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ABSTRACT

CHEMOMETRIC DATA PROCESSING TECHNIQUES FOR KINETIC-

SPECTROPHOTOMETRIC DETERMINATIONS

By

Thomas Francis Cullen

A variety of chemometric data processing techniques were applied to

kinetic-spectrophotometric data. In order to a acquire these data, a new data

acquisition system was designed and built. This redesign of the existing system

involved the fabrication of a new optical path for a stopped-flow apparatus as well

as the creation of a new computerized interface for a diode array detection system.

A series of simulated experiments were performed. In these simulation

studies the effect of an array of experimental variables on the accuracy of a

kinetic-spectrophotometric determination of a two component mixture were

explored. Methods for quantifying the amount of kinetic and spectral information

present in kinetic-spectrophotometric data are discussed. The kinetic and spectral

angles were introduced and shown to be good measures of the quantity of

information available in each dimension. Kinetic and spectral net analyte signals

were also developed and were shown to be good predictors of the relative

accuracy with which analytes can be determined. The kinetic angle was shown to

have several contributing factors. The ratio of the analyte rate constants is the



largest contributor, but the fraction of the slower reaction for which data is

acquired and the number of spectra acquired also impact the kinetic angle.

Ga(III) and Ni(H) were the subjects of a kinetic-spectrophotometric

determination. In the studies discussed, the effect of the kinetic angle was explored

experimentally; the determination was carried out at two different values of

solution pH where the ratios of the reaction rate constants are different. A

comparison was drawn between the various chemometric algorithms; continuum

regression and multiway partial least squares regression proved most promising.

The effect of kinetic non-linearity on kinetic-spectrophotometric

determinations was examined in both simulations and in experimental

determinations. In general, it was found that most of the techniques used were

fairly tolerant of nonlinear kinetics, though they began to fail in highly nonlinear

systems. Again, the various chemometric algorithms were compared, and similar

results to those found in the initial studies were obtained. Continuum regression

and nPLS proved best suited to handling the nonlinear kinetic data. The degree of

kinetic non-linearity was measured as an angle from linearity. This angle was

shown to be a good predictor of the accuracy with which a determination could be

performed.

Cu(II) and Zn(H) were determined in a real sample with environmental

relevance. The accuracy of the determination was within acceptable limits for both

analytes. The kinetic and spectral angles and net analyte signals were used to

explain the relative accuracy with which the analytes were determined.
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CHAPTER 1

INTRODUCTION

Beware the man ofone book.

--St. Thomas Aquinas

The subject of this thesis is the application of chemometric methods to

kinetic data. It is important, therefore, to understand other work that has been done

in both the fields of chemometrics and of kinetic determinations.

First, chemometrics will be discussed and some commonly used

chemometric techniques will be described. Particular attention will be paid to

multivariate calibration techniques. Kinetic determinations will then be reviewed,

and the application of chemometric techniques to kinetic data will be highlighted.

1.1. CHEMOMETRICS

Chemometrics has been defined as “the science of relating measurements

made on a chemical system to the state of the system via application of

mathematical or statistical methods and of designing optimal experiments for

investigating chemical systems.”1 As highlighted by several recent texts}.3

chemometrics as a field of study has been steadily growing in recent years.



1.1.1. Nomenclature and Conventions

In this document, matrices, vectors and scalars are written as follows.

Matrix A, vector a, and scalar a are written as shown. The transpose of matrix A

and vector a are written as AT and aT, respectively. All vectors are assumed to be

column vectors unless written as a transpose. In data matrices it is assumed that

rows represent samples or observations and that columns represent variables.

Often, for simplicity, the examples shown presume that each row is a sample and

each column is a measurement at a discreet time point.

1.1.2. Multivariate calibration

To use terminology developed by Booksh and Kowalski in their Theory of

Analytical Chemistry,4 zeroth order data is data where only one data point is

collected for each sample. Examples of zeroth order data include absorbance at a

single wavelength, a single pH measurement, or a single temperature

measurement. First order data consists of an array of data for each sample. First

order data is extremely common, and examples include absorption spectra,

emission spectra, chromatograms, and kinetic profiles. Second order data is made

up of a matrix of data for each sample. Many hyphenated chemical analysis

techniques produce second order data. Examples include fluorescence excitation-

emission spectra, chromatograms with array detection, and kinetic profiles

collected with array detectors. When the data consists of an array of absorbance

measurements taken at every point in the kinetic profile, we will call the result

kinetic-spectrophotometric data.



Calibration is the process of relating the known state of a system to

measured data collected from the system. Multivariate calibration, then, is the

process of relating the known state of a system to a series of measured variables

describing the system. From the above definitions, it is clear that multivariate

calibration is calibration performed on first or higher order data. Since much of the

data collected by analytical scientists is at least first order, the use of multivariate

calibration is becoming routine.

In spite of the above (strict) definition of multivariate calibration, the term

is often used to describe the combination of two distinct processes. After

multivariate calibration has been performed, the relationship found between the

measured variables and the state of the measured system can be used to predict the

state of another system, given the values of variables measured on that system.

The term multivariate calibration is thus often used to describe the process of

performing a calibration and then using the calibration relationship (or model) to

perform a prediction. This combined process can be seen graphically in Figure 1.

Here the two steps are distinctly separated. In the calibration step, the multivariate

calibration algorithm is provided with data for several samples and the system

states (in many cases, analyte concentrations) whose relationship to the data is to

be discerned. The algorithm finds an empirical relationship (or model). In the

second step, data from an unknown system is provided. Using the model built in

the calibration step, the state of the unknown system (e.g., the concentration of the

analytes in the unknown samples) is predicted.
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Figure 1-1: Multivariate calibration as a “black box”.

1.1.2.1. Multiple Linear Regression

Multiple linear regression (MLR) is perhaps the simplest and most

straightforward of the multivariate calibration techniques. The mathematics have

been well described in the literaturel-3v5'6, and so only a brief discussion will be

presented here.

Multiple linear regression assumes a linear relationship between the

observed data (e.g., kinetic profiles) and a matrix or vector of weighting factors

describing the state of the system (e.g., initial concentrations)
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x = [)5

where x is the vector of measured data, S is the matrix of calculated pure

component responses (kinetic profiles) and p is the vector of weights (initial

concentrations). If S has already been calculated from known x and p

T '1 T
S = (p p) p x

An unknown punk can be determined from a vector of data xunk

punk = xunks+

where S+ is the pseudo inverse of S and is defined as:

3+ = sT (SST)l

The major limitation of this technique is that the pure component responses must

be linearly independent for S+ to be defined.

1.1.2.2. Principal Component Regression

Principal component regression (PCR) has also been well described in the

literature.1'3v5'9 PCR is, like other multivariate calibration methods, a two step

process. In the first step, principal component analysis (PCA), a data matrix is

decomposed into a set of abstract factors (or principal components). These

principal components are linear combinations of the measured variables. The

variables are combined and weighted such that the first principal component

explains the largest fraction of the variance in the data. The manner in which this

is accomplished is as follows.



Given a data matrix X of size m x n (m samples and n variables) the

covariance matrix can be defined as

T

cov(X) = £25-

m—l

PCA decomposes X as

X = tlpir + tng + + tka + E

where k is less than or equal to the smaller of the number of variables (11) and

number of samples (m) and E is the residuals (error) matrix. The orthogonal t.

vectors (the scores) contain information about intersample relationships. The pi

vectors (the loadings) are the orthonormal eigenvectors of the covariance matrix,

cov(X)pi = kipi

where It, is the eigenvalue corresponding to eigenvector p. . Thus, the scores are

the projections of the data matrix onto the loadings vector.

As already mentioned, the eigenvalues are arranged in order of magnitude. The

first eigenvalue, Al , is the largest and is associated with the pair (t1 , 1),). This first

principal component contains more information about the system than any other.

By examining the eigenvectors it is possible to determine how many principal

components must be used to describe the data adequately. Most often, the number

of principal components is much smaller than the number of variables. Indeed, one

of the main advantages of PCA/PCR is this reduction in dimensionality. In



addition, principal components generated by PCA are often useful as descriptors

of a chemical system. They are often more robust than measured experimental

variables because of the averaging inherent in PCA. Some artificial neural network

applications use PCA scores rather than experimental data as inputs“).
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Figure 1-2: Decomposition of data into principal components.

Figure 1-2 illustrates the application of PCA to a system described by three

experimental measurements. Plotting the data derived from these measurements

reveals that all the data points lie in a plane. Using PCA the three variables can be

consolidated into two principal components (PCs) that correspond to two axes in

this plane and so the dimensionality of the system can be reduced. The first PC

describes the main source of variation. The second PC corresponds to the next

greatest source of variation in the data. Used in this context, a component that is a

major source of variation in the data is one that has a large effect on the measured



data (X). Again, only PCs that have significant effects on the data are used in

modeling the system.

The second step of principal component regression involves using the

principal components calculated with PCA to create a calibration matrix. In a

manner similar to that used in multiple linear regression, the pseudo inverse, X+,

can be calculated as

-1

x“ = P(TTT) TT

such that

Punk = xunitX+

The major difference between the two methods is that in PCR the data are

regressed on the scores of principal components rather than on measured values.

This reduction in dimensionality serves to eliminate some noise and provides well

conditioned (orthogonal) data for regression. If all the available PCs are used,

there is no reduction in dimensionality and PCR converges to MLR. The proper

number of PCs to use in the regression can be determined in a variety of ways.

The most obvious, and therefore the most common, criterion for choosing the

number of principal components is the percentage of the total variation that is

described by a set of selected PCs. Generally, the minimum number of PCs that

combine to describe a desired fraction (usually 80-90%) of the variation in the

data set is chosen.
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Figure 1-3: Determination of the number of principal components using a

scree graph.

Graphical methods for determining the number of principal components are

also very popular. A scree graph, shown in Figure 1-3, is a plot of the eigenvalue

associated with each PC. The reading of a scree graph is not an exact science, but

rather relies heavily on the common sense and intuition of the analyst. In general,

the “elbow point” where the graph begins to have a nearly zero slope is the last

significant PC. In Figure 1-3, it occurs at the second component, and so two PCs

should be included in the model of the system. Often, the location of this elbow

point is not as clear as that shown and is thus subject to interpretation.

Cross-validation methods for determining the number of PCs can be more

computationally intense than the two methods mentioned above. They usually

involve splitting the calibration data into two parts. The first is decomposed into

PCs. These PCs are then used to perform a prediction on the other set. The number
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of PCs that provide the best prediction is then chosen. Most often the process is

repeated numerous times so that each sample is used in both a calibration and a

validation set. An excellent discussion of various methods for choosing the proper

number of PCs can be found in several references.2»3"5’8

1.1.2.3. Partial Least Squares Regression

Partial least squares regression (PLSR)l-3"5~1 1-12 can perhaps best be thought

of as a compromise between MLR and PCR. Multiple linear regression finds a

single factor that correlates data (e.g., kinetic profiles) with weightings (initial

concentrations). Principal component regression finds factors that best describe the

trends (variance) in the data. PLS attempts to find factors that describe the

variance in the data and correlate weightings to the data. PLS is thus less

susceptible to error arising from variables that fluctuate significantly, but are

unrelated to the weights.

Given a data matrix (e.g., kinetic profiles), X, and a matrix of predicted

variables (e.g., initial concentrations) Y, PLS decomposes X and Y as:

X = TPT

Y = UQT

where T is the matrix of scores for the data, P is the matrix containing the loadings

for the data, U is the matrix of scores for the dependent variables, and Q is the

matrix containing the loadings for the dependent variables. In addition, a vector of
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weights w that relate U to X and a vector b that relates U and T are created. The

pseudo inverse used in calibration is then defined as:

-r -1

x” = w(PTw) (TTT) TT

Then as in MLR and PCR,

Punk = Xunkx+

Again, if all the available latent variables are used in the prediction PLSR

converges to MLR. Similar cross validation techniques are used in both PCR and

PLSR.

1.1.2.4. Continuum Regression

Continuum regression (CR) is a hybrid technique that has been described in

several recent publicationsJ’U'lé From at least one perspective, it can be argued

that MLR, PCR, and PLSR are all special cases of continuum regression. In a

manner similar to PLS and PCR, the observed data is decomposed

x = usvT

where U and V are orthonormal matrices and S is a diagonal matrix. This

decomposition is similar to that performed in PCR. In fact, the scores, V, are

identical to the scores produced by PCR (P). The PCR loadings are related to the

other matrices produced by the CR decomposition by

US = T

In continuum regression the diagonal matrix S is then raised to a power and a new

data or X matrix is formed as

11



xm = us'r'r'vT

After suitable manipulations and the use of PLSR on the new data matrix, a

properly scaled regression vector can be obtained. The value of the exponent m

determines the extent to which the algorithm considers the contribution of

variables to the overall variance in the data when forming its set of abstract

factors. At high (above unity) powers, the data set is deformed to exaggerate the

variance, leading the PLSR algorithm to place inordinate weight on those variables

that contribute variance to the data. At extremely high powers (nominally near

infinity; practically, above 8) CR converges to PCR.

At low (below unity) powers, the data matrix is deformed to compress the

data and to reduce the apparent variance. In this case, with little variance available,

the PLSR algorithm places inordinate weight on those variables that are strongly

correlated to the concentrations (or the state of the system). At extremely low

powers (near zero) CR converges to MLR.

At a power of unity, the data set is undeforrned, and CR converges to

PLSR. This is summarized in Figure 1-4.
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Figure 1-4: Relationship between principal component regression, partial

least squares regression, multiple linear regression and continuum regression.

1.1.2.5. Nonlinear Partial Least Squares Regression

Several varieties of nonlinear PLSR exist. The algorithms for these

methods are available in the literature.‘ In general, these techniques are

functionally identical to PLSR, except that some sort of nonlinear (polynomial or

spline, most commonly) fit is used to relate the scores to the concentrations.

1.1.3. Factor Analysis

Factor analysis is a well established technique that is well represented in the

literaturez'3’fr9v17-l3. It, like PCA and PLS, involves decomposing the data into

abstract factors. The factors, in this case, are not necessarily aligned to capture

maximum variance or covariance, but rather are rotated so as to have physical

meaning. In a spectrophotometric application, the abstract factors often are good
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estimates of the absorption spectra of the analytes they describe. Factor analysis

techniques do, however, usually require pure component spectra or other

information to use in target testing steps.

