

This is to certify that the

dissertation entitled

SEISMOLOGICAL STUDIES IN NORTHEASTERN RUSSIA

presented by

Kevin G. Mackey

has been accepted towards fulfillment of the requirements for

Phd. degree in Geological Sciences

Date <u>Deamber 10, 1999</u>

Major professor

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
		:

11/00 c:/CIRC/DateDue.p65-p.14

SEISMOLOGICAL STUDIES IN NORTHEAST RUSSIA

Ву

Kevin G. Mackey

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Geological Sciences

1999

ABSTRACT

SEISMOLOGICAL STUDIES IN NORTHEASTERN RUSSIA

By

Kevin G. Mackey

A seismicity catalog and associated list of seismic phases for larger events has been compiled for northeast Russia using published and unpublished data from the regional networks operating in eastern Russia (primarily Magadan, Yakutsk, and Amur), the western Alaska network, and international data files. The catalog contains over 40,000 events and over 110,000 arrival times. The resultant catalog is contaminated by industrial explosions, particularly in the Amur and central Magadan districts. The level of contamination is analyzed using the temporal distribution of events as anthropogenic events occur primarily during local day. Dramatic differences are observed between daytime and nighttime seismicity for the Amur district. Removal of anthropogenic sources allows easier identification of active faults. A seismicity trend was found to extend westward from the Seward peninsula to northern Kamchatka, which is interpreted to define the northern boundary of a proposed Bering plate. Clockwise rotation of this plate about an Euler pole in northeast Chukotka is suggested to be driven by terrane accretion is southern Alaska and coupling with the Pacific plate.

A preliminary crustal velocity model is developed by obtaining best fit travel time curves over 3 x 5 degree regions. The velocities obtained are generally in agreement with inferred tectonic regimes with high velocities in Precambrian platforms, low velocities in

active rifts, and average velocities in Mesozoic terrane assembledges. The velocity model is then used to relocate larger regional events. Relocated events are used to develop a preliminary regional upper mantle tomographic model of northeast Russia.

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Kaz Fujita, for all the guidance, support, and help over the past 6 years while I worked on this project. I would also like to thank the members of my guidance committee: Bill Cambray, Dave Hyndman, Larry Ruff, and Tom Vogel.

Many ideas resulted from helpful conversations with other scientists both in Russia and the US, including David Stone, Paul Layer, Dan McNamara, Guy Tytgat, Marina Odinyets, Boris Sedoff, Art Grantz, Doug Christensen, Simon Klemperer, Thomas Hearn, and Jeff Amato.

In the process of assembling the database of northeastern Russia, there have been many people who have assisted in the acquisition or entry of data. For data acquisition, I would like to thank Boris Koz'min, Larissa Gounbina, Valery Imaev, Valentin Kovalev, Andrey Savchenko, Sasha Larionov, Natasha Koz'mina, Evgeni Gordeev, and the station operators in Stekolnyi and Seimchan for Russian regional network data, Charlotte Rowe, Guy Tytgat, and Roger Hansen for Western Alaska network data, and Bob Engdahl for ISC data. For data entry, I would like to thank Boris Koz'min, Larissa Gounbina, Nastia Antropova, Trent Faust, Rob McCaleb, Alexandra Dejong, Alan McNamara, Paula Figura, Melissa McLean, and Steve Riegel.

This project would not have been possible without the help of many individuals. Many thanks go the all the people who provided logistical support while in the field. In Magadan, this includes the Gounbin family (Larissa, Dima, Tanya, and Keesa), the Kovalev family (Valentin and Zena), Andrey Savchenko, and all the people of the Magadan EMSD

(Thanks for all the agates!), and Lerun Izmailov and Pavell Minyouk of NEISRI. In Yakutsk, I thank the Koz'min family (Boris, Gala, Natasha, Zhenya (Irkutsk), and Baba Tanya), the Imaev family (Valery, Luda, and Timor), Len Parfenov, Zena Kornilova, Pavell Izbekov, and Vilodia Oxman. I would also like to thank Svetlana and Olga in Ust'Nera, Anna and Albina in Talaya, the Matrosova Gold Mine, and Gala in Batagai. In Alaska, I thank David Stone, Paul Layer, Roger Hansen, Ann Trent, Diane and Cliff Gray, and Dena and David Vought. In California many thanks to Sharron Morrison.

Last but not least, I would like to thank my wife, Michelle, for all the years of love, encouragement, support, and understanding while I have worked on this dissertation, especially with all the nights at the lab until 5 am and summers when I ran off to Siberia. I would also like to thank my parents for their love, encouragement, and support since I started graduate school.

Support for this project was provided by, the National Science Foundation Office of Polar Programs grants 92-24193, 94-24139, and 98-06130, Incorporated Research Institutions for Seismology Joint Seismic Program and Global Seismic Network Program, the Defense Threat Reduction Agency contract DTRA01-98-C-0168, and Michigan State University. Their support is gratefully acknowledged

TABLE OF CONTENTS

LIST OF TABLES	ix
LIST OF FIGURES	хi
INTRODUCTION Overview of study A brief overview of the tectonic regime and geologic history References	1 1 5 10
CHAPTER 1 The Northeastern Russia Seismicity Database Introduction Data sources Zemletryseniya v SSSR Materialy po Seismichnosti Sibiri Seismologicheskii Bulletin - Dalnie Vostok Unpublished Magadan Network Bulletin Unpublished Yakutsk Network Draft Material Unpublished Kamchatka Seismicity Catalog Western Alaska Network Data Tape Seismograms Other	13 13 21 21 21 21 22 23 24 24 24 24
Seismic networks and database assembly Yakutsk Regional Network Temporary stations in the Lena River Delta, Laptev Sea, and New Siberian Islands Magadan Regional Network Data of Station Iul'tin (ILT) and Magadan's Chukotka Network Northeast Russia Test Network Western Alaska Network Kamchatka Peninsula Network Amur Regional Network Sakhalin Island Network Irkutsk Regional Network	25 25
Conclusion References	86 95
CHAPTER 2 Explosion Contamination in the Northeast Russia Seismicity Catalog Introduction Data Sources Previous Work	98 98 99 99

Discussion	102
Amur district	106
Polyarnyi-Leningradsky-Plamennyi	125
Kolyma gold belt	128
Ust'Nera	138
Lazo	138
Deputatsky	143
Kular	143
Stolb	146
Yugorenok	146
South Yakutia	146
Red Dog	155
Interpretative results	155
Conclusion	162
References	165
CHAPTER 3 Relocations of Northeast Russia Earthquakes	167
Introduction	167
Previous work	167
Discussion	172
Results	187
Future work	198
Conclusions	202
References	203
CHAPTER 4 Tomography of Northeast Russia	204
Introduction	204
Previous work	204
Methodology	205
Tomography code	205
Data selection	208
Discussion	209
Initial models	209
Models using relocations	215
Regional model	215
Local Magadan model	224
Conclusions	224
References	226
CHAPTER 5 Seismicity of the Bering Strait Region: Evidence for an	
Independent Bering Sea Plate	227
Introduction	227
Seismicity map	231
Regional seismotectonics and geology	231
Seward Peninsula	231

Chukchi Peninsula Koryak Highlands Aleutian Arc		235
		238
		240
Discussion	Discussion	
Conclusions		246
References		247
CONCLUSIONS		252
APPENDIX A	Alphabetized list of northeastern Russia seismic stations and station parameters.	256
APPENDIX B	Yearly plots of seismicity in northeast Russia.	265
APPENDIX C	1999 Digital deployments and station observations.	307
APPENDIX D	Output of event relocations for comparison with Iul'tin and western Alaska network data.	321
APPENDIX E	Event relocations for northeastern Russia.	325
APPENDIX F	An alternate method for hypocentral depth determination using Pn residuals.	335

LIST OF TABLES

Table 1-1	Seismic stations operated by the Yakutsk network.	26
Table 1-2	Temporary seismic stations from the Yakutsk region. The 1989 South Yakutia and the 1971 Artyk deployments were aftershock studies.	29
Table 1-3	Temporary stations in the New Siberian Islands, west of the Lena River Delta (Avetisov, 1983; Avetisov, 1996) and the Laptev Sea (Kovachev et al., 1996).	38
Table 1-4	Seismic stations operated in the Magadan region. All stations were operated by the Magadan EMSD.	44
Table 1-5	Travel time curve used for locating earthquakes in the Magadan network. This table depicts travel times for a hypocentral depth of 5 km.	48
Table 1-6	Permanent seismic stations to operate in Chukotka. All but station Iul'tin were operated by the Magadan EMSD. Station Uelen was abandoned shortly after opening because noise prevented return of any useful data.	55
Table 1-7	Comparison of origin times and epicenters for earthquakes located by ILT, the Western Alaska network (WAK), and those relocated in this study.	57
Table 1-8	Seismic stations and station parameters from the temporary network established in northeast Russia in the mid 1960's. Parameters from Mishin (1967).	65
Table 1-9	Seismic stations of the Western Alaska network. Parameters from Biswas et al. (1980), and Biswas et al. (1983).	69
Table 1-10	Seismic stations and station parameters of the Kamchatka network.	73
Table 1-11	Seismic stations and station parameters of the Amur network.	79
Table 1-12	Seismic stations and station parameters for the Sakhalin Island network.	83

Table 1-13	Seismic stations and station parameters for selected stations of the Irkutsk network.	88
Table 2-1	Town and mine locations from which explosions are reported in the unpublished Magadan bulletins.	101
Table 2-2	Focal mechanisms of the Amur region. Planes are given as Strike - Dip - Rake.	161
Table 3-1	Best fit velocities and number of events per region.	185
Table 5-1	Focal mechanisms for western Alaska and Chukotka. Mechanisms are listed from west to east. Those followed by an asterisk are plotted of Figure 5-3.	233
Table F-1	Depth determination table based on Pn residuals.	341
Table F-2	Depth determinations from the Magadan test area. All depths (h) are in kilometers.	344

LIST OF FIGURES

Figure I-1	Location of the northeastern Russia study area.	2
Figure I-2	Index map of the study area in northeast Russia.	3
Figure I-3	Plate tectonic map of northeast Russia with teleseismic earthquakes, representative focal mechanisms, and relative plate motions. Plates are North American (NA), Eurasian (EU), Amur (AM), Okhotsk (OK), Pacific (PA), and Bering (BE).	6
Figure I-4	Geologic index map of northeast Russia.	8
Figure 1-1	Seismic network boundaries in northeastern Russia.	14
Figure 1-2	Plot of seismicity catalog compiled for northeastern Russia. Seismicity related to subduction of the Pacific plate under Kamchatka, the Kurile Islands, and the Aleutian Islands are omitted.	16
Figure 1-3	Events in the seismicity catalog for which phase data has been acquired.	17
Figure 1-4	Nomogram for determining K-class values of earthquakes in the in the Magadan region using a SKM seismometer. Horizontal axis is distance in km, while vertical axis is the amplitude of ground motion (maximum P wave amplitude plus maximum S wave amplitude) in microns. The K-class value is read off the diagonal lines.	19
Figure 1-5	Seismicity and seismic stations of the northern Yakutsk network. Temporary seismic stations deployed after the 1971 Artyk earthquake are shown as squares.	30
Figure 1-6	Seismicity and seismic stations of the southern Yakutsk network. Temporary seismic stations deployed after the 1989 south Yakutia earthquake are depicted as squares.	31
Figure 1-7	Relationship between K-class and ISC reported magnitude in the Yakutsk network.	35

Figure 1-8	Summer seismic station deployments in the New Siberian Islands region from Avetisov (1996). Stations shown as triangles and located events as circles.	37
Figure 1-9	Summer seismic station deployments in the Lena River Delta region from Avetisov (1996). Stations shown as triangles and located events as circles. Stations deployed for refraction profiles shown as lines. Numbers indicate years of operation.	40
Figure 1-10	The 1989 summer deployments of ocean bottom seismometers shown as hexagons and located seismicity shown as circles. Events and stations from Kovachev et al., (1995). Yakutsk network stations in gray for reference.	41
Figure 1-11	Seismicity and seismic stations of the Magadan network.	43
Figure 1-12	Crustal velocity profile used for locating earthquakes in the Magadan region. Assumed raypaths for a 3 km deep event (asterisk) are shown.	47
Figure 1-13	Travel time curves used for earthquake locations in the Magadan network. These curves are calibrated for a hypocentral depth of 5 km.	49
Figure 1-14	Relationship between K-class and ISC reported magnitude in the Magadan network. The heavy gray line depicts the K-M relationship cited by Andreev et al. (1967) for the Magadan region.	53
Figure 1-15	Seismicity recorded by station Iul'tin (ILT) from 1966-1982. The large cluster of seismicity to the northwest of Iul'tin is most likely explosion contamination (See chapter 2). Major mine locations are also shown.	54
Figure 1-16	Seismicity and seismic stations of the Chukotka network.	58
Figure 1-17	Relationship between K-class and ISC reported magnitude in the Chukotka network.	60
Figure 1-18	Relationship between local magnitude and K-class as reported by Kondorskaya and Shebalin (1982).	61

Figure 1-19	Relationship between K-class and magnitude in the Chukotka network. Magnitudes greater than 3.5 are from the ISC catalog, while those less than 3.5 are from the Western Alaska network. The January 16, 1982 event is depicted as a square. ISC magnitudes are M_b , while those from the Western Alaska network are M_l .	63
Figure 1-20	Relationship between K-class and magnitude in the Chukotka network. Magnitudes greater than 3.5 are from the ISC catalog, while the remaining magnitude 3.1 event is from the Western Alaska network.	64
Figure 1-21	Seismicity and seismic stations of the northeast Russia temporary network (1963-1967).	66
Figure 1-22	Seismicity and seismic stations in the western Alaska network	68
Figure 1-23	Seismicity and seismic stations of the Kamchatka network. Only seismicity north of 56° North are included. A few stations associated with volcano monitoring are omitted for clarity.	72
Figure 1-24	Relationship between K-class and ISC reported magnitude in the Kamchatka network.	77
Figure 1-25	Seismicity and seismic stations of the Amur network.	80
Figure 1-26	Relationship between K-class and ISC reported magnitude in the Amur network.	81
Figure 1-27	Seismicity and seismic stations of the Sakhalin network.	85
Figure 1-28	Relationship between K-class and ISC reported magnitude in the Sakhalin network.	87
Figure 1-29	Seismicity and seismic stations of the Irkutsk network. Seismicity shown is primarily from 1970 and 1971.	91
Figure 1-30	Plot of seismicity catalog compiled for northeastern Russia. Plate boundaries are depicted as gray lines, network boundaries as dashed lines, and seismic stations as triangles.	92
Figure 2-1	Explosion sources in northeast Russia listed in Russian bulletins. Small dots are individual located explosions, and large dots are towns or mines with multiple explosions.	100

Figure 2-2	Percentage of seismicity occurring during local "daytime". Numbered regions are discussed individually in the text.	104
Figure 2-3	Histogram of event origin times from aftershocks of the 1989 South Yakutia earthquake. Note a slight bias towards "nighttime" events.	105
Figure 2-4	Daytime seismicity of the Amur region. Temporal statistics of clusters of epicenters in gray boxes are shown in figures of corresponding numbers. The Baikal-Amur railway is indicated with the heavy gray line. Teleseismically recorded events of magnitude greater than 4.0 are depicted with large open circles.	107
Figure 2-5	Nighttime seismicity of the Amur region.	108
Figure 2-6	Temporal variation of probable tectonic earthquakes.	110
Figure 2-7	Temporal variation of reported seismicity in the Raychikhinsk mining region.	111
Figure 2-8	Temporal variation of reported seismicity in the Khingansk mining region.	112
Figure 2-9	Temporal variation of reported seismicity in the Komsomolsk' na Amur mining region.	113
Figure 2-10	Temporal variation of reported seismicity in the Chegdomyn mining region.	114
Figure 2-11	Temporal variation of reported seismicity in the Svobodniy region.	115
Figure 2-12	Temporal variation of reported seismicity in the Shimanovsk mining region.	116
Figure 2-13	Temporal variation of reported seismicity in the Oktyabrskiy placer mining region.	117
Figure 2-14	Temporal variation of reported seismicity in the Taldan region.	119
Figure 2-15	Temporal variation of reported seismicity in the Ekimchan mining region.	120
Figure 2-16	Temporal variation of reported seismicity along the central segment of the Baikal-Amur railway.	122

Figure 2-17	Temporal variation of reported seismicity along the northern segment of the Baikal-Amur railway.	123
Figure 2-18	Temporal variation of seismicity in the Tynda region.	124
Figure 2-19	Iul'tin seismicity with mine locations. Stippled area indicates region used in temporal analysis of event origin times.	126
Figure 2-20	Temporal variation of reported seismicity in the Polyarnyi, Leningradsky, and Plamenny mining region.	127
Figure 2-21	Temporal variation of explosions from the Polyarnyi, Leningradsky, and Plamenny mining region.	129
Figure 2-22	"Daytime" seismicity of the Kolyma gold belt. Shaded areas indicate regions used in temporal analysis of event origin times and other regions of explosion contamination. Note ring of seismicity around Susuman.	130
Figure 2-23	"Nighttime" seismicity of the Kolyma gold belt. Shaded areas indicate regions used in temporal analysis of event origin times.	131
Figure 2-24	Temporal variation of reported seismicity in the region northwest of Susuman.	132
Figure 2-25	Temporal variation of explosions in the Susuman region.	133
Figure 2-26	Temporal variation of seismicity from the region of the Kolyma dam.	135
Figure 2-27	Temporal variation of reported seismicity in the Kulu region.	136
Figure 2-28	Temporal variation of explosions in the Kulu region.	137
Figure 2-29	"Daytime" seismicity of northern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.	139
Figure 2-30	"Nighttime" seismicity of northern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.	140
Figure 2-31	Temporal variation of reported seismicity in the Lazo mining region.	141
Figure 2-32	Temporal variation of reported seismicity in the cluster of epicenters south of the Lazo mining region.	142

Figure 2-33	Temporal variation of reported seismicity in the Deputatsky mining region.	144
Figure 2-34	Temporal variation of reported seismicity in the Kular mining region.	145
Figure 2-35	Temporal variation of reported seismicity in the Stolb mining region.	147
Figure 2-36	Temporal variation of reported seismicity in the Yugorenok mining region.	148
Figure 2-37	"Daytime" seismicity of southern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.	149
Figure 2-38	"Nighttime" seismicity of southern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.	150
Figure 2-39	Temporal variation of reported seismicity in the Aldan mining region.	152
Figure 2-40	Temporal variation of reported seismicity in the Chulman mining region.	153
Figure 2-41	Temporal variation of reported seismicity in the Spokoynii mining region.	154
Figure 2-42	Temporal variation of reported seismicity in the Red Dog mining region.	156
Figure 2-43	Daytime and teleseismic seismicity of the Amur region with mapped faults. Black lines indicate strike-slip faults and dark gray lines, thrust faults. Gray indicates regions of explosion contamination.	157
Figure 2-44	Nighttime and teleseismic seismicity of the Amur region with mapped faults. Black lines indicate strike-slip faults and dark gray lines, thrust faults.	158
Figure 2-45	Focal mechanisms of the Amur region with nighttime seismicity and reinterpreted faults based on seismicity trends.	160
Figure 2-46	"Nighttime" seismicity of northeastern Russia	163

Figure 3-1	Pn phase arrival travel time curve for northeast Russia. Russian reported hypocenters and origin times were used. The plot contains 9,342 arrivals. Data shown is only from northeastern Russia stations.	168
Figure 3-2	Pg phase arrival travel time curve for northeast Russia. Russian reported hypocenters and origin times were used. The plot contains 35,257 arrivals.	169
Figure 3-3	Sn phase arrival travel time curve for northeast Russia. Russian reported hypocenters and origin times were used. The plot contains 4,873 arrivals. Data shown is only from northeastern Russia stations.	170
Figure 3-4	Sg phase arrival travel time curve for northeast Russia. Russian reported hypocenters and origin times were used. The plot contains 68,811 arrivals.	171
Figure 3-5	Composite reduced travel time curve for northeastern Russia. Only data from northeastern Russia stations are shown.	173
Figure 3-6	Pg reduced travel time curves for 75 events used in Mackey (1996) and Mackey et al. (1998). Upper curve uses original Russian determined hypocenter parameters and reflects a velocity of 6.1 km/s. Lower curve plots the same data after all events were relocated and inverted for velocity and origin time. Reduction velocity is 6.0 km/s. Figure from Mackey (1996).	174
Figure 3-7	Pn reduced travel time curves for 75 events used in Mackey (1996) and Mackey et al. (1998). Upper curve uses original Russian determined hypocenter parameters. Lower curve plots the same data after all events were relocated and inverted for velocity. Reduction velocity is 8.0 km/s. Figure from Mackey (1996).	175
Figure 3-8	Reduced composite travel time curve from 75 events used in Mackey (1996) and Mackey et al. (1998). All data plotted use the Pg phase relocated epicenters and origin times determined from inversion of the data after high residual arrivals were removed. The Pg-Pn crossover point is consistent with a regional crustal thickness of 37 km. Pg velocity plotted is 5.99 km/s and Pn velocity is 7.96 km/s. Reduction velocity is 8.0 km/s. Figure from Mackey (1996).	176

Figure 3-9	Grid of individual regions where calibrated crustal velocities were determined.	178
Figure 3-10	Pg-Sg velocity residual graph for the region 60-63°N x 145-150°E.	181
Figure 3-11	Pg-Sg velocity residual graph for the region 54-57°N x 125-130°E.	182
Figure 3-12	Grid of calibrated Pg velocities. Original epicenters shown for reference.	183
Figure 3-13	Grid of calibrated Sg velocities. Original epicenters shown for reference.	184
Figure 3-14	Pg velocities for northern Yakutia determined by using a moving window.	188
Figure 3-15	Sg velocities for northern Yakutia determined by using a moving window.	189
Figure 3-16	Original vs. relocated epicenters for the Amur region. Arrows indicate locations of improved definition of some seismicity clusters and trends.	191
Figure 3-17	Original vs. relocated epicenters for the Magadan region. Ulakhan fault shown by gray line. Note improvement in relative locations of clusters indicated with arrows, as well as many other clusters.	192
Figure 3-18	Original vs. relocated epicenters for Chukotka. Arrows indicate improved lineations. Network boundaries shown in gray.	193
Figure 3-19	Original vs. relocated epicenters for northern Yakutia.	195
Figure 3-20	Histogram of relocated event depths. Most event depths are around 10 km.	196
Figure 3-21	Composite regional travel time curve for northeast Russia using hypocenter parameters from relocations. Sn data are omitted.	197
Figure 3-22	Travel time curve for the region 60-63° N x 145-150° E comparing original (open circles) with relocated event parameters (closed circles). Note the significant reduction in scatter of data points. Sn data are omitted.	199

Figure 3-23	Travel time curve for the region 54-57° N x 125-130° E comparing original (open circles) with relocated event parameters (closed circles). Note the significant reduction in scatter of data points. Sn data are omitted	200
Figure 3-24	Travel time curve comparing the regions 60-63° N x 125-150° E (solid; Magadan) and 54-57° N x 125-130° E (open; south Yakutia) Note increased velocities for relocated events in south Yakutia. Sn data are omitted.	201
Figure 4-1	Pn is assumed to be a head wave propagating along the Moho. Static corrections are calculated for the event (down going leg) and the receiver (up going leg). The big moat around the station holds fish and lizards that are disturbed by the earthquakes.	206
Figure 4-2	Pn arrivals based on original Russian hypocenters. Gray points fall outside the 7.4 km/s and 8.4 km/s velocity criteria and are not used. Vertical lines denote the accepted distance range of values used.	210
Figure 4-3	Raypath coverage for the preliminary tomography model using Russian hypocenters.	211
Figure 4-4	Pn tomography of northeastern Russia using Russian determined hypocenters. Contours of velocity perturbations are in percent deviation from 8.0 km/s. Points represent cell locations where perturbations were calculated. Rhythmic appearance of contours in northern Yakutia are an artifact of the automated contouring.	213
Figure 4-5	RMS residual vs. Iteration based on data from original Russian' hypocenters. The minimum residual is on iteration 3.	214
Figure 4-6	Pn tomography of the boundary between the Magadan and Yakutsk networks. A shift from higher velocities in the Magadan network to lower velocities in the Yakutsk network correlates with the network boundary. Different location procedures between networks may result in the tomography mapping the network boundaries and not real Moho velocity. Contours of velocity perturbations are in percent deviation from 8.0 km/s. Points	216
Figure 4-7	represent cell locations where perturbations were calculated. Static station corrections for tomography using original Russian	210
riguic 4-/	hypocenters. Static corrections range from minus 15 to plus 12 seconds.	217

Figure 4-8	Pn arrivals selected for use in tomography based on relocated hypocenters. All points shown fall between the 7.4 km/s and 8.4 km/s velocity criteria. Vertical lines denote the accepted distance range of values used.	219
Figure 4-9	Raypath coverage for the tomography model using relocated hypocenters.	220
Figure 4-10	Pn tomography of northeastern Russia using relocated hypocenters. Contours of velocity perturbations are in percent deviation from 8.0 km/s. Points represent cell locations where perturbations were calculated.	221
Figure 4-11	RMS residual vs. Iteration for tomography based on data from relocated hypocenters.	222
Figure 4-12	RMS residual vs. Iteration for tomography of the western Magadan region based on data from relocated hypocenters.	225
Figure 5-1	Seismicity map of the Bering Strait region.	228
Figure 5-2	Neotectonic and index map of the Bering Strait region. Labeled faults are Kaltag (KT) and Kugruk (KU).	229
Figure 5-3	Regional tectonics of the Bering Plate, with representative focal mechanisms. Star denotes Euler pole.	230
Figure 5-4	Focal mechanism and synthetic seismograms from the October 10, 1971 Chukchi earthquake (R. McCaleb, pers. comm.). Top traces show actual digitized records, while bottom traces show synthetics. All digitized records are short-period vertical components from the station indicated.	236
Figure 5-5	Crustal seismicity of interior Alaska showing activity on the Denali fault. Data compliments of the Alaska Earthquake Information Center (AEIC), Geophysical Institute, University of Alaska, Fairbanks. Triangle denotes Fairbanks.	244
Figure 5-6	Extrusion tectonics of southeast Asia (Peltzer and Tapponnier, 1988). Note similarity to Alaska and the Bering Plate in relative locations of indenter, rift zones, and faults.	245
Figure C-1.	Nighttime seismicity and active faults of northeastern Russia. Major faults are labeled and other faults are located based on interpretation of seismicity lineations.	254

Figure B-1	Historic seismicity of northeastern Russia (pre 1950).	266
Figure B-2	Seismicity of northeastern Russia in 1950-1959.	267
Figure B-3	Seismicity of northeastern Russia in 1960.	268
Figure B-4	Seismicity of northeastern Russia in 1961.	269
Figure B-5	Seismicity of northeastern Russia in 1962.	270
Figure B-6	Seismicity of northeastern Russia in 1963.	271
Figure B-7	Seismicity of northeastern Russia in 1964.	272
Figure B-8	Seismicity of northeastern Russia in 1965.	273
Figure B-9	Seismicity of northeastern Russia in 1966.	274
Figure B-10	Seismicity of northeastern Russia in 1967.	275
Figure B-11	Seismicity of northeastern Russia in 1968.	276
Figure B-12	Seismicity of northeastern Russia in 1969.	277
Figure B-13	Seismicity of northeastern Russia in 1970.	278
Figure B-14	Seismicity of northeastern Russia in 1971.	279
Figure B-15	Seismicity of northeastern Russia in 1972.	280
Figure B-16	Seismicity of northeastern Russia in 1973.	281
Figure B-17	Seismicity of northeastern Russia in 1974.	282
Figure B-18	Seismicity of northeastern Russia in 1975.	283
Figure B-19	Seismicity of northeastern Russia in 1976.	284
Figure B-20	Seismicity of northeastern Russia in 1977.	285
Figure B-21	Seismicity of northeastern Russia in 1978.	286
Figure B-22	Seismicity of northeastern Russia in 1979.	287
Figure B-23	Seismicity of northeastern Russia in 1980.	288

Figure B-24	Seismicity of northeastern Russia in 1981.	289
Figure B-25	Seismicity of northeastern Russia in 1982.	290
Figure B-26	Seismicity of northeastern Russia in 1983.	291
Figure B-27	Seismicity of northeastern Russia in 1984.	292
Figure B-28	Seismicity of northeastern Russia in 1985.	293
Figure B-29	Seismicity of northeastern Russia in 1986.	294
Figure B-30	Seismicity of northeastern Russia in 1987.	295
Figure B-31	Seismicity of northeastern Russia in 1988.	296
Figure B-32	Seismicity of northeastern Russia in 1989.	297
Figure B-33	Seismicity of northeastern Russia in 1990.	298
Figure B-34	Seismicity of northeastern Russia in 1991.	299
Figure B-35	Seismicity of northeastern Russia in 1992.	300
Figure B-36	Seismicity of northeastern Russia in 1993.	301
Figure B-37	Seismicity of northeastern Russia in 1994.	302
Figure B-38	Seismicity of northeastern Russia in 1995.	303
Figure B-39	Seismicity of northeastern Russia in 1996.	304
Figure B-40	Seismicity of northeastern Russia in 1997.	305
Figure B-41	Seismicity of northeastern Russia in 1998.	306
Figure C-1	Map of the Magadan region showing locations of seismic stations deployed in 1999. Permanent stations (closed triangles), temporary stations (open triangles), and near future station (circle).	309
Figure C-2	Recording of 1,500 kg blast from the Matrosova gold mine. Trace 1 - time, traces 2,3,4 - from Matrosova mine (250 m from blast), traces 5,6,7 - station at Stokolviya (25 km north of Matrosova).	313

Figure C-3	Local event recorded at Susuman on June 24, 1999. Epicenter unknown.	315
Figure C-4	Regional distance recording from Nelkoba of M_b 6.2 Kurile Island event of September 18, 1999.	316
Figure C-5	Teleseismic vertical component recordings of the M_b 5.8 California-Nevada border region event of August 1, 1999. Stations are, from top to bottom, Ust'Nera, Nelkoba, and Susuman.	317
Figure F-1	Illustration showing that Pn residuals are low when depth is 0, and high when depth is 15 km. Events here were located by Pg and Sg arrivals with the best fitting velocities. The Pg and Sg arrivals are generally unable to constrain the depth which was allowed to vary from a minimum of 0.0 km to a maximum of 15 km. Events used here are from the Magadan test region.	337
Figure F-2	Simplified crustal model and diagram used to calculate differences in Pn travel time from hypocenters of varying depth to point A. Path length from point A to the seismic station is the same for all depths.	339
Figure F-3	Empirical relationship between change in depth from 10 km and associated shift of origin time. Data are fit with a second order regression (solid line) with 95 % confidence intervals (dashed lines).	342
Figure F-4	Comparison of depths determined in the normal location routine with depths determined by the Pn residual method described here. Note the near 1:1 correlation. Open circles without residual offset correction.	346

INTRODUCTION

OVERVIEW OF STUDY

From a tectonic standpoint, Northeastern Russia (Figure I-1; Figure I-2) is one of the least studied large continental regions in the world. This was due to its geographic remoteness and the lack of accessibility, both to the region as well as to Soviet studies concerning it. Since the collapse of the Soviet Union, access to the region's scientists and their data has become possible, allowing the first comprehensive studies to be undertaken. This dissertation focuses on the seismicity distribution, velocity structure, and tectonic boundaries in the region.

A database of all known seismicity for the region, as well as the associated phase arrival times, was first assembled. Chapter one, "The Northeastern Russia Seismicity Database," outlines the sources and data acquired, and discusses the intricacies and inconsistencies involved in building a useful database. The assembly of this database would not have been possible without a direct knowledge of the operational procedures used in the region, as they explain many of the little quirks and oddities discovered in the data.

One of the problems encountered in the seismicity database was that of explosion contamination, discussed in chapter two, "Explosion Contamination in the Northeast Russia Seismicity Catalog." Some regions in northeastern Russia show high levels of seismic activity, but with most of the reported events being of anthropogenic origin. This can easily result in erroneous interpretation of plate boundaries, active faults, seismic hazards, etc. On the other hand, known explosions are helpful for developing better travel time curves, which can be used to improve epicenter locations and investigate crustal structure.

Figure I-1. Location of the northeastern Russia study area.

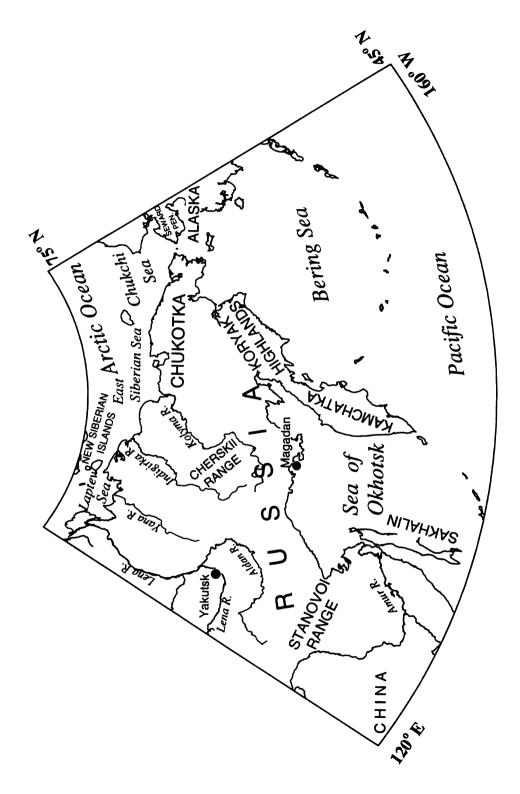


Figure I-2. Index map of the study area in northeast Russia.

Chapter three, "Relocations of Northeast Russia Earthquakes," develops regional crustal travel time curves specifically calibrated to small regions. The calibrated travel time curves are used to relocate the larger events throughout the region. The travel time curves presently in use by the Russian networks were, in some cases, developed from a specific refraction study which may have been conducted several thousand kilometers from the region where epicenters are being located.

In chapter four, "Upper Mantle Tomography of Northeastern Russia," the epicenter relocations and associated phase data are used in an attempted tomographic study of upper mantle velocities. The study area is an important region to image as the transition from an extensional regime to a transpressional boundary between the North American and Eurasian plates occurs within the region. This transition is not well understood, thus improved knowledge of the regions' velocities may be illustrative of the processes at work.

The assembled seismicity data can then be used to better evaluate the region as a whole, rather than as isolated regions. This was extremely important in developing an understanding of the tectonics in the Bering Strait region, as discussed in chapter five, "Seismicity of the Bering Strait Region: Evidence for a Bering Sea Plate." Here, an understanding of tectonic processes across the Bering Strait was essential to developing a regional framework in which the previously enigmatic tectonics of central Alaska can be understood.

A BRIEF OVERVIEW OF THE TECTONIC REGIME AND GEOLOGIC HISTORY

The tectonics of Northeast Russia result from complex plate interactions between the North American (NA), Eurasian (EU), and Pacific (PA) plates and a number of microplates between them (Figure I-3), such as Okhotsk (OK), Amur (AM), and Bering (BE) that have been previously studied using teleseismic earthquakes (e.g., Chapman and Solomon, 1976; Koz'min, 1984; Fujita et al., 1990a,b; Imaev et al., 1990; Riegel et al., 1993; Seno et al., 1996; Fujita et al., 1997, Mackey et al., 1997). The majority of the seismicity occurs along the Chersky Seismic Belt (CSB) on the North America - Eurasia - Okhotsk boundary and the Stanovoi Seismic Zone (SSZ) on the Eurasia - Amur boundary. Most of the larger teleseisms in the area have had focal mechanisms generated either by routine moment tensor determinations, first motions, and/or by waveform analysis (Chapman and Solomon, 1976; Koz'min, 1984; McMullen, 1985; Cook et al., 1986; Cook, 1988; Olson, 1990; Fujita et al., 1990a,b; Riegel et al., 1993; Riegel, 1994).

These studies indicate that the North American and Eurasian plates are presently converging in northeast Russia, resulting in the southward extrusion of the Okhotsk Block (Figure I-3; Riegel et al., 1993; see also Seno et al., 1996). The northern portion of the study area includes the Laptev Sea rift system. The Laptev Sea rift system is the extension of the Arctic Mid-Ocean Ridge onto the Siberian continental shelf, expressed as a system of grabens (Kim, 1986; Fujita et al., 1990a; Drachev, 1998). Within the Laptev Sea rift system, Kim (1986) suggests the Omoloi graben is the presently active zone of extension. Drachev (1998) indicates extensional features throughout the southern portions of the Laptev Sea.

To the south of the Siberian platform is the Stanovoi seismic zone, along which leftlateral motion is taking place between the Amur and Eurasian plates. This motion is thought

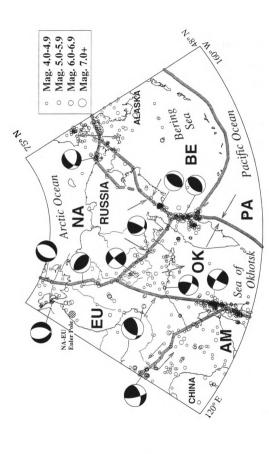


Figure L-3. Plate tectonic map of northeast Russia with teleseismic earthquakes, representative focal mechanisms, and relative plate motions. Plates are North American (NA), Eurasian (EU), Amur (AM), Okhotsk (OK), Pacific (PA), and Bering (BE).

F

ie

•...

ŧχ

K.

Ĉ.

Z

H.

<u> 25.</u>3

);

i (m)

ite of

to be due to far-field effects of the India-Eurasia collision, which results in the eastward extrusion of the Amur plate relative to the Eurasian plate (Tapponnier et al., 1982; Peltzer and Tapponnier, 1988). The Bering block, encompassing the Bering Sea, is driven by subduction of the Pacific Plate and extrusion of southwestern Alaska causing a clockwise rotation relative to the North American plate (Mackey et al., 1997; see Chapter 5).

The western portion of the study area contains the eastern portions of the Siberian platform. The Siberian platform generally consists of Precambrian basement overlain by a few kilometers of flat lying Riphean, Cambrian, and Jurassic sedimentary materials (Parfenov, 1991). The southern edge of the Siberian platform is separated from exotic terranes to the south by the Hauterivian to Aptian (131-110 Ma) Mongol-Okhotsk Suture (Nokleberg et al., 1998). Bounding the eastern edge of the Siberian platform is the Verkhoyansk range, which is a fold-and-thrust belt of Mesozoic age associated with the terrane accretion in the central portion of the study area occurring during that time period (Nokleberg et al., 1998). The central portion of the study area is composed of a series of exotic terranes and associated island arcs which accreted in the Mesozoic forming the Kolyma-Omolon Superterrane and Kolyma Structural Loop (Figure I-4; e.g., Parfenov, 1991; Zonenshain et al., 1990; Nokleberg et al., 1994). The central part of the study area, in the Chersky Range, participated in an extensional episode in the Pliocene which resulted in the formation of the Moma rift system (Grachev, 1973; Fujita et al., 1990a). Within the past 0.5 m.y., the pole of rotation for the NA-EU plates (Figure I-2) is suggested to have moved north and extensional activity along the Moma rift ceased (Cook et al., 1986). In Chukotka, in the north-eastern portion of the study area is the South Anyui Suture, which probably represents the closure of the South Anyui Ocean coincident with the opening of the Canada Basin at

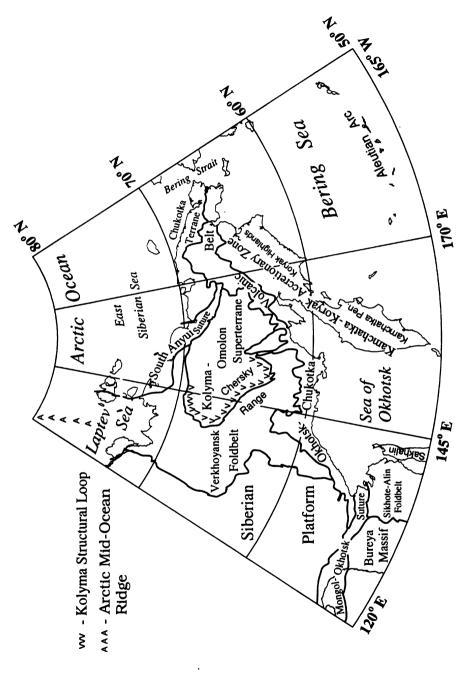


Figure I-4. Geologic index map of northeast Russia

about 120 Ma (Nokleberg et al., 1998). Beyond the South Anyui Suture lies the Chukotka Terrane, the Bering Strait and the terranes of Arctic Alaska. Superimposed over the southern edge of the Mesozoic accretionary terranes is the Okhotsk-Chukotka Volcanic Belt, dated at 67-89 Ma (Fujita et al., 1997). Southeast of the Okhotsk-Chukotka Volcanic Belt is the Kamchatka-Koryak Accretionary Zone consisting of a number of Cenozoic accreted terranes, which form the Kamchatka Peninsula and the Koryak highlands (Stavsky et al., 1990; Cook, 1988). Presently, the Pacific plate is subducting along the Aleutian Arc and the eastern edge of the Kamchatka peninsula.

9

REFERENCES

- Cook, D.B., 1988, Seismology and tectonics of the North American plate in the Arctic: northeast Siberia and Alaska: Ph.D. Dissertation, Michigan State University, East Lansing, xi + 250 pp.
- Cook, D.B., Fujita, K., and McMullen, C.A., 1986, Present-day plate interactions in northeast Asia: North American, Eurasian and Okhotsk plates: *Journal of Geodynamics*, v. 6, p. 33-51.
- Chapman, M.E., and Solomon, S.C., 1976, North American Eurasian plate boundary in Northeast Asia: *Journal of Geophysical Research*, v. 81, p. 921-930.
- Drachev, S., Savostin, L.A., Groshev, V.G., and Bruni, I.E., 1998, Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic: Tectonophysics, v. 298(4), p. 357-393.
- Fujita, K., Stone, D.B., Layer, P.W., Parfenov, L. M., and Koz'min, B.M., 1997, Cooperative program helps decipher tectonis of northeastern Russia: *Transactions of the American Geophysical Union (Eos)*, v. 78, p. 245, 252-253.
- Fujita, K., Cambray, F.W., and Velbel, M.A., 1990a, Tectonics of the Laptev Sea and Moma rift systems, northeastern USSR: *Marine Geology*, v. 98, p. 95-118.
- Fujita, K., Cook, D.B., Hasegawa, H., Forsyth, D., and Wetmiller, R., 1990b, Seismicity and focal mechanisms of the Arctic region and the North American plate boundary in Asia, in Grantz, A., Johnson, L., and Sweeney, J. F., eds., The Arctic Ocean Region; The Geology of North America v. L: The Geological Society of America, Boulder, p. 79-100.
- Grachev, A.F., 1973, Moma continental rift (Northeast USSR): Geofizicheskie Metody Razvedki v Arktike, v. 8, p. 56-75 (in Russian).
- Imaev, V.S., Imaeva, L.P., and Koz'min, B.M., 1990, Active Faults and Seismotectonics of Northeast Yakutia: Yakut Science Center, Yakutsk, 138 pp. (in Russian).
- Kim, B.I., 1986, Structural continuation of the rift valley of Gakkel' ridge on the Laptev shelf, in Egiazarov, B. K., and Kazmin, Y. B., eds., Struktura i Istoriya Razvitiya Severnogo Lodovitogo Okeana Sevmorgeologiya: NIIGA, Leningrad, p. 133-139 (in Russian).
- Koz'min, B.M., 1984, Seismic belts of Yakutia and the focal mechanisms of their earthquakes: Moskva, Nauka, 125 pp. (in Russian).

- Mackey, K.G., Fujita, K., Gunbina, L.V., Kovalev, V.N., Imaev, V.S., Koz'min, B.M., and Imaeva, L.P., 1997, Seismicity of the Bering Strait region: evidence for a Bering block: *Geology*, v. 25, p. 979-982.
- McMullen, C.A., 1985, Seismicity and tectonics of the northeastern Sea of Okhotsk: M.S. Thesis, Michigan State University, East Lansing, vi + 107 pp.
- Nokleberg, W.J., Parfenov, L.M., Monger, J.W.H., Norton, I.O., Khanchuk, A.I., Stone, D.B., Scholl, D.W., and Fujita, K., 1998, *Phanerozoic tectonic evolution of the circum-north Pacific*: U. S. Geological Survey Open-File Report 98-754, 125 pp.
- Nokleberg, W.J., Parfenov, L.M., Monger, J.W.H., Baranov, B.V., Byalobzhesky, S.G.,
 Bunbtzen, T.K., Feeney, T.D., Fujita, K., Gordey, S.P., Grantz, A., Khanchuk, A.I.,
 Natal'in, B.A., Natapov, L.M., Norton, I.O., Patton, W.W., Jr., Plafker, G., Scholl,
 D.W., Sokolov, S.D., Sosunov, G.M., Stone, D.B., Tabor, R.W., Tsukanov, N.V.,
 Vallier, T.L., Wakita, K., 1994, Circum-North Pacific tectonostratigraphic terrane
 map: U. S. Geological Survey Open-File Report 94-714, 221 pp., 5 plates.
- Olson, D.R., 1990, The Eurasian North American plate boundary through the area of the Laptev Sea: M.S. Thesis, Michigan State University, East Lansing, viii + 65 pp.
- Parfenov, L. M., 1991, Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics: *Tectonophysics*, v. 199, p. 319-342.
- Peltzer, G., and Tapponnier, P., 1988, Formation and Evolution of Strike-Slip Faults, Rifts, and Basins During the India-Asia Collision: An Experimental Approach: *Journal of Geophysical Research*, v. 93, p. 15,085-15,117.
- Riegel, S.A., 1994, Seismotectonics of northeast Russia and the Okhotsk plate: M.S. Thesis, Michigan State University, East Lansing, ix + 70 pp.
- Riegel, S.A., Fujita, K., Koz'min, B.M., Imaev, V.S., and Cook, D.B., 1993, Extrusion tectonics of the Okhotsk plate, northeast Asia: *Geophysical Research Letters*, v. 20, p. 607-610.
- Seno, T., Sakurai, T., and Stein, S., 1996, Can the Okhotsk plate be discriminated from the North American plate?: *Journal of Geophysical Research*, v. 101, p. 11305-11315.
- Stavsky, A.P., Chekhovitch, V.D., Kononov, M.V., and Zonenshain, L.P., 1990, Plate tectonics and palinspastic reconstructions of the Anadyr-Koryak region, northeast USSR: *Tectonics*, v. 9(1), pp.81-101.
- Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R., and Cobbold, P., 1982, Propagating extrusion tectonics is Asia: new insights from simple experiments with plasticine: *Geology*, v. 10, p. 611-616.

Zonenshain, L.P., Kuz'min, M.I., and Natapov, L.M., 1990, Geology of the USSR: A plate tectonic synthesis: American Geophysical Union, Geodynamics Series, v. 21, 242 pp.

CHAPTER 1

The Northeastern Russia Seismicity Database

INTRODUCTION

Prior to the beginning of this study, there was no comprehensive database covering continental seismicity in northeastern Russia. In the past 30 years several regional networks including Yakutsk, Magadan, and others, in Russia and the Western Alaska network in the US, have operated in the study area. Unfortunately, data were not exchanged between them resulting in incomplete data sets being used for epicenter locations, resulting in artificial discontinuities at network boundaries (Figure 1-1). To better understand the neotectonic setting of northeastern Russia, it is necessary to combine as much data as possible from all sources. The combined data can be re-evaluated to improve travel time curves, hypocenter parameters, and tectonic models; better understand seismicity levels, determine regions of anthropogenic sources, etc.

There are two major sections to the developed database: a complete as possible catalog of hypocenters for northeast Russia and western Alaska, and a database of arrival times from combining data of all sources and networks. Supplemental information includes industrial explosions and seismic station parameters. In assembly of the database, several published and unpublished sources were used. A section which discusses each of the seismic networks considered, covering data problems, some network procedures, and data sources for each network is also included. A combined alphabetized list of seismic stations and parameters can be found in Appendix A.

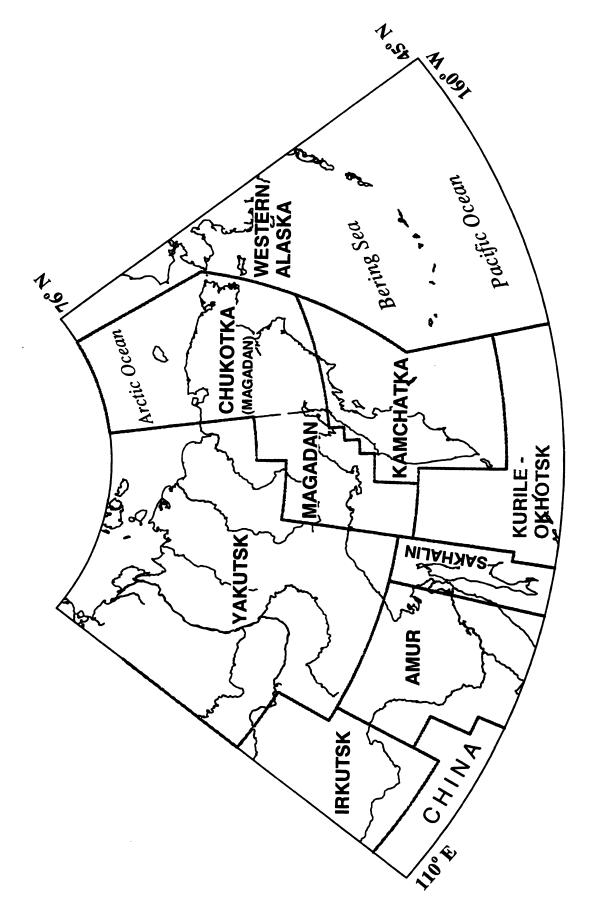


Figure 1-1. Seismic network boundaries in northeastern Russia.

This study has compiled a list of approximately 40,000 individual earthquakes identified throughout the region (Figure 1-2). Most of the events in the database occur between 1968 and 1998. Yearly plots of the seismicity can be found in Appendix B. Epicenters listed in Russian sources are usually precise to 0.1 or 0.01 degree. In regions where many events located to 0.1 degree are reported, lineations with 0.1 degree separation are visible in epicenter plots. For over 8,500 events (Figure 1-3), phase data have been acquired and entered into a computerized database of over 110,000 arrival times. Phase data were available in unpublished sources for a few events outside the designated study area which results in a few events shown on Figure 1-3 that are not depicted on Figure 1-2. Given the amount of data and number of sources used, it must be noted that the discussions on data sources in different networks are only generalizations and there are always some odd epicenters or arrival times acquired elsewhere. It is also impossible to discuss every discrepancy between data sources, although all the major ones are covered. Historic events and data recorded teleseismically for the entire study area are taken from standard sources such as the International Seismological Summary (ISS), International Seismological Centre Bulletin (ISC), United States Geological Survey (NEIC), etc., and are also not discussed with regard to specific regional networks. In addition, and database containing the approximate locations and origin times of about 10,000 mine blasts covering the Magadan region was compiled.

It is standard practice among Russian seismic networks to only report magnitudes for events of about $M_b = 4.0$ and larger. However, all events, both small and large, have sizes reported as a K-class value, which is based on the logarithm (base 10) of work released in

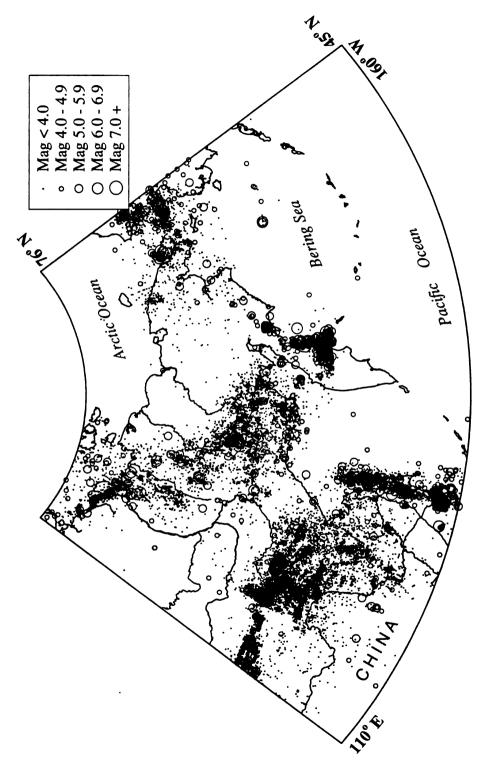


Figure 1-2. Plot of seismicity catalog compiled for northeastern Russia. Seismicity related to subduction of the Pacific plate under Kamchatka, the Kurile Islands, and the Aleutian Islands are omitted.

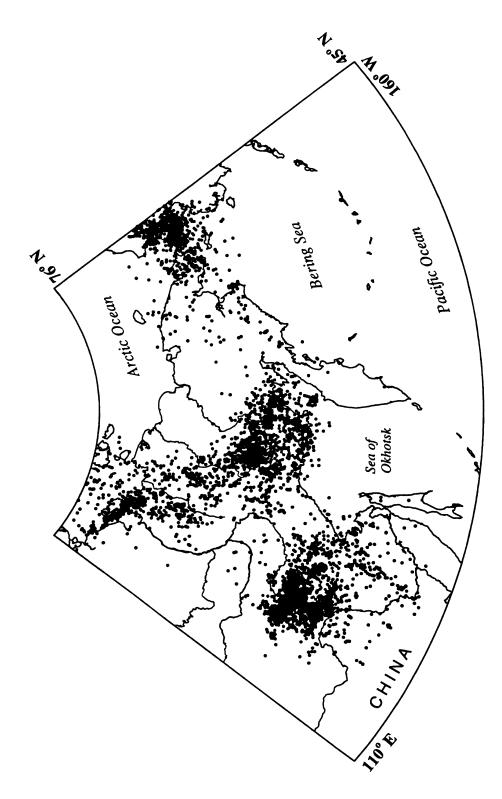


Figure 1-3. Events in the seismicity catalog for which phase data has been acquired.

Ergs. For determining K-class, the maximum ground motion amplitude A_{max} is determined using

$$A_{\max} = \frac{A_p + A_s}{T} \tag{1-1}$$

where A_p and A_s are the respective maximum amplitudes of the P and S arrivals (in microns), and T is the period (in seconds) of the wave. If no amplitude is available for the P phase, only the S is used. Then, using S-P time difference or distance, the K-class value is read off a nomogram calibrated for each particular region (Solonenko, 1974; Pustovitenko and Kul'chitskii, 1974: Gounbina, pers. comm.). A sample nomogram for the Magadan region is given in Figure 1-4. Unfortunately, the nomograms calibrated for different regions or networks vary significantly, resulting in inconsistent size determinations between networks. For example an earthquake having a magnitude of 3.5 may be reported to have a K-class of 9.0 in one network, and a K-class of 10.5 from a neighboring network. To better understand the sizes of earthquakes reported in the compiled seismicity catalog, linear regressions were calculated relating K-class to magnitude for each network. Magnitudes used are ISC reported M_b values for magnitudes up to 5.5. Events larger than magnitude 5.5 use ISC or NEIC reported M_s values as body wave magnitude begins to saturate (Lay and Wallace, 1995).

Network boundaries shown throughout the study are taken from the *Materialy po*Seismichnosti Sibiri and Zemletryseniya v SSSR bulletins, which are discussed below. For some networks, there are one or two seismic stations that fall outside the official boundaries

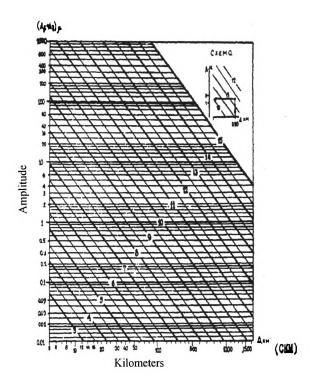


Figure 1-4. Nomogram for determining K-class values of earthquakes in the Magadan region using a SKM seismometer. Horizontal axis is distance in km, while vertical axis is the amplitude of ground motion (maximum P wave amplitude plus maximum S wave amplitude) in microns. The K-class value is read off the diagonal lines.

of the network. On maps of individual netwoks, seismic stations visible but belonging to a different network are labeled in gray.

Seismic station codes and coordinates have been compiled for stations that have operated in northeast Russia. Most seismic station codes for Russian regional stations are internal to this study and do not necessarily correspond to international designations. Accuracy of station coordinates may vary considerably. Seismic station parameters (name, coordinates, elevation, and open and close dates of operation) were compiled primarily by K. Fujita (pers. comm.). Most station coordinates were obtained from Russian published sources or directly from the seismic station networks. Russian publications usually give station coordinates to 0.01°, but sometimes to only 0.1°. Some stations were simply located in the appropriate town on the map and coordinates read. For stations in small towns, this is usually accurate to better than 0.02°. Other stations were visited by the author and GPS coordinates obtained. Quality levels (column 'Qu' on seismic station tables) for seismic stations are as follows:

- G Location determined with GPS (accuracy to within 100 m).
- 1 Coordinates from Russian sources checked on Russian Military or TPC topographic maps and looks reasonable. Stations in small towns may also be assigned this quality level (accuracy to within 2 km).
- 2 Some questions on exact location and/or two or more competing locations possible (accuracy may exceed 10 km).
- 3 Location guessed or estimated; could be significantly in error.

Note that quality levels have not been assigned to all stations. Some stations are known to have been moved slightly but new coordinates are not known; in this case the coordinates are shown in brackets.

DATA SOURCES

Zemletryseniya v SSSR (1963-1991; Earthquakes of the USSR; hereafter Zemlet) and Zemletryseniya Severnoi Evrazii (1992; Earthquakes of Northern Eurasia; also referred to as Zemlet). This publication contains a yearly bulletin listing event parameters for the larger earthquakes which occurred within each regional network. In general, only events of K-class 8.5 and larger are listed, although this has varied from year to year and from network to network. In addition, the cutoff was often raised for large aftershock sequences. Zemlet is published in Moscow and has historically been available in the U.S.

Materialy po Seismichnosti Sibiri (1970-1990; Materials on the Seismicity of Siberia; hereafter Materialy). This is a bi-monthly publication produced in Irkutsk containing both epicenter lists and phase data for each of the seismic networks in Siberia that investigate seismicity of continental regions (Irkutsk, Magadan, Yakutsk, Amur (1979-1990), and Altai). The epicenter list provided here is generally complete, although isolated events listed in the Far East Bulletin and in the unpublished data seem to be missing. The largest fraction of the assembled epicenter list comes from this bulletin. This bulletin also contains phase data and arrival times for events equal to or larger than a K-class of 9.5 occurring within a network. Materialy issues were published with a low print run of 50 or 75 per issue, with distribution generally restricted to the seismic networks in Siberia.

<u>Seismologicheskii Bulleten - Dalnie Vostok</u> (Intermittent years; Seismological Bulletin - Far East; hereafter Far East Bulletin). This quarterly bulletin published in Yuzhno Sakhalinsk is similar in format to *Materialy*, and contains both epicenter lists and phase data.

The Far East Bulletin covers the Magadan (listed as separate networks of the "Far East" and "Chukotka"), Amur, Sakhalin, Kamchatka, and Kurile networks. The epicenter list provided here is generally complete for Magadan and Amur, although isolated events found in the unpublished data are missing. For the Kamchatka network, only events of K-class larger than 9.0 are listed. Coverage of phase data varies from network to network. For both portions of the Magadan network as well as the Kamchatka network, phase data for all earthquakes listed are included. For the Amur network, phase data is listed only for events of K-class 8.5 and larger. Phase data from the Sakhalin network are included for shallow events larger than K-class 7.6. The Far East Bulletin was also published with a low print run of approximately 60 copies per issue. Complete sets of the Far East Bulletin were obtained for 1980-1983 and 1985-1988, and partial sets for 1972-1979 and 1984.

<u>Unpublished Magadan Network Bulletin</u> (1977-1998). Data from 1977 through 1990 were acquired as photocopies, while 1991 through 1998 were computerized files. The epicenter lists and phase data for located events is identical in content and format to that found in the *Far East Bulletin*, although the unpublished bulletins contain much additional material on explosions and unlocated events. The unpublished bulletins are well organized into sections as follows:

- -Epicenters of the Far East
- -Phase data and arrival times for located earthquakes of the Far East
- -Phase data and arrival times for small, unlocatable events of the Far East
- -Epicenters of Chukotka
- -Phase data and arrival times for located earthquakes of Chukotka

- -Phase data and arrival times for small, unlocatable events of Chukotka
- -Industrial explosions of the Far East
- -Industrial explosions of Chukotka
- -Phase data and arrival times for events that occurred within the neighboring Yakutsk network (no epicenter given)
- -For 1991, there is a small supplement of arrival times for events which occurred in Alaska

Unpublished Yakutsk Network Draft Material (Intermittent years). Unpublished data from the Yakutsk network was acquired in varying degrees of completeness. The material includes epicenters and phase arrival times from all earthquakes within the Yakutsk network. Also included are epicenters and phase arrival times for some events that occurred in the Magadan, Sakhalin, Amur, and Irkutsk networks. Explosions with associated arrival times are also given but not always located. Most of the Yakutsk data was acquired as photocopies, although some data was entered into the computerized database in Yakutsk. Data entered in Yakutsk does not contain explosions or other supplemental information. Format of the Yakutsk data is generally rough, being handwritten with pencil in script Russian, and not quite in chronological order. For some years of the Yakutsk draft material, a supplement of unpublished Irkutsk network data is included. This supplement contains Irkutsk determined hypocenter parameters and phase data for events that occurred within the Yakutsk network boundaries but were well recorded by Irkutsk stations.

<u>Unpublished Kamchatka Seismicity Catalog.</u> An epicenter catalog was obtained from Petropavlovsk listing all seismicity in the Kamchatka network from 1962 - 1996. The catalog contains over 55,000 located earthquakes. Only events north of 56° were incorporated into the database developed here.

Western Alaska Network Data Tape. The epicenter catalog from the Western Alaska network was taken from Biswas et al. (1983). The complete computerized phase and arrival time listings were downloaded from archive tapes at the Geophysical Institute, University of Alaska, Fairbanks.

<u>Seismograms.</u> Supplemental arrival times were hand picked by Mackey, Fujita, Riegel, Gounbina, and Koz'min from seismograms in Yakutsk and Magadan, as well as develocorder film in Alaska by Mackey.

Other. Miscellaneous data were acquired from various other publications. Earthquake data for 1920-1999 were obtained from the International Seismological Centre, the International Seismological Summary, the U.S. Geological Survey Preliminary Determination of Epicenters (PDE) and Earthquake Data Report (EDR), Alaska Earthquake Information Center (AEIC), Kondorskaya and Shebalin (1982), Andreev (1967), Kovachev et al. (1995), Avetisov (1996), and Starovoit et al. (1995). Additional information on explosions was obtained from Godzikovskaya (1995). Data of the SSR Catalog were obtained from the USGS CD-ROM hypocenter database. The SSR Catalog is based on data from Zemlet and Kondorskaya and Shebalin (1982).

SEISMIC NETWORKS AND DATABASE ASSEMBLY

Yakutsk Regional Network

The first station opened in Yakutsk in 1958, with the Yakutsk network being established in 1960's to monitor regional seismicity. The Yakutsk network initially worked closely with the Magadan EMSD in the collection and analysis of data. In 1982, the cooperative relationship with Magadan EMSD deteriorated and each network began operating independently with little exchange of data. The Yakutsk network has operated a large number of permanent seismic stations in the region, with the maximum number in the late 1980's and early 1990's (Table 1-1). Beginning in 1993, economic problems stemming from the collapse of the Soviet Union resulted in drastic cutbacks by the network and the closure of several stations. In 1993 and 1995, Global Seismograph Network (GSN) stations were opened by IRIS in Yakutsk and Tiksi respectively. The station in Ust'Nera was moved in 1992, and converted to 24 bit digital acquisition in the June of 1999 (Appendix C). There have been many short-term deployments of seismic stations in the Yakutsk network since the mid 1960's (Table 1-1). In addition, four temporary stations were deployed in 1971 for aftershock studies of the magnitude 7.0 Artyk earthquake, and five stations were deployed in 1989 for aftershock studies of the magnitude 6.6 South Yakutia earthquake (Table 1-2).

All earthquake locations determined by the Yakutsk network are done by the historical arcs on map method. For location purposes, the Yakutsk network is broken into northern (Figure 1-5) and southern regions (Figure 1-6). The northern region locates earthquakes on a 1:5,000,000 scale map, and includes stations north of 60° N, while the

Table 1-1. Seismic stations operated by the Yakutsk network.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
		Aku	56.46	120.91	700	68	68	1
AMMS		Ammonl'naya	64.55	143.18	540	61	62	1
AYKS	AP	Artyk	64.18	145.13	700	88		1
BTGS	БТГ	Batagai	67.653	134.630	127	75		1
		Bazovskii	56.53	123.42	1080	70	70	1
CGD	чгд	Chagda	58.75	130.60	185	68		1
CES	ЧРС	Cherskii	68.75	161.33	10	79	88	1
		Chil'chi	56.06	122.33	500	70	70	1
CL1S	ЧЛМ	Chul'man-1	56.85	124.90	650	62	86	1
CLNS	члм	Chul'man-2	56.84	124.90	760	86		1
DUYS	дн	Dunai	73.92	124.49	5	11.89		1
		Dyrynmakit	56.60	121.13	460	67	67	1
		Imangra-1	56.75	121.24	395	07.67	08.67	1
IMNS	ИМГ	Imangra-2	56.62	120.71	540	75	79	1
UL2S	кмн	Kamenistyi	65.41	144.83	670	88	88	1
KHG	хнд	Khandyga	62.65	135.56	125	69	94	1
KHNS	хн	Khani	57.04	121.01	390	67 75?	67 76?	1
KHY	XTC	Khatystyr	55.71	121.57	475	68 75	68 82?	1
		Kurul'ta	56.90	121.11	495	68	68	1
		Kyubyme	63.38	140.95	950	74	74	2
KYUS	КСР	Kyusyur	70.68	127.37	20	85	08.89	1
		Lapri	55.69	124.91	640	72	73	1
MKUS	MOMA	Moma-Khonuu	66.47	143.22	192	83		1

Table 1-1 (cont'd).

		Nagornyi	55.95	124.92	840	69	69	1
	НГР	Nagornyi Sta	55.92	124.97	920	77	77	1
NAYS	НБ	Naiba	70.85	130.73	5	85		1
NYGS	НРГ	Neryungri	56.68	124.66	760	77 80	78 82	1
NZDS	нжд	Nezhdaninsk	62.50	139.06	603	80		1
SAYS	сд	Saidy	68.70	134.45	88	80		1
SSYS	ССР	Sasyr	65.16	147.08	580	86		1
		Slyuda	56.33	124.12	1080	73	73	2
SOTS	СТБ	Stolb	72.40	126.82	10	85		1
		Sutam	55.96	127.59	700	69	69	1
TBKS	ТБЛ ТБ	Tabalakh	67.54	136.52	200	80		1
TMLS	ТМЛ ТМР	Taimylyr	72.61	121.92	60	86		1
		TasYuryakh-1	56.64	121.33	395	02.67	03.67	1
		TasYuryakh-2	56.62	121.41	415	07.67	08.67	1
TLIS	тнк	Tenkeli	70.18	140.78	110	84	93	1
TIK	ткс	Tiksi	71.632	128.863	38	3.56	93	1
TIXI		Tiksi-GSN	71.64	128.87	30	95		1
		Tokarikan	56.10	126.42	800	72	73	3
TUG1		Tungurcha-1	57.33	121.48	440	70	70	1
TUG	THI	Tungurcha-2	57.27	121.48	315	78		1
UL1S	ТЕБ	Tyubelyakh	65.37	143.15	380	88	88	3
UNR1	У-НР	Ust' Nera-1	64.566	143.230	485	62	92	1
UNR	У-Н	Ust' Nera-2	64.565	143.242	485	92		G
USZ	У-Н	Ust' Nyukzha	56.56	121.59	415	64		1

Table 1-1 (cont'd).

UURS	УРК	Ust' Urkima	56.31	123.16	540	81		1
YAK1		Yakutsk-1	62.015	129.722	90	10.57	62	1
YAK	як	Yakutsk-2	62.030	129.677	91	62		1
YUBS	ЮБЛ ЮБТ	Yubileniya	70.74	136.10	10	86	93	1
ZYRS	ЗРН	Zyryanka	65.72	149.82	120	82	90	1

Table 1-2. Temporary seismic stations from the Yakutsk region. The 1989 South Yakutia and the 1971 Artyk deployments were aftershock studies.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
1989 Sout	h Yakutia I	Deployment						
ACHS	АМД	Amedichi	57.03	122.85	930	05.89	08.89	1
СКНЅ	ЧКЧ	Chokchoi	57.65	121.72	240	89	89	1
KBKS	КБК КБТ	Kabaktan	56.68	122.42	1010	05.89	08.89	1
SYLS	СЛХ	Syllakh	57.12	121.86	600	89	89	1
YRGS	ЯРГ	Yaruga	57.49	123.07	780	89	89	2
1971 Arty	k Deploym	ent						
AYKS	AP	Artyk	64.18	145.13	700	06.71	71	1
AY1S		Kobdi	64.20	145.51	800	06.71	71	1
AY2S	ОЗР	Ozernaya	63.75	146.11	875	06.71	71	2
AY3S		Tungusskii	64.20	146.38	1080	71	71	1

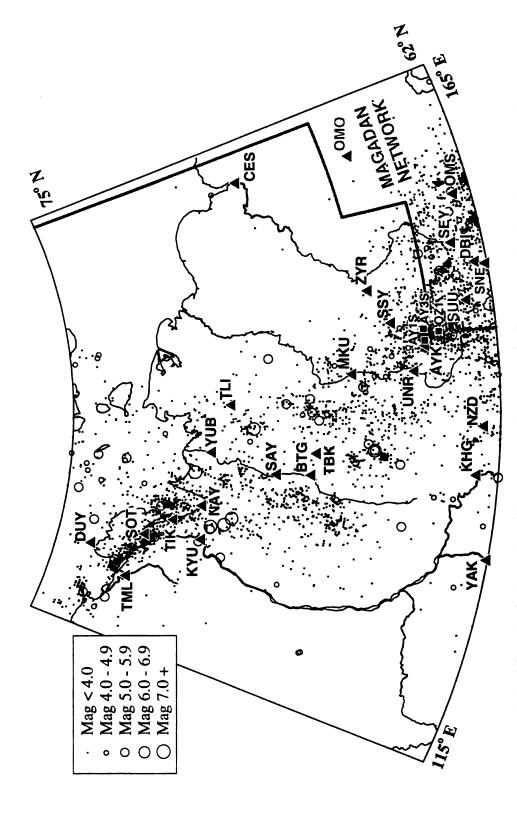


Figure 1-5. Seismicity and seismic stations of the northern Yakutsk network. Temporary seismic stations deployed after the 1971 Aryk earthquake are shown as squares.

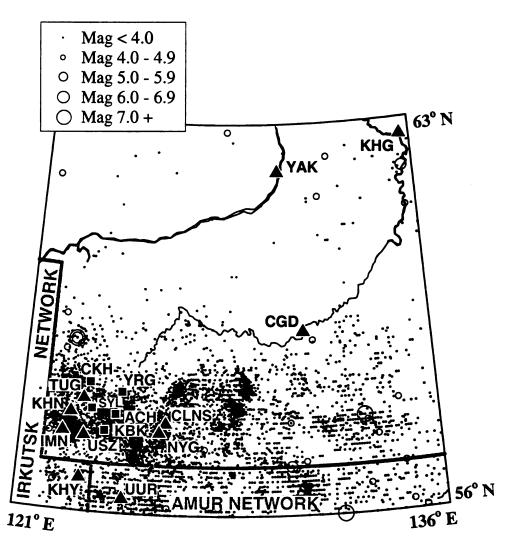


Figure 1-6. Seismicity and seismic stations of the southern Yakutsk network. Temporary seismic stations deployed after the 1989 south Yakutia earthquake are depicted as squares.

southern region includes stations south of 63° N. Stations at Yakutsk, Khandyga, and Nezhdandinsk are included in both regions. Sometimes, for the Lena River Delta and Laptev Sea regions, a 1:2,400,000 scale map is used. In many cases, data are acquired for stations which are physically off the map used in determining locations. Data from such stations are omitted from the location process; only those stations within the bounds of the map on which the arcs are drawn are used. Thus, data from the northern region are not used when locating earthquakes from the southern region, as the northern stations do not fit on the map, and vice versa. Epicentral distances are determined by Sg-Pg time differences for each station. Many earthquakes have phase arrival times from only three or four stations, and only one P arrival (usually Pg). In this case, the one available Sg-Pg time is used to define the origin time and other distances are determined using the Sg - Origin time difference from remaining stations. Locations in the northern region use a Pg velocity of 6.1 km/sec. Sg velocities used are 3.5 km/sec or 3.6 km/sec, whichever works best for the particular earthquake. Generally, 3.5 km/sec works best in the Laptev Sea and Lena River Delta region around Tiksi. In the southern region, Pg velocities used are 6.0 km/sec or 6.1 km/sec, whichever is best for the particular earthquake. The Sg velocity used is 3.6 km/sec, except for the Aldan shield, where 3.7 km/sec works best (Koz'min, pers. comm.).

There were much data acquired by stations in the Magadan, Amur, and Irkutsk networks which were not exchanged with the Yakutsk network, and subsequently not included in any of the published bulletins. Historically, the Yakutsk network had access to data from the Magadan stations of Susuman, Seimchan, Kulu, and Debin (See Magadan Network below), and occasionally others. However, overall, the unpublished Magadan network bulletin added a significant amount of phase and arrival time data for events in the

Yakutsk network. Of stations in the Amur region, generally only Kirovskii was used by the Yakutsk network. In comparison of Kirovskii arrivals reported in the Yakutsk unpublished bulletin with those in published sources, there are some differences in reported phases and arrival times. The discrepancy is suspected to be a result of Yakutsk receiving the preliminary Kirovskii station bulletin with times and phases determined by the station operator. The phases and times of arrivals in published sources of the Amur data (Materialy, and Far East Bulletin) represent the final interpretation, which would have presumably been done in conjunction with other records by the Amur network. When possible, what is believed to be the final interpretation for Kirovskii phases and arrival times is used in the database. Unfortunately, there were no additional unpublished data from the Amur regional network available for Yakutsk region events beyond that which was already contained in the Yakutsk bulletin. Additional data most certainly does exist in the Amur network. For earthquakes in the Yakutsk region that are located by the Irkutsk network from Irkutsk stations, a printout of the hypocenter, phases, and arrival times is supplied to Yakutsk. From this printout, Yakutsk normally uses only the data from Tupik (TUP), Srednyi Kalar (SRK), and Chara (CRS) in their locations. Other stations will not fit on the map used in the locations, thus are not used. For the database assembled here, all the available Irkutsk data were included.

There are some problems with data supplied to global databases, such as ISC, for events occurring in the Yakutsk region. Data reported for stations in Yakutsk network (UNR, YAK, TIK, USZ, UUR, and CLN) are preliminary time picks by station operators and often have high residuals. This can result from poor time picks, or a secondary Pg phase being reported as a first arriving Pn phase. In these cases the phase and time from the

unpublished data are used in the database assembled here, as they are not derived from preliminary seismogram analysis.

