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ABSTRACT

SUPER-REPLICATION OF EUROPEAN EXOTIC OPTIONS

By

Chanho Park

“-

We study the continuous time problem ofhedging a European style Asian call option in

the presence of transaction costs. Under the assumption that the price process of the

relevant stock both fluctuates and does not fluctuate with positive probability, we find a

portfolio that super-replicates the option. Most important, we prove that the portfolio

that we found is optimal in the sense that it requires the smallest initial investment among

all the super-replicating portfolios.
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INTRODUCTION

In their fundamental paper, Black and Scholes (1973) discovered how to price

options in continuous—time financial markets where the stock price follows a geometric

Brownian motion and the market is free of transaction costs. By “option,” we mean here

a contract between a buyer and a seller whose value at some future date, the “exercise

time,” will be equal to a given function of the underlying stock. The value of the option

when it will be exercised will be transferred from the seller to the buyer. For the right to

receive that transfer of wealth in the future, the buyer pays the seller a certain amount of

money which is the option price. The main idea in Black and Scholes (1973) is that the

option price should be the exact difference between the value of the option at the exercise

time and the “capital gain” achieved from some “replicating portfolio.” This replicating

portfolio is based on the underlying stock and money market account. By using the

replicating portfolio, the seller is able to “hedge” his or her liability; namely, the seller

will not lose any money from the option contract.

The main problem in the Black and Scholes theory is that the replicating portfolio

demands continuous trading. This makes the theory not practical in the presence of

transaction costs that are proportional to the monetary value of the trades. The replicating

portfolio will create an infinite amount of trading and hence an infinite amount of

transaction costs. The transaction costs are called “two-sided” when they are being

charged in both buying and selling of shares. They are called “one-sided” when they are

being charged only in buying shares (or only in selling shares). We only consider the

two—sided transaction costs case in this thesis.



It was discovered in Bensaid, Lense, Pages, and Scheinkman (1992), in the context

of a discretetime model, that if the requirement of exact replication portfolio is relaxed, it

is sometimes possible to lower the option price. That is why we will only require here

that the hedging portfolio will dominate almost surely (“super-replicate”) the value of

the option at payoff time. This is, of course, enough protection from the seller’s point of

view so that is why we will not deal with exact replication in this thesis.

Davis and Clark (1994) has formally conjectured the “conventional wisdom”

concerning hedging of options in the presence of transaction costs. More precisely, they

conjectured that the only possible way to hedge a European style call option is by a trivial

hedging portfolio: buy one share and hold it till expiration day.

Soner, Shreve, and Cvitanic (1995) have proved the conjecture in a setup where

the stock price is modeled by a geometric Brownian motion. In their proof they have

used some ideas from convex function theory. We like their proof and we believe that

their methods can be applied to other problems as well. An example would be a problem

where the super-replication requirement is relaxed.

Levental and Skorohod (1997) (hereforth referred to as LS) deal with both

generalized American and European style call options. They require only that the stock

price will be modeled by a non-degenerate, continuous, positive semimartingale rather

than by a geometric Brownian motion. LS only use only fundamental properties of

stochastic integrals of continuous semimaningales. It is very exciting from the

mathematical point of view, but their approach has its limitations. Their method works

well only in super-replication context and it will be less useful when this requirement is

relaxed.



Finally Civtanic and Karatzas (1996) state a general result about the minimal price

that is needed to super-replicate European style options. They found essentially that this

price is the supremum of the expected discounted value of the claim with respect to all

equivalent probability measures under which all portfolios are superrnartingales.

In our model we use the same model as LS with one difference. We use a stronger

assumption on the fluctuations of the stock price process than the one used by LS. The

option that we use is “European style Asian call option” which has a payoff similar to the

classical call option with one difference: The stock price at payoff time is being replaced

by averaging the stock price throughout the option’s lifetime. Our achievement is that we

find a portfolio that super-replicate the option and, most important, we prove that

among all possible hedging portfolios it is the one that requires the smallest initial

investment.



Chapter 1

The model, basic definitions and main results

We consider a financial market in which one stock is traded in the time interval

0 S t S 1. The price of this stock is represented by a stochastic process Z = {Z(t): O S t S

1}, which is defined on a complete probability space ((2, F, P). Assume that Z is a

continuous semimartingale with respect to a filtration {F,2 O _<_ t S 1} that is right

continuous, and such that F, contains all P null sets, 0 S I S 1, and F0 is the trivial o-

algebra. Since Z represents a price of stock, we will assume that Z is strictly positive

process. For simplicity we will assume that Z(O) = 1.

We will assume that the interest rate equals 0 in our model. Since one can always

work with discounted price, rather than the actual ones, this entails no loss of generality.

We want to assume that Z both fluctuates and does not fluctuates with positive

probability. We will give a precise definition later in this chapter.

Definition 1.1 A portfolio is an adapted stochastic process N = {N(t): 0 S t S 1},

which has almost surely (a.s.) left limit and right continuous sample paths, and satisfies

(1.2) P(j|dN|(z) < oo) = 1.

We denote the class of all portfolios by FV.





For N e FV, We define two processes N + and N _, which are associated with N:

1

N(0) + N(t)+ j |dN|(s)

 

 

N+(t)= 2 ° ,

N(O)—N(t)+ j |dN|(s)

N‘(t)= 2 °

The process M and N - are nondecreasing as. and satisfy:

(1.3) N =N+— N‘,

lle =dN+ + dN',

N +(O) = MO), and

N '(O) = O.

The process N +(t) (respectively N '(t)) represents the accumulated number of shares

that the owner of the N portfolio has bought (sold) up to time t, and N(I) represents the

number of shares in the account at time I.

Let 0 < A < 1, O < u < 1. In what follows A, respectively p, represents the fractional

transaction costs when one is buying, respectively selling, shares.

Remark: It is assumed that no transaction costs are being paid due to holding ofN(O)

shares at time I = 0.

The accumulated capital gain generated by a portfolio N is a stochastic process

{S~(t): O <15 1} defined by,

(1.4) SN (1) = :[N(s)dZ(s) — A ]Z(s)dN* (s) - u ]Z(s)dN' (s).



The financial interpretation of (1 .4) is the following: N(t) dZ(t) represents instant

gain (lost) of the portfolio due to the change of the share price dZ(t), while 7» Z(t) dM(t)

(u Z(t) (IN—(0) represents the transaction cost paid at time t due to buying (selling) of

(IMO) (respectively, dN "(t)) shares.

We describe now the European type Asian call option that we deal with in this paper.

This option is a contract between two persons: a seller and buyer. The option can be

exercised only at time t = 1. At that time the seller has the obligation to pay the buyer

g( [2mm where g(x) = ((1 — #) x — q):

where q is a given positive number. The function g is called the payoff function of the

option. From now on, when we mention option, we mean the option that we have just

defined.

Remark. We find it easier to work with the option above. However some readers will

1

think that the payoff function g( IZ(t)dt) with g(x) = (x — q)+ is a more natural choice.

0

Those readers are directed to the Corollary 1.9 at the end of this chapter.

The question that we are asking here is, what price should the seller charge the

potential buyer at t = O, for the right to own the option? The idea is that the seller will

charge the minimal amount ofmoney that will allow him or her to hedge their liability.

This means that the seller will create a portfolio skillfully. This portfolio’s capital gain at

1= 1 plus the money received from the buyer at t = 0 will be at least as large as the

payment that the seller has to transfer to the buyer at t = 1. In that way there is a certainty

that seller will not lose any money.



More precisely we define for each N eFV.

l

(1.5) xN = inf{x e R :x + S~(1) _>_g( jzmao}

0

If the set is empty, M will be taken to be 00.

We define the selling price of the option to be

(1.6). bg=inf{x~:Ne FV}.

Observe that b5 5 1. To show this we take M!) = l — t (so N+(t) = 1 and N" (t) = t)

and we get

g( (:jzmdz)

= {(1- p) (:jzuylz — W

30— MJZUW’

= JZ(t)dt — u JZUW

= [(1-1)d2(z)+1— p jZ(t)dN’(t)

= l + SN(1).

So we conclude that b5 5 1.

In this paper we will assume that the stock price Z(t), in addition to being a positive

semimartingale, also satisfies some extra assumptions. To define them precisely, we need

some notation.

For every 0 < d S l and 8, y > O and stopping time T < d, we define the following



stopping time.

inf{T s: s d : 2(1) = e'5 Z(T) or 2(1) = e7 Z(T)‘,

d if no such 1 exists.

(1.7) T5, ={

We denote T: = T5“, ,TM = T5", and T8 = Ta'.

The following basic assumption on Z will hold throughout this paper.

Assumption 1.8 For every 5 > 0, d > O and stopping time 0 S T S 1, the following holds

(1) On the event {T < d} we have 3.5.

Pa," < (1,205"): 2(T)e‘5 /FT ) > 0,

Pa," < d,2(Tg’) = 2(T)e6 /FT) > 0.

(ii) P(T8 =1 /FT)> 0.

It will be convenient for us to modify Assumption 1.8. We will state here an

equivalent form of Assumption 1.8. In the proof of our main theorem we will use this

equivalent form. We state it here as Lemma A.25. The proof of this lemma will appear in

the Appendix.

Lemma A.25 If Assumption 1.8 is satisfied, then for every 0 < a < 1, there exists

8°(e) > O that satisfies: e250 S (l — 28) / (l — 3c), 1 — 635° S u, e350 — l S 2. so that for

every stopping times 0 S T S e, and 1 — e S r < l, we have

(i) P(T5o = 1 /FT) > 0 as,

(ii) Paw < 1, 2mg) = e‘B 2(1) / F.) > 0 as, where (3 = —[log(l — p) + 5°], and

(iii) P(1 — e 3 T50 < 1, 2(T50) = 55° Z(T) / FT) > 0 as.

Finally, we state the main result of this thesis.



Theorem 2.1 If Assumption 1.8 is satisfied then b5 = 1.

We already saw that b); S 1. We need then to show that b); 2 1. The idea behind

the proof of that is simple but the details are complicated. First we create a discrete

version of the problem. We are doing it in Lemma A.1. Then we need to know how to

handle that discrete version. This is done with the help ofLemma A.6. The actual proof

the theorem will appear in Chapter 2. The proofs of all the lemmas that we use during

the proof of the theorem in Chapter 2 will appear in the Appendix.