1.1.4. Artificial Neural Networks

Artificial neural networks (ANNs) are a powerful new tool in the arsenal of

analytical chemistsl9'20. The primary element of an ANN is the neuron. These

neurons are arranged in input and output layers sandwiching one or more “hidden”

processing layers. Neurons can be thought of as weighted transfer functions.

Neurons can have single or multiple inputs. The processing neurons apply a

weighted sum of their inputs and transfer the result to the output. Often the

transfer function is non-linear (sigmoidal functions have been most often used).

Ir \ r’fneuron\
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Figure 1-5: Schematic diagram of a neuron.

A diagram of a neuron is shown in Figure 1-5. Here I. is an input, w, is the

weighting associated with input I, b is the bias introduced into the summation, n is

the output of the weighted sum and a is the output of the transfer function (F); i.e.,

=F(wI+b)

l4



During the training or calibration phase the weightings are adjusted to accurately

fit the calibration data. Often PCs are used as inputs to the network instead of

experimental variables. This reduces the necessary number of neurons immensely.

1.1.5. Multiway Methods

All of the aforementioned chemometric techniques are designed to operate

on first order data. If second or higher order data is to be used with these

algorithms it must first be “unfolded” such that it appears as first order data. This

results in a loss of information. Some more recently popular techniques are

capable of handling second and higher order data directly without unfolding.

These are briefly described below.

1.1.5.1. GRAM

Generalized rank annihilation factor analysis, also known as the generalized

rank annihilation method (GRAM)21-24, is one of the most popular multiway

methods used by chemists. In GRAM a single calibration sample is used to predict

concentrations in an unknown sample. An advantage of GRAM is that interferents

are normally handled well, and that pure component responses of the analytes can

be recovered. GRAM’s major weakness, however, is its restriction to only one

calibration sample. This makes the algorithm sensitive to collinearity in the data

set.

1.1.5.2. PARAFAC

Parallel factor analysis (PARAFAC)25'27 is a technique that is quite

powerful, but also quite limited. PARAFAC, unlike GRAM, is not limited to one
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calibration sample. It is generally possible to recover pure component responses

for each component in each measured dimension. PARAFAC is susceptible,

however, to nonlinearity in the data. If the measured data in each dimension is not

linearly related to the concentrations being predicted PARAFAC fails to converge

to meaningful solutions.

1.1.5.3. Multiway Partial Least Squares Regression

A multiway version of the PLSR algorithm has recently been developed.28

This N-way PLSR (or nPLSR) algorithm has been shown to be superior to PLSR

acting on unfolded data. It is known to be quite tolerant of noise.

1.2. KINETIC DETERMINATIONS

In recent years, kinetic methods for multicomponent determinations have

become more popular. Several books and reviews covering the principles and

applications of kinetic methods can be found29'36. Several other papers have

reviewed the application of chemometric techniques to kinetic determinations3642.

Multicomponent kinetic methods involve similar species reacting with a

common reagent or undergoing a common process. Differences in the reaction or

process kinetics are used to distinguish among the components without any

physical separation. The major limitation of many conventional techniques for

processing kinetic data is their reliance on an accurate model of the kinetics of the

system under study. These techniques can, as a group, be referred to as hard

modeling techniques. Such techniques require that the analyst have knowledge of
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at least the reaction order and usually of the rate constants for each of the reactions

in the chemical system.

It is becoming increasingly clear that perhaps the most useful chemometric

techniques for handling kinetic data are those that do not assume a kinetic model.

In particular, multivariate calibration techniques have shown great promise.

Recent publications have demonstrated the use of many of these techniques.

1.2.1. Kinetic Determinations using Hard Modeling Techniques

Hard modeling methods have some inherent advantages. By presuming a

model for the chemical system they are often able to perform determinations using

small calibration sets, or by not using calibration sets at all (except, perhaps, for

determining the parameters of the model).

1.2.1.1. Kinetic Determinations using Reaction-Rate Methods

Several workers have reviewed the use of reaction rate based methods for

kinetic determinations. The papers by Love and Pardue434’t5 do an excellent job of

comparing most of the common (and some more uncommon) techniques. Other

excellent reviews of these methods can also be found37’46.

1.2.1.2. Kinetic Determinations using Other Miscellaneous Methods

A host of techniques are available for effecting kinetic determinations. The

H-point standard additions method“ is an excellent technique that is designed for

the simultaneous kinetic determination of the components of a binary mixture. The

continuous addition of reagent technique48 is one that has found some application

in systems with complex kinetics”. The kinetic wavelength-pair method“)-51
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involves measurements using an array detector or fast-scanning spectrophotometer

and relies on measurements at two pre-selected pairs of wavelengths for the

determination of the two components in a binary mixture. Both the continuous

addition of reagent technique and the wavelength pair method were developed in

the laboratory of Professor Dolores Perez-Bendito at the University of Cordoba.

Schechter 52'55has developed several techniques that are error compensated

or error tolerant. One technique that does not require prior knowledge of the rate

constants is based upon detecting the intermediate species in a system of

consecutive reactions”. Other techniques developed in his laboratory include an

algorithm that can effect determinations of systems of mixed first and second

order reactions (A-)C & A+B—>C)53, a recursive algorithm for extrapolating slow

kinetic profiles and instrumental responses“, and an error-compensating algorithm

capable of determining the reaction order, rate constants, and concentrations of an

system of general-order reactions55. This latter algorithm, however, requires

modification for use with a first order system.

1.2.1.3. Kinetic Determinations using Nonlinear Regression

In cases where the reaction order and rate constants of a reaction system are

well known, nonlinear regression methods can be used to determine the

concentration of one or more analytes. These regression methods have been

applied to a variety of chemical systemsS‘r“. Some workers have also described

the use of multidimensional nonlinear least squares fits of kinetic-

18



spectrophotometric data in cases where both the rate constants and absorptivities

of the analytes are known61v65v66.

1.2.1.4. Kinetic Determinations using the Kalman Filter

The Kalman filter67 is a recursive algorithm well suited to use with kinetic

data“. Its use for such data has been reviewed”. It has also been found to be

useful for enzymatic kinetic determinations"). Use of the Kalman filter requires

knowledge (or at least a good estimate) of the rate constants. It presumes a

reaction order.

The application of the extended Kalman filter to kinetic-spectrophotometric

data has been described by Quencer and Crouch“. It has been used in binary

systems with first order kinetics72 as well as systems of consecutive reactions73.

Parallel Kalman filter networks have been applied to kinetic determinations

by Wentzell74. The Kalman filter and extended Kalman filter have been compared

to other data processing techniques in a number of reviews37»33»4‘.

1.2.2. Kinetic Determinations using Soft Modeling Techniques

Soft modeling techniques have the obvious advantage that they do not

presume a model that may not fit the system being studied. They do, however,

have the disadvantage that models they generate are often simply empirical and so

have no physical meaning beyond their predictive ability. Several of these soft

modeling techniques are described below.
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1.2.2.1. Kinetic Determinations using Factor Analysis

While not strictly a soft modeling technique (first order kinetics are usually

assumed), factor analysis is closely related to some other multivariate calibration

techniques, and so in included in this section. In systems where there is at least a

moderate degree of spectral and kinetic resolution between the analytes, factor

analysis has been used to determine the rate constants, absorbance spectra, and

concentrations of mixtures of analytes75'31.

1.2.2.2. Kinetic Determinations using MLR, PCR and PLS

Multivariate calibration techniques are finding broad application for kinetic

determinations. This use has been reviewed in several papers36o33’39’41’42. Several of

these applications are summarized here.

Gallium and aluminum react with 4-(2-pyridylaxo) resorcinol (PAR) to

produce products with very similar spectra. The ratio of the rate constants is

kN/kca = 3.67. Using a stopped-flow, flow injection (FI) system with diode array

detection, Blanco, et a1.82 determined mixtures of Ga and A1 with an error of less

than 10%.

In other work, O-O’-bis-(2-aminoethyl) ethylene glycol-N,N,N’,N’

tetraacetic acid (EGTA) complexes of Fe(II), Co(II), and Zn(II) were reacted with

PAR"). These metal ions react with similar kinetics to form products with very

similar kinetic profiles. This experiment was performed in a stopped-flow FI

system with diode array detection. PCR and PLSR were used to determine Fe, Co

and Zn successfully. The kinetics can be complicated by performing the
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experiment in two steps in a flow system. If Co, Fe, and Zn are directly injected

into the flow system, where they first react with EGTA and then with PAR, the

kinetics of the Co and Zn are essentially the same as for the case where the EGTA

complexes are directly injected. Iron(II), however, reacts slowly with EGTA and

thus the kinetics associated with the formation of the Fe-PAR complex are

significantly altered (in a non-linear fashion). Both methods (PCR and PLSR)

were used to determine Co, Fe, and Zn using data collected in this second manner.

Almost identical results were obtained with PCR and PLSR. They predicted the

concentration of Zn and Co with good accuracy, but performed less well in

determining Fe.

In other work, Havel and coworkers determined vanadium and cobalt by

PLSR using kinetic data”. The reaction studied was that of V and Co with the

TrAMeR reagent (4-(1’H—l’,2’,4’-triazolyl-3’-azo)-2-methylresorcinol). The

reaction was monitored at 60 3 intervals for 30 minutes at five wavelengths

between 500 and 540 nm. The average relative percent error was 4%. In the same

paper, a stopped Fl determination of Zn, Co, and Fe was described. The average

error associated with this determination was also about 4%.

Lopez-Cueto and coworkers84 have described the determination of

aminophenol isomers. These authors used PLSR with kinetic-spectrophotometric

data that were acquired with a diode array detector. The reaction studied was one

that required that the reagent not be present in excess. Also, the concentration of
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each isomer influenced the reaction rate of the others. In spite of the inherent

kinetic non-linearity, acceptable results were obtained.

Havel and coworkers85 reported on the kinetic-spectrophotometric

determination of europium, terbium and lanthanum using PLSR. Binary mixtures

of the metal ions reacted with Xylenol Orange to produce similar spectra.

Acceptable errors were obtained (0.2-4%). The authors noted that the PLSR

algorithm required at least four latent variables for a satisfactory fit. They also

reported that, while excellent results were obtained with binary mixtures, ternary

mixtures could not be resolved with acceptable error levels.

A variety of other kinetic determinations have been achieved using

multivariate calibration techniqueslo’ll‘“'32-‘06.

1.2.2.3. Kinetic Determinations using Artificial Neural Networks

Artificial neural networks (ANNs) have been used for a variety of kinetic

determinationslo’l3959940910741°. In general, it has been found that ANNs are

similar to PLSR and PCR in their predictive ability in most cases. Artificial neural

networks require more rigorous and lengthy calculations. They also require larger

calibration sets. In most cases, the advantage (if any) of using an ANN is more

than outweighed by these drawbacks. ANNs do, however, achieve superior results

in cases where the data is nonlinear or in other ways ill-behaved10-13’95.

1.2.2.4. Kinetic Determinations using Multiway techniques

Multiway techniques have been applied to kinetic determinations in only a

handful of papers. The use of GRAM for kinetic-spectrophotometric data111 has
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been investigated. Several papers have described initial studies of the application

of nPLS to kinetic-spectrophotometric datam’m. A number of papers have

reported the use of multivariate curve resolution for kinetic-spectrophotometric

determinations1 14" 16.
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CHAPTER 2

INSTRUMENT DESIGN AND CHARACTERIZATION

Never worry about theory as long as the

machinery does what it’s supposed to do.

--Robert A. Heinlein

The data acquisition system used to collect the kinetic-spectrophotometric

data discussed in this document consisted of a home-built stopped-flow apparatusl

interfaced to a Tracor Northern (Model TN-6123) 512 element intensified diode

array (Tracor Northern, Philadelphia, PA). Both the stopped-flow apparatus and

the computerized interface between the stopped-flow and the diode array were

modified for this research. These modifications and the subsequent

characterization of the entire instrument are the subject of this chapter.

2.1. DESIGN OF DIODE ARRAY INTERFACE

A new computerized interface between the diode array and the stopped-

flow was designed and constructed. This interface controls the diode array and is

responsible for sending timing signals to the array and acquiring the array’s

output. The interface is composed of a peak track-and-hold circuit and a computer

program that controls National Instruments LabPC+ and PC-TIO-lO data

acquisition and timing boards.

34



A timing diagram describing the signals sent to and from the array is shown

in Figure 2-1.

 

 
Trigger

 

Scan
 

  

  START  

 

BEOS
  

  

STB I J  
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Peak Track] | [—
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Figure 2-1: Timing diagram of signals sent to and from the diode array.

The Trigger signal is sent by an opto-interrupter circuit attached to the stopped-

flow when a push has occurred and flow is stopped. When the computer sees

Trigger go high, it sets Scan high. The length of time Scan stays high is

determined by the length of the planned acquisition, i.e., on the number of scans

required and on the scan frequency. START is gated off of Sean, and has a
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frequency related to the desired scan rate. Upon receiving the START pulse, the

diode array sets BEOS (Buffered End Of Scan) high. The STB (Scan Time Base)

timing signal is gated off of BEOS and begins to send out pulses when BEOS

goes high. The frequency of the STB pulses is related to the desired integration

time for each diode. Each STB pulse results, after a short delay, in the appearance

of a ~100ns pulse on the Pulse Out line. The pulses are the result of each diode’s

accumulated charge being converted into a voltage pulse in turn. The magnitude of

a pulse is related to the number of photons that impacted its diode during the

integration time. The Peak Track line is the output of a peak track-and-hold

circuit which is described in detail later in this section. This circuit tracks the pulse

to its maximum and then holds at that level until reset. Six microseconds after an

STB pulse, the Read line goes low, triggering the computer’s data acquisition

board to initiate an acquisition of the Peak Track line. After a short delay, the

Reset signal goes low and resets the peak track-and-hold circuit into tracking

mode. Both the Read and the Reset signals are initialized by the START pulse.

In reality, each scan of the array requires two START pulses and two STB

pulse trains. The first “scan” is not read into memory, but is merely used to clear

the array. The STB frequency is used to control the period between the clearing

and reading of each diode.
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Figure 2-2 is a schematic of the peak track-and-hold circuit. The Pulse Out

signal is inverted by an inverting amplifier. The second op amp has gain and

inverts the signal again. The track-and-hold functionality is provided by a fast

signal diode, the third op amp, and a high quality capacitor. The capacitor charges

as the rising edge of a pulse comes down the Pulse Out line. As the pulse hits its

maximum and begins to fall, the diode prevents the capacitor from discharging.

