Unitary Ensemble for spin

symmetry only, and Gaussian Symplectic Ensemble for broken time and spin symmetry.

All ofthese ensembles feature level repulsion. That is, the probability that two states will

exist with a given energy separation goes to zero as the separation goes to zero. This

reduces the size of fluctuations in the spectra significantly, and makes the expected size
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of fluctuations in a region of energy independent of the number of eigenstates in that

region. Schematically, the eigenstate spectrum can be compared to a ladder, where the

spacing between rungs usually only varies by a limited amount. The expected number of

rungs in a given distance (energy range) does not change much in different regions of the

ladder, compared to the expected fluctuations if we remove the constraint that controls

the rung spacing. The size of the fluctuations in conductance can be calculated based on

the number of independent statistical sequences of eigenstates and the symmetry ofthe

transmission matrix or Hamiltonian [Imry] [Al’tshuer and Shklovskii] [Muttalib et al.]

[Beenakker]:

((8 - (g))2) cc (%]z “72. (3.9)

The brackets represent averaging over the ensemble of impurity configurations. Here k is

the number of independent sequences of eigenvalues ofthe transmission matrix, s is the

degeneracy of eigenvalues, and I3 is 1, 2, or 4 for GOE, GUE, or GSE, respectively. The

constant of proportionality depends on sample dimensionality. As we can see, Random

Matrix Theory (RMT) allows us to relate the size of conductance fluctuations to em,

irrespective ofthe sample’s conductance.

This RMT approach is particularly useful when we can experimentally change the

symmetry of the transmission matrix or Hamiltonian. Then dramatic relative changes in

the amplitude ofthe variance of g (Equation 3.9) can be observed. One such application

is the observation ofthe factor of two reduction of low temperature l/f noise at large

magnetic fields [Stone] [Birge et al., 1989]. In this example, application of a magnetic

field breaks time-reversal symmetry in the sample, and we see a drop in noise power of a
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factor of 2. In order to consider the effects of finite temperature and sample size in UCF,

however, another theoretical approach was required.

111 D. Perturbation Theory

Using perturbation theory under the Kubo formalism, one can calculate the

ensemble average conductance and its variance directly. Lee, Stone, and Fukuyama used

the ergodic hypothesis described earlier to relate changes in magnetic field or chemical

potential to (impurity) ensemble-averaged calculations in perturbation theory. Their

expansion parameter was (1rd)", which is much larger than 1 in weakly-disordered

metallic samples. They diagrammatically calculated the correlation fimction for

conductance as a function of magnetic field and chemical potential:

F<AE,AB. B) =(6g(EF.B)6g(E.~ +AE,B+AB>). (3.10)

where 6g(E, B) = g(E, B) -— (g(E, B)) . (See Lee et al. for the results of this calculation).

Note that F(AE,AB=0) is simply Var(g). The scales in energy or magnetic field where F

falls to 1A: Var(g) were identified as the correlation energy or field. Lee, Stone, and

Fukuyama calculated the correlation field and energies as a function of sample size and

dimensionality, temperature, and up. They found that the correlation energy is sometimes

determined by the Thouless energy, EC, and other times by kT, depending on sample

geometry and temperature. The correlation magnetic field is basically set by the

condition that magnetic flux through the coherent region be equal to We, but the size of

the coherent region can be determined by LP, the sample size, or the thermal “coherence”

length, Lu.=(hD/kT)m. Recall that the breadth ofthe Fermi-Dirac distribution function

about Ep is set by kT. Lu. represents the distance that two nearly coherent quasiparticles
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separated in energy by kT can diffuse before they accumulate enough phase shift to

become incoherent.

III E. UCF-Enhanced Sensitivity to Impurity Motion

Another feature of the UCF mechanism is that the conductance ofmesoscopic

metallic samples is highly sensitive to small changes in the impurity potential. Multiple

visits to impurities by coherently diffusing quasiparticles magnify the effects of motion of

those impurities on the conductance [Al’tshuler and Spivak] [Feng et al.]. In fact, the

motion of one scatterer could cause the conductance to fluctuate by up to ez/h in

sufficiently small samples. This is the same fluctuation that is expected when all of the

scatterers are randomly relocated; that is, the conductance oftwo ensemble members is

expected to differ by eth. Experimentally, samples are not usually in this so-called

“saturated” regime, and the change due to the relocation or reorientation of a single

defect is much less than e2/h. This sensitivity explains many early observations. Discreet

jumps in resistance were observed in very small, cold conductors, attributed to the motion

of defects [Beutler et al.]. Defect electromigration was evidenced by changes in the

resistance noise amplitudes in metal nanobridges [Ralls et al.]. Conductance fluctuations

in silver samples were shown to have both magnetic field-dependence and time-

dependence, with similar amplitude [Meisenheirner and Giordano]. Tunneling defects

resolved in resistance jumps at low temperature in amorphous conductors were shown to

have roughly consistent densities with those inferred from the specific heat anomaly of

glasses [Garfunkel et al.]. In addition, this mechanism was proposed as a source of the

l/f noise enhancement in metals observed at low temperature [Feng et al.].
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In metals, a broad distribution of excitations leads to resistance noise with a

power spectrum that increases as 1/f“, with or z 1. From 100K to 500K, a distribution of

thermally-activated, hopping systems with barrier heights about leV and a width of 0.3

eV can explain the observed resistance fluctuations in a variety of metals [Dutta et al.].

Consider the case of a two-level system that is activated by thermal fluctuations. The

E

transition rate of such a system is given by r = roe” , where E is the energy barrier

height and to is the average time between attempts. Ifwe assume a wide distribution of E

compared with kT, then the density of states as a ftmction of ln(r), D(ln(t)), will be

constant. The power spectrum of one switching two-level defect is a Lorentzian, with

knee frequency given by the total transition rate. Specifically,

21

S =———,

(w) 1+(cor)2

(3.11)

where -1— = -—1— + i. The total fluctuation for the distribution ofTLS we write as

r 1",, rd,

S(w)= ID(r)1——2——d (3.12)

1+(w)2

If D(ln(1:)) is constant, or D(1.') at U“: (which is equivalent), then the resulting spectrum of

fluctuations is proportional to l/o) (l/f) [Dutta and Horn]. Later, it was pointed out that a

broad distribution oftunneling excitations could also provide a 1/f noise spectrum

[Ludviksson et al.].

The l/f noise power in metals is seen to increase as temperature decreases below a

few K and electron coherence becomes important to conduction processes. A proposed

explanation [Feng et al.] was that L, and Lu. increase as temperature is lowered, and
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therefore so does the sensitivity of the conductance of the sample to defect motion. In

Chapter 2, we saw that the under the Tunneling Model of amorphous solids, a distribution

oftwo-level systems exists with a broad range of excitation energies and asymmetries.

Their effects persist in the thermal and acoustic properties of glasses at temperatures

below 1 K. Recall that the incoherent tunneling rate of a TLS in a metal (Equation 2.31)

is a function of the broadly-distributed tunneling parameter A,. This results in a broad

distribution of tunneling rates and a slowly-varying density of states as a function of the

logarithm of the tunneling rates. Thus, we find a 1/f fluctuation spectrum, following

Equation 3.12. We can surmise that in amorphous metals, tunneling defects may provide

the mechanism for l/f noise to persist even below 1 K.