For this database, hypocenter parameters were primarily taken from Zemlet and Materialy (1963-1990) and unpublished draft material (1991-1996). Phase data and arrival times for events larger than K-class of 9.5 were taken from Materialy (1970-1990). Phase data and arrival times for smaller events are from unpublished Yakutsk network bulletins (1982-1990). Unpublished data from the 1971 Artyk and 1989 South Yakutia aftershock studies are also included in the database. All data since 1990 are from unpublished network bulletins. For several events along the boundary with the Magadan network, supplemental arrival times were read from Magadan network seismograms.

In comparing data from the three primary sources of *Materialy*, *Zemlet*, and the unpublished network bulletin, no major variations were found. The unpublished draft material contains hypocenters which sometimes differ with those found in *Materialy* and *Zemlet*. The reason for this is not entirely clear. The seismicity catalog in *Zemlet* is identical to that in *Materialy*, except it does not list events smaller than K-class 7.5. For all years, events with statistically poor locations listed in *Materialy* and *Zemlet* have origin times rounded to the nearest second and coordinates to nearest 0.1 degree. For these events, the unpublished draft material gives origin time to 0.1 second and coordinates to 0.01 degree. In many cases, the hypocenter parameters were originally entered into the database using *Materialy* or *Zemlet*, and retain the less precise coordinates.

A linear regression relating K-class for the Yakutsk network to ISC magnitude is shown in Figure 1-7. The relationship determined is

$$K = 2.05 + 2.15 (M) \tag{1-2}$$

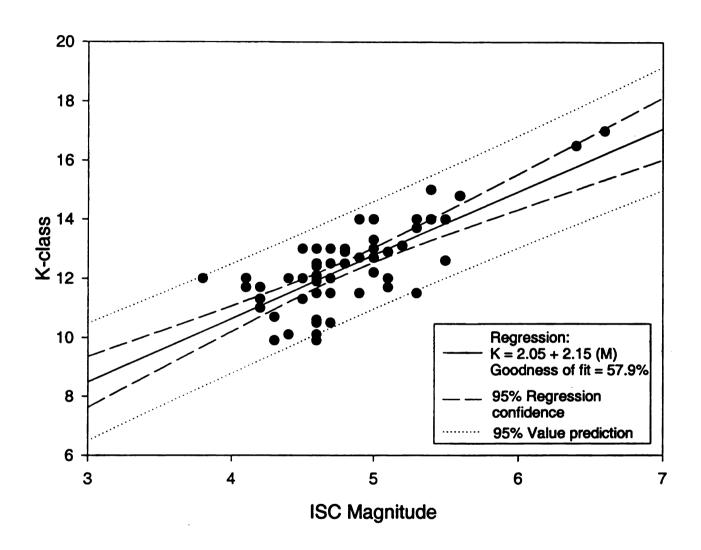


Figure 1-7. Relationship between K-class and ISC reported magnitude in the Yakutsk network.

where K is K-class and M is magnitude. In general, it was found that events occurring in the Laptev Sea tend to have a lower K-class value than continental events for a given magnitude. There are two possible reasons for this. First, many of the Yakutsk epicenters are further south than the ISC locations. This may put the events erroneously close to the Yakutsk stations, which for a given amplitude will tend to lower the K-class value assigned. Second, most of the raypaths from Laptev Sea events to Yakutsk network seismic stations travel down the axis of the Laptev Sea rift. This may result in preferentially greater attenuation of signals at Yakutsk stations relative to teleseismic stations used to calculate magnitude.

Temporary stations in the Lena River Delta, Laptev Sea, and New Siberian Islands

The Laptev Sea region has had several temporary stations or networks deployed. The All-Union Research Institute of Ocean Geology (VNIIOkeanologiya) operated one to three stations per summer in the New Siberian Islands from 1972 through 1976 (Figure 1-8; Table 1-3; Avetisov, 1983, 1996). Three stations were operated just west of the Lena River Delta from July to September, 1975 (Table 1-3; Avetisov, 1983, 1996). Several local networks of stations were also deployed during the summers in and around the Lena River Delta between 1984 and 1988 (Figure 1-9; Avetisov, 1996). With a few exceptions, the events located in studies by Avetisov were not located by the Yakutsk regional network.

In July and August, 1989, the P. P. Shirshov Institute of Oceanology deployed a small five station array of ocean bottom seismometers (OBS) in two locations within Buorkhaya Bay, in the Laptev Sea (Figure 1-10; Table 1-3; Kovachev et al., 1995). A total of 26 events were located from the two OBS deployments, two of which were also located by the Yakutsk regional network.

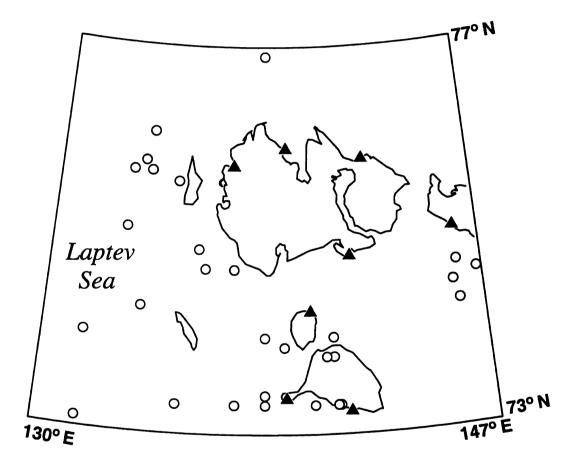


Figure 1-8. Summer seismic station deployments in the New Siberian Islands region from Avetisov (1996). Stations shown as triangles and located events as circles.

Table 1-3. Temporary stations in the New Siberian Islands, west of the Lena River Delta (Avetisov, 1983; Avetisov, 1996) and the Laptev Sea (Kovachev et al., 1996).

English Code	Russ.	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
New Siber	rian Islands	Stations						
		Kotelnyi	75.760	137.600		8.72	9.72	-
		Kigilyakh	73.367	139.867		6.73	9.73	-
		Dimnoe	73.233	142.400		3.74	4.74	-
		Zemlya Bunge	74.8330	142.583		4.75	6.75	-
		Novaya Sibir	75.0500	147.000		4.75	6.75	-
		Mys Khvoinova	74.2670	140.883		4.76	6.76	-
		Mys Nerpichii	75.8330	143.333		4.76	6.76	-
		Mys Diring- Ayan	75.9500	139.917		5.76	6.76	-
Stations w	est of the I	ena River Delta -	All dates ar	e 1975				
		Udzha	71.25	117.17		08/27	09/19	-
		Kalgannakh	71.83	114.33		07/21	08/10	-
		Chochurdakh	72.83	116.25		08/13	09/26	
Laptev Se	a Ocean Bo	ottom Seismometer	Deploymen	nt 1 - All dat	es are 19	989		
	# 1		71.75	131.40	-18	07 <i>/</i> 28	08/9	-
	# 2		71.85	131.22	-20	07/28	08/9	-
	#3		71.90	130.42	-17	07/29	08/9	-
	# 4		71.77	130.82	-17	07/29	08/9	-
	# 5		71.62	130.78	-16	07/29	08/9	-

Table 1-3 (Cont'd)

Laptev Sea Ocean Bottom Seismometer Deployment 2 - All dates are 1989									
# 1	72.283	131.30	-18	08/10	08/22	-			
# 2	72.45	130.35	-10	08/10	08/22	-			
#3	72.466	131.20	-19	08/10	08/22	-			
# 4	72.616	130.60	-16	08/10	08/22	-			
# 5	72.267	130.65	-13	08/10	08/22	-			

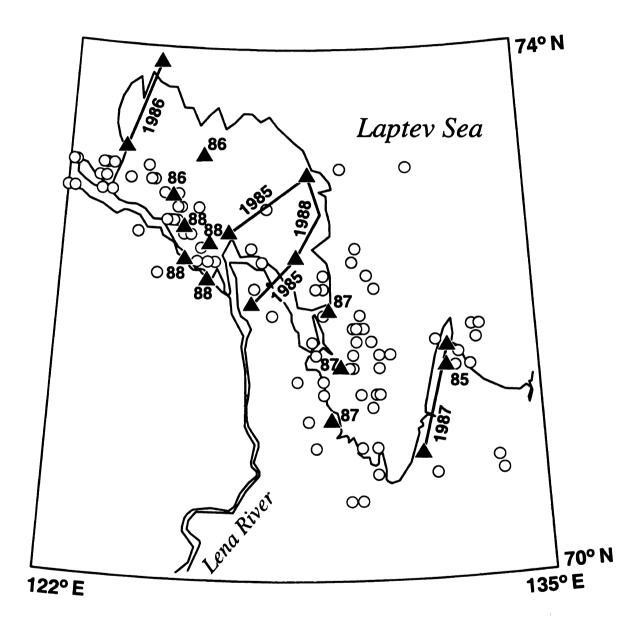


Figure 1-9. Summer seismic station deployments in the Lena River Delta region from Avetisov (1996). Stations shown as triangles and located events as circles. Stations deployed for refration profiles shown as lines. Numbers indicate years of operation.

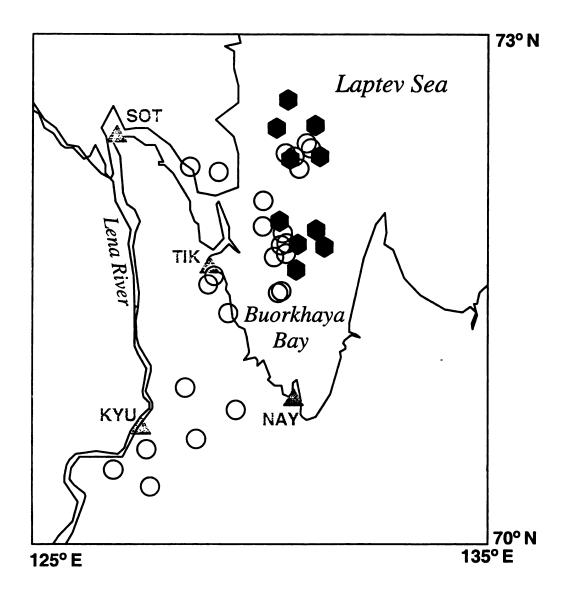


Figure 1-10. The 1989 summer deployments of ocean bottom seismometers shown as hexagons and located seismicity shown as circles. Events and stations from Kovachev et al. (1995). Yakutsk network stations in gray for reference.

The temporary OBS, New Siberian Islands, and the Lena River Delta seismic stations were operated independently from the Yakutsk network stations. Events located and listed in Kovachev et al. (1995) and Avetisov (1996) are included in the database. Phase data were not available.

Magadan Regional Network

The first station opened in the region was Magadan in 1952. In the late 1960's following the deployment of the northeast Russia test network, installation of permanent seismic stations began. These stations were operated in conjunction with stations in the Yakutsk network. The Magadan Experimental Methodological Seismological Division (EMSD) network was established as a separate entity in December, 1979 to monitor regional seismicity. The Magadan EMSD initially worked closely with the network in Yakutsk in the collection and analysis of data. In 1982, the cooperative relationship with Yakutsk deteriorated and each network began operating independently with little exchange of data. The reason for this is not clear. The Magadan EMSD has operated a total of 15 permanent seismic stations in the region, excluding those in the Chukotka network, which were also operated by the Magadan EMSD (Figure 1-11; Table 1-4). All stations in the Magadan region operate at least one complete three component set of instruments. Horizontal instruments deployed in the Magadan region are oriented with respect to local magnetic north, not geographic north (Savchenko, pers. comm.). The largest number of stations were active in the late 1980's and early 1990's. Three temporary stations, Obo, Orotukan, and Yagodnoya were operated in 1977. A few arrival times are also reported for a station Obo

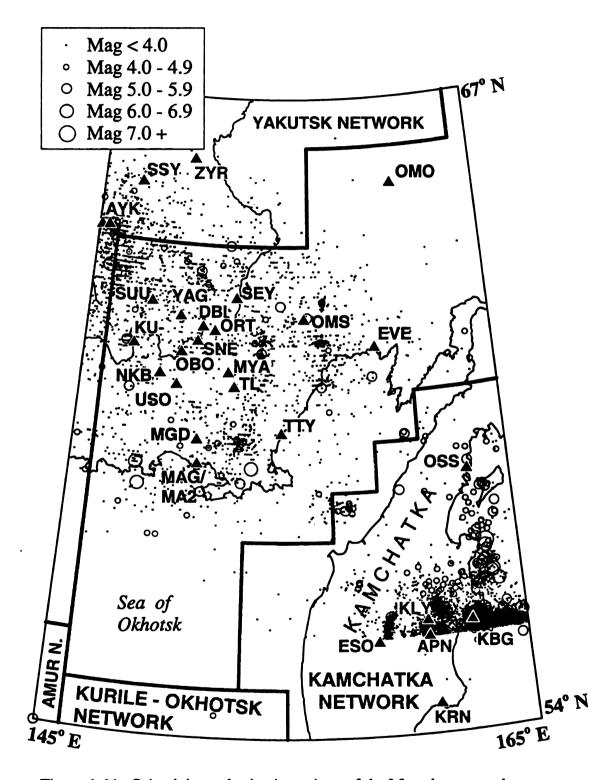


Figure 1-11. Seismicity and seismic stations of the Magadan network.

Table 1-4. Seismic stations operated in the Magadan region. All stations were operated by the Magadan EMSD.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
DBI	дън	Debin	62.339	150.751	332	74	92	G
EVES	ЭВН	Evensk	61.92	159.23	22	80	7.93	1
KU-S	КЛ КЛУ	Kulu	61.889	147.431	655	1.80	10.92	G
MAG	мгд	Magadan	59.560	150.805	78	1.52	1.92	1
MA2	MA2	Magadan-GSN	59.575	150.768	339	9.93		1
MYAS	МКТ	Myakit	61.407	152.093	670	83	88	G
NKBS	нль	Nel'koba	61.34 61.338	148.81 148.813	531	9.83 6.97	6.97 9.99	1 G
ОВО		Obo	61.80	149.77	440	77	77	1
ОМСН	ОМЧ	Omchak	61.67	147.87	820	9.99		1
OMOS	ОМЛ	Omolon	65.23	160.54	260	6.82	7.93	1
OMS	ОМС	Omuskchan	62.52	155.77	527	12.67		1
ORT		Orotukan	62.26	151.34	470	77	77	1
SEY	СМЧ	Seimchan	62.93	152.38	211	4.69		1
SNES	СНГ	Sinegor'e	62.09	150.52	400	76	88	1
MGD	МА1 МГД-1 СТК	Stekol'nyi	60.046 (60.046)	150.730 (150.730)	221	3.71 94	94	1
suus	CMH CCM	Susuman	62.78 (62.78) 62.779	148.15 (148.15) 148.163	640	8.69 95 98	95 98	1 1 G
TTYS	TXT	Takhtoyamsk	60.20	154.68	11	9.87		1
TL-S TLAS	ТЛА ТЛ	Talaya	61.134	152.398	730	1.89		G
USO	У-ОМ	Ust' Omchug	61.13	149.63	580	68	83	1
YAG		Yagodnoe	62.53	149.62	480	77	77	1

in 1981. Beginning in 1992, economic problems stemming from the collapse of the Soviet Union resulted in drastic cutbacks by the network and the closure of several stations.

By the mid 1990's, the Magadan network was reduced to operational stations only in Susuman, Omsukchan, Seimchan, Magadan, and Stekolnyi. Two other stations, Talaya and Nelkoba, were mothballed. The economic situation for the network was sufficiently bad that vegetables were sold out of the stations to keep them open (Savchenko, pers. comm.). Today, seven stations remain open, with Magadan (MA2) being a GSN station and Seimchan (SEY) being a Geoscope station. Equipment problems in Seimchan have resulted in a significant amount (years) of downtime for the Geoscope station. In the summer of 1999, stations in Nelkoba, Seimchan, Susuman, and Talaya were converted from photo paper to PC based 24 bit resolution digital recording in conjunction with M.S.U. (Appendix C). The station in Seimchan uses the existing Streckeisen seismometer installed by Geoscope. In late September 1999, the town of Nelkoba was abandoned, and the station was moved to Omchak, approximately 70 km to the northwest of Nelkoba.

Several stations of the Magadan regional network were also moved slightly in the mid to late 1990's. In 1994, Stekolnyi was moved approximately 0.6 km north from its original location. Nelkoba was moved approximately 150 m north in the summer of 1997. Susuman was moved twice. First, in 1995 the station was moved 100 - 200 m, but the location remained near the center of town. In the fall of 1998, the station was moved approximately 1 km to the east to the meteorological station outside of town. For these stations, codes or coordinates were not changed or updated in any of the available data sources, published or unpublished.

There have been three methods of determining earthquake locations in the Magadan network, each using Sg minus Pg times. Prior to 1982, locations were computed primarily by hand, and occasionally using a "Besmas 6" electronic calculating machine. In 1982, they began using computers for locations, which were compared to arc on map epicenters. The computer determined epicenters were often "adjusted" to better agree with a paper location if there was a discrepancy between the two. The adjustment procedure was dropped in the early 1990's, when the network switched to computer only hypocenter calculations. In the location procedure, the travel time curves used were derived from the 1959 Magadan-Ust'Srednikan DSS (Deep Seismic Sounding; refraction) profile (Ansimov et al., 1967; Davydova et al., 1968). The model for calculation of the travel time curves uses a three layer crust (Figure 1-12). The uppermost layer is 6.0 km thick and has a P velocity of 5.3 km/s. The velocity at the base of layer one is 6.0 km/s, which is used for the Pg velocity. The second layer extends from 6.0 km to a depth of 20.0 km and has a P velocity of 5.8 km/s. A refraction surface at the base of the second layer has a P velocity of 6.7 km/s and is used as the Conrad discontinuity for P*. The third crustal layer lies between 20 and 35 km depth and has a P velocity of 6.1 km/s. The base of layer three is the Moho, with a Pn velocity of 8.1 km/s. Table 1-5 lists the travel times used in the Magadan network for Pg, Sg, P*, S*, Pn, and Sn phases. These travel times are derived from this model and are calibrated for a hypocenter depth of 5.0 km. The travel times are also plotted in Figure 1-13. The crustal model used here is counterintuitive from a geologic standpoint, as high velocity planes are sandwiched between thick low velocity layers (Figure 1-12). Vertical velocity profiles with thin high velocity zones between much thicker low velocity layers is typical of those determined from DSS profiles in the former Soviet Union (Gal'perin, 1974). Slopes of travel

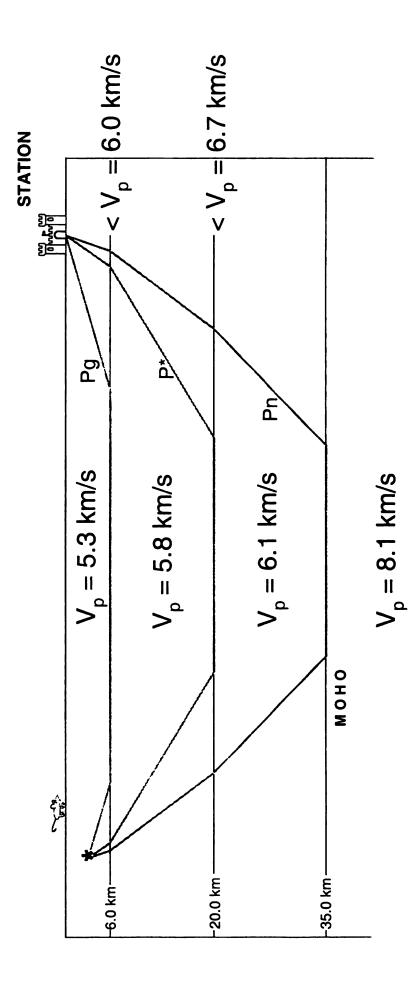


Figure 1-12. Crustal velocity profile used for locating earthquakes in the Magadan region. Assumed raypaths for a 3 km deep event (asterisk) are shown.

Table 1-5. Travel time curve used for locating earthquakes in the Magadan network. This table depicts travel times for a hypocentral depth of 5 km.

km	Pg (s)	Sg(s)	P* (s)	S* (s)	Pn (s)	Sn (s)
0.0 10.0 30.0 30.0 50.0 50.0 90.0 110 120 130 140 150 120 120 130 140 150 120 230 240 250 260 270 280 32	024.7417417417417417417147147147147147147147	1.3 4.21.098765432109876543197653197538383838383838383838383838383838383838	4.3 5.3 8.0.8 108 113 127 127 127 138 138 138 138 143 157 167 172	710.739517395172840628468062468024579133333322226 7102.3951739517284062846806246802457213333333222241421333232224544	89112.6913680357 2479146913680357271461505049483891.356809 112346789133333333334445.271461505049483891.356809	15.3 19.4 21.6 23.7 25.0 32.3 36.8 40.1 23.5 68.9 12.3 55.8 40.1 36.8 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40

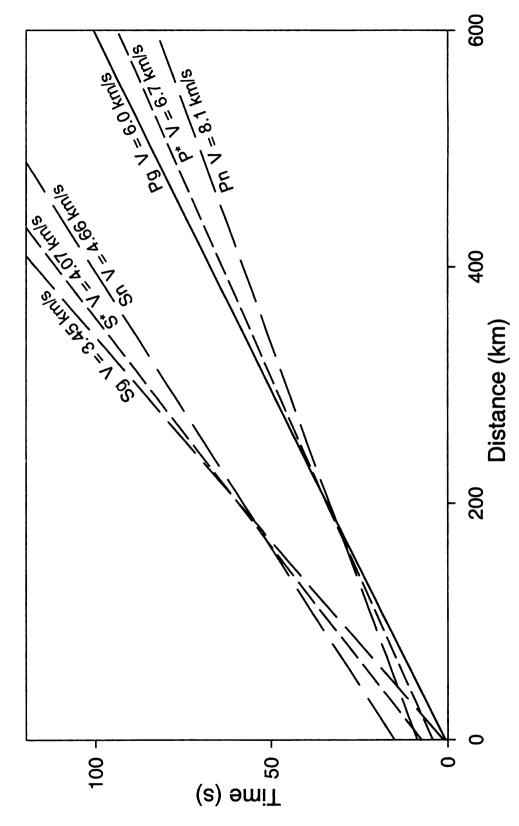


Figure 1-13. Travel time curves used for earthquake locations in the Magadan network. These curves are calibrated for a hypocentral depth of 5 km.

time curves depicted in Figure 1-13 reflect only the thin high velocity planes. It is unclear how the initial time offset of the seismic phases at a distance of 0.0 km is determined. The time offset at 0.0 km is not calculated using the layer velocities in the model applied to a vertical path. At 0.0 km distance, there should be no arriving P* or Pn phases but only reflections from the boundaries. Reflections on the travel time curve refractions branching off asymptotically, not merely be extensions of the refraction travel time curve as depicted.

In the computer locations, the depth is usually constrained if the first depth estimate is greater than 30 km. In the published bulletins with Magadan network data, if no depth is listed, it is assumed to be 5 or 6 km. In the location procedure, no station corrections are used and station elevation is not considered (Gounbina, pers. comm.).

The unpublished Yakutsk bulletin provided a significant amount of additional data for earthquakes in the Magadan Region. This supplemental data is not included in any of the published bulletins containing Magadan network data, as it was not exchanged with the Magadan EMSD. Historically, the Magadan network only had access to data from the Yakutsk network station in Ust'Nera. However, the reported phases and arrival times for Ust'Nera listed in the Yakutsk unpublished bulletin were often slightly different (within 2.0 sec.) than the data reported to Magadan. The discrepancy is a result of Magadan receiving the preliminary Ust'Nera station bulletin with times and phases determined by the Ust'Nera station operator. The phases and times of arrivals in the unpublished Yakutsk data represent the final interpretation, which is done in conjunction with other records by one interpreter at the network headquarters in Yakutsk. The final interpretation for Ust'Nera phases and arrival times is used in the database.

There are some similar problems with data supplied to global databases, such as ISC, for events occurring in the Magadan region. Often preliminary time picks are reported for stations in the Magadan network (MGD, MAG, and SEY) with high residuals. This is often a result of a secondary Pg phase being reported as a first arriving Pn phase. In these cases the phase and time from the unpublished data is used, as they are not derived from preliminary seismogram analysis.

For data, hypocenter parameters were primarily taken from Zemlet and Materialy (1963-1990) and unpublished network bulletins (1991-1998). Phase data and arrival times for events larger than K-class of 9.5 were taken from Materialy (1970-1990). Phase data and arrival time for smaller events are from the Far East Bulletin (1972 and 1974) and unpublished Magadan network bulletins (1977-1990). All data since 1990 is from unpublished network bulletins. For several events along the boundary with the Yakutsk network supplemental arrival times were read from Yakutsk seismograms.

In comparison of data from the four primary sources, *Materialy, Zemlet, Far East Bulletin*, and the unpublished network bulletin, there are some variations found. From 1972-1982, the unpublished network bulletin and the *Far East Bulletin* contain identical origin times and hypocenters, which are sometimes different than those found in *Materialy* and *Zemlet*. This may be a result of events being relocated by those who produce the *Materialy* bulletin. The seismicity catalog in *Zemlet* is identical to that in *Materialy*, except for not listing events smaller than a K-class of 8.5. Since 1983, all four sources contain identical event parameters. For all years, events with statistically poor locations listed in *Materialy* and *Zemlet* have origin times rounded to nearest second and coordinates to the nearest 0.1

degree. For these events, the unpublished network bulletin and *Far East Bulletin* give origin time to 0.1 second and coordinates to 0.01 degree.

A linear regression relating K-class for the Magadan network to ISC magnitude is shown in Figure 1-14. The relationship determined is

$$K = 2.84 + 2.03 (M) \tag{1-3}$$

where K is K-class and M is magnitude. This is somewhat different than the relationship

$$K = 4.3 + 1.8 (M)$$
 (1-4)

which is cited by Andreev et al. (1967), which does not fit the data (Figure 1-14).

Data of Station Iul'tin (ILT) and the Magadan EMSD Chukotka Network

Small events occurring in the Chukotka region were undetected until 1966, when seismic station Iul'tin (ILT; Figure 1-15; Table 1-6) opened in Chukotka. ILT was operated by the Institute of Physics of the Earth from 1966 until mid-1995. Chukotka epicenters reported in Kondorskaya and Shebalin (1982; NCSE) from 1966 to 1974 and Zemlet (1966-1982) are single station locations from ILT. These single station locations determine epicentral distances from S-P time differences and obtain azimuth from the polarization of the first arrival on both horizontal components (Lazareva, 1975). This has led to some difficulties for interpretation of the data. First, there is a clear unnatural looking linear trend of epicenters to the north and south of the station (Figure 1-15), indicating possible poor locations. Second, analysis of the epicenter cluster to the northwest of ILT has shown that they are explosions misidentified as tectonic events (Figure 1-15; See Chapter 2). These events are listed as explosions in the compiled seismicity catalog. Analysis of some of these

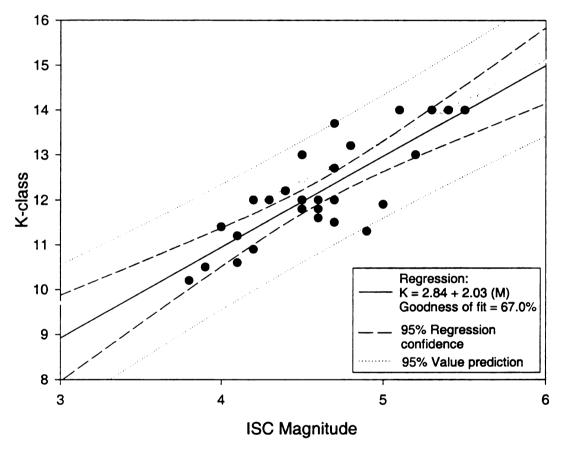
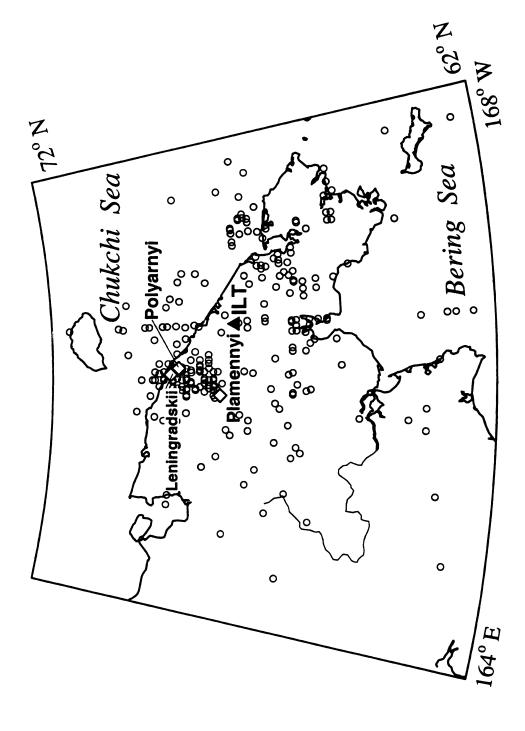



Figure 1-14. Relationship between K-class and ISC reported magnitude in the Magadan network. The heavy gray line depicts the K-M relationship cited by Avdreev et al. (1967) for the Magadan region.

northwest of Iul'tin is most likely explosion contamination (See chapter 2). Major mine locations are also shown. Figure 1-15. Seismicity located by station Iul'tin (ILT) from 1966-1982. The large cluster of seismicity to the

Table 1-6. Permanent seismic stations to operate in Chukotka. All but station Iul'tin were operated by the Magadan EMSD. Station Uelen was abandoned shortly after opening because noise prevented the return of any useful data.

English Code	Russian Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
ANSS	АНД	Anadyr-1	64.77	177.57	40	11.80	1.89	3
ANYS	АНД	Anadyr	64.734	177.496	55	4.89 9.96	7.93	1
BILS	БЛБ БЛ Н	Bilibino	68.059	166.449	283	8.81	4.92	1
BILL	BILL	Bilibino GSN	68.065	166.452	299	8.95.		1
EGVS	ЭГВ	Egvekinot	66.323	179.127W	18	90	94	1
ILT	илт	Iul'tin	67.87	178.74 W	235	3.66	7.93	1
MKI	МАЙ	Maiskii	68.97	173.71	261	8.82	6.94	1
MKVS MKN	МРК	Markovo	64.68	170.41	25	10 .86	4.92	1
PVD	ПРВ	Provideniya	64.424	173.226W	25	9.80	12 .93	G
		Uelen	66.16	169.84 W	5	81	82	1

epicenters are of reasonable quality given the difficulties of single station locations (Table 1-7; See the Western Alaska network section later in this chapter).

The Chukotka regional network contained six seismic stations which were operated from 1981 to 1993 by the Magadan Experimental Methodological Seismological Division (MEMSD; Figure 1-16: Table 1-6). However, the Chukotka network only operated as an experimental network in 1981 and 1982 and phase data were not compiled. Data were recorded using a galvanometer and photographic paper. A seventh station, located at Uelen (Figure 1-16), operated intermittently for about three months in 1981 but was abandoned due to extreme noise. The station at Uelen also operated with somewhat different instruments (Artamonov and Mishina, 1984). Fifteen epicenters located in Chukotka have been identified as possible explosions from the mining around Polyarnyi, Leningradskii, and Plamennyi (Godzikovskaya, 1995; see Chapter 2). These events are flagged in the database as possible explosions.

Focal parameters from the Chukotka network were determined using the same procedures and seismic velocities as described below for the Magadan network. Arrival times from station ILT supplemented data from the Chukotka network in analysis and were included in the Russian phase bulletins. Unfortunately, in 1993, all seismic stations in Chukotka were closed because of financial constraints, although Anadyr (ANYS) was reopened in 1996 with assistance from the Chukotka regional government. In 1995, a new GSN station was opened in Bilibino by IRIS.

Hypocenteral parameters were primarily taken from Zemlet (1966-1982) and Materialy (1983-1990). Occasionally, the Zemlet and Materialy bulletins disagree on whether longitude is east or west. When compared with the unpublished network bulletin

Table 1-7. Comparison of origin times and epicenters for earthquakes located by ILT, the Western Alaska network (WAK), and those relocated in this study.

Date	ILT Time and Epicenter	WAK Time and Epicenter	Relocation Time and Epicenter
April 06, 1981	23 33 39.	23 34 06.5	23 33 48.4
	67.1 N	66.310 N	67.37 N
	174.0 W	169.871 W	172.48 W
April 06, 1981	23 45 36.	23 46 23.9	23 45 45.0
	67.1 N	64.089 N	67.40 N
	174.0 W	168.019 W	172.55 W
April 07, 1981	07 08 29.	07 09 50.6	07 08 37.61
	67.1 N	65.943 N	66.68 N
	174.0 W	168.642 W	174.15 W
April 07, 1981	07 14 52.	Data Acquired But	07 16 03.0
	67.1 N	No Epicenter	66.65 N
	174.0 E	Calculated	174.08 W
January 16, 1982	12 35 15.6	12 35 08.0	12 35 09.9
	64.0 N	64.774N	64.80 N
	169.5 W	171.405 W	170.84 W

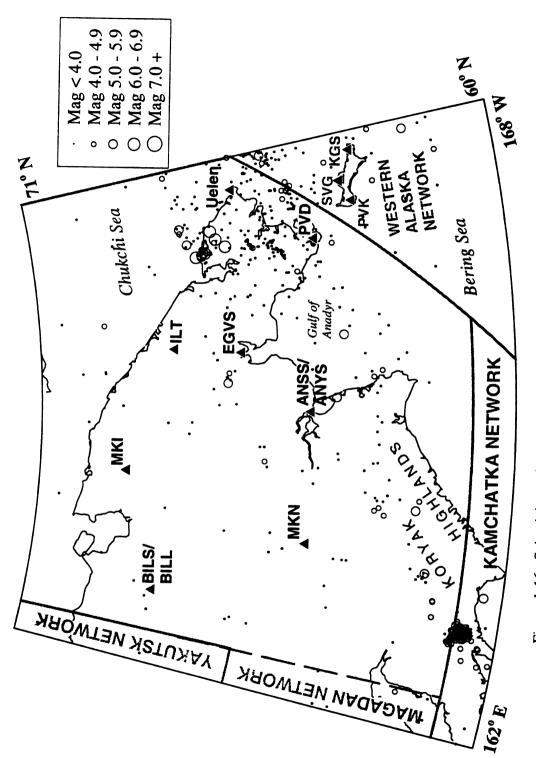


Figure 1-16. Seismicity and seismic stations of the Chukotka network.

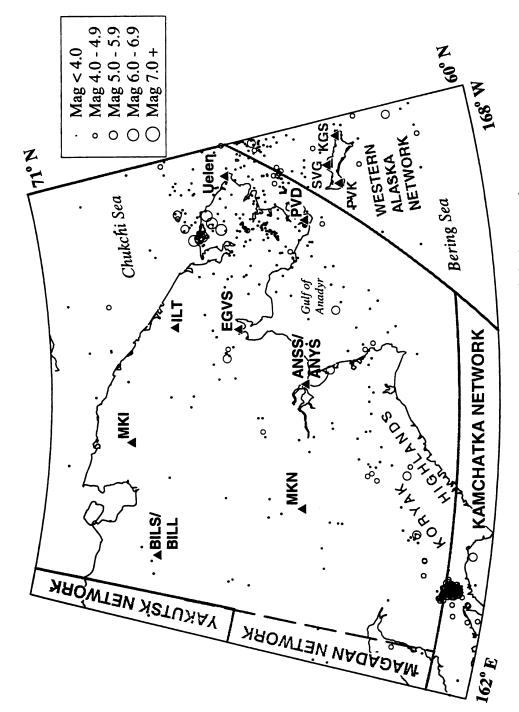


Figure 1-16. Seismicity and seismic stations of the Chukotka network.

and a close look at the arrival times, Zemlet is usually found to be incorrect. Materialy (1983-1990) contains phase data and arrival times only for events larger than K-class of 9.5. The unpublished Magadan network bulletins (1983-1990) contain phase data for all events. All data since 1990 is from unpublished network bulletins. For approximately 50 events, phase data and arrival times from the Chukotka network were supplemented with data from Alaskan stations (primarily Anvil Mountain; AVN). In comparison of data from the four primary sources which contain Chukotka data, Materialy, Zemlet, Far East Bulletin, and the unpublished network bulletin, all are found to report the original hypocenter parameters determined by the Magadan network. The only exception being events with statistically poor epicenters. For these events, the unpublished network bulletin and Far East Bulletin give hypocenter parameters to 0.1 second for origin time and 0.01 degree for coordinates. Origin time is rounded to nearest second and coordinates to nearest 0.1 degree in Materialy and Zemlet.

A linear regression relating K-class to ISC magnitude for the Chukotka region is shown in Figure 1-17. The relationship determined is

$$K = 8.02 + 1.00 (M) \tag{1-5}$$

where K is K-class and M is magnitude. This relationship is anomalous when compared to other regions discussed below. However, the poor fit to the data should be noted. Kondorskaya and Shebalin (1982) citing Rautian (1960) report a relationship of

$$K = 6.5 + 1.5 (M)$$
 (1-6)

between K-class and magnitude for Chukotka, which was also considered anomalous (Figure 1-18). Addition of magnitudes from the Western Alaska network and K-class determinations from station ILT for events located by both (Table 1-7) yield

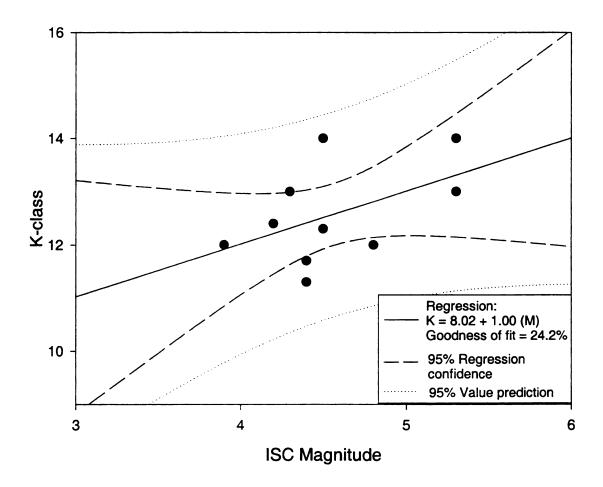


Figure 1-17. Relationship between K-class and ISC reported magnitude in the Chukotka network.

!

F.

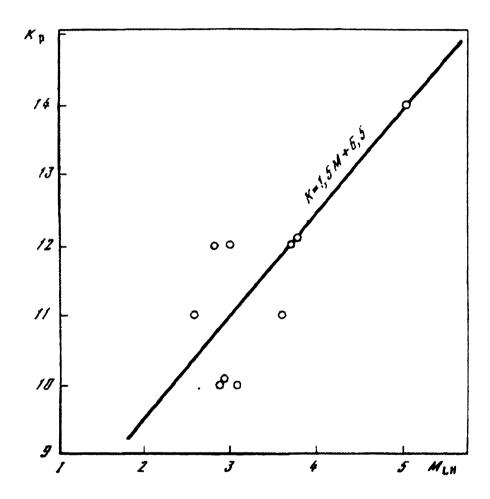


Figure 1-18. Relationship between local magnitude and K-class as reported by Kondorskaya and Shebalin (1982).

$$K = 7.35 + 1.13 (M)$$
 (1-7)

(Figure 1-19). However, the poor locations by the Western Alaska network result in an underestimation of magnitude for all but the January 16, 1982 event, as the epicenters were assumed to be too close to the stations. Use of only the January 16, 1982 event in the regression yields

$$K = 4.58 + 1.73 \,(M)$$
 (1-8)

which is probably the best determination possible given the available data set (Figure 1-20). This relationship is closer to the regressions determined for other regions discussed below.

Overall, the difficulty in determining a relationship between K - class and magnitude for Chukotka may be a result of poor data.

Northeast Russia Test Network

In the mid 1960's (1962 - 1967) a number of experimental seismic stations were established throughout northeast Russia to determine background seismicity levels to aid in developing permanent seismic networks (Mishin, 1967; Table 1-8). The distribution of seismicity located using this "test network" (Figure 1-21) was instrumental in site selection for future seismic stations, particularly in the Magadan region and Chukotka. Most of the temporary stations were deployed between six months and one year. Because only a few stations were deployed at any given time, the test network did not locate a large number of events. Hypocenters obtained from the test network are from Andreev (1967) and are included in the database. Arrival times and phase data for the recorded events are not available.

Figure 1-19. Relationship between K-class and magnitude in the Chukotka network. Magnitudes greater than 3.5 are from the ISC catalog, while those less than 3.5 are from the western Alaska network. The January 16, 1982 event is depicted as a square. ISC magnitudes are M_b , while those from the Western Alaska network are M_l .

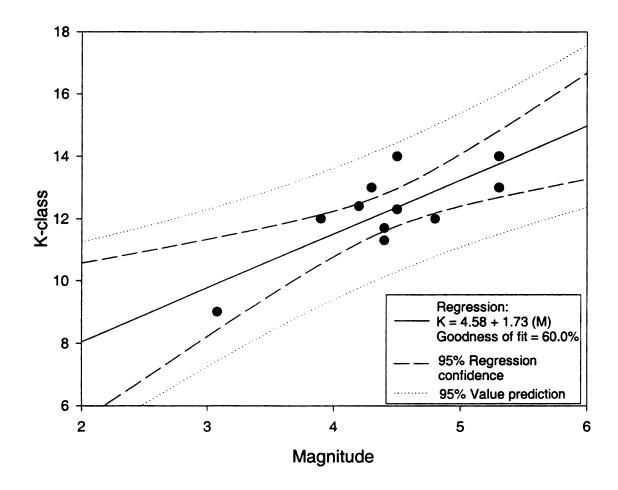


Figure 1-20. Relationship between K-class and magnitude in the Chukotka network. Magnitudes greater than 3.5 are from the ISC catalog, while the remaining magnitude 3.1 event is from the Western Alaska network.

Table 1-8. Seismic stations and station parameters from the temporary network established in northeast Russia in the mid 1960's. Parameters from Mishin (1967).

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
AMG	АМГ	Amguema	67.05	178.88W	150	11.65	4.66	2
ANC	AHC	Anyuisk	68.34	161.56	10	6.64	3.65	1
BLG	БЛГ	Balygychan	63.91	154.09	139	7.63	6.64	1
BL1	БЛБ	Bilibino-1	68.04	166.44	260	8.64	1.65	1
GRM	ГРМ	Garmanda	62.18	159.08	140	12.66	5.67	1
ILR	ИЛІР	Ilirnei	67.26	167.96	350	10.64	10.65	1
LMT	ЛМТ	Lamutskoe	65.54	168.85	178	4.65	10.65	1
SMT	ШМТ	Mys Shmidta	68.88	179.38W	5	4.65	1.66	1
NK1	нль	Nel'koba	61.34	148.81	531	6.63	1.64	1
OL1	ОМЛ	Omolon-1	65.25	160.52	260	12.63	1.65	1
OS1	ОМС	Omsukchan	62.52	155.77	527	1.63	1.64	1
VRN	ВРН	O. Vrangelya	70.94	179.62W	10	2.66	4.66	3
PVK	ПВК	Pevek	69.70	170.27	20	5.65	11.65	1
PV1	ПРВ	Provideniya-1	64.45	173.18W	20	1.65	6.66	2
S-K	С-К	Srednekolymsk	67.46	158.71	30	4.64	12.64	1
STK	СТК	Stekol'nyi	60.046	150.730	221	7.64	5.66	1
U-B	У-Б	Ust' Belaya	65.51	173.28	20	11.66	5.67	1
SRD	СРД	Ust' Srednikan	62.44	152.32	580	12.62	11.63	1
VNK	внк	Vankarem	67.84	175.85W	10	3.66	6.66	1
ZY1	3РН	Zyryanka-1	65.74	150.89	37	1.64	10.64	1

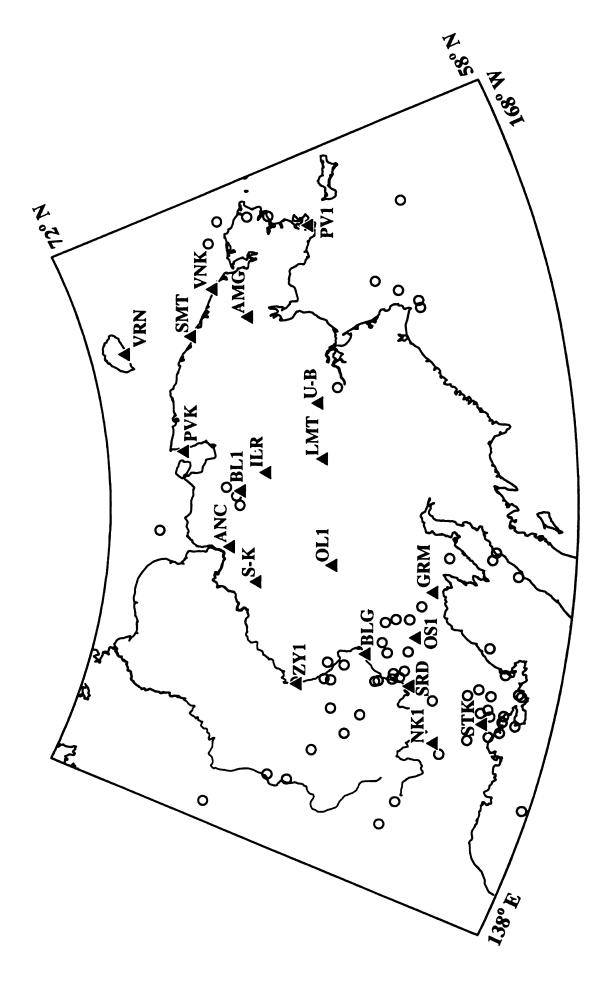


Figure 1-21. Seismicity and seismic stations of the northeast Russia temporary network (1962-1967).

Western Alaska Network

The Western Alaska Network was operated from January 1977 through June 1982 (closed for 1980), in the region of the Seward Peninsula, Alaska (Figure 1-22). The network contained 20 field seismic stations, and two permanent stations, Anvil Mountain (AVN) and Granite Mountain (GMA; Table 1-9), which were recorded on develocorder film in Nome, Alaska (Biswas et al., 1980, 1983). Granite Mountain was closed in April of 1978. A total of 1,010 earthquakes were located by the network, indicating high levels of microseismicity (Biswas et al., 1983). The largest earthquake located by the network was a M_L 5.2 near Kotzebue (station KTA). Most events located are in the southern half of the Seward Peninsula and in the Kotzebue Sound region, with a lesser number in the Bering Strait and Chukotka. Focal parameters were determined using first arrival P times and S-P time differences. From July 1982 until 1998, the only seismic station operating in western Alaska was AVN (Figure 1-22). In 1998, a new seismic station was opened at Tin City, on the western tip of the Seward Peninsula.

For database assembly, an attempt was made to supplement western Alaska data from 1981 and 1982 with arrival times from the Chukotka network, which was being set up at the time. Although seismograms for more than 100 events were investigated, only a few useful arrival times were acquired, with most events showing only weak emergent arrivals. This is a result of the Chukotka stations being poorly optimized for good recording (amplification, noise, etc.).

A few events located by the Western Alaska network were also located by the IPE station at Iul'tin (ILT). Comparison of the epicenter locations indicates that the differences in locations are consistently greater than 100 km and in one case approaches several hundred

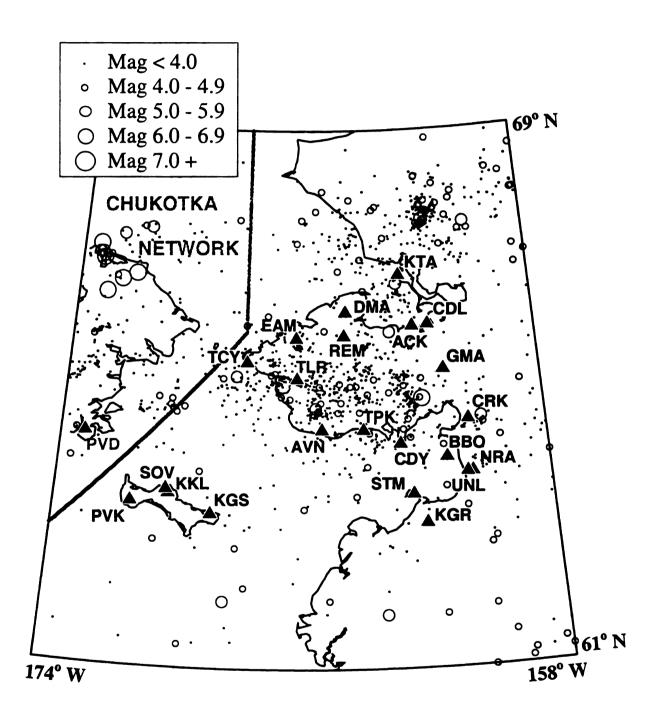


Figure 1-22. Seismicity and seismic stations of the western Alaska network.

Table 1-9. Seismic stations and station parameters of the Western Alaska network. Parameters from Biswas et al. (1980), and Biswas et al. (1983).

Station Name	Code	Latitude	Longitude	Elevation (m)	Satellite Delay (Sec)	Site Geologic Formations
Alder Creek	ACK	66.083	162.195	377		Permafrost Metamorphic
Anvil Mt.	AVN	64.56	165.37	323		Metamorphic
Besboro Is.	вво	64.12	161.30	244		Volcanic
Cape Darby	CDY	64.34	162.79	335		Volcanic
Candle Creek	CDL	66.1	161.66	75	0.54?	Siliceous Metasedimentary
Christmas Creek	CRK	64.67	160.53	680		Sedimentary
Devil Mt.	DMA	66.30	164.52	238	0.54	Volcanic
Ear Mt.	EAM	65.92	166.24	701	0.54	Igneous
Granite Mt.	GMA	65.43	161.23	858		Volcanic
Kogog River	KGR	63.16	162.05	320		Volcanic
Kanguksam Mt.	KGS	63.30	168.99	488	0.54	Volcanic
Kookooligit Mt.	KKL	63.59	170.37	655	0.54	Volcanic
Kotzebue	KTA	66.84	162.59	24	0.54	Permafrost Sedimentary
North River	NRA	63.89	160.51	107	0.54?	Metamorphic
Poovook	PVK	63.44	171.55	411	0.54	Volcanic
Remote	REM	65.95	164.58	358	0.54?	Basalt
Savoonga	sov	63.65	170.45	198	0.54	Volcanic
Stuart Is.	STM	63.59	162.43	140		Volcanic
Tin City	TCY	65.56	167.95	72	0.54	Igneous
Teller	TLR	65.32	166.21	122	0.54	Metamorphic
Topkok Pt.	TPK	64.55	163.99	122		Volcanic
Unalakleet	UNL	63.89	160.67	122		Volcanic

kilometers. Because epicenters determined from the Western Alaska network data were determined using several stations, the assumption would be that locations from the Western Alaska network are probably better than the single station locations calculated from ILT data alone. This assumption is shown to be false when the arrival times from the Western Alaska network are used in relocating the events. Relocated events fall closer to the single station ILT locations than the Western Alaska network locations (Table 1-7). Origin times from the relocations are also closer and more consistent with ILT origin times. The relocations use original network picked Pn arrivals supplemented with secondary Pg and Sg arrivals picked from the original develocorder film seismograms. Output from the relocations is given in Appendix D. Several things may have contributed to poor epicenter determinations in the Western Alaska network. First, only the first arriving P and S phases were picked. For close events, the first arrivals were not differentiated as to crustal phases (Pg and Sg) or mantle refraction phases (Pn and Sn). This ignores the second arriving, but useful, Pg and Sg phases. Second, many of the arrivals picked as first arriving P or S are actually mispicked later arriving Pg or Sg phases. The mispicked phases were not identified in the location process and sometimes result in large errors when using a small number of recording stations. Third, many earthquakes have origin times that are later than the first arrival. This could be a result of bad time picks or a problem with the location procedure used. It appears that when determining locations, all events were run through the location algorithm and the resulting focal parameters were used without attention to individual events or regard to whether the solutions were reasonable. The preceding discussion calls into question the overall quality of the Western Alaska network locations.

Kamchatka Peninsula Network

Klyuchi was the first seismic station to open on the Kamchatka peninsula in 1948, followed by Petropavlovsk in 1951. Most other stations in the network opened in the early 1960's and later (Figure 1-23; Table 1-10). Seismic station histories and parameters given here are less well researched than for the Magadan network because of their lesser impact on the study area. Because of subduction of the Pacific plate under the Kamchatka peninsula, this network monitors the most seismically active region in northeast Russia, as well as activity on many of the peninsula's active volcanoes. The Kamchatka network also records seismic activity to the north of the subduction zone into the southern portion of the Koryak Highlands. As this study is interested primarily in non-subduction related crustal events, only earthquakes in the region north of 56° N (the northern edge of the Pacific subduction zone) are included.

Approximately 5,000 hypocenter locations for the Kamchatka network north of 56° N were taken from the unpublished Kamchatka seismicity catalog for 1962 to 1996. For the Kamchatka network, Zemlet generally lists only events having a K-class greater than 8.5, although this does vary for some years. Earthquake locations were computed by hand up until 1978, when location procedures were computerized (Gordeev, pers. comm.). Along the boundary with the Magadan network in the Koryak Highlands and in Shelikhov Bay, many events were independently located by each network. There seems to have been essentially no exchange of phase data for anything but the largest teleseismically recorded events in these regions. Given a choice, the Magadan network hypocenter is usually preferred over that from the Kamchatka network because the Magadan network generally had better azimuthal station coverage.

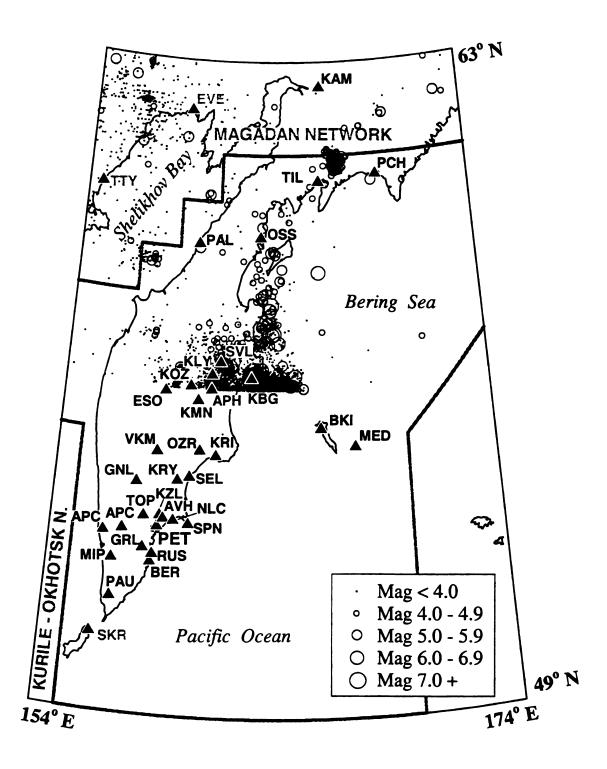


Figure 1-23. Seismicity and seismic stations of the Kamchatka network. Only seismicity north of 56° north are included. A few stations associated with volcano monitoring are omitted for clarity.

Table 1-10. Seismic stations and station parameters of the Kamchatka network.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
APC		Apacha	52.925	157.131		2.90		1
APN	АПХ	Apakhonchich	56.00	160.84	700	64	80	1
AVH	АВЧ	Avacha - old	53.07	158.5		63	10.76	-
AVH	АВЧ	Avacha - new	53.265	158.738	900	7.76		1
BER	БР3	Berezovaya	52.27	158.433		81	94	1
вкі	БРН БРГ	Bering (Nikol'skoe)	55.195	165.99	40	62		1
BGC		Bogachevka	54.850	160.900		64	65	1
BLC			53.193	158.800		76		1
CIR			56.127	160.725	1600	10/98		1
ESO	эсс	Esso	55.925	158.700	490	65		1
GNL	ГНЛ	Ganali	53.942	157.620	1200	1.88		1
GRL	ГРЛ	Gorely	52.552	158.080	1250	7.80		1
INS		Institut Vulkanologii	53.066	158.605	175	11.81		1
KMN		Kamenistaya	55.76	160.240	1100	10.90		1
KAM		Kamenskoe	62.456	166.210		94		1
КВТ			56.208	162.819	200	10.97		1
KII	KAP KPM	Karymski - old	54.030	159.480	790	7.74	86	1
KRY		Karymski -new	54.036	159.449	900	9.89		1
KLY	клч	Klyuchi	56.313	160.852	80	48 2.89		1
		Kolokol'chik				67	67	-
KRT		Korito	55.966	160.222	1000	10.97		1
KRK	KPK	Koryak	53.292	158.636	1050	7.75		1
KZL	кзл	Kozelskaya	53.201	158.894	950	76	84	1

Table 1-10 (cont'd).

KOZ	КЗР	Kozyrevsk	56.058	159.872	40	61	9.89	1
KZY		Kozyr	56.070	159.900	450	11.89		1
KPL			56.592	161.296	1700	86	90	1
KRS		Krestovskii	56.214	160.558	1200	7.87		1
KRI	КРН	Kronoki	54.596	161.134	5	8.66		1
KBG	КБГ КБ КРБ	Krutoberegovo	56.255	162.705	10	68		1
LGN			56.083	160.690	2500	9.99		1
MED	мдн	Mednyi	54.786	167.556		73	75	1
MIP		Mal. Ipelka	52.276	156.758	370	8.97		1
MLK	МЛК	Milkovo	54.700	158.630	155	62 10.89	63 93	1
NLC	нлч	Nalychevo	53.171	159.345	5	67 3.69 3.84	67 12.69	- - 1
oss	осс	Ossora	59.25	163.065	10	73		1
OZR	ОЗР	Ozero	54.692	160.392		10.66	77?	1
PCH		Pakhach	60.558	169.125		92	94	1
PAL		Palana	59.093	159.963		94	96	1
PAU	ПЖТ	Pauzhetka	51.467	156.810	110	11.61		1
PET	ПТР	Petropavlovsk	53.024	158.650	150	51		1
PDK	пдк	Podkova	56.140	160.780	800	83?		1
RUS	PYC	Russkaya	52.432	158.507	75	12.87		1
SDL		Sedlovina	53.278	158.884	1235	9.91		1
SEL	СМЛ	Semlyachik	54.12	159.98		11.61	7.74	1
SMA			53.263	158.801	1235	2.91		1
SPN	ШРН	Shipunski	53.107	160.011	170	4.85		1
SRD			56.317	159.717	800	1.92		1
SVL	ШВЛ	Tsiveluch	56.583	161.225	900	10.80		1

Table 1-10 (cont'd).

	TIL		Tilichiki	60.433	166.075		94	96	1
	TOP	דסח דעוד	Topolovo	53.230	158.041	155	11.61	93	1
	UGL			53.209	158.824	1140	8.92		1
	UBL		Ust' Bolsheretsk	52.842	156.308	20	11.61	64	1
I	VDP	вдр	Vodopadnii	55.770	160.220	1060	77	91	1
\int	VKM		Verkhene Kamchatsk	54.627	158.473	170	10.66	71	1
Z	LN			56.018	160.804	1100	8.88		1

In comparing events listed both in Zemlet and the unpublished Kamchatka catalog, it is found that many events prior to 1968 and after 1983 sometimes list different hypocenter parameters for the same event. Events since 1983 have been relocated by the Kamchatka network to improve the uniformity of the locations and remove errors, which results in the differences between the catalogs for those years (Gordeev, pers. comm.). Events prior to 1968 may also have been relocated at some time in the past, resulting in a similar situation.

The velocity structure used for the Kamchatka network locations is taken from Kuzin (1973) and Kuzin et al. (1974). A linear regression relating K-class for the Kamchatka network to ISC magnitude was found to be

$$K = 3.74 + 1.61 (M)$$
 (1-9)

Phase data for Kamchatka network events are not included in the database.

Regional Network

The Amur network monitors seismicity between the Eurasian plate and the Amur Plate. The Sakhalin network monitors seismicity along the boundary between the Amur plate Okhotsk block. Unfortunately, this study has not worked directly with the the Amur Ork, thus first hand knowledge of operational procedures and unpublished data were not available. As reported in the Far East Bulletin, earthquakes are located graphically. Velocities used by the Amur network for locating earthquakes are based on average velocities for the Irkutsk region, assuming a crustal thickness of 40 km. Velocities used are:

$$Pg = 6.15 \text{ km/s}$$
 $Sg = 3.55 \text{ km/s}$ $Pn = 7.9 \text{ km/s}$ $Sn = 4.4 \text{ km/s}$

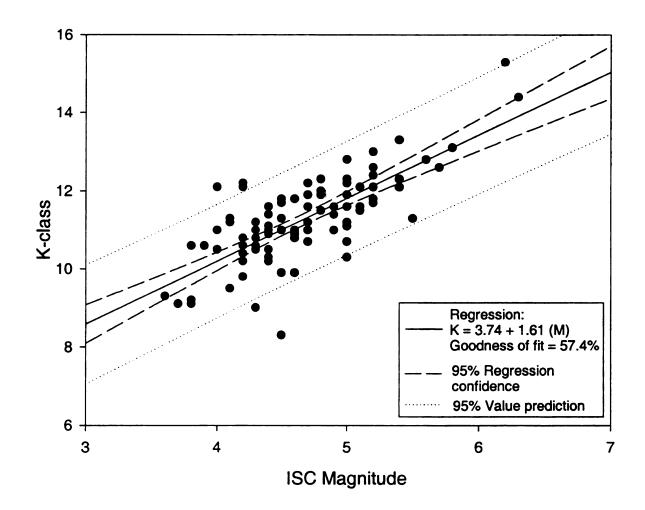


Figure 1-24. Relationship between K-class and ISC reported magnitude in the Kamchatka network.

Permanent seismic stations in the Amur network region first opened in the early 1970's (Table 1-11; Figure 1-25). Seismicity data from the Amur network comes primarily from the SSR catalog and the Far East Bulletin for events prior to 1979. Since 1979, event parameters are taken from the SSR catalog, Materialy, Zemlet, and the Far East Bulletin. Since 1982, many additional events, not found in other sources, which occured in the Amur region are available in the unpublished Yakutsk network bulletin. As with other networks, statistically poor events have origin times rounded to the nearest second and epicenters rounded to 0.1 degree when listed in the SSR catalog, Zemlet or Materialy. In the Amur region, SSR catalog reports event parameters the same as Zemlet, except K-class is converted to magnitude according to the relation

$$K = 3.99 + 1.80(M) \tag{1-10}$$

where K is K-class and M is magnitude. This has essentially the same slope, but a slightly lower K-class axis intercept than the relationship between reported K-class and ISC magnitude (Figure 1-26) which was determined in this study to be

$$K = 4.69 + 1.83 (M)$$
 (1-11)

Phase data from the Amur region is taken from the Far East Bulletin (1972, 1974, 1985-1988), Materialy (1979-1990), and unpublished Yakutsk network bulletins (1982-1995). Some phase data from the Sakhalin, Yakutsk, and Irkutsk network stations are given in the published bulletins of Amur region events. The unpublished Yakutsk network bulletins also add a significant amount of phase data to that available in published sources for the Amur region. Hypocenters calculated by the Yakutsk network often differ greatly from those determined by the Amur network, which are found in published sources. Upon

Table 1-11. Seismic stations and station parameters for the Amur network.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
BMKS	БМН	Bomnak	54.705	128.847	325	3.74		1
EKI	ЕКМ	Ekimchan	53.067	132.945	485	11.79		1
GRZ GRT	ГРТ	Gornotaezhnoe	43.70	132.15	220	7.90		3
GRD GRV	ГРВ	Gornovodnoe	43.70	134.733	270	7.88		1
GNY	ГРН	Gornyi	50.762	136.455	500	12.78		2
KNN KNG	хнг	Khingansk	49.122	131.192	520	7.80	4.84	1
KIRS	KPC	Kirovskii	54.428	126.983	440	4.74		1
KLDS	клд	Kul'dur	49.205	131.642	425		,	1
LZR	ЛЗР	Lazarev	52.2	141.493	120	12.80		2
NKL	нкл	Nikolaevsk-Amur	53.142	140.783	25	9.70		1
RMNS	РМН	Romny	50.855	129.4	210	10.78	87	2
TEI	TPH	Ternei	45.067	136.6	30	7.82		2
VLA	влд	Vladivostok	43.12	131.893	75	29 34	31	-
YASS	ясн	Yasnyi	53.29	127.983	310	1.75		1
ZEA	ЗЕЯ	Zeya	53.755	127.293	270	6.76		1
ZMN	3МН	Zimniki	45.475	134.258	150	7.88		2
UNYS	УНЮ	Unknown						

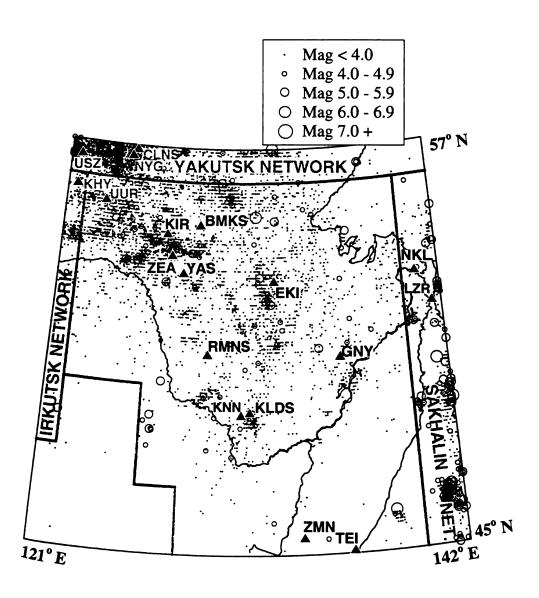


Figure 1-25. Seismicity and seismic stations of the Amur network.

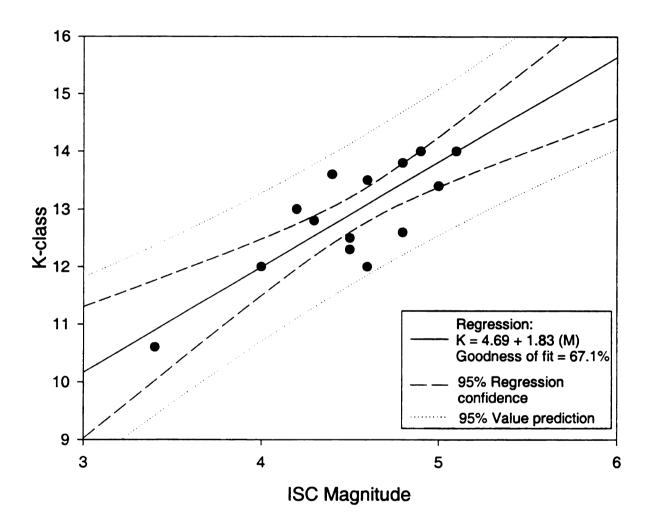


Figure 1-26. Relationship between K-class and ISC reported magnitude in the Amur network.

relocation of the events with the combined data set, parameters consistently match better with the Amur network locations.

Sakhalin Island Network

Seismic stations were first established on Sakhalin Island in the early part of the century by the Imperial Japanese government. These stations were closed in 1945 when Sakhalin was occupied by the Soviet Union following the end of World War II. Russian network stations were first deployed in the late 1960's, which led to the establishment of the Sakhalin network headquartered in Yuzhno Sakhalinsk (Table 1-12; Figure 1-27). The Sakhalin network monitors seismicity along the boundary between the Amur plate and Okhotsk block. Seismicity for Sakhalin was obtained from Zemlet, the Far East Bulletin, and the SSR catalog. The Far East Bulletin contains many smaller events not found in the other catalogs. Deep focus events under southern Sakhalin Island due to subduction of the Pacific plate are not included in the database.

Unfortunately, this study has not worked directly with the Sakhalin Island network, thus first hand knowledge of operational procedures and unpublished data were generally not available. As reported in the *Far East Bulletin*, earthquakes are located graphically with circles on maps. The crustal model used for calculation of travel time curves uses a two layer crust over the Moho. Total crustal thickness is 33 km, with the Conrad discontinuity at a depth of 15 km. Velocities are reportedly taken from Jeffreys (assumed Jeffreys and Bullen, 1940, based on context). Velocities used are:

Pg = 5.6 km/s Sg = 3.3 km/s P* = 6.4 km/s S* = 3.9 km/s Pn = 7.75 km/s Sn = 4.42 km/s

Table 1-12. Seismic stations and station parameters for the Sakhalin Island network.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
		Bykov	47.317	142.567	40	6.68	10.68	-
ESU		Esutoru (Uglegorsk)		142.033	100	12.39	45	-
		Firsovo	47.65	142.567	20	8.79	11.79	-
		Gornozavodsk	46.567	141.85	50	12.71	6.72	-
		Korsakov				51	1.52	-
		Kotikovo	49.133	144.25	10	7.69	9.70	-
		Lesogorsk	49.442	142.2	40	7.69	10.69	-
		Lopatino	46.6	141.825	40	4.69	10.69	-
		Moneron	46.258	141.25	40	9.71	5.72	-
		Nizhnii Armudan	50.817	142.533	150	9.66	4.69	-
	нкл	Nogliki	51.817	143.15	25	10.64	12.64	-
						88		-
NVV	НВР	Nyvrovo	54.317	142.617	5	11.81		-
		Ogon'ki	46.775	142.383	70	6.68	9.68	-
ОКН	OXA	Okha	53.55	142.933	24	12.58	65	-
		Okha (New)				65		-
ООТ		Ootomari (Korsakov)	46.65	142.767	36	09	45	-
OTI		Otiai (Bykov?)	47.325	142.783	20	2.34	45	-
		Ozhidaevo	47.033	142.392	220	76	77	-
		Pravda	46.942	142.008	40	9.71	11.71	-
		Shebunino	46.433	141.858	40	9.71	11.71	-
SKK		Shikka (Shikuka) (Poronaisk)	49.233	143.117	2	28	45	-
		Sovetskaya Gavan	48.967	140.283	50	6.69	11.70	-

Table 1-12 (con't).

		Tikhmenevo	49.2	142.9	150	6.69	10.69	-
		Toyohara (Yuzhno)				43	45	-
TYV TMSS	ТМС	Tymovskoe	50.85	142.65	100	4.69		-
UGL	УГЛ	Uglegorsk	49.083	142.083	20	51		-
		Utesnoe	46.6	143.075	20	7.73	9.79	-
		Vzmor'e	48.85	142.517	20	7.82	12.82	-
		Yablochnyi	47.167	142.067	20	6.68	9.68	-
YSS1		Yuzhno Sakhalinsk (Novo Aleks-androvsk)	47.02	142.717	40	10.47	57	-
YSS	ЮСХ	Yuzhno Sakhalinsk	46.958	142.762	100	57		1

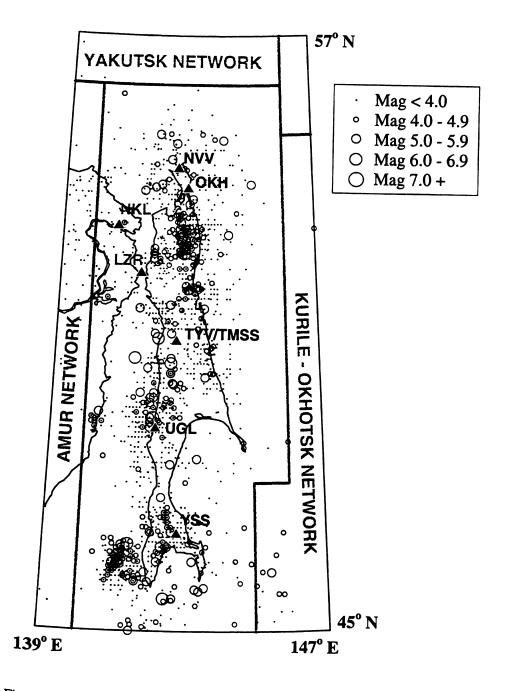


Figure 1-27. Seismicity and seismic stations of the Sakhalin network.

A linear regression relating K-class for the Sakhalin network to ISC magnitude was found to be

$$K = 3.84 + 1.31 (M)$$
 (1-12)

where K is K-class and M is magnitude. The regression and data are shown in Figure 1-28. Phase data, although available in the *Far East Bulletin*, was not entered into the database of this study. Earthquakes located by the Sakhalin network use data from the Amur network, and generally have a large number of P* and S* phases reported, indicating that Sakhalin Island may have a well developed Conrad discontinuity.

Irkutsk Regional Network

Seismic stations in the Irkutsk region were first established in the 1950's, with the exception of Irkutsk, which opened in 1901 (Table 1-13; Figure 1-29). The Irkutsk network monitors seismicity between the Eurasian and Amur plates, and includes the Baikal rift. The formal study area includes only a small portion of the Irkutsk network (south of 56° N between 120° and 122° E) and all seismicity was compiled for this area only. Epicenter data for the portion of the Irkutsk network of interest is taken from *Materialy*. Seismicity for the remaining portion of the Irkutsk network as listed in *Materialy* between 1970 and June, 1972 are included. Phase data for the Irkutsk network events are not included in the database. The relationship between K-class and ISC magnitude was not determined for the Irkutsk network.

CONCLUSION

The final compiled seismicity map with plate boundaries, network boundaries, and seismic stations is shown in Figure 1-30. Plate boundaries shown are primarily determined

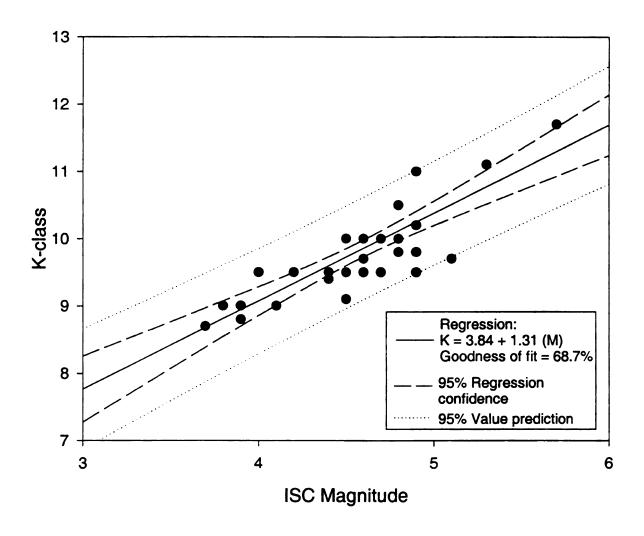


Figure 1-28. Relationship between K-class and ISC reported magnitude in the Sakhalin network.

Table 1-13. Seismic stations and station parameters for the Irkutsk network.