The input impedence of the voltage follower immediately after the capacitor

prevents discharge in that direction. The capacitor thus charges while a pulse is

rising and the holds at the peak value after the pulse begins to fall. The capacitor is

discharged by closing a switch that provides a low resistance path to ground. The

switch is closed by a high on the Reset line. Reset is the output of a monostable

multivibrator that clocks off of the STB pulse train. Shortly before the Reset goes

high, a second monostable causes Read to go low, triggering the computer’s data

acquisition board to initiate a sample-and-hold operation on the Peak Track

signal.

The LT1363 operational amplifiers used for the inverting amplifier, the

inverting amplifier with gain, and the voltage follower are 70 MHz amplifiers with

slew rates of 1000V/us in order to be able to respond to the very short duration

pulses on the Pulse Out signal. The switching is done with a 4066 high speed

quad bilateral switch.
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2.2. REDESIGN OF STOPPED-FLOW OBSERVATION CELL AND

OPTICS

The optical path of the stopped-flow apparatus begins with a fiber optic

bundle carrying light from a tungsten lamp to the observation cell. The light passes

through the observation cell, where some is absorbed by the sample, and is

collected by a second fiber optic bundle which carries it to the diode array

detector.

From mixer

 

    Fiber Optic Bundle

to Diode Array 
Fiber Optic Bundle

from Tungsten Lamp

To stop

syfinge

Figure 2-3: Schematic of the observation cell.

As seen in Figure 2-3, the fiber optic bundles are inserted into the block containing

the observation cell and are butted against spherical sapphire ball lenses. These

lenses are fitted against the openings at the ends of the observation cell and serve
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both to seal the cell and to collimate and collect the light passed through the

observation cell. They are held in place by custom-designed Delrin screws.

In previous incarnations of the instrument, the fiber optic bundles did not

extend into the block itself. Rather, a three centimeter quartz rod was inserted into

the block and butted against a flat window. The rod was screwed into place with

sufficient pressure to force the window to seal the cell. The fiber optics were

touched to the quartz rod. Thus, the light had to pass from the fiber optic bundle,

through the rod, through the window, and into the cell. This resulted in several

interfaces where light could be lost due to reflection.

The current scheme, in which the quartz rods have been eliminated and the

fragile quartz windows replaced by extremely durable sapphire balls, is

significantly simpler to operate and maintain. The light throughput is at least as

good as the previous arrangement.

2.3. CHARACTERIZATION OF DATA ACQUISITION SYSTEM

After the computerized interface was in place and the redesigned optical

path had been implemented, a detailed characterization study of the instrument as

a whole was performed. The delay time and maximum scan rate were determined.

The mixing time was not determined for reasons discussed below. The signal-to-

noise ratio of the instrument was measured, and the linear range was found.

2.3.1. Determination of Delay Time and Maximum Acquisition Rate

Literature procedures2 were used in an attempt to determine the dead and

mixing times of the instrument. An attempt was made to experimentally determine

40



the dead time of the stopped flow by observing the reaction of iron (III) with

thiocyanate to form a colored productz. Due to instrumental and electronic

limitations, the dead time was not determined; rather another parameter we shall

call the delay time was calculated by extrapolating the reaction curve back to the

initial absorbance of the reactant mixture. Delay time, then, is defined as the time

for which the reactants are mixing in the observation cell but are unobserved, i.e.,

the time between the mixing of the sample and reagent and the collection of the

first data point.

If the first data point is defined to be acquired at time zero, the delay time

is the negative of the time at which the extrapolated reaction curve reaches the

absorbance of the reactants. For this system, the delay time was determined to be

75 ms. Previous work using this same stopped-flow apparatus1 had found the dead

time of the stopped-flow itself be approximately 5 ms. The difference between the

two values can be attributed to several factors. Those that contribute most to the

difference are the delay between stoppage of flow and the triggering of the opto-

interrupter circuit, the delay between the arrival of the Trigger signal and the

generation of the first START pulse, and the need for one complete scan of all

512 diodes (to clear the array) before any data can be acquired.

The mixing time of the stopped-flow apparatus was not accurately

determined because it was shorter than the delay time of the instrument as a

whole, and so not measurable using the experimental setup used for the other

experiments.
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The maximum rate at which spectra could be collected was determined, and

found to be a function of the desired integration time. The integration time

determines the frequency of the STB pulse train, and therefore the length of time

necessary to complete one full scan of the array. Due to the maximum STB

frequency (80 kHz) supported by the track-and-hold circuit and the lag between

the end of the clearing scan of the array and the beginning of the data acquisition

scan (determined in part by the speed of the PC running the interface program, in

our case a 33 MHz 486SX), the minimum practical integration time is 13 ms. At

this minimum integration time spectra can be acquired at 10.5 Hz. Many studies

described in this work were performed with 35 ms integration times. At that

integration time, 5.5 spectra can be acquired per second..

2.3.2. Determination of signal/noise ratio

The signal/noise ratio (S/N) for each wavelength was measured as the range

of recorded intensity measurements for a series of spectra acquired from a static

system. The average S/N was computed as the average of the S/Ns of all

wavelengths between 500 and 700 nm (the range used in these experiments).

These S/N measurements were carried out under a variety of circumstances. The

S/N was found to be a function of percent of the radiation transmitted through the

observation cell, intensifier gain, and integration time.

The dark noise (the range of intensities measured when no light impinges

on the array) is a major source of noise. Accordingly, attempts were made to

minimize it by cooling the array. A Peltier thermoelectric cooler was used to bring
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the array temperature to —5.9°C. The cooler decreased the dark signal by only 2%,

but decreased the amplitude of the dark noise by 30%. For all measurements, the

average dark signal at each wavelength was removed in a background subtraction

step.

0.0 
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Figure 2-4: Plot showing dependence of relative error in absorbance to

absorbance.

Figure 2-4 shows the relationship between absorbance (in this case the

absorber was a neutral density filter that attenuates the light) and the relative error

in absorbance. As is expected, log(oA/A) goes through a minimum at an

absorbance of ~0.5. It can also be seen that log(oA/A) is fairly constant between

absorbances of 0.2 and 1.0. For this reason all experiments were run under

conditions where no absorbances greater than 1.0 were measured.
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Figure 2-5: Dependence of SIN on absorbance.

Figure 2-5 shows a linear relationship between the logarithm of the signal

to noise ratio and the logarithm of the measured signal (is), where the signal level

was varied by varying the light intensity The different measured intensities are due

to the attenuation of the light with a series of neutral density filters. The measured

slope was 0.91. For a shot noise limited system a slope of 0.5 is anticipated; when

blank noise dominates a slope of unity is expected3. It can thus be inferred that the

measurement is not shot noise limited, but over this region a mixture of shot noise

and blank noise predominates. We can speculate that blank noise is dominant at

the low end of the region and shot noise is dominant when light levels are at the

high end of the region shown in Figure 2-53.
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Figure 2-6: Dependence of SIN on intensifier gain.

Figure 2-6 shows a linear relationship between the logarithm of the signal

to noise ratio and the logarithm of the measured signal (is) where the measured

signal was varied by changing the intensifier gain at a constant integration time

(13 ms, the minimum integration time) and constant light intensity. As gain

increases, so does the measured signal amplitude. At this minimum integration

time, the slope of the linear plot is 0.64. Blank noise contributes less and the

system is more nearly shot noise limited when intensifier gain is increased.
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Figure 2-7 shows the relationship between the logarithm of the signal to

noise ratio and the logarithm of the measured signal (is) where the measured signal

is a function of integration time at a constant intensifier gain (0.2, a very low gain)

and constant light intenisty. As integration time increases, so does the signal. Here

the measured slope is close (0.93) to unity. At low gains blank noise is important.

2.3.3. Determination of linear range

The range over which absorbance measurements are linearly related to the

absorption properties of samples in the optical path was determined in two ways.

First, a series of neutral density filters with known absorbances across a broad

region of the spectrum were inserted into the optical path. Absorbance as

measured by the diode array at all wavelengths between 500 and 700 nm was

compared to the known absorbance of the filters.
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Figure 2-8: Linearity of measured absorbance with the known absorbance of

a series of neutral density filters. The linear regression shown was calculated

from all absorbances up to and including one absorbance unit.

As shown in Figure 2-8, the array shows linearity for absorbances at least

up to one absorbance unit. Above this point stray light causes a negative deviation

from Beers law. As a second check of linearity, a series of chromium (III)

solutions were passed through the observation cell of the stopped-flow and their

spectra recorded. A calibration plot of absorbance at 569 nm versus concentration

was generated and found to be linear to absorbances of greater than 1.50 (the

absorbance of the solution with the highest concentration).
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CHAPTER 3

INITIAL SIMULATION STUDIES:

STUDY OF THE EFFECT OF EXPERIMENTAL VARIABLES

The sciences do not try to explain, they hardly even try

to interpret, they mainly make models. By a model is

meant a mathematical construct which, with the

addition of certain verbal instructions, describes

observed phenomena. The justification of such a

mathematical construct is solely and precisely that it is

expected to work

--John Von Neumann

I do notfear computers. Ifear the lack ofthem.

--Isaac Asimov

In order to understand the factors that limit the accuracy with which an

analyte can be determined in a sample using kinetic-spectrophotometric data, a

systematic study of the effect of an array of experimental parameters on the

accuracy of a kinetic-spectrophotometric determination was performed. Because

of the impracticality of performing the number of experiments needed to complete

the study, simulated experiments were used. In these simulations experimental

parameters were varied and the effect of these variations on the accuracy of a

multicomponent (in this case, a two-component) kinetic-spectrophotometric

determination was noted.
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3.1. EXPERIMENTAL

3.1.1. Generation of Simulated Data

Multicomponent kinetic-spectrophotometric data were simulated using a

program written in MATLAB (The Math Works, Natick, Mass). The algorithm

generates kinetic profiles for parallel second order reactions (first order in analyte

and first order in reagent) by numerically solving the appropriate differential

equations. The program mulgen_a which was used for this purpose is given in the

appendix.

For most of the simulation studies, synthetic spectra and rate constants were

used to generate kinetic-spectrophotometric data. The absorbance data were

generated by assuming that the analytes and reagent do not absorb in the spectral

region of interest and that the absorption spectra of the reaction products can be

modeled as overlapped Gaussian-shaped profiles. These synthetic spectra are

shown later in this chapter.

In all cases, adherence to Beer’s law was presumed for each component,

and the total absorbance at each wavelength was assumed to be the sum of the

absorbances of the components.

3.1.2. Data processing

Time dependent spectra were collected in triplicate and averaged, i.e., each metal

ion solution was reacted with PAR three times. The resulting three sets of kinetic-

spectrophotometric data were averaged. Data were mean-centered (i.e., the mean

of each variable vector was subtracted from each of its elements) before being
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input to the appropriate algorithms. Multivariate calibration algorithms provided in

the PLS_TOOLBOX (Eigenvector Technologies, Manson, WA.) and run in

MATLAB were used to perform determinations.

3.2. METHODS FOR QUANTIFYING KINETIC AND SPECTRAL

DIFFERENCES FOR TWO COMPONENTS

In a kinetic-spectrophotometric determination, the accuracy with which an

analyte can be determined in unknown samples depends on the degree of kinetic

and spectral differentiation between the analyte and the other components of the

sample. In order to examine the effect of an array of experimental parameters on

both degree of kinetic and spectral differentiation and on the accuracy of a kinetic-

spectrophotometric determination, it was necessary to develop means for

quantifying the degree of kinetic and spectral differentiation between the analytes

in a mixture.

3.2.1. Methods for quantifying kinetic differences

In the following discussion, and indeed in most of this document, it is

assumed that in kinetic or kinetic-spectrophotometric determinations analytes react

with a common reagent to form different products at different rates. The plot of

concentration of product vs. time (or of absorbance vs. time, if either the analyte

or its product absorbs in the wavelength region of interest) is referred to as a

kinetic profile.
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The amount of kinetic differentiation between two components can be

described by the ratio of the rate constants for the reactions of the analytes with

the reagent. As the ratio of the rate constants increases, so does the difference

between the rate constants and thus the difference in the kinetic profiles of the

reactions of the analytes.

The angle (6K) between the kinetic profiles of the two reaction products

was used as a measure of the degree of kinetic differentiation between the

analytes, and was calculated as the arccosine of the correlation between the kinetic

concentration profiles of the reaction products.

6K = arccos[1%.]

0'K1 ' 0K2

where K and K2 are the two kinetic profiles, 0x1 and 0112 are their standard

deviations, and (7sz is the covariance of K1 and K2. A kinetic angle of 0°

indicates that the kinetic profiles are completely correlated, while an angle of 90°

indicates complete independence. Practically, as the kinetic angle decreases, the

degree of kinetic differentiation decreases and so does the amount of kinetic

information that can be used to differentiate the analytes.

The calculation of figures of merit for multivariate data has been

described”. Using these methods, which state that the net analyte signal for the

kth analyte in a mixture can be calculated as the portion of the data orthogonal to

the data due to all of the other components of the mixture, net analyte signal and
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selectivity can be easily calculated from the mixture data if the pure component

response of the components of the mixture are known:

v = (I - XX“ )1:

where v is the portion of data vector (pure component response) u that is

orthogonal to data matrix X (which consists of the pure component responses of

all of the other components), and X+ is the pseudoinverse of X. The norm of v,

Ilvll, is the net analyte signal of the analyte. The selectivity, s, is calculated as the

ratio of the norms of the orthogonal part of the pure component response and the

pure component response,

_|lvl|

llull

The kinetic net analyte signal and kinetic selectivity for each analyte were

calculated from the concentration kinetic profile for the analyte and the sum of the

concentration kinetic profiles of all components of the mixture.

The rate constant ratio is a measure of the similarity of the reaction rates,

and is insensitive to factors other than the rate constant which affect the kinetic

profile. The kinetic angle is sensitive to factors other than the rate constant; indeed

the length of time for which the reaction is observed has a large effect on the

kinetic angle. A plot of kinetic angle vs. rate constant ratio (with other factors that

contribute to the kinetic angle held constant) is shown in Figure 3-1.
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Figure 3-1: Kinetic angle as a function of rate constant ratio. The fraction of

the slower reaction observed was held constant at 90%, and the number of

data points was held at 100.