1

Corollary 1.9 Let the payoff function be: ( IZ(t)dt— q)+. Under Assumption 1.8 we have

0

1

b5:—
1— u '

Proof. We have (IZ(t)dt— q)+= -1—]—— {(1 — u) IZ(t)dt— (l — u) q}+.

o - [.1 0

Now observe that for every random variable H 2 O and constant a 2 0 we have

bE(aH) = a bE(H), where bE(H), the selling price of a European option with payoffH, is

l

defined by (1.5) with H replacing g( [2(z)dz) and by (1.6). By taking

0

l

H = {(1 — 11) IZ(t)dt— (l — u) q}+ , we see that it is enough to prove that bE(H) = l but

0 .

this follows form Theorem 2.1 when we use (1 — p) q instead of q.



Chapter 2

Proof of the theorem about the option

In this chapter we will prove that b5 2 1. This will be achieved by proving that

xN 2 l — e for any N e FV where O < e < 1 is arbitrary. This implies that xN 2 l and

since N is arbitrary we conclude that b5 2 1. In Chapter 1 we have already proved that

b5 S 1. Putting the two together gives b); = 1.

We will quote here four lemmas (A. l , A3, A5 and A.6) that are essential to our

proof. The proof of these lemmas will be given in the Appendix. We hope that this will

make our proof easier to read. The idea behind the proof is simple. First we create a

discrete version of the problem in Lemma A. 1 , then we handle that discrete version in

Lemma A.6 and finally we convert the result on the discrete version back into the setup

of our original continuous—time problem in Lemmas A3 and A.5.

In order to state Lemma A.1 we need a new definition. Let N e FV, and let T S r

be stopping times. We define:

SN(T,r)= jN(s)d2(s)—x [Z(s)dN*(s)—p [2(s)dN‘(s).

(Tm) (T31 (T31

SN (T,r) is the capital gain generated by the portfolio N between the T and 1.

Lemma A.1 Let N e FV and O S T S r S 1 be two stopping time so that

e‘8 Z(T) S Z(t) S e8 Z(T), for all te [T , t] as, where 5 > 0 satisfies 1 — e—zs S u and e26 —

1 S 71., then

SN(T,r) _<_ N(T) (2(1) - Z(T)).

10



Furthermore,

(i) If2(t) = e‘5 Z(T) then

S~(T,T) S N(T) (Z(T) - Z(T)) - 7t Z(T) (N(T) - N(T))+ - Hts Z(T) (N(T) - N(T)) _

, where us = e25 (p. + e—28 — 1) 2 0.

(ii) IfZ(‘t) = e25 Z(T) then

SN(T,T) S N(T) (Z(T) - Z(T)) - ls Z(T) (N(T) - N(T))+ - H Z(T) (N(T) - N(T)) —

, where x, = a” (x + 1 — e25) 2 0.

Lemma A3 is an asymmetric extension of Lemma A. 1.

Lemma A.3 Let N e FV and o s T s ‘C s 1 be two stopping time so that e‘” Z(T) s Z(t) s

e7 Z(T), T _<_ z s 1' a.s, and Z(T) = a‘B Z(T), where B, y > 0 satisfy that 1 — e45”) s it, then

SN(T,r) S N(T) (Z(r) — Z(T)).

Lemma A.5 shows that after each stopping time there is a positive probability that

our capital gain will be non-positive regardless of the trading strategy that we are using.

Lemma A.5 Let N e FV and O S T S 1 be a stopping time. Then

P(SN(T,1) S O / FT) > O.

The last lemma that we quote is Lemma A.6. To state it we need the following

notations. Let 0 < e < 1 and let 6 > 0 so that 1 — 628 S )1, t228 - l S A as in Lemma A.l.

Letb>l/(1—u)sothatczs l—EE— q

4 (1—u)b

 > 1 — e, where q is the strike price of the

option. The quantities 11;, and 15 are as in Lemma A.1.

Lemma A.6 There exists an integer M = M(e,5) 2 1 and a sequence ofmeasurable

functions Zk : R" —> R+, k 2 0, so that 20 = 1, and for every sequence of numbers M, k 2 O,

we have

11



2 N,...,N_ . .

k( 0 H) =2”, k215uchthat1f1nf Sn>g—1,

Zk-I (Nos-"9 Nk_2)
OSnSM

 

then 3 0 S n S M for which

(i). z,, = b, and

(11). C2 (b — l)——p.b(N,, -C2)_ 2 Sn,

n—l

where S, = ZNk(Zk+l ‘21.)

k=0

— {21m = 66 Zk}[7»5 (Nk+l — Nit)+ + H (Nk+l - Nit) _] Zk+1

— {Zk+1 = 6—5 ZkHA (NM - Nk)+ + l~lti(Nk+1 — Nit) _] Zk+1,

and Zk = Zk(No,...,Nk_1), k 2 0.

Finally we are able to prove our main theorem.

Theorem 2.1 If Assumption 1.8 is satisfied then b); = 1.

Proof.

Let N e FV and O < e < 1. To apply Lemma A.6 we select some constants.

Let 8 > 0 satisfies 1 — 2'25 S u and e225 — 1 S 7t. Choose b > 1 /(1 - u) so that

C251-3—8— q

4 (l—u)b

 

satisfies 02 > 1 — e . We denote d = e / 4 for notational simplicity.

Next we define a sequence of stopping times

To = 0, Tk+1 = (110:, k 2 0.

By Lemma A.1, we have, for every n 2 O

SN(O,Tn) S S" as. on {In < d}, where

12



n—l

5. = ZNtrnthna—Ztr.»

— {Z(Tk+1) = 68 Z(Tk)} [la (N(Tk+1) - N(Tk» + + H (N(tw) - N(Tk» -] Z(Tk+1)

- {Z(Tm) = 6‘5 Z(Ik)} [7L (N(Tkfl) - N(Tt» + + H8 (N(TkH) - N(Tt)) '] Z(Tt+t)-

By Lemma A.6, there is integer M(e,6) Z l, and there are measurable functions 2;, :

Rk—)R+,k20,sothatif inf Sn >e—1 thenElO S n S Mforwhich
OSnSAI

(2.2). 2,, = b, and

cz(b — l)—p.b(Nn —cz)_ 2 S",

where S" = SNUtt )(zM —zk)

_ T2,.” = e5 2k} [la (N(rk+t) — N(Tk» + + it (N(TkH) - N(Tk» _] Zk+1

— {21m = a“ at [A (N(Tk+1)— Nun) * + H5 (Neat) — NW» '1 a...

2,. = 2,.(N(t0),. . .,N(‘Ck_1)), k 2 0, and 2,... = e:6 2., k 2 0.

We will show that

(2.3). P(Z(rk) = 2),, 1 S k S M, m < d) > 0.

In principle, (2.3) follows because the price process Z fluctuates according to Assumption

1.8 (i). We will prove it formally by induction. To start the induction, we assume that

P(Ak) > O, for some k between 1 and M — 1, where Ak = {2(9) = z,-, 1 S i S k, r). < d} 6

Since

P0410 = P(Ak, Zk+1 = 56 Zk) + P(Ak, Zk+l = 6‘8 Zk),

we will assume without loss of generality, that P(A/., 21m = e6 2),) > 0.

l3



Since 21.4.] e F“ , it follows that (At, 21.4.1 = e5 2;.) e F“ . From Assumption 1.8 (i), we get

P(A,., 2,... = e5 2,, 2m“) = e5 2(a), n+1 < d) > 0.

But

Ak+1 2 {Aka zit-+1 = e5 Zk, Z(TkH) = 38 Z(Tk), Tk+1 < d},

so P(Ak+.) > 0. By induction we get (2.3).

From (2.2) and (2.3) we conclude that El 0 S n S M so that either

P(S,,S 8—1)>Oor

(2.4). P(Z(t,,) = b, 62 (b — 1) — u b (N(rn) — cz) _ 2 S") > 0.

We claim that xN 2 1 — e. The proof will be divided to 3 cases.

Remark. Throughout the proof all the inequalities will be understood to hold with

positive probability and we will not repeat it.

Case 1: HS 3 s —1)>0.

By using Lemma A.5, we have SN(O,1) S SN(O,r,,). We have already seen that

SN(0,t,,) S 5". So we conclude that Sit/(0,1) S e — 1. It follows from the positivity of the

payoff function g that xN 2 1 — a under the assumption of Case 1.

Next we assume that (2.4) holds and we split it into two cases based on the value

of Mr").

Case 2: P(2(t,,) = b, c2 (b — 1) — a b (N(rn) — c2) “ 2 Sn, Me.) 3 0) > 0.

We denote T = In, N‘ = Mr”) and z = 2(1). We need to estimate SN(O,1).

l4



We claim that

(2.5). SN(O,1) S c; (1 — u) b — Q.

We choose 8°, [3 > 0 so that

e25° s (1 -e/2)/(1 — 3e/4),1—e‘35°sn,e35° —1S}tand (““5”): 1—11.

By using our assumption on the process Z in the form ofLemma A.25 (i) with e / 4

instead of e, we have P(T50 = l / Fr) > 0. Now we use Lemma A.1 and (2.4) with

(N. — cz) ’ = cz — N. as follows from N‘ S O and C; > 1 — e.

We get

mom) s 5,, 3 c2 (b — 1) — 11 (c2 —N‘) b

=cz(b—1)—uczb+uN.b.

We apply again Lemma A.1 and we get

SN(T,1) SN‘ (2— b) SN. (55° — 1) b <— nN‘ b,

because T5. = 1, N’ s 0, z 2 e'5° b, and 11 2 1 — 635° > 1 — 65°.

So we have

SN(O,1) = SN(0,T) + SN(T,1)

I
A c2(b—1)—j.tczb

Cz(1—|.l)b—Cz.

Thus we get (2.5).

1

Next we will estimate the payoffg( Z2,) where ZS, == J'Z(t) dt.

0

We calculate

1423.120 —1t) [Z(tidt—q

15



(2.6). 2(1 —n)(1—e/2)e‘5°b—q,

bye—SObSZ(t)S esob,TStSTao a.s,TSe/4and T50=1.

Finally we claim that g( Zé) — SN(0,1) Z l — e.

