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ABSTRACT

SUPER-REPLICATION OF EUROPEAN EXOTIC OPTIONS
By

Chanho Park

We study the continuous time problem of hedging a European style Asian call option in
the presence of transaction costs. Under the assumption that the price process of the
relevant stock both fluctuates and does not fluctuate with positive probability, we find a
portfolio that super-replicates the option. Most important, we prove that the portfolio
that we found is optimal in the sense that it requires the smallest initial investment among

all the super-replicating portfolios.
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INTRODUCTION

In their fundamental paper, Black and Scholes (1973) discovered how to price
options in continuous—time financial markets where the stock price follows a geometric
Brownian motion and the market is free of transaction costs. By “option,” we mean here
a contract between a buyer and a seller whose value at some future date, the “exercise
time,” will be equal to a given function of the underlying stock. The value of the option
when it will be exercised will be transferred from the seller to the buyer. For the right to
receive that transfer of wealth in the future, the buyer pays the seller a certain amount of
money which is the option price. The main idea in Black and Scholes (1973) is that the
option price should be the exact difference between the value of the option at the exercise
time and the “capital gain” achieved from some “replicating portfolio.” This replicating
portfolio is based on the underlying stock and money market account. By using the
replicating portfolio, the seller is able to “hedge” his or her liability; namely, the seller
will not lose any money from the option contract.

The main problem in the Black and Scholes theory is that the replicating portfolio
demands continuous trading. This makes the theory not practical in the presence of
transaction costs that are proportional to the monetary value of the trades. The replicating
portfolio will create an infinite amount of trading and hence an infinite amount of

transaction costs. The transaction costs are called *“two-sided” when they are being

charged in both buying and selling of shares. They are called “one-sided” when they are
being charged only in buying shares (or only in selling shares). We only consider the

two—sided transaction costs case in this thesis.



It was discovered in Bensaid, Lense, Pages, and Scheinkman (1992), in the context
of a discrete time model, that if the requirement of exact replication portfolio is relaxed, it
is sometimes possible to lower the option price. That is why we will only require here
that the hedging portfolio will dominate almost surely (“super-replicate”) the value of
the option at payoff time. This is, of course, enough protection from the seller’s point of
view so that is why we will not deal with exact replication in this thesis.

Davis and Clark (1994) has formally conjectured the “conventional wisdom”
concerning hedging of options in the presence of transaction costs. More precisely, they
conjectured that the only possible way to hedge a European style call option is by a trivial
hedging portfolio: buy one share and hold it till expiration day.

Soner, Shreve, and Cvitanic (1995) have proved the conjecture in a setup where
the stock price is modeled by a geometric Brownian motion. In their proof they have
used some ideas from convex function theory. We like their proof and we believe that
their methods can be applied to other problems as well. An example would be a problem
where the super-replication requirement is relaxed.

Levental and Skorohod (1997) (hereforth referred to as LS) deal with both
generalized American and European style call options. They require only that the stock
price will be modeled by a non-degenerate, continuous, positive semimartingale rather
than by a geometric Brownian motion. LS only use only fundamental properties of
stochastic integrals of continuous semimartingales. It is very exciting from the
mathematical point of view, but their approach has its limitations. Their method works
well only in super-replication context and it will be less useful when this requirement is

relaxed.



Finally Civtanic and Karatzas (1996) state a general result about the minimal price
that is needed to super-replicate European style options. They found essentially that this
price is the supremum of the expected discounted value of the claim with respect to all
equivalent probability measures under which all portfolios are supermartingales.

In our model we use the same model as LS with one difference. We use a stronger
assumption on the fluctuations of the stock price process than the one used by LS. The
option that we use is “European style Asian call option” which has a payoff similar to the
classical call option with one difference: The stock price at payoff time is being replaced
by averaging the stock price throughout the option’s lifetime. Our achievement is that we
find a portfolio that super-replicate the option and, most important, we prove that
among all possible hedging portfolios it is the one that requires the smallest initial

investment.



Chapter 1

The model, basic definitions and main results

We consider a financial market in which one stock is traded in the time interval
0 <t <1. The price of this stock is represented by a stochastic process Z= {Z(1): 0 <t <
1}, which is defined on a complete probability space (2, F, P). Assume that Z is a
continuous semimartingale with respect to a filtration {F;: 0 <t < 1} that is right
continuous, and such that F;, contains all P null sets, 0 <t < 1, and Fj is the tnivial o-
algebra. Since Z represents a price of stock, we will assume that Z is strictly positive
process. For simplicity we will assume that Z(0) = 1.

We will assume that the interest rate equals 0 in our model. Since one can always
work with discounted price, rather than the actual ones, this entails no loss of generality.
We want to assume that Z both fluctuates and does not fluctuates with positive
probability. We will give a precise definition later in this chapter.

Definition 1.1 A portfolio is an adapted stochastic process N = {N(1): 0 <t < 1},

which has almost surely (a.s.) left limit and right continuous sample paths, and satisfies

(1.2) P([laN| (1) < @) =1.

We denote the class of all portfolios by FV.






For N € FV, We define two processes N * and N ~, which are associated with N:

N(0)+ N(t) + J’ |dN| (s)
N'(n)= > ,

N(0)-N(@)+ [ |dN](s)
N ()= 0

2

The process N* and N ~ are nondecreasing a.s. and satisfy:
(13) N=N"- N,

lan| =an* +an-,

N*(0) = N(0), and

N7 (0)=0.

The process N *(¢) (respectively N (1)) represents the accumulated number of shares
that the owner of the N portfolio has bought (sold) up to time ¢, and N(¢) represents the
number of shares in the account at time .

Let0 <A <1,0<p<1.Inwhat follows A, respectively p, represents the fractional
transaction costs when one is buying, respectively selling, shares.

Remark: It is assumed that no transaction costs are being paid due to holding of N(0)

shares at time ¢t = 0.
The accumulated capital gain generated by a portfolio NV is a stochastic process

{SM1): 0 <t <1} defined by,

14) S,(0)= ]‘N(s)dZ(s) —A ]Z(s)dN‘ (s)-p ]Z(s)dN' (s).



The financial interpretation of (1.4) is the following: N(r) dZ(t) represents instant
gain (lost) of the portfolio due to the change of the share price dZ(f), while A Z(r) dN" (1)
(1 Z(r) dN (1)) represents the transaction cost paid at time t due to buying (selling) of
dN'* (1) (respectively, dN (1)) shares.

We describe now the European type Asian call option that we deal with in this paper.

This option is a contract between two persons: a seller and buyer. The option can be

exercised only at time 7 = 1. At that time the seller has the obligation to pay the buyer

g( [Z(1)dr) where g(x) = (1 - u) x - @),

where q is a given positive number. The function g is called the payoff function of the
option. From now on, when we mention option, we mean the option that we have just
defined.

Remark. We find it easier to work with the option above. However some readers will
1

think that the payoff function g( I Z(t)dt) with g(x) = (x - q)" is a more natural choice.
0

Those readers are directed to the Corollary 1.9 at the end of this chapter.

The question that we are asking here is, what price should the seller charge the
potential buyer at ¢ = 0, for the right to own the option? The idea is that the seller will
charge the minimal amount of money that will allow him or her to hedge their liability.
This means that the seller will create a portfolio skillfully. This portfolio’s capital gain at

= 1 plus the money received from the buyer at 1 = 0 will be at least as large as the
payment that the seller has to transfer to the buyer at 1 = 1. In that way there is a certainty

that seller will not lose any money.



More precisely we define for each N e FV.
1
(1.5)  xy =infix € R :x+ Sn(1) = g( IZ(t)dt)}
0

If the set is empty, xy will be taken to be co.
We define the selling price of the option to be
(1.6). be = inf{xy: N € FV}.
Observe that bz < 1. To show this we take N(f) =1 -t (soN'(t) =1 and N~ (1) = 1)

and we get

g( ;[Z(I)dt)
—{(1-p) (;[Z(t)dl -q}
<(1-p) ;[Z(I)dt
_ :!z(t)dt _ p;[z(i)d’

= [a-ndz@)+1-p [z()dN~ (1)

=1+SM1).
So we conclude that by < 1.

In this paper we will assume that the stock price Z(¢), in addition to being a positive
semimartingale, also satisfies some extra assumptions. To define them precisely, we need
some notation.

Forevery 0 <d <1 and §, y > 0 and stopping time T < d, we define the following



stopping time.

infiT<t<d:Z(@t)=e*Z(T)or Z(1) =" Z(T)},
d if no such ¢ exists.

1.7) T¢, ={

Wedenote T, =T/ ,T,, =T, andT, =T,.

The following basic assumption on Z will hold throughout this paper.
Assumption 1.8 For every 8 >0, d > 0 and stopping time 0 < T < 1, the following holds

(1) On the event {T <d} we have a.s.

P{TY <d,Z(T¢)=2Z(T)e* / F;) > 0,
P(T{ <d,Z(T¢)=Z(T)e* | F;) > 0.

() (T, =1/F1)>0.

It will be convenient for us to modify Assumption 1.8. We will state here an
equivalent form of Assumption 1.8. In the proof of our main theorem we will use this
equivalent form. We state it here as Lemma A.25. The proof of this lemma will appear in
the Appendix.

