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ABSTRACT

A Methodology For Behavioral-Level Switching

Activity Estimation in CMOS Circuits

By

Ronnie Lee Wright

The demand for computer-aided design (CAD) tools to accurately perform power

analysis on high-level design specifications has become increasingly important. Two

major factors are responsible for promoting this research and development: the emer-

gence of low power as a key VLSI design parameter and the integrated circuit de-

sign industry’s increased migration from hardware-design methodologies based on,

schematics or simple programmable logic device (PLD) languages to methodologies

based on high-level design specifications described by hardware description languages.

Such CAD tools will enable the development of power efficient digital circuits within

a process that offers increased design flexibility, design reuse, and lower cost.

A CAD tool’s ability to accurately compute the internal power dissipated by

a circuit heavily depends on how well it estimates switching activity and network

capacitance. The switching activity is a key factor used in the calculation of dynamic

power dissipation for CMOS circuits; it represents the probability or frequency at

which power-consuming gate output transitions take place.



The objective of this research is to develop a more accurate and cost-effective

technique for computing the switching activity and dynamic power dissipation of

behavioral-level design specifications described in VHDL (VHSIC Hardware Descrip-

tion Language). Unlike some gate- or circuit- level statistical or probabilistic esti-

mation schemes, this new technique operates at the behavioral level of design ab-

straction without considering technology or statistical circuit characterizations. This

new approach accepts a user-specified depth-accuracy parameter that is responsible

for controlling the accuracy of the switching activity estimate at the expense of time

and memory. The developed techniques and algorithms have been implemented in

a program called the Behavioral-Level Activity and Power Estimator (BLAPE). Re-

sults and benchmark comparisons with other power analysis CAD tools are given to

validate the application and effectiveness of the new approach.
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CHAPTER 1

Introduction

The goal of accurately estimating dynamic power at the behavioral level of design

abstraction has recently received increased attention. The demand for accurate

behavioral-level computer-aided design (CAD) tools for power analysis is due to the

IC industry’s large-scale migration to HDL—based hardware design methodologies,

and the emergence of power consumption as a key VLSI design parameter

The estimates generated by many behavioral-level power analysis CAD tools con-

tain inaccuracies stemming from a lack of specific information which is determined or

specified at deeper levels (i. e., the circuit- and physical- levels) within the electronic

design automation (EDA) process. Despite these inaccuracies, HDL—based hardware

design methodologies are necessary for efficient hardware design. Currently, the ben-

efits of behavioral-level design outweigh the inaccuracies found in the estimates of

behavioral—level power analysis CAD tools.

The focus of this research is to develop enhanced tools which provide additional

accuracy for behavioral-level design. The research presented in this dissertation out-

lines a new technique which provides improved accuracy of switching activity and

power estimates using behavioral-level design specifications described in VHDL. Be-

fore discussing the details of this research, a review of the EDA process and the

motivation for this research tOpic is given in the following sections.



1 . 1 Background

1.1.1 Electronic Design Automation Process

Today’s complex circuit designs require computer support for virtually all aspects

of design. Computer-based design automation (DA) tools make the design of very

large or complex circuits feasible. Designs which are too large or complex for manual

design use such processes for improved quality (performance and reliability), reduced

product cost, and shortened design time. Given a specification of an abstract object,

a computer-based DA system generates the physical design automatically and verifies

that the design satisfies its requirements specification. The design process followed by

DA systems can be viewed as a sequence of transformations on the following design

representations: behavioral, structural, and physical, at various levels of abstraction.

1 . 1 . 2 Design Representations

o Behavioral representations - describe a Circuit’s function. Behavior can be de-

scribed in a functional or procedural fashion. Emphasis is placed on what the

design does, not how it is built. Designs are viewed as one or more black boxes

with sets of inputs and outputs, and a set of functions describing the behavior

of each output in terms of the inputs over time.

0 Structural representations - describe the composition of circuits in terms of

cells (abstractions of circuit element definitions) and components (abstractions

of instances of circuit elements) and the interconnection among these compo-

nents. Structural descriptions include block diagrams, schematic drawings, and

netlists.

0 Physical representations - are characterized by information used to manufac-

ture and fabricate the physical system. They are concerned with binding the



structural design space to silicon. Physical information includes geometric lay-

out data such as transistor location and wire routing.

1.1.3 Design Optimization

When designing complex integrated circuits, removing false design paths is as impor-

tant as executing the correct design procedures. The removal of false design paths is

accomplished by analyzing a number of design variations and choosing the one that

best meets the system’s requirement specifications. The earlier one optimizes a design

or removes an unsatisfactory design variation, the less effort one exerts in pursuing

an alternative design that does not meet requirements.

1.1.4 Design Phases

The electronic design automation process is a top-down approach to designing large

and complex integrated circuits. The EDA process starts with a system specification

and continues through a series of abstraction level transformations, resulting in sepa-

rate design phases (Figure 1.1). Each succeeding level adds more specific or detailed

design information. The process is briefly described below.

0 Design Specification considers the following: 1) application of system, 2) per-

formance requirements, 3) system architecture, 4) external interfaces and pro-

tocols, and 5) manufacturing costs.

0 Behavioral Design is synthesized to meet specifications. The result is a behav-

ioral representation such as Boolean expressions, differential equations, instruc-

tion set descriptions, algorithms, or flowcharts. Behavioral simulation is the

method of analysis.
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Figure 1.1. EDA process.



0 Logic Design is concerned with the logic structure that implements the behav-

ioral design. The design representation may be a register-transfer—level (RTL)

description, schematic description, logic diagram, or netlist of gates. For anal-

ysis the representations are simulated at the transistor-, gate-, and register-

transfer- levels. Validation takes place by comparing results from the logic-level

and behavioral-level simulations.

0 Circuit Design is concerned with the electrical laws that govern the detailed

behavior of the basic elements such as transistors, resistors, capacitors, and

inductors. Transistors are sized to meet signal delay requirements. Analysis is

performed using circuit and timing simulations.

0 Physical Design is concerned with the transformation of the structural repre-

sentation from the previous phase into the geometric shapes (and layout cells)

representing details of the fabrication process. Additionally, the placement of

cells and routing are important concerns of the physical design stage.

1.1.5 Steps Within the Design Phase

The process of removing a false design path is governed by the following Operations:

synthesis, analysis, and verification, illustrated in Figure 1.2.

0 Synthesis derives a new design representation based on the representation of a

previous stage.

0 Analysis evaluates the correctness of a design representation against its require—

ments.

0 Verification provides a formal process for demonstrating the equivalence of two

design representations under specified conditions.
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I
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i
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Figure 1.2. Design phase.

1.2 Motivation

The emergence of low power as a critical VLSI design parameter combined with

the popularity and large-scale movement to HDL-based hardware design methodolo-

gies provide the motivation for this research effort. Additionally, the overwhelming

inaccuracies in previous behavioral-level power analysis CAD tools present a signifi-

cant problem, whose elimination will benefit various aspects of the electronic design

automation process. Discussions on low power design and HDL—based design are

presented next.



1.3 Low Power Design

Reducing power consumption has emerged as a critical design parameter for digi-

tal VLSI systems [1]. The trend has been to develop methodologies and techniques

which maintain a Circuit’s throughput and area constraints while achieving some de-

sired level of power efficiency. The power efficiency revolution was initiated by the

introduction of high-throughput portable electronic devices, such as laptop comput-

ers, portable televisions, camcorders, and wireless communications systems. For these

devices it is desirable to support high-speed computation with complex functionality,

while more efficiently using minimal size and minimal weight batteries. Advances in

battery technology have also promoted the design of power efficient circuits. It is

anticipated that battery lifetimes will increase to about 90 - 110 watt-hours/kilogram

over the next five years [1]. If low power design techniques are not considered, then

high-throughput portable electronic devices will suffer from short operation times

due to limited battery lifetimes or become burdened by heavier battery packs. Other

factors which motivate the design of power efficient circuits include chip packaging

costs, cooling, and reliability.

1.3.1 Sources of Power Dissipation

Power dissipation in digital CMOS circuits can be classified into two categories: static

and dynamic dissipation. The static and dynamic power dissipations are determined

by the way in which the individual MOS transistors circulate current [2]. There are

four main currents which are related to power dissipation in CMOS circuits: short

circuit current, capacitive current, leakage current, and standby current.

The short circuit current arises when both NMOS and PMOS transistors are simul-

taneously conducting current from the supply to ground during an input transition.

The capacitive current is present when charging and discharging of a capacitance takes
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place to switch the output state of the logic device. The short circuit and capacitive

currents are illustrated in Figures 1.3 and 1.4 for a CMOS inverter. Short-circuit

and capacitive currents are known as dynamic currents because they result from the

switching which arises when an input transition takes place. The magnitude of these

currents are on the order of microamperes and milliamperes.
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Figure 1.3. Short-circuit current. Figure 1.4. Capacitive current.

The standby current represents current which is continuously drawn from the sup-

ply to ground. The leakage current, which is a property of the fabrication technology,

consists of reverse bias current in the parasitic diodes, which are formed by source-

drain diflusions and p-well or n-well diflusions. The leakage current contributed by

the reverse biased parasitic diodes can be described by the diode equation: iD =

10kg — 1], where 10 is the reverse saturation current, q is the charge of an electron,

V is the voltage across the diode’s pn junction, k is Boltzman’s constant, and T is

the temperature of the device material in degrees Kelvin.

An additional component of leakage current is due to subthreshold conduction

current, which is generated by the inversion charges that are produced for gate volt-

ages below the threshold voltage. The standby and leakage currents, shown in Figures

| I I ,',
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1.5 and 1.6 for a CMOS inverter, are known as static currents. These currents result

only from applying power to the device. The leakage and standby currents are very

small, on the order of nanoamperes and microamperes, respectively. The leakage and
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Figure 1.5. Standby current. Figure 1.6. Leakage current.

standby currents are responsible for the static power dissipation component in digital

CMOS circuits. The static power dissipation quantity is the result of summing the

leakage and standby currents to form a static current, and multiplying this current

by the supply voltage (Kid). The equations are

IStatic = ILeakage + IStandy

PStatic : IStatic‘fdd-

The dynamic power dissipation due to short circuit current is given by Equation

1.1, where 0 represents the switching activity factor or the probability that a power-

consuming transition occurs, Q50 is defined as the amount of charge transferred per

transition, fCLK is the clock frequency, and Vdd is the supply voltage. The short

circuit power dissipation contributes about 10 percent to the total power dissipation.

y—._...._r-... . n“..—



RS'hort = aQSCfCLKVdd- (1-1)

The dynamic power dissipation due to charging/discharging of node capacitances

is referred to as switching activity power or switched-capacitance power. This power

component is given by Equation 1.2, where CL represents the node capacitance, and

the other components are as defined previously. The switched-capacitive power dis-

sipation contributes about 90 percent to the total power dissipation.

1 .

PSwitch = §aCLfCLKVd2d (1-2)

The switched-capacitance power is much larger than short-circuit power dissipa-

tion due to the low rate of occurence in which both NMOS and PMOS transistors of

the CMOS inverter are simultaneously on. The dynamic power dissipation quantity

is the result of summing the short-circuit and switched-capacitive power dissipations,

given by

PDynamic : PShort + PSwitch- (13)

When all of the power dissipation components are combined, the total power

dissipation is

PTotal : PDynamic "I" PStatic (14)

01‘

1

PTotal = iaCLfCLKVdii + aQschLKVdd + [Staticvdd- (1-5)

The most dominant component is the switched capacitance power dissipation,

Which accounts for 90 percent of the power dissipation in CMOS circuits [3]. Most of

the research in the area of low power design is concerned with reducing the switched

capacitance power dissipation component because of its dominance.

10



1.3.2 Low Power Optimization Techniques

The majority of low power circuit research targets the dynamic power component as

a means of reducing power. The switched-capacitance power, which is the power con-

sumed in CMOS circuits caused by switching currents, is the primary focus because it

is responsible for 90 percent of the total power dissipation. The switched-capacitance

power for a single gate is given by Equation 1.2. The supply voltage (Vdd), physical

capacitance (CL), and switching activity factor (a) are the parameters most targeted

for optimization within the switched-capacitance power component. Other methods

for switched-capacitance power minimization will be addressed in this discussion. Re-

ducing the supply voltage is most attractive because of its quadratic relationship to

power. A factor of two decrease in the supply voltage will yield a factor of four

decrease in the switched-capacitance power. However, as supply voltage is lowered,

circuit delays increase leading to reduced system performance. For Vdd > Vt, delays

increase linearly with decreasing voltage. This is expressed by

Vdd
Dela or ——,

y (Vdd - V02

where V, is the threshold voltage, or the voltage level at which the transistor conducts.

1.3.2.1 Supply Voltage Reduction

One approach taken to scale or reduce supply voltage without sacrificing throughput

was reported in [1]. In this approach the threshold voltage (Vt) is reduced, allowing

the supply voltage to be scaled down without loss of speed. Reducing both supply and

threshold voltages by some small amount maintains the operational behavior of the

MOS transistors, without decreases in device currents. The limitations in lowering

the threshold voltage are due to the requirement to retain adequate noise margins

and control of increased subthreshold leakage currents. In [4], a study was conducted

11



on the effect of reducing the supply voltage for a variety of different logic circuits,

containing from 56 to 44,000 transistors. The results of the study indicated that a

speed penalty was incurred for all circuits and that delays drastically increased as the

supply voltage approached the sum of the threshold voltages of the devices. Shen et

al. [5] suggested a method of designing lower power circuits, where the initial task is

to build the circuit to be fast as possible, regardless of the area and power. Finally,

the supply voltage is decreased to lower power dissipation.

1.3.2.2 Physical Capacitance Reduction

A technique used for minimizing switched-capacitance power dissipation involves low-

ering or reducing the circuit’s physical capacitance. Power dissipation is dependent

upon the physical capacitance associated with each of the individual gates in the

circuit. Methods for reducing physical capacitance include using less logic, smaller

transistor sizing, and shorter wirelength. Techniques for optimizing logic include re-

source sharing and improved logic equation minimization methods. The reduction or

scaling of transistor size reduces physical capacitances, but also reduces the current

drive capability of the transistor, resulting in slower circuits [3]. Lowering physical

capacitance by means of using shorter wiring can be achieved by improved placement

and routing strategies, which attempt to optimally locate and position logic blocks

such that minimal wiring is used for block interconnections. Optimal wiring strate-

gies result in reducing physical capacitance and PR power losses. Improvements in

the placement and routing areas are discussed in [6], where a new implementation

of the simulated annealing algorithm is presented. The new algorithm makes use

of an improved cost function which includes an enhanced overlap penalty function,

combined with the inclusion of a timing path penalty function. These improvements

allow for the optimized placement and routing of rectilinearly shaped macro cells and

have produced modest reductions in chip area and total wire length.

12



1.3.2.3 Switching Activity Reduction

Minimizing the switching activity factor is another means for optimizing power dissi—

pation in CMOS circuits. The switching activity is dependent upon the logic function

implemented and the primary input signals to the circuit. The switching activity a

at node a: is defined as the fraction of time the node performs a transition within a

clock period. Switching activity may be reduced at the algorithmic and architecture

levels.

One method for reducing switching activity involves optimizing the number repre-

sentation [7]. For certain signal processing applications, a change from the two’s com-

plement number representation to the sign-magnitude number representation gave

modest improvements. It was found that the two’s complement representation was

subject to higher switching activity when the sign of input signal values changed.

This is due to the fact that sign extension causes many of the most significant bits

(MSB’s) to toggle. In the case of the sign magnitude representation, only a single

bit toggles when the input signal changes sign, resulting in a reduction of switching

activity for some of the MSB’s.

A method to reduce the switching activity factor by means of path balancing

is illustrated in Figure 1.7. Path balancing reduces glitches or spurious transition

activity in combinational logic circuits. Glitching is reduced if paths in the circuit

that converge at certain gates all have roughly equal lengths (delays) [5]. Balancing

path delays leads to nearly simultaneous switching on the input signals to a gate, and

thus eliminates possible hazards at the output of the gate. This equalization of path

delays in a circuit results in a reduction of spurious gate output transitions which

reduces switching activity, thus lowering power dissipation. Path balancing can take

place before technology mapping by selective collapsing and logic decomposition or

after technology mapping by delay insertion and pin reordering.
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Figure 1.7. Path balancing.

A switching activity reduction method has been proposed for finite state machines

(FSM’s), where an encoding of states was the focus of attention [8]. This method uses

a hypercube embedding technique and generates state encodings such that the sum

of bit toggles between each pair of states multiplied by the encoding affinity between

states is minimized. By reducing the number of bit toggles in each state transition,

the switching activity in the combinational logic which determines the next state and

output functions is reduced.

1.3.2.4 Structural Optimization

Techniques which consider a design’s structure and component interconnection also

offer reductions in switching activity. Various combinations and arrangements of spe-

cific logic gates and subcircuits lead to improved power reduction for certain designs.

Sobelman et al. [9] proposed a power dissipation reduction technique for multiplier

circuits. This method makes use of a self-timed evaluate signal, such that each carry-

save or carry-propagate adder within the array triggers only after all of its inputs

have stabilized. This technique avoids spurious switching of internal nodes so that

the average power dissipation is minimized. Moshnyaga et al. [10] proposed another

multiplier power dissipation improvement. The goal of this method is to lower the

switching activity per operation by reducing the number of active elements in the

adding array. This method incorporates the use of 4-2 compressors which lower the

number of propagation stages in the adding array. The 4-2 compressors have five

inputs and three outputs which can compress four partial products into two. The
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compressor has the same logic function as that of a carry-save adder constructed by

two serial full adders, but uses fewer transistors and has 25% less propagation delay.

Tsui et al. [11] discuss a technology decomposition technique which converts a

set of Boolean equations, or network, to another network consisting of only AND

and INVERTER gates. This technique minimizes the total switching activity in the

final two-input AND tree using a zero—delay model. The goal of the procedure is

to apply high-activity inputs into the tree composition at the latest possible stage.

Consider Figure 1.8 for example, where P(zr,) is the signal probability of primary

input or internal signal and E,,,,(g) represents the switching activity of a gate. In

this technology decomposition example, the highest activity signal (d) is applied last

in the tree decomposition of configuration A, thus yielding a lower switching activity

than the equivalent logic in configuration B. The placement of higher activity signals

in later stages of the tree decomposition limits the switching activity experienced by

internal gates and lowers the number of transitions taking place at the gate’s output.

P(a) = 0.3

P(b) = 0.4

P(c) = 0.5

P(d) = 0.7

C 

 d 

Configuration A: Configuration B:

Esw(g) = P(ab) + P(abc) + P(abcd) E“,(g) = P(ab) + P(cd) + P(abcd)

= 0.222 = 0.512

Figure 1.8. Technology decomposition.
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1.3.2.5 System and Architectural Level Optimizations

Other techniques for power dissipation minimization which have received attention

are power-down methods, precomputation, don’t care optimization, low-power software

optimization, and adiabatic-switching. In the case of the power-down approach, blocks

of logic not involved in the present computation are automatically turned off to save

power. Methods for detecting and disabling unused blocks as well as scheduling

algorithms which maximize the “shut-down” period of execution units are discussed in

[1, 12]. When certain conditions are satisfied, modules are disabled, thus eliminating

any switching activity and power dissipation. In the precomputation technique the

idea is to selectively precompute the output logic values of the circuits one clock

cycle before they are required, and then use the precomputed values to reduce internal

switching activity in succeeding cycles [13]. The technique for don’t care optimization

reported in [14] explores the Boolean space in an effort to identify minterms highly

appropriate for influencing switching activity. A partitioning of the don’t care set into

regions strongly and weakly influential upon switching activity is performed. This

variance is exploited to bias area optimization towards reduced power dissipation.

Methods for the measurement of power dissipation for the software component of

an embedded system have received some attention. For some time, application specific

software running on dedicated microprocessor or microcontroller-based systems have

been optimized for size and speed. In [15], an approach for estimating the power

cost of embedded software is presented. This experimental approach involves the

measurement of the amount of current drawn by the microprocessor or microcontroller

when instructions are executed. The energy cost of the instruction is the observed

average current value multiplied by the number of cycles taken by the instruction.

By reordering several sequences of instructions, the average current for the execution

Of a program was reduced. The goal of this method is to assign energy costs to
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each instruction and to generate power—efficient software by selecting and ordering

instructions such that the overall program energy cost is minimized.

Athas et al. [16] explore a technique for low-power CMOS design by means of

constructing combinational and sequential adiabatic switching logic circuits. The

concept behind adiabatic switching logic is to recycle signal energies stored in circuit

capacitances instead of allowing the energies to dissipate in the form of heat.

1.4 HDL-Based Design

Many IC manufacturers are changing their hardware design methodologies to an HDL-

based design approach. The primary benefit of the HDL-based design approach is

higher productivity [17]. Increased efficiency is achieved when using an HDL by the

use of available cores (e.g.,UARTs, bus interfaces, microcontrollers) to incorporate

functions into the design. Another example of HDL design efficiency is exhibited in

its ability to facilitate reuse of already designed components.

HDLs promote hierarchical design allowing one to build more flexibility into lower

level building blocks. The ability to define components at the structural-level or

behavioral-level of abstraction is a key feature of an HDL. This results in shorter

product design completion times.

Additionally, designers have less difficulty re-targeting HDL-based designs to dif-

ferent programmable-logic families than with schematic-based designs. This advan-

tage allows a developer to quickly compare the device cost, performance, and other

factors with product-lines of various vendors.

To summarize, HDL-based hardware design methodologies promote design reuse,

Component definition, design flexibility, and shortened design time. These advantages

translate into higher productivity and reduced cost.
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1.5 Problem Statement

The research of this dissertation addresses the power dissipation problem. The objec-

tive is to find a more accurate and low-cost method of computing switching activity

and power dissipation for behavioral-level designs described in VHDL. The main goal

is to achieve an accurate or reasonably approximate estimate of switching activity

with minimal computational complexity and memory resources. Additionally, the re-

search is concerned with identifying and locating high activity circuit nodes through

the development and implementation of new activity visualization tools.

The use of the proposed estimator and visualization tool will assist circuit design-

ers in the development of power-efficient designs. IC designs will greatly benefit from

the use of the proposed techniques in terms of design flexibility, time, cost, and reuse.

The research is centered on the use of VHDL because of its widespread use in

industry and academic research environments for development, simulation and test-

ing capability of high-level and implementation-free designs. VHDL also supports

behavioral and structural level design. It allows the development of digital systems

based on functional descriptions or component interconnections.

A majority of switching activity estimation techniques target gate- and circuit-

level design descriptions. Very few techniques exist for accurately computing switch-

ing activity at higher levels of design abstraction. On average most high-level switch-

ing activity and power estimates contain about 12% error [18]. The goal of this

research is to improve the accuracy of high-level switching activity and power esti-

mators and to be competitive in terms of accuracy, CPU time and memory resources

with respect to gate— and circuit- level estimators.
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1.6 Dissertation Overview

Chapter 2 describes the switching activity estimation problem. It provides back-

ground and fundamental information detailing the factors that complicate the accu-

rate calculation of switching activity for CMOS circuits. Additionally, a survey of

current and past switching activity estimation techniques, along with a description

of their advantages and disadvantages, is given.

Chapter 3 provides a discussion of the topic of behavioral-level design. Specifically,

this chapter addresses some implementation-free or behavioral methods for represent-

ing switching functions. Methods such as truth tables, Boolean equations, Binary

Decision Diagrams (BDDs), and VHDL behavioral specifications are described.

In Chapter 4, the concept of structural methods for representing switching func-

tions is reviewed. The most common structural representation, the gate-level netlist

is illustrated, along with an overview of VHDL structural specifications. Additionally,

an introduction and overview of the Connective Binary Decision Diagram (CBDD) is

presented.

In Chapter 5, an overview of the new methodology for accurately estimating the

switching activity of behavioral-level designs described in VHDL is given. The specific

assumptions and constraints that make the new technique a success are highlighted.

Additionally, the algorithms and the intermediate transformations are discussed. To

demonstrate the effectiveness of the new approach, results and benchmark compar-

isons with other power analysis CAD tools are given.

Chapter 6 presents a new visualization tool that identifies and highlights the

power-hungry areas of the circuit design. A description of the tool’s input transfor-

mation process as well as an overview of the activity views is given. A set of examples

are used to highlight the usefulness of the new tools.

Chapter 7 contains conclusions and a discussion of future enhancements that could

19



improve the behavioral-level activity and power estimator methodlogy and supporting

algorithms.

Appendix A contains definitions and theorems used throughout the dissertation.

Finally, Appendix B contains a walk-through of the BLAPE algorithm when applied

to a 4-bit Booth multiplier, described in VHDL.
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CHAPTER 2

Switching Activity Estimation

The switching activity factor, a, is a key component of the switched-capacitance

power dissipation model, described by Equation 1.2. Dynamic power is dissipated

whenever any internal switching occurs. Thus, switching activity can be determined

by evaluating and summing the 0 ——> 1 and 1 —> 0 transition probabilities at the

specified node.

2.1 Calculation of Switching Activity

Switching Activity, denoted E,w(:r) or (1(a), is defined as the probability that the logic

signal at node x experiences a change in its logic state. The most common method

of calculating switching activity involves the use of signal probability, P,(:r), which

is the probability that the signal at node a: is equal to logic 1. The evaluation of

signal probabilities for inputs and simple Boolean expressions is described in Table

2.1. Upon determining a node’s signal probability, P,(:r), the calculation of the node’s

switching activity is given by Equation 2.1. A derivation of the switching activity

calculation model is provided in Appendix A.

Esw(I) = 2 - (1 - P.(IE)) - P303) (2-1)
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Function Signal Probability Assumptions

A P304) --

Z 1 -— P,(A) ——

A - B P,(A) . P,(B) A Indep B

A+B P3(A)+P,(B) —P,(A-B) AIndepB

2:15:32 - - 0113,, {"11 P,(:r,-) All :r,- Indep

x1+ x2 + .. + r" 1— 'I'I1(1 — P,(a:,-)) All :5,- Indep

 

 

Table 2.1. Boolean expression signal probabilities.

The calculation of switching activity is difficult because it depends on circuit input

streams, various circuit parameters, and technology-dependent factors which may be

unavailable or difficult to characterize. Some of these factors include input pattern

dependence, glitch activity, delay model, logic function, and circuit structure. The

following sections discuss details of switching activity computations which are based

on statistical or probabilistic concepts. Appendix A contains definitions of terms and

concepts used in the following sections.

2.1.1 Input Pattern Dependence

The switching activity, E,w(g), at gate output g, depends on the input signal prob-

abilities, the gate’s logic function, as well as spatial and temporal input pattern

dependencies. For example, consider a two-input NAND gate with independent in-

puts (171,172), such that their signal probabilities are each %. From Table 2.2, it is

apparent that 6 out of 16 input patterns result in a gate output transition. There-

%. When spatial correlation conditions are applied to (271,232) such

that (0,0) and (1, 1) are the only input patterns, the NAND gate output switches

twice out of the possible four input arrangements and therefore E,w(g) = % (Table
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2.3). Given that a temporal correlation governs the inputs, where each 0 applied to

input 231 is followed by a 1, while each 1 applied to input x2 is followed by a O, 4

output transitions out of 9 input patterns take place, with E,w(g) = 3 (Table 2.4).

If spatial-temporal correlation conditions are governing the input dependence, such

that $2 changes exactly when 271 changes, then Esw(g) = -} (Table 2.5).

 

 

 

  

1:1 2:2 NAND

0—>0 0-—>0 1—>1

0—>0 0—->1 1——>1

0—>1 0—>0 1—>1

0—+10-+1 1-—)0

0—>01—>0 1—>1

0—>01-—>1 1—>1

0—>11—>0 1—91

0—+11—>1 1—+0

1—+0 0——>0 1—>1

1—>0 0—+1 1-—>1

1—+10—+0 1—+1

1—>1 0—>1 1—+O

1—>01—+0 0—>1

1—>0 1-—>1 O—>1

1—+11—+0 0—+1

1—>11—>1 0—>0
     

Table 2.2. Efl'ects of uncorrelated inputs.

 

 

 

  

x1 2:2 NAND

0—+0 O—>0 1—>1

0—>1 0—>1 1—>O

1—>0 1——>0 0—+1

1—>1 1——>1 0—>0    
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Table 2.3. Effects of spatially correlated inputs.

  

  



 
 

 

  

1171 £122 NAND

0—+10—>0 1—+1

O—>10—+1 1—>0

0—>11—->0 1—>1

1—>0 0——>0 1—>1

1—90 0—+1 1—>1

1—>01—>0 0—>1

1—>10—>0 1—>1

1—>10—>1 1—>O

1—>11—>0 0—>1    
 

Table 2.4. Effects of temporal input correlations.

  

 

    

$1 $2 NAND

0—+O O—+O 1—>1

0—>O 1—+1 1—>l

O—+1 0——>1 1—>O

0—>1 1—+0 1—>1

1—>0 1-—>0 0—>1

1—+0 0—+1 1—>1

1—>1 0—>0 1—+1

1—>1 1-—>1 0—+0  
 

  

  
Table 2.5. Effects of spatio—temporal input correlations.

2.1 .2 Glitch Activity

Spurious transitions at any node outputs represent an additional component of the

switching activity. The spurious transitions, known as glitches or glitch activity, are

1mWanted transitions that occur before a node settles to its final steady-state value.

