LIGNIN  DEPOLYMERIZATION  AND  UPGRADING  VIA  FAST  PYROLYSIS  AND   ELECTROCATALYSIS  FOR  THE  PRODUCTION  OF  LIQUID  FUELS  AND  VALUE-­‐ADDED   PRODUCTS   By   Mahlet  Garedew                     A  THESIS   Submitted  to     Michigan  State  University     in  partial  fulfillment  of  the  requirements     for  the  degree  of     Biosystems  and  Agricultural  Engineering  –  Master  of  Science     2014     ABSTRACT     LIGNIN  DEPOLYMERIZATION  AND  UPGRADING  VIA  FAST  PYROLYSIS  AND   ELECTROCATALYSIS  FOR  THE  PRODUCTION  OF  LIQUID  FUELS  AND  VALUE-­‐ADDED   PRODUCTS     By   Mahlet  Garedew   The   production   of   liquid   hydrocarbon   fuels   from   biomass   is   needed   to   replace   fossil   fuels,   which   are   decreasing   in   supply   at   an   unsustainable   rate.     Renewable   fuels   also   address   the   rising   levels   of   greenhouse   gases,   an   issue   for   which   the   Intergovernmental   Panel   on   Climate   Change   implicated   humanity   in   2013.     In   response,   the   Energy   Independence   and   Security   Act   (EISA)   mandates   the   production   of   21   billion   gallons   of   advanced  biofuels  by  2022.    Biomass  fast  pyrolysis  (BFP)  uses  heat  (400-­‐600  °C)  without   oxygen  to  convert  biomass  to  liquids  fuel  precursors  offering  an  alternative  to  fossil  fuels   and  a  means  to  meet  the  EISA  mandate.  The  major  product,  bio-­‐oil,  can  be  further  upgraded   to  liquid  hydrocarbon  fuels,  while  biochar  can  serve  as  a  solid  fuel  or  soil  amendment.    The   combustible   gas   co-­‐product   is   typically   burned   for   process   heat.   Though   the   most   valuable   of  the  pyrolysis  products,  the  liquid   bio-­‐oil  is  highly  oxygenated,  corrosive,  low  in  energy   content   and   unstable   during   storage.     As   a   means   of   improving   bio-­‐oil   properties,   electrocatalytic   hydrogenation   (ECH)   is   employed   to   reduce   and   deoxygenate   reactive   compounds.   This   work   specifically   focuses   on   lignin   as   a   feed   material   for   BFP.   As   lignin   comprises  up  to  30%  of  the  mass  and  40%  of  the  energy  stored  in  biomass,  it  offers  great   potential   for   the   production   of   liquid   fuels   and   value-­‐added   products   by   utilizing   fast   pyrolysis  as  a  conversion  method  coupled  with  electrocatalysis  as  an  upgrading  method.                           Dedicated  to  my  husband  Nicholas  James  Ballard.                         iii       ACKNOWLEDGEMENTS     I  would  like  to  take  this  opportunity  to  express  my  gratitude  to  everyone  who  has   provided  support  throughout  my  MS  degree.  I  would  like  to  express  my  sincere  gratitude  to   my  advisor  Dr.  Chris  Saffron,  for  his  guidance  and  strong  support  throughout  my  MS  degree   work  and  for  his  continued  support  in  my  future  pursuit  and  research  work.  I  have  gained  a   great  deal  of  knowledge  through  his  guidance  in  this  field.  I  would  like  to  thank  Dr.  James   Jackson  for  his  continuous  guidance,  support  and  his  immense  contribution  to  my  research   work.     I   would   also   like   to   thank   Dr.   David   Hodge   for   his   guidance   as   part   of   my   MS   committee   member.   Special   thanks   to   Barb   DeLong   for   all   her   help   answering   my   department-­‐related  questions  no  matter  how  trivial.   I  would  like  to  give  a  special   thanks   to   my   research   group   members   and   colleagues,   Dr.  Zhenglong  Li,  Dr.  Shantanu  Kelkar,  Kristen  Henn,  Chai  Li,  Rachael  Sak,  Nichole  Ericson,   Stephen  Willson,  Dr.  Chun  Ho  Lam,  Souful  Bhatia,  Pengchao  Hao,  Tayeb  Kakeshpour,  Greg   Spahlinger,   Darya   Howell,   Fatmata   Jalloh,   Dr.   Mikhail   Redko,   Andrew   Henika,   for   providing   support  and  help  throughout  my  stay  with  the  Saffron  and  Jackson  research  groups.       I   would   like   to   thank   my   friends   and   family,   Melissa   Rojas-­‐Downing,   Georgina   Sanchez,   Yamile   Mennah-­‐Govela,   Anne   Von   Petersdorff-­‐Campen,   Meron   Garedew,   Menna   Garedew  for  all  their  personal  support,  encouragement  and  love.     Last   but   not   least,   I   would   love   to   give   my   heartfelt   thanks   and   gratitude   to   my   husband,  Nick  Ballard  for  being  my  biggest  cheerleader  and  for  the  daily  encouragement,   love   and   support   that   he   provides   for   me.   I   would   not   be   able   to   accomplish   my   goals   without  his  continuous  support.  I  am  grateful  to  have  such  a  wonderful  partner.       iv       TABLE  OF  CONTENTS     LIST  OF  TABLES .................................................................................................................................. vii   LIST  OF  FIGURES................................................................................................................................viii   Chapter  1  :  Introduction  and  Background................................................................................... 1   Introduction........................................................................................................................................................... 1   Research  Objectives ........................................................................................................................................... 4   Energy  Crisis  and  Environmental  Impact ................................................................................................. 4   Fossil  Fuel  Use.................................................................................................................................................. 4   Environmental  Impact  of  Climate  Change ........................................................................................... 5   Social  Impacts  of  Climate  Change............................................................................................................ 6   Biomass  Components ........................................................................................................................................ 7   Lignin:  Structure .................................................................................................................................................. 8   Lignin:  Isolation  Processes........................................................................................................................... 12   Fast  pyrolysis  as  a  Depolymerization  Process..................................................................................... 13   Characteristics  of  Bio-­‐oil ............................................................................................................................... 15   Bio-­‐oil  Upgrading  using  Electrocatalytic  Hydrogenation ............................................................... 17   Conclusion ........................................................................................................................................................... 22   REFERENCES...................................................................................................................................................... 24   Chapter  2  :  Electrocatalytic  Hydrogenation  and  Deoxygenation  of  Lignin  Model   Compounds  using  Ruthenium  Supported  on  Activated  Carbon  Cloth .............................32   Abstract................................................................................................................................................................. 32   Introduction........................................................................................................................................................ 32   Experimental  Methods................................................................................................................................... 36   Model  Compounds ...................................................................................................................................... 36   Catalyst  Preparation................................................................................................................................... 37   Catalyst  Characterization......................................................................................................................... 37   Electrocatalytic  Hydrogenation  (ECH)  Setup.................................................................................. 38   Catalyst  Deactivation  Studies................................................................................................................. 40   Sample  Analysis............................................................................................................................................ 40   Calculations.................................................................................................................................................... 40   Results  and  Discussion................................................................................................................................... 41   Catalyst  Characterization  (ICP  and  SEM).......................................................................................... 41   Model  Compound  Studies:  Methoxyphenols  with  Different  Methoxy  Group  Positions 43   Model  Compound  Studies:  4-­‐O-­‐5  Type  Linkage  (4-­‐phenoxyphenol).................................... 50   Electrolyte  Effect.......................................................................................................................................... 51   Current  Density  and  Substrate  Concentration................................................................................ 53   Model  Compound  Studies:  β-­‐O-­‐4  type  Linkage  Dimers .............................................................. 54   Catalyst  Deactivation ................................................................................................................................. 55   Conclusion ........................................................................................................................................................... 58   REFERENCES...................................................................................................................................................... 60   v       Chapter  3  :  Characterization  of  Extractive  Ammonia  Process  Lignin  Fractions...........64   Abstract................................................................................................................................................................. 64   Introduction........................................................................................................................................................ 64   Experimental  Methods................................................................................................................................... 68   EAP  Lignin  Extraction  Method............................................................................................................... 68   Higher  Heating  Value  (Bomb  Calorimetry)...................................................................................... 70   Elemental  Analysis  (CHNS) ..................................................................................................................... 70   Thermogravimatric  Analysis  (TGA) .................................................................................................... 71   Pyrolysis  GC/MS........................................................................................................................................... 71   Catalyst  Preparation................................................................................................................................... 72   Electrocatalytic  Hydrogenation  of  EAP  Lignin ............................................................................... 72   Size  Exclusion  Chromatography ........................................................................................................... 73   Results  and  Discussion................................................................................................................................... 74   HHV,  Elemental  Analysis  and  TGA ....................................................................................................... 74   Pyrolysis  GC/MS........................................................................................................................................... 77   Electrocatalytic  Hydrogenation  of  EAP  Lignin ............................................................................... 78   Conclusion ........................................................................................................................................................... 79   REFERENCES...................................................................................................................................................... 82   Chapter  4  :  Conclusions  and  Future  Work.................................................................................85   Conclusions ......................................................................................................................................................... 85   Future  Work ....................................................................................................................................................... 86                       vi       LIST  OF  TABLES     Table  1.1:  Major  linkage  types  and  their  abundance  in  lignin  structure ...................................... 11   Table  1.2:  Difference  in  properties  of  bio-­‐oil  and  fuel  oil  53 ............................................................... 16   Table  1.3:  Electrocatalytic  reduction  of  various  substrates  using  different  catalysts ............ 21   Table  2.1:  Scanning  electron  microscopy  elemental  analysis  using  EDX ..................................... 42   Table  2.2:  Summary  table  of  yield  and  current  efficiency  of  ECH  of  methoxyphenols ........... 47   Table  2.3:  Summary  table  of  selectivity  and  conversion  of  ECH  of  methoxyphenols.............. 48   Table  2.4:  Summary  table  of  ECH  of  4-­‐phenoxyphenol  using  different  electrolytes ............... 52   Table   2.5:   Summary   of   ECH   of   4-­‐phenoxyphenol   with   different   current   density   and   substrate  concentration............................................................................................................................ 54   Table  2.6:  Summary  table  of  catalyst  deactivation  study .................................................................... 57   Table  3.1:  HHV  and  elemental  analysis  of  F3  and  F1  fraction ........................................................... 75   Table  3.2:  Retention  times  of  products  from  Py/GC-­‐MS  of  F3  fraction ......................................... 78                     vii       LIST  OF  FIGURES     Figure  1.1:  Comparison  of  available  biomass,  carbon  and  energy  production  in  the  US  based   on   predictions   by   the   U.S.   billion-­‐ton   study   update   vs.   U.S.   petroleum   consumption   during  2013....................................................................................................................................................... 3   Figure  1.2:  Three  monolignols  para-­‐coumaryl  alcohol,  coniferyl  alcohol,  sinapyl  alcohol...... 9   Figure  1.3:  Electrocatalytic  hydrogenation  and  hydrogen  evolution  steps  66 ............................ 19   Figure  2.1:  Overall  scheme  of  the  project  from  EAP  lignin  to  liquid  fuels.................................... 36   Figure  2.2:  Dimers  a)  4-­‐phenoxyphenol  (4-­O-­5)  b)  Dimer#1  (β-­O-­4) ............................................ 37   Figure  2.3:  Two  chambered  H-­‐cell  setup .................................................................................................... 39   Figure  2.4:  X-­‐ray  dot  map  analysis  of  Ru/ACC  for  carbon  and  ruthenium  a)  carbon  cloth  b)   ruthenium ....................................................................................................................................................... 42   Figure  2.5:  Scanning  electron  microscopy  images  of  a)  unloaded  b)  ruthenium  loaded....... 43   Figure  2.6:  Scanning  electron  microscopy  images  of  loaded  cloth  a)  100x    b)  300x............... 43   Figure   2.7:   Reaction   pathways   for   the   reduction   of   methoxycyclohexanol   to   cyclohexanol   and  methoxycyclohexanol ....................................................................................................................... 45   Figure  2.8:  Electrocatalytic  hydrogenation  and  hydrogen  evolution  steps  18 ............................ 45   Figure   2.9:     Product   yield,   amount   of   starting   material   left,   current   efficiency   and   conversion  of  ECH  of  methoxyphenols .............................................................................................. 47   Figure   2.10:   Conversion,   product   yield   and   depletion   of   starting   material   of   ECH   of   2-­‐ methoxyphenol............................................................................................................................................. 48   Figure   2.11:   Conversion,   product   yield   and   depletion   of   starting   material   of   ECH   of   3-­‐ methoxyphenol............................................................................................................................................. 49   Figure   2.12:   Conversion,   product   yield   and   depletion   of   starting   material   of   ECH   of   4-­‐ methoxyphenol............................................................................................................................................. 49   viii       Figure  2.13:  Suggested  reaction  pathway  for  ECH  of  4-­‐phenoxyphenol....................................... 52   Figure  2.14:  Reaction  conditions  and  products  of  ECH  of  dimer  #1............................................... 55   Figure  2.15:  Product  yield  (phenol  +  cyclohexanol)  for  catalyst  deactivation  test .................. 57   Figure  2.16:  Current  efficiency  for  catalyst  deactivation  test............................................................ 58   Figure  2.17:  Conversion  for  catalyst  deactivation  test ......................................................................... 58   Figure   3.1:   Overall   project   scheme   from   biomass   harvesting   to   pretreatment   using   extractive   ammonia   process   folowed   by   pyrolysis   and   electrocatalysis   to   upgrade   to   valuable  procuscts....................................................................................................................................... 67   Figure   3.2:   Method   used   to   produce   EAP   lignins.     Lignins   are   present   in   oligomeric   and   polymeric  forms  as  per  the  molecular  weights  of  each  fraction............................................. 69   Figure  3.3:  Ethanol  soluble  F3  fraction  as  obtained  from  liquid  ammonia  after  precipication   in  water  followed  by  solubilization  in  ethanol ............................................................................... 70   Figure  3.4:  Two  chambered  H-­‐cell  setup .................................................................................................... 73   Figure  3.5:  TGA  analysis  of  F3  fraction ........................................................................................................ 76   Figure  3.6:  TGA  analysis  of  F1  fraction ........................................................................................................ 76   Figure  3.7:  Py/GC  chromatogram  of  F3  fraction  with  peak  labels  outlined  in  Table  3.2....... 77         ix       Chapter  1  : Introduction  and  Background     Introduction   The   use   of   fossil   fuels   for   the   production   of   energy   and   raw   materials   has   been   providing  resources  for  daily  human  necessities  for  hundreds  of  years.  However,  there  are   two  major  reasons  why  this  will  not  be  sustainable  in  the  future.  First  and  foremost  fossil   fuels  are  limited  and  non-­‐renewable  since  they  take  millions  of  years  to  regenerate,  a  time   frame   irrelevant   to   current   generations   of   mankind.   Second,   the   use   of   fossil   fuels   contributes  to  rising  levels  of  greenhouse  gases,  an  issue  for  which  the  Intergovernmental   Panel  on  Climate  Change  (IPCC)  implicated  humanity  in  2013.1  To  this  end,  the  use  of  fossil   fuels   is   not   a   sustainable   form   of   energy   and   alternatives   should   be   considered.     Furthermore,   the   use   of   petroleum   creates   global   energy   dependence   and   all   the   economic   and  political  issues  that  come  with  it.  The  U.S.,  for  example,  is  considered  to  be  one  of  the   largest   consumers   of   petroleum   in   the   world,   reported   to   have   consumed   18.6   million   barrels   of   petroleum   products   per   day   (MMbd)   in   2012.   