English Code	Russ. Code	Station Name	Lat.	Long.	Elev. (m)	Date Open	Date Closed	Qu
ALL	АЛ	Alla	54.688	110.82	550	10.63	5.70	1
ALY		Alygdzher	53.633	98.216	920	1.66	1.67	1
AGK		Angarakan	56.348	113.67	1430	11.76	8.81	1
ARS	АРШ	Arshan	51.908	102.433	840	58		1
BAU		Babushkin	51.717	105.867	470	6.66	9.66	1
BKK		Baikal'sk	51.522	104.133	460	1.64	2.66	1
BGZ	БРГ	Barguzin	53.617	109.633	475	9.61	5.70	1
BRUS		Barluk	54.533	101.717	525	11.60		1
BOD	БДБ	Bodaibo	57.807	114.03	245	11.60		1
BDN	БОД БДН	Bodon	53.713	110.1	540	11.69	83	1
CRS	ЧP	Chara	56.9	118.267	710	11.61		1
CIT	чт	Chita	52.033	113.55	790	6.70		1
DAS		Davsha	54.538	109.503	460	1.64	6.65	1
DOV		Dovochan	56.462	117.533	1094	7.62	9.63	1
EMG		Emegachi	56.567	118.158	960	9.62	4.63	1
G00	ГСН	Gusinoozersk	51.283	106.517	600	11.71	2.72	1
IKN		Irkana	55.867	111.253	480	1.64	3.66	1
IRK	ИРК	Irkutsk	52.272	104.31	467	12.01		1
KAB	КБ	Kabansk	52.05	106.658	465	1.51		1
KRMS		Karam	55.133	107.583	600	1.66	3.66	1
KAIS	XM	Khaim	52.602	108.085	480	10.69	5.70	1
KPC	КПЧ	Khapcheranga	49.707	112.392	950	12.68		1
KVO	KBK	Kovokta	56.133	113.05	1180	81		1
КТВ		Krestovaya	52.665	106.395	560	7.71	9.71	1

Table 1-13 (Con't).

KMO	KMP	Kumora	55.883	111.208	475	9.66		1
KBK		Kurbulik	53.708	109.038	460	1.64	9.65	1
KYA	KXT	Kyakhta	50.35	106.45	760	3.52	5.70	1
LRB		Lurbun	56.63	117.883	780	8.62 5.67	9.63 9.68	1
MOY	мнд	Mondy	51.673	100.993	1300	58		1
MUO		Murino	51.475	104.408	470	8.66	9.66	1
MRU		Maritui	51.783	104.217	520	08	18	1
NMG		Naminga	56.60	118.517	1380	5.67	4.69	1
NMG1		Naminga-1	56.70	118.583	1160	63	63	1
NLY	нлт	Nelyaty	56.492	115.7	470	1.61		1
NSR	НСТ	Nesterikha	53.647	109.708	480	7.70	9.70	1
NKO		Nikola	51.893	104.827	460	7.71	9.71	1
NIZ	H-A	Nizhne Angarsk	55.766	109.55	487	10.61		1
OIM		Oimur	53.333	106.833	460	10.59	60	1
OLK		Ol'khon	53.20	107.342	490	7.69	9.69	1
ONR	ОНГ	Onguren	53.233	107.592	500	88		2
ORA	ОРН	Oran	55.933	113.667	705	9.79		1
ORL	ОРЛ	Orlik	52.517	99.827	1365	2.67		1
OZE	ОЗН	Ozernaya	56.295	113.983	620	9.78		1
PLK		Polovinka	51.798	104.35	470	8.66	9.66	1
sov		Savino	52.543	102.15	720	9.68	8.69	1
SVBS	С-Б	Severo Baikalsk	55.64	109.35	505	78	89	1
SVK	С-М	Severo Muisk	56 .183	113.533	850	11.76		2
SHMS		Shamanka	53.125	105.6	700	8.59	2.63	1

Table 1-13 (Con't).

		<u> </u>						
SRTS		Shara-Tagot	53.005	106.717	500	10.59	60	1
SMKS		Shimki	51.675	102.012	765	11.66	11.67	1
SOL	СЛЦ	Solontsovaya	54.17	108.35	458	79	87	1
SRK	КЛР	Srednii Kalar	55.86	117.38	716	61		1
SDK		Srednii Sakutan	56.898	118.095	750	2.63	10.63	1
suvs	СУВ	Suvo	63.655	110.008	1000	84		1
SYB		Syul'ban	56.605	117.222	1000	6.62	9.63	1
TLY	ТАЛ	Talaya	51.681	103.644	579	11.82		1
ткн	TX	Tokhoi	51.361	106.608	640	11.71	4.73	1
TNL	тнл	Tonnel'nyi	56.283	113.35	820	11.76		1
ZIP	ЦРК	Tsipikan	54.917	113.35	1110	75	2.86	1
TUP	тпк	Tupik	54.425	119.933	630	11.61		1
TRNS		Turan	51.633	101.666	870	12.66	11.68	1
TNKS	тнк	Turikan	56.383	113.108	695	8.81		1
TYD	тнд	Tynda	55.133	123.717	610	7.70	1.72	2
TRG	ТРГ	Tyrgan	52.758	106.342	600	1.60		1
UKT	УКТ	Uakit	55.495	113.62	1140	12.62	75	2
UDK		Udokan	56.75	118.305	810	4.67	4.69	1
UKC	УЛК	Ulyukchikan	53.87	109.598	490	7.70	9.70	1
ULNS	пио	Ulyunkhan	54.867	111.07	560	7.89		2
YOA	УН	Uoyan	56.13	111.77	520	79		1
ZAK	ЗКМ	Zakamensk	50.383	103.292	1125	12.60		1
ZAP		Zapadnyi	56.613	118.433	1600	4.67	8.67	1
ZARS		Zarech'e	52.550	107.15	460	7.59 7.69	60 9.69	1
ZRY		Zarya	57.24	118.917	655	10.59	9.68	2
ZGL		Zhigalovo	54.808	105.15	625	12.67	2.67	1
ZRV	ЖРВ	Zhuravlikha	53.517	109.375	475	7.70	9.70	1



Figure 1-29. Seismicity and seismic stations of the Irkutsk network. Seismicity shown is primarily from 1970 and 1971.

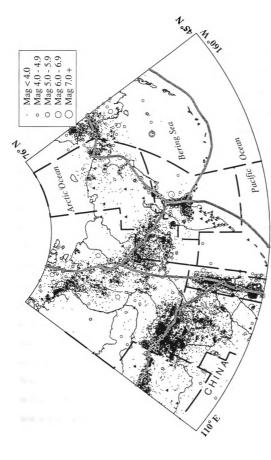


Figure 1-30. Plot of seismicity catalog compiled for northeastern Russia. Plate boundaries are depicted as gray lines, network boundaries as dashed lines, and seismic stations as triangles.

by connecting the largest events. However, in reality, the distribution of microseismicity indicates diffuse plate boundaries, probably having motion partitioned on many individual faults in a complex system, which is consistent with continental deformation (England and Jackson, 1989). Within the individual plate boundaries, there are many localized trends and clusters in the seismicity distribution which have never been studied in detail. However, several of these clusters and trends, particularly in the Amur region, are a result of anthropogenic sources (see Chapter 2). In general, the plate boundaries tend to follow the pre-existing large scale structural trends in northeast Russia, which probably represent structurally weaker, and thus easier to deform, regions. The boundary between the Amur and Eurasian plates trends along the Mongol-Okhotsk suture, which follows the southern edge of the Siberian Platform (Figure I-4). The boundaries along the North American-Eurasian plates and the North American-Okhotsk plates parallels the western edge of the Mesozoic Kolyma-Omolon Superterrane (Figure I-4). The Bering-North American plate boundary appears less diffuse, particularly through the Koryak Highlands, where it parallels the boundaries between some of the Cenozoic accreted terranes. This boundary is discussed extensively in Chapter 5. Finally, the proposed boundary between the Eurasian plate and the Okhotsk plate is somewhat problematic. There have been relatively few teleseismic events defining the location of the boundary and there is an almost complete lack of located microseismicity in the region. This may, however, be entirely an artifact of the distribution of the regional seismic networks. Note on Figure 1-30 that this region is near the intersection of the Magadan, Yakutsk, Amur, Sakhalin, and Kurile-Okhotsk networks. Furthermore, the division between the northern and southern portions of the Yakutsk networks is in this region. There is microseismicity trending into the region from each of the Magadan, Yakutsk, and Sakhalin networks. Given the distances to individual network stations and the lack of data exchange between neighboring networks, small events occurring in this region are most likely below the detection or location threshold for any individual network. Only the Sakhalin network has close stations, but even here there has never been the three stations necessary for determining event locations. Since data were not exchanged between networks, the region appears aseismic.

Overall, seismicity levels in northeast Russia are much higher than is generally recognized in the literature. Unfortunately, economic conditions in Russia at the present time have resulted in the closure of many, if not most, of the regions seismic stations. This illustrates the importance of compiling the historic data, as further economic collapse in Russia could result in the permanent loss of the original data, at worst. At best, it would take the installation of several tens of permanent digital stations and a minimum of two decades to duplicate the database using modern acquisition methods.

REFERENCES

- Andreev, T.A., Kravets, I.F., and Mishin, S.V., 1967, On the seismic activity of the Northeast: *Trudy SVKNII*, Magadan, v. 30, p. 159-166 (in Russian).
- Ansimov, E.M., Sedov, B.M., and Shvarts, D.B., 1967, Seismic exploration in the northeast USSR, in Fotiadi, E.E., ed., Geologicheskie Rezul'taty Geofizicheskikh Issledovanii v Sibiri i na Del'nem Vostoke: Novosibirsk, Nauka, p. 438-442 (in Russian).
- Artamonov, V.V., and Mishina, L.V., 1984, Recording possibilities of the network of seismic stations in the Northeast USSR, in Izmailov, L. I., and Lin'kova, T. I., eds., Seismic processes in the Northeast USSR: SVKNII, Magadan, p. 99-115 (in Russian).
- Avitesov, G.P., 1983, Seismological data on the deep structure of the New Siberian Islands and adjacent sea areas: *International Geology Review*, v. 25, p. 651-660.
- Avetisov, G.P., 1996, Seismically active zones of the Arctic: Saint Petersburg, VNII Okeangeologiya, 185 pp. (in Russian).
- Biswas, N.N., Gedney, L., and Agnew, J., 1980, Seismicity of western Alaska: Bulletin of the Seismological Society of America, V. 70, p. 873-883.
- Biswas, N.N., Pujol, J., Tytgat, G., and Dean, K., 1983, Synthesis of seismicity studies for western Alaska, Final report, contract NA81-RAC00112: Fairbanks, Alaska, University of Alaska Geophysical Institute, 74 pp.
- Davydova, N.I., Shvarts, Ya.B., and Yaroshevskaya, G.A., 1968, Wave patterns in deep seismic sounding along Magadan-Kolyma profile, in Deep Seismic Soundings of the Earth's Crust in the USSR: International Geology Review Book Section, v. 10, p. 93-102.
- England, P., and Jackson, J., 1989, Active deformation of the continents: Annual Reviews of Earth and Planetary Science Letters, v. 17, p. 197-226.
- Gal'perin, E.I., 1974, Vertical seismic profiling: Special publication No. 12, Society of exploration geophysicists, Tulsa, 270 pp.
- Godzikovskaya, A.A., 1995, Local explosions and earthquakes: Rossiskoe Aksionernoe Obshchestvo Evergy and Electrification "EES Rossii," Moscow, p. 55-56 (In Russian).

Ka Ka K Kı L 33), ?

- Kondorskaya, N.V., and Shebalin, N.V., eds., 1982, New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977: World Data Center A for Solid Earth Geophysics, Report SE-31, xi+608 pp.
- Kovachev, S.A., Kuzin, I.P., and Soloviev, S.L., 1995, Short-term study of microseismicity in the Guba Buorkhaya, Laptev Sea, using ocean bottom seismographs: *Physics of the Solid Earth*, english translation, v. 30 (7/8), p. 647-658.
- Kuzin, I.P., 1973, Velocity of the P and S-waves in upper mantle in Kamchatka: *Izvestia*, AN SSSR, Physics of the Earth, N3, p. 3-16.
- Kuzin, I.P., 1974, Subduction zone and upper mantle structure in East Kamchatka: Moscow, Nauka, 132 pp.
- Lazareva, A.P., 1975, Earthquakes of the Arctic in 1970 and 1971, in Gorbunova, I. V., Kondorskaya, N. V., and Shebalin, N. V., eds., Earthquakes of the USSR in 1971: Nauka, Moscow, p. 145-149 (in Russian).
- Lay, T., and Wallace, T.C., 1995, *Modern global seismology*: Academic Press, San Diego, 521 pp + xii.
- Materialy po Seismichnost' Sibiri, 1970-1990: Academy of Sciences of the USSR, Siberian Branch, Irkutsk (bi-monthly, in Russian).
- Mishin, S.V., 1967, Experimental instrumental seismological investigations in the northeast USSR: Laboratory of Regional Geodynamics, NEISRI, Magadan, 165 pp. (In Russian).
- Pustovitenko, B.G., and Kul'chitskii, B.E., 1974, About energy estimates of earthquakes in the Crimea-Black Sea region, in Kondorskaya, N.V., Nersesov, I.L., Gorbunova, I.V., Rautian, T.G., and Korchagina, T.G., eds., Magnitude and Energy Classification of Earthquakes, v. 2,: IPE AS USSR, Moscow, p. 113-124 (In Russian).
- Seismologicheskii Bulleten' Dal'nego Vostok, 1972-1988: Academy of Science of the USSR, Far Eastern Branch, Yuzhno Sakhalinsk (in Russian).
- Solonenko, 1974, Evergy classification of earthquakes of Prebaikalia, in Kondorskaya, N.V., Nersesov, I.L., Gorbunova, I.V., Rautian, T.G., and Korchagina, T.G., eds., Magnitude and Energy Classification of Earthquakes, v. 2,: IPE AS USSR, Moscow, p. 174-179 (In Russian).
- Zemletryaseniya v SSSR, 1961-1989: Nauka, Moscow (annual, in Russian).
- Zemletryaseniya v SSSR, 1990-1991: Russian Academy of Science, Moscow (annual, in Russian).

Zemletryaseniya Severnoi Evrazii, 1992: Geoinformmark, Moscow (in Russian).

CHAPTER 2

Explosion Contamination in the Northeast Russia Seismicity Catalog

INTRODUCTION

The newly compiled seismicity catalog for Eastern Russia (see Chapter 1) allows us to re-examine the regional seismicity of northeastern Russia to determine the level of explosion contamination and obtain a better idea of the level of natural seismicity in the region. In this part of Russia explosions occur in tin, coal, and gold (both underground and placer) mines, as well as in the construction of roads, railways, and dams. Many of the active mining regions are geographically associated with the seismically active regions, which can result in misidentification of mine blasts as natural earthquakes. In addition, contamination of the seismicity catalog with explosions results in an erroneous perception of natural seismicity and seismic risk assessment.

This chapter investigates and identifies the regions of explosion contamination in the study area through temporal analysis of origin times. Both time of year and time of day are considered. While analysis of waveform data for all reported earthquakes would be desirable, it would require an unrealistic re-examination of several hundred thousand analog seismograms. A qualitative estimate of the level of explosion contamination, however, can be obtained by examining the size, spatial, and temporal characteristics of earthquakes located by the regional networks.

DATA SOURCES

The origin times of earthquakes used here come from the compiled seismicity database for northeastern Russia described in Chapter 1. Information on known explosion locations comes from the unpublished Magadan and Yakutsk network bulletins. The unpublished Magadan bulletin lists a separate compilation of explosions by either region (nearest town) or mine, but specific coordinates are omitted in either case (Figure 2-1; Table 2-1). Many specific mines or regions have hundreds of explosions identified. The unpublished Yakutsk bulletin lists explosion locations and origin times determined with S-P time differences (Figure 2-1). Unfortunately, an explosion specific listing is not seperated from the rest of the data. The location procedure is the same as used for earthquakes (Chapter 1). For explosions which are not locatable, the region of the explosion is given along with the approximate origin time. In some cases, explosions identified by mine or region in the Magadan bulletin are located by the Yakutsk network and coordinates are given. A small number of located explosions in the Amur region are given in Godzikovskaya (1995; Figure 2-1) for the time period 1990-1991. Mine locations from throughout the study region were taken from 1:200,000 scale Russian military topographic maps, as well as 1:500,000 TPC and 1:1,000,000 ONC U.S. air navigation charts.

PREVIOUS WORK

Early attempts at explosion filtering from the late 1960's through mid 1970's in the Magadan region simply removed all events within a particular radius of some mining regions (Riegel, 1994; Kovalev, pers. comm.). Of course, this also removes the wanted tectonic

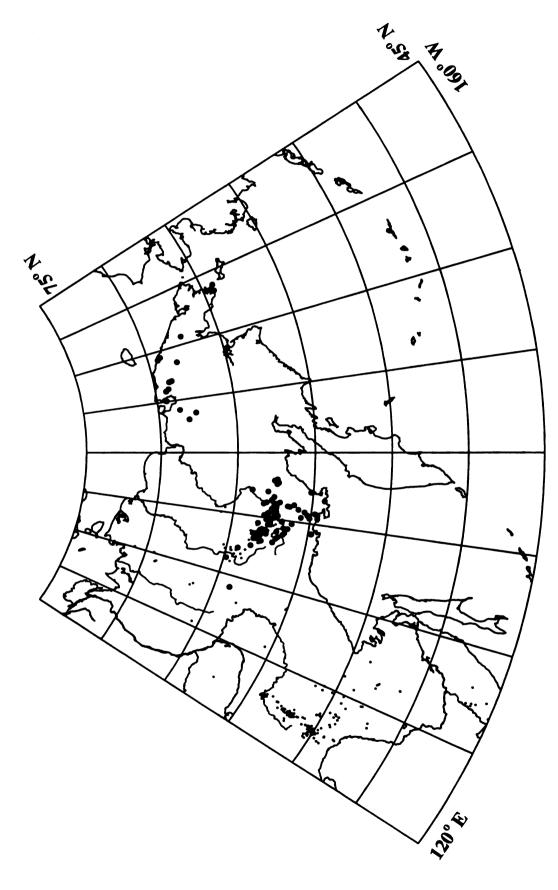


Figure 2-1. Explosion sources in northeast Russia listed in Russian bulletins. Small dots are individual located explosions, and large dots are towns or mines with multiple explosions.

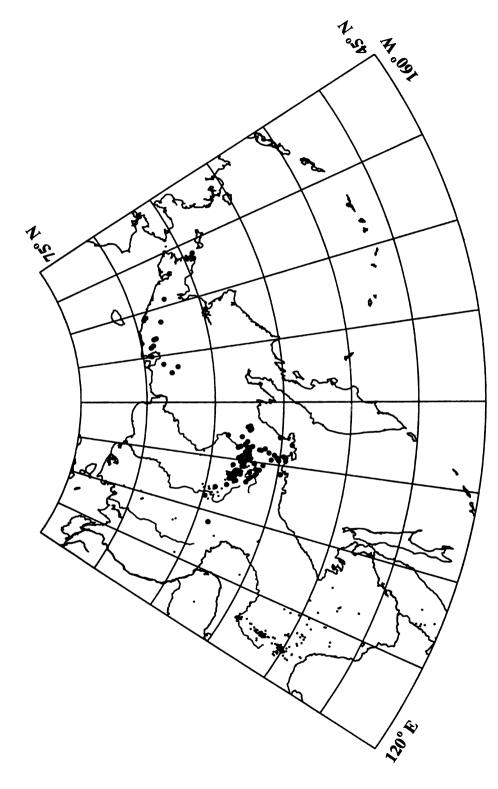


Figure 2-1. Explosion sources in northeast Russia listed in Russian bulletins. Small dots are individual located explosions, and large dots are towns or mines with multiple explosions.

Table 2-1. Town and mine locations from which explosions are reported in the unpublished Magadan bulletins.

