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ABSTRACT

FACTORS INFLUENCING PEARSON’S CHI-SQUARED STATISTIC’S FIT TO

ITS AYMPTOTIC DISTRIBUTIONS:

IMPLICATIONS FOR SAMPLE SIZE GUIDELINES

BY

SHELLY JOHAN NAUD

Recent sample size guidelines for Pearson's chi-squared statistic (X2)

have generally been based on simulation studies. These previous studies have

mainly focused on the impact of small sample size on Type I error for a single

test. A simulation study was carried out to evaluate the impact of small sample

size on both Type I error and power approximation across four tests. It was

found that power may be overestimated even though the sample size is large

enough for the Type I error rate to be close to a. This problem is more serious

for the test of independence than for the goodness of fit test.

A quantitative index, Pn, was proposed for contingency table tests. When

sample size is larger than Pn, both Type I error and power of X2 are fairly well

approximated by the asymptotic distributions.
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INTRODUCTION

Pearson’s chi-squared statistic, X2, first introduced in 1900, is currently

widely known and used. Many of the researchers who used X2 may not realize

is that there is no consensus on sample size guidelines - available guidelines

actually vary a great deal. Why is there such variablitiy? It is partly due to the

' different approaches for determining when an asymptotic distribution is a

reasonable approximation. When sample sizes are small, the distribution of X2

is a step function that cannot be well approximated by any continuous function.

The older guidelines required that the distribution of X2 be fairly smooth. To.

attain this criteria, sample sizes need to be large. Recent guidelines are

generally based on simulation studies. As long as the actual Type I error rate

is reasonably close to the nominal Type I error rate, a, the asymptotic

distribution is considered adequate. The resulting sample size

recommendations are considerably less stringent.

Though a cOnsiderable number of simulation studies have been done, the

question of sample size has not been entirely resolved because additional

factors complicate the problem. One such factor is the table’s distribution of cell

expeCtations. Tables where some of the expected cell frequencies are very

small in comparison to the other cells apparently require different guidelines

than table with uniform expectations.



This study proposes to address some of the gaps in the simulation

research. One is related to the fact that a majority of the research has dealt with

only one of the several tests that use X2 as the test statistic. Although the

asymptotic distributions of X2 are the same across tests, the actual distribution of

X2 across tests is not necessarily similar when the sample size is small. This

issue has not been studied systematically. A Second issue addressed in this

study is power. Although there have been studies on the impact of small sample

sizes on power, these have had much less influence on sample size guidelines

than the studies focusing on Type I error.

The comparison between tests is the focus of Chapter three. Each test is

then considered individually in the following chapters. The first two Chapters will

cover theoretical and methodological issues.

In summary, this study will explore the behavior of Pearson’s chi-squared

statistic when the sample size is small and the table has a skewed distribution of

expected cell frequencies. These are the conditions where the asymptotic

distributions do not hold well. Both power and Type I error will be considered

across different tests. Current recommendations for sample size will be

evaluated based on these findings.



Chapter 1

THEORETICAL BACKGROUND

The first Sections of this chapter will define the notation and terminology

related to X2, hypothesis testing and power, and some proposed indices. The

sampling distributions and tests associated with categorical data are described

in the last section.

Notation and formulas

The two-way frequency tables have I rows and J columns. The number of

cells in the table is denoted by k with k = IJ. Marginal row and column

probabilities, p.. and p... are obtained by dividing the row and column totals, hi,

and n... by the total sample size, n (6.9., p1, = n1,ln). Depending on the sampling

plan that is assumed to have generated the data, one or more of the marginal

totals may be fixed or treated as constants. With such sampling plans, the

marginal totals will used in some formulas instead of n.

The expected cell probabilities are denoted by p. with p; = p.,p,,. The

expected cell frequencies (or expectations) are related to the cell probabilities:

e. = npg. Each cell’s count is referred to as the observed cell frequency (09.

Pearson’s chi-squared statistic provides a measure of the discrepancy

between observed and expected cell frequencies:



x2 = 2 2(0' _e'|)

I I eIi

If the expected values are close to the observed values, the value of X2 is small;

if the expected values are far from the observed values, the value of X2 is large.

Because the deviations are squared, the X2 statistic gives more weight to

observed cell frequencies that are much larger (or much smaller) than the

expected cell frequencies. .

When the null hypothesis is true, Pearson’s X2 is asymptotically

distributed as the chi-square (x2). On the other hand, when the null hypothesis

is false, the asymptotic distribution is the noncentral chi-square distribution.

Both distributions have degrees of freedom (df) as a parameter. The noncentral

chi-square distribution further depends on a second parameter

A. = "22 (p15 - p002

P011

where pg. refers to the cell probability under the null hypothesis (Ho) while p1.

refers to the cell probability under the alternate hypothesis (H1). Lambda

increases in value as the two hypotheses become more discrepant, and it

increases with the sample size. When I. is set to zero, the noncentral x2 is

equivalent to the chi-square distribution.

Type I error, power, and Cohen’s effect size Index

When deciding whether to accept or reject the null hypothesis,

researchers can make two types of error. They can reject the null hypothesis

when it is true or they can fail to reject the null hypothesis when it is false. This
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former is referred to as Type I error and the probability of its occurrence is a.

The second is a Type II error and its probability of occurrence is [3. Power is the

probability of rejecting Ho when it is false; it is equal to 1 - [3.

Researchers have to balance the costs associated with the two errors.

Choosing to make a very small decreases the risk of rejecting a null hypothesis

that is true; however, power also decreases as a result. Choosing a relatively

large a will result in a smaller [3 and, therefore, more power; however, this choice I

increases the risk of rejecting the null hypothesis when it is true. There is

another alternative: Researchers can achieve an increase in power by

increasing their sample size. In order to determine how large the sample should

be, the researcher should have a reasonable estimate of the population effect

size, ES. A small effect size indicates that the alternative hypothesis is not much

different from the null hypothesis. Small differences are unlikely to be detected

unless the sample size is large. On the other hand. a researcher can expect to

detect large effect sizes with smaller samples. Estimates of effect size are

determined from previous research or pilot studies whenever possible.

Cohen (1988, 1992) has defined a measure of effect size that is widely

used. If previous findings are available, Cohen’s index1 can be calculated as

 

_ 2

follows: w =JZZM . This index is closely related to the

1 J Pol

noncentrality parameter, it = nw“. Cohen provided the following guidelines for

 

‘ In his first edition of Statistical PowerAnalysis for the Behavioral Sciences,

Cohen proposed a slightly different ES index: e = Mn = wz.
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interpreting the values of w: 0.1 corresponds to a small effect size, 0.3 to a

moderate effect size, while 0.5 is considered large. In practice, w is not likely to

be greater than 0.9. Several effect size surveys have found the average w to be

approximately 0.3, at least in the field of psychology (Haase et al., 1982; Cooper

and Findley, 1982). Therefore, if a researcher lacks an empirically-based

alternative hypothesis, setting w to 0.3 is a plausible alternative. Cohen

suggests that power should be set at 0.8.

This study will evaluate the behavior of X2 at two target sample sizes.

The first, n5, is the sample size where the theoretical power is .5 for a large ES,

i.e., n is determined after constraining the noncentrality parameter to be .5 and

the noncentral x2 to be 0.5. If a researcher has a sample size equal to n5, he or .

she will have a 50-50 chance of detecting a large effect size. The second target

sample size, n8, corresponds to a power of .8 for a medium ES (w = .3). N5

serves as the lower bound to sample sizes that may be considered by

researchers while n8 reflects a reasonable goal for most research. The specific

sample sizes that correspond to each target sample size are listed at the end of

this chapter. ‘

Measures of discrepancy

One problem that exists in the literature on categorical data is the lack of

a quantitative index for describing tables where the expected cell frequencies

are not all equal. Researchers often resort to qualitative descriptions such as “a

highly skewed distribution of expected cell frequencies.” Three quantitative

indices are proposed here.



Many authors use the minimum expected cell frequency (em...) as their

criterion for indicating how discrepant the observed table is from a table where

all cell frequencies are the same, i.e., the uniform table. Some researchers are

also interested in the number of cells with small expectations (Cochran, 1952,

1954; Yamold, 1970). In particular, Yamold proposed r, the number of cells with

an expected frequency of less than five. The disadvantage of using em... or r is

that they vary with the sample size. I propose two alternate indices that remain

invariant: the minimum expected cell probability, pm... and n(p), the number of

cells that have probabilities less than 11k, where k is the total number of cells. In

a uniform table, pm... = 1lk and n(p) = 0.

The third index used in the present study to indicate how discrepant an

observed table is from the uniform table is a global index, R = Z 1/p.. R is an

element of three formulas for estimating the variance of X2 (Pearson given in

Lawal & Upton, 1980; Haldane given in Lawal, 1992; and Morris given in Koehler

and Lamtz, 1980 ). The use of R is of interest since it is a key component of the

variance estimates, and the fit of Xz’s distribution to its asymptotic distributions is

thought to be related to the variance of X2. When there are small cell

expectations, the variance of X2 can be much greater than the variance of 12

(Lawal, 1991).

Sampling distributions and tests for categorical data

There are two tests that are usually thought of whenever one deals with

categorical data, namely the test of independence and the goodness of fit test.

Researchers would conduct a test of independence to determine whether two
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variables are related, e.g., gender and level of job satisfaction. The degrees of

freedom for x2 is (l-1)(J-1). The expected cell frequencies are calculated from

the marginal probabilities: e; = nplpj.

The procedure for the goodness of fit test differs from the test of

independence in two ways. The expected cell probabilities are specified by the

null hypothesis and the degrees of freedom is k-1. One application of this test,

given by Pearson when he introduced his statistic in 1900 (cited in Agresti,

1990), is analyzing the outcomes from a roulette wheel. If the wheel shows no

bias then each outcome has an equal probability of occurring, therefore, under

the null hypothesis e. = n n = n (1/37). Only one subscript is used since these

tables are one-dimensional.

In the two examples described above, the data are sampled from a single

population. There are two possible sampling distributions, namely, the

multinomial and the Poisson. The Poison differs from the multinomial in that

the sample size is not fixed; n itself has a Poisson distribution (Agresti, 1990).

It is possible to sample from more than one population. The relevant

sampling distribution is the product multinomial. For the goodness of fit test, the

degrees of freedom will be reduced by the number of groups sampled. Given i

groups and J categories, df = l (J-1) s IJ - l = k - l. The corresponding

contingency table test, i.e., the test of homogeneity, has the same degrees of

freedom as the test of independence; both are constrained by the marginal

totals.



This discussion of sampling distributions would not be complete without

mentioning the hypergeornetric sampling distribution. In this case, all of the

marginal frequencies are fixed: e, = n m. 1g. Agresti (1990) maintains that the

only appropriate test in this situation is Fisher's exact probability test, therefore it

will not be considered in this study. Wickens (1989) presents other alternative

that also are appropriate.