Lemma A.25 If Assumption 1.8 is satisfied, then for every 0 <€ < 1, there exists
8°(€) > 0 that satisfies: €2 < (1 -2€)/(1 - 3¢), 1 — e < p, € - 1 <A so that for
every stopping times 0 <T<g, and 1 —¢ <t <1, we have

(1) P(Tee =1/Fr)>0as,

(ii) P(tpse <1, Z(tps:) = €® Z(1)/ F)> 0 a.s, where p = —[log(1 - p) + &°), and

(i) P(1 —€ <Te<1,Z(Ts) = € ZT)/ Fr)>0as.

Finally, we state the main result of this thesis.



Theorem 2.1 If Assumption 1.8 is satisfied then bg = 1.

We already saw that by < 1. We need then to show that b > 1. The idea behind
the proof of that is simple but the details are complicated. First we create a discrete
version of the problem. We are doing it in Lemma A.1. Then we need to know how to
handle that discrete version. This is done with the help of Lemma A.6. The actual proof
the theorem will appear in Chapter 2. The proofs of all the lemmas that we use during

the proof of the theorem in Chapter 2 will appear in the Appendix.

1
Corollary 1.9 Let the payoff function be: ( IZ (t)dt - g)*. Under Assumption 1.8 we have
0

by =——

1
l—p'

Proof. We have ( jz(z)dz— g)'= ﬁ {(1-p) _[Z(t)dt— 1-paq).

Now observe that for every random variable H 2 0 and constant a > 0 we have

be(aH) = a be(H), where bg(H), the selling price of a European option with payoff H, is

1
defined by (1.5) with H replacing g( [Z(r)dr) and by (1.6). By taking
0

|
H={(1-p) IZ(t)dt— (1-p)q}", we see that it is enough to prove that be(H) = 1 but
0

this follows form Theorem 2.1 when we use (1 — p) g instead of g.



Chapter 2

Proof of the theorem about the option

In this chapter we will prove that b > 1. This will be achieved by proving that
xy 21 —¢ forany N € FV where 0 <e <1 is arbitrary. This implies that xy > 1 and
since N is arbitrary we conclude that bz > 1. In Chapter 1 we have already proved that
be < 1. Putting the two together gives b = 1.

We will quote here four lemmas (A.1, A.3, A.5 and A.6) that are essential to our
proof. The proof of these lemmas will be given in the Appendix. We hope that this will
make our proof easier to read. The idea behind the proof is simple. First we create a
discrete version of the problem in Lemma A.1, then we handle that discrete version in
Lemma A.6 and finally we convert the result on the discrete version back into the setup

of our original continuous—time problem in Lemmas A.3 and A.S.

In order to state Lemma A.1 we need a new definition. Let N e FV,andletT <t

be stopping times. We define:

SMT,7) = jN(s)dZ(s)-x jz(s)dN*(s)—p jz(s)dN'(s).

(Tix) (Tx) (Tx)
Sn (T,7) is the capital gain generated by the portfolio N between the T and T.
Lemma A.1 Let Ve FVand 0 < T <1 <1 be two stopping time so that
e Z(T) < Z(t) < &® Z(T), for all t[T , 1] a.s, where 8 > 0 satisfies 1 — e <p and e®® —
1 <A, then

SMT,t) <M(T) (Z(r) - Z(T)).

10



Furthermore,
() If Z(t) = € Z(T) then

SMT,T) < N(T) (Z(v) — Z(T)) = X Z(z) (M(x) — M(T))" - ps Z(x) (N(x) — M(T))"
, where ps = e (n+ e®-1)20.
(ii) If Z(t) = €® Z(T) then

SMT,T) <N(T) (Z(t) - Z(T)) - ks Z(t) (M(z) = M(T))" - u Z(x) (M(x) - M(T))"
, where A5 = e 0 A+1- e25) >0.

Lemma A.3 is an asymmetric extension of Lemma A.1.

Lemma A3 Let N e FVand 0 < T <1 <1 be two stopping time so that e? Z(T)y<Z(@) <
€' Z(T), T<t<tas,and Z(t) = ¢ ® Z(T), where B, y > 0 satisfy that 1 — e P < M, then
SMT,t) < N(T) (Z(t) — Z(T)).

Lemma A.5 shows that after each stopping time there is a positive probability that
our capital gain will be non-positive regardless of the trading strategy that we are using.
Lemma ASLet N e FVand 0 <T <1 be a stopping time. Then

P(SMT,1)<0/Fr)>0.
The last lemma that we quote is Lemma A.6. To state it we need the following

notations. Let 0<€ <landletd >0Osothatl —e 2 < p,e®—1<A asinLemmaA.l.

Letb>1/(1 —p)sothatc,= 1—148——(1 9 % > 1 — ¢, where gq is the strike price of the
—H

option. The quantities p; and A; are as in Lemma A.1.
Lemma A.6 There exists an integer M = M(€,8) > 1 and a sequence of measurable

functions Z; : R* > R*, k> 0, so that Z, = 1, and for every sequence of numbers Ny, k> 0,

we have

11



Z,(NorsNi) _
Z,s(Ngyis Ny ;)

e*®, k>1 such thatif Jinf S >e-1,

then 30 < n < M for which
(1). z,=b, and

(ii). (b -~ 1)=pb(Ny —c2)” 2 Sh,

n-1
where §, = ZN,‘(Z,“, -z,)

k=0
—{zk1 = € 2k} s Vet =N+ 1 (Niket = No) 7] 2k
—{zen1 =€ 2 2} [A Nkt = ND) ™+ s Nt = No) 7]z,

and z;y = Zi(No,...,Nk-1), k2 0.

Finally we are able to prove our main theorem.
Theorem 2.1 If Assumption 1.8 is satisfied then bz = 1.
Proof.
Let Ne FVand 0 <g <1. To apply Lemma A.6 we select some constants.

Let & > 0 satisfies 1 — ¢ 2® <p and €’® — 1 <A. Choose b>1/(1 - p) so that

2 51-3—8-— 9

4 (1-p)b

satisfies ¢;> 1 —€. We denote d = € / 4 for notational simplicity.

Next we define a sequence of stopping times
=0, T =(w), k 2 0.
By Lemma A.1, we have, for every n >0

SmM0,t,) < S, a.s. on {1, <d}, where

12



n-1

S, =Y Na,XZ@,.)-Z(k,))

=0

bl

— {Z2(tk1) = € Z(10)} [hs (M(Thr1) = M) "+ 1 (N(Toe1) = M) 7] Z(Tae1)

— {Z(tkn) = € Z(w)} [A V(ten) = M)+ ps (N (Tiert) = N(1)) ] Z(1e1).

By Lemma A.6, there is integer M(g,8) > 1, and there are measurable functions Z; :

R' 5> R' k>0,sothatif inf S >e—1 then30 < n < M for which

0snsM
(2.2). z,=b, and
ab-1)-ub(N, —c2)” =2 S,
n-1

where S, =Y N(t, )z, —2;)

- k{=;)k+l = ¢® 24} [hs (N(tee1) = N(1) " + p (N(Te1) = N(1)) 7] Zins

— Az =€z} [M (M) = N@)) * + ps (M(tee1) = N(10) 7] 2o,
zx = Zi(N(To),...,N(Tx-1)), k2 0, and zsy = € z4, k > 0.

We will show that

(2.3). P(Z(te) =2z, 1 k<M, Ty <d)>0.
In principle, (2.3) follows because the price process Z fluctuates according to Assumption

1.8 (i). We will prove it formally by induction. To start the induction, we assume that

P(Ay) > 0, for some k between 1 and M — 1, where 4y = {Z(t) =z, 1 <i<k, 1 <d} €

Since
P(Ax) = P(Ax, zkr1 = e?® zx) + P(Ay, zgxe1 = & Z),

we will assume without loss of generality, that P(4y, zx+1 = €° z) > 0.

13



Since zx+1 € F,, it follows that (Ak, 241 = e z) e F, . From Assumption 1.8 (i), we get
P(Ak, zkn1 = €° 2k, Z(thn1) = € Z(14), Thr1 <d) > 0.
But
Akt 2 Ak, 2k = € 21, Z(ten) = € Z(1), T < d},
so P(Ax+1) > 0. By induction we get (2.3).
From (2.2) and (2.3) we conclude that 30 < n < M so that either
PS,< €-1)>0o0r

(2.4). P(Ztt)=b,c2(b — 1)—pb (N, —c2)” =8,)>0.

We claim that x5 > 1 — &. The proof will be divided to 3 cases.
Remark. Throughout the proof all the inequalities will be understood to hold with
positive probability and we will not repeat it.
Case1: P(S,< € —1)>0.
By using Lemma A.S, we have S)0,1) < SM0,t,). We have already seen that
SM0,t,) < $,.. So we conclude that SM0,1) < £ - 1. It follows from the positivity of the

payoff function g that xy > 1 — € under the assumption of Case 1.

Next we assume that (2.4) holds and we split it into two cases based on the value
of N(t,).
Case 2: P(Z(1,) =b, c2(b - 1) — pb (N, —c2)” = Sy, N(ta) < 0)>0.

Wedenote T = 1,, N = N(t,) and z = Z(1). We need to estimate S\0,1).

14



We claim that
(2.5). SMO0,1) < 2 (1 = p)b-cy.
We choose 8°, B > 0 so that
e < (1-€/2)/(1 - 3e/4),1-e<p, e —1<rand e®®=1-p.
By using our assumption on the process Z in the form of Lemma A.25 (i) withe / 4
instead of €, we have P(T;- = 1/ Fr) > 0. Now we use Lemma A.1 and (2.4) with
(N' -c) = — N as follows from N < 0 and ca>1-¢.
We get
SMOT)<S Sp<ca(B-1)—p(c: -N)b
=c(b- 1)—pczb+pN'b.