According   to   the   Energy   Information   Administration   (EIA)   about   40%   of   that   (7.4   MMbd)   was   imported   from   abroad   so   the   U.S.   could   greatly   benefit   from   the   displacement   of   petroleum   with   renewable   sources.2   To   achieve   such   a   goal,   the   Energy   Independence   and   Security   Act   mandates   that   by   the   year   2022,   21   billion   gallons   of   advanced   biofuels   be   introduced   to   displace  petroleum.3  To  this  end,  the  need  for  sustainable  sources  of  fuels  and  chemical  raw   materials   that   are   environmentally   friendly   and   economically   feasible   has   been   a   driving   force   for   the   conversion   of   biomass   to   liquid   fuels   and   value   added   products.     Biomass   is   considered   as   a   viable   alternative   due   to   its   potential   to   be   converted   to   hydrocarbon   fuels   1       and   its   ability   to   offset   the   CO2   emissions   due   to   plant   growth.4   According   to   the   2011   Billion-­‐ton  Study  update,  biomass  has  been  used  as  feedstock  for  producing  and  supplying   about   4%   of   the   total   U.S.   energy   requirements.5   Furthermore,   66.1%   of   the   renewable   energy   in   the   European   Union   is   obtained   from   biomass,   which   is   more   than   the   amount   provided   from   other   renewable   sources.6   Therefore   as   biomass   is   becoming   more   and   more   important   as   an   alternative   energy   source,   advancements   in   conversion   processes   could  be  very  beneficial.     Various  processes  can  be  used  for  the  conversion  of  biomass  into  biofuels,  unlocking   the  energy  stored  within  the  bonds  that  hold  the  different  components  of  biomass  together.   One  promising  process,  and  the  main  focus  of  this  review,  is  biomass  fast  pyrolysis  (BFP).   As   its   name   implies   this   thermochemical   conversion   entails   rapid   heating   of   biomass   to   relatively   high   temperatures   in   the   absence   of   oxygen.   BFP   produces   a   liquid   (bio-­‐oil),   a   solid   (char)   and   gas   optimized   to   maximize   the   bio-­‐oil   fraction.   BFP   is   a   promising   path   from   plant   matter   to   liquid   biofuels   and   raw   materials   for   value-­‐added   products   at   low   cost.   7,8  However,  undesirable  properties  of  crude  bio-­‐oil  such  as  high  oxygen,  high  water   content,   low   heating   value   and   chemical   instability7   prevent   it   from   being   commercially   viable  drop-­‐in  petroleum  replacement  without  further  upgrading.  Furthermore,  due  to  its   relatively  high  acid  content  bio-­‐oil  can  corrode  steel  engines,  pipelines  and  storage  tanks,   making  it  incompatible  with  the  current  fuel  handling  and  use  technologies.7  Additionally,   conversion   of   biomass   to   bio-­‐fuels   cannot   fully   displace   petroleum   fuels   as   biomass   falls   short   in   terms   of   both   carbon   content   and   energy   content.   As   shown   in   Figure   1.1,   even   under  the  best  of  scenarios,  the  biomass  that  is  reported  to  be  available  for  use  as  feedstock   for   bio-­‐fuel   production   (1.3   billion   tons/year)   can   only   provide   520   millions   tons   of   2       carbon/year   and   19   billion   GJ   (giga   joules)   of   energy/year   vs.   860   million   tons   of   carbon   and  42  billion  GJ  of  energy  per  year   that  can  be  provided  by  1  billion  tons  of  petroleum  per   year.9  So  more  efficient  conversion  strategies  that  conserve  carbon  from  biomass  need  to   be  explored  in  addition  to  increasing  the  energy  content  of  biomass-­‐derived  fuels  such  as   bio-­‐oil   using   upgrading   strategies.   Therefore,   tackling   these   problems   requires   extensive   study  and  understanding  of  the  effect  of  feed  material  composition,  biomass  pretreatment   processes,  pyrolysis  process  parameters,  and  viable  upgrading  strategies.       Energy   19  x  109  GJ/year     42  x  109  GJ/year     Carbon   520  x  106  tons  C/year   Biomass   860  x  106  tons  C/year   Petrolem   1.3  x  109  tons/year   Mass   1  x  109  tons/year     Figure  1.1:  Comparison  of  available  biomass,  carbon  and  energy  production  in  the  US  based   on  predictions  by  the  U.S.  billion-­‐ton  study  update  vs.  U.S.  petroleum  consumption  during   2013     This  chapter  is  structured  to  cover  a  brief  analysis  of  the  current  energy  crisis  and   biomass  as  a  possible  solution  to  this  issue.  Additionally,  the  advantages  and  the  potential   of   utilizing   pretreatment   methods   such   as   extractive   ammonia   process   (EAP)   for   lignin   extraction   is   covered.     Last   but   not   least,   the   use   of   fast   pyrolysis   coupled   with   3       electrocatalysis  as  a  way  of  further  depolymerizing  and  upgrading  lignin  for  the  production   of  a  viable  liquid  fuel  intermediate  is  reviewed.     Research  Objectives     1. Characterize  EAP  lignin  to  help  identify  the  potential  of  pretreated  biomass  lignin  as   a  feedstock  for  liquid  fuel  production  via  fast  pyrolysis   2. Examine  the  electrocatalysis  of  lignin-­derived  monomers  such  as  2-­‐methoxyphenol,  3-­‐ methoxyphenol  and  4-­‐methoxyphenol   3. Study   the   use   of   electrocatalysis   for   model-­lignin   dimers   with   specific   linkages   to   determine  its  effectiveness  for  cleaving  such  linkages.     4. Explore  direct  electrocatalysis  of  EAP  Lignin  to  gauge  the  potential  of  electrocatalysis   as  a  method  for  bypassing  fast  pyrolysis  to  produce  stable  lignin  fragments.     Energy  Crisis  and  Environmental  Impact     Fossil  Fuel  Use     The   continued   consumption   of   fossil   fuels   as   a   source   of   energy   might   have   some   major   impacts   related   to   energy   consumption   as   well   as   environmental   issues.   Energy   consumption   is   projected   to   keep   increasing   through   2030;10   as   reported   by   Mason   in   2007,  world  energy  consumption  was  growing  at  2%  per  year  and  if  it  continued  to  grow  at   this   rate,   it   would   double   within   the   following   35   years.11   Furthermore,   according   to   the   2013  International  Energy  Outlook  report  the  US  Energy  Information  Administration  (EIA)   predicts   a   56%   increase   in   total   world   energy   consumption   from   524   quadrillion   Btu   in   2010,  to  630  quadrillion  Btu  in  2020,  and  to  820  quadrillion  Btu  in  2040.12  In  conjunction   with  increasing  energy  consumption,  energy  production  from  fossil  fuels  and  renewables  is   4       predicted  to  keep  increasing  for  the  next  30  years.10      The  EIA  reports  that  even  though  the   supply   of   energy   from   rapidly   growing   renewable   sources   and   nuclear   power   are   increasing   by   about   2.5%   per   year,   fossil   fuels   still   continue   to   dominate   the   energy   supply   by   providing   about   80%   of   the   energy   use   through   2040.12   Although   there   are   no   clear   predictions  of  when  fossil  fuels  will  be  completely  depleted,  some  studies  point  to  oil,  coal   and  gas  predict  depletion  in  35,  107  and  37  years  respectively.   13    So  more  efforts  need  to   be  made  to  displace  fossils  with  renewable  sources.     Environmental  Impact  of  Climate  Change     In   addition   to   the   issues   related   to   depleting   fossil   reserves,   the   environmental   impact  of  burning  fossil  fuels  for  energy  production  cannot  be  ignored.  Energy  production   primarily   from   burning   fossil   fuels   is   the   main   contributor   to   increased   emission   of   greenhouse  gases  (GHG)  such  as  CO2  into  the  atmosphere.   14  These  emissions,  in  turn,  are   believed   to   be   related   to   global   temperature   increase,   which   induces   global   climate   change   linking   future   energy   production   to   global   warming.14   Hence   the   warming   of   the   earth   within  the  next  century  due  to  the  anthropogenic  greenhouse  emissions  from  fossil  use  is   inevitable.   15   As   Reported   by   the   National   Oceanic   and   Atmospheric   Administration’s   (NOAA)  Global  Greenhouse  Reference  Network,  the  average  CO2   level  measured  at  Mauna   Loa  Hawaii  in  April  2014  was  401.30  ppm  as  compared  to  April  2013,  which  was  398.35   ppm.16   Looking   at   the   trends   presented   by   NOAA   since   1960,   CO2   in   the   atmosphere   has   gradually  increased.    As  a  result  of  the  rise  in  CO2  emissions,  global  average  land  and  ocean   surface   temperature   has   shown   an   increase   of   0.78   °C   when   comparing   the   averages   between  1850-­‐1900  and  2003-­‐2012  period.  17  If  humans  continue  to  emit  GHGs  at  this  rate   5       it   is   predicted   that   the   global   temperatures   will   rise   and   could   have   dangerous   anthropogenic  interferences  (DAI)  with  the  climate  system.18  The  ramifications  of  climate   change   could   be   very   drastic   resulting   in   extreme   weather,   effects   on   human   health,   increases  ocean  acidity  and  impacts  on  habitats.   Social  Impacts  of  Climate  Change     As   climate   and   weather   conditions   dictate   much   of   our   daily   existence,   these   environmental   and   climate   changes   in   turn   have   impacts   on   society   with   regards   to   our   health,  food  and  water  supply,  energy,  transportation,  access  to  infrastructure,  etc.19  That   stated,  due  to  geographic  location  and  economic  status,  certain  communities  or  groups  will   likely   feel   the   impact   more   than   others.     Those   that   have   fewer   or   limited   resources   will   be   most   impacted   by   climate   change.20   Native   and   indigenous   communities   restricted   by   various   geographical,   economical   and   cultural   boundaries,   and   populations   in   developing   countries   that   have   weak   infrastructures   are   included   in   this   group.   21   In   most   of   these   cases  certain  health  risks  that  are  climate  sensitive  such  as  diarrheal  diseases,  malnutrition,   and  malaria  will  be  exacerbated  in  these  poor  areas  as  a  result  of  climate  change.  This  in   turn   will   put   a   huge   dent   on   the   economics   of   the   health   sector   estimated   to   reach   US   $2-­‐4   billion/year  by  2030.  22   Considering   the   background   information   in   the   previous   paragraphs   (potential   fossil   fuel   depletion,   global   climate   and   environmental   impacts   and   social   impacts   of   deriving   energy   from   fossil   fuels),   the   World   Energy   Council   (WEC)   shows   that   many   countries   are   choosing   to   reduce   their   dependence   on   fossil   fuels.10   This   is   leading   to   tremendous   advancements   in   technologies   for   energy   production   from   renewable   sources.   6       According  to  the  IEA,  one  of  the  key  systems  that  will  revolutionize  the  future  is  production   of   biofuels   to   supply   a   substantial   fraction   of   the   transportation   fuels   in   use   by   2030.10   Accordingly,   lignocellulosic   resources   will   play   an   increasingly   important   role   in   the   future   of  energy  production.23     Biomass  Components   Optimization   of   the   biomass   depolymerization   process   requires   an   understanding   of   biomass   itself.   The   term   biomass   is   used   to   describe   all   organic   material   which   includes   plant-­‐based   matter   such   as   crops,   trees,   algae,   land-­‐   or   water-­‐based   plants   and   even   organic   waste   and   animal-­‐based   matter.23   What   has   made   biomass   a   unique   source   of   energy  is  the  stored  chemical  energy  that  is  derived  from  the  sun  and  stored  in  the  bonds   within   the   organic   matter.23   Biomass   already   accounts   for   10-­‐14%   of   the   world’s   energy   supply23   making   it   the   4th   largest   energy   source.24   Further   study   into   the   most   favorable   biomass   properties   and   conversion   processes   could   elevate   the   potential   for   bioenergy   production.  Ideal  biomass  properties  for  bioenergy  production  include  high  biomass  yield   per   unit   land   area,   low   cost   and   energy   input   for   biomass   production   and   low   levels   of   nutrients  and  contaminants  released  in  cultivation.23  Low  levels  of  water  consumption  are   also   desirable.   The   fulfillment   of   the   above-­‐motioned   criteria   can   enhance   the   yields   and   outcomes  of  the  various  conversion  methods  that  can  be  employed  to  break  down  biomass   into  valuable  products  such  as  liquid  fuels  and  chemicals.       In  order  to  understand  the  break  down  and  conversion  of  biomass,  an  understanding  of   its   components   is   essential.   At   the   macromolecular   level   biomass   is   composed   of   polysaccharides   (cellulose   and   hemicellulose)   and   lignin.   Although   it   is   highly   dependant   on  the  type  of  biomass,  hemicellulose  accounts  for  about  20-­‐40  wt%,  cellulose  about  35-­‐60   7       wt%   and   lignin   about   10-­‐25   wt%.25   Cellulose   can   be   found   in   cell   walls   both   as   amorphous   and  crystalline  polymers  made  from  glucose  building  units.  Similarly  hemicelluose  is  also   an   amorphous   network   of   pentoses   and   hexoses.26   Lignin   is   a   highly   complex   branched   network  constructed  from  monolignols.27  It  acts  as  the  binding  element  that  fills  the  empty   spaces  in  plant  cell  walls  and  serves  to  hold  the  cell  wall  structure  together  in  addition  to   providing  protection  against  pathogens.28   Deconstructing   these   components   from   the   bulk   biomass   is   the   key   to   harnessing   biomass-­‐derived   energy.   Due   to   the   relative   simplicity   of   the   structures   of   cellulose   and   hemicellulose  compared  to  lignin,  these  polysaccharides  have  been  extensively  utilized  as   feed   for   ethanol   production.   But   lignin’s   complexity   has   made   it   relatively   difficult   to   depolymerize  for  use  as  an  efficient  source  of  biofuels.  In  businesses  such  as  the  pulp  and   paper   industry,   lignin   is   often   a   byproduct   cellulose   extraction   and   is   usually   burned   for   heat   or   discarded   as   a   waste   product.29   Only   2%   (about   one   million   tonnes)   of   the   lignin   produced  as  the  byproduct  of  pulp  and  paper  processing  is  used  to  make  valuable  products,   the   remainder   is   burned.30   Further   study   into   the   structure   and   depolymerization   properties  of  lignin  is  needed  to  support  fuel  and  chemical  production.             Lignin:  Structure     The   definition   of   lignin   as   a   specific   compound   has   been   a   difficult   task   as   lignin   has   different   structures   and   compositions   owing   to   the   randomness   of   the   polymerization   process.  Lignin  is  therefore  considered  not  as  a  specific  compound  but  more  as  a  family  of   cross-­‐linked  phenolic  polymers  found  in  secondary  cell  walls31  and  comprised  of  different   building   blocks   connected   together   via   different   types   of   linkages.32   As   mentioned   above,   lignin   is   composed   of   three   major   monolignols:   para-­‐coumaryl   alcohol,   coniferyl   alcohol   8       and   sinapyl   alcohol.     Figure   1.2   shows   the   structures   of   these   compounds.   The   type   and   amount   of   monolignols   present   in   lignin   is   different   for   different   types   of   biomass.   Depending  on  whether  the  biomass  in  question  is  a  hardwood,  softwood  or  grass,  the  lignin   content   and   composition   widely   vary.27   Lignin   from   softwood   is   primarily   made   of   coniferyl   alcohol   units;   hardwood   lignin   is   mainly   made   of   sinapyl   alcohol   units   while   grasses  contain  all  three  monolignols.  33                 Figure  1.2:  Three  monolignols  para-­‐coumaryl  alcohol,  coniferyl  alcohol,  sinapyl  alcohol   The  monolignol  precursors  are  proposed  to  polymerize  via  random  radical  coupling  to   form   dimers   and   higher   oligomers   by   addition   of   free   radical   monomers   to   the   existing   dimer  or  oligomers.34  These  result  in  linkages  such  as  β-­‐O-­‐4,  β-­‐O-­‐5  and  β-­‐β  (Table  1.1).35,  36   In   other   cases,   cross   coupling   of   two   already   forming   lignin   polymers   can   also   occur   whereby  two  free  phenolic  guaiacyl  and  syringyl  units  join  together  to  form  such  linkages   as  4-­‐O-­‐5  and  5-­‐5.   37  Table  1.1  shows  the  list  of  known  common  linkages  in  lignin  and  their   relative  abundance  in  hardwoods  and  softwoods.  As  can  be  seen  from  these  numbers,  the   most   abundant   and   dominant   type   tends   to   be   β-­‐O-­‐4   linkages.   The   exact   structure   of   the   lignin  network  is  difficult  to  clearly  define,  as  the  structural  makeup  of  lignin  and  the  type   of   monolignols   present   in   different   biomass   are   different.   Furthermore,   the   processes   used   9       for  depolymerization  and  isolation  of  lignin  components  can  greatly  influence  the  makeup   and  bonding  arrangements  of  the  resulting  products.  38                                             10       Table  1.1:  Major  linkage  types  and  their  abundance  in  lignin  structure   Linkages   Structures26,  28   Abundance  (%)26,  28   45-­‐50  (soft  wood)   60-­‐62  (hardwood)   β-­‐O-­‐4     6-­‐8  (softwood)   6-­‐8  (hardwood)   α-­‐O-­‐4     4-­‐7  (softwood)   6.5-­‐9  (hardwood)   4-­‐O-­‐5     1-­‐9  (softwood)   1-­‐7  (hardwood)   β-­‐1     19-­‐27  (softwood)   3-­‐9  (hardwood)   5-­‐5     9-­‐12  (softwood)   3-­‐11  (hardwood)     β-­‐5     2-­‐4  (softwood)   3-­‐12  (hardwood)   β-­‐β     11       Lignin:  Isolation  Processes     Biomass   pretreatment   methods   are   often   used   prior   to   conversion   to   extract   and   isolate   the   different   components   of   biomass.   In   cellulosic   ethanol   production   processes   pretreatments   is   essential   to   free   up   cellulose   from   the   hemicellulose   and   lignin   matrix,   reduce   cellulose   crystallinity,   hydrolyze   hemicellulose,   and   enhance   the   porosity   of   biomass.39-­‐41   Physical,   chemical,   biological   or   physicochemical   pretreatment   methods   can   be   applied   as   a   way   of   preparing   biomass   for   further   conversion.42   Physical   methods   usually   include   size   reduction,   via   grinding,   to   enhance   cellulose   decrystallization   and   improve   heat   or   mass   transfer   during   conversion   processes.43   Chemical   pretreatments   such   as   ozonolysis,44   acid   hydrolysis,   alkaline   hydrolysis,   oxidative   delignification   and   organosolv   processes   all   make   use   of   different   chemicals   and   solvents   to   solubilize   lignin   and   hemicellulose   while   freeing   up   cellulose   for   enzymatic   hydrolysis.40,   45   Biological   pretreatment   implements   the   use   of   microorganisms   such   as   white-­‐rot   and   brown-­‐rot   fungi   to   degrade   lignin.39,   40   Physicochemical   processes   such   as   steam   explosion   and   CO2   explosion   expose   biomass   to   steam   and   CO2   respectively   at   high   pressure   followed   by   a   sudden   pressure   drop.42,   46   These   processes   result   in   the   explosion   of   the   biomass   fibers   making  cellulose  more  accessible  to  enzymatic  hydrolysis  by  degrading  hemicellulose  and   transforming  lignin.  39     Ammonia   fiber   explosion   (AFEX)   is   another   physicochemical   process   that   is   of   interest  to  this  group.    AFEX  is  considered  to  have  good  potential  as  a  pretreatment  method   for  biofuel  production  as  it  results  in  the  decompression  of  biomass  fibers.39,  47  During  the   AFEX  pretreatment  process,  liquid  ammonia  is  added  to  biomass  at  pressures  of  100-­‐400   psi  and  temperatures  of  70-­‐200  °C.    The  system  is  then  rapidly  depressurized  resulting  in   12       the   explosion   of   the   biomass   fibers   causing   cellulose   decrystallization,   hemicellulose   hydrolysis  and  lignin  depolymerization.47-­‐50   AFEX  is  ideal  for  cellulosic  ethanol  production   as  it  enhances  feedstock  digestibility  by  increasing  the  surface  area  available  for  digestion   (increasing  biomass  porosity)  and  by  transforming  the  lignin  for  better  access  to  cellulose   and   hemicelluose.49   As   cellulose   and   hemicellulose   are   made   accessible   for   enzymatic   hydrolysis,   lignin   can   further   be   extracted   and   is   often   discarded   as   a   waste   product   or   burned  for  heat.40  Ideally  this  extracted   lignin  itself  has  potential  to  be  used  as  a  feedstock   for   other   conversion   processes   such   as   fast   pyrolysis,   which   has   the   ability   to   further   degrade  and  depolymerize  large  lignin  fractions.   