The Simple circuit and waveform shown in Figure 2.1 demonstrate the effects of glitch

activity. The output y of the circuit should always remain at logic one, but due to
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internal delays injected by the inverter (denoted by signal are) a transient drop to

logic zero occurs at the output. Glitches are apparent at the architectural level in

static designs due to finite propagation delays from one logic block to the next block

resulting in a node having multiple transitions in a single clock cycle before settling

to the correct logic level [4]. Each of the spurious transitions consumes power and

yiiwiw
 

 

 

  
0123456789

Figure 2.1. Glitch example.

may account for as much as 10 to 40 percent of the switching activity power loss in

typical combinational logic circuits [3]. It was reported by Shen et al. [5] that glitches

accounted for 20 percent of the power dissipation over a range of circuits, and circuits

such as combinational adders were subject to a 70 percent or more power dissipation

due to glitch activity.

2.1 .3 Delay Model

The delay model used for switching activity estimation is an important factor. Models

web as zero delay and real delay make different assumptions concerning the propaga-

tion 0f the signals throughout the circuit. In the zero delay model it is assumed that

all Changes at the circuit inputs reach the internal gates of the circuit instantaneously,
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which allows for a glitch-free representation of the circuit. In the case of the real delay

model, each gate in the circuit is given a delay. This in turn, may cause internal and

output nodes to experience multiple transitions during a single input transition. In

many circuits, glitch activity accounts for a large percentage of the switching activity,

thus making the calculation of the switching activity more difficult. The difficulties

arise in the determination of the glitch locations.

2.1.4 Logic Function

The logic function implemented by a circuit directly influences the switching activity.

The logic function of a gate determines the probability that the present value of the

gate will differ from the previous value. For example, the truth table (Table 2.6)

provides the logic input/output conditions for two-input AND, OR, and XOR gates.

To mimic the logic in this truth table from a probability perspective, the signal

probability table (Table 2.7) uses p to denote the probability that an input signal

equals logic 1 or P(x, = 1), and uses g, which is 1 — p, to denote the probability

that an input signal equals logic 0 or P(x, = 0). The signal probability for the logic

gate outputs are computed by summing the probability permutation entries, which

indicate a logic 1 at the gate’s output of the truth table for the corresponding input

combination. The resulting switching activities for each two-input gate (Table 2.8)

are computed by applying Equation 2.1 to the signal probabilities.

.732 AND OR XOR

O O OO

1 O l 1

O 0 1 1

1 1 1 O

 

Table 2.6. Two-input AND, OR, XOR truth table.
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P,(;I:1) P,(:1:2) P,(AND) P,(0R) P,(XOR)

q q (12 <12 «172

q p 41) (qr) (qr)

:9 q M (pq) (pq)

p p (1)?) (1)2) :22     
 

 

Table 2.7. Two-input AND, OR, XOR signal probability table.

 

 

 

    

g Ps(g) Esw(g)

AND 102 2192(1 - 102)

OR 1 - (12 MO - (12)

XOR 2m 4(1 - 2mm    
 

  

Table 2.8. Switching activities for two—input AND, OR, XOR gates.

2.1.5 Circuit Structure

The circuit structure may also cause difficulties in computing the switching activity

when reconvergent fanout nodes are considered. This problem is more challenging

because the internal signals may be correlated, potentially requiring a large amount

of computational effort and memory usage. Some power estimation techniques ignore

these fanout correlations. Approximations may be used to improve accuracy while

shortening the execution time of the simulation.

The simple circuit depicted in Figure 2.2 contains reconvergent fanout. The gate

outputs, M1 and M2, are correlated due to their common dependence on input 232. The

correlation results in a signal probability overestimate (Equation 2.4) at output F,

when assuming M1 and M2 are independent. This common inaccuracy is attributed

to a statistical inequivalence of two Boolean expression forms (Equations 2.2 and 2.3)
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Figure 2.2. Reconvergent fanout circuit example.

  

which equivalently represent the output F. The correct signal probability (Equation

2.5) for node F is obtained when minimizing node F’s Boolean expression to Equation

2.3, followed by applying the OR-signal probability calculation given in Table 2.1. In

the reconvergent fanout example below, all input signal probabilities are assumed to

be 133(11): %

f1 = M1 + [”2

= (2:1 + 2:2) +(1r2 + 1:3) (2.2)

f2 = (331 + $2 + 1’33) (2-3)

Ps(f1) = PSUIII'i—MQ)

= 1- (1 — P.(M1))(1— P.(M2))

z 1- (1 — as. + x2))(1— P3022 + $3»

= I; (Overestimate) (2.4)

P8(f2) = 1— (1 _ P3(.’171))(1— Ps($2))(1— P3033»

= g (Correct) (2-5)

Esw(f2) : 2'Ps(f2)‘(l-P8(f2))

7 1
= 2°§'§

14

251

= 0.219

28



 

  

 



 

2.2 Previous Work

Switching activity estimation techniques have usually been classified as either sta—

tistical or probabilistic, and in most cases are used at the circuit- or gate- level of

abstraction. In statistical methods, traditional models are used to simulate the cir-

cuit for a set of randomly chosen input vectors while monitoring the switching activity

on each circuit node. The input vectors are generated from user-specified probability

information. This approach uses statistical mean estimation techniques, such as the

Monte Carlo procedure, to determine when to terminate the simulation to obtain a

certain user-specified accuracy and confidence level.

In the probabilistic approach, a stochastic model describing the input signals along

with special library models for gates are used. The signal probabilities of the Circuit’s

Primary inputs are propagated into the circuit to promote switching activity at all

internal and output nodes.

Other methods of switching activity estimation are performed at a higher level of

abStraction. In general, these methods involve the transformation of a hardware de-

scriPtion language (HDL) behavioral specifications into register-transfer-level (RTL)

architectures followed by a simulation process to determine switching activity esti-

mates.

The following sections discuss previous work in the area of switching activity es-

tirnation for both statistical, probabilistic and high-level methods. The discussion

Su“llllarizes techniques which support combinational and sequential circuits, where

fa‘CtOI‘s such as delay model, circuit structure, glitch activity, and input pattern de-

Pendence are considered.
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2.2.1 Statistical Methods

Burch et al. [19] proposed a Monte Carlo simulation approach for the estimation of

power dissipation in combinational circuits which alleviates the problem of pattern

dependence by properly choosing the input vectors. The approach applies randomly

generated input patterns to the circuit while monitoring the power dissipation for T

clock cycles. Each measurement gives a power sample which is treated as a random

variable. As the sample size T approaches infinity, the sample distribution approaches

a normal distribution in accordance with the central limit theorem. Sample sizes

greater than 30 ensure normal density for most combinational circuits. To establish

a stopping criterion, the normality assumption is required, where total power (PT)

is normally distributed for any T. N different simulations of the circuit of length T

are performed, producing the sample average (771*) and the sample standard deviation

(3T) , for N different PT values. According to [20], there is a (1 — a) at 100% confidence

that [171» — E[PT][ < t% - 5%, where tg. is obtained from the t-distribution with (N — 1)

degrees of freedom. As a result, for the desired percentage error e in the power

eStiInate and for a given confidence level (1 — a), the circuit must be simulated for N

lterations, where N is given as

 N = (ti 'ST)2. (2.6)
am

The Monte Carlo simulation method may not converge for circuits which do not

have normal power distributions. Non-convergence may also occur when T is too

Small. Moreover, the Monte Carlo method does not support sequential circuits since

it must wait for a setup time TMAX , where TMAX iS the longest delay along any

path. For sequential circuits TMAX z 00. The setup time is the time required before

the beginning of a sample interval to guarantee stationarity of the circuit’s internal

tramsition process. A process is called stationary if its distribution functions or certain
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expected values are invariant with respect to time [21]. When this technique was

applied to ISCAS-85 benchmark circuits, the maximum error for a 5% accuracy and

99% confidence level was greater than 5% for only 1% of the cases [19].

Stamoulis proposed a Monte Carlo approach for estimating switching activity

in sequential circuits based on the analysis of paths in the state transition graph

(STG) [22]. The simulation is performed at the gate-level and obtains an accuracy

within 10% of the actual switching probability value for a particular node with a 95%

confidence level. Using the circuit described by Figure 2.3 the approach focuses on

accurately determining the switching probabilities at the flip-flop output nodes.
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Figure 2.3. Sequential circuit model.
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The following assumptions are made: 1) the circuit can be in any of the states

with equal probability upon power up, 2) the latch outputs are glitch-free, and 3)

all latches reach steady state before the next state enters the combinational logic.
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These assumptions allow for the estimation of the power dissipation of the latches

separately from the rest of the circuit (i.e., the combinational part), and constrain the

number of latch output transitions to at most one per clock cycle. By the definition

of initializable circuits, the stochastic processes which describe the state of the flip—

flops in the time domain are stationary. States that are N clock ticks apart become

independent as N —-) 00. This ensures that the node processes are also mean ergodic.

The mean ergodicity property refers to a stationary random process X (t), where the

ensemble averages [umhw satisfy 1) fiEEOEU/‘xlTl = pa, and 2) #51; Var{[ux]T} = O

[21]. By using the “path” notion in the STG, long time-consuming simulations are

avoided. Pathwise averages are computed using sample simulations with different ini-

tial conditions. The estimation process is performed in two steps. First, the pathwise

transition probabilities are estimated using Monte Carlo simulation to determine the

minimum number of path samples which will contribute to an error s with confidence

(1— 01):: 100%. Second, the average switching probability estimation is computed over

all paths, with the switching probability estimate of each path being one measure-

ment. The results of this technique when applied to ISCAS-89 benchmark circuits

indicate switching probabilities can be estimated with 5% accuracy at a 95% confi-

dence level [22].

Xakellis et al. [23] proposed a switching activity estimation approach which effi-

ciently estimates the transition density at all circuit nodes. This technique improves

upon the approach proposed in [19] by eliminating the statistical sampling at single

gates, which requires a large number of input patterns for convergence. The conver-

gence problem is overcome by classifying nodes into low-density and regular-density

categories and applying absolute error bounds on low-density nodes instead of per-

centage error bounds. This is done by establishing a threshold to classify low- and

regular-density nodes. A node with a transition density value less than the threshold

is a low-density node; nodes with a transition density equal to or above the thresh-
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old are regular density nodes. The advantage of this method is that it allows the

desired accuracy error bounds to be specified by the user. The user also supplies

the transition density for every input node, which is the fraction of time the circuit

input signal is high. If the circuit input probability is not specified, it is assigned a

default value of %. Next, a random number generator is used to generate the logic

input waveforms which drive the simulator. For a given period T, the number of

transitions at each node is counted. This process is repeated N times to form an

average transition density at each node. This approach, just as in [19], requires a

normal distribution of the node densities to establish a stopping criterion with con-

fidence (1 -—- oz) :1: 100%. Additionally, for synchronous mode simulation, the input

signals are assumed to be Markov. The speed of the algorithm is strongly affected by

the user-specified threshold which will determine the stopping criterion for the two

categories of nodes. Convergence speeds are improved while sacrificing accuracy only

at low-density nodes. When tested on a variety of ISCAS-85 benchmark circuits, it

was found that over 95% of regular node transition density values have less than 5%

error. Low density nodes performed well; over 95% of the low-density node transition

values were found to be less than the specified absolute error [23].

Another Monte Carlo simulation technique was proposed by Najm et al. [24] in

which a method for estimating the switching activity at the latch outputs of sequential

circuits is discussed. Similar to [23], this approach makes use of up—front user-specified

accuracy information. The algorithm runs until the specified accuracy is achieved.

This technique applies a number of randomly generated input vectors to the circuit

and collects statistics at the latch output using zero-delay logic simulation. When

computing the state line probabilities (signal probability of latch outputs), the Monte

Carlo approach is used for estimating N, the number of iterations necessary to achieve

the user-specified error-tolerance e and confidence level oz [23, 25]. The approach

makes two assumptions: 1) the sequential circuit is a non-decomposable FSM, and
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2) the state of the machine at time K becomes independent of its initial state as

K —) oo. Assumption 2 implies that the FSM is aperiodic in that it does not cycle

through a repetitive pattern of states. The method requires that two simulation runs

be performed, with each run starting in a different initial state, say (X0,X1). The

signal probabilities PK(z,-|Xo) and PK(:1:,-|X1) are computed for increasing values of

K. Both simulation run estimates should converge to P(r), the signal probability

of the input signal. When both measures remain within a window of is for three

consecutive time instants, the node is assumed to have reached convergence. When

all nodes have converged, the simulation is complete and the average of the last

PK(:r,-|X0) and PK(a:,-|X1) value is reported as the signal probability P(zi), for each

:ri. An important feature of this technique is that no assumptions about the FSM

behavior (Markov or otherwise) or state line independence is made. Results for this

approach on sequential circuits with 1452 flip—flops required 4.6 hours of simulation

time (SUN SparclO) to achieve an error tolerance of 5% with confidence 95% [24].

2.2.2 Probabilistic Methods

Ghosh et al. [26] proposed a probabilistic method for the estimation of average switch-

ing activity in combinational and sequential circuits. The method considers temporal

correlation at the internal nodes and outputs, but requires that the primary inputs

be uncorrelated. The method automatically computes switching rates and correlation

among flip-flop outputs of FSM’s. The behavior of the primary inputs is described

in terms of their transition probabilities. The general delay model is used to cor-

rectly compute Boolean conditions by compensating for glitch activity. For the signal

at, the transition probabilities are p2, which denotes the probability that the sig-

nal a: will experience a transition from state i to j. The probability of the signal

a: changing from 1 to O is p],0 = —,1,7$(k)§(k—+—1—) The signal probability of node a:

in terms of transition probabilities is P,(:1:) = P; = P310 + P3”. These signal prob-
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abilities are propagated from the inputs to internal and output nodes by summing

the probabilities which disjointly cover the Boolean function in terms of its primary

inputs. For example, if the function g = 3:372 + Eyz + 5372, then P(g 2 1) or

P9 = p($)p(y)p(z) + p(E)p(y)p(z) + p(f)p(y)p(§). The transition probabilities are

propagated from the inputs to internal and output nodes by finding the signal prob-

ability of the XOR of the Boolean function of each node in two consecutive time

frames. For node y, P,(y) = P,(y(t) ®y(t + 1)). For a two-input AND gate, where

y = 271 AND $2, the following equations apply:

PAS!) = P3[$1(t)$2(t)$$1(t+1)$2(t+1)] = Pslflyll

fl?!) = Cl71(t+1)1131(l)-’152(15)‘l'

and

Pslf (31)] = vii 19.1.2 + pig mil + p211 191-2 + pit 19312-

Binary decision diagrams (BDDs) are used for the calculation of the signal probabil-

ities for each of the Boolean functions [27]. This is more simplistic than the enumer-

ation of disjoint covers for each Boolean function. The exact signal probabilities can

be computed by performing a linear traversal of the BDD representation of a logic

function [28, 29]. To account for gate delays a symbolic simulation method is used to

generate a multiple-output function that represents the total switching activity over

any possible input vector pair.

The method proposed by Ghosh et al. [26] may also be applied to FSM’s. This

technique accounts for correlation by transforming the conventional FSM structure
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(Figure 2.3) to a new structure (Figure 2.4) containing symbolic simulation equations

which represent internal and output nodes in the next state logic. For the present

state, the gate output’s switching activity can only be determined by primary inputs.

To compute the transition probabilities, the static probabilities for the present state

are used. The next state logic generates Boolean equations which model correlation

between the present and next states, thus computing the transition probabilities auto-

matically, which considers the correlation between transitions. This method assumes

that present state lines are uncorrelated and that upon power-up the FSM can be in

any of the 2N states, where N is number of flip—flops.
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Figure 2.4. Symbolic sequential circuit model.

In [29] a new measure of activity, the transition density is proposed. The transition

density may be defined as the average switching rate at a node. This method uses a

stochastic model of the logic signals in which the density values of the primary inputs

are prOpagated to internal and output nodes. The transition density at a: is defined

as D(:r) = 11:“; 3%3, where nx(T) is the number of transitions of the signal x(t) at

node :1: in the interval (—§, g]. The propagation algorithm involves a single pass over

the circuit and computes the transition density at all nodes. The primary inputs are

considered to be spatially independent and strict sense stationary (SSS). A random

process X(t) is called strict sense stationary (SSS) if all of the distribution functions
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describing the process are invariant under a translation of time [21]. The transition

density at each node is defined as

 pip (3:?) Dee), (2.7)

i=1

where 5% represents the Boolean difference of a function y with respect to signal :12,-

and P(-) represents the equilibrium probability. Since the input signals are SSS, the

output will have the same statistics as its inputs. The zero-delay model is assumed,

and the algorithm is limited to combinational circuits only. The algorithm considers

the circuit to be an interconnection of logic modules, where each module represents

a Boolean function based on the zero-delay model. The drawback to the approach

concerns the input independence requirement. If the circuit topology includes re-

convergent fanout and feedback, then internal nodes could become correlated, thus

possibly destroying the independence property. The propagation of density and prob-

ability proceeds on a per module basis from the primary inputs to primary outputs.

Next, the equilibrium probability, P (g3), is evaluated for each node in a module,

on a per module basis using the BDD [30]. This approach has a high cost in time

and memory usage because the propagation algorithm must interact with the BDD,

which may grow exponentially with respect to the number and order of the circuit

inputs.

In [31] an improvement in the accuracy of circuit activity measurement is dis-

cussed. This technique offers a more efficient mechanism for computing the Boolean

difl'erence probabilities at each node of the circuit, which are necessary for the esti-

mation of transition density [24]. In addition, this method allows measurements to be

made in a pattern independent manner. The algorithm partitions the combinational

circuit, which is modeled as a directed acyclic graph, with the goal of maximizing the

number of correlated nodes within each partition.
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The partitioning aspect of the algorithm prevents overestimation and underesti-

mation inaccuracies in the density simulation which may occur from the correlation of

fanout inputs in the circuit. To compute the Boolean difference probabilities for each

node in a given circuit, this method constructs an ordered BDD (OBDD), by using

the APPLY and RESTRICT procedures at each node [27]. The APPLY procedure

provides the basic method for creating the representation of a function according to

the operators in a Boolean expression or logic gate network. The RESTRICT proce-

dure transforms the graph representing a function f into a function representing the

function f[:r,-:b for specified values of i and b. The efficiency of the computation for

producing maximally reduced OBDDs is improved according to the gate operation

needed. The development of a new operation, the DIFFERENCE operation, gener-

ates Boolean difference functions by applying algebraic operations to other functions.

The DIFFERENCE operation is implemented as a sequence of APPLY operations.

The partitioning aspect of the technique allows for an improvement in accuracy

as the size of the partition grows. However, as the size of the OBDD grows, the

algorithm slows down. The OBDD can grow exponentially with the number of inputs.

For this reason the number of inputs is chosen as a parameter to determine partition

size. Next, a breadth—first search is applied at every primary input such that each

partition consists of a single output with k variables, where the variables may be

primary outputs or inputs. The circuit partitioning procedure stops when each node

belongs to a partition which contains k or fewer input variables. The purpose of

the circuit partitioning is to keep each partition small enough to achieve accurate

results. The partitions are then placed in a partition set, stored in the order of their

formation. The transition density is computed for each partition by computing the

Boolean difference probability. The drawback to the technique is the rapid growth of

the OBDD, which leads to memory overflow problems. Experimental results report

that for 50 combinational circuits, with up to 20 inputs, this technique required 40%
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71/81 : f1('l1..i]\1,P81..P81V') (2.8)

7182 = f2(l1..lM,P81..PSN)

”SN '3 fN(ll..l)\1,P81..PSN)

and

P(nsl) = P(f1(’ll..lM,P81..PSN)) (2.9)

P(nsg) = P(f2(ll..7:M,P81..PSN))

P(TLSN) = P(fN(i1..’lM,P81..PSN))

where P(nsl) = P(nsl = 1) and P(ps,) :2 P(ns,) = p, for 1 < i < N. The present

state line probabilities are applied to a nonlinear function g and a nonlinear system

of equations is given by

91 = P1 —‘ 91(P1,P2, "-9le = 0 (2-10)

212 = P2 - 92(P1,P2,---,PN) = 0

yN : pN _ gN(I)1)p2?”°,pN)= O

The nonlinear system of equations may be denoted as Y(P) = 0 or P = C(P). An

iterative solution can be obtained by the use of the Newton-Raphson method for

the system Y(P) = O [33]. Given the nonlinear system of equations, P = G(P),

the Picard-Peano method can be applied to determine a solution [32]. Since the
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nonlinear solutions do not capture correlation between state line probabilities, minor

inaccuracies are incurred.

To improve accuracy, an unrolling of the next state logic network is performed

(Figure 2.5) [32]. The signal probabilities are approximated by unrolling the next

state logic k times, where k is a user-specified parameter. Usually an unrolling of the

next state logic improves the accuracy of the results. For k = 3 the average error was

reported to be only 1.5% [32]. As It increases the time consumption increases, along

with a decrease in average error.

 

(signal probability feedback)

  

 NS" N3“

+

PS° I Ps“
—' o o o ———-’

(k=a user defined limit)

 

      

Figure 2.5. k-unrolling of next state logic.

The correlation accuracy improvement (m-expanded network) involves modifying

the next state logic by selecting m-tuples of the present state lines, separated by

one clock cycle, and computing probabilities for each combination of the m-tuples

pairs (Figure 2.6) [33]. These probability values are fed into the combinational logic

block. Using the ISCAS-85 benchmark circuits, the m—expanded network method for

an accuracy improvement with m = 2 obtained an average error less than 4.1%, and

for m = 4 the reported average error was less than 3.6% [33].

Cheng et al. [34] prOposed a method to increase the speed of estimation of power

dissipation by applying topological analysis to the circuit using the concept of super-
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Figure 2.6. m-expanded network with m=2.

gates. The supergate of a node in a combinational circuit is the minimal subcircuit

whose inputs are logically independent. The algorithm transforms a circuit to an

undirected graph and solves the problem of finding supergates by finding articula-

tion points in an undirected graph. An articulation point is defined as a node whose

removal disconnects the graph. The supergate concept allows for the partitioning of

BDDs, where each partition boundary is defined by its logically independent inputs.

When the supergate concept is applied to most BDD-based power estimation tech-

niques, for select benchmark circuits, cpu-time and memory usage are reduced by as

much as 86.2 and 94.0 percent, respectively [34].

2.2.3 High-Level Methods

A profile driven approach to low power behavioral synthesis is presented in Katkoori et

al. [35, 18]. The method presented is known as the Profile Driven Synthesis System

(PDSS). Given a behavioral design specification, a set of input vectors, a param-

eterized library module, and user-specified constraints such as area and speed, the

switching activity is estimated for the design. Each library module is characterized by

its average switching activity per input vector and consists of units such as adders,

registers, muxes, etc. The behavioral specification can be written in a hardware
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description language such as VHDL. The synthesized design consists of interacting

datapath and controller components. The datapath is composed of modules from the

module library and the controller is a finite state machine (FSM) implemented as a

PLA/microprogram. The PDSS accepts the behavioral VHDL specification as input

and extracts a data flow graph (DFG). The DFG is passed through a profiler, where

operations and carriers (edges of the DFG) are collected. In more detail, carriers are

defined as data flow edges that cross a control step boundary which denotes a value

that needs to be stored in a register. The goal of the profiling phase is to gather the

following: 1) the number of times a node is executed for a given profiling stimuli,

2) the number of times each edge is traversed during execution, and 3) the number

of times the edge value changes. Upon the completion of the profiling phase, four

additional phases are entered: 1) scheduling and performance estimation, 2) register

optimization, 3) interconnect optimization, and 4) controller generation.

During the scheduling and performance estimation phase, Operations in the DFG

are assigned to control steps and various operation nodes are bound to specific mod-

ules selected from the module library. The schedule is acceptable when the estimates

of the area and clock period satisfy the user-specified constraints. The register op-

timization phase groups carriers such that no two carriers in the same group are

simultaneously active. The interconnect Optimization phase involves the assignment

of interconnect paths to each value transfer in the DFG. The controller generation

phase produces a finite state machine description. The FSM accepts as input data-

path status flags and produces control signals which enable register transfers in the

datapath. DFG edges that cross control step boundaries denote state transitions in

the FSM. Each control step corresponds to at least one state in the FSM.

Using the data collected in the profiling phase, the PDSS system determines an

estimate for aggregate switching activity (ASA). The ASA is the sum of the switching

activities in the datapath and the controller. The switching activity associated with
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fewer nodes then the straight-forward way of computing Boolean difference equations.

In two simultaneous publications by Tsui et al. [32] and Monteiro et al. [33], exact

and approximate methods for estimating switching activity in FSM’s are discussed.

These techniques also closely model the work presented in [26] and share the same

sequential circuit and correlation decomposition structures (Figures 2.3 and 2.4).

Both techniques are almost identical with a few minor differences. To begin with, the

calculation of switching activity for sequential circuits must consider the probability of

the circuit being in any Of its 2N states, where N is the number of flip-flops. Further,

to arrive at an accurate estimate of switching activity, the values for the present state

line probabilities, steady-state probabilities, and signal probabilities must be known.

One method of exactly computing the steady-state probabilities is to find a solu-

tion to the 2” linear system of Chapman-Kolmogorov equations. Next, present state

line probabilities are computed from the steady-state probabilities and the signal

probability is computed by generating the Boolean function’s disjoint covering. The

computational cost of computing the steady-state probabilities from the Chapman-

Kolmogorov system of equations is very high, but produces the exact state probabili—

ties. The exact solution involves the system 7r = P7r or (I — P)1r = 0, where the vector

7r contains the steady-state probabilities. P is referred to as the transition probability

matrix, which is derived from the state transition graph (STG). To determine 7r, the

steady-state probability vector, the null-space of the system (I — P)7r = 0 must be

computed. As the number of states grows exponentially with the number of flip-flOps

it becomes impossible to build an STG for large sequential machines and thus the

exact method cannot be applied.

A more time-efficient but less accurate approach searches for an iterative solution

to a nonlinear system of N equations [32, 33]. This system of nonlinear equations

represents the next state logic preceding the symbolic combinational logic block in

Figure 2.4. The next and present state line probabilities have the following form:
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nsl = f1(i1..iM,Psl..PsN) (2.8)

71.32 = f2(i1..iM,Psl..PsN)

TLSN = fN(l1..lA[,P81..PSN)

and

P(TlSl) = P(f1(’ll..’l:M,P81..PSN)) (2.9)

P(nsg) '2 P(f2(i1..lM,P81..PSN))

a...) = P(f~(i1--iMaPSI--P3N))

where P(nsl) = P(nsl = 1) and P(ps,) = P(ns,) = p,- for 1 < i < N. The present

state line probabilities are applied to a nonlinear function g and a nonlinear system

of equations is given by

yl : Pl _ 91(p1ap27°"apN) : 0 (2'10)

P2 — 92(P1,P2, -o-,PN) = 0312

yN : pN — gN(p13p29°"3[)N) : 0-

The nonlinear system of equations may be denoted as Y(P) =2 O or P = G(P) An

iterative solution can be obtained by the use of the Newton-Raphson method for

the system Y(P) = O [33]. Given the nonlinear system of equations, P = C(P),

the Picard-Peano method can be applied to determine a solution [32]. Since the

40



nonlinear solutions do not capture correlation between state line probabilities, minor

inaccuracies are incurred.

To improve accuracy, an unrolling of the next state logic network is performed

(Figure 2.5) [32]. The signal probabilities are approximated by unrolling the next

state logic k times, where k is a user-specified parameter. Usually an unrolling of the

next state logic improves the accuracy of the results. For k = 3 the average error was

reported to be only 1.5% [32]. As It: increases the time consumption increases, along

with a decrease in average error.

 

(signal probability feedback)
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p
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(k=a user defined limit)

      

Figure 2.5. k-unrolling of next state logic.

The correlation accuracy improvement (m-expanded network) involves modifying

the next state logic by selecting m—tuples of the present state lines, separated by

one clock cycle, and computing probabilities for each combination of the m-tuples

pairs (Figure 2.6) [33]. These probability values are fed into the combinational logic

block. Using the ISCAS-85 benchmark circuits, the m-expanded network method for

an accuracy improvement with m = 2 obtained an average error less than 4.1%, and

for m = 4 the reported average error was less than 3.6% [33].

Cheng et al. [34] proposed a method to increase the speed of estimation of power

dissipation by applying topological analysis to the circuit using the concept of super-
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Figure 2.6. m-expanded network with m=2.

gates. The supergate of a node in a combinational circuit is the minimal subcircuit

whose inputs are logically independent. The algorithm transforms a circuit to an

undirected graph and solves the problem of finding supergates by finding articula-

tion points in an undirected graph. An articulation point is defined as a node whose

removal disconnects the graph. The supergate concept allows for the partitioning of

BDDs, where each partition boundary is defined by its logically independent inputs.

When the supergate concept is applied to most BDD-based power estimation tech-

niques, for select benchmark circuits, cpu-time and memory usage are reduced by as

much as 86.2 and 94.0 percent, respectively [34].