We apply again Lemma A.1 and we get

SAT,1)SN (z= b) SN (¥ =1)b <—puN'b,

o
.

because Ts = l,N'SO,zz e b, and p >1-e¥>1-¢°

So we have
SM0,1) =8M0,T) + SMT,1)
Scab-1)-peab
=c(l-pb-o.
Thus we get (2.5).

1

Next we will estimate the payoff g( Z, ) where Z, = IZ () dt.
0

We calculate

(22 (1 —p) [Z()di-q

£€/4

15



(2.6). >(1 —p)(1-€/2)e¥b-g,
bye  b<Z(t)< ¢ b, T<t<Tyas,T<e/4and Tep=1.
Finally we claim that g(Z,) — SM0,1) > 1 —¢.
To see this, we use (2.5) and (2.6)
g(Z,) - SM0,1)
2(1-p)(1-€/2) e’ b-g—(c2(1-p)b—c3)

q
(1-p)b

€ o 3e 0
= -w-2-¢"a-Zpe s (1-mb-g+e,

(use c, =1—3—g— 9
4 (1-p)

)

2(l—p)(l—%—ezso(l—é‘i—:—))e’sob+q—q+c2

>A-p)i-g/2-04=8Dq 3y 50 e
3¢ 4
(1—7)

(use e <(1-€/2)/(1-3¢/4))
=(1-p(1-€/2-(1-€/2)e¥b+c,
=¢c>1-¢.

So we have g(Z;) - SM0,1) 21 —¢.

It follows now that xy > 1 — € under the assumption of Case 2.

Case 3: P(Z(t,) =b, c2(b —1) — pb(N(t,) - c2)~ = S,, N(t,) > 0)>0.
Again we denote T =1, and N = N(t,). We introduce now some quantities to simplify
the calculations. We choose 6°, B > 0 as in Case 2 and the following:

Co= (l—p)czesob—cz,

16



aa=c(b-1) —p (N =) b, and
cs=N (¥ =1)b —pp N e b.
By Lemma A.1 and the assumption of Case 3, we get

Q2.7). 32 SMO,T).

The first calculation is to compare ¢y with ¢3 and c;.
We claim that under the assumption N* > 0, we have
(2.8). c9 >3+ cy.
Proof of (2.8). We split the proof into two cases according to the relation between N*
and c;.
First we assume that N* > c; >0.
Here (N' —¢3)” =0.So we have
cata=c(b-1) +N (@ -1)b —usoN‘e_Sob

< (b-1) + (€ =1)b —pgece b

(use N 2cande® -1<0)

= (e"sob -1) —pse 2 e b

=(1 —pg)c2eb—-c;

= (1 -pe e’ b-c,

(usel —pe=1-(u +e - N=1-p-1+® =1 -p))
=(1-p)c2e"b-c;

= C9.

To finish the proof of (2.8) we assume that 0 < N <o,

17



Here (N — ¢2)"=c,— N'. So we have
cstes=c(b-1)—p(c2-N)b +N (¥ -1)b —ppN €% b
=(2-N)b+N b+N (¥ -1)b —pu(c2-N)b —psN €% b ¢
= - (c2=N)Yb+N ¥ b —pseN e¥b-c;
= -pw(2-NYb+(1 —ps)N e b-c,
= (1 -p(e-N)b+e™(1 - )N e b-c
(use 1 —pge =™ (1 —p)
<1 -p(-N)&b+(1 —pN & b-c
(usel —p >0andcz>N.)
=1 -p(c2-N +NYe’ b-c;
= (1 —p.)czesob -0
= Q9.
After establishing (2.8) we will estimate SM0,1).
We start by defining a stopping time t = Ts.. Then we use Lemma A.25 (iii) withe / 4
instead of €, and we get that
P(l-g/4<t<1,Z(t)=€"b/Fr)>0.

Next we denote N = N(t) and define a stopping time L

1 . if N>O.

{r if N<o0,
B.S

We claim that on the event {N" > 0}
(2.9). P(SMT,L)<cs/ Fr)>0.

Proof of (2.9).

18



First we assume N<0,s0 (N - N)"=0,(N -N)y =N -NandL=r1.
To see (2.9), we use Lemma A.1 (i) with &°

SMT,L)=SMT,O) <N (¥ -1)b —pe N -N)e™ b

=cs + pge Ne¥b < c,
by N < 0.
Now we assume N >0 (namely L = tp5). By using our assumption in the form of
Lemma A.25 (ii) (with € / 4 instead of €) we get P(L <1, Z(L) = e? Z(v)/ F)>0.
Using Lemma A.3 with B, 8°, e ®"® =1 _p, and Z(L) = e Z(1), we get
(2.10). SMt,L) < NP -1)e¥b.
Using Lemma A.1 (i) with 8° and (2.10) we have
(2.11).  SMT,L) =SMT,t) + SMt,L)
SN @ -1Db-AW-N)Y e b-ps(N-N)Y e®b+N(E? -1)e*b.

We need to show that the RHS of (2.11) is less than c.
We do it first under the assumption N< N
Here (N - N')' =0, (N =Ny =N —N, so (2.11) gives

SMTLY SN (€ -1)b —pse N -N)e¥b+NEe®? -1)e¥b

=cs+ peNe¥b+N@Ee? -1e¥b

cy + (|.1,§-,o+e'B - 1)1\7e—8°b

cs + (e —(1-pe)Ne¥b

< Ca,
byl-pe=e>(1-p)=e?”>eP and N>0.

To finish the proof of (2.9), we work with the assumption N > N* which gives
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(N-N)=N-N,(N-N) =0.So0(2.11) gives
SMTLYSN (€% -1)b -A(N -N)e¥ b +N@E? -1)e¥b
SN @ -1Db+N (P -1)e™b
(use N >N >0,eP? -1<0)

=N -Db-(1-eHN %
<ca,

byl -eP?>psand N >0.

We have established (2.9).

We will use (2.7) (2.8) and (2.9) to estimate SM0,1). Under the assumption of Case 3

we have
(2.12). SMO,L) = SM0,T) + SWT,L)
<c3tcy < oo
By using Lemma A.S and (2.12) we finally have
(2.13). SM0,1) = SMO,L) + SML,1)
< cy.
Next we will estimate the payoff function.

We observe that
(2.14). g(Z;) =(1-p) [Z(s)ds—¢q

>(1-p(1-€/2)e¥b-gq,
by e ¥Z(T)<Z()<e¥Z(T), T<t<t,T<e/4and 1 —e/4<.
Finally we claim that g(Z,) — SM0,1) 21 —¢.

To see this, we use (2.13) and (2.14)
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8(Z,) - SMO,1)

2(1—p)(l—e/Z)e_sob—(l—p)czesob—q+cz

3¢ 0 )
T)e25 )-4-(—1—_—‘];—1—)—b-(1—p)e6 b-q+c,

(usec;=1-3¢/4—-q/[(1-p)b])

—(-we*pa-E_qa-
=(1-p)e” b(l 5 a

1-€/2
1-3c/4

>(1-p)e®b(l-€/2-(1-3/4) )+ge’ —q+c,

(use e <(1-€/2)/(1-3c/4))
>A-we¥b(1-€/2-(1-€/2)+c
=c>1-¢
So we get that g( Z;) — SM0,1) > 1 — €. It follows now that xy > 1 —¢ under the

assumption of Case 3.
By combing the 3 cases we see that xy > 1 — €. As we explained in the first

paragraph of this chapter this leads to b = 1.
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APPENDIX

A.1 The tools of the proof

In this appendix, we will prove four lemmas that will be useful for us.

The first lemma is A.1. It is a simple result of the integration by parts formula.
It allows us to create a discrete—time version of the problem by looking at the hedging
portfolio at the times where the price process Z is going up or down by a factor of €°,
where & > 0 is related to the order A and p.

The second lemma is A.3. This lemma is an asymmetric extension of Lemma A.1.

The third lemma is A.5. We call this lemma the “closing lemma,” since this lemma
helps us to finish the proof after finding a stopping time in which our goal is achieved.

The fourth lemma is a main lemma. This lemma (Lemma A.6) shows how to deal

with that discrete time version of our problem.

Recall that
SMT,1) = [( 1 V() dZ(s) - 1 '[T‘(]Z(s)dNJ'(s)—p j( 1 Z()dN(s),

where N € FV, and T <t are stopping times. SpM(T,T) is the capital gain generated by the

portfolio N between the T and .

Lemma A.1 Let N € F¥and 0 < T <1 < 1 be two stopping time so that e”® Z(T) < Z(r) <
e Z(T), T<t<rtas, where 8 >0 satisfies 1 — e 2 < pu and e”® — 1 <A, then

SMT,t) <MT) (Z(x) - Z(T)).
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Furthermore,
() If Z(t) = € Z(T) then
SMT,t) < M(T) (Z(r) - Z(T)) = A Z(z) (M) = N(T))" - us Z(t) (M(x) - M(T))~
,where ps=e®(u+e*-1)20.
(i) If Z(t) = €® Z(T) then
SMT,t) < N(T) (Z(x) = Z(T)) - ks Z(z) (M(z) — N(T))" — p Z(x) (N(x) — M(T))"

,where A= (L +1-¢)20.

Proof.

We will use the following notations:

Ze=min{Z(7): T<t< 1},

Z" =max{Z(r): T<t<1},

h =N"(x)-N"(T),

h,=N"(t)-N(T),

hy = hy — hy = N(t) - N(T).