Fast  pyrolysis  as  a  Depolymerization  Process     The   selection   of   what   process   to   use   for   biomass   conversion   is   dependent   upon   various   factors   such   as   the   type   of   biomass   used,   environmental   standards,   economic   conditions   and   the   energy   value   of   the   fuel   produced   via   certain   conversion   methods.51   There   are   three   main   processes   utilized   for   biomass   energy   production:   thermochemical   conversion,   biochemical   conversion   and   mechanical   extraction   with   esterification.51   Biochemical   conversion   can   be   further   subdivided   in   to   digestion   and   fermentation   and   thermochemical  conversion  can  be  subdivided  into  combustion,  pyrolysis,  gasification  and   liquefaction.51   Direct   combustion   of   the   biomass   can   produce   steam   for   electrical   power   generation;   gaseous   fuel   can   be   produced   through   gasification   to   be   used   in   combustion   or   to  drive  engine  turbines;  and  liquid  fuel  can  be  made  through  fast  pyrolysis,  which  can  then   be   used   in   a   range   of   different   applications.8   Compared   to   various   other   conversion   technologies  for  liquid  fuel  production,  fast  pyrolysis  has  been  developing  rapidly  due  to  its   potential  for  providing  alternative  ways  for  producing  liquid  fuels.4,52  The  liquid  fuel  from   13       pyrolysis,   with   some   form   of   catalytic   upgrading,   has   the   potential   to   be   used   in   engines,   turbines   and   boilers   to   produce   mechanical   work,   heat   and   power.       Solvent   extraction   can   also   be   used   to   produce   bio-­‐based   chemicals.     As   the   main   focus   in   this   study   is   the   depolymerization  of  lignin,  which  is  traditionally  difficult  to  break  down,  thermochemical   conversion  becomes  a  potential  option.     Fast   pyrolysis   involves   rapidly   heating   biomass   to   temperatures   between   400   °C   and  600°C  in  the  absence  of  oxygen.8  The  decomposition  of  biomass  during  fast  pyrolysis   generates  three  major  products,  a  liquid  referred  to  as  bio-­‐oil  (~70%),  a  solid  referred  to  as   biochar   (~15%),   and   a   gas   (~15%)   rich   in   molecular   hydrogen,   carbon   oxides   and   light   organics.   The   product   yield   and   quality   of   the   products   of   fast   pyrolysis   are   highly   dependent   on   temperature,   heating   rate   and   pressure.7   Each   component   of   biomass   degrades   and   decomposes   to   a   different   extent   under   different   heating   conditions   during   fast   pyrolysis.8   For   example,   lignin   decomposes   over   a   wide   temperature   range   when   compared  to  cellulose  while  hemicellulose  degrades  fast  in  a  narrower  temperature  range.8   So   temperature   and   residence   time   are   two   very   important   parameters   that   need   to   be   controlled  and  studied  in  the  production  of  bio-­‐oil  from  lignin.     Liquid  fuel  production  also  requires  very  low  vapor  residence  time  in  the  range  of  1-­‐ 5   seconds   at   temperatures   of   up   to   500   °C.8   Keeping   the   residence   time   as   low   as   1   second   helps   in   avoiding   secondary   reactions   and   improves   the   liquid   product   yield.     At   larger   vapor   residence   time   and   high   temperature,   secondary   cracking   of   the   primary   products   will   result   in   reduced   liquid   products.8   In   addition,   low   temperature   (>400   °C)   leads   to   condensation  reactions  and  formation  of  lower  molecular  weight  liquids,  which  can  further   react.   8   It   is   important   to   understand   that   fast   pyrolysis   requires   high   heating   and   heat   14       transfer  rates,  a  controlled  temperature  of  about  500  °C,  low  residence  time  of  less  than  2   seconds  and  rapid  cooling  of  the  vapors  produced  to  obtain  bio-­‐oil.  7,  8     Characteristics  of  Bio-­oil   Bio-­‐based  fuels,  such  as  those  derived  from  bio-­‐oil,  are  considered  to  be  better  for   the   environment   than   fossil   fuels   as   they   are   carbon   neutral   and   have   low   sulfur   content.53   In  addition,  bio-­‐oil  can  easily  be  stored  and  transported  and  has  potential  to  be  used  for  the   production  of  other  chemical  products.  But  before  bio-­‐oil  can  be  produced  and  used  on  a   large   scale,   there   are   some   obstacles   that   need   to   be   overcome.   Bio-­‐oil   is   comprised   of   oxygenated  organic  compounds  and  is  thus  not  as  chemically  reduced  as  petroleum-­‐based   fuel.   Most   of   the   400   identified   organic   compounds54   in   bio-­‐oil   contain   35-­‐40   wt%   oxygen.53  This  is  due  to  high  oxygen  content  of  biomass  that  originates  from  carbon-­‐oxygen   (C=O)   bonds.55   From   a   synthetic   standpoint,   C=O   bonds   are   good   junction   points   for   the   propagation   (polymerization)   of   carbohydrates   to   form   cellulose   and   hemicellulose   and   monolignols  to  form  lignin.55  From  a  conversion  standpoint,  breaking  these  junction  points   provides   the   key   to   depolymerizing   these   large   molecules   to   smaller   more   useful   compounds.   After   pyrolysis,   the   class   of   fragments   that   are   formed   such   as   aldehydes,   alcohols,   carbohydrates,   furans,   ketones,   and   phenolics   tend   to   retain   these   oxygens   creating   undesirable   properties   in   bio-­‐oil.   The   stability   of   bio-­‐oil   is   questionable,   as   the   above-­‐mentioned   components   tend   to   react   during   long-­‐term   storage   to   form   sludge.   For   example   phenolics   and   aldehydes   react   to   form   resins   and   water.54   In   addition   to   these   compounds   in   bio-­‐oil   being   reactive,   bio-­‐oil   is   also   corrosive   due   to   its   high   organic   acid   content   (7-­‐12   wt%).7   The   retention   of   oxygen   from   the   feedstock   also   accounts   for   the   low   higher  heating  value  (HHV)  of  bio-­‐oil.7  Furthermore,  the  high  water  content  that  is  retained   15       from   the   feedstock   (15-­‐30   wt%)   gives   bio-­‐oil   some   negative   attributes.   For   instance,   the   presence  of  water  contributes  to  the  low  heating  value,  the  increase  in  ignition  delay,  the   reduced  combustion  rates  and  phase  separation  of  the  bio-­‐oil  all  undesirable  features.7  Bio-­‐ oil   can   also   contain   char   particle   that   can   clog   and   erode   injector   and   turbine   blades.7       Table   1.2,   adapted   from   Czernik   et   al.   summarizes   some   of   the   properties   of   bio-­‐oil   against   the   corresponding   conventional   fuel   oil   properties.53   As   can   be   seen   from   this   table,   bio-­‐oil   falls   short   in   several   categories   as   compared   to   crude   oil.     These   properties   suggest   that   catalysis   is   therefore   needed   to   upgrade   this   product   to   a   reactively   stable   fuel   that   is   compatible  with  steel  tanks  and  pipes.  56   Table  1.2:  Difference  in  properties  of  bio-­‐oil  and  fuel  oil  53   Physical  Properties   Bio-­oil   Heavy  fuel  oil   Moisture  content  (wt%)   15-­‐30   0.1   pH   2.5   -­‐   Specific  gravity   1.2   0.94   Elemental  composition  (wt%)       C   54-­‐58   85   H   5.5-­‐7.0   11   O   35-­‐40   1.0   N   0-­‐0.2   0.3   Ash   0-­‐0.2   0.1   HHV  MJ/Kg   16-­‐19   40   Viscosity  (@  50  °C  cP)   40-­‐100   180     Research   suggests   that   with   chemical   upgrading,   utilization   of   better   filtration   processes   and   certain   modifications   of   equipment   such   as   diesel   engines   and   boilers,   the   use   of   bio-­‐oil   on   a   commercial   level   could   be   feasible.8   In   order   to   improve   chemical   16       upgrading,   a   better   understanding   of   the   chemical   mechanisms   of   pyrolysis   and   the   nature   of  the  products  formed  during  pyrolysis  are  needed.    The  next  section  will  describe   the  use   of  electrocatlytic  hydrogenation  and  deoxygenation  as  a  possible  way  of  upgrading  bio-­‐oil.     Bio-­oil  Upgrading  using  Electrocatalytic  Hydrogenation       Classical   catalytic   processes   such   as   those   used   in   the   petroleum   industry   can   be   employed   to   upgrade   bio-­‐oil   to   aromatics.   These   processes   include   the   use   of   different   catalysts   at   severe   conditions   such   as   high   temperatures   and   pressures.   Furthermore,   hydrogen   has   to   be   supplied   to   enable   catalytic   hydrogenation   and   deoxygenation.   Such   processes   incur   both   capital   and   operating   costs   due   to   the   equipment   and   energy   needs   for   working   with   pressurized   hydrogen   at   high   temperatures,   as   well   as   the   safety   measures   needed   for   these   relatively   dangerous   conditions.     Under   these   sever   reactions   conditions,  catalyst  deactivation  may  occur  due  to  coke  formation  blocking  active  sites  on   the   catalyst   surface   and   inhibiting   of   metal-­‐substrate   interactions.57,58   Electrochemical   upgrading   offers   an   alternative   whereby   mild   conditions   (low   temperature   and   atmospheric   pressure)   are   used   to   achieve   hydrogenation   and   deoxygenation.59   This   method  offers  certain  advantages  over  catalytic  hydrogenation;  as  the  hydrogen  needed  for   reduction   is   produced   in   situ   in   ECH,   avoiding   the   kinetic   barrier   related   to   hydrogen   dissociation.60  Additionally,  mass  transport  of  hydrogen  gas  is  also  avoided  in  ECH.60  Even   catalyst  poisoning  is  avoided  due  to  the  cathodic  potential  that  can  prevent  the  adsorption   of  poisons.  60   As   shown   in   Figure   1.3,   electrocatalytic   hydrogentaion   occurs   via   a   multistep   process   whereby   the   electroreduction   of   water   occurs   on   the   catalyst   surface   in   the   cathode  compartment  producing  hydrogen  (a).  The  organic  substrate  also  adsorbed  on  to   17       the  catalyst  surface  forming  a  metal  substrate  complex  ([X=Y]M)  (b).  The  metal/hydrogen   ([H]M)   complex   that   is   formed   on   the   catalyst   then   interacts   with   the   neighboring   substrate/metal   ([X=Y]M)   complex   on   the   catalyst   causing   reduction   of   the   organic   substrate   (c).   The   reduced   substrate   then   desorbs   from   the   catalyst   (d).   Hydrogen   evolution   also   occurs   when   hydrogen   desorbs   from   the   catalyst   surface   (d,e).   60-­‐63,64   This   hydrogen  evolution  process  (e,f)  competes  with  the  hydrogenation  process  (c).     The   performance   of   electrocatalysis   is   determined   by   computing   the   current   efficiency,  which  is  defined  as  the  fraction  of  charge  passed  that,  goes  towards  producing   the   desired   products.     Competition   between   hydrogen   evolution   and   substrate   reduction   results   in   low   current   efficiency.60   The   rates   of   the   two   processes   are   in   turn   influenced   by   several  other  factors  such  as:  bond  strength  of  the  substrate  that  is  being  reduced,  rate  and   probability   of   adsorption   of   the   substrate   (substrate   concentration)64   and   strength   of   bonding  of  hydrogen  to  the  catalyst  surface60  and  current  density65                       18                         Figure  1.3:  Electrocatalytic  hydrogenation  and  hydrogen  evolution  steps  66   Several   materials   have   been   studied   for   use   as   electrode   materials   for   ECH   based   both   on   their   ability   to   produce   molecular   hydrogen   and   their   potential   to   produce   the   desired   products   with   high   selectivity.67   In   conjunction,   several   studies   on   different   substrates   and   model   compounds   have   been   conducted   (Table   1.3).     Earlier   studies   included   the   use   of   noble   metals   such   as   Pt,   Rh   and   Pd.   In   an   effort   to   move   away   from   expensive   metals,   more   recent   studies   have   focused   on   catalysts   such   as   Raney   nickel,   nickel  metal  powders  or  metals  supported  on  carbon.67     As   outlined   in   Table   1.3,   studies   on   bio-­‐oil-­‐derived   monomers   such   as   guaiacol,   phenol,  and  syringol  have  shown  promising  results  for  the  potential  of  ECH  for  upgrading   these  bio-­‐oil  components  to  more  stable  forms.  Studies  on  lignin-­‐derived  bio-­‐oil  monomers   done   by   Li   et   al.   have   shown   successful   reduction   of   phenol,   guaiacol   and   syringol   using   ruthenium   loaded   on   activated   carbon   cloth   (Ru/ACC).   68   Further   studies   in   this   area   are   19       needed  to  explore  the  effectiveness  of  this  catalyst  to  reduce  various  other  lignin-­‐derived   monomers.  Additionally  in  these  studies,  modest  current  efficiencies  of  no  more  than  30%   were   reported   due   the   hydrogen   evolution   reaction   competition   for   the   total   charge   passed.   Exploration   of   different   conditions   to   help   improve   the   current   efficiency   value   could  be  very  beneficial.      Studies  on  lignin-­‐relevant  dimers  have  also  shown  promising  results  for  the  ability   of   ECH   to   cleave   lignin-­‐derived   linkages   that   could   be   present   in   bio-­‐oil.   Dabo   et   al.   used   several  transition  metal  powders  embedded  in  reticulated  vitreous  carbon  (RVC)  to  study   their  effects  on  4-­‐O-­‐5  linked  lignin  dimer  4-­‐phenoxyphenol.  In  these  studies  they  were  able   to   show   the   conversion   of   4-­‐phenoxyphenol   to   phenol   and   traces   of   cyclohexanone   and   cyclohexanol.69   As   a   fuel   intermediate,   cyclohexanol   is   preferred,   but   phenol   is   also   a   desirable   product   and   the   ability   to   selectively   choose   between   cyclohexanol   and   phenol   from   lignin   dimers   would   be   valuable.   In   addition,   the   study   of   water   soluble   fractions   of   bio-­‐oil   by   Li   et   al.   indicate   partial   stabilization   achieved   through   ECH.   In   addition   to   improving   storage   properties   of   bio-­‐oil   by   preventing   some   components   from   polymerization,  it  was  observed  that  the  electrocatalytically  treated  bio-­‐oil  did  not  exhibit   formation  of  precipitates  and  value  added  products  such  as  propylene  glycol  and  ethylene   glycol   were   observed.   70   ECH   of   bio-­‐oil   could   have   great   potential   as   a   bio-­‐oil   upgrading   scheme  and  further  work  in  this  area  should  include  electrocatalysis  of  whole  bio-­‐oil.           20       Table  1.3:  Electrocatalytic  reduction  of  various  substrates  using  different  catalysts   Reference   Substrate   Catalyst   Conditions   Amouzegar  et  al.  71,  72,  73   Phenol   Pt     Quiroz  et  al.  74   m-­‐xylene   Pt/Pt     Lamy-­‐Pitara  et  al.75   Maleic  acid   Pt/Pt     Ilikti  et  al.  63   Phenol   Raney  Ni   30°C,  pH  9   Holt  et  al.  76   2-­‐cyclohexene-­‐1-­‐one   WS2  on  RVC   Sulfur   Dalavoy  et  al.  59   Lactic  acid   Ru/C  (Ru/RVC)   70°C,  1atm   Santana  et  al.  67,  77   Various  organic  compounds   Ni  on  Fe     Li  et  al.  68   Guaiacol,  phenol,  syringol   Ru/ACC   25-­‐80°C,   1atm   Robin  et  al.  60   Polycyclic  aromatics   Mahdavi  et  al.64   Conjugated  enones   Raney  Ni   Ni2B,  Ni,  Raney   80°C     Ni   Mahdavi  et  al.  62   Lignin  model  dimers     Cyr  et  al.  61   Lignin  model  dimers     Raney  Ni     Raney  Ni,     25-­‐75°C   Pd/RVC   Ni,  Ni2B,  Raney   Dabo  et  al.  69   4-­‐phenoxyphenol   Ni,  Pd/C,  Ru/C,     Rh/C,  Pd/Al2O3,   Rh/Al2O3,  Pd/Ni   Li  et  al.  70   Water  soluble  bio-­‐oil     21     Ru/Acc       Conclusion   Moving   away   from   fossil   fuels   and   displacing   them   with   alternative   sources   becomes  more  and  more  relevant  due  to  the  connection  of  fossil  fuel  use  to  global  climate   change   and   energy   crises.   Consequently,   energy   derived   from   biomass   has   become   an   attractive   alternative   and   could   be   an   essential   part   of   future   energy   production.   However,   effective   conversion   processes   are   needed   to   produce   liquid   fuels   and   value-­‐added   commodities  from  biomass.    Biomass  fast  pyrolysis,  coupled  with  upgrading  processes  such   as   electrocatalytic   hydrogenation,   offers   a   promising   strategy   for   the   future   of   bioenergy   production.   Even   though   human   beings   are   better   at   capturing   energy   in   the   form   of   electricity,   plants   are   better   at   capturing   carbon   so   strategies   such   as   electrocatalytic   hydrogenation   offer   the   opportunity   to   couple   carbon   free   energy   to   upgrade   biomass   carbon  to  insure  a  more  complete  utilization  of  the  carbon  that  is  derived  from  biomass  vs.   just   utilizing   the   energy   available   from   biomass.   Efforts   to   valorize   components   of   biomass   such   as   lignin   offer   a   significant   advantage   as   lignin   is   one   of   the   majors   source   of   phenolic   compounds   in   nature   that   have   the   potential   to   provide   liquid   fuels   and   value   added   products  thus  providing  a  way  to  make  use  of  the  carbon  that  is  available.     Up   to   this   point   this   review   has   outlined   the   looming   environmental   and   energy   related   impacts   of   burning   fossil   fuels   and   the   potential   of   biomass   components   such   as   lignin   to   help   alleviate   some   of   these   issues.   Additionally   a   brief   review   of   pretreatment   processes   as   a   way   of   enhancing   biomass   depolymerization   and   extraction   of   biomass   components   and   the   use   of   fast   pyrolysis   as   a   conversion   method   were   covered.   Several   challenges  that  prevent  fast  pyrolysis  products  such  as  bio-­‐oil  from  being  used  as  a  drop-­‐in   fuel   were   mentioned   along   with   the   potential   use   of   electrocatalytic   hydrogenation   for   22       further   upgrading.   The   proceeding   chapters   will   cover   electrocatalytic   hydrogenation   of   lignin-­‐derived   monomers   and   dimers   and   characterization   of   ammonia   extracted   lignin   for   future  use  as  a  feed  material  for  bio-­‐oil  production.                             23                       REFERENCES                           24       REFERENCES     1.   Stocker,  T.  F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.  Boschung,  A.  Nauels,  Y.   Xia,  V.  Bex  and  P.M.  Midgley,  IPCC,  2013:Climate    Change  2013:  The  Physical  Science   Basis.  Contribution  of  Working  Group  I    to  the  Fifth  Assessment  Report  of  the   Intergovernmental  Panel  on  Climate  Change[(eds.)].  .  Cambridge  University  Press,   Cambridge,  United  Kingdom  and  New  York,  NY,  USA,  1535  pp:  2013.   2.   How  dependent  are  we  on  foreign  oil?   http://www.eia.gov/energy_in_brief/article/foreign_oil_dependence.cfm.  Us  Energy   Information  Administration.:  2013.   3.   Congress,  Energy  Independence  and  Security  Act  of  2007.”    www.GovTrack.us.   2007.      February  11,  2014.   110th  ed.;  2007.   4.   Mohan,  D.;  Pittman,  C.  U.;  Steele,  P.  H.,  Pyrolysis  of  Wood/Biomass  for  Bio-­‐oil:    A   Critical  Review.  Energy  &  Fuels  2006,  20  (3),  848-­‐889.   5.   U.S.  Billion-­Ton  Update:  Biomass  Supply  for  a  Bioenergy  and  Bioproducts  Industry.;   Oak  Ridge  National  Laboratory:  Oak  Ridge,  TN.,  2011;  p  227p.   6.   Renewable  Energy  Road  Map.  Renewable  energies  in  the  21st  century:  building  a   more  sustainable  future.   http://europa.eu/legislation_summaries/energy/renewable_energy/l27065_en.htm .  2007.   7.   Lu,  Q.;  Li,  W.-­‐Z.;  Zhu,  X.-­‐F.,  Overview  of  fuel  properties  of  biomass  fast  pyrolysis  oils.   Energy  Conversion  and  Management  2009,  50  (5),  1376-­‐1383.   8.   Bridgwater,  A.  V.;  Meier,  D.;  Radlein,  D.,  An  overview  of  fast  pyrolysis  of  biomass.   Organic  Geochemistry  1999,  30  (12),  1479-­‐1493.   9.   Mason,  J.  E.,  World  energy  analysis:  H2  now  or  later?  Energy  Policy  2007,  35  (2),   1315-­‐1329.   10.   Shafiee,  S.;  Topal,  E.,  An  econometrics  view  of  worldwide  fossil  fuel  consumption   and  the  role  of  US.  Energy  Policy  2008,  36  (2),  775-­‐786.   11.   International  Energy  Outlook;  U.S.  Energy  Information  Administration.   http://www.eia.gov/forecasts/ieo/index.cfm:  2013.   12.   Shafiee,  S.;  Topal,  E.,  When  will  fossil  fuel  reserves  be  diminished?  Energy  Policy   2009,  37  (1),  181-­‐189.   25       13.   Höök,  M.;  Tang,  X.,  Depletion  of  fossil  fuels  and  anthropogenic  climate  change—A   review.  Energy  Policy  2013,  52  (0),  797-­‐809.   14.   Zecca,  A.;  Chiari,  L.,  Fossil-­‐fuel  constraints  on  global  warming.  