2.2.3 High-Level Methods

A profile driven approach to low power behavioral synthesis is presented in Katkoori et

al. [35, 18]. The method presented is known as the Profile Driven Synthesis System

(PDSS). Given a behavioral design specification, a set of input vectors, a param-

eterized library module, and user-specified constraints such as area and speed, the

switching activity is estimated for the design. Each library module is characterized by

its average switching activity per input vector and consists of units such as adders,

registers, muxes, etc. The behavioral specification can be written in a hardware
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description language such as VHDL. The synthesized design consists of interacting

datapath and controller components. The datapath is composed of modules from the

module library and the controller is a finite state machine (FSM) implemented as a

PLA/microprogram. The PDSS accepts the behavioral VHDL specification as input

and extracts a data flow graph (DFG). The DFG is passed through a profiler, where

operations and carriers (edges of the DFG) are collected. In more detail, carriers are

defined as data flow edges that cross a control step boundary which denotes a value

that needs to be stored in a register. The goal of the profiling phase is to gather the

following: 1) the number of times a node is executed for a given profiling stimuli,

2) the number of times each edge is traversed during execution, and 3) the number

of times the edge value changes. Upon the completion of the profiling phase, four

additional phases are entered: 1) scheduling and performance estimation, 2) register

optimization, 3) interconnect optimization, and 4) controller generation.

During the scheduling and performance estimation phase, operations in the DFG

are assigned to control steps and various operation nodes are bound to specific mod-

ules selected from the module library. The schedule is acceptable when the estimates

of the area and clock period satisfy the user-specified constraints. The register op-

timization phase groups carriers such that no two carriers in the same group are

simultaneously active. The interconnect optimization phase involves the assignment

of interconnect paths to each value transfer in the DFG. The controller generation

phase produces a finite state machine description. The FSM accepts as input data-

path status flags and produces control signals which enable register transfers in the

datapath. DFG edges that cross control step boundaries denote state transitions in

the FSM. Each control step corresponds to at least one state in the FSM.

Using the data collected in the profiling phase, the PDSS system determines an

estimate for aggregate switching activity (ASA). The ASA is the sum of the switching

activities in the datapath and the controller. The switching activity associated with
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the datapath is computed by summing the switching activities determined for the

following: combinational Operators, registers, and interconnection elements such as

buses, multiplexers, and wires. The switching activity contributed by the controller is

determined by analyzing the PLA structure used to implement the controller’s FSM.

The activity concerning the PLA structure is the sum Of the PLA’s input and output

plane switching activities. The experimental results of the method indicate that the

estimated switching activity deviates by less than 10% [35].

Landman et al. [36] present techniques for accurately estimating power consump-

tion based on a high-level description of the system architecture. This approach, based

on stochastic modeling of bus statistics, achieves the accuracy associated with gate-

level estimation tools. Algorithmic and architectural estimation techniques based on

high-level statistics such as mean, variance, and autocorrelation are developed using

concepts from the gate-level techniques. While gate-level techniques focus on power

consumed by individual Boolean logic gates as a function of their input probabilities;

this method considers module (adder, register, multiplier) power consumption in re-

gards to input-word statistics. For a variety of input distributions, the techniques

perform very well on real-world signals such as speech, music and image, typically

found in digital signal processing (DSP) applications. The results obtained from these

techniques exhibit an estimation accuracy within 9.4% of the gate-level simulations

[36].

In [37, 38] Nemani et al. and Najm, in similar publications, presented a digital

IC power estimation technique that Operates at the register-transfer—level (RTL). The

estimator is based on using entrOpy as a measure of the average activity to be expected

in the final circuit-level implementation. Entropy is a characterization of a random

variable or random process. If a: is a random Boolean variable with signal probability

p, then the entropy of :1: is defined as: H(3:) = p log2 %+ (1 — p) log2 0+“. The entropy

can be expressed for discrete systems in terms of inputs and outputs. The high-level
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power estimation methodology for a combinational circuit block that is part of a

synchronous sequential circuit involves the following steps:

1) Run a structural RTL simulation of the sequential circuit to measure the

input/output entropies of the combinational block.

2) From the input/output entropies, estimate average node density, circuit

area, and average power.

3) Combine with latch and clock power to compute total average power.

The area and average power estimates are computed via input/output entropy

estimates where A oc %H(Y), Pm,g oc A x H, such that H(Y) is the output entropy

and H is the average input entropy. When this method was tested against a zero—

delay model for 56 different ISCAS-85 benchmark circuits with sizes ranging from

100 to 22,000 gates, the error was reported to be less than 9% with a 90% confidence

level [37].

In summary, the estimates generated by current high-level power and switching

activity computation methods experience between 9% to 12% error on average. For

some circuits containing large amounts of reconvergent fanout the error is as high

as 80%. The error experienced by current high-level power and switching activity

estimation techniques is too high. This dissertation presents a new methodology for

improved switching activity estimation of behavioral-level designs described in VHDL.
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CHAPTER 3

Behavioral Representations of

Switching Functions

The fundamental building blocks of digital systems are switching functions. This

chapter specifically addresses the use of Boolean switching functions. A review of

terminology and notation used to describe the functional and mathematical models

of Boolean switching functions when applied to behavioral design of digital systems is

provided. Additionally, a discussion of various behavioral representations for switch-

ing functions is provided as well.

3. 1 Switching Algebra Background

The mathematics which define rules and operations for processing the binary set

{0, 1} in a combinational digital system is called Switching Algebra, also known as

t“VG-Valued Boolean algebra, developed by English mathematician George Boole in

1854. The most primitive Operations applied to variables (i.e., V33,- 6 {0,1}) of the

binary set are “-”, “+”, and “—”, which denote switching algebra operations, also

called logic Operations. A switching algebra must satisfy Huntington’s postulates

(Table 3.1), which define the basis of switching algebra theory [39].
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Closure 11:,y 6 {0,1} ——> (a:+y) 6 {0,1}

:c,y€ {0,1}—>(r-y)€ {0,1}

Identity $+O=$ 23-020

$+1=1 vl-x

Commutative 3+3] = y +2:

x'y=y-$
 

Distributive :r + (y - z) = (.7: + y)(:r + z)

$‘(y+2)= (IE-y)+($'2)

Complement :1: + f = 1

a: - E = O

 

     
 

 

Table 3.1. Huntington’s postulates.

3.2 Truth Tables

” fl.” “_”

The definition of the three logic Operators ( “+ , , ) can be deduced from Hunt-

ington’s postulates using truth tables. A truth table is a mechanism for systematically

enumerating the output or result of a logic operation for every possible Boolean input

combination. The truth table can be extended to enumerate the outputs for switch-

ing functions consisting of sets of logic operations and Boolean operands. A double

vertical bar is used to separate truth table inputs from truth table outputs. The

commonly used truth table convention places inputs on the left of the double vertical

bar, with outputs placed to the right.

3.2.1 Logic Operations

The “—” logic operation is called the complement, NOT, or invert operation, of which

the term NOT is the most commonly used. The NOT operation is a unary logic

operation, meaning that it operates on a single operand. When the NOT operation

is applied to the Boolean operand :c, the result is f. The truth table in Table 3.2(a)

shows that the NOT operation changes 0 to 1 and changes 1 to 0.
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a: f .1: y a: . y a: y :r+y

O 1 0 0 0 0 0 0

1 0 O 1 0 O 1 1

1 0 0 1 0 1

1 1 1 1 1 1

(a) NOT (b) AND (c) OR

Table 3.2. Truth tables for NOT, AND, OR logic operations.

The “3’ logic operation is called the AND or conjunction operation. The term

AND is most commonly used. It is a binary operator, meaning that it takes two

operands and generates 22 input combinations. The result after applying the AND

operation to binary operands :1: and y is 1, only when :1: = y = 1, otherwise the result

is 0. The truth table in Table 3.2(b) depicts the AND logic operation.

The “+” logic Operation is called the OR or disjunction operation. The term OR is

most commonly used and is classified as a binary operator. The result after applying

the OR operation to binary Operands a: and y is 0, only when a: = y = 0, otherwise

the result is 1. The truth table in Table 3.2(c) depicts the OR logic operation.

The truth table technique is an implementation-independent method of repre-

senting switching functions. 'Ituth tables are considered behavioral representations

because no reference to technology, structure, or implementation is made. The truth

table completely specifies a switching function’s output for all possible (2”) input

combinations, where N is the number of Boolean inputs. Consider the 3-input switch-

ing function which represents the carry-out bit for a full-adder (FA). The FA carry-out

bit input/output behavior is specified for all 23 inputs sequences (Table 3.3).
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a b c,-,, cont

0 0 O 0

O 0 1 O

0 1 0 0

0 1 1 1

1 0 0 O

1 0 1 1

1 1 O 1

1 1 1 1         
 

 

Table 3.3. Truth table for full-adder carry-out bit.

3.2.2 Output Enumeration

The outputs of switching functions are easily enumerated with truth tables. Each row

of a fully specified truth table is referred to as a term or product. The term represents

the input combination that determines the output of a switching function. Each

term or product is logically an AND-product of input variable literals. A switching

function consisting of N input variables has 2” terms. The enumeration of terms

utilizes the base-2 number system because switching algebra is defined against a two-

valued domain of {0, 1}. The expression for representing a term’s decimal equivalent

for an ordered n-bit sequence (xn_1, $n_2, - - -, 231,170) is

n—1

X = x.._,2"-1+ x.._22"-2 + . . - + $121+ 2:020 = Z 1:,2’ (3.1)

120

3.3 Boolean Expressions

The full-adder’s carry-out bit switching function described by the truth table in Table

3.3 has 23 terms, numbered from O to 7 using Equation 3.1. The terms which result

in switching function’s output of logic 1 are known as minterms. The carry-out bit

switching function has four minterms and can be expressed in the following forms:
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f(a,b,c,-,,) = 011+101+110+111 (3.2)

2 about + abc,n + abfi; + abctn (3-3)

2 mg + ms + m6 + m7 (3'4)

2 Z m(3, 5, 6, 7) (3.5)

Each of the forms represent what is known as a Boolean expression. The Boolean

expression is an n-variable function of Boolean inputs whose output is Boolean, or

f (:13) : {0, 1}" —> {0,1}. Equations 3.2 and 3.3 represent the minterms of the carry-

out bit switching function in binary and literal form, respectively. Each switching

variable is expressed as un/complemented (1 /0) for the specified input combination.

Equation 3.4 uses a shorthand notation for minterms, m3. The subscript x denotes

the associated row of the truth table or binary value of the input combination. Equa-

tion 3.5 is the most commonly used form for representing minterm lists, it is a more

compact representation of the form in Equation 3.4. The switching function repre-

sentations shown in Equations 3.2, 3.4, and 3.5 are known as canonical minterm or

sum-of-products (SOP) expressions. After reducing Equation 3.3, using Huntington’s

postulates, the resulting Boolean expression is

f(a1 b) Gin) : ab + cin(a + b)' (36)

The reduced Boolean expression (Equation 3.6) is in SOP form, but it is not

a canonical minterm expression because the product terms are not minterms. The

canonical minterm expressions, as well as Boolean expressions, are implementation-

independent methods for representing the input/output behavior of switching func-

tions. Boolean expressions do not consider technology, circuit structure, or imple-
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mentation of a digital design. The advantage of the canonical minterm expression

representation over the truth table representation is size. Canonical minterm ex-

pressions are more compact than truth tables. Truth tables represent all 2N input

combinations, whereas canonical minterm expression representations list the input

combinations for which the switching function’s output is logic 1 only.

3.4 Binary Decision Diagrams

Probability-based power analysis tools depend heavily on Binary Decision Diagrams

(BDDs) to determine signal activity. Historic uses of BDDs have been in the digital

circuit design areas of synthesis, verification, and testing. The BDD is not a new

concept. As early as 1959, Lee [40] introduced the concept of Binary Decision Pro-

grams and a set of rules to transform these programs into switching circuits. Later,

in 1978, Akers [41] revisited the concept of BDDs by using the diagram as a means

to define, analyze, and test large digital functions from an implementation-free per-

spective. It was in 1986 that Bryant [27] demonstrated the advantages of BDDs as

a canonical representation. Bryant demonstrated that BDDs have two very useful

properties. First, BDDs are canonical: given two circuits, they are equivalent if their

BDDs are identical. Second, BDDs are effective at representing combinatorially large

sets, which is useful in FSM equivalence checking and logic minimization.

BDDs represent a switching function as a directed acyclic graph (DAG). A graph

consists of an interconnection of nodes (vertices) and edges (arcs). There are two node

types: decision nodes or terminal nodes. Terminal nodes are characterized by not

having outgoing edges which lead to children nodes and contain fixed values which

possibly correspond to the output of a function. Decision nodes are characterized by

having outgoing edges which lead to other decision nodes and terminal nodes. The

decision node is labeled with a variable identifier and has one outgoing edge for each
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value this variable can assume.

Since Boolean decisions are being made, the decision node variable identifiers can

only assume the values of O and 1. The terminal node values will be fixed at either

0 or 1, and the possibilities for edges will be either the O-edge or 1-edge. The O-

edge will be chosen when the decision node variable assumes the value 0 and the

Ledge is chosen when the decision node variable takes on the value 1. Figure 3.1

is a BDD representing the full-adder (FA) carry-out bit switching function described

by Equation 3.6 and Table 3.3. Typically in BDD graphs dotted arcs represent the

O-edges while the solid arcs represent 1-edges.

ii 

     

Figure 3.1. BDD of full-adder carry-out bit.

The BDD size is directly related to the number of nodes in the BDD’s graph, which

is controlled by the number of input variables and their ordering. One such BDD

type, the Ordered Binary Decision Diagram (OBDD), addresses the BDD size issue

by considering input variable ordering. The ordering of input variables determines

the level at which each input will appear in the BDD’s graph. In the OBDD the

ordering will remain the same for each path taken from the root (lowest order) node

to a terminal node. Different input variable orderings lead to different BDDS, with
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each potentially having a different size.

Consider the switching function given by Equation 3.7. An input variable ordering

of a < d < b < c leads to the BDD displayed in Figure 3.2, while an input variable

ordering of b < c < a < d leads to the BDD representation displayed in Figure 3.3.

f(a, b, c, d) 2 abc + bd + Ed (3.7)

  
Figure 3.2. BDD with ordering 1. Figure 3.3. BDD with ordering 2.

Clearly the second ordering provides the more compact BDD representation; it

has a smaller node count. Hence, a good input variable ordering will yield a more

compact BDD representation with reasonable memory usage [42]. A modification

to the OBDD is the Reduced-Ordered BDD (ROBDD). An initial ordering is given

in the ROBDD, and the iterative identification and removal of isomorphic subgraphs

and redundant nodes takes place [39]. The removal results in a BDD which is minimal

for the given input variable ordering and canonical in form.

Once such ROBDD implementation was developed by Brace et al. [30]. This

ROBDD implementation made improvements in the if-then-else (ITE) operator, hash-

ing technique, and memory garbage collection. The results reported that an amortized

memory cost of 22 bytes per node was achieved. Additionally, it was reported that

the improvements yielded a faster, more memory-efficient ROBDD implementation
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than the original implementation presented in [27].

Shen et al. [43], proposed a data structure called the Free Boolean Diagram (FBD),

which improved the ROBDD representation by trading off canonicity. One distinction

between the ROBDD and the FBD is that the FBD allows different input variable

orderings along different paths from the root node to a terminal node. Additionally,

the nodes in the graph of the FBD may be of type function (XOR or AND nodes),

which is further discussed in [43]. It was reported that the FBD implementation

resulted in an amortized memory cost of 32 bytes per node and for certain cases the

FBD size was significantly reduced [43]. The FBD implementation is an improvement

over the ROBDD implementation for certain circuits because its total memory usage

for behavioral representation is less.

3.5 Behavioral VHDL Specifications

VHDL, short for VHSIC (Very High Speed IC) Hardware Description Language, is

a formal notation for hardware description, standardized by the IEEE in 1987, that

allows for, among other descriptions, the behavioral-level design of a digital system

[44]. The VHDL behavioral specification supports the modeling of digital hardware

using sequential statements similar to programming languages such as Ada, C, or

Pascal. VHDL, just like the previously mentioned programming languages, contains

loop, if-then-else, and assignment constructs.

A VHDL model is comprised of entities and architectures. An entity defines the

interface between a system and its environment, such as signals that flow into and

out of the system or component. The architecture describes the functional nature of

the digital system; it defines how the outputs respond to the inputs.

A behavioral VHDL specification describing the carry-out bit of a full-adder

(FA) is given in Figure 3.4, where the architecture closely resembles the Boolean
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function defined by Equation 3.6. Behavioral VHDL specifications are high—level

implementation-independent representations which describe the functional nature of

a digital system without any reference to circuit structure or technology.

ENTITY CARRY is

port (A, B, Cin : IN BIT;

Cout : OUT BIT);

end CARRY;

ARCHITECTURE Behavioral of CARRY is

BEGIN -- Behavioral FA carry-out bit

Cout <= ((A and B) or (Gin and (A or B))) after 10ns;

END Behavioral;

Figure 3.4. Behavioral VHDL model of FA carry-out bit.
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CHAPTER 4

Structural Representations of

Switching Functions

The previously discussed behavioral representations describe only a Circuit’s function-

ality in terms of truth tables, Boolean expressions, or BDDs. When detailed infor-

mation, such as timing, speed, or area are needed, these representations are of little

use. To effectively describe the input/output relationships of a circuit, a lower level

of design abstraction is necessary. The logic— and circuit- design levels of abstraction

within the EDA process (Figure 1.1) provide information which enable designers to

obtain or calculate critical timing, speed, or area information. The logic- and circuit-

design levels of abstraction yield structural representations. Given a logic- or circuit-

level description, structural-level representations efl'ectively describe the design’s in-

put/output relationships, as well as the internal connectivity of circuit elements and

logic gates. This chapter deals with logic-level structural representations, including

the modeling of switching functions in terms of schematics, netlists, structural VHDL

specifications, and the Connective Binary Decision Diagram (CBDD).
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4.1 Schematics

Schematics or logic diagrams are a visual means of representing the structure of

a digital circuit design. Schematics illustrate connective relationships between a

circuit’s primary inputs/outputs, internal signals, and logic elements. Schematics

display the logic elements and the wires used to interconnect these elements. The

most basic logic elements used to perform the operations necessary to implement

switching functions are the NOT-, AND-, and OR- gates. The schematics of the

basic logic gates are illustrated in Figures 4.1, and they implement the behavior

given in the truth tables of Table 3.2.

-Dr- ID-
(a) NUT (b) AND (c) 0R

 

Figure 4.1. Schematics of basic logic gates.

The interconnection and recombination of these basic logic gates support the

design of more complex switching functions such as adders, ALUs, muxes, etc. By

interconnecting an arrangement of OR- and AND- gates, a structural representation

for the carry-out bit of the full-adder can be realized, Figure 4.2.

Vendors such as ViewLogic, Xilinx, and Mentor Graphics develop schematic

entry software systems which support the design of digital hardware. Schematic

entry software systems provide a pre-characterized library of logic elements with the

ability to place and wire these components to a design’s connective Specification. A

limitation of the schematic design approach is its difficulty supporting low-level and

detailed views of large and complex designs. Large and complex designs are limited

to system-level or hierarchical views.
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Figure 4.2. Logic diagram for FA carry-out bit.

4.2 Netlists

The structure of a circuit can be represented using a netlist. A netlist is a data

structure that describes all components connected to each net or to each internally

produced signal within a circuit. Industry standard formats exist for describing a

netlist enabling the easy transfer of designs between various design tools and vendors.

Design tools may use netlist formats which represent circuit structure at various

levels of design abstraction. For example, the SPICE tool considers the circuit-level

of design abstraction. SPICE netlists model a circuit as an interconnection of analog

elements such as capacitors, resistors, and transistors. The Berkeley SIS tool consid-

ers the logic-level of design abstraction. The widely used SIS netlist format, known

as Berkeley Logic Interchange Format (BLIF), models a digital circuit as an intercon-

nection of predefined or user-defined logic elements, which includes but is not limited

to, N/AND, N/OR, NOT, or XOR gates.

Consider Figure 4.3 which is a gate-level netlist that describes the structure of a

full-adder carry-out bit. The gate-level netlist example directly corresponds to the

logic diagram shown in Figure 4.2 and the Boolean expression given in Equation

3.6. In general, netlist representations describe the structure and connective relation-

ships visualized by schematic entry systems and may serve as their input. Similar
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.inputs c_in a b

.outputs c_out

.gate and2 a=a b=b 0=zl

.gate or2 a=a b=b 0=z2

.gate and2 a=z2 b=c_in 0=z3

.gate or2 a=zl b=23 0=c_out

.end

Figure 4.3. Gate-level BLIF netlist for FA carry-out bit.

to schematic-based design, netlist-based design is limited by circuit size (number Of

nets). As the circuit size grows, the difficulty of debugging and isolating problems

increases. Isolating circuit design problems given lower level circuit component gran-

ularity is a complex task when visually analyzing the netlist. Tools, such as analyzers

or simulators are needed to locate and assess low level problems.

4.3 Structural VHDL Specifications

In VHDL, design architectures may be developed using a structural specification.

Structural specifications express an architecture as a hierarchical arrangement of in-

terconnected components. The interconnected components may be pre—defined li-

brary units or user-defined units. Structural-based VHDL design is powerful because

it simplifies the development of complex systems. Larger or more complex systems

are easier to design because the high-level system architecture can be viewed as an

interconnection of less complex black boxes or components, which can be modeled

behaviorally or structurally. The interconnection of components is made possible

through the use of signals, which are analogous to wires.

A structural VHDL specification describing the carry-out bit of a full-adder (PA)

is depicted in Figure 4.4 where the architecture closely resembles the logic diagram in

Figure 4.2 and the gate-level netlist shown in Figure 4.3. Structural VHDL specifica-



ENTITY CARRY is

port (A, B, Cin : IN BIT;

Cout : OUT BIT);

END CARRY;

ARCHITECTURE Structural of CARRY is

-- declare internal components

COMPONENT or_gate

port (X, Y : IN BIT;

Z : OUT BIT);

END COMPONENT; '

COMPONENT and-gate

port (X, Y : IN BIT;

Z : OUT BIT);

END COMPONENT;

signal 21, 22, 23 : BIT;

BEGIN -- Structural FA carry-out bit

-- instantiate declared components to form structure

AND1 : and_gate port map (x=>a, Y=>b, Z=>Zl);

0R1 : or_gate port map (X=>a, Y=>b, Z=>Z2);

AND2 : and_gate port map (X=>22, Y=>Cin, Z=>23);

0R2 : or_gate port map (X=>21, Y=>23, Z=>Cout);

END Structural;

Figure 4.4. Structural VHDL model of FA carry-out bit.

tions are very useful when a design is decomposed into a set of components allowing a

system to be viewed as an interconnection of library or user-defined black boxes. The

structural VHDL design approach supports the interchanging of various off-the—shelf

cores and other pre—defined components to help a designer meet system requirements.

4.4 Connective Binary Decision Diagrams

The Connective Binary Decision Diagram (CBDD) is a variant of the standard BDD.

The CBDD is a major contribution of this research. It is entirely new and has some

advantages over the traditional BDD implementations. CBDDS model the structure
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present in a digital Circuit’s netlist description as well as the Circuit’s connective

relationships. The combination of the CBDD’S graph along with a set of graph

traversal algorithms provide the necessary support to construct compact structural

representations which maintain circuit behavior.

4.4.1 Motivation

The traditional BDD implementation is attractive because it is a canonical represen-

tation. The canonicity feature is very useful for circuit verification applications. But,

the advantages of the BDD quickly diminish when the circuit size becomes large. Tra-

ditional BDDs may result in multiple subgraphs, one for each internal and primary

output. Efficient manipulation of conventional BDDs is limited to modest-sized cir-

cuits. As the number of circuit inputs and logic elements increase, conventional BDD

graphs may experience exponential (z 2”) growth. Exponentially-sized graphs result

in CPU-intensive applications and may exhaust the available memory of a typical

workstation. Given the rapid advancement in VLSI design, the efficient representa—

tion of larger and more complex circuits by probabilistic power anaylsis tools is a

crucial requirement. To meet this challenge a new decision diagram, whose size does

not grow exponentially, is needed.

4.4.2 Overview

CBDD’s, unlike conventional BDD implementations, maintain a Circuit’s structural

input/output relationships and internal connectivity. The CBDD results in one di-

rected acyclic graph which completely represents the structure of an entire circuit.

The CBDD’s graph grows linearly. Its size is proportional to the number of logic el-

ements in the circuit description. As a result, for most circuits, CBDDs yield a more

compact graph representation when compared to conventional BDD implementations.
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4.4.3 Minimized Scalable BDDS

A significant component used to construct the CBDD’S graph is the minimized-

scalable BDD (MSBDD). MSBDDs are subgraphs which represent the behavior of

a Circuit’s structural building blocks such as gates, muxes, adders, etc. The MSBDD

concept is a contribution made by this research effort. Fundamentally, MSBDDs are

Binary Decision Diagrams as discussed in [27], but are minimal in the number of

nodes and edges used to construct the decision graph.

 

(a) f(a.h) = NAND(a.b) (b) f(mb) = NOR(a.b) (C) HELD) - XOR(a.b)

   
(d) f(a.h)=AND(a.b) (c) f(a.h)=0R(a.b) (f) f(a)==N()'l‘(a)

Figure 4.5. Minimized-scalable BDDS.

A revealing feature concerning the MSBDD is its ability to represent the behavior

of a variable-input logic block with minimal size (node count). The MSBDD is de-

signed to have a small number of decision nodes and only two terminal nodes for each

logic block representation. The minimal size is achieved by utilizing unique MSBDD

Generation Routines which recognize and exploit the output drive of the logic block

being represented by the MSBDD. The output drive is a simplified set of decision
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node interconnections which serves to minimized the logic block’s output path depth.

For example, an AND gate is O-driven. The presence of a logic 0 at any AND input,

regardless of fanin size, results in a logic 0 gate output. Likewise, a logic 1 at any OR

gate input results in a logic 1 output. Therefore, OR gates are l-driven. The output

drive feature considered by the MSBDD supports the construction of minimized de-

cision diagrams for certain logic elements such as NOT, NAND, AND, NOR, and OR

gates, Figure 4.5. It is accomplished by increasing the number of direct connections

or edges between decision nodes and terminal nodes within the MSBDD’s graph with

the goal of minimizing the depth.

4.4.3.1 MSBDD Generation Routines

The MSBDD generation routines are unique for each represented logic element. The

main goal of each MSBDD generation routine is to produce an interconnection of

nodes and edges which yield a decision diagram of limited size and depth. The CBDD

implementation utilizes MSBDD generation routines which mimic the behavior of

basic logic elements such as NOT, NAND, AND, NOR, and OR gates. Additionally,

the CBDD implementation supports the inclusion of more complex logic structures.

This is easily accomplished by adding a routine that generates an interconnection of

nodes and edges which mimic the intended behavior.

The Mk_NAND procedure illustrated in Algorithm 1 generates an MSBDD graph

that represents the behavior of an n—input NAND gate. This procedure interconnects

the MSBDD graph with a CBDD graph in a manner that mimics the structure found

in the input specification. The procedure utilizes three input parameters: a CBDD,

an argument list, and fanin size. The CBDD’s graph models the functionality of the

network described by an input netlist. The argument list contains the fanin names,

and fanin size is the number of inputs to the NAND gate.

Lines 2-4 of the Mk_NAND procedure build an array of decision nodes for each
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Procedure: Mk_NAND

input : G - CBDD of network

input : n - Fanin size

input : argv - Argument names

output : M’ - MSBDD of n-NAND logic gate

begin

for z' E 0..n do

vlist[i] (— Mk_CBDD_Node_Set(G, argu[t])

end

for z' 6 0..n do

Add_Edge(G', ultst[z’], ZEROJERMINAL, ZERO_EDGE)

end

for 2' E 0..n — 1 do

Add_Edge(G, vlz'st(i), ulz'st[z' + 1], ONE_EDG'E)

end

Add_Edge(G,vlist[n-1], 0NE.TERMINAL, 0NE.EDGE)

Add_Edge(G, ZEROJERMINAL, OUTJVODE, VALUE_EDGE)

Add_Edge(G, ONEJERMINAL, OUTJVODE, VALUE_EDGE)

14 M’ <— Connect_Nodes(G', n, ulz'st, OUTPUTNODE)

15 end

c
m
q
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h
u
u
u
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H
H
H
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Algorithm 1: Mk_NAND_msbdd

argument. Lines 5-7 generate O-edge connections between the decision nodes and

a zero-terminal node. Lines 8-10 perform l-edge connections between the decision

nodes. Line 11 connects the last decision node to a one-terminal node. Using a

value-edge, lines 12 and 13 connect the zero- and one— terminals to the output node.

Line 14 connects the newly created output node to the CBDD’S graph and returns

an MSBDD reference.

The Mk_CBDD_Node_Set, Add_Edge, and Connect.Nodes operations invoked by

the Mk-NAND procedure, run in 0(1) time. These operations are invoked a maximum

of 3n + 4 times, yielding a time complexity of 0(3n + 4), where n is the number of

inputs. Since a NAND gate is being modeled, n is usually small, resulting in n + 3

nodes and 272 + 2 edges. A similar routine exists for the remaining basic logic gates.

64

 



The CBDD package supports logic elements other than gates. The behavior of higher

level logic elements such as muses, adders and encoders can be modeled by the

construction of unique MSBDD structures.

4.4.4 CBDD Definitions

An advantage of the CBDD is its ability to maintain the Circuit’s structural in-

put/output relationships and internal connectivity. The definition of the CBDD is

based on the definitions of a DAG and conventional BDD. Structural and connective

relationships are achieved by altering the conventional BDD’s definition to support

additional node (vertex) and edge (arc) types and properties. The CBDD’s formal

definition is given and described by Definition 4.1 and Figure 4.6.