The definitive test that showed that low-temperature 1/f noise is enhanced by the

UCF mechanism was application of a magnetic field. Fields large enough to break the

time-reversal symmetry of the scattering matrix lower the noise power by a factor oftwo,

due to changes in the statistics of the eigenstates. The detailed crossover function

between RMT statistical ensembles has been calculated for l/f noise power as a function

of magnetic field, again using impurity-averaged perturbation theory [Stone] [Hoadley et

al.].

The next experimental advance was measurement of the tunneling parameters of

individual mobile defects in mesoscopic metals. The dynamics ofTLS in metals are

described by the theory of Dissipative Quantum Tunneling, as was described in Chapter 2

of this thesis. By measuring the tunneling rates (Equation 2.31) from observations of

resistance jumps, the energy asymmetry of a single TLS as a function of magnetic field

was studied [Zimmerman et al.]. Later, the detailed dependence of the tunneling rates on
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the ratio of e to kT was observed [Golding et al., 1992] [Chun and Birge, 1993].

Excellent agreement was found with Dissipative Quantum Tunneling theory, including

the novel increase of tunneling rate as temperature is lowered. These observations have

established resistance measurement as a probe of the dynamics of individual tunneling

defects in disordered metals.

IV. Conclusion

The work described in this Thesis is a study of the effects of an external

perturbation on individual, atomic-scale tunneling systems. We observe the motion of an

active TLS by measuring the conductance of a mesoscopic metallic sample at low

temperature. Due to quasiparticle coherence, conductance becomes a probe into atomic-

scale changes in the microscopic impurity potential. In practice, we locate a bi-stable

defect system with resistance values different enough to be easily resolvable (at least a

few Ohms). Then, we can apply a perturbation to the system and measure directly the

effects that it produces on the dynamics of the defect. The TLS in amorphous solids are

strongly coupled to strain, as has been seen in the average values of the deformation

potential that have been inferred from acoustic and thermal measurements in glasses

[Beret and MeiBner]. By applying known strain to a metallic sample in the UCF-regime

and observing the corresponding changes in tunneling rates, we directly measure the

deformation potential for individual tunneling systems.



Chapter 4

Experimental Concerns

I. Introduction

In this Chapter I will discuss various steps required in the fabrication and

measurement of a sub-micron sample. In order to conduct these experiments, samples

were fabricated, mounted and cooled in a cryostat, and subjected to external

perturbations. Our results were all obtained fiom measurements ofthe conductance of

the samples under those circumstances.

Samples are produced via electron beam lithography (EBL), an established

method of fabricating sub-micron sized metallic samples [Broers, et al.]. The process

involves application to a suitable substrate of at least one layer of a chemical sensitive to

bombardment by electrons, called e-beam resist. After a controlled exposure in a

scanning electron microscope (SEM), the desired regions of this film are removed by a

developer. Metal is then deposited everywhere on the substrate, and the underlayer of e-

beam resist is removed, leaving behind only the metal which landed directly on the

substrate.

Electrical connection between the EBL sample and the electrical leads in the

cryostat is facilitated by a larger lead pattern produced with another step of lithography,

this time using resist which is sensitive to light. Photolithography affords lower
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resolution, with the wavelength ofthe UV exposure light being the ultimate limit, but a

broader field of view. At 1500x in the SEM, the maximum field of view is typically less

than 100nm. Thus, a larger field, lower resolution exposure is essential. It is useful to

use a different deposition step for the outer leads, both to lower the sample’s two-terminal

resistances and in order to have a more robust contact for final connection to the world

off ofthe substrate. We chose 120nm gold pads. The disadvantage, however, is that

alignment ofthe BBL pattern onto the existing contact pattern is necessary. An SEM

micrograph of a finished sample can be seen in Figure 4.1.

Once produced, the sample is mounted in a cryostat and mechanical strain is

induced via a wafer of PZT-SA, a piezoelectric ceramic. Magnetic fields were applied

with a superconducting solenoid that is wrapped around the outside of the sample

chamber in the cryostat. All ofthese steps will be described in greater detail in the

sections that follow.

11. Sample Preparation

11 A. Electron Beam Lithography

Electron beam lithography involves the use of a scanning electron microscope in a

modified way. The focused electron beam, which usually rasters across the sample, is

controlled via a computer and used to write a pattern on the desired sample. The two

main parts of this system are X and Y position controls, which are realized as currents in

the scan coils ofthe SEM, and a beam blanker, which allows exposure only when the

beam has reached its desired position. The remainder of the system is mostly a user

interface. There are software packages to turn an input drawing into parameters to be
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passed to the SEM. The software that I used was the Nabity Pattern Generation System,

NPGS. The user inputs a DesignCAD drawing ofthe sample area, and can assign

different electron beam doses to different regions of the drawing, denoted as layers or

colors in the CAD drawing. Typical doses for these samples were 0.8 - 1.2 nC/cm as line

dose and 275 ItC/cm2 in the large area pads. The ultimate resolution ofPMMA is about

20 nm, but in general a few factors degrade this. The first requirement for good

lithography is a highly accurate correction to the shape ofthe electron spot, accomplished

by removing astigmatism from the electron optics. Additionally, the focus on the surface

of the resist should be of the highest quality. A fundamental limitation, however, is the

widening of written patterns by the backseattering of electrons from the substrate, either

during exposure ofthe pattern or from areas of the pattern nearby. These degradations

are known in this field as proximity effects. They are lowered by increasing the

acceleration voltage, since higher energy electrons are more likely to travel through the

resist and be lost deep in the substrate. There are always some ofthese effects present,

however. I have used a bi-layer resist scheme to produce a good undercut, allowing ease

of liftoff in the last step of this processing procedure. After exposure, the pattern is

developed in methyl-isobutyl-ketone (NflBK), which develops the top and bottom layers

one after the other. The bottom layer has an increased sensitivity to electron dose which

provides the essential undercut for liftoff processing. The choice of electron beam resist

is very important, and the particular resists I used will be described below. Further

description ofthe EBL process itself can be found in the doctoral theses of J. S. Moon

and K. Chun [Chun] [Moon].
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II B. Choice of Substrate Material

Substrate choice plays a very important role. The initial data run for the defect-

strain experiment was performed on a glass substrate, formed from a fraction of a

Corning #1 glass cover slip. This was chosen due to its availability, electrically

insulating nature, and most importantly its thickness - roughly 5 thousands of an inch

(mils). One possible choice of substrate would have been the PZT-5A wafer itself.

These materials are porous, however, and a very effective planarization step would have

been necessary to carry out the lithography. It seemed simpler to use a very thin substrate

atop the PZT and calibrate the strain for losses thereby incurred (See Appendix A for

strain calibration details). The cover slips thus seemed a natural choice. Unfortunately,

EBL is not reproducible on top of an insulator. The incident writing beam deposits

charge on the substrate, changing the character of the beam as it scans over the sample.