To see this, we use (2.5) and (2.6)

g(Zti)-S~(0,1)

2(1—11m—8/2)e‘6°b~q—(02(1-11)b—C2)

q

(1_“)b(1—H)b—q+cz
 =(I-uitl—g—e5°(I—3f)>e‘5°b+

(use 62 =1—3—8— q

4 (l—p.)b

 

)

2 (1—p.)(1—§2——6280(1—§§-))e'80b+q—q+cz

2 (1— n)(1—e /2--(—1——HE2(1—3—8))e‘5°b+c2
3e

(1"?)

(usee25°s(1—s/2)/(1—3s/4))

=(1—n)(1—s/2—(1—e/2))e‘5°b+c2

=Cz>1—8.

So we haveg(Z(',)—SN(O,1)2 1 —8.

It follows now that xN 2 l — 8 under the assumption of Case 2.

Case 3: P(2(t,,) = b, c2 (b — 1) — a b (N(Tn) — e2) ‘ 2 Sn, Nu.) > 0) > 0.

Again we denote T = 13,, and M = N(rn). We introduce now some quantities to simplify

the calculations. We choose 5°, [5 > O as in Case 2 and the following:

c9= (1—p)cze£’°b—cz,

16



C3 =Cz(b—1)-H(N. —C2)— b, and

c4 =N’ (55° — 1) b —— as» N’ e‘5° b.

By Lemma A.1 and the assumption of Case 3, we get

(2.7). c, 2 SN(O,T).

The first calculation is to compare C9 with C3 and C4.

We claim that under the assumption N. > O, we have

(2.8). C9 2 C3 + C4.

Proof of (2.8). We split the proof into two cases according to the relation between N‘

and C2,

First we assume that N. 2 C2 > 0.

Here (N. — C2) " = 0. So we have

C3+C4=Cz(b—1)+N.(e—6° —- l)b *uaoN‘ e'sob

s e2 (b — 1) + Q (55° — 1) b — usage—5° b

(use N. 2 C2 and 65° — l < O)

= C2 (8-50b — 1) — 115° 626—50 b

= (l — 115°) C2 e‘éob — C2

= e25° (l — p.) C2 6—80 b — C2

(use 1 — as: =1 — e25° (a + {25° — 1) = 1 — 85°11 — 1 + (225° = 225° (1 — 11))

=(1— )4) C2 eéob —C2

= Cg.

To finish the proof of (2.8) we assume that O < N. < C2.

17



Here (N‘-Cz)-=C2-N.. So we have

C3+c4 = C2 (b—l) — “(c2—N‘)b +N'(e_5°—l)b —u5oN*e”5°b

= (cz—N‘)b+N‘b+N’(e‘5°—1)b —tt(e2—N’)b —ttaoN’e“5°b— c2

= (1 ~11) (cz—N‘)b+N‘ 65°12 —ttsoN‘e‘5°b—c2

=(1—uitc2-N‘)b+(1—uso)N’e‘5°b—c2

= (1 —11) (ca-N‘)b+e25°(1 —u)N‘e“"°b—c2

(usel ~us°=825°(1 —11))

s (1 —n)(e2—N')e5°b+(1 —n)1v"e“°b—c2

(usel —u >OandC2>N‘)

= (1 —n)(c2—N‘ +N")e‘5°b—c2

(1 —n)c2e5°b —c2H

= Cg.

After establishing (2.8) we will estimate SN(0,1).

We start by defining a stopping time t = Tao. Then we use Lemma A.25 (iii) with e / 4

instead of e, and we get that

P(1—s/4Sr<1,Z(r)=e’5°b/FT)>O.

Next we denote N = Mr) and define a stopping time L

I . if 1150.

{I n fiso,

[3.8

We claim that on the event {N. > O}

(2.9). P(SN(T,L) S C4 / FT) > 0.

Proof of (2.9).
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First we assume N S 0, so (N — N‘)+ = 0, (N — N‘)" = N. - N and L = I.

To see (2.9), we use Lemma A.1 (i) with 8°

SN(T,L) = smut) s N‘ (65° — 1) b — 1150 (N‘ — A7) 55° b

= C4 + 145° Ne—6° b S C4,

by N S 0.

Now we assume N > 0 (namely L = 1923c). By using our assumption in the form of

Lemma A.25 (ii) (with e / 4 instead of e) we get P(L < 1, Z(L) = 6‘3 2(1) /Ft) > 0.

Using Lemma A3 with [3, 8°, e’wW) = l — u, and Z(L) = e‘B Z(r), we get

(2.10). SN(T,L) 3 A7 (e‘B — 1) e‘°° b.

Using Lemma A.1 (i) with 8° and (2.10) we have

(2.11). SN(T,L) = SN(T,T) + SN(r,L)

s N‘ (65° — 1) b — A (N — N‘)+ 65° b — 1150(A7 — N‘)‘ e"5° b + A7(e'B — 1) e"5° b.

We need to show that the RHS of (2.1 l) is less than C4.

We do it first under the assumptionN < N'.

Here (A7 — AI‘)+ = 0, (A7 — N‘)‘ = N‘ — A7, so (2.11) gives

SN(T,L) s N‘ (155° — 1) b —— as (N‘ — A7) e‘5° b + Ame“3 — 1) e?“ b

C4 + twelve—5°b+N(e—B —— l)e—5°b

C4 + (H8°+e—B ~1)Ne—60b

c. + (e“’ —- (1 — 1150))1‘7 e"‘° b

5 C4,

by 1 — 115° = e250 (1 * H) = 8‘6“” > e'B and N> 0.

To finish the proof of (2.9), we work with the assumption N > N. which gives
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(A7 — N‘)+ = A7 — N‘, (N — N’)‘ = 0. So (2.11) gives

SN(T,L) SN‘ (e‘°° — 1) b — A (N —N") 65° b + A7(e"3 —1)e‘5° b

s N” (55° — 1) b + N“ (e‘B — 1) e"°° b

(useA7 >A/">0,e‘B — 1 <0)

=N‘ (e‘5° — 1) b — (1 —e"’)N‘ ea" b

S C4,

by 1 —e“B>naoandN‘>0.

We have established (2.9).

We will use (2.7) (2.8) and (2.9) to estimate SN(O,1). Under the assumption of Case 3

we have

(2.12). SN(O,L) = SN(O,T) + SN(T,L)

S C3 + C4 S Co.

By using Lemma A5 and (2.12) we finally have

(2.13). SN(O,1) = SN(O,L) + SN(L,1)

S C9.

Next we will estimate the payoff function.

We observe that

(2.14). g( ZS.) =(1— a) ths1ds — q

2(1—n)(1—e/2)e“"’°b—q,

by e'5°2(T)s2(t)se5°2(T),rgist,Ts 8/4and1-e/4St.

Finally we claim that g( 22,) — SN(0,1) 2 l — e.

To see this, we use (2.13) and (2.14)
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Z(l—u)(l—e/2)e_5°b—(1—u)C2e5°b—q+C2

 
=1_ -5° _3_ _3_3 25° q _ 5° _

( we 110 2 (1 4)e )+(1_“)b(l Me b q+cz

(useC2=l—3e/4——q/[(l—u)b])

1—8/2

21- e'°b1—e/2—1—3e/4( 11) ( ( )1_38/4
 

)+qea° -q+cz

(usee25°s(1—e/2)/(1—3s/4))

2(1—u)e"°°b(1 —e/2—(1—e/2))+C2

= 62 >1 -8.

So we get that g( 23,) — SN(O,1) 2 1 — s. It follows now that xy 2 1 —C under the

assumption of Case 3.

By combing the 3 cases we see that xN 2 1 — e. As we explained in the first

paragraph of this chapter this leads to b); = 1.
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APPENDIX

A] The tools of the proof

In this appendix, we will prove four lemmas that will be useful for us.

The first lemma is Al It is a simple result of the integration by parts formula.

It allows us to create a discrete—time version of the problem by looking at the hedging

portfolio at the times where the price process Z is going up or down by a factor of as,

where 8 > O is related to the order A and p.

The second lemma is A.3. This lemma is an asymmetric extension of Lemma A.1.

The third lemma is A.5. We call this lemma the “closing lemma,” since this lemma

helps us to finish the proof after finding a stopping time in which our goal is achieved.

The fourth lemma is a main lemma. This lemma (Lemma A.6) shows how to deal

with that discrete time version of our problem.

Recall that

SN(T,1:)= [WA/(s)d2(s)—A LTJIZ(s)dN+(s)—u LTJIZ(s)dN‘(s),

where N e FV, and T s. t are stopping times. SN(T,r) is the capital gain generated by the

portfolio N between the T and 1.

Lemma A.1 Let N e FV and O S T S r S 1 be two stopping time so that {5 Z(T) S Z(t) S

e5 Z(T), T S t S r as, where 8 > 0 satisfies 1 — 6‘28 S u and e28 — l S A, then

SN(T,t) s N(T) (Z(t) — Z(T)).
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Furthermore,

(i) 1r2(t) = e“5 Z(T) then

S~(T.t) S N(T) (Z(r) — Z(T)) - 7» Z(I) (N(t) — N(T))+ - H8 2(1) (Mr) — N(T)) ‘

, where as = e28 (11 + a” — 1) 2 0.

(ii) IfZ(t) = e5 Z(T) then

S~(T,r) S N(T) (Z(r) - Z(T)) — As 2(1) (Mr) - N(T))+ - u Z(r) (N(r) — N(T)) ‘

, where A5 = 525 (A + 1 - e”) 2 0.

Proof.

We will use the following notations:

Z: = min{Z(t): T S t S t},

Z. = max{Z(t): T S t S t},

h. = N”(r) — NWT).

h2 = N"(1) - N“(1‘),

h3 = ht — h2 = N(r) — N(T).

