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ABSTRACT

RESPONSE OF THE CONDUCTANCE AND TUNNELING SYSTEM DYNAMICS
IN MESOSCOPIC BISMUTH TO APPLIED MECHANICAL STRAIN

By

David William Hoadley

We have introduced mechanical strain to mesoscopic bismuth wires at low
temperature as a new experimental tool. Typical samples have dimensions of 1.5um x
70nm x 25nm and electrical resistances of 10-20 kQ2. We introduce strain by attaching
the substrate to a PZT-5A piezoelectric wafer. Our observations showed that the
conductance of the wires varies randomly but reproducibly with strain, in a manner

reminiscent of Universal Conductance Fluctuations. Surprisingly, application of strains

(AL/L) as small as 10 can change the conductance by order of e / h below
temperatures of 100 mK. In addition to these static fluctuations, the wires exhibit
dynamic fluctuations seen as random telegraph signals in the conductance. These
dynamic fluctuations, due to the motion of two-level tunneling systems (TLS), vary in
both amplitude and switching rate under strain. The amplitude variation is random, while

the tunneling rates vary in a systematic way. The response of a TLS to strain in lowest

order is described by the deformation potential for the asymmetry, €:y = %3—8 , where o
o



is dimensionless strain. We have made the first observations of this response to strain for
individual TLS’s, and compare our results to those of measurements in bulk glass

samples. In our experiments, y varied from 0 to 1.7 eV.



To Leah, my love
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Chapter 1

Introduction

Before the 1970’s, it had been expected that at low temperatures, the differences
in physical properties between crystalline and amorphous solids would disappear. As
temperature was lowered, the dominant phonon wavelengths would become much longer
than the average inter-atomic spacing. At very low temperatures, insulating glasses could
then be described as Debye solids, with phonon specific heat proportional to T [Ashcroft
& Mermin]. Experiments on a glass in 1971 showed, however, that there was a
contribution to the specific heat linear with temperature below 1K [Zeller and Pohl]. This
was the first evidence that amorphous solids contain a fundamental set of excitations not
present in their highly ordered, crystalline counterparts. The disordered nature of such
solids produces many atomic-sized configurations with two or more potential energy
local minima. The tunneling model [Phillips, 1972] [Anderson, et al.] describes these
excitations as two-level systems (TLS) that tunnel between configurations with a broad
probability distribution in energy and tunneling matrix element. At very low
temperatures, these tunneling systems produce an observable quasi-linear contribution to
the specific heat of glasses. |

The tunneling model predicts other features of the low-temperature thermal and

acoustic properties of amorphous materials. The distribution of TLS excitations gives



rise to anomalous thermal conductivity [Zaitlin and Anderson], phonon attenuation
[Amnold, et al.], and sound velocity dispersion [Piché, et al.]. Another dramatic result was
the observation of phonon echoes produced with a series of ultrasonic pulses [Golding
and Graebner].

Disordered metals also exhibit properties that can be explained by a broad
distribution of disorder-induced excitations. The presence of quasiparticles in normal
metals makes it difficult to measure the effects of TLS on thermal and acoustic
properties, however. The TLS linear specific heat contribution, for example, is much
smaller than that of electrons. Successful measurements of the TLS contributions were
made in disordered metals below the normal-superconductor transition temperature
[Graebner et al., 1977] [Weiss and Golding].

A large body of experimental work supports the tunneling model idea and shows
that disorder produces a fundamental set of excitations in solids [Phillips, 1981].
Thermal and acoustic measurements provide information about the distribution of these
excitations and also about their interactions with phonons. These bulk experiments can
only probe the average parameters of the TLS, however. Any such bulk measurement
returns information that is averaged over the distribution of tunneling parameters for the
TLS’s. Therefore, 20 years after their discovery, little was known about the detailed
nature of these two-level systems.

In the late 1980’s, advances in the fabrication and understanding of sub-micron
sized metallic samples opened the door to a new approach to studying TLS. In a metallic
sample at low-temperature, the electrical conductance becomes sensitive to the motion of

scatterers, such as impurities or lattice dislocations. Long-range electron phase coherence



enhances the change in conductance produced by mobile defects. This enhancement is
maximized when electrons can coherently travel through a sample for most or all of its
extent, a situation known as the mesoscopic regime. There, the motion of individual,
atomic-sized scatterers can produce measurable changes in the conductance of a sample,
as predicted by the theories of Quantum Transport [Al’tshuler and Spivak] [Feng, et al.].
It is in a mesoscopic metallic sample that we have the unique opportunity to observe the
motion of an individual TLS.

The dynamics of individual mobile defects have been successfully studied in this
decade. The variation of TLS tunneling rates with temperature has been observed
[Golding et al., 1992] [Chun and Birge, 1993]. As we will discuss in chapter 2, these
tunneling rates can have a novel temperature dependence in a dissipative environment,
such as that provided by the quasiparticles in a metal [Leggett et al.]. Once the TLS
dynamics were understood, observations focused on the effects of external perturbations.
Magnetic fields were shown to modify TLS dynamics in a mesoscopic metal through
changes induced in their environments [Zimmerman, et al.]. The energy coupling of a
TLS to the quasiparticle bath was observed and the TLS was used as a thermometer in an
electron heating experiment [Chun and Birge, 1994].

To probe the TLS more deeply, we have examined their response to externally
applied mechanical strain. From thermal and acoustic measurements on bulk samples, we
have seen that the TLS have a strong coupling to strain realized as phonons [Beret and
Meissner]. By studying the dynamics of individual two-level systems, we can

unambiguously see how the microscopic potential of a TLS couples to strain.



I will also describe here the first observation of strain-induced conductance
fluctuations in a mesoscopic metallic sample [Birge, et al., 1996]. These fluctuations are
random, reproducible changes in conductance similar in character to those induced by
varying chemical potential [Skocpol, et al.] [Licini, et al.] or applied magnetic field
[Umbach, et al.].

The Thesis is organized as follows: Chapter 2 gives an introduction to the
Tunneling Model and identifies many of its consequences for the thermal and acoustic
properties of amorphous solids. Predictions based on the distribution of TLS’s in glasses
and their interactions with phonons are described, and examples are given of observations
of these. The theory of Dissipative Quantum Tunneling is also presented in Chapter 2. It
describes the modifications of the dynamics of a tunneling TLS due to the presence of
quasiparticles in a metal. Chapter 3 focuses on the implications of long-range electron
phase-coherence in a disordered metal. There I describe in detail several Quantum
Transport theories, including the mechanism that allowed us to observe individual TLS
tunneling from state to state via changes in the sample’s conductance. Chapter 4
describes some details about the experimental techniques and sample preparation. In
Chapter 5, I describe the first observation of random, reproducible strain-induced
conductance fluctuations. Chapter 6 is the main result of the work, and in it I present
detailed results on the first measurements of the effect of strain on the dynamics of
individual TLS. Chapter 7 concludes the body of the Thesis, and the Appendix describes

the low-temperature calibration process for strain that was applied to the sample.



Chapter 2

Tunneling, Two-Level Systems

L Tunneling Model

There is a large body of work, which began in the early 1970s, that is concerned
with the thermal and acoustic properties of amorphous insulators at low temperatures.
There we see the effects of a fundamental set of excitations not present in crystalline
solids, which have long range order. For example, the linear specific heat anomaly,
observed first in vitreous silica glass below 1K [Zeller and Pohl], can not be described by
conventional lattice contributions. The well-known result for the (Debye) phonon

specific heat in a crystal lattice at very low temperatures is

2 3
c, = 2% ks(—k’fz) [Ashcroft and Mermin]. 2.1
c

Prior to the work of Zeller and Pohl, it had been expected that as the phonon wavelength
became much larger than the inter-atomic spacing, disorder would become decreasingly
important. The amorphous state of a material, at low enough temperatures, would feature
the same specific heat as its crystalline counterparts. After 1971, however, the specific
heat of many amorphous solids was seen to vary nearly linearly with temperature below
1K. In 1972, a model was developed by two groups [Anderson et al., 1972] [Phillips,
1972], that described the observed specific heat anomaly. There they show a specific

heat contribution nearly linear with temperature arising from a broad distribution of



excitations. These excitations are present due to the disorder inherent to the amorphous
state and are identified as tunneling two-level systems (TLS). In a disordered solid, there
are a vast number of structural configurations with energies very close to each other.
Even at very low temperatures, the model assumes that some of these configurational
states feature low enough potential barriers that transitions can occur via tunneling.

For simplicity, we will consider the problem of a single particle in a double-well
potential. We model a TLS as shown in Figure 2.1. The abscissa represents a general
configurational coordinate for the system, arising perhaps from the rearrangement of a
few atoms in the solid. The two local minima differ in energy by €, the asymmetry of the
TLS potential. At low temperature, i.e. where kT <<V, the dynamics are dominated by

quantum mechanical tunneling. The Hamiltonian is given concisely by

1 1
H= 580’ - -EAOO',, , 2.2)

where o; are the Pauli spin matrices. We can express the tunneling matrix element as

A, =ha e, 2.3)

where o is the oscillation frequency in the well,and 1 ~d - ‘, 2:2V is given in one

dimension by the WKB approximation, where m and d are the mass and separation

between wells for the model single-particle problem. The energy eigenstates of this
problem are readily determined. In the energy eigenstate basis, we have H = —;—E o,,and

the energy eigenvalues are

E 1 L
15=¢§(s’ +A). (2.4)



Potential Energy

€

1 2
Defect Configuration

Figure 2.1 - Schematic of the Potential of a Two-Level System. Here we see a realization
of the type of potential described by the tunneling model in amorphous solids. The
abscissa represents a generalized configuration coordinate. In order that this describes a
two-level system, we require that the potential barrier, V is much greater than #w,, for

either well. In addition, the asymmetry, €, and kT must be much smaller than V.



The eigenstates are linear combinations of the left and right states, given by

Y, )= I)+si
[¥. )= cosd )+sm6|r>,where tan29 = 20
|'¥_) = sind|l) - cosfr) E

Note that the in the zero-bias case (€ = 0) we recover the familiar symmetric and anti-

2.5)

symmetric combinations.

II. Thermal Properties

The Tunneling Model contains assumptions about the distribution of TLS present
in an amorphous solid. The idea is that there is a wide distribution of such TLS, and that
in the relevant range of energies and parameters, we can consider it to be constant as a
function of asymmetry and tunneling parameter, P(¢,4) = P . TLS will exist that display
asymmetries from zero to some fraction of the glass transition temperature, since this
indicates the energy scale for the disorder present in the glassy state [Phillips, 1972].
Due also to the disordered nature of the solid, we expect a broad distribution of barrier
heights ranging from 0 to the energy associated with the glass transition temperature ( ~
0.1 eV in vitreous silica) [Anderson et al., 1972]. With this assumption, we can derive

the contribution to the specific heat due to these excitations. For a single TLS, we have

F(E) = —k,T In[2cosh(E/ k,T)], (2.6)
and
C(E)——Taz—F— £ sech?(E/k,T) Q2.7)
oT?  k,T? e '

For a distribution of independent tunneling states, n(E), we have that

EZ

= sech?(E/ kyT)n(E)dE . (2.8)
B

C= T[C(E)n(E)dE = j
0

o
0



The integrand is large only when E =~ kT. If n(E)=ny is constant (or nearly so) near kT,

we find, upon substitution with x = E/kgT, that
@® 2
C= nokBZT x? sech xdx {’lr—z—)nok,,zT [Phillips, 1972]. (2.9)
0

This approximation for n(E) deserves further exposition. Recall that E = E(g, Ag)
(Equation 2.4). It is clear that for a given E, the maximum value of A is E, when £=0.

This implies that the minimum value of A for a given E is

ha,

Fuia = In(—2) . (2.10)

Since Ay/A is the tunneling rate for the system, we should ignore those states that relax
only after times longer than the measurement’s duration when calculating the specific
heat. This implies that there is also a physical cutoff for a maximum A. We can consider

the probability density of states as a function of € and A for a fixed E (Figure 2.2).

0 E max

Figure 2.2 - Probability Density of TLS as a Function of the Parameters € and A.
From Equation 2.4 we see that for a given E, € can vary from 0 to E. The Tunneling
Model assumes that P(g) for the distribution of TLS is constant. We have seen that there

are minimum and maximum values of A allowed, and P(A) is assumed constant within



those bounds. As we increase E, we add more states proportionally to E due to the
increase in the maximum value of €. This produces the specific heat’s linear temperature
dependence we saw above. The fact that Amin decreases logarithmically as energy
increases implies that the specific heat should increase faster than that by a logarithmic
term. This “superlinear” specific heat more closely describes the observations
[Stephens].

A TLS interacts with its surroundings via distortions in its local environment
produced by phonons. The dominant effect of strain on the TLS potential is through first
order changes in asymmetry, €, induced by long-wavelength strain fields [Phillips, 1981]

[Halperin]. The interaction with the phonon bath takes the form

H, = 1(58 _‘;8) =()oo)o, . (2.11)

2{ 0

Dl
e

(2.12)

~
1]
N | =

is the deformation potential for €, and ¢ represents dimensionless strain. For simplicity,
the tensor nature of y has been suppressed. The relaxation rate for a single TLS can be

calculated from this interaction using Fermi’s Golden Rule [J4ckle]:

2, 2
= _15_4.% -}M—coth(—’qg), (2.13)
v, v, ) 2mph 2

where vy is the sound velocity for longitudinal or transverse phonon modes, p is the
density of the solid, and P is the inverse temperature.