This is a familiar occurrence to SEM users, since long-term beam exposure degrades

images. We attempted to remove substrate charging with the deposition ofa 15nm thick

aluminum layer atop the e-beam resist. The metal layer was thin enough that it was

nearly transparent to the incident high-energy beam electrons but still electrically

continuous. This was a step in the right direction, but still left us with dissatisfying

results. These problems were solved with the use of 5 mil (.005”) thick silicon wafers, P-

type doped to 1-10 Q-cm, as substrates. (These wafers were commercially available fi'om

Silicon Quest International, a silicon wafer broker.) At room temperature, these

substrates are conductive and we achieve very reproducible lithography. At low

temperature, the carrier density plummets and the substrates become insulating. The only
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disadvantage here is that we could not determine with total certainty whether a sample

existed on the substrate at room temperature. By 77K, however, the substrate

conductance could easily be separated from that ofthe sample, as the former is already

nearly an order of magnitude smaller than the latter.

II C. Substrate Preparation

Careful substrate preparation is also vital to successful EBL. Table 4.1 shows the

“recipe” that I followed. Additionally, I will point out some details. Precise substrate

cleaning is essential. Treatment with hot Micro (a commercial soap) has proven to be a

suitable degreasing and dust-removing process. The e-beam resists that I have used are

2% PMMA (Polymethyl Methylacrilate) dissolved in chlorobenzene and 9%

PMMA/MAA copolymer dissolved in 2-ethoxyethanol. As a final note, I point out that

the use of a controlled, clean environment is very helpful. The MSU Microfabrication

Facility features a class 1000 clean room with controlled temperature and humidity.

11 D. Photolithography

To make contact with the small features written with the SEM, we use optically

patterned leads. The particular process we use is a type oftriple-layer photolithography

and is pictured schematically in Figure 4.2. The bottom layer is a blanket-exposed layer

of a standard photoresist, in this case Shipley type 1813. The evaporation mask is formed

by the middle layer, 35 nm of thermally evaporated aluminum. The top layer is again

photoresist, in which the desired pattern is exposed. The pattern is developed using

Microposit 452 photoresist developer. The development process proceeds in this manner:

first, the top layer of photoresist is developed, revealing the aluminum layer in the shape

ofthe exposure pattern. Next, the pattern is etched into the aluminum layer.
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Fortuitously, our photoresist developer served as a useful etch for the aluminum, and no

separate etch processing step was required. Once the aluminum is etched, the bottom

photoresist layer develops rapidly. This step exposes the bare substrate in the shape of

the top-layer pattern, but with a large undercut. Gold leads are then deposited onto a

spinning substrate at an angle of roughly 45 degrees through this mask, producing a lead

pattern with tapered edges (Figure 4.3). These allow good contact between the typically

120 nm-thick gold pads and the <30 nrn samples. Adhesion ofthe gold to the substrate is

assisted by a thin layer (2 nm typically) ofchromium, deposited immediately before the

gold.

II E. Metal Deposition

Metallization of the substrate occurs in a thermal evaporation system. A

molybdenum boat is used to heat high-purity (5 9’s) bismuth under moderate vacuum

conditions (<10‘5 torr). The mean free path of a gas at this pressure is much larger than

the dimensions of the system’s bell jar, so bismuth atoms travel directly fiom the boat to

the sample and arrive with little transverse momentum. 25 nm ofmaterial is deposited at

rate of 1-2 nm per second, monitored by a crystal film thickness monitor. This process

produces polycrystalline films with typical grain sizes of about 30 nm. Low temperature

sheet resistances are in the range of a few hundred ohms per square (Figure 4.4). The

resistivity varies very rapidly with film thickness in this regime, so the uncertainty in the

film thicknesses here play a major role in the variation seen in film resistances.

III. Cryostats

Bismuth defect experiment sample measurements took place in a pumped liquid

helium-4 cryostat at temperatures from 1.2 to 2.2 K for the study of single defects.
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Figure 4.5a - Five terminal circuit diagram. The excitation voltage passes through ballast resistors and the

sample resistances, arranged as a Wheatstone bridge. When the signal is nulled properly, the output of

the pre-amp will be very sensitive to changes in one arm ofthe sample or the other. The optional 77 K

cooled input transformer can be used for samples with low resistance.

Rballut

Ratio

Transformer

 

  

 

   

Rnrnple

 

    
 

Figure 4.5b - 4-terrninal measurement circuit. Excitation is provided by a voltage source and then

passes through a ballast resistor. With values ofthe ballast much larger than the sample resistance,

we simulate a current source. The final stage of amplification is the difference between signals A

and B, the output of the ratio transformer. This circuit allows measurements ofA R/R as small as 1

part per million.
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The cryostat uses a 1K pot system to provide cooling power. Data for the silver project

were collected in a similar cryostat in the temperature range from 1 to 29 K. The study

on conductance fluctuations as a function of strain was carried out in a helium-3/-4

dilution refrigerator from 29 to 200 mK. In all cases, magnetic field was applied with

superconducting solenoids, providing fields of 0-7 Tesla in the helium-4 cryostat and 0-9

Tesla in the dilution refiigerator.

IV. Measurement Circuits

IV A. 5-Terminal AC Bridge

Defect sample measurements were made using an AC bridge method [Scofield].

The circuit uses the two arms of our five-terminal samples as the bottom half of a

Wheatstone bridge (see Figure 4.5a). There are several advantages that we gain from this

type of measurement. The first is that the circuit is insensitive to noise in the driving

voltage, since both arms ofthe bridge receive an equal contribution. Another large

advantage is the insensitivity of a balanced bridge to interference, which enters both

arms. As long as the preamplifier has good common mode rejection, these fluctuations

are largely suppressed. Additionally, the bridge circuit allows us to compensate for any

difference between sample resistances by changing the relative size ofthe ballast

resistors. We can null the average signal from the two channels, thereby increasing our

sensitivity to change in one arm ofthe sample or the other. Sample resistance

fluctuations of one part in 10’ are then easily resolved.

IV B. 4-Terrninal Measurement

Another circuit was used for magnetoresistance measurements. Rather than using

all five terminals of a sample in a bridge circuit, we made direct four terminal resistance
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measurements. We formed a modified bridge in this case with a ratio transformer as one

arm (Figure 4.5b). This allowed once again a differential measurement that achieved one

part in 10" accuracy.

IV C. RF Filters

Missing from all of the simplified circuit diagrams shown in Figures 4.5 a and b

are numerous RF filters on the lines leading into the cryostat. Every electrical lead on the

cryostat is filtered at least once with an LC filter with loss of 20 dB at 10 MHz. These

are mounted at the ends of cables leading into the cryostat. The sample leads and high

voltage leads also have RC filters with a rolloff frequency of 1 MHz after the leads enter

the vacuum can. It seems that these RC filters were necessary to stop the all-too-frequent

destruction of a sample caused by propagation of some transient high-frequency signal

during loading or mounting. Attesting to their effectiveness, the sample measured after

the addition of the RC filters survived three cool-downs and the repair of a high voltage

lead. This was unprecedented robustness for sub-micron samples in our 1K system.