Neither the rate constant ratio nor the kinetic angle provide information about

which analyte is more resolved. The kinetic net analyte signal does provide this

information. For the case where the rate constant ratio is varied (by varying the

faster rate constant) and the length of time the reaction is observed is held constant

(at the time at which the slower reaction has reached 90% completion), the plot of

kinetic net analyte signal vs. rate constant ratio is as shown in Figure 3-2.
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Figure 3-2: Kinetic net analyte signal for the slower (squares) and the faster

(circles) reactants in a two-component mixture. The fraction of the slower

reaction observed was held constant at 90%, and the number of data points

was held at 100.

More information is available for the slower analyte than the faster analyte. The

analytical signal of the slower component is larger than that of the faster

component since it reaches a higher equilibrium concentration. When all other

variables are equal and the concentration sets shown later in Figure 3-3 are used,

the slower analyte can be more accurately determined than the faster analyte

because of its higher net analyte signal.
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3.2.2. Methods for quantifying spectral differences

The degree of spectral overlap (or more precisely, the amount of spectral

differentiation) between the analytes was quantified by calculating the angle

between the two spectra. This angle, referred to in this work as the spectral angle

(05), is defined as the arccosine of the correlation between the spectra (represented

by their respective molar absorptivities (81) so that the spectral angle is

independent of concentration, and so therefore also of time):

ass
65 =arccos ———'——2—

0511752

where 81 and 52 are the two spectral profiles, 0'51 and 0'52 are their standard

deviations, and 05152 is the covariance of S1 and S2, A spectral angle of 0°

indicates that the spectra are completely correlated, while an angle of 90° indicates

complete independence. Practically, as the spectral angle decreases, the degree of

spectral differentiation decreases and so does the amount of spectral information

that can be used to differentiate the analytes. The synthetic spectra used in the

simulations are shown with their spectral angles in Figure 3-3.
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Figure 3-3: Synthetic spectra used for simulation studies. Spectral angles

range between 77.7 and 0.

A spectral net analyte signal can be calculated in a manner similar to the

method for calculating the kinetic net analyte signal. It, like the kinetic net analyte

signal, has the advantage of proving information that reveals which analyte is

more resolved, and so should be more accurately determined. Figure 3-4, the

spectral net analyte signal for each analyte is plotted vs. the spectral analytes

between the analytes. The dashed line corresponds to the analyte whose spectrum

is depicted with a dashed line in Figure 3-3.
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Figure 3-4: Spectral net analyte signal as a function of spectral angle. The

spectra used to generate this plot are shown in Figure 3-3.

The more strongly absorbing analyte (depicted with the dashed line) has a higher

net analyte signal. As the spectra become more similar, the difference between the

net analyte signals decreases as well. We would thus expect the more strongly

absorbing analyte to be determined with greater accuracy.

3.3. EFFECT OF EXPERIMENTAL VARIABLES

Data were generated for a collection of 12 standard calibration mixtures and

four unknown mixtures. The arrangement of these mixtures in the concentration

space of the two analytes is shown below. In all cases, the simulated data were
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generated using 30 spectral channels (wavelengths); in most cases 100 time points

were generated (unless the number of time points was being varied).
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Figure 3-5: Concentrations of calibration (stars) and unknown (open circles)

samples.

These data were used to generate calibration models with each of the

multivariate calibration techniques being investigated. These models were applied

to data from the four unknown mixtures, and the error of prediction for each

analyte was calculated as the relative standard error of prediction (RSEP)
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 % RSEP = i=1 .100

where C, is the true concentration of the analyte in sample i, C,- is the predicted

concentration of the analyte in sample i, and h is the number of samples.

3.3.1. Effect of kinetic and spectral angles

The kinetic resolution of the analytes was varied by changing the rate

constant of the slower analyte and by varying the neamess to completion of the

slower reacting analyte at the end of data collection (fraction of the reaction

observed). These two experimental parameters were found to influence the

accuracy of the determinations through their influence on the kinetic angle, and so

on the amount of kinetic differentiation observed between the analytes.

In all cases, the slower analyte was more accurately determined. Examining

the kinetic net analyte signal (Figure 3-2) reveals that this is expected. The slower

reacting analyte was also the more strongly absorbing analyte, and so it has a

higher spectral net analyte signal.

For all cases studied, principal component regression and partial least

squares regression produced predicted concentrations of similar accuracy.

Determinations using continuum regression were slightly more accurate. In every

case, multiple linear regression produced inferior predictions. PARAFAC

generally produced poor predictions, and multiway PLS (nPLS) in most cases

produced the most accurate predictions. The following plots illustrate the accuracy
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of the predicted concentrations produced by each algorithm (expressed as the

%RSEP) as a function of kinetic and spectral angles.

Figures 3-6 through 3-9 shows the effect of varying kinetic and spectral

angles on the accuracy of a PLS, PCR, CR, and nPLS prediction, respectively.

PLS, PCR and CR all behave similarly. The accuracy of the nPLS prediction is

generally higher, but has the same dependence on the kinetic and spectral angles

as do the PLS, PCR and CR determinations.

The accuracy with which the faster analyte can be predicted decreases as

the spectral angle decreases. The slower analyte is mostly unaffected by a decrease

in spectral angle. At any given kinetic angle, the slower analyte has a larger kinetic

net analyte signal (Figure 3-2) and so its prediction is less affected by a decrease

in spectral differentiation because it is can rely more on kinetic information than

can the prediction of the faster analyte. Changes in the kinetic angle have little

effect at all but the lowest spectral angles, revealing that the regression algorithms

rely more heavily on spectral than kinetic differences. At very low spectral angles

(<10°), the amount of spectral information available becomes negligibly small,

and the prediction of both analytes depend on the kinetic information. In this case

decreasing kinetic angle produces marked increases in the error of both

predictions. The error of the prediction of the faster analyte increases more quickly

since less kinetic information about it is available. At very low spectral and kinetic

angles an accurate determination can not be performed.
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Figure 3-6: Relative standard error of a PLS prediction as a function of the

kinetic and spectral angles.
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The effects of varying kinetic and spectral angles on an MLR determination

are shown in Figure 3-10. The same general trends observed for PLS, PCR, CR,

and nPLS can be seen here as well, though the magnitude of the errors is much

larger.
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Figure 3-10: Relative standard error of an MLR prediction as a function of

the kinetic and spectral angles.



Figure 3-11 shows the effect of varying kinetic and spectral angles on the

accuracy of a PARAFAC determination. At kinetic or spectral angles of less than

10° neither analyte can be accurately determined, though when both angles are

high the accuracy of the predictions rivals that of CR and nPLS. PARAFAC’s

flaw, then, is its need for resolution in both, rather than one, dimension.

anwme fimkflm

a a

g a
$25 :2

n. n.

Lu Lu

U) U)

I: a:

x a

2

1.5

1

_
‘

-
i
n

O o
r

9 o
r

1 

 
Figure 3-11: Relative standard error of a PARAFAC prediction as a function

of the kinetic and spectral angles.

In the following sections, the results shown will be those produced by

continuum regression and multiway partial least squares regression.

3.3.1.1. Contributors to kinetic angle

The effect of decreasing kinetic information is not evenly distributed over

the two analytes. As already mentioned and seen in Figures 3-6 to 3-11, the
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prediction of the faster-reacting of the two components is affected to a much larger

degree than is the prediction of the slower-reacting analyte. Using CR or nPLS

(the techniques to which it can be assumed that most assertions in the next several

sections refer) the slower-reacting analyte can be successfully determined in a

two-component mixture if either angle is greater than 8°; the faster-reacting

component requires that at least one angle be 15° for a determination to succeed.

The faster component is also more sensitive to small spectral angles than is the

faster component.

The fraction of the slowest reaction observed (defined as the fraction of the

slower analyte molecules that have reacted at the time observation of the reaction

ceases) was changed by varying the length of time over which the reaction was

monitored. It was found that kinetic angle is a function of both the ratio of the rate

constants and the fraction of the slower reaction observed.
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Figure 3-12: Kinetic angle as a function of rate constant ratio and fraction of

the slower reaction observed.

The relationship between kinetic angle and these two parameters is shown in

Figure 3-12. Generally, kinetic angle increases as either the fraction of the slower

reaction observed increases or the ratio of the rate constants increases. The effect

of increasing rate constant ratio at a constant 90% reaction observed was shown in

Figure 3-1. The same relationship observed there can be seen in Figure 3-12. At

low fractions of the reaction observed, the relationship is much the same, though

the total change is kinetic angle is smaller. At any constant rate constant ratio, an

increase in the fraction of the slower reaction observed results in a fairly linear

increase in kinetic angle.
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3.3.2. Effect of number of data points acquired (time points)

The number of time points acquired was varied while the time for which

data was taken was held constant (i.e., the rate at which spectra were acquired was

varied). In general it was found that varying the number of spectra between 10 and

100 produced no appreciable change in the accuracy of the determination.

3.3.3. Effect of instrumental noise

Heteroschedastic (i.e., not uniform across the spectrum) instrumental noise

proportional to absorbance at each wavelength was added to all simulated data. In

most cases, 1% noise was added; in a few cases this value was varied, and the

effect of varying levels of noise on the accuracy of kinetic-spectrophotometric

determinations was explored. It was found that as the instrumental noise was

varied with kinetic angle (at a low spectral angle) the accuracy of the

determination using the multivariate calibration techniques decreased uniformly at

all kinetic angles as the noise level increased (see Figure 3-13).
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Figure 3-13: Relative standard error of a CR prediction as a function of the

kinetic angle and instrumental noise.

Determinations using multiway PLS were more tolerant of instrumental noise at

high kinetic angles as can be seen from Figure 3-14 below.
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Figure 3-14: Relative standard error of an nPLS prediction as a function of

the kinetic angle and instrumental noise.

When the level of the instrumental noise was varied concurrently with the spectral

angle (at a constant low kinetic angle), it was found that the effect of the

instrumental noise was less pronounced at high spectral angles. Figure 3-15 shows

this effect.
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This same phenomenon was observed with nPLS, though the magnitude of the

errors was lower. One can see from Figure 3-16 that errors are somewhat lower

than from Figure 3-15.
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Figure 3-16: Relative standard error of an nPLS prediction as a function of

the spectral angle and instrumental noise.

It is apparent that instrumental noise (as defined and added to the data) has

more influence on the spectral differentiation between the analytes than on the

kinetic differentiation, i.e., noise tends to blur spectral differences, especially

when the spectra are similar. Techniques that use unfolded data are unable to

ignore the spectral data and simply focus on the kinetic data; they are thus
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unaffected by increased kinetic differentiation. Multiway PLS is able to more

exclusively use the kinetic data and so is able to take advantage of increasing

angles. At constant kinetic angles, all techniques perform better with high noise

levels if the spectral angle is large, though multiway PLS is (as usual) more

accurate.

. 3.3.4. Effect of rate constant fluctuations

Rate constant fluctuations during the course of the reaction (which could be

caused by temperature fluctuations or other external perturbations) were simulated

by allowing the rate constant to vary with a Gaussian distribution centered on the

true value and having a standard deviation proportional to a percentage of the rate

constant.

Large rate constant fluctuations produce acceptable errors if either the

spectral or kinetic angles are moderately large. Indeed, at spectral angles of 20° or

larger, rate constant fluctuations up to 15% had no noticeable effects, as can be

seen from Figures 3-17 and 3-18.
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Figure 3-18: Relative standard error of an nPLS prediction as a function of

the kinetic angle and rate constant fluctuation.

From comparing Figures 3-13 through 3-16 with Figures 3—17 and 3-18,

we can see that the addition of instrumental noise (as defined above) has a much

larger effect on the accuracy of determinations than do rate constant fluctuations.

For this reason, it was decided to focus more effort on decreasing the instrumental

noise level of the experimental system than on connolling factors that could lead

to rate constant fluctuations.
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3.4. EXPLORATION OF EFFECT OF EXPERIMENTAL

VARIABLES ON SIMULATIONS OF THE GA(III) -- NI(II)

SPECTRAL SYSTEM

For these studies, experimentally determined spectra (Figure 3-19) of 4-(2-

pyridylazo)-resorcinol (PAR) and its complexes with gallium (III) and nickel (II)

were used to generate the simulated data. The procedure by which these spectra

were acquired is given in chapter four.
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Figure 3-19: Absorption spectra of PAR and its Ni(II) and Ga(III) complexes

used for simulation studies.
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The spectral angle between the analytes is 6.3; the spectral net analyte signal for

the Ni(H)-PAR complex is 26% higher than that for the Ga(IH)-PAR complex.

This indicates that it should be much more accurately predicted. Ni(II) is the faster

reacting analyte, and so always has a lower kinetic net analyte signal. In practice,

the much higher spectral net analyte signal overwhelms the slightly lower kinetic

net analyte signal. It is thus expected that Ni(II) should be determined more

accurately than Ga(III).

Using the measured spectra, the remaining experimental parameters were

varied. The simulations were carried out in the same manner as the previously

described studies.

3.4.1. Effect of Kinetic Angle

In this highly spectrally overlapped system, it is not unexpected that the

kinetic angle should affect the accuracy of kinetic-spectrophotometric

determinations (see Figures 3-6 through 3-11). The multivariate calibration

techniques are adversely affected by factors that lower the kinetic angle. This is

seen in Figure 3-20 which shows that errors below 5% can be achieved for the

faster (less spectrally overlapped) analyte under most kinetic conditions, i.e., with

all but the lowest kinetic angles (or as shown here, with all combinations of rate

constant ratios and fractions of the slower reaction observed save those with low

(<3) rate constant ratios and less than 40% of the slower reaction observed). The

slower(more spectrally overlapped) analyte is less accurately determined; errors
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near 5% can be determined only when at least 50% of the slower reaction is

observed.
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Figure 3-20: Relative standard error of a CR prediction as a function of the

rate constant ratio and the fraction of the slower reaction observed. The

Ga(III)/Ni(H) spectra shown in Figure 3-19 were used. The spectral angle was

6.3.

Multiway PLS is more able to use the limited kinetic and spectral information

available in this system. As such, the accuracy of its predictions is largely

unaffected by the parameters that affect the kinetic angle. Looking back at Figure

3—1 1, it can be seen that a spectral angle of ~6, the kinetic angle has little effect.

Figure 3-21 shows that neither the rate constant ratio nor the fraction of the slower
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reaction observed had an appreciable effect on the prediction of either analyte. The

faster (less spectrally overlapped) analyte is predicted with greater accuracy.
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CHAPTER 4

DETERMINATION OF GALLIUM (III) AND NICKEL (II)

No man ’5 knowledge here can go beyond

his experience.