Now we can discuss the probability distribution for TLS as a function of energy

and relaxation time. Jéckle gives

10



WP 1
PE=3 -7 /7, (BN

(2.14)

where P is the (constant) P(e ,A), and 7, (E)=1(E,A, = E) is the minimum relaxation
time for a given energy E, which corresponds to € = 0. These symmetric states are the

ones most strongly coupled to phonons. The derivation of this probability density is

straightforward, since the infinitesimal element of probability must be the same
regardless of the choice of variables. P(E,7™")dEdt™ = P(¢,A)dedA, so

P(E,t™")= PJ(&,A,E,r™"), where J is the Jacobian, the determinant of the matrix of

o€ 0A
partial derivatives: J(&,4, E,7™") = det gg gg‘: . The remarkable feature of this
or” or™

distribution in Equation 2.14 (see Figure 2.3) is the increase in the number of states at
very long relaxation times. This leads to a logarithmic increase in specific heat as a
function of time. Changing the measurement time from 1 microsecond to 1 second
increases the observed specific heat by a factor of three (Jéckle). This is an important
prediction of the Tunneling Model assumptions that has been experimentally confirmed

[MeiBner and Spitzmann] [Loponen et al.].

11



P(E, t))

g g

-

0 -1 ™m (E)

T

Figure 2.3 Probability Density of TLS as a Function of Relaxation Rate at Fixed Energy
The divergence of P as t”! approaches 0 gives rise to a time-dependent increase in the
TLS specific heat contribution

Another consequence of this broad distribution of tunneling levels can be seen in
the temperature dependence of the low-temperature thermal conductivity of amorphous
insulators. Observations suggested that the thermal conductivity varied as nearly T [Pohl

and Salinger]. We will now show that the tunneling model predicts this. The phonon

mean free path through the TLS scatterers is given by [Phillips, 1972], [Black]

I =(%)I_’7§ tanh[ ho ) (2.15)

- 2k,T
where a is for transverse or longitudinal modes. Here p is the (mass) density, y, is the

appropriate TLS deformation potential, and v, the mode’s sound velocity. Starting from

Kinetic Theory, we can express the thermal conductivity through the bath of phonons as

K =3 ool (2.16)

12



For these TLS, summing over one longitudinal and two transverse phonon modes

[Golding, Graebner, and Kane], one finds that

1 y po\ L poY & o + Pha B
x(T)=§k,§:ojdco[(T) csch( ; IZﬂ’vi )}Va[pvi PyatanhT] . (217)

B= (kT)'l and the bracketed terms represent Cpronon and /, respectively. After integration,

we have

x(T) = m;z (Z F—V;TJTZ (2.18)

Experimentally, x(T) varies as T®, where o. ~ 1.8-2.0 for many amorphous insulators
[Stephens].
III.  Acoustic Properties

Many low-temperature acoustic phenomena in amorphous insulators result from
the coupling of TLS to phonons. Ultrasonic attenuation, velocity of sound shift, and,
most strikingly, phonon echoes provide evidence of the presence of these excitations.

TLS-phonon scattering is a source of ultrasonic absorption in amorphous solids.
These excitations couple to phonons through the deformation potential, which shows how
spatial distortions in the lattice affect the energy of the two-level systems. We can
estimate the acoustic power input at which saturation effects become apparent following

Jickle [Jdckle]. The absorption rate of phonon mode k,a is given by

D2
= ﬂz_“_’ tanh(@;“’-) =7, tanh(@) (2.19)
v, 2 2

where @ = vk and ! = kT. 7., depends on temperature through the population factor

tanh(ﬂ—zE) =1-2n,(E), n,(E)= 751—1 . ng is the distribution function for the TLS in
e+
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thermal equilibrium. Note that resonant absorption decreases with increasing
temperature as the population difference decreases. We should therefore see the resonant
absorption saturate at sufficient input power levels. Starting from the phonon emission
rate, we can find the saturation absorption, since, in the stationary saturated case, these

two are equal. The recombination rate of the TLS j is

s MU+ No(E)) ~(=n)No(E))

J

(2.20)
7

1
ek -

where N, (E) = T The left side of the numerator is the contribution from

spontaneous phonon emission, the right is that from stimulated absorption, and 7, is the

temperature-independent part of the TLS relaxation time (Equation 2.19). The maximum

for this rate occurs at n; = %4, so the stationary (maximum) absorption is given by

. . ho ~
Q. =ho an.>=7 > (2.21)

J)E,-paf<r J|E;-hool<T
The sum is over all states within I (the level width) of the incident frequency. We can

also incorporate (experimental) phonon frequency uncertainty in . We can evaluate this

sum with Equation 2.14:

0, = E;_’zr [d(yz ' P(ho, ™). (222)
0
This becomes
: 1 2 )\Pyroe*
0. =(_j_+_s)7_, (2.23)
v, v, 27p

Now we can estimate the input power at which saturation effects become important by

setting the linear absorption equal to this maximum rate. The linear absorption rate is ji//,
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where j; is the incident power and / is the phonon mean free path (Equation 2.15). The

saturation value of input power, j;*, becomes

ji=0l= (:7 + %Jlir—?}com(%@) ) (2.24)
Jéckle evaluated this for fused silica at 1K and found that for a 1 GHz incident frequency,
the saturation incident power is of the order of 10® W/cm?. This small power level made
experimental confirmation of resonant saturation absorption difficult, but not impossible
[Hunklinger et al., 1972] [Golding et al., 1973].

The most striking acoustic property due to TLS may be phonon echoes [Golding
and Graebner]. At temperatures below about 100 mK, the relaxation time of a TLS
(Equation 2.13) can be longer than the duration of a typical ultrasonic pulse of 100 nS.
This implies that coherent effects can be observed. Above (Equation 2.2), we saw that

the problem of a two-level system can be expressed in terms of that of a spin system.

Specifically, we can write the Hamiltonian as
H=H,+H, =%Ea,—(Max+%Da,]e (2.25)

2

A
where M = % and D= % . This shows formal correspondence between the TLS and

a spin-1/2 object in a magnetic field. We can therefore define a pseudopolarization
vector, P, and discuss the effects of external fields in terms of the expectation value of
this operator. The x and y components of P are related to the components of stress in
phase and out of phase with the applied strain field, analogous to the transverse

components of spin in the magnetic case. Components of <P> must satisfy the coupled
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Bloch and wave equations, analogous to the case of light traveling through a resonantly

absorbing medium [Allen and Eberly].

Upon application of a strain e=e,cos(a¥ — kz), we find that the nutation frequency

. . . .. Me .
in the usual rotating coordinate frame is given by w, = - % . The maximum echo

amplitude occurs with a sequence of pulses of ‘areas’ n/2 and n. The nt/2 pulse rotates
polarizations initially along the z-axis (for those TLS that are resonant with the pulse
frequency) into the x-y plane. The spread in frequencies of the excited states causes rapid
dephasing of those rotated polarization vectors. The second pulse rotates the
polarizations by = radians, and now they tend to become phase-coherent again, doing so
after a length of time that is equal to the separation between the two pulses. Once the
polarizations become coherent again, a spontaneous echo is produced. Note that the time
between pulses must be shorter than the relaxation time for the TLS in order to observe
echoes. In the simple case of the symmetric TLS problem, E = Ag and M =y (see

Equation 2.4). The pulse area for a rectangular pulse of duration t is given by
J e 0
0= |odt=""7. 2.26
_{ 2 (2.26)

Since the symmetric TLS scatter most strongly, we can use Equation 2.26 to determine v,
the deformation potential. Experiments measured deformation potentials for Suprasil-W
of 1.5 eV, consistent with earlier expectations [Phillips, 1972] [Anderson et al., 1972]

[Jackle] and values inferred from other experiments [Zaitlin and Anderson] [Berret and

MeiBner]. Other experimental determinations of y actually measure the product Py’
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(see Equations 2.15, 2.18 for example) and so “consistency” is a more accurate
description of the situation than “agreement”.
IV.  TLS in Metals

The behavior of tunneling, two-level systems is quite different in amorphous
metals. Electron-hole excitations can interact strongly with tunneling lattice defects that
we can describe as TLS. The theory of Dissipative Quantum Tunneling describes the
dynamics of a two-level system in contact with a thermal bath of excitations [Kondo]
[Leggett et al.]. Interaction with conduction electrons can change even the qualitative
behavior of the TLS dynamics, as we shall see.

The Hamiltonian for an isolated TLS was given above as Equation 2.2. We have
already discussed the effects of interaction between that system and phonons through the
strain dependence of the TLS potential. We will now model the interaction of the TLS
with conduction electrons and its effects on the tunneling parameters and dynamics. This
interaction renormalizes the effective tunneling parameters, removes the coherence of the
tunneling process (when Ag << kT), and can alter the temperature dependence of the
tunneling rates in a dramatic fashion, leading to an increase of tunneling rate with
decreasing temperature [Leggett et al.] [Grabert and Weiss] [Fisher and Dorsey]. This
inverse temperature dependence is a signature phenomenon of dissipative quantum
tunneling.

In this treatment, we are concerned with a limited range of the full parameter
space available to the problem. Our TLS model implies that we need to consider only

configurations where the wavefunction overlap is much smaller than the ground state

energy in a potential well: Ag << Aiwg. This is due in part to the nature of the experiments

17



in question. We resolve defects switching states in the time domain on the order of
seconds, where the vibrational frequency in a well is on the order of 10'2 s™[Cukier et
al.]. Faster defects have been observed and give rise to anomalies in the I-V

characteristic of ultrasmall samples [Ralph and Buhrman]. In addition, we require that
kT<<V,hw, resulting in a true two-level system in the tunneling regime. We have no a

priori relation between the energy splitting, €, and kT to consider. In fact, the relative
magnitude of these two energies will play an important role in the dynamics of the TLS
in the presence of dissipation. Finally, the TLS tunnels in an incoherent manner, due to
the rapid dephasing effect of interactions with thermal electron-hole excitations. This
implies that the well occupation states form the correct basis with which to consider the
problem of a TLS in a metal, rather than the energy eigenstate basis that is appropriate in
insulators.

There are three regimes into which we can divide the electron-hole excitations for
consideration of their interaction with the TLS. Two of these, excitations with energy
much larger or much smaller than #A, are excluded from the Hamiltonian by
renormalization of the tunneling rate, which I will describe below. The third,
intermediate group produces interactions that can be modeled with a bath of harmonic
oscillators [Caldiera and Leggett]. What results is then a truncated spin-boson
Hamiltonian:

H=20,-%20,+0,3.G,b,+b)+ T habb, 227)
J J

2 J7i%i

Here the b;" and b; are the creation and annihilation operators for the model harmonic

oscillators, G; are the interaction between the defect and the harmonic oscillator state j,
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and A, is the renormalized tunneling matrix element. This problem is tractable [Leggett
et al.], and one finds that the thermal bath only affects the dynamics of the TLS through

the spectral density of its excitations,
2 2
J(w) = (h—z)z Giéw-w,). (2.28)
J

For a metal, the form of J(®) = aw for ®<w., which gives Ohmic dissipation
[Chakravarty and Leggett]. The parameter a is very important; it determines the
coupling of the TLS to the bath of interactions. In metals, a lies between 0 and 'z
[Yamada et al.].

Let us return to the renormalization of the tunneling rate and provide some
motivation. One can separate the high-energy excitations because above some cutoff
frequency, w., we expect the oscillators to be fast enough to follow the motion of the
defect adiabatically [Kagan and Prokof’ev]. . is naturally between the tunneling rate
and oscillation frequency of the TLS well; Ay << ®. < wo. This adiabatic interaction

leads to a renormalization of the bare tunneling matrix element:

A= Ao(ﬁ’i) . (2.29)

a’o
In addition, the oscillators with frequencies smaller than the tunneling rate of the TLS can
have little effect on its dynamics, since their periods are longer than the average dwell
time in any one well. This leads to a renormalization of A:

A, = A(A)H = Ao(ﬁJH’ . (2.30)

0] ),

[4

Note that the final form of A; does not depend on the choice of ..
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One can now calculate the relaxation rate of the TLS by considering the transition

probability from the higher-energy to the lower-energy state, P(f)=< ox(f) >, given that

<o,(t £0)>=1. One finds that

P(t>0)= —tanh(f-) +[1 + tanh(i)]e-' , 2.31)
24T 24T

where the total tunneling rate, y, is given as

&
2a-1 cosh(—) 2
4. (27T 2kT I‘(a+i—€ ) . 232)
21\ 8, T(2a) 2kT

Note that I'(a + ib) is the complex gamma function, I'(z) = Ie" x*'dx . The transition
0
rates from the higher-energy state to the lower-energy state (¥.sy) and vice-versa (¥saow))

must obey detailed balance. Therefore LI e, since the energy splitting between the
Vs

two levels is the asymmetry, €. The total tunneling rate is the sum of these rates, y= y +
¥, giving

2

and y, =y, e (2.33)

A (2T) W
7 m\ A ] TQa)

I“(a + ii)
2kT
[Leggett et al.] [Grabert and Weiss] [Fisher and Dorsey].