Energy  Policy  2010,   38  (1),  1-­‐3.   15.   National  Oceanic  and  Atmospheric  Administration.  CarbonTracker  CT2013,   http://carbontracker.noaa.gov.  http://www.esrl.noaa.gov/gmd/cc,gg/trends/.   16.   Stocker,  T.  F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.  Boschung,  A.  Nauels,  Y.   Xia,  V.  Bex  and  P.M.  Midgley  (eds.)  IPCC,  2013:  Summary  for  Policymakers.  In:  Climate   Change  2013:  The  Physical  Science  Basis.  Contribution  of    Working  Group  I  to  the  Fifth   Assessment  Report  of  the  Intergovernmental    Panel  on  Climate  Change;  Cambridge,   United  Kingdom  and  New  York,  NY,  USA.,  2013.   17.   Chiari,  L.;  Zecca,  A.,  Constraints  of  fossil  fuels  depletion  on  global  warming   projections.  Energy  Policy  2011,  39  (9),  5026-­‐5034.   18.   Climate  Impacts  on  Society.  United  States  Environmental  Protection  Agency.   http://www.epa.gov/climatechange/impacts-­‐adaptation/society.html.   19.   Thomas  R.  Karl,  J.  M.  M.,  and  Thomas  C.  Peterson,  Global  Climate  Change  Impacts  in   the  United  States;  New  York,  NY,  USA,  2009.   20.   Bennett,  T.  M.  B.,  N.  G.  Maynard,  P.  Cochran,  R.  Gough,  K.  Lynn,  J.  Maldonado,  G.   Voggesser,  S.  Wotkyns,  and  K.  Cozzetto  Ch.  12:  Indigenous  Peoples,  Lands,  and   Resources.  Climate  Change  Impacts    in  the  United  States:  The  Third  National  Climate   Assessment,;  U.S.  Global  Change  Research  Program:  2014;  pp  297-­‐317.   21.   Climate  Change  and  Health.  World  Health  Organization.   http://www.who.int/mediacentre/factsheets/fs266/en/.   22.   McKendry,  P.,  Energy  production  from  biomass  (part  1):  overview  of  biomass.   Bioresource  Technology  2002,  83  (1),  37-­‐46.   23.   Qu,  T.  T.;  Guo,  W.  J.;  Shen,  L.  H.;  Xiao,  J.;  Zhao,  K.,  Experimental  Study  of  Biomass   Pyrolysis  Based  on  Three  Major  Components:  Hemicellulose,  Cellulose,  and  Lignin.   Industrial  &  Engineering  Chemistry  Research  2011,  50  (18),  10424-­‐10433.   24.   Yang,  H.;  Yan,  R.;  Chen,  H.;  Lee,  D.  H.;  Zheng,  C.,  Characteristics  of  hemicellulose,   cellulose  and  lignin  pyrolysis.  Fuel  2007,  86  (12-­‐13),  1781-­‐1788.   25.   Pandey,  M.  P.;  Kim,  C.  S.,  Lignin  Depolymerization  and  Conversion:  A  Review  of   Thermochemical  Methods.  Chemical  Engineering  &  Technology  2011,  34  (1),  29-­‐41.   26.   Pandey,  M.  P.  a.  K.,  C.  S.    Chem.  Eng.  Technol.,    34:  29–41.  doi:   10.1002/ceat.201000270,  Lignin  Depolymerization  and    Conversion:  A  Review  of   26       Thermochemical  Methods.  Chem.  Eng.  Technol.:  2011;  Vol.  34:  29–41.   doi:  10.1002/ceat.201000270.   27.   Zakzeski,  J.;  Bruijnincx,  P.  C.  A.;  Jongerius,  A.  L.;  Weckhuysen,  B.  M.,  The  Catalytic   Valorization  of  Lignin  for  the  Production  of  Renewable  Chemicals.  Chemical  Reviews   2010,  110  (6),  3552-­‐3599.   28.   Mahdavi,  B.;  Lafrance,  A.;  Martel,  A.;  Lessard,  J.;  Menard,  H.;  Brossard,  L.,   Electrocatalytic  hydrogenolysis  of  lignin  model  dimers  at  Raney  nickel  electrodes.  J.   Appl.  Electrochem.  1997,  27  (5),  605-­‐611.   29.   Patwardhan,  P.  R.;  Brown,  R.  C.;  Shanks,  B.  H.,  Understanding  the  Fast  Pyrolysis  of   Lignin.  ChemSusChem  2011,  4  (11),  1629-­‐1636.   30.   Vanholme,  R.;  Demedts,  B.;  Morreel,  K.;  Ralph,  J.;  Boerjan,  W.,  Lignin  Biosynthesis   and  Structure.  Plant  Physiology  2010,  153  (3),  895-­‐905.   31.   Lu,  F.;  Ralph,  J.;  Sun,  R.-­‐C.,  Chapter  6  -­‐  Lignin.  In  Cereal  Straw  as  a  Resource  for   Sustainable  Biomaterials  and  Biofuels,  Elsevier:  Amsterdam,  2010;  pp  169-­‐207.   32.   Saiz-­‐Jimenez,  C.;  De  Leeuw,  J.  W.,  Lignin  pyrolysis  products:  Their  structures  and   their  significance  as  biomarkers.  Organic  Geochemistry  1986,  10  (4–6),  869-­‐876.   33.   Amen-­‐Chen,  C.;  Pakdel,  H.;  Roy,  C.,  Production  of  monomeric  phenols  by   thermochemical  conversion  of  biomass:  a  review.  Bioresour.  Technol.  2001,  79  (3),   277-­‐299.   34.   Landucci,  L.  L.;  Luque,  S.;  Ralph,  S.,  Reaction  of  p-­‐Hydroxycinnamyl  Alcohols  with   Transition  Metal  Salts.  2.  Preparation  of  Guaiacyl/Syringyl  Di-­‐,  Tri-­‐,  and  Tetralignols.   Journal  of  Wood  Chemistry  and  Technology  1995,  15  (4),  493-­‐513.   35.   Chioccara,  F.;  Poli,  S.;  Rindone,  B.;  Pilati,  T.;  Brunow,  G.;  Pietikaeinen,  P.;  Setaelae,  H.,   ChemInform  Abstract:  Regio-­‐  and  Diastereoselective  Synthesis  of  Dimeric  Lignans   Using  Oxidative  Coupling.  ChemInform  1993,  24  (36).   36.   Ralph,  J.;  Lundquist,  K.;  Brunow,  G.;  Lu,  F.;  Kim,  H.;  Schatz,  P.;  Marita,  J.;  Hatfield,  R.;   Ralph,  S.;  Christensen,  J.;  Boerjan,  W.,  Lignins:  Natural  polymers  from  oxidative   coupling  of  4-­‐hydroxyphenyl-­‐  propanoids.  Phytochemistry  Reviews  2004,  3  (1-­‐2),   29-­‐60.   37.   Derkacheva,  O.;  Sukhov,  D.,  Investigation  of  Lignins  by  FTIR  Spectroscopy.   Macromolecular  Symposia  2008,  265  (1),  61-­‐68.   38.   Sun,  Y.;  Cheng,  J.,  Hydrolysis  of  lignocellulosic  materials  for  ethanol  production:  a   review.  Bioresource  Technology  2002,  83  (1),  1-­‐11.   27       39.   Galbe,  M.;  Zacchi,  G.,  Pretreatment  of  Lignocellulosic  Materials  for  Efficient   Bioethanol  Production.  In  Biofuels,  Olsson,  L.,  Ed.  Springer  Berlin  Heidelberg:  2007;   Vol.  108,  pp  41-­‐65.   40.   Yat,  S.  C.;  Berger,  A.;  Shonnard,  D.  R.,  Kinetic  characterization  for  dilute  sulfuric  acid   hydrolysis  of  timber  varieties  and  switchgrass.  Bioresource  Technology  2008,  99  (9),   3855-­‐3863.   41.   Keshwani,  D.  R.;  Cheng,  J.  J.,  Switchgrass  for  bioethanol  and  other  value-­‐added   applications:  A  review.  Bioresource  Technology  2009,  100  (4),  1515-­‐1523.   42.   Schell,  D.;  Harwood,  C.,  Milling  of  lignocellulosic  biomass.  Applied  Biochemistry  and   Biotechnology  1994,  45-­46  (1),  159-­‐168.   43.   Kumar,  P.;  Barrett,  D.  M.;  Delwiche,  M.  J.;  Stroeve,  P.,  Methods  for  Pretreatment  of   Lignocellulosic  Biomass  for  Efficient  Hydrolysis  and  Biofuel  Production.  Industrial  &   Engineering  Chemistry  Research  2009,  48  (8),  3713-­‐3729.   44.   Alvira,  P.;  Tomás-­‐Pejó,  E.;  Ballesteros,  M.;  Negro,  M.  J.,  Pretreatment  technologies  for   an  efficient  bioethanol  production  process  based  on  enzymatic  hydrolysis:  A  review.   Bioresource  Technology  2010,  101  (13),  4851-­‐4861.   45.   McMillan  James,  D.,  Pretreatment  of  Lignocellulosic  Biomass.  In  Enzymatic   Conversion  of  Biomass  for  Fuels  Production,  American  Chemical  Society:  1994;  Vol.   566,  pp  292-­‐324.   46.   Bals,  B.;  Rogers,  C.;  Jin,  M.;  Balan,  V.;  Dale,  B.,  Evaluation  of  ammonia  fibre  expansion   (AFEX)  pretreatment  for  enzymatic  hydrolysis  of  switchgrass  harvested  in  different   seasons  and  locations.  Biotechnology  for  Biofuels  C7  -­  1  2010,  3  (1),  1-­‐11.   47.   Dale,  B.  E.,  Biobased  Industrial  Products:  Bioprocess  Engineering  When  Cost  Really   Counts.  Biotechnology  Progress  1999,  15  (5),  775-­‐776.   48.   Dale,  B.;  Weaver,  J.;  Byers,  F.  M.,  Extrusion  processing  for  ammonia  fiber  explosion   (AFEX).  Applied  Biochemistry  and  Biotechnology  1999,  77  (1-­‐3),  35-­‐45.   49.   Moniruzzaman,  M.;  Dien,  B.;  Ferrer,  B.;  Hespell,  R.;  Dale,  B.;  Ingram,  L.;  Bothast,  R.,   Ethanol  production  from  AFEX  pretreated  corn  fiber  by  recombinant  bacteria.   Biotechnology  Letters  1996,  18  (8),  985-­‐990.   50.   McKendry,  P.,  Energy  production  from  biomass  (part  2):  conversion  technologies.   Bioresource  Technology  2002,  83  (1),  47-­‐54.   51.   Meier,  D.;  Faix,  O.,  State  of  the  art  of  applied  fast  pyrolysis  of  lignocellulosic   materials  —  a  review.  Bioresource  Technology  1999,  68  (1),  71-­‐77.   28       52.   Czernik,  S.;  Bridgwater,  A.  V.,  Overview  of  Applications  of  Biomass  Fast  Pyrolysis  Oil.   Energy  &  Fuels  2004,  18  (2),  590-­‐598.   53.   Diebold,  J.  P.,  A  Review  of  the  Chemical  and  Physical  Mechanisms  of  the  Storage   Stability  of  Fast  Pyrolysis  Bio-­‐Oils.  Czernik,  N.  T.  M.  S.,  Ed.  2000.   54.   Rensel,  D.  J.;  Rouvimov,  S.;  Gin,  M.  E.;  Hicks,  J.  C.,  Highly  selective  bimetallic  FeMoP   catalyst  for  C–O  bond  cleavage  of  aryl  ethers.  Journal  of  Catalysis  2013,  305  (0),  256-­‐ 263.   55.   French,  R.;  Czernik,  S.,  Catalytic  pyrolysis  of  biomass  for  biofuels  production.  Fuel   Processing  Technology  2010,  91  (1),  25-­‐32.   56.   Rothenberg,  G.,  Heterogeneous  Catalysis.  In  Catalysis,  Wiley-­‐VCH  Verlag  GmbH  &  Co.   KGaA:  2008;  pp  127-­‐187.   57.   Bu,  Q.;  Lei,  H.;  Zacher,  A.  H.;  Wang,  L.;  Ren,  S.;  Liang,  J.;  Wei,  Y.;  Liu,  Y.;  Tang,  J.;  Zhang,   Q.;  Ruan,  R.,  A  review  of  catalytic  hydrodeoxygenation  of  lignin-­‐derived  phenols   from  biomass  pyrolysis.  Bioresource  Technology  2012,  124  (0),  470-­‐477.   58.   Dalavoy,  T.  S.;  Jackson,  J.  E.;  Swain,  G.  M.;  Miller,  D.  J.;  Li,  J.;  Lipkowski,  J.,  Mild   electrocatalytic  hydrogenation  of  lactic  acid  to  lactaldehyde  and  propylene  glycol.   Journal  of  Catalysis  2007,  246  (1),  15-­‐28.   59.   Robin,  D.;  Comtois,  M.;  Martel,  A.;  Lemieux,  R.;  Cheong,  A.  K.;  Belot,  G.;  Lessard,  J.,  The   electrocatalytic  hydrogenation  of  fused  poly  cyclic  aromatic  compounds  at  Raney   nickel  electrodes:  the  influence  of  catalyst  activation  and  electrolysis  conditions.   Canadian  Journal  of  Chemistry  1990,  68  (7),  1218-­‐1227.   60.   Cyr,  A.;  Chiltz,  F.;  Jeanson,  P.;  Martel,  A.;  Brossard,  L.;  Lessard,  J.;  Menard,  H.,   Electrocatalytic  hydrogenation  of  lignin  models  at  Raney  nickel  and  palladium-­‐ based  electrodes.  Can.  J.  Chem.-­Rev.  Can.  Chim.  2000,  78  (3),  307-­‐315.   61.   Mahdavi,  B.;  Lafrance,  A.;  Martel,  A.;  Lessard,  J.;  Me´Nard,  H.;  Brossard,  L.,   Electrocatalytic  hydrogenolysis  of  lignin  model  dimers  at  Raney  nickel  electrodes.   Journal  of  Applied  Electrochemistry  1997,  27  (5),  605-­‐611.   62.   Ilikti,  H.;  Rekik,  N.;  Thomalla,  M.,  Electrocatalytic  hydrogenation  of  phenol  in   aqueous  solutions  at  a  Raney  nickel  electrode  in  the  presence  of  cationic  surfactants.   Journal  of  Applied  Electrochemistry  2002,  32  (6),  603-­‐609.   63.   Mahdavi,  B.;  Chambrion,  P.;  Binette,  J.;  Martel,  E.;  Lessard,  J.,  Electrocatalytic   Hydrogenation  of  Conjugated  Enones  on  Nickel  Boride,  Nickel,  and  Raney-­‐Nickel   Electrodes.  Can.  J.  Chem.-­Rev.  Can.  Chim.  1995,  73  (6),  846-­‐852.   29       64.   Antonietta  Casadei,  M.;  Pletcher,  D.,  The  influence  of  conditions  on  the   electrocatalytic  hydrogenation  of  organic  molecules.  Electrochimica  Acta  1988,  33   (1),  117-­‐120.   65.   Dalavoy,  T.  S.;  Jackson,  J.  E.;  Swain,  G.  M.;  Miller,  D.  J.,  Mild  electrocatalytic   hydrogenation  of  alpha  functionalized  carboxylic  acids.  Abstracts  of  Papers  of  the   American  Chemical  Society  2006,  231.   66.   Amouzegar,  K.;  Savadogo,  O.,  Electrocatalytic  hydrogenation  of  phenol  on  highly   dispersed  Pt  electrodes.  Electrochimica  acta  1994,  39  (4),  557-­‐559.   67.   Amouzegar,  K.;  Savadogo,  O.,  Electrocatalytic  hydrogenation  of  phenol  on  dispersed   Pt:  reaction  mechanism  and  support  effect.  Electrochimica  Acta  1997,  43  (5–6),  503-­‐ 508.   68.   Amouzegar,  K.;  Savadogo,  O.,  Electrocatalytic  hydrogenation  of  phenol  on  dispersed   Pt:  Effect  of  metal  electrochemically  active  surface  area  and  electrode  material.  J.   Appl.  Electrochem.  1997,  27  (5),  539-­‐542.   69.   Quiroz,  M.  A.;  Córdova,  F.;  Lamy-­‐Pitara,  E.;  Barbier,  J.,  Electrocatalytic  hydrogenation   of  m-­‐xylene  on  platinized-­‐platinum  electrodes.  Electrochimica  Acta  2000,  45  (25– 26),  4291-­‐4298.   70.   Lamy-­‐Pitara,  E.;  El  Mouahid,  S.;  Barbier,  J.,  Effect  of  anions  on  catalytic  and   electrocatalytic  hydrogenations  and  on  the  electrocatalytic  oxidation  and  evolution   of  hydrogen  on  platinum.  Electrochimica  Acta  2000,  45  (25–26),  4299-­‐4308.   71.   Holt,  C.  M.  B.;  Murphy,  S.;  Gray,  M.  R.;  Mitlin,  D.,  Electrocatalytic  hydrogenation  of  2-­‐ cyclohexen-­‐1-­‐one  in  a  high  sulfur  environment  using  a  carbon-­‐supported   nanostructured  tungsten  sulfide  catalyst.  Catalysis  Communications  2010,  12  (4),   314-­‐317.   72.   Santana,  D.  S.;  Melo,  G.  O.;  Lima,  M.  V.  F.;  Daniel,  J.  R.  R.;  Areias,  M.  C.  C.;  Navarro,  M.,   Electrocatalytic  hydrogenation  of  organic  compounds  using  a  nickel  sacrificial   anode.  Journal  of  Electroanalytical  Chemistry  2004,  569  (1),  71-­‐78.   73.   Santana,  D.  S.;  Lima,  M.  V.  F.;  Daniel,  J.  R.  R.;  Navarro,  M.,  Electrocatalytic   hydrogenation  of  organic  compounds  using  current  density  gradient  and  sacrificial   anode  of  nickel.  Tetrahedron  Letters  2003,  44  (25),  4725-­‐4727.   74.   Li,  Z.;  Garedew,  M.;  Lam,  C.  H.;  Jackson,  J.  E.;  Miller,  D.  J.;  Saffron,  C.  M.,  Mild   electrocatalytic  hydrogenation  and  hydrodeoxygenation  of  bio-­‐oil  derived  phenolic   compounds  using  ruthenium  supported  on  activated  carbon  cloth.  Green  Chemistry   2012,  14  (9),  2540-­‐2549.   75.   Dabo,  P.;  Cyr,  A.;  Lessard,  J.;  Brossard,  L.;  Ménard,  H.,  Electrocatalytic  hydrogenation   of  4-­‐phenoxyphenol  on  active  powders  highly  dispersed  in  a  reticulated  vitreous   30       carbon  electrode.  Canadian  Journal  of  Chemistry-­revue  Canadienne  De  Chimie  1999,   77  (7),  1225-­‐1229.   76.   Li,  Z.;  Kelkar,  S.;  Raycraft,  L.;  Garedew,  M.;  Jackson,  J.  E.;  Miller,  D.  J.;  Saffron,  C.  M.,  A   mild  approach  for  bio-­‐oil  stabilization  and  upgrading:  electrocatalytic   hydrogenation  using  ruthenium  supported  on  activated  carbon  cloth.  Green   Chemistry  2014,  16  (2),  844-­‐852.   31       Chapter  2  : Electrocatalytic  Hydrogenation  and  Deoxygenation  of  Lignin  Model   Compounds  using  Ruthenium  Supported  on  Activated  Carbon  Cloth       Abstract     Carbon   and   energy   efficient   strategies   are   needed   to   produce   hydrocarbon   fuels   from   biomass.     Fast   pyrolysis   provides   one   method   for   making   hydrocarbon   fuels   from   biomass  or  components  of  biomass  such  as  lignin  in  an  efficient  manner.      Bio-­‐oil,  the  liquid   product  of  fast  pyrolysis,  has  increased  bulk  density  when  compared  to  biomass  and  is  less   expensive  to  transport  long  distances.  However,  bio-­‐oil  properties  include  self-­‐reactivity  to   form   viscous   sludge   and   reactivity   with   metal   surfaces   causing   corrosion.   The   partial   upgrading   (stabilization)   of   bio-­‐oil   using   electrocatalysis,   an   approach   where   electricity   serves   as   the   reducing   agent,   is   proposed   to   improve   bio-­‐oil’s   properties.     This   study   focuses   on   the   electrocatalytic   hydrogenation   (ECH)   of   lignin   derived   bio-­‐oil   products   such   as  alkoxyphenols  as  well  as  the  potential  of  this  process  for  cleaving  lignin  dimer  linkages.   Ruthenium  supported  on  activated  carbon  cloth  (Ru/ACC)  is  used  as  the  catalytic  cathode   under  mild  conditions  (80  °C  and  1atm).    While  studying  the  ECH  of  methoxyphenols  with   the   methoxy   groups   at   different   positions   in   the   ring,   the   reduction   of   the   methoxyphenols   to   methoxycyclohexanol   and   cyclohexanol   was   demonstrated.     Furthermore,   Ru/ACC   was   found  to  be  capable  of  cleaving  and  reducing  lignin-­‐derived  dimers.   Introduction     Due   to   the   increasing   problem   of   depleting   fossil   fuels   and   growing   environmental   concerns,   interest   in   alternative   energy   sources   has   increased   substantially.   The   development  of  alternative  energy  production  methods  that  are  environmentally  friendly,   32       economically   sound   and   that   do   not   compete   with   global   food   supply   is   essential.   To   this   end,  production  of  fuels  from  biomass  has  been  gaining  attention  in  recent  years.    As  plants   store   energy   from   the   sun   in   the   form   of   chemical   bonds,   biomass   has   great   potential   to   make  a  significant  contribution  to  alternative  sources  of  energy.1  Biomass  is  composed  of   three   major   components:   cellulose,   hemicellulose   and   lignin.     Cellulose   is   a   polymer   of   glucose   arranged   either   in   a   crystalline   or   amorphous   form.2   Hemicellulose   is   an   amorphous,   branched   polymer   of   pentoses   and   hexoses.2   Lignin   is   a   highly   complex   polymer   made   via   the   polymerization   of   three   monolignols   joined   together   with   carbon-­‐ oxygen  bonds  at  the  α  and/or  β  positions  of  a  phenyl  ring  to  form  a  branched  network.2-­‐4   Lignin  acts  as  a  binding  agent  filling  up  the  empty  space  in  plant  cell  walls.5  Depending  on   the   type   of   biomass,   hemicellulose   accounts   for   about   20-­‐40   wt%,   cellulose   about   35-­‐60   wt%  and  lignin  accounts  for  about  10-­‐25  wt%   and   40%   of   the   energy   content   of  biomass.6   Deconstructing   different   components   of   biomass   in   an   efficient   manner   will   help   in   the   production  of  biomass-­‐based  liquid  fuels  and  further  help  displace  petroleum.       Cellulose  and  hemicellulose  have  been  well  studied  for  conversion  into  fuel  ethanol  as   they  are  made  of  simple  sugars.    Although  lignin  is  an  attractive  feed  for  the  production  of   hydrocarbon   fuels   due   to   its   lower   O:C   ratio   compared   to   cellulose   and   hemicellulose,   because  of  its  complex  structure,  lignin  has  been  one  of  the  more  difficult  components  to   deconstruct  and  use  as  fuel.7  Often  a  byproduct  of  ethanol  and  pulp  and  paper  industries,   lignin  is  burned  for  heat  or  discarded  as  a  waste  product.3  For  instance,  only  2%  (about  one   million  tonnes)  of  the  lignin  produced  as  the  byproduct  of  the  pulp  and  paper  industry  is  in   commercial   use.8   Unraveling   this   complex   polymer   and   being   able   to   produce   valuable   monomeric   phenols   is   of   great   interest.9   To   this   end,   lignin   extraction,   cleaving   of   α   aryl   33       and  β  aryl  ethers  (depolymerization)  and  conversion  offers  an  alternative  method  for  the   production  of  energy  efficient  liquid  fuel  as  well  as  value  added  products.     Extractive  ammonia  processing  (EAP)  is  a  pretreatment  method  that  is  used  to  separate   lignin   from   cellulose   and   hemicellulose.10   During   EAP,   ammonia   is   added   to   biomass   at   moderate   pressure   and   temperature.     The   pressure   is   then   rapidly   released   to   cause   the   fibers   to   expand.   This   process   results   in   cellulose   decrystallization,   hemicellulose   hydrolysis,  and  partial  lignin  depolymerization.10  The  cellulose  and  hemicellulose  can  then   be   subjected   to   enzymatic   hydrolysis   for   ethanol   production   while   lignin   streams   are   collected,  fractionated  and  extracted.    These  lignin  streams  are  partially  depolymerized  and   are  thus  lower  in  molecular  weight  than  the  native  lignin  complex  found  in  biomass.  Lignin   monomers   and   oligomers   are   more   amenable   to   chemical   transformation   to   higher   value   fuels  and  chemicals  and  are  thus  better  feedstocks  than  native  lignin.         Thermochemical  conversion  processes  such  as  biomass  fast  pyrolysis  can  be  applied  for   further   such   depolymerization.   Biomass   fast   pyrolysis   (BFP)   is   one   of   the   processes   used   for  the  production  of  liquid  bio-­‐fuels  from  plant  matter  due  to  its  potential  for  producing   high   liquid   fuel   yields   and   raw   material   for   value-­‐added   products   at   low   costs.11,12   Fast   pyrolysis  involves  rapidly  heating  biomass  to  temperatures  between  400  °C  and  600  °C  in   the   absence   of   oxygen.12   The   decomposition   of   biomass   during   the   fast   pyrolysis   process   generates   three   major   products,   a   liquid   referred   to   as   bio-­‐oil,   a   solid   referred   to   as   bio-­‐ char,   and   a   non-­‐condensable   gas   rich   in   molecular   hydrogen,   carbon   oxides   and   light   organics.    However,  bio-­‐oil  corrosiveness  and  reactive  instability  pose  significant  barriers   to   the   adoption   of   pyrolysis   systems.   Catalytic   stabilization   is   needed   to   produce   a   stable   fuel  intermediate  that  is  compatible  with  common  infrastructure  materials  such  as  carbon   34       steel.     Classical   catalytic   upgrading   is   usually   used   to   hydrogenate   and   deoxygenate   bio-­‐oil,   a   process   that   occurs   at   high   temperature   and   pressure.   These   severe   conditions   pose   significant   barriers   for   bio-­‐oil   upgrading   in   decentralized   facilities,   such   as   catalyst   deactivation.  