By integration by part and the definitions of Z., Z* we have:

SMT,t) = M(T) (Z(r) - Z(T)) + LW(Z(: )= Z(s)) dN*(s)
- I(T,,](Z (t)-Z(s))dN (s) - A j( mZ(s)dN“(s) - j(mz(s) dN(s)
=MD @(1) - ZM) + [ (Z(x)~ (1+1) Z(s)) dN"(s)
-J. @@ - (=W Zs) N )

S MT) (Z(v) - Z(T)) + J‘(TJ](Z (®)=(1+1) Z)dN"(s)
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-|. @@)-Z'(1-p)dN(s)

(T )
=MT) (Z(x) - Z(T) + (Z(x) —=(1 + V) Zy = (Z(D) - (1 - ) Z) by
=N(T)(Z()-ZT)+Z() by —A+N) Zeh+(1 - Z by
=NT) (Z(t) - Z(T)) + Z(t) hs—(1 +A) Zo by + (1 =) Z" (h3— hy)
=MT) (Z(x) - ZM) + ZD)+ (A - Z) = (1 +X) Ze = (1 =) Z) .
Since e ® Z(T) < Z. < Z(T) < Z <¢€® Z(T), we have
Z'1Z.<e?/e® =e®<(1+AM)Al1/(1 -p).
This implies that (1 + 1) Z« — (1 — p) Z" >0, so the last term is maximized when h; = hs"
(and then necessarily h; = h3").
We conclude that
(A2). SMT,1)SN(T) (Z(t) - ZT) +(Z(x) -1 +AN) Z) hs" —(Z(t)- (A —p) Z') hs™.
The RHS of (A.2) is an increasing in zZ (decreasing in Z.), so we can use
€® Z(T) and e”® Z(T) instead of Z* and Z. respectively for estimation.
Since Z(t) - (1+A)Z.<0and Z(1) - (1 — p) Z >0, we get immediately that

SMT,t) <MN(T) (Z(r) - Z(T)).

Proof of (i). We use (A.2) and the assumptions Z« = Z(t) = ¢ Z(T) and Z < &® Z(T),
and we get
SMT,®) < M(T) (Z(x) = Z(T) - A Z(x) hs* — (Z(x) - (1 - p) € Z(T)) hy”
= M(T) (Z(x) - ZT)) - A Z(x) hs" - (Z(x) - (1 — p) €®° Z(x)) s~
=N(T) (Z(1) -ZM) -AZ() hy" ~(1 =™ (1= p) Z(x) hy”

=MT) (Z(v) - Z(T)) = 1 Z(t) (N(x) - M(T))" ~— ps Z(t) (M(x) - M(T))" .
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Proof of (ii). We use (A.2) and the assumptions Z" = Z(t) = ¢® Z(T) and Z. > ™ Z(T),
and we get
SMT,t) S N(T) (Z(tr) - Z(T)) + (Z(x) — (1 +2) e’ Z(T)) hy' — u Z(t)hs
=MT) (Z(r) = ZT) + (Z1) - (1 +X) Z() hs" — p Z(x)hy~
=NMT) (Z(x) —ZT)+ (1 —e (1 +1) Z(x) by~ p Z(t)hy”
= N(T) (Z(v) - Z(T)) - Xs Z(x) (N(x) = M(T))" = p Z(z) (M(x) - N(T))" .

Lemma A3 Let N € FVand 0 < T <t < 1 be two stopping time so that e ® Z(T) < Z(¢) <
e Z(T), T<t<tas,and Z(t) = e Z(T), where B, y > 0 satisfy that 1 — e ®” <, then
SMT,t) < M(T) (Z(z) - Z(T)).
Proof.
We will use the notation from Lemma A.1.
By integration by part, the definitions of Z., Z° we have:
SMT,1) S M(T) (Z(x) - Z(T)) + Z(x) hs — (1 +A) Ze by + (1 = ) Z" by
=MT) (Z(x) - Z(T)) + (Z() + Z'(1 - W) b3 = (Zo(1 + 1) = Z'(1 - p)) hn.
Since e® Z(T) < Z. < Z(T) < Z" < &' Z(T), we have
Z'1Ze<e/eP =<1/ (1 -p).
This implies that (1 + 1) Z — (1 —p) Z" >0, so the last term is maximized when h; = h3*
(and then necessarily A, = h3").
We conclude that

(A4). SMT,1) <N(T) (Z(t) = Z(T) + (Z(x) —=(1 +A) Ze) hs" —(Z(1) - (1 =) Z) by~
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The RHS of (A.4) is an increasing in Z, so we can use ' Z(T) instead of Z for
estimation.
We use (A.4) and the assumptions Z = Z(t) =™ Z(T) and Z* < e’ Z(T), and we get
Sn (T,0) S M(T) (Z(1) = ZT)) = A Z(x) hs" — (Z(x) = (1 = p) €' Z(T)) by~
=MT) (Z() - Z(TD) - A Z() hy" = (e =" (1 - p) Z(T) hs”
< MT) (Z(v) - Z(T)),

bye? —-e'(1-p)20. =

Next we state and prove the “closing lemma.”
Lemma A.SLet N e FVand 0 <T <1 be a stopping time. Then
P(SMT,1) <0/ F1)>0.
Proof. Let o > 0 satisfies 1 —e* <pand e’ - 1 <A, let 0 < T < 1 be a stopping time
and let t=T,.
Case 0: N(T) =0. We may use Lemma A.1 with N(T) =0 and we get
SMT,t) < N(T) (Z() — Z(T)) = 0.
The result now follows because P(t = 1/ Fr) > 0 via Assumption 1.8 (ii).
Case 1: N(T) > 0.
We can assume that T <1, Z(t) = e * Z(T) and 1, = 1 with positive probability, by
Assumption 1.8. We denote that p = Z(T), N =NT),N = N(7) and z= Z(1) for notational
simplicity.
We calculate using Lemma A.1

SMT,1) SN (e® -1)p-(N =N) pee®p - (N-N)"'Le®p + Nz-€e°p).
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Now we split case 1 into 3 sub cases:
Casel (i): N >N >0.
Here (N =N*)"=0,and N -N)"=N -N". So
SMT,1) SN (e* =1)p-(N =N)re“p +N(z-e"p)
SN (e -1)p-(N-N)re®p +N(1-e%p
(usez<pand N >0)
=(N-N)Y(1-e“)p-(N-N)re“p
=(N-N)(1-e®-re%p <0,
byN2Nandre®2 (- 1)e® = —e® >1-¢™
Case 1 (ii): N >N >0.
Here (N —N)*=0,and (N -N)"=N" -N. So
SMT,1) <N (€ -1)p-(N" =N p,e*p+N(z-e"p)
SN (€ -D)p-(N -Mpe®p+N(1-€ep
(usez<pand N >N20)
=(N" -N)(* -1)p-(N" -Np.e’p
=(N" =M (e* - 1-p, e p<0,
bye® -1<0,N" -N >0and p, >0.
Case 1 (iii): N > 0> N.
Here (N =N)*=0,(N -N)"=N"-N. So
SUT,SN (€ - 1)p-(N"- N pe*p+N(z-e“p)
SN (@ -Dp-(N" -N)pe®*p+N(@E* -1)ep

(use N<0andz> e p)
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SN (€® -1-pe®)p +N(@E* -1+p,)e*p<0,
byN >0>N,e® —1<0and

Ho= e (p+e®-1) 2 (- +e®-1)=1-¢°>0.

Case 2: N(T) > 0.
We can assume that T < 1, Z(t) = ¢* Z(T) and t, = 1 with positive probability, by
Assumption 1.8. We denote that p = Z(T), N" = N(T), N = N(t) and z = Z(1) for notational
simplicity.
We calculate using Lemma A.1
SMT,1) SN (e -1)p—-(N -N) nue*p-(N -N) L ep + N(z-€"p).
Now we split Case 2 into 3 sub cases:
Case2 (i): N>0>N".
Here (N =N)"=0,and (N -N)*=N -N". So
SMT, SN (e* =1)p-(N -=N)YA, e p+N(z-€"p)
SN (e -1)p-(N-N)re"p+N(E* -1)e"p
(use N >0 and z < €*® p)
=N (€ —-1+A€)p+N( -1-1A)e*p<O,
byN >0>N",e* —1>0and
A= (A+1-€) 2 e (@@ -1+1-¢")=¢* -1 >0.
Case 2 (ii): 02N >N
Here(N -N) " =0,and (N -N)*=N -N". So

SMT.D)SN (e* =1)p-(N =NYA, e*p+N(z - & p)

28



SN -1)p-(N-NHYA e*p+N( —€)p
(use N<Oandz> p)
=(N -N)(1-e)p-(N -N) A e’p
=(N =N)Y(1-¢€* -2, e*)p<0,
byN >N, 1-e*<0and A, > 0.
Case 2 (iii): 0> N" > N.
Here (N —=N)*=0,and (N ~-N)"=N"-N. So
SMT,1) SN (&* -1)p-(N' -Nype®p +N(z-¢€p)
SN (* -1)p-(N"-Npep +N(1-€%)p
(use N<0andz2>p)
=N =M -)p-(N" -Nype’p
=(N" -N)(e" -1 -pe’)p<0,
by N 2N,and pe®>(1 — €% e =¢* —e* > &* - 1.