«John A. Locke

The determination of nickel (II) and gallium (IH) using their reaction with

4-(2-Pyridylazo)-resorcinol (PAR) was carried out under a variety of experimental

conditions. Kinetic, spectrophotometric, and kinetic-spectrophotometric

determinations were performed. Several of chemometric methods were used in the

determinations.

PAR is a highly sensitive photometric reagent that reacts with a variety of

metal ionsl. It is a triprotic weak acid whose dissociation progresses as1:

H3L“ —,£_='—>H,L—.i’—+m; ;EE—HLZ'

pde pH 3~5.5 pH 6~12.5 pH>12.5

Q—N =N—IQ-OH

0

Figure 4-1: Acid dissociation of PAR

In all of the work described in this document, PAR exists in its singly protonated

form. PAR complexes with metal ions as either a bi- or tridentate ligand. The two
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metal ions whose determination is discussed in this chapter, Ga(III) and Ni(II),

both form complexes where two PAR molecules react with one metal ionl.

Niz*+2 PAR -,2 Ni PAR,

Ga3+ +2 PAR -‘-—-‘ Ga PAR2

Gallium (III) and nickel (II) were chosen for several reasons. Both react

with PAR, and both are soluble in the buffer solutions used in these studies. They

also present a highly challenging system. The rates at which they react with PAR

are very close together, and the absorption spectra of their reaction products with

PAR are quite similar.

The use of PAR as a spectrophotometric reagent for the determination of

gallium and especially of nickel has been reported in the literature”. Other

workers have described the determination of nickel or gallium using a

chromatographic separation and either a pre-concentration step involving PAR or

a post-column reaction with PAR10'13. There have been a few reports of kinetic

determinations of nickel or gallium using PAR as a reagent14’l5.

4.1. EXPERIMENTAL

4.1.1. Solution Preparation.

All solutions were prepared with distilled water and reagent grade

chemicals. Buffers of pH 8.5 and 7.0 were prepared from sodium borate and

sodium phosphate, respectively, and adjusted with nitric acid. All working

solutions were prepared in one of these buffers.
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The equilibrium studies were performed using a set of three calibration sets.

The single component calibration and unknown solution sets contained six and

four solutions, respectively, and are described by Tables 4-1 and 4-2.

Table 4-1

Single component calibration and unknown sets for

the equilibrium determination of Ni(II)

Ni(II) concentration (uM)

 

 

 

 

Solution # Calibration Set Unknown Set

1 0.06 2.00

2 1.60 4.00

3 2.60

4 3.60

5 4.60

6 5.60

Table 4-2

Single component calibration and unknown sets for

the eguilibrium determination of Ga(III)

Ga(III) concentration (1.1M)

 

 

 

Solution # Calibration Set Unknown Set

1 1.60 2.00

2 2.60 4.00

3 3.60

4 4.60

5 5.60

6 6.60
 

The equilibrium multicomponent determinations were performed using a solution

set containing eight calibration solutions and two unknown solutions. These

samples were reacted with 1mM PAR at a pH of 7.0. The position of these

samples in concentration space is shown in Figure 4-2.
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Figure 4-2: Concentrations of calibration (stars) and unknown (open circles)

samples used for the two-component equilibrium determinations.

For the pH 8.5 kinetics studies, thirteen calibration mixtures and four

unknown mixtures were made. These were mixed and reacted in the stopped flow

system with a solution of 10’3 M PAR. The calibration and unknown sets used for

the pH 8.5 kinetics studies are can be seen in Figure 4-3.
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Figure 4-3: Concentrations of calibration (stars) and unknown (open circles)

samples used for the ph 8.5 kinetic and kinetic-spectrophotometric

determinations of Ga(III) and Ni(H).

The pH 7.0 studies were performed using a similar, but slightly different set

of solutions. Sixteen calibration and four unknown solutions were mixed and

reacted in the stopped flow system with a solution of 10'3 M PAR. The location of

the mixtures in the concentration space of the analytes is given in Figure 4-4.
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samples used for the ph 7.0 kinetic and kinetic-spectrophotometric

determinations of Ga(III) and Ni(II).

4.1.2. Spectrophotometric (Equilibrium) Data Collection

Gallium (III) and Nickel (II) were reacted with PAR in a pH 7.0 phosphate

buffer. The reactions were allowed to proceed to equilibrium, and spectra were

obtained. Data were collected in two wavelength ranges (500-550nm and 500-

600nm) using a Hitachi U-4001 UV-visible spectrophotometer. A one centimeter

quartz cuvctte was employed as a sample holder. A pH 7.0 phosphate buffer was

used as a blank. Spectra were collected at 201 wavelengths between 500 and 600

nm, and 101 wavelengths between 500 and 550 nm..
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4.1.3. Kinetic-spectrophotometric Data Collection

Data were collected using a home-built stopped—flow apparatus interfaced

to a thermoelectrically cooled Tracor Northern (Model TN-6123) 512 element

intensified diode array (Tracor Northern, Philadelphia, PA) configured to acquire

spectra in the 400-800 nm range as described in chapter 2.

In the wavelength range of interest (520-560 nm), absorbance was

measured at 52 equally-spaced wavelengths. In cases where the entire 520-560 nm

spectral region was not used, a subset of the 52 wavelengths was employed.

Specifically, in the range 540-560 nm, 26 wavelengths were used.

At pH 8.5, kinetic information was obtained by acquiring 26 spectra at a

rate of 5.0 scans per second for a total acquisition time of 5.2 seconds. At pH 7.0,

100 spectra were acquired at a rate of 7.575 scans per second over a total

acquisition time of 13.07 seconds.

4.1.4. Data processing

Time dependent spectra were collected in triplicate and averaged, i.e., each

metal ion solution was reacted with PAR three times. The resulting three sets of

kinetic-spectrophotometric data were averaged. Data were mean-centered (i.e.,

the mean of each variable vector was subtracted from each of its elements) before

being input to the appropriate algorithms. Multivariate calibration algorithms

provided in the PLS_TOOLBOX (Eigenvector Technologies, Manson, WA.) and

run in MATLAB were used to perform determinations.
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4.2. DETERMINATION OF RATE CONSTANTS AND

ABSORPTION SPECTRA

Experiments were performed to determine pure component spectra and rate

constants for the reaction products of the reaction of Ni(H) and Ga(III) with PAR.

The pure spectrum of PAR was subtracted from observed absorbance versus time

data resulting from the reaction of PAR with a single metal ion. These subtracted

data were fit to the equation16’17:

A. = A... -(A.. ‘A0)’e-k"t

The pseudo-first order rate constant, k’, was calculated from data at several

wavelengths, and an average value was computed. The second-order rate constant

was calculated from this average k’ and the known excess concentration of PAR as

k = k’[PAR]

From the fit values of A”, A0, and k’, the initial rate of the reaction was calculated

at each wavelength:

6 ,

A‘ at = k (AW _ A0)

The initial rate was plotted versus concentration. The molar absorptivities of the

reaction product at each wavelength were computed from the slope of this plot:

slope

kl

 

These values were then used in the simulations described in other chapters.
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4.3. RESULTS OF THE DETERMINATION OF GALLIUM (IH)

AND NICKEL (II)

A spectrophotometric (equilibrium) determination of Ga(III) and Ni(II) was

performed, and the ability of the various chemometric algorithms to accurately

predict the concentration of the analytes in unknown mixtures was examined. Rate

constants and pure component spectra were obtained experimentally for the

reactants and products of the reactions of Ni(II) and Ga(III) with PAR. Kinetic-

spectrophotometric determinations of Ga(III) and Ni(II) were performed. These

determinations were then compared to the spectrophotometric (equilibrium)

determination and to a kinetic determination carried out at a single wavelength.

4.3.1. Spectrophotometric (Equilibrium) Determination of Gallium (III) and

Nickel (II)

Continuum regression and partial least squares regression both produced

acceptable results for single-component equilibrium determinations. The relative

standard errors of prediction (as defined in chapter two) for each determination are

shown in tables 4—3 and 4-4.

 

 

Table 4-3

Spectrophotometric (equilibrium) determination of Ni(II)

Method % RSEP % RSEP

(500-550 nm) (500-600 nm)

CR 1.2 1.2

PCR 20.4 20.4

PLS 1.2 1.2

MLR 1.6 1.9
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Table 4-4

Spectrophotometric (emiilibrium) determination of Ga(III)
 

 

Method % RSEP % RSEP

(500-550 nm) (500-600 nm)

CR 8.6 8.3

PCR 30.6 36.8

PLS 8.6 8.3

MLR 19.6 21.0
 

The determination of Ni(II) produced relative standard errors of prediction

of approximately 1.2% for both wavelength ranges when CR and PLS were used.

PCR produced inaccurate predictions for reasons which are not altogether clear.

Ga(IH) was less accurately predicted than was Ni(II). Because the molar

absorptivity of the Ni-PAR complex is much higher than that of the Ga-PAR

complex (see chapter 3), more accurate predictions of Ni(II) were expected.

The determination of Ga(III) produced slightly lower errors for the larger

wavelength range (8.3%) than for the smaller wavelength range (8.6%) when CR

and PLS were used. The addition of more wavelengths decreases the error of the

Ga(III) determination more than it does the error of the Ni(H) determination

because although the additional wavelengths add much more noise than

information about the analytes, the algorithms used (CR and PLS) are able to

extract the small additional amount of information present in the added

wavelengths from the background noise. It is interesting to note that the same

effect is not seen when principal component regression or multiple linear

regression is employed. It is probable that the ability of continuum regression and

partial least squares regression to place lower weights on variables (wavelengths)
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that vary substantially but are not correlated to the concentrations of the analytes is

responsible for their more accurate predictions. The Ga(III) determination is most

strongly impacted by this phenomenon, as the lower absorptivity of the Ga-PAR

complex results in smaller observed absorbances (and thus less information related

to the concentrations being determined).

The multicomponent equilibrium determination of Ga(III) and Ni(H)

showed significantly higher errors than the single-component determinations.

These results are summarized in table 4-5.

Table 4-5

Multicomponent spectrophotometric (equilibrium)

determination of Ni(II) and Ga(III)
 

 

500-550 nm 500-600 nm

Method % RSEP % RSEP % RSEP % RSEP

(Ga) (Ni) (Ga) (Ni)

CR 26 6 21 6

PCR 22 6 21 8

PLS 21 6 21 7

MLR 23 4 24 5
 

As expected, Ni(II) was determined with greater accuracy than was Ga(III). The

spectra are highly overlapped, and so there is little information present that can be

used to differentiate the two analytes. Thus, it is not surprising that the additional

information that is present in the larger wavelength range results in lowered error

for determinations using all algorithms. Figures 4-5 and 4-6 are plots of the

predicted vs. actual concentrations.
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Figure 4-5: Plot showing the predicted vs. actual concentrations of Ga(III) for

a two-component equilibrium determination. The circles show the predicted

concentrations. The solid line has a slope of unity and represents a prediction

with no error. The dashed lines show i10% error tolerances.
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4.3.2. Kinetic Determination of Gallium (III) and Nickel (11)

Using the data collected during the kinetic-spectrophotometric

determinations, a single-wavelength (550 nm) kinetic determination of Ga(III) and

Ni(II) was performed at both pH 7.0 and pH 8.5. The results of these

determinations are summarized in table 4-6.
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Table 4-6

Multicomponent kinetic determination of Ni(II) and Ga(III)
 

 

pH=7.0 pH=8.5

Method % RSEP % RSEP % RSEP % RSEP

(GA) (Ni) (Ga) (Ni)

CR 35 26 10 6

PCR 30 20 10 6

PLS 35 19 10 4

MLR 47 31 12 9

 

The results at pH 8.5 (where a good deal of kinetic differentiation exists

between the analytes) are quite comparable with those from the kinetic-

spectrophotometric determination (table 4-7). There is little spectral differentiation

present in this system, and so the addition of more wavelengths adds little

additional information about the analytes. At pH 7.0 (where much less kinetic

differentiation exists) the kinetic determination is clearly inferior to the kinetic-

spectrophotometric determination. The additional differentiation between the

analytes afforded by the spectral information is, in this case, necessary.

4.3.3. Kinetic-spectrophotometric determination of Gallium(III) and

Nickel(II)

Two different pH values and two wavelength ranges were used to

determine Ga(III) and Ni(II). The results of these determinations are presented in

table 4-7. As can be seen, errors of prediction at pH 8.5 were generally half those

at pH 7.0. This can be rationalized in several ways. First, the kinetic angle at pH

8.5 (40.1) is much larger than the angle at pH 7.0 (12.6). This represents a large
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increase in the amount of kinetic differentiation between the analytes. The spectral

angles at pH 8.5 and pH 7.0 are similar, but since both are small (~63), kinetic

differentiation is the major source of selectivity; it is thus expected that a larger

kinetic angle will result in a smaller error of prediction. Indeed, this is what is

 

 

observed.

Table 4-7

Multicomponent kinetic-spectrophotometric determination of Ni(II) and Ga(III)

540-560 nm 520-560 nm

pH Method % RSEP % RSEP % RSEP % RSEP

(Ga) (Ni) (Ga) (NiL

7.0 CR 19 17 17 18

PCR 18 18 20 19

PLS 20 17 19 17

MLR 50 12 11 20

nPLS 21 15 29 16

8.5 CR 11 6 14 8

PCR 9 5 l 1 6

PLS 9 6 14 6

MLR 31 5 29 8

nPLS 9 5 ll 6
 

The results of these determinations can be compared to the results of the

equilibrium spectrophotometric determination described previously (table 4-5).

The results of the kinetic-spectrophotometric determination performed at pH 8.5

show a marked improvement over the equilibrium results for all techniques except

multiple linear regression.

In comparing the multivariate calibration techniques, continuum regression,

partial least squares regression, principal component regression and multiway

partial least squares regression all produce predictions of similar accuracy.
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Multiple linear regression sometimes produced slightly more accurate predictions,

but, more often, was clearly inferior. For the type of data studied, continuum

regression and principal component regression proved the most stable of the

multivariate calibration techniques. While not always the best choice, they were

rarely worse than any others and often significantly better. Multiway PLS (nPLS)

was often superior to the one way techniques, but also performed poorly on

occasion. The reasons for these failures are not clear.