For 0<a < % , the behavior of these rates is quite different depending on the

relative sizes of € and kT. For € <kT, the tunneling rates increase with decreasing

temperature; ¥,,¥, « T°*" [Kondo]. This is a signature feature of Dissipative Quantum

Tunneling. It has been experimentally verified, first in studies of muon diffusion in
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metals [Clawson et al.] [Kehr et al.] [Welter et al.]. When kT <, the rates depend on
temperature following a simple model: decay () can occur via stimulated or spontaneous
emission, while y, is due to stimulated absorption. As the temperature decreases, the fast

rate remains roughly constant, since the kT < € relationship implies that the spontaneous

emission process dominates relaxation. The slow rate decays as e_ﬁ as the thermal bath
excitations decrease in number.
V. Single Defect Studies

The coupling of two level systems to phonons in amorphous solids is through the
effect of strain on the local, microscopic potential. We have seen that Equations 2.15
(phonon mean free path), 2.18 (thermal conductivity), and 2.26 (phonon echo pulse area)
are examples of the influence of this strong coupling parameter, y. All of these
measurements sample large numbers of TLS parameters and therefore are affected by
assumptions about the distributions of those parameters. Mesoscopic, metallic samples in
the Quantum Transport (QT) regime (i.e., the quasiparticle de-phasing rate is less then the
total scattering rate) offer a new opportunity. At low temperatures in small samples,
electrical transport shows effects due to the interference of electrons as they travel
through a field of scatterers [Lee and Ramakrishnan]. These interference effects can lead
to a remarkable sensitivity of the electrical conductance on the location of these
scatterers. Even the small change due to the motion of an individual TLS can produce a
measurable effect on the conductance [Al’tshuler and Spivak] [Feng et al.].

In 1991, the first observation was made of an individual TLS in a mesoscopic

metal [Zimmerman et al]. Subsequently, the detailed form of the tunneling rates
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(Equation 2.33) was confirmed, establishing the validity of the Dissipative Quantum
Tunneling behavior of TLS in metals [Golding et al., 1992] [Chun and Birge, 1993].
This approach provides our best opportunity to uncover information about the
nature of the TLS that pervade disordered systems. We can now observe a single defect
incoherently tunneling between two states. By applying perturbations that affect the

dynamics of a TLS, we can learn details about its microscopic potential.
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Chapter 3
Quantum Transport

L Introduction

Electrical conduction in bulk metals at temperatures above a few K is accurately
described by the ideas of semi-classical, Boltzmann transport. Quasiparticles, which are
excitations of the filled Fermi sea of electrons, travel through the periodic potential of the
lattice under the influence of externally applied electrical fields. In the weakly-
disordered limit, they move diffusively, scattering from lattice imperfections and each
other [Lee and Ramakrishnan]. These imperfections include the thermally-induced
motion of lattice ions (phonons), structural defects, and impurities. We begin by
assuming that the scattering events are inelastic, isotropic, and random events, and that
the probability of a collision occurring in a time dt is dP = dt/t, where t is the average
time between scattering events. We then find that the conductance in this model is given

by the familiar Drude formula,

o=—. 3.1

An interesting question is how this picture changes when we increase the disorder
present in the lattice. For the semi-classical, diffusive quasiparticle description to hold,
we require that kgl >> 1; that is, the elastic mean free path must be much longer than the
quasiparticle Fermi wavelength. Otherwise, the random-walk picture of diffusion breaks

down, since we can no longer consider the scatterers as independent point-scatterers. The
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goal of this chapter will be an explanation of some phenomena specific to disordered
metals. In particular, we will explore how elastic scattering with a rate larger than the
inelastic rate alters this simple picture.

Quasiparticle scattering in pure metals at temperatures above a few degrees K is
dominated by interaction with phonons. This can be seen in the resistance versus
temperature of metals from 10 K to room temperature [Ziman]. Electron-phonon
scattering events are inelastic; in fact they represent the mechanism by which the
quasiparticle system comes to thermal equilibrium with the lattice. At low temperatures,
phonons become rare and other scattering mechanisms become more important to
conduction. Eventually the impurity scattering rate becomes larger than the phonon rate,
leading to a low-temperature residual resistivity common for metals [Ziman). Then, a
quasiparticle can travel through many elastic collisions before its energy has changed.
Elastic scattering does not destroy the phase coherence of the quasiparticles, and so we
must consider interference effects to determine the trajectory of the particle. As the
quasiparticle coherence length increases, conduction processes change character from
classical diffusion mechanisms (if phase is always randomized at every collision) to
transmission of incident wavefunctions through a disordered medium [Landauer]. Phase-
coherence effects on conduction are described by the theories of Quantum Transport
QD).

One of the foundations upon which quantum transport theory is built is the early
work of Anderson [Anderson]. He considered the effects of disorder on a conductor by
trying to reason what the form of a single electron state in a random potential would be.

He concluded that a sufficiently disordered potential should produce localized states,
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rather than extended, conducting ones. To lowest order, the electrons would be bound in
random potential wells, and the degree of mixture of these locally bound states would
determine whether the states would be ultimately localized or extended, as the sample
size was extended to infinity. The case of a crystalline lattice, in which neighboring
wells are identical to each other, is a very special case. There, the degeneracy of states
and their proximity induce large overlaps that produce extended Bloch states in metallic
crystal lattices. Anderson argued that in a random potential, the states in neighboring
wells have no special relationship in energy, thereby lowering their overlap integrals.
Degenerate states of course still exist, but they would in general be far removed spatially,
decreasing the amount of admixture exponentially with separation. If sufficient disorder
exists in the potential, single electron states will be localized and decay exponentially
beyond a localization length. Samples larger than this localization length would be
insulating, and this describes the metal-insulator transition as a function of sample size.
We can also consider this transition as a function of Fermi energy, for moderately
disordered samples. The critical energy above which states become extended represents
the mobility edge [Mott], since extended states give rise to nonzero conductance at zero
temperature.

Several years later, Thouless introduced the foundations for the scaling theory of
localization, based on Anderson’s work [for review, see Thouless, 1974]. Thouless
started by considering the assembly of a (2L)* hypercube of material by placing L*
samples together. He questioned whether the eigenstates of the larger system could be
easily related to those of the smaller system. States in the (2L)? sample are linear

combinations of those in the (L)® system, and the degree of mixing is determined by the
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overlap of the wavefunctions and their energy differences. The level spacing in the
smaller region sets the scale of the perturbation theory energy denominator,
oW = (NoLd)'l, where Ny is the density of states. The overlap of wavefunctions is
identified as 8E. Thouless estimated 3E by observing that if periodic boundary
conditions are applied to the L? region, its eigenstates will broaden into bands. He
surmised that the bandwidth would be a good estimate of the wavefunctions’ overlaps.
Consider again the transition from L to (2L)% if states remain localized, then the overlap
integrals must be exponentially small, and therefore SE/6W is small. If SE/3W is large,
then the (L?) states will be extended through the (2L)° region. Thouless observed that the
parameter SE/6W determines the degree of localization of the electron states in the (L%)
sub-regions. In fact, the zero-temperature conductance of the sample is directly related to
OE/8W [Anderson and Lee].

Thouless later argued that at non-zero temperature, inelastic scattering randomizes
the phase of electronic states and therefore destroys the interference that causes the
localization due to phase coherence [Thouless, 1977]. If the elastic scattering rate is

faster than the inelastic rate, then we define a diffusive phase-breaking length:

L, =Dz, (3.2),
where D = (vf 7d) is the diffusion constant, and v¢is the Fermi velocity, t is the elastic
scattering time, and d is the dimensionality. L, is the average distance that an electron
will diffuse before being de-phased by an inelastic scattering event. L, determines the
length scale over which the effects of electron quantum interference can persist. At low

temperatures, Ly can commonly extend over a micron in length in readily fabricated
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samples. This has allowed broad experimentation in mesoscopic physics, where samples
are fabricated that have dimensions less than the phase-breaking length.

Another important conceptual advance was made when a connection was
discovered between conductance and quantum interference effects in 1-dimensional
metallic samples [Landauer]. In particular, he found a relationship between the
conductance of a metallic region with scatterers and the transmission matrix for incident
flux from one side of that region to the other. Conduction in coherent samples becomes a
scattering problem and can be calculated via the transmission of states in one perfect,
infinite lead to that on the other side of the disordered region. The Landauer equation

states that

_2¢?

G==o
h

Tr(tt*), (3.3)

where ¢ is the transmission matrix across the disordered region. Conduction occurs
through quasiparticle ‘channels’, representing the quantization of transverse momentum
states in the disordered region. The total number of channels is kg times the cross-
sectional area of the region, and each channel has a maximum possible conductance of
e’/h. Tr(t") is often identified as the number of effective conduction channels. The
factor of two comes from the spin-degeneracy of the quasiparticles. Note that we are
discussing the diffusive regime, and here Tr(1t") is much less than the total number of
channels in the sample. The Landauer equation has also been generalized to higher
dimensions and multi-probe measurement geometries [Biittiker] [Stone and Szafer]. The
multi-dimensional form of the Landauer equation shares with Equation 3.3 the essential
feature that the conductance of the sample is a function of its transmission properties,

when it is considered as a scattering region for coherent incident electron flux. The
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Landauer idea has helped the understanding of some of the physical phenomena
attributed to quantum transport effects.
IL. Weak Localization

I will now review some phenomena that result from quantum mechanical
corrections to the conductance of disordered metals at low temperature. First, I will
describe the physical picture that leads to the quantum transport phenomenon known as
Weak Localization (WL). WL corrections to the resistance of metals and 2-d electron
inversion layers are observed as low temperature resistance anomalies [Dolan and
Osheroff] [Kobayashi et al.] [Van den dries et al.] that feature a strong dependence on
applied magnetic field [Bergmann, 1979]. The observations [Bergmann, 1984] have been
very well described by an application of quantum transport theory [for a review, see
Al’tshuler et al., 1987].

Imagine that the sample is a region of crystalline metal at low temperature with
some localized scatterers. These could be lattice dislocations, vacancies, impurities, etc.
We want to describe the motion of the quasiparticles, which are the excitations of the
electronic system without the disorder present. These quasiparticles move by diffusing
from one scatterer to another, traveling undisturbed between scattering events. If the
elastic scattering rate is higher than the inelastic scattering rate, then we must consider
the possibility that the various possible paths that a quasiparticle could traverse can
interfere. To determine the particle trajectories, the wavefunction amplitudes must be
added.

Suppose for simplicity that we can construct a film with thickness t < L, making

the sample quasi-2D. This geometry is not required to observe WL effects, but it is
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useful for making the usual magnetoconductance measurements described below. Now
we must consider interference effects when describing electrical transport through any
region of size roughly L, in the sample. Consider the special subset of quasiparticle

Feynman paths that contain closed loops.

.:‘\/ .7:

Figure 3.1 Quasiparticle Trajectories in a Small Part of a Weakly Disordered Conductor.
The paths only differ in the direction of traversal of the closed loop. Lateral dimensions
of the region shown are smaller than the phase-breaking length. The average distance
between scattering centers is the mean free path, /.

In Figure 3.1, we see a schematic representation of a weakly disordered region of a
conductor, with scattering centers represented by the filled circles. Two possible
quasiparticle trajectories are drawn that differ only by the direction of traversal of the
closed loop portion of the path. A quasiparticle can traverse such a loop either clockwise

or counterclockwise. These two traversals have exactly the same accumulated phase at
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the end of the trip around the loop, as long as their energy remains constant. Thus, the
wavefunctions add constructively at the return vertex. (This constructive interference
persists regardless of the impurity configuration. Hence, WL survives impurity
averaging.) The net result of this constructive interference is to increase the probability
that any quasiparticle will return to its origin during its diffusive motion, leading to a

decrease in conductance:

e’ 3L:, )
AG =- pry In(—~) (quasi-2D result). (34

s l
As inelastic scattering becomes more rare, T, and therefore L, increase, leading to a
decrease in conductance as sample temperature is lowered.

The detailed temperature dependence of 1, depends on the dominant quasiparticle
de-phasing mechanism. Above a few K, this appears to be electron-phonon scattering
and below that low-energy-transfer electron-electron scattering [Bergmann, 1984].
Electron-electron interaction in a disordered metal also decreases the conductivity as
temperature is lowered [Al’tshuler et al., 1987] [Lee and Ramakrishnan], but WL has a
definitive magnetic field dependence that sets its contribution apart. Since the interfering
quasiparticle paths traverse closed loops in opposite directions, introduction of a
perturbation that breaks the time-reversal symmetry of that process destroys this
constructive interference. Magnetic flux threading the loop introduces a relative phase

shift between the paths of

A¢=%§A.d| (3.5)

via the Aharonov-Bohm effect. This flux is depicted as the circled ‘X’ in Figure 3.1. If

the applied field is perpendicular to our 2-D example, then this phase shift is roughly e/

30



B* Lq,z). When this phase shift is of order n/2, then the interference at the paths’
crossing-point is no longer constructive.