We conclude that P(SM(T,1) <0/ F1) > 0. [ ]

We will start with the setup of Lemma A.6.
LetO<g <landletd >0sothat]1 —e?® < pu,e®®—1<A\asinLemmaA.l.
Letb>1/(1 —p)sothatc;=1-3e/4—-¢q/[(1 —p)b] >1-¢ where q is the strike
price of the option.
Finally recall the notation of Lemma A.1:

ps=e®(u+e®—1),andAs=e 2 (A +1-e%).
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Lemma A.6 There exists an integer M = M(g,8) > 1 and a sequence of measurable

functions Z, : R* - R, k> 0, so that Z, = 1, and for every sequence of numbers Ny, k > 0,

we have

Z,(Ny,...N, ) Re

=e ", k21 suchthatif inf §, >e -1,
Zk—l (No 3eeey Nk—2) 0<nsM

then 30 < n < M for which
(). z,=b, and

(i1). ;b -1)—pub(N, —c3)” 2 S,
n-1

where S, =ZN,‘(Z“| -z,)
k=0

~{zie1 = € ze}[hs Vit =N+ 1t (Nir1 = Ni) 7] Zie

~{z1 =€ 2 [A Nirt = ND)* + s Niwt = ND) 7] zion,
and zx = Z«(No,...,Nk-1), k2 0.
Proof. Leta>0sothatci=1-g+a<c,.
Let : R*— (0,1) be a strictly increasing function so that

c1 =fl0) <floo) =c3.
We define z, = Z(Ny,...,Ni-1), k 2 0, as follows:
z0=1,
Zie) = e z if Ne < flz), k=0,
=e?® z if Ny 2 flz), k2 0.

Here we explain our basic ideas. Our starting point is LS (1997) paper. In addition to that
paper we are using an important new idea. We define a dominant portfolio. This new

portfolio helps us in checking the inequality of Lemma A.6. When the stock price is
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going up the number of shares in this new portfolio (V' in what follows) is more than the
number of shares in the original one, N;. Furthermore, when z, = b the sequence N'; is
increasing for k < n — 1, while at the time n there is a reduction in the number of shares of

the new portfolio as we choose N, = N,,.

We need some sequences (k > 0) for simplicity.

Let Ly = {Ni<flzx)}.

Let I, = {Nc 2 f(z4)}.

Let Hy = (N1 — No)'

Let by = (Nks1 — Ni)™.

Let ok = Ny (zk1 — 2k) — Li [Ms Hx + W Bi) ziesr — I [A Hi + s hi] Zisr.

With this notation we can now rewrite the sequence {S,} as:

So =0.
n-1

S, =Za,‘,n >1.
k=0

Let gy =max{1 < i< k: L, =1}, (=0 if the set is empty).
Let Ny =max{N;:qx < i< k}if Ly=1,

=min{N;: qx < i< k}ifl,=1.
Next, we define the following sequence:

SZO=O.

n-1
82 = Ni(zps — 2021
k=0
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Claim1 8%, = S,,n>0.
Proof of Claim 1. If L, =1 (namely z4+; > 2;) then Ny =max{N;: qx <i < k} > Ny and
if ik =1 (namely zx+) < z;) then N'y =min{N;: g, <i <k} <N,

We can conclude that N'; (zx+1 — 2x) = N (Zk+1 — 2), k20, and 8%, 2 S,, n > 0.

Claim 2 The sequence {5?%,} satisfies the following:
(A7) (@) Ifm >kand z, < z, then
8§ — S, < fzm) (@m — 21) <1 Zm— z0).
() Ifm >kand z, > z, then
8 — S S fzm) (Zm— zk) < €2 (Zm — 2).
(i) Ifm >kand z, = 2z, then 8, — §% < 0.

(iv) Assume (w.l.o.g.) 30<r,s eNsothata= e b=e® Ifa<z<b,0<k<n,

then
S, <c(b-a) - (n-(s+r)6/2,
where
0 = inf {(/(e**) - f(e* )N ~¢*)).
Proof of Claim 2.

We first observe that N'y < flzy) if Ly = 1.

To see this, we calculate:

If Ly = 1and g < i < k then f{z;) < f(z4), and
Ny=max{N;qx < i < k}

<max{fiz;)): qx < i < k}
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= flzi).
We also observe that N'y > flz) if [, = 1.
Similarly, we calculate:
If [y = 1and g, < i < k then f{z;) > f{z4), and
Ny=min{N;:qx < i < k}
>min{fiz;)): qx < i < k}
= flzs).
So for every k > 0 we have
Ser1 =8% = Nk (21 — 24)
<f (k) (zin1 — 24)
(A.8). <f(@m) (zkn1 — zi) <1 (zkr1 — zi), 1f 2401 < zg and 2y < 24,
or < f(zm) (Zk1 — zk) < €2 (Zkr1 — zi), 1fzps1 > zx and z,, 2 24
We also observe that
If zy = zp+) and zx+) = zp, kK # m, then
(A.9) (81 =8%) + (8me1 =S%m)

<[ f(@ks1) = f(20)] (zks1 — 2) < 0.

To see (A.9), we calculate
(S%+1 =8%) + (S%m+1 —5%m)
<f@D) @xn = 26) + [ (2m) @me1 = 2m)
=f(2k) (zx+1 — 2) + f(zk+1) 2k — Zks1)
=/ (@) - f(@0] (@an1 — 20)-
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Next we define, for every integer vand 0 < k <m,

wvom) =S ((z2,0) = (€ ")),
n=k

d(V,k,m) = "'Z_l{(zn ’Zn+|) — (e(v*l)ﬁ ’ev{'} )},
n=k

where we identify sets with their indication functions. In word, u(v, k, m) and d(v, k, m)
are the number of changes € T "*'® "% | ¢ respectively, of the sequence
(Zkye - -sZm)-

Now we verify (A.7) (i). We define for each v that satisfies z;, > e >z

n(v) = min{n = k: (zy, zss1) = (€*'%, )}

We get
m-1
2 2 _ 2 2
Sm _Sk - Z(SnH —Sn)
n=k
2 2
< Z Sn(v)+l —Sn(v)
7 >e" 22,
1
- Z Nn(v)(zn(v)ﬂ - zn(v))
N >e' 22,
< Z f(z,,. )(zn(v)+l - zn(v))
7, >e" 2z,

=ﬂzm) (Z,,, - zk) <c (Zm - Zk)-

The first inequality follows from (A.9) and the fact that z; > " > z,, implies d(v, k, m) =
u(v, k, m) + 1, while that e'® >z or z,, > " implies d(v, k, m) = u(v, k, m). The second
inequality follows from (A.8).

The proof of (A.7) (ii) is similar to the proof of (A.7) (1) and will be omitted.

We prove (A.7) (ii1). Since each v is either e® >z =z, 0r 24 =z, > €, this implies

d(v, k, m) = u(v, k, m), and §%, — $% < 0.
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Next we prove (A.7) (iv). We have

s-1
n=">d(t,0,n)+u(t,0,n)

t=—r

< iZ [d(2,0,n) Au(t,0,n)] +1.

1=-r

So

(A.10) id(:,o,n) Au(t,0,m) > "= *S)

t=-r

Next we define
A={0<k<n—1:(zk ze1) = (€%, € Py or ("°, %)}, —r < t<s-1.

By using (A.8) and (A.9) we get

> (Si = SH S, (e" —e®)—[d(1,0,n) Au(t,0,n)P.

ke A,

Using (A.10) we now have

D 3) A

t=—rkeA,
<c (€ - ™) -(n-(s+r)0/2

=c(b-a)-(n—-(s+r)6/2.

This is the end of the proof of Claim 2.

We will use now (A.7) to prove Lemma A.6.
Wedefine: M =[(s+r)+2(c2(b —a)+1-€)/0] +1.

First we need to divide Lemma A.6 into three cases.
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Casel:Ifa=e™ < zy<e®=b, k>0, then by A.7 (iv), we have
Sp <8, <cb-a)-(n-(s+r)6/2
<g-1,
whenevern>(s +r)+2(c; (b — a)+1-¢€)/6.

So inf § <e -1 inthiscase.
0snsM

Case 2: If there is 0 < n < M such that z, =a, then by A.7 (i) and a <€/ 4, we have

Sp £ 8, <c(a-1)

(1-g+a)(a -1)

a-acet+ta*-1+e—-a

e—1-a(e-a)
<g-1.

So inf §, <e -1 in thiscase.
0snsM

Case 3: If thereis0 < n < M - 1 such that z,,+; = b, then

weclaimthat Sps1 <2 (B—1)—pu b (Nps1 —2) ~.

We will call this inequality the “main inequality.”

We need to go through some very long and painful steps to achieve the main inequality.
First we need some notations.

Let Hy= (N1 - N, 0< k< n-1.

Let h'y= (N1 —NY%) ,0<k<n-1.