Town/mine	Long.	Lat.	Town/mine	Long.	Lat.
Adigalakha	146.40	62.91	Myakit	152.09	61.41
Aliskerova	167.30	67.53	Myaundzhi	147.19	63.05
Anadyr	177.496	64.734	Neksikan	147.67	62.67
Arkagala	146.93	63.15	Nelkoba	148.81	61.34
At-Uryakh	150.10	62.65	Nevskogo	155.48	62.25
Atki	151.79	60.83	Obinokogo		
Avrora	150.05	62.50	Obo	149.77	61.80
Baranikhi	168.12	68.57	Odinokyi		
Be lechan	148.16	62.88	Oktybrna	142.66	64.83
Be lovo			Ola	151.30	59.58
Bie strie			Omsukchan	155.77	62.52
Bilibino	166.15	68.02	Orotukan	151.34	62.26
Binda			Pervomaiskia	147.61	62.95
B oligichan	154.11	63.93	Pevek	170.19	69.41
Bolshevik	147.59	62.68	Plamennyi	177.10	68.17
Burkandya	147.43	63.32	Pobera	144.59	64.27
Burkhala	149.00	62.66	Polevogo		
Buyunda	152.81	62.61	Polyarnyi	178.72	69.17
Chaplino	-172.16	64.25	Promezhytochnie	178.83	68.80
Chelbanya	148.07	62.70	Provideniya	-173.11	64.30
Cileiballya		63.38	Pyatiletki	150.96	62.37
Debin	147.22			150.96	02.37
	150.75	62.34	Rabochia	146 50	60.15
Delyankir	145.40	63.49	Raskovoe	146.50	62.15
Detrina			Rechnoe		
Dukat	155.26	62.36	Ribnogo	150.19	62.32
Durkhali			Salkalykh		
Duskanya	148.84	61.62	Seimchan	152.38	62.93
Dzhelgaly	149.08	62.49	Sherokee	148.05	63.10
Elgin	150.69	62.79	Shturmovoe	149.77	62.82
	151.75	62.90	Sinegoria	150.52	62.09
Frolich			Spornogo	151.05	62.22
Galimogo	155.97	62.35	Srednekanskom	152.57	62.07
Gastello	147.85	61.60	Srednii	153.35	59.21
Geologicheskii	152.37	62.20	Stan-Ut		
Gorkogo			Stekolnyi	150.73	60.05
Gvardiyets	147.14	62.00	Strelki	152.13	61.54
Iul'tin	-178.56	67.43	Susuman	148.15	62.78
Juletta	-170.50	07.43	Svetlya	138.14	64.04
Kadikchana	147.05	63.09	Takhtoyamsk	154.40	60.12
Kamenki	147.05	63.09	Talaya	152.39	61.13
Karamkena	151 10	60 21			
Kedrovia	151.10	60.21	Talona	148.60	59.79
Khaniza	140 15	62.03	Tangara	150 30	62.00
Khatingnakh	148.15	62.03	Taskan	150.38	62.99
Klepki	151.41	59.75	Tenkinskom	140 - 0	61 40
Kolyma	484		Transportnyi	148.18	61.49
Komsomolskii	172.42	69.11	Udarnik	147.90	63.14
Krasnoarmeiskii	172.02	69.30	Ust'khakchan	146.57	63.41
~~~ inskom			Ust'omchuga	149.63	61.13
Kulu	147.43	61.89	Ust'srednikan	152.34	62.43
Larukovaya	151.80	62.25	Ust'taskan	150.84	62.72
Lazo	152.13	63.12	Ust'ugol		
Dingradskij	178.33	69.35	Ust'utinogo	151.47	62.55
L-CLI PROGO	154.05	62.90	Valkyneya	170.12	69.35
Madayan	150.70	60.60	Verkhne-Buyunda	153.30	62.47
Ma Cradan	150.81	59.56	Vetrennee	149.81	61.77
<b>l^{Ma}jskii</b>	173.70	68.975	Yablonego	151.51	60.42
Maldyk	148.23	63.00	Yagodnaya	149.62	62.53
Moi-Urustra	140.63	55.00	Yasnee	147.02	52.55
Molodezhnia	149.04	63.30	1001166		
Todezunia	147.04	03.30			

1 ĊĮ, li Но . ⊡¢ Ű tar. t); ÛŨ Œ ta: 013( -17ijĮ.d  events, and results in peculiar rings of seismicity. Beginning in the late 1970's, seismic station operators attempted to discriminate close events (up to 50 - 70 km) based on waveform characteristics and information from the mining companies. Unfortunately, not all mining companies provided information on their blasting activities for various reasons (Kovalev, pers. comm.).

Previous work on identifying explosion contamination in the seismicity catalog was undertaken by Godzikovskaya (1995). Godzikovskaya (1995) identified several regions of explosion contamination, particularly in the Zeya basin region of Amur, near the Kolyma and Ust' Srednekan dams on the Kolyma River, and the Polyarnyi mining district in Chukotka. However, many regions and trends of contamination were not identified because of an incomplete seismicity catalog. Odinyets (1996) identified the problem of explosion contamination in the Kolyma region. In this case, it was determined that a large fraction of earthquakes reported in the central Kolyma region are actually explosions. Industrial explosions locatable by the regional networks generally have magnitudes of about 1.5 - 3.0 (converted from Russian K-class) and occur during local day (Godzikovskaya, 1995; Odinyets, 1996). Placer deposit explosions are also concentrated during the late winter and early spring, when frozen ground is broken up for the summer processing season.

# **DISCUSSION**

Although the regional networks operating in northeastern Russia have attempted to discriminate between industrial explosions and earthquakes, all seismicity catalogs containing events of less than magnitude 3.5 from the region remain contaminated with explosions.

:

Examination of temporal biases in the seismicity can indicate potential regions of explosion contamination (Agnew, 1990), as blasting generally occurs during the day. However, unlike standard mining practice in the United States, blasting in northeast Russia is not confined to a specific time of the day, such as noon, but instead may occur at any time during the workday. A small but not statistically significant number of explosions are also known to occur during the "nighttime" hours in many locations throughout the study area (Godzikovskaya, 1995). In Figure 2-2, the study area is divided into cells in which the percentages of "daytime" earthquakes are calculated. Cells containing fewer than ten events were not considered to be statistically significant, thus were not analyzed. As there are five time zones spanning the region, the 12 hour local period of "daytime" is shifted accordingly. Dark gray areas represent regions where seismicity is more or less balanced between night and day, and light gray areas are those in which seismicity is concentrated during local night. There are several areas of "nighttime" biased seismicity, most of which are in seismically less active regions and away from network seismic stations. Bias of seismicity to local night is not unexpected since almost all regional seismic stations in the study area are located in buildings in populated areas, and thus have lower cultural noise levels during the night. The general concept can be illustrated by analyzing the temporal distribution of a large number of known earthquakes. Figure 2-3 shows the temporal distribution of the aftershock sequence of the 1989 South Yakutia earthquake. Note the bias towards larger numbers of "nighttime" events. Of 3,492 events from the aftershock sequence, 1,677 events occurred during "daytime" hours, and 1,815 events occurred during the night. This corresponds to a day/night ratio of 0.924 (a day/night ratio of 1.000 would indicate no bias). The bias may not be as great for these events as for regions away from the network due to the close proximity of

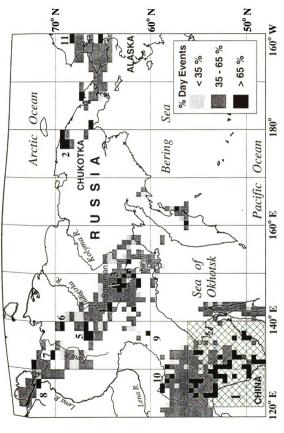



Figure 2-2. Percentage of seismicity occurring during local "daytime." Numbered regions are discussed in the text.

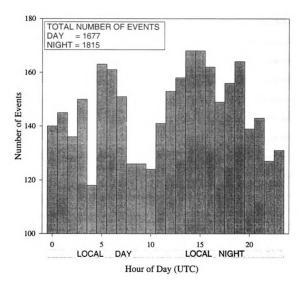



Figure 2-3. Histogram of event origin times from aftershocks of the 1989 South Yakutia earthquake. Note a slight bias towards "nighttime" events.

Ŀ ŀt ĵ۷ţ (I ِللَّ وللاَّ غاذ ity) L.A Ġ, 27 1.10 ŧ,0

Ċ

35

ŝ

A.

ide

<u>...</u>

X

several seismic stations. Black areas on Figure 2-2 represent regions where more than 65% of the seismicity occurs during local day. Many of the regions with predominantly "daytime" events are associated with discrete clusters or trends of seismicity, most of which can be associated with mining or construction related blasting. Several clusters of reported seismicity in the Amur region have more than 90% of the events occurring during local day. A few cells with predominantly "daytime" seismicity do not correlate with obvious identifiable explosion sources. These locations are probably a result of random statistics of small numbers as these cells generally are close to the 10 event cutoff. We have examined several regions of "daytime" bias which can be positively related to explosion contamination. As a cautionary note, it should be mentioned that some events occurring at night may also be explosions. Russian law requires that explosives loaded into boreholes can not be kept overnight, but must be detonated. This may result in some "nighttime" blasting, depending on the work schedule of the particular mine. This is supported by a limited number of "nighttime" blasts listed in the unpublished network bulletins. The numbers of "nighttime" blasts are small when compared to those occurring in the "daytime". Numbers for the regions listed below correspond to numbered locations on Figure 2-2.

#### 1. Amur District

The clearest region of explosion contamination is the Amur District. When plotting "daytime" and "nighttime" epicenters separately (Figures 2-4 and 2-5 respectively), we see some distinct differences. There are several large clusters of "daytime" seismicity that correlate geographically with specific mining regions. For these regions, we also identify contamination level changes with season. Figures 2-6 through 2-18 show the number of events that occur during

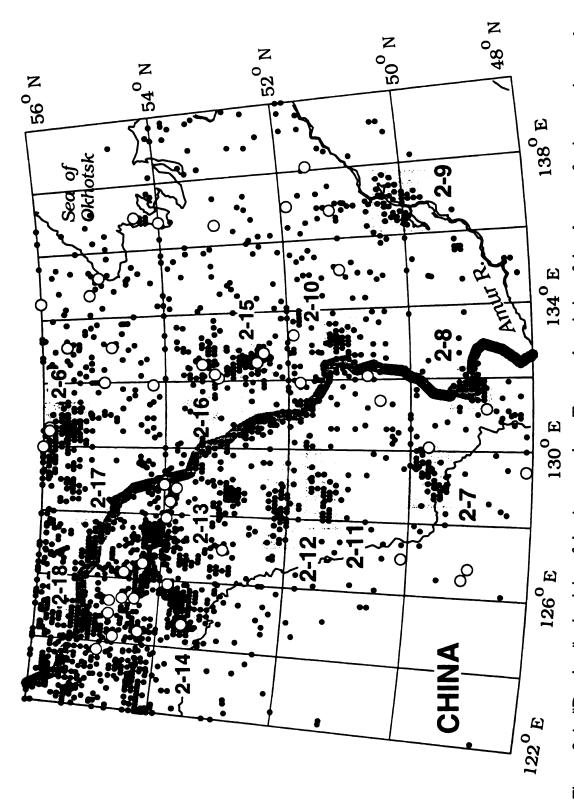



Figure 2-4. "Daytime" seismicity of the Amur region. Temporal statistics of the clusters of epicenters in gray boxes are shown in figures of corresponding numbers. The Baikal-Amur railway is indicated with the heavy gray line. Teleseismically recorded events of magnitude greater than 4.0 are depicted with large open circles.

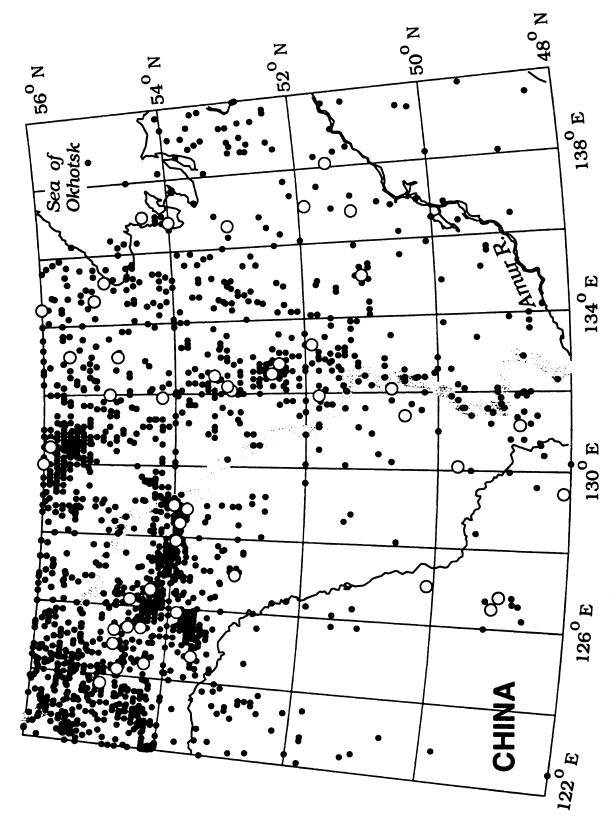



Figure 2-5. "Nighttime" seismicity of the Amur region.

specific hours of specific months of the year. Figure 2-6 analyzes a reported cluster of seismicity in the northern part of Figure 2-4. The seismicity in this region is believed to be tectonic, as the region is unpopulated, and there is no known mining or development in the area. The analysis of this region can therefore be used as a baseline to which other analyses can be compared. The area analyzed contains 399 located earthquakes, with 189 having occurred during local "daytime" and 205 during local night. This corresponds to a day/night ratio of 0.922, which is essentially the same as that found for the 1989 aftershock sequence discussed above. The numbers of summer and winter events occurring in this region are also similar.

In southern Amur, analysis of reported seismicity around the Raychikhinsk coal mining region shows activity only during winter months and daylight hours (Figure 2-7). This is somewhat different from the nearby Khingansk mining region, where events occur throughout the year instead of being restricted to winter months (Figure 2-8). Figure 2-9 corresponds to mining or quarries in the region around Komsomolsk' na Amur. On average, origin times of events in the Raychikhinsk, Khingansk, and Komsomolsk' na Amur center around 05 hours UTC, which corresponds to 1 pm local time. Mining also occurrs about 5 km to the north of Chegdomyn, which accounts for the high level of "daytime" seismicity in the region (Figure 2-10). However, here origin times average slightly earlier at around 04 hours UTC, or 12 noon local time, and there is a shift towards summer months. It is unknown what is being mined here. Temporal analysis of the reported seismicity in the region of Svobodniy (Figure 2-11) is also consistent with sources of anthropogenic origin. However, the existence of mining in this region is unclear from the available maps. Events here may also show a slight bias toward summer months and slightly later origin times averaging 07 hours UTC, or 3 pm local time. To the north of Svobodniy are mining regions near Shimanovsk (Figure 2-12) and Oktyabrskiy (Figure 2-13).

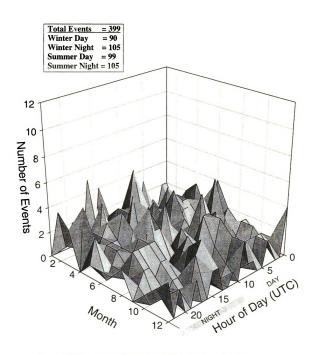



Figure 2-6. Temporal variation of probable tectonic earthquakes.

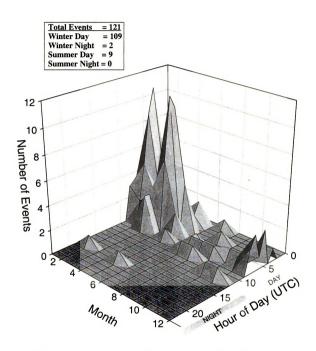



Figure 2-7. Temporal variation of reported seismicity in the Raychikhinsk mining region.

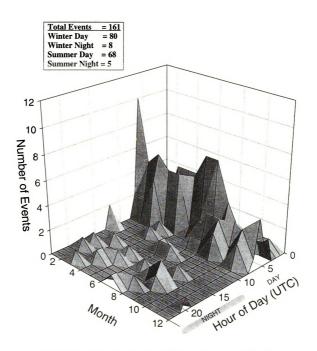



Figure 2-8. Temporal variation of reported seismicity in the Khingansk mining region.

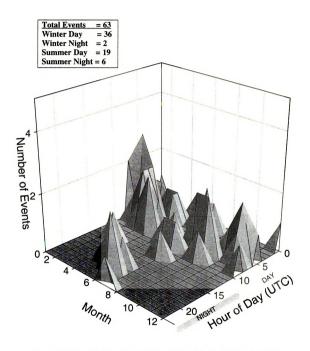



Figure 2-9. Temporal variation of reported seismicity in the Komsomolsk' na Amur mining region.

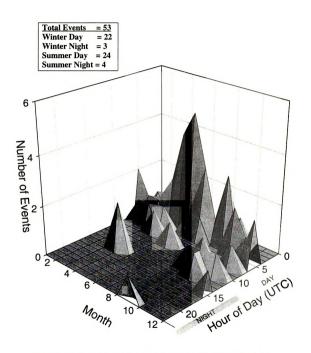



Figure 2-10. Temporal variation of reported seismicity in the Chegdomyn mining region.

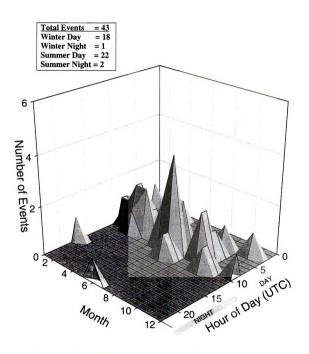



Figure 2-11. Temporal variation of reported seismicity in the Svobodniy region.

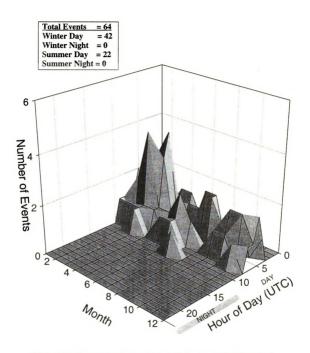



Figure 2-12. Temporal variation of reported seismicity in the Shimanovsk mining region.

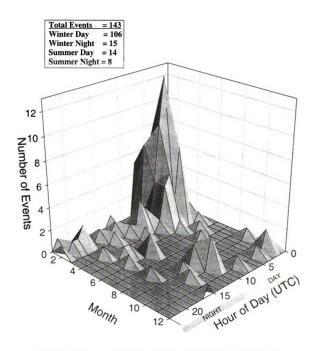



Figure 2-13. Temporal variation of reported seismicity in the Oktyabrskiy placer mining region.

Mining near Shimanovsk occurs approximately 40 km to the northeast of the town, along the west bank of the Zeya river. Events located in this region occur exclusively during daylight hours, but with a slight bias towards mid winter. For Oktyabrskiy, extensive placer mining has occurred in the vicinity of the town, primarily to the north, southeast, and along the Gar' River valley to the south. Analysis of origin times for the Oktyabrskiy mining region indicate that almost all blasting occurs during the winter "daytime". Each of the reported seismicity regions analyzed in Figures 2-6 through 2-13 appear as isolated or partially isolated discrete clusters or trends of events. Based on the strong biases of origin times, it is believed that essentially all reported earthquakes in these clusters are of anthropogenic origin due to mining.

To the northwest of Oktybrskiy is a seismicity cluster near the town of Taldan (Figure 2-14). Prior to 1981, a small number of earthquakes occurred in this region with no bias in origin times, indicating this cluster probably contains some natural seismicity. Beginning in 1981, the numbers of events rose drastically, and a strong "daytime" bias was introduced into the origin times. Although this is strongly suggestive of the commencement of mining operations, no mines are indicated on the available maps, which are dated 1986. Godzikovskaya (1995) reports two explosions as having occurred within the bounds of this cluster. The low level of natural seismicity appears also to have continued, with a magnitude 5.0 event occurring during the night of January 31, 1985. Explosion contamination due to dam construction in the Zeya basin region to the east (approximately 54° N x 127° E) has been noted and is discussed at length by Godzikovskaya (1995). Temporal analysis of the region around Ekimchan is also consistent with a mix of tectonic events and explosions (Figure 2-15). There are a total of 283 events in this region, with 92 occurring during the "nighttime". If we assume the number of "daytime" tectonic events is 92% of the "nighttime" level (85 events; percentage based on the temporal variation of

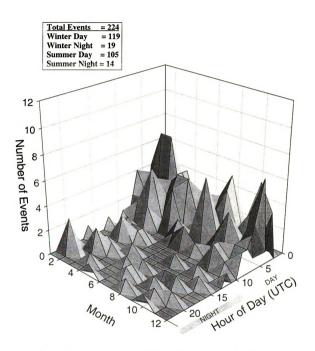



Figure 2-14. Temporal variation of reported seismicity in the Taldan region.

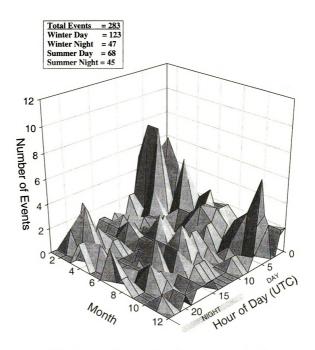



Figure 2-15. Temporal variation of reported seismicity in the Ekimchan mining region.

tectonic events discussed above), then the total number of tectonic events in this region is about 177. Therefore, the number of explosions is 106, representing a 37 % contamination of the database.

In the north-central portion of Figure 2-4, there is a northwest-southeast trend of predominantly "daytime" seismicity extending several hundred kilometers. The temporal distribution of these events is shown in Figures 2-16 for the central segment and 2-17 for the northern segment. This trend correlates with the route of the Baikal-Amur Mainline railroad (BAM). Explosions associated with its construction in the 1980's are listed as earthquakes in the seismicity catalogs. Note also that most events are located to the west of the track in the central portion, and to the north of the track in the northern portion, indicating systematic errors in the location procedure.

The region covered by Figure 2-18 is somewhat more problematic. This region probably does has tectonic earthquakes, as there are a reasonable number of "nighttime" events, but there is a clear bias towards "daytime" events. Here, there seem to be two possible explanations. A branch of the railway extends south from the town of Tynda. Construction along this segment of the railway may account for the "daytime" events. However, the Tynda region events are biased more towards early winter than those along the mainline railway, which tend more towards summer (Figures 2-16 and 2-17). This may suggest a mining origin as opposed to railroad construction, but maps do not show any apparent mining activities.

Overall, as explosion contamination appears to be primarily confined to daylight hours, "nighttime" seismicity should better reflect the natural tectonic distribution of earthquakes (Figure 2-5). If one compares "daytime" and "nighttime" seismicity, a different, more northerly trend appears in the plotted "nighttime" earthquake epicenters. This probably delineates an active

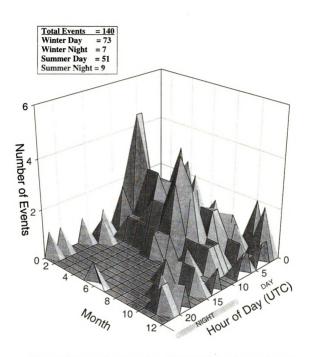



Figure 2-16. Temporal variation of reported seismicity along the central segment of the Baikal-Amur railway.

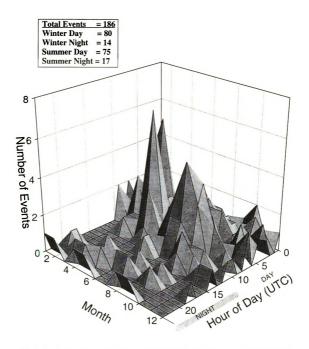



Figure 2-17. Temporal variation of reported seismicity along the northern segment of the Baikal-Amur railway.

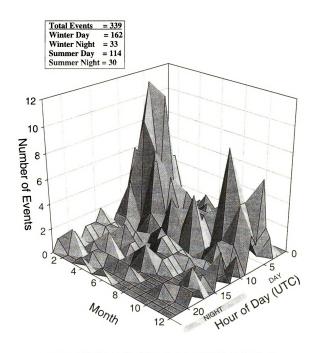



Figure 2-18. Temporal variation of reported seismicity in the Tynda region.

	:
	į
	<u> </u>

tectonic feature that was previously obscured by clusters and trends of explosions. When observing locations of the larger teleseismically located events, it is found that they fall almost entirely within the regions where seismicity occurs at night. Clusters and trends of primarily "daytime" occurring events have very few earthquakes of magnitude 4 or larger. In summary, for the Amur region it is clear that any future studies of seismicity or neotectonics must consider the extent of explosion contamination in the seismicity catalog.

## 2. Polyarnyi-Leningradsky-Plamennyi

Polyarnyi and Leningradsky are placer gold deposits located along the coast of the Chukchi Sea in Chukotka. Plamennyi was a mercury deposit about 100 km south of Polyarnyi which was mined from 1967 to 1972 (Pilyasov, 1993). From 1966 to 1982, most of the events located in this area were single station locations obtained by the threecomponent seismic station at Iul'tin (ILT; Figure 2-19). A clear bias towards winter and "daytime" is evident for the cluster of events in the mining region (Figure 2-20). The ILT data analyzed here also contains 15 events located by the Magadan Chukotka network in the 1980's which are also consistent with explosions both in origin time and location. Several of the located events near the Plamennyi mine occurred after the 1972 close date of the mine. There are two possible explanations for this. First, the location accuracy of the ILT epicenters is on the order of 50 or 100 km, thus events from Polyarnyi or Leningradsky may be mislocated to the south. Second, the unpublished Magadan bulletin contains explosions as having originated at Plamennyi, suggesting on-going exploration work or a limited resumption of mining activities. Comparison of origin times of ILT located events with the more recent known explosions from the same mining region yields a nearly identical

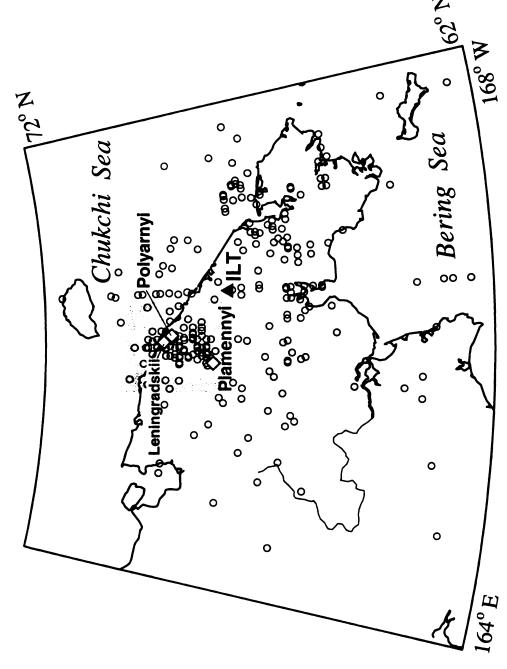



Figure 2-19. Iul'tin (ILT) seismicity with mine locations. Shaded area indicates region used in temporal analysis of event origin times.

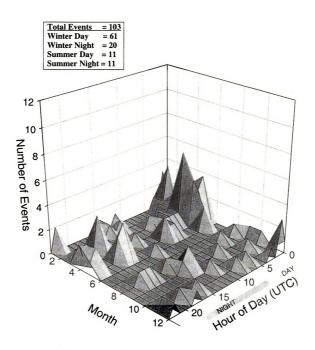



Figure 2-20. Temporal variation of reported seismicity in the Polyamyi, Leningradsky, and Plamennyi mining region.

temporal distribution, with blasting primarily in the daylight hours of late winter and spring (Figure 2-21). Note also the low level of "nighttime" blasts. The complete lack of teleseismically recorded events around Polyarnyi-Leningradsky-Plamennyi as compared to the region a few hundred kilometers to the southeast is also consistent with explosions (Figure 1-26). Previous authors have attempted to use the explosions reported in tectonic models (Lander, 1996) and assessment of seismic risk (V. Kovalev, pers. comm.), both of which illustrate the magnitude of the contamination problem in the region. Other earthquakes located by ILT (Figure 2-19) do not show any temporal bias, thus probably generally represent tectonic events..

# 3. Kolyma Gold Belt

A cross of predominantly "daytime" seismicity lies along the Kolyma gold mining belt (Figure 2-2). Tectonically, this region is extremely complex in that it is located just south of the Ulakhan Fault system (Figure 2-22) along which motion occurs between the Okhotsk block and the North American plate (Imaev et al., 1994), thus statistical separation of anthropogenic sources from tectonic events is more difficult. Mining in this region is primarily placer gold but also includes coal and other minerals. "Daytime" and "nighttime" seismicity are shown in Figures 2-22 and 2-23 respectively. Temporal analysis of the large cluster of events in the area northwest of the town of Susuman indicates a bias towards local day and winter/spring (Figure 2-24). This bias is consistent with the distribution of known explosions from the Magadan Seismic Bulletin for the Susuman region (Figure 2-25). Based on the Day/Night seismicity plots in Figures 2-22 and 2-23, the eastern half of the seismicity cluster is entirely explosions, while the western half probably contains some tectonic events.

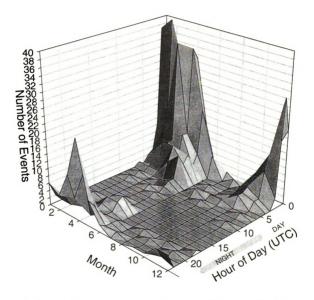



Figure 2-21. Temporal variation of explosions from the Polyarnyi, Leningradsky, and Plamennyi mining regions.

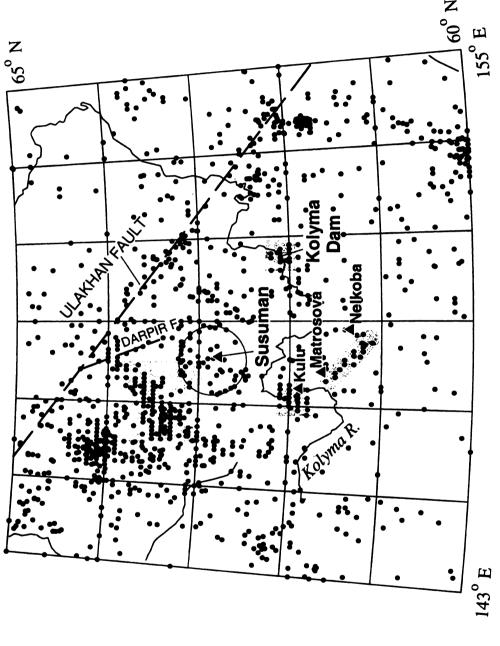



Figure 2-22. "Daytime" seismicity of the Kolyma gold belt. Shaded areas indicate regions used in temporal analysis of event origin times and other regions of explosion contamination. Note ring of seismicity around Susuman.

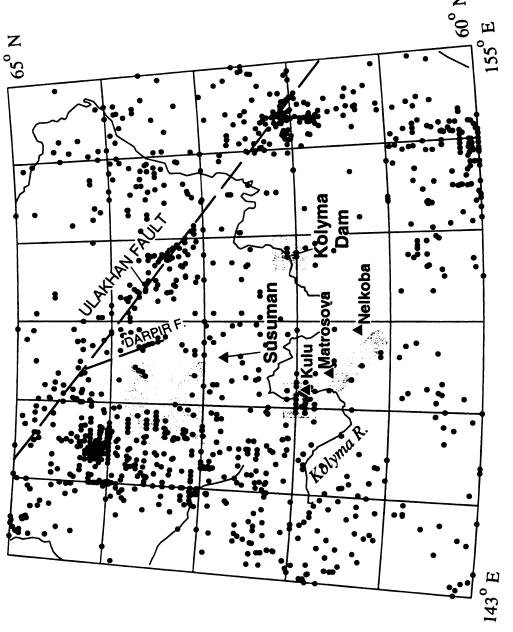



Figure 2-23. "Nighttime" seismicity of the Kolyma gold belt. Compare shaded regions to Figure 2-22.

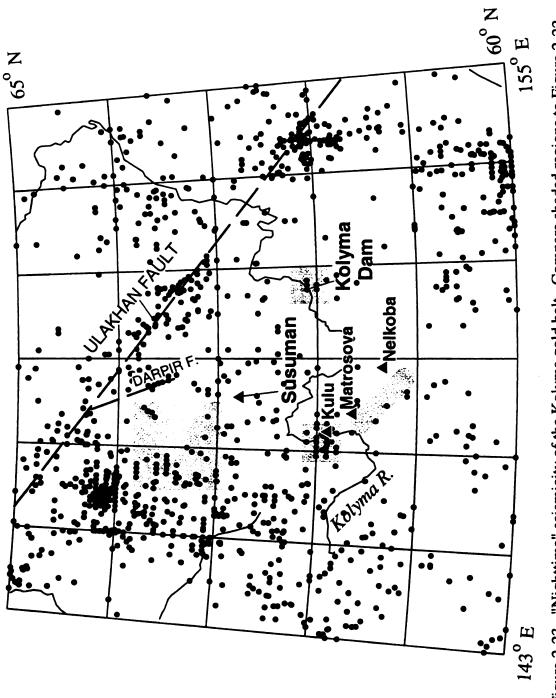



Figure 2-23. "Nighttime" seismicity of the Kolyma gold belt. Compare shaded regions to Figure 2-22.

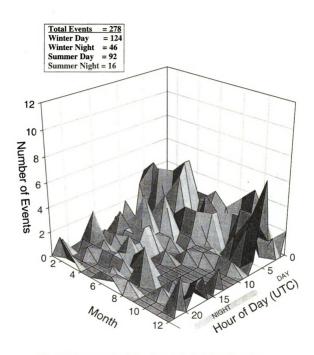



Figure 2-24. Temporal variation of reported seismicity in the region northwest of Susuman.

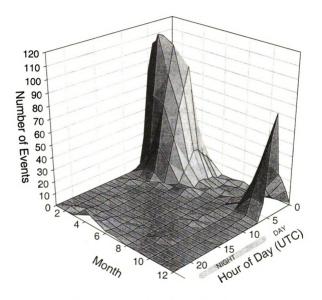



Figure 2-25. Temporal variation of explosions in the Susuman region.

Note also the increased numbers of "daytime" events within a 100 kilometer radius of Susuman, which is also probably a result of mining.

About 200 kilometers southeast of Susuman is the Kolyma hydroelectric station and dam. Blasting during construction of this dam resulted in contamination of the earthquake catalog (Godzikovskaya, 1995). Temporal analysis of explosions in the Kolyma dam region is shown in Figure 2-26. There are also highly elevated levels of "daytime" seismicity for approximately 100 km upriver from the dam, and a diffuse cluster of primarily "daytime" events approximately 120 km to the east. The cluster to the east is in the vicinity of the Ust' Srednikan dam project, where Godzikovskaya (1995) also notes explosion contamination.

One puzzling cluster of seismicity is associated with the region around the town of Kulu (Figures 2-22 and 2-23). This cluster is biased towards winter months, but only slightly towards daylight hours (Figure 2-27). However, this seismicity cluster is from events which occurred in the 1970's and 1980, with a few events occurring each year. In 1980, when the seismic station at Kulu opened, the earthquakes essentially stopped, with only a few events located since (See yearly plots in Appendix B). This would be consistent with explosions, as the local operator could distinguish the events as explosions and they would be removed from the catalog. For comparison, temporal analysis of known explosions from the Kulu region are shown (Figure 2-28). Explosions in the Kulu region are probably a result of mineral exploration studies. On site inspection of the Kulu region showed no evidence of mining. The closest mining noted was at Matrosova, about 40 km to the south (Figure 2-22). From Matrosova, there is a small lineation of "daytime" events extending about 70 km to the southeast (Figure 2-22). This trend parallels an extensive placer mining operation extending

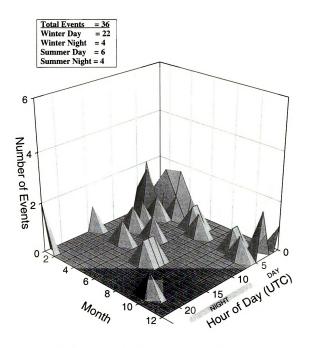



Figure 2-26. Temporal variation of seismicity from the region of the Kolyma dam.

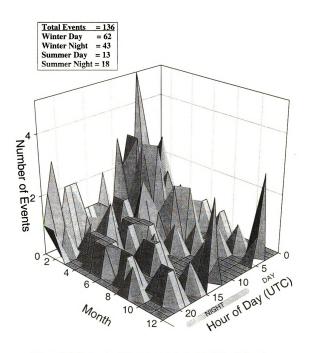



Figure 2-27. Temporal variation of reported seismicity in the Kulu region.

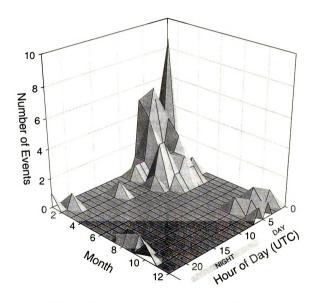



Figure 2-28. Temporal variation of explosions in the Kulu region.

from Matrosova to Nelkoba, which follows the main highway through the region. This may indicate a location bias for events in this region.

Explosion contamination of the seismicity catalog has clearly affected analysis of seismic hazards in the region. Vazhenin et al. (1997), citing T. A. Andreev, shows increased seismic hazards in the regions north of Susuman, around Kulu and the trend extending south, and near the Kolyma hyodoelectric station, all of which are a result of explosion contamination.

# 4. Ust' Nera

Placer gold deposits around Ust' Nera are on the northwest extension of the Kolyma gold belt. As indicated on Figure 2-2, seismicity reported in the vicinity of Ust' Nera is temporally biased towards "daytime", with 10 "daytime" events, versus 2 "nighttime" events, although statistics of small numbers may be a factor. The region immediately to the southeast of Ust' Nera is very active tectonically, where events of up to magnitude 7 have occurred.

#### 5. Lazo

Lazo is a gold placer deposit between the Adycha and Nel'gese Rivers at 66.5° N, 137.0° E (Figure 2-2). "Daytime" and "nighttime" seismicity of Lazo and northern Yakutia are shown in Figures 2-29 and 2-30 respectively. The reported cluster of seismicity near Lazo is almost entirely confined to the "daytime" in the early part of the year, thus it is believed they are almost exclusively explosions (Figure 2-31). A similar looking cluster of seismicity about 100 km south of Lazo was also analyzed for temporal variation (Figure 2-

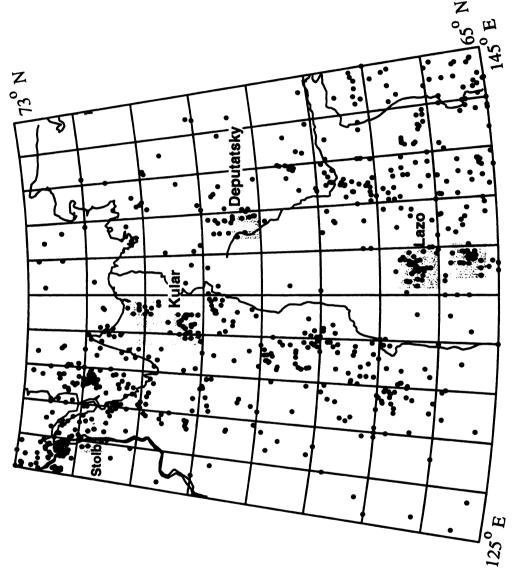



Figure 2-29. "Daytime" seismicity of northern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.

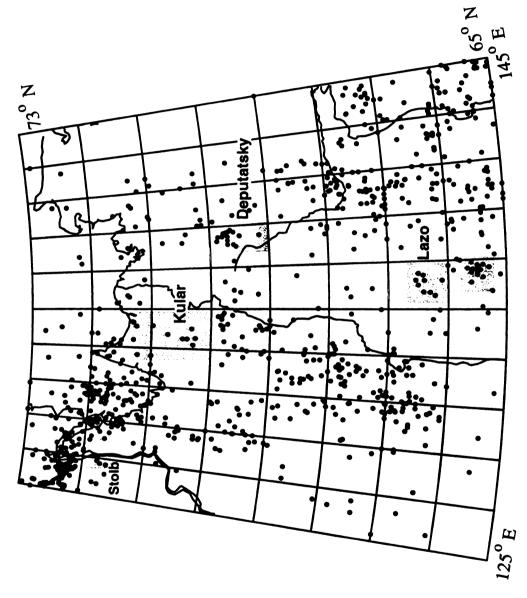



Figure 2-30. "Nighttime" seismicity of northern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.

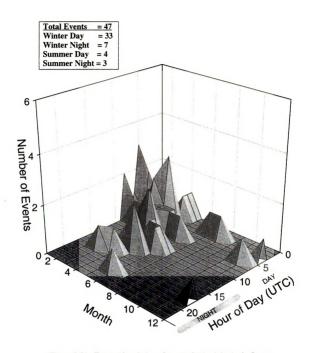



Figure 2-31. Temporal variation of reported seismicity in the Lazo mining region.

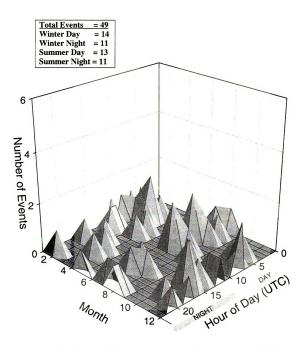



Figure 2-32. Temporal variation of reported seismicity in the cluster of epicenters south of the Lazo mining region.

32). This cluster of seismicity was suggested to be of mining origin (V. Imaev, pers. comm.), though the temporal variation is more consistent with tectonic activity.

### 6. Deputatsky

The Deputatsky tin mining region is completely biased to winter events, with 13 events reported during winter day and 2 events during winter night (Figure 2-33). There are no events reported in the summer months, which is a good indicator of an anthropogenic origin. However, caution must be taken as the number of events is small. Temporal analysis of an additional small cluster of seismicity immediately to the north is more consistent with tectonic events.

#### 7. Kular

The region around Kular and to the north is an extensive placer gold mining region. Coal has also been mined southeast of Kular along the banks of the Yana River. The coal mining operations closed in the past few years but in the mid-1990's gold mining operations began south of Severnyi, about 25 km southeast of Kular (V. Imaev, pers. comm.). Reported seismicity in the Kular region forms an elongated north-south trend (Figure 2-29), which shows an excellent correlation with explosion locations (Figure 2-1). Temporal analysis of reported seismicity in the Kular region shows a strong bias to winter "daytime", which is consistent with explosion contamination from mining (Figure 2-34).

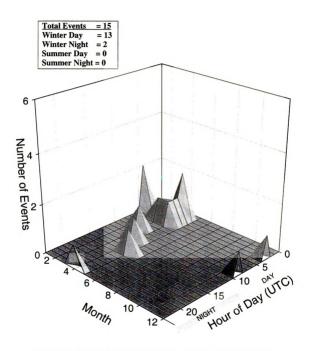



Figure 2-33. Temporal variation of reported seismicity in the Deputatsky mining region.

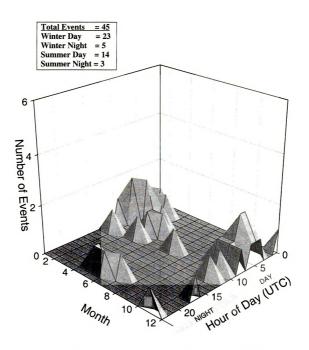



Figure 2-34. Temporal variation of reported seismicity in the Kular mining region.

## 8. Stolb

Reported seismicity in the Stolb region is probably contaminated by "daytime" explosions. From 1988 to present, the geological survey in Moscow has been conducting explosions in this region along the Lena River looking for placer deposits of diamonds (V. Imaev, pers. comm.). Although there are only 12 events that fall within this region, 9 occur during daylight hours, and 8 occur between 1989 and 1994, which is consistent with the exploration work (Figure 2-35).

## 9. Yugorenok

Yugorenok is a mining region along the Yudoma and Allakh-Yun rivers (V. Imaev, pers. comm.), which is geographically coincident with a discrete cluster of earthquake epicenters. Of the 25 earthquakes located in the vicinity, 20 occur during winter "daytime" hours (Figure 2-36). In addition, there are no large events associated with this cluster of seismicity. Two other small seismicity clusters to the north are both associated with teleseismic events and do not show any strong temporal biases in their origin times, which suggests tectonic origins.

#### 10. South Yakutia

South Yakutia is similar to the Kolyma gold belt in that there are tectonic events occurring in the vicinity of mining regions. Several cells in this area show strong "daytime" biases, each of which is associated with mining. Figures 2-37 and 2-38 plot the "daytime" and "nighttime" seismicity of southern Yakutia. Three regions are of note in south Yakutia. Aldan is a mining region with extensive deposits of gold and phlogopite mica (Shabad,

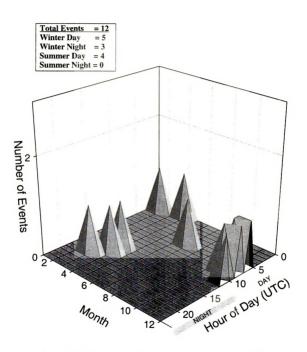



Figure 2-35. Temporal variation of reported seismicity in the Stolb region.

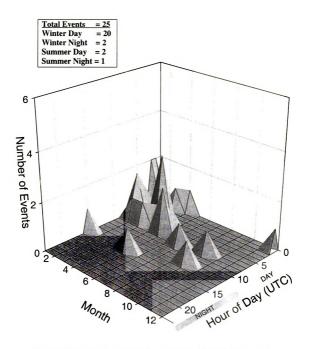



Figure 2-36. Temporal variation of reported seismicity in the Yugorenok nining region.

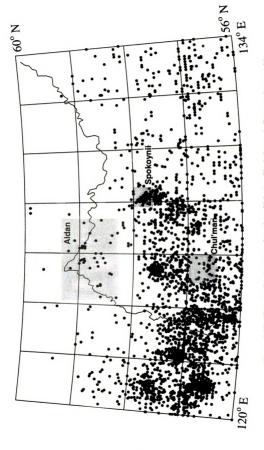



Figure 2-37. "Daytime" seismicity of southern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.

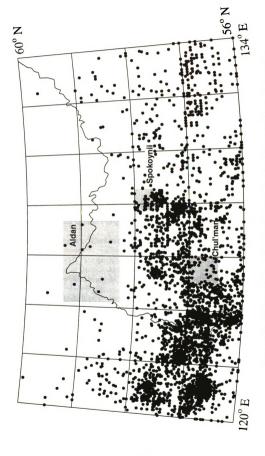



Figure 2-38. "Nighttime" seismicity of southern Yakutia. Shaded areas indicate regions used in temporal analysis of event origin times.

1969). The region is associated with a diffuse cluster of predominantly "daytime" seismicity (Figure 2-39). Although the seismicity occurs throughout the year, its concentration during daylight hours is more consistent with an anthropogenic source than tectonic. Explosions from the Aldan mining region are located and listed in the unpublished Yakutsk bulletin (Figure 2-1).

Approximately 200 km south of the Aldan mining region is an extensive coal mining region near Chul'man. The Chul'man mining region produces many explosions (Figure 2-1), some of which are located by the Yakutsk network and listed in the unpublished data. The seismic station at Chul'man seems able to identify and filter the explosions. A plot of the temporal distribution of reported earthquakes (Figure 2-40) shows a bias towards "nighttime" events similar to that found for the tectonic event test area and the 1989 South Yakutia earthquake aftershock sequence (Figures 2-3 and 2-6).

To the northeast of Chul'man is a dense cluster of seismicity near the settlement of Spokoyny (Figure 2-37). Temporal analysis of the cluster shows a strong bias towards winter "daytime" events, which would be consistent with placer mining (Figure 2-41). Soviet military 1:200,000 scale topographic maps (dated 1986) show extensive mine workings in the region, but list all settlements as uninhabited. This is inconsistent, as the events located here occur from the 1970's through the mid 1990's. The published literature makes no mention of any mining activity in this region, nor does the unpublished Yakutsk network bulletin locate anything identified as an explosion in the region. Overall, the nature of activity at this location remains unclear, but is suspect.

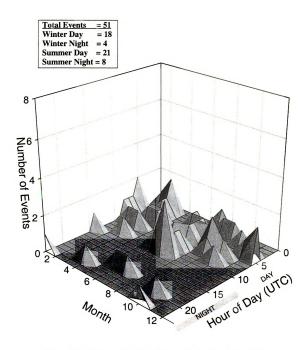



Figure 2-39. Temporal variation of reported seismicity in the Aldan mining region.

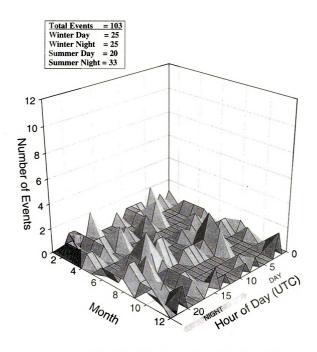



Figure 2-40. Temporal variation of reported seismicity in the Chulman mining region.

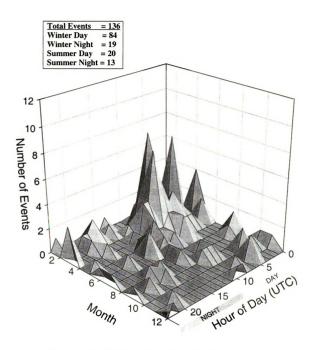



Figure 2-41. Temporal variation of reported seismicity in the Spokoynii mining region.

Ĉ į ķ •.

# 11. Red Dog

In compiling the continental seismicity database for northeast Russia, epicenters from the Western Alaska Network in the region of the Seward Peninsula, Alaska were included. In the northern portion of Alaska on Figure 2-2, there is one cell associated with seismicity predominantly in the summer and fall (Figure 2-42). This coincides with the location of the Red Dog mine in the western Brooks range. Exploration work prior to the opening of the mine was taking place when the Western Alaska Network was in operation, which probably recorded and located a limited number of blasts (D. Thurston, pers. comm).

## INTERPRETATIVE RESULTS

Identification of the explosions and their removal from the northeast Russia seismicity catalog is essential in studying and understanding the tectonics and associated natural seismicity of the region. This is particularly evident in the Amur region. Active faults mapped in the Amur region are summarized in Figura et al. (1996). Mapped active faults are plotted with both day and night seismicity in Figures 2-43 and 2-44 respectively. Several things become evident regarding active seismicity along the mapped faults. Faults mapped in the southern portion of the Amur region (Bureya, Khingan, Tanlu, and smaller unnamed) appear to have some correlation with reported "daytime" seismicity, suggesting they are active. However, the correlation is actually with the mining contamination; little correlation exists between "nighttime" microseismicity and mapped faults. The southern termination of the Khingan fault appears to have some correlation with "nighttime" seismicity, although the seismicity here may be a continuation of the north-south trend roughly paralleling the 132° E longitude (Figure 2-44). The Bureya fault shows correlation

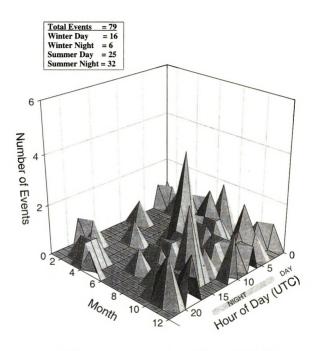



Figure 2-42. Temporal variation of reported seismicity in the Red Dog mining region.

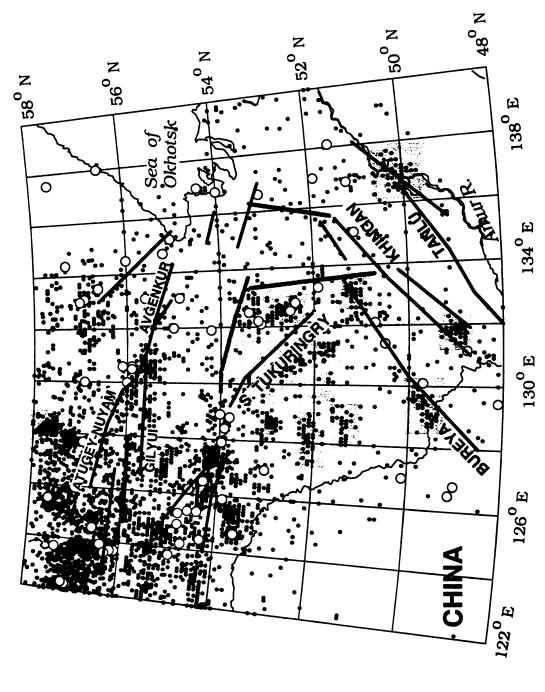



Figure 2-43. Daytime and teleseismic seismicity of the Amur region with mapped faults. Black lines indicate strike-slip faults and dark gray lines, thrust faults. Gray indicates regions of explosion contamination.

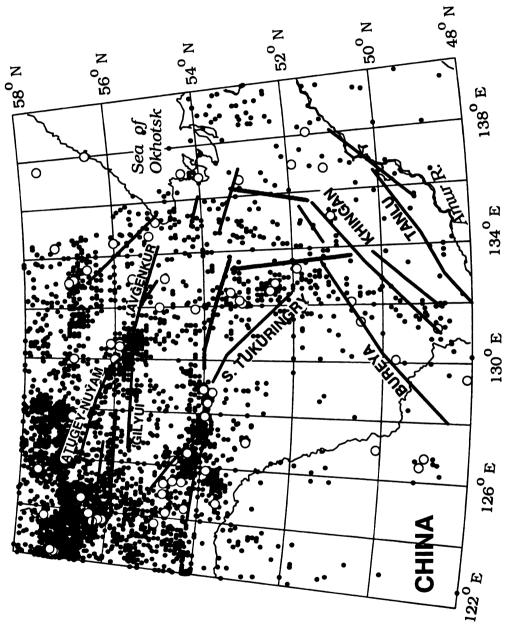



Figure 2-44. Nighttime and teleseismic seismicity of the Amur region with mapped faults. Black lines represent strike-slip faults and dark gray lines, thrust faults.

with three magnitude 4 events. The two eastern events may correlate with the N-S trend, while the western event could be a large explosion associated with the nearby mining. This western event was a "daytime" occurring magnitude 4.1 event, but is listed as such only in Zemlet, with no entry in the ISC Bulletin. In the central part of the Amur region, the South Tukuringry fault, as mapped, also shows no correlation with seismicity. However, an extension of the northern portion of the fault is co-linear with a well defined trend in the "nighttime" seismicity. Overall, mapped faults in the southern portion of the Amur region do not correlate with tectonic microseismicity and thus may not be active.

Faults mapped in the northern Amur region and southern Yakutia generally correlate with "nighttime" seismicity, consistent with tectonic activity. Clear seismicity trends are associated with the Atugey-Nuyam fault, various unnamed faults, and the intersection between the Atugey-Nuyam, Gilyui, and Avgenkur faults. Many of the faults mapped in this region show clear lineations on topographic maps and meteor satellite images. Given the distribution of seismicity in the region, it is clear that many additional active faults exist; lineaments associated with some of them are visible on Figure 2-45.

Focal mechanisms from the Amur region are found in Koz'min (1984), Parfenov et al. (1987), and the *Materialy* and *Zemlet* catalogs (Figure 2-45; Table 2-2). Focal mechanisms in the northern part of the Amur region are generally consistent with a left-lateral transpressional boundary. Focal mechanisms in the central Amur region are concentrated along the north-south seismicity trend between 132 and 133 degrees east. These mechanisms are predominantly northeast - southwest thrusting events, although individual mechanisms vary somewhat. In some cases, the orientations of the planes can be adjusted as they are constrained with little data. The north - south seismicity trend may therefore

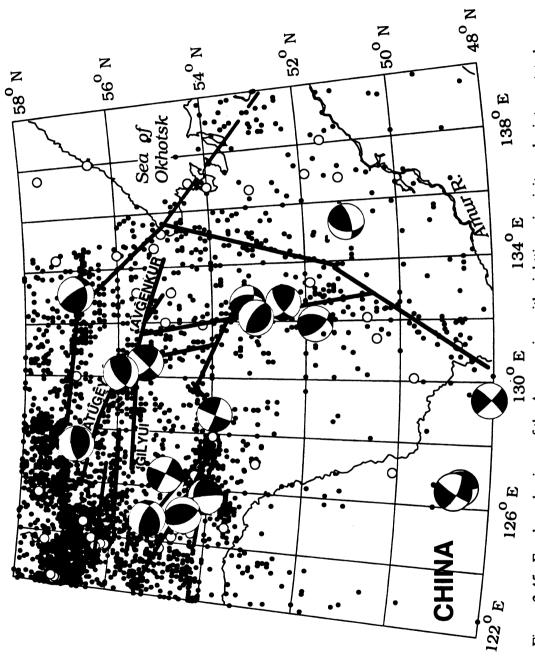



Figure 2-45. Focal mechanisms of the Amur region with nighttim seismicity and reinterpreteted faults based on seismicity trends.

Table 2-2. Focal mechanisms of the Amur region. Planes are given as Strike - Dip - Rake. References are: KOZ - Koz'min (1984), PAR - Parfenov et al. (1987), CHU - Chung et al. (1995), PDE - USGS Preliminary Determination of Epicenters, ZEM - Zemlet, and MAT - Materialy.

DATE ORIG	IN LAT	LONG	MAG	PLA	ANE1	PI	AN	E2	REF
78 08 21 10 15	54.4 55.22	124.80	•	292 6	53 -	065	36	_	KOZ
	30.0 54.50	125.05	4.7	006 3	32 118	154	62	74	ZEM
73 11 02 07 31	32.9 54.04	125.75	4.9	354 7	79 – –	248	35		KOZ
86 08 15 20 20	34.4 48.93	126.45	5.2	116 6	53 - 12	212	79	-153	PDE
72 06 13 10 45	03.2 54.91	126.46	4.9	026 8	30 -	296	89	-	KOZ
86 02 28 17 07	24.4 48.64	126.66	4.9	179 8	34 97	309	9	41	ZEM
72 08 09 20 51	51.8 56.84	127.41	4.7	116 3	30 122	260	65	63	KOZ
77 08 16 13 56	59.8 53.93	128.7	4.2	022 9	90 –	112	86	_	PAR
79 04 27 19 38	18. 55.94	130.17	4.6	234 6	53 59	106	41	134	KOZ
77 11 01 03 54	26. 55.41	130.52	4.5	225 9	90 152	135	62	180	KOZ
63 06 21 13 44	20. 47.91	130.61	5.3	134 8	35 8	043	82	174	CHU
82 03 10 20 33	. 51.80	131.90	•	015 4	18 137	138	60	52	ZEM
75 06 29 12 24	43.3 53.07	132.11	4.8	304 6	56 –	134	24	-	KOZ
87 03 05 20 39	22.7 52.48	132.64	4.9	127 5	58 148	235	64	36	TAM
83 07 30 15 42	12. 53.24	132.64	4.9	107 6	58 <b>44</b>	357	50	150	ZEM
71 04 09 11 02	<b>4</b> 9. 56.9	133.1	4.4	327 7	76 128	075	39	22	KOZ
70 08 29 14 59	23.9 51.08	135.30	5.4	072 7	70 <b>–</b>	188	40	-	KOZ

ti cl

C(

C

οĵ

tha bia

2-4

represent a thrust boundary, and the main active tectonic feature in southern and central Amur. There are also a few mechanisms in China near southern Amur. One of these strikeslip mechanisms falls near the extension of the north-south trend through Amur, indicating right-lateral motion.

The north-south trend mapped here may be the active extension of the right-lateral Tanlu fault in eastern China. From eastern China, the mapped active segment of Tanlu fault crosses the Russian border near 48° N x 131° E (Huang et al., 1996), correlating almost exactly with the trend visible in the Amur region. The traditional location of the Tanlu fault in Russia is usually further to the east, along the Amur River valley, which is not supported by the seismicity evidence (Figures 2-43 and 2-44). It is suggested here that the right-lateral Tanlu fault of eastern China has an active extension into the Amur region of Russia. In the Amur region, the strike of the fault gradually changes from northeast-southwest in the south to slightly northwest-southeast further north. As the strike of the fault changes, motion changes from right-lateral strike-slip to northeast-southwest directed thrusting, which is consistent with focal mechanisms for the region (Figure 2-45).

#### CONCLUSION

Based on a very simplistic temporal analysis, it is evident that the seismicity catalog of northeast Siberia is heavily contaminated with industrial explosions. Overall, it appears that the majority of contamination in the seismicity catalog results from "daytime" mine blasts. As a first step in removing contamination, a map of only "nighttime" events (Figure 2-46) provides a better idea of the level and distribution of natural background

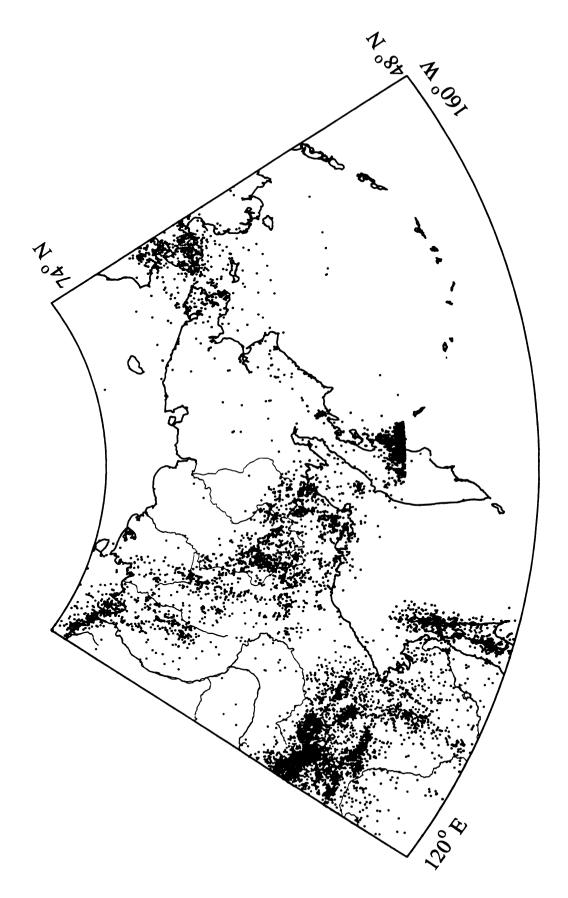



Figure 2-46. "Nighttime" seismicity of northeastern Russia.

microseismicity in the region. In northeastern Russia, "nighttime" seismicity plots are better for identification of active tectonics and faulting.

## REFERENCES

- Agnew, D.C., 1990, The use of time-of-day seismicity maps for earthquake/explosion discrimination by local networks, with an application to the seismicity of San Diego county, *Bulletin of the Seismological Society of America*, v. 80, p. 747-750.
- Chung, W.-Y, Wei, B.-Z, and Brantley, B.J., 1995, Faulting mechanisms of the Liyang, China, earthquakes of 1974 and 1979 from regional and teleseismic waveforms evidence of tectonic inversion under a fault-bounded basin: *Bulletin of the Seismological Society of America*, v. 85, p. 560-570.
- Godzikovskaya, A.A., 1995, *Local explosions and earthquakes*: Rossiskoe Aksionernoe Obshchestvo Energy and Electrification "EES Rossii", Moscow, p. 55-66 (In Russian).
- Figura, P., Faust, T., Fujita, K., and Koz'min, B.M., 1996, Seismotectonics of the Amur Region, Eastern Russia: *Transactions, American Geophysical Union (EOS)*, 1996 Fall Meeting, v. 77, # 46, Supplement, p. 521.
- Huang, W., Gao, W., and Ding, G., 1996, Neogene volcanism and Holocene earthquakes in the Tanlu fault zone, eastern China: *Tectonophysics*, v. 260, p. 259-270.
- Imaev, V.S., Imaeva, L.P., Koz'min, B.M., and Fudzhita, K, 1994, Active faults and modern geodynamics of the Yakutia seismic belts: *Geotektonika*, p. 59-71 (in Russian).
- Lander, A.V., Bukchin, B.G., Droznin, D.V., and Kiryushin, A.V., 1996, The tectonic environment and source parameters of the Khailino, Koryakia earthquake of March 8, 1991: Does a Beringia plate exist?: Computational Seismology and Geodynamics, v. 3, p. 80-96.
- Koz'min, B.M., 1984, Seismic belts of Yakutia and the focal mechanisms of their earthquakes: Moskva, Nauka, 126 p. (in Russian).
- Materialy po Seismichnost' Sibiri, 1970-1990: Academy of Sciences of the USSR, Siberian Branch, Irkutsk (bi-monthly, in Russian).
- Odinets, M.G., 1996, The problem of polluting the earthquake catalog with industrial blasts in northeastern Russia, in Lin'kova, T. I., and Bobrobnikov, V. A., eds., Geophysical Models of Geologic Processes in Northeast Russia: NEISRI, Magadan, p. 90-99 (in Russian).
- Parfenov, L.M., Koz'min, B.M., Imaev, V.S., and Savostin, L.A., 1987, The tectonic character of the Olekma-Stanovoy seismic zone: *Geotectonics*, 21 (6), p. 560-572.

- Pilyasov, A. N., 1993, Regularities in the mining-industrial mastery of northeast Russia: *Kolyma*, 1993 (8), p. 5-12 (in Russian).
- Riegel, S.A., 1994, Seismotectonics of northeast Russia and the Okhotsk plate: M.S. Thesis, Michigan State University, East Lansing, ix + 70 pp.
- Shabad, T., 1969, Basic industrial resources of the USSR: Columbia University Press, New York, 393 pp.
- Vazhenin, B.P., Mishin, S.V., Sharafudinova, L.V., 1997, Earthquakes in the Magadan Region: NEISRI, Magadan, 44 pp.
- Zemletryaseniya v SSSR, for 1963-1989: Nauka, Moscow (annual, in Russian).
- Zemletryaseniya v SSSR, for 1990-1991: Russian Academy of Sciences, Moscow (annual, in Russian).
- Zemletryaseniya Severnoi Evrazii, 1992: Geoinformmark, Moscow (in Russian).

#### **CHAPTER 3**

# Relocations of Northeast Russia Earthquakes

#### INTRODUCTION

The quality of hypocenter locations is of utmost importance when earthquake data are used in seismicity distribution studies as well as in developing better velocity or tomographic models. Of course, high quality locations depend on using the correct travel time curves in the location procedure. The existing database contains several thousand events that have been located by several seismic networks, each employing different location methodology, travel time curves, and phase data. Hypocenter determinations throughout the study area can be improved by using a single methodology, calibrated travel time curves, and combined phase data from adjoining networks. Location procedures used in individual networks are discussed in Chapter 1. In this chapter, the larger events in the study area will be relocated in conjunction with developing best-fit crustal travel time curves.

# PREVIOUS WORK

In effort to gain a better understanding of the Russian computed locations, travel time curves based on the original epicenter and origin times are plotted. Figures 3-1 through 3-4 show travel time curves for Pn, Pg, Sn, and Sg phases respectively. Note significant scatter as well as trends of misassociated phases. The misassociated phases are most evident on Figure 3-3 where many Sg arrivals are cataloged as Sn arrivals. On the Sg travel time curve (Figure 3-4) there are parallel trends of arrivals. These are a result of the minute of the arrival times either recorded or typed incorrectly, as they delineate multiples of 60 second

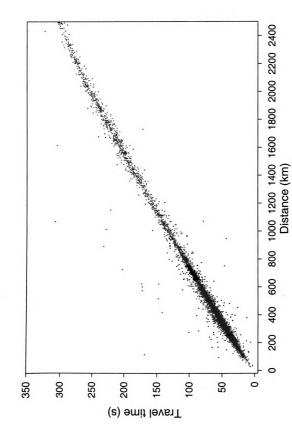



Figure 3-1. Pn phase arrival travel time curve for northeastern Russia. Russian reported hypocenters and origin times were used. The plot contains 9,342 arrivals. Data shown is only from northeastern Russia stations.

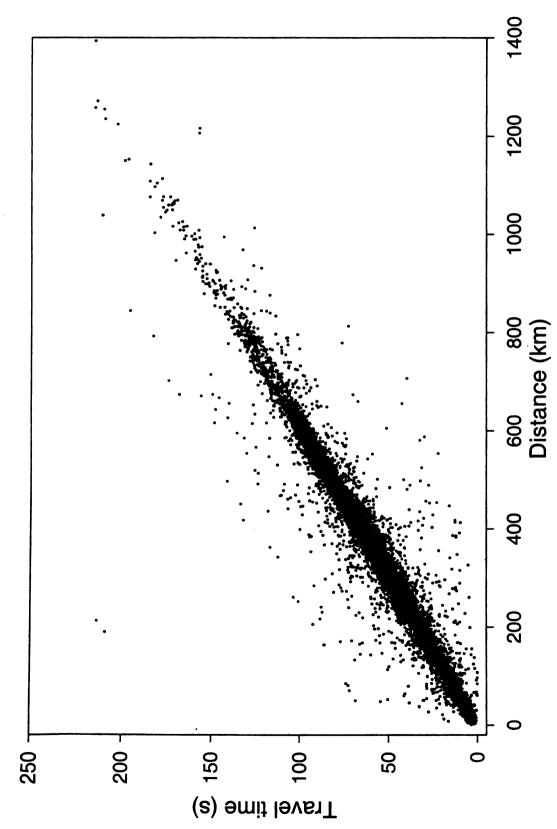



Figure 3-2. Pg phase arrival travel time curve for northeastern Russia. Russian reported hypocenters and origin times were used. The plot contains 35,257 arrivals.

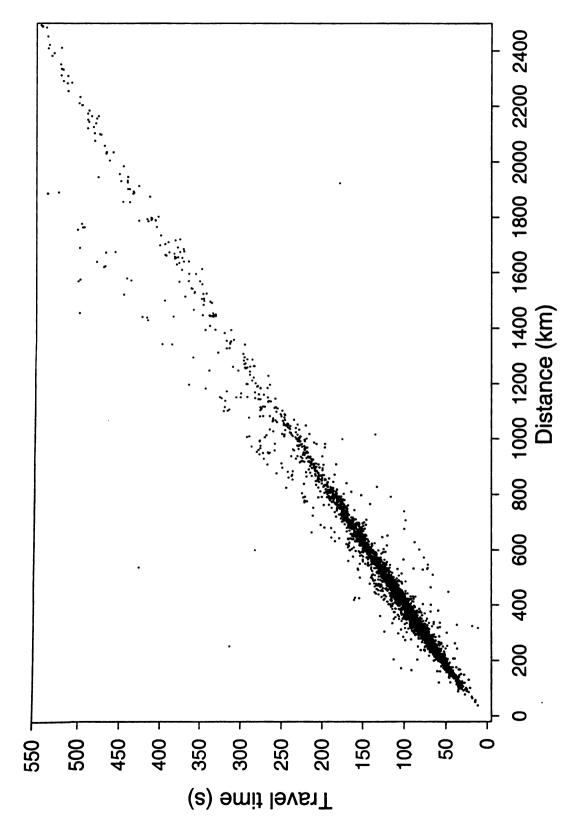
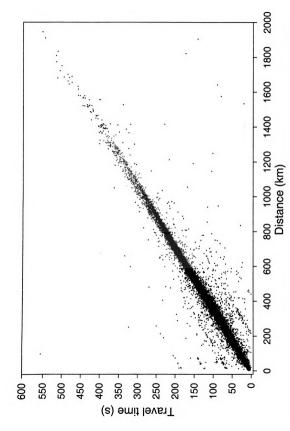
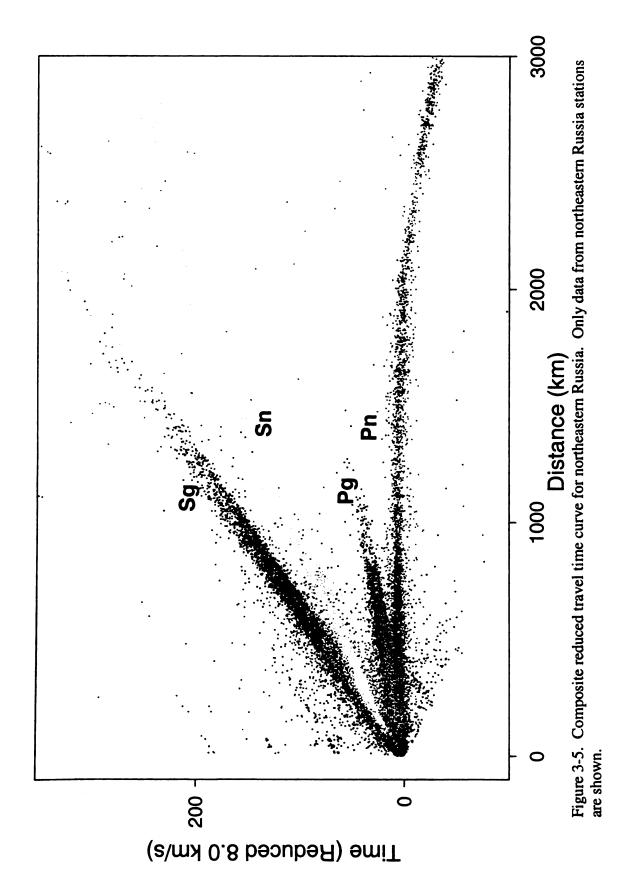



Figure 3-3. Sn phase arrival travel time curve for northeastern Russia. Russian reported hypocenters and origin times were used. The plot contains 4,873 arrivals. Data shown is only from northeastern Russia stations.





Figure 3-4. Sg phase arrival travel time curve for northeastern Russia. Russian reported hypocenters and origin times were used. The plot contains 68,811 arrivals.

offsets from the main Sg trend. Similar trends are visible to a lesser extent on the Pg and Sn travel time curves (Figures 3-2 and 3-3). A composite reduced travel time curve is shown in Figure 3-5.

The only previous study attempting a systematic relocation of events in the study area looked at a set of 75 events in the southern Magadan and northern Yakutsk networks (Mackey, 1996; Mackey et al., 1998). In this study, events were located using only the Pg phase, assuming a crustal velocity of 6.00 km/s. High residual arrivals were omitted from the location routine and several misassociated phases were corrected. Travel time data were then inverted to solve for the best fitting Pg and Pn velocities and new origin times for the events. Although the primary focus of this study was to determine crustal thickness based on seismic velocities and Pg/Pn crossover points, the regional best-fit P wave velocities were also determined (5.992 km/s crust, and 7.961 km/s upper mantle). This crustal velocity is less than the 6.1 km/s crustal P velocity used for the original Russian locations in the region (Figure 3-2). The relocations and inversion of the data resulted in a significant reduction in data scatter on the travel time curves (Figures 3-6 through 3-8).

## **DISCUSSION**

Relocations computed here are intended to build on relocation work presented in Mackey (1996), and Mackey et al. (1998). The basic location routine is a least squares best fit routine called 'HYP2DT,' originally from Caltech. Originally, this program used only one trave I time curve, thus hypocenter parameters could be computed using only one phase. The routine was modified for this study to accept multiple phases, specifically Pg, Pn, and Sg. Sn arrivals are not used as the data are very noisy.



2.

/r (s)

F) 60 16

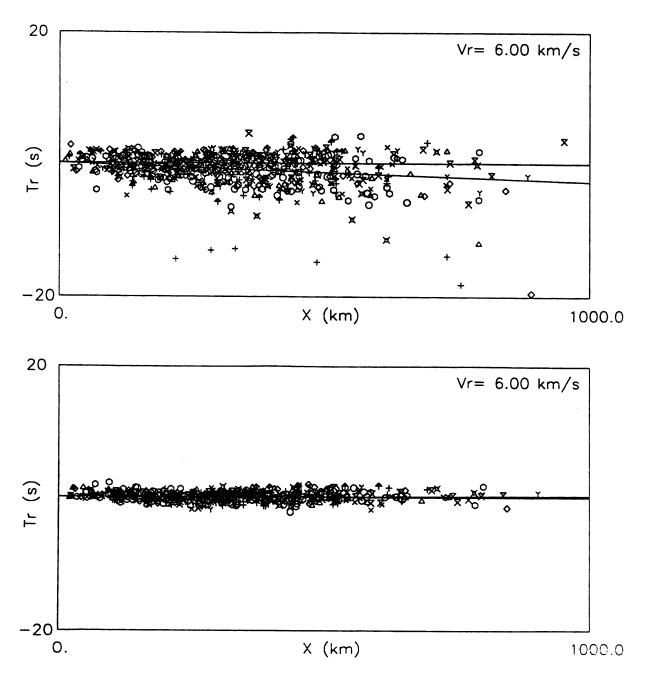



Figure 3-6. Pg reduced travel time curves for 75 events used in Mackey (1996) and Mackey et al. (1998). Upper curve uses original Russian determined hypocenter parameters and reflects a velocity of 6.1 km/s. Lower curve plots the same data after all events were relocated and inverted for velocity and origin time. Reduction velocity is 6.0 km/s. Figure from Mackey (1996).

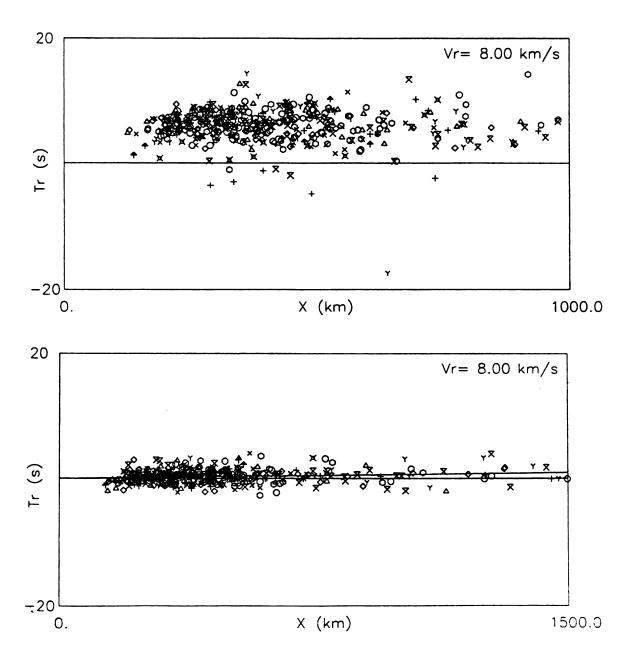
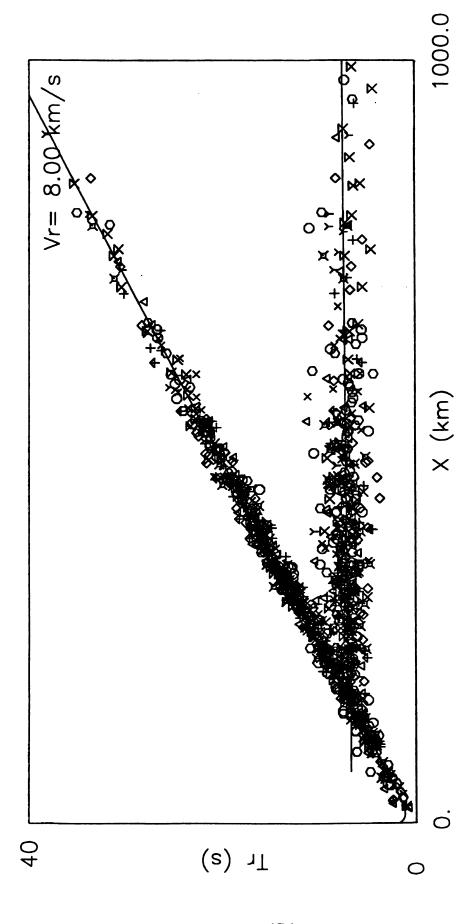




Figure 3-7. Pn reduced travel time curves for 75 events used in Mackey (1996) and Mackey et al. (1998). Upper curve uses original Russian determined hypocenter parameters. Lower curve plots the same data after all events were relocated and inverted for velocity. Reduction velocity is 8.0 km/s. Figure from Mackey (1996).



data plotted use the Pg phase relocated epicenter and origin times determined from inversion of the data after high residual arrivals were removed. The Pg-Pn crossover point is consistent with a regional crustal thickness of 37 km. Pg velocity plotted is 5.99 km/s and Pn velocity is 7.96 km/s. Reduction velocity is 8.0 km/s. Figure from Mackey (1996). Figure 3-8. Reduced composite travel time curve from 75 events used in Mackey (1996) and Mackey et al. (1998). All

c

á

th re

resi

Plas

Sti

Throughout the study area, many geologic and tectonic environments exist, which combined with the physical vastness of the region makes it likely that no single velocity or travel time curve will reflect actual seismic velocities for any particular phase. In order to overcome this problem, the study area was broken into cells, and the best fitting velocities were determined by minimizing the sum of event RMS residuals through trial of multiple travel time curves. Cell sizes are generally 3° north-south by 5° east-west, although this was adjusted in areas with sparse activity in order to increase the number of useable events (Figure 3-9). For any given block, only events containing Pn phase arrivals (generally 2 or more) were used. This selects only the larger events, which contain more arrivals and have better azimuthal coverage of receiving stations.

Travel time curves for Pg and Sg phases were calculated assuming a flat-earth-straight-ray approach. This is reasonable because Pg and Sg phases are confined to the crust, thus the distance traveled between epicenter and station is equivalent to the surface distance. For hypocenters at depth, the travel path is assumed to be the hypotenuse of the triangle made by the depth and the surface distance. Event depths are restricted to a maximum of 33 km, as all events are assumed crustal in nature. Events for which depth tends above the surface are restricted to 0 km.

In order to determine the best crustal velocities for locating events within a given cell, the selected events are first located with crustal velocities 'guessed' for the region. The velocities used in the guess were generally the best fit velocities from an adjacent cell. The resulting output is analyzed for high residual arrivals, generally those greater than 3.5 seconds. High residuals are generally a result of either typographical errors, misassociated phases, or bad time picks. Typographical errors and misassociated phases are corrected if

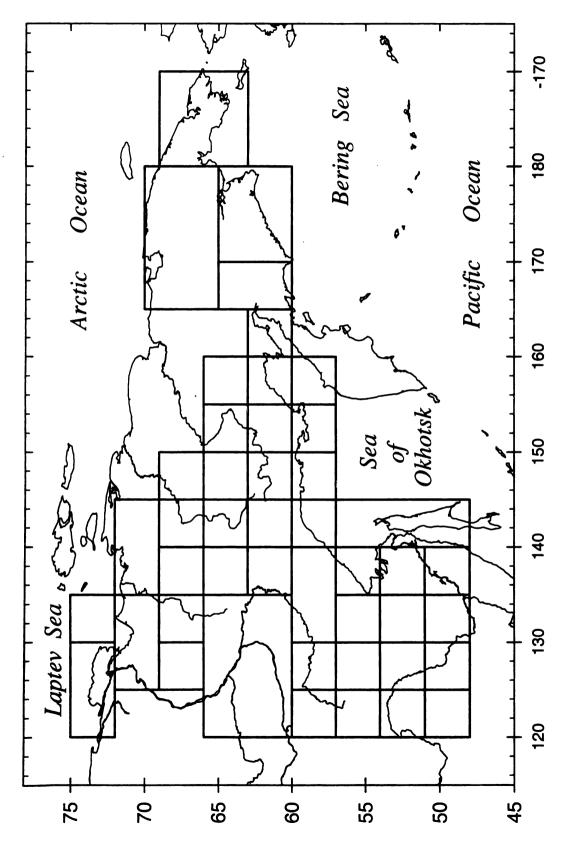



Figure 3-9. Grid of individual regions where calibrated crustal velocities were determined.

possible, while bad time picks are flagged to be omitted from use in further locations. Unstable events having many high residual arrivals such that it was impossible to get a reasonably good location and events with four or fewer recording stations are omitted from further analysis. Overall, less than 5% of the originally selected events were omitted due to stability problems.

In order to determine the better fitting travel time curve to use for Pn arrivals in the location procedure, the Jeffreys-Bullen (JB; Jeffreys and Bullen, 1970) P wave travel time curve was compared to the IASPEI 91 (I-91) curve by Kennett (1991). Results for test regions in the Amur, northern Yakutia, Magadan, and Chukotka regions indicate that the JB table does a better job of fitting the Pn arrivals in the region. The Pg and Sg velocities used in each comparison were the same. Overall, when comparing RMS residuals for events located using the two travel time curves, approximately 80% of the events have a lower RMS residual when the JB table is used as opposed to the I-91 table. Therefore, the JB table was constructed at a time when continental observations determined the data set, as opposed to the I-91 table which incorporates more oceanic data.

Following removal of large residual time picks and correction of misassociated phases, the remaining selected events for a given block are located multiple times using different crustal velocities. Crustal velocities tested for each block range from 5.875 km/sec to 6.350 km/sec in 0.025 km/sec increments for Pg, and 3.470 km/sec to 3.650 km/sec in 0.020 km/sec increments for Sg. In this manner, the crustal velocities which best fit the events in the cell are found. The newly found best fitting velocity for each cell is then used to relocate the events a second time. After locating with the new velocity, any additional

high residual arrivals are omitted or corrected. Arrivals with residuals over 3.0 seconds were removed. Arrivals with lower residuals were occasionally removed if the station was very close to the epicenter, or if a single residual had a value several times larger than all others for a particular event and 'stood out'. If any arrivals were removed or had phase associations changed, the events in the cell were again subjected to a search for the best fit crustal velocities. Three-dimensional plots of a cell's cumulative residuals for varying Pg and Sg velocities are useful to illustrate how the residuals change with differing velocities. Figures 3-10 and 3-11 illustrate how the residuals change for specific cells in the Magadan and south Yakutia regions respectively. Note the absolute minimum in each plot is different, which shows lower velocities are better in the Magadan cell, while higher velocities work better in the south Yakutia cell. Final crustal velocities for each cell are shown on Figures 3-12 and 3-13, and are given in Table 3-1. A total of 1311 earthquakes were relocated (Appendix E) in 45 geographic cells. Crustal velocities in northern Yakutia are somewhat problematic, with adjacent cells alternating between high and low velocities. This region is re-evaluated with a slightly different method discussed below.

In this study, the Pn phase controls the depth determination of the hypocenter, while the crustal phases better constrain the origin time and coordinates. This is a result of the geometry of the raypaths. The crustal phases are not sensitive to depth because a change in depth has a negligible effect on the raypath length for distant stations. For example, a change in depth from 0 to 10 km results in an increase of the raypath length of 0.5 km for a station 100 km distant. This corresponds to a difference in Pg travel time of less than 0.1 second, which is less than timing or picking errors. Because few earthquakes in this study have more than one station within 100 km of the epicenter, the crustal phases exert little influence in

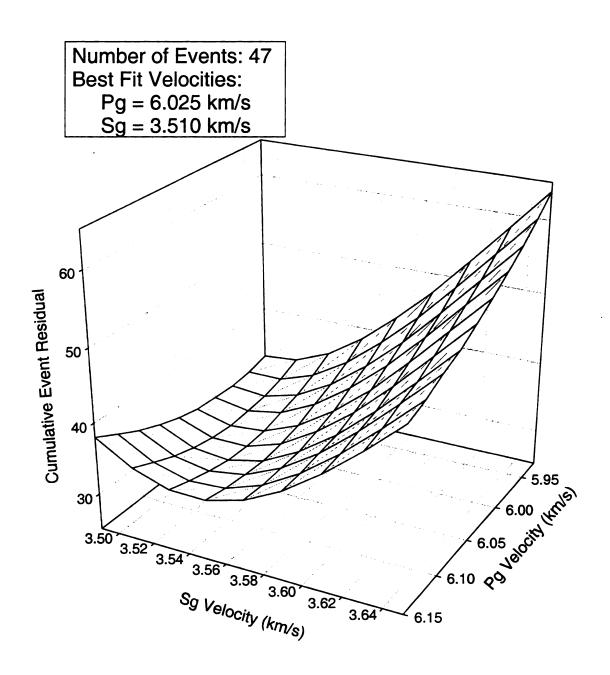



Figure 3-10. Pg-Sg velocity residual graph for the region 60 - 63° N x 145 - 150° E.

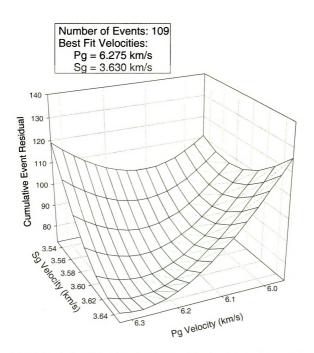



Figure 3-11. Pg-Sg velocity residual graph for the region 54 - 57° N x 125 - 130° E.

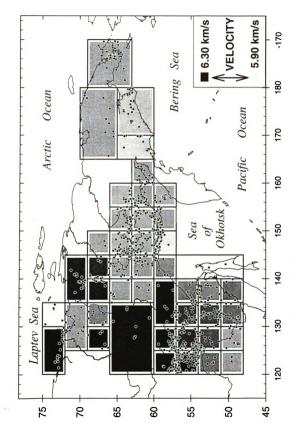



Figure 3-12. Grid of calibrated Pg velocities. Original epicenters shown for reference.

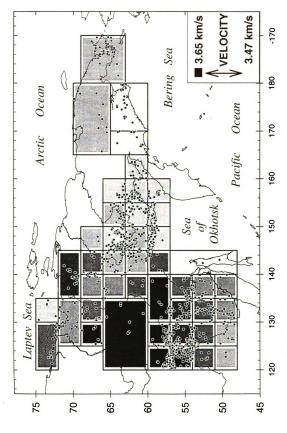



Figure 3-13. Grid of calibrated Sg velocities. Original epicenters shown for reference.

Table 3-1. Best fit velocities and number of events per geographic region.

Region	Best Velocities	km / sec Num	ber of events
48-51N 120-125E	Pg=6.040	Sg=3.530	2
48-51N 125-130E	Pg=6.025	Sg=3.530	12
48-51N 130-135E	Pg=6.100	Sg=3.550	28
48-51N 135-140E	Pg=6.100	Sg=3.550	4
48-57N 140-145E	Pg=5.875	Sg=3.470	2
51-54N 120-125E	Pg=6.100	Sg=3.570	14
51-54N 125-130E	Pg=6.125	Sg=3.570	32
51-54N 130-135E	Pg=6.125	Sg=3.570	47
51-54N 135-140E	Pg=6.075	Sg=3.550	20
54-57N 120-125E	Pg=6.275	Sg=3.630	109
54-57N 125-130E	Pg=6.175	Sg=3.590	69
54-57N 130-135E	Pg=6.150	Sg=3.590	40
54-57N 135-140E	Pg=6.100	Sq=3.570	19
57-60N 120-125E	Pg=6.275	Sg=3.630	149
57-60N 125-130E	Pg=6.300	Sg=3.650	44
57-60N 130-140E	Pg=6.275	Sg=3.630	9
57-60N 140-145E	Pg=6.075	Sg=3.570	7
57-60N 145-150E	Pg=5.950	Sg=3.510	42
57-60N 150-155E	Pg=6.040	Sg=3.510	33
57-60N 155-160E	Pg=6.025	Sg=3.510	35
60-63N 135-140E	Pg=6.050	Sg=3.570	4
60-63N 140-145E	Pg=6.050	Sg=3.530	35
60-63N 145-150E	Pg=6.025	Sg=3.530	47
60-63N 150-155E	Pg=6.025	Sg=3.510	47
60-63N 155-160E	Pg=6.06	Sg=3.51	63
60-63N 160-165E	Pg=6.05	Sq=3.51	11
60-65N 165-170E	Pg=5.975	Sg=3.470	19
60-65N 170-180E	Pg=6.000	Sg=3.470	19
60-66N 120-135E	Pg=6.225	Sg=3.610	7
63-66N 135-140E	Pg=6.050	Sg=3.550	11
63-66N 140-145E	Pg=6.050	Sg=3.530	31
63-66N 145-150E	Pg=6.025	Sg=3.510	103
63-66N 150-155E	Pg=6.025	Sq=3.530	29
63-66N 155-160E	Pg=6.025	Sq=3.510	10
63-69N 180-160W	Pg=6.050	Sg=3.530	48
65-69N 165-180E	Pg=6.060	Sg=3.530	11
66-69N 125-130E	Pg=6.275	Sg=3.610	6
66-69N 130-135E	Pg=6.075	Sg=3.570	14
66-69N 135-140E	Pg=6.200	Sg=3.550	8
66-69N 140-145E	Pg=6.175	Sg=3.570	17
66-69N 145-150E	Pg=6.040	Sg=3.53	2
69-72N 125-135E	Pg=6.050	Sg=3.550	18
69-72N 135-145E	Pg=6.200	Sg=3.590	14
72-75N 120-130E	Pg=6.225	Sg=3.570	15
72-75N 130-135E	Pg=5.900	Sg=3.510	5


determining the depth of the earthquakes. On the other hand, the same shift in depth reduces the path length of the Pn phase a couple of kilometers, as well as allowing the Pn phase a longer time in the higher velocity upper mantle, and shorter time in the lower velocity crust, all of which reduce the travel time. Overall, variations in depth of an earthquake from the surface to 33 km can change the Pn travel time about 3 seconds, thus depth determinations are primarily a result of Pn phase travel times.

A problem can arise with both hypocenter parameters and origin time if the actual seismic velocity along the Moho is different than in the travel time curve used in the location procedure. An incorrect Pn velocity can affect the origin time and coordinates (particularly depth) in a drastic manner if the azimuth window of recording stations is small. With a small azimuth window of recording stations, a shift in origin times as well as distance from stations to epicenter can easily accommodate incorrect crustal velocities. In the process of locating earthquakes in the northern Yakutia region, such a problem was suspected of developing. Note from Figures 3-12 to 3-13 and Table 3-1 that velocities determined in adjacent cells in northern Yakutia vary drastically, with no smooth gradient throughout the region. It was thought that a drastically incorrect Moho velocity was causing sufficiently large shifts in origin times, or locations of events, such that the best fitting crustal velocities were erratic. Unfortunately, exclusion of Pn arrivals from the location procedure removes the primary depth constraint for hypocenter parameters. This led to the development of an alternate method of depth determination without using the Pn phase in the location procedure (Appendix F). It was found, however, that omitting all Pn arrivals from the location procedure and solving for best fitting crustal velocities resulted in essentially the same best fit crustal velocities in northern Yakutia, with the erratic velocity shifts in adjoining cells remaining. As a result of this, the alternate method of depth determination was not used in the final analysis. The method does illustrate the dependence of depth on Pn arrivals when the crust is assumed to be one layer with one velocity for crustal Pg and Sg arrivals.

The final analysis of hypocenter locations for Yakutia north of 66° was done using a 5° x 3° moving window, shifting the window in 1° increments. For each cell, the best fitting crustal velocities were determined by trial of multiple Pg and Sg velocities as discussed above. This resulted in a similar velocity structure as determined earlier, but with greatly smoothed velocity shifts (Figures 3-14 and 3-15). The overall pattern of Pg velocities is similar to that of the Sg velocities.

## **RESULTS**

Crustal velocities determined in the location process correlate well with the regional tectonic provinces. Generally the highest velocities (Pg velocities ranging from 6.225 to 6.300 km/s and Sg from 3.61 to 3.65 km/s) occur in the western portion of the study region, which is associated with the Siberian platform. Elevated crustal velocities in the Siberian platform are consistent with seismic studies conducted by Suvorov et al. (1999), where Pg velocities were generally found to range from 6.2 - 6.3 km/s. South of the Siberian platform, velocities decrease across the Mongol - Okhotsk suture (Figure I-4). This velocity decrease is consistent with with the results of Suvorov and Kornilova (1985). Velocities also drop sharply in the Verkhoyansk foldbelt, along the eastern edge of the Siberian platform. From the Verkhoyansk foldbelt and east through the Mesozoic terrane assemblages (Kolyma - Omolon superterrane) to the Bering Strait, crustal velocities are consistently in the 6.00 - 6.05 km/s range, and Sg velocities in the 3.51 - 3.55 km/s range, with only a few cells



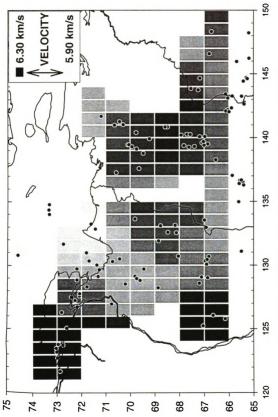



Figure 3-14. Pg velocities for northern Yakutia determined by using a moving window.

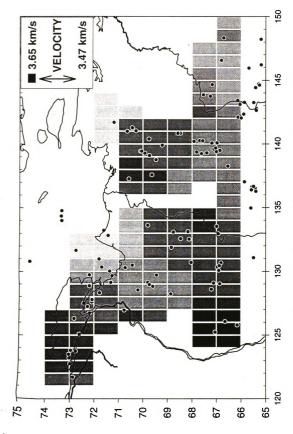



Figure 3-15. Sg velocities for northern Yakutia determined by using a moving window.

deviating slightly. The final analysis for velocities in northern Yakutia indicate that the highest velocities are associated with the Siberian platform along the western edge of the region. The lowest velocities occur in the Laptev Sea and correspond to active rifting along the extension of the Arctic Mid-Ocean Ridge. The velocity shifts in northern Yakutia are probably a result of rapidly changing velocity gradients associated with presently active rifting adjacent to the Siberian platform and other older tectonic structures. The low velocity region in the Laptev Sea extends into the continent, where it generally follows the strike of the grabens outlined in Fujita et al. (1990). Crustal velocities determined for Sakhalin are greatly reduced, although this determination was done with only 2 events, and is thus not statistically reliable.

The newly determined velocities in each cell were used in the final relocation of events. Plots comparing original and relocated epicenters show clear improvement of relative locations. In the Amur region, there is clear improvement on a seismicity trend extending through the Zeya basin and clear tightening of seismicity clusters throughout the region (Figure 3-16). It is expected that an improvement in event locations will result in better defined lineations in the seismicity as earthquakes occur on faults, which are planar. It is also expected that clusters of events would concentrate into smaller areas for point sources, such as aftershock sequences. Relocated epicenters in the Magadan region show a tightening of several clusters of seismicity and a slightly improved lineation of events along the trace of the Ulakhan fault (Figure 3-17). The cluster near 62° N x 157° E is due to an aftershock sequence following an event on February 11, 1987. Clusters of seismicity in the eastern portion of Chukotka are reduced to much smaller lineations (Figure 3-18). It is difficult to judge whether epicenters in the Koryak Highlands are improved as there are not



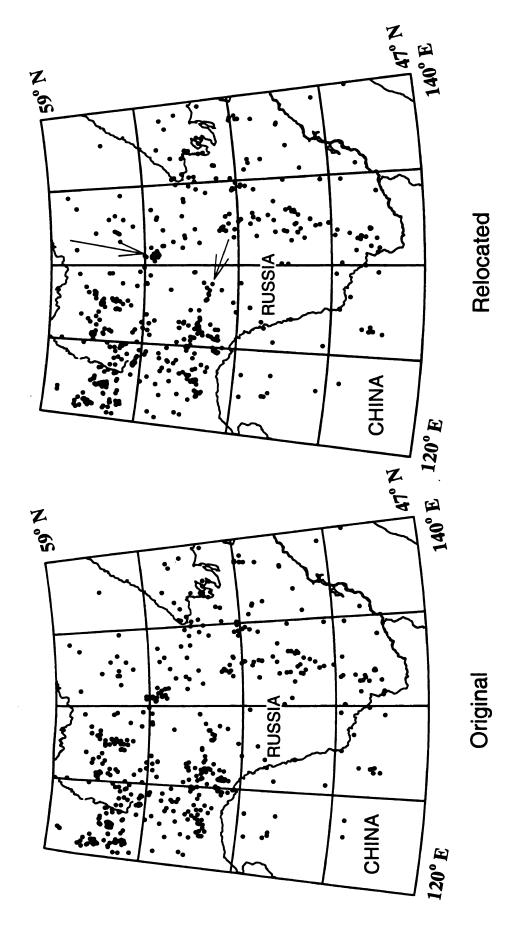



Figure 3-16. Original vs. relocated epicenters for the Amur region. Arrows indicate locations of improved definition of some seismicity clusters and trends.

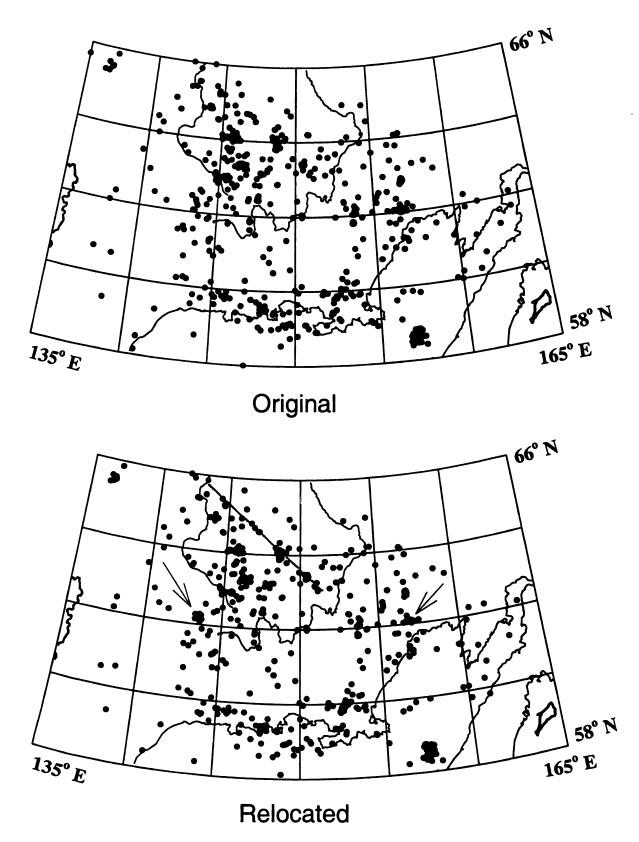



Figure 3-17. Original vs. relocated epicenters for the Magadan region. Ulakhan fault shown by gray line. Note improvement in relative locations of clusters indicated with arrows, as well as many other smaller clusters.

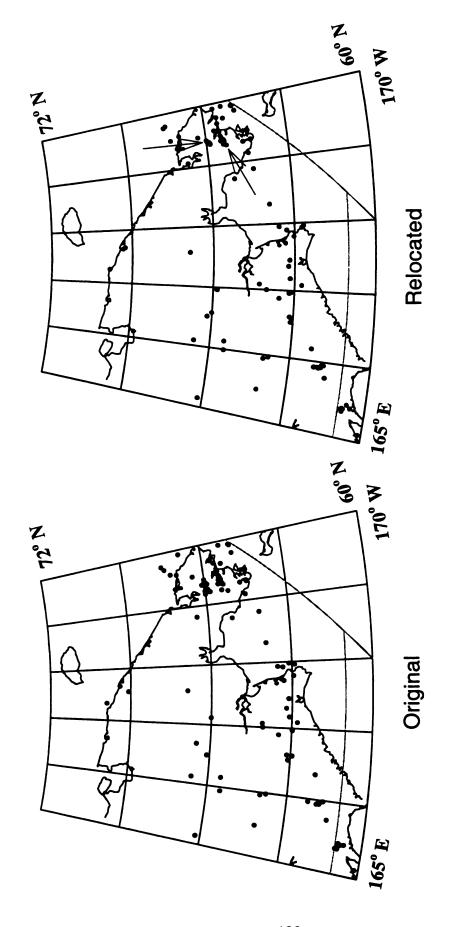



Figure 3-18. Original vs. relocated epicenters for Chukotka. Arrows indicate improved lineations. Network boundaries shown in gray.

enough events, particularly if seismicity here is partitioned on several faults. Original and relocated epicenters for northern Yakutia are plotted in Figure 3-19. Although epicenters clearly moved in the relocation process, the lack of clear clusters and trends makes it difficult to evaluate any improvement in relative locations.

Overall, depths determined in the location process are reasonable. A histogram of event depths shows a clear peak centered around 10 km (Figure 3-20). There are also peaks for depths of 0 and 33 km, which were the confining limits for the depth determinations. As depths determined in this study are primarily dependent on Pn arrivals, any variation in Moho depth will affect event depth. A thickened crust will increase the travel path for the Pn phase. Because the path is longer, it will take longer for the Pn phase to reach the station, giving it a positive residual relative to the assumed thinner crust model. To reduce the residual, the Pn path length must be lengthened in the thinner crust model, which will move the event to a shallower depth. Of course, this may trade off with Moho velocity. Thicker crust may have higher Moho velocities which will result in a earlier Pn arrival, thus offsetting the shallow event depth. Likewise, a thinner crust and lower velocity Moho would have the opposite effects. It is difficult to account for either of these variables without significant prior knowledge of Moho depth and velocity. To further improve hypocenters, it would also be necessary to develop corresponding travel time corrections for all stations and all possible source locations.

A composite travel time curve derived from all relocated events (Figure 3-21) shows a decrease in level of scatter when compared to those derived from the original Russian locations (Figure 3-5). Figure 3-21 is a composite travel time curve for relocations computed

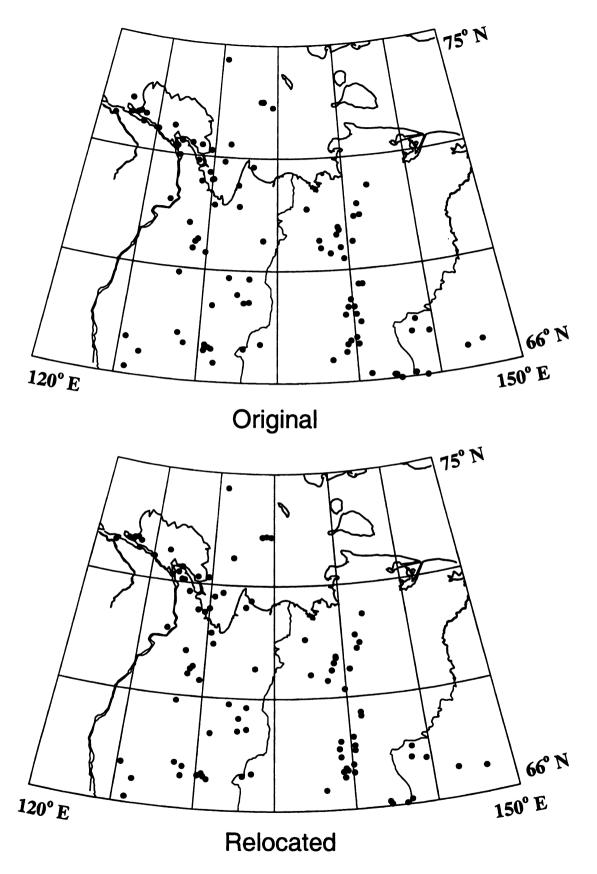



Figure 3-19. Original vs. relocated epicenters for northern Yakutia.

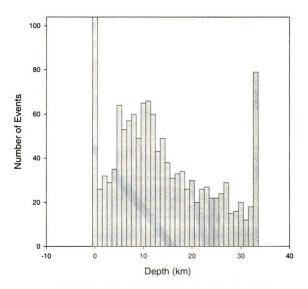



Figure 3-20. Histogram of relocated event depths. Most event depths are around 10 km.

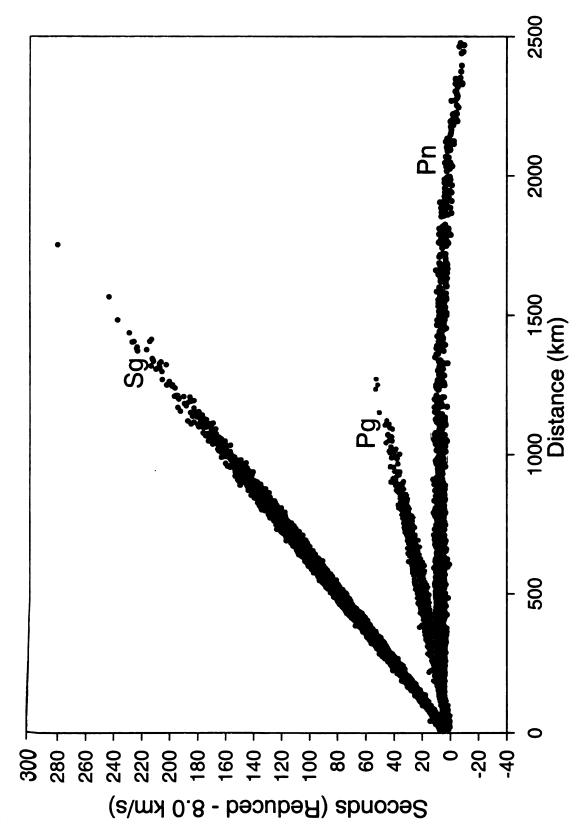



Figure 3-21. Composite regional reduced travel time curve for northeast Russia using hypocenter parameters from relocations. Sn data are omitted.

in all cells. Because each cell used distinct calibrated crustal velocities, the composite travel time curve is somewhat smeared, as it reflects all velocities used in the relocation process. Sn data are omitted, as they were not used in the relocation process. Travel time curves from individual cells better show the improvement obtained. Figures 3-22 and 3-23 compare travel time curves for individual cells in the Magadan and south Yakutia regions respectively. In each case, the level of scatter is reduced for all phases using the relocations, consistent with improved hypocenter parameters. The cells shown here are the same cells for which the 3-D velocity residual graphs are shown (Figures 3-10 and 3-11). Travel time curves from different cells can also be compared. Figure 3-24 compares travel time curves for the Magadan and South Yakutia cells, where the higher crustal velocities in the south Yakutia cell are evident.

# **FUTURE WORK**

Without question, hypocenter parameters have been improved in this study, and the general knowledge of the regional crustal velocity structure has been expanded. However, there is still room for improvement of the hypocenter locations. This is particularly true in regions such as northern Yakutia, where there are large horizontal velocity gradients. In general, hypocenters located in regions of high velocity gradients will shift towards the higher velocity region, and there will be a bias in all the locations in that region. The best way to overcome this problem is to develop correction surfaces for each station that would account for the residuals introduced from differing velocities in all directions and at all distances (see Bondáir et al., 1998). Correction surfaces can be developed for both crustal and mantle phases.

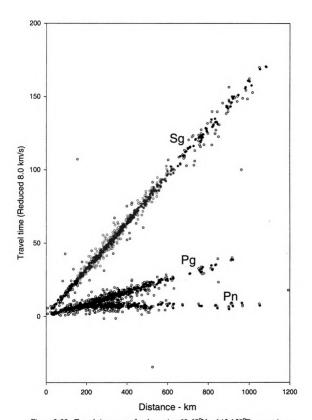



Figure 3-22. Travel time curve for the region  $60-63^{\circ}N \times 145-150^{\circ}E$  comparing original (open circles) with relocated event parameters (closed circles). Note the significant reduction in scatter of data points. Sn data are omitted.

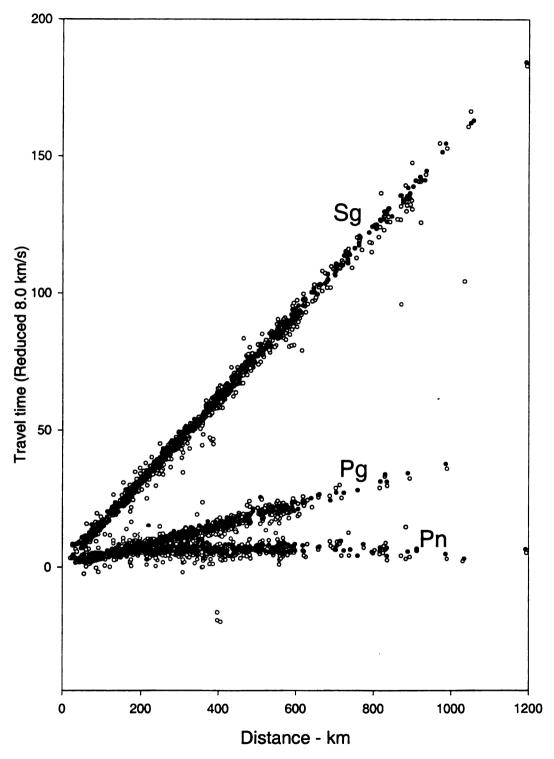



Figure 3-23. Travel time curve for the region 54-57°N x 125-130°E comparing original (open circles) with relocated event parameters (closed circles). Note the significant reduction in scatter of data points. Sn data are omitted.

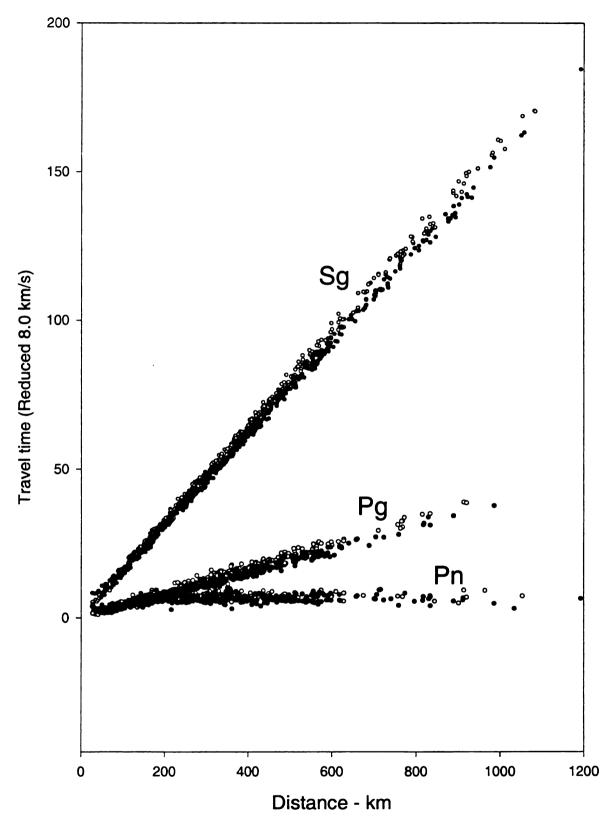



Figure 3-24. Travel time curve comparing the regions 60-63°N x 15-150°E (solid; Magadan) and 54-57° N x 125-130° E (open; south Yakutia). Note increased velocities for relocated events in south Yakutia. Sn data are omitted.

# CONCLUSIONS

The earthquake relocation process used here has improved the quality of hypocenter locations over the original Russian determinations, as well as developed regionally calibrated, best-fit crustal velocity models. Regional crustal velocities determined are consistent with the known geologic and tectonic setting, with higher velocities associated with the Precambrian Siberian platform, and lower velocities associated with the Mesozoic terrane assembledges. Improvements in epicenter locations have clarified several seismicity clusters and fault lineations in northeast Russia.

### REFERENCES

- Bondáir, I., Yang, X., Wang, J., Bahavar, M., Israelsson, H., and McLaughlin, K., 1998, Tuning and calibration activities at the PIDC: 20th Annual seismic research symposium on monitoring a comprehensive test ban treaty (CTBT), proceedings, p. 1-10.
- Fujita, K., Cambray, F.W., and Velbel, M.A., 1990, Tectonics of the Laptev Sea and Moma rift systems, northeast USSR: *Marine Geology*, v. 93, p. 95-118.
- Jeffreys, H., and Bullen, K.E., 1970, Seismological Tables: Office of the British Association, London, 50 pp.
- Kennett, B.N.L., 1991, *IASPEI 1991 Seismological Talbes*: Research School of Earth Sciences, Australian National University, Canberra, 167 pp.
- Mackey, K.G., 1996, Crustal thickness of Northeast Russia: M.S. Thesis, Michigan State University, ix + 102 pp.
- Mackey, K.G., Fujita, K., and Ruff, L.J., 1998, Crustal thickness of northeast Russia: *Tectonophysics*, v. 284, p. 283-297.
- Suvorov, V.D., and Kornilova, Z.A., 1985, Deep structure of the Aldan shield according to near earthquake data: Soviet Geology and Geophysics, v. 26 (2), p. 79-84.
- Suvorov, V.D., Parasotka, B.S., and Chernyi, S.D., 1999, Deep seismic sounding studies in Yakutia: *Izvestia, Physics of the Solid Earth*, v. 35 (7-8), p. 612-629.

### **CHAPTER 4**

# Tomography of Northeastern Russia

#### INTRODUCTION

This chapter attempts to develop upper mantle Pn tomography models for northeastern Russia and associate velocity variations with the regional geology. Data used in the tomography are the Pn arrivals of the events relocated in Chapter 3. Of particular interest for tomographic study is the Laptev Sea and northern Yakutia region, where the boundary between the North American plate and Eurasian plate changes from extension to compression (Cook et al., 1986).

### PREVIOUS WORK

The shallow velocity structure of northeastern Russia is essentially unstudied by tomographic methods. The only previous attempt of Pn wave tomography was done by Wallace and Tinker (1998). This study investigated the portion of Siberia between 70° E and 180° E using events recorded at 11 digital broadband stations installed in the 1990's (primarily IRIS stations). This study obtained 237 arrivals from 43 earthquakes in and around Siberia. Given the geographic size of the area and the small number of raypaths,

#### METHODOLOGY

## Tomography Code

The tomography used an expanded form of the time term method developed by Hearn (1984). The tomography code used was written by D. McNamara for investigating Pn tomography in the Tibetan Plateau (McNamara, 1995).

It is assumed that Pn is a head wave that propagates along the Moho. The Pn phase is therefore modeled as three segments: a segment in the upper mantle, one down going crustal segment below the event, and one up going crustal segment below the recording station (Figure 4-1). The travel time t can then be expressed by the time term equation

$$t = a + b + Ds \tag{4-1}$$

where D is the horizontal distance from the event and the station, s is slowness of the Moho, and a and b are the respective static time delays for the event and station (Hearn et al., 1991). The event and station delays (a or b) can be expressed as

$$delay = \int (s_c^2 - s^2)^{1/2} dz$$
 (4-2)

where  $s_c$  is the crustal slowness profile as a function of depth (Hearn et al., 1991). For the tomographic study, the area of investigation is gridded into cells. A modified time term equation can then be used to estimate the slowness in each cell. The travel time for any individual raypath then becomes the sum of the crustal static delays plus the slowness of each cell multiplied by the path length traveled in each cell

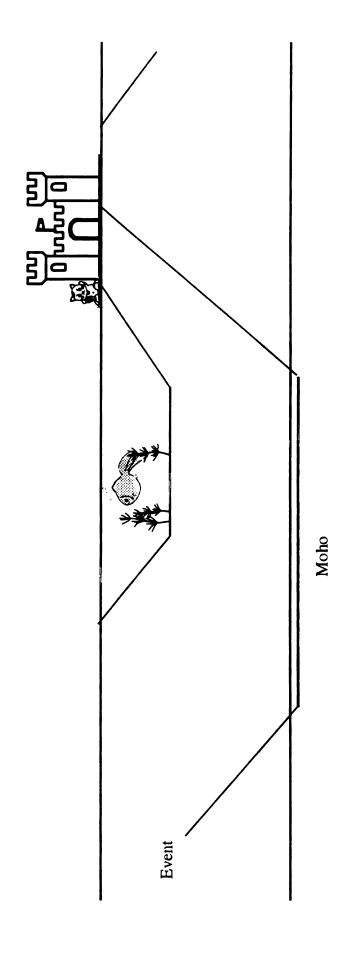



Figure 4-1. Pn is assumed to be a head wave propagating along the Moho. Static corrections are calculated for the event (downgoing leg) and the receiver (upgoing leg). The big moat around the station holds fish and lizards that are disturbed by the earthquakes.

$$t = a + b + \sum d_i s_i \tag{4-3}$$

where  $d_i$  and  $s_i$  are the distance the ray travels and slowness in cell i, respectively. The sum is over all cells in which the ray travels (Hearn et al., 1991).

In this tomography code, assumptions are made regarding average crustal thickness, average crustal velocity and average Moho velocity. From these assumptions, the static corrections (mean Pn residual) associated with each event are determined, and new residuals are calculated. The event delays calculated are dependent on crustal thickness and velocity variations, as well as errors in hypocenter depth and origin time. The individual effects of these parameters will trade off with one another, thus the actual event statics cannot be interpreted in a meaningful way (Hearn et al., 1991).

Static corrections for receiving stations are next determined using the mean residuals for each station and new residuals are again calculated. Static corrections for the stations are primarily dependent on crustal velocity and crustal thickness. Crustal thickness can affect station statics the most (about 1 second per 10 km change in crustal thickness; Hearn et al., 1991), thus they can be interpreted as such. The affect of crustal thickness to station static delays is similar in concept to the alternate method of determining hypocenter depths in Appendix E.

Finally, using (4-3), cell slownesses are estimated from the weighted mean of the apparent slowness of all rays passing through each cell. The weighting for slowness in a given cell is the product of the rays traversing the cell, adjusted for the fraction of each rays total length that is included within the cell. In each iteration, the full residual remaining after the static corrections is applied to the Moho leg of the travel path. To remove any cells

with extreme slowness values due to poorly sampled cells, the model is smoothed between each iteration by averaging each cell with its eight neighbors. This is, in effect, the only dampening that occurs in the process. Once the new model is determined, an updated average Moho velocity for the entire study region is calculated. New residuals are again calculated based on the updated average Moho velocity and the process beginning with event static corrections is repeated until the data converge. Iterations are usually stopped when the change in RMS residuals from one iteration to the next becomes less than 1 % (McNamara et al., 1997).

# **Data Selection**

Pn data selected for use must exclude misassociated Pg arrivals, and deeper penetrating P arrivals. There were several specific criteria used in the selection of useable Pn arrivals.

- 1. The Pg/Pn crossover distances in northeast Russia generally range between 100 to 150 km, thus misassociation of phases can be a serious problem (Pg arrivals reported as Pn) at close distances. Therefore, only Pn arrivals from a distance greater than 150 km are used. For distances between 150 and 350 km, Pn arrivals are excluded unless the Pg phase for the particular station and event is also reported. This should, in most cases, eliminate the misassociation problem. Pg arrivals are generally not misidentified as Pn at distances significantly beyond the crossover point (> 350 km). The minimum distance was changed in some model trials.
- 2. For distances greater than 350 km and up to 1,500 km, all reported Pn arrivals were selected. The maximum distance varied between 1,100 and 1,500 km for different

models calculated. Beyond 1500 km, the rays begin to penetrate deeper material and apparent velocities increase, thus are not suitable for Pn tomography. The maximum distance was changed in some model trials.

- Pn arrivals with too high or too low apparent velocities were excluded to remove data outliers. The cutoff velocities varied from model to model.
- 4. Events with fewer than 2 Pn arrivals passing criteria one through three above are also excluded from the usable data as it is not reasonable to calculate event static corrections when there is only one recorded Pn phase. This was adjusted to three or four Pn arrivals in some models.

#### DISCUSSION

#### **Initial models**

The initial tomographic model developed used primarily the original Russian computed hypocenters and origin times. Some teleseismically recorded events for which Russian determinations are unavailable or of poor quality used hypocenter and origin time determinations from the ISC bulletin or the USGS Earthquake Data Report (EDR). The number of teleseismic events is small relative to regional events. Data used included only Russian stations reported in either the local bulletins, the ISC bulletin, or the EDR.

Pn arrivals with selection criteria one through three above are shown in the travel time curve in Figure 4-2. From the original database of Russian determined event Parameters, a total of 6,437 Pn arrivals from 116 stations were selected from 1,624 events.

The distance range for accepted arrivals was 150 - 1500 km. Arrivals with apparent

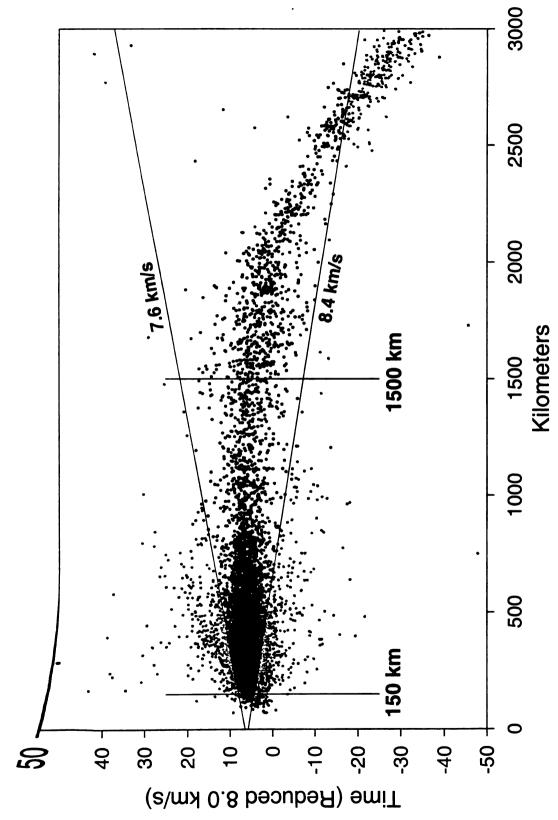



Figure 4-2. Pn arrivals based on original Russian hypocenters. Gray points fall outside the 7.4 km/s and 8.6 km/s velocity criteria and are not used. Vertical lines denote the accepted distance range of values used.

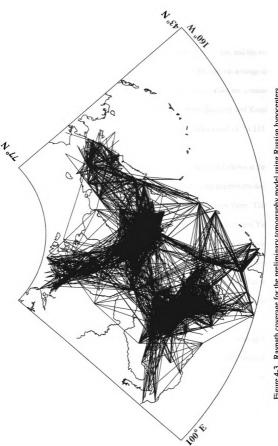
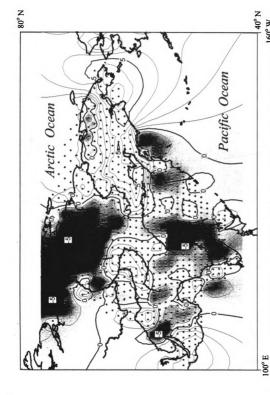



Figure 4-3. Raypath coverage for the preliminary tomography model using Russian hypocenters.

velocities greater than 8.6 km/s or less than 7.4 km/s were also excluded. The resulting raypath coverage from the selected arrivals is shown in Figure 4-3.


The average crustal thickness for the area was assumed to be 37 km, and the average Moho velocity 8.0 km/s (Mackey, 1996; Mackey et al., 1998). Although the average crustal thickness and Moho velocity are known to vary considerably, these values are a reasonable estimate for average values (Mackey, 1996; Mackey et al., 1998; Suvorov and Kornilova, 1985; Suvorov and Kornilova, 1986). Northeast Russia was gridded into 111.2 x 111.2 km square cells for the tomography.

The velocity model calculated is shown in Figure 4-4. The model shown is the third iteration computed. Contours on the model map velocity perturbations as a percent deviation from 8.02 km/s, which is the average Moho velocity calculated on iteration three. The most prominent feature is a large low velocity zone in the Laptev Sea and northern Yakutia, coincident with the Laptev Sea Rift. To the south and west of the Laptev Sea Rift, velocities increase on the Siberian Craton. Velocities decrease south of the Siberian Craton along the Eurasia - Amur plate boundary. The highest velocities are found in the Magadan region. Although the model calculated seems consistent with the tectonic setting, there are several potentially serious problems.

First, the RMS residual error for the model decreases only two iterations before beginning to increase (Figure 4-5). The model shown in Figure 4-4 is the third iteration, with the minimum RMS residual error. This indicates that the model does not converge readily.

In addition, the overall decrease of the RMS residual error is from 0.957 to 0.901 seconds,

or 5.9 %. This is significantly less than the average travel time residual reduction from 1.26



160° W Figure 4-4. Pn tomography of northeastem Russia using Russian determined hypocenters. Contours of velocity perturbations are in percent deviation from 8.0 km/s. Points renresent sell locations when many transfer in percent deviation from 8.0 km/s. Points represent cell locations where perturbations were calculated. Rythmic appearance of contours in northern Yakutia are an artifact of the automated contouring.

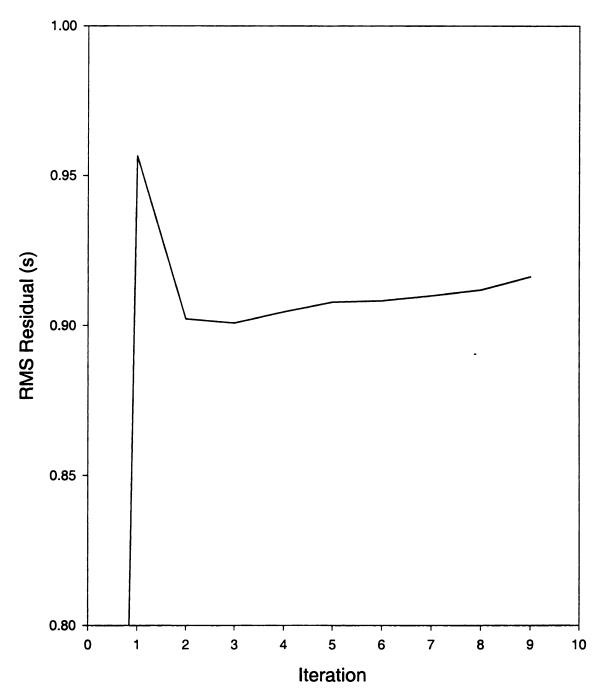
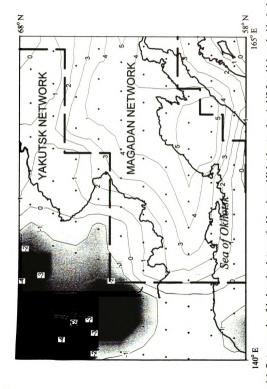



Figure 4-5. RMS residual vs. Iteration for tomography based on data from original Russian hypocenters. The minimum residual is on iteration 3.

to 0.55 seconds in 8 iterations for the study of the Tibetan Plateau (McNamara et al., 1997), which used the same code.


Second, as evident on Figure 4-6, a shift from higher velocities in the Magadan network to lower velocities in the Yakutsk correlates well with the network boundary. Different event location procedures used in the two networks probably introduces biases in hypocenter parameters that are being resolved by the tomography. In this region, the tomography may be mapping the seismic network boundary, and not perturbations in the velocity of the Moho.

Third, station static corrections are unreasonable, with static corrections ranging from minus 15 seconds to plus 12 seconds (Figure 4-7). This is an order of magnitude greater than that found in the Tibetan Plateau by McNamara et al. (1997). Although stations with the largest corrections are those with few arrivals, other stations supplying large amounts of data still show unreasonable static corrections. For example, Batagai, one of the Yakutsk network's best stations, has an unreasonable static offset of 6.7 seconds. The distribution of static corrections does show consistent polarities in the statics. In general, the Yakutsk network stations generally have negative static corrections, while the Magadan and Kamchatka networks consistently have positive station static corrections.

# **Models using relocations**

## Regional Model

The next study investigated Pn velocity of northeast Russia using 1,311 relocated events and their arrival times calculated in Chapter 3. For initial parameters, the average crustal thickness for the area was again assumed to be 37 km, and average Moho velocity is



Magadan network to lower velocities in the Yakutsk network correlates with the network boundary. Different location procedures velocity perturbations are in percent deviation from 8.0 km/s. Points represent cell locations where perturbations were calculated. Figure 4-6. Pn tomography of the boundary between the Magadan and Yakutsk networks. A shift from higher velocities in the between networks may result in the tomography mapping the network boundaries and not real Moho velocity. Contours of

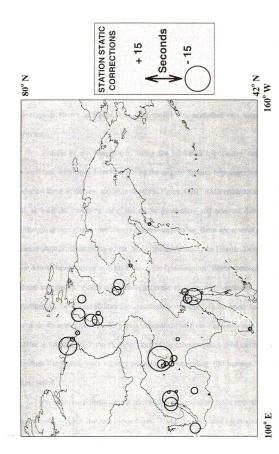



Figure 4-7. Station static corrections for tomography using original Russian hypocenters. Static corrections range from minus 15 seconds to plus 12 seconds.

8.0 km/s (Mackey, 1996; Mackey et al., 1998). Grid spacing was again 111.2 x 111.2 km square cells for the tomography. Data selected for use in the tomography have apparent velocities between 7.4 km/s and 8.6 km/s, and fall in the distance range between 150 and 1500 km (Figure 4-8). Removal of data outside these parameters results in the number of useable events being reduced to 1,066 having a total of 5,146 useable arrivals. Raypath coverage is shown in Figure 4-9. The model was smoothed two times between each iteration.

Results of the tomography using the relocated hypocenter determinations are inconsistent with those determined using the original Russian hypocenters discussed above. Iteration three of the new model is shown in Figure 4-10. RMS residuals drop consistently for at least 30 iterations using the above parameters and selected data (Figure 4-11). Although at first glance these results appear reasonable, there are several problems. First, station static corrections are worse than in the model using the Russian locations, with some corrections being tens of seconds even on the first iteration. Event static corrections are of similar magnitude. Static corrections generally increase with iterations. Although RMS residuals fall for at least 30 iterations, residuals never approach the lower values found when using the Russian hypocenters. This is inconsistent with the improved locations and reduced scatter in the travel time curve. Inspection of the tomographic model calculated on the 30th iteration show cells with velocity perturbations exceeding 100 percent, which is clearly nonsensical.

Perturbation polarities in the relocated event model are often opposite of those in the model using original Russian hypocenters. Using the relocated hypocenters, the Siberian Craton shows reduced velocities, while northern Yakutia shows higher velocities. Both

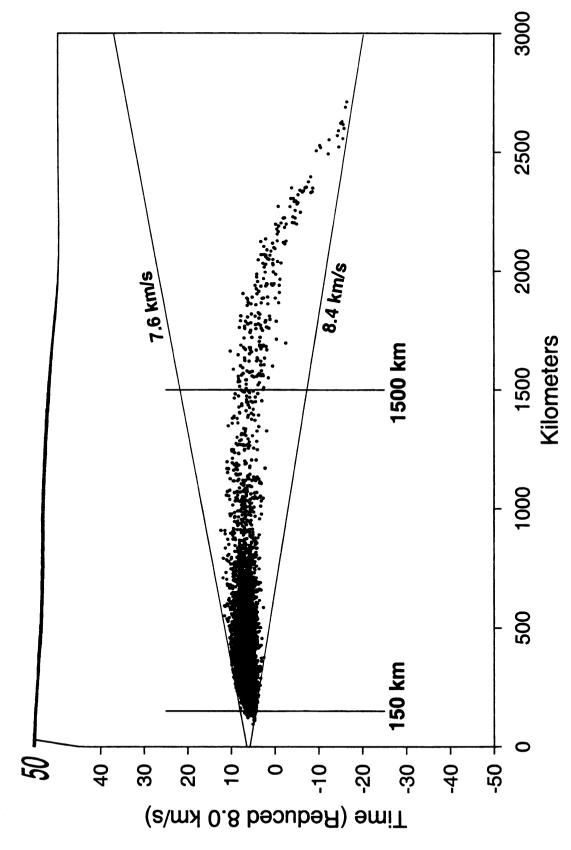



Figure 4-8. Pn arrivals based on relocated hypocenters. All points shown fall between the 7.4 km/s and 8.6 km/s velocity criteria. Vertical lines denote the accepted distance range of values used.

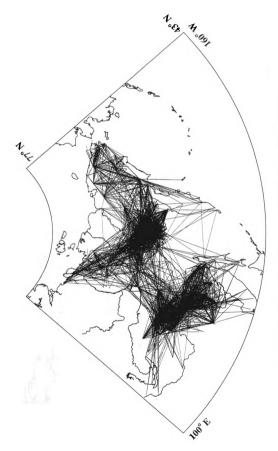



Figure 4-9. Raypath coverage for the tomography model using relocated hypocenters.

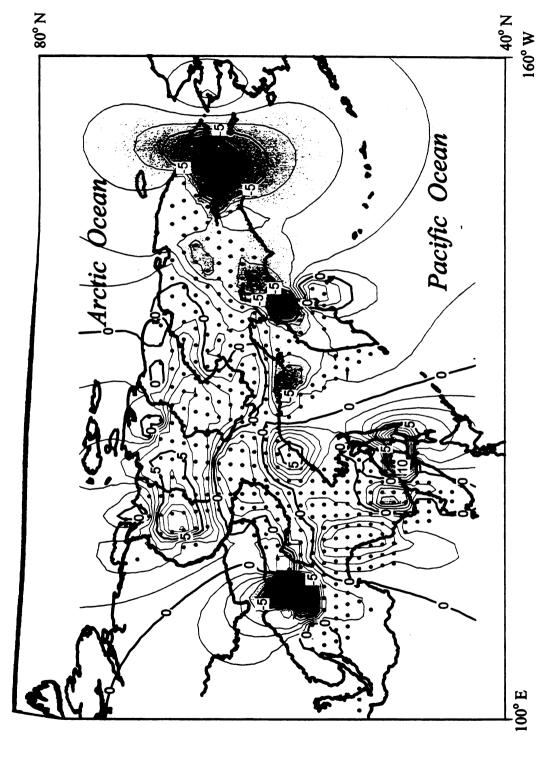



Figure 4-10. Pn tomography of northeastern Russia using relocated hypocenters. Contours of velocity perturbations are in percent deviation from 8.0 km/s. Points represent cell locations where perturbations were calculated.

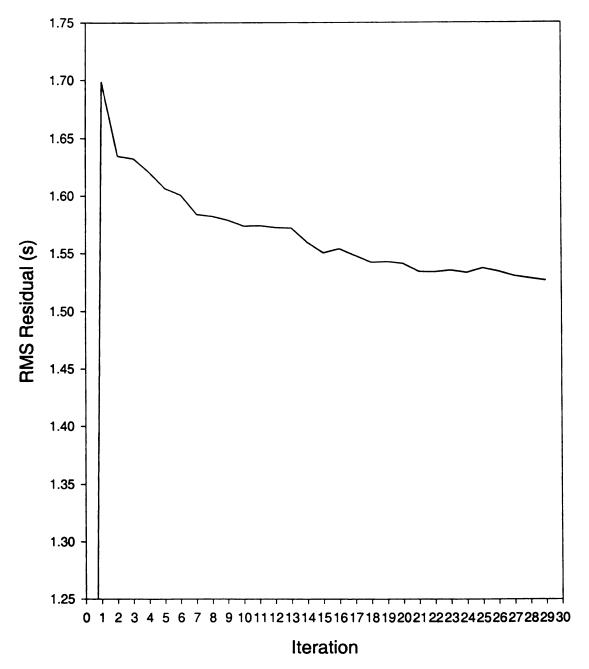



Figure 4-11. RMS residual vs. Iteration for tomography based on data from relocated hypocenters.

inconsistent with the known geology and tectonics. Many attempts were made to isolate the problem with the runaway static corrections, velocity perturbations, and higher than expected RMS residuals, including:

- Varying the range of acceptable velocities for data selection
- Changing the distance range for acceptable data
- Changing the number of smoothing passes between each iteration
- Changing the minimum number of Pn phases per event or station for usable data
- Varying the cell size used in the model
- Removal of some receiving stations
- Varying the assumed average crustal thickness
- Varying the assumed average Moho velocity

Variation of the above parameters yielded no improvements in the model. It is suspected that an odd distribution of events and several outlying stations results in a trade off between the event and station static corrections. The distribution of events and stations are such that the code is unable to solve for Moho velocities as static corrections applied are unreasonably large. Instead of the static corrections being reduced from iteration to iteration with more of the "time" going to perturb the Moho velocities, static corrections simply increase out of control. In one small experiment with the tomography code, several raypaths traversing an otherwise unsampled region of the Siberian Craton were intentionally added into the database. These arrivals all had known large negative residuals, which should map the area which the rays traveled through as having a higher velocity. This was essentially an attempt to force a solution in the areas sampled only by the added raypaths. The resulting model showed no high velocity perturbation where expected. The large negative residuals associated with these paths was apparently absorbed into the static corrections of the events and/or station.

## Local Magadan Model

In an attempt to overcome the problem with many receiving stations lying on the edges of the raypath coverage and the associated trade off between station and event static corrections, a smaller region encompassing only events and stations in the western Magadan and central Yakutsk regions was studied. This model showed no drop in RMS residuals (Figure 4-12), and source static corrections varied tens of seconds, even on the first iteration. Receiver static corrections were of a reasonable magnitude, with most being less than an absolute value of 1.0 second.

## CONCLUSIONS

The seismic phase data for northeastern has proven to be very difficult to use for the development of tomographic models with this code. In a general sense, the original Russian hypocenter locations seem to produce the most believable results, although significant Problems remain. It is unclear why improved relocated hypocenters produce such poor tomographic models. It is possible that this tomography code has difficulty handling such large area with such nonuniform event and station distributions, or raypaths at high latitudes.

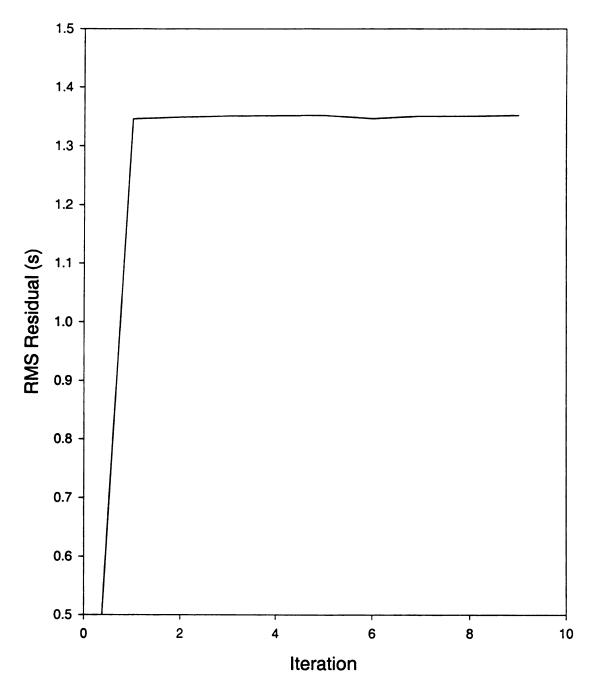
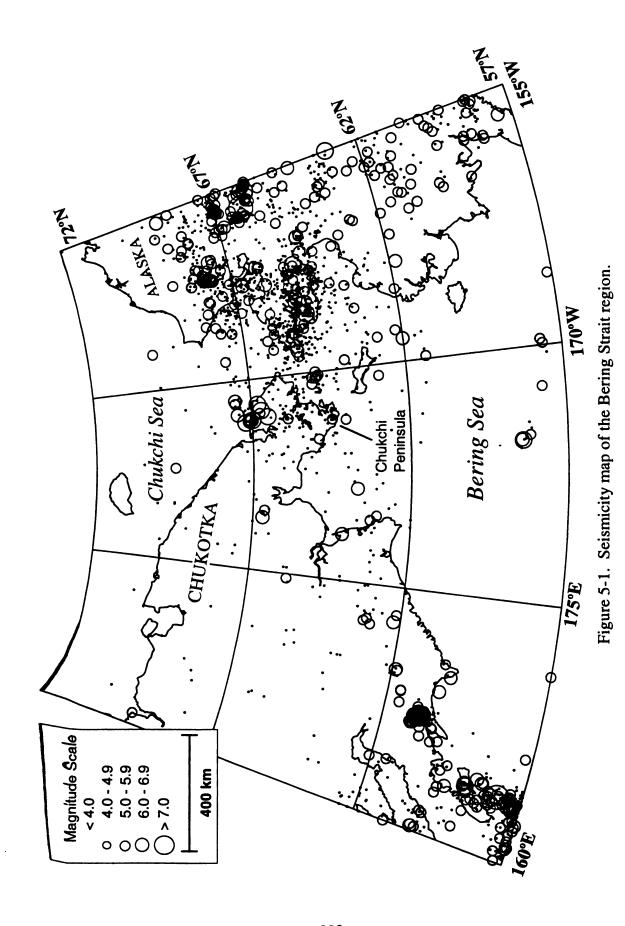



Figure 4-12. RMS residual vs. Iteration for tomography based on data from relocated hypocenters in the Magadan region.

#### REFERENCES

- Cook, D.B., Fujita, K., and McMullen, C.A., 1986, Present-day plate interactions in northeast Asia: North American, Eurasian and Okhotsk plates: *Journal of Geodynamics*, v. 6, p. 33-51.
- Hearn, T.M., 1984, Pn travel times in southern California: Journal of Geopyhsical Research, v. 89, p. 1843-1855.
- Hearn, T.M., Beghoul, N., and Barazangi, M., 1991, Tomography of the western United States from regional arrival times: *Journal of Geopyhsical Research*, v. 96, p. 16,369-16,381.
- Mackey, K.G., 1996, Crustal thickness of Northeast Russia: M.S. Thesis, Michigan State University, East Lansing, ix + 102 pp.
- Mackey, K.G., Fujita, K., and Ruff, L.J., 1998, Crustal thickness of northeast Russia: *Tectonophysics*, v. 284, p. 283-297.
- McNamara, D.E., 1995, Lithospheric structure of the Tibetan Plateau: PhD. Dissertation, University of South Carolina, x + 259 pp.
- McNamara, D.E., Walter, W.R., Owens, T.J., and Ammon, C.J., 1997, Upper mantle velocity beneath the Tibetan Plateau from Pn travel time tomography: *Journal of Geopyhsical Research*, v. 102, p. 493-505.
- Vorov, V.D., and Kornilova, Z.A., 1986, Thickness of the earth's crust in the southeastern Verkhoyana-Kolyma fold system (according to near earthquakes): *Tikhookeanskaya Geologiya*, n. 4, p. 32-36 (in Russian).
- Suvorov, V.D., and Kornilova, Z.A., 1985, Deep structure of the Aldan Shield according to near earthquake data: *Geology and Geophysics*, v. 26 (2), p. 79-84.
- Wallace, T.C., and Tinker, M.A., 1998, Seismic characterization of Siberia: in *Proceedings* of 20th annual symposium on monitoring a comprehensive test ban treaty (CTBT), Santa Fe, New Mexico, p. 536-541.