In precisely the same way, the conductance of a metallic cylinder or ring with
diameter smaller that L, features oscillations in conductance as a function of magnetic
field along its axis [Sharvin and Sharvin]. Paths that traverse the circumference in
opposite directions get a relative phase shift from the Aharonov-Bohm effect, implying
that the conductance is periodic in applied magnetic flux, with the period of ¢ = h/2e.
The 2 in the denominator is due to the fact that the area is enclosed twice by the
interfering partial waves. Rings exhibit oscillations with period h/e as well [Webb et al.],
but their physical origins are different (they are due to a different interference process,
closely related to Universal Conductance Fluctuations and described below). The h/e
oscillations are sample-specific and therefore ensemble-average to zero in structures such
as long tubes or arrays of rings.

In a metal film at a few K, L, is on the order of 1um, implying that fields less that
100 Gauss would begin to affect the conductance. As the strength of the field is
increased, the constructive interference in smaller and smaller loops is quenched, leading
to the following expression for the magnetoconductance due to WL of a quasi-2D

conductor:
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2
AU(CD=0,B)=— ez W(l+i)+lu,(l+ﬁ)_il//(l+£) R
2z°h 2 B) 2°\2 B) 2°"\2 B

where
B, =B, + By,
B,=B,
B, =g- o + B,
and vy is the digamma function.

Note that B,z, = %, and for By and Bso,
e

h
2= 4eD (3.6)
Dr, =L,

where D is the diffusion constant.

B, is due to elastic scattering, while B_ and B, are from spin-orbit and inelastic

scattering, respectively. This quantum transport correction to the conductance is
calculated by using the Kubo formalism and evaluating the appropriate diagrams with
impurity-averaged perturbation theory. The above results are based on the work of
several groups [Al’tshuler et al., 1980] [Maekawa and Fukuyama)] [Hikami et al]. The
expression is valid when there is no appreciable magnetic impurity (spin-flip) scattering,
which would be a further source of dephasing [Bergmann, 1984].

Notably, strong spin-orbit (SO) scattering changes the sign of the interference in
zero field, giving an impurity-averaged correction (when 7,,” >> 7,7) of —1/2 of the

previous WL correction to the conductance (Equation 3.4). In a system with strong spin-
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orbit scattering, the resistance anomaly becomes an increase in conductance proportional
to In(T) [Bergmann, Phys. Rev. Lett., 1982] [Bergmann, Solid State Comm., 1982].
When the spin-orbit scattering rate is higher than the dephasing rate, the SO scattering
effectively rotates the spin of the quasiparticles without destroying the coherence
between a path and its time-reverse. The direction of rotation is opposite for the two
paths, however. When the relative rotation is 2x, one spin wavefunction picks up a factor
of -1 relative to the other, and so the partial waves interfere destructively.
III.  Universal Conductance Fluctuations
III A. Introduction

Starting in 1984, observations of the low-temperature conductance of small
metallic wires revealed fluctuations as a function of magnetic field [Umbach et al., 1984]
[See Figure 5.1b for an example of G vs B]. These fluctuations are random, reproducible
changes in conductance versus field that are in detail unique to a particular sample. G(B)
vs. B has therefore been called the magnetofingerprint. The average magnitude of the
fluctuations for any sufficiently small sample (i.e., smaller than L) is seen to have the
universal amplitude of e?/h, regardless of the size of the conductance in zero field. This
led to the naming of the phenomenon as Universal Conductance Fluctuations (UCF).
Small metallic rings also exhibit UCF in addition to the Aharonov-Bohm oscillations due
to the magnetic flux through the rings [Webb et al] [Washburn et al.] [Chandrasekhar et
al.] [Umbach et al., 1986]. The UCF were also observed in semiconductors, and there the
fluctuations exist in conductance as a function of chemical potential as well as magnetic

field, with similar amplitude [Skocpol et al] [Licini et al.].
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The UCF in a given sample were seen to increase in amplitude as the temperature
was lowered until they reached the universal amplitude of e*/h. This indicated that a
possible mechanism to explain the insensitivity to sample size was that a temperature-
dependent length scale increased until it exceeded the dimensions of the sample, at which
point the scale of the phenomenon would be set by the sample size. It was known that
quantum interference effects generate length scales that increase as temperature is
lowered (L, €.g.) and this provided impetus to theoretical investigations in quantum
transport as a source of UCF. In addition, interference effects could explain the sample-
specific nature of the detailed behavior of conductance versus field or chemical potential,
since they depend on the microscopic details of the region’s impurity potential.

UCF theoretical studies began by considering the possible statistical fluctuations
in conductance between members of an ensemble of disordered metallic regions that
differ only in their microscopic impurity potentials. An ergodic hypothesis was
formulated to connect these statistical deviations with the sample-specific observations of
conductance versus field or chemical potential [Lee and Stone] [Al’tshuler and
Khmel’nitskii]. This was essential in comparing the statistical theoretical results to
experiments, where only a limited number of samples could be measured. The basic
tenet of this hypothesis is that once the applied magnetic field or chemical potential has
been changed by an amount large enough to significantly alter the quasiparticle
interference pattern in the sample, the new conductance should be no more related to the
old one than it is to any other member of its ensemble of possible impurity

configurations.
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Fig 3.2 A Region of a Disordered Conductor in the UCF Regime. Two possible diffusive
quasiparticle paths are illustrated from point A to point B. Filled circles represent
scattering centers. The region shown is smaller than the phase-breaking length, L.

In Figure 3.2, we see a section of a UCF sample, where two possible quasiparticle
paths are highlighted from points A to B. The average spacing of scatterers represents
the elastic mean free path, which is much smaller than the phase-breaking length. The
total conductance from A to B is derived from adding the amplitudes for all possible
(Feynman) paths between the two points, as long as kgl >> 1. By adding magnetic flux,
this interference pattern is changed in a random way due to the particular relative
locations of the scatterers. Each path gets a unique relative Aharonov-Bohm phase shift
due to the applied flux, and the conductance changes. This is the physical mechanism
behind the variation of the conductance with magnetic field. This interference

mechanism makes clear why the observed fluctuations are random and sample-specific.

The finite size of the interfering region sets the scale of the correlation field, similar to
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the WL phenorhenon. If the center of the region were hollow, this diagram would
represent the case of a ring structure rather than a film. Such mesoscopic rings (diameter
< Ly) also exhibit h/e periodicity with applied magnetic flux, due to the periodic phase
shifts induced between paths along the top and bottom portions of the ring. Random
phase shifts within each arm of the ring still provide aperiodic changes in conductance.
We must add other considerations to this simple picture to explain the universal
amplitude of the fluctuations, however. I will describe in the following sections three
approaches to understanding UCF. The first is an heuristic physical argument that will
show that the UCF arise quite naturally from correlations between energy levels in a
disordered region. In the next section, I will discuss more rigorously the unusual
statistics observed among the eigenvalues of the transmission matrices of disordered
conductors. Here, we will find an origin for the correlations between transmission
eignestates and also some predictions for UCF relative amplitudes as a function of the
symmetry of the transmission matrix. By applying external perturbations to a given
sample to change that symmetry, experiments can verify the predictions of the Random
Matrix Theory description of UCF. The third UCF section describes a perturbation
theory calculation for UCF. By using diagrammatic techniques to calculate the ensemble
average conductance and conductance correlation functions for Fermi energy and
magnetic field, the greatest number of details about UCF measurements are described.
UCF amplitude as a function of sample size, sample dimensionality, and temperature are
revealed. Also, the correlation magnetic field and Fermi energy can be derived. These

correlation fields set the scale for applied perturbations that alter the conductance of the
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sample and allow a theoretical connection between experimental fingerprint data and
ensemble average quantities.
III B. Thouless Argument

Recall the Landauer idea that conduction occurs through quasiparticle channels
that cross the sample. These effective channels are extended states that couple lead states
from one side of the region to the other. Since electrons spend a finite time diffusing

across the sample, there is an associated energy uncertainty that broadens the energy level

of the electron while it is in the sample. This uncertainty is #/tp, where 1p is the time to

diffuse across the sample: tp = (L,>/D), where L, is the sample length. This energy
uncertainty has been called the Thouless energy,

E. = h/(min {tp, To}) (3.7
E. is either set by the sample length or Ly, whichever is shorter. (Recall that 1 is the
maximum time for which a quasiparticle can travel and remain coherent, and the levels
are broadened only by the coherent time spent within them.) In this picture of
conduction, the sample conductance is set by the number of channels with energy within
E. of the chemical potential of the measuring lead. The number of effective conduction
channels is then given by E./6E, where 3E is the average level spacing. Equation 3.3

reduces to

2
G_2e .E

<, 3.8
h OE 8

The expected fluctuation of the conductance when chemical potential or impurity
configuration is varied would be 2¢*/h times the change in the number of effective

channels in the broadened energy scale. If the energy levels obeyed Poisson statistics, the
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expected fluctuation would be Nepanneis” 2. Even in a mesoscopic sample, the number of
effective channels is typically very large; a 100 Ohm sample has hundreds of effective
conduction channels. Observations show that in sufficiently small samples (i.e., Ly <L,),
the observed change in number of effective channels is always of order 1. This indicates
that some other statistical ensemble must describe the spectrum of energy eigenvalues in
the sample.

It should be pointed out, however, that we have assumed that the entire sample is
phase-coherent. For larger samples, we effectively have several independently
fluctuating regions. The relative size of fluctuations then decreases normally as the
square root of the number of independent regions.

III C. Transmission Matrix Eigenvalue Statistics

Consider the origin of the transmission eigenstates, which are determined by the
transmission matrix through the sample. This matrix is in general quite large, since it has
terms for flux between every state in the ideal leads on one side of the sample and the
other. The statistics of the eigenvalues of large, random matrices have been studied,
however, first in the context of the excitation spectra of compound nuclei [Wigner]
[Dyson]. The eigenstates of such matrices follow different statistical ensembles based on
the symmetry properties of the matrix. The symmetry classes are Gaussian Orthogonal
Ensemble for time-reversal and spin symmetry, Gaussian Unitary Ensemble for spin
symmetry only, and Gaussian Symplectic Ensemble for broken time and spin symmetry.
All of these ensembles feature level repulsion. That is, the probability that two states will
exist with a given energy separation goes to zero as the separation goes to zero. This

reduces the size of fluctuations in the spectra significantly, and makes the expected size
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of fluctuations in a region of energy independent of the number of eigenstates in that
region. Schematically, the eigenstate spectrum can be compared to a ladder, where the
spacing between rungs usually only varies by a limited amount. The expected number of
rungs in a given distance (energy range) does not change much in different regions of the
ladder, compared to the expected fluctuations if we remove the constraint that controls
the rung spacing. The size of the fluctuations in conductance can be calculated based on
the number of independent statistical sequences of eigenstates and the symmetry of the
transmission matrix or Hamiltonian [Imry] [Al’tshuer and Shklovskii] [Muttalib et al.]
[Beenakker]:

(g-(2))= (%)2 '“7; . 3.9)

The brackets represent averaging over the ensemble of impurity configurations. Here k is
the number of independent sequences of eigenvalues of the transmission matrix, s is the
degeneracy of eigenvalues, and B is 1, 2, or 4 for GOE, GUE, or GSE, respectively. The
constant of proportionality depends on sample dimensionality. As we can see, Random
Matrix Theory (RMT) allows us to relate the size of conductance fluctuations to e*/h,
irrespective of the sample’s conductance.

This RMT approach is particularly useful when we can experimentally change the
symmetry of the transmission matrix or Hamiltonian. Then dramatic relative changes in
the amplitude of the variance of g (Equation 3.9) can be observed. One such application
is the observation of the factor of two reduction of low temperature 1/f noise at large
magnetic fields [Stone] [Birge et al., 1989]. In this example, application of a magnetic

field breaks time-reversal symmetry in the sample, and we see a drop in noise power of a
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factor of 2. In order to consider the effects of finite temperature and sample size in UCF,
however, another theoretical approach was required.
III D. Perturbation Theory

Using perturbation theory under the Kubo formalism, one can calculate the
ensemble average conductance and its variance directly. Lee, Stone, and Fukuyama used
the ergodic hypothesis described earlier to relate changes in magnetic field or chemical
potential to (impurity) ensemble-averaged calculations in perturbation theory. Their
expansion parameter was (kd)”, which is much larger than 1 in weakly-disordered
metallic samples. They diagrammatically calculated the correlation function for

conductance as a function of magnetic field and chemical potential:
F(AE,AB,B) =(g(E;,B)3%8(E, + AE,B+ AB)), (3.10)
where 6g(E, B) = g(E, B)—(g(E, B)). (See Lee et al. for the results of this calculation).