V. Strain System

Strain is induced in our submicron bismuth sample via voltage applied to the

electrodes of a piezoelectric wafer. PZT-5A is the industry name for a particular lead

zirconate titanate ceramic that exhibits a ferroelectric phase transition with Curie

temperature of 350 ° C. The strain produced upon application of an electric field between

the top and bottom electrodes of the type of wafers that we used was uniform planar

strain. We performed experiments with two kind ofPZT-5A wafers. The first was a bi-

morph, featuring two PZT layers separated by a middle electrode. Later, we found

similar results with a single-layer wafer, where we could use a simpler wiring technique.
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The single-layer PZT-5A were purchased from Staveley Sensors. PZT-5A wafers are

commercially available in various thicknesses. The amount of strain produced is

proportional to the electric field between the electrodes. Therefore, thinner layers ofPZT

produce more stain for a given voltage. The piezoelectric layer needs to be thicker than

the sample substrate, however, in order to produce strain in the sample. Our bi-morph

wafers had two 10-mil layers of PZT, and the single-layer wafers had one 10-mil layer.

We operated the bi-morphs with the back electrode shorted to the middle one, effectively

reducing the wafer thickness. Both wafers then produced low-temperature dimensionless

strains of roughly 10'5 with an applied voltage of 100 V, giving a low temperature

measurement of d,, = 33 x 10‘12 m/V as the strain response of the PZT. (I3] is the strain

induced in the plane perpendicular to the voltage applied between electrodes on the top

and bottom of the PZT wafer.

The temperature dependence of PZT-5A has been previously studied [Fein, et al.]

[Vandervoort, et al.], and we have used commercial alloy strain gauges to calibrate the

strain propagated through both the glass and silicon substrates. We found similar

reductions in the strain produced by the PZT at low temperature with a previous study.

For details ofthe calibration process, see the Appendix.
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Table 4.1 Electron Beam Lithography Procedure on Non-insulating Substrates

Substrate cleaning:

30 minute soak in 70 ° C 5% Micro soap, 95% deionized water (DI)

Thorough rinse in D1

Resist preparation:

Spin on PMMA/MAA (9%) at 4900 RPM for 60 seconds (200-300 nm)

Bake bottom layer at 160 ° C for 60 minutes

Cool to room temperature

Spin on PMMA (2%) at 4900 RPM for 60 seconds (150 nm)

Bake top layer at 160 ° C for 60 minutes

Cool

Exposure:

Add trace amounts of silver conducting paint for focus target on substrate

Load into microscope; saturate filament at 35 KV accelerating voltage

Allow 10 minutes after saturation for beam stability

Focus and stigrnate on standard

Repeat on Ag paint target on substrate

Align sample areas and expose to beam

Developing:

Soak in MIBK/isopropanol (IPA) 1:3 for 70 seconds at 20 ° C, agitating

Rinse in IPA for 30 seconds

Rinse in D1 for 30 seconds
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Chapter 5

Strain-Induced Conductance Fluctuations

I. Introduction

Here I will describe measurements ofthe conductance of a mesoscopic bismuth

sample (100 nm x 1.5 pm x 20 nm thick) as a function of applied magnetic field and

strain. Figure 5.1a shows the variation of the conductance of such a sample at four

temperatures (45, 90,145,200 mK) as a fimction of applied strain. Present are random,

reproducible fluctuations that have suggestively similar amplitude to those in Figure 5.1b.

There we see a plot of the magnetofingerprint of the sample at the same temperatures,

which is explained by UCF theory [Lee et al.]. These random, reproducible fluctuations

grow in amplitude as the temperature is lowered, while the amount of field change

necessary to significantly alter the sample conductance decreases. This observed

sensitivity to applied strain, however, was an unexpected result. The amount of strain

necessary to change the conductance is 4"‘10'7 at 45 mK. I will now describe the analysis

that explains the existence of the “strain fingerprint” of this mesoscopic sample. These

effects can be described by the theory ofUCF as described in Chapter 3.
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11. Data Analysis

Fingerprint data is analyzed via the autocorrelation fimction,

F(AB) =< G(B)G(B + AB) > , or F(Ae) =< G(e)G(e + Ae) > (5.1)

in the case of strain-induced fluctuations, averaged over the range of field of the

experiment. This is realized computationally by stepping along the data points in the

trace and calculating the product of G(B) and G(B+AB) (or G(e) and G(e+Ae)).

G(B+AB) is found by simple interpolation between the data points nearest B+AB. This

allows continuous calculation of the autocorrelation as a function ofAB and is immune to

inconsistent data point spacing in field, which can occur due to limitations in the data

collection system. Plots of all of the autocorrelation functions for conductance versus

magnetic field and strain for all measured temperatures are shown as Figures 5.2a—e and

5.3a-f. The behavior of these plots at large AB or Ae comes from the lack of sufiicient

statistics due to the finite range of field which can be applied in these experiments. From

these plots we can obtain two physically interesting quantities. The first is the variance

of the conductance fluctuations, given by < (G2 (B)— < G(B) >2 >= F(AB = 0) (Equation

5.1). The same is of course true for strain-induced fluctuations on replacement ofB by e.

Secondly, the value ofAB when the autocorrelation function falls to 1/2 its zero-field

value is defined as the correlation field, B,. This value sets the scale of the change in

field required for the conductance to change by on average the r.m.s. value ofthe

fluctuations. Both of these quantities are predicted in the case of magnetic field by UCF

theory. It was natural to try and determine whether the same mechanism was at work in

the case ofthe strain fingerprint.
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III. Dephasing Length

The prediction for the correlation field of a quasi-1D sample is given by the

simple expression

3. = 12¢,

L W
4’

 

, (5.2)

where W is the width of the sample [Lee et al.]. Equation 5.2 holds true when the sample

width and thickness are less than L,. In these .lum wide by 25 nm thick samples, this is

always the case below about 0.5 K. Figure 5.4 shows the dependence of the phase-

breaking length versus temperature obtained fi'om the values of Bc shown in Figures 5.2

a—e. The low-temperature behavior of the phase-breaking length in metals is not yet

completely understood. The T” dependence predicted in a l-D sample due to small-

energy-transfer electron-electron interactions [Al’tshuler, Aronov, and Khmel’nitskii] is

not realized in our data. There is also a recent experimental result that shows a saturation

in the phase-breaking length for many different metals [Mohanty et al.]. This result is

also not indicated by our data, however. We consider L, to be only an experimentally

determined parameter for the purposes of calculations in the remainder of this chapter.

We do not have enough data to make convincing arguments for or against a particular

temperature dependence of L4,.

IV. Amplitude of Fluctuations

UCF theory gives the expected value ofthe amplitude of magnetic-field-induced

conductance fluctuations for samples of varying dimensionality based on the relative

sizes of applicable length scales [Lee et al.]. A difficulty arises, however, in describing

the complete set ofphysical parameters for bismuth films. The properties ofthin film
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bismuth are quite different from that of its bulk form [Komnik et al.] [ Kochowski and

Opilski] [Komori et al.]. For UCF theory calculations, we need to compare the dephasing

length from Figure 5.4 with the size of the thermal length, which reduces the fluctuations

observed due to the distribution of electron energies at the Fermi level:

’hD
L = _ . 5,3

"' kT ( )

The difficulty arises in estimating D, the diffusion constant, for our films, which can vary

extensively with sample preparation and thickness. We have chosen a value of D = 30

cmZ/s for our films [Birge et al, 1990]. This leads to a thermal length that varies fiom .7

to .34 pm as INT fi'om 45 mK to 200 mK. In the regime of L, < Lm, Lsample: we can

express the variance of the conductance fluctuations at finite temperature as

502 ez 2 L9 3
=C 7 . L . (5.4)

sarplc

The value ofthe constant C is determined by the symmetry of the Hamiltonian of the

 

system and the dimensionality of the wire. In a magnetic field larger than B,, the

contribution to the fluctuations due to the Cooperon channel are suppressed, leading to a

decrease by a factor oftwo in the size of the observed fluctuations. In bismuth at low

temperature, strong spin-orbit scattering reduces the observed fluctuations by a factor of

4. C is then 0.53 * 1/2 "‘ 1/4 for this quasi-1D conductor in the strong spin-orbit regime

and in the limit of large field (B > B,). We exclude the region B < Bc from the

autocorrelation calculations, which is roughly 1% ofthe total field range at 45 mK.