To  avoid  these  conditions,  electrocatalytic  hydrogenation  (ECH)  is  proposed   to  stabilize  bio-­‐oil  under  mild  conditions  (25-­‐80  °C  and  1  atm).     As  lignin  is  a  byproduct  of  other  industries,  its  utilization  as  a  biofuel  feedstock  would   be  beneficial.  This  effort  focuses  on  the  upgrading  of  model  compounds  of  lignin  pyrolysis   via   electrocatalytic   hydrogenation   and   deoxygenation.   To   this   end,   three   major   studies   were   conducted.     Specifically,   our   first   study   builds   on   previous   work   done   on   phenolic   monomers  such  as  2-­‐methoxyphenol  by  comparing  the  results  of  similar  experiments  using   3-­‐methoxyphenol   and   4-­‐methoxyphenol.     Concurrently,   studies   were   also   performed   on   lignin   dimers   with   related   ether   linkages.   This   second   study   mainly   focuses   on   cleaving   lignin-­‐specific  linkages  in  the  dimers.  As  lignin  is  converted  to  phenolic  monomers,  dimers,   and  oligomers  upon  pyrolysis,  the  transformation  of  model  compounds  exhibiting  similar   bonding  arrangements  is  an  indicator  of  the  potential  for  ECH-­‐mediated  depolymerization   of  biomass  lignin.  The  third  study  focused  on  developing  better  ruthenium  loading  methods   for  preparing  the  catalyst  by  assessing  catalyst  performance  and  deactivation  studies  as  a   function   of   preparation   conditions.     The   overall   scope   of   the   project   as   shown   in  Figure   2.1   is   to   gain   an   understanding   of   the   potential   of   ECH   as   an   upgrading   process   for   lignin-­‐ derived   bio-­‐oil   by   exploring   different   conditions   and   catalyst   preparation   methods.   With   the  success  of  this  process,  bio-­‐oil  produced  at  decentralized  depots  at  the  site  of  biomass   harvest  can  be  upgraded  to  a  stable,  more  energy  dense  form  and  transported  to  petroleum   processing  facilities  for  hydro-­‐processing  to  produce  liquid  fuels.   35             Figure  2.1:  Overall  scheme  of  the  project  from  EAP  lignin  to  liquid  fuels   Experimental  Methods   Model  Compounds   As   a   continuation   of   previous   work   by   this   group,   a   study   was   done   on   methoxy   phenols  with  the  methoxy  group  at  different  positions.  The  substrates  2-­‐methoxyphenol,  3-­‐ methoxyphenol   and   4-­‐methoxyphenol   were   all   obtained   from   Alpha   Aesar.   Electrocatalytic   reduction   of   each   of   these   compounds   was   conducted.     Lignin   dimer   studies   were   also   conducted  to  study  the  effect  of  the  catalyst  on  different  types  of  linkages  found  in  lignin.  In   this   study,   the   lignin   dimer   4-­‐phenoxyphenol   was   obtained   from   Sigma   Aldrich.   This   compound  represents  the  4-­‐O-­‐5  type  linkage,  which  is  one  of  the  linkages  that  can  be  found   in   lignin.   Guaiacyl   glycerol-­‐β-­‐guaiacyl   ether   (Dimer#1)   was   obtained   from   John   Ralph’s   lab   at   University   of   Wisconsin.   Figure   2.2   shows   the   two   dimers   used.   Guaiacyl   glycerol-­‐β-­‐ guaiacyl  ether  is  representative  of  a  β-­‐O-­‐4  linkage  which  is  one  of  the  most  abundant  type   of  linkages  found  in  lignin.       36         Figure  2.2:  Dimers  a)  4-­‐phenoxyphenol  (4-­O-­5)  b)  Dimer#1  (β-­O-­4)     Catalyst  Preparation   Zorflex   ACC   (activated   carbon   cloth)   FM   100   was   used   to   support   the   ruthenium   catalyst.   As   described   by   Li   et.   al.,13   the   activated   carbon   cloth   was   washed   overnight   in   deionized   water   and   oven   dried   at   105   °C.   The   ACC   support   was   prepared   with   catalyst   using   the   incipient   wetness   method   as   described   by   Li   et.   al.13   Ru(NH3)6Cl3   solution   was   used  to  soak  each  1.5  x  3.0  cm  piece  of  ACC.  Each  cloth  was  immersed  in  the  solution  and   soaked  for  a  few  minutes.  The  Ru/ACC  catalyst  was  then  dried  at  room  temperature  first   overnight   and   stored   in   a   vacuum   dedicator   for   another   24   hours   then   reduced   with   molecular  hydrogen  at  310  °C  for  12  hrs  in  a  Parr  reactor  (model  452HC).     Catalyst  Characterization       A   varian   710-­‐ES   inductively   coupled   plasma   optical   emission   spectrometer   (ICP-­‐ OES)   was   used   to   measure   the   ruthenium   content   of   the   catalyst   using   the   methods   as   described  by  Li  et.  al.13  Standards  were  prepared  with  concentrations  of  0.08  ppm,  0.4  ppm,   2   ppm,   10   ppm   and   50   ppm   using   RuCl3   to   construct   a   calibration   curve.   The   catalyst   samples   were   prepared   by   digestion   in   aqua   regia   for   4   hours   in   a   water   bath   at   100   °C,   37       filtration   and   dilution   with   DI   water.     Scanning   electron   microscopy   (SEM)   analyses   used   JEOL  JSM-­‐7500F  and  JEOL  6400V  instruments.  The  Ru/ACC  was  mounted  onto  aluminum   stubs   using   carbon   paste   and   dried   in   a   vacuum   overnight.   Analyses   were   done   using   secondary  electron  imaging  and  energy-­‐dispersive  X-­‐ray  (EDX)  analysis.     Electrocatalytic  Hydrogenation  (ECH)  Setup   A  two-­‐chambered  electrochemical  glass  H-­‐cell  was  used  to  conduct  the  experiments.   The   chambers   were   separated   using   a   Dupont   Nafion-­‐117   membrane.   Ruthenium   supported  on  activated  carbon  cloth  (Ru/ACC)  was  used  as  the  cathode  and  platinum  wire   was  used  as  the  anode  a  shown  in  Figure  2.3  below.  An  Instek  GPR-­‐11H30D  power  supply   was   used   to   provide   constant   electrical   current   for   the   various   experiments.   To   maintain   constant  temperature  for  different  studies,  the  whole  cell  was  placed  in  a  water  bath  and   the   desired   temperature   was   maintained   in   the   water   bath.     After   the   cell   setup   was   completed,   a   10   min   pre-­‐electrolysis   step   was   performed   on   the   catalyst   at   80mA   before   adding   the   substrate.   After   pre-­‐electrolysis,   depending   on   the   experiment,   the   desired   amount   of   substrate   was   added   and   the   experiment   was   run   at   the   desired   temperature   and   current   density   for   4   hours.   Samples   (O.6   ml)   were   taken   every   hour   for   the   methoxyphenol   study   and   every   40   minutes   for   the   dimer   studies.   Samples   were   then   saturated   with   NaCl,   acidified   to   pH   1   and   extracted   into   chloroform.   The   catalyst   was   placed   and   sonicated   in   chloroform   for   10   minutes,   and   filtered   prior   to   analysis   by   GC/MS   and  GC/FID.   38                                    Figure  2.3:  Two  chambered  H-­‐cell  setup   The   electrolytes   used   for   the   methoxyphenol   study   were   30   ml   of   0.2   M   HCl   (catholyte)  and  30  ml  0.2  M  phosphate  buffer  (anolyte).    The  experiments  were  conducted   with   20   mM   substrate   concentration   at   75   °C   and   60   mA   and   product   yield   and   current   efficiency  were  investigated.  The  effect  of  different  conditions  on  product  yield  and  current   efficiency   was   also   investigated   for   4-­‐phenoxyphenol.   The   varied   conditions   include:   1)   electrolytes,  2)  substrate  concentration  and  3)  current  density.    For  the  4-­‐phenoxyphenol   studies  the  cathode/anode  electrolytes  used  were  30  ml  0.2  M  HCl/0.2  M  phosphate  buffer,   0.2  M  NaCl/0.2  M  phosphate  buffer,  and  1  M  NaOH/1  M  NaOH.    A  temperature  of  80  °C  was   maintained   for   all   three   electrolytes   used.   For   the   substrate   concentration   study,   three   different   concentrations   (25   mM,   12.5   mM   and   6.25   mM)   were   investigated   for   all   three   electrolytes  at  100  mA.  Current  density  experiments  were  conducted  for  the  three  different   electrolytes  at  80  °C  and  20  mA,  80  mA  and  100  mA.       The  same  setup  was  used  for  the  ECH  of  Dimer#1.  Dimer#1  was  found  to  be  soluble   in   1M   NaOH   and   all   experiments   involving   Dimer#1   were   carried   out   in   30   ml   1M   NaOH   39       solution   on   both   the   cathode   and   anode   compartments.   The   experiment   was   conducted   for   6  hours  and  samples  were  collected  every  2  hours.  The  same  extraction  method  mentioned   above  was  used  for  GC  samples.       Catalyst  Deactivation  Studies       For   the   catalyst   deactivation   studies,   the   methods   used   by   Li   et   al.,13   were   implemented    The  same  ECH  setup  described  in  the  above  section  was  utilized  but  after  the   first  experiment,  the  catalyst  was  washed  in  DI  water  and  stirred  overnight  in  a  20  ml  vial   containing   DI   water.   The   next   day   the   same   washed   catalyst   was   used   to   run   the   second   experiment  and  so  forth.  Samples  were  collected  from  the  cathode  solution  but  no  sample   was   extracted   from   the   cloth   so   yield   calculation   did   not   take   in   o   account   the   organic   products  that  were  adsorbed  onto  the  catalyst  cloth.     Sample  Analysis       Samples   were   analyzed   using   a   Shimadzu   QP-­‐5050A   GC/MS   (Shimadzu   Corp,   Columbia,  MD).  Standards  in  chloroform  were  used  to  identify  products  by  retention  time   and   to   construct   a   four-­‐point   calibration   curve.     This   curve   was   utilized   to   determine   product  yields  and  calculate  current  efficiency.     Calculations     o Yield  A  =  (Moles  of  A)  /  (Initial  moles  of  reactant)       o Selectivity  A  =  (Moles  of  A)  /  (Moles  of  total  products)       40       o Conversion  =  (Moles  of  reactant  consumed)  /  (Initial  moles  of  reactants)     o Current  efficiency  =  (Charge  used  generate  products)  /  (Total  charge  passed)     o Current  Density  =    (Current)/  (Unit  area  of  catalyst  used)     Results  and  Discussion       Catalyst  Characterization  (ICP  and  SEM)   Activated  carbon  cloth  is  an  ideal  catalyst  support  because  of  its  high  surface  area,   stable  micropore  distribution  and  high  electrical  conductivity.14  All  catalysts  used  in  these   studies   were   prepared   using   the   incipient   wetness   method   as   outlined   by   Li   et   al.13   ICP   analysis   revealed   a   ruthenium   loading   of   3.5-­‐4.0   wt%,   which   was   found   to   be   consistent   with  the  EDX  analysis  as  shown  in  Table  2.1.    The  slight  differences  in  the  other  elements   between   unloaded   vs.   loaded   carbon   cloth   can   be   attributed   to   the   differences   in   area   between   the   two   different   pieces   of   carbon   cloth   analyzed.   Dot   map   images   shown   in   Figure   2.4   a)   and   b)   show   the   carbon   cloth   and   the   ruthenium   dispersed   throughout   the   carbon  fabric.  As  can  be  seen  from  the  images,  there  is  a  relatively  uniform  distribution  of   the   ruthenium   particles.   X-­‐ray   dot   mapping   (presence/absence   analysis)   makes   use   of   a   two-­‐dimensional  scanning  technique  where  each  detected  photon  appears  as  dot  with  the   regions  of  high  concentration  appearing  brighter.  As  can  be  seen  from  Figures  2.5  and  2.6   the   SEM   image   shows   a   random   distribution   of   the   ruthenium   particles   throughout   the   cloth.       41       Table  2.1:  Scanning  electron  microscopy  elemental  analysis  using  EDX   Element     ACC  Control  (wt%)   Ru/ACC  Unused  (wt%)   C   85.54   69.46   Ru   0.00   4.06   O   5.91   10.78   Na   0.27   0.19   Al   3.08   2.40   Cl   1.10   -­‐   Ca   0.05   0.20   Zn   4.05   4.25   Mg   -­‐   0.06   Si   -­‐   0.06   P   -­‐   1.46   S   -­‐   0.11   K   -­‐   6.88   Fe   -­‐   0.07   Total     100   100       Figure  2.4:  X-­‐ray  dot  map  analysis  of  Ru/ACC  for  carbon  and  ruthenium  a)  carbon  cloth  b)   ruthenium     42       Figure  2.5:  Scanning  electron  microscopy  images  of  a)  unloaded  b)  ruthenium  loaded     Figure  2.6:  Scanning  electron  microscopy  images  of  loaded  cloth  a)  100x    b)  300x       Model  Compound  Studies:  Methoxyphenols  with  Different  Methoxy  Group  Positions     Previous   work   by   this   group   has   demonstrated   the   successful   reduction   of   guaiacol,   syringol   and   phenol   using   ECH   with   ruthenium   activated   carbon   cloth   catalyst.13   The   study   of   these   substrates   is   relevant   as   these   compounds   are   common   products   of   lignin   pyrolysis.  In  an  effort  to  catalogue  the  effectiveness  of  the  Ru/ACC  catalyst  as  a  means  of   reduction,  several  lignin-­‐derived  bio-­‐oil  model  compounds  were  selected  as  reactants.    To   specifically  catalogue  the  effects  of  varying  the  ether  group  position  on  the  aromatic  ring,   three   different   substrates   were   studied:   2-­‐methoxyphenol,   3-­‐methoxyphenol   and   4-­‐ methoxyphenol.    For  all  reactants,  Ru/ACC  catalyst  was  used  for  6  hours  at  conditions  of  75   43       °C,  60  mA  and  catholyte  concentration  of  in  0.2  M  HCl.    Samples  were  taken  every  hour  to   be  extracted  and  analyzed  using  GC/MS.      In  this  work,  two  pathways  are  suggested  for  the  reduction  of  the  methoxyphenol  to   cyclohexanol.   As   shown   in   Figure   2.7,   the   methoxyphenol   might   be   reduced   to   phenol,   followed   by   reduction   to   cyclohexanol;   or   reduction   of   methoxyphenol   to   methoxycyclohexanone,   methoxycyclohexanol   and   then   to   cyclohexanol.   As   suggested   by   the   schematic   in   Figure   2.8,   electrocatalysis   is   a   multistep   process   whereby   the   water   on   the  anode  side  is  oxidized  to  H+  and  O2.    H+  ions  travel  through  the  selective  membrane  to   the  cathode  side  and  chemisorb  on  the  catalyst  resulting  in  a  metal/hydrogen  complex  (a)   and  metal/methoxyphenol  complex  forms  on  the  catalyst  surface  (b).  In  steps  c-­‐f  reduction   of   the   substrate   and   intermediates   occurs   by   addition   of   the   neighboring   hydrogens   that   have  been  chemisorbed  to  the  catalyst  surface.  The  reduced  products  then  desorb  from  the   catalyst  (g-­‐i).15,16,17  As  was  indicated  by  Li  et  al.  reduction  of  methoxyphenol  could  occur  via   two   routes:   1)   the   reduction   of   double   bonds   forms   methoxycyclohexanol   then   cyclohexanol   or   2)   demethoxylation   to   form   phenol   and   then   cyclohexanol.     Parallel   to   these  steps,  hydrogen  evolution  occurs  (j,k)  competing  with  the  electrocatalytic  reduction   of  the  substrate.               44                   Figure  2.7:  Reaction  pathways  for  the  reduction  of  methoxycyclohexanol  to  cyclohexanol   and  methoxycyclohexanol     Figure  2.8:  Electrocatalytic  hydrogenation  and  hydrogen  evolution  steps  18   a. 2  H2O  +  2e-­‐  +  Ru  2[H]Ru  +2  OH-­‐   b. Ru  +  Methoxyphenol    [Methoxyphenol]  Ru   c. 2[H]Ru  +  [Methoxyphenol]Ru    [Phenol]Ru  +[Methanol]Ru  +  Ru   d. 6[H]Ru  +  [Phenol]Ru    [Cyclohexanol]Ru  +Ru   e. 2[H]Ru  +  [Methoxyphenol]Ru    [Methoxycyclohexanol]Ru  +  Ru   45       f. 2[H]Ru  +  [Methoxycyclohexanol]Ru    [Cyclohexanol]Ru  +  [Methanol]Ru  +  Ru   g. [Phenol]Ru    Phenol  +  Ru   h. [Methoxycyclohexanol]Ru    Methoxycyclohexanol  +  Ru   i. [Cyclohexanol]  Ru    Cyclohexanol  +  Ru   j. [H]Ru  +  H2O  +  e-­‐    H2  +  Ru  +  OH-­‐   k. [H]Ru  +  [H]Ru    H2  +  Ru   As   indicated   in   Figure   2.9   and   Table   2.2,   all   three   substrates   proceeded   via   the   parallel   route   by   the   formation   of   phenol   followed   by   cyclohexanol   and   the   formation   of   methoxycyclohexanol.  The  absence  of  phenol  in  the  samples  taken  at  different  time  steps   during   each   experiment   could   be   indicative   of   the   fact   that   conversion   of   phenol   to   cyclohexanol  might  be  happening  rapidly.  For  the  2-­‐methoxyphenol  and  4-­‐methoxyphenol   cis/trans  isomers  were  identified.  A  mass  balance  of  80%  or  higher  and  conversion  greater   than  80%  was  observed  for  all  cases  with  the  2-­‐methoxyphenol  showing  100%  conversion.   A   slightly   higher   current   efficiency   was   also   recorded   for   2-­‐methoxyphenol.   The   current   efficiency   of   these   reactions   was   still   modest   and   can   be   attributed   to   the   competing   hydrogen   evolution   reaction.   Further   studies   in   this   area   should   explore   the   effect   of   substrate   concentration,   current   density   and   several   other   conditions   to   see   the   effect   of   these  conditions  on  improving  the  current  efficiency  of  the  system.  Figures  2.10,  2.11,2.12   show   the   conversion,   product   yield   and   depletion   of   starting   material   over   the   course   of   each   substrate   reduction.   In   each   figure   it   can   be   observed   that   for   each   time   point   the   cyclohexanol   and   methoxycyclohexanol   yields   increase   simultaneously   supporting   the   claim  that  the  formation  of  the  two  products  are  parallel  and  not  sequential.    Figure  2.10   shows  sudden  increase  in  the  amount  of  2-­‐methoxycyclohexanol,  this  could  be  due  to  the   46       extraction   of   this   product   from   the   cloth   and   not   from   the   catholyte   solution.   Product   selectivity  appears  to  have  favored  methoxycyclohexanol  slightly  but  for  the  most  part  the   catalyst  was  almost  equally  selective  toward  both  products.     Starting  Material     Methoxycyclohexanol   Cyclohexanol     CE   Conversion   120   100   mole  %   80   60   40   20   0   2-­‐Methoxyphenol   3-­‐Methoxyphenol   4-­‐Methoxyphenol     Figure  2.9:    Product  yield,  amount  of  starting  material  left,  current  efficiency  and   conversion  of  ECH  of  methoxyphenols   Table  2.2:  Summary  table  of  yield  and  current  efficiency  of  ECH  of  methoxyphenols   Product Yield % Methoxy Cyclo- Cyclo- Starting Mass Balance hexanol hexanol material Reactants (mol%) (mol%) (mol%) (mol%) CE (%) 2-Methoxyphenol 80 36 44* -- 20 3-Methoxyphenol 89 35 38 15 15 4-Methoxyphenol 84 31 35* 14 16  *cis  +  trans   47       Table  2.3:  Summary  table  of  selectivity  and  conversion  of  ECH  of  methoxyphenols   Selectivity   Selectivity   Cyclohexanol   Methoxycyclohexanol     Reactants     Conversion  (mol%)   (mol%)     (mol%)   2-­‐Methoxyphenol   100   45   55   3-­‐Methoxyphenol   84   50   50   4-­‐Methoxyphenol   86   46   54     2-­‐Methoxyphenol   120   Conversion     100   Cyclohexanol   2-­‐Methoxycyclohexanol   2-­‐Methoxyphenol   mole  %   80   60   40   20   0   0   200   400   600   800   1000   1200   1400   Charge  Passed  (C)   Figure  2.10:  Conversion,  product  yield  and  depletion  of  starting  material  of  ECH  of  2-­‐ methoxyphenol   48         3-­‐Methoxyphenol   120   Conversion     Cycohexanol     3-­‐Methoxycyclohexanol   3-­‐Methoxyphenol   100   mole  %   80   60   40   20   0   0   200   400   600   800   1000   1200   1400   Charge  Passed  (C)   Figure  2.11:  Conversion,  product  yield  and  depletion  of  starting  material  of  ECH  of  3-­‐ methoxyphenol     4-­‐Methoxyphenol   120   Conversion   Cyclohexanol   4-­‐Methoxycyclohexanol   4-­‐Methoxyphenol   100   mole    %   80   60   40   20   0   0   200   400   600   800   1000   1200   1400   Charge  Passed  (C)   Figure  2.12:  Conversion,  product  yield  and  depletion  of  starting  material  of  ECH  of  4-­‐ methoxyphenol     49         Model  Compound  Studies:  4-­O-­5  Type  Linkage  (4-­phenoxyphenol)   Electrocatalysis   of   the   lignin   model   compound   4-­‐phenoxyphenol   (a   lignin   dimer)   was   conducted   using   a   divided   voltaic   cell   with   ruthenium   on   activated   carbon   cloth   (Ru/ACC)   and   HCl,   NaCl   or   NaOH   as   electrolytes.   4-­‐Phenoxyphenol   is   a   dimer   that   is   representative  of  the  4-­‐O-­‐5  bonds  present  in  lignin.  Previous  studies  done  by  Dabo  et  al.  on   4-­‐phenoxyphenol   were   able   to   achieve   the   cleavage   of   C-­‐O   bond   using   several   transition   metals   embedded   on   reticulated   vitreous   carbon   (RVC).   These   results   report   conversion   to   phenol   and   production   of   trace   amounts   of   cyclohexanol   and   cyclohexanone.19   Our   initial   results  reveal  that  the  electrochemical  reduction  of  4-­‐phenoxyphenol  leads  to  cyclohexanol   and   phenol.     This   study   was   used   to   demonstrate   the   effectiveness   of   this   technique   for   reducing  4-­‐O-­‐5  type  linkages  in  lignin.    As  dimers  similar  to  4-­‐phenoxyphenol  exist  in  the   bio-­‐oils  of  fast  pyrolysis,  these  results  are  informative  for  the  ECH  treatment  of  bio-­‐oil  for   further   stabilization.     In   previous   work,   lignin   model   compounds   and   products   of   lignin   pyrolysis   were   examined   to   map   the   reaction   pathways   for   the   reduction   of   each   component.    