Let Bx = N'% (zke1 —21) — [Lix Ao H'x+ I ps h'i] zes1, 0 < k< n—1.
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Next we compare B with a,. This is a basic element of the proof.
Claim 3 4 > o, 0<k <n-1.
Proof of Claim 3. We divide the proof into the two cases.
Case (1): Ly = 1.
Here z4+ = & zrand Ny < Ny < flzi).
We observe that N+ = N, and N'4+; = Npsy v Ny, 0 <k < n-1.
To see these, we calculate that
If Nes1 2 flzger) then sy = k+1,
N1 = Nt 2 flzkn) > flz) > Ny, and
Nyet = Niep v Ny,
If Nis1 < flzis1) then gu+) = g and
Ny =max{N;: gy < i <kt1} =Ny v Ny 2Ny
We also observe that ', < H;, 0 <k <n-1.
To see this, we calculate
Hy= N - NW)*

= {(Mis1 v NY) = N}

= (Nt —N')*

< (Niw1 = Ni) " = Hi,
by Ny £ Ny
So we can easily get the claim:

Be =N (zkn1 —26) — Ao H'kziny
2> Ni (zen1 —2k) — A Hizksr — B By Zjey = 0, 0 < k< -1,

by Ly =1, zx+) > 24, N4y 2 Ny and H', < H,.
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The second case is very similar to the first one.
Case (ii): Iy = 1.
Here z4+) = e’ Zky Nk 2 N'x 2 flzp).
We can easily have that x| < N, and N4y = Ny A Nis1, 0 <k < n—1 by a similar
calculation.
We observe that iy < Ay, 0 <k < n-1.
To see this, we calculate
= N1 = NY) -

= {(N'kA Ngs1) = N}~

= (Nir1 = NY)~

S(Nieni— No) ™ = hy,
by Ny = N
So we easily have the claim:

Bx = N (zkn1 — zi) — po bk zkn
2 Ni(zir1—26) —Ms Pk zksr — A Hy ks =, 0k <n-1,

by Iy =1, zk1 < zk, N'k < Nyand h'y < by
Thus we conclude that By > oy, 0 <k < n-1.

This is the end of the proof of Claim 3.

The next claim is of the fundamental importance.

Claim4 S+ 28 ,+1.

n+l

n-1
Here n = inf{k: z4+; = b} and S),, =7y, +ng
k=0
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,where Yo =N'y (zne1 = 2n) = [As (Noe1 = N'n)" + 0 (Npst = N'a) ] Zas.
Wehave: L, =1, z,41 >z, and N, < N', < f{zp).

Proof of Claim 4. We need to split the proof into three cases.

The first case is a trivial one.

Case (I): N,v) 2 N,

Here (N1 - N',) " =0.

We observe y, > a,:

Yo = N' (Zne1 = 2n) = As (Npa1 = N'3)" Zpa

\

N (Z”H —Z,,) —As (N""'l - Nﬂ)+ Zn+l — R (Nn+l - Nln)_ =y,
bYLn= I’N'I" > N’landzn‘*‘] >Z".

We will use this to prove our claim:
| n-1 n-1 n
Sn+l = ZBt +Yn B Zak +(X" = Zak = Sn+l‘
k=0 k=0 k=0

We get that 8§41 2 8 ps1 if Npry 2 M,

Before we discuss the other 2 cases, we need one more notation.
Let p, =max{g, <k<n:N,=N'p}.

In words: p, is the last time when the number of shares in the portfolio {Nx: g, <k < n} is

maximized. In particular: N, =N, .
Case (II): N+ <N', and p, = n.
Here N', = Ny, (Npet = N') = (Nps1 —N,) "=0,and L, = 1.

It is similar to the previous case and it is also easy.
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We observe that
Yn = N1n (zn+l —Zn) —H (Nn+1 - Mn)_ Zn+l
= Nn (Zn+] - Z,.) —H (Nn+l - Nn) - Zp+] = Wp.

So we have
n-1 n-1 n
l — — —
Sn+l - Zﬁk +G," 2 Zak +G.” - Zak - Sn+|‘
k=0 k=0 k=0

We get that §',+1 > § ,+; in this case.

Next we go to the hardest case. It has a long proof.
Case (III): N+ <N', and p, <n.
Here (Nys1 —N'») " =0, {k: p, < k <n-1} # ¢, and when g, < k < n we have:
Ly =1, qx=qn.
First we observe the property N'; related with p,,.
By definition of p,, when p, < k < n we have:
Ny= N, and b’y = H'; =0.

So we have
(A.11). By = Np" (zk+1—24), Pn < k <n-1.
Next, we need some notations. Let

Ni=max{N:k<i<n}, p,<k <n,

Re=Ni - No pns k< n-1,

ay =Ni @1 —z) — W h k2w, pn< k < n-l.

We first observe that when p, < k< n -1 we have
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Ni=Ni Vv Nget = N,
h'x= Ni = Nea 20, and
(A.12). ax = Nic (zke1 — 20) — (N = Niwt) zion.
Next we observe that:
Ny >N, pan<k<n
To see this, we calculate
N'y=max{N;: q, <i<k}

>N, =N\,

=max{N;:q, <i<n}
>max{N;: k <i<n}
=N,
by gk =qn < pn < k < n.
Next we observe that
he < h, pn< k<n-1.
Indeed,
B =N — N~
= {Nir1 — (Nk v Nir1)}
= (Niw1 = N
S(Nis1 = No)™ = hy,
by Ni+1 = Nis.
We also observe that

ay = Oy, pn< k<n-1.
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Indeed, ax = Ni (21 — 2) = B bk zin
2 Ny (zk+1 — 20) — n hy Zgey — As Hy Zg+1 = O,
by Ly=1, Nk > Ny, zi+1 > zx and h‘k < hy.

Next we define a temporary summation that is useful for us.
- P! n-l
LetS,, =D B, + D a, +a,.
k=0 k=p,

First, we observe that Sy+1 = Sp+1.

To see this, we calculate
- Pl n-1 n-1 n-1 n
S, = ZBk + Za,‘ +a, ZZak + Za,‘ +a, =Za,‘ =8,
k=0 k=p, k=0 k=p, k=0

To finish Case (III), all we need is to show that: §*,+; > Sp+1.
We start with some basic simplifications. First we observe
Yn =N'n (Zn+1 = 2n) = L (Nt = N'p) ™ Zn
=Ny (Znn1 = 2n) = L (N'7 = Nawt) Zpa,
because in our case N+ < N',,.
We also observe
Otn = Ny Zn+1 — Zn) = A6 (Nus1 = Ni) " Zuet = 0 (Nt = Na)™ Zan
S Nu (Zns1 = 2n) = 0 (Npr1 = Nan) 2z,
because L, =1.
So we have
Yn—0n 2 (N'n = Np) (zn+1 = 2n) = L (N = Nut1) = (Npst = Na) ]z

2 (Mn_Nn) (zn+l _'Zn)_p(N]n_Nn) Zp+1
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(A.13) = (N, = Na) @1~ 20) = 0 (N, = Np) zqe1,

where the second inequality follows from (A.26), and the equality follows from N, = N,

~

and from N:,” <N,= N, < N, <N, ,s0 1\~/p" =N =N,

Pn Pn

Next we observe
Bx— ak = N, (zkni —20) — (Vi (zkei —2) = p Nk = Niwt) ziot)
(A.14) = (N, ~N) @1 -2+ n Nk = Niw) zknt, pn< k < -1,

by (A.11),(A.12)and N, = N

Pn”

In particular B, —a, =p (}Vp" - }VP"H) Z, -

Now we use (A.13),(A.14)and N, -N, =Y (N, -N,,)), pnt1< k <n,
i=p,

and we prove that S',.; > S,+1. Indeed,

- n-1 Pn=) n-1
SIIHI—SIHI =(2Bk +Yn)—(ZBk+Zak +an)
k=0 k=0 k=p,

By —a)+,-a,)

1
k=p,
n

2 (Np,, =N (24 _Zk)+p'Z(Nk =Nz
n k=p,

k

n
A

+(N, =N, Xz,,-2,)-p(N, —=N,)z

n+l n+l

n _ _ n-1 - n-l _
= Z(Np" NNz —2)+ 1 Z(Nk =Nz, -1 Z(Nk =Nz,

k=p,+1 k=p, k=p,
n ~ _ n-l ~
= Z(Np" NNz —2) -1 Z(Nk =N Nz = Z41)
k=p,+1 k=p,

k-1 - n-l ~
(N; =N Xz —2)— 1 Z(Nk =Nz = 241)

M-

k=pn+l i=p, k=p,
n-1 n ~ ~ n-l ~

= z Z(zm =2, )J(N; =N,)) - Z(Nk =N Xz = 241)
i=p, k=i+] k=p,
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(use index change)

n-1 _ _ n-l ~ _~
= Z(Z’”‘ _zi+|)(N,' _N,'+1)—“' Z(Zn+| —Zk+l)(Nk _Nk+|)

i=p, k=p,
n-1 ~ _ n-1 _ -
= Z(zm — 2 )N =Ny -1 Z(znn — )N, =Nyy)
k=p, k=p,
n-1 ~ ~
=(1=p) D (Zp0 = 24 )N, =N, ) 20
k=p,,

, as follows from z,+1 > zis+1, Nk = Nist, pa < k < n-1.
We get that $'p+q = Spe1 = Syeq if Npsy <N, and p, < n.
So we conclude that S*,+1 = S,+1 in all the 3 cases.

We call {N';} the “dominant portfolio” of {N,}.

This is the end of the proof of Claim 4.

Finally, we can prove our main inequality.
We will divide this proof into two cases according to the value ofz_ .
Case(I): z, <1.