By integration by part and the definitions of Z., Z. we have:

S~(T,T) = N(T) (Z(T) - Z(T)) + [(1,1(2(I ) — 2(5)) dN+(S)

— LTJ](Z(‘C) — Z(s)) dN'(s) — A LTJ]2(s)dN*(s) — a LWZQ) dN’(s)

= N(T) (Z(T) - Z(T)) + jm](Z(T) - (1+ 7») Z(S)) dN+(s)

— (was) — (1 — u) 20)) dN‘ts)

s N(T) (Z(r) - Z(T)) + (”ga ) - (1 + A) 2.) ems)
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— (mtzc ) — 2’0 — 11)) dN'(s)

= N(T) (Z(T) — Z(T)) + (Z(T) - (1 + 71) 2.) hi - (Z(T) - (1 - 11) Z.) 122

= N(T) (Z(r) — Z(T)) + Z(r) h3 — (1 + A) Z. h1+(1— p.) Z* h2

= N(T) (Z(T) - Z(T)) + Z(T)/13 -(1+ 1») Z11 h1+(1- 102.013 - ht)

= N(T) (2(1) — Z(T))+(Z(1)+(1— 11) Z‘) ’13 — ((1 + A) 21 — (1 — 11) 2‘) hi.

Since {5 Z(T) s 2. s Z(T) s 2“ s e8 Z(T), we have

2’/2. SeS/éa =628$(1+A)A1/(1-},l).

This implies that (1 + A) Z- — (1 — p) Z‘ 2 0, so the last term is maximized when h] = h3+

(and then necessarily h2 = hf).

We conclude that

(A.2). SN(T,r) S N(T) (Z(r) — Z(T)) + (Z(t) — (l + A) Z.) h3+ — (Z(r) — (1 — p.) Z.) 113‘.

The RHS of(A2) is an increasing in Z. (decreasing in Z), so we can use

e° Z(T) and e“8 Z(T) instead of Z’ and 211 respectively for estimation.

Since Z(r) — (1 + A) Z. S O and 2(1) — (1 — p.) Z‘ 2 O, we get immediately that

SN(T,t) s N(T) (Z(T) — Z(T)).

Proof of(i). We use (A2) and the assumptions 2. = 2(t) = e‘5 Z(T) and 2‘ s e5 Z(T),

and we get

S~(T.1-) s N(T) (2(1) — Z(T)) — A 2(1) ha“ — (Z(r) — (1 — 11) e8 Z(T)) I13“

= N(T) (Z(I) - Z(T)) - A 2(1) hi - (Z(t) - (1 - 11) 82° 2(1)) hs’

= N(T) (2(1) — Z(T)) — A 2(1) In" — (1 — e26 (1 — 11)) 2(1) h;

= N(T) (Z(T) - Z(T)) - 7» Z(T) (N(T) - N(T))+ - 115 Z(T) (N(T) - N(T))_ -
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Proof of(ii). We use (A2) and the assumptions 2“ = 2(1) = e8 Z(T) and 2. 2 e‘5 Z(T),

and we get

SN(T,‘t) s N(T) (Z(t) — Z(T)) + (2(1) — (1 + A) e“8 Z(T)) I13+ — 11 2mm:

= N(T) (2(1) - Z(T)) + (2(1) — e‘” (1 + A) 2(1)) 113+ — 11 2(1»;

= N(T) (2(1) — Z(T)) + (1 — 6-21 (1 + A))Z(1) hf— 11 Z(T)h:1’

= N(T) (2(1) — Z(T)) — A1 2(1) (N(1) — N(T))“ — 11 2(1) (N(1)— N(T))“ .

Lemma A.3 Let N e FV and O S T S r S 1 be two stopping time so that e‘B Z(T) S Z(t) S

e7 Z(T), T s 1 s ‘t as, and Z(t) = e‘B Z(T), where (3,31 > 0 satisfy that 1 — 12'1””) g u, then

SN(T,r) S N(T) (Z(t) — Z(T)).

Proof.

We will use the notation from Lemma A. 1.

By integration by part, the definitions of 21, Z. we have:

SN(T,‘C) s N(T) (Z(t) — Z(T)) + Z(t)/13 — (1 + A) 2. h, + (1 — 11) 2" 112

= N(T) (Z(t) - Z(T)) + (2(1) + Z‘(1 — 11)) 1., — (21(1 + A) - Z‘(1 — 11)) hi.

Since 1.1—1’ Z(T) s 2. s Z(T) s 2‘ s eY Z(T), we have

2‘/2. set/e—B =eB*‘Ys 1 /(1 -—u).

This implies that (1 + A) 21 — (1 — p) Z. 2 0, so the last term is maximized when h] = h3+

(and then necessarily h2 = h3_).

We conclude that

(A.4). 5,4111) 5 N(T) (Z(t) - Z(T)) + (2(a) - (1 + A) 2.) It; — (2(1) — (1 — u) 2‘) 113‘ .
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The RHS of (A.4) is an increasing in 2', so we can use el Z(T) instead of Z‘ for

estimation.

We use (A.4) and the assumptions Z = 2(1) = e"B Z(T) and Z' S e7 Z(T), and we get

SN (T11) S N(T) (Z(T) - Z(T)) - A Z(t) 113+ - (Z(T) - (1 - 11) 6’ Z(T)) h3—

= N(T) (Z(T) - Z(T)) - A Z(T) 113+ - (e—B - 6y (1 - 11)) Z(T) 123‘

S N(T) (Z(T) - Z(T)),

bye—B—ey(l—u)20. I

Next we state and prove the “closing lemma.”

Lemma A.5 Let N e FV and 0 S T S 1 be a stopping time. Then

P(SN(T,1) S O /F1~) > 0.

Proof. Let a > 0 satisfies 1 — 63“ S p and e3“ — 1 S A, let 0 S T S 1 be a stopping time

and let I = T,.

Case 0: N(T) = 0. We may use Lemma A.1 with N(T) = O and we get

SN(T,r) S N(T) (Z(T) — Z(T)) = O.

The result now follows because P(r = l / FT) > 0 via Assumption 1.8 (ii).

Case 1: N(T) > 0.

We can assume that r < 1, 2(1) = e‘“ Z(T) and Ta = 1 with positive probability, by

Assumption 1.8. We denote that p = Z(T), N‘ = N(T), N = Mr) and z = 2(1) for notational

simplicity.

We calculate using Lemma A.l

SN(T,1) SN‘(e‘°‘ —1)p—(A7 —N‘)‘u,e‘“p —- (A7 —N‘)*Ae’°‘p + N(z—e_ap).
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Now we split case 1 into 3 sub cases:

Case1(i):N 2N‘ >0.

Here (N —N‘)—=0,and(N —N')+=N —N'. So

SN(T,1) sN‘(e‘°‘ — l)p-(N -N‘)Ae‘“p +A7(z-e‘°‘p)

sN"(e’°‘ —1)p—(A7 —N‘)Ae‘°‘p +A7(1—e‘°‘)p

(usezSpandN >0)

=07 —N‘)(1—e'°‘)p—(N —N’) Ae‘“p

=(A7 —N’)(1-e‘°‘ —Ae’°‘)p s 0,

byNZN.andAe‘“2(em—l)e_0L =62“ —e’Cl >1—e'a.

Casc1(ii):N‘>A'I 20.

Here (A7 —N‘)*=0, and (A7 —A/‘)‘=N‘ —A7. So

511(11) SN’W‘ —1)p—(N‘ —A7)11.e"°‘p+N(z—e‘“p)

SN‘(e‘°‘ —1)p—(N‘ -A7)11.e‘°‘p+N(I—e‘“)p

(usezSpandN’>N20)

=(N‘ —A7)(e‘“ —1)p—(N‘ —A7)11.e‘°‘p

=(N‘ 4111121 —1—11.e‘“)p<0.

bye‘“ —1<0,A/‘ —A7 >0andu,>0.

Case 1 (iii): N‘ > 0 >N.

Here (A7 —N‘)*=0,(A7 —N‘)‘=N‘—A7. So

S~(T.1)s1v‘ (e’°‘ —1)p-(N‘— A7111. e‘“p+A7(z—e‘°‘p)

sN‘(e‘°‘ —1)p—(N‘ —N)u,e‘°‘p+iv(e‘“ —1)e"°‘p

(use N< 0 and z 2 e’zap)
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sN‘(e‘°‘ —1—u,e‘°‘)p +A7(e‘°‘ —1+u,)e‘°‘p<0,

byN">O>N,e_‘ll —1<0and

11,: eza(u+e'2°‘—l) 2 e2“(1—e_3a+e"2a—l)=l—e_a >0.

Case 2: N(T) > 0.

We can assume that r < 1, 2(1) = e‘1 Z(T) and Ta = 1 with positive probability, by

Assumption 1.8. We denote that p = Z(T), N. = N(T), N = Mr) and z = 2(1) for notational

simplicity.

We calculate using Lemma A.1

SN(T,1) sA/‘(ea — l)p—(N —N‘)‘ u Cap—(N —N‘)* 11.,er + N(z—eap).

Now we split Case 2 into 3 sub cases:

Case 2 (i): N> 0 > N’.

Here (N -N‘)' = O, and (N -—N‘)+ =N —N.. So

SN(T,1) SN'(e°‘ — l)p-—(N —N‘) A,e“p+A7(z—e°‘p)

SN‘(e°l — l)p—(N —N‘)A,,e°‘p+N(eOI —1)e°‘p

(useN >Oanszezap)

=N.(e‘ll — l +A,,,e°‘)p+N(eCl —1—A,,)e°‘p<0,

byA7 >0>N‘,e°‘ —1>0and

A,=e'2°‘(A+ 1 —e2“) 2 e‘2“(e3°‘ —1+1—e2°‘)= e“ —1>0.

Case 2 (ii): 0 2 A7 > N‘.

Here (N —N.)' = O, and (N —N')+ =N —N’. So

SN(T,1)SN'(e° —1)p—(N -N‘)A,e°‘p+A7(z — cap)
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sN’(e“ —1)p—(A7—N‘)A,e“p+A7(1 —e°‘)p

(useNSOandzZ p)

=(A7 -N‘)(1—e°‘)p-(N—N‘)A.e“p

=(A7 —N‘)(1—e°‘ —A,,ea)p<0,

byA7>N‘,1—e“<0and).,>0.

Case2(iii):0>N‘2A7.

Here(A7—N‘)"=0,and(A7 —A/‘)‘=N"—A7. So

S~(T,1)SN'(e°‘ —1)p—(N‘ —A7)11e°‘p +A7(z—e°‘p)

sN‘(e°‘ —1)p—(N‘ —A7)ue°‘p +A7(1—e°‘)p

(useN<OandzZp)

=(N‘—A7)(e°‘ —1)p—(N‘—N011e“p

=(N‘—N)(e“-1—11e°‘)pso,

byN‘ 2N,and ue“2(1 — e’3a)e° =e“ —e—2°l > eat —1.