Note that F(AE,AB=0) is simply Var(g). The scales in energy or magnetic field where F
falls to 2 Var(g) were identified as the correlation energy or field. Lee, Stone, and
Fukuyama calculated the correlation field and energies as a function of sample size and
dimensionality, temperature, and 1,. They found that the correlation energy is sometimes
determined by the Thouless energy, E., and other times by kT, depending on sample
geometry and temperature. The correlation magnetic field is basically set by the
condition that magnetic flux through the coherent region be equal to h/e, but the size of

the coherent region can be determined by L, the sample size, or the thermal “coherence”
length, Ly=(AD/kT)". Recall that the breadth of the Fermi-Dirac distribution function

about Ef is set by kT. L, represents the distance that two nearly coherent quasiparticles
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separated in energy by kT can diffuse before they accumulate enough phase shift to
become incoherent.
III E. UCF-Enhanced Sensitivity to Impurity Motion

Another feature of the UCF mechanism is that the conductance of mesoscopic
metallic samples is highly sensitive to small changes in the impurity potential. Multiple
visits to impurities by coherently diffusing quasiparticles magnify the effects of motion of
those impurities on the conductance [Al’tshuler and Spivak] [Feng et al.]. In fact, the
motion of one scatterer could cause the conductance to fluctuate by up to €*/h in
sufficiently small samples. This is the same fluctuation that is expected when all of the
scatterers are randomly relocated; that is, the conductance of two ensemble members is
expected to differ by e*/h. Experimentally, samples are not usually in this so-called
“saturated” regime, and the change due to the relocation or reorientation of a single
defect is much less than e*/h. This sensitivity explains many early observations. Discreet
jumps in resistance were observed in very small, cold conductors, attributed to the motion
of defects [Beutler et al.]. Defect electromigration was evidenced by changes in the
resistance noise amplitudes in metal nanobridges [Ralls et al.]. Conductance fluctuations
in silver samples were shown to have both magnetic field-dependence and time-
dependence, with similar amplitude [Meisenheimer and Giordano]. Tunneling defects
resolved in resistance jumps at low temperature in amorphous conductors were shown to
have roughly consistent densities with those inferred from the specific heat anomaly of
glasses [Garfunkel et al.]. In addition, this mechanism was proposed as a source of the

1/f noise enhancement in metals observed at low temperature [Feng et al.].
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In metals, a broad distribution of excitations leads to resistance noise with a
power spectrum that increases as 1/f*, witha. ~ 1. From 100K to 500K, a distribution of
thermally-activated, hopping systems with barrier heights about 1eV and a width of 0.3
eV can explain the observed resistance fluctuations in a variety of metals [Dutta et al.].

Consider the case of a two-level system that is activated by thermal fluctuations. The

E
transition rate of such a system is given by 7 = 7,e*", where E is the energy barrier

height and 1 is the average time between attempts. If we assume a wide distribution of E
compared with kT, then the density of states as a function of In(t), D(In(t)), will be
constant. The power spectrum of one switching two-level defect is a Lorentzian, with
knee frequency given by the total transition rate. Specifically,

27

S = bl
. 1+ (07)

(3.11)

where l = L + i . The total fluctuation for the distribution of TLS we write as

T T, Tau

Sp(@) = ]D(r) (3.12)

(er
If D(In(7)) is constant, or D(t) oc 1/1 (which is equivalent), then the resulting spectrum of
fluctuations is proportional to 1/® (1/f) [Dutta and Horn]. Later, it was pointed out that a

broad distribution of tunneling excitations could also provide a 1/f noise spectrum

[Ludviksson et al.].

The 1/f noise power in metals is seen to increase as temperature decreases below a

few K and electron coherence becomes important to conduction processes. A proposed

explanation [Feng et al.] was that L, and L, increase as temperature is lowered, and

42



therefore so does the sensitivity of the conductance of the sample to defect motion. In
Chapter 2, we saw that the under the Tunneling Model of amorphous solids, a distribution
of two-level systems exists with a broad range of excitation energies and asymmetries.
Their effects persist in the thermal and acoustic properties of glasses at temperatures
below 1 K. Recall that the incoherent tunneling rate of a TLS in a metal (Equation 2.31)
is a function of the broadly-distributed tunneling parameter A;. This results in a broad
distribution of tunneling rates and a slowly-varying density of states as a function of the
logarithm of the tunneling rates. Thus, we find a 1/f fluctuation spectrum, following
Equation 3.12. We can surmise that in amorphous metals, tunneling defects may provide
the mechanism for 1/f noise to persist even below 1 K.

The definitive test that showed that low-temperature 1/f noise is enhanced by the
UCF mechanism was application of a magnetic field. Fields large enough to break the
time-reversal symmetry of the scattering matrix lower the noise power by a factor of two,
due to changes in the statistics of the eigenstates. The detailed crossover function
between RMT statistical ensembles has been calculated for 1/f noise power as a function
of magnetic field, again using impurity-averaged perturbation theory [Stone] [Hoadley et
al.].

The next experimental advance was measurement of the tunneling parameters of
individual mobile defects in mesoscopic metals. The dynamics of TLS in metals are
described by the theory of Dissipative Quantum Tunneling, as was described in Chapter 2
of this thesis. By measuring the tunneling rates (Equation 2.31) from observations of
resistance jumps, the energy asymmetry of a single TLS as a function of magnetic field

was studied [Zimmerman et al.]. Later, the detailed dependence of the tunneling rates on
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the ratio of € to kT was observed [Golding et al., 1992] [Chun and Birge, 1993].
Excellent agreement was found with Dissipative Quantum Tunneling theory, including
the novel increase of tunneling rate as temperature is lowered. These observations have
established resistance measurement as a probe of the dynamics of individual tunneling
defects in disordered metals.
IV.  Conclusion

The work described in this Thesis is a study of the effects of an external
perturbation on individual, atomic-scale tunneling systems. We observe the motion of an
active TLS by measuring the conductance of a mesoscopic metallic sample at low
temperature. Due to quasiparticle coherence, conductance becomes a probe into atomic-
scale changes in the microscopic impurity potential. In practice, we locate a bi-stable
defect system with resistance values different enough to be easily resolvable (at least a
few Ohms). Then, we can apply a perturbation to the system and measure directly the
effects that it produces on the dynamics of the defect. The TLS in amorphous solids are
strongly coupled to strain, as has been seen in the average values of the deformation
potential that have been inferred from acoustic and thermal measurements in glasses
[Beret and Meipner]. By applying known strain to a metallic sample in the UCF-regime
and observing the corresponding changes in tunneling rates, we directly measure the

deformation potential for individual tunneling systems.



Chapter 4

Experimental Concerns

L Introduction

In this Chapter I will discuss various steps required in the fabrication and
measurement of a sub-micron sample. In order to conduct these experiments, samples
were fabricated, mounted and cooled in a cryostat, and subjected to external
perturbations. Our results were all obtained from measurements of the conductance of
the samples under those circumstances.

Samples are produced via electron beam lithography (EBL), an established
method of fabricating sub-micron sized metallic samples [Broers, et al.]. The process
involves application to a suitable substrate of at least one layer of a chemical sensitive to
bombardment by electrons, called e-beam resist. After a controlled exposure in a
scanning electron microscope (SEM), the desired regions of this film are removed by a
developer. Metal is then deposited everywhere on the substrate, and the underlayer of e-
beam resist is removed, leaving behind only the metal which landed directly on the
substrate.

Electrical connection between the EBL sample and the electrical leads in the
cryostat is facilitated by a larger lead pattern produced with another step of lithography,

this time using resist which is sensitive to light. Photolithography affords lower
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resolution, with the wavelength of the UV exposure light being the ultimate limit, but a
broader field of view. At 1500x in the SEM, the maximum field of view is typically less
than 100um. Thus, a larger field, lower resolution exposure is essential. It is useful to
use a different deposition step for the outer leads, both to lower the sample’s two-terminal
resistances and in order to have a more robust contact for final connection to the world
off of the substrate. We chose 120nm gold pads. The disadvantage, however, is that
alignment of the EBL pattern onto the existing contact pattern is necessary. An SEM
micrograph of a finished sample can be seen in Figure 4.1.

Once produced, the sample is mounted in a cryostat and mechanical strain is
induced via a wafer of PZT-5A, a piezoelectric ceramic. Magnetic fields were applied
with a superconducting solenoid that is wrapped around the outside of the sample
chamber in the cryostat. All of these steps will be described in greater detail in the
sections that follow.

II. Sample Preparation
II A. Electron Beam Lithography

Electron beam lithography involves the use of a scanning electron microscope in a
modified way. The focused electron beam, which usually rasters across the sample, is
controlled via a computer and used to write a pattern on the desired sample. The two
main parts of this system are X and Y position controls, which are realized as currents in
the scan coils of the SEM, and a beam blanker, which allows exposure only when the
beam has reached its desired position. The remainder of the system is mostly a user

interface. There are software packages to turn an input drawing into parameters to be
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passed to the SEM. The software that I used was the Nabity Pattern Generation System,
NPGS. The user inputs a DesignCAD drawing of the sample area, and can assign
different electron beam doses to different regions of the drawing, denoted as layers or
colors in the CAD drawing. Typical doses for these samples were 0.8 - 1.2 nC/cm as line
dose and 275 uC/cm? in the large area pads. The ultimate resolution of PMMA is about
20 nm, but in general a few factors degrade this. The first requirement for good
lithography is a highly accurate correction to the shape of the electron spot, accomplished
by removing astigmatism from the electron optics. Additionally, the focus on the surface
of the resist should be of the highest quality. A fundamental limitation, however, is the
widening of written patterns by the backscattering of electrons from the substrate, either
during exposure of the pattern or from areas of the pattern nearby. These degradations
are known in this field as proximity effects. They are lowered by increasing the
acceleration voltage, since higher energy electrons are more likely to travel through the
resist and be lost deep in the substrate. There are always some of these effects present,
however. I have used a bi-layer resist scheme to produce a good undercut, allowing ease
of liftoff in the last step of this processing procedure. After exposure, the pattern is
developed in methyl-isobutyl-ketone (MIBK), which develops the top and bottom layers
one after the other. The bottom layer has an increased sensitivity to electron dose which
provides the essential undercut for liftoff processing. The choice of electron beam resist
is very important, and the particular resists I used will be described below. Further
description of the EBL process itself can be found in the doctoral theses of J. S. Moon

and K. Chun [Chun] [Moon].
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II B. Choice of Substrate Material

Substrate choice plays a very important role. The initial data run for the defect-
strain experiment was performed on a glass substrate, formed from a fraction of a
Corning #1 glass cover slip. This was chosen due to its availability, electrically
insulating nature, and most importantly its thickness - roughly 5 thousands of an inch
(mils). One possible choice of substrate would have been the PZT-5A wafer itself.
These materials are porous, however, and a very effective planarization step would have
been necessary to carry out the lithography. It seemed simpler to use a very thin substrate
atop the PZT and calibrate the strain for losses thereby incurred (See Appendix A for
strain calibration details). The cover slips thus seemed a natural choice. Unfortunately,
EBL is not reproducible on top of an insulator. The incident writing beam deposits
charge on the substrate, changing the character of the beam as it scans over the sample.
This is a familiar occurrence to SEM users, since long-term beam exposure degrades
images. We attempted to remove substrate charging with the deposition of a 15nm thick
aluminum layer atop the e-beam resist. The metal layer was thin enough that it was
nearly transparent to the incident high-energy beam electrons but still electrically
continuous. This was a step in the right direction, but still left us with dissatisfying
results. These problems were solved with the use of 5 mil (.005”) thick silicon wafers, P-
type doped to 1-10 Q-cm, as substrates. (These wafers were commercially available from
Silicon Quest International, a silicon wafer broker.) At room temperature, these
substrates are conductive and we achieve very reproducible lithography. At low

temperature, the carrier density plummets and the substrates become insulating. The only
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disadvantage here is that we could not determine with total certainty whether a sample
existed on the substrate at room temperature. By 77K, however, the substrate
conductance could easily be separated from that of the sample, as the former is already
nearly an order of magnitude smaller than the latter.
II C. Substrate Preparation

Careful substrate preparation is also vital to successful EBL. Table 4.1 shows the
“recipe” that I followed. Additionally, I will point out some details. Precise substrate
cleaning is essential. Treatment with hot Micro (a commercial soap) has proven to be a
suitable degreasing and dust-removing process. The e-beam resists that I have used are
2% PMMA (Polymethyl Methylacrilate) dissolved in chlorobenzene and 9%
PMMA/MAA copolymer dissolved in 2-ethoxyethanol. As a final note, I point out that
the use of a controlled, clean environment is very helpful. The MSU Microfabrication
Facility features a class 1000 clean room with controlled temperature and humidity.
II D. Photolithography

To make contact with the small features written with the SEM, we use optically
patterned leads. The particular process we use is a type of triple-layer photolithography
and is pictured schematically in Figure 4.2. The bottom layer is a blanket-exposed layer
of a standard photoresist, in this case Shipley type 1813. The evaporation mask is formed
by the middle layer, 35 nm of thermally evaporated aluminum. The top layer is again
photoresist, in which the desired pattern is exposed. The pattern is developed using
Microposit 452 photoresist developer. The development process proceeds in this manner:
first, the top layer of photoresist is developed, revealing the aluminum layer in the shape

of the exposure pattern. Next, the pattern is etched into the aluminum layer.
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Fortuitously, our photoresist developer served as a useful etch for the aluminum, and no
separate etch processing step was required. Once the aluminum is etched, the bottom
photoresist layer develops rapidly. This step exposes the bare substrate in the shape of
the top-layer pattern, but with a large undercut. Gold leads are then deposited onto a
spinning substrate at an angle of roughly 45 degrees through this mask, producing a lead
pattern with tapered edges (Figure 4.3). These allow good contact between the typically
120 nm-thick gold pads and the <30 nm samples. Adhesion of the gold to the substrate is
assisted by a thin layer (2 nm typically) of chromium, deposited immediately before the
gold.
II E. Metal Deposition

Metallization of the substrate occurs in a thermal evaporation system. A
molybdenum boat is used to heat high-purity (5 9’s) bismuth under moderate vacuum
conditions (<10 torr). The mean free path of a gas at this pressure is much larger than
the dimensions of the system’s bell jar, so bismuth atoms travel directly from the boat to
the sample and arrive with little transverse momentum. 25 nm of material is deposited at
rate of 1-2 nm per second, monitored by a crystal film thickness monitor. This process
produces polycrystalline films with typical grain sizes of about 30 nm. Low temperature
sheet resistances are in the range of a few hundred ohms per square (Figure 4.4). The
resistivity varies very rapidly with film thickness in this regime, so the uncertainty in the
film thicknesses here play a major role in the variation seen in film resistances.
III.  Cryostats

Bismuth defect experiment sample measurements took place in a pumped liquid

helium-4 cryostat at temperatures from 1.2 to 2.2 K for the study of single defects.
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Input
Transformer

(Optional)

Figure 4.5a - Five terminal circuit diagram. The excitation voltage passes through ballast resistors and the
sample resistances, arranged as a Wheatstone bridge. When the signal is nulled properly, the output of
the pre-amp will be very sensitive to changes in one arm of the sample or the other. The optional 77 K
cooled input transformer can be used for samples with low resistance.