Agresti (1990, p. 39) uses an example to clarify the differences among the

above sampling models. A two-way table is defined by seat-belt use (yes, no)

and whether the driver survives the accident (yes, no). If the data include all

reported accidents occurring on the Massachusetts turnpike in a year, then the

cell frequencies are Poisson random variables. The cell observations have a

multinomial distribution when a subset of the population is randomly chosen, say

100 accident reports. If the researcher decides to sample 50 drivers who didn’t

wear seat belts and 50 seat-belt users, then we have a product multinomial

sampling distribution.

A different outcome needs to be chosen in order to illustrate the

hypergeometric sampling distribution. Let’s say the sample of accident reports

(from the product multinomial case) are given to an expert who is asked to

determine which 50 drivers were most likely to have worn seat belts. The

expert’s answers (likely, not likely) are compared to the actual data which were

withheld from the expert (seat belt, no seat belt). The resulting 2 x 2 table will

have marginal totals that are all fixed to equal 50 by design.



This study will focus on four tests for which Pearson’s X2 is appropriate.

These tests are defined by the two dimensions that were described in this

section, namely the sampling distribution and the method of calculativng the

expected cell frequencies - the goodness of fit tests depend on H, while the

contingency table tests depend on the marginal totals. The target sample sizes

described earlier (n5 and n8) will vary depending on the tests as well as the

table size. The degrees of freedom will vary also. These are listed in the

l
F
—
'
.
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following table.

 

 

Goodness of fit tests

Multinomial 4 3 24 122

16 15 48 216

Product multinomial 4 2 20 108

16 12 40 196

 

 

 

 

 

Contingencttable tests

Test Of independence 4 1 16 88

(Multinomial) 16 9 40 176

1

9

 

 

 

Hom_ogeneity test 4 16 88

(Product multinomial) 16 40 176

        

The distribution of X2 for these four tests will be compared in Chapter 3

and considered separately in the following chapters.
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Chapter 2

SIMULATIONS

The next five chapters will present the results from multiple simulations.

The underlying procedures common to all are described in this chapter. Two

related topics are treated in separate sections: confidence intervals and a

description of the tables that are used in more than one chapter.

The simulation programs were written in UNIX SAS version 6.07 (SAS

Institute Inc., 1990).

Four data sets were generated to assess the behavior of X2 across tests. _

Using the same data eliminates variation in the generated data as a possible

cause for any differences seen in the results. ’

The general strategy of the simulation programs was to partition the table

by the predetermined cell probabilities (pl). For example, the limits for cell 1 are

[0, ml”, the limits for cell 2 are (p1, p2], and so on. Each generated random

number, u, was then assigned to the cell for which p. s u < pm. The product

multinomial case differed from the multinomial in that each row was treated as a

separate table.

One critical aspect of simulations is the process used to generate the

random numbers. The SAS uniform random number generator uses a prime

 

' 2 The bracket is inclusive while the parenthesis is not: “[0” means “including

zero” while “p1)" means “up to, but not including, pl.”
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modulus multiplicative generator with modulus 231 - 1 and multiplier 397204094.

This particular combination has been tested and found to be one of the better

random number generators (Fishman and Moore, 1982). The programs were

tested to see how well the generated data conformed to the target sampling

distribution. The observed cell means were compared to their theoretical values:

d. = 3. — npr The standardized residuals, n, ='d.,l 033, were plotted against the

expected 2 scores, 2., = <b(percentile rank 9. These normal probability plots

l
m
q

(Figure 2-1) are linear. The observed cell frequencies therefore follow the

expected distribution.

The mean observed cell variances were compared to their theoretical

2

s

values: 2i?- I]. The average deviation of the 96 cells from tables with a

I

multinomial distribution is slightly below the expected value of 0 (-.0035) while it

is slightly above 0 for the product multinomial case (.0046). The cell means and

standard deviations are therefore both close to their expected values.

 

3 The expected-standard deviation depends on the sampling distribution and the

number of replications. Given a multinomial sampling distribution and 1000

replications, c, = [np.(1- p.) [1000]"2 for the multinomial case. The standard

deviation for the product multinomial case is a, = n,p,(1- p.,)11000]"2 .

12



Confidence intervals

Cochran (1952) and a number of other researchers have suggested the

range .04 to .06 as acceptable lower and upper limits for observed Type I error

rate when the nominal rate is .05. Other researchers have proposed a range

that is more liberal (e.g., .03, .07; for example, Koehler and Larntz, 1980), and at

least one researcher has proposed a range that is asymmetric, (.03, .06).

Bradley et al. (1979) justified the latter by remarking that many researchers

would accept a conservative bias. In actuality, these are tolerance limits and not

confidence intervals since they were all set independently of the simulation.

These ranges of varying widths do lead to differing interpretations of the

behavior of X2; a wider range obviously makes the X2 appear to behave better

than would a stringent one.

A 95% confidence interval is calculated based on the number of

replications: 0 :l: 1.96 [(ot)(1 - a) I (number of replications)]"2 where 0 = or for w =

0, and 9 is the expected power for all other values of the effect size index. 1825

tables were generated for most of the simulations so that the resulting

confidence interval would equal Cochran’s limits (.4, .6).

Description of the tables

Two factors described in Chapter 1 were used to create the tables of set I,

namely the global index, R, and the number of small cell expectations, n(p). The

13



four values of R were chosen variance‘ of X2 would range from being slightly

discrepant from the theoretical variance to being two and a half time greater.

The ratios of the Pearson estimate of the variance to the theoretical was kept the

same for both table sizes. The following table lists the values of R and the

corresponding estimates of the variance of X2 for the two table sizes.

Ratio of variance (X2) to variance ()8)
 

 

 

 

 

k 716 1.5 2 2.5

R 4 32 52 82 112

Variance (x2) 4 7 9 12 15

R 16 366 526 759 1006

Variance (x2) 16 35 45 60 75       

The tables of set II were created to evaluate the effect of changing

marginal probabilities while holding Pmin constant. Other tables were generated

to deal with specific questions and are described in the appropriate chapters.

Detailed descriptions of set I and II tables are given in Appendix A. An

alphanumeric code is used to identify these tables. The first symbol is a letter

that represents the number of cells in the table: E, F, and S indicate that the

table consists of 8, 4, and 16 cells respectively. Following the letter are the

values of n(p) and the variance of X2. For example, S435 refers to a sixteen-cell

table with four small cells and the Pearson estimate variance of X2 is 35.

 

‘ Pearson’s estimate of the variance of X2 is: 2(k - 1) + (R + k2 - 2k - 2)/n. I set n

= 10 for four-cell tables and n = 16 for sixteen-cell tables. I prefer Pearson’s

formula to the others since it most closely matched the observed variance of X2.

14



Because the tables in set II are variations of a specific table from set I, an

additional letter is added to distinguish between the tables.

15



Chapter 3

THE FIRST QUESTION

Because the asymptotic distribution of Pearson’s X2 is the same across all

tests whatever the underlying sampling model may be, there is a tendency to

generalize the results from one test to all cases. Such generalizations may not

be justified according to Cochran (1952, p. 326):

Is the same X2 test to be used for all cases [i.e., contingency tables

with three underlying sampling distributions: multinomial, product

multinomial, and hypergeornetric]? In large samples there is no conflict, .

because X2 has the same limiting distribution however the linear

restrictions arise. This is not so in small samples, where the‘distribution

of X2 differs in the three cases.

A theoretical study of power substantiates this observation. Harkness

and Katz (1964) found that both the hypergeornetric and product multinomial

cases of X2 have more power than the multinomial (i.e., the test of

independence). The hypergeornetric case’s superiority did not hold, though,

when the marginal probabilities were skewed and n=20.

Few simulation studies have looked at more than one test. Roscoe and

Byers (1971) considered the goodness of fit test and the homogeneity test

(though the latter was referred to as the test of independence) and proposed

sample size guidelines that are different for each test. Camilli and Hopkins

(1978) considered both the homogeneity test and the test of independence and

16



found the behavior of x2 to be similar for both. However, neither of these studies

used identical tables to assess the tests.

The above evidence suggest that the behavior of X‘2 may indeed be

different across tests when n is small but this issue has not been studied

systematically. The differences in the behavior of X2 across tests may not be a

serious problem if the differences are small. Therefore the question is: How

variable is the behavior of X2 across tests when n is small?

Part 1. Type I error and power across tests when M“

Methodology. The simulation programs and table specifications are

described in Chapter 2. For this chapter, a subset of the set I tables were used,

specifically the sixteen-cell tables with four small cell expectations (n(p) = 4).

The sample size of 16 was determined based on the most liberal available

guidelines, e.g., Koehler and Lamtz (1980) for the goodness of fit test, Craddock

and Flood, 1970, and Bradley et al., 1979, for the test of independence.

Results. The power plots for the test of independence (Figure 3-1, Panel

a) and the homogeneity test (Figure 3-2, Panel a) appear very similar. The latter

does have a smaller rejection rate when the effect size is small while power is

greater for large ES but these differences are generally within the confidence

limits (:I: .01) or not much larger. These two tests will be compared more

extensively in Chapter 7. For now it suffices to say that the distribution of X2 is

similar for these two tests.

The multinomial and product multinomial cases of the goodness of fit test

(Figures 3-3 and 3-4, Panels a) are also similar to each other. The observed

17



power distributions are not as much alike as those of the contingency tables, but

these two cases do not have the same expected distribution as they differ in the

degrees of freedom. Therefore, a greater variability is to be expected. The

product multinomial case does show a slightly more liberal trend. These two

tests will be compared in chapter 5.

Marked differences are to be found between the contingency table tests

and the goodness of fit tests. For the former, the Type I error rate (i.e., when w

= 0) and power are both lower than predicted by the asymptotic distributions.

The goodness of fit tests have a rejection rate that is greater than expected

when the effect size is small while power tends to be overestimated for large ES.

This overestimation, however, is not as dramatic as it is for the contingency table

tests.

The simulations listed in the methodology section were focused on Type I

error. The recommended sample size based on these studies is not sufficiently

large fOr power to be well approximated by the noncentral if even for the table

that is the least discrepant from the uniform ($435). The estimated power,

however, is low - the maximum is .45 for w = .7. In other words, when the

sample size is only 16, one is not likely to detect even a very large effect size.

Therefore, from a practical point of view, these results are not of much interest. It

may well be that power is well approximated by the noncentral 3“ when n is large

enough to detect a large or a moderate ES. If the asymptotic distributions have

an acceptable fit to the actual distribution of X2 when n is somewhat larger then

we can ignore the erratic behaviors of X2 noted in this section.
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Part 2. Type I error and power across tests for larger n

Methodology. The same tables are used again although the sample sizes

will correspond to n5 and n8. As defined in Chapter 2, n5 is the sample size that

is large enough to detect a large effect size with a power of .5 while n8 is the

sample size where X2 is expected to detect a moderate ES with a power of .8.

Again, a = .05 and the 95% confidence limits are :l: .01 of the theoretical values.

Results. The Observed power of the test of independence is still seriously

overestimated by the noncentral 752 distribution at n5 (Figure 3-3, Panel b). The

actual power of X2 is as low as 50% of the estimated power when the effect size

is large. The fit between the actual and the theoretical distributions is much

better at n8 (Figure 3-1, Panel c). At this sample size Pearson’s X2 has an

observed power that is only .02 to .05 below that of the estimated power for the

table with the most extreme cell probabilities ($475).