#### CHAPTER 5


# Seismicity of the Bering Strait Region: Evidence for an Independent Bering Sea Plate

#### INTRODUCTION

Within North America, the Bering Strait region is one of the most poorly studied regions with a moderate to high level of seismic activity. Between 155° W and 180° W, and north of 64°N, at least one magnitude 7, eight magnitude 6, and tens of magnitude 5 events have occurred this century. For a comparable time period, the seismicity is more than an order of magnitude greater than the New Madrid zone. Prior to the political opening of the eastern Soviet Union, the international boundary between Alaska and Chukotka was closed seismological data exchanges, thus seismicity maps of either side of the Bering Strait were incomplete because only Soviet or western data were used. New cooperation has allowed data sets to be combined, and the region to be viewed as a whole to better understand the regional seismicity and tectonic framework (Figures 5-1 and 5-2). Compilation of the existing data sets (Chapter 1) produces a seismicity map which outlines a proposed Bering Plate. Focal mechanism data indicate that there is northeast-southwest extension in the Bering strait, right-lateral strike-slip motion in western Chukotka and the Gulf of Anadyr', and northwest directed thrusting in the Koryak Highlands. These motions, along with Secological evidence presented below, support the existence of a Bering Plate rotating Clockwise about an Euler pole in western Chukotka (Figure 5-3).

The existence of a Bering plate has been proposed previously by several workers.

Ever since the first global plate motion inversion (Minster et al., 1974), there have been



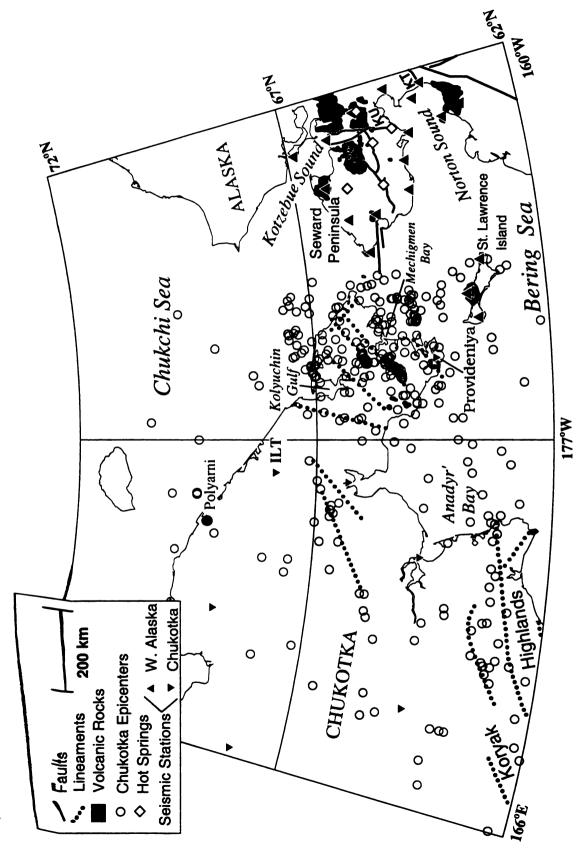



Figure 5-2. Neotectonic and index map of the Bering Strait region. Labeled faults are Kaltag (KT) and Kugruk (KU).

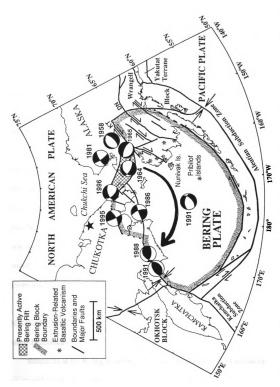



Figure 5-3. Regional tectonics of the Bering Plate, with representative focal mechanisms. Star denotes Euler pole.

various suggestions of a Bering plate. Although the reason that required Minster et al. (1974) to introduce a Bering plate (misfit of slip-vectors on the Aleutian Trench) has been shown to be erroneous (Engdahl et al., 1977), the seismicity of interior Alaska has allowed this proposal to continue (e.g., Stone, 1983). A Bering plate, nearly identical in regional extent to that proposed here, was also proposed recently by Lander et al. (1996) to explain the seismicity of the Koryak Highlands. However, no other supporting evidence was provided and it was not placed in a regional tectonic context.

## SEISMICITY MAP

The Bering Strait seismicity map (Figure 5-1) is a compilation of epicenters, some relocated, from earthquakes recorded teleseismically and by regional networks in eastern Russia and western Alaska. A detailed discussion of the data used is given in Chapter 1. Relocations were performed for some of the larger historic earthquakes. For the event of September 7, 1933, the relocated epicenter varied nearly 1000 kilometers depending on which stations were used in the location process. This event was excluded from the seismicity map (Figure 5-1). A few other events originally located in this region were found to move south into the Aleutian subduction zone.

## REGIONAL SEISMOTECTONICS AND GEOLOGY

## **Seward Peninsula**

Seismicity in the Bering Strait region is a westward extension of seismicity from the northern end of the Alaska subduction zone (Figure 5-1). In western Alaska there are a few areas where the seismicity concentrates along specific lineaments, but in general the

seismicity tends to form diffuse zones. The heaviest concentration of seismicity in western Alaska is in the southern half of the Seward Peninsula. To the east of the Seward Peninsula, seismicity appears to extend almost to the Kaltag fault at the Yukon River, although there is a decrease in seismicity at the Kugruk fault zone. This does not seem to be due to station distribution, as several Western Alaska network stations operated in the immediate vicinity. North of the Seward Peninsula, seismicity occurs primarily in Kotzebue Sound. The apparent lack of seismicity in the eastern Chukchi Sea may be an artifact of seismic station distribution in the Western Alaska network. To the south of the Seward Peninsula is Norton Sound. Norton Sound is relatively free of seismicity compared to the southern half of the Seward Peninsula. Several seismic stations of the Western Alaska network were deployed in the vicinity of Norton Sound, thus the lower levels of microseismicity are likely real.

In the Seward Peninsula, focal mechanisms indicate that the region is under northeast-southwest extension (Biswas et al., 1983, 1986; Liu and Kanamori, 1980; Figure 5-3; Table 5-1). Focal mechanisms east of the Seward Peninsula show a mix of normal faults of various orientations indicating generally north-south extension and right-lateral strike-slip faulting (Figure 5-3; Estabrook et al., 1988). Focal mechanism solutions for the magnitude 7.3 Huslia event of 1958, the largest event in the region, indicate normal faulting, generally with northwest to southeast tension (Ritsema, 1962; Biswas, 1983; Wickens and Hodgson, 1967, and others; Table 5-1; Figure 5-3), although the nodal planes vary significantly among the different solutions.

An east-west striking rift across the southern Seward Peninsula was proposed by Turner and Swanson (1981), and is consistent with the north-south extension indicated by these focal mechanisms (Biswas et al., 1983). There is considerable evidence for the

Table 5-1. Focal mechanisms for western Alaska and Chukotka. Mechanisms are listed from west to east. Those followed by an asterisk are plotted on Figure 5-3.

Date		Lat. Long. Mag		Plane 1			Plane 2		2 Me	ethod	Reference			
85	09	10	60.43	168.86	5.6	072	46	136	196	60	53	CMT	HRV	
91	04	27	60.78	166.87	5.4	258	49	148	011	66	45	CMT	HRV	
91	03	08	60.86	167.02	6.7	037	34	84	224	56	94	CMT	HRV	*
92	07	17	60.86	167.32	5.3	333	47	18	230	77	136	CMT	HRV	
97	01	03	61.07	167.40	5.7	358	16	149	119	82	77	CMT	USGS	
88	10	13	61.85	169.65	5.7	070	53	164	170	77	39	CMT	HRV	*
•						086	58	130	217	42	48	P	MSU	
	10		66.69	179.14	5.1		71	170	148	81	19	CMT	HRV	*
86	10	19	63.90	-178.69	5.3		68	4	245	86	158	CMT	HRV	
İ							50	28	216	69	137	P	MSU	*
91				-175.45	6.6		52	-52	045		-128	CMT	USGS	*
71	10	05		-172.57	5.2			-145	142		-40	SYN	MSU	
	10		67.13	-172.84	6.0	251	60	-138	136		-38	CMT	HRV	*
COMPOSITE		65.9	-166.2				-52	088		-126	P	BIW		
	12		64.88	-165.75	5.3		36	-143	124		-58	P	BIW	*
	80			-162.7	5.0			-170	190		<del>-</del> 5	P	COL	
COMPOSITE		65.0	-162.0				-150	330		-11	P	BIW		
81	07	12	67.71	-161.20	6.2			-17	247		-168	CMT	HRV	*
								-108	296		-84	P	BIW	
65	04			-160.23	5.8		-	-93	137		-82	SYN	LIU	*
73		11		-160.04	4.2			-60	010		-144	P	C00	
58	04		65.82	-155.65		341		-65	095		-154	P	BAL	
58	04	07	66.03	-156.59	7.3			-95	250	_	-80	PS	RIT	*
							66	-78	222	27	-116	P	WIC	
80		14		-155.17	4.3		66	178	214	88	24	P	GED	
80	10	06	66.97	-155.15	4.6		81	169	335	79	9	P	EST	
80	10	06	66.86	-155.05	4.2	124	85	-163	031	73	-5	P	GED	

References are: BIW- Biswas, 1983; COL - Coley, 1983; HRV - Harvard Moment Tensor; USGS - USGS Moment Tensor; LIU; Liu and Kanamori, 1980; COO, Cook, 1988; WIC - Wickens and Hodgson, 1967; EST - Estabrook, 1988; GED - Gedney and Marshall, 1981; BAL - Balakina, 1962; RIT, Ritsema, 1962; MSU - Fujita (pers. comm.).

existence of this rift. There is a series of generally east-west striking Quaternary normal faults offset by short north-south striking strike-slip faults, which is similar to basin and range type extension (Plafker et al., 1993). In addition, sediment filled grabens as much as 1.2 km deep, hot springs (Turner and Swanson, 1981; Till and Dumoulin, 1994), and Quaternary and older late Cenozoic basaltic volcanism have been mapped (generally < 5.8) Ma; e.g., Moll-Stalcup, 1994). South of the Seward Peninsula, east-striking faults of Pleistocene age have been identified in central Norton sound (Plafker et al., 1993) and young (1.5-0.2 Ma) cinder cones on St. Lawrence Island also form an east trend (Moll-Stalcup, 1994) indicating north-south tension. Northeast-southwest extension is also in agreement with the predicted orientation of the T-axis as obtained from geologic indicators in the region (Nakamura et al., 1980; Estabrook and Jacob, 1991). North of the Seward Peninsula, sedimentary basins underlie Kotzebue Sound and the eastern Chukchi Sea where late Cenozoic normal faults abound (Tolson, 1987). Refraction profiles conducted in 1994 through the Bering strait by the R/V Ewing show a slightly elevated Moho, at a depth of 30-35 km, through the Bering Strait (Allen et al., 1995). This elevated Moho is also consistent with crustal gravity modeling of the Bering Strait (McCaleb et al., 1998). Thus, throughout the Seward Peninsula region, there is widespread evidence for young (<6 Ma) crustal extension. The extension in the Bering Strait-Seward Peninsula region may have originated with the post-orogenic collapse of the crust in the mid-Cretaceous and the formation of gneiss domes in the Seward Peninsula (Miller and Hudson, 1991; Dumitru et al., 1995) and reactivated at ca. 6-10 Ma. To the east, the presently active right-lateral Kobuk fault (Estabrook et al., 1988) may link with the Seward rift system.

## Chukchi Peninsula

From the Seward Peninsula, seismicity continues further west across the Bering Strait and into and off the north coast of the Chukchi Peninsula. Four large earthquakes with magnitudes of 6.2 - 6.9 occurred near Kolyuchin Gulf (Figure 5-2) in 1928. The most recent large event in this region was a magnitude 6.0 in October, 1996. The Harvard centroid moment tensor (CMT) for this event indicates normal faulting with northeast to southwest extension (Figure 5-3), assuming the preferred fault plane is parallel to the edge of Hope basin. A magnitude 5.5 event occurred in this region in 1971, for which Fujita and Koz'min (1994), and Biswas et al. (1986) proposed a focal mechanism with fault plane solutions nearly perpendicular to those of the 1990 event. These mechanisms were constrained by Alaskan network first motion data, which are emergent and could be erroneous. The event is poorly recorded, however, short-period synthetic seismograms calculated using the method of Kroeger (1978) for several stations are consistent with a mechanism nearly identical to the 1996 event (R. McCaleb, pers. comm.; Figure 5-4; Table 5-1). An additional event occurred in the region in 1962. Because the teleseismic P-wave first motion data and waveform characteristics are similar between the 1971 and 1962 events (Fujita and Koz'min, 1994) it is likely that the 1962 event has a similar transfersional mechanism.

The geology of Chukotka is less well known. Russian geophysical data suggest a fault bounded trough just offshore of Kolyuchin Gulf (Aksenov et al., 1987), which may be a portion of a much larger Cenozoic rift system that covered the southern Chukchi Sea (Shipilov et al., 1989). The rift system terminates roughly at the meridian of Kolyuchin Gulf and there is no indication in the published Russian literature that these grabens extend further to the west. Since there is also no seismicity west of the gulf, it appears either that the rift

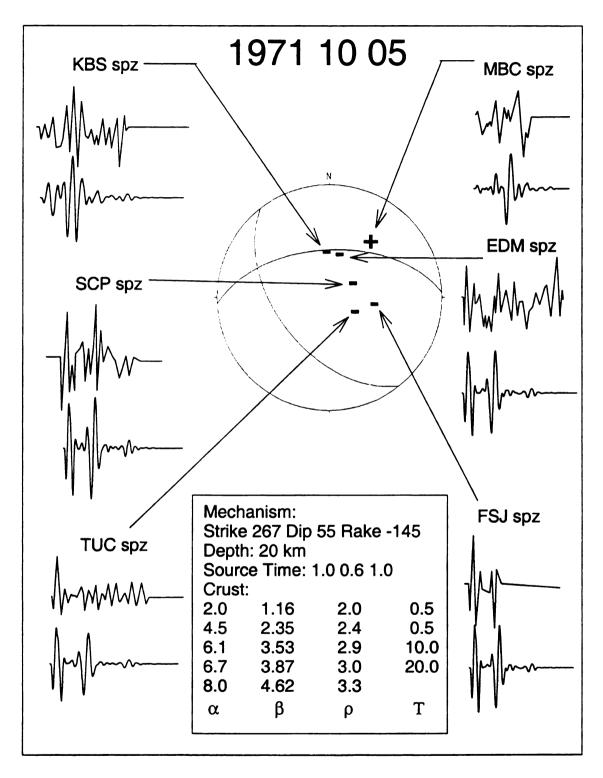



Figure 5-4. Focal mechanism and synthetic seismograms from the October 10, 1971 Chukchi earthquake (R. McCaleb, pers. comm.). Top traces show actual digitized records, while bottom traces show synthetics. All digitized records are short-period vertical components from the stations indicated.

system ends at the gulf or that any segment west of the gulf is now inactive. A fault-bounded topographic lowland termed the Kolyuchin-Mechigmen graben (Pol'kin, 1984) extends from the southern end of Kolyuchin Gulf, east through the Chukchi Peninsula, to Mechigmen Bay. The graben is asymmetric with a steeper and higher northern side, and the faults are expressed in geophysical fields (Pol'kin, 1984). The southeastern end may be offset further to the south but there is no clear topographic basin. It is possible that the upper Ioniveem valley and the lowlands north of Yanrakinot represent an incipient rift.

Russian geophysical investigations using both seismic reflection and potential fields have identified additional faults off the north coast of Chukotka and in the Bering Strait region (Aksenov et al., 1987; Shipilov et al., 1989). Those of northwest and northeast strike, i.e., parallel to the northern and Bering Strait coasts of the Chukchi Peninsula, are thought to be normal faults (Aksenov et al., 1987). Re-leveling studies (Zolotarskaya et al., 1987) suggest that most of the north coast of the Chukchi Peninsula is undergoing weak uplift (0.6 - 2.3 mm/yr), Diomede Island, in the Bering Strait, is subsiding (-2.1 mm/yr), and the entire south coast of Chukchi Peninsula is subsiding (-2 to -4 mm/yr), which may indicate postrifting-related subsidence on the southern side of the Chukchi Peninsula. The region of the most intense seismicity lies near the mouth of Kolyuchin Gulf where northwest-striking normal-fault-bounded basins filled with Neogene to Quaternary sediments are also found. Northeast to southwest lineaments in the seismicity extend parallel to the direction of extension of the northern coast of the Chukchi and Seward Peninsulas, and may represent transform faults offsetting rift segments (Figure 5-2). Natal'in et al. (1996) mapped a northeast-southwest trending fault with possible right lateral strike-slip offsets along the Chegitun river on the Chukchi Peninsula which corresponds with one of the linear trends of seismicity (Figure 5-2). This linear trend is parallel to another seismicity trend just to the north. Both lineaments also parallel the regional seismicity trends extending from the Bering strait region towards the Koryak Highlands (Figure 5-2). Late Cenozoic basaltic volcanism (K-Ar dated at 10.7-3.9 Ma) has also been identified along the southern coast of the Chukchi Peninsula (Belyi, 1970; Akinin and Apt, 1994). Imaev et al. (1998) cite the existence of multiple hot springs in the eastern portion of the Chukchi Peninsula, also consistent with an extensional regime. Based on the evidence, it is suggested that the Seward Peninsula rift extends into the northern Chukchi Peninsula. Perhaps the rift was once to the south, along the southern edge of the Chukchi Peninsula, which is now cooling and subsiding.

## Koryak Highlands

The Koryak Highlands are located to the southwest of the Chukchi Peninsula. Seismicity trends enter the Koryak Highlands from the Chukchi Peninsula along two somewhat linear trends. The more southerly of the two trends, which crosses the Gulf of Anadyr', is the better defined (Figure 5-2). The largest recent event along this trend was the magnitude 5.3 Gulf of Anadyr' event of 1986. The Harvard CMT for this event indicates right-lateral transpressional motion with one nodal plane parallel to the seismic trend, although first motion data are more consistent with a greater thrust component (Figure 5-3; Table 5-1). The northern trend is weakly defined, primarily by teleseisms, the largest of which was a magnitude 5.1 event in 1995. The Harvard CMT for this event indicates right-lateral strike-slip motion with a nodal plane parallel to the trend (Figure 5-3; Table 5-1). The exact southwestern extent of the northern trend is difficult to define, although it probably connects with the southern trend in the northern Koryak Highlands.

-33 ... . . ::<u>:</u> ;_ • • 15 ~ . .

•

In the Koryak Highlands there are abundant northeast-southwest trending lineaments visible on Landsat images and 1:200,000 topographic maps, many of which have been mapped as Cenozoic thrust faults (Kovaleva et al., 1983; Figure 5-2). Present day seismicity crosses the Gulf of Anadyr' and enters the northern Koryak Highlands where it follows a series of faults between 63°N and 63.3°N. These faults are superposed on, and cut across, a curved series of faults which follow the regional large scale structural trend. The seismicity and faults enter a large Quaternary sedimentary basin near 175°E. From this area, the seismicity trends to the southwest, where thrust faults and lineaments are also coincident with the present day seismicity, thus the thrust faults may be undergoing reactivation. In addition, recent tomographic studies have imaged imaged a deep northward dipping high velocity planar structure under the southern Koryak Highlands, which is suggested to represent localized subduction (Bijwaard et al., 1998). The location and focal mechanisms of recent seismicity are consistent with the suggested localized subduction, although there is a clear absence of deep events.

The largest event recorded in the Koryaks was a magnitude 6.7 in 1991, which was followed by an extensive aftershock sequence. CMTs from the 1991 event and its aftershocks, as well as other events in 1985 and 1988, indicate thrusting with southeast to northwest compression (Figure 5-3; Table 5-1). As most of the Koryak Highlands are more than 600 km from at least four seismic stations, the mapped level of microseismicity in the Koryaks is artificially low when compared to that of western Alaska.

The neotectonics of the Koryak Highlands have not been extensively studied. Examination of presumed peneplanation surfaces and river terraces have been used by Russian authors to suggest recent uplift of 500 to 1000 m in the seismically active region of

the Koryak Highlands (Smirnov, 1995), although such surfaces may simply represent equilibrium surfaces (Keller and Pinter, 1996). Based on re-leveling surveys, the Anadyr' lowlands to the north of the active seismogenic zone are subsiding at a rate of around 5-7 mm/yr, while the coastline south is subsiding at about 2 mm/yr (Zolotarskaya et al., 1987). Portions of the Koryak range itself appear to be undergoing uplift between 2 and 5 mm/yr (Smirnov, pers. comm.). Terraces along river valleys show uplift rates of about 1 mm/yr (Glushkova et al., 1987). These values are consistent with thrusting of the southern side over the Anadyr' lowlands, as indicated by the region's focal mechanisms (Figure 5-3; Table 5-1).

The seismic trend continues southwest through the Koryak Highlands and into northern Kamchatka (Figures 5-1 and 5-2) where it borders a small region of the Okhotsk plate to the west (Riegel et al., 1993), and connects to the western end of the Aleutian arc.

#### **Aleutian Arc**

The Aleutian arc, under which the Pacific plate is subducting, is located along the southern and southwestern boundary of the Bering plate. Right-lateral strike-slip faulting occurs at and immediately behind the volcanoes of the Aleutian Arc (Figure 5-3; Ekstrom and Engdahl, 1989; Taber et al., 1991; Ave Lallemant, 1996). The strike-slip faulting here is a result of transpressional fault motion partitioning along the subduction zone. Individual portions of the western Aleutian Arc are found to invrease velocity and rotate clockwise as they move westward (Geist et al., 1988). The increase in velocity and rotation of the Aleutian Islands occurs as faulting along the Aleutian Islands changes from subduction in the east to strike-slip in the west where a greater degree of coupling may exist. North of the Aleutian Arc, the Bering Sea forms a rigid core and is generally assismic, with the exception

of the magnitude 6.6 1991 Zemchug Canyon normal-faulting event with north-south extension.

## DISCUSSION

Many authors (e.g., Dumitru et al., 1995; Whitney and Wallace, 1995) have proposed that southwestern Alaska is being extruded westward along a series of right-lateral strike-slip faults, including the Kaltag and Denali (Figure 5-3), resulting from north-south compression in south-central Alaska. Present day compression results from the ongoing accretion of the greater Yakutat (Brocher et al., 1991) and other terranes in south-central Alaska (Estabrook et al., 1988) and subduction of the Pacific plate, driving the Wrangell block to the northwest (Perez and Jacob, 1980; Nakamura et al., 1980; Lahr and Plafker, 1980). The overall stress pattern through central Alaska is consistent with the Wrangell block acting as an indenter in southern Alaska (Estabrook and Jacob, 1991; Nakamura et al., 1980). This, in conjunction with Pacific plate subduction, is the driving force for the motion of the Bering plate. Activity along the Kaltag, Denali, and associated faults drastically decreases once they extend onto the Bering shelf. Dumitru et al. (1995) predicts north-south extension in the shelf, perpendicular to the direction of extrusion, along the western extent of the faults, resulting in basin formation on the Bering Shelf, as documented by Worrall (1991). This is also consistent with the CMT for the 1991 Zemchug Canyon event (Figure 5-2). Several of the young (<6 Ma) basaltic volcanic fields and basins in western Alaska and the Bering Sea coincide with normal or strike-slip faults (Moll-Stalcup, 1994; Worrall, 1991). The volcanic field near St. Michael Island likely falls along a splay of the Kaltag fault (Moll-Stalcup, 1994). In the Yukon delta, many of the volcanic fields follow the trace of the Anvik fault (Moll-Stalcup, 1994). A focal mechanism from the April 1973 event which may be associated with the Kaltag fault indicates northwest-southeast normal faulting (Cook, 1988; Table 5-1). On St. Lawrence Island, Nunivak Island, and the Pribilof Islands, young volcanic cones are aligned approximately east-west along apparent faults or fractures (Moll-Stalcup, 1994).

The westward motion and rotation of the western Aleutian islands implies that motion of the Pacific directly assists the motion and rotation of the Bering plate. The right lateral strike-slip faulting behind the Aleutian arc is also supportive of the extrusion along right-lateral strike slip faults in southern Alaska and the clockwise rotation of the Bering Plate. The strike-slip faulting here has two implications for the Bering plate. First, it defines the southern boundary of the Bering plate proper (Figure 5-3). Second, given the westward motion and clockwise rotation of the Aleutian Arc, it is not unreasonable that some degree of coupling exists with the Bering plate, which assists the motion of the plate as a whole.

Experimental work also supports development of an extensional regime oriented perpendicular to the direction of extrusion as one travels away from the region of compression driving the system (Peltzer and Tapponnier, 1988). The same work also indicates that very complex motions and fault patterns can develop in regions under extrusion, which may explain the seemingly random distribution of earthquakes (Figure 5-1) and historic difficulty in explaining the tectonics of central and western Alaska. The exact position of the Bering plate boundary in southern Alaska is probably diffuse, with motion taken up along many faults, thus it is not easy to locate the boundary. However, as southwestern Alaska is extruding westward with respect to North America, it is most consistent to assign portions of Alaska west of the Wrangell block to the Bering plate, with

the boundary on the western side of the Wrangell block following Lahr and Plafker (1980) until it intersects the right-lateral faulting associated with Aleutian Arc (Figure 5-3). Although south-central and south-western Alaska are clearly seismically active, historically it has been unclear as to whether the large right-lateral strike-slip faults are presently active. Plafker et al. (1993) map much of the Denali fault as active in the Holocene, although not within historic times. However, compilation of continental microseismicity in central Alaska clearly shows activity on the central segment of the Denali fault (Figure 5-5).

This tectonic setting is not unique to the Bering strait region. As noted by Whitney and Wallace (1995), a nearly identical, although latitudinally a mirror image, tectonic situation exists with the southeastward extrusion of southeast Asia resulting from the collision of India with Eurasia (Figure 5-6; Peltzer and Tapponnier, 1988; Tapponnier and Peltzer, 1982; compare with Figure 5-3). This is comparable to the westward extrusion of portions of Alaska due to terrane accretion (Perez and Jacob, 1980). In both cases, compression to the north of accreting continental material results in horizontal extrusion along a series of strike-slip faults (left-lateral in southeast Asia and right-lateral in southwest Alaska) that splay into normal-fault systems without reaching a plate boundary (Peltzer and Tapponnier, 1988; Tapponnier and Peltzer, 1982; Dumitru et al., 1995; Worrall, 1991). In southeast Asia, extrusion to the southeast is possible because the Sunda arc offers little resistance to the movement, basically being a free boundary (Peltzer and Tapponnier, 1988). Similarly, the Aleutian arc may act as a free boundary to the westward extrusion of portions of Alaska (Dumitru et al., 1995). The geometries of extrusion in Southeast Asia and southwest Alaska are similar (Figures 5-3 and 5-6). Extension in the South China Sea (Peltzer and Tapponnier, 1988; Tapponnier and Peltzer, 1982) and Bering strait are both due

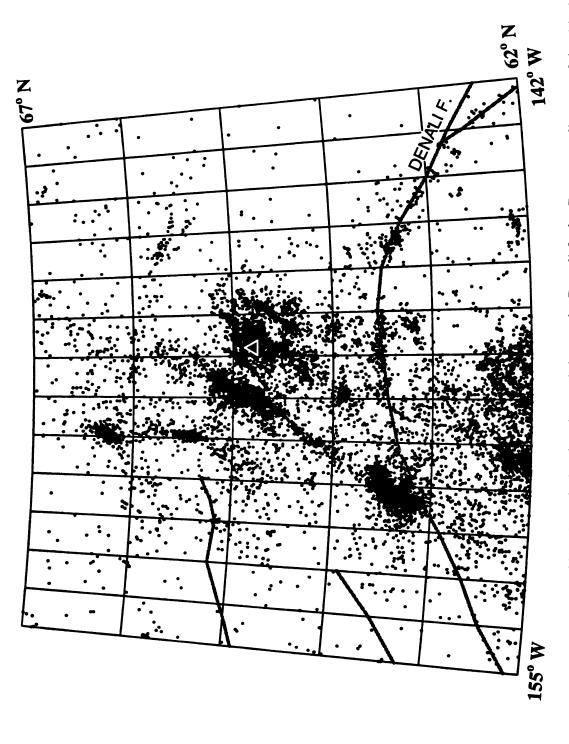



Figure 5-5. Crustal seismicity of interior Alaska showing activity on the Denali fault. Data compliments of the Alaska Earthquake Information Center (AEIC), Geophysical Institute, University of Alaska, Fairbanks. Triangle denotes Fairbanks.

150

.61

:0.

19 16

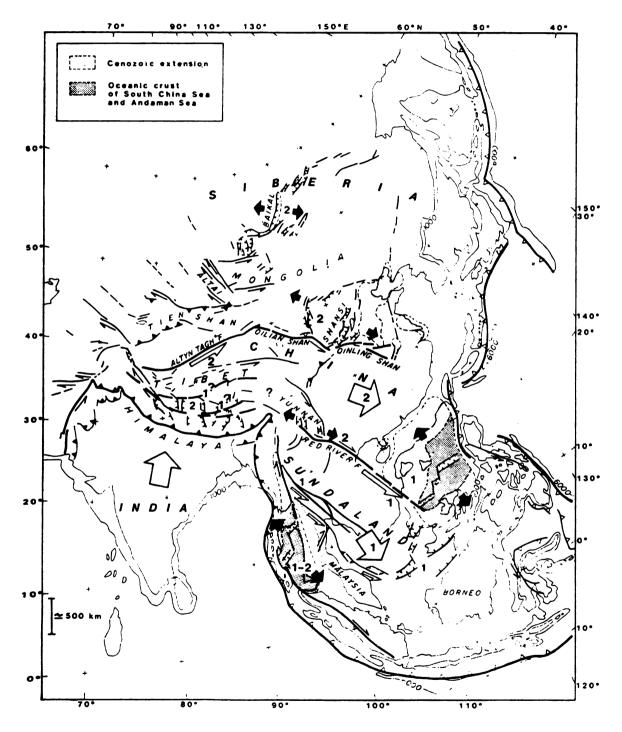



Figure 5-6. Extrusion tectonics of southeast Asia (Peltzer and Tapponnier, 1988). Note similarity to Alaska and the Bering Plate in relative locations of indentor, rift zones, and faults.

o the la

rinih

2865, 70

ne reg

20 mg/hg 7

CONCI

42776

ini i

H.

عَدُ اللَّهِ

to the lateral extrusion of material along strike-slip faults (left-lateral faults in southeast Asia and right-lateral faults in western Alaska). In addition, the orientation of extension in the two cases, relative to the indenter and strike-slip faults, is similar. The similarities between the two regions may illustrate a fundamental tectonic situation which develops when terrane accretion occurs adjacent to a free edge boundary.

### CONCLUSIONS

The merging of multiple data sets of seismicity for the Bering strait region clarifies seismic trends from western Alaska to the Koryak highlands of Chukotka, that, when combined with regional geology, supports the existence of an independent Bering Plate slowly rotating clockwise as a result of terrane accretion in southern Alaska. Ages of volcanic rocks suggest that the current tectonic setting had developed at least by 6 Ma. Additional data, especially in Chukotka, will contribute to a better understanding of the tectonics of this region and of continental deformation in general.

EE R.! of Ct

arr V Al

diesev. Y.

in Laid A

Edita III G

To K. In the second of the sec

#### REFERENCES

- Allen, R.M., Brocher, T.M., Klemperer, S.L., and Galloway, B.K., 1995, Analysis of offshore-onshore wide-angle seismic recordings from western Alaska, Bering-Chukchi Sea: *Eos* (Transactions, American Geophysical Union), v. 76, no. 46, p. 590.
- Akinin, V.V., and Apt, Y.E., 1994, Enmelen volcanoes (Chukchi Peninsula): Petrology of Alkaline Lavas and Deep-Seated Inclusions: SVKNII, Magadan, 97 pp. (in Russian).
- Aksenov, A.A., Dunaev, N.N., Ionin, A.S., Kalinenko, V.V., Medvedev, V.S., Pavlidis, Y.A., and Yurkevich, M.G., 1987, *The Arctic shelf of Eurasia in Late Quaternary time*: Nauka, Moscow, 275 pp. (in Russian).
- Ave Lallemant, H.G., 1996, Displacement partitioning and arc-parallel extension in the Aleutian volcanic island arc: *Tectonophysics*, v. 256, p. 279-293.
- Balakina, L.M., 1962, General regularities in the directions of the principal stresses effective in the earthquake foci of the seismic belt of the Pacific Ocean: *Izvestia, Bulletin, Geophysics Series*, p. 918-926.
- Baranov, B.V., Seliverstov, N.I., Murav'ev, A.V., and Muzurov, E.L., 1991, The Komandorsky Basin as a Product of Spreading Behind a Transform Plate Boundary: *Tectonophysics*, v. 199, p. 237-269.
- Belyi, V.F., 1970, Okhotsk-Chukotka volcanogenic belt, Cenozoic volcanism, Magmatism: in Drabkin, I.E., ed., Northeast USSR, Geology of the USSR, v. 30, part 2, p. 225-226 (in Russian).
- Bijwaard, H., Spakman, W., and Engdahl, E.R., 1998, Closing the gap between regional and global travel time tomography: *Journal of Geophysical Research*, v. 103 (12), p. 30,055-30,078.
- Biswas, N.N., Pujol, J., Tytgat, G., and Dean, K., 1983. Synthesis of seismicity studies for western Alaska, Final report for contract NA81-RAC00112: Geophysical Institute, University of Alaska, Fairbanks, 74 pp.
- Biswas, N.N., Pujol, J., Tytgat, G., and Dean, K., 1986, Synthesis of seismicity studies for western Alaska: *Tectonophysics*, v. 131, p. 369-392.
- Brocher, T.M., Moses, M.J., Fisher, M.A., Stephens, C.D., and Geist, E.L., 1991, Images of the plate boundary beneath southern Alaska, in Meissner, R., Brown, L., Durbaum, H.-J., Franke, W., Fuchs, K., and Seifert, F., eds., Continental lithosphere: Deep seismic reflections: American Geophysical Union Geodynamics Series 22, p. 241-246.

liky M.J., Michi

lai. D.B., north Lansin

lezzni, T.A azd G Alask

Extens G..

If the Geoph

Zones:

izirook, C. Journa

> Engdo Ameri 1, p. 3

K. an relatio Proced Service

L. a Lorthw !587-1

Aleutia F 327-

feature Highlar Magada

- Coley, M.J., 1983, Intraplate seismicity in central Alaska and Chukotka: M.S. Thesis, Michigan State University, East Lansing, 97 pp.
- Cook, D.B., 1988, Seismology and tectonics of the North American Plate in the arctic: northeast Siberia and Alaska: Ph. D. Dissertation, Michigan State University, East Lansing, 250 pp.
- Dumitru, T.A., Miller, E.L., O'Sullivan, P.B., Amato, J.M., Hannula, K.A., Calvert, A.T., and Gans, P.B., 1995, Cretaceous to Recent Extension in the Bering Strait Region, Alaska: *Tectonics*, v. 13, p. 549-563.
- Ekstrom, G., and Engdahl, E.R., 1989, Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska: *Journal of Geophysical Research*, v. 94, p. 15,499-15,519.
- Engdahl, E.R., Sleep, N.H., and Lin, M.-T., 1977, Plate effects in North Pacific subduction zones: *Tectonophysics*, v. 37, p. 95-116.
- Estabrook, C.H., Stone, D.B., and Davies, J.N., 1988, Seismotectonics of northern Alaska: *Journal of Geophysical Research*, v. 93, p. 12026-12040.
- Estabrook, C.H., and Jacob, K.H., 1991, Stress indicators in Alaska, in Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D., eds., Neotectonics of North America: Boulder, Colorado, Geological Society of America, Decade Map Volume 1, p. 387-399.
- Fujita, K., and Koz'min, B.M., 1994, Seismicity of the Amerasian Arctic shelf and its relationship to tectonic features, in Thurston, D. K., and Fujita, K., eds., 1992 Proceedings International Conference on Arctic Margins: US Mineral Management Service, OCS Study MMS 94-0040, p. 307-312.
- Gedney, L., and Marshall, D., 1981, A rare earthquake sequence in the Kobuk Trench, northwestern Alaska: Bulletin of the Seismological Society of America, v. 71 (5), p. 1587-1592.
- Geist, E.L., Childs, J.R., and Scholl, D.W., 1988, The origin of summit basins of the Aleutian Ridge: Implications for block rotation of an arc massif: *Tectonics*, v. 7(2), p. 327-341.
- Glushkova, O.Y., Degtyarenko, Y.P., and Prokhorova, T.P., 1987, Pleistocene freezing and features of sedimentation and reconstruction of the hydrologic network in the Koryak Highlands, in *The Quaternary Period in Northeast Asia*: NEISRI FESC AS USSR, Magadan, p. 33-54 (in Russian).

<u>≒</u>.v.s.. proce Pacij

Mer. E.A.. Prent

Coakva, V and I Quan Lenin

ichiet, Go Diss

186. 486.

envi 8.19 v.3.

tari Soci

Chu EO

EL Jura 196

Esta J. I. Soci

in P

- Imaev, V.S., Imaeva, L.P., Koz'min, B.M., Mackey, K., and Fujita, K., 1998, Seismotectonic processes along the boundary of lithospheric plates of Northeast Asia and Alaska: *Pacific Geology*, v. 17, no. 2, p. 3-17 (in Russian).
- Keller, E.A., and Pinter, N., 1996, Active tectonics, earthquakes, uplift, and landscape: Prentice Hall, Upper Saddle River, NJ, 338 pp.
- Kovaleva, V.V., Smelovskaya, M.M., Poleshchuk, M.I., Rozenkrants, A.A., Klimov, V.N., and Kotova, N.N., 1986, Geologic Map of the USSR (New Series), Map of Pre-Quaternary Deposits, Quadrangle P-58,59 (Kamenskoe; dated 1983): VSEGEI, Leningrad, scale 1:1,000,000.
- Kroeger, G.C., 1978, Synthesis and analysis of teleseismic body wave seismograms: Ph.D. Dissertation, Stanford University, Palo Alto, 135 pp.
- Lahr, J.C., and Plafker, G., 1980, Holocene Pacific-North American plate interaction in southern Alaska: Implications for the Yakataga seismic gap: *Geology*, v. 8, p. 483-486.
- Lander, A.V., Bukchin, B.G., Droznin, D.V., and Kiryushin, A.V., 1996, The tectonic environment and source parameters of the Khailino, Koryakia earthquake of March 8, 1991: Does a Beringia plate exist?: Computational Seismology and Geodynamics, v. 3, p. 80-96.
- Liu, H.L., and Kanamori, H., 1980, Determination of source parameters of mid-plate earthquakes from the waveforms of body waves: *Bulletin of the Seismological Society of America*, v. 70, p. 1989-2004.
- McCaleb, R.C., Fujita, K., and Wolf, L.W., 1998, Crustal models of the Hope Basin, Chukchi Sea, Alaska, from gravity data: Transactions, American Geophysical Union (EOS), 1998 Fall Meeting, v. 79, # 45 (Supplement), p. 808.
- Miller, E.L., and Hudson, T.L., 1991, Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous compressional orogen, Alaska: *Tectonics*, v. 10, p. 781-796.
- Minster, J.B., Jordan, T.H., Molnar, P., and Haines, E., 1974, Numerical modelling of instantaneous plate tectonics, *Geophysical Journal of the Royal Astronomical Society*, v. 36, p. 541-576.
- Moll-Stalcup, E. J., 1994, Latest Cretaceous and Cenozoic magmatism in mainland Alaska, in Plafker, G., and Berg, H.C., eds. *The Geology of Alaska*: Geological society of America, The Geology of North America, v. G-1, Boulder, p. 589-620.

Samura, K., P map of Earthqu

Millin B.A., T NW M Geophy

Hizer, G., and and Bur Geography

inz. O.J., ar Gulf c 7132-7

Struct 9. Sea

ider G. ( and E Geolo

iziel S.A., tecto p. 60

isona A.F.
Type

EN EV Chul

> Son V Auh Pp. (

it D.B. Alas

Slear Neon 1. B.

- Nakamura, K., Plafker, G., Jacob, K.H., and Davies, J.N., 1980, A tectonic stress trajectory map of Alaska using information from volcanoes and faults: Bulletin of the Earthquake Research Institute, v. 55, p. 89-100.
- Natal'in, B.A., Toro, J., and Amato, J., 1996, Strike-Slip Faulting Along the Chegitun River, NW Margin of the Koolen Dome, Chukotka: *Eos* (Transactions, American Geophysical Union), v. 77(46), p. 642.
- Peltzer, G., and Tapponnier, P., 1988, Formation and Evolution of Strike-Slip Faults, Rifts, and Basins During the India-Asia Collision: An Experimental Approach: *Journal of Geophysical Research*, v. 93, p. 15,085-15,117.
- Perez, O.J., and Jacob, K.H., 1980, Tectonic Model and Seismic Potential of the Eastern Gulf of Alaska and Yakataga: *Journal of Geophysical Research*, v. 85, p. 7132-7150.
- Pol'kin, Y.I., 1984, Chukchi Sea, in Gramberg, I.S., and Pogrebitsky, Y.E., eds., Geologic Structure of the USSR and Regularities in the Distribution of Mineral Resources, v. 9, Seas of the Soviet Arctic: Nedra, Leningrad, p. 67-79 (in Russian).
- Plafker, G., Gilpin, L.M., and Lahr, J.C., 1993, Neotectonic map of Alaska, in Plafker, G., and Berg, H. C., eds., *The geology of Alaska*: Geological Society of America, Geology of North America, Boulder, v. G-1, scale 1:2,500,000.
- Riegel, S.A., Fujita, K., Koz'min, B.M., Imaev, V.S., and Cook, D.B., 1993, Extrusion tectonics of the Okhotsk plate, Northeast Asia: *Geophysical Research Letters*, v. 20, p. 607-610.
- Ritsema, A.R., 1962, P and S Amplitudes of Two Earthquakes of the Single Force Couple Type: Bulletin of the Seismological Society of America, v.52, p. 723-746.
- Shipilov, E.V., Senin, B.V., and Yunov, A.Y., 1989, Sedimentary cover and basement of the Chukchi Sea from seismic data: *Geotectonics*, v. 23, p. 456-463.
- Smirnov, V.N., 1995, Morphotectonics of mountain-building regions of northeast Asia: Author's summary of Doctoral dissertation, Moscow State University, Moscow, 40 pp. (in Russian).
- Stone, D.B., 1983, Present day plate boundaries in Alaska and the Arctic: Journal of the Alaska Geological Society, v. 3, p. 1-14.
- Taber, J.J., Billington, S., and Engdahl, E.R., 1991, Seismicity of the Aleutian Arc, in Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D., eds., Neotectonics of North America: Geological Society of America, Decade Map Volume 1, Boulder, p. 29-46.

importator, P., P extrusion Geology.

回 A.B., and I Island, in North Ar

> lika R.B., 1 Alaska, Potentic Basins Mineral

iner D.L., a central Reconn Alaska

Alaska Alaska

solution 1, 560

Sirike 257.

move ed. 1

- Tapponnier, P., Peltzer, G., Le Dain, AY., Armijo, R., and Cobbold, P., 1982, Propagating extrusion tectonics is Asia: new insights from simple experiments with plasticine: *Geology*, v. 10, p. 611-616.
- Till, A.B., and Dumoulin, J.A., 1994, Geology of Seward Peninsula and Saint Lawrence Island, in Plafker, G., and Berg, H.C., eds., The Geology of Alaska: The Geology of North America, v. G-1, Geological Society of America, Boulder, p. 141-152.
- Tolson, R.B., 1987, Structure and stratigraphy of the Hope Basin, southern Chukchi Sea, Alaska, in Scholl, D.W., Grantz, A., and Vedder, J.G., editors, Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins -- Beaufort Sea to Baja California: Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6, Houston, p. 59-71.
- Turner, D.L., and Swanson, S.E., 1981, Continental rifting -- a new tectonic model for the central Seward Peninsula, in Wescott, E., and Turner, D., eds., Geothermal Reconnaissance Survey of the Central Seward Peninsula, Alaska: University of Alaska, Geophysical Institute Report UAG R-284, p. 7-36.
- Whitney, J.W., and Wallace, K., 1995, Plate tectonic model for the neotectonics of northern Alaska: Geological Society of America Abstracts with Programs, v. 27, no. 5, p. 84.
- Wickens, A.J., and Hodgson, J.H., 1967, Computer re-evaluation of earthquake mechanism solutions, 1922-1962: Publications of the Dominion Observatory, Ottawa, v. 33, no. 1, 560 p.
- Worrall, D.M., 1991, Tectonic History of the Bering Sea and the Evolution of Tertiary Strike-Slip Basins of the Bering Shelf: Geological Society of America Special Paper, 257, 120 p.
- Zolotarskaya, S.B., Nikitenko, Y.P., and Ufimtsev, G.F., 1987, Contemporary vertical movements of the Earth's crust, Eastern Siberia and the Far East, in Logachev, N.A., ed., *Processes in the formation of the relief of Siberia*: Nauka, Novosibirsk, p. 116-121 (in Russian).

Ī Ĩt's ::P:t \$33 Ŧ. 1.2. 4.11. 7 ... ī.ī ir i ŢŢ. ili. 

غربية والم

14.4

### CONCLUSIONS

A seismicity catalog, including phase data, was assembled for northeastern Russia. This catalog was found to be heavily contaminated with anthropogenic sources in some areas. However, this problem can be overcome by plotting only nighttime events, which is representative of the region's tectonic activity. The resulting plot shows several trends of seismicity that are found to correlate with known faults (Figure C-1). In general, it is still difficult to trace individual active faults throughout the study area and precisely locate the regions plate boundaries. In addition, a large percentage of seismicity occurs in poorly defined, diffuse regions not presently associated with specific faults. This indicates in a broad sense the diffuse and complex nature of continental plate boundaries. Although focal mechanism studies have given us the broad tectonic plate motions for northeastern Russia, the microseismicity indicate that the boundary regions between the major plates are comprised of many small blocks and slivers that interact in a complex fashion. Considerable additional work remains to be done to fully understand these small scale plate interactions.

Careful analysis of the assembled database resulted in the development of a new tectonic model for the Bering Sea region. This model proposes an independent Bering Plate which is driven by westward extrusion of south-central Alaska as a result of terrane accretion. The similarity of this model to the extrusion of southeast Asia from the India-Eurasia collision illustrates the occurrence and importance of lateral extrusion as a means of continental deformation.

The assembled seismic phase data allowed the relocation of over 1,100 earthquakes while simultaneously determining the first crustal velocity model for the region. Although

i prind t

30 % SI

sal talo

This

ii siinu

I Ling

्राष्ट्राव्यातः सुर्वेद्याः

polit al

KETTE ME

Fu

Tátis, er

A TOTAL

ગેલ**ા**ઇ

the method employed to develop the velocity model was simple, it was clearly able to discriminate velocity differences among different geologic/tectonic settings. Because of the method's simplicity and positive results, it may be useful for other regions where regional crustal velocities are poorly known.

This study has greatly improved our understanding of the tectonics and crustal structure of northeastern Russia, a region of interaction between several major and minor lithospheric plates and blocks. However, considerable work remains bevore we understand the activity and behavior of plate boundaries in this region. The combined data set of hypocenters and earthquake phase data for northeastern Russia assembled in this study will provide a base for future studies.

Future work in northeast Russia will include the deployment of digital acquisition seismic stations, which will be useful for seismic wave attenuation studies, better velocity models, explosion discrimination, etc. Future work in the region will also hopefully include comprehensive GPS studies to map the complexities of the regions small-scale tectonic interactions, which will reflect on the fundamental character of continental deformation.

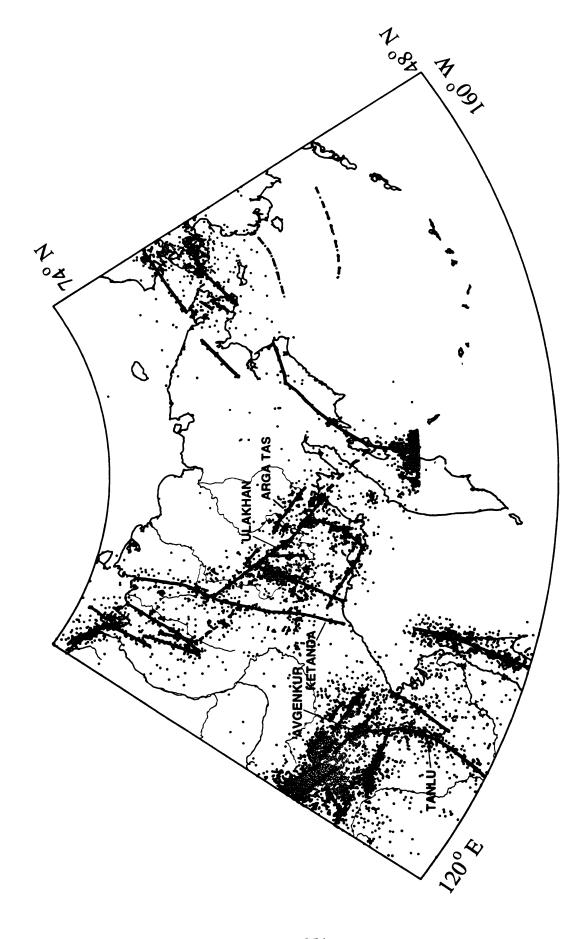



Figure C-1. Nighttime seismicity and active faults of northeastern Russia. Major faults are labeled and other faults are located based on interpretation of seismicity lineations.

# **APPENDICES**

# APPENDIX A

Alphabetized list of northeastern Russia seismic stations.

.

	ŷ
	,
	a A
	4 4
	<del>7</del> 7
	A
	÷ Å
	a A
	;
	:
	!
	i I
	Ę
	;
	: :

				•	•
A Inhahatizad	lict of	naethauctaen	Uniceia	CAICTY	ne ctations
Alphabetized	1151 01	HOLUICASICILI	Russia	261211	iic stations.

APPENDIX A

Station Name	Engl. Code	Russian Code	Lat.	Long.	Elev. (m)	Date Open	Date (Close	Qual.
Aku			56.46	120.91	700	/68	/68	1
Alla	ALL	АЛ		110.82	550	10/63	5/70	1
Alygdzher	ALY		53.633		920	1/66	1/67	1
Amedichi	ACHS	АМЛ	57.03	122.85	930	05/89	08/89	1
Amguema	AMG	АМГ	67.05	178.88W	150	11/65	4/66	2
Ammonl'naya	MMS		64.55	143.18	540	/61	/62	1
Anadyr	ANYS	АНЛ		177.496	55	4/89	7/93	1
<b>,</b>						9/96	OPEN	
Anadyr-1	ANSS	АНД	64.77	177.57	40	11/80	1/89	3
Angarakan	AGK		56.348	113.67	1430	11/76	8/81	1
Anyuisk	ANC	AHC	68.34	161.56	10	6/64	3/65	1
Apacha	APC		52.925	157.131		2/90	OPEN	1
Apakhonchich	APN	ΑΠΧ	56.00	160.84	700	<b>-/64</b>	<del>-</del> /80	1
Arshan	ARS	АРШ	51.908		840	<b>-/58</b>		1
Artyk	AYKS		64.18	145.13	700	06/71	/71	1
•						<del>/88</del>		1
Avacha - old	AVH	АВЧ	53.07	158.5		-/63	10/76	-
Avacha - new	AVH	АВЧ	53.265	158.738	900	7.76	OPEN	1
Babushkin	BAU		51.717	105.867	470	6/66	9/66	1
Baikal'sk	BKK		51.522	104.133	460	1/64	2/66	1
Balygychan	BLG	БЛГ	63.91	154.09	139	7/63	6/64	1
Barluk	<b>BRUS</b>		54.533	101.717	525	11.60		1
Batagai	<b>BTGS</b>	БТГ	67.653	134.630	127	/75	OPEN	1
Bazovskii			56.53	123.42	1080	/70	/70	1
Berezovaya	BER	БР3	52.27	158.433		<b>-/81</b>	<b>-/94</b>	1
Bering	BKI	БРН	55.195	165.99	400	<b>-/62</b>	OPEN	-
(Nikol'skoe)		БРГ						
Bilibino GSN	BILL	BILL	68.065	166.452	299	8/95	OPEN	1
Bilibino	BILS	БЛБ	68.059	166.449	283	8/81	4/92	1
_		БЛІН						
Bilibino-1	BL1	БЛБ	68.04	166.44	260	8/64	1/65	1
Bodaibo	BOD	БДБ	57.807	114.03	245	11/60		1
Bodon	BDN	БОД БДН	53.713	110.1	540	11/69	/83	1
Bogachevka	<b>BGC</b>		54.850	160.900		<b>-/64</b>	<b>-/65</b>	1
Bomnak	<b>BMKS</b>	БМН	54.705	128.847	325	3/74		1
Bykov			47.317	142.567	40	6/68	10/68	-
Chagda	CGD	ЧГД	58.75	130.60	185	/68		1
Chara	CRS	ЧР	56.9	118.267	710	11/61		1

Cherskii
Cheric

Gottov.

Gomoz Gomyi Gusino Gusino Imangr Imangr Imangr Imangr Indina Indina Kabak

> Kaban Kaigan Kanen Kanen Karan Karan Karan

Cherskii	CES	ЧРС	68.7 <b>5</b>	161.33	10	/79	/88	1
Chil'chi			56.06	122.33	500	/70	<i>[</i> 70	1
Chita	CIT	ЧТ	52.033	113.55	790	6/70		1
Chochurdakh			72.83	116.25		08/13/75	09/26/75	-
Chokchoi	<b>CKHS</b>	ЧКЧ	57.65	121.72	240	/89	/89	1
Chul'man-1	CL1S	ЧЛМ	56.85	124.90	650	/62	/86	1
Chul'man-2	<b>CLNS</b>	ЧЛМ	56.84	124.90	760	/86		1
Davsha	DAS		54.538	109.503	460	1/64	6/65	1
Debin	DBI	ДБН	62.339	150.751	332	-/74	-/92	G
Dimnoe		7	73.233	142.400		3/74	4/74	_
Dovochan	DOV		56.462	117.533	1094	7/62	9/63	1
Dunai	DUYS	πн	73.92	124.49	5	11/89		1
Dyrynmakit	DOIS	Д.	56.60	121.13	460	/67	/67	1
Egvekinot	EGVS	ЭГВ	66.323	179.127W	18	<b>-/90</b>	<b>-/94</b>	1
Ekimchan	EKI	EKM		179.127 W 132.945	485	11/79	-1)-4	1
		EKWI		118.158	960	9/62	4/63	1
Emegachi Esso	EMG	200		158.700	490	-/65	OPEN	1
	ESO	ЭСС						1
Esutoru	ESU		49.083	142.033	100	12/39	/45	-
(Uglegorsk)		DD		4.50.00	22	100	7.00	
Evensk	<b>EVES</b>	ЭВН	61.92	159.23	22	<b>-/80</b>	7/93	1
Firsovo			47.65	142.567	20	8/79	11/79	-
Ganali	GNL	ГНЛ	53.942	157.620	1200	1/88	OPEN	1
Garmanda	GRM	ГРМ	62.18	159.08	140	12/66	5/67	1
Gorely	GRL	ГРЛ	52.552	158.080	1250	7/80	OPEN	1
Gornotaezhnoe		ГРТ	43.70	132.15	220	7/90		3
C	GRT	EDD	42.70	124 722	270	7 100		1
Gornovodnoe	GRD GRV	ГРВ	43.70	134.733	270	7/88		1
Gornozavodsk	O ₁ C v		46.567	141.85	50	12/71	6/72	_
Gornyi	GNY	ГРН	50.762	136.455	500	12/78		2
Gusinoozersk	GOO	ГСН	51.283	106,517	600	11/71	2/72	1
Ilirnei	ILR	ИЛР	67.26	167.96	350	10/64	10/65	1
	ILK	MINIE					08/67	1
Imangra-1	IMNS	IA/C	56.75 56.62	121.24 120.71	395 540	07/67 /75	/79	1
Imangra-2 Institut		MINII					OPEN	1
	INS		33.000	158.605	175	11/81	OPEN	1
Vulkanologi			55.07	111 252	400	1 /64	2166	1
Irkana	IKN	LIDI		111.253	480	1/64	3/66	1
Irkutsk	IRK	ИРК	-	104.31	467	12/01	OPEN	1
Iul'tin	ILT	ИЛТ	67.87	178.74W	235	3/66	7/93	1
Kabaktan	KBKS	КБК КБТ	56.68	122.42	1010	05/89	08/89	1
Kabansk	KAB	КБ	52.05	106.658	465	1/51		1
Kalgannakh			71.83	114.33	.05	07/21/75	08/10/75	_
Kamenistyi	UL2S	KMH	65.41	144.83	670	/88	/88	1
Kamenistaya	KMN		55.76	160.240	1100	10/90	OPEN	1
Kamenskoe	KAM			166.210	1100	-/9 <b>4</b>	OPEN	1
Karam	KRMS			107.583	600	1/66	3/66	1
Karymski - old		KPM?		159.480	790	7/74	<b>-</b> /86	1
- Mari	1211	KAP?	54.030	137.400	, , , ,	,,, <del>,</del>	7,50	•

Raymski -Raim Randyga Rani

Zapobera: Zapobera:

Ringansk

üşilyaktı Krosidi Kyadlı

Local states of the control of the c

Lair Lair

HERE BAREFER

Karymski - new	KRY		54.036	159.449	900	9/89	OPEN	1
Khaim	KAIS	XM	52.602	108.085	480	10/69	5/70	1
Khandyga	KHG	ХНД	62.65	135.56	125	/69	/94	1
Khani	KHNS	XH	57.04	121.01	390	/67	/67	1
						/75?	<b>/76</b> ?	
Khapcheranga	KPC	КПЧ	49.707	112.392	950	12/68		1
Khatystyr	KHY	XTC	55.71	121.57	475	/68	/68	1
						/75	/82?	
Khingansk	KNN KNG	XHI	49.122	131.192	520	7/80	4/84	1
Kigilyakh	MIO		73 367	139.867		6/73	0.772	
Kirovskii	KIRS	KPC		126.983	440	4/74	9/73	-
Klyuchi	KLY	клч		160.852	80	<del>-</del> /48		1
Riyuciii	1221	1011	30.313	100.032	80	2/89	OPEN	1
Kobdi	AY1S		64.20	145.51	800	06/71	/71	1
Kolokol'chik	11110		04.20	143.31	800	-/67	//1 /67	1
Korito	KRT		55 966	160.222	1000	10/97	OPEN	1
Korsakov	1241		33.700	100.222	1000	/51	1/52	1
Koryak	KRK	KPK	53 292	158.636	1050	7.75	OPEN	1
Kotelnyi	121(11		75.767		1030	8/72	9/72	1
Kotikovo			49.133		10	7/69	9/70	-
Kovokta	KVO	KBK	56.133		1180	/81	<del>9</del> //0	1
Kozelskaya	KZL	КЗЛ		158.894	950	/81 /76	<del>-/</del> 84	1
Kozyrevsk	KOZ	K3P	56.05	159.87	40	-/62	-/8 <del>4</del> -/89	1
Kozyr	KZY	KSI		159.900	450	-/02 11/89	OPEN	
Krestovaya	KTB			106.395	560	7/71	9/71	1
Krestovskii	KRS			160.558	1200	7/1 7/87	OPEN	1 1
Kronoki	KRI	КРН		161.134	5	8/ <b>66</b>	OPEN	1
Krutoberegovo	KBG	КБГ		162.705	10	-/68	OPEN	1
Mullocregovo	KDG	КБ	30.233	102.703	10	-/08	OPEN	1
		КРБ						
Kul'dur	KLDS	клд	49 205	131.642	425			1
Kulu	KU-S	КЛ		147.431	655	1/80	10/92	1 G
Kulu	NO-3	КЛУ	01.009	147.431	055	1/00	10/92	G
Kumora	KMO	KMP	55 883	111.208	475	9/66		1
Kurbulik	KBK	Kivii		109.038	460	1/64	9/65	1
Kurul'ta	ILDIX		56.90	121.11	495	/68	/ <b>6</b> 8	1 1
Kyakhta	KYA	KXT	50.35	106.45	760	3.52	5/70	
Kyubyme	18.171	1271	63.38	140.95	950	<i>[</i> 74	<i>1</i> 74	1 2
Kyusyur	KYUS	KCP	70.68	127.37	20	/85	08/89	1
Lamutskoe	LMT	ЛМТ	65.54	168.85	178	4/65	10/65	1
	LIVI I	J1141 1	55.69	124.91	640	/72	/73	
Lapri	LZR	ЛЗР	52.2	141.493	120	12/80	//3	1 2
Lazarev	LZK	7131	49.442		40	7/69	10/69	2
Lesogorsk			46.6	141.825	40	4/69	10/69	-
Lopatino	LRB		56.63	117.883	780	8/62	9/63	1
Lurbun	LIND		J <b>U</b> .UJ	11/.003	/ 0 <b>U</b>	5/ <b>6</b> 7	9.68	1
don	MAG	МГД	50 560	150.805	78	1/52	1/92	1
Magadan Magadan-GSN	MA2	MA2		150.768	339	9/93	OPEN	1
Magadall-USIN	1411.77	1411 17	22.213	150.700		1175	O1 1	*

是是是 15 15 *Y Y* X *Y*₁ いないののいない

Maiskii	MKI	МАЙ	68.97	173.71	261	8/82	6/94	1
Mal. Ipelka	MIP		52.276	156.758	370	8/97	<b>OPEN</b>	1
Maritui	MRU		51.783	104.217	520	<b>-</b> /08	<del>-</del> /18	1
Markovo	MKVS	MPK	64.68	170.41	25	10/86	4/92	1
	MKN							
Mednyi	MED	МДН	54.786	167.556		<i>-1</i> 73	<b>-/75</b>	1
Milkovo	MLK	МЛК	54.70	158.63	155	-/62	-/63	1
1.222.0		1145 241	5 0	150.05	100	10/89	93	-
Moma-Khonuu	MKUS	MOMA	66.47	143.22	192	/83		1
Moneron				141.25	40	9/71	5/72	_
Mondy	MOY	мнд		100.993	1300	<b>-</b> /58	5112	1
Murino	MUO	Мид		104.408	470	8/66	9/66	1
Myakit	MYAS	MKT	61.407	152.093	670	/83	/88	G
Mys Khvoinova		IVIICI	74.267	140.883	070	4/76	6/76	J
•	1			143.333		4/76	6/76	-
Mys Nerpichii								-
Mys Diring-Ay		III) (T		139.917	_	5/76	6/76	-
Mys Shmidta	SMT	ШМТ	68.88	179.38W	5	4/65	1/66	1
Nagornyi Sta		НГР	55.92	124.97	920	/77	/77	1
Nagornyi			55.95	124.92	840	/69	/69	1
Naiba			70.85	130.73	5	/85		1
Nalychevo	NLC	нлч	53.171	159.345	5	<b>-/67</b>	<b>-/67</b>	-
						3/69	12/69	-
						3/84	_	1
Naminga	NMG		56.60	118.517	1380	5/67	4/69	1
Naminga-1	NMG1		56.70	118.583	1160	/63	/63	1
Nel'koba	NKBS	НЛБ	61.34	148.81	531	9/83	6/97	1
Nel'koba	NK1	НЛБ	61.34	148.81	531	6/63	1/64	1
			61.338	148.813	531	6/97	9/99	G
Nelyaty	NLY	нлт	56.492	115.7	470	1/61		1
Nesterikha	NSR	HCT	53.647	109.708	480	7/70	9/70	1
Neryungri	NYGS	НРГ	56.68	124.66	760	<i>[</i> 77	/78	1
, ,						/80	/82	
Nezhdaninsk	<b>NZDS</b>	НЖЛ	62.50	139.06	603	/80		1
Nikola	NKO			104.827	460	7.71	9.71	1
Nikolaevsk-	NKL	нкл		140.783	25	9/70		1
Amur				- 1017 00		2		_
Nizhnii	NIZ	N-A	55 766	109.55	487	10/61		1
Angarsk		• • • •	33.700	107.55		10.01		-
Nizhnii Armuda	an		50 817	142.533	150	9/66	4/69	_
Nogliki	411	НКЛ		143.15	25	10/64	12/64	_
Nogilki		IIIOI	31.017	143.13	23	/88		_
Novaya Sibir			75.050	147.000		4/75	6/75	
Nyvrovo	NVV	HBP		142.617	5	11/81		_
O. Vrangelya	VRN	BPH	70.94	179.62W	10	2/66	4/66	3
Obo	OBO	DEII	61.80	179.62 W 149.77	440	/77	<del></del> /77	1
	OBO							1
Ogon'ki	OB 4			142.383	70 460	6/68	9/68	1
Oimur	OIM		33.333	106.833	460	10/59	<b>-/60</b>	1
Okha (New)	OWII	OVA	E2	1.40.022	24	/65 12/58	165	-
Okha	OKH	OXA	53.55	142.933	24	12/58	/65	-

Ol'khon	OLK		53.20	107.342	490	7/69	9.69	1
Omchak	<b>OMCH</b>	ОМЧ	61.67	147.87	820	9/99	OPEN	1
Omolon	<b>OMOS</b>	ОМЛ	65.23	160.54	260	6/82	7/93	1
Omolon-1	OL1	ОМЛ	65.25	160.52	260	12/63	1/65	1
Omsukchan	OS1	OMC	62.52	155.77	527	1/63	1/64	1
Omsukchan	OMS	OMC	62.52	155.77	527	12/67	OPEN	1
Onguren	ONR	ОНГ	53.233	107.592	500	<b>-</b> /88		2
Ootomari	OOT		46.65	142.767	36	/09	/45	-
(Korsakov)								
Oran	ORA	OPH	55.933	113.667	705	9/79		1
Orlik	ORA	ОРЛ	56.295	113.983	620	9/78		1
Orotukan	ORT		62.26	151.34	470	/77	/77	1
Ossora	OSS	OCC	59.25	163.065	10	<i>-1</i> 73	OPEN	1
Ostrov Mednyi	MED	МДН	54.786	167.566		<i>-/</i> 73	<i>-1</i> 75	-
Otiai (Bykov?)	OTI	,	47.325	142.783	20	2/34	/45	-
Ozernaya	OZE	ОЗН	56.295	113.983	620	9/78		1
Ozernaya	AY2S	O3P	63.75	146.11	875	06/71	/71	2
Ozero	OZR	O3P	54.692	160.392		10/66	<i>-1</i> 77	1
Ozhidaevo			47.033	142.392	220	/76	/77	-
Pakhach	PCH		60.558	169.125		-/92	<b>-/94</b>	1
Palana	PAL		59.093	159.963		<b>-/94</b>	<b>-/96</b>	1
Pauzhetka	PAU	ПЖТ	51.467	156.810	110	11/61	OPEN	1
Petropavlovsk	PET	ПТР	53.024	158.650	150	-/51	OPEN	1
Pevek	PVK	ПВК	69.70	170.27	20	5/65	11/65	1
Podkova	PDK	ПДК	56.140	160.780	800	<b>-/83</b> ?	OPEN	1
Polovinka	PLK		51.798	104.35	470	8/66	9/66	1
Pravda			46.942	142.008	40	9/71	11/71	-
Provideniya	PVD	ПРВ	64.424	173.226W	25	9/80	12/93	1
Provideniya-1	PV1	ПРВ	64.45	173.18W	20	1/65	6/66	2
Romny	<b>RMNS</b>	PMH	50.855	129.4	210	10/78	<b>-/87</b>	2
Russkaya	RUS	PYC	52.432	158.507	75	12/87	OPEN	1
Saidy	SAYS	СД	68.70	134.45	88	/80		1
Sasyr	SSYS	CCP	65.16	147.08	580	/86		1
Savino	SOV		52.543	102.15	720	9/68	8/69	1
Sedlovina	SDL		53.278	158.884	1235	9/91	OPEN	1
Seimchan	SEY	СМЧ	62.93	152.38	211	4/69		1
Semlyachik	SEL	СМЛ	54.12	159.98		11/61	7/74	1
Severo Baikalsk	SVBS	С-Б	55.64	109.35	505	<i>-1</i> 78	<b>-/89</b>	1
Severo Muisk	SVK	C-M	56.183	113.533	850	11/76		2
Shamanka	SHMS		53.125	105.6	700	8/59	2/63	1
Shara-Tagot	SRTS		53.005	106.717	500	10/59	<b>-</b> /60	1
Shebunino			46.433	141.858	40	9/71	11/71	-
Shikka	SKK		49.233	143.117	2	/28	/45	-
(Shikuka; Po	oronaisk)	)						
Shimki	<b>SMKS</b>		51.675	102.012	765	11/66	11/67	1
Shipunski	SPN	ШПН	53.107	160.011	170	<b>-/62</b>	OPEN	1
Sinegor'e	<b>SNES</b>	CHI	62.09	150.52	400	/76	/88	1
Slyuda			56.33	124.12	1080	/73	/73	2
Solontsovaya	SOL	СЛЦ	54.17	108.35	458	<b>-/79</b>	<b>-/87</b>	1

i zylyr

alloja: Idaya 

To store the store of the store

Sovetskaya Gav	van		48.967	140.283	50	6/69	11/70	-
Srednekolymsk	S-K	С-К	67.46	158.71	30	4/64	12/64	1
Srednii Kalar	SRK	КЛР	55.86	117.38	716	<b>-/61</b>		1
Srednii Sakutan	SDK		56.898	118.095	750	2/63	10/63	1
Stekol'nyi	STK	СТК	60.046	150.730	221	7/64	5/66	1
Stekol'nyi	MGD	MA1	60.046	150.730	221	3/71	<b>-/94</b>	1
•		МГД-1	(60.046)	(150.730)		-/94	OPEN	1
		СТК						
Stolb	SOTS	СТБ	72.40	126.82	10	/85		1
Susuman	SUU	СМН	62.78	148.15	640	8/69	/95	1
		CCM	(62.78)	(148.15)		/95	/98	1
			62.779	148.163		/98	<b>OPEN</b>	G
Sutam			55.96	127.59	700	/69	/69	1
Suvo	SUVS	СУВ	63.655	110.008	1000	<b>-/84</b>		1
Syllakh	SYLS	СЛХ	57.12	121.86	600	/89	/89	1
Syul'ban	SYB		56.065	117.222	1000	6/62	9/63	1
Tabalakh	<b>TBKS</b>	ТБЛ	67.54	136.52	200	/80		1
		ТБ						
Taimylyr	<b>TMLS</b>	ТМЛ	72.61	121.92	60	/86		1
		TMP						
<b>Takhtoya</b> msk	TTYS	TXT	60.20	154.68	11	9/87		1
Talaya	TL-	ТЛА	61.134	152.398	730	1/89	<b>OPEN</b>	G
		ТЛ						
Talaya	TAL	ТАЛ	51.681	103.644	579	11/82	<b>OPEN</b>	1
TasYuryakh-1			56.64	121.33	395	02/67	03/67	1
TasYuryakh-2			56.62	121.41	415	07/67	08/67	1
Tenkeli	TLIS	THK	70.18	140.78	110	/84	/93	1
Ternei	TEI	TPH	45.067	136.6	30	7/82		2
Tilichiki	TIL		60.433	166.075		-/94	-/96	1
Tikhmenevo			<b>49</b> .2	142.9	150	6/69	10/69	-
Tiksi	TIK	TKC	71.632	128.863	38	3/56	/93	1
TIXI	Tiksi-C	SSN	71.64	128.87	30	/95	OPEN	1
Tokarikan			56.10	126.42	800	/72	/73	3
Tokhoi	TKH	TX	51.361	106.608	640	11/71	4/73	1
Tonnel'nyi	TNL	ТНЛ	56.283	113.35	820	11/76		1
Topolovo	TOP	ТОП	53.230	158.041	155	11/61	-/93	1
		TIUI						
Toyohara (Yuzl	h <b>no</b> )					/43	/45	-
Tsipikan	ZIP	ЦРК	54.917	113.35	1110	<b>-/75</b>	2/86	1
Tsiveluch	SVL	ШВЛ	<b>56</b> .583	161.225	900	10/80	OPEN	1
Tungurcha-1	TUG1		<b>5</b> 7.33	121.48	440	/70	/70	1
Tungurcha-2	TUG	THI	57.27	121.48	315	<i>1</i> 78		1
Tungusskii	AY3S		64.20	146.38	1080	<i>[</i> 71	/71	1
Tupik	TUP	TTIK	54.425	119.933	630	11/61		1
Turan	TRNS		51.633	101.666	870	12/66	11/68	1
Turikan	TNKS	THK		113.108	695	8/81		1
Tymovskoe	TYV	TMC	50.85	142.65	100	4/69		-
	TMSS							
Tynda	TYD	тнд	55.133	123.717	610	7/70	1/72	2

Tyrgat Tyubel Uakit Udoka Uziha Uziha Ulyuki Utoyan Usi N Us

Yuzhi Sa Yuzhi Sa X Zakar Zapad

> Laria Laria Laya Laya Laya Laya Laya Laya

Tyrgan	TRG	ТРГ	52.758	106.342	600	1/60		1
<b>Tyubelyakh</b>	UL1S	ТЕБ	65.37	143.15	380	/88	/88	3
<b>Uakit</b>	UKT	УКТ	55.495	113.62	1140	12/62	-/75	2
Udokan	UDK		56.75	118.305	810	4/67	4/69	1
Udzha			71.25	117.17		08/27/75	09/19/75	-
Uelen			66.16	169.84W	5	/81	-/82	1
Uglegorsk	UGL	УГЛ	49.083	142.083	20	-/51		-
Ulyukchikan	UCK	УЛК	53.87	109.598	490	7/70	9/70	1
Ulyunkhan	ULNS	<b>Р</b> КТО	54.867	111.07	560	7/89		2
Unknown	UNYS	УНЮ						
Uoyan	YOA	УН	56.13	111.77	520	<i>-/</i> 79		1
Ust' Nera-1	UNR1	У-НР	64.566	143.230	485	/62	/92	1
Ust' Nera-2	UNR	У-Н	64.565	143.242	485	/92	OPEN	G
Ust' Nyukzha	USZ	У-Н	56.56	121.59	415	/64		1
Ust' Urkima	UURS	УРК	56.31	123.16	540	/81		1
Ust' Bolsheretsl	UBL		52.842	156.308	20	11/61	-/64	1
Ust' Belaya	U-B	У-Б	65.51	173.28	20	11/66	5/67	1
Ust' Srednikan	SRD	СРД	62.44	152.32	580	12/62	11/63	1
Ust' Omchug	USO	У-ОМ	61.13	149.63	580	/68	/83	1
Utesnoe			46.6	143.075	20	7 <i>1</i> 73	9/79	-
Vankarem	VNK	ВНК	67.84	175.85W	10	3/66	6/66	1
Verkhene	VKM		54.627	158.473	170	10/66	<i>-/</i> 75?Π	1
Kamchatsk								
Vladivostok	VLA	влд	43.12	131.893	75	-/29	<b>-/31</b>	_
Vodopadnii	VDP	ВДР	55.770	160.220	1060	-/71	<b>-/91</b>	1
Vzmor'e		, ,	48.85	142.517	20	7/82	12/82	_
Yablochnyi			47.167	142.067	20	6/68	9/68	-
Yagodnoe	YAG		62.53	149.62	480	/77	/77	1
Yakutsk-1	YAK1			129.722	90	10/57	/62	1
Yakutsk-2	YAK	ЯК	62.030	129.677	91	/62	<b>OPEN</b>	1
Yaruga	YRGS		57.49	123.07	780	/89	/89	2
Yasnyi	YASS	ЯСН	53.29	127.983	310	1/75		1
Yubileniya	YUBS	ЮБЛ	70.74	136.10	10	/86	/93	1
1 donomy a	1020	ЮБТ	. •	150.10		, 00	,,,,	•
Yuzhno	YSS	ЮСХ	46.958	142.762	100	/57	OPEN	1
Sakhalinsk	100	2001		2 1211 32		,	<b>01 –.</b> ·	-
Yuzhno	YSS1		47.02	142.717	40	10/47	/57	_
Sakhalinsk	1001		.,		. •	20,		
(Novo Aleks	s-androv	/sk)						
Zakamensk	ZAK	3KM	50.383	103.292	1125	12/60		1
Zapadnyi	ZAP	J. C. T. C.		118.433	1600	4/67	8/67	1
Zapadnyi Zarech'e	ZARS			107.15	460	7/59	<b>-/60</b>	1
Zarecne	ZAKO		32.330	107.15	400	7/69	9/69	•
Zarya	ZRY		57.24	118.917	655	10/59	9/68	2
Zemlya Bunge				142.583		4/75	6/75	_
Zeya	ZEA	ЗЕЯ		127.293	270	6.76		1
Zhigalovo Zhigalovo	ZGL			3 105.15	625	12/67	2/67	1
Zhuravlikha	ZRV	ЖРВ		109.375	475	7/70	9/70	î
Zimniki	ZMN	3MH		5 134.258	150	7/88		2
	214114	J1411	13.773		130	,,,,,,		~

 Zyryanka
 ZYRS
 3PH
 65.72
 149.82
 120
 --/82
 --/90
 1

 Zyryanka-1
 ZY1
 3PH
 65.74
 150.89
 37
 1/64
 10/64
 1



APPENDIX B
Annual plots of seismicity in northeast Russia. Original Russian epicenters are used.

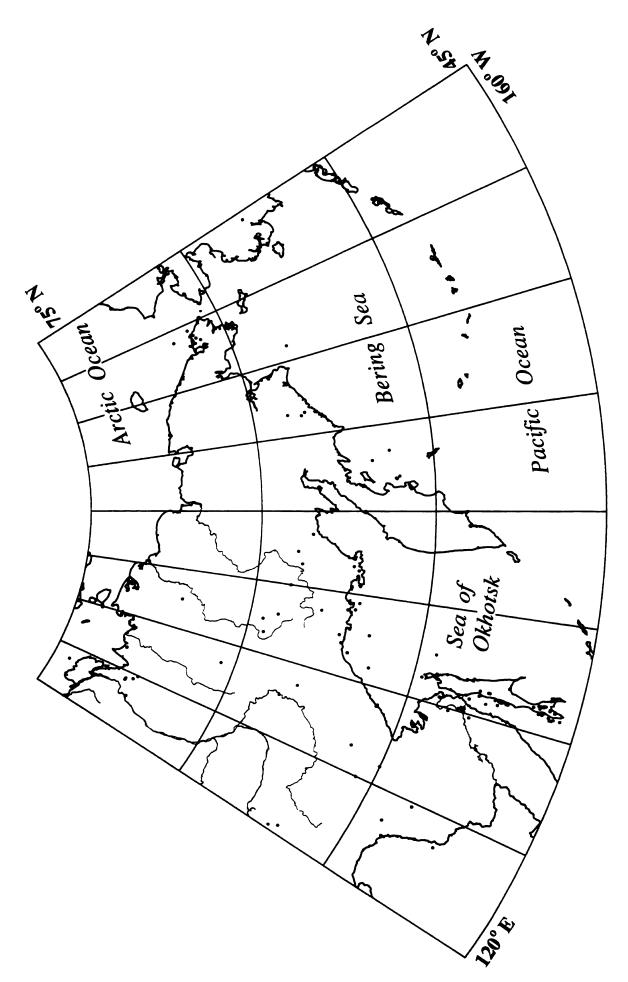



Figure B-1. Historic seismicity of northeastern Russia (pre 1950).

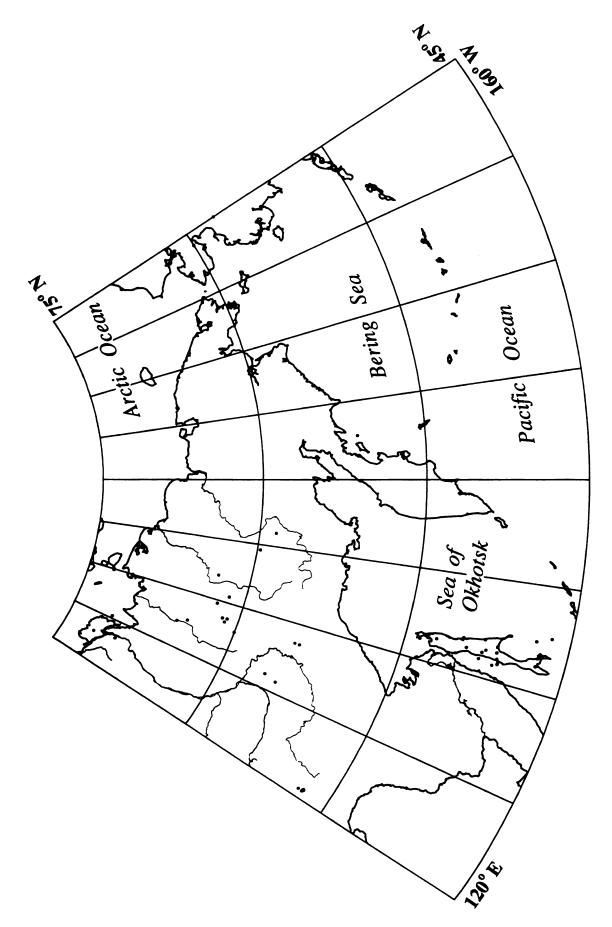



Figure B-2. Seismicity of northeastern Russia in 1950-1959.

My Y The Country of t

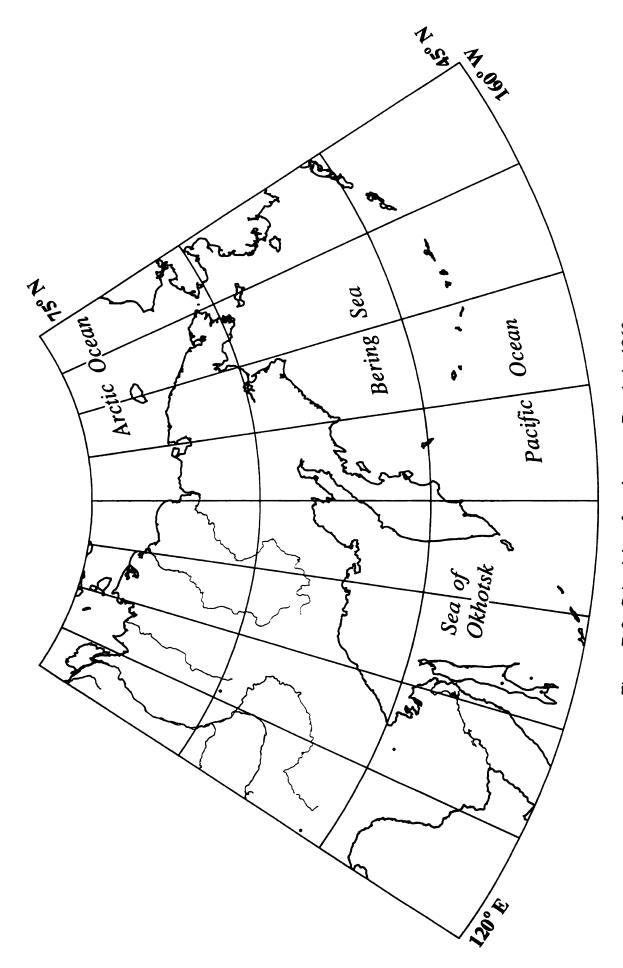



Figure B-3. Seismicity of northeastern Russia in 1960.

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

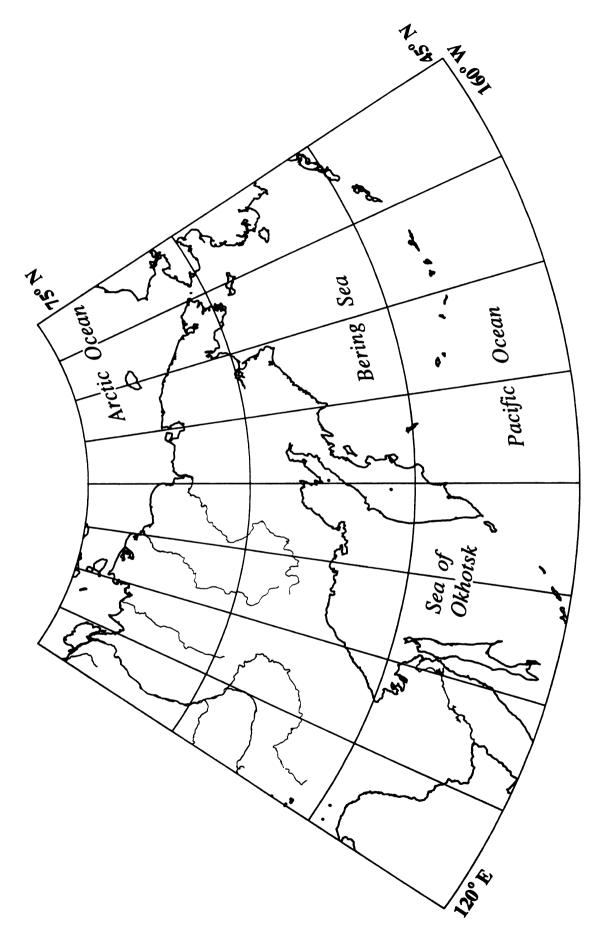



Figure B-4. Seismicity of northeastern Russia in 1961.

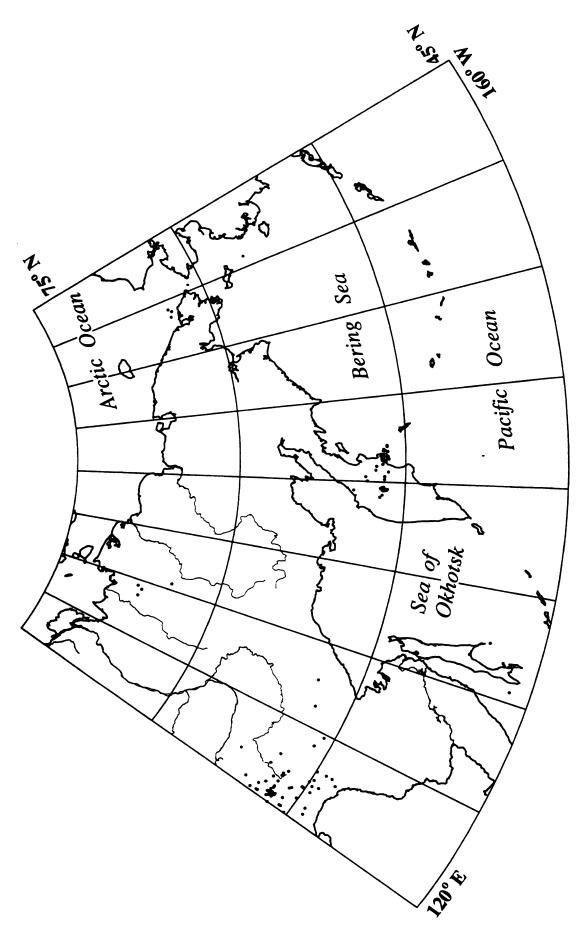



Figure B-5. Seismicity of northeastern Russia in 1962.

1 54

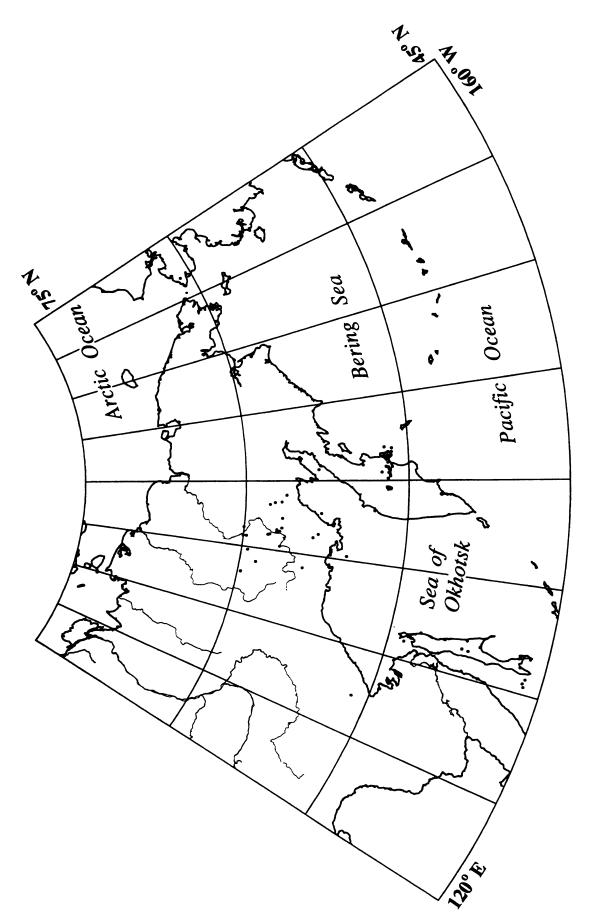



Figure B-6. Seismicity of northeastern Russia in 1963.

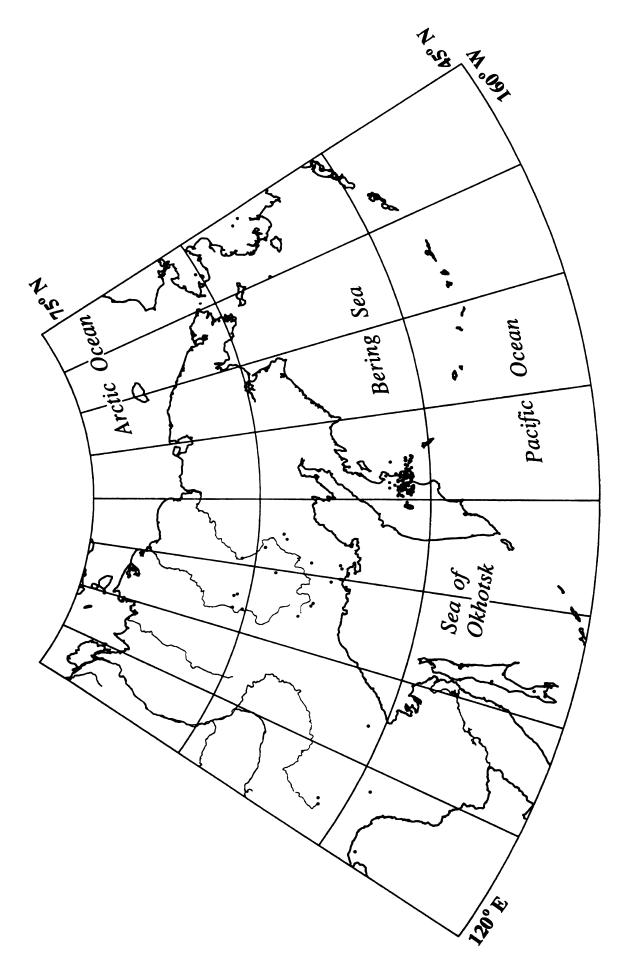




Figure B-7. Seismicity of northeastern Russia in 1964.



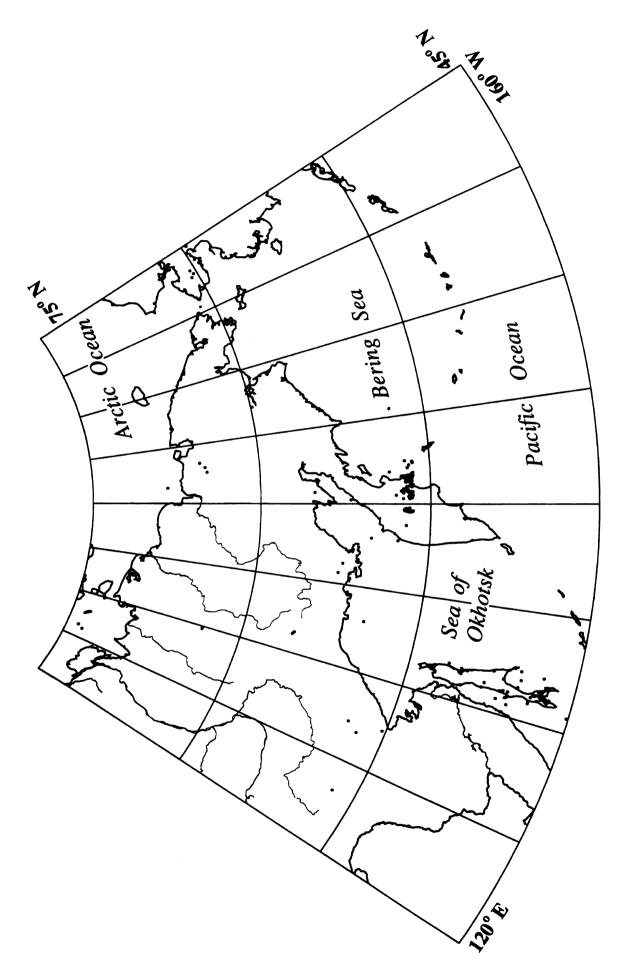



Figure B-8. Seismicity of northeastern Russia in 1965.



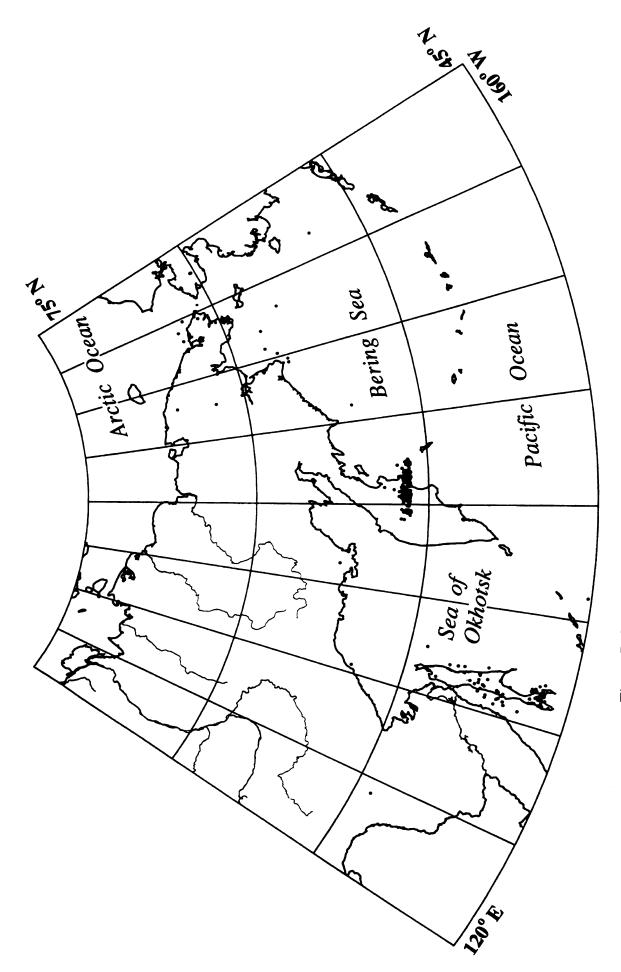



Figure B-9. Seismicity of northeastern Russia in 1966.

		4
		1

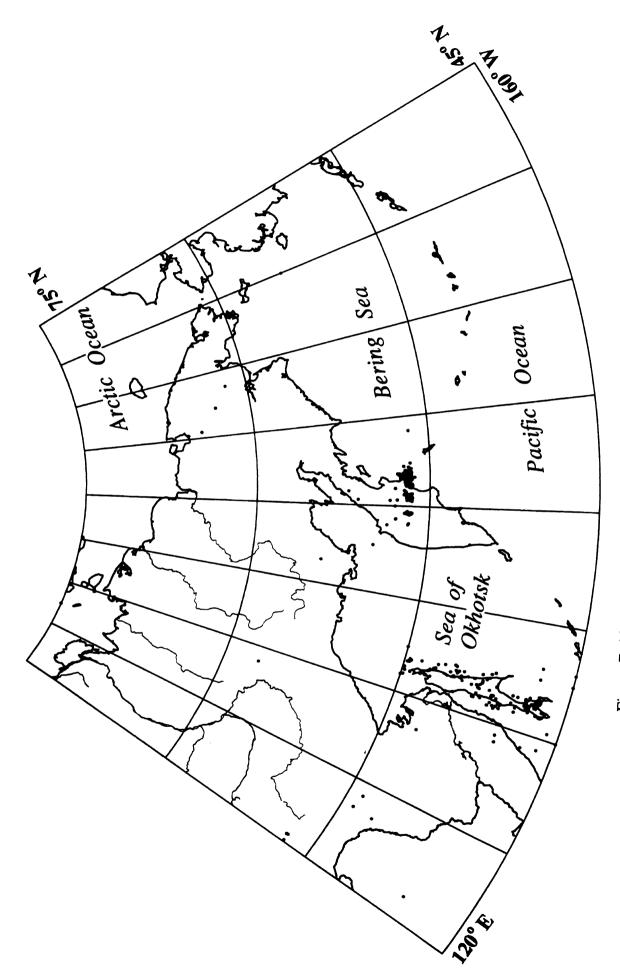
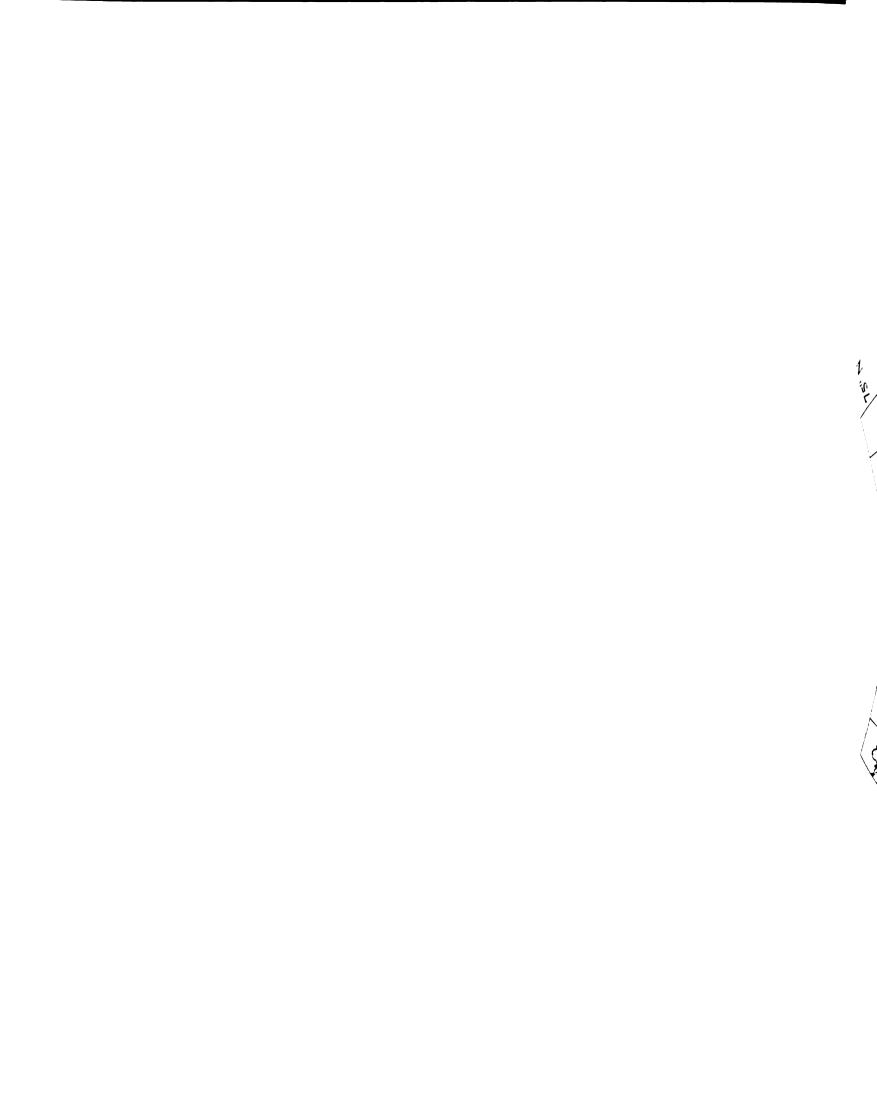
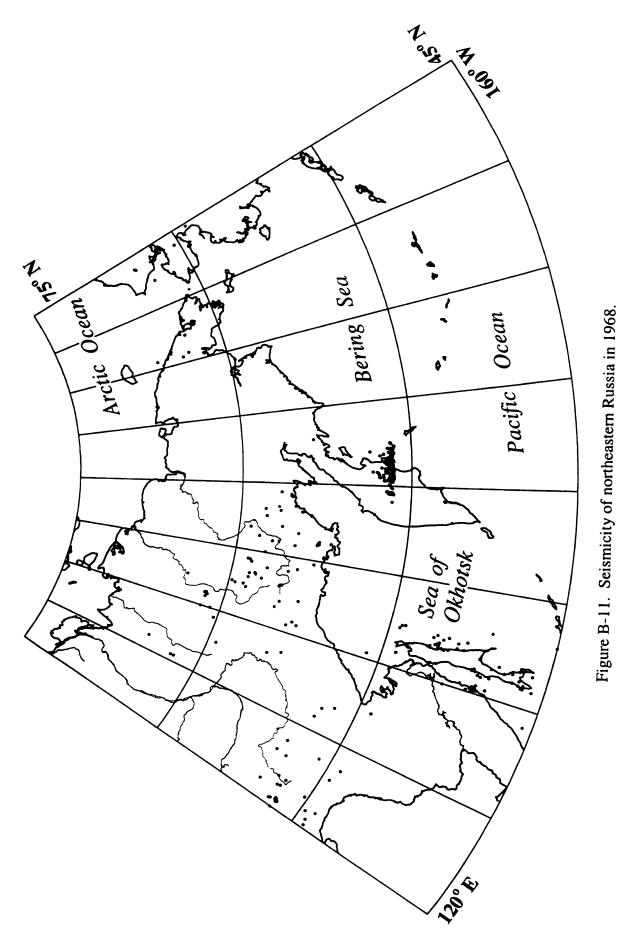





Figure B-10. Seismicity of northeastern Russia in 1967.





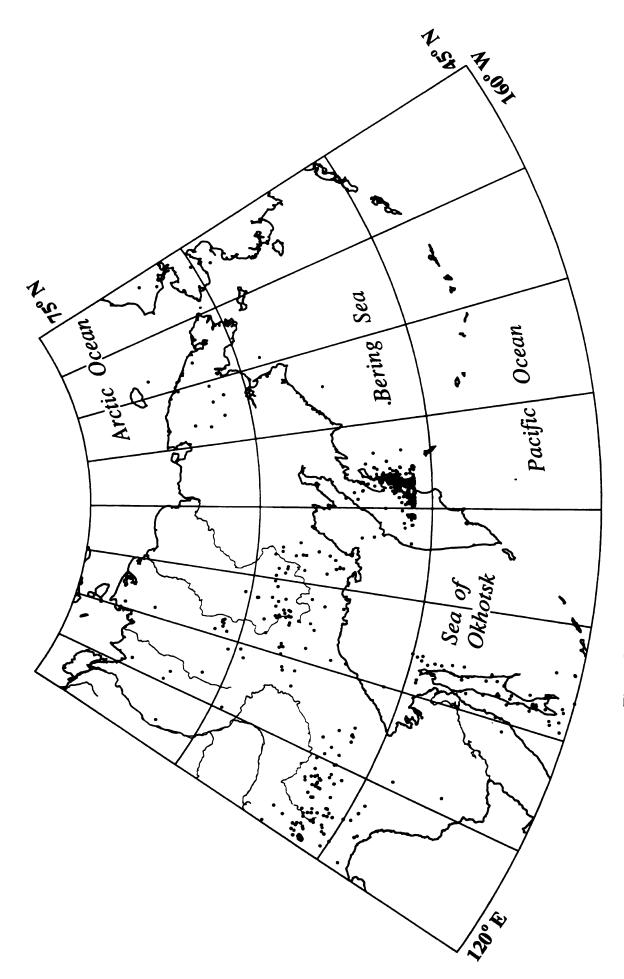



Figure B-12. Seismicity of northeastern Russia in 1969.

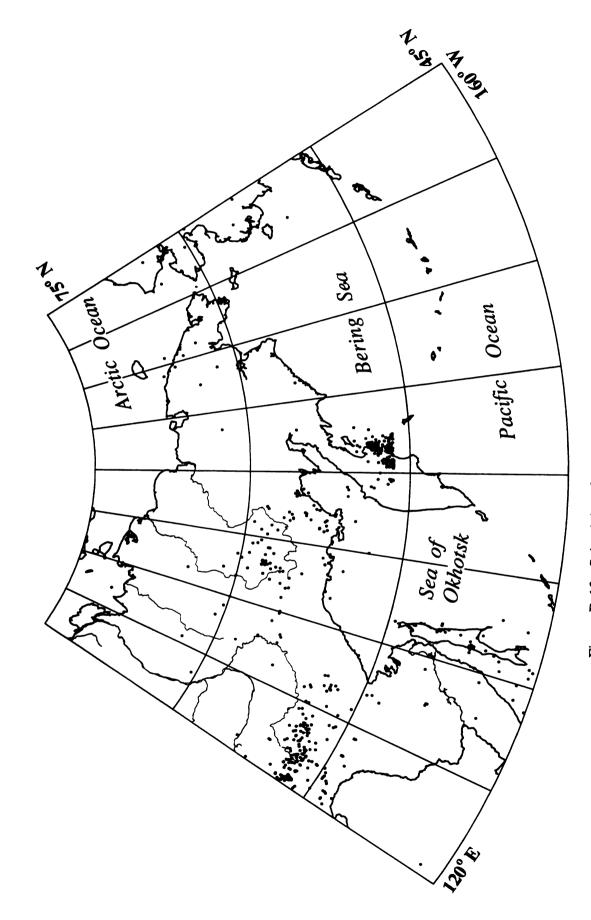



Figure B-13. Seismicity of northeastern Russia in 1970.

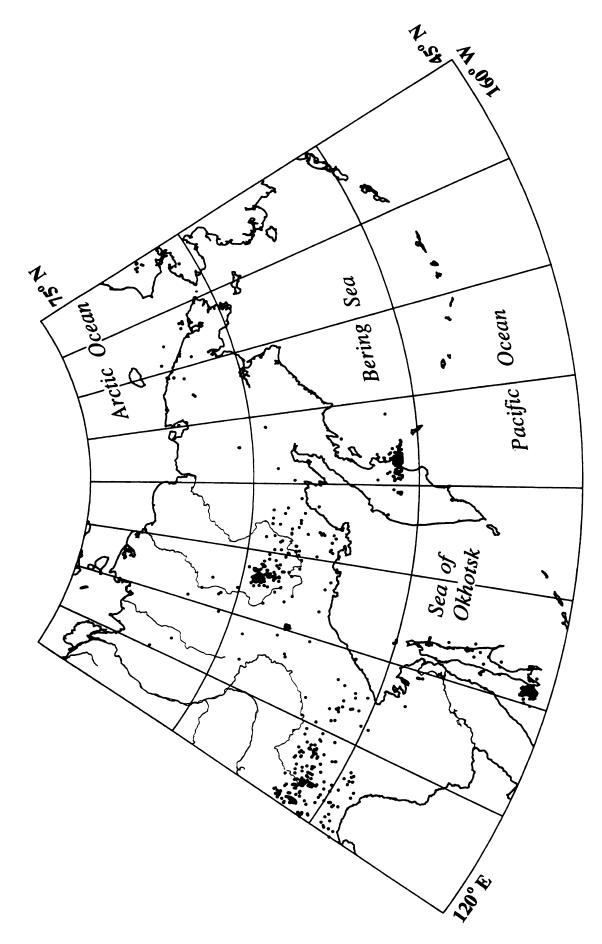



Figure B-14. Seismicity of northeastern Russia in 1971.

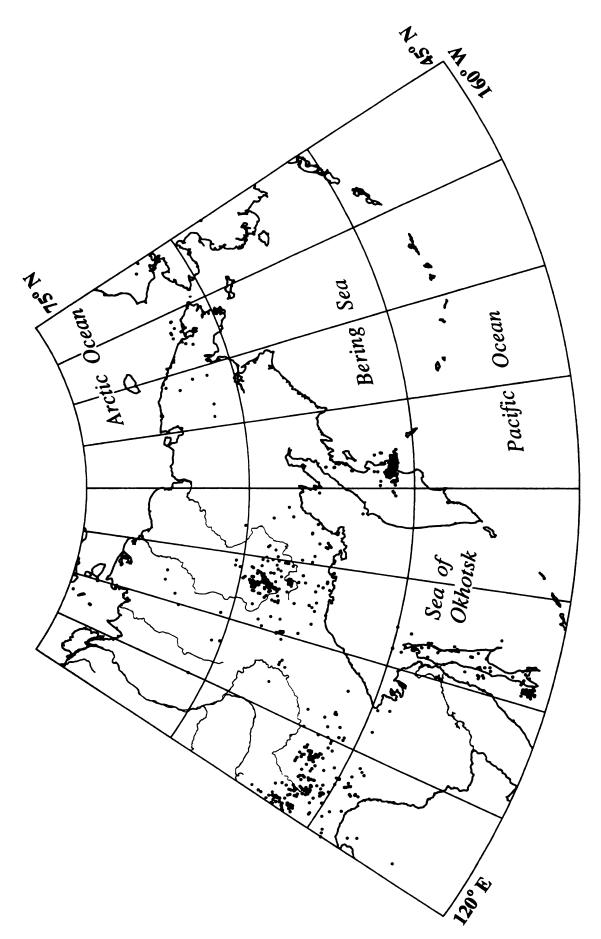
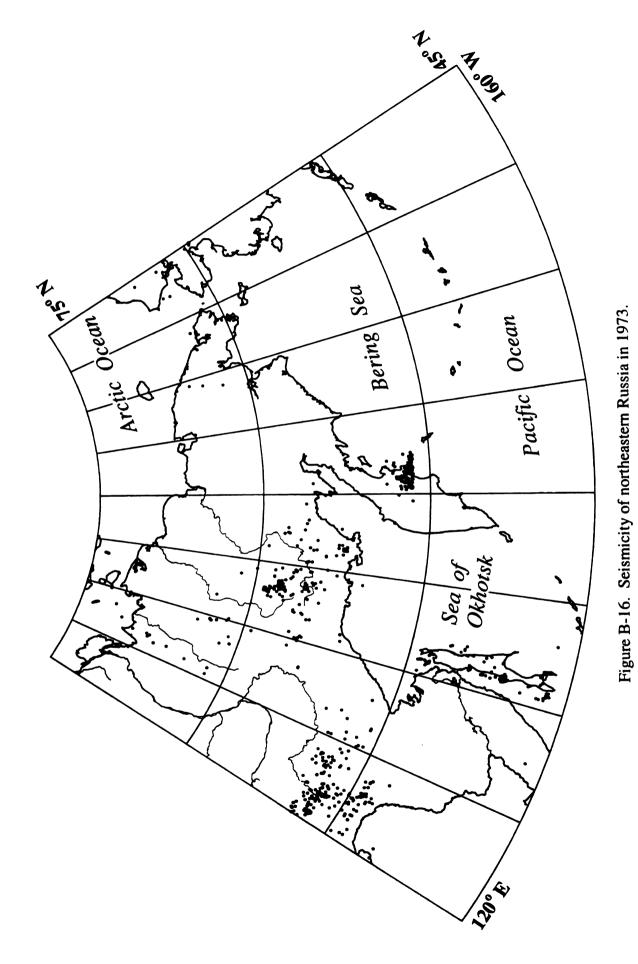




Figure B-15. Seismicity of northeastern Russia in 1972.



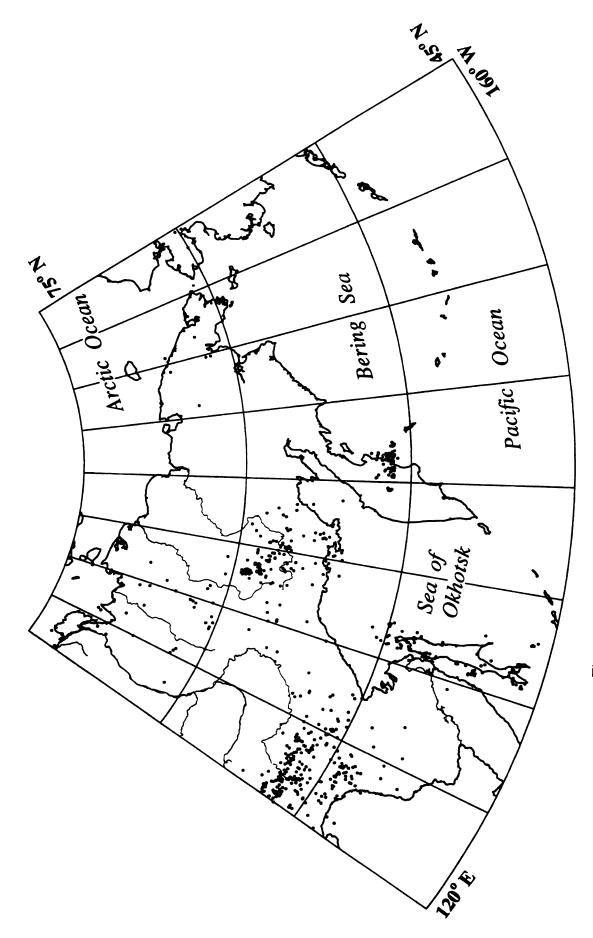



Figure B-17. Seismicity of northeastern Russia in 1974.

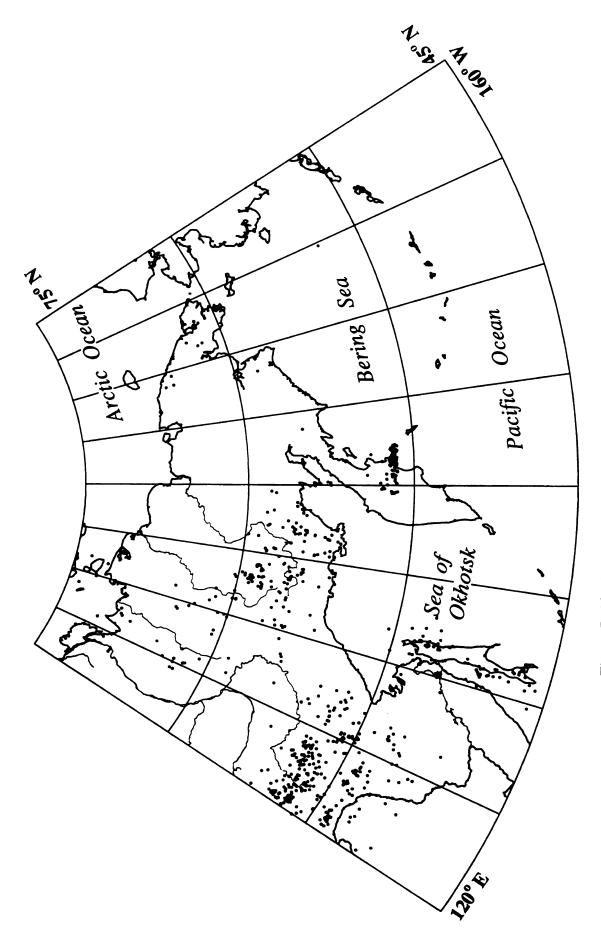



Figure B-18. Seismicity of northeastern Russia in 1975.

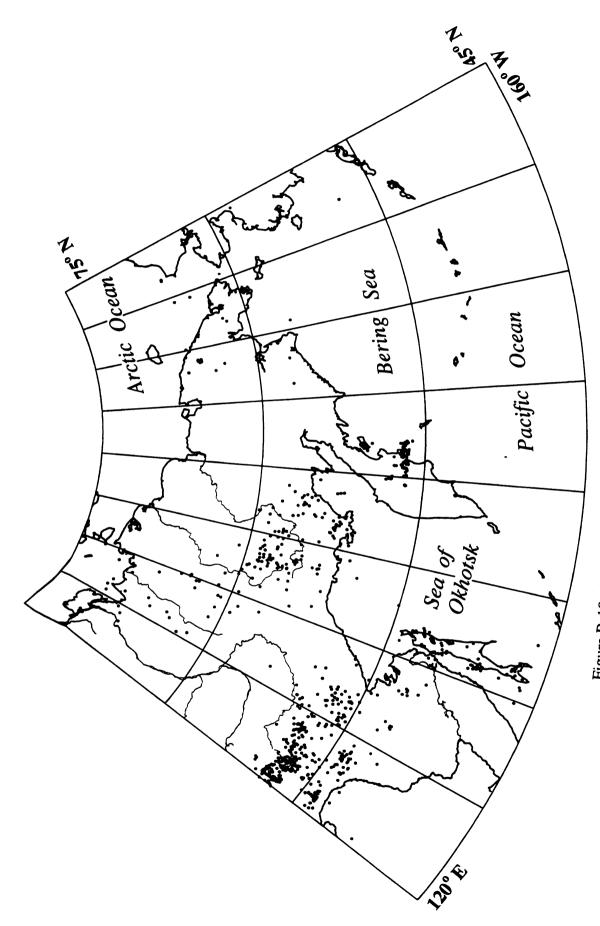



Figure B-19. Seismicity of northeastern Russia in 1976.

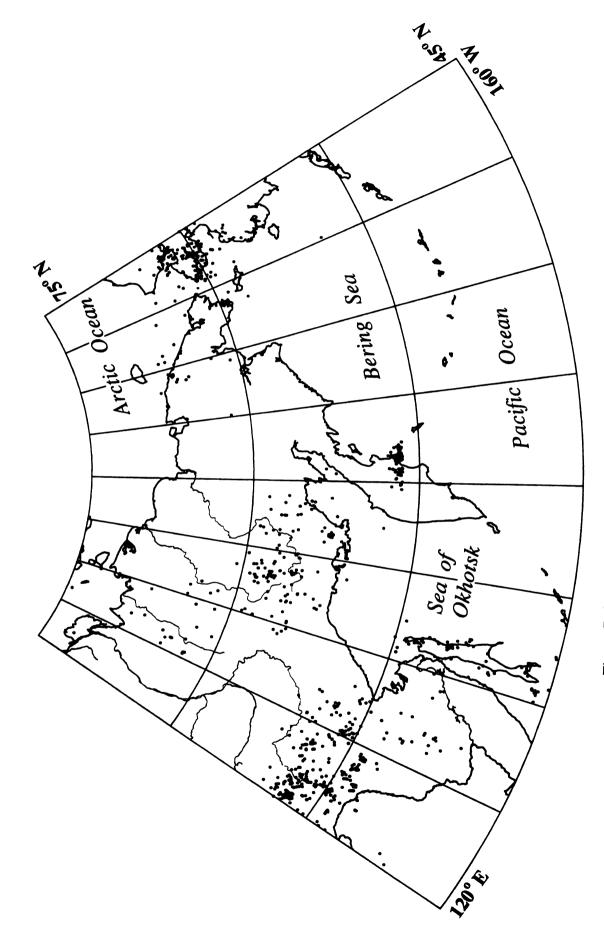



Figure B-20. Seismicity of northeastern Russia in 1977.

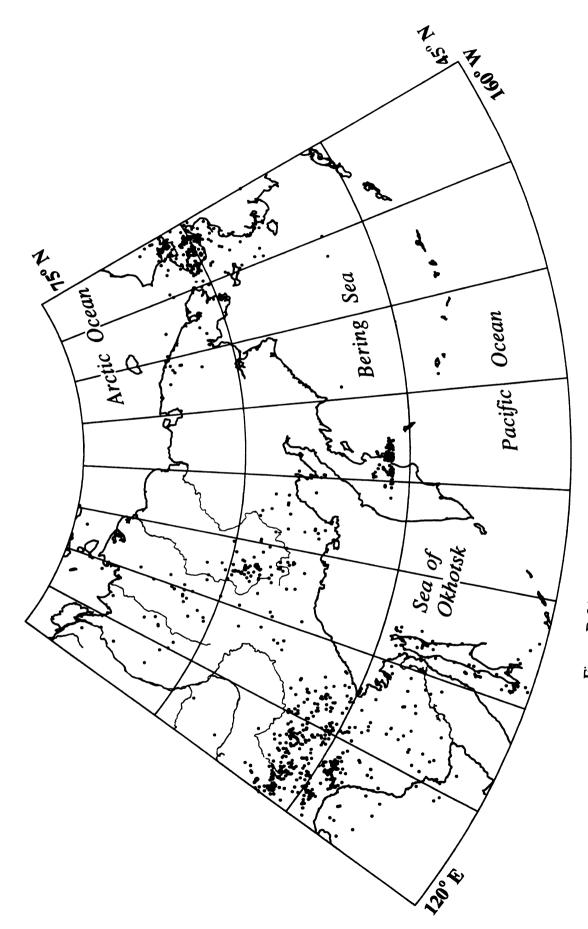



Figure B-21. Seismicity of northeastern Russia in 1978.

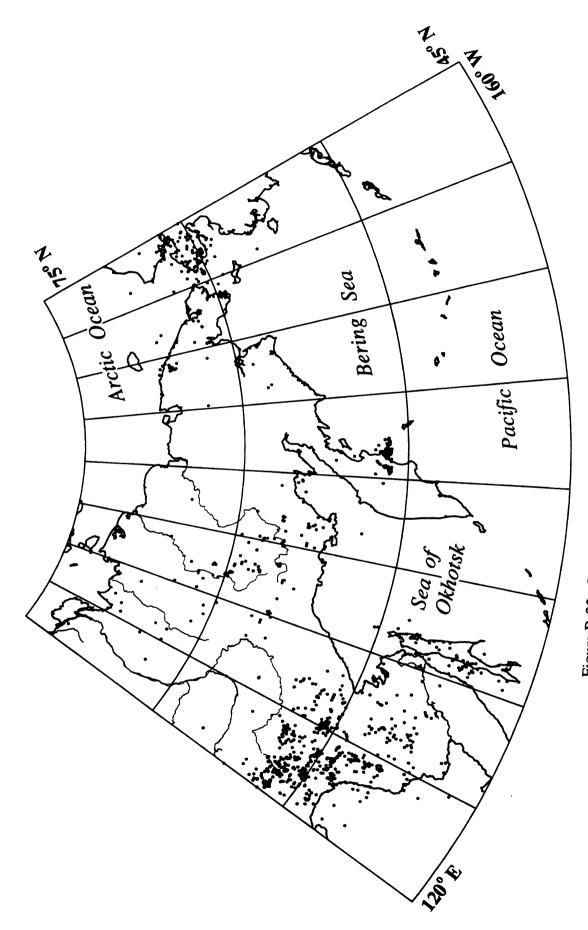



Figure B-22. Seismicity of northeastern Russia in 1979.

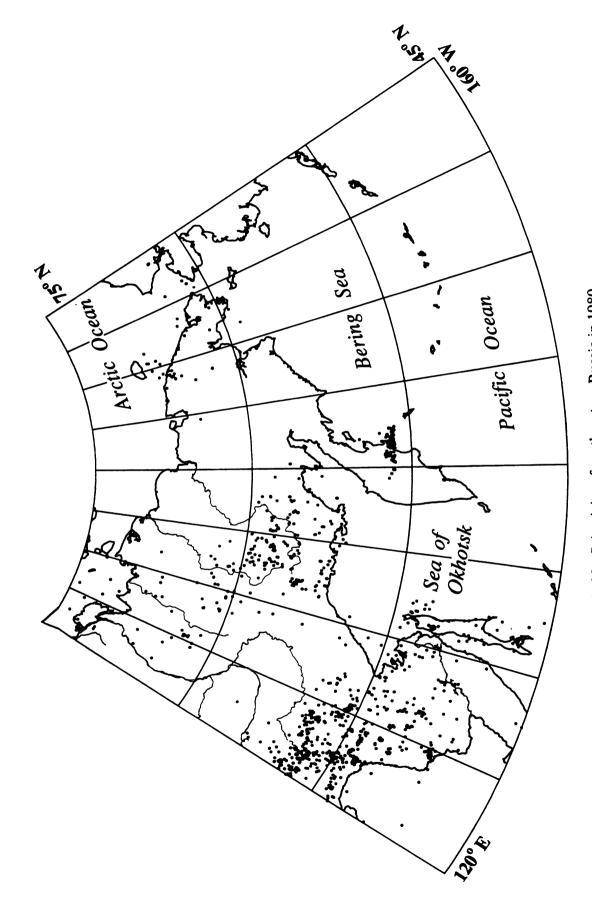



Figure B-23. Seismicity of northeastern Russia in 1980.

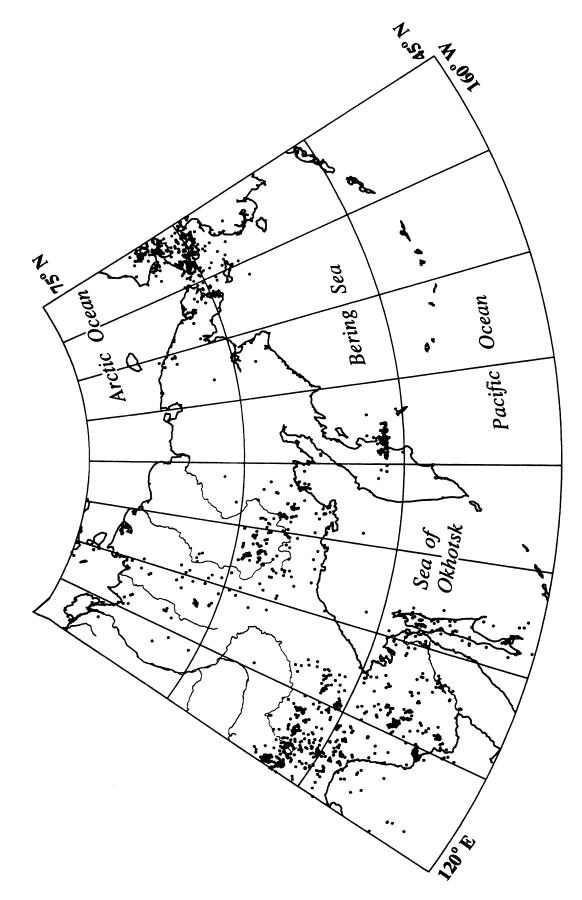



Figure B-24. Seismicity of northeastern Russia in 1981.

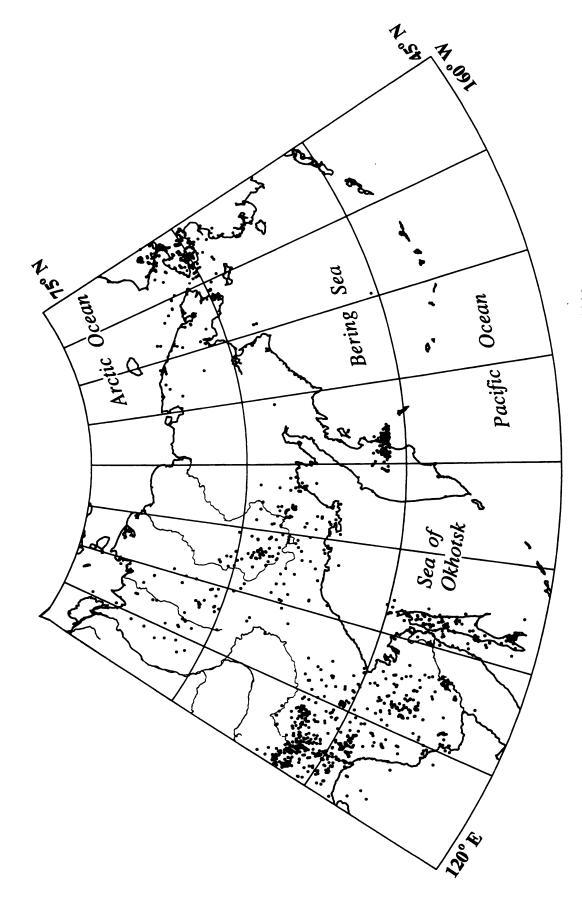



Figure B-25. Seismicity of northeastern Russia in 1982.

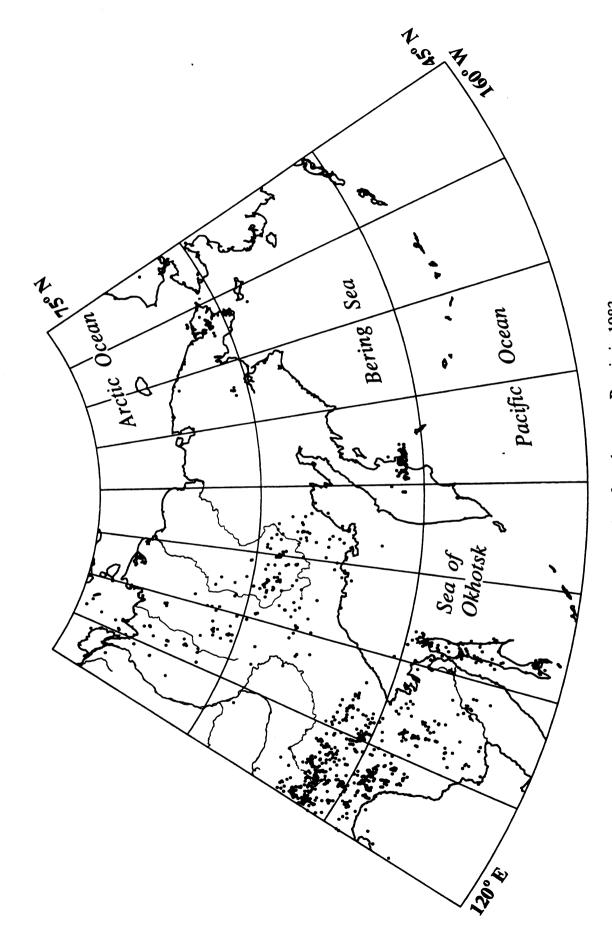



Figure B-26. Seismicity of northeastern Russia in 1983.

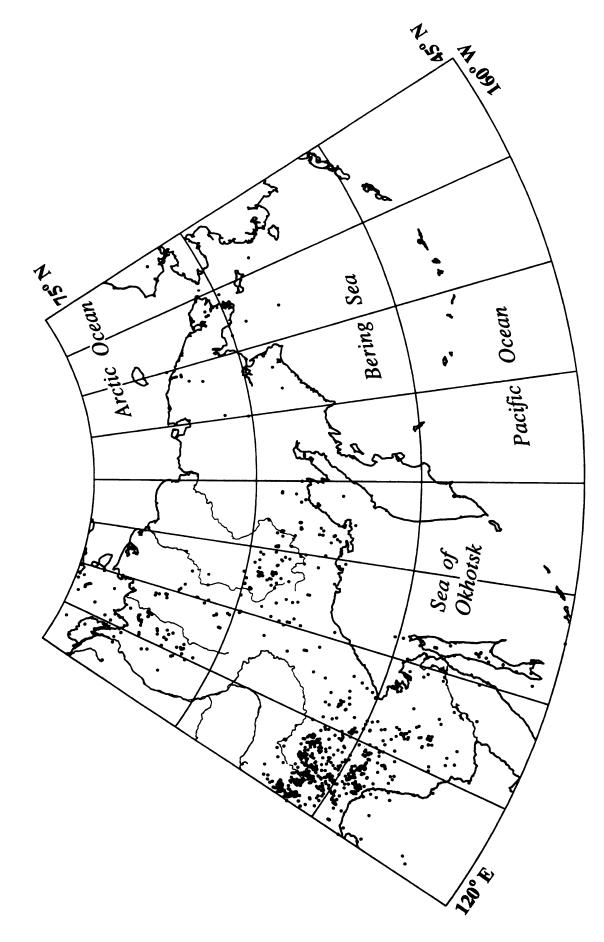



Figure B-27. Seismicity of northeastern Russia in 1984.

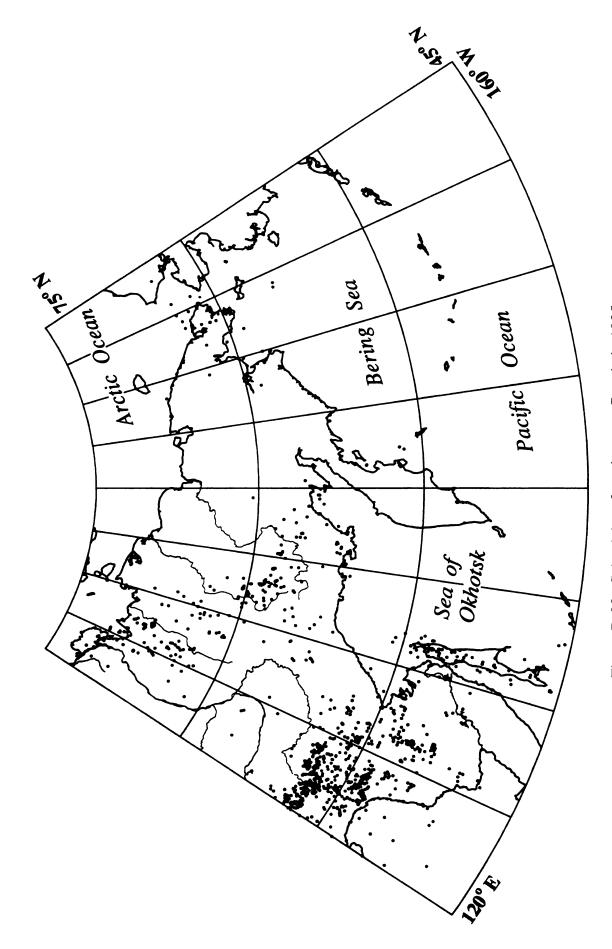



Figure B-28. Seismicity of northeastern Russia in 1985.

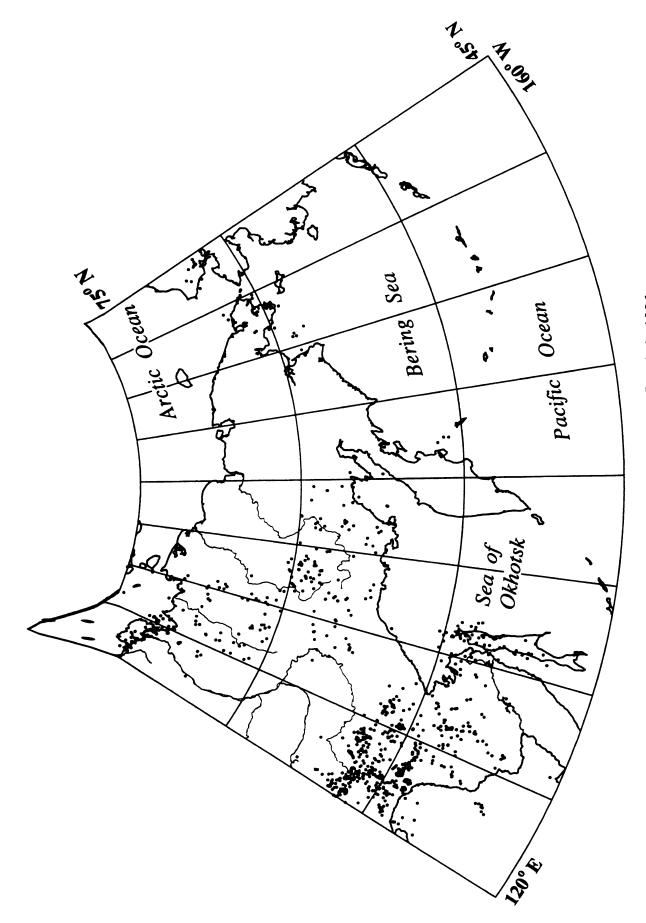



Figure B-29. Seismicity of northeastern Russia in 1986.

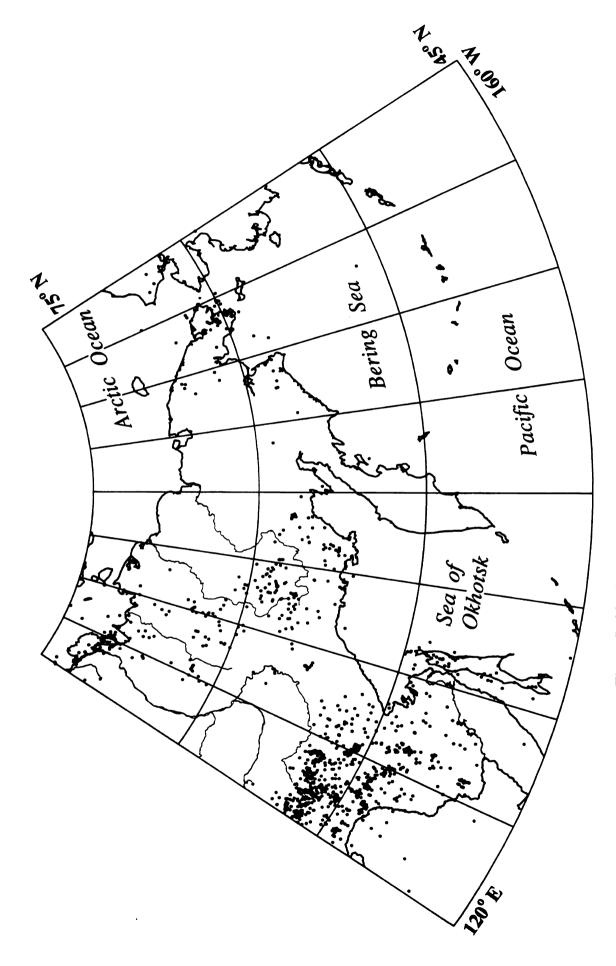



Figure B-30. Seismicity of northeastern Russia in 1987.

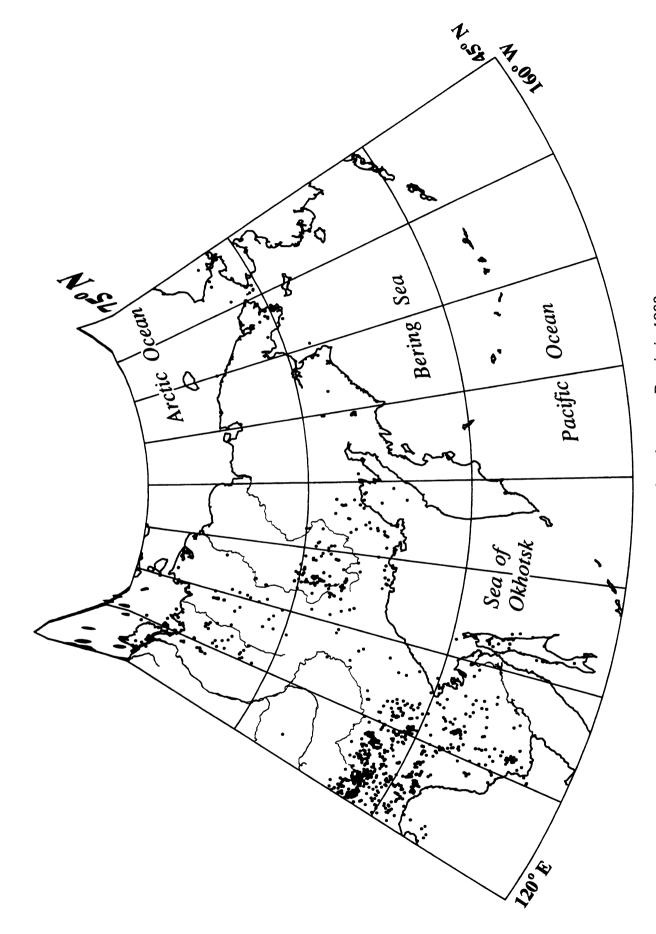



Figure B-31. Seismicity of northeastern Russia in 1988.

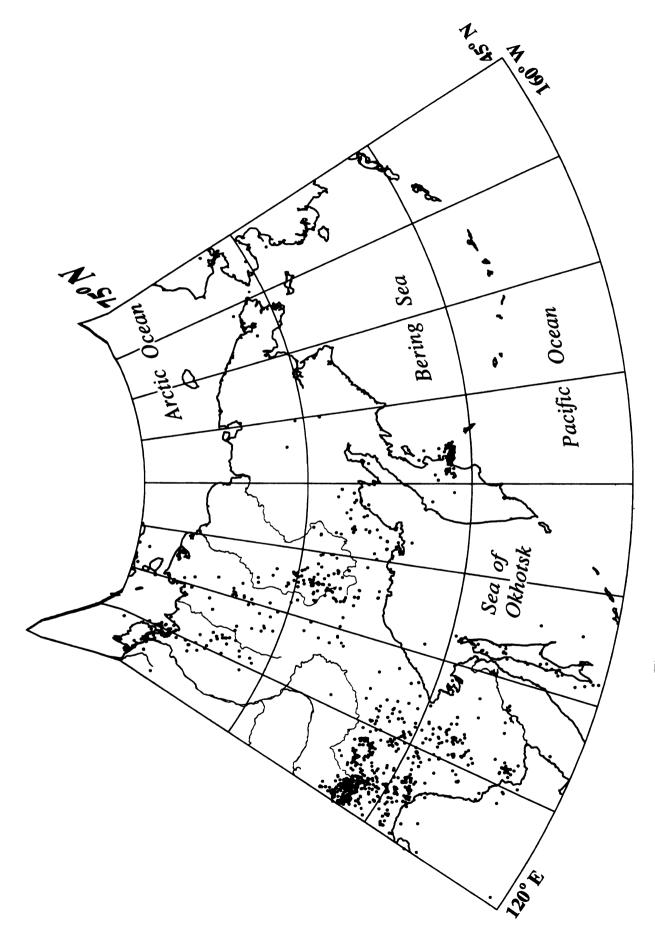



Figure B-32. Seismicity of northeastern Russia in 1989.

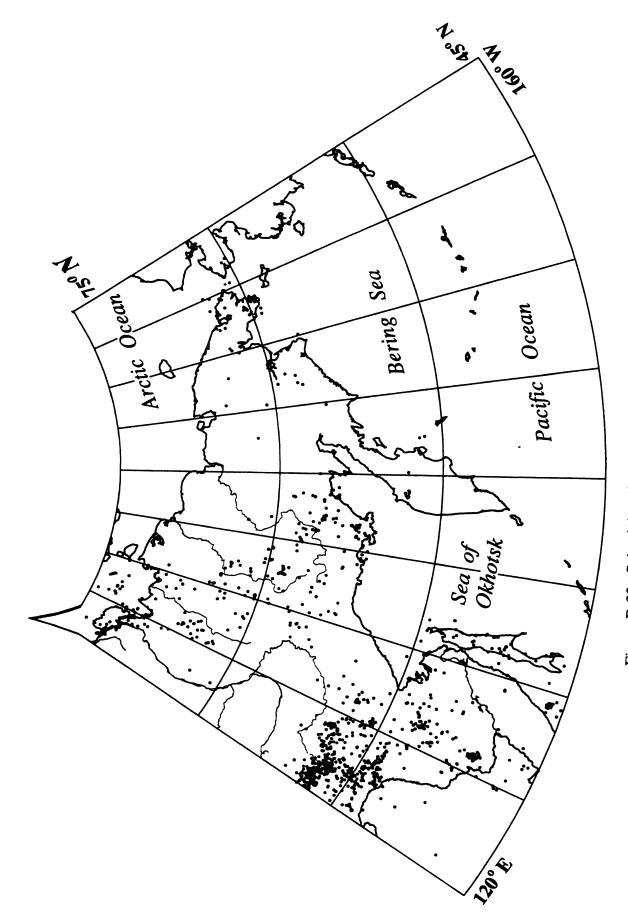



Figure B-33. Seismicity of northeastern Russia in 1990.

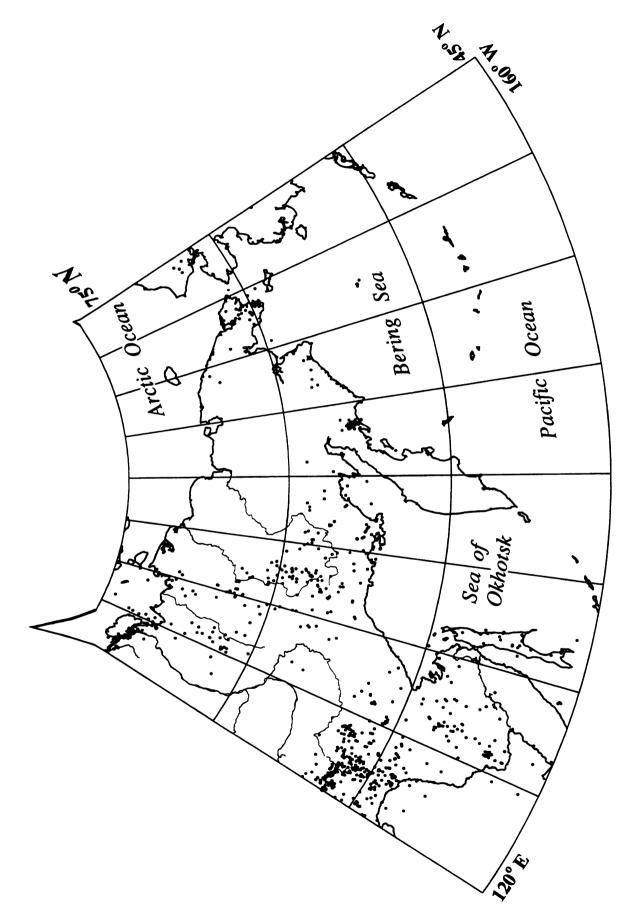



Figure B-34. Seismicity of northeastern Russia in 1991.

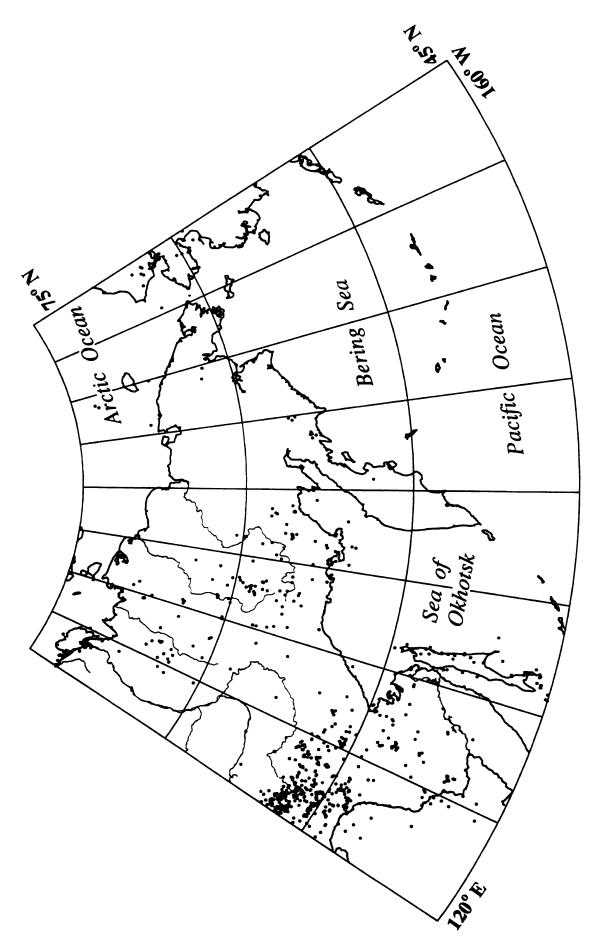



Figure B-35. Seismicity of northeastern Russia in 1992.

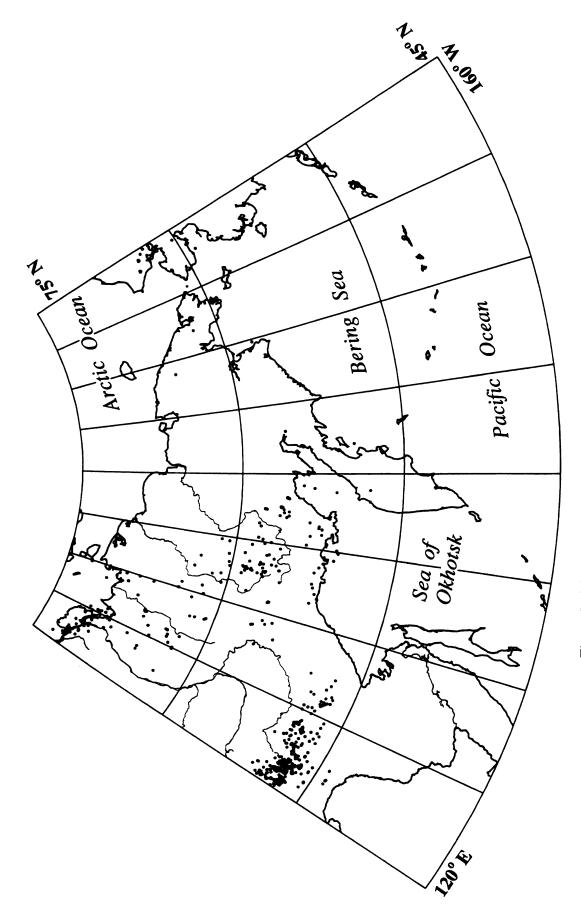



Figure B-36. Seismicity of northeastern Russia in 1993.

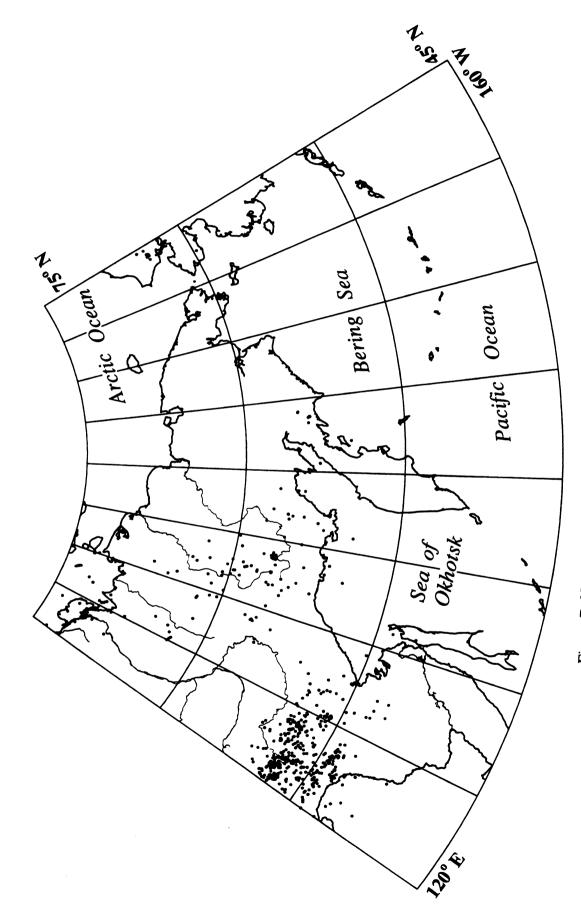



Figure B-37. Seismicity of northeastern Russia in 1994.

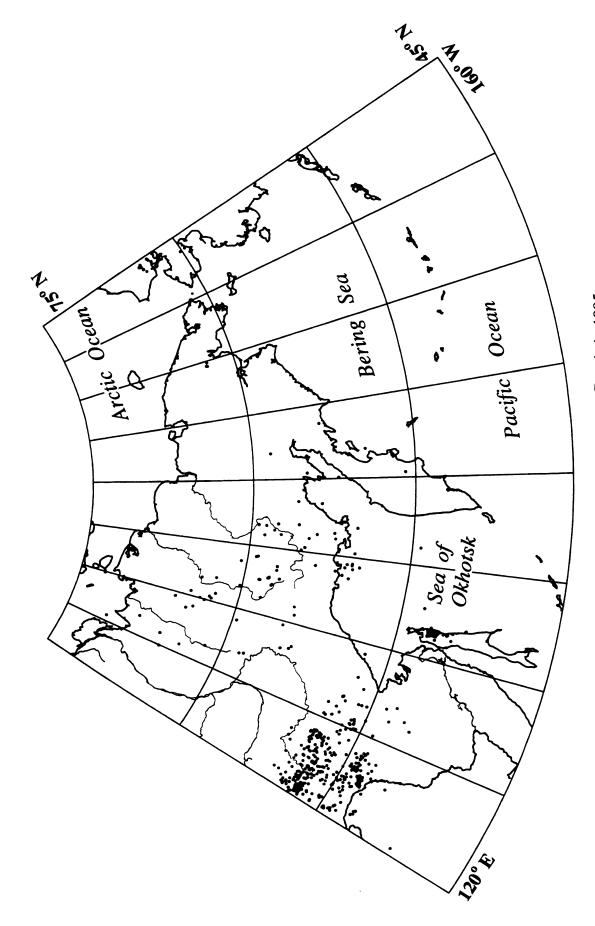
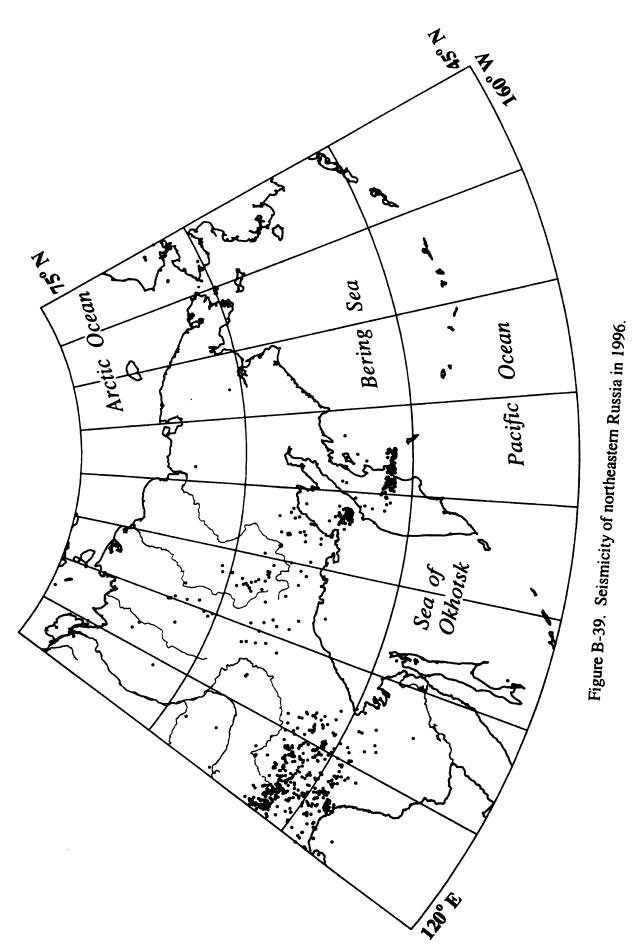




Figure B-38. Seismicity of northeastern Russia in 1995.



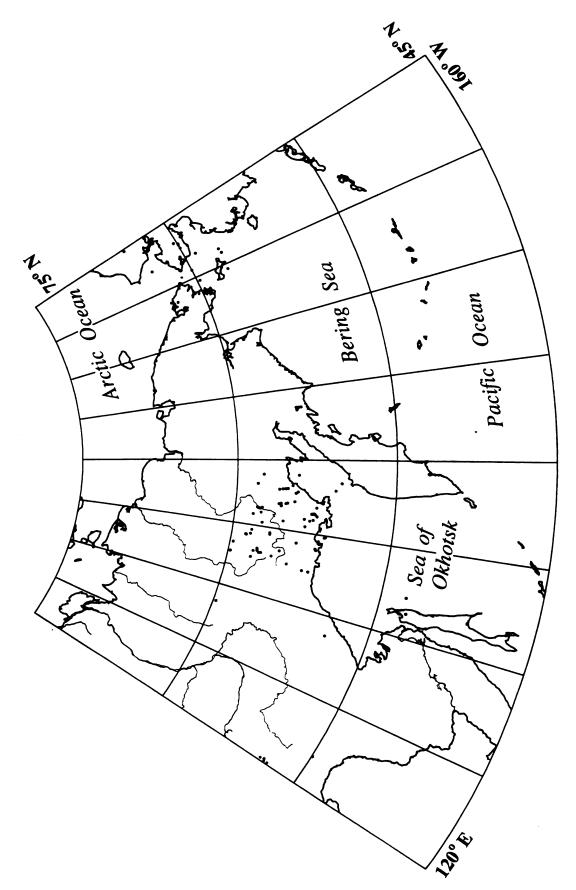



Figure B-40. Seismicity of northeastern Russia in 1997.

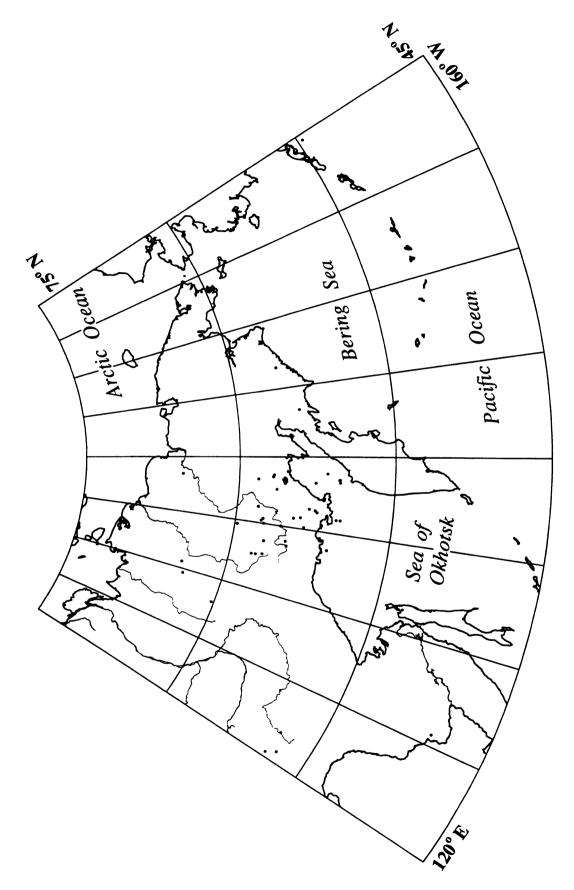



Figure B-41. Seismicity of northeastern Russia in 1998.

# APPENDIX C

1999 Digital station deployments and observations

#### **APPENDIX C**

## 1999 Digital station deployments and observations

#### Overview

In the summer of 1999, the author traveled to Magadan to upgrade existing photo paper seismic stations to digital acquisition. This work was performed in conjunction with the Magadan Experimental Methodological Seismological Division (MEMSD), from Magadan, Russia.

A total of six digital acquisition systems were purchased and imported into Russia for deployment. The digital acquisition systems were manufactured by PC System Design, Palo Alto CA, and use 8 channel, 24 bit A/D cards with GPS timing. Data are recorded on PC computers, which were purchased in Russia. At all stations, except as noted, the seismometers (3 components) recorded are Russian (Soviet) SM3-KV short period instruments, with the free period set at 1.5 seconds. Seismometer output is amplified 1000 times, and a 10hz cutoff low pass filter is used. The amplifier/filter was designed and manufactured by MEMSD. Digitization of time and all seismometer components is 30 s.p.s.

During the travel period, four stations (Susuman, Talaya, Nelkoba, and Ust'Nera) were deployed in permanent locations, upgrading existing photo paper stations, and two stations were deployed temporarily (Stokolviya and Matrosova) during fieldwork. Coordinates for all stations were determined with a Magellan handheld GPS unit. Location of stations deployed are shown in Figure C-1. A brief description of each station follows.

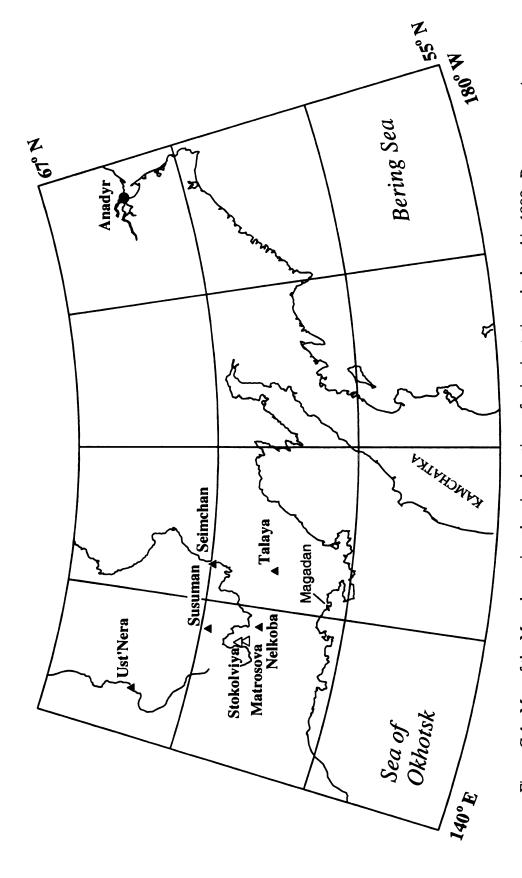



Figure C-1. Map of the Magadan region showing locations of seismic stations deployed in 1999. Permanent stations (closed triangles), temporary stations (open triangles), and near future station (circles).

### **Permanent Stations**

SUSUMAN (62.7792° N, 148.1633° E) Susuman is a town of approximately 5,000 people and is the center of placer gold production in the Magadan region. The seismic station is operated by MEMSD and is located at the meteorological station just west of the main town. The station is sufficiently far from the town that cultural noise should be minimal. The seismic vault in Susuman consists of a large concrete block set approximately 1.5 m into a permafrost foundation.

TALAYA (61.1337° N, 152.3980° E) Talaya is a resort town of approximately 500 people; the main attraction is a large resort with natural hot springs. The seismic station is operated by MEMSD. The seismic vault in Talaya consists of a concrete pad set into volcanic bedrock on the side of a hill. The seismic station is located on the east side of town next to the now abandoned cinema theater.

NELKOBA (61.3383° N, 148.8128° E) Nelkoba is a small town whose primary function was a regional supply and repair center for support of the gold mining industry in the region. The seismic vault in Nelkoba consists of a concrete pad measuring approximately 1 m x 1 m set into permafrost. The concrete pad is housed in a small wooden shed on the grounds of the Nelkoba kindergarten, on the west side of town. The current station site was constructed in the summer of 1997 and is approximately 200 m north of the previous site. At some time in the past, SKM instruments were operated at the old station site. The town of Nelkoba was permanently abandoned in late September, 1999. The station was moved into an abandoned mine near the Matrosova temporary station deployment site (see below).

UST' NERA (64.565° N, 143.242° E) The seismic station in Ust'Nera is operated by the Yakutsk seismic network. The station in Ust'Nera has occupied its present site since 1992. The seismic vault consists of a large concrete block set into a permafrost foundation. The vault is located between two large apartment buildings, thus cultural noise can be high at times due to passing cars and children playing on top of the vault. Seismometers recorded here are Russian (Soviet) SKM short period instruments. Seismometer output is amplified 60 db and a 30hz cutoff low pass filter is applied. The amplifier used in Ust' Nera is a USGS Prototype Series Seismic Amplifier. The amplifier was originally part of an IASPEI system installed by the author in Ust'Nera in 1997.

## **Temporary Stations**

MATROSOVA (61.6432° N, 147.8205° E) Matrosova is a small town with an operating gold mine. Seismometers were located on the concrete foundation of a building used for ore transfer. The foundation of the building was set into bedrock consisting of black shale. In Matrosova, digitization of time and all seismometer components was 120 s.p.s. The station was operated for only a few hours, to record blasting from the mine. Two large blasts of 1,300 and 1,500 kg of Ammonite were recorded, among several much smaller explosions. Several abandoned mine adits are also in and near Matrosova, which may be good sites for future permanent stations.

In late September, 1999, equipment from the closed station in Nelkoba was moved to a site a few kilometers northeast of Matrosova and a new permanent station was constructed (Omchak, 61.67° N, 147.87° E, h = 820 m). The station was constructed in an abandoned mine adit.

STOKOLVIYA (61.8475° N, 147.6598° E) Stokolviya is a hydrological research station in a remote, unpopulated region. The seismic vault consisted of a one meter pit dug into the side of a hill. Ground material consisted primarily of angular cobble sized rocks of volcanic origin. The material was consistent with the bedrock surface being close. When installing the station, it was intended that Stokolviya would be a permanent site. All permissions were obtained, and the hydrologic research station agreed to operate it prior to installation. However, the individual workers at the station were unfamiliar with computers and refused to consider operating the station. This was unfortunate, as the site is quiet. Also at Stokolviya are several boreholes, some of which exceed 200 m depth. These boreholes are not is use, thus may be ideal for borehole instrument installation.

## Results of Station Deployments and Future Research

One objective of the station deployment was to try to record regional mine blasts to get ground truth seismic velocities and seismic waveform signatures. Two blasts (1,300 and 1,500 kg) from the Matrosova mine were recorded at the mine and at the station in Stokolviya (Figure C-2). The explosions were not large enough to be recorded at the other deployed digital stations.

Equipment from the temporary stations deployed in Matrosova and Stokolviya is being redeployed. One station has been installed in Seimchan. The GEOSCOPE station in Seimchan has not operated for several years due to a failed tape drive used to log data. Based on conversations between MEMSD, who operate the station, and the French who installed the station, there is little hope of repair in the near future. Therefore, the output of the existing Streckeisen seismometer is being recorded at 30 s.p.s. on one of the ViSeis PC based

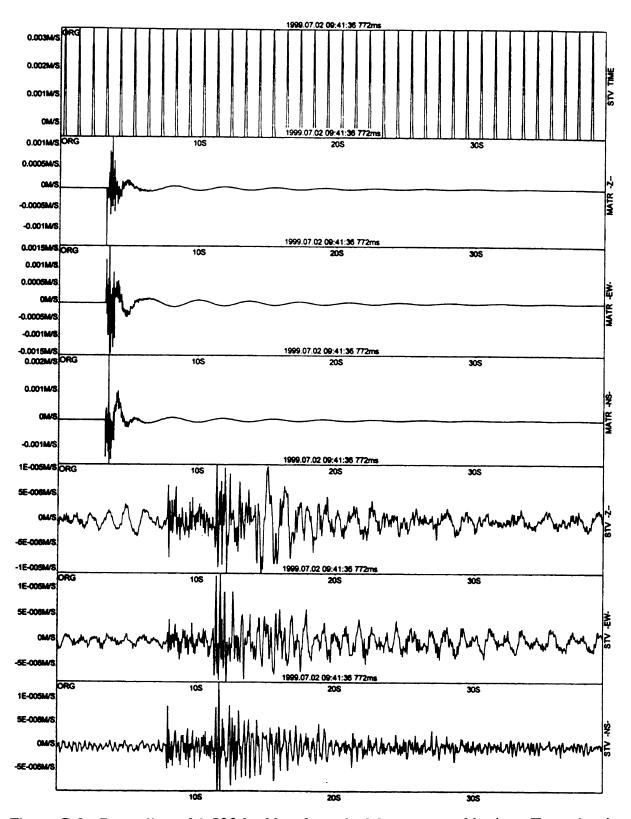



Figure C-2. Recording of 1,500 kg blast from the Matrosova gold mine. Trace 1 - time, traces 2,3,4 - from Matrosova mine (250 m from blast), traces 5,6,7 - station at Stokolviya (25 km north of Matrosova).

systems. Data acquisition began in early October, 1999. The remaining station and a Guralp CMG-40T seismometer will be moved to a permanent location in Anadyr in late 1999, travel permitting.

Figures C-3 through C-5 are sample seismograms recorded at the deployed stations.

All seismograms are raw data.

It is hoped that additional larger explosions can be recorded in the future to use as ground truth events to develop seismic discriminants between explosions and tectonic events and to improve location capabilities. This deployment of digital stations is the first step in developing a digital seismic network in the region. The digital stations will allow much easier analysis of the data, as well as greatly increase the portability of the data. The next proposed station deployment will be Okhotsk, in the summer of 2000. Okhotsk is on the north shore of the Sea of Okhotsk, about 400 km west of Magadan. A station here would provide data in the "hole" of seismicity north of Sakhalin Island that occurs near the juncture of several of the northeastern Russia seismic network boundaries. Microseismicity levels have never been studied in this region, although it is speculated that the boundary between the Eurasian plate and Okhotsk plate is in this vicinity.

#### **Other Stations Visited**

In the course of fieldwork associated with this dissertation, several other seismic station sites have been visited in the Magadan and Yakutsk region. A brief description of station sites is given below. Coordinates listed below were obtained on-site with a GPS unit.

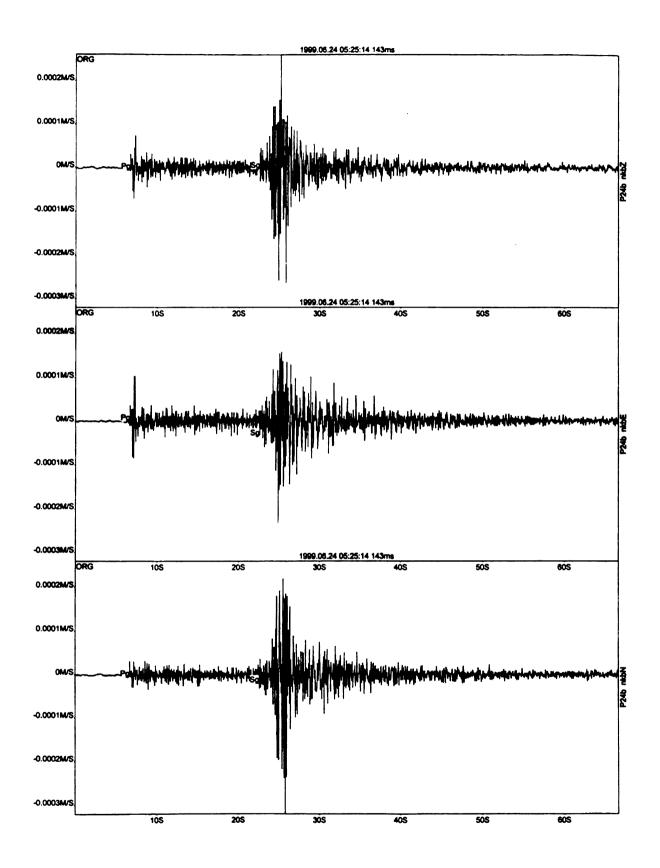



Figure C-3. Local event recorded at Susuman on June 24, 1999. Epicenter unknown.

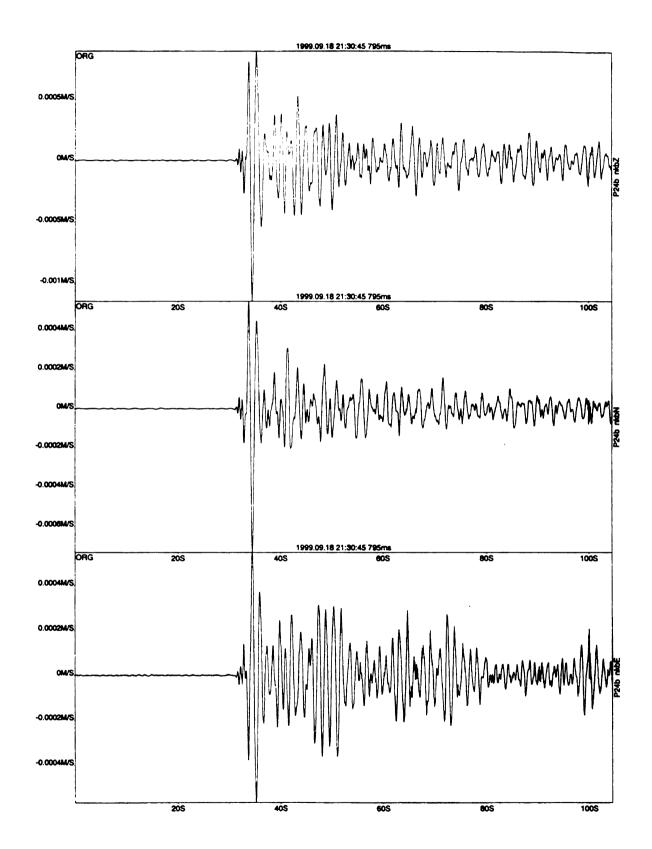



Figure C-4. Regional distance recording from Nelkoba of M_b 6.2 Kurile Island event of September 18, 1999.

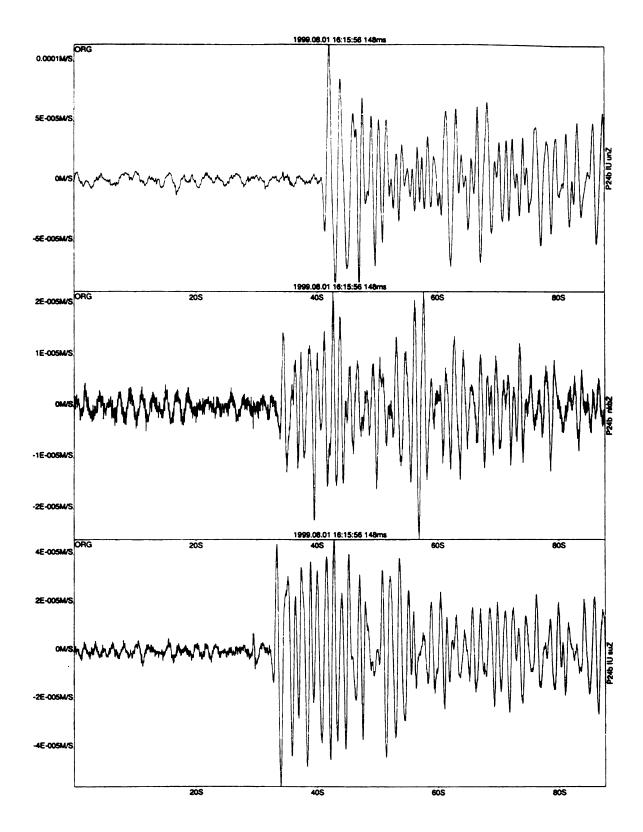



Figure C-5. Teleseismic vertical component recordings of the M_b 5.8 California-Nevada border region event of August 1, 1999. Stations are, from top to bottom, Ust'Nera, Nelkoba, and Susuman.

**KULU**. (61.889° N, 147.431° E) The town of Kulu is an agricultural town of about 200 people. The station was located in a house approximately 1 km north of the center of town, which is outside of town. The vault, located in a wooden outbuilding, consists of a large concrete pad set into permafrost. The town of Kulu is presently about 50% abandoned.

**DEBIN**. (62.339° N, 150.751° E) The town of Debin is located along the Kolyma River. The seismic station was located in the southwest portion of the town, about 100 m north of the Kolyma highway. The station was in a house which is now destroyed. Based on station location, it is assumed that the vault consisted of a concrete pad set into permafrost.

MYAKIT. (61.407° N, 152.093° E) The station in Myakit was located near the center of town. Within the town, the station was in a house just in front of the of the blue wooden schoolhouse, and about 30 m off the east side of the Kolyma Highway. The vault in Myakit consisted of a small concrete block (about 0.7 m on a side) set into permafrost ground. The town of Myakit is now entirely abandoned, with the schoolhouse one of only a few buildings remaining intact. The house containing the station has been burned.

**PROVIDENIYA**. (64.424° N, 173.226° W) The station in Provideniya was located in a large apartment building just west of the center of town. The site is located at the base of a mountain consisting of volcanics. Although the exact vault was not inspected, ground material around the site consists of rock rubble and dirt matrix.

MAGADAN. Two station sites have been visited in Magadan. The original Magadan station, and headquarters of the Magadan network, is located in a residential part of the city about 1 km south and a little west from the center of town. The station consists of a single story moderately sized wooden office building. The seismic vault is located under the station in a cellar about 5 m below the ground surface. The vault contains a large concrete pad measuring about 2 m per side mounted in a rocky soil. This old station site in Magadan had considerable noise due to vault conditions and cultural noise. The vault is no longer used

The new GSN station Magadan (MA2) is recorded at the old Magadan station site.

The vault of the new Magadan GSN station is located on top of a mountain about 2.5 km to

the northwest of the old station. The vault consists of a bunker set into bedrock of granitic

composition.

KUTSK. The seismic station at Yakutsk is the headquarters of the Yakutsk network, and is the site of the GSN station Yakutsk (YAK). Located about 2 km southwest of the center of town in a residential/light industrial area, the station property contains two buildings. The station building consists of a single story moderately sized wooden office building. Second building is a two story concrete building used for storage and engineering work. Seismic vault contains a large concrete pad and is located at the bottom of a 15 m vertical shaft below the concrete building. The entire shaft is in permafrost. Coordinates for the station in Yakutsk (see Table 1-1 or A-1) were taken from 1:200,000 scale Russian military topographic maps.

BATAGAI. The town of Batagai, in northern Yakutia, is a regional headquarters for geological expeditions. The seismic station here is located about 1 km west of the center of town in a wooden house. The vault is in a room attached to the side of the house and consists of a dirt pad on permafrost ground. A PC based IASPEI digital acquisition system recording a three component set of Kinemetrics Ranger seismometers was installed in Batagai in 1993 by S. Crumley of the Geophysical Institute, University of Alaska. The seismometers failed within weeks due to leveling problems with the dirt pad. The Rangers were removed in 1995, with the IASPEI system remaining in place and recording the Russian seismometers. The station was rebuilt in 1996 or 1997 and a concrete pad may have been in stalled.

IRKUTSK. The station in Irkutsk is at the Institute of the Earth's Crust. The institute is located approximately 3.5 kilometers south and a bit west of downtown Irkutsk, across the gara River. The vault is located in the basement at the rear of the main building on the institute grounds. It is unclear whether the concrete pad in the vault is isolated from the building foundation. Judging from the surrounding area, the vault is located in soil as sed to permafrost or bedrock.

# APPENDIX D

Output of event relocations for comparison with Iul'tin and Western Alaska network hypocenter determinations

#### APPENDIX D

# Output of event relocations for comparison with Iul'tin and Western Alaska network hypocenter determinations

EVENT OF 1981 4 6 MAGNITUDE = 2.1 STATIONS USED = DEPTH FREE, ORIGIN TIME FREE, HYPOCENTER FREE, NO CORRS USED NO CORRS WRITTEN N ORIGIN TIME DOT DLON(KM) DEPTH. DH(KM) RMS LAT. DLAT (KM) LONG. RES 23 33 6.50+ 0.00 66.3100+ 0.0000 190.1300+ 0.0000 23 33 57.28+13.31 67.1480+ 63.1547 -171.8160+ 42.8311 23 33 45.45+ 7.10 67.5654+ 53.5936 -172.8196+ 38.4771 23 33 48.43+ 3.55 67.3707+ 30.7685 -172.4739+ 25.0753 0 1.00 ュ 61.12+56.58 ***** 2 33.32+ 0.17 2.87 3 33.08+ 0.20 0.89 4 67.3693+ 30.0916 -172.4793+ 23.7306 67.3694+ 30.0869 -172.4791+ 23.7267 33.08+ 0.20 23 33 48.42+ 3.54 0.89 23 33 48.42+ 3.54 33.08+ 0.20 0.89 WT. DIST. RES. SCOR. AZ. 132.89 EP 23 34 26.9 EP 23 34 34.1 TCY -1.59 0.00 1.0 2.57 EAM 117.**4**6 165.98 2.88 1.05 0.00 1.0 EP 23 34 48.0 KKL 0.53 0.00 1.0 3.90 VVLA PG 23 35 4.0 4.05 130.77 -0.13 0.00 1.0  $\Delta NV$ SG 23 35 59.8 0.00 0.5 4.05 130.77 0.27

EVENT OF 1981 4 6 MAGNITUDE = 2.4 STATIONS USED = 8

DEPTH FREE, ORIGIN TIME FREE, HYPOCENTER FREE, NO CORRS USED NO CORRS WRITTEN

	TEM									
N RE	ORIGI	N TIM	E I	DOT	LAT.	DLAT (KM)	LONG.	DLON(KM)	DEPTH.	DH(KM) RMS
012345	23 45 23 45 23 45 23 45 23 45 23 45	22.8 49.6 44.9 44.9	3+ 6 3+ 2 L+ 1 7+ 1	5.94 2.75 1.63 1.69	64.0900+ 65.8519+ 67.1554+ 67.4155+ 67.4040+ 67.4042+	64.8174 23.4334 15.1923 15.9232	-172.601: -172.561: -172.551:	0+ 0.0000 2+ 47.5447 2+ 17.5379 6+ 10.0253 2+ 10.6205 6+ 10.5977	41.00 34.70+ 33.35+ 33.12+ 33.11+ 33.11+	0.19 3.18 0.10 0.80 0.10 0.79
	TCY TCY TCY EAM KKL ANV CDY	PG : SG : EP : EP :	23 4 23 4 23 4 23 4 23 4	16 24.1 16 34.1 17 10.1 16 31.1 16 45.4 16 46.1	1 2 9 2 3 2 1 2 4 3 5 4	.61 1 .61 1 .92 1 .94 1	AZ. 32.97 32.97 32.97 17.75 65.65 30.82 22.97	RES. -1.57 -0.13 -0.66 0.92 0.80 -0.21 1.01	SCOR. 0.00 0.00 0.00 0.00 0.00 0.00	WT. 1.0 1.0 0.5 1.0 1.0

EVENT OF 1981 4 7 MAGNITUDE = 2.7 STATIONS USED = 27

DEPTH FREE, ORIGIN TIME FREE, HYPOCENTER FREE, NO CORRS USED NO CORRS WRITTEN

N C	ORIGI	n TI	ME	DO?	r	I	AT.	DL	AT (KM	LON	īG.	DLON(KM)	DEPTH.	DH (KM	) RMS
0	7 8	35.	+08	0.0	0 0	6	6.8100+	0	.0000	186	.0100+	0.0000	0.00		
1	7 8	38.	21+	0.8	39	6	6.6907+	4	.5902	-174	.1667+	4.2795	32.03+	3.68	0.92
2	7 8	38.	25+	0.9	90	6	6.6788+	4	.6537	-174	.1380+	4.4234	39.77+	5.32	63.38
3	7 8	37.	57+	0.6	57	6	6.6878+	4	.9677	-174	.1543+	4.6419	33.04+	0.03	0.76
4	7 8	37.	61+	0.6	52	6	6.6818+	4	.5795	-174	.1517+	4.1393	33.04+	0.03	0.76
5	7 8	37.	61+	0.6	52	6	6.6817+	4	.5771	-174	.1517+	4.1389	33.04+	0.03	0.76
				•			DIS	ST.		AZ.		RES.	SCOR.	WT	
TC	Y	EP	7	9	20	. 9		.76		111.20		0.45	0.00	1.	
TCY	Y	PG	7	9	30	. 3		.76		111.20		1.03	0.00	1.	
TCY	Y	SG	7	10	6	. 3	2	.76		111.20		-0.99	0.00	0.	5
EAN	M	EP	7	9	27	. 8	3 .	. 29		99.82		-0.21	0.00	1.	0
EAN	M	PG	7	9	38	. 7	3 .	. 29		99.82		-0.19	0.00	1.	0
EAN	M	SG	7	10	23	. 9	3 .	. 29		99.82		-0.16	0.00	0.	5
KKI	L	EP	7	9	32	. 2	3 .	.49		151.03		1.28	0.00	1.	0
KKI	Ľ	PG	7	9	42	. 1	3 .	. 49		151.03		-0.56	0.00	1.	0
DMA	A	EP	7	9	36	. 0	3 .	. 88		91.24		-0.35	0.00	1.	0
DMZ	A	PG	7	9	49	. 7	3 .	.88		91.24		-0.03	0.00	1.	0
DMA	A	SG	7	10	44	. 2	3	.88		91.24		1.32	0.00	0.	5
AVI	V	EP	7	9	41	. 8	4	.21		116.21		0.70	0.00	1.	0
AVI	V	PG	7	9	55	. 9	4	.21		116.21		0.05	0.00	1.	0
AVI	V.	SG	7	10	52	. 5	4	. 21	:	116.21		-1.09	0.00	0.	5
KT	A.	EP	7	9	46		4	.58		82.71		-0.31	0.00	1.	0
KT	A.	PG	7	10	2	. 0	4	. 58		82.71		-0.56	0.00	1.	0
ACI		EP	7	9	49			. 86		92.48		-0.74	0.00	1.	
ACI	K	PG	7	10	8			. 86		92.48		0.56	0.00	1.	
ACI		SG	7	11	17			. 86		92.48		2.60	0.00	0.	
CD		EP	7	9	56			.28		111.17		0.56	0.00	1.	
CD		PG	7	10	14	-		. 28		111.17		-0.94	0.00	1.	-
CD		SG	7		26			. 28		111.17		-1.31	0.00	0.	
CD		PG	7	10	15			.28		111.17		0.46	0.00	1.	
CRI		ΕP	7	10	3			.98		103. <b>4</b> 1		-2.09	0.00	1.	
KGF	R	EP	7	10	10	. 3	6	. 24	:	118.85		0.69	0.00	1.	0

EVENT OF 1981 4 7 MAGNITUDE = 0.0 STATIONS USED = 21

DEPTH FREE, ORIGIN TIME FREE, HYPOCENTER FREE, NO CORRS USED NO CORRS WRITTEN

N	OR:	IGIN	1 T	IME	DO	$\mathbf{T}$		LAT.	DL	AT (KM)	L	ONG.		DLON(KM)	DE	PTH.	DH (KM)	RMS
RE	S																	
0		15	52	.00+	0.	00		67.1000+	0	.0000	1	86.00	000+	0.0000	0	.00		
1	7	16	3	.73+	1.	31		66.6497+	5	.8440	-1	74.14	184+	5.7484	32	.49+	5.82	1.15
2	7	16	3	.67+	1.	23		66.6461+	5	.4446	-1	74.06	532+	5.6965	39	.59+	7.77	57.88
3	7	16	2	.98+	0.	87		66.6503+	5	.7422	-1	74.08	357+	5.9149	33	.04+	0.04	0.84
4	7	16	3	.04+	0.	80		66.6486+	5	.2718	-1	74.07	751+		33	.04+	0.05	0.84
5		16	_	.04+				66.6486+	_	.2690	-1	74.07	750+	5.2876	33	.04+	0.05	0.84
								DIS	ST.		ΑZ			RES.	SC	OR.	WT.	
T	CY		ΕP	7	16	46	.0	2.	.72	1	10.	85		0.69	0	.00	1.0	)
T	CY		PG	7	16	54	. 3	2	.72	1	10.	85		0.33	0	.00	1.0	)
T	CY		SG	7	17	31	.7	2	.72	1	10.	85		0.27	0	.00	0.5	5
E	AM		ΙP	7	16	52	.7	3 .	. 25	;	99.	40		-0.24	0	.00	1.0	)
E	AM		PG	7	17	3	. 8	3	. 25	•	99.	40		0.13	0	.00	1.0	)
	AM		SG		17	47	.1	3	. 25	,	99.	40		-1.27	Ō	.00	0.5	
	KL		EP		16				. 45		51.	28		-1.73		.00	1.0	
	KL		PG		17		. 9	-	. 45	_	51.	_		-0.39	-	.00	1.0	
	KL		SG		17	_			. 45	-	51.			2.18		.00	0.5	

DMA	EP	7 17 0.9	3.85	90.83	-0.44	0.00	1.0
DMA	PG	7 17 14.5	3.85	90.83	-0.10	0.00	1.0
DMA	SG	7 18 10.4	3.85	90.83	3.08	0.00	0.5
ANV	ΙP	7 17 7.8	4.17	116.05	1.86	0.00	1.0
ANV	PG	7 17 21.0	4.17	116.05	0.48	0.00	1.0
ANV	SG	7 18 15.9	4.17	116.05	-1.78	0.00	0.5
KTA	ΙP	7 17 10.9	4.56	82.32	-0.48	0.00	1.0
$\mathbf{A}$ CK	EP	7 17 14.9	4.83	92.17	-0.42	0.00	1.0
CDY	PG	7 17 39.3	5.24	111.02	-0.73	0.00	1.0
CDY	SG	7 18 51.1	5.24	111.02	-0.65	0.00	0.5
ƘGR	EP	7 17 35.3	6.20	118.79	0.86	0.00	1.0
<b>B</b> BO	SG	7 19 11.7	5.91	109.49	-1.50	0.00	0.5

EVENT OF 1982 1 16 MAGNITUDE = 0.0 STATIONS USED = 21

DEPTH FREE, ORIGIN TIME FREE, HYPOCENTER FREE, NO CORRS USED NO CORRS WRITTEN

N ORIGI	N TIME	DOT L	AT. DL	AT(KM) L	ONG.	DLON(KM)	DEPTH.	DH(KM)	RMS
O 12 35 1 12 35 2 12 35 3 12 35 4 12 35 5 12 35	10.16+ 9.91+ 9.91+ 9.91+	0.71 6 0.64 6 0.64 6 0.64 6	4.8141+ 2 4.8008+ 2 4.8006+ 2 4.8006+ 2	2.6128 -1 2.7501 -1 2.7400 -1 2.7400 -1	88.6000+ 70.8251+ 70.8400+ 70.8397+ 70.8397+	3.9558 3.7136 3.7257 3.7256	0.00 13.61+ 12.53+ 12.53+ 12.53+ 12.53+	3.11 3.12 3.12	0.65 0.62 0.62 0.62
SOV TLR TLR TLR AVN AETEK TCK ACCK YYYO BTA	SG 12 EP 12 PG 12 SG 12 EP 12 PG 12 EP 12 EP 12 SG 12 EP 12 SG 12 PG 12 SG 12 EP 12 SG 12 EP 12	35 30.9 35 48.3 35 44.0 35 47.5 36 16.0 35 49.7 35 53.4 35 57.8 36 3.7 36 44.3 36 8.8 37 11.8 36 13.5 37 2.6 36 14.5 37 15.6	DIST. 1.17 1.17 2.03 2.03 2.03 2.36 2.36 2.29 2.95 2.95 3.81 3.81 3.50 4.19 3.96	171. 171. 73. 73. 73. 93. 93. 91. 91. 67. 67. 67. 67. 93. 93.	44 44 44 03 03 03 02 66 68 77 97 79 77 97 94 94	RES0.62 0.71 -0.15 0.17 0.85 0.75 0.00 0.15 0.50 -0.49 -0.33 -0.74 1.77 -0.40 -0.86 0.27 -0.35 -1.35	SCOR. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	WT. 1.0 0.5 1.0 0.5 1.0 1.0 1.0 0.5 1.0 0.5	

# APPENDIX E

Event relocations for northeast Russia

# APPENDIX E

# Event relocations for northeast Russia

DATE	TIME	LAT.	LONG		MAG.	DATE	TIME	LAT.	LONG		MAG.
7 O 0 3 2 1 1 1	m s	56 92N	133 185	km 6.8			n s 15 05.94	63 24N	154 416	kon. 13.7	
7 0 0 9 1 9 0 8					•		08 38.48			0.	•
7 01014 23							12 56.0				
<b>フュ</b> 0126 09				9.1			26 57.1				•
<b>71</b> 0202 12				8.4			45 51.02			7.2	•
7 1 0 2 2 0 1 4				0.			31 28.68			0.	•
7 1 0318 20			133.48E	3.4	•		14 45.89			_	•
7 1 0 4 1 4 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2			121.07E	7.1	7 1		12 35.60 10 18.93			0. 0.	•
<b>71</b> 0518 23				1.2			00 50.33			5.8	•
<b>71</b> 0519 00				4.2			32 36.14				•
<b>71</b> 0519 02				11.9		740426 03	33 13.06	57.29N	127.79E	8.7	•
<b>71</b> 0519 16				0.	•		05 19.6				•
710529 09				1.2	•		45 06.25				•
710607 12 710614 13				4.7	•		09 36.78 33 23.9				•
7 10614 14					•		19 19.70				•
710707 21				1.4			04 03.15				•
7 1 0 8 0 1 1 8	50 05.62	56.90N	127.63E				19 51.68				•
<b>71</b> 0809 11	51 53.7	56.22N	123.59E				18 51.37				•
7 1 0812 09				3.0	•		54 21.96				•
710812 11					•		01 25.31				•
7 1 0912 13 7 1 1 0 0 1 1 5				5.9	•		43 09.95 11 03.74				•
7 1 1 0 0 1 1 2				0.0	•		40 13.77				•
フュ1008 03							58 13.94				
720113 17	24 17.07	61.63N	147.11E	0.9	•	741223 04	20 10.71	59.09N	150.41E	5.4	•
7 2 0113 22	20 12.45	61.86N		9.0			22 33.76				•
72 0115 18			121.10E	4.5	•		09 11.90				•
72 0117 09				7.9	•		36 42.3				•
フ2 0117 10 フ2 0120 15	38 29.25	54.25M	127 245	17.4	•		14 12.62 24 39.6			4.7	•
7 2 0120 19	48 46.28	62.51N	145.01E	16.3	•	750812 15			126.95E		5.1
<b>フ Z O214</b> 22	35 35.9	57.28N	122.14E	16.9	:		30 37.5		122.26E		•
フ <b>2 0</b> 330 20	20 52.40	64.01N	145.97E	6.1		750921 10	03 29.3	54.20N	122.33E	24.6	•
<b>/204</b> 01 10	00 26.5	56.52N	121.08E		•		12 54.91				•
3 3 0404 11	32 18.77	54.54N	134.83E	1.8	•		06 58.01				•
7 2 0421 10 2 0428 02	41 42.75	63.69N	151.47E	13.8	•		41 06.83			0.	•
O 5 ∩ 1 1 1	20 02 20	61 84NT	147 115	17	:		54 20.52				•
- CD500 21	32 25 47	67 20M	120 215	22 A	:		01 48.46				5.3
US13 16	17 50.5	55.42N	124.13E	10.4	•		06 23.82				
- C519 08	42 44.17	54.01N	128.64F	21 6	•		23 03.3				•
→ 5 0 602 08	32 52.28	64.02N	146.10E	11.2	•		20 58.28				•
3 0 613 10 3 0 633 00	45 03.55	54.88N	126.46E	19.7	•		12 21.41 39 25.77			2.3	•
<b>7 2 0 7 1 7 1 0 3</b>	05 10 56	5/.34N	145 795	1/ 9	•	760520 16			132.48E	0.0	•
7 0613 10 0620 09 0717 03 0809 20	51 46.90	56.88N	127.80E	12.2			58 01.9		130.72E	5.9	
3 0 8 1 1 1 2 0 8 1 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2	45 21.1	53.95N	128.19E	7.1			58 01.07				
O841 14	44 17.2	56.07N	124.56E	7.2			03 23.8		131.22E	1.8	•
3 0 9 0 8 1 9	48 53.4	56.00N	130.60E	0.0			23 31.80				•
73 1221 02 73 0130 22	12 57.58	62.82N	140.45E	4.0	•		53 19.7			0.0	•
730222 05	44 15 3	50.03N	120.035	0.	•		21 29.55 04 29.02				•
730429 06	18 50 6	54 59N	123.915		•	760930 21	05 38.48	57.96N	147.55E	26.2	:
						761120 08	02 54.3	54.02N	122.20E	12.0	•
<b>* 3</b> 0527 05	49 09 67	62.23N	161.72E	2.5	_	761121 15	51 55.5	54.15N	121.98E	22.9	
<b>3</b> 0608 11	43 47.07	63.82N	146.17E	26.1	_		33 34.1				•
730616 02	12 18.31	59.99N	152.63E	11.1	•		50 34.7				٠.
730618 13 730727 15	09 47.7	56.84N	121.05E	9.2	•		55 56.5 09 28.9				J.
730727 13	50 19.99	62 CBM	145 625	4 6	•		19 56.83				•
730820 21	03 41.27	60.92N	148.05E	12.9	•		13 24.99				•
730821 01							58 07.97				•

800321 17 26 51.0 51.32N 133.26E 20.6 800404 23 10 18.84 63.23N 148.07E 5.2 770410 15 48 43.99 65.99N 142.04E 0. 770502 06 50 14.1 56.64N 121.19E 8.5 770503 11 40 26.00 60.70N 161.31E 33.1 800406 02 28 55.0 54.00N 127.93E 24.8 800422 19 07 44.66 65.55N 136.65E 1.0 770504 03 18 29.9 57.68N 121.11E 17.2 800507 05 04 35. 60.25N 152.03E 23. 770514 21 18 57.11 58.96N 150.66E 18.5 800508 10 28 11.16 62.65N 155.32E 770611 19 28 33.3 52.75N 123.49E 33.0 770627 17 47 15.58 62.80N 146.19E 6.4 800512 09 06 56.82 63.24N 147.70E 0. 800512 09 09 13.57 63.15N 147.67E 4.0 800512 19 30 13.46 63.14N 147.64E 5.2 770720 00 31 40.58 54.72N 126.43E 6.7 800512 19 30 13.46 63.14N 147.64E 800514 08 24 07.0 49.66N 130.13E 22.8 800514 19 20 30.8 49.66N 130.15E 24.6 770720 02 03 37.90 54.73N 126.40E 7.1 770816 13 56 54.40 53.84N 128.86E 0. 771101 03 54 22.5 55.56N 130.64E 3.8 771106 04 31 20.26 59.20N 146.48E 24.5 800516 20 53 46.73 57.58N 128.06E 11.0 800519 17 29 47.00 59.92N 144.24E 28.1 771118 21 55 36.23 60.14N 143.42E 9.1 4.7 771210 11 42 23.79 54.11N 125.89E 3.8 800602 13 15 06.91 62.85N 145.86E 8.2 800607 02 04 51.54 64.30N 145.41E 3.2 780103 03 17 39.05 67.81N 139.38E 0. 800616 01 52 29.36 58.85N 150.11E 7.4 780201 01 08 38.6 54.20N 123.00E 33.0 780207 04 55 21.69 63.27N 146.33E 6.1 800622 00 07 48.34 59.76N 146.14E 1.8 800701 03 57 15.52 56.32N 125.67E 19.3 800706 22 02 07.74 56.77N 127.66E 5.5 780213 05 27 00.9 54.26N 122.97E 33.0 780222 23 41 46.48 63.08N 146.13E 12.0 800714 10 20 17.22 64.16N 154.68E 11.7 780328 18 57 20.05 58.79N 151.04E 8.9 780401 16 56 35.7 56.86N 120.75E 19.7 800719 17 21 11.52 56.99N 127.71E 13.2 800720 03 19 07.92 59.47N 144.63E 10.3 **780428 14 56 23.9 53.74N 124.99E 12.0 780505 16 06 58.25 67.61N 139.25E 23.7** 800723 11 51 13.23 62.57N 155.34E 12.2 800808 16 36 33.95 59.43N 147.91E **78**0601 07 40 14.5 56.52N 121.20E 9.5 **78**0605 07 05 56.92 60.12N 160.06E 31.8 800829 16 31 55.01 56.14N 129.59E 19.4 800916 11 17 51.81 61.52N 143.29E 14.4 780605 21 01 40.67 60.11N 159.72E 33.1 800919 18 28 49.57 63.23N 148.22E 10.4 801015 02 52 49.8 54.73N 133.90E 12.6 801021 18 06 19.7 58.56N 121.81E 29.0 780622 06 12 35.73 62.94N 145.34E 5.8 780626 02 51 20.89 55.82N 126.31E 10.0 **78**0630 11 57 01.5 53.92N 125.71E 11.9 **78**0805 23 12 20.27 58.39N 134.48E 5.8 801103 06 31 10.23 63.35N 146.25E 7.8 801127 14 26 00.38 57.51N 125.66E 11.0 780821 10 15 53.4 55.21N 124.81E 15.2 780822 17 41 38.55 61.23N 144.48E 3.1 801203 17 58 15.05 63.65N 152.22E 8.7 801208 05 27 22.59 58.79N 149.86E 14.4 780822 18 26 27.02 61.27N 159.97E 19.0 801217 08 59 42.56 67.11N 129.08E 11.3 801223 01 38 02.8 53.47N 132.31E 16.2 801229 20 19 07.83 69.73N 139.11E 4.0 781027 06 34 39.54 64.63N 145.36E 9.8 781201 13 25 59.4 55.17N 124.03E 5.9 781206 08 20 46.30 63.61N 144.27E 6.6 801231 05 00 17.98 63.92N 140.69E 23.9 781211 14 05 58.9 53.82N 125.65E 12.7 810202 19 15 15.92 62.36N 144.44E 14.4 7 9 0103 03 20 27.4 52.61N 127.48E 12.2 7 9 0104 21 50 16.7 54.18N 122.96E 29.2 810217 12 15 13.34 64.12N 145.91E 11.5 810222 23 06 20.73 63.15N 150.98E 3.9 **79** 0221 15 03 27.35 63.37N 146.28E 6.6 810301 18 39 33.88 62.14N 143.25E 7.3 7 9 0427 19 38 13.8 55.76N 130.47E 12.7 . 7 9 0428 09 34 06.23 57.45N 126.92E 10.7 . 810304 10 43 02.8 57.78N 120.68E 10.6 810313 12 49 58.16 63.79N 149.07E 12.0 フ 9 O502 22 10 28.88 64.19N 149.21E 2.5 810315 03 50 34.85 69.63N 137.59E 24.7 7 9 0517 06 39 09.4 53.70N 126.09E 8.3 7 9 0523 17 37 33.9 53.61N 126.09E 21.2 810324 17 06 38.46 64.75N 149.55E 2.7 810404 11 49 19.38 62.41N 144.65E 21.4 810406 08 34 37.05 63.38N 146.70E 4.2 810429 02 35 28.81 59.62N 144.09E ٥. 810505 02 08 19.66 56.25N 125.86E 20.0 7 9 0618 22 09 57.41 57.50N 126.06E 5.3 . 810509 07 48 28.43 56.67N 127.48E 2.6 9 O623 08 22 37.82 58.14N 133.73E 4.9 810510 18 08 26.38 61.54N 157.26E 10.1 9 0627 17 45 11.6 53.18N 135.16E 0.0 810522 04 59 20.88 61.12N 156.72E 9.4 9 0713 15 12 46.9 62.29N 130.29E 18.1 . 810527 02 57 00.51 54.40N 125.55E 24.8 7 9 0727 04 28 47.64 63.08N 172.66E 11.3 4.4 810527 08 45 21.41 54.36N 125.52E 17.6 810528 12 17 09.2 48.50N 130.71E 13.6 810718 19 53 51.16 59.79N 153.93E 9.5 9 0827 02 55 01.00 62.97N 145.53E 11.0 . 9 1007 01 29 26.10 64.99N 144.03E 13.0 . 810718 20 08 30.13 59.91N 153.89E 5.5 810803 08 16 38.50 70.43N 130.49E 25.9 9 1 026 00 26 26.24 62.19N 153.87E 13.4 . 810809 19 13 39.23 63.36N 146.36E 6.9 1 11 19 27 35.91 62.27N 153.75E 12.2 810809 19 17 02.62 63.27N 146.12E 30.0 7 9 1116 07 24 05.1 56.45N 124.26E 11.0 7 9 1118 08 59 15.84 62.24N 153.80E 11.9 810817 06 58 08.16 63.11N 147.99E 1.3 810819 19 17 29.66 67.56N 140.25E 810820 14 14 38.3 57.66N 121.08E 13.1 810826 10 45 04.91 58.46N 140.97E 810905 01 52 59.2 51.17N 132.33E 12.4 8 00125 18 45 46.77 64.07N 146.00E 18.2 . 8 00127 18 55 40.06 63.36N 150.50E 5.1 . 810905 13 01 33.50 59.75N 146.71E 1.5 811006 23 32 06.91 63.17N 150.96E 9.1 8 0 0 128 05 11 57.58 63.42N 150.57E 12.1 811021 05 16 42.79 63.40N 146.21E 6.2 00129 08 55 17.59 64.07N 149.02E 11.0 811022 12 45 40.9 53.13N 134.55E 21.9 8 0 0129 17 35 52.83 61.01N 155.80E 5.4 811028 11 38 05.58 60.81N 142.80E 15.0 8 0 0201 17 30 17.83 73.27N 119.98E 15.4 5.7 811103 03 43 01.29 70.28N 141.03E 800205 11 10 32.8 66.79N 146.58E 0.0 . 811105 06 15 33.38 62.06N 150.39E 15.0 8 0 0 2 0 5 13 14 04.8 55.95 N 122.59 E 28.1 . 8 0 0 2 14 04 09 46.0 52.24 N 126.67 E 23.4 . 811108 21 56 09.35 61.82N 153.64E 21.9 811109 00 33 20.34 61.83N 153.67E 12.1 8 00225 23 50 02.67 54.91N 125.21E 31.5 . 811109 05 23 40.20 61.80N 153.71E 13.0 811110 10 07 51.78 63.97N 148.67E 5.2 800307 03 15 14.22 62.01N 150.50E 15.0 800311 18 11 21.46 56.99N 127.72E 2.6 . 811110 10 54 15.80 63.92N 148.71E 10.7 800321 15 03 55.7 51.46N 133.19E 22.6 . 811111 14 22 18.67 61.85N 153.62E 14.9