Rbnllm
Ratio
Transformer

Figure 4.5b - 4-terminal measurement circuit. Excitation is provided by a voltage source and then
passes through a ballast resistor. With values of the ballast much larger than the sample resistance,
we simulate a current source. The final stage of amplification is the difference between signals A

and B, the output of the ratio transformer. This circuit allows measurements ofA R/R as small as 1
part per million..
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The cryostat uses a 1K pot system to provide cooling power. Data for the silver project
were collected in a similar cryostat in the temperature range from 1 to 29 K. The study
on conductance fluctuations as a function of strain was carried out in a helium-3/-4
dilution refrigerator from 29 to 200 mK. In all cases, magnetic field was applied with
superconducting solenoids, providing fields of 0-7 Tesla in the helium-4 cryostat and 0-9
Tesla in the dilution refrigerator.
IV.  Measurement Circuits
IV A. 5-Terminal AC Bridge

Defect sample measurements were made using an AC bridge method [Scofield].
The circuit uses the two arms of our five-terminal samples as the bottom half of a
Wheatstone bridge (see Figure 4.5a). There are several advantages that we gain from this
type of measurement. The first is that the circuit is insensitive to noise in the driving
voltage, since both arms of the bridge receive an equal contribution. Another large
advantage is the insensitivity of a balanced bridge to interference, which enters both
arms. As long as the preamplifier has good common mode rejection, these fluctuations
are largely suppressed. Additionally, the bridge circuit allows us to compensate for any
difference between sample resistances by changing the relative size of the ballast
resistors. We can null the average signal from the two channels, thereby increasing our
sensitivity to change in one arm of the sample or the other. Sample resistance
fluctuations of one part in 10° are then easily resolved.
IV B. 4-Terminal Measurement

Another circuit was used for magnetoresistance measurements. Rather than using

all five terminals of a sample in a bridge circuit, we made direct four terminal resistance
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measurements. We formed a modified bridge in this case with a ratio transformer as one
arm (Figure 4.5b). This allowed once again a differential measurement that achieved one
part in 10°® accuracy.
IV C. REF Filters

Missing from all of the simplified circuit diagrams shown in Figures 4.5 a and b
are numerous RF filters on the lines leading into the cryostat. Every electrical lead on the
cryostat is filtered at least once with an LC filter with loss of 20 dB at 10 MHz. These
are mounted at the ends of cables leading into the cryostat. The sample leads and high
voltage leads also have RC filters with a rolloff frequency of 1 MHz after the leads enter
the vacuum can. It seems that these RC filters were necessary to stop the all-too-frequent
destruction of a sample caused by propagation of some transient high-frequency signal
during loading or mounting. Attesting to their effectiveness, the sample measured after
the addition of the RC filters survived three cool-downs and the repair of a high voltage
lead. This was unprecedented robustness for sub-micron samples in our 1K system.
V. Strain System

Strain is induced in our submicron bismuth sample via voltage applied to the
electrodes of a piezoelectric wafer. PZT-5A is the industry name for a particular lead
zirconate titanate ceramic that exhibits a ferroelectric phase transition with Curie
temperature of 350 ° C. The strain produced upon application of an electric field between
the top and bottom electrodes of the type of wafers that we used was uniform planar
strain. We performed experiments with two kind of PZT-5A wafers. The first was a bi-
morph, featuring two PZT layers separated by a middle electrode. Later, we found

similar results with a single-layer wafer, where we could use a simpler wiring technique.
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The single-layer PZT-5A were purchased from Staveley Sensors. PZT-5A wafers are
commercially available in various thicknesses. The amount of strain produced is
proportional to the electric field between the electrodes. Therefore, thinner layers of PZT
produce more stain for a given voltage. The piezoelectric layer needs to be thicker than
the sample substrate, however, in order to produce strain in the sample. Our bi-morph
wafers had two 10-mil layers of PZT, and the single-layer wafers had one 10-mil layer.
We operated the bi-morphs with the back electrode shorted to the middle one, effectively
reducing the wafer thickness. Both wafers then produced low-temperature dimensionless
strains of roughly 10 with an applied voltage of 100 V, giving a low temperature
measurement of d;, = 33 x 10> m/V as the strain response of the PZT. d,, is the strain
induced in the plane perpendicular to the voltage applied between electrodes on the top
and bottom of the PZT wafer.

The temperature dependence of PZT-5A has been previously studied [Fein, et al.]
[Vandervoort, et al.], and we have used commercial alloy strain gauges to calibrate the
strain propagated through both the glass and silicon substrates. We found similar
reductions in the strain produced by the PZT at low temperature with a previous study.

For details of the calibration process, see the Appendix.
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Table 4.1 Electron Beam Lithography Procedure on Non-insulating Substrates

Substrate cleaning:
30 minute soak in 70 ° C 5% Micro soap, 95% deionized water (DI)
Thorough rinse in DI

Resist preparation:
Spin on PMMA/MAA (9%) at 4900 RPM for 60 seconds (200-300 nm)
Bake bottom layer at 160 ° C for 60 minutes
Cool to room temperature
Spin on PMMA (2%) at 4900 RPM for 60 seconds (150 nm)
Bake top layer at 160 ° C for 60 minutes
Cool

Exposure:
Add trace amounts of silver conducting paint for focus target on substrate
Load into microscope; saturate filament at 35 KV accelerating voltage
Allow 10 minutes after saturation for beam stability
Focus and stigmate on standard
Repeat on Ag paint target on substrate
Align sample areas and expose to beam

Developing:
Soak in MIBK/isopropanol (IPA) 1:3 for 70 seconds at 20 ° C, agitating
Rinse in IPA for 30 seconds

Rinse in DI for 30 seconds
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Chapter §

Strain-Induced Conductance Fluctuations

L Introduction

Here I will describe measurements of the conductance of a mesoscopic bismuth
sample (100 nm x 1.5 pm x 20 nm thick) as a function of applied magnetic field and
strain. Figure 5.1a shows the variation of the conductance of such a sample at four
temperatures (45, 90,145,200 mK) as a function of applied strain. Present are random,
reproducible fluctuations that have suggestively similar amplitude to those in Figure 5.1b.
There we see a plot of the magnetofingerprint of the sample at the same temperatures,
which is explained by UCF theory [Lee et al.]. These random, reproducible fluctuations
grow in amplitude as the temperature is lowered, while the amount of field change
necessary to significantly alter the sample conductance decreases. This observed
sensitivity to applied strain, however, was an unexpected result. The amount of strain
necessary to change the conductance is 4*107 at 45 mK. I will now describe the analysis
that explains the existence of the “strain fingerprint” of this mesoscopic sample. These

effects can be described by the theory of UCF as described in Chapter 3.
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IL. Data Analysis
Fingerprint data is analyzed via the autocorrelation function,

F(AB) =< G(B)G(B + AB) >, or F(Ae) =<G(e)G(e + Ae) > (5.1)
in the case of strain-induced fluctuations, averaged over the range of field of the
experiment. This is realized computationally by stepping along the data points in the
trace and calculating the product of G(B) and G(B+AB) (or G(e) and G(et+Ae)).
G(B+AB) is found by simple interpolation between the data points nearest B+AB. This
allows continuous calculation of the autocorrelation as a function of AB and is immune to
inconsistent data point spacing in field, which can occur due to limitations in the data
collection system. Plots of all of the autocorrelation functions for conductance versus
magnetic field and strain for all measured temperatures are shown as Figures 5.2a-e and
5.3a-f. The behavior of these plots at large AB or Ae comes from the lack of sufficient
statistics due to the finite range of field which can be applied in these experiments. From
these plots we can obtain two physically interesting quantities. The first is the variance
of the conductance fluctuations, given by < (G?(B)- < G(B) >*>= F(AB = 0) (Equation
5.1). The same is of course true for strain-induced fluctuations on replacement of B by e.
Secondly, the value of AB when the autocorrelation function falls to 1/2 its zero-field
value is defined as the correlation field, B.. This value sets the scale of the change in
field required for the conductance to change by on average the r.m.s. value of the
fluctuations. Both of these quantities are predicted in the case of magnetic field by UCF
theory. It was natural to try and determine whether the same mechanism was at work in

the case of the strain fingerprint.
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III.  Dephasing Length
The prediction for the correlation field of a quasi-1D sample is given by the

simple expression

5 =126
LW

(4

(5.2)

where W is the width of the sample [Lee et al.]. Equation 5.2 holds true when the sample
width and thickness are less than L,,. In these .1um wide by 25 nm thick samples, this is
always the case below about 0.5 K. Figure 5.4 shows the dependence of the phase-
breaking length versus temperature obtained from the values of B, shown in Figures 5.2
a-e. The low-temperature behavior of the phase-breaking length in metals is not yet
completely understood. The T"'? dependence predicted in a 1-D sample due to small-
energy-transfer electron-electron interactions [Al’tshuler, Aronov, and Khmel’nitskii] is
not realized in our data. There is also a recent experimental result that shows a saturation
in the phase-breaking length for many different metals [Mohanty et al.]. This result is
also not indicated by our data, however. We consider L, to be only an experimentally
determined parameter for the purposes of calculations in the remainder of this chapter.
We do not have enough data to make convincing arguments for or against a particular
temperature dependence of L.
IV.  Amplitude of Fluctuations

UCF theory gives the expected value of the amplitude of magnetic-field-induced
conductance fluctuations for samples of varying dimensionality based on the relative
sizes of applicable length scales [Lee et al.]. A difficulty arises, however, in describing

the complete set of physical parameters for bismuth films. The properties of thin film
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bismuth are quite different from that of its bulk form [Komnik et al.] [ Kochowski and
Opilski] [Komori et al.]. For UCF theory calculations, we need to compare the dephasing
length from Figure 5.4 with the size of the thermal length, which reduces the fluctuations

observed due to the distribution of electron energies at the Fermi level:

th
L,= ra (5.3)

The difficulty arises in estimating D, the diffusion constant, for our films, which can vary
extensively with sample preparation and thickness. We have chosen a value of D =30
cm?/s for our films [Birge et al, 1990]. This leads to a thermal length that varies from .7
to .34 um as 1/NT from 45 mK to 200 mK. In the regime of Ly < L Lampier We can

express the variance of the conductance fluctuations at finite temperature as

=3 ()
sGt=cl&| - . (5.4)
h) \ L

The value of the constant C is determined by the symmetry of the Hamiltonian of the

system and the dimensionality of the wire. In a magnetic field larger than B, the
contribution to the fluctuations due to the Cooperon channel are suppressed, leading to a
decrease by a factor of two in the size of the observed fluctuations. In bismuth at low
temperature, strong spin-orbit scattering reduces the observed fluctuations by a factor of
4. Cisthen 0.53 * 1/2 * 1/4 for this quasi-1D conductor in the strong spin-orbit regime
and in the limit of large field (B > B.). We exclude the region B < B, from the
autocorrelation calculations, which is roughly 1% of the total field range at 45 mK.
There is an additional factor to consider due to our experimental setup, which is that the

two arms of a five terminal sample are modeled as two independently fluctuating
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samples. Thus, the total variance we measure is twice that of a sample 1/2 as long. This
is a poor approximation when the sample size is not much larger than the phase-breaking
length, however. Additionally, I have assumed that the two samples are identical, when

in fact their resistances differ slightly. This enters calculations of the variance of g in the

fourth power, however, since

%‘ = ‘% = 6G = R*3R . In Figure 5.5, we plot the

conductance fluctuations as a function of temperature due to variation of both strain and
magnetic field. There is some scatter among these points, but we must recall that the
number of independent fluctuations that occur is small over the entire accessible range of
strain, and so the uncertainties are expected to be large. We see that the fluctuation
amplitudes increase as temperature is lowered and the phase-breaking length increases.
Since L, varies as T, we can expect the variance of G(B) to increase as T~ (Equation
5.4), which is consistent with our data. Most importantly, we note that at each
temperature the amplitude for strain-induced fluctuations is nearly twice that of their
magnetic field counterparts. This is exactly what one would expect if the strain-induced
fluctuations were a UCF phenomenon, since the variance with strain was measured at
zero magnetic field, which corresponds to an increase of a factor of two as compared with
the variance at fields larger than B.. Table 5.1 compares the values of the variance of the
conductance expected due to UCF with those measured as a function of strain and
magnetic field. Given this expected factor of two difference, the variance of G(e) and
G(B) agree remarkably. All of the factors that lend uncertainty to the UCF calculation in
the last column of Table 5.1 do not affect the agreement of the first two, since both sets of

measurements were carried out in the same sample.
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Table 5.1 - Conductance Fluctuation Variance Comparison. For five temperatures, we
compare the variance of the conductance as a function of magnetic field and strain. The
last column is the single-parameter UCF prediction. Variance data is displayed in units
of (e/h)’.