The power plots associated with the test Of homogeneity follow the same

trends (Figures 3-2, Panels b and c). The discrepancy between the observed

and the theoretical power is actually less although the difference is too small to

be discernible from the plots.

The power distributions of both goodness of fit tests are well

approximated by the noncentral 3;: distribution at n8 (Figures 3-3 and 3-4,

Panels c). At n5 the Type I error rate is somewhat liberal and there is some

overestimation for the larger ES, but both power plots show a reasonable fit to

the noncentral 38 (Figures 3-3 and 3-4, Panels b).
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To return to the question: How variable is the behavior of X2 across tests

when n is small? When n = 16 or n5, the lack of fit between the noncentral X2

and the actual power distributions of X2 are most marked for the contingency

table tests. The dissimilarity across tests appears to be minor when n = n8.

When the sample size is large enough to detect a moderate effect size with I"

adequate power, X2 is well approximated by its asymptotic distributions for all ‘ i

four tests considered. F‘

As the major differences found were betweenthe goodness of fit cases on

the one hand and the two contingency table tests on the other, This study will

focus on the two multinomial cases.
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Chapter 4

THE GOODNESS OF FIT TEST UNDER THE MULTINOMIAL SAMPLING

MODEL

The earliest sample size recommendations for the goodness of fit test

were based on the fact that Pearson used the multivariate normal distribution to

approximate the multinomial distribution of the cells (Cochran, 1952). This

approximation is valid only when expectations are large. It therefore became

customary to recommend that all expected frequencies be at least 5 or even 10.

Cochran proposed guidelines for assessing goodness of fit in the case of a

unimodal distribution with only one or two small expectations. These guidelines '

were less stringent than those of his predecessors. He suggested that the

minimum cell frequency could be as small as 0.5 when there was only one small

6.; that the minimum could be 1 when there were two cells with small el; and that

all other cells should have frequencies of 5 or more. These guidelines are still

cited although subsequent research, described below, has found them to be

restrictive.

There is as yet no universally accepted set of guidelines, although a

consensus has formed around the following findings (Roscoe and Byers, 1971;

Moore, 1986; Read and Cressie, 1988):

1. X2 has been found to be erratic when there is only one degree of freedom

(Lamtz, 1978). Roscoe and Byers recommend the exact binomial test in this

sfluafion.
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2. When the expected cell probabilities are uniform, X2 is robust for very small

sample sizes (Wise, 1963). How small n can be is still disputed. Tate and

Hyer (cited in Roscoe and Byars, 1971) suggest that 6. can be as small as 1.

Koehler and Lamtz (1980) suggest that the sample size, n, must be greater

than (10K)"2 and no less than 10. The expected frequencies can become as

small as .25 for large tables.

3. The distribution of X2 is not well approximated by 12 when samples sizes are

small and the expected cell frequencies are extremely different. Given an a

of .05, Roscoe and Byars suggest all e. 2 1 when the departure from the

uniform is moderate. For extreme departures, the minimum e. should be 2.

Koehler and Lamtz (1980) suggest that their formula cited above can still be

applied but the minimum 11 should be 15 when there is a departure from the

uniform. They warn, however, that the Type I error rate will be inflabd if

there are many e. < 1. Yamold (1970) argues that when there are too many

small cell expectations a distribution other than 78 should be used to

approximate the distribution of X2. He provided a lower bound for using X23

em... 2 5rlk with r = n(e. < 5). This can be modified in order to calculated a

sample size: n 2 5rl(kpm..,).

A few simulation studies have looked at the power of X2. Hayman and

Leone (1964), Slakter (1968), and Frosini (1978) showed that the power of X2 is

well approximated by the asymptotic distribution when the cell expectations are

equal; but the approximation can be poor when there are some small er. Slakter
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recommended reducing the estimated power by 20% to get a better

approximation of the actual power when n is less than 50.

Implications for researchers

Let's use an example to illustrate what happens when one applies the

different guidelines given above. A statistician working for a state department

wants to compare local statistics to the following national statistics for teachers’

level of education.

 

Level of Education Percentage

Less than Bachelor's 0.9

Bachelor's 51 .3

Master's 44.9

Master's + 30 graduate 2.9

credits

By Cochran’s (1952, 1954) guidelines the sample size should be 112. Using

Roscoe and Byars’s (1971) recommendations for tables with an extreme

departure II should be 223. The sample size is 15 by Koehler and Lamtz’s

(1980) formula, but their caveat about too many small e. probably applies to this

case. Applying Yamold’s (1970) guidelines gives an n of 278. When power is

the criteria for choosing the sample size, one finds that n5 is 24 while n8 is 122.

In summary, the various guidelines yield very different sample sizes; all

but Cochran’s are either smaller than n5 or are larger than n8l These guidelines

will be compared empirically in the following simulations.
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In summary, previous research suggests that the size ate"...1 depends on

the size of the table (em... decreases as k increases) and the number of small e.

(em... increases as n(p) increases). X2 apparently becomes unstable when there

are both small and large e.. The first two factors will be considered in part 1 and

all three will be considered in part 2.

Part 1 Number and size of en...

Methodology. Tables of dimensions 1 x k were generated, where k was

equal to 4, 8, and 16. The number of cells with small expectations (n(p)) also

varied for a total of 14 different tables (refer to Table 4—1). For each of these 14

tables, simulations were run for various sample sizes. Two minimum sample

sizes, 10 and 16, were used for k = 4. The first minimum sample size is

appropriate when the cell expectations are fairly uniform; the second minimum n

is more appropriate when the cell expectations are skewed (Koehler and Lamtz,

1980). The larger tables had the minimum sample size set to 16. The sample

size was increased by increments of 0.5k until the maximum of 5k was reached.

The small cell probabilities of the tables were decreased until one or more

Type I error rates fell out of the range (.036, .064). This range corresponds to

the confidence limits when there are 1000 replications. For each table, k and

n(p) remained fixed.

Several suggested minimum e. are reported in table 4-1. Yamold

developed his index for n 2 5k. His formula, em... 2 5rlk, was modified so that it

could be used here. I substituted n(p) for his r. A trial index was created by
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combining Koehler and Lamtz’s formula for n with the modified form of Yamold’s

index: n"... n(p) I k2 with n"... = (10 k)"2 or 10, whichever is larger.

Results. The smallest ems that had all Type I error rates falling within the

confidence interval are listed in Table 4-1. As predicted by previous research,

the minimum cell frequency, em increases as n(p) increases for any specific k;

em... is larger when there are fewer small cells in the table. The lower limits

suggested for em... by previous researchers are, in general, larger than the em."

observed by this simulation study. The emgiven by the modified version of

Yamold’s formula is of particular interest since his values follow a similar pattern

to that of the observed em... The trial index is closer to the observed emthan

any of the other guidelines but it falls below the observed em... when k=16,

therefore it may be too small for larger tables.

.Part 2 Large e.

Methodology. Five sets of tables (for a total of 13 tables) were generated

where the size and number of p... were held constant while the size and number

of the maximum expected cell probabilities, pm, were varied. The values of

these cell probabilities are listed in Table 4-2. The ratios of pmax to pm... ranged

from 10.8 to 78.5. All other cell expectations were set to nlk. The sample sizes

were increased by increments of 0.5k. An arbitrary large n was chosen as the

maximum.

Results. The Type I error rates are plotted against n in Figure 4—1. The

plots show time-series type trends because the sample sizes are accumulative.

The behavior of X2 does not appear to be affected by the value of pm... The
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tables with the largest ratios of pm. to pm... are not that much different from the

tables with less extreme cell expectations. For example, table b in Panel B has

a ratio of 73 but its distribution of Type I error rates is similar to that of table a

with a ratio of 49. However,the other case with a very large ratio, namely table

b in Panel E, does show a more liberal trend. The two tables in this panel have

the largest discrepancy in their respective ratios: 18 for table a and 78 for table

b. For such a very large discrepancy in ratios, the difference between the Type I

error rates is hardly dramatic.

Controlling the number as small cells acted as a constraint to the size of

pm. . After a point, the only way to increase the size of p"... is to increase the

number of small cells. What appears to be true is that tables with the same

number of small cells are similar, irrespective of the size of pm... , at least when k

= 4 or 16. Panel Esuggests that different results may be found for larger tables

with many small cells. In these cases, n(p) would have less of a constraint on

the relative size of pm... resulting in much greater extremes in cell expectations.

The next section will look at the relationship between n(p), amend power

approximations. Will these factors which were found to influence the Type I 1

error rate also influence how well Xz’s power is estimated by the noncentral 12

distribution?

Part 3 Power

Methodology. In Chapter 3, only one series of tables from set I was used

' for the comparison across tests. The power distributions of X2 are presented
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here for all of the set I tables. The sample sizes correspond to n5 and n8.

There are five different values of n(p) for k = 16: 1, 4, 8, 12, and 15. The four-

Cell tables have three possible values for n(p): 1, 2, and 3. At least one table in

each series is expected to have Type I error rates close to a for very small

sample sizes.

Results. The power plots for the sixteeh-cell tables are presented in

Figure 42. From Chapter 3 one would expect that the noncentral 38 would be a

good approximation of actual power at n8 and less so at n5. The results provide

a‘ few surprises. In Panel f (k=4, n(p)=3) the fit is fairly good, as expected for n8.

On the other hand, the four-cell tables with fewer small cells (Panels b and d)

show a poorer fit for the same sample size.

Among the sixteen-cell tables, it is the table with only one small cell that

shows a poor fit at n8 (Panel h). These results suggests that it may be the size

of em... independent of the number of small cells, that affects the fit of the

noncentral x2 to the observed power distribution of x2. But this hypothesis is

contradicted by the results for n5. Panels i and k (n(p) = 4 and 8 respectively)

show a good fit although these tables have smaller cell probabilities than Panels

m and o (n(p) = 12 and 15 respectively).

To further complicate matters, Panel c indicates that another factor is

involved. There are three jumps in power: F212 jumps at w = .3, F209 jumps at

w = .4, F201 jumps at w = .5. These jumps correspond to a change in the

pattern of cell probabilities in H1. The lower power corresponds to an H1 where

is greater when there is a trade-off between like cells, e.g., one small e.
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decreases by the amount that the other small 9. increases. A jump in power

corresponds to an H, where a cell with a large expectation decreases while the

other three cells increase. This latter pattern was used consistently for n(p) = 1

and 3. It thus appears that actual power was maximized (inadvertentlyl) by the

H1 used in these two series of simulations.

The above observation led to a question: Is degenerate power

associated with an H1 which posits that some small cell probabilities become

even smaller? The tables with n(p) = 12 and 15 have a large number (6 to 12) of

cells that are posited to have probabilities smaller than e"...1 under the null. This

may explain in part the discrepancy seen between observed and expected

power. This issue is explored in the next section.

Part N Power for two different H1

Methodology. Two sets of alternative hypotheses were created. One with

a positive pattern, meaning that all cells with small possibilities were larger

under H1. Under the negative pattern, at least two-thirds of the small cells were

set to .001. Simulations were run for four-cell tables and one sixteen-cell table,

81275. The effect size was set to w = .3 (moderate). The 95% confidence

interval for the power distribution is 9 :l: 1%.