Definition 4.1 A Connective Binary Decision Diagram (CBDD) is a directed acyclic

graph which is composed of an MSBDD set M, vertex set V and edge set E.

There are differences between the conventional BDD implementation and the

CBDD. First, the conventional BDD graph contains only two node types, the decision

and terminal node types. The CBDD’s graph supports four node types, with each

node serving a unique purpose. Second, the CBDD’S graph supports an additional

edge, the value-edge. Third, the CBDD’s graph is an interconnection of subgraphs,

known as Minimized-Scalable BDDS (MSBDDs).

CBDDS utilize the 0- and 1- edges in the same manner as a conventional BDD.

The traversal of the 0— and 1- edges indicates that the predecessor decision node

variable is equal to 0 or 1, respectively. The value-edge is new to the CBDD’s design;

value-edges are used to model the propagation of internally produced signals.

The CBDD’s graph contains Output, Input, Internal and Terminal node types.

The concept of an Output node is new; it represents or contains the value of a Circuit’s

primary output. Output nodes are preceded by fixed—valued nodes or Terminal nodes
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1. Vv E V may be of type:

1.1. Input

1.1.1. followed by children via 0- and 1- edges

1.1.2. assumes variable primary input value

1.1.3. value(v) E {0, 1}

1.2. Internal

1.2.1. followed by children via 0—, 1- and value- edges

1.2.2. assumes variable internal output value

1.2.3. value(v) E {0, 1}

1.3. Terminal

1.3.1. value termination for internal and output nodes

1.3.2. proceeded by children via value-edges

1.3.3. value is fixed, value(v) E {0, 1}

1.4. Output

1.4.1. absolute termination, not followed by children

1.4.2. assumes variable primary output value

1.4.3. value is fixed, value(v) 6 {0,1}

2. Ve E E may be of type:

2.1. O-edge (l-edge)

2.1.1. traversed when value(v) = 0(1)

2.1.2. outgoing to Input, Internal, and Terminal vertices

2.2. value-edge

2.2.1. propagates value(v) to Internal or Output vertices

2.2.2. incoming only to terminal vertices

3. MSBDD set M elements:

3.1. Vm E M, vertex(m) 6 V

3.2. MSBDD terminals are connected to Internal or Output nodes via value-edges

3.3. V MSBDDs represent a function on vertex v, f”

3.4. fv = 3:7 - flow”) + :12,- - fhighm, where a); is a decision variable

Figure 4.6. Definition of CBDD.

connected by value-edges, and are not succeeded by descendent nodes. The Input

node is essentially a decision node, as in the conventional BDD; it represents the state

of an input variable and may be followed by descendent nodes connected by O-edges

and l-edges. The Internal node is a special decision node whose binary value results

from the evaluation of a logic element represented by an MSBDD. Internal nodes

are preceded by fixed-valued nodes or Terminals via value-edges and are succeeded

by descendent Input nodes. The Internal node’s value is propagated to the Input

nodes of other logic element MSBDD representations by the use of value-edges. The
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Terminal nodes used in the CBDD’S graph differ from those used by the conventional

BDD. CBDD Terminal nodes carry a fixed binary value but have descendents; they

are succeeded by Internal or Output nodes and connected by value-edges.

4.4.5 Analysis of Connective-BDDS

Circuit size is a limiting factor for applications utilizing traditional BDD implemen-

tations. For large circuits BDD graphs may become exponentially-sized, resulting in

CPU-intensive applications. The CBDD is an alternative graph structure which is

useful for certain applications. This section provides background information con-

cerning the CBDD’s linear growth and functional rationalization. An explanation

detailing the CBDD’s improved circuit representation when compared to the tradi-

tional BDD is given.

Theorem 4.1 The CBDD’s graph grows linearly with respect to the number of logic

elements within the circuit.

Proof: Let M be the number of logic elements present in a circuit. Let n be

the fanin size of a logic element. MSBDD graphs are constructed to grow linearly,

with the largest MSBDD graph (n-XOR gate) having 2n + 3 nodes. The CBDD’s

graph is an interconnection of M MSBDD graphs, resulting in linear growth and a

maximum size of M x (2n + 3) nodes.

Theorem 4.2 The minimized-scalable BDD (MSBDD) maintains the behavior of an

individual logic element.

Proof: The MSBDD’s graph contains a single O-Terminal and a single 1-

Terminal. If a post-order traversal from the 1-Terminal to the root node of the

MSBDD’s graph is performed then a set of disjoint decision paths is generated. The
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AND-product of the decision nodes along the disjoint paths are minterms in the on-

set of the logic element’s Boolean switching function. The OR—sum of these disjoint

minterms equals the sum-of-products that describes the switching behavior of the

given logic element.

Theorem 4.3 The CBDD, an interconnection of MSBDDs, maintains the behavior

of a circuit.

Proof: From Theorem 4.2, it was established that MSBDDS maintain the be-

havior of individual logic elements. The post-order traversal of a MSBDD’S graph

results in a Boolean switching function whose switching variables may be primary

inputs or internally produced signals. The Circuit’s behavior, a collection of 2-level

Boolean switching functions for all circuit nodes, can be produced by performing re-

cursive replacement of non-primary input variables by their corresponding MSBDD

switching function until all non-primary input variables have been replaced by pri-

mary input variables.

Theorem 4.4 The minimal MSBDD representation for n-input N/AND and N/OR

logic functions contain n + 3 nodes and 2n + 2 edges at most.

Proof: The output of all n-input N/AND and N/OT logic functions is directly

controlled by the logic function’s output drive. The output drive of a logic function is a

single input which directly controls the function’s output. The n-input N/AND logic

functions are O-driven because a single logic zero applied to any of the n inputs leads

to immediate output values of 1/0. Likewise, the n-input N/OR logic functions are

l-driven because a single logic one applied to any of the n inputs leads to immediate

output values of 0/1. Assuming that a MSBDD graph representation contains a

68



maximum of two terminal vertices, the disjoint terms of the MSBDD’S logic function

are constructed from the AND-product of decision nodes within the MSBDD’s graph.

The terms have the following form: If]? - Ill—01 :r,, where x, are decision nodes given that

z:

0 _<_ N S n — 1, and f]? is an output driven decision node that is directly connected

to a terminal vertex. Let L equal the number of literals for each disjoint term of the

logic function represented by the MSBDD, such that 1 g L _<_ n. The number of edges

necessary to construct a disjoint term and connect the term’s output driving decision

node to one of the terminal vertices within the MSBDD’s graph is 1 + (L — 1) edges.

An additional edge is needed to connect the term’s non-output driving decision node

combinations to a second terminal vertex. Additionally, two value-edges are used

to connect the terminal vertices to the MSBDD output node. Given that K is the

number of disjoint terms within the logic function, the total number of edges to

minimally represent the MSBDD of a N/AND or N/OR logic function is given by

EdgeCount = 2+f;1(1+(L,—1)) for lgLign nggn

= 2+I:Z_—:01L,- for L,-=i+1

= 2+2}

2+2n2
2

The minimal number of MSBDD nodes required to represent a N/AND or N/OR

logic function is 72. plus the number of terminal vertices (usually 2), plus a single

output node, for a minimum total of n + 3 nodes.

Assertion 4.1 For large circuits CBDDs generally result in smaller and more com-

pact representations when compared to traditional BDDs.
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Explanation: Applications using traditional BDDS try to make logical sense of

the behavior obtained from a given input specification for purpose the of producing

an optimized set of Boolean equations and limiting the BDD’s size (node count). The

BDD’s size is controlled by the number of circuit inputs along with the input variable

ordering.

Circuits containing many internal logic elements and a large number of inputs

(N), may result in BDD graphs comprised of 2N nodes along with N! input variable

orderings. For many applications, the time necessary to explore all N! input variable

orderings is not available, so a non-optimal input variable ordering is generally chosen.

Benchmark comparisons demonstrate that non-optimal input variable ordering results

in a BDD graph which is larger than a CBDD graph for the same circuit.

The CBDD does not analyze behavior or consider input variable ordering. For the

logic elements encountered during the input of the design specification, the CBDD

application interconnects the MSBDD subgraphs of the corresponding logic elements.

According to Theorems 4.2 and 4.4, MSBDD subgraphs are unique and minimal in

size for the given logic elements. From Theorem 4.3, the interconnection of MSBDD

subgraphs results in a compact CBDD graph representing a Circuit’s behavior and

connective relationships. For the reasons stated, the CBDD’s graph maintains be-

havior and for large circuits it is smaller than the graph of traditional BDDS.

4.4.6 Implementation

The application program that generates a CBDD reads a BLIF-formatted netlist file

as input. The basic logic gates such as N/AND, N/OR, XOR, and NOT, when

encountered during the input phase, are converted to minimized-scalable BDDS (MS-

BDDS). These MSBDDs represent the most reduced BDDS, in terms of total node

count, for the given functional unit (logic gate) and size.
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Figure 4.5 displays a small selection of the MSBDDs. Once the MSBDDs are

generated, their Internal node outputs are interconnected with the Input nodes of

other MSBDDs according to the structure present in the netlist. The full-adder

carry-out bit, structurally represented in Figures 4.2, 4.3, and 4.4, is represented by

the CBDD in Figure 4.7.

OR-Z 2
  

  

zl       

 

 

O

  
   

:; C0015:

   
Figure 4.7. CBDD of FA carry-out bit.

The CBDD of Figure 4.7 models the structure of the full-adder carry-out bit.

The CBDD of the carry-out bit is an interconnection of MSBDDs which model the

behavior and structural connectivity of two 2-input AND gates along with two 2-
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input OR gates, in accordance with the logic diagram of Figure 4.2. The MSBDDS

for all logic gates are enclosed by labeled boxes featuring the gate name and size. The

Circuit’s primary inputs, located outside of the MSBDD enclosures, are represented

by boxes containing the input name. Primary inputs are connected to the MSBDD

graphs by value-edges, depicted by heavy solid lines. Within the MSBDD enclosures

O- and 1- edges are represented by dotted lines and solid lines, respectively. Input

nodes are represented by circles enclosing the input name and interconnected by 0-

and 1- edges. Terminal nodes are represented by boxes containing a 0 or 1 value.

Internal nodes are represented by circles containing an internally produced signal

name; they are preceded by Terminal nodes connected by value-edges. Primary

outputs are represented by double-dotted circles enclosing the output name; they are

preceded by Terminal nodes.

4.4.7 Advantages and Disadvantages

In spite of the differences between the conventional BDD implementation and the

CBDD, there are some very positive benefits of using the CBDD. First, the CBDD

is not affected by input variable ordering because the internal logic elements of a

digital circuit can be mapped to pre—defined MSBDDs, which are already minimal

in size. Second, CBDD size (number of nodes) is directly related to the number of

logic elements present in the circuit, so exponential growth will not occur. Third,

the CBDD’s graph represents the entire circuit design, whereas the traditional BDD

utilizes multiple graphs, one for each primary output and internally produced signal.

Fourth, the CBDD’s size grows linearly because its graph utilizes Internal decision

nodes representing internally produced signals, instead of expressing the specified

node in terms of primary inputs which could result in exponential growth. The use

of Internal nodes increases the sparseness of the CBDD’S graph and provides a more

com act re resentation of the Circuit’s behavior and structure.P
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The drawbacks of the CBDD include loss of canonicity. However, if needed, equiv-

alence of two circuits can be determined by performing functional simulations using

their CBDDs, followed by a comparison of their results. Additionally, unlike tradi-

tional BDDS, the CBDD’S graph does not have a single path from the root node to

a terminal node. This is not good because several paths must be considered when

determining a primary output’s value. However, in some cases CBDDs benefit from

this drawback; they yield more compact graphs that are represented by far fewer

nodes and edges than conventional CBDDs. Thus, traversing additional paths in the

CBDD is not costly because the maximum CBDD graph depth is less than the BDD

graph depth. Lastly, in comparison to traditional BDD implementations, CBDDs

generate a more compact representation for large circuits, but may produce larger

than normal or poor representations for small circuits.

4.4.8 Results

The ISCAS-85 benchmark circuits were chosen for an experiment to compare the

CBDD size to the size of traditional BDD implementations. The results after applying

the CBDD implementation to the benchmark circuits are summarized in Table 4.1.

Additionally, as a means of comparison, Table 4.1 provides the results of imple-

mentations used by Brace and Shen in [30, 43] for the same benchmarks. The main

entity used in comparing the BDD implementations was the BDD node count. The

BDD node count is used as a measure of performance for both CPU and memory

utilization. The term, Unable, used in Table 4.1, indicates that the corresponding

decision diagram package was unable to provide a measurement for the given circuit

due to memory limitations. In comparison to the BDD implementations by Brace and

Shen, for almost every circuit of the benchmark suite with the exception of Shen’s

FBD node measurement for circuit c7552, the CBDD resulted in a significant node

savings. Given the size of other circuits within the benchmark suite and their cor-
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Circuit #Inputs #Outputs ROBDD[30] FBD[43] CBDD

#Nodes #Nodes #Nodes

c432 36 7 30200 31195 2017

c499 41 32 49786 33214 2899

c880 60 26 7655 7761 4276

c1355 41 32 39858 33214 6411

c1908 33 25 12463 12734 9387

c2670 233 140 Unable 57767 12886

c3540 50 22 208947 88652 17874

c5315 178 123 32193 26129 26078

c6288 32 32 Unable 115607 29361

c7552 207 108 Unable 19187 37774           
Table 4.1. Benchmark Results.

responding FBD size, it is very likely that Shen’s report of the FBD node count for

circuit c7552 is an order of magnitude smaller than it should be.

The savings in node count exhibited by the CBDD implementation is due to

usage of Internal nodes which represent the value of internally produced signals.

The Internal nodes along with value-edges propagate the binary output of internal

logic elements to subsequent MSBDD inputs nodes at deeper levels within the circuit

structure. The small size of the CBDD is due to the fact that CBDDs grow with

respect to the number of functional units or logic elements present in the Circuit’s

structure, not the number of inputs or input variable ordering.

4.4.9 Summary

This section has described the Connective BDD (CBDD), defined as a DAG inter-

connection of Minimized-Scalable BDDS. CBDDs are very economical in representing

large circuits and maintain the Circuit’s structural and connective relationships. CB-

DDS represent circuits with far fewer nodes than previous BDD implementations.

CBDDS have a few drawbacks including loss of canonicity, multiple paths from the
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root to terminal nodes, and poor representation of small circuits. The main advantage

of the CBDD is that it does not suffer from exponential growth when the numbers of

inputs and interconnections grow.

75

 



CHAPTER 5

Behavioral-Level Switching

Activity Estimation

The accurate estimation of switching activity is an important and necessary procedure

for probabilistic power analysis tools. Behavioral-level power analysis tools have the

disadvantage of not having detailed information concerning structure and technology.

This disadvantage is combined with the challenging task of computing dynamic power

and switching activity with improved accuracy from an implementation-independent

perspective.

There are very few design tools which provide power estimation for behavioral

VHDL specifications. The average minimum error found in their power estimates is

around 10%. Switching activity is a critical parameter needed to compute dynamic

power dissipation (Equation 1.2) in CMOS circuits. A large portion of the error

experienced by power analysis tools can be easily attributed to inaccurate switching

activity (a) estimates due to factors such as reconvergent fanout and input/internal

correlations.

This chapter presents a new technique which accurately performs high—level ac-

tivity and power analysis. This approach operates at the behavioral level of design

abstraction and uses behavioral VHDL specifications as input. The developed tech-
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nique, and associated algorithms, have been implemented in a program called the

Behavioral-Level Activity and Power Estimator (BLAPE). The details concerning

the design and implementation are discussed, along with benchmark comparisons to

demonstrate the effectiveness and capability of the new approach.

5.1 Methodology Overview

The focus of this section is to provide an overview of the assumptions, system archi-

tecture, and components used to implement the Behavioral-Level Activity and Power

Estimator (BLAPE) system. A description of all major tasks which contribute to the

process of accurately estimating switching activity is presented as well.

5 . 1 . 1 Methodology Assumptions

0 Circuit designs must be synthesizeable.

Input to the BLAPE system is in the form of behavioral VHDL specifications.

The VHDL language supports many constructs such as for- and while- loops

which are nice for simulation but may not result in a synthesizeable design. The

BLAPE system requires implementation-free and platform-unspecific design de-

scriptions which represent real circuits that are mappable to some technology.

This assumption supports the easy transfer of various benchmark VHDL spec-

ifications between BLAPE and other high-level power analysis tools.

0 Circuit types are combinational.

The circuits targeted for analysis must be combinational, where all circuit out-

puts are functions of their primary inputs. This assumption simplifies the con-

version of the input behavioral VHDL specification to a set of Boolean equations.
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0 Zero delay model.

All gate or logic element operation times are zero. Upon a change to the in-

put stream, it is assumed that steady-state logic results appear at their gate

outputs instantaneously. This assumption simplifies the computation of signal

probability, but does not support the computation of glitch activity.

0 Uncorrelated primary inputs.

Primary inputs are assumed to be spatially and temporally independent. This

assumption allows the signal probability computation for each node to be a sum

of disjoint input/internal signal probability products.

5.1.2 Methodology Outline

The BLAPE system is capable of operating on two input sources. It supports the use

of behavioral/structural VHDL specifications as high-level input, along with a BLIF-

formatted gate-level netlist as low-level input. The output generated by BLAPE

consists of the switching activity (a) and node capacitance (CL) for each net, along

with a power estimate for the entire circuit. The system-level flow of the BLAPE

implementation is given in Figure 5.1.

5.2 Methodology Task Decomposition

The Behavioral-Level and Activity Power Estimator system is composed of many in-

dividual tasks and sub-tasks. In this section a task decomposition of the methodology

together with a brief description of the major tasks is given.

0 Task 1 - Transform behavioral VHDL specification to Boolean equations.

This task performs syntax checking and determines if the VHDL input specifi-

cation is synthesizeable. A data structure containing primary inputs, primary
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Figure 5.1. BLAPE methodology diagram.

outputs, and a list of Boolean equations in sum-of—products form is generated

when the VHDL input specification is synthesizeable.

Task 2 - Decompose Boolean equations.

This task applies structure to the Boolean equations generated in Task 1 in

two possible forms. First, implicit structure, which directly models a Boolean

equation in sum-of-products form using the basic logic operations (NOT, AND,

OR) only is generated. Second, mapped structure, where the Boolean equations

are transformed to a structural specification consisting of gates or logic elements

defined by a user-specified library is produced.

Task 3 - Generate Connective BDD (CBDD).

This task converts the structural specification generated in Task 2 to a CBDD.
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The CBDD maintains the design’s original behavior and maps the input Circuit’s

individual logic elements to nodes within the CBDD’s graph.

0 Task 4 - Determine signal probabilities.

This task traverses the CBDD generated in Task 3 in an effort to collapse a

node’s Boolean expression, represented by a multi-level Boolean function, to

a Boolean expression with a user-specified depth, not less than 2. The final

Boolean expression contains disjoint product terms, whose indices are primary

input and internal signal probabilities. The result is a node signal probability

that is almost independent or free of reconvergent fanout.

0 Task 5 - Estimate switching activities.

This task computes the switching activity for a specified node given the signal

probability provided in Task 4.

0 Task 6 - Compute dynamic power.

This task determines the dynamic power of the entire circuit, utilizing the

switching activity estimate (a) computed in Task 5, a computed estimate for

node capacitance (CL), and default values for supply voltage (Vdd) , and clock

frequency (fem)-

5.2.1 Transformation of VHDL into Boolean Equations

The initial stage of the BLAPE methodology requires the use of a VHDL specification

as input. The VHDL modeling style is assumed to be behavioral, although a structural

VHDL specification is permitted. The focus of this transformation is to provide a

systematic and efficient mechanism for transforming a behavioral VHDL specification

to a set of Boolean equations.
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After careful consideration, it was decided that a VHDL compiler was the best so-

lution to this problem. Like Ada, C, and Pascal programming language compilers, the

VHDL compiler would be responsible for syntax analysis, bounds checking, and other

normal compiler tasks. The Altera MAX+PLUS II compiler (Version 9.01) was

selected. Useful and necessary features supported by the selected compiler include de-

termination of design synthesizeability and generation of a data structure containing

the Circuit’s primary inputs and outputs, combined with a list of Boolean equations

describing the input/output relationships of all primary outputs and internal nets.

Similar to the compilers of other programming languages, the selected VHDL com-

piler supports directives and optimizations to control the outcome of the synthesized

design. One such optimization is logic reduction, whereby the desired compact logic

representation is generated by means of technology mapping and by the removal of

redundant or unused logic. The invocation of this logic reduction option will consis-

tently generate the same reduced set of Boolean equations for various behaviorally

equivalent designs. For the purpose of this research, the logic reduction feature was

disabled. The rationale for making this decision was to preserve the design’s in-

herent logical structure, with the understanding that structural modifications to the

logic represented in the VHDL specification directly affect the switching activity and

the power dissipated by the design. In making this decision, the BLAPE system

yields unique power and activity estimates for various designs that are behaviorally

equivalent. The goal of disabling the logic minimization option is accomplished by

setting the synthesis style to WYSIWYG and setting the MINIMIZATION primitive

to OFF.

Figures 5.2 and 5.3 depict a behavioral VHDL specification for a full-adder (FA)

and the corresponding Boolean expressions, generated by the Altera compiler. The

Altera compiler generates a report file containing the Boolean equations shown in

Figure 5.3. The Altera Boolean equation notation makes uses of the basic (AND/OR)
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logic operations only. Each equation is represented by a list of product terms, where

an & separates the literals of each term and each term appears on a single line

separated by a # sign. All complemented literals are preceded by the ! character.

These Boolean equations represent the behavior of the VHDL input specification

and are eventually used to compute switching activity in later stages of the BLAPE

implementation. Following the compilation of the VHDL specification, the generated

Boolean equations are extracted from a report file. Next, the BLAPE implementation

converts the Boolean equations to an implicit or mapped structural representation.

The result is a gate-level netlist, discussed in the next section.
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ENTITY FA is

port (x, y, c_in : IN BIT;

sum, c_out : OUT BIT);

END FA;

ARCHITECTURE behav of PA is

BEGIN -- behav

sum <= (x xor y xor c_in);

c_out <= (c_in and (x or y)) or (x and y);

END behav;

Figure 5.2. Behavioral VHDL specification for full-adder.

c_in : INPUT;

x : INPUT;

y : INPUT;

c_out = _LC2_A1;

sum = _LC1_A1;

_LC1_A1 = LCELLC _EQOOl);

_EQOOI c_in & x t y

c_in & !x t !y

!c_in & !x a y

!c_in & x a !y;#
#
3
t
l
l

_LC2_A1

_EQOO2

LCELL( _EQOO2);

x a y

c_in & y

c_in & x;#
1
3
:

Figure 5.3. Full-adder Boolean equations.
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5.2.2 Decomposition of Boolean Equations

Applying structure to a design which originates as an algorithm or set of Boolean

expressions binds the behavioral representation to a selected set and arrangement of

logic elements. Decomposing the circuit specification to various structures enables a

designer to select a design which best satisfies the system-level power requirements.

The decomposition stage of the BLAPE implementation results in an implicit or

mapped structural representation, which is then transformed to a BLIF-formatted

gate-level netlist. The BLIF format was selected because of its simplicity and com-

patability with the Berkeley SIS design tool.

5.2.2.1 Implicit Structure Representation

The implicit structure representation mimics the two-level sum-of-products form of

the Boolean expressions. This representation places connective restrictions on the

circuit behavior, using the basic logic gates (NOT, AND, OR) only. Given the full-

adder Boolean equations (Figure 5.3), the resulting implicit structure netlist and

corresponding logic diagram are illustrated in Figures 5.4 and 5.5.

In many instances, the resulting implicit structure representation does not yield

the Optimal structure because of unrealistic, although logically correct, logic elements

which exceed input number restrictions. For this reason, the implicit structure should

be used as an initial or starting structural design solution, which can be improved

iteratively by the use of technology mapping procedures as described in the next

section [45].
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.inputs c_in x y

.outputs c_out sum

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.end

not a=c_in 0=NOTc_in

not a=y O=NOTy

not a=x 0=NOTx

bufl a=_LC2_Bl 0=c_out

buf1 a=_LC1_B1 0=sum

and3 =NOTc_in b=x c=NOTy 0=t0

and3 a=NOTc_in b=NOTx c=y 0=t1

and3 a=c_in b=x c=y 0=t2

and3 a=c_in b=NOTx c=NOTy 0=t3

or4 a=t0 b=t1 c=t2 d=t3 0=_LC1_B1

and2 a=c_in b=x 0=t4

and2 a=c_in b=y 0=t5

and2 a=x b=y O=t6

or3 a=t4 b=t5 c=t6 0=_LC2_Bl

Figure 5.4. Netlist for implicit full-adder structure.

LC2_Bl c out

 
Figure 5.5. Logic diagram for implicit full-adder structure.



5.2.2.2 Mapped Structure Representation

The mapped structure representation is a structural circuit specification composed of

user-specified gates or logic elements. This specification is generated by an automated

process, known as technology mapping. The technology mapping process transforms

an optimized set of technology independent logic equations into a feasible circuit which

satisfies certain area, delay, and power constraints. The role of technology mapping

is neither to radically change the Circuit’s structure nor to reduce the Circuit’s depth

along the critical path, but to perform the best gate selection for implementing the

logic equations, given the system-level area, delay, and power criteria [39].

For the purposes of this research structural mapping is used as a means to gen-

erate a realistic circuit specification. As illustrated by Figure 1.8, various circuit

structures or decompositions yield different switching activities, and hence different

power dissipations. This stage of the BLAPE process supports the computation of

improved switching activity by producing a gate-level structural specification which

closely resembles the desired circuit. As a result, the activity and power estimates are

more meaningful and consistent with eventual circuit- or transistor- level switching

activity and power approximations.

The BLAPE implementation utilizes the Berkeley SIS tool’s technology mapping

procedure. During the mapping stage of the BLAPE process, an implicit structural

circuit specification is used as input to the SIS tool, along with a user-specified gate

library. The map operator is applied, resulting in a behaviorally-equivalent circuit

that can be optimized for area and delay. For example, given a gate library composed

of NOT- and NAND- gates only, a technology mapping of the full-adder implicit

structural representation, shown in Figure 5.4, results in the mapped structural rep-

resentation displayed in Figure 5.6. Additionally, the corresponding logic diagram for

the full-adder’s mapped structure representation is given in Figure 5.7.
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.inputs c_in x y

.outputs c_out sum

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.end

nand2 a=c_in b=y 0=[236]

nand2 a=x b=y 0=[238]

nand2 a=c_in b=x 0=[234]

nand3 a=[236] b=[238] c=[234] 0=c_out

not a=y 0=[182]

not a=c_in 0=[181]

nand3 a=[182] b=x c=[181] 0=[226]

not a=x 0=[183]

nand3 a=y b=[181] c-[183] O=[228]

nand3 a=c_in b=x c-y 0-[230]

nand3 a=[182] b=c_in c=[183] 0=[232]

nand4 a=[226] b=[228] c=[230] d=[232] 0=sum

Figure 5.6. Netlist for mapped full-adder structure.

 
Figure 5.7. Logic diagram for mapped full-adder structure.
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5.2.3 Building the CBDD Representation

5.2.3.1 CBDD Selection Rationale

The Connective Binary Decision Diagram (CBDD) is a directed acyclic graph (DAG)

which serves as a graph-based behavioral representation capable of modeling a cir-

cuit’s input/output relationships and internal connectivity. The CBDD was selected

due to its linear growth and preservation of circuit structure. Because it uses the

CBDD, the BLAPE implementation is capable of processing larger circuits in com-

parison to the Berkeley SIS tool. Many CAD applications that use traditional BDDS,

specifically probabilistic power analysis tools, are limited to modest-sized circuits.

CAD applications generally encompass a class of problems, known as nondeter—

ministic polynomial or NP -complete problems [39]. For this class of problems there

are no known feasible or polynomial-time solutions. The solutions to such problems,

which use conventional BDDS, are computationally expensive and easily capable of ex-

hausting a typical workstation’s memory system. The time complexity of algorithms

which use decision diagrams is O (f (|V| , IE |)), where f is an operation performed

on a graph such that W] and IE | represent the size of the graph’s vertex and edge

sets, respectively. A reduction in both WI and |E| is appealing to CAD applications

as it reduces time complexity. An additional reason for selecting the CBDD for this

research is due to its improved representation of large circuits. When compared to

other conventional BDD implementations, using ISCAS-85 benchmark circuits, the

CBDD’S graphs were significantly smaller. An average size reduction of one order of

magnitude was achieved [46].

5.2.3.2 Generation of CBDD Graph

The CBDD’s graph is produced during the structural specification input phase.

The structural specification is a BLIF-formatted netlist which may be generated by
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BLAPE or selected from the ISCAS—85 or other benchmark suites. Each logic gate,

along with its inputs and output is transformed into a minimized-scalable BDD (MS-

BDD). For the basic logic gates (N/AND, N/OR, XOR, NOT), there are routines

(Algorithm 1) which construct the behavior of the specified gate. These routines

build MSBDDs with the least number of nodes and edges for the specified fanin size.

The node and edge data structures are placed into a lookup table of lists for the.

purposes of maintaining connectivity.