First we need to divide S',+; into two sub summations: S',+1 = W, + (S'5+1 — W,).

o-1
There exists o so that z, = 1, 0 2 g, and we define W, = Z B, .
k=0

We get

IA

o-1
(A.15) W, <Y Ni(z4 —2,) =S, <0,
k=0

by Bx =N (zk+1 —2x) — [Li A H'x+ I s h'i] zinr,

and (A.7) (iii) with zx = zx = 1, m = 0, and k = 0.
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As for the other summation (the more interesting one)

S1n+l - Wo

—_

n-

Bk +Yn

bl
o

3

NI: (Zia—2z) =2 H/:Zku

=0

>

+ N, (Zn+l - Zn) - l& (Nn+l - N]n)+ Zp+l — H (Nn+l - Mn)_ Zp+1

N:lr(zlnl _zk)—“'(Nru-l _err)—znﬂ

k=0

IA

(use M, 2 Ny and z4+) >z wheng, <0<k <n-1)
=Ny (zZnn1 —20) =~ (Nt =N') ™ zZasi
(A.16) =Ny (b-1) —p (Na1 —N') " b,
by zpe1 = b, 2z, = 1.
From (A.15) and (A.16) we get
(A.17). S SN (b-1) —p (Nys1 —N',) ™ b
We call this the “basic inequality.”
We will use the basic inequality to prove our main inequality.
Recallthat b>1/(1 —p)>1,namely: b-1-p b>0.
Since ¢; = f{oo) > flz,) > N',, we only need to consider three sub cases.
Sub case (L.i): N+ 2 ¢ > N,
Here (Np+1 — N'y)” =0and (N4 —c2)” =0.
Using (A.17) with (N,+; — N',) =0, we have
S S NL(b-1)

<cb-1) — uNy(Nps1 —€2) 7,
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byb>1,c; >N',and (Nysy — ;) =0.

Sub case (1.i1): c; > N+ 2 N,

Here (N,+) —N',) =0and (N4 —¢2) =c¢2— Nps1.
Using (A.17) with (N,+; — N',)~ =0, we get

St € Nu(b-1)

IA

N.(b-1)+(c2-N,)(b-1-pb)
(usec; >N'y,andb—-1-pb>0)

= c2(b-1)=pb(cs - N'y)

IN

c2(b=1)—pb(c2-Nu)
(use Nyt 2 N',)
=cb-1)—pbWNwm - c2) .
Sub case (L.ii1): c; > N, > Ny
Here (Npe1 = N'») =Ny — Npvy, and (Np —€2) - =2 — Npwi.
Using (A.17) with (N1 — N',,) " = N', — N4, we also get
S'w1 S N'w(b—1) —p (N'a = Nyn1) b
SNZb-1) —p(N'y=Np) b+ (c2-N's) (b-1-pb)
(usec; >N'yandb-1-pb>0)
=c;(b-1) —pb(c2—Nuy1)
=c;(b-1) —pubNpyt1 — ©2) .

SoSuw € b-1)-pubNpi~-c2)) ifz, <L

We conclude that Sp+1 < $'pr1 < 2(0-1)—pub(Npu—-c)) if z, <1.
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Case (I): z, >1.
We need another long and painful steps for this result.
First we observe simple facts.
Since z,_, = e b, z,= e band Zpr1=b, g <n-1.
By definition of g, and Ny, Ly = 1, z4+; > zx and N4y 2 N'ywheng, < k < n-1.
Next we need new notations.
We denote N. = f{ z_ ) for notational simplicity.
Let N% =Ny Vv N+, qg.< k <n.
We first observe that
N"k=N‘kaaSj(zk)vf(zq")=f(zk), gn< k < n,
byz 2 z "
We also observe that

N°k+|=N]k+1VN~ ZN'/( vN.=N°k, q,,S k < n—l,

b}'leH Zle
ThUS(N°k+1—N°k)+=N°k+1—N°/( >0, gn< k < n-1.
Let H°x = N%+ — N%, gn< k < n-1.

LetB, , =Ny (z,, =z, ) —Ms (N, , —No)z, ,

qn-1

Let B% =Nk (zkr1 —2zk) = As H° 241, gn< k < n-1.

We compare B°; with B4, it is a basic element of this step.
Claim 5 B°% > Py, gn—1< k < n-1.

Proof of Claim 5. We first consider ¢, — 1 case:
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ﬁ‘;)n—l = N;,,-I(an_ zq..—l) '“G(N;,,—l - Nv) Z4,

\

Noo(z,—2,) —ms(N, , =N, )z, =B,
by N, <N. < N;"_,.
For general case, we need some algebra:
H°k = (N'ks1 vV Ns) = (N v N+)
SN —Ny =H%, qn< k<n-I,
by (A.27) with Ny > N'y.
So we get
B% = Nk (zkr1 — zk) — hs Hokzpr1
> N (@i —2z) — A Hxzin1 =Pr gn< k<n-1,
by Ly =1, N°k > N, zkr1 > zxand HYy > H°%.
This is the end of the proof of Claim 5.

Next we define new summation.

q,-2 n-1
LetS,., = > B+ D B +7,,
k=0

k=q,-1

where Yon =N°n (Zn+1—2p) — As (Nwr1 — [\"on)+ Zn+1 — U (Npr1 — N°») " Zps1.

Claim 6 $°,+1 = $"5+1.

Proof of Claim 6. We divide the claim proof into two cases.
Case (i): N', =2 Neor N,y 2 No.

We first observe that y°, =y, if N', > N..

Here N°, = N', v N»= N',. So we have

Yon =N°n (Zn+l_zn)-;\'8 (Nn+l _Non)+zn+l _H(Nnﬂ - Non)—zn'*l
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=N (Znt1 = 2n) = ks (Nurt =N'%) " zgrt =4 (Mot = N'2) ™ Zpst = Yo
We also observe that Y°, > y,1f Ny = Ne > N,
Here N°, =N', v N« =N., and (N,+; — N°,)" =0. So we also have
Yon = Non (Znet = 2) = Ao (Noet = N°) " Zav)
> N (2ot = 2n) = A (Nutt = N'2) ¥ 21 2 ¥,
by N°, > N', and z,+) > z,,.
We get that y°, > y,, if N', > Nsor Nyt = Na.

We will use this fact to prove Claim 6:

q,-2 n—1 n-1
S3+I=ZBI:+Z BI:)+Y;?ZZBk +Yn=S:+I'
k=0 k=0

k=q,-1

So we get 8%y+1 > S'p41 if N1y > Neor Nyyp 2 No.

Case (ii): (N, V Nps1) < No.

Here N =Ny v Ne = No, q,< k<n.

It is a hard part of the proof of Claim 6.

Sinceg, <n-1,n 2¢q,+1.

We denote that g = g, and p = z, for notational simplicity in this case.

By the definition of ¢, z,-1 = zg+1 = €° p, zge2 = €* p.

Ifn=¢q + 1thenlet N'gia = N'gs) Vv Nysa.

By the definition of g and (N', v Np+1) < Ne, N'g_y > Ne = flzg) > N'gia 2 Ny 2 Ny,
First we need two constants.

Let V,, = N'q_l (Zq - Zq_l) + Ne (Zq+2 - Zq) — HUs (N'q_| - N-) Zg—H (Nt - N]q+2) Zg+2
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(A18) =Ny (1-€)p+Ne(e® —1)p—ps (N1~ No) p— u (No = N'gi) €2 p.
Let Upn=N'go1 (zg — 2g-1) + N'g (2g+1 — 2¢) + N'gu1 (2g+2 — Zg+1)
— s (N'g1 = N'g) 25 — hs (N'gs1 = N'g) Zgr1 — hs (N'ge2 = N'g+1) Zg+2.

We start with some basic simplifications. By N'g+; > N'; and z,4+1 >z, we get

Un < N'4o1 (29— 24-1) + N'git (2g42 — 29) — Ps (N'g-1 = N'g) 24
(A19) =N (1-)p+Ngi (€= 1) p - ps (Mgt = N') p.
Here we explain the meaning of these constants.
Ifn=g +1thenV, = B2+ B°%1 + Y% + U (Na+1 =N') " zpri,and Uy = Bpz + By +
Yot B (Nps1 = N'a) ™ Zpsr.
Ifn>q +2then V,= Bt + B°% + B%+1 = (N'gs2 =N°g41) "zgs2,and U, = Bg1 + B4 +
Bqﬂ-
We claim V, > U,.
To see this, we use (A.18) and (A.19)

Va=Up2 Ny i (1 =€) p+Ne (e = 1) p—pts (N1 = No) p— o (No = N'gug) €2 p

— [N (1 =€) p+N'gu1 (° = 1) p— ps (N'g-1 = N'g) p)

=(Ne=N'g)) (€ =D p+ps Ne—=N') p—p (Ne =N'g2) € p

> (No = N'gi2) (6° = 1) p+ps (No— N'u2) p—pt (No = N'guz) € p

(use Ne>N'yi2 2 N'gsy 2 N'Y)

=(Ne=Ng)p (¥~ 1+ p5—p ™) =0,
by(l-ps)=1-e®(u+e®-1=1-€(u-1)-1=¢*(1-p).
We will use this to prove that §°,+; = 8",+1.

We split this case into two sub cases.
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Sub case (ii.a):n=gq + 1.
Here N,,+1 = Nq+2, N',, = N]q+|.

We observe

q-2
Sr?#l = ZBk +Vn —H'(Nn+l _N,Il)—z"+|
k=0

ZZBI; +Un —,"l(NnH _erl)_znﬂ

We get that $°,+, > §",+) in this sub case.

Sub case (ii.b): n>qg + 2.

First we define the following temporary summation

- q-2 n-1
Sn+l=ZBk+Vn+ ZBA’ +Yn‘
k=0

k=q+2

Here we explain the meaning of Sns 1.