We conclude that P(SN(T,1) S O / FT) > O. I

We will start with the setup cfLemma A.6.

Let0<8 < l andlet8 >Osothat1—e_26 S u,e2°—1SAasinLemmaA.l.

Letb>1/(1 —p.)sothatC221 —3e/4—q/[(1—u)b] >1 —ewhereqisthestrike

price of the option.

Finally recall the notation ofLemma A.1:

115 = e25 (u + 1.1-25 — 1), and A5 = e“28 (A +1 — a”).
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Lemma A.6 There exists an integer M = M(e,8) 2 l and a sequence of measurable

fimctions Zk : R" —) R+, k 2 0, so that 20 = 1, and for every sequence ofnumbers N1, k 2 O,

we have

2,(N,,...,N,_,) =64

2,_,(N,,...,N,_,)

 , kZI such thatifoinf Sn >e—l,
SnSAI

then 3 0 S n S M for which

(i). 2,, = b, and

(II). Cz (b — 1)—pb(N,, —Cz)— 2 Sn,

—
‘

where S, = N1(Zt+t ”21)

Oa
.

ll

— (21.1: e521,}[A5 (NM —N,.)+ + 11 (N111 —N1)‘] 2111

- {Zk+1 = 8‘8 Zk}[7t (IV/1+1 - Nk) + + 116 (IV/1+1 - N11) _] Zk+1,

and 2,, = Zk(No,. . .,N1_1), k 2 0.

Proof. Leta>OsothatC1 E 1 —e+a<C2.

Letf: R+—) (0,1) be a strictly increasing firnction so that

C] =f(0) <f(oo) = C2.

We define 2,. = Zk(No,. . .,Nk_1), k 2 O, as follows:

20 = 1,

21+] = 68 21 ika < flzk), k 2 O,

= {5 21 ika Z flzk), k 2 0.

Here we explain our basic ideas. Our starting point is LS (1997) paper. In addition to that

paper we are using an important new idea. We define a dominant portfolio. This new

portfolio helps us in checking the inequality of Lemma A.6. When the stock price is
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going up the number of shares in this new portfolio (N'k in what follows) is more than the

number of shares in the original one, N1. Furtherrnore, when 2,, = b the sequence ND, is

increasing for k S n — 1, while at the time 11 there is a reduction in the number of Shares of

the new portfolio as we choose N1” = N".

We need some sequences (k 2 0) for simplicity.

Let L1, = {N1 <f(zk)}.

Let 1;, = {N1( 21121)}.

Let H), = (N111 — Nk)+.

Let h;‘ = (N111 — Nk)’.

Let or;c = N2 (211.1 — 21) — L1[A5 H1 + u hk] 21+] — l;( [A H, + 1.15 hk] 2111.

With this notation we can now rewrite the sequence {Sn} as:

So =0.

n—l

Sn =Za,,n _>_ 1.

lr=0

Let qk = max{l S i S k: L,-_1 = 11}, (= O ifthe set is empty).

Let N‘k =max{N,-:q1 S iS k} ika= 1,

=min{N,-:q1 S iS k} iflk= 1.

Next, we define the following sequence:

520:0.

n-l

sf = ZNsz —z,),n 21.

k=0
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Claim 1 SI” 2 S", n 2 0.

Proof of Claim 1. Ika = 1 (namely 2111 > 21) then N11, = max{N,: q), S i S k} 2 N1, and

Iflk =1 (namely Zk+1 < 2011161 N1], = min{N,-: q], S i S k} S Nk.

We can conclude that N‘k (2111 - 21) 2 N), (21.11 — 21,), k 2 0, and $2,, 2 S,,, n 2 0.

Claim 2 The sequence {5%,} satisfies the following:

(A.7) (i) If m > k and z,,, < 21,, then

32m _.. S’k Sflzm) (Zm — Zk) < CI (Zm — 211)-

(ii) If m > k and 2", > 21,, then

S’m — SI), Sf(z,,,) (2m - 21,) < C2 (2,,, — 2),).

(iii) Ifm 2 k and z,,, = 21,, then 5’," — 5'21, S 0.

(iv) Assume (w.l.o.g.) 3 0 < r, 3 EN so that a = 6%, b = 55.1fa S 2,, S b, 0 S k S n,

then

5“,, S C2(b—a) — (n—(s+r))0/2,

where

= JUE t(f(e‘**"“ ) — f(e’° ))(e‘**”‘"’ — e“ )1.

Proof of Claim 2.

We first observe that N‘k S flzk) if L), = 1.

To see this, we calculate:

If L1, = land q), S i S k thenf(z,~) Sf(z,,), and

N11,: max{N,:q1, Si S k}

Smax{/(z,-): qk S i S k}
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=f(21,).

We also observe that N11, 2 fizk) if I), = 1.

Similarly, we calculate:

Iflk = land q), S i S k thenflz,) Zflzk), and

M1: min{N,: q), S i S k}

2 min{f(z,-): q), S i S k}

= flzk)°

So for every k 2 0 we have

Slk+l —Szk = Mk (PI/1+1 - Zk)

Sf(th) (2H1 - 211)

(A8). Sf(Z111) (21,11 — 21,) < C] (21.11 — 21,), if 21.1] < 2;, and 2,,, S 2),,

or Sf(2",) (21+, — 21,) < C2 (21H — 21,), if 21,11 > 21, and z,,, 2 21,.

We also observe that

Ifzi, = z,,,+1 and 21+] = 2”,, k at m, then

(A9) (SI/1+1 _Szk) + (52ml 357111)

S —[f(2k+l) — f(Zk)l (21m - 21) < 0-

To see (A9), we calculate

(521+, —SZ,,) + (Sim. —S?,,,)

Sf(21,) (21,1, - 21) + f(211.) (2,1,1. —- Zm)

=f(2,.) (21+, — 2,.) + f(zk+1)(z;,- 21.11)

= —[f(Zk+l) - f(211)] (21., - 21)-
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Next we define, for every integer v and O S k < m,

m-l

u(v’k’m) : Z{(Z" ’Zn+l) = (8‘6 £04115”,

n=k

m—l

d(v,/em) =Z{(z..z...) =(e“'*"5 ,6... )1.
n=k

where we identify sets with their indication functions. In word, u(v, k, m) and d(v, k, m)

are the number of changes e"8 T 604-013, em”8 11 e"°, respectively, of the sequence

(21,. . .,z,,,).

Now we verify (A.7) (i). We define for each v that satisfies 2;, > e"5 2 2m:

n(v) = min {n 2 k: (2,,, 2,11) = (Cow’s, e"5)}.

We get

n+1

m-l

53—53:}:(52 —S:)
n=k

< 26 S130)“ '53”)

z,>e‘ 22,,

I

= Z Nn(v)(zn(")+1 —Z"("))

2, >e‘” 22,,

S 2 f(zm )(Zn(v)+l — Zn(V))

z, >e‘” 22,,

=flzm) (2m ‘ Zk) < C] (Zn, — Zk).

The first inequality follows from (A9) and the fact that z), > e"° 2 2,, implies d(v, k, m) =

u(v, k, m) + I, while that 6‘6 2 z), or z,,, > e"° implies d(v, k, m) = u(v, k, m). The second

inequality follows from (A8).

The proof of (A.7) (ii) is similar to the proof of (A.7) (i) and will be omitted.

We prove (A.7) (iii). Since each v is either e"8 2 z), = 2", or 21, = z,,, > e"°, this implies

d(v, k, m) = u(v, k, m), and S2”, — S‘k S 0.
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Next we prove (A.7) (iv). We have

3—1

11 = £110,011) + u(t,0,n)

3-1

s 22[d(t,0,n)/\u(t,0,n)]+l.

So

(A.10)

r=—r

s—l _

21109.11) 4 u(t,0,n) 2$53

Next we define

A, = {0 S k S n - l: (21,, 21,11) = (6’5, (3mm) or (cums, e’°)}, —r S t S s —1

By using (A8) and (A9) we get

Z(SZ-H .-
53) S C2 (e‘m’s — 8’5 )— [d(t,0,n) /\ u(t,0,n)p.

[1614,

Using (A.10) we now have

5-]

S: : 22(Sf+1_512)

!=-rkeA,

SC2 (e58 — e"5)—(n—(s+r))0/2

=C2(b — a)—(n—(s+r))0/2.

This is the end of the proof of Claim 2.

We will use now (A.7) to prove Lemma A.6.

Wedefine:M=[(s+r)+2(C2(b — a)+l—e)/0] +1.

First we need to divide Lemma A.6 into three cases.
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Case 1: Ifa=e"° < zk<e‘5=b,k20, then by A.7 (iv), we have

5,, S 52,, S C2(b — a)—(n—(s+r))0/2

< s—l,

whenevern>(s+r)+2(C2(b — a)+1—e)/0.

So inf S, Se —1 in this case.
OSnSM

Case 2: Ifthere is O S n S M such that 2,, = a, then by A.7 (i) and a < e / 4, we have

S,, 3 5°, SC1(a—l)

(l—8+a)(a -—l)

a—ae+az—1+8—a

8—l—a(8—a)

< e—l.

So inf S, Se —1 in this case.
OSnSM

Case 3: Ifthere is 0 S n S M— 1 such that 2,,11 = b, then

we claim that S,,+, S C2 (b — 1) — u b (NM — C2) ‘.

We will call this inequality the “main inequality.”

We need to go through some very long and painfill steps to achieve the main inequality.

First we need some notations.

Let H“, = (M11, — N',)+, 0 s k s 11—1.

Let h‘, =(N‘111— N11,) ‘, 0 S k S n—l.

Let Bk = N11,(Zk+1- Zk) - [L], 21.5 I‘ll/(1'11, [.15 Wk] Zk+1, 0 S k S n—l .
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Next we compare [3,, with 011,. This is a basic element of the proof.

Claim 3 Bi, 2 011, 0 SkS 11—].

Proof of Claim 3. We divide the proof into the two cases.

Case (i): L), = 1.

Here 2111 = e5 2,, and N, S N11, < f(z;,).

We observe that N‘M 2 N11,, and M11, = N111 v N11, 0 S k S n—l.