There is an additional factor to consider due to our experimental setup, which is that the

two arms ofa five terminal sample are modeled as two independently fluctuating
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samples. Thus, the total variance we measure is twice that of a sample 1/2 as long. This

is a poor approximation when the sample size is not much larger than the phase-breaking

length, however. Additionally, I have assumed that the two samples are identical, when

in fact their resistances differ slightly. This enters calculations of the variance of g in the

fourth power, however, since

 

233' = I? :5 66 = R2612. In Figure 5.5, we plot the

conductance fluctuations as a function of temperature due to variation of both strain and

magnetic field. There is some scatter among these points, but we must recall that the

number of independent fluctuations that occur is small over the entire accessible range of

strain, and so the uncertainties are expected to be large. We see that the fluctuation

amplitudes increase as temperature is lowered and the phase-breaking length increases.

Since L, varies as T”, we can expect the variance of G(B) to increase as T3” (Equation

5.4), which is consistent with our data. Most importantly, we note that at each

temperature the amplitude for strain-induced fluctuations is nearly twice that of their

magnetic field counterparts. This is exactly what one would expect if the strain-induced

fluctuations were a UCF phenomenon, since the variance with strain was measured at

zero magnetic field, which corresponds to an increase of a factor oftwo as compared with

the variance at fields larger than B, Table 5.1 compares the values ofthe variance of the

conductance expected due to UCF with those measured as a function of strain and

magnetic field. Given this expected factor oftwo difference, the variance of G(e) and

G(B) agree remarkably. All ofthe factors that lend uncertainty to the UCF calculation in

the last column of Table 5.1 do not affect the agreement of the first two, since both sets of

measurements were carried out in the same sample.
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Table 5.1 - Conductance Fluctuation Variance Comparison. For five temperatures, we

compare the variance of the conductance as a function of magnetic field and strain. The

last column is the single-parameter UCF prediction. Variance data is displayed in units

of (e2/h)2.

 

 

 

 

 

 

Temperature (mK) Var(G(B)) (eZ/h)2 1/2Var(G(e)) (eZ/h)2 C/8(L,/L)T

45 .0066 .0068 .029

65 .0054 .0055 .020

90 .0058 .0036 .0090

145 .0033 .0023 .0048

200 .0016 .0012 .0028     
 

V. Strain Correlation Field

The autocorrelation functions of conductance versus strain give a measure of the

amount of strain necessary to produce a change in conductance of order e2/h (see Figure

5.6). The surprising thing to note is that at 29 mK, this correlation strain, 0,, is 5x10”.

This corresponds to a change in length less than 1/100“I the size of one atom over the

length of the sample. We believe that the unusual sensitivity of the Fermi energy in

bismuth to strain explains this result.

Our initial attempt to calculate the strain correlation field began by applying a

uniform strain, 0‘, to the entire sample. Recall that quasiparticles move diffusively

between scattering centers in a mesoscopic metallic sample at low temperature (Figure

3.2). The total phase-coherent path length of a diffusing quasiparticle is given by d =

v,;c,. We know Li, = Dr, (Equation 3.2), where D is the diffusion constant, gvpld.
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2

31.

The total diffusive path length is then 61 = l " . The effect of isotropic planar strain will

cl

 

be to increase this distance by d*o. The accumulated phase change ofthe electron over

its entire phase-coherent path is therefore

L 2

6¢ = deO' = 3(14) kpldcr. (5.5)

cl

From UCF theory, we know that the conductance will change when this phase shift is of

order n, so we can write the correlation strain as

 

2

I _

acz[ d] (kFlel) 1' (5'6)

L?

. . h hD

Thrs can also be expressed as E,/EF, where E, 1s the Thouless energy, —— = 7:,—

¢ 4’

(Equation 3.7). Recall that E, represents the energy uncertainty for an electron that

crosses a phase-coherent volume in a time 1,. For our sample, this gives a value of o, =

1.6x10" at 45 mK and 7x10" at 200 mK. These are about 50 times larger than the

observed values of 4x10’7 at 45 mK and 1.2x10‘ at 200 mK.

A more appropriate treatment considers the shift of Fermi energy in bismuth

under applied strain. Changing the Fermi energy by E, leads to a change in conductance

of order ez/h, as predicted by UCF theory [Lee et al.]. The conductance fluctuations we

see then are analogous to those observed in semiconductors as a function of applied gate

_ E.
a,—/fli . (5.7)

do
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The value ofthe deformation potential for the Fermi energy in bismuth ranges from 2-7

eV, depending on the orientation of the applied strain relative to crystal axes [Hanson et

al.]. Since we have measured a polycrystalline film, it is unclear which of these values

should be used in comparison with our observations. With our value of E, at 45 mK of

9.8x10‘5 eV, this leads to a range of correlation strain of from 1.4 to 5x106. This value is

far closer to our observation at 45 mK of o, = 4x10”. An important source of error could

be the value ofD we estimated earlier as 30 cmz/s, since E, is proportional to D. It should

be noted as well that both of these estimates for o, vary as L,‘2 (Figure 5.4) and therefore

are expected to follow the observed temperature dependence, proportional to T (see

Figure 5.6).

V. Conclusion

In conclusion, we report the observation of strain-induced conductance

fluctuations in a subnricron bismuth sample at temperatures from 29 - 200 mK. These

fluctuations have an amplitude that is described by the theory of Universal Conductance

Fluctuations and feature very small correlation strains, as small as 4x10’7 at 45 mK. The

size ofthe correlation strain field is explained by a shift in the Fermi energy ofbismuth

under application of strain, with deformation potentials for EF in the realm of a few eV.
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Figure 5.1a - Conductance Fluctuations as a Function of Mechanical Strain

The conductance of a mesoscopic bismuth sample varies by order eZ/h with strain.
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Figure 5.1b - Conductance Fluctuations as a Function of Magnetic Field

This Figure shows the magnetofingerprint ofthe same sample.
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as that induced by magnetic field.

76



 

   

T r l

.E f
S 10‘6 " r
+- .

U) l "l .
c 8 l I

.9 7 1, * ’9’

III E T \ ”i 1— 6 x m =
(D .’

t 1 , ,
O 4 ’x

O , ,l ’3’

3 I l ”I’

2
.’ 1 1

3 4 5 6 7 8 9102 2

T (mK)

Figure 5.6 Strain Correlation Field as a Function ofTemperature

This Figure shows the correlation strain field obtained from Figures 4.3 a-f.