Results. In Figure 4-3, the obServed rejection rates are plotted against

the sample size. Several of the observed power functions in Panels a and b do

not increase smoothly as the sample size increases. In these extreme cases,

the possible values for X2 are restricted and the distribution for X2 is a step
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function. The rejection rate decreases sharply when a specific set of observed

values yields an X2 that falls just below the critical value. For exernple, for the

case k = 4, n(p) = 3, pm... = .01, under the negative pattern, the set of observed

values (0, 0, 1, 9) occurs fairly frequently when n = 10. Its X2 is larger than the

critical value: 8.35 > 12.0“ = 7.815. At n = 12 the similar set (a, o, 1, 11) is no

longer significant: 6.73 < 36". This results in the drop observed in the power

function. In Panel b the plot appears to smooth out near it = 100 for n(p) = 1

(where em... = 4) and at n = 120 for n(p) = 3 (where em... = 4.8).

The power plots are comparatively smooth for the large table (Panel c),

even though two-thirds of the cells have very small expectations: n(p) = 12, p..."

= .012. The two extreme His show that very different power plots can be creebd

for the same table. At the maximum sample size em... is 2.8.

In none of the plots do the two H1s converge. In Panel a, there is a

difference of 13% in the rejection rate between the two alternate hypotheses at n

= 200 (em..= .2). In Panel b, the disparity in the rejection rates beMen the two

hypotheses is 6% for when e“... = 8. In Panel c, at the rneximum sample size,

6..., = 2.8 and the disparity in the rejection rates is nearly .10. The observed

power plots are all outside the confidence interval of the asymptotic distribution -

even when all cell expectations are greater than five (Panel b).
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Discussion

Type I error was found to be sensitive to several factors: the size of the

minimum expectations, the number of smell expectations, and the size of the

table. Power was found to be sensitive to an additional factor, namely the

pattern of differences posited by the eltemetive hypothesis. Power plots where

the small cells were larger under H. were quite different from those where a

majority of the small cells were smaller.

Theepproximetion of Xz’s distribution by 38 does appear to be satisfactory

for sample sizes smaller than those generally recommended. However, under

the serne conditions the power distributions of X2 are not well approximated by

the noncentral 16. As suggested by Figure 4-3 Panel b, power can be

underestimated by the noncentral 3" even when the sample size is larger than

that recommended by any of the present guidelines. Admittedly, the observed

power is not greatly overestimated and the case used is extreme.

Any recommendations based on these limited number of cases would be

premature. Further work controlling all four known factors is needed in order to

develop reliable guidelines.
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Application

This section is meant to illustrate how to apply the simulation resUlts to a

hypothetical example. A simulation was run to test the predictions made.’

An example was described in previously in the section “Implications for

researchers.” The four-cell table had two small cells. These cells represent the

extremes on the spectrum of educational level. If local teachers are higher than

the national average at one end of the educational spectrum, they are likely to

be lower than the national average at the other. In other words, it’s unlikely that

a state having a higher percentage of teachers with advanced graduate degrees

would also have more teachers who have not attained a bachelor's degree.

Therefore, the alternate hypothesis is not likely to be an extreme case where

both small cells are smaller than under Ho.

From the simulations in part 1, we can expect that the Type I error to be

acceptable as long as em... 2 .96. (Refer to Table 4-1, k = 4, n(p) = 2.) Given

that pm... is .009 for this example, 11 should therefore be at least 107. The results

of part 3 suggest that power is likely to be somewhat less than predicted by the

noncentral 3" even when n = 122 (n8). (Refer to Figure 4-2 Panel d, case F215.)

The actual power for this specific case was .03 less at n = n8 for the H, which

 

5 The data presented in all four application sections are made up. The

confirmatory simulation runs used data generated by Numen'cal Recipes’ RAN2

(Press et al., 1992). This program uses a L’Ecuyer generator with a Bays-

Durham shuffle.
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posited that local teachers would have higher educational levels than the

national average. Contrary to expectations, the other H1 tested showed more

power (+.02) than predicted by the asymptotic power distribution. The second

H1 posited that local teachers are less well educated than their national peers:

Pm... became larger under H1.

The predictions based on the previous simulations were therefore not

entirely misleading although the power trend for one of the eltemetive

hypothesis was opposite of what was expected. Power cannot yet be accurately

predicted by the results of this simulation study.
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Chapter 5

THE GOODNESS OF FIT TEST UNDER THE PRODUCT MULTINOMIAL

SAMPLING MODEL

It may be best to explain the product multinomial case of the goodness of

fit test by contrasting it with the usual multinomial case. In the example used in

the previous chapter, we were interested in teachers’ level of education. Let's

say that it is known that teachers’ level of education is not homogeneous across

all groups, specifically that high school teachers are more likely than any other

group to have a graduate degree. If our sample has a higher percentage of high

school teachers than in the national sample, this bias may cause us to

erroneously reject the null hypothesis. One option for controlling this bias is to

sample from each group and test against the expected proportions for each

separate group. This, then, is the product multinomial version of the goodness

of fit test.

The research question remains the same as for the multinomial case: Are

local teachers comparable in level of education to the nation as a whole? The

number of degrees of freedom, however, differs. For I groups and J categories,

the correct degrees of freedom is I(J - 1) or k - l. Otherwise the goodness of fit

test is carried out in the usual manner.

I have found no empirical studies for this version of the goodness of fit

test. In Chapter 3, it was seen that the product multinomial case followed the

same trends as its multinomial analog. In part 1, the extent of this similarity is
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evaluated by comparing the simulation results for the two tests. In part 2, the

impact of varying the size of the samples is considered.

Part 1. Comparison to the multinomial case

Methodology. Set I tables with n(p) = 12 were used. These were chosen

because the fit of the observed power distribution to the asymptotic was found to

be poor. The differences in fit for the two sampling models had to be evaluated

indirectly because of the discrepancy in the degrees of freedom: [Observed

power (product multinomial case) - predicted power (df = 12)] - [Observed

power (multinomial case) - predicted power (df = 15)].

Results. The differences in fit are plotted in Figure 5-1. At n = n5 the

differences in fit are nearly all negative (Panel a). For the small effect sizes,

where power is slightly underestimated for both sampling models, the negative

differences mean that the multinomial case has a stronger liberal trend than the

product multinomial case. The interpretation is different when the effect sizes

are large. Power is overestimated in both cases, but more so for the product

multinomial. These differences, however, are small with the largest (in absolute

terms) being -.023.

At n = n8 the differences in fit are random - the product multinomial case

does not show a consistent bias. The differences, again, are generally small.

The two cases can therefore be considered as equivalent, at least when the

group samples are all equal in size. This simulation is replicated in the next part

with tables where the groups are not equal in size.



Part 2. Varying the size of the samples

Methodology. Set ll tables are used, along with their set I counterparts,

namely S860 and S875. These are the tables where the minimum expected cell

frequencies are held constant while the marginal probabilities are varied. Since

it was found in the previous chapter that the patterns of differences under H1

affected power, this factor was controlled as much as possible. Specifically, I

attempted to set the smallest frequencies equal across all tables for a given w.

The table specifications can be found in Appendix A.

Results. Figure 5-2 presents the power plots. For both series, the best fit

to the asymptotic power distribution occurs when the samples are equal (S860,

$875). What is striking is the fact that both the 860 and 875 series have similar

plots even though the minimum cell frequencies are smaller for the latter. The

875 series has only slightly less power (approximately -.02) than the 860 series

when the effect size is large and n = n5. Both are reasonably well approximated

by the noncentral X2 when n = n8.

The discrepancies seen in the power distributions at n = n5 (Panels a and

c) cannot be explained by the factors that have been considered previously. Em

and H1 patterns can be ruled out since these were held constant. Although the

number of small cells do vary somewhat, discrepancies are seen beMen tables

with the exact same n(p). For example, table C’s Observed power at w = .5 is

.27 more than that of table a even though they both have n(p) = 6. Two other

possible factors are marginal totals and the distribution of e. within the rows.
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Let’s first consider marginal totals as a possible factor. There are two

pairs of tables with the same fixed row totals (1: a and b; 2: c and d). Tables c

and d do have similar Type I error rates and observed power distributions. The

same cannot be said for tables a and b. They show a .17 disparity in power at w

= .5. This finding seems to rule out marginal totals as a factor affecting the

power of X2.

The possibility that the distribution of elwithin each sample is the

explanatory factor cannot be answered with the sample sizes used in this

section. At n = 40, all of the 6...... are below the minimum observed values found

in Chapter 4 while they are all larger than the minimum values at n = 196. Other

sample sizes are considered in the next simulation.

Part 3. Distribution of elwlthin samples

. Methodology. The same tables are used as in part 2. Fewer effect sizes

were considered, namely w = .3 to .8. One sample size was chosen so that

tables a and c would have em... larger than the minimum Observed value for em,1

(as reported in Table 4-1) while tables b and d, with three small cells, will have

an em... below the minimum observed value. This sample size is 96 for the 860

series and 128 for the 875 series. A second sample size was chosen near the

minimum observed value for tables b and d.

Results. The power plots are presented in Figure 5-3. The distribution

for S875d shows markedly less power. It is a case where n(p) = 3 therefore it

and, to a lesser extent, S860d appear to confirm the expectation that power plots

associated with tables having three small cells per group would have less power
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than the plots for tables with n(p) = 2 in each row. However, the other two tables

with n(p) = 3, namely S860b and S875b, do not support this hypothesis. Their

power plots are not consistently worse than those of other tables for the smaller

sample size. Therefore, the number of small cells within each group does not

appear to explain the discrepancies in the observed power distributions noted in

part 2.

Discussion

When all samples are equal in size, the power distributions for the

product multinomial case of the goodness of fit test are comparable to those for

the multinomial case. When sample sizes are not equal, the fit of the observed

power distributions to the asymptotic is not as good although this does not

necessarily translate as loss of power. In the two series of tables with em... held

constant, three of the four tables with unequal samples had more power than the

tables with equal sample sizes. I was not able to isolate what specific factor or,

more likely, the combination of factors that could explain the discrepancies of the

observed power from the asymptotic power distribution.

Application A

The application problem will follow up on the example used at the

beginning of this chapter. Let's say that the national survey of teachers’ level of

education yielded the following results when broken down into four groups. The

total sample size is 13,060.
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< Bachelor’s Bachelor’s Master's Master's Total

+ 30

Primary

N 64 2925 1577 4 4571

% of group 1.4 64.0 34.5 0.09

% of all 0.49 22.4 12.1 0.03

Upper Primary

N 26 1698, 1528 13 3265

% of group 0.8 52.0 46.8 0.4

% of all 0.20 13.0 11.7 0.1

Junior High

N 13 654 706 65 1437

% of group 0.9 45.5 49.1 4.5

% of all 0.1 5.0 5.4 0.5

High School

N 1 1 1428 2049 299 3787

% of group 0.3 37.7 54.1 7.9

% of all 0.08 10.9 15.7 2.3     
 

 
From Table 4-1, we can expect that the Type I error rate will be

acceptable if em... is at least .44 (k = 18, n(p) = 8). As pm... is .0003, n should be

1437. They Type I error rate will be liberal for smaller sample sizes. The

simulation results showed that Xz’s power tends to be close to the power

approximation. (Refer to Figure 4-2 Panel I.) However, the application table has

cell expectations much smaller than any of the simulation tables, therefore

power can be expected to be less.