In  all  cases,  phenolic  monomers  from  lignin  pyrolysis  were  reduced  via  ECH.     Upon   ECH   of   alkoxyphenols   (phenol,   syringol   and   guaiacol),   significant   amounts   of   alkoxycyclohexanol   and   cyclohexanol   were   formed,   clearly   showing   the   potential   for   chemical  reduction.13  However,  the  modest  current  efficiency  (electrons  used  to  form  the   product   divided   by   electrons   supplied)   implies   that   further   investigation   of   electrode   materials  and  their  optimization  is  needed.       Electrocatalytic   hydrogenation   of   organic   compounds   is   suggested   to   occur   via   a   multi-­‐reaction  pathway  as  described  by  Mahdavi  et  al.20  In  this  reaction  network,  hydrogen   that  is  produced  by  the  electroreduction  of  water  is  chemisorbed  to  the  electrode  surface   50       (a),   causing   the   organic   substrate   to   be   reduced   (b-­‐f).     At   the   same   time,   neighboring   hydrogen  atoms  react  to  form  molecular  hydrogen,  which  desorbs  from  the  electrode  (g,h).     The   hydrogen   evolution   reaction   competes   with   organic   substrate   hydrogenation   and   lowers  the  current  efficiency.20,   21  As  this  competition  between  the  two  reactions  is  highly   dependant   on   the   reaction   conditions,21   this   study   measured   the   effects   of   different   electrolytes,  substrate  concentration  and  current  densities.     a. 2  H2O  +  2e-­‐  +  Ru  2[H]Ru  +2  OH-­‐   b. Ru  +  4-­‐phenoxyphenol    [4-­‐phenoxyphenol  ]Ru   a. 2[H]Ru  +  [4-­‐phenoxyphenol  ]Ru    2[Phenol]Ru  +  Ru   b. 4[H]Ru  +  [Phenol]Ru    [Cyclohexanone]Ru  +Ru   c. 2[H]Ru  +  [Cyclohexanone]Ru    [Cyclohexanol]Ru  +  Ru   d. 2[Phenol]Ru    2Phenol  +  Ru   e. [Cyclohexanone]Ru    Cyclohexanone  +  Ru   f. [Cyclohexanol]Ru    Cyclohexanol  +  Ru   g. [H]Ru  +  H2O  +  e-­‐    H2  +  Ru  +  OH-­‐   h. [H]Ru  +  [H]Ru    H2  +  Ru   Electrolyte  Effect    As   shown   in   Table   2.4,   three   different   electrolytes   were   used   to   conduct   the   ECH   treatments   and   determine   current   efficiency   on   12.5   mM   4-­‐phenoxyphenol.   Results   indicated   that   the   Ru/ACC   catalyst   did   reduce   4-­‐phenoxyphenol   to   phenol   and   cyclohexanol.  ECH  can  effectively  cleave  ether  bonds  in  lignin  dimers  provided  that  ether   bond  hydrogenolysis  is  faster  than  the  hydrogenation  of  the  aromatic  rings.20  Both  phenol   51       and   cyclohexanol   were   found   to   be   the   reduction   products   for   basic   and   neutral   conditions   in   the   catholyte   as   seen   in   Table   2.4.   However,   there   is   also   a   possibility   of   cleaving   the   ether   bond   to   form   hydroquinone,   benzene   and   reduction   of   hydroquinone.   Although   none   of   these   two   products   were   observed   in   solution,   there   was   an   unidentified   product   recovered  from  the  cloth,  which  could  be  a  reduction  product  of  hydroquinone  and  account   for  closing  the  mass  balance.    Acidic  conditions  did  produce  phenol  and  cyclohexanol  but  in   such  trace  amounts  that  they  could  not  be  quantified  and  so  are  not  reported  in  this  case.   Phenol  is  the  suspected  intermediate  as  cyclohexanol  was  observed  at  higher  amounts  for   both   electrolytes.     The   reaction   pathway   in   Figure   2.13   depicts   the   proposed   ether   bond   cleavage   producing   phenol   before   hydrogenation   saturates   the   aromatic   ring.   As   was   observed   from   the   results   below,   NaOH   was   found   to   be   the   best   electrolyte   with   higher   phenol   and   cyclohexanol   yields   and   higher   current   efficiency.     This   could   be   because   the   base  dissolves  phenol  by  deprotonating  it.         Figure  2.13:  Suggested  reaction  pathway  for  ECH  of  4-­‐phenoxyphenol     Table  2.4:  Summary  table  of  ECH  of  4-­‐phenoxyphenol  using  different  electrolytes     Cathode   Electrolyte   1M  NaOH   Current   (mA)     80   Phenol  Yield   (mol%)     21   Cyclohexanol  Yield   (mol%)   26   Conversion   (mol%)   97   CE   (%)   29     100   13   29   99   21   0.2M  NaCl   80   9   16   97   16     100   8   10   98   10     52       Current  Density  and  Substrate  Concentration     Different  current  density  studies  were  performed  at  20  mA,  80  mA  and  100  mA  for  a   substrate  concentration  of  12.5  mM  for  4  hours  with  NaOH  as  the  electrolyte.  The  substrate   concentration   studies   were   conducted   at   100   mA   with   three   different   substrate   concentrations   of   6.25   mM,   12.5   mM   and   25   mM.   Results   summarized   in   Table   2.5   indicate   that   at   low   current   density   production   of   phenol   is   favored   but   conversion   remains   low   indicating   that   the   complete   conversion   of   4-­‐phenoxyphenol   was   not   achieved.     In   the   case   of   the   lower   current   density   experiment   small   amounts   of   cyclohexanone   were   also   detected   on   the   cloth.   Higher   current   density   favored   the   production   of   cyclohexanol.   As   suggested   by   Dalavoy   et   al.,   this   could   be   due   to   the   increase   of   surface   hydrogen   with   increased   current   density   resulting   in   subsequent   increase   of   cyclohexanol   yield.22   But   this   could   also   mean   an   increase   in   the   competing   hydrogen   evolution   reaction   resulting   in   low   current   efficiency.   As   was   observed   from   the   current   density   experiments,   current   efficiency   comparisons   indicate   that   the   lower   current   density   had   the   best   current   efficiency   results   while   current   efficiency   decreased   for   higher   current   density   experiments.  At  lower  current  density  the  formation  of  cyclohexanol  was  lower  but  seemed   to   increase   as   current   density   increased   suggesting   that   conversion   of   phenol   to   cyclohexanol   requires   more   adsorbed   hydrogen   to   proceed   compared   to   the   initial   formation  of  phenol  from  starting  material.  Additionally  the  presence  of  cyclohexanone  at   lower   current   density   indicates   that   conversion   of   phenol   to   cyclohexanone,   and   then   to   cyclohexanol  is  happening  at  a  slower  rate  due  to  low  surface  hydrogen  concentration.      For   the   substrate   concentration   studies,   lower   substrate   concentration   (6.25   mM)   favored   better   cyclohexanol   and   phenol   yield   with   current   efficiency   slightly   lower   than   that   for   53       12.5  mM  substrate  concentration.    25  mM  showed  the  least  conversion,  current  efficiency   as  well  as  product  yield.    Overall,  it  can  be  concluded  that  higher  current  density  and  low   substrate  concentration  favored  high  cyclohexanol  yield  while  low  current  density  ws  more   selective  towards  phenol  formation.     Table  2.5:  Summary  of  ECH  of  4-­‐phenoxyphenol  with  different  current  density  and   substrate  concentration   Cyclohexanol   Concentration   Current     Phenol  Yield   Yield   Conversion   CE   (mM)   (mA)   (mol%)     (mol%)   (mol%)   (%)   12.5   20   40   19   90     98     12.5   80   21   26   97   29   12.5   100   13   29   99   20   6.25   100   28   54   96   18   25.0   100   11   7   67   11     Model  Compound  Studies:  β-­O-­4  type  Linkage  Dimers   Some   studies   have   shown   the   successful   cleavage   of   lignin   model   dimers   using   Raney  nickel.15  So  the  effect  of  Ru/ACC  on  β-­‐O-­‐4  type  linkage  dimers  was  the  next  step  in   this  study  as  these  types  of  linkages  are  the  most  abundant  in  lignin.  However,  the  results   reported   here   are   only   preliminary   and   further   quantification   of   reactant   concentration   and   product   yields   is   needed.     Initial   testing   of   this   synthetic   dimer   shows   promising   results  with  its  cleavage  to  guaiacol  and  vanillin  (Figure  2.14)  along  with  other  unidentified   products.     These   products   are   expected   given   the   reaction   chemistries   that   have   been   previously  observed  with  4-­‐phenoxyphenol.         54         Figure  2.14:  Reaction  conditions  and  products  of  ECH  of  dimer  #1     Catalyst  Deactivation     Catalyst   deactivation   is   an   important   phenomenon   that   needs   to   be   understood   before  the  design  phase  of  a  catalytic  process.  Minimizing  catalyst  deactivation  over  time  is   essential   to   ensure   the   cost   effectiveness   of   catalyst   use   as   well   as   process   efficiency,   product   yield   and   selectivity.   A   catalyst   that   can   maintain   high   activity   and   selectivity   towards   desired   products   over   time   is   essential.23   Ideally,   catalysts   should   remain   unaltered   by   the   process   they   catalyze;   but   oftentimes   catalyst   deactivation   occurs   by   a   variety   of   mechanisms.   It   is   important   to   determine   the   onset,   cause,   mechanism   and   solutions   to   catalyst   deactivation.   Catalyst   deactivation   is   known   to   occur   via   various   mechanisms   such   as   poisoning,   sintering,   coking   or   fouling   and   phase   transformation.24   Poisoning   is   the   loss   of   activity   due   to   the   blocking   of   the   active   sites   by   strongly   chemisorbed   impurities;   sintering   is   thermally   induced   structural   modification   of   the   catalyst;   coking   can   occur   through   blocking   of   the   catalyst   surface   with   carbonaceous   residue.25   Phase   transformation   occurs   due   to   high   temperature   effects   whereby   the   morphology  of  the  catalyst  is  changed.   26  In  this  study,  it  is  important  to  determine  the  life   55       span  of  the  catalyst  and  if  catalyst  deactivation  does  occur,  it  is  beneficial  to  understand  the   mechanism  by  which  deactivation  occurs.       In  this  study  five  experiments  were  run  using  the  same  catalyst.  After  each  use,  the   catalyst   was   washed   overnight   in   DI   water.   Each   time   the   same   area   of   the   catalyst   was   used   to   assure   no   variation   in   activity   from   using   an   area   that   was   not   used   previously.   Samples   were   taken   every   40   minutes,   extracted   and   analyzed   using   GC/MS.   In   each   experiment,  a  10  minute  pre-­‐electrolysis  step  was  performed  to  activate  the  catalyst.  In  this   case,  products  adsorbed  to  the  activated  carbon  of  the  catalyst  were  not  accounted  for  at   the  end  of  the  experiment.  Usually,  the  cloth  would  be  sonicated  in  chloroform  to  extract   adsorbed   products   such   as   cyclohexanol.   In   previous   deactivation   experiments,   the   cloth   was   sonicated   in   chloroform   after   each   experiment,   but   this   treatment   led   to   complete   deactivation  of  the  catalyst.  This  could  be  due  to  the  poisoning  of  the  catalyst  by  chloride,   or   caused   by   the   complete   blockage   of   active   sites   by   chloroform   or   its   breakdown   products.  In  subsequent  studies  the  cloth  was  only  washed  in  DI  water  to  avoid  any  further   deactivation   effects   caused   by   the   use   of   chloroform.   The   results   of   this   study   are   summarized   in   Table   2.6.   Phenol   yield   decreased   with   every   use.   Cyclohexanol   yield   increased   from   first   use   to   second   use,   which   can   be   attributed   to   residual   cyclohexanol   on   the   cloth   from   the   first   use.   A   similar   trend   can   also   be   observed   in   the   apparent   current   efficiency  data;  due  to  the  increase  in  moles  of  cyclohexanol  observed  for  the  second  use,   the  current  efficiency  was  also  highest  for  the  second  trial  (Figure  2.16).  After  the  second   use   the   cyclohexanol   yield   follows   the   same   trends   as   that   for   phenol;   the   cyclohexanol   yield  continues  to  drop  after  each  experiment,  as  does  the  current  efficiency.    The  overall   product  yield  (phenol  +  cyclohexanol)  decreased  from  one  experiment  to  the  next  (Figure   56       2.15).   Initial   selectivity   was   higher   for   phenol,   but   after   the   first   experiment,   selectivity   increased   for   cyclohexanol.   A   change   in   selectivity   is   often   a   sign   that   some   change   has   occurred  in  the  catalyst  and  could  be  a  possible  indication  of  catalyst  deactivation.  But  most   likely   this   switch   in   selectivity   could   be   attributed   to   the   fact   that   cyclohexanol   is   captured   on   the   ACC   but   phenol   is   not   captured   on   the   cloth   in   any   of   the   5   experiments   resulting   in   more   phenol   than   cyclohexanol   in   solution   after   each   run.   For   the   first   two   trials,   conversion  was  close  to  100%,  after  the  second  trial,  conversion  gradually  decreased  with   the  fifth  reuse  falling  lower  than  40%  (Figure  2.17).       Table  2.6:  Summary  table  of  catalyst  deactivation  study   Cyclohexanol   Phenol   Cyclohexanol   Phenol  Yield   Yield   Selectivity   Selectivity   Conversion   CE   Use   (mol%)   (mol%)   (mol%)   (mol%)   (mol%)   (%)   1   18.13   14.58   55.43   44.57   99.81   12.51   2   9.68   18.03   34.95   65.05   98.23   13.96   3   7.38   16.16   31.37   68.62   88.14   10.28   4   7.02   14.19   33.10   66.90   73.77   10.61   5   6.46   13.69   32.07   67.93   38.35   10.12     35   1st  Use     2nd  Use   3rd  Use   4th  Use   5th  Use   30   %  Yield     25   20   15   10   5   0   0   200   400   600   800   1000   Total  Charge  (C)   1200   1400   1600         Figure  2.15:  Product  yield  (phenol  +  cyclohexanol)  for  catalyst  deactivation  test       57         %  Current  Ef•iciency     50   45   40   35   30   25   20   15   10   5   0   1st  Use   2nd  Use   3rd  Use   4th  Use   5th  Use   0   200   400   600   800   1000   Total  Charge  (C)   1200   1400   1600   Figure  2.16:  Current  efficiency  for  catalyst  deactivation  test       120   1st  Use   2nd  Use   3rd  Use   4th  Use   5th  Use     %  Conversion     100   80   60   40   20   0   0   200   400   600   800   1000   Total  Charge  (C)   1200   1400   Figure  2.17:  Conversion  for  catalyst  deactivation  test       1600                           Conclusion   Methoxyphenol  studies  clearly  indicated  that  the  position  of  the  methoxy  group  on   the  aromatic  ring  did  not  have  a  significant  effect  on  the  selected  path  of  product  formation   or   the   yields   of   methoxycyclohexanol   and   cyclohexanol.   In   the   case   of   2-­‐methoxyphenol   and  4-­‐methoxyphenol  the  formation  of  cis  and  trans  isomers  of  the  methoxycyclohexanol   were   observed.   These   studies   proved   the   effectiveness   of   the   catalyst   in   reducing   58       methoxyphenols   to   cyclohexanol   and   methoxycyclohexanol   regardless   of   the   position   of   the  methoxy  group  on  the  aromatic  ring.     From   the   4-­‐phenoxyphenol   studies   a   maximum   cyclohexanol   yield   of   54%   was   measured   when   NaOH   was   used   as   electrolyte   at   100   mA   for   four   hours   with   6.25   mM   substrate   concentration.     This   trial   also   resulted   in   a   current   efficiency   of   18%,   with   the   inefficiency   due   to   molecular   hydrogen   production.   Although   it   was   observed   that   high   current  efficiency  was  recorded  for  low  current  density  experiments,  it  resulted  in  higher   phenol  selectivity,  which  can  be  beneficial.  It  is  important  to  note  that  current  efficiencies   are  likely  far  from  optimized,  and  that  varying  conditions  such  as  current  density,  electrode   materials,   electrolytes,   electrolyte   concentrations,   substrate   concentration   and   temperature  may  further  improve  these  results.       Catalyst   deactivation   studies   uncovered   a   decrease   in   activity   after   two   uses.   To   optimize  current  efficiency  and  to  increase  the  service  life  of  the  system,  areas  of  ongoing   development  include  improvements  in  cell  design,  energy  efficiency,  and  catalytic  cathode   stability.   The   organic   chemical   transformations   described   here   also   have   synthetic   potential.     Studies   to   probe   selectivity,   the   mechanism   of   the   aryl   ether   cleavage   and   the   range  of  electrocatalytically  convertible  substrates  are  also  underway.   59                                 REFERENCES                               60       REFERENCES     1.   Bu,  Q.;  Lei,  H.;  Zacher,  A.  H.;  Wang,  L.;  Ren,  S.;  Liang,  J.;  Wei,  Y.;  Liu,  Y.;  Tang,  J.;  Zhang,   Q.;  Ruan,  R.,  A  review  of  catalytic  hydrodeoxygenation  of  lignin-­‐derived  phenols   from  biomass  pyrolysis.  Bioresource  Technology  2012,  124  (0),  470-­‐477.   2.   Pandey,  M.  P.  a.  K.,  C.  S.    Chem.  Eng.  Technol.,    34:  29–41.  doi:   10.1002/ceat.201000270,  Lignin  Depolymerization  and    Conversion:  A  Review  of   Thermochemical  Methods.  Chem.  Eng.  Technol.:  2011;  Vol.  34:  29–41.   doi:  10.1002/ceat.201000270.   3.   Mahdavi,  B.;  Lafrance,  A.;  Martel,  A.;  Lessard,  J.;  Menard,  H.;  Brossard,  L.,   Electrocatalytic  hydrogenolysis  of  lignin  model  dimers  at  Raney  nickel  electrodes.  J.   Appl.  Electrochem.  1997,  27  (5),  605-­‐611.   4.   Saiz-­‐Jimenez,  C.;  De  Leeuw,  J.  W.,  Lignin  pyrolysis  products:  Their  structures  and   their  significance  as  biomarkers.  Organic  Geochemistry  1986,  10  (4–6),  869-­‐876.   5.   Zakzeski,  J.;  Bruijnincx,  P.  C.  A.;  Jongerius,  A.  L.;  Weckhuysen,  B.  M.,  The  catalytic   valorization  of  lignin  for  the  production  of  renewable  chemicals.  Chem.  Rev.  2010,   110,  3552-­‐3599.   6.   Patwardhan,  P.  R.;  Brown,  R.  C.;  Shanks,  B.  H.,  Understanding  the  Fast  Pyrolysis  of   Lignin.  ChemSusChem  2011,  4  (11),  1629-­‐1636;  Yang,  H.  P.;  Yan,  R.;  Chen,  H.  P.;  Lee,   D.  H.;  Zheng,  C.  G.,  Characteristics  of  hemicellulose,  cellulose  and  lignin  pyrolysis.   Fuel  2007,  86  (12-­‐13),  1781-­‐1788.   7.   Rensel,  D.  J.;  Rouvimov,  S.;  Gin,  M.  E.;  Hicks,  J.  C.,  Highly  selective  bimetallic  FeMoP   catalyst  for  C–O  bond  cleavage  of  aryl  ethers.  Journal  of  Catalysis  2013,  305  (0),  256-­‐ 263.   8.   Gosselink,  R.  J.  A.;  de  Jong,  E.;  Guran,  B.;  Abacherli,  A.,  Co-­‐ordination  network  for   lignin  -­‐  standardisation,  production  and  applications  adapted  to  market   requirements  (EUROLIGNIN).  Industrial  Crops  and  Products  2004,  20  (2),  121-­‐129.   9.   Nowakowski,  D.  J.;  Bridgwater,  A.  V.;  Elliott,  D.  C.;  Meier,  D.;  de  Wild,  P.,  Lignin  fast   pyrolysis:  Results  from  an  international  collaboration.  Journal  of  Analytical  and   Applied  Pyrolysis  2010,  88  (1),  53-­‐72.   10.   Bals,  B.;  Rogers,  C.;  Jin,  M.;  Balan,  V.;  Dale,  B.,  Evaluation  of  ammonia  fibre  expansion   (AFEX)  pretreatment  for  enzymatic  hydrolysis  of  switchgrass  harvested  in  different   seasons  and  locations.  Biotechnology  for  Biofuels  C7  -­  1  2010,  3  (1),  1-­‐11.   11.   Lu,  Q.;  Li,  W.-­‐Z.;  Zhu,  X.-­‐F.,  Overview  of  fuel  properties  of  biomass  fast  pyrolysis  oils.   Energy  Conversion  and  Management  2009,  50  (5),  1376-­‐1383.   61       12.   Bridgwater,  A.  V.;  Meier,  D.;  Radlein,  D.,  An  overview  of  fast  pyrolysis  of  biomass.   Org.  Geochem.  1999,  30  (12),  1479-­‐1493.   13.   Li,  Z.;  Garedew,  M.;  Lam,  C.  H.;  Jackson,  J.  E.;  Miller,  D.  J.;  Saffron,  C.  M.,  Mild   electrocatalytic  hydrogenation  and  hydrodeoxygenation  of  bio-­‐oil  derived  phenolic   compounds  using  ruthenium  supported  on  activated  carbon  cloth.  Green  Chemistry   2012,  14  (9),  2540-­‐2549.   14.   Perrard,  A.;  Gallezot,  P.;  Joly,  J.-­‐P.;  Durand,  R.;  Baljou,  C.;  Coq,  B.;  Trens,  P.,  Highly   efficient  metal  catalysts  supported  on  activated  carbon  cloths:  A  catalytic   application  for  the  hydrogenation  of  d-­‐glucose  to  d-­‐sorbitol.  Applied  Catalysis  A:   General  2007,  331  (0),  100-­‐104.   15.   Cyr,  A.;  Chiltz,  F.;  Jeanson,  P.;  Martel,  A.;  Brossard,  L.;  Lessard,  J.;  Menard,  H.,   Electrocatalytic  hydrogenation  of  lignin  models  at  Raney  nickel  and  palladium-­‐ based  electrodes.  Canadian  Journal  of  Chemistry-­Revue  Canadienne  De  Chimie  2000,   78  (3),  307-­‐315.   16.   Mahdavi,  B.;  Lafrance,  A.;  Martel,  A.;  Lessard,  J.;  Me´Nard,  H.;  Brossard,  L.,   Electrocatalytic  hydrogenolysis  of  lignin  model  dimers  at  Raney  nickel  electrodes.   Journal  of  Applied  Electrochemistry  1997,  27  (5),  605-­‐611.   17.   Ilikti,  H.;  Rekik,  N.;  Thomalla,  M.,  Electrocatalytic  hydrogenation  of  phenol  in   aqueous  solutions  at  a  Raney  nickel  electrode  in  the  presence  of  cationic  surfactants.   Journal  of  Applied  Electrochemistry  2002,  32  (6),  603-­‐609.   18.   Dalavoy,  T.  S.;  Jackson,  J.  E.;  Swain,  G.  M.;  Miller,  D.  J.,  Mild  electrocatalytic   hydrogenation  of  alpha  functionalized  carboxylic  acids.  