To see these, we calculate that

IfN1+1 2 fl2111) then q1+t = k+l,

N‘k+l =Nk+l Z lek-tl) >f(Zk) >Mk, and

N'k+l =Nk+l V Mk,

Ika+1 < flzm) then qm = q), and

MM = max{N,: q), S i Sk+l} =N1+t v N11, 2N‘k.

We also observe that H“), S H1, 0 S k S 11—].

To see this, we calculate

H'k = (NI/(+1 - N'It)+

= {UV/1+1 v N's—N11)"

= (IV/1+1 - Mk) +

s (N111 — N1) + = H,,

by N,, S N‘k.

So we can easily get the claim:

13k = N‘k (Zk+l - 2k) - Ab H111 th+1

2 N1, (21,11 — 21,) — A5 H121,” — u h), 2111: 011,, 0 S k S n—l,

by L], =1,Zk+] >Zk, Mk ZN], and If], S H],.
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The second case is very similar to the first one.

Case (ii): 11, = 1.

Here 21,11 = 8—8 21,, N1, 2 NH, Zflzk).

We can easily have that N‘1+1 S N11,, and MM = N‘k /\ N11,], 0 S k S n—l by a Similar

calculation.

We observe that 11‘), S h1,0 S k S 11-].

To see this, we calculate

171/1 = (NI/1+1 - N111)—

= {(N'k A Nk+l) — N111}—

= (NkH - N111)—

S (IV/1+1 - Nk) — = hit,

by M, 2 M1,.

So we easily have the claim:

[3,, = N1), (PI/1+1 — Zk) — 115 h‘ka+l

2 N1, (2111— 21,) — (.15 h), 2114— A H), 21,11 = 011,, 0 S k S n—l,

by 1,, =1, 21,11 < 21,, N11, S N), and W, S h.

Thus we conclude that [3,, 2 011,, O S k S 11—].

This is the end of the proof of Claim 3.

The next claim is of the fundamental importance.

Claim 4 S1n+1 2 SW”.

n+1

n-l

Here 11 = inf{k: 2,1, = b} and 5' =1, +2131
k=0
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, where y, = N‘, (2,1, — 2,) — (A, (N,,+1 — N‘,)+ + u (N,., — N‘,)‘] 2,1,.

We have: L, = 1, 2,11 > 2,, and N, S N‘, < j(z,,).

Proof of Claim 4. We need to split the proof into three cases.

The first case is a trivial one.

Case (I): N,,+1 2 N‘,

Here (NM — N‘,)" = 0.

We observe y, 2 01,:

Yr! Nln (Zn+l — Zn) _ )1-8 (Nn+l _ Mn)+ Zn+l

I
V

Nn (Zn+l ‘Zn) " 7“-8 (Nn+l ’ Nn)+ Zn+l " “1 (Nn+l _ N110— : an,

by L, =1, N1, 2 N, and z,,+, >z,,.

We will use this to prove our claim:

1 n-1 n—1 n

Sn+1 : 23k +Yn 2 Zak +0." : Zak = Sn+1‘

k=0 k=0 k=0

We get that SB,“ 2 S n+1 if N,“ 2 N‘,

Before we discuss the other 2 cases, we need one more notation.

Letp, = max{q, S kS n: N, = N‘,}.

In words: p, is the last time when the number of shares in the portfolio {Nkz q, S k S n} is

maximized. In particular: N,', = Np" .

Case (11): M1,, < N‘, and p, = 11.

Here N‘, = N,,, (N,., —- 11/1,) * = (N,.. -— N,) + = 0, and L, = 1.

It is similar to the previous case and it is also easy.
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We observe that

Yn = N1n (Zn+l " Zn) '_ 1'1 (Nn+l — Nln)— Zn+l

: Nn (Zn+l ’Zn) — ”1 (Nn+l ‘ Nn)— Zn+l : an-

So we have

n—1 n—1 n

l _ — —

Sn+l - ZBk +a’n Z Zak +an — Zak _ Sn+l'

k=0 k=0 k=0

We get that S1,,“ 2 S 11+1 in this case.

Next we go to the hardest case. It has a long proof.

Case (111): N,,+1 < N‘, and p,, < n.

Here(N,,+1— N‘,)+ = 0, {k: p, S k S n —l} :t q), and when q, S k S n we have:

L1, = 1, q), = q,,.

First we observe the property NI 1, related with p,,.

By definition of p,,, when p, S k S n we have:

N‘1,= Np” andh‘, =H‘1, =0.

So we have

(A.ll). B), = Np" (2111—21,), p, S k Sn—l.

Next, we need some notations. Let

N1=max{N,: kSiSn}, p,S k S n,

11‘, =(N111— A71.) p, s k s 11 —1,

a), = N1, (2111 ~21) — u h} 21,11, p, S k S n -—1.

We first observe that when p, S k S n -l we have

40



Nk=Nk ka+t 2 N1“,

11‘, = A7,. — A7,..., 2 0, and

(A12) ak = Nk(zk+1 - 2k) — 11 (NA - Nkfl) Zk+1~

Next we observe that:

N‘kZNk, ankSn.

To see this, we calculate

N1), = max{N,: q, S i S k}

2 Np" = N‘,

= max{N,-: q, S i S n}

Zmax{N,-:k SiSn}

= N1,

bqu =q,, SP2 S k S n.

Next we observe that

h‘, s 11,, ankSn-l.

Indeed,

[1.11 =(A7/1+1 — Nit) _

= {Nkfl — (N/t V NH!»—

= (A7/1+1 - Nit)—

5 (IV/1+1 * Nk)— = hit,

by N111 .>_ N111.

We also observe that

01,201,, ankSn—l.
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Indeed, a, = N1 (Zk+l - Z11) - 11 h.k Zk+l

Z Nk (Ii/1+1 - Zk) — 11 hit Zk+l — 715 Hit Zk+l = 0111

by L], =1, [)7], _>. Nk, Zk+1> Z], and ht], S [1],.

Next we define a temporary summation that is useful for us.

.2 [1,," "TI

Let s“, = 213, + 211, +ot,,.

k=0 k=p,,

First, we observe that 5,11 2 5,11.

To see this, we calculate

V 1),-1 n-1 n-1 n-1 n

S,+l = EB, + Ea, +01, 2201, + 201, +01, = 201, 2 SM.

lr=0 k=p,, k=0 11:11, k=0

To finish Case (III), all we need is to Show that: S‘,+1 2 5,1,.

We start with some basic simplifications. First we observe

r1. = N‘11(z11+1 — 211) — 11 (Nn+l — N11.) ‘ 21.11

= N111 (Zn+l — Z11) - 11 (N‘, — N11+1) Z11+l,

because in our case N,,+1 < N‘,

We also observe

0111 = N1 (211+1 - 2,) - 715 (Mn - N11) + Z11+l - 14 (Mn — N11)— 211+]

5 N11(Z11+l -— Z11) - 11 (Nn+l — N11) ‘ Z11+11

because L, = 1.

So we have

Yn " an 2 (Mn — Nn) (Zn-H — Zn) " 111 [(Mn _ Nn+l) — (NIH-1’ Nn)_] 211+]

2 (Mn _ Nn) (Zn+l _Zn) _ 11 (Mn _Nn) Zn+l
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(A.l3) = (an — I.) (2,.l — 2,) — 11 (Np, — N,) 2...,

where the second inequality follows from (A26), and the equality follows from N, = N,

N

and from N,» gm: NP" 3 N s N1 ,SoN =N =N‘,.
p" p" p" p"

Next we observe

01-— a1 = 117,,(2111-21) — (N1 (211. —z1) — 11(N1 — Naomi)

(A.l4) = (N,,—N1)(z1+1—21)+11(N1. — N111)zi+1, 111.: k s 11-1,

by (A.1 1), (A.12) and A7,," = N
p,'

In particular B," -ap" =p.(an — N11,“) 2111+!

~ ~ k-l ~ ~

Now we use (A.l3), (A.l4) and N," —N, = Z(N, —N,.,,), p,+ 1 _<_ k s 11,

i=p1

and we prove that S‘,+t 2 3,11. Indeed,

Sn+l_ vn+l=(ZBk +Yn)- (ZBk+k§-:ak +0. n)

n-

: Z(Bk Tat)+(y11 -an)

k=p1

n-l ~ ~
n-l ~ ~

2 (an —N, )(2111 — z, ) + 11 Z(N, - N111 >21...
k=p,,+l

k=P11

+(N, —N)(z... —z.)— 11(N, —N..)z...

==Z(Np" —N,,)(z,,+,- zk)+P:Z(N/1 TNk+l)th+lT 11:2:(Nk _Nk+l)zn+l

_Z=(N,—N1)(z...—z.)- 11207 -N...)(z...— z...)

T : Z(fil-fii+l)(zk+1uzk)flp:(fik ‘1V1.1)(Z,.. T2111)

k=p,, +li=p,, i=1),

=ZZ(Zk+I— Zk)(Ni TNiT+l) 142(1),: TNk+l)(z11+lT 21111)
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(use index change)

~3

(211+: _Zi+l)(Ni TN1‘+1)Tl’l Z(ZnH -Zk+l)(Nk —Nk+l)

k=pn

u

'
M

.
.

fi
II

I
E 3

~ ~ "—1 ~ ~

(21m _zk+l)(Nk T Nk+|)Tl1 Z(znn -Zk+l)(Nk —Nk+l)

k=p1

: (l—H):(zn+l _Zk+l)(fik _filwl) Z O

k=pn

k:

'
fi

:

, as follows from z,,+1 >zk+1,1\71, 2 NM, p" S k S n—l.

We get that S‘nfl _>. 5',“ 2 Sm if N,,+1 < 1V‘,, and p" < n.

80 we conclude that S1,.“ 2 S,.+1 in all the 3 cases.

We call {N11,} the “dominant portfolio” of {N1}.

This is the end of the proof of Claim 4.

Finally, we can prove our main inequality.

We will divide this proof into two cases according to the value of2q” .

Case (I): zqn S 1.

First we need to divide S‘,,+1 into two sub summations: S‘nH = W0 + (S‘mq — W0).