The dashed line indicates the apparent dependence on the temperature.

77



Chapter 6

Response of Defect Dynamics to Strain

I. Introduction

Here I describe the results of our studies of single defects under applied strain in

four submicron bismuth samples. We will see the effect of strain on the microscopic

local potentials of these defects, which induces changes in their tunneling parameters,

most notably the energy asymmetry between wells, 5. The response of a to strain is y, the

deformation potential of the TLS (Equation 2.12).

11. Data analysis

Defect data are collected over long time periods as traces of voltage versus time.

In order to achieve sufficient precision in our determination ofthe dynamical parameters,

we require the collection of from 500-1000 transitions. For example, in order to record

600 transitions with the defect labeled below as “C”, the time required was roughly

12,000 seconds. This placed our statistical uncertainties (1/\IN) at 5% or lower. The

actual error estimates will be described in detail, but this is a good initial estimate. Data

reduction from these time traces occurs via one oftwo methods, which we have found

return statistically equivalent estimates ofthe desired parameters. These methods were

developed by Kookjin Chun during his doctoral work at Michigan State University, and
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are documented in his thesis [Chun]. I will briefly describe these data analysis methods

here as well for completeness.

II A. Schmidt Trigger Comparators

The first data reduction method is very labor-intensive. Each file is viewed a

small portion at a time and comparator levels are set by the operator to indicate the

voltage levels at which transitions take place. During the following description of the

operation of the Schmidt triggers, I refer the reader to Figure 6.1. The user frrst inputs the

initial state of the fluctuator at the beginning of the file (up, in this case) and then sets the

desired trigger levels. The analysis algorithm marks transitions as events when, starting

from the upper(lower) state, the voltage passes below(above) the position ofthe

lower(upper) trigger level. The important feature ofthe Schmidt trigger algorithm is that

noise in the voltage signal can be rejected by careful choice of the comparator levels. The

output ofthe first reduction program is a pair of files of the dwell times in each state. The

set of fi'om 8 to 20 files for a given strain were analyzed in this method, with all dwell

times stored in two files, one for the “up” state, and one for the “down” state. I should

mention that the labels “up” and “down” refer only to the output voltage of the lock-in,

and do not necessarily reflect the relationship of the potential energies of these states.

The state with longer average dwell time is the one that lies a in energy lower than the

state with the shorter dwell time.

The second step in this analysis process involves fitting a histogram ofthe dwell

times (such as that pictured in Figure 6.2) in each state to an exponential probability
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distribution, given by P(r) = e— ‘0 . The number of observations in each bin in the

histogram should then be

rmin r‘

Nb," = N,,,a,(e '° -e If), (6.1)

where 1,, and Tm describe the extent of the bin in question. We fit the logarithm of the

fiequency in each bin to a line, with slope given by the mean dwell time, to, and intercept

determined by the total number of transitions, NW. (The fitting algorithm we have used

is the standard Levenberg-Marquardt method [see, for example, Numerical Recipes in C,

Press et al.]. It returns error estimates on the desired parameters, as well as the values of

the parameters themselves.) Allowing the total number oftransitions to vary has a

distinct advantage over fitting to merely the mean lifetime. There is a maximum

bandwidth in our measurement circuit determined by the sampling rate ofthe ADC. In

fact, we filter at a fiequency corresponding to 1/4 of the sampling rate (which is 1/2 of the

Nyquist frequency) in order to remove frequency aliasing. This implies that transitions

that occur on time scales less than the inverse of our bandwidth are always missed. This

can be seen as a deficiency in the first bin of Figure 6.2, which is ignored during the

fitting process. Another detail is that the last bin of the histogram will contain the

integrated number oftransitions from the right side of the next to last bin to t = co. This

accounts for its seemingly large frequency in the last bin in Figure 6.2. As a final note,

we have used Poisson errors for the expected deviation in each bin, which is applicable

for a collection of independent events.
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II B. Gaussian and Debye-Lorentzian Fits

The second data reduction technique directly measures the ratio of dwell times in

time trace data. It also features a two-step process. The first step is accomplished by

fitting the power spectrum of the time-trace data to that expected from a single fluctuator.

That expected power spectrum is a Debye-Lorentzian, introduced by Equation 3.11:

S(a))- 2Ar

The constant A is proportional to the voltage jump squared of the fluctuator signal and

l = 1 + 1 is the total TLS tunneling rate. One example of such a fit is given as
r

T long Tshorr

 

Figure 6.3 in the form of a plot of f‘S(f). There are three parameters in this fit, namely

the amplitude, the knee frequency (21th) and a 1/f contribution from the background of

unresolved mobile defects. The l/f tail is visible in the change in curvature in this plot at

high frequency. The fit is plotted as f‘S(f) for clarity so that the knee fi'equency in S(f)

corresponds to the location of the peak in f‘S(f).

The second step begins when a histogram is produced of the voltages present in

the raw data. This histogram is then modeled as two Gaussians, with peaks separated by

the average voltage difference between the two levels and widths given by the size of the

white noise background present in the signal. Since this width is independent of the

defect’s location, the same width is fit to both Gaussians. The exact form ofprobability

distribution as a function ofV is

1 _(v-vl)2 _(v-v2 )2

P(V)= (Ale 2.2 +A,e 7). (6.3) 

27:02
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o is the width ofthe distributions, and A, vi are the amplitude and position of the i‘h peak.

One example of such a fit is given by Figure 6.4. There are five parameters of interest,

given by the locations of the peaks, their amplitudes, and the width ofthe distributions.

Unfortunately, an occasional shift of the background due to the activity of a second

mobile defect that is resolvable can seriously impact this automated method. To

compensate, we devised a strategy where parts ofthe data records are fit independently

and the results averaged together to find the mean parameters over an entire set of data.

This allows the removal of segments of time trace data that did not fit the above

combinations of Gaussians well by a test ofthe merit firnction, x2. x2 is the sum ofthe

square of the deviation of each point from the fitting function’s value, weighted by the

expected error in that data point. Also, segments for which the fit returned an unusual

value ofthe voltage difference or width of the distributions (both also good indications of

model failure) are removed. The remaining majority ofthe data are averaged and the

error estimates are based upon the statistical deviation in the set of 100 or so groups of

parameters. The ratio of the areas under each Gaussian, which is the same as the ratio Al

and A2 fi'om the fits, is the ratio ofthe dwell times. Averaged over all fitted segments of

the time traces, this should be equivalent to the ratio of the mean dwell times returned

from the comparator fitting procedure. Evidence ofthe validity of this statement is found

in Figure 6.5, where I present the results for

 a = len( 7"" ) (6.4)

Talon

determined with both methods. We used the comparator method as the primary fitting

technique and the automated fitting routines as a consistency check.
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III. Results

111 A. Deformation Potentials

Figures 6.6-6.11 show the results of our experiments on the effect of strain on the

dynamics of six two-level tunneling systems. We have acquired data for these defects

which range in asymmetry from 0.3 to 4.4 Kelvin. The results of linear regression fits to

asymmetry versus strain are present in Table 6.1 for all six defects observed. These

parameters are derived fiom the best fit lines shown in Figures 66-61]. These values are

the first measurements of the response of individual TLS to strain. They may be

compared with the results of phonon echo measurements in vitreous silica of a mean

value of 1.5 +/- .4 eV [Graebner and Golding], and with many others in other glasses,

some ofwhich were summarized later [Berret and Miefsner]. There average deformation

potentials vary from 0.13 eV to 1.46 eV.