Abstracts  of  Papers  of  the   American  Chemical  Society  2006,  231.   19.   Dabo,  P.;  Cyr,  A.;  Lessard,  J.;  Brossard,  L.;  Ménard,  H.,  Electrocatalytic  hydrogenation   of  4-­‐phenoxyphenol  on  active  powders  highly  dispersed  in  a  reticulated  vitreous   carbon  electrode.  Canadian  Journal  of  Chemistry-­revue  Canadienne  De  Chimie  1999,   77  (7),  1225-­‐1229.   20.   Mahdavi,  B.;  Chambrion,  P.;  Binette,  J.;  Martel,  E.;  Lessard,  J.,  Electrocatalytic   Hydrogenation  of  Conjugated  Enones  on  Nickel  Boride,  Nickel,  and  Raney-­‐Nickel   Electrodes.  Can.  J.  Chem.-­Rev.  Can.  Chim.  1995,  73  (6),  846-­‐852.   21.   Robin,  D.;  Comtois,  M.;  Martel,  A.;  Lemieux,  R.;  Cheong,  A.  K.;  Belot,  G.;  Lessard,  J.,  The   electrocatalytic  hydrogenation  of  fused  poly  cyclic  aromatic  compounds  at  Raney   nickel  electrodes:  the  influence  of  catalyst  activation  and  electrolysis  conditions.   Canadian  journal  of  chemistry  1990,  68  (7),  1218-­‐1227.   22.   Dalavoy,  T.  S.;  Jackson,  J.  E.;  Swain,  G.  M.;  Miller,  D.  J.;  Li,  J.;  Lipkowski,  J.,  Mild   electrocatalytic  hydrogenation  of  lactic  acid  to  lactaldehyde  and  propylene  glycol.   Journal  of  Catalysis  2007,  246  (1),  15-­‐28.   62       23.   Moulijn,  J.  A.;  van  Diepen,  A.  E.;  Kapteijn,  F.,  Catalyst  deactivation:  is  it  predictable?:   What  to  do?  Applied  Catalysis  A:  General  2001,  212  (1–2),  3-­‐16.   24.   Forzatti,  P.;  Lietti,  L.,  Catalyst  deactivation.  Catalysis  Today  1999,  52  (2–3),  165-­‐181.   25.   Bartholomew,  C.  H.,  Mechanisms  of  catalyst  deactivation.  Applied  Catalysis  A:  General   2001,  212  (1–2),  17-­‐60.   26.   Rothenberg,  G.,  Heterogeneous  Catalysis.  In  Catalysis,  Wiley-­‐VCH  Verlag  GmbH  &  Co.   KGaA:  2008;  pp  127-­‐187.     63       Chapter  3  : Characterization  of  Extractive  Ammonia  Process  Lignin  Fractions     Abstract   Lignin   is   the   second   most   abundant   biomass   component   after   holocellulose   and   accounts   for   10-­‐30%   of   the   lignocellulosic   biomass   by   weight   (40%   by   energy).   In   the   nascent   alcohol-­‐based   biofuels   industry,   only   cellulose   and   part   of   the   hemicellulose   are   used  for  liquids  production,  while  the  remaining  lignin  is  burned  to  provide  heat,  using  it  as   a   low   value   fuel.   Upgrading   and   sale   of   higher   value   products   from   lignin   would   improve   economics  of  liquid  fuel  bioenergy  systems.  The  extractive  ammonia  process  (EAP)  is  being   considered  for  deployment  in  centralized  biorefineries  that  produce  fuel  alcohols  such  as   ethanol   and   butanol.   In   lieu   of   combustion,   we   propose   to   convert   ammonia-­‐extracted   lignin   to   hydrocarbon   fuels   and   chemicals   using   a   combination   of   pyrolysis   and   electrocatalytic   reduction.   These   flexible,   simple   technologies   can   be   safely   deployed   at   large   biorefineries   to   diversify   their   product   slates   and   improve   their   value   proposition.     The  utility  of  this  approach  can  also  be  realized  at  smaller,  decentralized  processing  depots   that   separate   lignin   from   structural   carbohydrates.   In   this   study,   lignin   characterization   and   its   pyrolysis   were   performed   in   an   effort   to   devise   a   depolymerization   protocol.   Finally,  the  depolymerized  product  was  subjected  to  electrocatalysis  to  assess  the  extent  of   value  addition.       Introduction     Due  to  the  energy  stored  in  its  components,  biomass  has  a  great  potential  as  a  feedstock   for   the   production   of   liquid   fuels   and   value   added   products.   Deconstruction   of   the   biomass   for   liquid   fuel   production   has   recently   gained   a   lot   of   attention   as   one   of   the   ways   to   64       displace   fossil   derived   fuels.   To   this   end,   advances   have   been   made   in   pretreatment   and   conversion   methods   aiming   to   efficiently   produce   fuels   from   biomass   and   biomass   components.   Pretreatments   methods   offer   the   opportunity   to   release   and   fractionate   the   components  of  biomass,  making  the  subsequent  conversion  processes  relatively  easier.1,2,3   Usually   pretreatments   are   used   to   reduce   the   crystallinity   of   cellulose   and   remove   lignin   and   hemicellulose   while   increasing   the   porosity   of   the   biomass   for   further   ease   of   fractionation.  3,  4   The   extractive   ammonia   pretreatment   (EAP)   improves   the   rates   and   extents   of   subsequent   saccharification   by   separating   lignin   from   cellulose   and   hemicellulose   in   the   conventional  biomass  to  ethanol  conversion  strategies.5  During  EAP,  ammonia  is  added  to   biomass   at   moderate   pressure   (100   to   400   psi)   and   temperature   (70   to   200   °C).5   The   pressure  is  then  rapidly  released;  this  rapid  depressurization  of  the  liquid  ammonia  causes   the   biomass   fibers   to   expand   and   explode.3,   6   This   process   results   in   cellulose   decrystallization,   hemicellulose   hydrolysis,   and   partial   lignin   depolymerization.5,7,8   The   cellulose   and   hemicellulose   can   then   be   subjected   to   enzymatic   hydrolysis   for   ethanol   production   while   lignin   streams   are   collected,   fractionated   and   extracted.     These   lignin   streams   are   partially   depolymerized   and   are   thus   lower   in   molecular   weight   than   the   native   lignin   complex   found   in   biomass.   Lignin   monomers   and   oligomers   are   more   amenable   to   chemical   transformation   to   higher   value   fuels   and   chemicals   and   are   thus   better  feedstocks  than  native  lignin.         EAP   enables   lignin   recovery   via   variation   of   ammonia   loading,   residence   time,   temperature  and  pressure.  Though  direct  combustion  of  lignin  is  an  option,  deriving  higher   value  fuels  and  chemicals  is  desired  as  lignin  accounts  for  10-­‐30  wt%  of  biomass  and  40%   65       of   its   energy.9   The   production   of   lignin,   at   either   centralized   or   decentralized   facilities,   provides  an  opportunity  for  thermal  and  electrocatalytic  approaches  to  produce  even  more   liquid   fuel.   Fast   pyrolysis   is   one   such   thermochemical   approach   in   which   biomass   is   liquefied  by  heating  in  the  absence  of  oxygen  to  form  pyrolysis  gas  and  biochar.  Most  of  the   pyrolysis  gas  can  be  condensed  to  liquid  “bio-­‐oil”  with  a  bulk  density  greater  than  that  of   the   feedstock.   Biomass   densification   near   the   harvest   source   reduces   the   cost   of   transportation  and  storage  prior  to  upgrading  in  a  central  refinery.   A   negative   aspect   of   fast   pyrolysis   is   that   bio-­‐oil’s   corrosiveness   and   reactive   instability   pose   significant   barriers   to   the   adoption   of   pyrolysis   systems.10   Catalytic   stabilization   is   needed   to   produce   a   stable   fuel   intermediate   that   is   compatible   with   common   infrastructure  materials  such  as  carbon  steel.  Classical  catalytic  upgrading  is  usually  used   to   hydrogenate   and   deoxygenate   bio-­‐oil,   a   process   that   occurs   at   high   temperature   and   pressure.   These   severe   conditions   pose   significant   barriers,   such   as   catalyst   deactivation,   for  bio-­‐oil  upgrading  in  decentralized  facilities.11  To  avoid  these  conditions,  electrocatalytic   hydrogenation  (ECH)  is  proposed  to  stabilize  bio-­‐oil  under  mild  conditions  (25-­‐80  °C  and  1   atm).  As  lignin  is  converted  to  phenolic  monomers,  dimers,  and  oligomers  upon  pyrolysis,   the   transformation   of   model   compounds   exhibiting   similar   bonding   arrangements   indicates  the  potential  for  the  ECH  of  biomass  lignin.     In   the   previous   chapter   we   were   able   to   demonstrate   successful   ECH   of   these   phenolic   monomers  and  dimers  using  an  activated  carbon  cloth  supported  ruthenium  cathode.  As  a   continuation   of   that   study   this   venture   attempts   to   establish   a   pyrolysis   protocol   for   depolymerizing  EAP  lignin  with  heat  treatment  and  electrocatalytic  reduction  of  EAP  lignin.     Two   fractions   of   lignin   were   obtained   from   the   EAP   pretreatment   step.   The   composition   of   66       these   two   fractions   was   determined   using   elemental   analysis   and   characterized   using   pyrolysis-­‐GC/MS,  thermogravimetric  analysis  and  bomb  calorimetry.    The  results  of  these   analyses   suggest   that   EAP   lignin   bio-­‐oil   can   be   successfully   stabilized   using   electrocatalytic   treatment   at   small-­‐scale   depots   or   larger   biorefineries.   Furthermore,   as   a   continuation   of   model   compound   ECH,   attempts   were   made   to   electrocatalytically   reduce   EAP   lignin   to   smaller   fragments.   As   shown   in   Figure   3.1,   this   approach   uses   extracted   lignin   that   is   a   byproduct   of   other   conversion   schemes,   thermochemical   conversion   to   bio-­‐oil   and   upgrading   to   a   more   stable   form   at   a   decentralized   processing   depot   before   it   is   transported  to  a  hydroprocessing  facility.  Hydroprocessing  may  be  unnecessary  depending   upon  the  effectiveness  of  ECH.         Figure  3.1:  Overall  project  scheme  from  biomass  harvesting  to  pretreatment  using   extractive  ammonia  process  folowed  by  pyrolysis  and  electrocatalysis  to  upgrade  to   valuable  procuscts   67         Experimental  Methods   EAP  Lignin  Extraction  Method     EAP  lignin  was  obtained  from  Dr.  Bruce  Dale’s  lab.  The  extractive  ammonia  method   used   for   extraction   of   lignin   as   provided   by   the   Dale   group,   is   represented   in   the   schematic   in   Figure   3.2,   which   shows   the   extraction   process   and   the   resulting   molecular   weights   of   EAP  product  streams.12  First,  corn  stover  was  oven  dried  at  60  °C  for  two  weeks,  milled  and   stored  resulting  in  a  6  wt%  wet  basis  feed.    This  feed  was  then  pretreated  in  1-­‐liter  high-­‐ pressure  stainless  steel  tubular  reactors.12  Each  reactor  contained  a  mixture  of  40  grams  of   the  feed  with  240  grams  of  ammonia  for  30  minutes  at  120  °C  and  83  bar.12  As  the  system   reached   the   set   point   temperature,   the   liquid   ammonia   and   soluble   extractives   were   released   at   the   bottom   of   the   tank   while   the   ammonia   gas   was   released   from   the   top   of   the   tank.    The  biomass  left  in  the  tubular  reactors  was  then  removed  and  dried  overnight  in  the   hood.  The  solid  part  was  subjected  to  enzymatic  hydrolysis  and  followed  by  extraction  via   solvation  in  water.  For  the  liquid  fraction,  ethanol  was  used  to  collect  ethanol  soluble  and   ethanol  insoluble  fractions.  All  of  fractions  were  then  resolubilised  in  water  to  extract  the   water-­‐soluble  and  water-­‐insoluble  fractions.     This   fractionation   process   thus   yielded   four   separate   fractions:   ethanol   insoluble/water-­‐insoluble   (F1),   ethanol   insoluble/water-­‐soluble   (F2),   ethanol   soluble/water-­‐insoluble   (F3)   (Figure   3.3),   and   ethanol   soluble/water-­‐soluble   (F4).     Characterization   of   both   the   F1   and   F3   EAP   lignin   fractions   involved   py-­‐GC/MS,   TGA   and   68       bomb  calorimetry.    Ultimate  analysis  was  also  conducted  to  directly  quantify  the  amount  of   elemental  carbon,  hydrogen,  nitrogen  and  sulfur  and  indirectly,  oxygen  by  difference.     Conrn  Stover     (100  g  total  lignin)   Untreated  Biomass   Liquid   (44  g  lignin)   EAP  (6:1  ammonia:biomass)   (120  °C,  83  bar)   Extraction/Hydrolysis     Ethanol  Insoluble     Solid   (56  g  lignin)   Ethanol  Soluble   Enzymatic  Hydrolysis   (EH)   %  Total  Lignin     F1           Water   Insoluble   F2         Water   Soluble     F3         Water   Insoluble      F4       Water   Soluble     F5        Water   Insoluble     F6         Water   Soluble     %  Lignin  in  Sample     69.1%     (1  g)   14.4%   (3  g)   92.4%    (32  g)   13.5%   (8  g)   42.9%   (51  g)   EH   (5g)   Molecular     Weight  (GPC)     3314   (g/mol)   2880   (g/mol)   1470   (g/mol)   416   (g/mol)   4140   (g/mol)   ~     Figure  3.2:  Method  used  to  produce  EAP  lignins.    Lignins  are  present  in  oligomeric  and   polymeric  forms  as  per  the  molecular  weights  of  each  fraction.   69         Figure  3.3:  Ethanol  soluble  F3  fraction  as  obtained  from  liquid  ammonia  after  precipication   in  water  followed  by  solubilization  in  ethanol   Higher  Heating  Value  (Bomb  Calorimetry)     Bomb  calorimetry  was  used  to  determine  the  higher  heating  value  (HHV)  of  the  two   fractions  using  a  Parr  Plain  Jacket  Calorimeter  (Parr  Intruments  Co.,Molin,  IL).  Samples  of   about  110  mg  of  both  fractions  were  mixed  with  10-­‐14  mg  of  dodecane  and  combusted  to   determine  the  higher  heating  value.     Elemental  Analysis  (CHNS)   C,   H,   N,   S   data   was   obtained   using   combustion   with   automatic   analyzer   from   the   Atlantic   Microlabs   (Norcross,   GA)   .   Oxygen   was   calculated   by   difference.   The   samples   were   not  dried  prior  to  analysis.     70       Thermogravimatric  Analysis  (TGA)     TGA  analysis  was  performed  on  both  the  lignin  components.  Several  grams  of  each   sample   were   introduced   to   the   TGA.   Initially   the   temperature   was   held   at   30   °C   for   10   minutes,   then   the   temperature   was   increased   to   104   °C   at   a   rate   of   10   K/min,   this   temperature   was   held   for   10   minutes,   and   finally   increased   to   800   °C   at   10   K/min.     The   mass   loss   curve   and   its   derivative   were   plotted   to   identify   those   temperatures   that   correspond  to  key  thermal  events,  such  as  water  loss,  hemicellulose  degradation  or  lignin   degradation.       Pyrolysis  GC/MS   Py-­‐GC/MS  analysis  of  both  F1  and  F3  fractions  was  performed  using  a  micro  scale   pyrolysis   unit   (CDS   pyroprobe   5250,   CDC   Analytical   inc.   Oxford,   PA)   coupled   with   a   Shimadzu   QP_5050A   GC/MS   (Shimadzu   Corp.   Columbia,   MD).   Several   micrograms   of   the   lignin   fraction   were   packed   in   a   quartz   tube   between   quartz   wool   plugs   and   subjected   to   py-­‐GC/MS.  The  pyroprobe  was  set  to  600  °C  and  held  there  for  10  seconds  with  a  transfer   line   temp   of   300   °C.   The   GC   used   a   Restek   RTX-­‐1701   column   of   60m   length,   0.25   mm   diameter   and   0.25   µm   thickness.   (Restek,   Bellefonte,   PA).   The   GC   program   was   set   at   40   °C   with   a   1   minute   hold   time,   followed   by   an   8   °C/min   ramp   to   270   °C   with   a   10   minute   hold.   The  injection  and  interface  temperature  were  set  at  280  °C.    A  split  injection  with  a  1:100   split   ratio   was   used.     Helium   flow   through   the   column   was   maintained   at   1   ml/min.   The   mass  spectra  were  collected  in  electron  ionization  mode  with  the  mass-­‐to-­‐charge  ratio  set   to   range   from   33   to   300.   Compounds   were   identified   by   comparison   of   the   mass   spectra   of   71       the  major  peaks  with  the  National  Institute  of  Standards  and  Technology  (NIST)  library  to   obtain  the  best  possible  matches.     Catalyst  Preparation   Zorflex   ACC   (activated   carbon   cloth)   FM   100   was   used   to   support   the   ruthenium   catalyst.   As   described   by   Li   et.   al.,13   the   activated   carbon   cloth   was   washed   overnight   in   deionized   water   and   oven   dried   at   105   °C.   The   ACC   support   was   prepared   with   catalyst   using   the   incipient   wetness   method   as   described   by   Li   et.   al.13   Ru(NH3)6Cl3   solution   was   used  to  soak  each  1.5  x  3.0  cm  piece  of  ACC.  Each  cloth  was  immersed  in  the  solution  and   soaked  for  a  few  minutes.  The  Ru/ACC  catalyst  was  then  dried  at  room  temperature  first   overnight   and   stored   in   a   vacuum   dessicator   for   another   24   hours   then   reduced   with   molecular  hydrogen  at  500  psi  and  310  °C  for  12  hours  in  a  Parr  reactor  (model  452HC).       Electrocatalytic  Hydrogenation  of  EAP  Lignin     Electrocatalysis   of   the   F3   fraction   was   performed   in   a   two-­‐chambered   electrochemical   glass   H-­‐cell   separated   by   a   Dupont   Nafion-­‐117   membrane.   Ruthenium   supported  on  activated  carbon  cloth  (Ru/ACC)  was  used  as  the  cathode  and  platinum  wire   was   used   as   the   anode   as   shown   in   Figure   3.4.   A   constant   temperature   of   80   °C   was   maintained  by  placing  the  whole  cell  in  a  heated  silicon  oil  bath.    An  Instek  GPR-­‐11H30D   power   supply   was   used   to   provide   constant   current.   1M   NaOH   was   used   as   the   electrolyte.   After   cell   setup   was   completed,   a   10   min   pre-­‐electrolysis   step   was   performed   on   the   catalyst  at  80mA  before  adding  the  substrate.  After  pre-­‐electrolysis,  0.045  gm  of  substrate   72       was   added   and   the   experiment   was   run   at   80°C   and   80mA   for   27   hours.   Samples   (1   ml)   were  taken  at  12,  24,  26  and  27  hours.     Figure  3.4:  Two  chambered  H-­‐cell  setup   Size  Exclusion  Chromatography    Samples   (0.25   ml)   were   taken   and   diluted   using   the   SEC's   mobile   phase   (0.1   M   NaNO3   0.01   M   NaOH)   and   analyzed   using   an   Agilent   1100   HPLC   fitted   with   a   Waters   UltrahydrogelTM   250   7.8   x   300mm   column.   Both   diode   array   (DAD)   and   refractive   index   detectors  were  utilized.  A  flow  rate  of  1  ml/min  was  used  with  20  µl  injection  volume  and  a   column  temperature  of  35  °C.  As  lignin  standards  were  not  available  the  molecular  weight   distribution   was   not   determined.   The   intensity   of   the   detector   signal   vs.   the   elution   time   was   plotted   with   larger   molecules   assumed   to   elute   first   followed   by   smaller   molecules   eluting  out  later.  The  remainder  of  each  sample  was  then  saturated  with  NaCl  acidified  to   pH   1   and   extracted   using   chloroform   for   analysis   using   GC/MS   to   identify   any   depolymerization  products.  The  catalyst  was  placed  in  5  ml  of  chloroform,  sonicated  for  10   minutes,  and  filtered  prior  to  analysis  by  GC/MS.     73       Results  and  Discussion     HHV,  Elemental  Analysis  and  TGA   The  reported  values  for  the  higher  heating  value  of  biomass  is  12-­‐19  MJ/Kg  and  bio-­‐ oil   is   16-­‐19   MJ/Kg14.   Calorimetery   yielded   a   higher   heating   value   of   30.12   MJ/Kg   for   the   low  molecular  weight  lignin  (F3)  and  21.20  MJ/Kg  for  the  high  molecular  weight  lignin  (F1)   as  shown  in  Table  3.3.    As  expected,  the  HHV  values  for  the  F1  and  F3  fractions  are  higher   than  those  of  the  parent  corn  stover.       The   F3   fraction   elemental   analysis   revealed   the   levels   of   oxygen   present   in   this   lignin   fraction.     Bio-­‐oil   tends   to   retain   most   of   the   oxygen   that   is   present   in   the   parent   biomass,  which  could  be  up  to  35-­‐60  wt%.15  The  presence  of  such  a  large  amount  of  oxygen   in   bio-­‐oil   is   the   main   reason   for   the   vast   differences   in   properties   between   bio-­‐oil   and   conventional  fuel  oil.16  Such  undesirable  properties  as  low  energy  content10;  instability  in   storage  due  to  high  reactivity17;  immiscibility  with  non-­‐polar  petroleum  fuels10  etc.  are  all   properties   that   can   be   attributed   to   high   oxygen   content.   Furthermore,   high   reactivity   results  in  the  formation  of  additional  water  as  a  side  product,  which  affects  the  combustion   properties  of  the  fuel.    As  can  be  seen  from  the  elemental  analysis  results  in  Table  3.1,  the   F3   fraction   has   less   oxygen   than   reported   oxygen   values   for   biomass-­‐derived   bio-­‐oil.   Pyrolysis   coupled   with   electrocatalysis   can   further   help   reduce   the   amount   of   oxygen   resulting  in  a  higher  energy  content  fuel.         74       Table  3.1:  HHV  and  elemental  analysis  of  F3  and  F1  fraction     HHV   (MJ/Kg)*   C   H   N   S   F3   30.12   65.68   8.13   2.62   0.0   23.57   F1   21.20   44.36   5.43   3.78   0.19   46.24     O     (By  difference)           The  DTG  curves  for  the  F3  and  F1  fractions  were  obtained  by  differentiating  the  TGA   curve   for   both   fractions.   The   results   reveal   that   there   is   a   major   thermal   event   at   354   °C   (refer   to   Figure   3.5   and   3.6).   