There exists 0 so that 20 = 1, o 2 q" and we define W0 = 0:] [3 11 .

k=0

We get

o—l

(A.lS) W0 sZN,1(z,,, —z,)=sj so,

k=0

by Bk = N‘1,(z1,+1 — 21,) - [£11 la [1‘]: +111 #5 h‘kl 211+),

and (A.7) (iii) with zm = 2,, = l, m = 0, and k = 0.
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As for the other summation (the more interesting one)

S1n+l" W0

—

n—

: Bk +Yn

*
.

O

3

Nkl (zk+l _ Zk ) ‘7‘5 Hlizk+l

=0‘
-

+ N1" (ZnH — Zn) “ l8(1Vn+l ‘ 1V1”)r Zn+l — “(Nn+l_N1n)_zn+l

SZN;(ZI(+I _Zk)-H(Nn+l _eri)_zn+|

i=0

(use NB, 2 AN and zk+1 > zk when q,, _<_ o _<_ k S n—l)

= N1n(zn+l — Zo) — l1 (Nn+l — N‘n ) _ Zn+1

(A.l6) =N‘n(b-1) -H(Nn+1—N‘n)‘ 19,

by 2,.“ = b, 20 =1.

From (A.lS) and (A.l6) we get

(A.l7). S‘m 5N1" (b— 1) —u(N,,+1—N‘,,)_ b.

We call this the “basic inequality.”

We will use the basic inequality to prove our main inequality.

Recallthatb>1/(1—u)>1,namely:b—1—ub>0.

Since cz =f(oo) > f(z,,) > N‘n, we only need to consider three sub cases.

Sub case (I.i): N,,+1 2 c; > M".

Here (NM — N‘n) ‘ = O and (NM — cz)_ = 0.

Using (A.l7) with (NM — N‘n) ’ = O, we have

S‘nH S N‘n (b— 1)

S 62(b—1)— “Mn(Nn+l—CZ)H’
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by b >1, c; > Mn and (NM — cz)‘ = 0.

Sub case (I.ii): c; > NM 2 N1".

Here (NM. — N‘,) = O and (NM — c2)‘ = cz — NM.

Using (A.l7) with (NM — N‘n) “ = O, we get

$1,,+l 3 Nu, (b — 1)

|
/
\

N‘n(b-1)+(Cz-N‘n)(b-1-Hb)

(usecz >N‘,,andb—1—ub>0)

cz(b—l)—pb(cz—N‘,,)

|
/
\

C2 (b— 1)—ub(cz—N,,+1)

(use NW ZN‘n)

= cz(b—1)—ub(N,,+l — cz)‘.

Sub case (I.iii): c; > NE, > NM.

Here (NW —N‘,,)’ =N‘,, — NM, and (NM —c2)_ =c2 —N,,+..

Using (A.l7) with (NM — N‘n)’ = N” — NM, we also get

S‘n+1 S N‘n(b- 1) -H(N‘n—Nn+1)b

S N‘n(b—1)-H(N‘n-Nn+n)b+(62—N‘n)(b-1-l~lb)

(usecz >N‘,,andb—l—pb>0)

=cz (b—l) —p.b(cz—N,,+1)

=cz (b— 1) —ub(N,,+l — cz)".

SOSInH S C2(b—l)—Hb(Nn+1—C2)_ iqu" $1.

We conclude that SW S S‘N S C; (b — l) — u b (NM — cz)’ if zq" S 1.
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Case (11): zq" > 1.

We need another long and painful steps for this result.

First we observe simple facts.

Since z,,_1= e‘26 b, 2,, = e’5 b and 2,,“ = b, q" S n —1.

By definition ofq,, and N‘k, Lk =1, 2m > 2;. and N‘m 2 N‘k when q,, S k S n —1.

Next we need new notations.

We denote Na =f( zq" ) for notational simplicity.

Leth=N‘k vN., q,,S k S n.

We first observe that

N°k=N‘ka.Sf(zk)vflzqn)=f(zk), ankSn,

by zk 2 zq".

We also observe that

N°k+|=le+1VNt ZMk VNt=N°k, an k S "-1,

byN'kH ZMk.

ThUS(N°k+|-N°k)+=N°k+1—N°k20, ankSn-l.

LetH°k=N°k+1—N°k, ankSn—l.

LetB‘:_I = N;,—I (zqu — zqn_l)—p.5(N1 —N.) z
qn-l q. ’

Let Bok =N°k(Zk+1—Zk)—}»5H°Zk+1, an k S 11—].

We compare 13°]. with Bk, it is a basic element of this step.

Claim5B°k 2 Bk,q,,-1S k S 72—].

Proof of Claim 5. We first consider q,, - 1 case:
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[32-1 = N(i,.-l(zq,.— zqn-l) —p'5(N¢i..-l _N') 24»

N;n‘l(zqn— zq"—l) —“6(N;n—l —N;") Zq" : Bqn—l,

by NJ," <N. < N;"_,.

For general case, we need some algebra:

Hok:(N1k+1VN‘)'—(N1k VN*)

SN‘M —N‘k =H‘k, q,, S kSn —1,

by (A.27) with N'kH 2 N‘k.

So we get

Bok N°k(Zk+1- 2k) — 16 H°k2k+1

I
V

N‘k (Zk+1 - Zk) — Ks H'k Zk+1: Bk, qn S k S n —1.

byLk=1,N°kZ le,Zk+1> zkand Mk 2 Hok.

This is the end of the proof of Claim 5.

Next we define new summation.

qn—Z "’1

LetSLL = 213,. + ZBE’ +73,
k=0 k=q,,—l

WhCl’C 70,, = N°n(Zn+1-Z,,)— K5(Nn+1 — 1V0")+ Zn+1 - ll (Nn+1 - Non)‘ Zn+|.

Claim 6 5°,“ 2 S‘m.

Proof of Claim 6. We divide the claim proof into two cases.

Case (i): ND, 2 N. or NM 2 Ni.

We first observe that 7°" = y” if N‘,, 2 N..

Here N°,, = N‘n v N:- = N‘,,. So we have

You :Non (Zn+l_zn)-}-8 (Nn+1 —NO,,)+Z,,+] _H(Nn+l _ Non)-Zn+l
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= N3. (Zn+1— Zn) — k5 (Nn+1 — N‘») + Zn+1 - u (Nn+1 —- N‘n) ' Zn+1 = in.

We also observe that y°,, 2 7,, ifNM 2 N. > N‘,,.

Here N°,, = N‘,, v N: = Nw, and (NM — N°,,)‘ = 0. So we also have

7°" = N°n (Zn+1 — Zn) — la (NM — N°n) +231+]

2 Mn (Zn+l — Zn) " 7&6 (MM - N‘n)+ Zn+1 2 7m

by N°,, 2 Nb, and 2,,” > 2”.

We get that 7°" 2 y", ifN‘n 2 N. or NM 2 M.

We will use this fact to prove Claim 6:

qn-Z n—1 n-1

S2” = 23!: + 2 Bl? +7: 22B]: +7" =Srll+l'

k=0 k=0k=qn—1

So we get S°,.+. Z 51,.“ ifN‘n 2 N. or NM 2 Na

Case (ii): (N‘n v Nn+1)< Na

HereN°k=N‘ka- = N5 q,,S kSn.

It is a hard part of the proof of Claim 6.

Sinceqn Sn— 1,n an+ 1.

We denote that q = q,, and p = zq" for notational simplicity in this case.

By the definition of q, zq_1 = zq+1 = e6 p, zq+2 = 828 p.

Ifn = q + 1 then let N‘q+z = N‘q+1 v Nq+2.

By the definition ofq and (ND, v NM) < M, NH > N: =f(zq) > MW 2 NE,“ 2 N‘q.

First we need two constants.

Let V” = Mq_1 (Zq — Zq_|) + Nt (Zq+2 - Zq) - 1.15 (N144 — Ni) Zq — ’1 (N. — Mq+2) zq+2
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(A.18) = ~24 (1 - e5») + N. (e25 —1)p — 115(N‘q—1 — Nap - u (N- — N‘w) e281).

Let U” = N‘q_1 (zq — zq_1) + N‘q (zq+1 — 2,) + N‘q+1 (zq+2 — zq+1)

— 115(N1q4 — NE) 2,, — k5 (N‘q+1 — N‘q) zq+1 — A5 (N‘q+2 — N‘q+1)zq+2.

We start with some basic simplifications. By MW 2 N‘q and qu > zq we get

U” S N‘q_1 (zq — 204) + NE,“ (zq+2 — zq) — p5 (N‘q_. — N1'(,)zq

(A.19) = NH (1— ebp + N2,“ (e26 — 1)p — us (NEH — N'q)p.

Here we explain the meaning of these constants.

Ifn = q + 1 then Vn = Boa-2 + Boa—1 + You + 11(Nn+1 —Nln)— Zn+l, and Un = Bn-z + Bn—i +

Y» + p (NW - N‘n)‘ Zn+l.

Ifn Z q + 2 then V,, = [5°44 + [3°q + B°q+1* 11 (N‘q+2 *N° q+1)~Zq+2, and U": Bq-1+ Bq +

Ba“-

We claim V,. 2 U".

To see this, we use (A.18) and (A.19)

V» - Un 2 MM (1 — e5)p + N. (e26 — 1)p — 116 (N‘q—n - N*)p - P (N. - N‘q+2) 825p

— [Nari (1— e5») + N2,“ (e25 — 1)p — us<Mq-1— N‘qm

= (N. — MW) (e25 —1)p + 115(N*— Amp — u (N. —N‘.,+2) ezap

2 (N. — N'q+2) (e25 — 1)p + H6 (N. — mm— u (N. — N‘q+2) e251)

(use N. > N‘q+2 2 N2,“ 2 Mg)

= (N:- — Mq+2>p (e25 — 1 + w. — u e”) = 0.

bY(1-Hs)=1-625(11+€_25—1)=1—€28(14—1)-1=628(1—H)-

We will use this to prove that S°n+i Z S‘m.

We split this case into two sub cases.
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Sub case (ii.a): n = q + 1.

Here N,,+1 = Nq+2, N‘n = N‘q+1.

We observe

q-Z

SSH :ZBk +Vn —“‘(Nn+l _eri)-zn+l

k=O

q—2

2 2151 +U. - MN.” - Nl)'z,...
k=0

:51
n+l'

We get that S°,,+1 Z S‘m in this sub case.