```
811111 15 29 48.07 61.79N 153.68E 5.1 .
811120 18 06 37.5 56.68N 122.59E 12.5 .
811122 21 44 48.9 51.85N 122.59E 14.8 .
211203 14 41 25.70 63.93N 148.55E 13.4 .
                                                                                                          830530 07 04 18.66 65.94N 173.05W 5.0
                                                                                                          830608 18 29 43.26 59.40N 148.07E 7.9
                                                                                                           830626 05 43 56.98 71.26N 129.65E 28.0
                                                                                                           830629 13 42 55.77 61.98N 152.56E 10.5
 811205 01 49 09.0 57.00N 123.15E 18.0
811208 02 17 05.93 59.88N 153.82E 7.8
                                                                                                           830706 18 49 44.70 58.61N 147.65E 12.9
                                                                                                          830710 14 40 45.9 48.51N 134.03E 12.5
                                                                                                          830730 15 42 09.4 53.30N 132.48E 13.2 4.8
831012 16 07 25.11 60.04N 149.98E 8.0 .
  811208 10 57 21.18 61.83N 153.67E 15.8
  811212 01 05 58.29 59.60N 148.10E 33.0
 811215 19 19 13.75 61.82N 153.63E 5.6 811221 04 58 05.42 62.43N 150.13E 16.6 .
                                                                                                          831025 19 44 59.98 60.03N 153.04E 9.9
831107 14 20 58.82 65.43N 136.53E 17.7
 811229 05 10 34.93 61.99N 149.83E 8.8 .
820120 03 12 45.08 61.20N 156.99E 2.4 .
                                                                                                          831112 01 17 41.12 57.64N 125.43E 2.3
831124 15 17 31.39 62.91N 145.46E 2.1
 820120 03 12 45.08 61.20N 156.99E 2.4 .
820123 04 15 49.58 62.73N 179.68E 11.6 .
                                                                                                           831125 11 22 43.6 51.05N 132.87E 10.0
820123 16 19 36.27 64.00N 154.30E 6.4 831125 11 22 43.6 51.05N 132.87E 1U.U 820123 16 19 36.27 64.00N 154.30E 6.4 831201 15 48 43.45 63.62N 142.82E 8.8 820123 19 55 36.54 63.03N 144.75E 11.3 831211 11 01 15.96 59.60N 147.18E 5.8 820124 17 02 37.01 62.66N 179.81E 31.7 840108 23 18 37.35 54.47N 125.09E 24.2 820124 10 12 52.59 58.87N 155.13E 8.6 840203 18 35 55.8 49.38N 128.26E 26.4 820214 10 12 52.59 58.87N 155.13E 8.6 840217 20 34 18.89 59.76N 152.45E 10.3 820223 17 29 56.14 63.26N 146.14E 13.3 840307 12 24 10.23 54.45N 136.98E 11.9 820307 01 21 31.56 63.88N 148.62E 9.9 840324 01 03 19.16 54.50N 136.96E 12.9 820316 19 23 28.2 53.02N 134.86E 14.0 840324 02 23 40.11 54.57N 137.04E 8.4 820325 10 52 35.4 51.43N 131.94E 9.5 840401 22 43 47.84 59.42N 146.56E 5.4 820404 11 45 28.18 66.04N 143.11E 33 840403 02 53 24.94 57.54N 125.53E 0.
820404 11 45 28.18 66.04N 143.11E 33. 820406 14 41 13.75 61.79N 153.61E 3.2 820407 07 22 01.3 55.58N 130.50E 2.0 820416 08 11 13.9 51.12N 132.39E 7.4 820427 19 40 54.4 51.33N 136.85E 33.0 820502 03 28 35.6 52.59N 136.21E 10.9 820504 23 35 10.82 66.01N 132.31E 32.3
                                                                                                         840403 02 53 24.94 57.54N 125.53E 0.
840405 10 35 22.25 58.66N 148.70E 2.9
                                                                                                           840411 20 50 38.97 59.29N 147.99E
                                                                                                         840524 20 55 36.98 63.69N 145.58E
                                                                                                         840529 06 20 22.54 63.29N 146.60E 0.
840625 08 13 17.87 62.10N 157.05E 2.2
 820504 23 35 10.82 66.01N 172.91E 23.2 .
                                                                                                        840707 08 06 53.55 59.81N 152.62E 0.