During the input phase, an adjacency list is built. The adjacency list contains

connection (wire) information, which describes node to node reachability and is used

for network levelization and other tasks. The CBDD is an edge-driven DAG rather

than vertex or node driven. Traversals and graph inquiries rely on routines which

search for and manipulate sets of edges. The precise modeling of signal flow is made

possible by the CBDD’s value-edge. Additionally, the value-edge is responsible for the

linear growth of the CBDD’s graph. The CBDD representations corresponding to the

implicit and mapped full-adder structural representations shown in Figures 5.4 and

5.6 are illustrated in Figures 5.8 and 5.9, respectively. The mapped structural CBDD

has fewer nodes and edges. It uses an interconnection of NOT and NAND gates only.

Later sections of this chapter will demonstrate that these two full-adder structures

representations yield different switching activities and different power dissipations.
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Figure 5.8. Implicit structural CBDD full-adder.
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Figure 5.9. Mapped structural CBDD full-adder.
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5.3 Signal Probability Computation

This section presents the most important component of the BLAPE implementa-

tion, the Signal Probability Computation Algorithm (SPCA). An overview concerning

the assumptions, origin and details of the SPCA is given. The SPCA was inspired

by concepts associated with the fault analysis and digital circuit testability fields.

The SPCA is an improvement over previously mentioned probabilistic and statistical

approaches for computing signal probability because it considers the correlation of

internal signals caused by reconvergent fanout. In the fault analysis and digital circuit

testability areas, reconvergent fanout is a large source of error when computing node

controllability. The 1-controllability of an edge in the circuit graph is defined as the

fraction of 1’s in the truth table of its function. Its 0—controllability is defined as one

minus its l-controllability [47].

A node’s exact controllability computation requires the complete flattening of

a multi—level expression to a two-level or sum-of—products expression, comprised of

primary inputs only. The flattening aspect uncoils the correlated internal signals,

resulting in an expression composed of independent primary inputs. This process

offers an exact solution, but is hampered by an exponential time complexity, thus

limiting the technique’s usefulness to small- or modest- sized circuits.

The exact computation of signal probability encounters the same dilemma expe-

rienced when computing exact controllability. Exact signal probability or control-

lability offers the best or most appropriate solution for a node’s Boolean equation

since each has zero error. When addressing a network as an interconnection of logic

gates, error due to reconvergent fanout arises (Figure 2.2). Reconvergent fanout may

cause an overestimate (Equation 2.3) or underestimate in the computation of sig-

nal probability, due to the statistical dependence of signals arriving at a gate. The

SPCA approximates signal probability, which is less accurate than exact computation.
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The approximation scheme assumes that the dependence resulting from reconvergent

fanout is reduced the further the distance between a gate’s fanout and the resulting

reconvergent fanin gate. This assumption is used by fault analysis heuristics that

compute node controllabilities of large circuits [47]. The assumption allows SPCA to

assume that after a certain depth (distance), reconvergent fanins may be considered

to be almost-independent or very close to statistically independent. As a result, the

signal probability approximation approach is much faster and less complex than the

exact approach.

5.3. 1 Overview

The SPCA is responsible for cost-effectively computing the signal probability at each

node in the network. The algorithm has four inputs: 1) node identifier, 2) CBDD,

3) input signal probabilities, and 4) depth-accuracy parameter (k). The input signal

probabilities are a user-specified set of real numbers which represent the probability

that inputs are logic one or P(x; = 1). The depth-accuracy parameter (k) is the

depth or level to which the SPCA collapses or flattens the network. A larger depth-

accuracy yields a more accurate signal probability estimate at the expense of time

and memory resources. A structural overview of the SPCA is illustrated in Figure

5.10.

The SPCA involves the coordination of four main components: 1) Network Lev-

elization, 2) Disjoint Post-Order Boolean Equation Generation, 3) IPR Cubeset Gen-

eration, and 4) Signal Probability Computation. The Network Levelization compo-

nent is responsible for ordering the CBDD nodes according to their degree of logical

independence. The Disjoint Post-Order Boolean Equation Generation component is

responsible for traversing the CBDD from a given node with the intent of producing a

disjoint post-ordered Boolean equation that is flattened to k (depth-accuracy) levels.

The [PR Cubeset Generation component makes sense of the post-ordered Boolean
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Figure 5.10. SPCA structural overview.

equations; it converts the equations to a set of Integer Pair Representation (IPR)

cubes, in infiz form. The Signal Probability Computation component reads the IPR

cubeset and approximates the given node’s signal probability.

5.3.1.1 Network Levelization

Before the generation of Boolean equations takes place, each node in the network

is leveled. Levelization is the process of ordering the internal/output nodes of the

CBDD’s graph in terms of their depth or distance from the primary inputs. The

nodes at lowest level of depth, level zero, are the primary input variables. The

levelization process is managed by the Network_Levelization procedure (Algorithm

2); this process is necessary because the approximated signal probability of internal

nodes is repeatedly used for future signal probability computations involving deeper
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nodes. The Network-Levelization procedure relies on a simple recursive algorithm

which performs a depth-first search of the CBDD’s graph. The search runs in 0(n +

e) time, where n and e are the number of nodes and edges of the CBDD’s graph,

respectively. The depth-first search is a pOpular and well known search algorithm

used for traversing graphs. Detailed analysis concerning the complexity of the depth-

first search algorithm is reported in [48].
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Procedure: Network_Levelization

input : v - CBDD node

input : lev - Level of node

1 if lev > v.lev then

2 v.lev <— lev

3 end

4 a (— v.adj

5 while a 76 NULL do

6 Networkievelization(a.v, lev + 1)

7 a (— a.nea:t

s end

 

Algorithm 2: Levelize network procedure.

Correctness of NetworkLevelization procedure

Claim 5.1 Network-Levelization(v, lev) produces a dependency ordering of the nodes

in a directed acyclic graph.

Explanation: Assume that v is initially the DAG root node, and lev is initially

set to zero. Let a E DAG. Upon the initial invocation of the Network_Levelization

procedure all node levels are zero. Each invocation compares the node level, v.lev, to

the stack argument, lev, at line 1. Line 2 updates v.lev (node v’s level) with the larger

level value from the stack when the comparison condition of line 1 is satisfied. For

every invocation of Networkievelization, node variable a is assigned to the adjacency

list of node variable v on line 4. The adjacency list assigned to variable a contains all

descendents of node variable v. The nodes adjacent to node v are visited sequentially

by the execution of lines 5—7. Each node having descendents experiences a recursive

invocation of the Network_Levelization procedure at line 6. Each recursive invocation

traverses to a deeper level within the CBDD’s graph. The traversal finds a deeper

generation of node v’s lineage and results in an increment of the stack argument lev.

If some node y experiences multiple recursive invocations, y.lev is only updated when
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a larger level is encountered causing each node to be updated with the appropriate

dependency level value. Recursive invocations terminate when all paths from the root

node to all primary output nodes have been traversed.

@

3’42 .

Figure 5.11. DAG of FA carry-out bit network.

 

 

 

Node Adjacency List Level

root a, b, c_in —1

a 21, 22 0

b 21, 22 0

c_in 23 0

21 c_out 1

22 23 1

23 c_out 2

c_out 3       
 

Figure 5.12. Carry-out bit adjacency list and levelization.

The inputs to the Network_Levelization procedure include: 1) CBDD node and 2)

node level. The procedure is initially invoked with the root node of the given CBDD,
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with the node level parameter set to zero. The procedure’s output is the level ordering

for each of the CBDD’s internal and output nodes. Figure 5.12 shows an example

levelization for the mapped full-adder carry-out bit network. The DAG modeling

just the primary input, gate and primary output interconnections maintained by the

CBDD is given in Figure 5.11. The network node adjacency list is illustrated in Figure

5.12. The results of the network levelization example demonstrate that primary inputs

are the most independent nodes; they appear at level zero. Due to their dependence

on other signals, internal signals and primary outputs appear at deeper levels of the

network.

5.3.1.2 Disjoint Post-Order Boolean Equation Generation

The generation of disjoint Boolean equations is a key task necessary to the computa-

tion of signal probability. The procedure described in this section produces a disjoint

Boolean equation, where all terms are mutually exclusive similar to the minterms of

a truth table. The Post-Order procedure, Algorithm 3, is a simple recursive rou-

tine that ascends from some node (v) to a user-selected depth-accuracy (k) within

a CBDD’s graph. The goal of the Post-Order procedure is to construct a disjoint

post-ordered Boolean equation composed only of literals that appear a maximum of

1:: levels above node v’s level within the CBDD’s graph.
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Procedure: Post-Order

input

input

input

input

output

1 begin

: CBDD - CBDD of network

: v - Vertex

: d - Vertex depth

: lent - Level counter

: POE.Stack - Post ordered expression stack

2 EdgenS'et (— GetJn_Edges(CBDD, v)

3 for V E E Edge_set do

4 if E.edge_type = ZERO_EDGE or E.edge_type = 0NE_EDGE

then

5 tcnt (_— tent 'l‘ 1

6 eV (— Get.Source_Verte$(CBDD, E.vertea:)

7 Sign (— (E.edge_type = ZERO_EDGE ? FALSE : TRUE)

3 Val (— (E.edge_type = ZERO_EDGE ? — eV.id:r : eV.id:r)

9 if eV.verte:z:_type 2 INPUT then

10 Push(POE_Stack, Val)

11 else

12 if d < depth_accuracy(k) then

13 T <— GetJerminal_Vertex(CBDD, eV, Sign)

14 Post.0rder(CBDD, T, d + 1,0)

15 else

16 Push(POE_Stack, Val)

17 endif

13 endif

19 Post_0rder(CBDD, eV, d, lcnt + 1)

20 if lent > 0 then

21 Push(POE_Stack, *)

22 end

23 end

24 if tent > 0 then

25 Push(POE_Stack, +)

26 end

27 end

23 end

 

 
Algorithm 3: Post-order CBDD traversal.
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The design of the Post-Order procedure is the result of modifications to the tradi-

tional post-order binary tree traversal. The post-order traversal was selected because

it’s a very effective means for circumnavigating a graph to produce meaningful ex-

pressions. The most common implementation of the post-order traversal algorithm is

recursive, where all un-traversed node edges are visited first, followed last by a node

visit(output). The result is an expression in postfix notation. Given the expression

tree, Figure 5.13, describing the full-adder carry-out bit Boolean equation (Equation

3.6), the resulting postfir expression is ab * cab + *+.

Figure 5.13. Expression tree for full-adder carry-out bit.

Correctness of Post-Order procedure

The Post-Order procedure arguments include 1) a CBDD, 2) vertex v, 3) invo-

cation depth d and 4) node counter lent. Argument v is a node within the CBDD’s

graph, the start point of the traversal. Argument d is the procedure’s invocation depth

given node v. The lent argument tracks the number of Output nodes encountered
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during the procedure’s recursive invocations for a given vertex v.

Claim 5.2 The Post-0rder procedure generates a valid post-ordered Boolean equa-

tion.

Explanation: The Post_Order procedure generates a post-order Boolean ex-

pression composed of Boolean AND/OR operations accompanied by literals that rep-

resent the value of individual decision nodes. The procedure assumes that all logic

operations have two inputs which alleviates the need for delimiters. The Post_Order

procedure is invoked with the vertex depth (d) and the level counter (lent) argu-

ments. Initially, both arguments are set to zero. The vertex, v, is initially set to the

l-Terminal of the specified MSBDD within the CBDD’s graph.

The procedure begins by collecting the incoming edges of node v on line 2. The

incoming edge set of node v is traversed by lines 3-27. For each iteration of the

edge set, line 4 checks if the given edge is a 0—edge or 1-edge. If the line 4 condition

is satisfied, then lines 5-23 are encountered, otherwise lines 23—26 are encountered.

Lines 24-26 Push the Boolean OR symbol to the output stack if at least one pair of

post-order arguments have been previously added to the stack. The block between

lines 5 and 23 allow the Post_Order procedure to ascend from a given node to its

predecessor node. A counter tracking the number of post-order argument pairs per

invocation is maintained on line 5.

To assist with the ascending traversal from node v to its predecessor, line 6 lo-

cates the head vertex of the current edge, by invoking the Get_Source_Vertex routine.

Based on the current edge type, the sign variable is updated in line 7. The sign

variable contains the Boolean phase of the head source vertex. The index value of

head source vertex is determined on line 8. A negative index value indicates that the

head vertex literal is complemented. If the head vertex models a primary input, then

lines 9-10 add the head vertex index value of line 8 to the stack. Otherwise, the head
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source vertex models an internal signal and is dealt with in lines 12-17. If the depth

of the search is less than the depth-accuracy (k) parameter a recursive invocation

takes place on line 14; this allows higher exploration into the CBDD’s graph. Line

13, invokes the Get-Terminal_Vertex routine which directs the upward search from

the edge’s source vertex to a Terminal vertex in the preceding MSBDD. The Ter-

minal is chosen based on the literal sign value. Lines 15—17 place the source node’s

literal value on the output stack. Line 19 performs a second recursive invocation and

increments the level counter argument. The second invocation allows for the upward

traversal within the subgraph of the new MSBDD resulting from Line 13. Lines 20—22

build the Boolean product terms by pushing a Boolean AND symbol to output stack

when the second literal (decision node) is encountered during the recursive invocation.

Lines 24-26 push the Boolean OR operator symbol to the output stack just after the

pairs of product terms encountered during the upward traversal from the Terminal

node. The repeated interaction of lines 2-27 result in an output stack that contains

product terms whose literals are positioned k levels or less above the specified input

vertex argument within the CBDD’s graph. All terms are described using 2—input

Boolean AND operators and each post-order pair of terms is followed by a Boolean

OR symbol on the output stack.

Analysis of Post_Order procedure

Traditional post-order BDD traversals explore only two edges per node because of

the binary nature of the BDD’s implementation. The Post-Order procedure for the

CBDD must consider two edges per Input node and B edges per Internal node, where

B is the maximum fanout of an internally produced signal. Let G be the number of

logic elements in the circuit. According to the analysis of the Mk_NAND procedure,

a B—input MSBDD NAND representation has B + 3 nodes and 25 + 2 edges. The
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fanout of the NAND MSBDD’S Output node results in a maximum of B value-edges,

yielding a maximum of 3B + 2 edges per logic element. The Post_Order procedure

is recursively applied on a per node basis. The traversal encounters a maximum of

Vmax nodes and Ema, edges which are C x (B + 3) and G x (3B + 2), respectively.

For each recursive iteration of the Post_Order procedure, assume that the oper—

ations at lines 2-8 are always performed. These operations run in constant time,

with a total constant time of 0(7). The if-then-else block at lines 9-18 runs in 0(4)

time, by assuming that lines (9, 12, 13 ,14) always run, yielding the longest possible

thread through that block. The recursive invocation on line 19 runs in 0(1) time,

and the if-then blocks at lines 20—22 and lines 24-26 both run in 0(2) time for a

total constant time of 0(4). The block of lines from 3-27 encloses a total constant

time of 0(7) + 0(4) + 0(5) = 0(16). The search can be viewed as a traversal of all

edges with visitation to all nodes in the ascending ancestry of the specified start node.

The largest number of invocations of the Post_Order procedure for a given node is

Vmax +Emaz, with each invocation costing a maximum of 0(16) time. Thus, the worst

case running time of the Post_Order procedure is 0 (16 x (Vm + Ema$))- Given the

user-selected depth-accuracy parameter, k, and the maximum logic element fanout,

B, the overall worst case running time of the Post_Order procedure can be expressed

asO(16x (45+5) xG).

  

 

 

 

      

Post — Order BoolearTEquations

Ida: Node k:1 [€22 k:3

1 c.in - - -

2 a

3 b - - -

4 21 32* 32* 32*

5 22 23(-2)*+ 23(—2)*+ 23(-2)*+

6 23 15* 123(—2)#+# 123(—2)*+4

7 c_out 46(-—4)*+ 32*15*(-2)(—3)2*+t+ 32*123(-2)*+*(—2)(—3)2*+*+   
 

Table 5.1. Post-order Boolean equations for FA carry-out bit.
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After invoking the Post-Order procedure with the full-adder carry—out bit CBDD,

Figure 4.7, the resulting post-ordered Boolean equations are shown in Table 5.1 for k

= 1, 2, and 3. From inspection, as the depth-accuracy parameter increases the length

of the post-order equations increase as expected. At the request of a deep network

flattening (large k), nodes having large fanouts (many value-edges) contribute to a

dramatic increase in the run-time of the procedure. Thus, a deeper equation flattening

requires longer execution times and obviously a greater demand on memory resources.

5.3.1.3 IPR Cubeset Generation

The IPR Cubeset Generation component is responsible for converting the post-ordered

Boolean equations, generated by the Post-Order procedure, to a collection of IPR

(Integer Pair Representation) cubes in infiz form. IPR is a very compact Boolean

equation representation system, developed by Diaz and Jimenez in [49]. A cube is

similar to a product term. It may represent one or more minterms of a switching

function. It consists of a pair of integers: the position and expansion. The position

integer represents the literals of the individual switching variables and the expansion

integer indicates whether a literal is in use or if it is a don’t care variable [49]. A

cubeset is a list or collection of cubes. For the purposes of the SPCA, cubesets are

used to efficiently represent the behavior of switching functions.

The Generate_IPR-Cubeset procedure, Algorithm 4, is responsible for generating

an infix Boolean expression in terms of IPR cubes. The procedure’s input argument

is a post-ordered Boolean expression stack that is composed of Boolean Operators

(AND/OR) and literals only. It is assumed that all operators are binary, requiring

two inputs. This assumption simplifies the conversion of postfir to infir notation

because delimiters are not necessary.
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Procedure: GenerateJPR-Cubeset

input : IN_Stack - Input expression stack

output : IPR.Cubeset - IPR cubeset

1 begin

2 while IN-Stack Not Empty do

3 repeat

4 item (— Pop(IN_Staek)

5 if item.type = OPERATOR then

6 Operator (— item

7 else

8 Push(Eval_Expr_Stack, item)

9 endif

10 until item = OPERATOR

11 iteml (— Pop(Eval_Expr.Staek)

12 item2 (— Pop(Eval_Expr_Staek)

13 result (— PerformJPR.0peration(0perator, iteml, item2)

14 Push(Eval_Expr_Stack, result)

15 end

16 IPR_Cubeset <— Pop(Eval_Expr_Stack)

17 end  
 

Algorithm 4: IPR cubeset generation.

Correctness of GenerateJPR_Cubeset procedure

Claim 5.3 The Generate_IPR_Cubeset procedure generates a Boolean expression in

infix notation.

Explanation: The GenerateJPR-Cubeset is invoked with a post-ordered Boolean

expression input stack. Line 2 checks the length of the input stack. While the stack is

not empty the procedure enters lines 3-10, where it continuously removes items from

the stack until an operator (AND/OR) is encountered. Line 4 performs the Pop

command which removes the next item from the stack. If the item is not an Operator

then it must be a literal. The literal is Pushed onto the evaluation expression stack

at line 8. If an operator is encountered by the check at line 5, then the item variable

is updated with the operator value, line 6. Following the update, the repeat-until
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loop is broken at line 10, with processing continuing to line 11. The repeat-until loop,

lines 3-10, is iterated two times and loads two literals on the evaluation expression

stack, due to post-order pairing of literals in the Post..Order procedure.

Lines 11 and 12 remove the top two items from the evaluation expression stack.

Line 13 invokes the PerformJPR-Operation routine with the two items from the evalu-

ation expression stack and the operator acquired from line 6. The PerformJPR_Operation

routine converts the item arguments to IPR cubes and performs a Boolean (AND/OR)

IPR operation on the two item cubes. The result of the operation is Pushed onto

the evaluation expression stack (line 14). The procedure returns to line 2 and tests

the size of the input stack. While the input stack size remains nonzero processing

continues as previously described. When the input stack becomes empty, processing

continues to line 16, where the final IPR cube infix Boolean expression result is re-

trieved from the evaluation expression stack and returned to the invoking procedure.

Analysis of GenerateJPR_Cubeset procedure

The complexity of the GenerateJPR.Cubeset is more diflicult to compute than it

appears. The duration of the outer while-loop, lines 2—15, must be determined; this

duration is actually the size of the post-order input expression stack (in_si2e). The

exact computation of such a value is circuit specific. However, the derivation for the

worst case in..si2e approximation is presented in the following test.

Let B equal the maximum number of logic element inputs. Given the structure

of a B-input MSBDD, the post-order expression size is determined by summing the

number of decision node literals with the number of Boolean (AND/OR) operations

encountered during the post-order traversals. For a single level (11:21) flattening of

a typical MSBDD (N/AND, N/OR, XOR), a worst case approximation for in_si2e

(input stack size) given B inputs, is computed as:
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[3 5-1

in_si2ek:1 2 2i + 22' +s—1

i=1 i=0 '

v V #ORs

#literals #ANDs

= ;fi(1+fl)+%fi(fl—1)+fi—1

fi2+fi fi2+fi

2 + 2 "1
WW

#literals #operations

2 B2+B-1.

 

For multi-level circuits, the Post_Order procedure will expand the CBDD into an

input stack expression whose size depends on k, the depth-accuracy parameter. Let

L, the literal count for a B-input MSBDD, equal 927%. Let C, the number of Boolean

operations for a B—input MSBDD post-order expression, equal fl—Ztg — 1. Let F, equal

L+C or B2+B— 1. The resulting input stack expression size can be modeled using the

following recurrence relation: in.si2e,c = L x in_si2ek_1 + C. After a few iterations

of the recurrence relation the solution was determined to be

in.si2e,c = F for k =1

2 L-F+C for 10:2

2 L-(L'F+C)"‘2+C for k>2

 2 litre ((WgW’” — 1)'€-2 + 1) — 1 for k > 2

The condition on line 2 runs in constant time, 0(1). The Push/POp Operations

at lines 4, 8, 11, 12, 14, and 16 run in constant time, 0(1). Lines 5—9 run in a

maximum of 0(2) time. The PerformJPR-Operation routine runs in 0(G) time,

where G is the number of circuit inputs plus the number of circuit logic elements.

The while-loop, lines 2-15, executes a maximum of 152938 times. The repeat-until

block, lines 3-10, always runs twice, with a total time cost of 0(8). Lines 11-14,

result in a running time of 0(1) + 0(2) + 0(G) + 0(1) z 0(G + 4). The total

running time for each iteration of the while-loop, lines 2-15, is 0(1) + 0(8) + 0(G +
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4) z 0(G + 13). Given that the while-loop iterates %§L times, the worst case

running time of the GenerateJPR_Cubeset procedure is 0 (% x (G + 13)) or

o(§[é§t—5((fi‘—+?g‘ifl’i—1)k-2+1)—1]x(G+13)),fors>1andk>2.

 

 

 

  

Step Input Expression Stack Evaluation Expression Stack

0 32*123(—2)t+*(—2)(—3)2#+*+ -

l 2t123(—2)*+t(—2)(—3)2¢+*+ 3

2 *123(-2)*+*(—2)(—3)2*+#+ 32

3 123(—2)*+*(-2)(—3)2*+*+ (31:2)

4 23(—2)*+*(—2)(—3)2*+t+ (3*2)l

5 3(—2)*+*(—2)(—3)2t+*+ (3:2)12

6 (—2)*+*(——2)(—3)2*+*+ (3:2)123

7 t+*(—2)(—3)2*+*+ (3*2)123(—2)

8 +*(—2)(—3)2*+*+ (332)12(33(—2))

9 *(—2)(—3)2 a: + t + (3 at 2) 1 (2 + (3 t (-—2)))

10 (—2)(—3)2*+¥+ (33:2) ((23: l) + (3t(—2)* 1))

ll (—3)2*+t+ (33:2) ((2t1) + (3*(—2)*1))(—2)

l2 2e+t+ (31:2) ((231) + (3*(-—2)* 1)) (—2) (—-3)

13 at + 3+ (3 t 2) ((2 #1) + (3 t (—2) at: 1)) (—2) (—3) 2

14 + 3 + (3 t 2) ((2 *1) + (3 t (—2) a: 1)) (—2) ((—3) t 2)

15 2+ (3 t 2) ((2 *1) + (3 t (—2) at 1)) ((—2) + ((—3) It 2))

16 + (3 at 2) (((—3) a: 2 It 1) + (3 at: (-—2) t 1))

17 — (332)+((-3)t2*1)+(3t(—2)*1)
       

Table 5.2. Output from GenerateJPR_Cubeset procedure.

The GenerateJPR_Cubeset procedure returns an evaluation stack which contains

the terms of a disjoint Boolean equation that is in sum-of-produets form. Each term is

represented by an IPR cube. The full-adder carry-out bit primary output, c_out, pro-

duced by the Post_Order procedure, Table 5.1, is used in an example to demonstrate

the conversion of post-order Boolean equations to a sum-of-products equation in infix

form. Table 5.2 shows the stages of the input expression stack (c_out) and the eval-

uation expression stack as their contents are modified by the GenerateJPR_Cubeset

Procedure’s postfix to infix conversion. If a node index to literal mapping, Table

5-1, is performed on the final evaluation expression stack output, the resulting infix

expression for c_out is ab + abc + abc. The final expression is composed of disjoint

teI‘rns only.
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5.3.1.4 Computation of Signal Probability

The Signal Probability Computation component is responsible for computing the sig-

nal probability for a specified node within the CBDD’s graph. This task is im-

plemented by the Compute_Signal_Probability procedure (Algorithm 5). Using the

disjoint Boolean expression IPR cubes produced by the GenerateJPR-Cubeset pro-

cedure, the ComputeSignaLProbability procedure determines the signal probability

of each cube within the IPR cubeset and sums all IPR cube signal probabilities.

The result is the signal probability for the node represented by the disjoint Boolean

expression input.

 
Procedure: Compute_Signal_Probability

 

input : IPR.Cubeset - IPR Cubeset

input : SP - Signal probability array

output : Expr_SP - Expression signal probability

1 begin

2 for V C E IPR.Cubeset do

3 T_prob +— 1.00

4 for idx E 1..IPR.Cube_Length do

5 EXP (— (C.exp[idx] AND mask[idx])

6 POS (— (C.pos[idx] AND mask[idx])

7 if EXP = 0 then

8 I_prob (— (POS > 0 ? SP[idx].p : SP[idx].q)

9 T_prob (— T.prob * I.prob

10 end

11 end

12 Expr.SP <— Expr-SP + I_prob

13 end
14 end

\  
 Algorithm 5: Signal probability computation procedure.
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Correctness of Compute_Signal_Probability procedure

Claim 5.4 The Compute_Signal_Probability procedure computes the signal probability

for a disjoint Boolean expression.

Explanation: The Compute_SignalProbability procedure advances through

the list of IPR cubes (terms) within the outer for-loop, lines 2-13. Line 3 initializes

the cube signal probability to 1. The inner for-loop, lines 4-11, iterates over the

entire signal variable space for the current IPR cube. The goal at this point is

to determine the variables used by the cube. Variables in use have a 0 in their

corresponding bit position of the cube’s expansion integer. Line 5, using bitwise

AND operations, determines if the variable is in use. Lines 6 determines the phase

of the variable using bitwise AND operations. The if-block, lines 7-10, is entered

if the variable is in use, otherwise processing continues within the inner for-loop for

the next variable. Line 8 reads the signal probability for the corresponding variable

from signal probability array based on the Boolean variable’s phase. Line 9 performs a

multiplication of the variable’s signal probability with the current cube’s intermediate

signal probability product. Upon termination of the inner for-loop, line 9 computes

the signal probability of a cube in the following manner: P,(eubek) = mg! P,(v),

where Vk is the set of signals in use by cubek. Line 12 performs a summatioric of the

cube signal probabilities. Upon termination of the outer for-loop, line 12 computes

the signal probability for the IPR cubeset as

#cubes

P,(eubeset)= Z P3(eube,-).

i=1
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Analysis of Compute_Signal_Probability procedure

The running time of the Compute_Signal_Probability procedure heavily depends on

the size of the IPR cubeset (number of terms). In the worst case the maximum number

of terms is 2N , where N is the number of circuit inputs. The system supports a user-

specified depth-accuracy (k) parameter which limits the maximum number of terms

when k is less than the depth of the input circuit. Given that the circuit is composed

of B-input logic elements, the worst case number of terms is approximately equal to

Bk“, where B is the fanin size of the logic element.

The outer for-loop, lines 2-13, will iterate a maximum of B"+1 times. Line 3

runs in constant time, 0(1). Lines 5—6 run in constant time, 0(2). The if-block,

lines 7-10, in the worst case runs in 0(3) time. The duration of the inner for-loop

is equal to number of logic elements plus the number of primary inputs within the

circuit, designated as R. Therefore, the running time of the inner for-loop is 0(5R).

Line 12 runs in constant time, 0(1). The worst case running time of the procedure is

0((5R+2) x Bk“). From the analysis it’s apparent that an increase in k dramatically

affects the running time of the procedure.

The more difficult tasks of computing signal probability were accomplished by

the Post-Order and GenerateJPR-Cubeset procedures. The tasks performed by the

Compute_Signal_Probability procedure are much easier to execute. An example which

demonstrates the work performed by the Compute_Signal_Probability procedure is

illustrated in Table 5.3. The IPR cubeset for the carry-out bit is used as input in

1
this example and the signal probabilities for primary inputs a, b and c, are %, :4- and

%, respectively.