The results from the confirmatory simulation run are presented in

Figure 5-4. The group sizes are all equal. The four sample sizes considered

correspond to expected powers of .80, .90, .95, and .99. The Type I error rates

are all liberal, as predicted above. Observed power is considerably less than

that of the noncentral X2 approximation for two of the eltemetive hypotheses.
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The difference is more marked for the “Shift down” case where smaller cell

frequencies were predicted for the Master's + 30 level. This result runs counter

to the Chapter 4 application result where the “Shift down” H1 showed more

power! The hypothesis which posited no Change for the small cells (“No

extremes”) had Observed power close the nominal values.

In summary, the predicted trends were correct for both Type I error and

power under the two hypotheses predicting differences for the small cells.

Power, however, was much lower than I expected.
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Chapter 6

THE TEST OF INDEPENDENCE

The test of independence differs from the goodness of fit test in that the

expected cell probabilities are not predetermined but are calculated based on

the marginal probabilities: on = n p._ p,,. These expectations cannot be known

precisely before collecting the data therefore determining sample size will be a

process of guess-estimating. Some have suggested a multi-stage sampling

procedure when there is very little information about the possible values of the

marginal probabilities (e.g., Horn, 1977).

Simulation studies (Camilli and Hopkins, 1978; Craddock and Flood,

1970; Bradley et al., 1979) have consistently found that X2 is robust as long as

the marginal probabilities are not extremely skewed. For tables varying in size

from 2x3 to 5x5 and with nearly equal expected frequencies, Craddock and

Flood found that the x2 approximations of X2 is accurate at the 90'”, 95‘" and 98"

percentiles for n as small as k. In their extensive simulation study, Bradley et al.

found that Type I error rates will not exceed .06 unless both sets of marginal

probabilities are extreme skewed. If one set of marginal probabilities is highly

skewed while the other is nearly uniform, the Type I error rates are conservative.

This conservative bias, as remarked by Bradley, appears to be tolerable to many

researchers even though power may be adversely affected. Koehler (1986) and

Agresti and Yang (as cited in Agresti, 1990) considered much larger tables. For

10x10 and 20x20 tables, 6,, can be as small as 0.5 when all the expected
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frequencies are equal. When both sets of marginal probabilities are highly

skewed, Koehler found the X2 approximation to be poor for large, sparse tables.

Agresti and Yang, on the other hand, found that the Chi-square approximation is

adequate given a large table (100 cells) and n = k for marginal probabilities as

small as .05. Their tables were not as skewed as those in Koehler’s study.

An empirical study on the power of Pearson’s chi-squared test of

independence for 2x2 tables was carried out by Bradley and Seely (1977). They

found errors of approximation when n is small. These errors are most serious

when a small it is combined with highly skewed marginal probabilities. For

example, given n=20 and marginal probabilities of .1 and .9, the actual power is

.8 whereas the power based on the noncentral 1,2 distribution is greater than .95.

In an earlier study Harkness and Katz (1964) compared power estimated

by normal approximation methods developed by Patnaik and Sillitto with an

exact test, the uniformly most powerful unbiased size a. test (UMPUT), for three

types of contingency tables. The power of all three tests was overestimated by

the normal approximations though the discrepancies were not large. Only 2x2

tables and n s 30 were considered.

In summary, the simulation studies focusing on Type I error suggest that

X2 is robust when n is small unless the marginal probabilities are highly skewed.

On the other hand, power simulations ( i.e., Bradley and Seely, 1977) found that

the noncentral x2 approximation is more sensitive to these factors, at least for

2x2 tables. The initial results presented in Chapter 3 bear this out: Power was
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found to be seriously overestimated for the generally recommended sample size,

n = k or 16, and even for the larger sample size of 40 (n5).

Implications for researchers

Many different guidelines for sample size have been proposed.

Cochran’s (1952, 1954) guidelines are still frequently cited in textbooks. He

suggested that at least 80% of cells should have e. 2 5 while the remaining cells

can have expected values as small as 1. As stringent as Cochran’s guidelines

are, there are researchers that have recommended even larger sample sizes.

Hays (cited in Bradely et al., 1979) recommended that all e, 2 10 when df=1 and

a minimum of 5 for larger tables. Tate and Hyer (cited in Bradely et al., 1979)

. argued for a minimum 6., of 20. Bradley et al. considered these

recommendations as prohibitive and remarked that “traditional rules‘of thumb

based on minimum expected frequency, without regard to the marginal

distributions, do not provide selective protection against errors of approximation

where such protection is needed most” (p. 1295).

Roscoe and Byars (1971)6 suggested the following guidelines,

given a = .05: n 2 2k when the marginal probabilities are uniform; n 2 4k when

the probabilities are moderately skewed; n 2 6k for tables with extremely skewed

marginals.

 

° This study is cited frequently in the literature related to the test of

"independence although the actual sampling distribution used is the product

multinomial. As the two sampling distributions were found to give similar results

in Chapter 3, Roscoe and Byars’s guidelines are included in this section.
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A more recent set of guidelines based on simulation studies was offered

by Wickens (1989, p. 30):

1. For tests with 1 degree of freedom, all the [Ag [cell expectations] should

exceed 2 or 3.

With more degrees of freedom, p. as 1in a few cells is tolerable.

In large tables up to 20% of the cells can have pg appreciably less

than 1.

The total sample should be at least 4. or 5 times the number of cells.

Samples should be appreciably larger when the marginal categories

are not equally likely. .

3
”
!
”

5
"
?

The main drawback to these guidelines is the vagueness of some of the

terminology. When should one consider the marginal probabilities to be

extremely rather than moderately skewed? How much is “substantially more?“

Obviously, these different guidelines lead to different sample sizes. To

illustrate how different the sample sizes can be, ns are calculated for a few

tables that will be used in the simulations.

 

Table pm... Cochra Tate & Roscoe Wickens Power Power Pn

 

 

n Hays Hyer 8: Byars n5 n8

emm=5 emh=20 n=6k em>1

S475 .0047 1064 4255 96 >213 40 176 241

S475b .0047 1064 4255 96 >213 40 176 86

S875 .0085 589 2353 96 >118 40 176 153

$875b .0085 589 2353 96 >118 40 176 75
 

Pn in the last column refers to an index that I wish to introduce here. When n is

small, it is possible to end up with a marginal total of zero especially if the

marginal probabilities are skewed. When that happens the expectations for that

row’s (or column’s) cells are zero and it then becomes impossible to calculate X2

for all cells. The probability of getting a marginal total of zero for a specific
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sample size can be calculated using Z.(1"Pr.)" + 210- p)". This estimate is

accurate for small probabilities (i.e., less than .05). Pn is the sample size where

the probability of getting a marginal total of zero is .01. This index will be

considered along with the other factors, namely 6...... and R, in the following

simulation. If any of these indices are useful in predicting when Type I error is

close to a, we would then have a quantitative index that can be helpful in

determining sample size.

Part 1. Type I error rate

Methodology. Set ll tables were used where pm... was held constant within

each series of tables while the marginal probabilities were manipulated. These

tables ' are described in Chapter 2 and Appendix A. Sample sizes ranged from

16 to 1000. The 95% confidence interval for the Type I error rate is .4 to .6.

Whenever a generated table did have a marginal total of 0, it was treated as a

failure to reject Ho.

Results. The Type I error rates are plotted in Figure 6-1. The error rates

substantiate Bradley et al.’s (1979) conclusion: When both sets of marginal

probabilities are extremely skewed the error rates are higher than the nominal or;

otherwise X2 tends to be conservative. Apparently both sets of marginals need

to have at least one probability less than .1 for the Type I error to become liberal

(i.e., larger than expected).

For some of the tables, 11 must be quite large before Type I error falls

within the confidence interval (notably S875b). If one sets wider tolerance limits,
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as did several of the researchers cited above, then these results do substantiate

their conclusion that X2 is fairly well approximated by X2 for the test of

independence, even when the marginal probabilities are extremely skewed. The

majority of tables have distributions that are within (.3, .7) for n 2 32. There are

exceptions, the more notable being S475, S860, S860c, and S875.

Neither pm... nor R appear to be useful for predicting how close the Type I

error rate will be to the nominal, a. If pm... (or, alternatively, er...) were the

determining factor, then the error rates would be similar within each series.

However, this is not the case. For example, S475a falls within the tolerance

limits at n = 40, em... = .188 while this doesn’t happen for $475 until 11 = 136 and

em... = .64. There would also be noticeable differences across series. The 875

series should be worse than the 860 series (Pm = .0085 versus .0115 for the

860 series). The same argument can be made against R. The tables with the

largest values are not necessarily the worse. By this criteria, all of the 475

tables should have poorer fit than the 875 tables (excepting S875 itself).

Though the lowest R values (S875e, b, c and $860a) do tend to have good fits,

this is not consistently true (8860).

The index based on the marginal totals, Pn, does show some usefulness

in controlling Type I error. Sample sizes that are greater than Pn have error

rates well within the tolerance limits. 1

Part 2. Power

Methodology. For comparative purposes, set I tables are presented here

along with two tables from set ll, namely S869b and 8875b. These latter tables
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have Type I error rates that are higher than expected. Two sample sizes are

considered for these sixteen-cell tables: n = 40 (n5) and 176 (n8).

Results. The power plots are presented in Figure 2. Power is well

approximated by. the noncentral X2 at n = n8. However, this is not the case when

n = 40. For these tables with skewed marginals, power is fairly consistently

overestimated by the noncentral chi-square distribution. This is true even for the

tables associated with a liberal Type I error rate (Panel e, S860b and S875b).

The observed power distributions for these tables are also overestimated in the

range of interest, namely w = .5 to .7.

Four-cell tables with extremely skewed marginal probabilities have a

particularity in that they have a restricted range for the effect size. If one column

(or row) total is small relative to the other, there is an upper limit to the size of

ES. In these trials, the largest effect size is w = .4. Power is overestimated for

small n, but well approximated by the noncentral x2 at n = n8.

As was seen in Chapter 3, the overestirnetion of power is much greater for

the test of independence than for the goodness of fit test. Given k = 16, when

the number of small expectations was not very large (n(p) s 8), the fit of the

observed power distribution by the noncentral X2 was good for the latter test.

For the test of independence, the observed power can be as little as half of that

predicted by the noncentral 7". Another difference between the two tests is that

the number of small cells does not seem to be a factor affecting power for the

test of independence. The power plots are fairly similar across n(p) (i.e.,

compare Panels 6, e, and g).
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In summary, the power plots of S860b and $875b eliminate pun/em... and R

as determining factors. If the first case were true, these plots would be similar to

those of their respective set I counterparts, S860 and $875. The observed

power for the former tables was greater for all effect sizes. If R was the

determining factor, then their power plots would have showed less power than

that of S860. However, this expectation is contradicted by the results.