      820023
      08 04 28.92
      60.50N 137.85E 0.
      840716 18 26 43.59 66.58N 170.47E 0.

      820626 18 47 11.32
      63.33N 178.55E 14.1
      840802 21 25 39.50 60.89N 144.59E 23.3

      820706 06 16 39.01 65.43N 136.47E 4.0
      840808 22 33 46.33 63.29N 152.78E 15.9

      820707 01 40 12.00 55.78N 125.57E 18.6
      840812 14 45 31.8 49.05N 131.42E 17.4

      820724 08 39 02.38 63.58N 146.24E 3.8
      840821 17 41 02.66 60.92N 153.85E 06.7

      820725 14 29 38.52 59.85N 145.78E 12.5
      840912 20 10 41.05 59.37N 138.57E 8.8

      820730 01 51 46.2 56.60N 121.07E 13.9
      840915 13 52 08.39 54.30N 126.37E 23.6

      820803 05 41 52.19 64.17N 148.95E 14.2
      840919 11 36 33.01 63.44N 145.63E 17.9

      820804 20 17 03.66 62.39N 146.95E 5.9
      840926 19 01 09 5 67.60N 120.00T

820804 20 17 03.66 62.39N 146.95E 5.9 820806 19 06 42.31 54.00N 139.66E 22.0 820903 07 29 26.80 66.99N 133.53E 26.1 821005 01 52 27.36 54.37N 126.08E 23.6 821011 02 10 28.85 54.57N 126.27E 10.5
                                                                                                       840926 19 01 08.5 57.60N 120.91E 7.2
841003 13 11 04.74 63.22N 176.81E 9.2
                                                                                                          841019 20 26 26.4 57.04N 120.68E 13.0
841020 08 41 36.21 54.23N 126.24E 22.2
                                                                                                           841029 14 06 14.17 62.13N 163.77E 19.9
 821217 16 42 35.96 59.64N 144.15E 20.2 .
821221 16 01 47.80 54.37N 126.08E 21.8 .
                                                                                                          841101 21 49 03.4 52.86N 138.86E 11.4
841103 18 48 55.0 49.19N 139.91E 8.2
821222 12 10 02 .78 64.04N 156.70E 12.4 821222 15 47 03.61 59.18N 152.70E 7.6 830104 07 17 14.13 62.14N 143.68E 4.2 830114 01 57 13.11 67.29N 172.44W 5.4
                                                                                                         841117 22 40 15.8 52.71N 135.62E 11.0
841121 07 31 36.2 56.84N 121.09E 18.1
                                                                                                         841122 13 52 57.27 68.47N 140.84E 21.8
841129 21 03 33.2 50.66N 132.60E 21.2
830122 05 20 29.4 53.66N 135.97E 14.8 .
830123 23 24 25.79 65.99N 172.89W 6.3 .
830130 08 44 30.40 65.98N 172.90W 8.5 .
                                                                                                         841202 08 35 44.98 63.39N 150.50E 20.6
                                                                                                          841202 12 32 02.58 63.38N 150.50E 0.
830130 08 44 30.40 65.98N 1/2.90W 6.5 .
830205 09 21 42.2 53.05N 127.18E 20.3 .
830207 15 34 27.0 53.53N 128.51E 31.8 .
830214 15 21 05.47 62.46N 145.83E 3.7 .
830307 18 42 19.9 56.73N 134.47E 7.0 .
                                                                                                          850103 12 47 13.82 55.81N 129.36E 18.1
                                                                                                           850104 09 08 57.02 65.87N 173.16W 14.4
                                                                                                          850105 12 58 48.0 50.30N 139.40E 11.2
                                                                                                        850108 09 20 16.14 67.02N 169.39W 0.0
850117 01 05 26.5 52.53N 133.05E 11.0
850121 18 03 51.11 60.81N 155.28E 7.7
830307 18 42 19.9 56.73N 134.4/E /... 830312 11 55 12.43 64.23N 140.96E 14.1 .
830315 22 10 24.4 51.50N 134.89E 0.0 .
830323 14 45 06.73 62.96N 155.66E 10.7 .
830325 10 36 56.02 63.54N 149.93E 8.1 .
830404 14 37 35.26 66.97N 140.09E 13.6 .
                                                                                                         850121 23 53 55.5 51.40N 130.09E 11.2
                                                                                                         850124 20 26 34.02 66.92N 132.96E 16.7
                                                                                                         850129 00 36 06.03 64.17N 145.84E 6.0 4.6
830404 14 37 35.26 66.97N 140.09E 13.0
830409 19 57 18.73 69.26N 178.36E 16.5 .
830427 00 30 36.7 50.49N 132.23E 11.2 .
830504 06 52 56.55 57.54N 125.38E 17.1 .
830509 16 48 05.84 63.27N 146.26E 8.9 .
                                                                                                          850129 09 45 51.84 64.15N 145.75E 8.4
                                                                                                          850130 05 12 49.8 51.18N 133.14E 9.1
850131 20 02 05.2 53.65N 124.86E 11.4
                                                                                                         850201 08 31 45.9 62.91N 127.20E 20.5 4.9
850201 10 20 50.6 62.72N 127.55E 17.7 .
830510 05 27 24.32 64.21N 150.95E 5.0 .
830514 08 09 13.46 65.85N 174.82E 0. .
                                                                                                          850201 21 53 18.04 64.17N 145.77E 3.4
850202 11 28 41.67 65.86N 137.04E 33.3
830515 04 53 38.49 65.90N 173.19W 11.5 .
830515 04 57 19.77 65.96N 173.03W 0.9 .
                                                                                                          850205 08 07 04.9 53.58N 124.68E 8.7
850205 15 30 22.9 53.16N 134.44E 0.0
830515 05 05 43.42 65.96N 173.07W 4.8 .
830515 06 00 36.69 65.86N 173.24W 2.9 .
                                                                                                          850213 06 05 22.3 51.16N 133.03E 10.3
                                                                                                           850218 12 51 31.60 65.58N 136.40E 4.5
830515 06 22 47.62 65.96N 173.04W 8.1
830515 06 37 06.34 65.89N 173.09W 6.0
                                                                                                           850218 14 22 33.0 55.35N 123.34E 24.7
                                                                                                           850222 07 06 21.86 63.24N 146.00E 10.2
 830516 03 28 29.67 65.93N 173.13W 6.8
                                                                                                           850224 19 59 23.3 55.63N 130.55E 0.0
 830516 06 33 56.24 65.92N 173.13W 11.2
                                                                                                           850301 09 19 18.60 57.55N 125.49E 8.6 4.5
                                                                                                           850306 10 06 57.70 54.34N 135.09E
 830516 18 41 00.86 65.94N 173.02W 15.6
                                                                                                                                                                                          6.9
830517 04 14 02.01 65.95N 173.03W 0. .
830518 12 07 58.96 65.94N 173.12W 6.9 .
830528 02 57 57.57 61.98N 150.43E 6.0 .
                                                                                                           850308 22 24 38.14 59.35N 152.10E 19.4
                                                                                                          850311 21 12 07.08 53.92N 128.47E 27.3
                                                                                                          850318 23 09 15.4 53.72N 125.51E 24.7
```

```
3 21 19 26 55.49 63.59N 148.48E 9.7
                                                                      860124 13 25 22.91 60.56N 138.72E 0.
         3 30 04 51 39.5
                                  51.18N 133.04E 33.0
                                                                      860201 02 29 57.33 54.78N 139.27E 22.8
         3 31 06 13 01.6
                                  53.40N 132.91E 12.6
                                                                      860206 04 36 10.52 63.56N 179.79E 0.
              02 15 50 16.7
                                  50.98N 132.08E 12.1
                                                                      860209 12 42 53.5 48.69N 126.41E 26.1
     ○ 4 06 22 01 56.0
                                  53.62N 125.50E 24.0
                                                                      860211 18 44 57.0
                                                                                              54.72N 131.67E 17.3
     ○ ▲ 10 11 27 44.55 70.43N 141.27E 20.1
                                                                      860212 03 46 43.88 68.86N 128.23E 9.2
                                                                      860215 20 30 26.41 63.98N 153.10E 3.5
860216 06 21 49.7 48.31N 126.25E 33.0
     ■ 10 13 50 51.70 54.48N 125.58E 15.6
     ○ 4 17 01 27 19.16 54.51N 135.37E 5.9
                                                                     860228 17 07 24.6 48.61N 126.39E 19.1
860304 08 15 21.73 64.81N 144.02E 16.2
      ○ 4 17 20 37 20.14 65.37N 142.78E 16.0
      △ 20 09 22 31.6 50.86N 131.56E 33.0
      △ 20 22 29 16.83 59.22N 141.85E 10.9
                                                                      860307 23 28 08.21 64.11N 153.46E 15.4
860311 12 33 14.38 64.47N 172.58W 5.7
      ○ 4 24 06 11 40.9 53.62N 124.71E 16.1
      ○ 4 26 03 19 53.82 59.79N 152.40E 0.