Sn+1 is a capital gain from portfolio {Ni}, where Ny = N, k > 0 except N, = Ny+) = Ne.
When g < k<n-1, Ly =1, and the dominant portfolio of {Nk} is {N°} as follows from
max{N;:q < i< k} =N» v N, = N°%. By the same argument of Case (I) we conclude

SCht1 2 S,,+|.

We also observe that S,.; > S'p41.

To see this, we calculate:
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k=0 k=q+2
q-2 n-1
2 Bk +Un + ZBk +Yn
k=0 k=g+2
n-1
_ — 1
- ﬁk +Yn Sn+l'
k=0

So we get §%,+1 > S,+1 = S',+) in this sub case.
We conclude that $°,+; > $',+1 = 8,4+ in all cases.

This is the end of the proof of Claim 6.

We use g, instead of g after this point.

Finally, we can prove the main inequality in this case.
Recall that we claim that S,+1 <S°m1<c2(B-1)—p b Ny — )"

First we need to divide S°,+; into two sub summations: S°,+; = w, + (8°n+1 — w,).
q,-2
0
We define W, = > B, +B, _,.
k=0
We get

(A20) W, < qul (i —2) =8, < f(z, Nz, - 1),

by B,, = N, ,(z, -z, )-us(N, , —N+)z, and (A.7) (ii) with m = g, k=0,

q.-1
Im= 2, andz; = 1.

As for the other summation (the more interesting one)
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n+l—'W ZBI( +Yn

k=

= ZNI?(ZM -z) =M Hz,,

k=q,

+N°n (zn+]_zn)_)¥8 (Nn+l —ND,,)+Z,,+| _P'(Nnﬂ _Non)—znﬂ

SZNI(I)(Zk+| _zk)_“'(NrHl —N'?)_Zn#l

k=q,
(use N°, 2 N° and z4+) >z, when g, <k < n)
=Nw(zn1— 2, ) =1 (Npr1 = N°n) "~ Znsi
(A21) =Nw(b= 2,) =1 (Nour = N°) b,
by z,+1 = b.
From (A.20) and (A.21) we get
St = (S = W, ) + W,
SNoG(b-2, )~ U N1 =N°) b+ fz, ) (2, - 1)
(A.22). SN, (b—1)—pu (Npr1 —N°,) " b,
by N°n2 N =f(z, Jand b> 2z, > 1.
We will use this basic inequality to prove our main inequality.
Recallthat5>1/(1 —p)>1,namely: b—1-pu b>0.
Since ¢; = floo) > f(z,) > N°,, we only consider three sub cases.
Sub case (IL.i): N+ 2 ¢; > N°,.
Using (A.22) with (N,+; — N°,)~ =0, we get
S SN, (b-1)

< (b-1) — ub (Nps1—c2) ",
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byb>1,c; > N°,and (N4 —c2) =0.
Sub case (IL.i1) ¢; > Npy 2 N°,.
Here (Nps1 — N°,) ™ =0,and (Np+1 —€2) =c3 — Npsy.
Using (A.22) with (N,+; — N°,) =0, we have
S%n1 SN°,(b-1)
SNy (b=1)+(c2 —~N°y) (b—1—p b)
(usec; >N°,andb—-1-pb>0)
=c(b-1)—pb(c; —N°)
Sc;(b-1)—pb(cs — Nups1)
(use N,+1 = N°,)
=c(b-1)—pbNyt1 — 2)".
Sub case (IL.ii1) ¢; > N°, > N4
Here (Ny+1 = N°p) = N°p = Npsty, (Nus1 — €2) " = €2 — Nps.
Using (A.22) with (Np+1 — N°,) = N°, — N,+1, we also have
a1 SN (b= 1) = W (N°n = Np1) b
SN (b-1)-p(N°a=Npr1) b+ (c2 —N°n) (b—1-p b)
(usec; >N°,andb-1-pub>0)
=c2(b-1) = pb(c2— Npu1)
=c2(b-1) — pbNpr1 — ).
So we have §°,41 £ c2(b—-1) — ub(Na+1 — ¢2)” in all three case.

We getthat S,4) <S8%+1 < c2(b-1) — pb(Npr1 — ) If z, > 1

We conclude that S+ < c2(0—1) — pb(Nys1 — ¢2)” 1f 2,0 =b.

54



A.2 Equivalent forms of Assumption 1.8

Finally we modify Assumption 1.8 to a more convenient form and we need three
lemmas for that purpose. The form of Assumption 1.8 that is achieved in the third lemma
is the one that we use in the proof of the main theorem.

Lemma A.23 If Assumption 1.8 (i) is satisfied, then forevery,m>1,8 >0,0<d <1
and stopping time T, we have, on the event {T <d} a.s.
G)P(TE . <d, Z(Tg ., )=e™ZT)/Fr)>0and
(i) P(Tg s <d, Z(Tg ) =€™ Z(T)/ F1)>0.
Proof of Lemma A.23 (i).
First we define the followings.
Let To=T, Ty =(Ta1)i, k2 1.
Let Ay = {Tx <d,Z(T) =€ Z(Tiy), 1<i< k}, 1 <k< L
Then Ags1 = {Ak, Tees <d, Z(Tis1) = €2 Z(T)}, 1 <k <I-1.
We claim that P(4,/ F1) >0 a.s.
We will prove it formally by induction.
By Assumption 1.8 (i), P(4,/ Fr) >0 a.s.
We assume that P(4, / F1) >0 a.s. for some k between 1, /- 1.
P(A,, /F;)= IP(T,“, <d,Z(T,,)) =e Z(T, )/ Fy )(x)P(dx/ F7) > Oas,
by AssumptionAkl.S (1) with T, ( <d) and P(Ax/ Fr) >0a.s.
So P(4;/ Fr) >0 a.s, by induction.

Let B={T¢ , <d, Z(Tg ) =€ Z(T)}. We have
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B> A, and P(B/ Fr) 2 P(A;/ Fr) >0 a.s. So we have proved Lemma A.23 (i).
The proof of Lemma A.23 (ii) is similar to the proof of Lemma A.23 (i) and will be

omitted.

Lemma A.24 If Assumption 1.8 is satisfied, then for every 8, 6;, 83 >0,0<d <1 and
stopping time T, we have, on the event {T <d} a.s.

(1) P( Tg’z‘sj <d, Z( Ta"zﬁ’ )= e Z(T)/ Fr) >0,

(i) P(Ty 5 <d, Z(Ty , )= €> Z(T)/ Fr)>0, and

() P(Ts =1/ F7)>0.
Proof of Lemma A .24 (i). Assume (w.l.o.g.)that 3/, m>1sothat(/-1)8 <§,<1/3
and &; =m 4.
By Lemma A.23 (i), P(Ty ,, <d, Z(T¢ ) =e™® Z(T)/ Fr)>0 ass.
Since { T, , <d,Z(T{ ; )= e ZM)} > (T4 s <d, ZTs ,5) =€ ZT)},
KTy s, <d, ZT; ; )=e ZT)/Fr)>0as.
We prove Lemma A.24 (i).
The proof of Lemma A.24 (ii) is similar to the proof of Lemma A.24 (i) and will be
omitted.
The proof of Lemma A.24 (iii) is trivial by Assumption 1.8 (ii).
Lemma A.25 If Assumption 1.8 is satisfied, then for every 0 <g < 1, there exists 8°(¢) >
0 that satisfies: € < (1 - 2¢)/ (1-3g),1 - < u, e — 1< A so that for every
stopping times 0<T<¢, and 1 -¢ <1 <1, we have

(i) P(Te =1/Fp)>0as,
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(1) P(tpse <1, Z(tp5°) = e Z(t)/ F) >0 a.s, where = —[log(1 — p) + 8°], and
(i) P(1 —€ <Te<1,Z(Ts) = € Z(T)/ Fr) >0 ass.

Proof.

By Lemma A .24 (iii) with & = 8°, the proof of (i) is trivial.

By using Lemma A.24 (i) withd = 1, 8, = B and &; = &°, the proof of (ii) is trivial.

We need some calculation for (iii).

We define stopping time L = (1 — €) A Tse.

By P(Ts =1/Fr)>0as,P(L=1-¢/Fr)>0as.

B = q 35 -28°

—p< e implies that e < ¢
If L=1-¢ thenTg> 1 —¢, Z(L) <e® Z(T) and
ePZL)< eP e Z(T) < e ¥ Z(T) < ¥ Z(T). So
P(1-€<Tse<1:Z(Ts) = €° Z(T)/ Fr)
>P(Lpse<1,Z(Lps)= ePZ(L)/L=1-g)P(L=1-¢/F1) >0as,
by PL=1-¢/Fr)>0as,and (ii)witht=Lon {L=1-¢}.

We have proved part (iii).
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A.3 Two simple inequalities

In this part of appendix we prove two inequalities that were used in A.1.
First Inequality:

Leta,b,c € R. We have

(A.26). (a-c)-(c—b) <a-b.

Proof. Ifc>bthen(c-b) =0.

(@a-c)-(c-b) =a-c<a-b,

byc=>b.

Ifc<bthen(c-b) =b-c.

(@a-c)-(c-b) =a-c-(b-c)=a-b.

Second Inequality:

Leta>b,c € R. We have

(A.27). avc-bvc<a-b.

Proof. Ifc> a> bthenavc=c,bvc=c.
avc-bvc=c-c=0<a-b>0.
Ifa>c> bthenavc=abvc=c.
avc-bvc=a-c<a-b,

byc2>b.
Ifa>b>cthenavc=abvc=b.

avc-bvc=a-b.
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