5.3.1.5 SPCA Component Interconnection

The SPCA is an interconnection of procedures which flatten the input circuit’s net-

work to a user-selected depth and efficiently approximates signal probability for all
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Term

Term Product PS (Term)

ab :-: —
550 i' i ' i 3%

as. iii —
P, (cubeset) é   
 

Table 5.3. Signal probability computation for full-adder carry-out bit.

internal and output nodes. Previous sections have discussed the operational and time

complexity details of the individual SPCA components. The SPCAJntereonnect pro-

cedure, Algorithm 6, is responsible for the invocation and coordination of all SPCA

component procedures. When invoked, the SPCAJnterconnect procedure coordinates

the signal probability computation for an entire CBDD with user-selectable Boolean

expression flattening.

 

Procedure: SPCAJnterconnect

input : CBDD - DAG of input circuit

input : PI.8P - Primary input signal probabilities

input : k - DepthAccuraey

output : SP_Array - Signal probability array

begin

Network_Leveli2ation(CBDD.root, 0)

for V MSBDD E CBDD do

Expr +— Post-0rder(CBDD, MSBDD.0utput_vertex, k, 0)

IPR.Cubeset (— GenerateJPR.Cubeset(Expr)

Sp (— Compute_SignalfrobabilityUPR_Cubeset, PI.5P)

SP_Array[MSBDD.0utput_vertex.idx] <— Sp

end c
m
fl
a
fl
h
w
w
fl

[.
m 5

Algorithm 6: SPCA interconnection procedure
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Correctness of SPCAJntereonnect procedure

Claim 5.5 The SPCAJnterconnect procedure generates the signal probabilities for

all nodes within a CBDD.

Explanation: Conventional methods for estimating signal probability of a circuit

utilize traditional BDDS. The computation involves a post-order traversal of the

BDDS for each net within the circuit, resulting in a Boolean expression. Assuming

uncorrelated primary inputs and the zero-delay model, the conventional methods for

estimating signal probability of a net modeled by a BDD utilize Equations 5.1, 5.2

and 5.3.

m1

P,(termj) :2 Hp(x,~) (5.1)

i=1

termxfltermy = 0 nyéy (5.2)

“k

P,(nodek) = ZP,(termJ-) (5.3)

i=1

0 Equation 5.1 specifies that the term signal probability is the product of the

term’s input signal probabilties.

0 Equation 5.2 specifies that all terms are disjoint or independent of one another.

0 Equation 5.3 specifies that the node signal probability is the sum of disjoint

term signal probabilities.

The signal probability estimation method presented in this dissertation is correct

and satisfies Equations 5.1, 5.2 and 5.3. The proposed method utilizes a CBDD with

user-selectable Boolean expression flattening as opposed to a BDD. Theorem 4.3 val-

idates the fact that a CBDD maintains a circuit’s behavior. Equation 5.2 is satisfied

by the application of Theorem 4.2 which validates that all paths from any decision
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node xj to any decision node xk are unique for j # k, within an MSBDD. The gen-

eration of Boolean equations as a collection of disjoint IPR cubes is performed by

the Post_Order and GenerateJPR_Cubeset procedures. Signal probability computa-

tion for each node within the CBDD is performed by the Compute_Signal_Probability

procedure which satisfies Equations 5.1 and 5.3.

The SPCAJnterconnect procedure correctly generates the signal probability for all

internal and primary output nodes within a CBDD. The procedures invoked by the the

SPCAJnterconnect procedure are well defined and produce predictable outputs for

their given inputs. The more important procedures which perform searchs/traversals

are based on well known search algorithms which have been proven to be consis-

tent and correct. The overall interconnection of these procedures is logical and has

been tested as a system. The system level testing results are predictable and consis-

tent with the results of conventioanl BDDS; this verifies that the SPCAJntereonnect

procedure correctly computes signal probability for a circuit represented by a CBDD.

Analysis of SPCAJnterconnect procedure

The running time for the SPCAJnterconnect depends on the worst case running times

of all procedure invocations. Line 2, the invocation of Network_Levelization is called

once. The for-loop, lines 3-7, accounts for a majority of the SPCAJnterconnect

running time. The duration of the for-loop is G. Line 7 runs in constant time,

0(1), but is dominated by the time of the procedure invocations of lines 4—6. Us-

ing Tables 5.4 and 5.5, for B > 1 and k > 2 the worst case running time for the

SPCAJnterconnect procedure is 0 (P1 + G x (P2 + P3 + P4)). From observation

it’s apparent that the worst case running times of the SPCAJntereonnect procedures

have the following ranking, P1 << P2 << P4 << P3. The ranking indicates that

the SPCAJnterconnect procedure can potentially spend most of its time in the invo-
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cation of the GenerateJPR-Cubeset procedure. This procedure is computationally

expensive because the input expression stack could become very large and the literal

to IPR cube conversion has a cost of (G + 13) per cube. The resulting worst case

running time for the SPCAJnterconneet procedure is approximately 0(G x P3) or

 0 (g [5:23 (MW/3W2 —1)'°-2 + 1) — 1] x (G + 13))

 

 

 

  

Symbol Meaning

N Number of circuit inputs

G Number of circuit logic elements

R N + G

B Maximum logic element fanin

|V| CBDD vertex count

[E] CBDD edge count

k Depth-accuracy parameter   
 

 

Table 5.4. Symbol definitions.

 

 

 

   

Symbol Procedure WorstCaseRunningTime

P1 Networkievelization 0(|V| + IEI)

P2 Post-Order 0 (16 x (4B + 5) x G)

P3 GenerateJPR_Cubaset o G 132,” (“Hgsifi — 1)’=-2 + 1) — 1] x (G +13))

P4 ComputeSignalProbability 0 (5R + 2) x Bk“)

 

   
 

 

Table 5.5. Procedure running times.

5.4 Switching Activity and Power Computation

The final component of the BLAPE implementation involves the computation of

switching activity and dynamic power. The complicated task of computing signal

PTObability was performed by Signal Probability Computation Algorithm (SPCA).
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Upon completion of the SPCA, a signal probability array is generated. The sig-

nal probability array is passed to a routine which computes switching activity using

a(x) = 2 - P,(x) - (1 — P,(x)). Switching activity is computed for each node in the

network. After this computation, dynamic power is computed for each node using

PSwach($) = -:;oz(x) oCL(x) - fCLK - Vd'fi. Next, the BLAPE implementation provides a

power estimate for the entire circuit using fl Pgw,tc,,(x,-), where N is the number of

nets in the circuit. —

The following examples (Figures 5.14 and 5.15) provide BLAPE generated activity

and power output for both implicit and mapped structural representations (Figures 5.4

and 5.6) of the full-adder. As a means of comparison, SIS generated activity and power

analysis is given in Figures 5.16 and 5.17 for the same structural specifications. SIS

switching activity roundoff to two decimals places results in a 0.26% power estimate

difference, when compared to BLAPE.
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Node Activity Capacitance

c_in 0.5000 cap=11

x 0.5000 cap=11

y 0.5000 cap=11

c_out 0.5000 cap=0

sum 0.5000 cap=0

NOTc_in 0.5000 cap=6

NOTy 0.5000 cap=6

NOTx 0.5000 cap=6

to 0.2188 cap=5

t1 0.2188 cap=5

t2 0.2188 cap=5

t3 0.2188 cap=5

_LC1_B1 0.5000 cap=2

t4 0.3750 cap=4

t5 0.3750 cap=4

t6 0.3750 cap=4

_LC2_B1 0.5000 cap=2

Power = 91.94 uW, assuming 20 MHz CLK, Vdd = 5V

Figure 5.14. BLAPE implicit structural FA activity/power estimates.

Node Activity Capacitance

c_in 0.5000 cap=11

x 0.5000 cap=11

y 0.5000 cap=11

c_out 0.4878 cap=1

sum 0.4851 cap=2

[236] 0.3750 cap=4

[238] 0.3750 cap=4

[234] 0.3750 cap=4

[182] 0.5000 cap=6

[181] 0.5000 cap=6

[226] 0.2188 cap=5

[183] 0.5000 cap=6

[228] 0.2188 cap=5

[230] 0.2188 cap=5

[232] 0.2188 cap=5

Power = 89.58 uW, assuming 20 MHz CLK, Vdd = 5V

Figure 5.15. BLAPE mapped structural FA activity/power estimates.
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Node c_in Cap. = 11 Switch Prob. 0.50 Power = 13.8

Node 1 Cap. 11 Switch Prob. 0.50 Power = 13.8

Node y Cap. 11 Switch Prob. = 0.50 Power = 13.8

Node [3019] Cap. = 0 Switch Prob. = 0.50 Power = 0.0

Node [3020] Cap. = 0 Switch Prob. 0.50 Power = 0.0

Node NOTc_in Cap. = 6 Switch Prob. = 0.50 Power = 7.5

Node NOTy Cap. = 6 Switch Prob. = 0.50 Power = 7.5

Node NOTx Cap. = 6 Switch Prob. = 0.50 Power = 7.5

Node _LC2_81 Cap. = 2 Switch Prob. = 0.50 Power = 2.5

Node _LC1_B1 Cap. = 3 Switch Prob. = 0.50 Power = 3.8

Node t0 Cap. = 5 Switch Prob. = 0.22 Power = 2.7

Node t1 Cap. = 5 Switch Prob. = 0.22 Power = 2.7

Node t2 Cap. = 5 Switch Prob. = 0.22 Power = 2.7

Node t3 Cap. = 5 Switch Prob. = 0.22 Power = 2.7

Node t4 Cap. = 4 Switch Prob. = 0.38 Power = 3.8

Node t5 Cap. = 4 Switch Prob. = 0.38 Power = 3.8

Node t6 Cap. = 4 Switch Prob. = 0.38 Power = 3.8

Total Power: 92.187500

Figure 5.16. SIS implicit structural FA aetivity/power estimates.

Node c_in Cap. = 11 Switch Prob. 0.50 Power = 13.8

Node 1 Cap. = 11 Switch Prob. = 0.50 Power = 13.8

Node y Cap. = 11 Switch Prob. = 0.50 Power = 13.8

Node [3021] Cap. = 1 Switch Prob. = 0.50 Power 8 1.2

Node [3022] Cap. = 2 Switch Prob. = 0.50 Power = 2.5

Node [236] Cap. 8 4 Switch Prob. = 0.38 Power = 3.8

Node [238] Cap. = 4 Switch Prob. = 0.38 Power = 3.8

Node [234] Cap. = 4 Switch Prob. = 0.38 Power = 3.8

Node [182] Cap. = 6 Switch Prob. = 0.50 Power 8 7.5

Node [181] Cap. = 6 Switch Prob. = 0.50 Power = 7.5

Node [226] Cap. = 5 Switch Prob. = 0.22 Power = 2.7

.Node [183] Cap. = 6 Switch Prob. = 0.50 Power = 7.5

lNOde [228] Cap. = 5 Switch Prob. = 0.22 Power = 2.7

INOde [230] Cap. = 5 Switch Prob. = 0.22 Power = 2.7

lNOde [232] Cap. = 5 Switch Prob. = 0.22 Power = 2.7

Total Power : 89 . 687500

Figure 5.17. SIS mapped structural FA activity/power estimates.
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The BLAPE implementation uses a behavioral VHDL specification as its initial

input. In an effort to provide realistic activity and power estimates for a given design,

structural specifications at the gate-level are considered. Various structural specifi-

cations yield various power estimates, as shown above. BLAPE’S ability to consider

various structural specifications, given an initial VHDL behavioral specification, com-

plements an HDL-based hardware design methodology by providing improved high-

level power estimates.

5.5 Experimental Results

This section presents experimental results generated by the BLAPE program. BLAPE

results are compared to the results generated by the Berkeley SIS power estimator

tool. The Berkeley SIS tool was chosen for comparison because it is a mature VLSI

development system that is considered to be the standard for switching activity and

dynamic power measurement. The Berkeley SIS tool computes exact signal proba-

bility by traversing a traditional BDD with the intent of generating a 2-level disjoint

Boolean equation for each net of the input circuit.

Quantities such as power (aw) and time (s) are used as a means of comparison

between the two tools. The circuits involved in the tool comparison are a selection of

ISCAS-85 benchmarks, MCNC Synth89 benchmarks, and other arithmetic circuits.

To simplify the exchange of benchmark circuits between tools, the input circuits

are BLIF-formatted gate-level specifications. For BLAPE accuracy comparisons, it

is assumed that the Berkeley SIS power estimator generates exact power estimates.

Benchmarking was performed on a workstation with the following configuration: Intel

Pentium II 350MHz (processor), 64MB (RAM), and Linux (operating system) with

330MB swap partition.

Five experiments were performed in which power estimates of the BLAPE pro-
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gram were compared to the estimates of the Berkeley SIS tool. Each experiment

includes one or more benchmark circuits. Tables containing the SIS power estimate

and computation time, along with the corresponding BLAPE measurements for vary-

ing depth-accuracy are given.

5.5.1 Experiment 1 : 64—Bit Adder Benchmark

In the first comparison, the BLAPE and SIS tools were used to perform power esti—

mates for a 64—bit adder. The outcome of the comparison is given in Table 5.6. The

64—bit adder was selected because of its depth and high level of isolated reconvergent

fanout.

 

 

- #Inputs #Outputs #Gates #Levels #Nodes

 

        
 

 
 

 

 

 

128 65 315 128 4944

Tool uw CPU k %Err

SIS 3030.8 1 .208 — —

BLAPE 3030.9 1 .138 12 0.003%        
 
 

Table 5.6. 64—bit adder size/power estimates.

Subsequent runs of the BLAPE program were performed using the 64—bit adder

as input. For each run, the depth accuracy parameter (k) was increased. The results

of the subsequent runs are illustrated in Figures 5.18, 5.19, and 5.20. The results for

the 64-bit adder indicate that for a small depth-accuracy (k < 3), execution times are

short and BLAPE underestimates power by just 0.019%. For 3 < k < 5, execution

times are a little longer and BLAPE overestimates power by 0.089%. As It increases

(1‘3 > 5), BLAPE starts to converge to the exact power estimate produced by SIS.
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For k = 12, a very reasonable power estimate is achieved in about the same time as

SIS takes. The time execution (Figure 5.20) reveals an exponential growth pattern,

attributed to increased depth-accuracy.

Power v. k

(644-bit Adder)

I I I I I I I T I I I I I I I I I I
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Figure 5.18. Power v. k (64—bit adder).
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Figure 5.19. Accuracy v. k (64—bit adder).
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Figure 5.20. Time v. k (64-bit adder).
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5.5.2 Experiment 2 : Arithmetic Benchmarks

The arithmetic benchmark suite contains adder and multiplier circuits of various sizes.

The arithmetic benchmark comparisons demonstrated the same power/accuracy and

performance trends observed with the 64—bit adder (Tables 5.7 and 5.8). Certain

circuits, due to their depth and large internal fanouts, were not tested for k > 5. For

the arithmetic class of circuits a depth-accuracy of k = 1 provided an average error

of 0.19% along with an average runtime of 0.012 seconds. As It was increased the

average power estimate error approached zero. For k = 3 there was a small increase

in the average error to about 0.32%, which can be attributed to reconvergent fanout.

This error is so small that it can be considered negligible.

  
 

 

 
 

                  

SIS BLP k: k=2 k=3 k: k=7

Circuit pm pm %Err 14w %Err pw %Err aw %Err uw %Err

add8 349 349 0.20 349 0.20 349 0.17 349 0.06 349 0.00

add 16 732 732 0.08 732 0.08 733 0.18 732 0.07 732 0.03

add32 1498 1498 0.02 1498 0.02 1501 0.18 1499 0.09 1498 0.04

mult4 410 410 0.02 410 0.02 411 0.32 410 0.00 410 0.02

mult8 2274 2289 0.65 2289 0.65 2292 0.78 2287 0.58

Average 0.19 0.19 0.32 0.16 0.02
 

 

Table 5.7. Power/Accuracy estimates of arithmetic benchmarks.

add16

add32

mult4

mult8

Table 5.8. Time estimates of arithmetic benchmarks.
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5.5.3 Experiment 3 : ISCAS-85 Benchmarks

The ISCAS-85 benchmark suite contains a variety of ALU, control, and decoder cir-

cuits. Due to circuit depth and large internal fanouts, these circuits were not tested

beyond a depth—accuracy of three. A few circuits exhibited increased error for an

increase in the depth-accuracy parameter. This is attributed to reconvergent fanout

occurring below the depth—accuracy level of a node and the propagation of this error

to subsequent signal probability computations. The ISCAS-85 benchmark compar-

isons demonstrated similar accuracy/performance trends observed by the arithmetic

benchmarks, but with greater average error. Given a depth-accuracy of k = 1 the

ISCAS—85 benchmark comparison yields an average error of 3.13% along with an av-

erage runtime of 0.22 seconds (Tables 5.9 and 5.10). As It is increased the average

power estimate error slowly approaches zero.

 

 

 

 

     
   

SIS BLP k = l k = 2 k = 3

Circuit uw pw %Err pw %Err pw %Err

C1355 2411 2482 2.96 2375 1.49 2442 1.29

C17 34 34 0.00 34 0.00 34 0.00

c1908 2762 2736 0.94 2732 1.08 2740 0.81

C432 1062 1009 4.94 985 7.21

C499 1820 1811 0.46 1810 0.53 1809 0.60

C5315 12136 11915 1.82 11880 2.11 11871 2.19

C880 1655 1765 6.66 1651 0.25 1608 2.82

C2670 4459 4132 7.33 4402 1.26

Average 3.13 1.74 1.28      
 

Table 5.9. ISCAS-85 power/accuracy benchmarks.

 

 

 

 

 

  

 

     

SIS BLAPE

k = l k = 2 k = 3

Circuit CPU CPU CPU CPU

c1355 6.10 0.07 0.17 0.56

C17 0.00 0.00 0.00 0.00

c1908 1.80 0.05 0.23 0.99

c432 2.80 0.01 5.23

c499 2.60 0.03 0.08 0.29

c5315 17.30 1.36 3.71 13.07

c880 1.50 0.03 0.09 0.69

c2670 1.80 0.23 0.61      
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Table 5.10. ISCAS-85 time benchmarks.

  



5.5.4 Experiment 4 : Nonredundant ISCAS-85 Benchmarks

The nonredundant ISCAS-85 benchmark suite contains a variety of ALU, control,

and decoder circuits. These circuits are functionally equivalent to the regular ISCAS-

85 benchmark circuit suite, except all redundant logic has been removed from the

designs. A few circuits exhibited increased error for a larger depth-accuracy due to

reconvergent fanout. Because of circuit depth and large internal fanouts the circuits

were not tested beyond a depth-accuracy of three. The nonredundant ISCAS-85

benchmark comparisons demonstrated the same power/accuracy and performance

trends observed by the ISCAS-85 benchmarks, but the average error for k = 1 was

smaller due to less logic and less internal reconvergence. Given a depth-accuracy of

k = 1 the nonredundant ISCAS-85 benchmark comparison yields an average error of

2.29% along with an average runtime of 0.43 seconds (Tables 5.11 and 5.12). As the

depth-accuracy is increased the average power estimate error slowly approaches zero.

 

 

 

 

 

 

     
     

SIS BLAPE kzl 1:22 :3

Circuit uw uw oErr pw %Err uw %Err

c1355nr 2384.4 2462.7 3.00 2357 1.00 2398 1.00

c1908nr 3400.6 3365.9 1.00 3363.5 1.00 3369.6 1.00

c2670nr 3814.3 3772.4 1.00 3759.8 1.00 3757.1 1.00

c432nr 911.8 857.8 6.00 857.8 6.00 875.4 4.00

c499nr 1628.8 1639.8 1.00 1639.8 1.00 1635.1 0.00

c5315nr 11745.4 11510.5 2.00 11484 2.00 11471.3 2.00

c7552nr 13975 13690.2 2.00 13682.8 2.00 13674.6 2.00

Average 2.29 2.00 1.57    
 

Table 5.11. Nonredundant ISCAS-85 power/accuracy benchmarks.

 

 

SIS BLAPE

IC "—" l k = 2 k : 3

Circuit CPU CPU CPU CPU

c1355nr 5.60 0.06 0.14 0.40

c1908nr 2.30 0.12 0.57 13.71

c2670nr 2.30 0.16 0.37 0.83

c432nr 2.40 0.01 0.54 1.87

c499nr 2.40 0.01 0.03 1.58

c5315nr 26.30 0.81 2.41 7.02

c7552nr 2.20 1.88 5.39 20.51

 

 
 

 
 

      
    
 

Table 5.12. Nonredundant ISCAS-85 time benchmarks.
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5.5.5 Experiment 5 : MCNC Synth89 Benchmarks

The Synth89 benchmark suite contains various multi-level circuits which control,

compare and decode. The Synth89 benchmark comparisons demonstrated the same

power/accuracy and performance trends observed by the previous benchmarks, but

the average error and average runtime were smaller due to less internal reconver-

gence and smaller circuit size. Tables 5.13 and 5.14 show the power/accuracy and

performance comparisons with the Berkeley SIS tool.
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SIS BLAPE

k = 1 k = 2 k = 3 k = 5 k = 7

Circuit CPU CPU CPU CPU CPU CPU

adr4 0.90 0.00 0.00 0.00 0.01 0.01

alul 0.10 0.00 0.00 0.00 0.00 0.00

alu2 0.10 0.00 0.00 0.01 0.01 0.01

alu3 0.10 0.00 0.00 0.01 0.01 0.02

QSymml 0.10 0.01 0.02 0.06 7.00

alu2—2 0.10 0.03 0.08 0.21 13.69

alu4 0.50 0.09 0.25 1.24

b1 0.00 0.00 0.00 0.00 0.00 0.00

C8 0.10 0.01 0.02 0.02 0.03 0.03

cc 0.00 0.00 0.00 0.00 0.00 0.00

cht 0.10 0.01 0.02 0.03 0.03 0.03

cm138a 0.00 0.00 0.00 0.00 0.00 0.00

cm150a 0.10 0.00 0.01 0.01 0.03 0.08

cm162a. 0.00 0.00 0.00 0.00 0.00 0.00

cm163a 0.00 0.00 0.00 0.00 0.00 0.00

comp 0.00 0.01 0.02 0.03 0.35

lal 0.10 0.01 0.01 0.02 0.03 0.03

pair 2.30 0.46 1.18

terml 0.10 0.03 0.09 0.20

tlarge 0.50 0.10 0.38 0.71

ttt2 0.10 0.01 0.03 0.04 0.07 0.08

X] 0.10 0.03 0.06 0.10 0.24 0.33

x4 1.10 0.05 0.10 0.18 0.57 0.89

z4ml 0.10 0.00 0.00 0.01 0.02 0.02

duke2 0.10 0.06 0.15 0.29 0.91 1.74

e64 0.20 0.08 0.10 0.11 0.11 0.11

064 0.10 0.01 0.06 8.47

vg2 0.01 0.01 0.02 0.04 0.06 0.06

 

 

 

 

  

               
 

Table 5.14. MCNC Synth89 time benchmarks.

5.5.6 Remarks

BLAPE supports a selective or user-specified power/accuracy. The results of the five

experiments indicate that BLAPE provides a very reasonable power estimate for a

depth-accuracy of k = 1. As the depth-accuracy is increased the average error in the

power estimates decreases. The trends indicate that for large k the average error will

approach zero (Equation 5.4), with an increase in runtime for deep circuits containing

a large number of internal fanouts. The power/accuracy trend for all benchmarks is

illustrated in Figure 5.21.

The BLAPE system provides an approximation of signal probability. BLAPE

supports user-selectable accuracy via the depth-accuracy parameter. The behavior of
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Accuracy v. k
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Figure 5.21. Average accuracy v. k (All benchmarks).

BLAPE’S accuracy is rationalized by the facts given below and demonstrated in the

previously illustrated power/accuracy and time benchmark graphs.

BLAPE’s Signal Probability Computation Accuracy

0 The signal probability of nodes represented by Boolean equations (sum-of-

products) equals the sum of their disjoint term signal probabilities, given by

Equation 5.3.

o Nodes represented by 2-level Boolean expressions, where 2:,- € {PI} such that

PI is the set of primary inputs, yield exact signal probability.

0 Nodes represented by n—level Boolean expressions, where x,- 6 {P1, IS} such

that IS is the set of internal signals, yield approximate signal probability due

to reconvergent fanout.
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a As nodal equations are reduced in depth, approaching a 2-level expression, the

error in their signal probability approximation approaches zero, described by

equation 5.4.

Error _ Approx -— Exact

k —> Lmax _ Exact

 —+ 0 (5.4)

The parameters in Equation 5.4 include 1) Lmam, the circuit depth, 2) k, the depth-

accuracy parameter, 3) Approx, BLAPE’S signal probability approximation, and 4)

Exact, the exact (SIS) signal probability. An additional feature of the BLAPE imple-

mentation is its support of large circuits. Circuits which SIS was not able to process,

due to memory limitations, were handled by BLAPE in a reasonable time (Table

5.15)

zrcmt

5445 1

c3540nr 1594 5713 0.36 5696 1.28 5685 3.34

c7552 3512 13397 1.02 13462 3.46 13581 16.56

 

Table 5.15. Benchmarks not available in SIS.

BLAPE’S ability to handle larger circuits is due to the CBDD’s compact be-

havior/structure representation. Reasonable accuracy is achieved at k = 3. When

analyzing all circuits, BLAPE’s average error is just 1.22% to 0.21%, for k = 1 to 7.

BLAPE achieves a dramatic improvement when compared to behavioral-level activity

and power estimation tools. The error found in most behavioral-level power estima-

tors about 10 - 12 percent on average and about 80% in the worst reported case. The

approach taken by BLAPE is to analyze the high-level structural components from a

logic perspective, by generating the disjoint Boolean equation for each of the Circuit’s

internal and output signals. BLAPE allows the user to perform a trade-off of time

130

l
.



versus accuracy. A less accurate estimate can be computed fairly quick but an exact

estimate can take longer, depending on the circuit size and the number of inputs.
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CHAPTER 6

Behavioral-Level Visualization of

Switching Activity

This chapter introduces a new tool for the visualization of switching activity in CMOS

circuits. The approach presented consists of analyzing post-mortem data collected

by the simulation of switching functions. An estimation of the switching activity for

each circuit partition is captured in one of two views. This tool serves as a switching

activity profiler, which illuminates a Circuit’s activity hot-spots and provides the

locations where power dissipation minimization techniques can best be applied. The

new tool allows the designer of CMOS circuits to visualize the switching activity On a

partitioned basis. The illuminated areas should be considered first in the application

of power minimization techniques.

6.1 Activity Viewer Tool

The Activity Viewer tool is a new mechanism which provides a partitioned and color-

based viewing/profiling of the activity hot-spots within a digital circuit. Previous

switching activity estimation tools used the traditional tabular representation form

[29, 32, 50, 51] while others used the traditional two-axis graph approach as [19, 24, 37,
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52]. The presentation of the results in the aforementioned references can be greatly

improved where spatial/locality activity inter-relationships can also be captured. The

Activity Viewer tool is an improvement to the traditional circuit activity estimate

viewing approaches.

The Activity Viewer tool is a more effective means of presenting circuit activity

estimates. The use of color-based activity coding combined with partitioning provides

a more insightful depiction of how the circuit behaves in response to input stimuli.

Additionally, the partitioning aspect of the tool gives a clear indication of how the

internal logic partitions are inter-related with respect to activity and input. For a

mapping of color to switching activity (Figure 6.1). (Color results have been repro-

duced in black and white for this dissertation). The Activity Viewer tool provides two

 

Color Activity

0.8 < Esw(g) < 1.0

0.5 < Esw(g) < 0.7

0.3 < Esw(g) < 0.4

0.1 < Esmg) < 0.2

No Activity   
 

Figure 6.1. Activity color mapping.

views: the Bar and Level Views, illustrated by Figures 6.2 and 6.3 respectively, which

were generated with artificial partition and activity data. The Bar View provides a

color-based two-axis graph of the Circuit’s switching activity on a partition basis. As

the input stimulus changes, the Bar View captures the activity of each partition. For
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5M2)

 

Figure 6.2. Bar view.

Level

 

 
Figure 6.3. Level view.

multi-level circuit designs, the Level View, illustrated in Figure 6.3, captures level-

based partitioned switching activity behavior. This view allows the circuit designer

to isolate and inspect the activity profile of a Circuit’s network on a per level basis.
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6.1.1 Input Transformation Process

The input to the Activity Viewer tool begins with a gate-level circuit netlist described

in the Berkeley Logic Interchange Format (BLIF). The netlist is passed through the

BLAPE tool where level and partition information is obtained. Next, input vectors

are read into BLAPE followed by simulation of the circuit. Following simulation, the

outputs of selected internal and primary output nodes are collected and passed to

an intermediate file. This intermediate file is passed to the mkactdat tool, which

performs switching activity estimation (simulation) assuming the zero delay model

and input data independence. Each switching activity estimate is computed by es-

timating the average change of the selected nodes’ simulation outputs. The activity

estimate is based on a block of ten simulation outputs. This simulation output block

is repeatedly updated upon receipt of next input vector. The level and partition

information, along with the switching activity measurements, are used as the final

input to the Activity Viewer tool. Once the final input data file is read, the view-

ing of switching activity can be controlled by using the Play, Stop, Forward, and

Reverse buttons located on the control dialog. The menu bar provides options to

features which allow the user to toggle between the Bar and Level views, as well as to

copy the current view to the Window’s clipboard memory. The latter feature serves

as a window snapshot function and was used to generate the figures in this section.