In part 1, it was found that when n 2 Pn, Type I error was within the

tolerance limits. Can the same be said for power? This question is the

motivation for the next simulation.

Part 3. Pn and asymptotic fit

Methodology. The same set of sixteen-cell tables used in Part 2 are used

here. The sample size was set to Pn rounded up to the nearest factor of .5k.

Results. The power plots are presented in Figures 3. The fit of the

observed power distribution to the noncentral x2 is not ideal for all values of w. It

seems worse when power is in the middle ranges. The difference between the

Observed and nominal powers are plotted against the nominal values in Figure

6-4. The relationship is parabolic for power estimates between .05 and .80. The

maximum difference in fit is .09, corresponding to a 9% decrease in the rejection

rate.

DISCUSSION

The above simulations confirm previous research: The chi-squared test

of independence is quite robust as far as Type I error is concerned - as long as

one accepts tolerance limits that are somewhat wider than the confidence
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interval. However, when marginal distributions are skewed and n is small, power

can be seriously overestimated by the noncentral 77’.

Most of the available guidelines for determining sample size recommend

sample sizes that are much larger than needed. It was also found that the

distribution of marginal probabilities is a better indicator of the Pearson statistic’s

fit to its asymptotic distribution than 6......

One practical issue not raised in the literature on the test of

independence is that small sample sizes may result in marginal totals of 0. A

researcher can avoid this problem by calculating Pn, defined in this study as the

sample size where the probability of getting a marginal total of zero is 1%. An

easier method that yields a similar answer is to multiply the minimum estimated

marginal probability by 5.5. This sample size is large enough for the Type I error

to be reasonably close to at. Power, however, can be overestimated by as much

as .09 when n = Pn. Some adjustment to power estimates is recommended.

An application

A professor is interested in knowing whether the level of exposure to

advanced math courses is related to success in her introductory statistics

course. Based on a survey she finds the following distribution for highest level

of math course taken.

 

Factor 1: Highest level of math taken Percentage

No college level math 10

College algebra 55

1 year of calculus 15

1 year or more beyond calculus 20
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Based on previous experience, she expects the following distribution for grades.

 

Factor 2: Grade Expected percentage

4.0 30

3.5 20

3 40

s 2.5 10
 

Her current enrollment is 40 students. Is the sample size large enough for a

reasonable level of power?

To answer the question a plausible effect size must first be determined.

One strategy is to calculate w for a possible set of data if a high (but not perfect)

correlation exists. If the students are distributed as shown in the following table,

w = .87, a considerably large ES. The expected power is better than .90 for w

greater than .7.

 

s 2.5 3.0 3.5 4.0

No college math 2 2 0 0

College-algebra 2 14 4 2

1 year calculus 0 0 2 4

> 1 year calculus 0 0 2 6
 

It was found in this chapter’s simulations that Type I error rates generally

fell within the range .3 to .7 when the sample size was at least 32 for sixteen-cell

table. (Refer to part 1.) The marginal totals of the application table are not

extremely skewed - no proportion is expected to be less than .1 - therefore the

trend of the Type I error should be conservative.

Marginal totals of zero are not a concern here but two marginal totals are

less than five; a sample size of 40 is therefore less than Pn (which equals 51 for
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this example). Actual power can be expected to be overestimated by the

noncentral 3". (Refer to Figure 6-2, Panels c and 3 for n(p) = 4 and 8

respectively. N(p) is 6 for the application table.) The overestimation will

decrease as the effect size increases. (Refer to Figure 6-4). In spite of the

overestimation, a sample size of 40 appears to be large enough for detecting a

large effect size with a power greater than .80.

The confirmatory simulation run had a Type I error rate of 4.4% which

does fall within the expected range. The power distribution is given in Figure 6-

5. The discrepancy between observed and actual power does not consistently

decrease as the effect size increased as was predicted above. The largest

discrepancy, though, is for w = .5. Observed power is not too seriously

overestimated, supporting the conclusion that the sample size is large enough.
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Chapter 7

THE HOMOGENEITY TEST

The calculations for the test of homogeneity are carried out in the same

manner as the test of independence. The difference is entirely in the sampling

procedure. One set of marginal totals corresponds to the samples taken from

the various populations. The objective is to determine whether the populations

are similar on the characteristic measured. For example, one may ask whether

career aspirations of medical students are similar across ethnic groups.

The homogeneity test has been studied less frequently than the test of

independence. Camilli and Hopkins (1978) found the homogeneity test to be

somewhat conservative when both sets of marginal probabilities were skewed

(e... s 2) but otherwise it was robust for 2 by 2 tables when the sample size was

at least 20. A simulation study by Roscoe and Byars (1971) considered two

equal groups and varying marginal probabilities on the second dimension

(uniform, moderately, and extremely skewed). They reported X2 to be “strikingly

robust.” At the .05 level, Type I error was conservative for the smallest sample

sizes when the column totals were skemd. They also reported that when both

sets of marginals were extremely skewed, the Type I errors were “a bit erratic

(though generally conservative)” Garside and Mack (1976) calculated the exact

Type I error rates for 2 x 2 tables. All but a very few error rates fell in the .04 to

.06 range for a = .05. Lamtz (1978) tested a 2x3 table with two equal-sized

groups. X2 was close to nominal values for n 2 16 and below nominal for smaller
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n. These three studies are therefore consistent in finding that X2 is robust and

tends to be conservative when n is small, much like the results found for the test

of independence.

l have not found any simulation studies on the power of the homogeneity

test but there have been some theoretical work done. Meng and Chapman

(1966) presents Neyman’s proof that the optimum sample size for a 2:9 table is

n, = n; = N/2. The test of independence has less power than a homogeneity test

with equal group sizes. Harkness and Katz’s (1964) theoretical study of exact

power found that this superiority in power held for n s 30 and when the two

groups were not equal in size. Although higher in power than the test of

independence, the homogeneity test’s power is still overestimabd by the normal

approximations developed by Patnaik.

Implications for researchers

Recommendations made for the test of independence appear appropriate

for the homogeneity test. Ideally the all the samples would be equal in size as

this would maximize power. When the marginal totals are skewed and/or 11 is

small, the power of x2 will not be closely approximated by the noncentral x’. but -

research suggest that the test of homogeneity is more robust then the test of

independence. How much more robust is the question considered below.

Methodology. Set I tables with n(p) = 8 are used along with two tables

from set ll, namely S860b and S875b. The set I tables have equal sized groups

while the set ll tables have skewed marginals on both dimensions. Two sample
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sizes are used: n = n5 which is 40 for both tests, and n = Pn. The value of Pn

will depend on the table.

Results. The power plots for the test of independence and the

homogeneity test are presented in Figure 7-1, along with the differences found

between the two tests’ observed power. In Panel a one can see that the

homogeneity test does tend to have more power for the larger effect sizes when

n = 40 and its Type I error rate (w = 0) is slightly more conservative. This

superiority does not hold when 11 increases (Panel d). The two tables with

unequal sample sizes Show the same pattern (Panel 9): The homogeneity test’s

superiority in power appears to exist only for large effect sizes and small n. The

maximum observed difference in power is .05 (Panel 9) with nearly all other

positive differences being less than .03.

Discussion

The homogeneity's test theoretical superiority in power over the test of

independence was confirmed but found to be significant only for large ES and

small 11. Guidelines developed for the test of independence appear to be

generalizable to the homogeneity test.

Application

From a ten-year old large-scale study, it was found that career aspirations

among medical students differed across ethnic groups. A replication study is

being considered. Previous data provide the following information. Sixty-five

percent of medical students are white, 25% are black, 7% are Hispanic, and 3%

are Asian. The breakdown for career aspirations is: Private practice, 54.0%;
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Salaried positions, 12.9%; Faculty positions, 29.5%; the remaining 2.7% are

lumped together as “Other.” The effect size is expected to be moderate at best.

If the smallest group size is 10 to 24% of the overall sample size, Pn will be 175.

Since only one set of the marginals will be extremely skewed, the Type I error

rate can be expected to be conservative. A sample size of 176 is theoretically

large enough to detect a moderate effect size with a power of .8. The simulation

results suggest when the sample size is greater than Pn, Type I error will be

reasonably Close to a and the power approximation will also be close to the

observed power. (Refer to Figure 7-1, Panel e, Table 8875.)

The confirmatory simulation run with the smallest group making up 10% of

the overall sample does substantiate the predictions: The Type I error rate was

5.8 and power was .82. The results were slightly better when all groups were

set equal: The Type I error rate was 4.2 and power was .80.



Chapter 8

SUMMARY AND RECOMENDATIONS

Although the asymptotic distributions for Pearson’s chi-squared statistic

are the same across tests, it was shown here that X2 behaves differently when n

is small. The fit of Xz’s observed distributions to the asymptotic is further

worsened when the distribution of expected cell frequencies is not uniform.

Under these conditions, the gOodness of fit X2 tends to have a liberal Type I

error. In contrast, the test of independence is generally conservative unless

both sets of marginal probabilities are extremely skemd. For both tests it was

found that power estimation is more sensitive than Type I error. Overestimetion

of power is much more serious for the test of independence than the goodness

of fit test. The product multinomial analogs of these tests have similar trends.

Several sample size guidelines were considered for each test. These

yielded greatly divergent sample sizes. The objective of the earliest guidelines

was to have a close approximation of Xz’s Type I error rate by 352. These

guidelines are stringent and their recommended sample sizes tend to be large.

Later guidelines based on simulations considered a looser fit as acceptable,

therefore these sample sizes are often considerably smaller. Though there have

been empirical power studies, these haven’t led to sample size guidelines. This

study attempted to combine both perspectives for evaluating sample size

guidelines.

55



A related problem is how best to describe tables with cell expectations

that are not uniform. The minimum cell expectation is frequently the criteria

used by sample size recommendations. It was found to not be a sufficient

criteria for the goodness of fit test and it is not as useful as marginal totals for

the test of independence. Several factors are involved in the former case: not

only the size of the minimum cell expectation, but also the number of small

expectations, the size of the table, and, for power, whether the small cells are

smaller or larger under the eltemetive hypothesis. These factors cannot be all

combined into a single index nor can a simple guideline be developed that would

account for all of the factors.

The test of independence was easier to deal with. A quantitative index

based on the marginal totals, Pn, was described. If the sample size is larger

than Pn, a researcher can be confident that the actual distribution of X2 is fairly

well approximated by its asymptotic distributions.

Recommendations for future research

A tension exists between “good enough” for practical purposes and the

theoretical perspective. Ideally the sample size should be large enough that the

statistic’s actual distribution will match its asymptotic distribution. Extreme

cases, though, pose a dilemma for practitioners. Given a table with extremely

small expectations, the sample size needs to be very large before one can

expect a good approximation by the asymptotic distributions. This may neither

be feasible nor even desirable. If the researcher is only interested in eveanting

a moderate to large effect size but the recommended sample size is so large that
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it will detect a small to moderate effect size with better than .9 power, the

researcher would be justified in thinking that some middle ground should be

found! Guidelines that provide adjustments for less than ideal cases would help

in this type of situation. i

The tentative guidelines suggested here need to be refined and tested to

other table sizes in order to make them more generalizable. Determining

adjustments for less than ideal sample sizes would also require a large

systematic simulation study. Extensions to srneller as and multi-dimensional

tables are two other areas where further research is needed.