Temperature (mK) | Var(G(B)) (e/h)? | 1/2Var(G(e)) (e/h)’ | C/8(QL /LY
45 10066 10068 029
65 0054 0055 1020
90 10058 .0036 .0090
145 0033 0023 0048
200 .0016 0012 10028

V. Strain Correlation Field

The autocorrelation functions of conductance versus strain give a measure of the
amount of strain necessary to produce a change in conductance of order e%h (see Figure
5.6). The surprising thing to note is that at 29 mK, this correlation strain, o, is 5x107.
This corresponds to a change in length less than 1/100™ the size of one atom over the
length of the sample. We believe that the unusual sensitivity of the Fermi energy in
bismuth to strain explains this result.

Our initial attempt to calculate the strain correlation field began by applying a
uniform strain, o, to the entire sample. Recall that quasiparticles move diffusively
between scattering centers in a mesoscopic metallic sample at low temperature (Figure

3.2). The total phase-coherent path length of a diffusing quasiparticle is given by d =

VT, We know Lﬁ, = Dt (Equation 3.2), where D is the diffusion constant, %v .
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2

3
The total diffusive path length is then d = 7 £ . The effect of isotropic planar strain will

el

be to increase this distance by d*c. The accumulated phase change of the electron over
its entire phase-coherent path is therefore
L 2
6¢ =k do = 3(1—') k.l,o. (5.5)
el
From UCF theory, we know that the conductance will change when this phase shift is of

order &, so we can write the correlation strain as

2
l -
o, ~ (—"—) (k). (5.6)
L?
. . h hD
This can also be expressed as E /E;, where E_ is the Thouless energy, — = 2
(4 (4

(Equation 3.7). Recall that E_ represents the energy uncertainty for an electron that
crosses a phase-coherent volume in a time t,. For our sample, this gives a value of 6, =
1.6x10 at 45 mK and 7x10”° at 200 mK. These are about 50 times larger than the
observed values of 4x107 at 45 mK and 1.2x10° at 200 mK.

A more appropriate treatment considers the shift of Fermi energy in bismuth
under applied strain. Changing the Fermi energy by E, leads to a change in conductance
of order e’/h, as predicted by UCF theory [Lee et al.]. The conductance fluctuations we

see then are analogous to those observed in semiconductors as a function of applied gate

p— Ec
O'c—/dE_F. (57)
do
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The value of the deformation potential for the Fermi energy in bismuth ranges from 2-7
eV, depending on the orientation of the applied strain relative to crystal axes [Hanson et
al.]. Since we have measured a polycrystalline film, it is unclear which of these values
should be used in comparison with our observations. With our value of E_ at 45 mK of
9.8x10° eV, this leads to a range of correlation strain of from 1.4 to 5x10°. This value is
far closer to our observation at 45 mK of 6, = 4x107. An important source of error could
be the value of D we estimated earlier as 30 cm?/s, since E, is proportional to D. It should
be noted as well that both of these estimates for o, vary as LQ,'2 (Figure 5.4) and therefore
are expected to follow the observed temperature dependence, proportional to T (see
Figure 5.6).
V. Conclusion

In conclusion, we report the observation of strain-induced conductance
fluctuations in a submicron bismuth sample at temperatures from 29 - 200 mK. These
fluctuations have an amplitude that is described by the theory of Universal Conductance
Fluctuations and feature very small correlation strains, as small as 4x107 at 45 mK. The
size of the correlation strain field is explained by a shift in the Fermi energy of bismuth

under application of strain, with deformation potentials for E; in the realm of a few eV.
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Figure 5.1a - Conductance Fluctuations as a Function of Mechanical Strain
The conductance of a mesoscopic bismuth sample varies by order e%/h with strain.
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Figure 5.1b - Conductance Fluctuations as a Function of Magnetic Field
This Figure shows the magnetofingerprint of the same sample.
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Figure 5.4 Phase-Breaking Length Variation with Temperature
L, at each temperature is determined by the correlation fields found in Figures 5.2a-e.

The dashed line represents the observed temperature dependence, T-1/2.
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Figure 5.5 Variance of Conductance Induced by Magnetic Field and Strain
The average variance of conductance as a function of strain is roughly twice as large
as that induced by magnetic field.
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This Figure shows the correlation strain field obtained from Figures 4.3 a-f.
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Chapter 6

Response of Defect Dynamics to Strain

L Introduction

Here I describe the results of our studies of single defects under applied strain in
four submicron bismuth samples. We will see the effect of strain on the microscopic
local potentials of these defects, which induces changes in their tunneling parameters,
most notably the energy asymmetry between wells, €. The response of € to strain is v, the
deformation potential of the TLS (Equation 2.12).
II. Data analysis

Defect data are collected over long time periods as traces of voltage versus time.
In order to achieve sufficient precision in our determination of the dynamical parameters,
we require the collection of from 500-1000 transitions. For example, in order to record
600 transitions with the defect labeled below as “C”, the time required was roughly
12,000 seconds. This placed our statistical uncertainties (1/YN) at 5% or lower. The
actual error estimates will be described in detail, but this is a good initial estimate. Data
reduction from these time traces occurs via one of two methods, which we have found
return statistically equivalent estimates of the desired parameters. These methods were

developed by Kookjin Chun during his doctoral work at Michigan State University, and
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are documented in his thesis [Chun]. I will briefly describe these data analysis methods
here as well for completeness.
II A. Schmidt Trigger Comparators

The first data reduction method is very labor-intensive. Each file is viewed a
small portion at a time and comparator levels are set by the operator to indicate the
voltage levels at which transitions take place. During the following description of the
operation of the Schmidt triggers, I refer the reader to Figure 6.1. The user first inputs the
initial state of the fluctuator at the beginning of the file (up, in this case) and then sets the
desired trigger levels. The analysis algorithm marks transitions as events when, starting
from the upper(lower) state, the voltage passes below(above) the position of the
lower(upper) trigger level. The important feature of the Schmidt trigger algorithm is that
noise in the voltage signal can be rejected by careful choice of the comparator levels. The
output of the first reduction program is a pair of files of the dwell times in each state. The
set of from 8 to 20 files for a given strain were analyzed in this method, with all dwell
times stored in two files, one for the “up” state, and one for the “down” state. I should
mention that the labels “up” and “down” refer only to the output voltage of the lock-in,
and do not necessarily reflect the relationship of the potential energies of these states.
The state with longer average dwell time is the one that lies € in energy lower than the
state with the shorter dwell time.

The second step in this analysis process involves fitting a histogram of the dwell

times (such as that pictured in Figure 6.2) in each state to an exponential probability
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distribution, given by P(7) =e ™. The number of observations in each bin in the

histogram should then be

Tmin Timax

Nyw =Npa(e ™ —¢ ), 6.1
where 1., and t,,,, describe the extent of the bin in question. We fit the logarithm of the
frequency in each bin to a line, with slope given by the mean dwell time, 1, and intercept
determined by the total number of transitions, N,,,,. (The fitting algorithm we have used
is the standard Levenberg-Marquardt method [see, for example, Numerical Recipes in C,
Press et al.]. It returns error estimates on the desired parameters, as well as the values of
the parameters themselves.) Allowing the total number of transitions to vary has a
distinct advantage over fitting to merely the mean lifetime. There is a maximum
bandwidth in our measurement circuit determined by the sampling rate of the ADC. In
fact, we filter at a frequency corresponding to 1/4 of the sampling rate (which is 1/2 of the
Nyquist frequency) in order to remove frequency aliasing. This implies that transitions
that occur on time scales less than the inverse of our bandwidth are always missed. This
can be seen as a deficiency in the first bin of Figure 6.2, which is ignored during the
fitting process. Another detail is that the last bin of the histogram will contain the
integrated number of transitions from the right side of the next to last bin to t = =. This
accounts for its seemingly large frequency in the last bin in Figure 6.2. As a final note,

we have used Poisson errors for the expected deviation in each bin, which is applicable

for a collection of independent events.
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II B. Gaussian and Debye-Lorentzian Fits

The second data reduction technique directly measures the ratio of dwell times in
time trace data. It also features a two-step process. The first step is accomplished by
fitting the power spectrum of the time-trace data to that expected from a single fluctuator.
That expected power spectrum is a Debye-Lorentzian, introduced by Equation 3.11:

247

6.2)
The constant A is proportional to the voltage jump squared of the fluctuator signal and

1
+
Tiong T shon

1 is the total TLS tunneling rate. One example of such a fit is given as
T

Figure 6.3 in the form of a plot of f*S(f). There are three parameters in this fit, namely
the amplitude, the knee frequency (2n/t) and a 1/f contribution from the background of
unresolved mobile defects. The 1/f tail is visible in the change in curvature in this plot at
high frequency. The fit is plotted as f*S(f) for clarity so that the knee frequency in S(f)
corresponds to the location of the peak in f*S(f).

The second step begins when a histogram is produced of the voltages present in
the raw data. This histogram is then modeled as two Gaussians, with peaks separated by
the average voltage difference between the two levels and widths given by the size of the
white noise background present in the signal. Since this width is independent of the
defect’s location, the same width is fit to both Gaussians. The exact form of probability

distribution as a function of V is

l (r-v )2 (v-v, )2
(4e * +4,e ). (6.3)

P(V)=——
2no
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o is the width of the distributions, and A,, v; are the amplitude and position of the i® peak.
One example of such a fit is given by Figure 6.4. There are five parameters of interest,
given by the locations of the peaks, their amplitudes, and the width of the distributions.
Unfortunately, an occasional shift of the background due to the activity of a second
mobile defect that is resolvable can seriously impact this automated method. To
compensate, we devised a strategy where parts of the data records are fit independently
and the results averaged together to find the mean parameters over an entire set of data.
This allows the removal of segments of time trace data that did not fit the above
combinations of Gaussians well by a test of the merit function, x2. 7’ is the sum of the
square of the deviation of each point from the fitting function’s va.h;e, weighted by the
expected error in that data point. Also, segments for which the fit returned an unusual
value of the voltage difference or width of the distributions (both also good indications of
model failure) are removed. The remaining majority of the data are averaged and the
error estimates are based upon the statistical deviation in the set of 100 or so groups of
parameters. The ratio of the areas under each Gaussian, which is the same as the ratio A,
and A, from the fits, is the ratio of the dwell times. Averaged over all fitted segments of
the time traces, this should be equivalent to the ratio of the mean dwell times returned
from the comparator fitting procedure. Evidence of the validity of this statement is found

in Figure 6.5, where I present the results for

£ = kTIn(="% ) (6.4)

T short
determined with both methods. We used the comparator method as the primary fitting

technique and the automated fitting routines as a consistency check.
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III.  Results
III A. Deformation Potentials

Figures 6.6-6.11 show the results of our experiments on the effect of strain on the
dynamics of six two-level tunneling systems. We have acquired data for these defects
which range in asymmetry from 0.3 to 4.4 Kelvin. The results of linear regression fits to
asymmetry versus strain are present in Table 6.1 for all six defects observed. These
parameters are derived from the best fit lines shown in Figures 6.6-6.11. These values are
the first measurements of the response of individual TLS to strain. They may be
compared with the results of phonon echo measurements in vitreous silica of a mean
value of 1.5 +/- .4 eV [Graebner and Golding], and with many others in other glasses,
some of which were summarized later [Berret and MiefRner]. There average deformation
potentials vary from 0.13 eV to 1.46 eV.