6.1.2 Activity Viewer Results

A 4-bit Booth multiplier circuit can be used to illustrate the utility of the Activity

Viewer tool. The Booth multiplier is a two’s complement array multiplier which does

not require recoding for the final two’s complement result. The Booth multiplier

is composed of controlled add/subtract/shift (CASS) subcircuits. Each row of the

Booth array is headed by a CTRL subcircuit, which controls the CASS subcircuits.

 



Level 13

  26
 

Figure 6.4. Booth multiplier(4-bit) level view.

After transforming the Booth multiplier circuit into a BLIF netlist, the final cir-

cuit resulted in a 27 level structure, illustrated by the Level View in Figure 6.4. The

selected partitions consists of the basic array elements: the CTRL and CASS subcir-

cuits. The above view displays low switching activity due to the small change in the

input vectors. The low switching activity is due to minimal changes in the logic of the

CTRL and CASS subcircuits caused by infrequent changes in the sign and number

of 1’s in the input vectors. The Level View indicates very well the relative size of

each partition and the level or distance from the primary inputs. The relative size of

the partitions are preserved by extending the width of each partition. The width of

each partition is computed by summing the number of gates in the individual sums

of products.

Figure 6.5 provides a Bar View of the Booth Multiplier, where partition size

and location are ignored. Each partition is placed on the horizontal axis and it’s

switching activity for the given input block is indicated by color intensities. The

color mappings are specified in Figure 6.1. The Bar View of the Booth multiplier

is consistent with the Level View, displaying low circuit activities for the specified
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input vectors. The switching activity for each partition of the level view matches the

activity of the corresponding partition in bar view, but the level or distance from the

primary inputs is considered.

 

 
 

1.0

0.9

0.8

0.7

Ema) 0-6 E I

0.5

0.4

0.3 - - '

0.2 I

0.1

1 50 100 150 200 250 300

Partition

Figure 6.5. Booth multiplier(4—bit) bar view.

6.2 Future Work and Summary

Currently, the Activity Viewer tool is a Microsoft Windows based application program

providing only two views. Future improvements may include the addition of new

views that provide the display of total circuit switching activity and power, along

with zoom in/out capabilities to isolate important areas of large circuits which have

lost their viewing definition. Most importantly, the automation of the process of

transforming the original Circuit’s file format to the final partition/activity file format

can be considered.

The Activity Viewer tool is a new visualization tool which provides color-based,

partitioned-level viewing of switching activity in CMOS circuits. The tool provides
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the circuit designer with switching activity profiling capability which illuminates the

potential power-hungry hot-spots of the design.
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CHAPTER 7

Conclusions

A methodology for behavioral-level switching activity estimation in CMOS circuits

has been presented. This chapter summarizes the contributions and future work of

this research.

7.1 Contributions

The research presented in this dissertation addresses the problem of computing switch-

ing activity at the behavioral-level for CMOS circuits. The accurate computation of

switching activity provides improved dynamic power estimates. An extensive liter-

ature review was given detailing the background and importance of the research.

Additionally, an overview of behavioral and structural representations of switching

functions was presented. A formal problem definition along with its solution and

associated constraints/restrictions was given. The problem’s solution was decom-

posed into a set of tasks. Each task was described by an objective along with its

implemented approach.

The contributions of this research are the following:

o A new decision diagram, the Connective Binary Decision Diagram (CBDD) has

been introduced. The CBDD is a graph-based behavioral and structural rep-
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resentation for digital circuits. The CBDD advantages include maintenance of

a Circuit’s structural and connective properties and linear growth. When com-

pared to traditional BDD implementations, the CBDD demonstrated an average

reduction in size of more than one order of magnitude for certain benchmark

circuits.

A set of procedures and a systematic approach for visiting each node of the

CBDD’s graph and generating a disjoint Boolean equation in infix notation

was developed. The procedures were verified using a series of test circuits which

generated predictable CBDDs that have known disjoint Boolean equations.

A technique for computing signal probability was developed. The techinque

results in a signal probability approximation in which estimation error decreases

as a depth-accuracy parameter is increased.

A new methodology was developed for computing the switching activity and

dynamic power dissipation of behavioral—level digital circuit designs described in

VHDL. The implementation, called BLAPE, transforms a VHDL specification

into a set of Boolean expressions. Then, the application of structure supports

the computation of realistic switching activity and dynamic power estimates.

A series of benchmark experiments were performed to validate the methodology

and highlight the accuracy and performance of the BLAPE implementation as

compared to the Berkeley SIS power estimator. Experiments were performed

using circuits selected from an arithmetic circuit suite and the ISCAS-85, nonre-

dundant ISCAS-85, and MCNC Synth89 benchmark suites.

A new visualization tool for profiling/viewing the powephungry activity hot-

spots within a circuit was developed. This tool is beneficial to circuit designers
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because it identifies the location and switching activity of circuit nodes using

various graphical views.

7.2 Future Work

The BLAPE implementation provides improved accuracy for high-level switching ac-

tivity and power estimation. Future improvements and considerations in the following

areas will improve BLAPE’S performance, accuracy, and usefulness.

o The Connective Binary Decision Diagram (CBDD) should be more intelligent.

The CBDD should be able to recognize redundant logic and not replicate this

logic each time it is encountered. This improvement will produce a more com-

pact graph, yielding smaller post-ordered Boolean equations and improving the

performance.

0 BLAPE should provide support for sequential circuits. The modeling of sequen-

tial circuits require additional considerations and modifications to the CBDD.

This improvement will increase the usefulness of the BLAPE implementation.

0 Unit/Real delay models are needed to give more realistic power estimates. These

delay models will yield longer program simulation runtimes, but offer switching

activity and power estimates which are consistent with the results of circuit-level

simulators.

0 Improved memory management for the BLAPE implementation is necessary.

More efficient use of memory resources will allow the analysis of larger circuit

designs.
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7.3 Impact of Contributions

The research presented in this dissertation provides a solution to the problem of accu-

rately estimating switching activity and dynamic power for high-level circuit designs

described by VHDL behavioral specifications. The technique provides a significant

improvement to existing behavioral-level activity and power estimators. The esti-

mates generated by existing high—level techniques contain 10 to 12 percent error on

average, with some estimates containing as much as 80 percent error. The application

of the proposed technique, the BLAPE program, allows user-selectable accuracy of

switching activity estimation, at the expense of time and memory resources. During

a benchmark comparison containing 49 circuits, with the Berkeley SIS power esti-

mator, the BLAPE program power estimates contained 1.22% average error for a

depth-accuracy of k = 1 and 0.21% average error for k = 7.

The BLAPE program combined with the use of the Activity Viewer tool provides

an effective means of activity/power profiling at the behavioral-level. The combi-

nation of the two tools identifies high-activity and power-hungry hot-spots within

a circuit design. The ability to estimate switching activity and dynamic power at

the behavioral-level will improve the quality of integrated circuits by providing early

warning of power problems and reducing design time and cost.
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APPENDIX A

Definitions and Formulas

Definition A.1 Glitch Activity: The portion of the switching activity due multiple

gate output transitions in response to an input transition.

Definition A.2 Reconvergent fanout nodes: Circuit nodes that receive inputs from

two paths that fanout from some other circuit node.

Definition A.3 Non-decomposable FSM: An FSM is said to be non-decomposable

when every state of the machine is reachable from every other state in a finite number

of cycles.

Definition A.4 Signal Probability P,(x): The probability that the signal at node x

evaluates to logic one [53].

Definition A.5 Transition Probability PT(x): The probability that the logic signal at

node x experiences a change in its logic state [53].

Switching Activity Derivation:

E.w(g) = Posl(9)+PHo(g)

= P.‘(‘9’) ° P.‘“(9) + P.‘(g) - Pl“ (‘9')

= PM) - Ps(g) + 11(9) - Ps('g‘)

= 2-P.(g)-Ps(’g‘)

= 2-P.(9)'(1-Ps(9))
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Definition A.6 Spatial Correlation: Two logic signals x and y are spatially cor-

related if in the same time slot the state of one signal depends on the state of the

other.

Definition A.7 Temporal Correlation: The dependence of the current state of a

signal on its previous logic value.

Definition A.8 Boolean difference (3%) = y|x=1 GB ylxzo = y(x) 63y(?r‘).

Definition A.9 Equilibrium probability: If x(t) is a logic signal (switching between

0 and I), then its equilibrium probability is defined as P(x) = lianoo % fig/22 x(t)dt

Definition A.10 Transition Density: The average number of transitions per unit

time experienced by a circuit node [53].

Remark: Then density provides an effective measure of switching activity in logic

circuits in the presence of any delay model.

Remark: If a logic signal x(t) makes n$(T) transitions in a time interval of

length T, then the transition density of x(t) is defined as D(x) := limT_,oo 35%;).

Remark: If all correlations are ignored, so that the input signals are independent

of one another in both space and time then the signals are spatio-temporal independent,

and the transition density is given by D(y) = i=1 P (33%) - D(xi).

Remark: The relationship between transition density and transition probability

is given by D(x) 2 5.1795).

Definition A.11 Articulation Point: A node whose removal disconnects the graph.

Definition A.12 The Boolean operators ’+’, ’*’, ’-’, represent the logic disjunction

(0R), conjunction (AND), and inversion (NOT), respectively. By default, ’*’ may

be denoted by a space.
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Definition A.13 Primary inputs are Boolean variables of a circuit that depend on

no other variables.

Definition A.14 Primary outputs are Boolean variables on which no other vari—

able(s) depends.

Definition A.l5 The depth of a circuit is the maximum number of nodes between

any primary input and any primary output.

Definition A.16 Flattening or Collapsing is the action of reducing the circuit ’3 depth

to a desired level.
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APPENDIX B

Application of BLAPE to 4—bit

Booth Multiplier

This appendix presents a stage by stage view of the BLAPE implementation when

applied to a 4-bit Booth multiplier design. The initial input specification is in VHDL,

using the behavioral model for some components, and the structural VHDL model

for the high-level design. The representations for each intermediate stage are given.

B.1 High-Level VHDL Specification Input

ENTITY cass IS

port (pin, cin, ain, h, d : IN BIT;

pout, cout : OUT BIT);

END cass;

ARCHITECTURE cass_arch 0F cass IS

BEGIN

pout <= pin XOR (ain AND h) XOR (cin AND h);

cout <= ((pin XOR d) AND ((ain 0R cin) 0R (ain AND cin)));

END cass_arch;

ENTITY ctrl IS

port (x2, x1 : IN BIT;

h, d : OUT BIT);

END ctrl;
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ARCHITECTURE ctr1_arch OF ctrl IS

BEGIN

h <= x2 XOR x1;

d <= x2 AND ( NOT(x1) );

END ctrl_arch;

ENTITY booth4 IS

port (a, x : IN BIT_VECTOR(3 DOWNTO O);

p : OUT BIT_VECTOR(7 DOHNTO 0));

END booth4;

ARCHITECTURE network OF booth4 IS

COMPONENT ctrl

port (12, 11 : IN BIT;

h, d : OUT BIT);

END COMPONENT;

COMPONENT cass

port (pin, cin, ain, h, d : IN BIT;

pout, cout : OUT BIT);

END COMPONENT;

SIGNAL p : BIT_VECTOR(34 DOWNTO 0);

SIGNAL c : BIT_VECTOR(34 DOHNTO 0);

SIGNAL h : BIT_VECTOR(4 DOWNTO 0);

SIGNAL d : BIT_VECTOR(4 DONNTO 0);

SIGNAL zero : BIT;

BEGIN

zero <= ’0’;

zero, 1(3), h(4), d(4)

x(3), x(2), h(3), d(3)

x(2), 1(1), h(2), d(2)

1(1), 1(0), h(l), d(l)

x(O), zero, h(O), d(O)

ctr1_4 : ctrl port MAP

ctr1_3 : ctrl port HAP

ctr1_2 : ctrl port MAP

ctr1_1 : ctrl port MAP

ctr1_0 : ctrl port MAP

.
0

A
A
A
A
A

V
V
V
V
V

n
o

u

cass_0 : cass port MAP (zero, zero, a(O), h(4), d(4), p(0), c(O)

cass_1 : cass port HAP (zero, c(O), a(1), h(4), d(4), p(l), c(1)

cass_2 : cass port HAP (zero, c(1), a(2), h(4), d(4), p(2), c(2)

cass_3 : cass port MAP (zero, c(2), a(3), h(4), d(4), p(3), c(3)

cass_4 : cass port MAP (zero, c(3), zero, h(4), d(4), p(4), c(4)

cass_5 : cass port MAP (zero, zero, a(O), h(3), d(3), p(5), c(5)

cass_6 : cass port MAP (p(0), c(5), a(1), h(3), d(3), p(6), c(6)

cass_7 : cass port MAP (p(l), c(6), a(2), h(3), d(3), p(7), c(7)
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cass_8

cass_9

cass_31

: cass

: cass

cass_10 :

cass_11 :

cass_12 :

cass-13 :

cass_14 :

cass_15 :

cass_16 :

cass_17 :

cass_18 :

cass_19 :

cass_20 :

cass_21 :

cass_22 :

cass_23 :

cass_24 :

cass_25 :

cass_26 :

cass_27 :

cass_28 :

cass_29 :

cass_30 :

: cass

cass_32 :

cass_33 :

cass_34 :

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

C388

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

port

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

MAP

p <= p(33 DOWNTO 26);

END network;

its inputs.

(p(2),

(p(3).

(p(4),

(zero,

(p(5).

(p(6).

(p(7).

(p(8).

(p(9).

(p(10), C(16), zero, h(2), d(2). p(17), C(17) )3

c(7).

C(8),

C(9),

zero,

C(11):

C(12):

C(13):

C(14):

C(15):

a(3). h(3), d(3), p(8). C(8) )3

zero, h(3), d(3), p(9), C(9) )3

zero, h(3), d(3), p(10), C(10) )3

a(O), h(2), d(2), p(11), C(11) )3

a(1), h(2), d(2), p(12).

a(2). h(2). d(2). p(13),

a(3), h(2). d(2), p(14),

zero, h(2), d(2). p(15).

zero, h(2), d(2). p(16).

C(12) )3

C(13) )3

C(14) )3

C(15) )3

C(16) )3

(zero, zero, a(O), h(1), d(l), p(18), C(18) )3

(p(11).

(p(12),

(p(13).

(p(14):

(p(15)3

(p(16).

(p(17).

C(18)

C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

. a(1),

. a(2).

. a(3).

, zero,

, zero,

, zero,

, zero,

h(1),

h(1),

h(1),

h(1),

h(1),

h(1),

h(1),

d(1),

d(1),

d(1).

d(l),

d(1).

d(1),

d(l),

p(19).

P(20):

p(21):

p(22).

P(23):

p(24).

p(25):

C(19) )

C(20) )

C(21) )

C(22) )

C(23) )

C(24) )

C(25) )

(zero, zero, a(O), h(O), d(O), p(26), C(26) )3

(p(18).

(p(19):

(p(20):

(p(21).

(p(22),

(p(23):

(p(24).

(P(25):

C(26)

C(27)

C(28)

C(29)

C(30)

C(31)

C(32)

C(33)
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. a(1),

. a(2).

. a(3).

, zero,

, zero,

, zero,

, zero,

, zero,

h(O),

h(O),

h(O).

h(O),

h(O),

h(O),

h(O),

h(O),

B.2 Boolean Equation Generation

d(O),

d(O).

d(O),

d(O).

d(O),

d(O),

d(O),

d(O),

p(27).

p(28).

P(29):

p(30).

p(31).

p(32).

p(33):

P(34):

C(27) )

C(28) )

C(29) )

C(30) )

C(31) )

C(32) )

C(33) )

C(34) )

The Booth multiplier is an array multiplier, composed of CASS and CTRL units.

The CASS unit is responsible for performing arithmetic/shifts operations, based on

The CTRL unit is responsible for producing the input signals to the

CASS units. After compiling the each of the independent units (CASS, CTRL), the

multiplier (Booth4) is compiled. The report file generated by the Altera MAX+PLUS



II compiler contains input/output information as well as the Boolean equations given

below.

** INPUTS **

Pin LC

44 - -

43 - -

42 - -

10 - -

84 - -

2 - ..

1 _ .-

11 - -

tat OUTPUTS u:

Pin LC

62 - -

29 - -

18 - -

17 - -

19 - -

25 - -

24 - -

23 - -

** EQUATIONS **

a0 : INPUT;

a1 : INPUT;

a2 : INPUT;

a3 : INPUT;

x0 : INPUT;

xl : INPUT;

x2 : INPUT;

x3 : INPUT;

-- Node name is ’pO’

-- Equation name is ’pO’,

_LC1_C14;

-- Node name is ’p1’

“- Equation name is ’pl’, type is output

_LCS_C6;

‘- Node name is ’p2’

Row

w
w
w
>
>
>
a
a

Col Primitive

Col Primitive

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

type is output
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0

0
0
0
0
0
0
0

0

0
0
0
0
0
0
0

0

0
0
0
0
0
0
0

1

H
H
H
H
H
H
H

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

11

11

10

9

14

8

13

10

INP FBK OUT FBK

0
0
0
0
0
0
0
0

INP FBK OUT FBK Name

a0

a1

a2

a3

x0

x1

x2

:3

Name

p0

p1

p2

p3

p4

p5

p6

p7



-- Equation name is ’p2’, type is output

p2 = _LC5_A1;

-- Node name is ’p3’

-- Equation name is ’p3’, type is output

p3 = _LC3_A1;

-- Node name is ’p4’

-- Equation name is ’p4’, type is output

p4 = _LC7_A1;

-- Node name is ’p5’

-- Equation name is ’p5’, type is output

p5 = _LC7_B2;

-- Node name is ’p6’

-- Equation name is ’p6’, type is output

p6 = _LC5-B2;

-- Node name is ’p7’

-- Equation name is ’p7’, type is output

p7 = _LC3_B2;

-- Node name is ’lcass:cass_6l:14’

-- Equation name is ’_LC4_A10’, type is buried

_LC4_A10 = LCELL( -EQOOI);

_EQOOI = a1 & x2 & !13

# a0 & x2 & x3

# a1 & !x2 & x3

# a0 a a1 & x3;

-- Node name is ’lcasszcass_6|:23’

-- Equation name is ’_LC4_CS’, type is buried

_LC4_C3 LCELL( _EQOO2);

_EQOO2 = !aO & a1 & !x2 & x3

# a0 & a1 & x2 & x3;

-- Node name is ’lcass:cass_7l:12’

-- Equation name is ’_LC5_C3’, type is buried

_LC5_C3 = LCELL( _E0003);

_EQOOS = a1 8 x2 & 13

# a1 u !a2 & 13

# a2 & x2 & !13

# !a1 & a2 & !x2 & x3;

-- Node name is ’lcasszcass_7l:14’

-- Equation name is ’-LC1_C3’, type is buried

_LC1_C3 = LCELL( _EQOO4);
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_EQOO4 = _LC4_C3 & !_LCS_C3 & !x2 &

# _LC4_C3 & !_LC5_C3 & x2 &

# !_LC4_C3 & _LC5_C3

# _LC5_CB & x2 & x3

# _LC5_C3 & 1x2 & !x3;

-- Node name is ’lcass:cass_7l:22’

-- Equation name is ’_LC6_C3’, type is

_LC6_C3 = LCELL( _EQOOS);

_EQOOS - _LC4_C3

# a2;

-- Node name is ’lcass:cass_7|:23’

—- Equation name is ’_LC3_C3’, type is

_LC3_C3 3 LCELL( _EQOOG);

_EQOOG = a1 & _LCG_C3 & x2 & x3

# !a1 & _LC6_C3 & !x2 & x3;

-- Node name is ’lcass:cass_8|:12’

-- Equation name is ’_LC5_A4’, type is

_LC5_A4 - LCELL( -EQOO7);

_E0007 8 a2 & x2 & 13

# a2 & !a3 A 13

# a3 A :2 A 113

8 !a2 a a3 & !x2 & x3;

-- Node name is ’Icass:Cass_8|:13’

-- Equation name is ’_LC2_C3’, type is

_LC2_C3 I LCELL( _EQOO8);

_EQOOB 3 !a1 & _LC6_C3 & !12 k 13;

-- Node name is ’lcasszcass_8|:22’

-- Equation name is ’_LC2_C9’, type is

_LC2_C9 = LCELL( _EQOOQ)3

.E0009 8 _LC3_C3

# a3;

-- Node name is ’Icasszcass-9l:13’

-- Equation name is ’_LC3_C9’, type is

_LC3_C9 8 LCELL( -EQOlO);

_EQOIO 3 !a2 & _LC2_C9 & !x2 & x3;

-- Node name is ’lcass:cass_9|:14’

-- Equation name is ’_LC1_C9’, type is

_LC1_C9 = LCELL( _EQOll);

_EQO11 8 _LC3_C9 & !x3

# !a3 & _LC3_09

x3

!x3

buried

buried

buried

buried

buried

buried

buried
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# a3 A !_LC3_C9 A x3;

—- Node name is ’lcasszcass_12l:12’

-- Equation name is ’_LC7_A10’, type is buried

_LC7_A10 LCELL( _EQOlZ);

_EQOl2 = a0 A !_LC1_A12 A _LC5_A10

# a0 A !a1 A _LCS_A10

# a1 A _LC1_A12 A !_LC5_A10

# !aO A a1 A _LC1_A12;

-- Node name is ’lcasszcass_12l:14’

-- Equation name is ’_LC3_A10’, type is buried

_LC3_A10 = LCELL( _EQOIS);

_EQOlS = !_LCl_A11 A _LC7_A10

# !aO A _LC7_A10

# !_LC1_A12 A _LC7_A10

# a0 A _LC1_A11 A _LC1_A12 A !_LC7_A10;

-- Node name is ’lcass:cass_12l:23’

-- Equation name is ’_LC6_A10’, type is buried

_LC6_A10 = LCELL( -EQOI4);

_EQOl4 = a0 A al A !_LC1_A11 A _LCS_A10

# a0 A _LC1_A11 A !_LC5_A10

# a1 A _LC1_A11 A !_LC5_A10

# !aO A a1 A _LC1_A11;

-- Node name is ’Icasszcass_13l:14’

-- Equation name is ’_LC2_A10’, type is buried

_LC2_A10 = LCELL( _EQOIS);

_E0015 = !_LC1_A12 A _LC4_A10

# !a2 A _LC4_A10 A !_LC6_A10

# a2 A -LC1_A12 A !_LC4_A10 A !_LC6_A10

# a2 A -LC4_A10 A _LC6_A10

# la2 A _LCl_A12 A !_LC4_A10 A _LC6_A10;

-- Node name is ’lcasszcass-13l:23’

-- Equation name is ’_LC1_A10’, type is buried

_LCl_A10 = LCELL( _EQOlS);

_EQ016 = !_LC1_A11 A _LC4_A10 A _LC6_A10

# a2 A !_LC1_A11 A _LC4_A10

# _LCl_A11 A !_LC4_A10 A _LC6_A10

# a2 A _LC1_A11 A !_LC4_A10;

-- Node name is ’Icass:cass_14|:14’

-- Equation name is ’_LC1_A8’, type is buried

_LC1_A8 = LCELL( -EQOI7);

_EQOI7 = a3 A _LC1_A10 A _LC1_C3

# !a3 A _LC1_A10 A _LC1_A12 A !_LC1_C3
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# !_LC1_A12 A _LC1_C3

# !a3 A !_LCI_A10 A _LC1_C3

# a3 A !_LC1_A10 A _LC1_A12 A !_LC1_C3;

-- Node name is ’lcass:Cass_14l:23’

-- Equation name is ’_LC4_A4’, type is buried

_LC4_A4 8 LCELL( _EQOlS);

_EQOIB = _LC1_A10 A !_LC1_A11 A _LC1_C3

# a3 A !_LC1_A11 A _LCI_CB

# _LC1_A10 A _LC1_A11 A !_LC1_CB

# a3 A _LC1_A11 A !_LC1-C3;

-- Node name is ’lcasszcass_15l:14’

-- Equation name is ’_LC2_A4’, type is buried

_LC2_A4 LCELL( _EQOIQ);

_EQOIQ _LC2_C3 A !_LC4_A4 A !_LC5-A4

!_LC2_C3 A !_LC4_A4 A _LCS_A4

!_LCl_A12 A _LC2_C3 A !_LCS_A4

!_LCI_A12 A !_LC2_03 A _LC5_A4

_LC1_A12 A _LC2_C3 A _LC4_A4 A _LCS_A4

_LCl_A12 A !_LC2_C3 A _LC4_A4 A !_LC5_A4;%
fi
fi
fi
‘
t
l

-- Node name is ’lcass:cass_15|:19’

-- Equation name is ’_LC3_A4’, type is buried

_LC3_A4 = LCELL( _EQO20);

_EQO2O = _LC2_CS A !_LC5_A4 A !x2

# !_LC2_C3 A _LC5_A4 A 112

# _LC2_C3 A !_LC5_A4 A 11

# !_LC2-C3 A _LC5_A4 A 11

# _LC2_CS A _LC5_A4 A !xl A 12

# !_LC2_CB A !_LC5_A4 A 111 A 12;

-- Node name is ’lcass:Cass_16l:13’

-- Equation name is ’_LC1_A4’, type is buried

_LC1_A4 = LCELL( _EQO21);

_EQOZI = _LC3_A4 A _LC4_A4 A !11 A x2

# _LC3_A4 A _LC4_A4 A :1 A 112;

-- Node name is ’lcasszcass_19|:12’

-- Equation name is ’_LC5_A5’, type is buried

_L05_A5 = LCELL( _EQO22);

_E0022 = a0 A _LC1_A12 A !_LC1_A13

# a0 A !a1 A _LCl_A12

# a1 A !-LC1_A12 A _LC1_A13

# !aO A a1 A _LC1_A13;

-- Node name is ’lcass:cass_19l:14’

-- Equation name is ’_LC4_A5’, type is buried
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_LC4_A5

_EQO23

LCELL( _EQO23);

!_LC1_A13 A _LCS_A5

!_LC1_C7 A _LC5_A5

!aO A _LCS_A5

a0 A _LC1_A13 A _LC1_C7 A !_LC5_A5;%
fi
fi
l
l

-- Node name is ’lcass:cass_19|:23’

-- Equation name is ’_LC6_A5’, type is buried

_LC6_A5 = LCELL( _EQO24);

_EQO24 = a0 A a1 A _LCI_A12 A !_LC1_C7

# a0 A !_LC1_A12 A _LC1_C7

# a1 A !_LC1_A12 A _LCl_C7

# !aO A a1 A _LC1_CT;

-- Node name is ’lcasszcass_20l:14’

-- Equation name is ’_LC3_A5’, type is buried

_LC3_A5 = LCELL( _EQO25);

_EQO25 = !_LC1_A13 A _L03_A10

# !a2 A _LC3_A10 A !_LCG_A5

# a2 A _L01_A13 A !_LC3_A10 A !_LC6_A5

# a2 A _LC3_A10 A _LC6_A5

# !a2 A _LC1_A13 A !_LC3_A10 A _LC6_A5;

-- Node name is ’lcass:cass_20I:23’

-- Equation name is ’_LC7_A5’, type is buried

_LC7_A5 = LCELL( _E0026);

_E0026 8 !_LC1_C7 A -LC3_A10 A -LC6_A5

A a2 A !_LCl_C7 A _LC3-A10

# _LCI_C7 A !_LC3_A10 A _LC6_A5

# a2 A -LC1_C7 A !_LC3_A10;

-- Node name is ’Icass:cass_21l:12’

-- Equation name is ’_LC2_A1’, type is buried

_LC2_A1 = LCELL( _EQO27);

_E0027 = !a3 A _LC2_A10

# !_LC1_A13 A _LC2_A10

# a3 A _LCi_A13 A !_LC2_A10;

-- Node name is ’lcasszcass_21|:13’

-- Equation name is ’_LC2_A5’, type is buried

_LC2_A5 = LCELL( _EQO28);

_EQO28 = _LC1_A13 A _LC7_A5;

-- Node name is ’lcass:cass_21l:23’

-- Equation name is ’_LC1_A5’, type is buried

_LCl_A5 = LCELL( _EQO29);

_EQO29 = !_LC1_C7 A _LC2_A10 A _LC7_A5
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# a3 A !_LC1_C7 A _LC2_A10

# _LC1_C7 A !_LC2_A10 A _LC7_A5

# a3 A _LC1_C7 A !_LC2_A10;

-- Node name is ’lcasszcass_22|:14’

-- Equation name is ’_LCB_B2’, type is buried

_LCB_B2 ' LCELL( _EQOSO);

_EOO3O = !_LC1_A5 A -LCI_A8

# _LC1_A8 A !_LC1_A13

# _LC1_A5 A !_LC1_A8 A _LC1_A13;

-- Node name is ’lcass:cass_22l:23’

-- Equation name is ’_LC1_B2’, type is buried

_LC1_B2 8 LCELL( _EQOBi);

_EQO31 - _LC1_A5 A _LC1_A8 A !_LC1_C7

# _LCI_A5 A !_LC1_A8 A _LC1_C7;

-- Node name is ’lcasszcass_23|:14’

-- Equation name is ’-LC2_B2’, type is buried

_LC2_B2 8 LCELL( _E0032);

_EQOB2 8 !_LC1_B2 A _LC2_A4

# !_LC1_A13 A _LC2_A4

# _LC1_A13 A _LCl_B2 A !_LC2-A4;

-- Node name is ’lcasszcass_24l:13’

-- Equation name is ’_LC4-B2’, type is buried

-LC4_B2 - LCELL( -EQO33);