The spectral region between 540-560 nm was found to contain the majority

of the spectral differentiation between the analytes. Increasing the spectral window

greatly increased the data processing time, but did not appreciably affect the error

of prediction.

The results are similar to what is expected based on the simulation studies

done using the Ga(III) and Ni(H) spectra and on the relative kinetic and spectral

net analyte signals (as discussed in chapter 3). Ni(II) was more accurately

predicted, as expected.
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CHAPTER 5

KINETIC-SPECTROPHOTOMETRIC DETERMINATIONS

IN SYSTEMS WITH NONLINEAR KINETICS

When you can measure what you are speaking about,

and express it in numbers, you know something about

it. But when you cannot- your knowledge is ofa

meagre and unsatisfactory kind.

«Lord Kelvin

Most kinetic determinations are carried out under conditions such that the

kinetics of the reaction are pseudo first order in the analyte. In cases where

multiple analytes are determined, conditions are usually arranged such that the

analytes each react according to pseudo first order kinetics:

A+R -—) PA

B+R —-> PB

g:— = —kAAR = -k,’,A

k; = kAR

5%? = —kBBR = -k,’,B

k; = kBR

A7 = Ace-k}!

B, = B0 e4?"

Under these conditions, the concentration of the analytes (and of their products) at

any time t is linearly related to the initial concentration of the analytes. The
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condition that must be met is that the concentration of the reagent be sufficiently

large that it effectively remains constant over the course of the reaction.

Several factors can cause kinetic non-linearity. Most obviously, a low

reagent concentration invalidates the assumptions necessary for pseudo first order

kinetics. In this case, the concentration of the analyte at any given time is no

longer linear with the initial concentration. For the case of a single analyte reacting

with the reagent:

 

A+R —> PA

1A- : —kAAR

dt

A, _ AOR, eprokAI-Roh!

R0

Here the concentration of the analyte at time t is a complex nonlinear function of

the initial concentration of the analyte and reagent. When two or more analytes are

present, a discreet solution for the concentration of an analyte at any time can not

be written; rather, the set of differential equations

%=—k,-A.R

%z—kB-B-R

dR

E=-(kr'A°R)-(ks-B°R)

must be solved numerically.

Some other conditions also result in nonlinear kinetics. Perhaps the most

common of these is the existence of synergistic effects. Here the rate of reaction of
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one analyte is a function of the concentration of the other, even if the reagent is

present in large excess.

dA

—=—k ~AoR+ B
dt A f( )

In all of these cases, most traditional methods for performing kinetic

determinations fail.

Some work has been done in the area of performing kinetic determinations

under conditions where nonlinear kinetics prevail. Modified nonlinear regression

algorithms have been used].2 to determine analytes using second and third order

reaction schemes. Several workers have used artificial neural networks to process

kinetic data collected from reactions with nonlinear kinetics. Blanco and

coworkers3 used an artificial neural network to perform a determination of three

analytes. Two react with the reagent according to pseudo first order kinetics; the

third follows a complex multistep process that is nonlinear. The ANN produced

predictions of acceptable accuracy for all three analytes and outperformed both

PLS and PCR. In another study4, Blanco’s group used simulated data to perform a

detailed study of the use of PLS for nonlinear kinetic data. Here the nonlinearity

was added through the addition of a synergistic term (see above equation). In all

but the most nonlinear cases studied, the predictions returned by PLS were

acceptably accurate.

Blanco and coworkers5 have also explored the use of ANNs in situations

where the nonlinearity is introduced by having the analytes present in sufficiently
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high concentrations that the reaction is pseudo first order in reagent. Benzlyarnine

and Butlyamine were determined through their reaction with salicylaldehyde. The

ANN outperformed PLS and predicted the concentration of the analytes with only

4% error.

Ventura et al.6 used an ANN whose inputs were PCA factors to perform

kinetic determinations in the presence of synergistic effects and the inherent

nonlinearity of the continuous addition of reagent technique. The results of the

experiments were quite impressive and the concentrations of the analytes were

predicted with good accuracy (errors of prediction of about 5%).

In this chapter a standardized way of reporting the degree of kinetic non-

linearity present in a system is developed. The results of simulations and

experiments performed under conditions of kinetic non-linearity are presented.

5.1. EXPERIMENTAL

5.1.1. Simulations

Simulation studies were performed in a manner similar to that described in

chapter 3. The degree of nonlinearity was controlled by varying the concentration

of the reagent, and was measured as an angle from linearity.

The angle from linearity (0,) was calculated by plotting the concentration

of the analyte at a fixed time vs. the initial concentration of the analyte for several

samples with different concentrations of the two analytes. The angle 0L is related

to the correlation between the initial and time-dependent concentrations.
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0A A
HLA =arccos ° ‘

0A0 "5A.

where A0 and Al are the concentrations of analyte A for several samples at times 0

and t, respectively, 0A0 and 0A, are their standard deviations, and O'Aom is the

covariance of A0 and A.. An angle from linearity of 0° indicates complete

linearity, while an angle of 90° signifies complete nonlinearity. Practically, when

the system is linear, the plot is linear; when there is kinetic nonlinearity the

concentration of one analyte affects the concentration of the other at the fixed

time. The following figure shows this plot for a situation where linear kinetics

prevail.
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Figure 5-1: Example of a linear (pseudo-first-order) kinetic system. This data

was generated with a rate constant ratio of 1.7 and a kinetic angle of 10.2. The

reagent was in 281 fold excess The angle from linearity was 0.017.

Kinetic nonlinearity causes samples with the same initial concentration of an

analyte to have different concentrations of the analyte after a fixed time. Figure 5-

2 shows this effect. The effect of the concentration of the second analyte on the

kinetics of the first (because the second analyte uses up some reagent, thereby

changing the reaction rate for the analyte in question) can be clearly seen.
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Figure 5-2: Example of a nonlinear kinetic system. This data was generated

with a rate constant ratio of 1.7 and a kinetic angle of 10.2. The reagent was

in 1.4 fold excess. The angle from linearity was 6.449.

5.1.2. Solution Preparation

Solutions of Ni(II) and Ga(III) were made in a pH 8.5 borate buffer as

described in chapter 4. Solutions of PAR at concentrations of 1 mM and 40 11M

were also made in the same buffer. The solutions prepared were positioned in the

concentration space of the analytes as shown in Figure 5-3
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Figure 5-3: Concentrations of calibration (stars) and unknown (open circles)

samples used for the kinetic-spectrophotometric determinations of Ga(III)

and Ni(II) under linear and nonlinear kinetic conditions.

5.1.3. Kinetic-spectrophotometric Data Collection

Data were collected using the stopped-flow apparatus and diode array

detector as described in chapter 4. One hundred spectra were acquired; the rate at

which spectra were acquired was dependent on the concentration of the PAR. For

the 1 mM PAR, 100 spectra were acquired over a period of 50 seconds; when the

40 11M PAR solution was used 100 spectra were acquired over a period of 200

seconds. For this study, a wavelength range of 500-550 nm was empirically
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chosen. Absorbances were measured at 64 equally-spaced wavelengths in this

range.

5.1.4. Data processing

Time-dependent spectra were collected in triplicate and averaged, i.e., each

metal ion solution was reacted with PAR three times. The resulting three sets of

kinetic-spectrophotometric data were averaged. Data were mean-centered before

being input to the appropriate algorithms. Multivariate calibration algorithms

provided in the PLS_TOOLBOX (Eigenvector Technologies, Manson, WA.) and

run in MATLAB were used to perform determinations.

5.2. SIMULATION STUDIES INVOLVING SYSTEMS WITH

NONLINEAR KINETICS

Detailed simulation studies that explored the effect of nonlinear kinetics on

the accuracy of predictions generated by an array of chemometric techniques were

conducted. Two limiting cases were considered. In the first, the synthetic spectra

described in chapter 3 were used to generate data; in these spectra the reagent does

not absorb. The second case was one where the reagent does absorb. These used

the Ga(III)-PAR / Ni(H)-PAR spectra which were also used in the studies

described in chapter 3.

5.2.1. Systems where the reagent does not absorb

In the case where the reagent does not absorb, the only effect of kinetic

nonlinearity is the type of effect seen in figure 5-2. The slower analyte is slightly

more affected by the nonlinearity, as the faster analyte consumes some of the
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reagent before the slower analyte has reacted to any appreciable extent. This effect

is exaggerated at high kinetic angles where the difference between the reaction

rates of the analytes is larger and the faster analyte consumes more of the reagent

before the slower analyte begins to react.
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Figure 5-4: Relative standard error of a CR prediction as a function of the

kinetic angle and angle from linearity.

Figure 5-4 shows the effect of kinetic angle and angle from linearity on the

accuracy of a CR prediction. Error of prediction increases as the angle from

linearity increases and kinetic angle decreases. The concentration of the slower

analyte is predicted more accurately; this is expected, as when the determination is
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limited by kinetic information the slower analyte is favored by the reaction scheme

(see chapter 3). The spectral angle is low (8.6), and so the effects of the kinetic

angle can easily be seen. The angle from linearity has a much larger effect at high

kinetic angle than low ones (for the reasons already discussed).
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Figure 5-5: Relative standard error of an nPLS prediction as a function of the

kinetic angle and angle from linearity

Figure 5-5 shows the response of multiway PLS to the same conditions depicted in

figure 5-4. Here, it can be seen that the slower analyte is more affected by kinetic

non-linearity, especially at high kinetic angles. It can also be seen through

comparison with Figure 5-5 that multiway PLS produces more accurate
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predictions than do the multivariate calibration techniques (of which CR is the

best).

At a constant (low) kinetic angle the interaction of spectral angle with

kinetic nonlinearity can be demonstrated.
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Figure 5-6: Relative standard error of a CR prediction as a function of the

spectral angle and angle from linearity. The kinetic angle for this data was

~10°.

In figure 5-6, it can be clearly seen that at high spectral angles kinetic non-

linearity has little affect on the accuracy with which multivariate calibration

techniques can predict the concentration of the faster analyte. The prediction of

the slower analyte is more strongly impacted by the angle from linearity. At low
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spectral angles, the kinetic information becomes important, and the slower analyte

is predicted with greater accuracy. The increase in error of prediction with

increasing angle from linearity can be seen for both analytes.
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Figure 5-7: Relative standard error of an nPLS prediction as a function of the

spectral angle and angle from linearity. The kinetic angle for this data was

~10°.

Figure 5-7 depicts the response of multiway PLS to various spectral angles and

angles from linearity. The same general trends described above are visible in these

plots, but it is apparent that the errors of prediction are lower. Again, multiway

PLS proves superior to traditional multivariate calibration techniques.
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5.2.2. Systems where the reagent does absorb

When the reagent absorbs in the spectral region of interest the effect of

kinetic nonlinearity is complicated. In addition to a nonlinear relationship between

initial and fixed—time analyte concentrations, the non-constant reagent

concentration contributes a time-dependent rather than a constant spectral

background. This effect is becomes more pronounced as the reaction proceeds and

the reagent is consumed. This results in less accurate determinations of the slower

analyte, especially at high rate constant ratios where the faster reactant has used

more of the reagent before the slower analyte has reacted to any appreciable

degree. Figure 5-8 shows the results of a CR prediction for a system with the

gallium-nickel spectra described in chapter 3. The determination of the faster

analyte is not greatly affected by decreasing kinetic angle or reagent excess. The

determination of the slower analyte, however, suffers loss of accuracy as the

reagent excess decreases, especially at high rate constant ratios (kinetic angles).
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Figure 5-8: Relative standard error of a CR prediction as a function of the

kinetic angle and reagent excess. The gallium/nickel/PAR spectra (with the

PAR absorbing) were used to generate the data. The spectral angle for this

data was ~11°.

Figure 5-9 shows the results of applying nPLS to the same data used for Figure 5-

8. In general, nPLS seems more adversely affected by increasing non-linearity

than does CR.
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Figure 5-9: Relative standard error of an nPLS prediction as a function of the

kinetic angle and reagent excess. The gallium/nickel/PAR spectra (with the

PAR absorbing) were used to generate the data. The spectral angle for this

data was ~11°.

5.3. DETERMINATION OF GALLIUM (III) AND NICKEL (11) IN A

SYSTEM WITH NONLINEAR KINETICS

A determination of Ga(III) and Ni(H) was carried out as described in

sections 5.1.2 through 5.1.4. The degree of nonlinearity was determined by

varying the concentration of PAR. Two PAR concentrations were used. At the

higher concentration (1.0 mM) there is an average reagent excess of 28.1 fold.

Here the excess of reagent is calculated by dividing the PAR concentration by the
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average sum of the analyte concentrations. At the lower PAR concentration (40

M) the PAR is present in 1.2 fold excess.

Table 5-1: Kinetic-spectrophotometric determination of Ga(III) and

Ni(II) with two different values of reagent excess
 

 

1.0 mM PAR 40 11M PAR

Method % RSEP % RSEP % RSEP % RSEP

(Ga) (Ni) (Ga) (Ni)

CR 19 4 28 4

PCR 19 6 34 4

PLS 19 4 43 6

MLR 26 14 56 4

nPLS 21 5 49 4
 

The results of these determinations are presented in Table 5-1. Inspection of

the data reveals that, as is expected based on the results shown in Figures 5-8 and

5-9, the determination of Ni(II) is not affected by the change in PAR

concentration. The determination of Ga(III) is more strongly affected by the

kinetic nonlinearity present in the data due to the lower PAR concentration.

Figures 5-10 and 5-11 show the results of predictions using CR. As in

chapter 4, the solid center line in these plots represents a perfect prediction (a

slope of unity). The two dashed lines represent 10% error limits.
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Figure 5-10: CR determination of Ni(II) by reaction with 1mM PAR (circles)

and 40 11M PAR (plus signs). At the PAR concentration of 1mM the average

excess is 28 fold; at 40 uM it is 1.2 fold.

Figure 5-10 depicts the prediction of nickel. The plot clearly shows that the

prediction is largely unaffected by the kinetic nonlinearity.
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Figure 5-11: CR determination of Ga(III) by reaction with 1mM PAR

(circles) and 40 uM PAR (plus signs). At the PAR concentration of 1mM the

average excess is 28 fold; at 40 uM it is 1.2 fold.