Table 6.1 - Asymmetry and Response to Strain for Six TLS. Sample 1 fabrication
and data collection and analysis for defects A and B was accomplished by J. S. Moon

Defect Sample  Temperature (K) £ (K) do/do (eV)
A 1 1.0 1.83 +/-0.05| 0.3+/-0.9
B 1 1.0 1.60+/-0.04 | 1.6+/-0.5
C 2 1.3 1.47+/-0.03 | 3.4+/-04
D 3 13 033 +/-0.02 | -0.1 +/-0.3
E 2 1.9 4.04 +/-0.05 | -0.4 +/- 0.6
F 4 1.25 0.6 +/-1 -29+/-0.4
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III B. Discussion of y

We have observed deformation potentials from 0.1 to 1.7 eV for these six defects.
The rough energy scale of ¥ for a TLS in the Tunneling Model is expected to be 1 eV
[Phillips, 1972] [Anderson et al.] [J4ckle], which is in agreement with our observations.
There are certain other expectations based on the information in the tunneling model. For
example, a broad distribution of y should exist. The local environments that make up the
TLS in amorphous solids feature wide variation in physical parameters. The probability
distribution for TLS’s as a function of the energy asymmetry and the tunneling matrix
element exponent, A, is assumed to be independent of € and A over broad energy ranges
[Phillips, 1972] [Anderson et al.]. A distribution in the response of these systems to
strain is therefore quite naturally expected. Additionally, we expect that y can vary for a
single defect, depending on the type of strain that is applied and that defect’s orientation.

In general, we should consider the interaction of € with strain as

1 0
Ho=| 2 A0, (6.5)

where o; are components of the macroscopic strain tensor and A;; are the coupling
constants to the i,j®® components of that strain [Halperin]. Experimentally, we can only
measure the net response of the defect in question to the particular strain that we can
apply. Since the principle axes of A are randomly oriented in a disordered sample, we
expect some variation in y. We are not able to distinguish this variation in the
deformation potential from the distribution inherent in the tunneling model of amorphous

solids.

84



We find also that the response of the asymmetry to strain does not correlate with
€, since our two most responsive defects (C and F) had asymmetries of 1.3 and 0.5 K.
Defect E, with the largest asymmetry of 4 eV, had a much smaller deformation potential.
This is consistent with the tunneling model, where no correlation exists between the size
of € and its sensitivity to strain. Additionally, we note that there is no reason for the
deformation potential to have any particular sign, which is reflected in our observations.
The astute reader will have noted that in sample 1 the defect measurements only
proceeded up to small positive strains, +107 for defect A and 2.5*10° for defect B. This
is due to a UCF effect similar to the conductance strain fingerprint described in chapter S.
When sufficient strain is applied, the interference pattern of conduction electrons that
determines the conductance of a mesoscopic bismuth sample can change. This new
interference pattern may feature different local densities of quasiparticles near the defect.
This is turn can lead to a different sensitivity of the conductance to the motion of the TLS
seen as a “fluctuator amplitude” fingerprint as a function of strain. Similar fluctuations in
TLS signals have been observed as a function of magnetic field [Zimmerman et al.]. All
of our defect experiments took place at regions of magnetic field that maximized the
change in conductance due to the motion of the TLS. Figures 6.12a and 6.12b show the
defect fingerprints for defects B and C. For large positive strains, the signal from defect
B became indistinguishable from the background noise. The variation of defect signals as
a function of strain is very similar in both cases: a few Ohms over the range of applied

strain. Defect C, however, had a far larger signal than B, and we were able to measure it
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over our entire range of strain. This is due in part to the smaller linewidths in samples 2-
4, which were 70 nm as opposed to 100 nm for sample 1, and in part to coincidence.
III C. Tunneling Rates

We will now discuss the change in the total tunneling rates that we see as a
function of strain in Figures 6.6-.11c. The expectation from the tunneling model is that
the dominant coupling of a TLS to a strain field is diagonal in the representation of well
occupation,; that is, that the effect of strain is to change the energy asymmetry of the two
wells. It is natural to ask, then, whether such a change in € would affect the total
tunneling rate. We certainly see, most obviously in the case of defect C (Figure 6.8¢c) that
the tunneling rate varies systematically with strain, increasing when strain and asymmetry
increase. We wish to estimate the deformation potential for A, the off-diagonal element
of the TLS Hamiltonian (Equation 2.2). Consider the expression for A, in the 1-D WKB

approximation. Recall (Equation 2.3) that we have

-d 2mV

Ay=w,e '* =e*, (6.6)
where o, is the vibrational frequency in a well, d is the separation between the wells, and
m and V are the mass of the tunneling particle and the height of the potential barrier.

This bare tunneling matrix element is renormalized due to interactions with conduction
electrons and phonons, following the theory of dissipative quantum tunneling (Equation
2.30). The result is tunneling matrix element is renormalized by interactons between the

TLS and quasiparticles (Equation 2.30). Recall that the total transition rate for a TLS

(Equation 2.32) is
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2

2a-1
T, ﬁ(z—"@) Sosh(s/ 2kT) I‘(a+i—£ ) ©6.7)

ool = na, r'Qa) 27T

in the limit of incoherent tunneling, that is #A, <<kT. This functional form in this limit
has been found to be in excellent agreement with defect data [Golding, Zimmerman, and
Coppersmith] [Chun and Birge, 1993].

The tunneling parameters we find for defect C are, at zero strain, € = 1.4 eV and
[ = 0.19 sec’. The measurement temperature was 1.3 K, and we estimate o, which
must lie between 0 and 1/2 in at least crystalline metals [Yamada et al.], as 0.25. Some
examples of experimental values of a are 0.24 [Golding et al., 1992] and 0.195 [Chun
and Birge, 1993]. We can now proceed with a rough calculation of A,. We find a value
of 1.08*10° s for the renormalized matrix element that gives a total rate of 0.19 s™. This
corresponds to A, = 2.35*%10° s™'. Here we have used a cutoff frequency for conduction
electron interactions of w, = 2.5*10"? s [Cukier et al.]. With an estimated mass of 2*my,
for the tunneling particle and a separation of 0.1 nm, we find a value for V of 2.07*10
J, corresponding to a thermal energy of 15 K. These represent one plausible set of
parameters, but by no means the only one that describes the observed tunneling rate.

In the limit of a very asymmetric TLS, the total tunneling rate is dominated by the
fast transition rate. We could expect, then, that an increase in the asymmetry would
effectively reduce the barrier height for transitions from the high energy state to the low
one. Naively, we might expect the potential barrier to vary proportional to €, at most as
V erective = Yo - €/2. This situation is shown schematically in Figure 6.13. As a function of

strain, we can write this as
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V(o) =V(0)- (8(“)2;"(0» . (6.8)

Then

av__lde 69)
do 2do

and we can calculate the effect on the tunneling matrix element due to the change in
asymmetry as a function of strain. Recall that € is 1.4 K at zero strain, or 1.9*10% J. The

changes in V due to £(c) are then much less than the value at zero strain.

dhd, __dhd, dV 1A, , de (6.10)
do AV do V() = do

recalling that A =d 2:'2V . A is approximately 16 for this defect, so
dZA" =1.2-10%J =7.5-10"¢V . This implies a large relative change in #A, over the
(o]

scale of experimentally applied strains of roughly +/-10"; the value of #A, at zero strain
was 2.5*10% J or 1.6*10"° eV. The deformation potential for the tunneling matrix
element is, 7.5*10° eV, more than 5 orders of magnitude less than the deformation
potential for asymmetry. The large relative change in A, occurs because this experiment
can only sample TLS with small tunneling matrix elements. Our experimental
bandwidth, roughly 50 Hz, dictates that defects with low tunneling rates are observed.
Recall that the incoherent tunneling regime requires that #A, << kT, and in order for the
dynamics to be dominated by tunneling, kT << V. This leads to the very small value of
hA/V that we see above in the expression for the off-diagonal response of the TLS

Hamiltonian to strain. In Figure 6.14, we see a plot of the tunneling rate as a function of

88



strain for the estimated parameters describing defect C as the solid line. It describes the
observed rates, also plotted, remarkably well. I reiterate that these are not the only
consistent set of parameters (a, ®., m, and d) that produce such agreement. The point of
the figure is to show that physically reasonable parameters can describe the observations
and produce consistent tests of the relative energy scales defining the model of defect
dynamics as a TLS in the dissipative regime.
IV.  Conclusion

In conclusion, we report direct measurements of the dynamics of single defects in
bismuth films as a function of applied strain. The model of a TLS in a dissipative
environment is consistent with the observed changes in both the asymmetries and total
tunneling rates. The deformation potential for € is shown to vary from defect to defect,

with minimum and maximum magnitudes of 0.1 eV and 1.7 eV and random signs.
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Figure 6.1 Example of Raw Data and Comparator Analysis Method

In the top of the Figure, we see a four second time trace for a sample with a single
fluctuator present. With careful placement of Schmidt triggers in the analysis
program, we can divide the data unambiguously into "up" and "down" states.
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In the top Figure (a), we see the resistance jump due to the motion of defect B as a
function of applied strain. For strains larger than 2.5 * 10”(-6), the jump was not clearly
resolvable from the backgound noise. Below (b) we see the jumps vs. strain for defect C.
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Potential Energy

Defect Configuration

Figure 6.13 Response of a TLS to Strain

The solid lines refer to the potential before the strain is applied, and

the dotted lines refer to that after the asymmetry has changed, perhaps
due to an applied strain. The effective ﬁmneling matrix element increases

because the high energy state now experiences a smaller energy barrier.
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Chapter 7

Summary and Conclusions

We have seen that the introduction of mechanical strain to mesoscopic, metallic
samples produces interesting phenomena. The conductance of a bismuth wire with
dimensions that are comparable to the phase-breaking length for conduction electrons
varies as a function of applied strain. The average amplitude of the variance of these
aperiodic, random fluctuations is the same as that of the Universal Conductance
Fluctuations seen as a function of magnetic field in the same sample, of order e¥/h. A
consistent description of this “strain fingerprint” follows from the deformation potential
of the Fermi energy in bismuth, which is several eV. According to UCF theory, changes
in the Fermi as small as E_ (equation 3.7) can alter the sample’s conductance by up to
e’/h. Our observations show that at 29 mK, strains as small as 4*107 satisfy this
condition.

The tunneling model of amorphous solids describes a set of excitations
fundamental to the disordered state. The low-temperature thermal and acoustic properties
of glasses are dramatically influenced by the dynamics of these two-level tunneling
systems, but fairly little can be determined about the microscopic identity of the tunneling
agents by studying them with bulk measurements in insulators. One microscopic

parameter of particular interest is the response of the potential of a TLS to strain, realized
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in the Tunneling Model as a change in the asymmetry of the two energy levels. The
ensemble average of this deformation potential is large, as is evidenced by the strength of
phonon relaxation caused by the TLS’s in glasses. Here I have reported the first
measurement of the response of individual TLS’s to strain. I have studied the dynamics
of mobile defects in polycrystalline bismuth, observed through fluctuations in their
conductance caused by TLS motion. From the ratio of the tunneling rates we recover the
energy asymmetry and measure it as a function of strain. I report deformation potentials
that vary from 0 to 1.7 eV for six different TLS’s. The tunneling matrix element also
varies with strain, in a manner that is microscopically plausible. This variation is seen as
a change in total tunneling rate as a function of strain, or perhaps more accurately, as a
function of €. I have shown that mechanical strain is a useful tool to probe the

microscopic world of an atomic-scale TLS.
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Appendix

Strain Calibration

As described in the text, we chose to fabricate samples on a thin substrate that was
then mounted atop the PZT-5A wafer, which produced the desired mechanical strain.
The joint between the substrate and the PZT was formed from a thin layer of Apiezon N-
grease. The grease has a very convenient viscosity at room temperature, making sample
mounting and alignment simple. At low temperature, we expected the grease joint to
become extremely rigid. It was necessary to test this hypothesis, however, and calibrate
for strain losses due to the grease and the substrate, since these nominally .005”-thick
substrates were not substantially thinner than our 20 mil wafers of PZT.

We used commercial K-alloy strain gauges manufactured by Measurements
Group, Inc to measure the strain produced by the PZT wafers. These strain gauges are
composed of meander-pattern metal film wires that change resistance when a strain is
applied. This occurs because the length of the wire and its cross-sectional area (due to
Poisson’s ratio) change under strain. The response of the gauge to strain is specified by

the manufacturer’s quoted gauge factor,

_AR/R

G, =——.
I T ALIL

(A1)
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One advantage of this particular alloy is that the thermal response of the gauge factor is
only -0.8 % /100 ° C.

The calibration consisted of two steps. In the first, we glued a strain gauge
directly onto a PZT-5A wafer, in order to measure its response as a function of
temperature. We find a low-temperature response of d,, for the wafer as 33*10"2 m/V.
The room temperature value we found was 250*10"2 m/V. Recall that d,, is the strain
induced in the plane perpendicular to the applied voltage. A previous study showed that
we could expect reduction in the strain produced at a given voltage from room
temperature to 4.2 K of roughly a factor of 5 [Fein, et al.] [Vandervoort, et al. ]. We
found that our PZT response was decreased by a factor of 7.7 upon cooling from 295 K to
4.2 K. This result could differ from the previous studies in part because there the PZT
was formed as a tube for use in an STM, where we use a thin wafer.

Once we had determined the low-temperature response of the bare PZT, we could
determine the losses associated with the grease and substrate. The substrates reduced
strain by approximately 20%, and the grease layer produced a reduction of another 6%.
We glued strain gauges onto both glass and silicon substrates and measured the strain
once again. Figure A.1 shows part of the calibration at 1.6 K for the silicon substrate.
There we see a strain response of 1.15 * 107 V"' At temperatures near 1 K, we found that
the strain induced in our samples on the glass substrates was reduced to 10”7 V', and

those on the silicon substrates experienced strains of 1.15*107 V™.
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