Pearson’s chi-squared statistic, in spite of its well-known shortcomings, is

still the most used test for categorical data. With the growing emphasis on

power issues, research on the factors influencing the power estimation of X2

should become a greater priority.
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Table A-1. Marginal probabilities for tables

  

 

 

 

 

 

 

 

 

Set I.

| Id S_135 S145 S160 S175 S435 S445 S460 S475

k 16 16 16 16 16 16 16 16

np 1 1 1 1 4 4 4 4

Var(X2) 35 45 60 75 35 45 60 75

R 366 526 766 1006 366 526 766 1006

row1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

row2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

row3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

row4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

column1 0.195 0.191 0.1894 0.1888 0.060 0.044 0.026 0.019

column2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

column3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

column 4 0.305 0.309 0.3106 0.3112 0.420 0.456 0.474 0.461

Id 8835 S845 S660 mm

k 16 16 16 16 16 16 16 16

hp 6 6 6 6 12 12 12 12

Var(X2) 35 45 60 75 35 45 80 75

R 368 526 766 1006 366 526 766 1006

row1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

row2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

row3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

row4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

column1 0.113 0.071 0.046 0.034 0.142 0.095 0.066 0.049

column2 0.113 0.071 0.046 0.034 0.142 0.095 0.066 0.049

column3 0.367 0.429 0.454 0.466 0.142 0.095 0.066 0.049

column4 0.387 0.429 0.454 0.466 0.574 0.714 0.602 0.854

Id S1525 S1545 _S1560 STE-75'

k 16 16 16 16

np 15 15 15 15

Var(x’) 35 45 60 75

R 366 526 766 q 1006

row 1 0.25 0.25 0.25 0.25

row2 0.25 0.25 0.25 0.25

row 3 0.25 0.25 0.25 0.25

row 4 0.25 0.25 0.25 0.25

column1 0.165 0.114 0.079 0.060

column2 0.165 0.114 0.079 0.060

column3 0.165 0.114 0.079 0.060

column4 0.505 0.658 0.763 0.620   
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Table A-1 continued.

 

 

Set I.
.

I Id F—107——-——_F
109

F112 F115 F207 F209 F212 F215

hr 4 4 4 4 4 4 4 4

np 1 1 1 1 2 2 2 2

Ver(X2) 7 9 12 15 7 9 12 15

R 32 52 62 112 32 52 62 112

row 1 0.362 0.349 0.342 0.340 0.50 0.50 0.50 0.50

row 2 0.638 0.651 0.658 0.660 0.50 0.50 0.50 0.50

column 1 0.362 0.349 0.342 0.340 0.146 0.084 0.051 0.037

column 2 0.638 0.651 0.658 0.660 0.854 0.916 0.949 0.963   
 

Id F307 F309 F312 F315
 

k 4 4 4 4

np 3 3 3 3

Var(X2) 7 9 12 15

R 32 52 62 112

row 1 0.196 0.118 0.074 0.054

row 2 0.804 0.882 0.926 0.946

column 1 0.196 0.118 0.074 0.054

column 2 0.804 0.882 0.926 0.946   
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Table A-1 continued.

  

 

 

 

 

Set ll.

Id S47"5a S4"'7'5b $860a S660b' 6'66"To 666''0d'

k 16 16 16 16 16 16

np 4 4 8 8 8 8

Var(X2) 75 75 60 60 60 60

R 1216 1137 662 870 647 913

row1 0.125 0.063 0.125 0.125 0.063 0.063

row2 0.125 0.063 0.125 0.125 0.063 0.063

row3 0.375 0.436 0.125 0.125 0.063 0.063

row4 0.375 0.438 0.625 0.625 0.613 0.813

column10.038 0.076 0.092 0.092 0.164 0.164

column2 0.038 0.076 0.092 0.092 0.184 0.184

column3 0.462 0.424 0.406 0.092 0.316 0.164

column4 0.462 0.424 0.4060 0.7240 0.316 0.446

Id S875a ss—75'b"S6"'7'5c"—Ss75d"l

k 16 16 16 16

np 8 8 8 8

Var(X2) 75 75 75 75

R 666 1157 992 1165

row1 0.125 0.125 0.063 0.063

row2 0.125 0.125 0.063 0.063

row3 0.125 0.125 0.063 0.063

row4 0.625 0.625 0.813 0.613

column10.068 0.068 0.137 0.137

column2 0.068 0.068 0.137 0.137

column3 0.432 0.068 0.364 0.137

column4 0.432 0.795 0.364 0.591  
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Figure 2-1. Normal plots of the standardized residuals of the cell means.
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Table 4-1. Lower limits for the minimum expected cell frequency (6min)

 

 

 

 

Recommended minimums

Observed Yamold Roscoe Trial

k n(p) R pm 11 minimum 6 Cochran (Modified) & Byars index

' 16 1 366 0.0075 16 0.12 0.5 0.31 1.00 0.05

16 2 370 0.0125 16 0.2 l 0.63 1.00 0.10

16 4 345 0.0225 16 0.36 5 1.25 1.00 0.20

16 8 373 0.0275 16 0.44 5 2.50 1.00 0.40

16 12 349 0.0375 16 0.6 5 3.75 1.00 0.59

‘ 16 15 319 0.0475 16 0.76 5 4.69 1.00 0.74

8 1 163 0.008 16 0.096 0.5 0.63 1.00 0.16

8 2 146 0.019 16 0.228 1 1.25 1.00 0.31

8 4 217 0.02 16 0.24 5 2.50 1.00 0.63

8 6 139 0.045 16 0.54 5 3.75 1.00 0.94

8 7 122 0.058 16 0.696 5 4.38 1.00 1.09

4 l 34 0.04 10 0.4 0.5 1.25 1.00 0.63

49 0.025 16 0.4

4 2 27 0.09 10 0.9 1 2.50 1.00 1.25

38 0.06 16 0.96

4 3 29 0.14 10 1.4 5 3.75 1.00 1.88

33 0.095 16 1.52    

75



Table 4-2. Cell probabilities oftables generated for part 2.

 

 

1 Ratio

1 Set k n(p) 9min Subset n(pm) pm rim/9min R

l

g A 4 1 0.01 a 3 0.33 33 109

j b 2 0.37 37 109

i c 1 0.49 49 110

l

l B 4 2 0.01 a 2 0.49 49 204

j b 1 0.73 73 205

l

l c 16 2 0.0065 6 14 0.07 10.8 506

l b 6 0.08 11.6 504

l c 1 0.17 26.6 522
l .

l D 16 4 0.0065 6 12 0.08 12.5 763

b 6 0.09 13.9 768

l c 1 0.29 44.1 795
i

l

l E 16 6 0.0065 6 6 0.12 18.2 1296

l b 1 0.51 76.5 1345
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Figure 4-1. Type I error rate (in percent) versus sample size, 4-cell

tables, (A) 1 and (8)2 small cell expectations.
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Figure 4-3. Rejection rates (%) versus sample size for alternative

hypotheses: small cells increasing (+H1) or small cells decreasing (-H1),

(a) and (b) 4-cell tables, n(p)=1 or 3. (c) 16-cell tables, n(p)=12.

83



84

 

 

(
b
)

R
e
j
e
c
t
i
o
n
r
a
t
e
(
%
)
v
e
r
s
u
s

e
f
f
e
c
t
s
i
z
e
(
w
)

—
P
o
w
e
r
a
p
p
r
o
x
i
m
a
t
i
o
n
n
=
n
5

 

—
D
—
T
a
b
l
e
8
1
2
3
5

+
T
a
b
l
e
S
1
2
4
5

-
o
—
T
a
b
|
e
S
1
2
6
0

—
o
—
T
a
b
l
e
S
1
2
7
5

 
 

 
 

  
 
 

 

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 

 

 

(a
)

2
(c
1

1

8882

l l l l

I r I V I I

    
  

 
 

8838

 

I  

00°

N!-

 
 

 
 

fi—

O
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 
  Figu

r
e
5
-
1
.

k
=
1
6
,
n
p
=
1
2
,
n
=
n
5
.

(
a
)

D
i
f
f
e
r
e
n
c
e

i
n
fi
t
o
b
s
e
r
v
e
d
p
o
w
e
r
t
o
t
h
e
a
s
y
m
p
t
o
t
i
c
b
e
t
w
e
e
n

(
D
)
t
h
e

p
r
o
d
u
c
t
m
u
t
i
n
o
m
i
a
l
c
a
s
e
a
n
d

(
c
)
t
h
e
m
u
l
t
i
n
o
m
i
a
l
c
a
s
e
o
f
t
h
e
g
o
o
d
n
e
s
s
o
f
fi
t
t
e
s
t
.



85

(
d
)

 

R
e
j
e
c
t
i
o
n
r
a
t
e
(
%
)
v
e
r
s
u
s

'
e
f
f
e
c
t
s
i
z
e
(
w
)

—
P
o
w
e
r
a
p
p
r
o
x
i
m
a
t
i
o
n
n
=
n
8

-
D
—
T
a
b
l
e
8
1
2
3
5

+
T
a
b
l
e
8
1
2
4
5

+
T
a
b
l
e
8
1
2
6
0

+
T
a
b
l
e
8
1
2
7
5

 

 
   

 

  

 

 
 

 
 

-
4

1
‘

1
1

1
1

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 

F
i
g
u
r
e
5
-
1
c
o
n
t
i
n
u
e
d
.

(
9
)

(f
)

 

  

 

 
1

1
l I

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

y—

1—

«—

.11—

d:—

-u-

1

o
 

83

ll

%1iiiL-O

  

0000

”N‘-

1
l

I
I

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7 

~1—

—1

—1

d

 



86

 
  

 

R
e
j
e
c
t
i
o
n
r
a
t
e
(
%
)
v
e
r
s
u
s

(
a
)

1
0
0

e
f
f
e
c
t
s
i
z
e
(
w
)

—
P
o
w
e
r
a
p
p
r
o
x
i
m
a
t
i
o
n

-
0
-
T
a
b
l
e
8
8
6
0

+
T
a
b
l
e
8
8
6
0
a

+
T
a
b
l
e
8
8
6
0
b

+
T
a
b
l
e
$
8
6
0
0

+
T
a
b
l
e
8
8
6
0
d

 

 
 

 
 

 

q.—

4...

q—

I b

O

L

I

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 

(
b
l
 

gage8888

  
 

00°

N‘-

1
I

l
1

l

j
I

I
I

I

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

-o-

—

 
F
i
g
u
r
e
5
-
2
.

U
n
e
q
u
a
l
s
a
m
p
l
e
s
i
z
e
s
,
8
6
0

s
e
r
i
e
s
.
(
a
)
n
5
=
4
0
,

(
b
)
n
8
=

1
9
6
.

 



87

 

 

 

P

88888888880

.
.