Table 6.1 - Asymmetry and Response to Strain for Six TLS. Sample 1 fabrication

and data collection and analysis for defects A and B was accomplished by J. S. Moon

 

 

 

 

 

 

 

Defect Sample 'l‘cmpcraturc (K) 1: (K) (Ia/do (0V)

A l 1.0 1.83 +/- 0.05 0.3 +/- 0.9

B l 1.0 1.60 +/- 0.04 1.6 +/- 0.5

C 2 1.3 1.47 +/- 0.03 3.4 +/- 0.4

D 3 1.3 0.33 +/- 0.02 -0.1 +/- 0.3

E 2 1.9 4.04 +/- 0.05 -0.4 +/- 0.6

F 4 1.25 0.6 +/- l -2.9 +/- 0.4     
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III B. Discussion ofy

We have observed deformation potentials from 0.1 to 1.7 eV for these six defects.

The rough energy scale ofy for a TLS in the Tunneling Model is expected to be 1 eV

[Phillips, 1972] [Anderson et al.] [Jackle], which is in agreement with our observations.

There are certain other expectations based on the information in the tunneling model. For

example, a broad distribution of7 should exist. The local environments that make up the

TLS in amorphous solids feature wide variation in physical parameters. The probability

distribution for TLS’s as a function of the energy asymmetry and the tunneling matrix

element exponent, 70, is assumed to be independent of a and A over broad energy ranges

[Phillips, 1972] [Anderson et al.]. A distribution in the response ofthese systems to

strain is therefore quite naturally expected. Additionally, we expect that y can vary for a

single defect, depending on the type of strain that is applied and that defect’s orientation.

In general, we should consider the interaction of a with strain as

l 0

Hint = [0 _1]§Aijaij , (65)

where o,- are components of the macroscopic strain tensor and A,- are the coupling

constants to the i,j‘h components ofthat strain [Halperin]. Experimentally, we can only

measure the net response of the defect in question to the particular strain that we can

apply. Since the principle axes ofA are randomly oriented in a disordered sample, we

expect some variation in y. We are not able to distinguish this variation in the

deformation potential from the distribution inherent in the tunneling model of amorphous

solids.
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We find also that the response of the asymmetry to strain does not correlate with

6, since our two most responsive defects (C and F) had asymmetries of 1.3 and 0.5 K.

Defect E, with the largest asymmetry of4 eV, had a much smaller deformation potential.

This is consistent with the tunneling model, where no correlation exists between the size

of e and its sensitivity to strain. Additionally, we note that there is no reason for the

deformation potential to have any particular sign, which is reflected in our observations.

The astute reader will have noted that in sample 1 the defect measurements only

proceeded up to small positive strains, +102 for defect A and 2.5"'10'6 for defect B. This

is due to a UCF effect similar to the conductance strain fingerprint described in chapter 5.

When sufficient strain is applied, the interference pattern of conduction electrons that

determines the conductance of a mesoscopic bismuth sample can change. This new

interference pattern may feature different local densities of quasiparticles near the defect.

This is turn can lead to a different sensitivity of the conductance to the motion ofthe TLS

seen as a “fluctuator amplitude” fingerprint as a function of strain. Similar fluctuations in

TLS signals have been observed as a function of magnetic field [Zimmerman et al.]. All

of our defect experiments took place at regions ofmagnetic field that maximized the

change in conductance due to the motion ofthe TLS. Figures 6.12a and 6.12b show the

defect fingerprints for defects B and C. For large positive strains, the signal from defect

B became indistinguishable from the background noise. The variation of defect signals as

a function of strain is very similar in both cases: a few Ohms over the range of applied

strain. Defect C, however, had a far larger signal than B, and we were able to measure it
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over our entire range of strain. This is due in part to the smaller linewidtlrs in samples 2-

4, which were 70 nm as opposed to 100 nm for sample 1, and in part to coincidence.

III C. Tunneling Rates

We will now discuss the change in the total tunneling rates that we see as a

function of strain in Figures 6.6-.11c. The expectation fi‘om the tunneling model is that

the dominant coupling of a TLS to a strain field is diagonal in the representation of well

occupation; that is, that the effect of strain is to change the energy asymmetry ofthe two

wells. It is natural to ask, then, whether such a change in a would affect the total

tunneling rate. We certainly see, most obviously in the case of defect C (Figure 6.8c) that

the tunneling rate varies systematically with strain, increasing when strain and asymmetry

increase. We wish to estimate the deformation potential for A,, the off-diagonal element

of the TLS Hamiltonian (Equation 2.2). Consider the expression for A0 in the 1-D WKB

approximation. Recall (Equation 2.3) that we have

-d 201V

A, =0), e 3’ 5e", (6.6)

 

where o), is the vibrational frequency in a well, d is the separation between the wells, and

m and V are the mass of the tunneling particle and the height of the potential barrier.

This bare tunneling matrix element is renorrnalized due to interactions with conduction

electrons and phonons, following the theory of dissipative quantum tunneling (Equation

2.30). The result is tunneling matrix element is renorrnalized by interactons between the

TLS and quasiparticles (Equation 2.30). Recall that the total transition rate for a TLS

(Equation 2.32) is

86



2

  

2a-l

_ &(272kT] cosh(£/2kT) P(a +1. 6' ) (6.7)

2iatT'°"” — 2 2A, r(2a)  

in the limit of incoherent tunneling, that is hA, << kT. This functional form in this limit

has been found to be in excellent agreement with defect data [Golding, Zimmerman, and

Coppersmith] [Chun and Birge, 1993].

The tunneling parameters we find for defect C are, at zero strain, a = 1.4 eV and

I‘m, = 0.19 sec". The measurement temperature was 1.3 K, and we estimate or, which

must lie between 0 and 1/2 in at least crystalline metals [Yamada et al.], as 0.25. Some

examples of experimental values of or are 0.24 [Golding et al., 1992] and 0.195 [Chun

and Birge, 1993]. We can now proceed with a rough calculation of A,. We find a value

of 1.08"'103 s'1 for the renorrnalized matrix element that gives a total rate of 0.19 s". This

corresponds to A0 = 235* 105 8". Here we have used a cutoff frequency for conduction

electron interactions of to, = 2.5"' 1012 s [Cukier et al.]. With an estimated mass of 2"‘mBi

for the tunneling particle and a separation of 0.1 run, we find a value for V of 2.07“ 10’22

J, corresponding to a thermal energy of 15 K. These represent one plausible set of

parameters, but by no means the only one that describes the observed tunneling rate.

In the limit of a very asymmetric TLS, the total tunneling rate is dominated by the

fast transition rate. We could expect, then, that an increase in the asymmetry would

effectively reduce the barrier height for transitions from the high energy state to the low

one. Naively, we might expect the potential barrier to vary proportional to a, at most as

V,,,,,,, = V0 - 8/2. This situation is shown schematically in Figure 6.13. As a function of

strain, we can write this as
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 V(a) = V(0) - (8(0); 5(0)) . (6.8)

Then

L412, (,9,
do 2 do

and we can calculate the effect on the tunneling matrix element due to the change in

asymmetry as a function of strain. Recall that a is 1.4 K at zero strain, or 1.9"10‘23 J. The

changes in V due to 8(0) are then much less than the value at zero strain.