In Figure 5-11 the results of the prediction of Ga(III) can be seen. The

overall error is large (28%, see table 5-1), but three of the four unknown samples

are predicted well. The fourth, with the highest concentration of Ga(IH), is

predicted quite poorly. The PAR is not in excess for this sample, and so the

prediction fails. This result is of extreme interest, as it shows that reagent excesses

of just a single fold are sufficient for accurate determinations and that only when

the reagent is the limiting reactant does the kinetic-spectrophotometric

determination fail. This is important, as it reveals that large excesses of extremely
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high absorptivity reagents in order to ensure pseudo-first order conditions are not

necessary. This, then, is perhaps one of the most compelling and powerful

arguments for the use of multivariate calibration techniques for kinetic and

kinetic-spectrophotometric determinations.

5.4.

(1)

(2)

(3)

(4)

(5)

(6)
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CHAPTER 6

DETERMINATION OF Zn(II) AND Cu(II)

IN A DRINKING WATER SAMPLE

D0, or do not. There is no try.

--George Lucas: The Empire Strikes Back (Yoda)

The determination of zinc (II) and copper (II) in a standard drinking water

sample was carried out using their reaction with PAR. Good accuracy was

achieved in spite of the presence of interfering species.

Both Zn(II) and Cu(II) react with PAR according to a 1:2 stoichiometrylz

Zn“ +2PAR :2 Zn PAR2

Cu2+ +2PAR .-_\ Cu PAR,

The determination of zinc and copper in environmental and clinical samples

is of some importance? While both metals are essential in small concentrations,

they are toxic at higher concentrationsz. The EPA has set limits of 1.3 ppm for

copper in drinking water3 and 5 ppm for zinc in drinking water3.

The use of PAR as a spectrophotometric reagent for the

determination of copper and zinc has been reported in the literature“? Other

workers have described the determination of zinc or copper using a

chromatographic separation and either a pre-concentration step involving PAR or
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a post-column reaction with PAR14-23. There have been a few reports of kinetic

determinations of copper or zinc using PAR as a reagent2034’25.

6.1. EXPERIMENTAL

The sample in which the Zn(II) and Cu(II) were determined was purchased

from NSI Solutions, Inc. (Research Triangle Park, NC). It contained a mixture of

11 metal cations in a standard drinking water matrix. These metals were certified

to be present in the following concentrations:

 

 

Table 6-1

Certified concentrations (ppb) of metal cations in a

drinking water sample

Certified Certified

Metal Concentration Concentration

(Ppb) 11M

Arsenic 113 1.5

Beryllium 5.17 0.6

Cadmium 15.4 0.1

Chromium 103 2.0

Copper 834 13.1

Lead 69.4 0.3

Manganese 222 4.0

Mercury 10.3 0.05

Nickel 246 4.2

Selenium 23.2 0.3

Zinc 1 130 17.3
 

Of these metals, all but arsenic, beryllium and selenium will react with PARl.

6.1.1. Solution Preparation.

All solutions were prepared with distilled water and reagent grade

chemicals. A buffer of pH 8.5 was prepared from sodium borate and adjusted with

nitric acid. All working solutions were prepared in this buffer, though some

concentrated stock solutions were made in water and then diluted with buffer.
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Twelve calibration mixtures in the micromolar concentration range were

prepared from 1 mM stock solutions of the metal nitrates. The Cu(II)

concentration was varied between 11 and 17 M; the Zn(H) concentration ranged

from 15 to 21 M. These were mixed and reacted in the stopped-flow system with

a solution of 100 M PAR in pH 8.5 buffer. A plot of the calibration set in

concentration space is given in figure 6-1.
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Figure 6-1: Calibration set (stars) used in the determination of Zn(II) and

Cu(II). The unknown sample is depicted by an open circle.
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6.1.2. Kinetic-spectrophotometric Data Collection

Data were collected using a home-built stopped-flow apparatus interfaced

to a thermoelectrically cooled Tracor Northern (Model TN-6123) 512 element

intensified diode array (Tracor Northern, Philadelphia, PA) configured to acquire

spectra in the 400-800 nm range as described in chapter 2.

In the wavelength range of interest (500-550 nm), absorbance was

measured at 64 equally-spaced wavelengths. Kinetic information was obtained by

acquiring 22 spectra at a rate of 10.5 spectra per second for a total acquisition time

of 2.0 seconds. The spectra and kinetics of the analytes and their reaction products

are described in detail later in this chapter.

6.1.3. Data processing

Time dependent spectra were collected in quadruplicate and averaged, i.e.,

each metal ion solution was reacted with PAR four times. The resulting four sets

of kinetic-spectrophotometric data were averaged. Data were mean-centered (as

described in chapter 3) before being input to the appropriate algorithms.

Multivariate calibration algorithms provided in the PLS_TOOLBOX (Eigenvector

Technologies, Manson, WA) and run in MATLAB were used to perform

determinations.

6.2. DETERMINATION OF ZINC (II) AND COPPER (II)

Zn(H) and Cu(II) were determined in both a standard drinking water sample

and in a series of synthetic unknown samples. Ni(II) and Mn(II) were the major

interfering species in the drinking water unknown and so these were added to the
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calibration set solutions, and to several of the synthetic unknowns. The calibration

samples were all 4.0 uM in Mn(II) and 4.2 11M in Ni(II). The concentrations of the

analytes and the levels of the interferents present in each unknown sample are

given in Table 6-2.

 

 

 

Table 6-2

Concentrations of analytes and interferents in the unknown sam les in uM units

Drinking Water Synthetic Unknow Pynthetic Unknowri Synthetic Unknown

#1 #2 #3

Cu 13.1 13.1 13.1 13.1

Zn 17.3 17.3 17.3 17.3

Mn 4.0 4.0 13.1 4.0

Ni 4.2 -- -- 4.2

Cd 0.1 -- -- --

Cr 2.0 -- -- --

Pb 0.3 -- -- --

fig 0.05 -- -- --      
 

The results of the determination of Cu(II) and Zn(II) in each of these samples are

summarized in Table 6—3.

 

 

 

Table 6-3

Results of the determination of Cu(II) and Zn(II) in a series of unknown samples

Drinking Water Synthetic Unknow Synthetic Unknow Synthetic Unknown

#1 #2 #3

Method % RSEP % RSEP % RSEP % RSEP % RSEP % RSEP % RSEP % RSEP

(Cu) (Zn) (Cl!) (Zn) (Cu) (Zn) (Cu) (Zn)

PLS 6 6 ll 3 14 2 7 3

PCR 6 6 ll 3 13 2 6 3

MLR l 4 9 l 9 3 9 3

CR 5 1 ll 3 14 2 11 1

Parafac 5 3 21 2 27 2 19 5

nPLS 6 6 11 3 14 2 7 3      
 

The EPA has designated acceptance limits for the determination of Cu(II)

and Zn(II) in the drinking water sample. The acceptable range for the

determination of copper is $9.8 % error. Acceptable determinations of zinc have
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errors not larger than i7.98%. All of the chemometric techniques used produced

predicted analyte concentrations of acceptable accuracy. Copper was determined

with an error of approximately 5%; zinc with an error of 3-6%. Both are well

within the EPA guidelines.

The presence of the interferents had little effect on the determination. In the

second synthetic unknown, the manganese concentration is more than three times

its level in the calibration set. The accuracy with which the analytes were

predicted is only slightly worse (e.g., 14% vs. 11% error for the CR determination

of copper) than it is for the first synthetic unknown. In the third synthetic

unknown, which has the interfering species present in the same concentrations as

the calibration set, the analytes are determined with better accuracy (an average

decrease of 1-3% relative error compared to the first synthetic unknown). The

calibration step compensates for the analytical signal due to the interfering species,

and so the third unknown is least affected by the interferents. The other two

synthetic unknowns are missing Ni(II) (see Table 6-2) , and so are not well

described by the calibration set, which does contain nickel.

In all cases, zinc is determined more accurately than is copper; the error

with which Zn(II) is determined is generally half to one third that of Cu(II) (see

Table 6-3). This can be explained by examining the spectral and kinetic

contributions to the net analyte signal for each analyte. As a first step, the spectra

of the analytes (or specifically, of their reaction products with PAR) can be

compared.
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Figure 6-2: Spectra of the PAR complexes of Zn(II) and Cu(II). The zinc

complex is shown as a solid line, the copper complex as a dotted line.

The spectral angle can be computed to be 17.1, a sufficiently high value to suggest

that a reasonable determination might be attempted. The spectral net analyte

signals reveal that zinc is likely to be more accurately predicted than copper;

zinc’s spectral net analyte signal is 5.8 times larger than copper’s. This is true

because although the copper complex has a higher molar absorptivity, zinc is

present in a high concentration.
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Figure 6-3: Kinetic profiles of the formation of the PAR complexes of Zn(H)

and Cu(II). The zinc complex is shown as a solid line, the copper complex as a

dotted line.

The kinetics of the reactions under the conditions in which the drinking

water sample were determined are shown in Figure 6-3. The rate constants for the

two reactions are very close; the ratio of the rate constants is 1.1, and the kinetic

angle is 2.4. The kinetic data provides slightly more information about the slower

reaction of zinc with PAR; zinc’s kinetic net analyte signal is 1.3 times larger than

copper’s. Since zinc has both a larger kinetic and spectral net analyte signal, it is

not surprising that it is determined with greater accuracy (usually between half and

a third the error of the copper determinations—see Table 6-3).
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CHAPTER 7

CONCLUSIONS AND FUTURE PERSPECTIVES

Data without generalization isjust gossip.

«Robert Pirsig

The preceding chapters have described the application of chemometric data

processing techniques to kinetic-spectrophotometric data 'under a variety of

circumstances. In this chapter, the work as a whole is summarized, and thoughts

on future work are presented.

7.1. CONCLUSIONS AND SUMMARY

Chapter one presents a fairly detailed overview of the fields of

chemometrics and kinetics as applied to analytical chemistry and highlights the

application of chemometric techniques to kinetic data. Multivariate calibration

algorithms are described in detail; some attention is given to artificial neural

networks, multiway algorithms, and other techniques as well.

A new data acquisition system was designed and built. This redesign of the

existing system involved the fabrication of a new optical path for the stopped-flow

apparatus as well as the creation of a new computerized interface for the diode

array detection system. The new system was characterized; the results of this

characterization and the details of the new designs are found in chapter two. The
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redesign of the system made possible the collection of the kinetic-

spectrophotometric data analyzed in the remaining chapters.

In chapter three the results of a series of simulated experiments are

described. In these simulation studies the effect of an array of experimental

variables on the accuracy of a kinetic-spectrophotometric determination of a two

component mixture are explored. Methods for quantifying the amount of kinetic

and spectral information present in kinetic-spectrophotometric data were

discussed. The kinetic and spectral angles were introduced and shown to be good

measures of the quantity of information available in each dimension. Kinetic and

spectral net analyte signals were also developed and were shown to be good

predictors of the relative accuracy with which analytes can be determined. Simply

put, the kinetic and spectral angles allow prediction of the general feasibility of a

determination and the dimension (kinetic or spectral) that will be relied upon most

heavily. From these data and the net analyte signals it is possible to infer which

analyte will be determined most accurately. As an example, the case of gallium

and nickel discussed in chapter four can be cited. The kinetic and spectral angles

make it clear that spectral information is more heavily relied upon than kinetic in

this case. Thus, although gallium has a higher kinetic net analyte signal, nickel’s

greater spectral net analyte signal indicates that it will be determined more

accurately. This indeed is the result of both the simulated and experimental

determinations.
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The kinetic angle was shown to have several contributing factors. The ratio

of the analyte rate constants is the largest contributor, but the fraction of the

slower reaction for which data is acquired and the number of spectra acquired also

impact the kinetic angle.

Chapter four describes the determination of Ga(III) and Ni(II). In the

studies discussed, the effect of the kinetic angle was explored experimentally; the

determination was carried out at two different values of solution pH where the

ratios of the reaction rate constants are different. The expected results were

obtained; the determination was more accurate at the pH (8.5) where the kinetic

angle was largest. A comparison was drawn between the various chemometric

algorithms and it was found that continuum regression generally out-performed

the other multivariate calibration techniques, but that partial least squares

regression and principal component regression were nearly as good. PARAFAC

was found to be useful only in limited circumstances, and multiway PLS showed

an ability to compete with and often surpass the best of the multivariate calibration

techniques when dealing with multiway data.

In chapter five the effect of kinetic non-linearity was examined. Causes of

kinetic non-linearity were discussed and recent work in the area of kinetic

determinations in nonlinear systems was highlighted. The degree of kinetic non-

linearity was measured as an angle from linearity. This angle was shown to be a

good predictor of the accuracy with which a determination could be performed.

The degree of non-linearity was varied in a series of simulations. In general, it was
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found that the techniques used were fairly tolerant of nonlinear kinetics, but that at

very large angles from linearity the determinations became inaccurate.

Experimental studies in which the degree of linearity was varied were also

described. In these studies Ga(III) and Ni(II) were determined under two sets of

experimental conditions with varying degrees of non-linearity. The results

obtained paralleled the simulations and were quite encouraging. Again, the various

chemometric algorithms were compared, and similar results to those found in

chapter three were obtained. Continuum regression and nPLS proved best suited to

handling the nonlinear kinetic data.

Chapter six presents the determination of Cu(II) and Zn(II) in a real sample

with clinical and environmental relevance. The accuracy of the determination was

within the EPA’s acceptance limits for both analytes. The kinetic and spectral

angles and net analyte signals were used to explain the relative accuracy with

which the analytes were determined.

7.2. REFLECTIONS ON FUTURE DIRECTIONS

All of the work described in this document has focused on the

determination of two analytes. The extension to three or more analytes is certainly

logical, but also is highly challenging and will present many difficulties. Not least

of these will be the need to develop new methods for quantifying the amount of

kinetic and spectral information available. Ratios of rate constants and angles

between profiles lose meaning when more than two analytes are present. Net

analyte signals are better, but are still not capable of the necessary resolution. The
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net analyte signals reveal the degree to which a profile (kinetic or spectral) is

overlapped by other profiles, but do not reveal which specific profiles overlap the

profile of interest; e.g., an analyte might be highly spectrally and kinetically

overlapped, but by different species. In this situation, the net analyte signals will

both be small, but the determination can still be accurately performed since the

analyte is not overlapped in both dimensions by the same species. Other problems

that will be encountered include the determination of an unoverlapped analyte in

the presence of two other highly overlapped analytes, and the economics of scale

associated with three-analyte calibration sets.

The trend in chemometrics is toward the wider use of multiway algorithms.