Sub case (ii.b): n 2 q + 2.

First we define the following temporary summation

—2 n—l

SIN-l = Bk+Vn+ 28k +Yn‘

k k=q+2

Q

ll 0

Here we explain the meaning ofSW.

SM is a capital gain from portfolio {1%}, where A7,. = NH, k 2 0 except NC, = NW = N...

When q S k S n — 1, L, = 1, and the dominant portfolio of {M} is {N°k} as follows from

max {A7,-2 q S i S k} = N. v N‘k = N°k. By the same argument of Case (I) we conclude

Son-+1 Z Sn+l.

We also observe that 5,,” 2 S‘m.

To see this, we calculate:
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k=0 k=q+2

q-2 n-l

ZZBI: +Un + ZBI: +Yn

k=0 k=q+2

n-l l

: Bk +Yn _ Sn+1

k=0

So we get S°,,+1 2 SW 2 S‘,,+l in this sub case.

We conclude that S°,.+1 Z S‘,.+1 2 S,“ in all cases.

This is the end of the proof of Claim 6.

We use q,, instead ofq after this point.

Finally, we can prove the main inequality in this case.

Recall that we claim that SW S S°,,+1 S c; (b — 1) — p b (NM — c2) ".

First we need to divide S°,,+1 into two sub summations: S°,.+1 = W," +(Son+]- Wq").

qu

We define W," = Z [3,, +35",

k=0

We get

qn-l

(A20) W, 5 EN: (2,... — 2.) =51; s fez, )(z, — 1),
k=0

by [35,14 = N;"_, (2,," — zq"_l)—— p5 (Nip: —N.) z," and (A.7) (ii) withm =qn, k=0,

2,": z, andzk= 1.

As for the other summation (the more interesting one)
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: Nli)(zk+1—Zk)_}\'6HI?Zk+1

+Non (Zn+l_zn)_)‘v8 (Nn+1 _Non)+zn+l —H(Nn+l —Non)m Zn+1

$2N2(Zk+1 —Zk)_i'l(Nn+1 _Nr?)—Zn+l

k=qn

(use N°,, Z N”), and zk+| > 21,, when q,, S k S n)

=N°,,(z,,+1— Zq") — “(Nn+1—Non)-Zn+l

(A.21) =N°n(b— 2,) -u(Nn+1—N°n)“b,

by zn+1 = b.

From (A20) and (A.21) we get

5°... = (Sm - W, ) + W,

SN°,, (b— zqn)—u(N,,+1—N°,,)"b +f(zqn)(zqn— 1)

(A22). S N°,, (b — 1) — u (NM — N°,, ) ‘ b,

byN°nZ N: =flzqn)andb> zqn> 1.

We will use this basic inequality to prove our main inequality.

Recallthatb>1/(1 —u)>1,namely:b—1—pb>0.

Since cz =f(oo) > flzn) > N°,,, we only consider three sub cases.

Sub case (II.i): NM 2 c; > N°,,.

Using (A.22) with (N,,+1 — N°,,) ‘ = O, we get

S°n+1$N°n(b—1)

Scz(b—1)— ub(Nn+1-Cz)~,
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by b >1, cz >N°,, and (NM — cz)_ = 0.

Sub case (II.ii) cz > NM 2 N°,,.

Here(N,,+1 — N°,,)— = O, and (NM — cz)‘ = cz - NM.

Using (A.22) with (NW — N°,,) ’ = 0, we have

S°,,+l SN°,, (b— 1)

SN°,,(b—1)+(cz —N°,,) (b— l —p.b)

(usecz >N°,,andb—1—pb>0)

=62 (b— 1)—pb(cz —N°,,)

Scz(b—1)—ub(cz —N,,+1)

(use NM 2 N°,,)

= c; (b— 1) — p. b (N,,+1 — 02)”.

Sub case (II.iii) cz > N°,, > NM.

Here (NM —N°,,)" =N°,, —N,,+1,(N,,+1 — c2)": cz — N,,+1.

Using (A.22) with (NW — N°,,) “ = N°,, — NM, we also have

S°n+1$N°n(b-1)-H(N°n—Nn+i)b

SN°n(b-1)*H(N°n-Nn+1)b+(cz —N°n)(b— 1 “HM

(usecz>N°,,andb-—1—ub>0)

=cz (b— 1) — pb(cz— NM)

:62 (b— 1) — 11 b(Nn+1_ Cz)_-

So we have S°,,+1 S c; (b —- 1) — u b (NM — cz)‘ in all three case.

We getthatSnH SS°,,+1 S cz(b—1)— ub(N,,+1 — cz)’ ifz >1.
qn

We conclude that S,“ S c; (b — l) — u b (NM — cz)‘ if 2,,“ = b.
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A.2 Equivalent forms of Assumption 1.8

Finally we modify Assumption 1.8 to a more convenient form and we need three

lemmas for that purpose. The form of Assumption 1.8 that is achieved in the third lemma

is the one that we use in the proof of the main theorem.

Lemma A.23 If Assumption 1.8 (i) is satisfied, then for every I, m 2 1, 8 > O, O < d S 1

and stopping time T, we have, on the event {T < d} as.

(i) P( T51,5 < d, Z( Tg‘m, ) = {’5 Z(T) / FT) > 0 and

(ii) P( Tgfl, < d, Z( T5,", ) = e'"5 Z(T) / FT) > 0.

Proof ofLemma A.23 (i).

First we define the followings.

Let T0=T, T, =(T,_,)g,k21.

Let A, = {T, < d, Z(T,) = e“8 Z(T,_1),1SiS k},1S k s 1.

Then A,1 = {A,, T,+1 < d, Z(T,+1) = e“5 Z(T,)}, 1 s k s 1— 1.

We claim that P(A, / FT) > O as.

We will prove it formally by induction.

By Assumption 1.8 (i), P(A. / FT) > O as.

We assume that P(A, / FT) > 0 as. for some k between 1, I— 1.

P(AM /FT) = 1P0)”, < d,Z(T,,+,) = 8‘5 2(1", )/Fr, )(x)P(dx/ FT) > O as,

by AssumptionAkl .8 (i) with T, ( < d) and P(A, / FT) > 0 as.

So P(A1/ FT) > 0 as, by induction.

Let B = {13”, < d, Z( T3,, ) = e‘18 Z(T)}. We have
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B 3 A], and P(B / FT) 2 P(A, / FT) > O as. So we have proved Lemma A.23 (i).

The proof of Lemma A.23 (ii) is similar to the proof ofLemma A.23 (i) and will be

omitted.

Lemma A.24 If Assumption 1.8 is satisfied, then for every 5, 52, 53 > O, O < d S 1 and

stopping time T, we have, on the event {T < d} as.

(i) P(Tg’z, < d, Z(Tg’z, ) = e‘52 Z(T) / FT) > 0,

(ii) P( T5153 < d, Z(Tg’z, ) = e53 Z(T) /FT) > 0, and

(iii) P(T5 = 1 /FT) > 0.

Proof ofLemma A.24 (i). Assume (w.l.o.g.) that 3 I, m 2 1 so that (l — l) 5 < 62 S 15

and 83 = m 5.

By Lemma A.23 (i), P( Tgm < d, Z( Tgfl, ) = {’5 Z(T) / FT) > () 3.3.

Since {T5233 < d, Z( T51,” ) = (2‘52 Z(T)} 3 {Tgm < d, Z(Tg‘m, ) = {’5 Z(T)},

P( T51, < d, Z( T52, ) = e‘52 Z(T) / FT) > 0 as.

We prove Lemma A.24 (i).

The proof of Lemma A.24 (ii) is similar to the proof of Lemma A.24 (i) and will be

omitted.

The proof of Lemma A.24 (iii) is trivial by Assumption 1.8 (ii).

Lemma A.25 If Assumption 1.8 is satisfied, then for every 0 < e < 1, there exists 5°(e) >

O that satisfies: e250 S (1 — 28) / (1 — 3e), 1 — 6-380 S u, e380 — 1 S A so that for every

stopping times 0 S T S e , and 1— e S I <1, we have

(i) P(Tao = 1 /FT) > 0 as,
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(ii) P(ngo < l, Z(TB'50) = e'B Z(T) / F,) > 0 as, where [3 = —[log(1 — p.) + 23°], and

(iii) P(l — s 3 T, < 1, Z(T5o) = e"°° Z(T) / FT) > 0 as.

Proof.

By Lemma A.24 (iii) with 5 = 6°, the proof of (i) is trivial.

By using Lemma A.24 (i) with d = 1, 52 = B and 63 = 5°, the proof of (ii) is trivial.

We need some calculation for (iii).

We define stopping time L = (1 — e) /\ T50.

By P(T5o =1 /FT)> Oa.s,P(L=1— e/F-r) >0 a.s.

e‘(B+b°) = 1 35 -25°.
— p S e‘ o implies that (e-B S e

If L: 1 —e thenT5o21—8,Z(L)Se5°Z(T)and

e‘“ Z(L) s e‘B e5° Z(T) 3 525° e5“ Z(T) s e’°° Z(T). So

P(1 — e s T50 < 1; Z(Tgo) = 55° Z(T) / FT)

2 P(Lw < 1, Z(L,,,o) = e"B Z(L) / L = 1 — e) P(L = 1 -— e /F1~) > 0 as,

byP(L=]—8/FT)>Oa.s,and(ii)withT=Lon{L=1-—e}.

We have proved part (iii).
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A.3 Two simple inequalities

In this part of appendix we prove two inequalities that were used in A. 1.

First Inequality:

Let a, b, c e R. We have

(A.26). (a-c)—(c—b)—Sa—b.

Proof. Ifc 2 b then (c — b) ‘ = O.

(a—c)—(c—b)_=a—cSa—b,

by c 2 b.

Ifc<bthen (c—b)‘=b—c.

(a—c)—(c—b)’=a—c—(b—c)=a—b.

Second Inequality:

Letazb,c e R. We have

(A.27). avc—bcha—b.

Proof. Ifcz a2 bthenavc=c,bvc=c.

avc—bvc=c-c=OSa—b>0

Ifa>c2 bthenavc=a,bvc=c.

avc—bvc=a—cSa—h

bchb.

Ifa>b>cthenavc=a,bvc=b.

avc—bvc=a—b
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