○ 4 29 20 36 31.09 62.81N 146.19E 15.9
                                                                     860313 11 17 58.5 54.00N 136.79E 19.1
860314 03 09 56.31 60.26N 161.04E 10.5
      5 02 04 41 22.96 64.38N 175.65W 33.0
5 06 06 02 57.4 52.04N 122.37E 21.3
                                                                      860315 04 01 54.67 59.82N 144.98E 17.9
                                                                      860318 19 36 33.41 63.66N 152.66E 11.1
      O 5 06 12 17 30.34 65.51N 171.16W 29.7
O 5 06 12 48 42.16 65.52N 171.66W 33.0
                                                                     860327 09 44 44.3 49.87N 131.67E 16.1
860330 11 46 32.5 52.86N 134.74E 17.1
      O 5 06 15 20 35.70 54.86N 126.11E 13.4
                                                                      860402 20 06 19.3 53.96N 128.26E 15.8
      O 5 07 19 47 09.88 60.20N 143.22E 33.1
                                                                      860403 15 38 15.94 59.12N 154.48E 15.4
      O 5 08 12 57 00.8 54.33N 122.90E 20.6
                                                                      860406 01 27 20.73 70.72N 130.29E 10.5
                                                                     860406 01 2/ 20./3 /0./28 130125 6.5
860407 09 08 07.71 64.07N 145.25E 6.5
      O 5 1 6 02 52 04.88 60.03N 151.71E 10.8
                                                                     860407 12 19 30.1 49.40N 131.77E 6.0
860413 21 47 48.87 59.75N 145.79E 14.1
860428 09 39 02.3 54.97N 135.38E 5.2
     O 5 2 4 06 22 43.67 54.19N 125.90E 12.9
     O 5 2 5 21 32 05.7 54.42N 123.23E 10.4
     O 5 2 7 19 54 59.0
                                55.09N 131.46E 0.0
                                                                      860504 03 13 22.19 57.40N 126.38E 30.3
     O 5 2 9 19 04 60.0 55.58N 133.00E 12.0
                                                                     860508 18 21 03.4 55.30N 123.55E 30.9
860515 21 22 49.8 51.81N 131.93E 5.2
     O 6 0 2 04 08 09.40 64.85N 144.06E 7.0
     O 6 0 9 15 16 15.6 55.14N 123.97E 22.4 . O 6 1 1 10 15 24.52 65.23N 144.70E 8.7 .
     O609 15 16 15.6 55.14N 123.97E 22.4
                                                                      860601 15 34 00.31 64.86N 144.05E 16.0
85 0 6 1 2 04 04 33.7 52.50N 132.82E 11.1 5.2
85 0 6 2 0 12 10 07.5 53.62N 135.19E 4.2 .
                                                                      860602 07 43 26.3 55.45N 124.44E 23.8
                                                                      860603 12 49 40.8 55.89N 124.30E 24.1
850622 15 38 04.24 64.85N 144.06E 12.0
                                                                     860605 06 00 25.9 53.55N 124.74E 4.6
860605 09 46 52.00 64.08N 145.25E 9.8
850624 03 54 34.50 65.25N 144.63E 14.9
850627003755.0 54.04N 127.86E 10.6 .
850630133005.8654.19N 125.91E 14.6 .
                                                                      860606 19 42 13.34 66.96N 130.34E 23.4
                                                                      860615 06 55 38.09 72.81N 126.31E 25.3
 8507 O1 11 07 44.91 67.41N 171.10W 27.7 .
                                                                      860615 11 46 38.3 51.56N 138.09E
 8507 O1 18 35 16.51 69.80N 133.63E 10.7
                                                                      860616 19 40 25.45 59.89N 156.86E
 8507 04 05 12 40.1 53.68N 125.49E 14.2 .
8507 04 09 42 08.33 69.84N 176.30E 32.5 .
8507 07 12 15 49.76 55.91N 126.87E 20.9 .
8507 08 16 27 39.95 54.85N 126.10E 14.4 .
8507 12 16 03 53.8 55.61N 130.89E 0.0 .
8507 21 22 34 18.2 48.97N 126.48E 20.8 5.5
                                                                      860701 20 04 16.9 54.80N 131.08E 14.7
                                                                      860703 22 41 06.3 49.03N 131.63E 24.0 5.2 860704 15 01 55.7 50.08N 132.36E 15.7
                                                                     860707 16 26 06.41 72.87N 121.69E 16.8
860709 22 14 58.30 54.71N 126.49E 11.2
                                                                      860712 09 52 09.1 49.58N 123.45E 33.0
860714 14 39 09.98 65.11N 176.28W 2.7
   850812 15 19 56.8
   85 08 12 15 19 56.8 49.80N 131.96E 10.2 .
85 08 20 03 41 38.80 62.23N 145.58E 5.5 .
                                                                      860716 14 04 59.0 52.15N 126.32E 20.0
860720 21 38 07.9 53.61N 125.47E 6.7
    850901 19 03 47.38 58.92N 149.02E 16.8
    850904 21 03 05.7
    85 0 9 04 21 03 05.7 53.71N 135.99E 4.0
85 0 9 10 10 52 56.34 62.22N 143.37E 27.1
                                                                     860726 20 58 04.5 56.50N 121.03E 9.0
860727 11 25 40.82 64.60N 147.10E 17.0
     85 0915 03 44 10.2 53.43N 125.01E 0.0
85 0921 19 28 20.2 55.95N 130.53E 0.0
                                                                      860729 20 41 17.2 53.87N 123.79E 27.0
     85 0921 19 28 20.2
                                                                      860730 20 41 18.1 53.91N 123.51E 33.0
     85 O922 01 09 29.8
                                 54.25N 123.64E 27.4
49.71N 127.55E 22.4
                                                                      860809 02 24 44.7 55.07N 123.42E 33.0
      8 5 0928 05 12 59.0
                                                                      860810 11 11 59.55 63.55N 147.80E
                                                                                                                  5.6
      8 5 1001 18 59 11.8
                                  53.75N 125.54E 15.7
                                                                      860814 22 36 00.84 63.40N 143.98E 22.8
      85 TO05
                                                                     860815 17 53 09.3 48.70N 126.61E 29.3 860815 20 20 34.0 48.75N 126.36E 15.9 860825 17 00 44.0 52.98N 132.58E 17.9 860826 04 45 21.73 56.01N 125.99E 20.1
                  22 32 35.95 59.43N 150.25E 17.5
       8 5 1022 02 26 11.6 54.11N 128.94E 0.0
       85 1025 07 06 08.3
                                  53.58N 125.46E 1.5
55.41N 132.19E 0.0
       8 S 1029 10 54 06.3
        851030 03 34 09.9
                                                                     860826 13 09 14.6 52.34N 138.55E 13.9
860909 12 15 52.21 69.75N 140.40E 5.2
                                54.74N 134.06E 0.0
        851106 07 17 51.08 63.28N 146.65E 4.9
851108 03 53 47.27 65.67N 172.20W 5.6
                                                                     860909 22 21 39.8 52.41N 131.71E 17.8
860915 16 23 09.01 57.63N 125.52E 12.4
        851109 04 09 19.0
                                  53.98N 136.80E 29.6
         851110 16 47 51.8
                                 50.30N 122.95E 8.1
                                                                      860916 14 30 32.4 51.96N 122.37E 5.5
         851122 00 53 39.7
                                  53.73N 125.52E 16.4
                                                                      860918 08 40 47.1 55.60N 120.76E 25.8
         851122 02 37 32.10 60.63N 149.71E 0.
                                                                      860919 05 45 32.5 52.17N 136.17E 4.6
         851123 23 00 00.45 64.30N 175.42E 29.5
                                                                      860919 07 47 43.7 53.60N 132.07E 13.4 5.0
         851128 08 38 22.15 64.89N 144.25E 16.6
                                                                      860925 21 52 07.0 54.01N 134.37E 8.5
         851128 20 13 49.02 57.29N 127.52E 18.5
                                                                      861003 18 14 46.39 65.47N 173.10W
         851129 16 57 09.6 53.62N 125.47E 21.9
                                                                      861007 01 01 15.90 55.65N 126.50E 21.7
         851204 05 42 03.86 55.86N 125.87E 16.2
851208 08 28 32.69 54.35N 135.38E 1.9
                                                                      861007 01 15 05.48 55.65N 126.49E 11.1
861010 20 52 31.9 53.69N 125.51E 11.4
                                                                      861013 20 01 59.41 65.29N 170.33W 33.0
861019 18 30 58.46 63.88N 178.48W 16.6
         851210 12 27 14.34 55.16N 128.47E 15.1
         851217 16 43 11.3 52.91N 128.94E 11.2
                                                                      861023 10 50 02.6 51.62N 130.11E 12.5
861030 10 15 06.28 65.37N 173.06W 24.3
         851221 05 42 49.0 51.26N 133.07E 22.4
         860105 00 35 22.80 70.20N 128.53E 2.6
                                  53.08N 134.52E 28.8 5.4
                                                                      861102 08 50 08.6 53.73N 125.53E 13.8
861103 09 16 26.1 55.77N 130.58E 5.7
         860106 05 27 24.5
         860108 07 25 18.8
                                  52.35N 132.69E 0.0
                                                                      861103 21 54 38.20 54.21N 126.06E 19.5
         860110 02 30 38.70 64.70N 142.05E 6.8
         860118 13 13 22.73 60.21N 153.71E
                                                      4.3
                                                                      861111 17 58 06.89 63.78N 145.72E 12.2
```

```
861129 20 04 59.9 54.26N 131.37E 21.8 .
                                                        870603 11 36 36.4 52.57N 135.99E 8.2
870606 14 14 49.6 50.92N 135.51E 4.3
861130 03 17 12.70 64.94N 154.54E 13.9 .
861202 11 06 20.00 54.32N 126.12E 17.4
                                                        870610 02 12 14.0 53.71N 124.81E 10.2
                                                        870623 23 07 24.83 53.99N 127.92E 9.9
861203 19 32 37.5 53.66N 125.50E 19.9
861209 22 54 21.44 64.13N 148.42E 12.9
                                                        870701 11 52 32.3 52.03N 132.91E 13.7
861218 09 26 40.43 67.49N 171.24W 10.8
                                                        870703 13 23 08.19 59.31N 148.65E 4.1
861218 12 11 14.4 51.85N 133.69E 19.9
                                                        870704 18 30 29.2 54.31N 134.62E 11.4
861218 18 04 12.03 61.20N 143.73E 22.7
                                                        870705 00 08 55.24 61.26N 144.60E 6.6
861221 04 28 23.9 49.19N 130.83E 18.2
                                                        870711 03 15 14.3 49.11N 135.59E
861225 19 12 29.45 62.36N 156.41E 5.7
                                                        870721 05 02 28.63 58.64N 149.64E
                                                        870725 15 49 25.25 62.86N 156.78E
861226 03 21 04.97 61.37N 149.44E 14.6
861229 17 16 49.6 55.04N 122.76E 33.0 .
861231 07 21 58.3 56.59N 121.11E 14.4 .
                                                        870731 06 40 41.0 53.15N 127.76E 12.1
870731 12 55 25.4 48.73N 131.97E 23.7
870109 04 29 45.00 60.04N 153.01E 2.4 .
                                                        870804 21 31 53.0 48.74N 132.02E 19.1
                                                        870806 14 50 07.50 56.16N 125.07E 22.4
870109 13 14 17.46 67.18N 140.08E 10.5
870110 19 33 25.18 65.44N 172.92W 32.3 .
                                                        870808 00 09 56.4 51.07N 131.87E 28.6 5.4
870110 19 34 39.53 65.35N 173.38W 33.0
                                                        870808 03 37 36.6 51.09N 131.89E 25.7
870116 23 53 18.12 58.57N 125.11E 10.3 .
                                                        870815 18 16 00.50 63.16N 175.90E 12.8
870120 07 42 18.1 50.28N 134.78E 15.6
870122 19 01 23.4 55.71N 130.74E 3.0
                                                        870821 07 07 07.9 53.39N 132.07E 16.8 4.4
                                                        870821 17 58 50.6 53.40N 132.05E 11.9
870131 03 55 08.0 56.67N 124.78E 20.9 870203 17 16 45.7 55.54N 130.63E 9.0 .
                                                        870825 11 31 22.6 55.43N 131.20E 5.6
870909 04 43 22.95 60.15N 150.41E 7.6
                                                        870909 19 10 41.9 51.81N 123.58E 20.9
870922 23 20 52.4 54.40N 132.19E 10.7
870204 01 43 46.3 52.90N 132.72E 17.7
870204 05 58 31.62 64.53N 144.63E 17.0
                                                        870923 17 43 01.0 53.01N 138.76E 14.6
870205 09 30 41.1 57.52N 120.85E 24.6 .
                                                        870927 13 16 35.82 61.16N 160.97E 4.5
870208 19 57 21.8 49.15N 131.48E 14.1 .
870209 23 00 01.30 65.44N 172.78W 14.4 .
                                                        871007 16 21 48.8 52.82N 138.64E
870210 12 34 42.73 65.47N 172.65W 22.8
                                                        871015 03 09 50.85 57.61N 125.45E
870211 00 58 20.93 62.8/N 130.042 3...
870211 01 03 09.55 62.77N 156.88E 14.8 .
                                                        871030 21 42 48.1 48.89N 130.00E 33.0
                                                        871102 03 20 42.69 57.54N 128.20E 5.3
871102 23 21 05.41 55.05N 136.60E 2.9
871108 06 44 07.2 52.33N 132.66E 15.1
871115 07 07 47.87 63.18N 177.27E 15.2
870211 01 22 23.15 62.89N 156.87E 5.1 .
870211 05 52 49.59 62.88N 156.78E 10.0
                                                        871115 19 51 21.9 51.54N 138.19E 21.3
871116 07 41 47.06 57.61N 125.35E 13.5
870211 06 19 16.38 62.85N 156.77E 8.1 .
870211 07 28 18.00 62.84N 156.91E 11.6 .
870211 07 28 59.72 62.89N 156.85E 5.6 .
                                                        871121 18 15 18.79 62.22N 170.88E 7.5
870211 07 47 11.44 62.87N 156.86E 2.6
                                                        871125 00 43 07.41 62.91N 144.94E 12.6
870211 08 42 45.18 62.86N 156.86E 8.3 .
                                                        871203 07 34 51.17 59.32N 147.87E 10.6
870211 11 36 16.41 62.86N 156.86E 6.0 .
870211 17 32 23.70 62.88N 156.85E 10.7 .
                                                        871205 21 16 21.07 71.18N 141.69E 20.8
871206 10 54 26.59 63.32N 144.60E 1.6
870212 02 10 47.0 49.62N 134.74E 2.2 870212 02 12 21.01 62.81N 156.80E 8.9 .
                                                        871207 10 50 58.61 63.68N 145.56E 10.3
871212 07 51 06.44 57.37N 127.40E 12.7
870214 07 16 29.76 59.44N 148.03E 0.
870218 21 53 15.3 50.35N 132.28E 6.1
                                                        871215 06 56 02.0 56.73N 123.01E 9.6
871222 22 04 33.79 62.95N 145.04E 4.0
870221 19 33 14.6 53.49N 132.13E 26.7 4.8
                                                        871226 18 02 32.62 58.94N 147.76E 0.
870222 16 12 04.33 62.90N 156.83E 7.2 .
870225 03 03 38.29 63.02N 179.04E 17.7 .
                                                        880101 14 36 12.94 74.59N 130.81E 33.0
870225 03 03 38.29 63.02N 1/5.042 1...
870303 04 52 02.51 65.40N 136.29E 12.1 .
                                                        880114 14 35 33.3 52.60N 132.43E 22.8
                                                        880119 10 35 32.19 63.71N 145.68E
                                                        880122 12 51 56.52 62.20N 146.03E
870308 06 47 26.71 62.06N 143.57E 11.7 .
870308 13 52 12.05 59.77N 145.49E 5.2 .
                                                        880208 20 47 57.88 64.01N 146.03E
880212 09 19 25.2 56.61N 121.08E
                                                                                                  9.9
870310 06 00 02.0 50.41N 143.54E 2.1 .
870316 20 58 53.45 64.08N 167.31E 0. .
                                                        880217 23 00 43.88 64.10N 145.62E 3.6
                                                        880219 00 04 04.40 64.33N 148.58E
870322 00 19 50.43 65.40N 172.98W 17.4 .
                                                        880219 20 41 05.2 53.04N 138.61E 9.3
870324 02 39 54.16 65.41N 173.05W 13.2 .
                                                        880219 23 50 25.40 64.19N 145.81E 12.3
870326 00 45 57.33 65.43N 173.00W 14.5
                                                        880221 23 10 04.9 56.58N 121.11E 12.2
870329 20 16 36.8 52.46N 142.08E 12.6 3.4 870403 13 06 12.1 52.88N 134.63E 9.1 .
                                                        880227 02 07 29.6 54.36N 124.27E 24.5
870403 13 06 12.1 52.86N 134.89E 12.1 . 870405 10 00 15.49 63.11N 174.89E 12.1 .
                                                        880309 20 18 01.55 68.04N 130.71E 14.9
                                                        880314 18 33 53.91 61.37N 154.22E
                                                        880315 19 10 31.9 52.72N 134.66E 28.8
870412 02 31 18.5 53.61N 125.69E 11.3 870415 23 09 21.1 58.56N 121.59E 33.0 .
                                                        880321 11 29 06.6 51.29N 131.43E 0.0
880325 06 30 09.24 64.51N 144.68E 9.7
870421 12 39 48.43 64.92N 170.43W 12.6 .
                                                        880403 02 01 29.00 69.46N 138.77E 22.1
870421 13 21 00.30 64.82N 170.86W 30.1
                                                        880503 00 39 00.74 65.38N 173.40W 5.8
870421 18 20 46.72 64.90N 170.47W 18.9 .
                                                        880519 11 53 20.52 55.91N 128.82E 20.3
870422 03 38 20.69 72.18N 129.73E 11.9
                                                        880525 16 55 43.86 64.21N 150.95E 9.0
870430 03 57 45.88 69.34N 178.23E 14.2
                                                        880605 14 51 43.41 56.23N 128.67E
                                                        880609 13 37 33.18 63.27N 157.59E 8.1
870430 05 41 35.5 54.74N 123.28E 23.3
870430 20 04 20.34 62.87N 156.86E 1.5
                                                        880609 20 12 08.25 63.13N 173.04E
                                                        880614 14 44 44.27 63.37N 149.50E 10.3
880619 11 53 19.99 55.92N 128.87E 14.6
870505 22 29 03.2 56.80N 122.95E 22.3
870510 12 11 04.73 64.46N 172.64W 9.3
870512 09 41 25.8 51.85N 132.60E 12.5
                                                        880620 18 30 53.9 65.49N 131.08E 11.1
870516 09 29 41.1 48.44N 130.95E 27.1
                                                        880621 18 33 34.90 54.73N 135.58E 5.7
870524 16 15 47.7 54.38N 121.75E 33.0 .
                                                        880621 22 50 18.1 57.86N 124.86E 14.1
870525 00 58 03.0 53.26N 133.05E 13.2
                                                        880623 17 59 05.91 63.79N 169.87E 8.8
870526 13 59 12.68 65.38N 173.27W 33.0
                                                        880701 21 37 33.73 64.72N 145.93E 19.1
870528 14 46 55.68 66.96N 172.17W 27.4
                                                        880707 17 43 35.54 63.08N 144.69E 0.7
870602 16 40 20.06 62.74N 156.73E 6.6 .
                                                        880717 23 08 00.41 63.43N 145.47E 2.8
```

```
880728 15 30 47.34 57.12N 129.47E 13.7
                                                       890423 02 45 40.1 57.08N 122.17E 24.1
 880804 06 07 15.39 56.01N 129.85E 1.4
                                                       890423 03 44 27.9
                                                                             57.06N 122.18E 25.1
 880818 08 00 43.08 59.69N 145.67E
                                                       890423 17 58 28.7
                                                                             57.09N 122.22E 29.3
                                         0.
 880825 05 03 27.58 56.87N 127.15E
                                         5.6
                                                       890424 01 33 59.8
                                                                             57.11N 122.27E 24.4 5.0
 880825 07 17 24.40 56.86N 127.17E
                                         7.8
                                                       890424 04 45 38.19 58.95N 151.87E 10.0
 880830 12 58 55.7
                      54.00N 137.68E 18.6
                                                       890424 08 18 37.1 57.09N 122.18E 26.7
890428 15 20 53.0 57.07N 122.21E 33.0
 880902 09 35 32.4 54.16N 122.71E 33.0
 880922 11 25 41.9 57.41N 122.68E 19.2
                                                       890429 00 05 07.9
                                                                             57.18N 122.20E 33.0
                                                       890429 01 27 13.8
 880922 22 58 11.30 61.89N 160.48E 17.6
                                                                             57.09N 122.22E 30.6
880923 08 32 14.25 55.45N 137.21E 33.0
880926 08 59 49.57 67.53N 143.86E 5.8
                                                       890429 06 25 38.9
                                                                             57.15N 122.24E 33.0 5.6
                                                       890429 07 05 24.2
                                                                             57.14N 122.25E 28.2
880930 03 09 09.3 54.15N 137.75E 10.4
881007 00 56 29.24 57.57N 125.12E 17.6
                                                       890429 08 40 01.6
                                                                             57.08N 122.30E 0.0
                                                       890429 10 33 56.1
                                                                             57.05N 122.29E 0.0
 881013 00 32 09.10 61.71N 169.78E 8.7 5.9
                                                       890429 17 35 30.1
                                                                             57.05N 122.25E 0.3
 881013 00 49 26.91 61.81N 169.63E 33.0
                                                       890429 21 00 46.4
                                                                             57.08N 122.25E 24.4
 881013 03 24 33.51 61.95N 169.62E 24.0
                                                       890503 23 53 38.4
                                                                             57.03N 122.17E 23.2
 881015 07 05 37.98 61.89N 169.57E 25.4
                                                       890504 14 10 28.4
                                                                             56.57N 121.15E 14.8
 881017 00 27 59.09 62.85N 148.80E 6.7
                                                       890504 14 10 28.4
                                                                             56.57N 121.15E 14.8
 881020 04 17 55.42 56.77N 127.11E
                                                       890506 06 54 38.5
                                                                             57.13N 122.02E 26.8
 881024 07 15 32.1 54.80N 133.02E 17.2
                                                       890507 16 28 05.9
                                                                             57.08N 122.22E 33.0 5.1
 881025 10 12 52.89 62.87N 148.85E
                                                       890508 11 49 47.0
                                                                             57.05N 122.21E 27.8
                                        8.5
 881101 21 37 31.2 56.85N 123.93E 14.0
                                                       890511 14 37 43.2
                                                                             57.07N 122.20E 29.4
881102 23 32 55.4 53.86N 126.39E 6.0
881109 13 07 58.6 57.90N 120.57E 22.5
                                                       890514 16 21 51.7
                                                                             57.14N 122.19E 27.0
                                                       890517 05 04 35.8
                                                                             57.05N 122.24E 32.0 5.8
 881112 10 27 10.91 57.77N 126.45E 15.2
                                                       890517 07 25 49.0
                                                                             57.05N 122.25E 30.7
 881118 11 29 32.4 57.86N 121.19E 26.0
                                                       890517 07 40 39.1
                                                                             57.00N 122.13E 23.5
 881118 22 22 05.1
                      56.67N 121.68E 7.6
                                                       890517 10 21 02.1
890517 15 55 22.9
                                                                             57.06N 122.14E 19.9
 881203 15 29 49.50 56.06N 126.35E 11.5
                                                                             57.06N 122.24E 32.1
881207 16 50 30.55 65.23N 144.66E 0.
881207 18 23 22.27 65.29N 144.71E 0.4
                                                       890518 10 06 01.1 57.02N 122.21E 29.8
                                                       890519 15 39 08.1 57.06N 122.22E 26.3
                                                      890519 19 29 23.96 62.42N 155.21E 3.3
890519 22 06 27.6 57.07N 122.20E 27.9
890523 08 12 12.2 57.00N 122.18E 29.2
890524 09 38 02.21 61.31N 144.72E 11.2
881222 20 10 11.1 52.46N 134.43E 28.5
881224 02 43 21.51 64.10N 148.74E 8.9
 881226 13 29 00.65 61.63N 168.93E 10.9
 881230 07 16 43.30 61.12N 153.70E 1.7
                                                       890524 19 42 32.5 57.07N 122.23E 30.5
890525 11 48 06.2 57.06N 122.23E 33.0
890113 12 52 11.1 49.01N 131.59E 22.1
890113 16 21 59.87 64.59N 147.17E 10.4
890114 04 53 36.49 61.89N 143.74E 9.5
890115 17 17 30.78 58.69N 151.20E 6.1
                                                       890601 08 17 10.5 57.07N 122.20E 29.9
                                                       890601 16 41 42.51 63.47N 139.82E 0.
 890115 22 13 26.8 57.08N 121.61E 32.5
                                                       890601 16 41 42.51 63.47N 139.82E 0.
890601 19 25 46.7 57.07N 122.29E 28.4
890124 16 50 14.54 65.41N 144.43E 19.0
890129 23 23 01.67 62.86N 144.88E 12.7
890202 07 18 12.67 57.59N 128.30E 13.1
                                                       890601 22 38 53.0 56.99N 122.16E 28.5
890603 08 57 17.1 54.51N 123.23E 23.5
 890205 16 26 59.20 54.21N 126.66E 25.7
                                                       890604 04 17 01.52 68.12N 132.54E 30.9
                                                       890604 21 49 34.7 57.08N 122.14E 27.6
 890212 03 54 21.16 59.20N 147.66E 5.7
 890213 09 35 29.09 66.17N 172.58E 11.8
                                                       890605 00 13 20.7 57.02N 122.22E 30.3
 890215 18 46 19.32 58.07N 129.42E 17.3
                                                       890608 22 41 20.2 57.10N 122.25E 24.4
 890217 02 57 48.16 63.37N 146.19E 6.9
                                                       890610 05 09 43.96 71.31N 129.13E 2.9
 890217 19 10 15.20 69.80N 129.14E 20.4
                                                       890615 16 24 12.2 57.03N 122.23E 30.2
890218 05 47 41.5 48.52N 131.47E 2.5
                                                       890616 07 36 08.68 63.57N 142.74E 9.0
 890219 18 00 30.11 65.18N 146.22E
                                                       890616 19 40 45.76 61.02N 145.44E 14.6
                                         5.7
890224 11 44 19.57 61.25N 162.91E 9.8
                                                       890617 13 37 27.02 67.24N 143.75E 8.5
                                                       890619 15 48 34.3 57.13N 122.27E 30.3
890622 20 52 20.7 57.10N 122.28E 23.5
 890225 04 56 17.06 61.73N 157.71E 8.6
890321 10 53 05.21 64.91N 145.19E 9.3
                                                       890627 10 38 36.3 57.15N 122.30E 27.3 890628 20 16 28.1 57.05N 122.14E 26.5
890329 01 10 46.0 56.79N 123.52E 15.5
890331 12 47 12.06 69.73N 128.96E 17.0
890404 07 30 24.43 62.09N 157.49E 20.3
                                                       890630 20 00 00.25 59.25N 152.73E
890409 04 16 24.70 59.80N 145.14E 33.0 5.0
                                                       890701 14 14 40.42 57.21N 137.80E 33.
                                                      890702 22 58 49.62 59.61N 150.01E 4.2
890706 04 08 09.4 57.09N 122.22E 33.0
890707 10 51 43.57 64.99N 141.66E 14.4
890410 09 12 58.94 66.75N 174.60W 33.0
890412 00 45 33.7 56.72N 120.37E 22.2
890420 22 56 00.2 57.13N 122.23E 31.8
                                                      890709 18 11 49.32 59.91N 152.71E 8.8 .
890709 20 07 46.3 57.09N 122.32E 33.0 4.2
890709 21 04 27.2 57.06N 122.24E 33.0 .
890420 22 59 52.3
                      57.34N 122.11E 16.3 6.6
890421 00 04 44.9
                      57.04N 122.18E 23.4 .
890421 00 16 00.7
                      57.08N 122.20E 18.8
                                                       890710 07 19 33.9 57.05N 122.20E 33.0
890421 00 52 30.7
                      57.04N 122.18E 22.3 .
                                                       890713 19 13 54.00 62.57N 143.88E 0.
890421 00 57 54.6
                      57.01N 122.17E 19.2
                                                       890716 16 32 31.2 57.07N 122.21E 30.4
890421 01 04 20.1
                      57.10N 122.06E 31.5 .
                                                       890718 03 02 54.7
890421 01 44 00.1
                      57.01N 122.19E 17.7
                                                                             57.07N 122.22E 33.0
890421 03 12 05.8
                      57.07N 122.14E 23.9
                                                       890719 00 24 03.7
                                                                             57.08N 122.17E 26.8
890421 08 10 05.7
                      57.05N 122.20E 22.7
                                                       890720 02 53 38.2
                                                                             57.05N 122.17E 30.1
890421 08 29 29.5
                      57.06N 122.16E 27.7
                                                       890720 03 16 21.8
                                                                             57.05N 122.18E 31.5
890421 08 30 08.2
                      57.10N 122.16E 25.7
                                                       890720 23 26 43.7
                                                                             57.09N 122.15E 9.7
890421 08 51 39.0
                      57.04N 122.18E 28.6
                                                       890721 01 40 08.2
                                                                             57.10N 122.16E 10.3
                      57.04N 122.22E 27.6
                                                       890721 01 46 35.0
                                                                             57.04N 122.16E 26.6
890421 15 22 01.0
890421 15 49 35.7
                      57.05N 122.21E 25.7
                                                       890721 07 43 50.5
                                                                             57.08N 122.20E 10.5
                                                       890722 02 36 12.6
890421 19 08 37.4
                      57.07N 122.27E 33.0 4.9
                                                                             57.09N 122.15E 7.5
890421 19 29 28.5
                      57.06N 122.25E 30.8
                                                       890722 10 01 40.8
                                                                             57.07N 122.22E 27.7
                                             .
890421 20 09 42.2
                      57.07N 122.22E 30.8
                                                       890723 12 01 31.2
                                                                             54.54N 124.92E 27.0
890421 22 30 36.0 57.05N 122.18E 25.6
                                                       890723 14 33 00.4 54.55N 124.97E 18.8
```

```
890723 14 33 01.4 54.61N 124.94E 21.2 .
                                                                     900502 10 12 58.04 57.77N 128.21E 3.3
 890723 22 35 55.3
                            57.12N 122.24E 31.4 .
                                                                     900504 18 13 17.11 66.28N 172.56W 13.8
 890724 01 35 24.2
                            54.54N 124.93E 18.4
                                                                     900505 03 28 08.24 59.34N 149.48E 0.
                                                                     900517 18 37 36.4
 890725 00 58 37.6
                            51.53N 132.00E 8.2
                                                                                                56.52N 121.19E 18.4
                                                                     900524 02 44 24.0 57.10N 122.22E 31.6
 890731 00 27 03.6
                            54.47N 122.99E
                                                                     900528 23 47 38.3 57.11N 122.99E 20.4
 890801 00 03 03.4 57.09N 122.17E 14.7
 890801 17 05 23.61 59.89N 151.65E 20.3
                                                                     900530 11 56 45.68 62.91N 144.88E 6.0
 890803 21 46 19.90 54.14N 136.77E 25.8
                                                                     900530 14 06 04.06 62.90N 144.92E
 890804 11 35 25.1 57.08N 122.16E 10.8
                                                                     900602 17 11 19.7 55.65N 130.66E 10.9
 890804 11 48 30.8 57.10N 122.11E 13.0
890804 13 47 50.1 57.08N 122.13E 4.8
                                                                     900614 19 39 35.66 64.08N 156.62E 5.3
                                                                     900618 13 22 59.88 64.03N 175.02E
                                                                                                                        5.1
 890804 21 39 26.0 57.11N 122.12E 8.7
890806 00 59 48.3 56.99N 122.22E 2.9
                                                                    900624 10 15 33.2 53.99N 122.29E 17.3
900625 07 33 54.07 66.81N 130.68E 18.8
 890806 00 59 48.3 56.99N 122.22E 2.9 .
890906 15 20 32.20 61.73N 144.18E 6.9 .
                                                                    900625 13 12 48.23 66.88N 130.45E 8.1
 890910 05 16 37.9 57.06N 122.20E 27.0 .
890918 11 47 43.84 72.18N 128.86E 0.2 .
                                                                    900629 12 30 10.1 56.72N 124.04E 22.9
900701 17 03 53.76 61.94N 154.22E 7.9
 890919 22 44 26.29 54.43N 129.57E 23.1 .
890924 10 18 10.38 65.47N 169.97E 21.5 .
                                                                     900704 12 11 28.25 59.31N 126.38E 0.
                                                                    900705 15 32 55.46 62.88N 153.26E 0.
                                                                    900706 03 16 04.3 56.82N 124.39E 33.0 900706 16 09 08.59 67.17N 144.67E 0.0
 890924 16 35 43.98 63.97N 169.72E 1.6
 890926 06 41 32.9 57.06N 122.10E 13.7
890927 15 42 43.4 57.11N 122.08E 14.1
                                                                     900712 02 22 50.75 62.07N 153.82E
 891004 20 56 47.62 64.70N 146.83E 11.0
                                                                     900717 03 37 25.0 48.70N 132.00E 19.2
                                                                    900717 04 01 11.3 48.71N 132.05E 17.3 900717 05 15 32.2 57.01N 124.63E 25.5
 891017 03 47 41.7 57.08N 122.18E 26.6
 891018 18 49 22.58 68.76N 133.09E 19.7
 891027 01 18 42.1 55.36N 120.45E 23.8
                                                                     900724 15 17 19.86 60.25N 142.65E
 891028 16 41 50.18 57.57N 125.38E 10.0
                                                                     900726 17 34 20.1 57.10N 122.25E 20.5
 891030 01 03 39.4 48.48N 129.62E 33.0
891030 03 38 25.9 57.09N 122.14E 33.0
                                                                    900729 13 17 25.96 63.55N 174.40E 15.1
900731 05 50 45.1 53.67N 124.78E 15.2
 891106 10 01 11.57 54.40N 129.58E 12.6
891109 09 57 37.20 68.46N 132.58E 33.0
                                                                    900802 03 22 15.90 54.27N 126.45E 19.5
900803 05 06 52.46 65.49N 136.68E 17.5
891109 09 57 37.20 68.46N 132.58E 33.0 .

891109 20 57 54.53 66.16N 165.74E 11.1 .

891110 08 55 55.7 48.88N 131.55E 17.1 .

891113 18 15 40.26 62.28N 143.54E 15.1 .
                                                                    900803 14 02 08.49 57.54N 127.81E 19.0
900812 20 51 01.20 65.28N 173.49W 9.8
                                                                    900816 19 52 33.63 69.92N 139.29E 18.6
900819 19 45 35.00 72.98N 122.75E 16.4
891118 05 22 38.1 57.01N 122.20E 18.0 .
891202 16 21 59.0 57.15N 122.25E 29.7 .
891207 21 33 54.5 57.00N 122.18E 21.3 .
891208 01 36 10.07 64.93N 145.90E 10.7 .
891208 09 57 25.9 54.95N 134.96E 3.1 .
                                                                    900820 23 48 16.3 54.34N 123.57E 6.1
900824 01 04 44.73 63.04N 151.18E 9.6
                                                                    900825 03 17 34.67 60.12N 165.48E 33.0
900827 01 31 06.1 56.55N 121.08E 12.0
891212 15 19 04.4 57.06N 122.13E 25.0 .
891213 21 39 09.3 57.03N 122.21E 31.7 .
891222 12 46 34.70 65 48N 136 37 .
                                                                    900901 21 56 05.51 54.23N 125.97E 20.2
900906 17 41 18.23 63.05N 172.92E 14.2
 891222 12 46 34.70 65.48N 136.71E 10.8
                                                                    900907 07 15 16.50 65.19N 148.22E 12.6
891223 01 24 26.1 54.12N 122.00E 24.9
900108 06 18 52.0 57.64N 121.13E 17.4
                                                                    900928 11 47 56.7 57.02N 122.16E 30.8
901006 00 17 17.2 55.31N 121.84E 26.6
 900109 01 44 43.62 57.57N 125.39E 3.1
                                                                    901008 22 58 13.28 57.02N 129.48E 33.0
900110 16 29 04.0 57.02N 122.22E 26.5
900114 16 07 31.1 50.20N 125.48E 23.8
                                                                    901015 15 27 17.61 65.36N 173.01W 26.6
                                                                    901016 10 03 30.31 65.35N 173.16W
                                                                                                                       1.1
900121 14 37 11.80 63.10N 151.95E 6.4
900202 06 02 55.8 56.94N 132.17E 8.9
900206 03 40 46.6 57.06N 122.06E 9.2
                                                                    901016 12 04 26.5 49.84N 129.54E 18.8
901018 23 27 40.84 55.26N 139.01E 7.9
                                                                    901018 23 27 40.84 55.26N 159.01E 7.9

901025 15 36 41.1 56.82N 121.07E 18.6

901029 10 21 07.95 54.70N 136.54E 11.6

901031 21 04 25.9 57.05N 122.20E 22.3

901101 04 58 32.57 57.59N 125.47E 13.1

901101 13 42 05.88 61.29N 156.90E 6.6
900208 09 19 35.9 57.15N 122.08E 33.0 .
900208 20 22 30.5 57.12N 122.15E 16.9 .
900216 12 59 41.3 57.10N 122.16E 32.4 .
900224 16 29 24.42 57.08N 125.75E 9.6 .
900225 21 17 23.1 54.35N 122.85E 28.6
900227 13 04 13.5 57.06N 122.25E 26.3
                                                                    901102 21 54 02.28 64.81N 146.61E 3.9 4.2
901109 17 16 48.69 68.84N 131.89E 11.1 .
901111 17 47 35.51 59.33N 152.22E 3.4 .
900303 22 24 15.91 57.01N 125.66E 19.2 .
900305 15 40 16.20 54.60N 125.00E 18.8
                                                                    901116 13 39 26.03 69.44N 129.71E 10.1
900306 07 18 08.99 67.05N 125.24E 26.7 . 900312 03 26 58.1 52.75N 138.63E 19.2 . 900313 00 33 01.59 73.30N 134.76E 32.8 .
                                                                    901117 11 11 09.4 57.71N 121.50E 18.4
                                                                    901117 14 14 26.82 57.25N 125.46E 20.5
                                                                    901121 01 12 19.11 59.84N 153.46E 2.9
900314 01 12 22.02 73.32N 134.34E 11.6
                                                                    901121 04 04 03.61 61.73N 142.87E 11.4
900318 02 22 49.1 57.03N 122.31E 20.6
900319 14 34 18.4 53.14N 131.66E 16.6
900321 04 31 25.21 73.30N 133.99E 33.0
                                                                    901122 19 36 25.37 62.78N 156.82E 7.0
                                                                    901203 04 33 44.7 57.15N 122.23E 23.1
                                                                    901204 08 46 20.24 61.78N 169.79E 18.0
900329 20 47 29.87 64.02N 145.04E 6.8
                                                                     901208 08 23 30.66 59.42N 152.52E 4.9
 900330 10 16 45.2 54.96N 123.89E 26.8
                                                                    901213 21 34 39.60 64.46N 140.51E 11.2
 900330 15 15 38.63 64.04N 145.07E 7.2
                                                                     910102 04 19 22.94 61.77N 145.69E
 900330 22 46 11.4 57.02N 122.18E 27.3
                                                                     910109 08 15 37.4 56.88N 120.39E 20.0
900402 15 32 46.87 62.12N 138.02E 15.4
                                                                     910201 08 09 25.81 65.68N 145.97E
900408 10 58 40.6 57.03N 122.19E 20.7
                                                                     910210 18 16 31.98 62.94N 145.58E 12.5
900411 16 09 43.42 61.96N 154.26E 6.4
                                                                     910211 10 58 26.96 72.60N 125.08E 16.3
900412 19 10 48.37 62.40N 138.12E 0.
                                                                     910213 09 46 15.45 62.21N 160.73E 10.0
900419 09 00 39.81 72.95N 123.81E
                                                                    910217 20 15 00.74 60.68N 167.35E 0.
910217 20 47 09.33 60.81N 167.04E 1.1
                                                   ο.
900421 02 15 30.68 65.48N 170.68E 17.2 .
900424 08 24 09.6 57.95N 120.95E 16.7
                                                                     910217 23 41 23.6 56.80N 132.02E
900426 23 19 05.09 70.57N 137.26E 25.2
                                                                     910218 11 13 49.00 60.88N 167.01E 15.8
900427 10 12 27.0 50.66N 132.62E 0.0 .
900501 13 27 29.40 56.86N 132.09E 13.6 .
                                                                    910220 04 46 32.45 60.84N 167.09E 0.
910301 18 14 14.03 60.02N 152.79E 3.9
```

```
930210 14 09 48.95 59.42N 147.42E 10.4
930221 09 37 53.1 57.96N 120.71E 28.1
910303 01 57 04.56 72.17N 126.74E 26.5 5.0
910307 16 20 43.04 61.28N 157.00E 5.8 .
910308 09 02 21.93 60.86N 167.03E 33.0
                                                              930224 17 45 25.24 69.59N 128.82E 0.
910309 01 49 34.4
                         57.39N 120.87E 33.0
                                                              930305 01 43 43.31 62.95N 145.59E
910314 02 20 42.8 54.76N 120.88E 19.6
                                                              930305 04 21 03.78 63.73N 145.65E 8.1
910316 11 02 10.12 62.39N 153.10E 13.3
                                                              930313 03 26 28.31 63.77N 142.40E 22.2
910322 16 00 22.89 62.35N 148.41E 8.4
                                                              930322 18 14 04.48 62.91N 145.56E 7.4
910330 01 52 52.22 57.12N 132.96E 8.5
                                                              930324 16 19 06.11 65.38N 142.64E 11.9
910330 17 06 23.65 66.64N 126.07E 14.0
                                                              930324 22 43 29.02 71.68N 130.34E 12.8 4.5
910331 15 39 45.44 58.93N 149.12E 0.
910401 07 21 57.27 71.36N 130.02E 8.4
910331 15 39 45.44 58.93N 149.12E 0. . 910401 07 21 57.27 71.36N 130.02E 8.4 . 910420 11 48 29.64 56.90N 127.14E 7.9 . 910505 16 17 47.70 54.68N 125.40E 11.4 .
                                                              930413 02 36 25.63 62.52N 155.34E 10.7
                                                              930429 12 21 31.23 69.21N 139.91E 25.8
                                                              930519 08 32 06.79 57.97N 140.63E 0.
930615 11 51 14.06 62.33N 141.50E 1.9
910518 08 49 28.0 57.44N 120.92E 33.0 .
910527 08 55 35.2 57.07N 122.20E 30.7 .
                                                              930618 19 16 14.33 62.05N 146.22E 12.0
                                                              930701 03 52 03.21 63.26N 146.72E 11.1
910621 11 04 24.3 55.85N 124.50E 25.4 .
                                                              930705 05 44 53.91 63.28N 179.51E 13.7
910701 20 41 59.50 63.82N 156.12E 11.5 .
                                                              930820 21 26 20.20 57.52N 126.62E 9.4
930825 11 50 10.7 56.86N 124.64E 10.8
                                                             930830 07 56 35.44 64.07N 145.84E 5.5
930926 10 58 20.86 59.66N 145.14E 29.7
                                                              931019 07 02 40.2 56.69N 124.60E 23.9
931028 09 40 51.87 59.28N 148.04E 25.6
910728 01 37 01.15 59.88N 153.36E 0.6 .
910731 01 44 03.82 72.08N 127.59E 11.5 . 910804 19 08 06.08 65.49N 143.24E 25.1 . 910804 19 14 40.50 65.48N 143.25E 10.5 .
                                                              931220 03 42 07.66 63.48N 150.51E 6.5
                                                              940104 20 00 24.5 53.53N 132.24E 22.6
                                                              940105 12 29 31.7 57.45N 122.49E 17.5
910811 18 50 48.20 59.97N 150.19E 5.0 .
                                                              940116 14 51 07.5 57.42N 122.50E 23.5
910825 13 51 02.79 70.64N 140.99E 11.8 .
                                                              940128 01 05 12.10 55.06N 135.29E
                                                                                                            6.6 5.0
910826 09 35 49.41 63.33N 146.31E 1.0 .
                                                              940130 08 18 38.9 57.53N 122.37E 33.0
910915 10 56 22.12 63.82N 151.66E 6.7
                                                              940204 17 10 10.46 59.66N 143.93E 10.1
911013 00 36 28.86 60.87N 144.94E 13.7 3.5
                                                              940215 17 40 57.09 57.86N 128.57E 8.2
911016 05 04 25.7 54.58N 120.80E 27.6 .
911105 10 16 38.60 59.01N 150.60E 6.0 .
                                                              940216 12 43 17.5 56.96N 123.51E 23.8
940223 17 56 12.2 57.30N 123.25E 17.4
911106 19 14 17.47 63.66N 155.03E 3.6 .
911114 01 01 50.65 62.38N 153.14E 6.0 .
                                                              940301 17 48 03.00 55.13N 138.47E 0.
940317 13 55 31.6 57.06N 121.57E 26.5
911201 17 13 50.30 59.41N 147.66E 0. . 911216 07 34 56.14 62.76N 146.03E 7.9 .
                                                              940328 00 57 32.40 62.49N 147.57E 8.9 3.6 940331 15 14 18.06 72.07N 127.78E 2.4 .
911223 06 04 15.31 62.45N 140.86E 33.0 .
920112 11 21 48.48 64.51N 174.36W 11.8 .
                                                              940331 22 28 42.96 71.77N 128.31E 33.0
                                                              940402 11 30 00.2 66.70N 148.33E 14.0
940409 08 36 19.6 56.15N 124.06E 16.1
940419 21 16 54.9 54.88N 124.10E 33.0
920121 18 07 36.05 61.79N 169.77E 14.6 4.6
920122 06 29 16.56 65.86N 143.27E 11.2 . 920128 00 07 26.80 68.17N 133.13E 19.5 .
                                                              940421 15 15 47.75 56.52N 127.71E 7.6
920212 17 14 52.51 64.89N 153.01E 7.3 . 920222 17 55 21.52 70.09N 139.44E 7.0 . 920223 08 21 41.66 70.05N 139.45E 9.9 .
                                                              940426 09 55 39.00 57.02N 127.82E 4.1
                                                              940426 14 58 45.4 54.75N 122.02E 13.1
940504 00 36 22.57 58.83N 146.40E 14.7
920307 06 07 14.46 66.85N 177.89E 7.1 .
                                                              940510 13 39 10.4 54.27N 122.96E 25.2
                                                              940522 11 35 12.6 54.63N 123.39E 33.0
                                                              940523 07 22 47.8 57.04N 122.20E 33.0
920323 15 37 22.29 60.54N 167.14E 7.1 . 920324 03 58 42.27 62.07N 169.60E 12.7 .
                                                              940609 02 27 17.94 62.51N 147.59E 8.4
                                                              940616 17 53 18.18 62.46N 147.58E 12.8 3.8
                                                             940619 19 03 27.16 62.43N 147.50E 5.6
940621 14 52 00.5 57.08N 122.22E 20.9
940703 08 41 29.3 56.70N 122.48E 19.6
940705 13 32 04.0 54.27N 122.86E 26.1
920405 17 55 25.64 59.33N 152.39E 0. . 920413 22 47 21.2 56.59N 121.13E 15.1 . 920507 23 22 54.7 63.65N 133.51E 33.0 . 920628 23 53 17.73 63.74N 145.70E 5.6 .
920405 17 55 25.64 59.33N 152.39E 0.
                                                              940708 13 40 29.5 56.66N 132.92E 6.2
940710 22 30 06.1 55.75N 122.92E 25.6
920826 11 02 16.12 71.60N 133.23E 1.7 . 920828 14 27 05 12 58 045 16.2
920828 14 27 05.12 58.94N 149.22E 22.4 3.8
                                                             940711 02 39 36.48 62.49N 147.59E 10.9 3.5
                                                              940711 11 33 04.04 62.13N 143.57E 6.2
940711 16 48 02.43 62.53N 147.59E 7.4
920909 00 14 31.84 71.42N 132.83E 9.9 .
920913 21 42 56.22 62.07N 153.79E 9.7 4.9
920913 22 05 31.34 62.04N 153.78E 4.3 . 920928 08 05 55.06 64.66N 173.41W 10.7 .
                                                              940715 00 20 42.86 66.90N 130.08E 31.9
                                                              940718 15 43 04.16 62.02N 153.64E 13.8
921009 21 43 39.25 68.57N 140.84E 4.9 . 921010 17 47 51.42 62.49N 154.05E 7.0 .
                                                              940722 18 39 09.0 54.73N 131.83E 0.0
                                                              940727 00 17 04.9 57.00N 122.36E 28.6
921010 21 40 09.21 62.05N 153.61E 11.1 921030 14 20 30.07 72.75N 123.74E 27.1 921114 20 43 15.37 73.01N 123.21E 21.7 921117 07 55 14.2 67.20N 128.59E 24.2
                                                              940731 04 45 38.32 73.03N 123.50E 7.1
                                                              940802 02 30 44.77 57.28N 125.54E 8.8
                                                              940803 18 51 44.0 57.38N 122.17E 15.7
                                                              940811 22 44 12.8 57.09N 122.19E 21.5
921121 06 09 38.38 65.60N 170.41W 33.0
                                                              940828 10 11 28.2 55.45N 122.50E 20.3
940918 16 17 49.07 62.42N 147.64E 18.2
                                                              940928 10 38 08.4 52.73N 122.26E 29.2
941001 08 52 54.27 72.26N 127.24E 11.9
921220 10 20 23.65 62.06N 157.00E
                                                              941003 23 12 59.06 72.41N 127.50E
                                              7.2
921221 07 40 14.63 64.37N 173.30W 15.6
                                                              941007 12 58 52.2 54.31N 124.57E 18.1
941026 07 53 18.76 57.22N 125.81E 13.9
                                                              941105 06 42 09.12 71.79N 130.98E 14.3
                                                              941207 19 52 17.4 56.12N 124.15E 11.4
930121 05 08 56.12 63.13N 146.43E 17.4
930124 20 10 28.6 56.78N 131.52E 7.9 . 930124 20 45 17.2 57.23N 123.29E 22.8 . 930206 22 05 37.23 62.22N 156.78E 2.4 .
                                                              941228 06 23 27.98 57.55N 132.08E 33.0
                                                             950106 13 05 14.96 58.59N 148.46E 5.8 2.6 950115 00 54 27.77 60.77N 148.39E 5.7 .
```

```
950131 12 43 43.36 72.73N 131.66E 33.0 .
950201 07 57 35.2 56.64N 121.86E 14.4 .
950209 16 53 19.1
                     63.64N 133.92E 26.5
950301 17 29 29.7 51.83N 125.51E 33.0
950327 21 20 00.18 54.22N 126.78E 29.5
950504 13 53 37.0 57.24N 122.22E 16.6
950527 13 03 52.7 52.63N 142.83E .
950616 11 34 53.4 57.11N 124.90E 14.5
950806 08 30 43.7 56.99N 122.00E 14.0
950815 01 53 25.23 58.12N 148.90E 14.1
960128 01 10 18.76 59.30N 147.66E 9.5
960212 18 56 59.9 57.53N 120.77E 26.2
960212 18 57 01.2 57.51N 120.90E 21.9
960220 23 32 54.09 61.23N 158.42E 25.4
960303 10 53 57.77 58.26N 158.17E 4.4
960303 11 54 41.62 58.26N 158.04E 33.0
960318 20 15 14.89 58.35N 143.97E 30.6
960403 23 39 29.97 62.85N 147.32E 6.1 .
960406 00 20 39.37 62.83N 147.63E 11.6
960606 21 53 42.36 63.02N 144.73E 6.0
960612 17 08 01.2 56.84N 121.24E 24.9
960707 10 50 00.61 58.58N 157.54E 12.2 5.8
960707 14 19 52.14 58.63N 157.34E 6.3
960707 14 29 03.55 58.56N 157.50E 12.0
960707 15 39 03.11 58.28N 157.42E 31.6
960707 17 58 34.14 58.53N 157.49E 3.9
960707 23 23 49.02 58.50N 157.32E 16.8
960708 01 06 25.24 58.47N 157.28E 0.
960708 13 29 51.71 58.59N 157.38E 15.1
960709 04 07 41.83 58.43N 157.17E 8.4
960709 10 07 05.5 56.61N 120.95E 960709 11 52 51.98 58.33N 157.19E
                                      7.4
                                      Ο.
960710 05 20 11.74 58.45N 157.70E
                                      0.8
960710 06 22 05.38 58.52N 157.34E 18.2
960710 07 15 54.93 58.67N 157.45E 15.2
960710 14 09 33.80 58.57N 157.64E 3.9
960710 18 36 37.17 58.46N 157.30E 28.1
960727 07 28 34.95 60.49N 148.66E 7.4 3.6
960803 12 32 49.64 58.65N 157.21E 29.4
960803 13 09 13.64 58.68N 157.08E 0.
960807 18 51 14.48 58.58N 157.21E 7.6
960808 17 09 40.38 58.75N 157.20E 22.2
960824 07 29 41.80 60.05N 153.05E 17.7
960902 23 37 54.6 56.60N 123.88E 19.4
960904 12 56 31.38 57.55N 128.03E 15.1
960913 15 45 07.54 58.70N 157.64E
960914 05 29 59.84 58.65N 157.41E
960914 05 41 45.02 58.73N 157.48E
960914 09 57 57.82 58.74N 157.14E
                                      8.3
960916 03 05 07.56 58.56N 157.35E 14.6
960925 01 48 26.12 63.38N 150.43E 9.9
961024 19 31 50.91 67.04N 173.08W
                                      0. 6.0
961024 21 57 36.71 67.08N 173.20W 14.1
961126 20 18 18.31 58.66N 157.54E
                                      5.8
961207 10 38 20.98 62.12N 153.75E 10.6
970129 15 51 38.11 58.81N 149.65E 5.4
970304 21 49 26.30 62.07N 155.92E 10.0
970607 11 59 41.19 64.19N 148.32E 0.
970614 13 31 08.39 63.87N 148.57E
                                      2.9
970616 09 54 07.72 64.07N 148.43E
                                     9.0
970629 21 37 46.82 59.78N 152.40E
                                      4.6
970721 12 37 49.52 60.08N 144.68E 10.2
970825 06 00 43.24 63.54N 144.91E
                                      8.2
970910 18 42 42.47 61.77N 156.15E
970914 14 07 54.73 61.10N 145.23E
970915 05 48 00.77 59.95N 151.96E
                                      0.
971122 11 41 15.58 61.14N 155.44E 7.7
971206 16 06 07.04 59.40N 147.91E 10.9
980103 03 15 51.98 59.81N 152.50E
                                      0.
980130 23 11 39.97 63.48N 150.29E 20.1
980201 02 33 13.50 63.24N 150.00E
                                      2.4
980215 04 35 42.38 61.49N 147.43E
980221 22 22 47.82 60.33N 152.86E 5.4
980304 04 57 18.17 62.08N 156.99E
                                      6.3
980309 10 38 11.91 63.87N 156.95E
                                      0.
980311 23 46 07.01 58.46N 157.22E
                                      0.
980312 03 15 54.71 62.10N 157.03E
                                      1.5
980314 17 03 29.87 58.40N 157.41E
                                      3.5
```

980316 05 33 08.13 58.42N 157.30E 13.7

980318 21 30 34.19 58.39N 156.98E 8.3

## APPENDIX F

An alternate method of determining earthquake focal depths.

## APPENDIX F

An alternate method of determining earthquake focal depths

As discussed in Chapter 3, the depths determined for the relocated earthquakes depend primarily on the Pn arrivals, but problems may arise if the Pn velocity used is incorrect. The discussion here outlines a procedure for determining depth of earthquakes from apparent Pn arrival residuals calculated from a location and origin time determined using the best-fit Pg and Sg velocities.

The depth determination dependence on the Pn arrivals can be illustrated by locating a set of earthquakes using only the best-fit Pg and Sg travel time curves, allowing the depth to range between 0 and 15 km. Because there are few close stations, the Pg and Sg arrivals cannot constrain the depth, which tends go either above the surface or below the 15 km boundary. In general, events constrained to the surface are too shallow, which results in a raypath for the Pn phase that is too long. Thus when we observe the residuals associated with the Pn arrivals, they should be negative. Likewise, events constrained too deep shorten the Pn raypath, which will result in positive residuals. This is observed in a test area from the Magadan region (60-63 N x 150-155 E); the same test area and events are used throughout the remainder of this discussion. Here, we see Pn residuals for events constrained at the surface generally being negative, at around -2.0 seconds, and Pn residuals for events constrained at 15 km generally being positive, at about 1.0 second (Figure F-1). If the Pn phase arrivals were used in these hypocenter determination, these residuals would be essentially nulled out in the depth determination. Therefore, we can use these residuals to

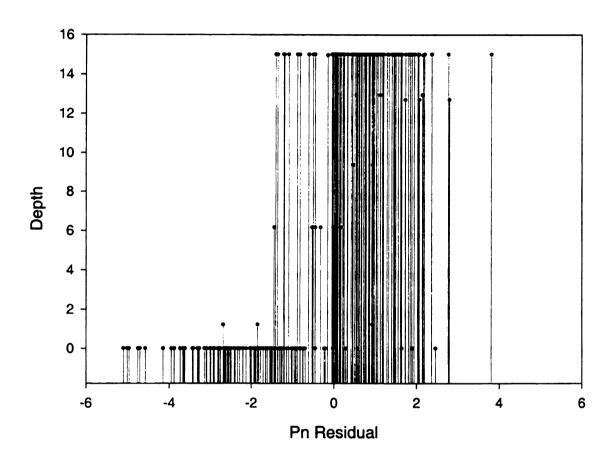



Figure F-1. Illustration showing that Pn residuals are low when depth is 0, and high when depth is 15 km. Events here were located by Pg and Sg arrivals with the best fitting velocities. The Pg and Sg arrivals are generally unable to constrain the depth which was allowed to vary from a minimum of 0.0 km to a maximum of 15 km. Events used here are from the Magadan test region.

calculate depths when the actual Pn velocity is unknown, or differs from the available travel time curve.

First, an assumption is made that for continental seismicity, the average depth of earthquakes is 10 km. Of course, this can be changed, but 10 km is probably reasonable. In this procedure, a set of earthquakes is located with the Pg and Sg phases only, using the best-fit velocities determined by the trial method outlined in Chapter 3. However, the depth here is constrained to 10 km in the location procedure. For each event, the Pn residuals are summed and the average residual is determined. Because we make the assumption that the average depth is 10 km, we would expect that half of the events would have positive residuals, and half would have negative, and that the sum of all the average residuals would be zero. Of course, this would actually only be true if the Pn travel time curve were correct. If the Pn travel time curve were too fast, we would expect the sum of all residuals to be positive, and negative if the travel time curve were too slow. Correcting for this will be discussed below.

A table can be constructed by using the Pythagorean Theorem to determine the differences in travel time for depths above or below the assumed 10 km average. An average crust with a Pg velocity of 6.0 km/sec and 35 km thickness overlying an 8.0 km/sec mantle is used here. Although the actual thickness and velocities may vary somewhat, the effect of this on the travel times is negligible, as we are only worrying about changes in the initial short downgoing segment. Figure F-2 illustrates the simplified crustal model, with three different initial earthquake depths of 0, 10, and 35 km. In the case of the 10 km depth, the assumed earthquake average, it will take the downgoing P wave 7.72 seconds to reach point A (the critical angle here is 41.4°, thus the wave travels 37.8 km in the crust and 11.4 km

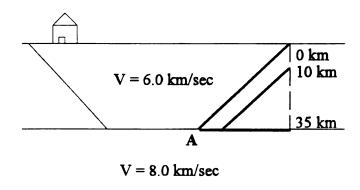



Figure F-2. Simplified crustal model and diagram used to calculate differences in Pn travel time from hypocenters of varying depth to point A. Path length from point A to the seismic station is the same for all depths.

along the Moho). For the event at 0 km depth, the P wave takes 8.82 seconds to reach point A, traveling 52.9 km through the crust. The path beginning at a 35 km depth travels 39.7 km along the Moho boundary, taking 4.96 seconds to reach point A. Thus, relative to the event occurring at 10 km, the difference in travel time for the 0 km event is 1.1 seconds, and the difference for the deeper event is -2.76 seconds. Column 2 in Table F-1 lists the theoretical Pn travel time differences relative to a depth of 10 km for events up to a depth of 25 km.

It is also necessary to adjust our table here to account for a shift in the origin time determined with the Pg - Sg best fit travel time curves as the depth is increased or decreased from the 10 km average. It would be difficult to theoretically calculate the effect of changing the depth on origin time because this is related to the distances and distribution of stations relative to the epicenter, which are different for every earthquake. Therefore, an empirical relationship is developed using the events in the Magadan region test area. In doing this, the events are first located, constraining the depths to 10 km, and the calculated origin time is noted. The same events are then located again, constraining the depths at 0, 5, 15, 20, etc. km, and the shift in origin time from the 10 km depth determination is noted for each event at the various depths. It should be noted that changing the constraining depth of the earthquakes between 0 and 25 km has essentially no effect on epicenter coordinates, which generally vary less than 0.003°. Figure F-3 shows the resulting shift in origin times of the Magadan test area events from different constrained depths, with a second order regression fitting the data. Column 3 on Table F-1 gives the result of this regression. At this point, you are probably wondering where the heck I am going with all this gibberish. Because the shift in origin time is depth-dependent and not event-dependent, the origin time-depth correction can be added onto the Pn time difference in column two (Table F-1) to get column four

Table F-1. Depth determination table based on Pn residuals.

Depth h (km)	Pn Time Diff. from h of 10 km (sec)	Depth- O.T. Cor- rection (sec)	Pn Residual Shift (sec)	
0	1.103	0.078	1.181	
1	0.9927	0.0752	1.124	
2	0.8824	0.0716	1.011 0.9540	
3	0.7721	0.0671	0.8966 0.8392 0.7813	
4	0.6618	0.0615	0.7813 0.7233 0.6648	
5	0.5515	0.0548	0.6063 0.5474	
6	0.4412	0.0472	0.4884 0.4289	
7	0.3309	0.0385	0.4289 0.3694 0.3094	
8	0.2206	0.0289	0.2495 0.1890	
9	0.1103	0.0182	0.1285 0.0642	
10	0.0	0.0	0.0 -0.0585	
11	-0.1103	-0.0063	-0.1169 -0.1788	
12	-0.2206	-0.0201	-0.2407 -0.3033	
13	-0.3309	-0.0349	-0.3658 -0.4289	
14	-0.4412	-0.0507	-0.4919 -0.5555	
15	-0.5515	-0.0675	-0.6190 -0.6830	
16	-0.6618	-0.0853	-0.7471 -0.8117	
17	-0.7721	-0.1042	-0.8763 -0.9414	
18	-0.8824	-0.1241	-1.0065 -1.0721	
19	-0.9927	-0.1450	-1.1377 -1.2038	
20	-1.103	-0.1670	-1.2700 -1.3366	
21	-1.2133	-0.1899	-1.4032 -1.4704	
22	-1.3236	-0.2139	-1.5375 -1.6052	
23	-1.4339	-0.2389	-1.6728 -1.7410	
24	-1.5442	-0.2649	-1.8091 -1.8778	
25	-1.6545	-0.2920	-1.9465	

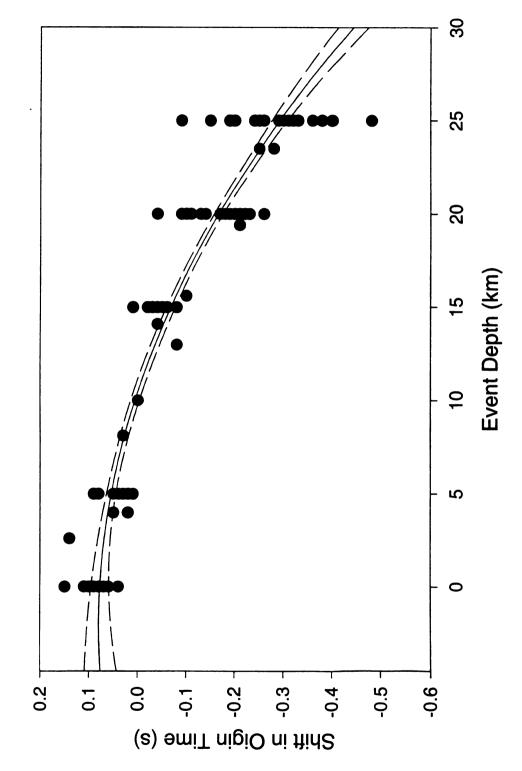



Figure F-3. Empirical relationship between change in depth from 10 km and associated shift on origin time. Data are fit with a second order regression (solid line) with 95% confidence intervals (dashed lines).

(Table F-1), which is the expected Pn residual shift from a 10 km focal depth. This column is now used to determine the depths of the earthquakes, matching the average Pn residual for an event, and reading off the depth. The origin time correction should also be used to adjust the origin time of the earthquake after the final depth is determined.

As noted above, if the Pn velocity in the travel time curve used to compute the residuals is too high or low, the average of all the residuals will be nonzero when depth is held at 10 km. In this case, we can assume the calculated average is simply an offset due to an incorrect Pn velocity (it could also be true that the offset is due to the average depth being other than 10 km, although it probably does not vary greatly). This correction will be termed the residual offset correction. The offset can simply be defined as the new residual zero point, and the Pn residual can be recalculated from this for each event. The new average Pn residual can then be used to determine hypocenter depths from Table F-1.

The depth determination method is tested here with events from the Magadan test area. Table F-2 lists the Pn residuals for the events, which were constrained at 10 km, as well as the depths determined using Table F-1. The Pn arrivals here were not used in the locations, but the residuals were calculated using the Jeffreys-Bullin P wave travel time curve. The depths calculated in the normal location procedure, which used the Pn phase, are also given for comparison. However, in this case, the average Pn residual (sum of column four divided by 46 events) is 0.34 seconds, which indicates that the Pn velocity used to determine the residuals is a bit off, with a resulting average depth of about 7 km. This is corrected by subtracting 0.34 from the average Pn residual and using the resulting value to determine the final Pn residual calculated depth (column 7, Table F-2). On average, this

Table F-2. Depth determinations from the Magadan test area. All depths (h) are in kilometers.

EVENT NUMBE			OF AVERAGE Pn SES RESIDUAL	h FROM Pn RES.	ORIG. DEPTH	Pn OFFSET CORRECTED h
1	3.375	2	1.688	0	0	0
2	5.303	3	1.768	0	0	0
3	1.940	3	0.647	5	5	7
4	-1.299	3	-0.433	14	15	16
5	-0.011	2	-0.005	10	10	13
6	3.213	3	1.071	1	2	4
7	-1.495	5	-0.299	12	12	15
8	-0.538	2	-0.269	12	12	15
9	-0.710	4	-0.177	11	11	14
10	-2.381	2	-1.191	19	15	22
11	-22.797	21	-1.086	19	20	21
12	-2.050	7	-0.293	12	12	15
13	-0.664	2	-0.332	13	13	15
14	-6.010	7	-0.859	17	15	19
15	1.815	2	0.908	2	5	5
16	-0.744	4	-0.186	12	15	15
17	1.919	3	0.640	5	5	7
18	-1.664	2	-0.832	17	17	19
19	4.749	4	1.187	0	2	3
20	1.821	3	0.607	5	6	8
21	-0.475 2.305	5	-0.095	11	11	13
22	0.597	5 6	0.461	6	8	9
23 24	4.676	8	0.099	9	9	12
25	4.676	6	0.584	5	6	8
25 26	2.198	2	0.831	3	4	6
26 27	2.198	6	1.099	1 7	2	3
27	2.330	2	0.381 1.165	0	7	9
28 29	3.556	3	1.185	0	1	3
30	1.693	3	0.564	5	1	3
31	0.760	2		5 7	6	8
32	6.353	3	0.380 2.118	0	8	9
32	1.399	4	0.350	7	0 7	0
33 34	1.922	2	0.350	2	4	10
34 35	-2.097	6	-0.349	13	13	5
36	1.822	2	0.911	2	13 5	16
37	1.822	3	0.632	5	5 6	5 7
38	0.445	26	0.017	10	10	12
39	2.819	4	0.705	4	6	7
40	3.294	3	1.098	1	6	3
41	0.037	8	0.005	10	10	13
42	-1.700	2	-0.850	17	14	19
43	-2.614	2	-1.307	20	20	23
44	0.152	4	0.038	10	11	12
45	2.916	2	1.458	0	1	0
46	1.430	2	0.715	4	5	7
	2.350	<b>~</b>	3.723	-	2	′

residual offset correction results in a 3 km increase in the depth of each earthquake for the test region, with the resulting average then being 10.0 km.

The depths determined by both the original location, which used Pn arrivals, and the method derived here correlate extremely well. Figure F-4 compares the depth results determined from both methods. Open circles depict comparison of the original location depths with depths determined using this method, prior to inclusion of the residual offset correction (Table F-2, column 4). Here, there is a near 1:1 correlation, with differences in most cases being 1 km or less. The maximum observed difference is 5 km, in event number 40. Closed circles depict comparison of the original location depths with depths determined in this study using the residual offset correction.

Although this method was not used for depth determination throughout northeast Russia, it illustrates an alternate method of depth determination using Pn residuals when the actual Pn velocity is unknown. It also illustrates the dependence of depth on Pn arrivals when the crust is assumed to be one layer with one velocity for crustal Pg and Sg arrivals.

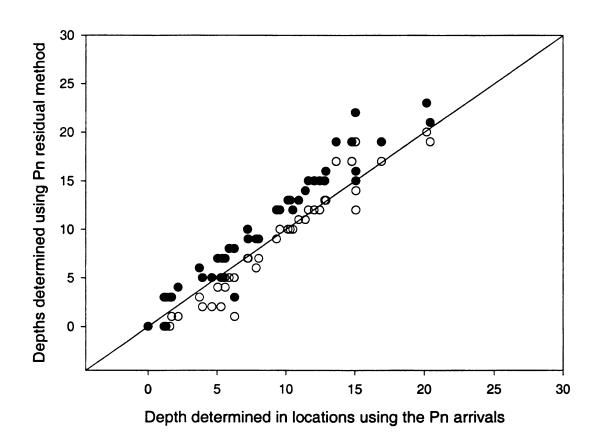



Figure F-4. Comparison of depths determined in the normal location routine with depths determined by the Pn residual method described here. Note the near 1:1 correlation. Open circles without residual offset correction. Closed circles with residual offset correction.