As they become more popular, their use with multiway data will supercede the use

of first order algorithms on unfolded multiway data. This has had and will

continue to have an impact on the way in which data are collected and used. The

use of multiway algorithms for kinetic-spectrophotometric data has been briefly

explored in this work, and it is expected that it will continue to be an active area of

study.

In 1993 Crouch1 identified seven trends in kinetic methods of analysis.

Several of these are relevant to the work discussed in this document. These trends

are:

1. Increasing use of “intelligent automation”

2. Growing utilization of multidimensional instrumentation

3. Continuing development of sophisticated data processing techniques
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4. Additional progress in error-compensation techniques

5. Innovations in multicomponent kinetic procedures

6. Expanding applications of kinetic determinations

7. Enlarging the kinetic approach to include miscellaneous time-dependent

responses

The work in this thesis is testament to the continuation of trends 2, 3, 4, and 5. As

the field of chemometrics continues to advance and to become more widely

accessible and accepted, trend three will hold as new (at least to kinetics

researchers) chemometric techniques are applied to kinetic data.

It is the contention of this author that wider accessibility of and familiarity

with chemometric techniques and the proliferation of multidimensional

instrumentation will eventually result in an increase in the number of analytical

measurements employing kinetic or other time-dependent data. This is in

accordance with the sixth and seventh trends listed above. As Crouchl'2 and

Mottola3 have pointed out, most analytical methods involve some sort of kinetic or

transient response. Often, great pains are taken to ensure that these time-dependent

responses are avoided or that they are compensated for in the data processing.

Modern multiway chemometric data processing options are able to correctly

handle higher order data and can separate and make use of several data

dimensions. This implies that time-dependent data can be used in almost all

analytical measurements, resulting in increases in selectivity and (in many cases)

sensitivity'v3-5. Some of the areas in which the transient data is already being
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applied include luminescence lifetime spectroscopy, fluorescence lifetime imaging

microscopy, sequential injection analysis and transient electroanalytical chemsitry.

In all, the future of analytical chemistry appears bright. Greater computing

power allows the acquisition of more data in more dimensions and grants the

ability to use these data to perform more and better determinations. The field of

kinetic methods will no doubt benefit from this trend, and the field of

chemometrics will continue to grow. This thesis is but one example, a simple

harbinger of this new direction and focus.
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APPENDIX

MATLAB CODE FOR GENERATING SIMULATED

KINETIC-SPECTROPHOTOMETRIC DATA

You think you know when you learn, are more sure

when you can write, even more when you can teach,

but certain when you can program.

--Alan J. Perlis

Anyone who considers arithmetical methods of

producing random digits is, ofcourse, in a state ofsin.

--John von Neumann

Code designed to generate simulated kinetic-spectrophotometric data was

written in MATLAB’s native programming language. The main program is

mulgen_a.m. This programs calls several others.

Mulgen_a begins by collecting the necessary information for the generation

of simulated data. The user provides a matrix of absorptivities for each reactant,

reagent, and product, a matrix of the initial concentrations of each reactant, the

fraction of the slower reaction to observe, the initial reagent concentration, the

desired levels of instrumental noise and rate constant fluctuation, and the number

of spectra to generate.

The program then uses the variable perrxn (the input fraction of the slower

reaction to observe), and calculates the time at which to cease “data acquisition.”
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It does this by making the initial, worst-case assumption that the faster reaction

will have reached equilibrium by the time the slower reaction has had time to

begin. Using this assumption, the time at which the slower reaction will have

reached the desired fractional completion is calculated. Five hundred points are

then generated for the parallel reaction of the two reactants with the reagent

between zero and this calculated time. The time at which the concentration of the

slower product reaches the threshold determined by the fraction of the reaction to

be observed is noted, and 500 more points are generated between time zero and

this new time. Again, the time at which the product concentration reaches the

threshold level is found, and this time is used as the stopping time for the data

generation in all future calculations.

The program proceeds to calculate the concentration of all species at all

times in all samples. The absorptivities are then used to calculate the absorbance

of each species, and these absorbances are summed to generate the final data

matrix.

Calculations of the concentration of the reactants, reagent, and products at

any time during the reaction are performed by the program kinetic.m. This

program sets up and calls the MATLAB routines for numerically solving systems

of ordinary differential equations. These routines require a model of the system

that includes the differential equations to be solved. This model is supplied by the

function vary_k.m.

The code of mulgen_a.m. kinetic.m, and vary_k.m are found below.
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MULGEN_A

function [signal,signa13,Dim_signa1,tfinal] =...

mulgen_a(absorbs,concentrations,perrxn,concrO,...

noisek,noisei,pts)

[signal,signa13,Dim_signa1,tfinal] =

mulgen_a(absorbs,concentrations,perrxn,concrO,.

noisek,noisei,pts);

generates absorbance data for a specified # of wavelengths

over a specified time period. It uses the kinetic.m routine,

and so can handle any kinetic system that can be modeled

by ode45.

Molar absorbtivities should be organized in columns:

epsl epsZ ... epsreagent epspl epsp2

Concentrations should be also be arranged in columns.

complsampl compZSampl

complsamp2 comp23amp2

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

% This version handles 2 components, any # of wavelengths, and

% any # of samples.

% It allows the user to input the amount of variation in the

% rate constants, the level of instrumental noise, and the

% percent completion of the slower reaction.

%

% It requires that k1 and k2 be declared as global variables

%

% The output “signal" is in the form:

%

% slwltl slw2t1 slw3t1 ... slw1t2 slw2t2

%

%

%

%

%

%

%

%

%

%

g

g

‘g

1%

sZwltl $2w2tl $2w3t1 ... sZwltZ sZw2t2

stltl s3w2tl s3w3tl ... s3w1t2 s3w2t2

The output "Dim_signa1" is in the form:

[samples waves pts]

The output I'signal3" has each row as a time, each column as a

wavelength, and each sample as a page.
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Created 9/20/95 by Tom Cullen

Last Updated 6:04 PM 8/16/99 by Tom Cullen

0
9
6
9
6
9
6
9
0
9
0
9

%*************************************************************‘k‘k

% Get info from user

%***************************************************************

[samples,comp]= size(concentrations);

[waves,xcomp] = size(absorbs);

global k1

global k2

%***************************************************************

% Determine stopping time

%***************************************************************

[lowk,which_one_low]=min([k1,k2]);

[highk,which_one_high]=max([k1,k2]);

if kl==k2

lowk=k2;

highk=k1

which_one_low=2;

which_one_high=1;

end

medianconcs=median(concentrations);

medianconc1=medianconcs(which_one_high);

medianconc2=medianconcs(which_one_low);

medianconcr=concr0-medianconc1-medianconc2;

concratio=medianconc1./medianconc2;

medianconcs=[medianconc1 medianconcZ];

reagtexcess=concr0 ./(medianconc1+medianconc2);

newtf=(-log(1-(perrxn)))./

(lowk*(concrO—medianconcs(which_one_high)));

[profile1,profile2,profiler] =

kinetic(medianconcs,concr0,0,newtf,’vary_k’,500);

if which_one_high==1

slow;profi1e=profile2;

else

slow;profile=profilel

«end

times=1inspace (0 , newtf, 500) ,-

for i=1:500
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if slow;profile(i) < (l-perrxn)*medianconcs(which_one_low)

newtf=times(i);

break;

end;

end;

[profilel,profileZ,profiler] =

kinetic(medianconcs,concr0,0,newtf,’vary_k’,500);

if which_one_high==

slow;profile=profile2;

else

slowgprofi1e=profilel

end

times=linspace(0,newtf,500);

for i=1:500

if slow;profi1e(i) < (l-perrxn)*medianconcs(which_one_low)

newtf=times(i);

break;

end;

end;

tfinal=newtf;

%************************‘k*********'k‘k***************************

% Expand scalar data into matrices... prepare other matrices

%***************************************************************

c01 = ones(samp1es,pts);

c02 = ones(samp1es,pts);

for i=1:pts

c01(:,i) = concentrations(:,l);

c02(:,i) = concentrations(:,2);

end;

k1_array = k1*ones(samples,pts);

k2_array = k2*ones(samples,pts);

k1_noisy_array = noise(k1_array,noisek);

k2_noisy_array = noise(k2_array,noisek);

k1_noise = abs(k1_array - k1_noisy_array);

k2_noise = abs(k2_array — k2_noisy_array);

noisesign = sign(rand(samp1es,pts));

time = 1inspace(0,tfina1,pts);

times = ones(samp1es,pts);

for i=1:samples

times(i,:)=time;

end;

for s=1:samples

for c = lzcomp

eval(['con' int2str(c) ’_’ int25tr(s) ’ =...

ones(waves,pts);'])

eval(['conp' int23tr(c) ’_’ int2str(s) ' =...
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ones(waves,pts);’])

eval(['abs’ int25tr(c) '_’ int23tr(s) ’ =...

ones(waves,pts);’])

eval([’absps’ int25tr(c) ’_’ int25tr(s) ' =...

ones(waves,pts);'])

end;

end;

absr = ones(waves,pts);

datapoints = waves*pts;

signal = ones(datapoints,samples);

%***************************************************************

% Calculate concentrations as a function of time

%************************‘k**************************************

[profilel,profile2,profiler] =...

kinetic(concentrations,concr0,0,tfinal,’vary_k’,pts);

k1t_noise = exp(-k1_noise .* times .* profiler) .* noisesign;

k2t_noise = exp(-k2_noise .* times .* profiler) .* noisesign;

profilel profilel .* k1t_noise;

profile2 profileZ .* k2t_noise;

profiler = profiler .* k1t_noise .* k2t_noise;

profilepl = c01 - profilel;

profilep2 = c02 - profi1e2;

for s=1:samples

for c = 1:comp

for i = 1:waves

eval(['con' int25tr(c) ’_’ int25tr(s) '([i],:) =...

profile’ intZStr(c) ’ (s,:);'])

eval(['conp’ int23tr(c) '_' int23tr(s) '([i],:) =...

profilep' int25tr(c) ' (s,:);’]);

eval([’conr_’ int23tr(s) ’([i],:) =...

profilerls,:);’]);

end;

end;

end;

%*************************‘k'k************************************

% Convert absorptivities into a useful fonm

%***************************************************************

for c = 1:comp

eval([’eps’ int25tr(c) ’ = absorbs(:,’ int23tr(c) ' );'])

eval(['epsp' int25tr(c) ' =...

absorbs(:,' int23tr(c+comp+1) ’ );’])

end;

eval([’epsr = absorbs(:,' int23tr(comp+1) ’ );’])
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for C: 1:comp

eval([’extinct’ int25tr(c) ’ = ones(waves,pts);’])

eval([’extinctp’ int2str(c) ' = ones(waves,pts);’])

end;

extinctr = ones(waves,pts);

for C: 1:comp

for i = lzpts

eval(['extinct' int25tr(c) ' (:,[i]) =...

eps’ int25tr(c) ’ (:,1);’])

eval(['extinctp' int23tr(c) ' (:,[i]) =...

epsp' int23tr(c) ’ (:,1);’])

end;

end;

for i = lzpts

extinctr(:,[i]) = epsr(:,l);

end;

%************************'A’**************************************

% Calculate absorbances

%***************************************************************

for S: 1:samp1es

for C: 1:comp

eval(['abs’ int23tr(c) ’ ’ int23tr(s) ' = extinct’...

int25tr(c) ' .* con' int23tr(c) ' ’ int25tr(s) ';’])

eval(['absps’ int25tr(c) ’ ' int25tr(s) ' =extinctp’...

int2str(c) ' .* conp’ int23tr(c) ’_' int23tr(s) ’;'])

eval([’absr_’ int2str(s) ’ = conr_’ int25tr(s) ’...

.* extinctr;'])

end;

end;

for S: 1:samp1es

eval([’sig_’ int23tr(s) ’ = absr_’ int23tr(s) ';’])

for C: 1:comp

eval([’sig_’ int23tr(s) ’ =...

sig_' int25tr(s) ’ + abs' int2str(c) ’_' int25tr(s) '...

+ absps' int25tr(c) '_' int25tr(s) ’ ;’])

end;

end;

%***************************************************************

% Reshape data and add instrumental noise

%***************************************************************

for S: 1:samp1es

eval(['signa1_' int23tr(s) ' =...

reshape(sig_' int23tr(s) ',datapoints,1);'])

eval([’signal(:,s) = signa1_’ int2str(s) ’;'])

end;

144



signal noise(signal,noisei);

signal = signal’;

Dimhsignal=[samp1es waves pts];

signa13=reshape(signal,samples,waves,pts);

signal3=permute(signa13,[3 2 1]);

%**********************************‘k'k***************************

% All done!!!!!

%***************************************************************
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KINETIC

function [profilel,profilez,profiler] =...

kinetic(concs,r0,t0,tfinal,model,pts)

% [profilel,profi1e2,profiler] =...

% kinetic(concs,r0,t0,tf,model,pts);

% is a general-purpose m-file that uses the ode45

% function to generate kinetic profiles. It must be given

% initial concentrations, beginning and ending times,

% and the filename of the ode45 function that describes the

% system. This m-file uses a cubic spline to interpolate

% as it generates a user-supplied number of data points

% per profile.

%

global k1

global k2

[mcon,ncon] = size(concs);

profilel=zeros(mcon,pts);

profile2=zeros(mcon,pts);

profiler=zeros(mcon,pts);

for 22: lzmcon

c0= [concs(zz,:),r0];

[t,c]=ode45(model,[t0 tfinal],c0);

ti=linspace(t0,tfinal,pts);

ci=interp1(t,c,ti,’spline’);

Ci=ci’;

profile1(zz,:)=ci(1,:)

profile2(zz,:)=ci(2,:),

profiler(zz,:)=ci(3,:)

I

I

end;
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VARY_K

function cdot=varyk(t,c);

% function cp=varyk(t,c);

% m-file that returns state derivatives when given state and

% time valus for a second order kinetic process given by:

% A+R=PA

% B+R=PB

% Created 8/7/96 by Tom Cullen

global kl

global k2

% Define cl=A, c2=B, and c3=R

% cl’ = -k1 .* c1 .* c3

% c2’ = -k2 .* c2 .* c3

% c3’ = (—kl .* cl .* c3) + (-k2 .* c2 .* c3)

cdot=[(-k1)*c(l)*c(3);(-k2)*c(2)*c(3);((-k1)*c(1)*c(3))+...

(-k2*c(2)*c(3))];
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