(
fl

R
e
j
e
c
t
i
o
n
r
a
t
e
(
%
)
v
e
r
s
u
s

e
f
f
e
c
t
s
i
z
e
(
w
)

—
P
o
w
e
r
a
p
p
r
o
x
i
m
a
t
i
o
n

—
a
-
T
a
b
l
e
8
7
5

-

+
T
a
b
l
e
8
8
7
5
a

-
0
—
T
a
b
l
e
8
8
7
5
b

-
o
—
T
a
b
l
e
8
8
7
5
0

+
T
a
b
l
e
8
7
5
d

 

 I

 
 
 

l I

0
.
4

0
.
5

0
.
6

0
.
7

 

 

 
  

 

1
d
)

1
888

1 1 1 1 1 1 1 1

l T f 1— l I l

O

h

 
 
 
 

8888

 

COO

N1-

 
4

1
1

1
1

I
I

I
I

l
f

1

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 
F
i
g
u
r
e
5
-
2
c
o
n
t
i
n
u
e
d
.
8
7
5
s
e
r
i
e
s
(
6
)
n
5
=
4
0
,

(
d
)
n
8
=

1
9
6
.

 

 



88

 
 

 
 

(
a
)

9
5

_.
(
c
)

l 1

r

I!)

Q

   
P
o
w
e
r
n
=
9
6

—
o
—
8
8
6
0

1

.
'

—
o
—
8
8
6
0
a

4
5
.
/

+
8
8
6
0
b

-
+
-
8
8
6
0
c

-
§
-
8
8
6
0
d

I

0
.
3

0
.
4

0
.
5

0
.
6

 
 

  
 

—1

 
 

 
 

 

IO

N

 
 

(
b
)

(
6
)

—
P
o
w
e
r

n
=
1
9
2

+
$
8
7
5

—
a
—
8
8
6
0
a

+
8
8
7
5
8

—
n
—
$
8
6
0
b

—
D
—
$
8
7
5
b

-
+
-
8
8
6
0
c

-
°
+
-
8
8
7
5
c

-
§
-
-
8
8
6
0
d

-
§
-
8
8
7
5
d

 

 

P
o
w
e
r
n
=
1
4
4

—
0
—
S
8
6
0

 

 
 
 

 

.1)—

0
.
3

0
.
4

0
.
5

0
.
6

.
.

0
.
5

 
 
 

F
i
g
u
r
e
5
-
3
.

D
i
s
t
r
i
b
u
t
i
o
n
o
f

e
m
.
.
.
w
i
t
h
i
n
r
o
w
s
.

k
=
1
6
,
n
p
=
8
,
8
6
0
a
n
d
8
7
5

s
e
r
i
e
s
.



 

 

Discrepancy behnreen observed and predicted

 

 

   

   

 

 

 

 

rejection rates

5.0-

1 A

° 0 A ‘ o EQUAL N

-5.0 4- A
D Shift down

-10 O ._ ° A No extremes

0 ° 0 o Shift up

-15.0 i a

1:

-20.0 c1I 1 1 1

80 90 95 99

Predicted rejection rates (%)

12 O

1o —- 0 —Alpha

0
8 -- e

3 -_ 0 Type I

4 1 1 1 1 9"" (%)  
 

 

194 248 288 380

(.80) (.90) (.95) (.99)

Sample size (predicted rejection rates)   
Figure 5—4. Application problem, confirmatory simulation results.

89  



 

+8475 (n>Pn)

+S475a (n>Pn)

 

N
M
-
h
U
I
O
D
V

0 200 400 600 800 1000

 

 

 

  
  

      

   

+8860(n<Pn ‘

 

  
 

 

 

 

    
 

  

 

 

   

1,; ’3' A- S860a +8860a n>Pn 1
3 9' v. «S860b +8860b n>Pn 4

.11: «e 8860c —1—8860c n>Pn j
2 at , 1 a 8860d, +8860d n>Pn

. , , 1 )1 1

o 200 400 600 800 1000

7 1, y __

6 +8,"

'- .1 .7n'.‘,

5 y"
' \1 ".‘.u"‘.,'. 3 '.

.9 ., S875 ' +8875(n>Pn)
[ .. .w-sa75a 8875 P

3 . , . S875b

1 ‘ ~+~ 8875c

2 j; p , r~ r8875d, 1

L0 200 400 600 800 1000  
 

Figure 6-1. Type I error rate versus sample size, test of independence:

(a) 475 series, (b) 860 series, and (c) 875 series.

90



91

 
 

 

 

 
 
 

 
 

 
 

 
 
 
 
 
 

—
P
o
w
e
r
n
=
1
6

4
o

_
_

-
a
—
F
2
3
5

+
F
2
4
5

-
0
—
F
2
6
0

-
o
—
F
2
7
5

i
s
)

5
°

‘
(
c
1

3
0
—

i

2
0
~

1
0
‘

 
 
 

 
 

 
 

O
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 

 

(
b
)

1
0
0

1
(
d
)

1
0
0

11

OO

one

1

O

O)

1

O

[x

l

I

O

h

 
 
 
 
 

—
'
P
o
w
e
r
n
=
1
7
6

-
O
-
8
4
3
5

+
8
4
4
5

-
o
—
8
4
6
0

-
o
—
8
4
7
5

—
P
o
w
e
r
n
=
8
8

—
D
—
F
2
3
5

4
0

-

+
F
2
4
5

3
0

~

-
o
—
F
2
6
0

2
0

1-
1
0
.
1
1
—

0
.

1
1

"
8
"
:
2
7
5
.

o
f

.
1

O
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 
 

 

 

 
 

l I
I

 
 

F
i
g
u
r
e
6
—
2
.
P
o
w
e
r

p
l
o
t
s
,
t
e
s
t
o
f
i
n
d
e
p
e
n
d
e
n
c
e
:

(
a
)

8
1
(
b
)
1
6
-
c
e
l
l
t
a
b
l
e
s
w
i
t
h
2
s
m
a
l
l

c
e
l
l
e
x
p
e
c
t
a
t
i
o
n
s
,

(
c
)

8
1
(
d
)
1
6
-
c
e
l
l
t
a
b
l
e
s
w
i
t
h
4
s
m
a
l
l

c
e
l
l
e
x
p
e
c
t
a
t
i
o
n
s
.



92

(
0
)

(
fl

   

1111

i I 1 1

GOOD

QQNCD

 

—
P
o
w
e
r
n
=
4
0

-
O
-
8
8
3
5

+
8
8
4
5

—
o
—
8
8
6
0

+
8
8
6
0
b

+
8
8
7
5

+
8
8
7
5
b

   
   

   
 

 

1

r

o

Q

 0
0
.
1

0
.
2
.
0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 
 
 

.11—

l I

l I
I

   
W
“
P
o
w
e
r
n
=
1
7
6

-
o
-
8
8
3
5

+
8
8
4
5

-
o
-
8
8
6
0

+
8
8
6
0
b

+
8
8
7
5

+
8
8
7
5
b I

 

 

 

 

1
0
0

9
0

.
_
—
P
o
w
e
r
n
=
4
0

3
0
1

4
3
—
8
1
2
3
5

7
0
—

+
8
1
2
4
5

3
°

‘
1
+
s
1
2
e
o

5
0

—

4
0
1

3
0
—

2
0
1

l l  

  
     

 
 
 
 
 

 
 

  

1 r

 

 

       

l
1

l

I
I

I

O
0
.
1

0
.
2

0
.
3

 
 
 
 
 
 

1
.
.
.
.
.
.
P
o
w
e
r
n
=
1
7
6

-
0
—
$
1
2
3
5
.

+
8
1
2
4
5

-
0
—
8
1
2
6
0

+
8
1
2
7
5

 
I

0
.
4

0
.
5

0
.
6

0
.
7

F
i
g
u
r
e
6
-
2
c
o
n
t
i
n
u
e
d
.

(
e
)
8
1
(
1
)
1
6
-
c
e
l
l
t
a
b
l
e
s
w
i
t
h
8
s
m
a
l
l
c
e
l
l
-
e
x
p
e
c
t
a
t
i
o
n
s
,
(
g
)

8
1
(
h
)
1
6
-
c
e
l
l
t
a
b
l
e
s
w
i
t
h
1
2

s
m
a
l
l

c
e
l
l
e
x
p
e
c
t
a
t
i
o
n
s
.



93

  

—
P
o
w
e
r
n
=
5
6

-
n
-
8
4
3
5

—
p
o
w
e
r
n
=
1
0
4

-
x
—
8
4
4
5

—
p
o
w
e
r

n
=
1
7
6

+
8
4
6
0

—
p
o
w
e
r
n
=
2
4
8

+
8
4
7
5

 

 
  

—
P
o
w
e
r
n
=
4
0

-
a
—
8
1
2
3
5

—
P
o
w
e
r

n
=
6
4

+
8
1
2
4
5

-
—
P
o
w
e
r
n
=
8
8

+
S
1
2
6
0

—
P
o
w
e
r
n
=
1
2
0

+
8
1
2
7
5

 
 

F
i
g
u
r
e
6
-
3
.
P
o
w
e
r
p
l
o
t
s
f
o
r
n
=
P
n
:

(
a
)
4
s
m
a
l
l

c
e
l
l
e
x
p
e
c
t
a
t
i
o
n
s
(
b
)
1
2
s
m
a
l
l

c
e
l
l
e
x
p
e
c
t
a
t
i
o
n
s
.

 

(
8
)

(
b
)

 

 

 
 

 
 

0

 

1
0
0   80~ 6
0
1

4
0
—

2
0
1

O

 O
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 

 
 
 

 



94

  

—
P
o
w
e
r
n
=
4
8

-
a
—
8
8
3
5

—
P
o
w
e
r
n
=
7
2

+
8
8
4
5

—
P
o
w
e
r
n
=
1
1
2

+
8
8
6
0

—
P
o
w
e
r
n
=
1
6
0

+
8
8
7
5

 
   

—
P
o
w
e
r

n
=
6
4

-
a
—
8
8
6
0
b

—
P
o
w
e
r
n
=
8
8

+
$
8
7
5
b

 
 

(
c
)

(
d
)

 

1
0
0

s
o

-

6
0

—

4
o

1 L l   

  

 

_.

AI—

1
l

I
I

0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

  1
0
0
.
0

8
0
.
0

6

6
0
.
0

-

4
0
.
0

~

2
0
.
0

~

0
.
0

1 0
0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

 

      
    

L 1 L  
 

4b

‘-

~1-

‘-

.1—

‘-

 

 

F
i
g
u
r
e
6
-
3
c
o
n
t
i
n
u
e
d
.

(
c
)
8
s
m
a
l
l

c
e
l
l
e
x
p
e
c
t
a
t
i
o
n
s
,

(
d
)
8
6
0
a
n
d
8
7
5

s
e
r
i
e
s
.

 



 

 

 

 
 

   

8 0 o. ~- 1:

6" 1"an: "
6.0 " o O

o o

4.0 -_ o x o e

x

2.0 ~~ xgo,o

j." . . and
0.0 '1‘“ ; L

= o
.20 ._ e np 4

o np = 8 o

-4.0 -_ x np = 12

-6.0 1 1 1

0 0 20.0 40.0 60.0 80.0 100.0

 

Figure 6-4. Differences between observed and expected power versus

expected power.
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