The   DTG   curve   of   the   F3   fraction   (Figure   3.5)   stretches   over   a   large  range,  which  is  typical  of  lignin  thermal  degradation.  The  F3  DTG  curve  shows  typical   characteristics   of   lignin   DTG   curves   found   in   the   literature.   If   it   were   to   be   compared   to   cellulose  or  hemicellulose  DTG  curves,  it  would  be  noted  that  this  lignin  DTG  curve  is  a  lot   less   sharp.   This   can   be   attributed   to   the   inhomogeneous   nature   of   the   lignin   polymer.     Unlike  hemicellulose  and  cellulose,  which  are   relatively   homogeneous   polymers   composed   of  simple  sugars  that  decompose  at  a  high  rate  within  a  narrow  temperature  range,18  lignin   is   composed   of   monolignols   that   form   complex   and   diverse   cross   linkages   that   make   it   more  resistant  to  thermal  degradation.9,   19    This  gives  lignin  a  wide  range  of  temperatures   over   which   it   undergoes   thermal   decomposition.   The   F1   fraction   in   comparison   shows   a   sharper   DTG   peak   as   compared   to   the   F3   curve.   As   compared   to   DTG   curves   in   the   literature20   this   curve   suggests   that   the   F1   lignin   might   contain   some   cellulose   residues.     The   sharpness   of   the   DTG   peak   for   this   particular   fraction   could   be   indicative   of   residual   cellulose  and  hemicellulose  from  the  extraction  process.       75       TGA  =  mass  loss  with  increasing  temperature     DTG  =  rate  of  mass  loss  per  increase  in  temperature     0.025   7   0.020   6   0.015    TGA  (mg)   5   4   0.010   3   0.005   2   0.000   1   0   104   DTG  (mass  in  mg/°C)   8   -­‐0.005   154   204   254   304   354   404   454   504   554   Temperature(°C)     Figure  3.5:  TGA  analysis  of  F3  fraction             0.053   TGA  =  mass  loss  with  increasing  temperature     DTG  =  rate  of  mass  loss  per  increase  in  temperature     0.045   10   0.038   TGA  (mg)   8   0.030   6   0.023   4   0.015   2   DTG  (mg/°C)   12   0.008   0   0.000   104   154   204   254   304   354   404   454   504   Temperature(°C)   Figure  3.6:  TGA  analysis  of  F1  fraction   554     Although  TGA  and  DTG  curve  provide  a  representation  of  the  thermal  degradation   temperature   of   lignin,   the   heating   rates   employed   in   thermogravimetric   analysis   are   far   from   the   heating   rates   the   lignin   will   experience   in   a   typical   pyrolysis   reactor   which   can   approach  rates  of  300-­‐1000  °C/s.20  In  addition  to  not  being  able  to  provide  realistic  heating   values  for  fast  pyrolysis,  TGA  studies  fall  short  due  to  their  inability  to  provide  information   76       about   what   compounds   are   being   formed   during   the   thermal   degradation   process.21   However,  the  TGA  data  obatiend  in  this  study  provides  relevant  guidlines  for  setting  up  a   protocol  for  pyrolysis  of  EAP  lignin  using  large-­‐scale  pyrolysis  screw  conveyor  reactor.     Pyrolysis  GC/MS   The   major   peaks   obtained   in   the   case   of   the   F3   fraction   were   consistent   with   the   compounds   that   are   expected   from   lignin   pyrolysis,   as   shown   in   Figure   3.7.   The   lack   of   any   peaks  typical  of  carbohydrate  pyrolysis  such  as  C2-­‐C4  aldehydes  and  ketones,  levoglucosan   or  furans  and  the  presence  of  large  amounts  of  phenols  such  as  phenol,  guaiacol,  creosol,  4-­‐ ethylguaiacol,   syringol,   4-­‐vinylphenol,   etc,   support   the   purity   of   this   lignin   fraction.   Since   plant-­‐derived   phenols   are   considered   to   have   relevance   as   they   have   a   potential   to   replace   petroleum-­‐based  phenols  which  are  often  high  in  cost,  22  conversion  of  these  lignin  fraction   to   phenolic   monomers   via   fast   pyrolysis   will   be   beneficial.   However,   further   studies   should   be   conducted   to   determine   the   yields   of   products   from   EAP   lignin   pyrolysis   to   assess   the   potential  of  this  method  to  produce  liquid  fuels.     ,-./01-"234-35647"" '!!" &!" ( ! " %!" !)* $!" #!" + # !!* % & $ ' !#* !"* !%* !+* !$* !" (" $" )" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '*" '&" '+" #!" #'" ##" #(" #$" #)" #%" #*" #&" #+" (!" ,-4-3083"96:-"" Figure  3.7:  Py/GC  chromatogram  of  F3  fraction  with  peak  labels  outlined  in  Table  3.2     77       Table  3.2:  Retention  times  of  products  from  Py/GC-­‐MS  of  F3  fraction   #   Compound  Name   Retention  time  (min)   1   Unidentified   3.633   2   Carbon  Dioxide   3.89   3   Phenol   16.294   4   Guaiacol   16.802   5   3-­‐Methylphenol   17.994   6   Creosol   18.833   7   3-­‐Ethylphenol   19.673   8   4-­‐Ethylguaiacol   20.418   9   4-­‐Vinylphenol   21.266   10   4-­‐Vinylguaiacol   21.497   11   Syringol   22.394   12   Isoeugenol     23.81   13   1,2,4-­‐Trimethoxybenzene   23.945   14   2-­‐Butyl-­‐1,1,3-­‐trimethylcyclohexane   25.144   15   3-­‐Tert-­‐butyl-­‐4-­‐hydroxyanisole   26.099   16   Phenol,  2,6-­‐Dimethoxy-­‐4-­‐(2-­‐propenyl)-­‐   28.071   Electrocatalytic  Hydrogenation  of  EAP  Lignin     In   an   effort   to   stabilize   lignin-­‐derived   bio-­‐oil,   electrocatalytic   hydrogenation   was   employed.   Several   lignin   model   compounds   were   chosen   for   electrocatalytic   reduction.     Previous   work  as  detailed  in  Chapter  2  showed  that  both  monomeric  and  dimeric  lignins   are   reduced   to   such   products   as   alkoxycyclohexanols,   phenol   and   cyclohexanol.   This   demonstrates   that   Ru/ACC   catalyst   can   be   effective   in   reducing   lignin-­‐derived   model   compounds.    Instead  of  model  compounds,  EAP  lignin  is  used  to  extend  the  results  of  model   compounds   studies   to   an   authentic   biomass   stream.   As   EAP   lignin   has   high   molecular   weight,  some  form  of  depolymerization  is  necessary.    Though  fast  pyrolysis  may  be  used  to   78       reduce  molecular  weight,  the  direct  ECH  of  EAP  lignin  was  studied  to  gauge  the  extent  of   depolymerization   achieved   through   electroreduction.     To   achieve   these   goals,   electrocatalysis  of  EAP  lignin  was  also  performed  Ru/ACC  catalyst  at  80°C  and  80mA  for  27   hours.     As   the   F3   EAP   fraction   is   insoluble   in   water   but   soluble   in   basic   conditions,   1M   NaOH  was  used  as  an  electrolyte  in  the  ECH  study.  During  the  experiment  it  was  observed   that  there  was  an  increase  in  voltage  around  the  12-­‐hours  and  a  further  rapid  increase  in   voltage   after   the   26   hours.     This   could   suggest   that   due   to   the   basic   conditions   of   the   electrolyte   solution   and   the   presence   of   oxgyen,   polymerization   of   the   lignin   oligomers   might  have  occurred.  The  sudden  jump  in  voltage  indicates  polymer  formation  around  26   hours,   which   results   in   decreased   conductivity   because   of   blockage   on   the   catalyst   surface.   Under  galvanostatic  control,  the  voltage  increases  to  maintain  the  desired  current.  As  the   voltage   exceeded   100   volts,   the   experiment   was   stopped   after   27   hours.   Samples   were   taken   periodically   for   further   GPC   analysis   but   the   results   were   inconclusive.   Further   analysis  of  the  samples  using  GC/MS  did  not  show  any  chromatographic  peaks,  which  could   indicate   a   lack   of   analytes   between   mass   to   charge   ratios   from   30   to   300.     As   such,   the   products  have  molecular  too  large  to  be  detected  by  the  GC/MS  method  employed.    In  lieu   of   basic   conditions,   acidic   and   neutral   conditions   could   be   explored   in   the   cathode   compartment   of   ECH   to   enhance   depolymerization.     Further,   the   use   of   pyrolysis   or   perhaps   oxidative   approaches   may   be   needed   to   create   low   molecular   weight   reactants   for   reduction  by  ECH.   Conclusion       As   one   of   the   components   of   biomass   and   a   component   responsible   for   a   large   fraction   of   the   energy   stored   in   biomass,   lignin   has   great   potential   for   hydrocarbon   fuel   79       production.  However  in  today’s  biofuel  production  efforts  lignin  is  often  a  by-­‐product  that   is   not   being   utilized   efficiently   due   to   the   lack   of   efficient   depolymerization   schemes   for   lignin   conversion   to   fuels   or   value-­‐added   commodities.   Processes   such   as   fast   pyrolysis   could   prove   very   beneficial   in   solving   this   problem.   In   this   study,   the   main   reason   for   characterizing  the  EAP  lignin  was  to  determine  its  potential  as  a  possible  feed  material  for   fast  pyrolysis  and  subsequent  ECH.    These  characterization  results  give  a  certain  amount  of   insight   towards   setting   up   a   lignin   depolymerization   scheme   using   fast   pyrolysis   coupled   with  electrocatalysis.    The  results  are  summarized  below.     o Higher   heating   value   and   elemental   analysis:   these   results   indicated   that   the   F3   fraction  had  a  larger  heating  value  and  less  oxygen  then  F1,  potentially  making  it  a   better   feed   material.   As   pyrolysis   oils   tend   to   retain   most   of   the   oxygen   from   the   feed   material,   having   a   lignin   fraction   with   less   oxygen   to   begin   with   makes   it   a   more  desirable  feed.     o Thermogravimetric   analysis:   TGA/DTG   curves   for   both   fractions   indicate   that   the   decomposition   of   lignin   occurred   over   a   wide   range   of   temperatures   with   a   major   thermal   event   occurring   at   around   345   °C.   This   gives   us   an   idea   of   what   temperatures   to   explore   when   implementing   pyrolyis   of   these   fractions   at   a   large   scale.     But   it   is   important   to   note   that   heating   rates   applied   during   TGA   analysis   are   much  lower  than  those  of  an  actual  fast  pyrolysis  reactor.  TGA  results,  though  useful   for  setting  pilot-­‐scale  reactor  operating  temperatures,  should  not  be  relied  upon  as  a   scale-­‐up   criterion,   i.e.   the   results   of   slow   pyrolysis   will   differ   from   fast   pyrolysis.       Additionally   it   was   noted   that   the   F3   fraction   showed   a   DTG   curve   typical   of   pure   lignin   samples   while   F1   showed   a   DTG   curve   typical   of   samples   with   residual   80       cellulose   and   hemicelluose.   Thus,   F3   will   probably   be   a   better   feed   material   if   the   target  is  to  pyrolyze  lignin  rich  feedstock.     o Pyrolysis   GC/MS:   these   results   gave   a   very   good   indication   of   what   the   pyrolysis   products   of   the   F3   fraction   might   look   like   at   temperatures   close   to   600   °C.   However,   further   py-­‐GC/MS   experiments   should   be   conducted   to   quantify   the   overall  yields  of  molecular  products  from  pyrolysis.     o ECH   of   F3   fraction:     Currently,   the   ECH   of   the   F3   fraction   did   not   provide   an   interpretable   outcome   because   the   lignin   fraction   likely   polymerized   during   ECH.   Exploration   of   different   electrolytes   and   electrocatalytic   conditions   might   depolymerize  the  EAP  lignin  into  components  than  can  be  further  reduced  by  ECH.                           81                     REFERENCES                           82       REFERENCES       1.   Galbe,  M.;  Zacchi,  G.,  Pretreatment  of  Lignocellulosic  Materials  for  Efficient   Bioethanol  Production.  In  Biofuels,  Olsson,  L.,  Ed.  Springer  Berlin  Heidelberg:  2007;   Vol.  108,  pp  41-­‐65.   2.   Yat,  S.  C.;  Berger,  A.;  Shonnard,  D.  R.,  Kinetic  characterization  for  dilute  sulfuric  acid   hydrolysis  of  timber  varieties  and  switchgrass.  Bioresource  Technology  2008,  99  (9),   3855-­‐3863.   3.   Sun,  Y.;  Cheng,  J.,  Hydrolysis  of  lignocellulosic  materials  for  ethanol  production:  a   review.  Bioresource  Technology  2002,  83  (1),  1-­‐11.   4.   Keshwani,  D.  R.;  Cheng,  J.  J.,  Switchgrass  for  bioethanol  and  other  value-­‐added   applications:  A  review.  Bioresource  Technology  2009,  100  (4),  1515-­‐1523.   5.   Bals,  B.;  Rogers,  C.;  Jin,  M.;  Balan,  V.;  Dale,  B.,  Evaluation  of  ammonia  fibre  expansion   (AFEX)  pretreatment  for  enzymatic  hydrolysis  of  switchgrass  harvested  in  different   seasons  and  locations.  Biotechnology  for  Biofuels  C7  -­  1  2010,  3  (1),  1-­‐11.   6.   Dale,  B.;  Weaver,  J.;  Byers,  F.  M.,  Extrusion  processing  for  ammonia  fiber  explosion   (AFEX).  Applied  Biochemistry  and  Biotechnology  1999,  77  (1-­‐3),  35-­‐45.   7.   Dale,  B.  E.,  Biobased  Industrial  Products:  Bioprocess  Engineering  When  Cost  Really   Counts.  Biotechnology  Progress  1999,  15  (5),  775-­‐776.   8.   Moniruzzaman,  M.;  Dien,  B.;  Ferrer,  B.;  Hespell,  R.;  Dale,  B.;  Ingram,  L.;  Bothast,  R.,   Ethanol  production  from  AFEX  pretreated  corn  fiber  by  recombinant  bacteria.   Biotechnology  Letters  1996,  18  (8),  985-­‐990.   9.   Yang,  H.;  Yan,  R.;  Chen,  H.;  Lee,  D.  H.;  Zheng,  C.,  Characteristics  of  hemicellulose,   cellulose  and  lignin  pyrolysis.  Fuel  2007,  86  (12-­‐13),  1781-­‐1788.   10.   Lu,  Q.;  Li,  W.-­‐Z.;  Zhu,  X.-­‐F.,  Overview  of  fuel  properties  of  biomass  fast  pyrolysis  oils.   Energy  Conversion  and  Management  2009,  50  (5),  1376-­‐1383.   11.   Bu,  Q.;  Lei,  H.;  Zacher,  A.  H.;  Wang,  L.;  Ren,  S.;  Liang,  J.;  Wei,  Y.;  Liu,  Y.;  Tang,  J.;  Zhang,   Q.;  Ruan,  R.,  A  review  of  catalytic  hydrodeoxygenation  of  lignin-­‐derived  phenols   from  biomass  pyrolysis.  Bioresource  Technology  2012,  124  (0),  470-­‐477.   12.   da  Costa  Sousa,  L.  Extractive  ammonia  (EA):  A  novel  ammonia-­‐based  pretreatment   technology  for  lignocellulosic  biomass.  3615300,  Michigan  State  University,  Ann   Arbor,  2014.   83       13.   Li,  Z.;  Garedew,  M.;  Lam,  C.  H.;  Jackson,  J.  E.;  Miller,  D.  J.;  Saffron,  C.  M.,  Mild   electrocatalytic  hydrogenation  and  hydrodeoxygenation  of  bio-­‐oil  derived  phenolic   compounds  using  ruthenium  supported  on  activated  carbon  cloth.  Green  Chemistry   2012,  14  (9),  2540-­‐2549.   14.   Zhang,  L.;  Xu,  C.;  Champagne,  P.,  Overview  of  recent  advances  in  thermo-­‐chemical   conversion  of  biomass.  Energy  Conversion  and  Management  2010,  51  (5),  969-­‐982.   15.   Czernik,  S.;  Bridgwater,  A.  V.,  Overview  of  Applications  of  Biomass  Fast  Pyrolysis  Oil.   Energy  &  Fuels  2004,  18  (2),  590-­‐598.   16.   Oasmaa,  A.;  Czernik,  S.,  Fuel  Oil  Quality  of  Biomass  Pyrolysis  OilsState  of  the  Art  for   the  End  Users.  Energy  &  Fuels  1999,  13  (4),  914-­‐921.   17.   Kim,  T.-­‐S.;  Kim,  J.-­‐Y.;  Kim,  K.-­‐H.;  Lee,  S.;  Choi,  D.;  Choi,  I.-­‐G.;  Choi,  J.  W.,  The  effect  of   storage  duration  on  bio-­‐oil  properties.  Journal  of  Analytical  and  Applied  Pyrolysis   2012,  95,  118-­‐125.   18.   Gani,  A.;  Naruse,  I.,  Effect  of  cellulose  and  lignin  content  on  pyrolysis  and   combustion  characteristics  for  several  types  of  biomass.  Renewable  Energy  2007,  32   (4),  649-­‐661.   19.   Yang,  H.;  Yan,  R.;  Chen,  H.;  Zheng,  C.;  Lee,  D.  H.;  Liang,  D.  T.,  In-­‐Depth  Investigation  of   Biomass  Pyrolysis  Based  on  Three  Major  Components:    Hemicellulose,  Cellulose  and   Lignin.  Energy  &  Fuels  2005,  20  (1),  388-­‐393.   20.   Nowakowski,  D.  J.;  Bridgwater,  A.  V.;  Elliott,  D.  C.;  Meier,  D.;  de  Wild,  P.,  Lignin  fast   pyrolysis:  Results  from  an  international  collaboration.  Journal  of  Analytical  and   Applied  Pyrolysis  2010,  88  (1),  53-­‐72.   21.   Patwardhan,  P.  R.;  Brown,  R.  C.;  Shanks,  B.  H.,  Understanding  the  Fast  Pyrolysis  of   Lignin.  Chemsuschem  2011,  4  (11),  1629-­‐1636.   22.   Lei,  H.;  Ren,  S.;  Julson,  J.,  The  Effects  of  Reaction  Temperature  and  Time  and  Particle   Size  of  Corn  Stover  on  Microwave  Pyrolysis.  Energy  &  Fuels  2009,  23  (6),  3254-­‐ 3261.       84       Chapter  4  : Conclusions  and  Future  Work     Conclusions     Two   extracted   ammonia   process   (EAP)   lignin   fractions   (F1   and   F3)   were   characterized  to  assess  the  potential  of  these  fractions  to  serve  as  pyrolysis  feed  material.   Elemental   analysis   indicated   that   the   F3   fraction   had   lower   oxygen   and   higher   carbon   contents   than   the   F1   fraction,   making   F3   a   more   desirable   feed   material   for   liquid   fuel   production   via   fast   pyrolysis.   Thermogravimetric   analysis     (TGA)   of   this   F3   fraction   indicated  a  major  thermal  event  around  354  °C  with  the  DTG  profile  extending  over  a  large   range  of  temperatures  as  is  typical  for  the  thermal  degradation  of  lignin  rich  feed.  Pyrolysis   GC/MS   analysis   indicated   the   formation   of   phenolic   monomers   typical   of   lignin   derived   compounds   in   bio-­‐oil.   ECH   of   the   F3   fraction   was   performed   under   basic   conditions   to   assess  the  potential  of  ECH  for  lignin  depolymerization.  In  this  case  the  polymerization  of   the  lignin  might  have  occurred  so  further  studies  need  to  be  conducted  to  explore  various   conditions  that  might  support  the  depolymerization  of  this  fraction  instead  of  polymerizing   it.     Studies   on   2-­‐methoxyphenol,   3-­‐methoxyphenol   and   4-­‐methoxyphenol   were   performed  to  study  the  effect  of  different  positions  of  the  methoxy  group  on  the  aromatic   ring.   Results   indicated   no   major   effect   of   the   position   of   the   groups.   Cyclohexanol   and   methoxycyclohexanol   were   observed   as   products   for   all   cases   with   almost   equal   selectivities.  Highest  conversion  was  observed  for  2-­‐methoxypehnol.    Current  efficiency  for   all   cases   was   modest   with   2-­‐methoxyphenol   showing   a   slightly   better   value   of   20%.   In   studying   the   lignin   dimer   4-­‐phenoxyphenol,   conversion   of   the   substrate   to   phenol   and   cyclohexanol  was  observed  confirming  the  ability  of  the  Ru/ACC  to  cleave  4-­‐O-­‐5  linkages.   85       ECH   was   performed   using   different   electrolytes,   substrate   concentrations   and   current   densities  to  study  the  effect  of  these  conditions  on  product  yield,  selectivity,  conversion  and   current   efficiency.   Lower   current   density   strongly   favored   phenol   selectivity   while   high   current  density  favored  cyclohexanol  selectivity.  1  M  NaOH  gave  the  highest  product  yield.     A  β-­‐O-­‐4  linked  dimer  was  also  subjected  to  ECH  resulting  in  the  production  of  guaiacol  and   vanillin.  Further  studies  need  to  be  conducted  to  probe  the  mechanism  of  the  cleavage  of   this  linkage  type.     Reusing  the  catalyst  five  times  for  the  ECH  of  4-­‐phenoxyphenol  was  performed  for   catalyst  deactivation  studies.  The  results  indicated  the  gradual  deactivation  of  the  catalyst   after  each  experiment.  Due  to  residual  cyclohexanol  adsorbed  to  the  catalyst,  cyclohexanol   yield  for  the  second  experiment  was  higher  than  that  of  the  other  experiment  also  resulting   in   higher   apparent   current   efficiency   for   that   run.     Efforts   should   be   made   to   wash   the   catalyst   effectively   to   extract   cyclohexanol   before   reusing   it.   The   effects   of   different   solvents  should  be  studied  to  achieve  this  goal.     Future  Work     As  a  way  of  exploring  the  potential  of  this  pyrolysis/electrocatalysis  system  for  the   depolymerization  and  valorization  of  extractive  lignin,  here  are  a  few  future  plans:   1. Further   characterization   of   the   EAP   lignin   should   be   performed   to   define   the   detailed  structure  of  the  lignin.     2. Overall  yield  determination  of  lignin  pyrolysis  using  py-­‐GC/MS.   3. Small-­‐scale   pyrolysis   of   the   EAP   lignin   should   be   performed   to   produce   usable   quantities  of  bio-­‐oil  for  ECH  studies.     86       4. Different   conditions   should   be   explored   for   the   direct   ECH   of   EAP   lignin   to   determine   whether   ECH   may   function   independently   as   a   viable   depolymerization   scheme.     5. ECH   of   a   number   of   lignin-­‐derived   bio-­‐oil   monomers   and   mixtures   of   monomers   should   be   performed   to   determine   the   effectiveness   of   this   process   for   lignin   derived  bio-­‐oil  upgrading.     6. ECH  of  other  types  of  lignin  linkages  should  be  explored  to  build  upon  the  existing   work.     7. Efforts  should  be  made  to  improve  the  modest  current  efficiency  of  the  system.   8. Studies   should   be   done   to   determine   the   exact   cause   of   catalyst   deactivation   and   how  the  catalyst  can  be  reactivated.     9. Explore  other  less  expensive  metals  as  catalysts.     87