 -——-—-——-2 —, (6.10)
do dV do V(0) do

 

 

recalling that )1 a d 22?] . A is approximately 16 for this defect, so

dZA" =1.2-10’24 J = 7.5 ~10’6eV . This implies a large relative change in hAO over the

0'

scale of experimentally applied strains of roughly +/-10"; the value of hA, at zero strain

was 2.5*10‘2’ J or 1.6"'10‘lo eV. The deformation potential for the tunneling matrix

element is, 7.5*10*’ eV, more than 5 orders ofmagnitude less than the deformation

potential for asymmetry. The large relative change in hA0 occurs because this experiment

can only sample TLS with small tunneling matrix elements. Our experimental

bandwidth, roughly 50 Hz, dictates that defects with low tunneling rates are observed.

Recall that the incoherent tunneling regime requires that hA, << kT, and in order for the

dynamics to be dominated by tunneling, kT << V. This leads to the very small value of

hAOIV that we see above in the expression for the off-diagonal response of the TLS

Hamiltonian to strain. In Figure 6.14, we see a plot ofthe tunneling rate as a function of
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strain for the estimated parameters describing defect C as the solid line. It describes the

observed rates, also plotted, remarkably well. I reiterate that these are not the only

consistent set of parameters (or, 00,, m, and d) that produce such agreement. The point of

the figure is to show that physically reasonable parameters can describe the observations

and produce consistent tests of the relative energy scales defrning the model of defect

dynamics as a TLS in the dissipative regime.

IV. Conclusion

In conclusion, we report direct measurements ofthe dynamics of single defects in

bismuth films as a function of applied strain. The model of a TLS in a dissipative

environment is consistent with the observed changes in both the asymmetries and total

tunneling rates. The deformation potential for e is shown to vary from defect to defect,

with nrinimurn and maximum magnitudes of 0.1 eV and 1.7 eV and random signs.
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Figure 6.1 Example of Raw Data and Comparator Analysis Method

In the top of the Figure, we see a four second time trace for a sample with a single

fluctuator present. With carefirl placement of Schmidt triggers in the analysis

program, we can divide the data unambiguously into "up" and "down" states.
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Figure 6.13 Response of a TLS to Strain

The solid lines refer to the potential before the strain is applied, and

the dotted lines refer to that after the asymmetry has changed, perhaps

due to an applied strain. The effective tunneling matrix element increases

because the high energy state now experiences a smaller energy barrier.
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Chapter 7

Summary and Conclusions

We have seen that the introduction of mechanical strain to mesoscopic, metallic

samples produces interesting phenomena. The conductance of a bismuth wire with

dimensions that are comparable to the phase-breaking length for conduction electrons

varies as a function of applied strain. The average amplitude ofthe variance of these

aperiodic, random fluctuations is the same as that of the Universal Conductance

Fluctuations seen as a function of magnetic field in the same sample, of order ez/h. A

consistent description of this “strain fingerprint” follows fi'om the deformation potential

of the Fermi energy in bismuth, which is several eV. According to UCF theory, changes

in the Fermi as small as Ec (equation 3.7) can alter the sample’s conductance by up to

eZ/h. Our observations show that at 29 mK, strains as small as 4* 10’7 satisfy this

condition.

The tImneling model of amorphous solids describes a set of excitations

fundamental to the disordered state. The low-temperature thermal and acoustic properties

of glasses are dramatically influenced by the dynamics ofthese two-level tunneling

systems, but fairly little can be determined about the microscopic identity of the tunneling

agents by studying them with bulk measurements in insulators. One microscopic

parameter of particular interest is the response ofthe potential of a TLS to strain, realized
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in the Tunneling Model as a change in the asymmetry ofthe two energy levels. The

ensemble average of this deformation potential is large, as is evidenced by the strength of

phonon relaxation caused by the TLS’s in glasses. Here I have reported the first

measurement of the response of individual TLS’s to strain. I have studied the dynamics

of mobile defects in polycrystalline bismuth, observed through fluctuations in their

conductance caused by TLS motion. From the ratio of the tunneling rates we recover the

energy asymmetry and measure it as a function of strain. I report deformation potentials

that vary from O to 1.7 eV for six different TLS’s. The tunneling matrix element also

varies with strain, in a manner that is microscopically plausible. This variation is seen as

a change in total tunneling rate as a function of strain, or perhaps more accurately, as a

function of e. I have shown that mechanical strain is a useful tool to probe the

microscopic world of an atomic-scale TLS.
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APPENDIX



Appendix

Strain Calibration

As described in the text, we chose to fabricate samples on a thin substrate that was

then mounted atop the PZT-5A wafer, which produced the desired mechanical strain.

The joint between the substrate and the PZT was formed from a thin layer of Apiezon N-

grease. The grease has a very convenient viscosity at room temperature, making sample

mounting and alignment simple. At low temperature, we expected the grease joint to

become extremely rigid. It was necessary to test this hypothesis, however, and calibrate

for strain losses due to the grease and the substrate, since these nominally .005”-thick

substrates were not substantially thinner than our 20 mil wafers of PZT.

We used commercial K-alloy strain gauges manufactured by Measurements

Group, Inc to measure the strain produced by the PZT wafers. These strain gauges are

composed ofmeander-pattem metal film wires that change resistance when a strain is

applied. This occurs because the length ofthe wire and its cross-sectional area (due to

Poisson’s ratio) change under strain. The response ofthe gauge to strain is specified by

the manufacturer’s quoted gauge factor,

_AR/R
G _—.

’ AL/L

(A.1)
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One advantage of this particular alloy is that the thermal response ofthe gauge factor is

only -0.8 %/ 100 ° C.

The calibration consisted of two steps. In the first, we glued a strain gauge

directly onto a PZT-5A wafer, in order to measure its response as a function of

temperature. We find a low-temperature response of d31 for the wafer as 33"‘10”2 mN.

The room temperature value we found was 250"‘10"2 mN. Recall that d3, is the strain

induced in the plane perpendicular to the applied voltage. A previous study showed that

we could expect reduction in the strain produced at a given voltage from room

temperature to 4.2 K of roughly a factor of 5 [Fein, et al.] [Vandervoort, et a1. ]. We

found that our PZT response was decreased by a factor of 7.7 upon cooling from 295 K to

4.2 K. This result could differ from the previous studies in part because there the PZT

was formed as a tube for use in an STM, where we use a thin wafer.

Once we had determined the low-temperature response of the bare PZT, we could

determine the losses associated with the grease and substrate. The substrates reduced

strain by approximately 20%, and the grease layer produced a reduction of another 6%.

We glued strain gauges onto both glass and silicon substrates and measured the strain

once again. Figure A.l shows part of the calibration at 1.6 K for the silicon substrate.

There we see a strain response of 1.15 * 10‘7 V". At temperatures near 1 K, we found that

the strain induced in our samples on the glass substrates was reduced to 10'7 V", and

those on the silicon substrates experienced strains of l .15"‘lO‘7 V".
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