-E0033 8 _LC1_A13 A _LC1_B2 A !_LC1_C7 A -LC2_A4

# _LC1-A13 A _LCI-B2 A _LC1_C7 A !_LC2_A4;

-- Node name is ’lcasszcass_26l:11’

-- Equation name is ’_LCl_C14’, type is buried

__LCS-C6 = LCELL( -EQO35);

_E0035 8 !a0 A al A 10

# a0 A 110 A :1

# al A :0 A !11

# a0 A !a1 A 11;

-- Node name is ’lcasszcass_27|:23’

-- Equation name is ’_LC4_A1’, type is buried

-LC4_A1 = LCELL( -E0036);

_EQO36 = a0 A x0 A :1

# a0 A a1 A 11

# a1 A 10 A :1

# !aO A a1 A 10;

-- Node name is ’Icass:cass_28|:14’
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-- Equation name is ’_LC5_A1’, type is buried

_LC5_A1 = LCELL( _EQO37);

_E0037 = _LC4_A5 A !xO

# !a2 A !_LC4_A1 A _LC4_A5

# a2 A !_LC4_A1 A !_LC4_A5 A x0

# a2 A _LC4_A1 A _LC4_A5

# !a2 A _LC4_A1 A !_LC4_A5 A x0;

-- Node name is ’lcasszcass_28l:23’

-- Equation name is ’_L08_A1’, type is buried

_LC8_A1 = LCELL( -E0038);

_EQOBB a2 A _LC4_A5 A !xO

a2 A !_LC4_A5 A x0

_LC4_A1 A _LC4_A5 A 110

_LC4_A1 A !_LC4_A5 A 10;#
%
#
I
I

-- Node name is ’lcasszcass_29I:14’

-- Equation name is ’_LC3_A1’, type is buried

_LC3_A1 = LCELL( _EQO39);

_E0039 = _LC3_A5 A !xO

# !a3 A _LC3_A5 A !_LC8_A1

# a3 A !_LC3_A5 A !_LC8_A1 A x0

# a3 A _LC3_A5 A -LCB_A1

# !a3 A !_LC3_A5 A _LC8_A1 A x0;

-- Node name is ’lcasszcass_29l:23’

-- Equation name is ’_LC6_A1’, type is buried

_L06_A1 - LCELL( _EQO40);

_EQO40 = a3 A _LCB-A5 A !xO

A -LC3_A5 A _LC8-A1 A !xO

# a3 A !_LC3_A5 A 10

# !_LC3_A5 A _LC8_A1 A 10;

-- Node name is ’lcass:cass_30l:14’

-- Equation name is ’_LC7_A1’, type is buried

_LC7_A1 = LCELL( _EQO41);

_EQO41 = !_LC2_A1 A -LC2_A5 A !_LC6_A1

# _LC2_A1 A !_LC2_A5 A !_LC6_A1

A !_LC2_A1 A _LC2_A5 A !xO

# _LC2_A1 A !_LC2_A5 A !xO

# _LC2_A1 A _LC2_A5 A _LC6_A1 A :0

# !_LC2_A1 A !_LC2_A5 A _LC6_A1 A 10;

-- Node name is ’lcass:cass_30l:23’

-- Equation name is ’_LC1_A1’, type is buried

_LC1_A1 = LCELL( -EQO42);

_EQO42 = !_LC2_A1 A _LC2_A5 A _LC6_A1 A !xO
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# _L02_A1 A !_LC2_A5 A _LC6_A1 A !xO

# _LC2_A1 A _LC2_A5 A _LC6_A1 A x0

# !_LC2_A1 A !_LC2_A5 A _LC6_A1 A x0;

-- Node name is ’lcasszcass_31|:14’

-- Equation name is ’_LC7_B2’, type is buried

-LC7,B2 = LCELL( _EQO43);

_EQO43 = !_LC1_A1 A _LC8_B2

# _LC8_B2 A !xO

# _LCI_A1 A !_LC8_B2 A x0;

-- Node name is ’lcasszcass_32|:14’

-- Equation name is ’_LCS_B2’, type is buried

_LC5_B2 = LCELL( _EQO44);

-EQO44 = _LC2_B2 A _LC8_B2

A !_LC1_A1 A _LC2_B2

# _LC2_B2 A 110

# _LC1_A1 A !_LC2_B2 A !_LC8_B2 A x0;

-- Node name is ’lcass:cass_33l:13’

-- Equation name is ’_LC6_B2’, type is buried

_LC6_B2 = LCELL( _EQO45);

_EQO45 = _LC1_A1 A !_LC2_B2 A !_LCB_B2 A x0;

-- Node name is ’lcass:cass_33|:14’

-- Equation name is ’_LC3_B2’, type is buried

_LC3_B2 = LCELL( _EQO46);

_EQO46 = _LC1_A4 A !_LCI-CQ A _LC4_B2 A _LC6_B2

# !_LC1_A4 A _LCl_C9 A _LC4_B2 A _LC6_B2

# _LCl_A4 A _LCI_C9 A !_LC4_B2 A _LC6_B2

# !_LC1_A4 A l_LCi_CQ A !_LC4_B2 A _LC6_B2

# -LC1_A4 A _LCl_C9 A _LC4_B2 A !_LC6_B2

# !_LCI_A4 A !_LC1_CQ A _LC4_B2 A !_LC6_B2

# _LC1_A4 A !_LC1_CQ A !_LC4_B2 A !_LC6_B2

# !_LC1_A4 A _LC1_C9 A !_LC4_B2 A !_LC6_B2;

-- Node name is ’lCtrlzctr1_1l:5’

-- Equation name is ’_LC1_A13’, type is buried

_LC1_A13 = LCELL( -EQO47);

_EQO47 = !x0 A x1

# :0 A !x1;

-- Node name is ’lctr1:Ctr1_1l:8’

-- Equation name is ’_LC1_C7’, type is buried

_LCl_C7 = LCELL( _E0048);

_EQO48 = !xO A x1;
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-- Node name is ’ICtrlzctr1_2I:5’

-- Equation name is ’_LC1_A12’, type is buried

_LC1_A12 = LCELL( _EQO49);

_EQO49 = !x1 A x2

# 11 A 1x2;

-— Node name is ’lCtr1:Ctr1_2l:8’

-- Equation name is ’_LC1_A11’, type is buried

_LC1_A11 = LCELL( _EQOSO);

_EQOSO = !xl A x2;

-- Node name is ’Ictrlzctr1_3l:5’

-- Equation name is ’_LCS_A10’, type is buried

_LCS_A10 = LCELL( _EQOSI);

_E0051 = !x2 A 13

# :2 A !x3;

** COMPILATION SETTINGS A TIMES **

B.3 Generate Implicit Structural Specification

Next, a BLAPE program extracts the Boolean equations from the report file and

applies implicit structure. The resulting structural representation is a BLIF-formatted

gate-level circuit Specification.

.inputs a0 a1 a2 a3 10 11 x2 13

.outputs p0 p1 p2 p3 p4 p5 p6 p7

.gate not a=-LC5_03 O=NOT_LC5_C3

.gate not a=_LC4_C3 O=NOT_LC4_C3

.gate not a=_LC3_C9 O=NOT_LC3_C9

.gate not a=_LC1_A12 O=NOT_LC1_A12

.gate not a=_LC5_A10 O=NOT_LC5_A10

.gate not a=_LC1_A11 O=NOT_LC1_A11

.gate not a=_LC6_A10 O=NOT_LC6_A10

.gate not a=-LC4_A10 O=NOT_LC4_A10

.gate not a=_LC1_C3 O=NOT_LC1_C3

.gate not a=_LC1_A10 O=NOT-LC1_A10

.gate not a=_LC4_A4 O=NOT_LC4_A4

.gate not a=_LC5_A4 O=NOT_LC5_A4

.gate not a=_LC2_C3 O=NOT_LC2_C3
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.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate
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.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

not

bufl

bufi

bufl

buf1

bufl

buf1

buf1

bufl

and3

and3

and3

a=_LC1_A13 O=NOT_LC1_A13

a=_LC1_C7

a=_LC6_A5

a=_LC3_A10 O=NOT_LC3_A10

a=_LC2_A10 O=NOT_LC2_A10

a=_LC1_A5

a=_LCI_A8

a=_LC1_B2

a=_LC4_A1

a=_LC4_A5

a=_LC8_A1

a=_LC3_A5

a=_LC2_A1

a=_LC6-A1

a=_LC2_A5

a=_LC1_A1

a=_LC8_B2

a=_LC2_B2

a=_LC1-09

a=_LC1_A4

a=_LC4_B2

a=_LC6_B2

a=_LC2_A4

a=_LCS_A5

a=_LC7_A10 O=NOT_LC7_A10

a=a0

a=a1

a=a2

a=a3

a=xO

a=x1

a=x2

a=13

O=NOT_LC1_C7

O=NOT_LC6_A5

O=NOT_LCl_A5

O=NOT_LC1-A8

O=NOT_LC1_B2

O=NOT_LC4_A1

O=NOT-LC4-A5

O=NOT_LC8_A1

O=NOT_LC3_A5

O=NOT_LC2_A1

O=NOT_LCG_A1

O=NOT_LC2_A5

O=NOT_LC1_A1

O=NOT_LC8_B2

O=NOT_LC2_B2

O=NOT_LC1-C9

O=NOT_LCl_A4

O=NOT_LC4_B2

O=NOT_LC6_B2

O=NOT_LC2_A4

O=NOT_LCS_A5

O=NOTa0

O=NOTa1

O=NOTa2

O=NOTa3

O=NOTxO

=NOTx1

O=NOTx2

O=NOT13

a=_LCl_Cl4 O=p0

 

a=_LC5_C6

a=_LC5_A1

a=_LC3_A1

a=-LC7_A1

a=_LC7_B2

a=_LC5_B2

a=_LC3_82

a=a1 b=x2

a=a0 b=x2

O=p1

O=p2

O=p3

O=p4

O=p6

O=p7

c=NOTx3 O=t0

c=x3 0=t1

a=a1 b=NOTx2 c=x3 O=t2
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.gate
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.gate

.gate

.gate
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.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

and3 a=a0 b=a1 c=13 O=t3

or4 a=t0 b=t1 c=t2 d=t3 O=_LC4_A10

and4 a=NOTaO b=a1 c=NOT12 d=13 0=t4

and4 a=a0 b=a1 c=12 d=13 O=t5

or2 a=t4 b=t5 O=_LC4_C3

and3 a=a1 b=12 c=13 O=t6

and3 a=a1 b=NOTa2 c=13 O=t7

and3 a=a2 b=12 c=NOTx3 O=t8

and4 a=NOTa1 b=a2 c=N0T12 d=13 O=t9

or4 a=t6 b=t7 c=t8 d=t9 O=-LCS_C3

and4 a=-LC4_C3 b=NOT-LC5_C3 c=NOT12 d=13 O=t10

and4 a=_LC4_03 b=NOT_LC5_03 c=12 d=NOT13 O=t11

and2 a=NOT_LC4_03 b=_LCS_C3 O=t12

and3 a-_LC5_C3 b=12 c=13 O=t13

and3 a-_LC5_C3 b=NOT12 c=NOTx3 O=t14

or5 a=t10 b=t11 c=t12 d=t13 e=t14 O=_LC1_C3

or2 a=_LC4_CS b=a2 O=_LC6_CS

and4 a=a1 b=_LCG_CB c=12 d=13 O=t15

and4 a=NOTa1 b=-LCG_C3 c=NOTx2 d=13 O=t16

or2 a=t15 b=t16 O=_LC3_C3

and3 a=a2 b=x2 c=13 O=t17

and3 a=a2 b=NOTa3 C813 O=t18

and3 a-a3 b-x2 c=NOT13 0=t19

and4 a=NOTa2 b=a3 c=NOT12 d=13 O=t20

or4 a=t17 b=t18 c=t19 d=t20 O=_LC5_A4

and4 a-NOTal b=_LC6_C3 c=NOT12 d-13 O=t21

bufl a=t21 O=_LC2_03

or2 a=_LC3_C3 b=a3 0=_LC2_C9

and4 a-NOTa2 b=_LC2_CQ c=NOT12 d=13 O=t22

bufl a=t22 O=_LC3_C9

and2 a=_LC3_C9 b=NOT13 O=t23

and2 a=NOTa3 b=_L03_C9 0=t24

and3 a=a3 b=NOT_LC3_C9 c=13 O=t25

or3 a=t23 b=t24 c=t25 O=_LC1_C9

and3 a=a0 b=NOT-LC1_A12 c=_LC5_A10 O=t26

and3 a=a0 b=NOTa1 c=_LC5_A10 O=t27

and3 a=a1 b=_LC1_A12 c=NOT_LC5_A10 O=t28

and3 a=NOTa0 b=a1 c=_LC1_A12 O=t29

or4 a=t26 b=t27 c=t28 d=t29 O=_LC7_A10

and2 a=NOT_LC1_A11 b=_LC7_A10 O=t30

and2 a=NOTaO b=_LC7_A10 O=t31

and2 a=NOT_LC1_A12 b=_LC7_A10 O=t32

and4 a=a0 b=_LC1_A11 c=_LC1_A12 d=NOT_LC7_A10 O=t33

or4 a=t30 b=t31 c=t32 d=t33 O=_LC3_A10

and4 a=a0 b=a1 c=NOT_LC1_A11 d=_LC5_A10 O=t34

and3 a=a0 b=_LCl_A11 c=NOT_LC5_A1O O=t35

and3 a=a1 b=_LC1_A11 c=NOT_LC5_A10 O=t36
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.gate

.gate

.gate
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.gate

.gate

.gate

.gate

and3 a=NOTaO b=a1 c=_LCI_A11 O=t37

or4 a=t34 b=t35 c=t36 d=t3? 0=_LC6_A10

and2 a=NOT_LCl_A12 b=_LC4_A10 0=t38

and3 a=NOTa2 b=_LC4_A10 c=NOT_LC6_A10 O=t39

and4 a=a2 b=_LCl_A12 c=NOT_LC4_A10 d=NOT_LC6_A10 O=t40

and3 a=a2 b=_LC4_A10 c=_LC6_A10 O=t41

and4 a=NOTa2 b=_LC1_A12 c=NOT_LC4_A10 d=-L06_A10 O=t42

or5 a=t38 b=t39 c=t40 d=t41 e=t42 O=_LC2_A10

and3 a=NOT_LC1_A11 b=_LC4_A10 c=_LC6_A10 0=t43

and3 a=a2 b=NOT_LCl_A11 c=_LC4_A10 O=t44

and3 a=_LC1_A11 b=NOT_LC4_A10 c=_LC6_A10 O=t45

and3 a=a2 b=_LC1_A11 c=NOT_LC4-A10 O=t46

or4 a=t43 b=t44 c=t45 d=t46 O=_LC1_A10

and3 a=a3 b=_LC1_A10 c=_LC1_C3 O=t47

and4 a=NOTa3 b=_LCi_A10 c=_L01-A12 d=NOT_LC1-03 O=t48

and2 a=NOT_LCl_A12 b=_LC1_C3 O=t49

and3 a=NOTa3 b=NOT_LC1_A10 c=_LC1_C3 O=t50

and4 a=a3 b=NOT_LC1-A10 c=_L01_A12 d=NOT_LCl_C3 O=t51

or5 a=t4? b=t48 c=t49 d=t50 e=t51 O=_LC1_A8

and3 a=_LC1_A10 b=NOT_LC1_A11 c=_LC1_C3 O=t52

and3 a=a3 b=NOT_LC1_A11 c=_LC1_C3 O=t53

and3 a=_LC1_A10 b=_LC1_A11 c=NOT_LC1_C3 O=t54

and3 a=a3 b=-LC1_A11 c=NOT_LC1_C3 O=t55

or4 a=t52 b=t53 c=t54 d=t55 O=_LC4_A4

and3 a=_LC2_C3 b=NOT_LC4_A4 c=NOT_LC5_A4 O=t56

and3 a=NOT_LC2_C3 b=NOT_LC4_A4 c=_L05_A4 O=t57

and3 a=NOT_LC1_A12 b=_LC2_C3 c=NOT_LC5_A4 O=t58

and3 a=NOT_LCl_A12 b=NOT_LC2_C3 c=_LC5_A4 O=t59

and4 a=_LC1_A12 b=_LC2_C3 c=_LC4_A4 d=_LCS_A4 O=t60

and4 a=_LCl_A12 b=NOT-LC2_C3 c=_LC4_A4 d=NOT_LC5_A4 O=t61

or6 a=t56 b=t57 c=t58 d=t59 e=t60 f=t61 0=_LC2_A4

and3 a--LC2_C3 b=NOT_LCS_A4 c=NOTx2 O=t62

and3 a=NOT_LC2-C3 b=_LCS_A4 c=NOT12 O=t63

and3 a=_LC2_C3 b=NOT_LC5_A4 C811 O=t64

and3 a=NOT_LC2-C3 b=_LC5_A4 c=11 O=t65

and4 a=_LC2_C3 b=_LC5_A4 c=NOT11 d=12 O=t66

and4 a=NOT_LC2_C3 b=NOT_LC5_A4 c=NOT11 d=12 O=t67

or6 a=t62 b=t63 c=t64 d=t65 e=t66 f=t67 O=_LC3_A4

and4 a-_LC3_A4 b=_LC4_A4 c=NOT11 d=12 O=t68

and4 a=_LC3_A4 b=_LC4_A4 C811 d=NOT12 O=t69

or2 a=t68 b=t69 O=_LC1_A4

and3 a=a0 b=_LCl_A12 c=NOT_LC1_A13 O=t70

and3 a=a0 b=NOTa1 c=-LC1_A12 O=t71

and3 a=a1 b=NOT_LC1_A12 c=_LCI_A13 O=t72

and3 a=NOTa0 b=a1 c=_LC1_A13 O=t73

or4 a=t70 b=t71 c=t72 d=t73 O=_LC5_A5

and2 a=NOT-LCl-A13 b=_LC5_A5 O=t74
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.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

and2 a=NOT_LC1_C7 b=_LC5_A5 0=t75

and2 a=NOTa0 b=_L05_A5 O=t76

and4 a=a0 b=_LC1_A13 c=_LC1_C7 d=NOT_LC5_A5 0=t77

or4 a=t74 b=t75 c=t76 d=t77 O=_LC4_A5

and4 a=a0 b=a1 c=_LCI_A12 d=NOT_LC1_C7 O=t78

and3 a=a0 b=NOT_LCl_A12 c=_L01_C7 O=t79

and3 a=a1 b=NOT_LCl_A12 c=_LC1_C7 0=t80

and3 a=NOTa0 b=a1 c=_LC1_C7 O=t81

or4 a=t78 b=t79 c=t80 d=t81 O=_L06_A5

and2 a=NOT_LC1-A13 b=_LC3_A10 O=t82

and3 a=NOTa2 b=_LC3_A10 c=NOT_L06_A5 O=t83

and4 =a2 b=_LC1_A13 c=NOT_LC3_A10 d=NOT_LC6_A5 O=t84

and3 a=a2 b=_LCB_A10 c=_L06_A5 O=t85

and4 a=NOTa2 b=_LC1_A13 c=NOT_LC3_A10 d=_LC6_A5 O=t86

orS a-t82 b=t83 c=t84 d=t85 e=t86 O=_LC3_A5

and3 a=NOT_LC1_C7 b--LC3_A10 c=_L06_A5 O=t87

and3 a=a2 b=NOT_LC1_C7 c=_LC3_A10 O=t88

and3 a=_LC1_C7 b=NOT_LC3-A10 c=_LC6_A5 O=t89

and3 a-a2 b=_LCi_C7 c=NOT_LC3_A10 O=t90

or4 a=t87 b=t88 c=t89 d=t90 O=-LC7_A5

and2 a=NOTa3 b=_LC2_A10 0=t91

and2 a=NOT_LC1_A13 b=_LC2_A10 O=t92

and3 a=a3 b=_LC1_A13 c=NOT_LC2_A10 O=t93

or3 a=t91 b-t92 c=t93 O=_LC2_A1

and2 a-_LC1_A13 b=-LC7_A5 O=t94

bufl a=t94 O=_LC2_A5

and3 a=NOT_LCl-C7 b-_LC2_A10 c=_LC7_A5 O=t95

and3 a=a3 b-NOT_LC1_C7 c=-LC2_A10 O=t96

and3 a=_LC1-CT b=NOT-LC2_A10 c=_LC7_A5 0=t97

and3 a=a3 b-_LCI_C7 c=NOT_LC2_A10 O=t98

or4 a=t95 b=t96 c=t97 d=t98 O=_LC1_A5

and2 a=NOT_LCl-A5 b=_LC1_A8 O=t99

and2 a=_LC1_A8 b=NOT_LCI_A13 O=t100

and3 a=_LC1_A5 b=NOT_LCl_A8 c=_LC1_A13 0=t101

or3 a=t99 b=t100 C-t101 O=_LC8_B2

and3 a=_LC1_A5 b=_LC1_A8 c=NOT_LC1_C7 0=t102

and3 a=_LC1_A5 b=NOT_LC1_A8 c=_LC1_C7 O=t103

or2 a=t102 b=t103 0=_LC1_B2

and2 a=NOT_LCl_82 b=_LC2_A4 O=t104

and2 a=NOT-LCl_A13 b=_LC2_A4 O=t105

and3 a=_LC1_A13 b=_LC1_B2 c=NOT_LC2_A4 O=t106

or3 a=t104 b=t105 c=t106 O=_LC2_B2

and4 a=_LC1_A13 b=_LC1_B2 c=NOT_LCI_C7 d=_LC2_A4 O=t107

and4 a=-LC1_A13 b=_LC1_B2 c=_LC1_C7 d=NOT-LC2_A4 0=t108

or2 a=t107 b=t108 O=-LC4_B2

and2 a=a0 b=10 O=t109

buf1 a=t109 0=_LCl_Ci4
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.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

.gate

and3 a=NOTaO b=a1 c=10 O=t110

and3 a=a0 b=NOT10 c=11 O=t111

and3 a=a1 b=10 c=NOT11 O=t112

and3 a=a0 b=NOTa1 c=11 O=t113

or4 a=t110 b=t111 c=t112 d=t113 O=_LC5_C6

and3 a=a0 b=10 c=11 0=t114

and3 a=a0 b=a1 c=11 O=t115

and3 a=a1 b=10 c=11 O=t116

and3 a=NOTa0 b=a1 c=10 O=t117

or4 a=t114 b=t115 c=t116 d=t117 0=_LC4_A1

and2 a=_LC4_A5 b=NOT10 O=t118

and3 a=NOTa2 b=NOT_LC4_A1 c=_LC4_A5 O=t119

and4 a=a2 b=NOT-LC4_A1 c=NOT_LC4_A5 d=10 O=t120

and3 a=a2 b=_LC4_A1 c=_LC4_A5 0=t121

and4 a=NOTa2 b=_LC4_A1 c=NOT_LC4_A5 d=10 O=t122

or5 a=t118 b=t119 c=t120 d=t121 e=t122 0=_LC5_A1

and3 a=a2 b=_LC4_A5 c=NOT10 O=t123

and3 a=a2 b=NOT_LC4_A5 c=10 0=t124

and3 a=_LC4_A1 b=_LC4_A5 c=NOT10 O=t125

and3 a=_LC4_A1 b=NOT_LC4_A5 C810 O=t126

or4 a=t123 b=t124 c=t125 d=t126 O=_LC8_A1

and2 a=_LC3_A5 b=NOT10 O=t127

and3 a=NOTa3 b=_L03_A5 c=NOT_LC8_A1 O=t128

and4 a=a3 b=NOT_LC3_A5 c=NOT_LC8-A1 d=10 O=t129

and3 a=a3 b=_LC3_A5 c=_LC8_A1 O=t130

and4 a=NOTa3 b=NOT_LC3_A5 c=_L08_A1 d=10 O=t131

or5 a=t127 b=t128 c=t129 d=t130 e=t131 O=_LC3_A1

and3 a=a3 b=_LC3_A5 c=NOT10 O=t132

and3 a=_LC3_A5 b=_LC8_A1 c=NOT10 O=t133

and3 a=a3 b=NOT_LC3-A5 c=10 O=t134

and3 a=NOT_LC3-A5 b=_LC8_A1 c=10 O=t135

or4 a=t132 b=t133 c=t134 d=t135 O=_LC6_A1

and3 a=NOT_LC2_A1 b=_LC2_A5 c=NOT_LC6_A1 O=t136

and3 a=_LC2_A1 b=NOT_LC2_A5 c=NOT_LC6_A1 O=t137

and3 a=NOT-LC2_A1 b=_LC2_A5 c=NOT10 O=t138

and3 a=_LC2_A1 b=NOT_LC2-A5 c=NOT10 O=t139

and4 a=_LC2_A1 b=_LC2_A5 c=_LC6_A1 d=10 O=t140

and4 a=NOT_LC2_A1 b=NOT_LC2_A5 c=_LC6_A1 d=10 O=t141

or6 a=t136 b=t137 c=t138 d=t139 e=t140 f=t141 O=_LC7_A1

and4 a=NOT_LC2_A1 b=_LC2_A5 c=_LC6_A1 d=NOT10 O=t142

and4 a=_LC2_A1 b=NOT_LC2_A5 c=_LCS_A1 d=NOT10 O=t143

and4 a=_LC2_A1 b=_LC2_A5 c=_LC6_A1 d=10 O=t144

and4 a=NOT_LC2_A1 b=NOT_LC2_A5 c=_L06_A1 d=10 O=t145

or4 a=t142 b=t143 C=t144 d=t145 O=_LC1_A1

and2 a=NOT_LC1_A1 b=_L08_B2 O=t146

and2 a=-LC8_B2 b=NOT10 O=t147

and3 a=_LC1_A1 b=NOT-LC8_B2 c=10 O=t148
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.gate or3 a=t146 b=t147 c=t148 O=_LC7_B2

.gate and2 a=_LC2_B2 b=-LC8_B2 O=t149

.gate and2 a=NOT_LC1_A1 b=_LC2_B2 O=t150

.gate and2 a=_LC2_B2 b=NOT10 O=t151

.gate and4 a=_LC1_A1 b=NOT_LC2_B2 c=NOT_LC8_B2 d=10 O=t152

.gate or4 a=t149 b=t150 c=t151 d=t152 O=_LC5_B2

.gate and4 a=_LCl_A1 b=NOT_LC2_B2 c=NOT_L08_BZ d=10 O=t153

.gate bufl a=t153 O=_LC6_B2

.gate and4 a=_LC1_A4 b=NOT_LC1_C9 c=-LC4_B2 d=_LC6_B2 O=t154

.gate and4 a=NOT_LCl_A4 b=_LC1_C9 c=,LC4-B2 d=_LC6_B2 O=t155

.gate and4 a=_LC1_A4 b=_LCl_C9 c=NOT_LC4_B2 d=_LC6_B2 O=t156

.gate and4 a=NOT_LC1_A4 b=NOT_LC1_C9 c=NOT_LC4_B2 d=_LC6_B2 O=t157

.gate and4 a=_LC1_A4 b=_LC1_09 c=_LC4_B2 d=NOT_LC6_B2 O=t158

.gate and4 a=NOT_LC1_A4 b=NOT_LC1_C9 c=_LC4_B2 d=NOT_LC6_B2 O=t159

.gate and4 a=_LC1_A4 b=NOT_LC1_C9 c=NOT_LC4_B2 d=NOT_LC6_B2 O=t160

.gate and4 a=NOT-LC1_A4 b=_LC1_C9 c=NOT_LC4_B2 d=NOT_LC6_B2 O=t161

.gate or8 a=t154 b=t155 c=t156 d=t157 e=t158 f=t159 g=t160 h=t161 O=_LC3_B2

.gate and2 a=NOT10 b=11 O=t162

.gate and2 a=10 b=NOT11 O=t163

.gate or2 a=t162 b=t163 O=_LCI_A13

.gate and2 a=NOT10 b=11 O=t164

.gate bufl a=t164 O=_LC1_C7

.gate and2 a=NOT11 b=12 O=t165

.gate and2 a=11 b=NOT12 O=t166

.gate or2 a=t165 b=t166 O=_LCI_A12

.gate and2 a=NOT11 b=12 O=t167

.gate bufl a=t167 O=_LC1_A11

.gate and2 a=NOT12 b=13 O=t168

.gate and2 a=x2 b=NOT13 O=t169

.gate or2 a=t168 b=t169 O-_LCS-A10

 

.end

B.4 Network Levelization

The levelization of the network is given below.

( 0) NODE= o LEVEL= 0 NAME: ROOT

( 1) NODE= 1 LEVEL= 0 NAME: a0

( 2) NODE= 2 LEVEL= 0 NAME: a1

( 3) NODE= 3 LEVEL= 0 NAME: a2

( 4) NODE= 4 LEVEL= 0 NAME: a3

( 5) NODE= 5 LEVEL= 0 NAME: 10

( 6) NODE= 6 LEVEL= 0 NAME: 11
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9)

10)

11)

12)

13)

14)

15)

16)
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35)
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38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

49)

50)

51)

52)

53)

NODE= 7

NODE= 8

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODEs 86

NODE=205

NODE=212

NODE=213

NODE=214

NODE- 63

NODE= 65

NODE- 68

NODE= 72

NODE= 73

NODE- 74

NODE= 87

NODEI 88

NODEB 89

NODE=206

NODE=207

NODE=208

NODE=209

NODE=210

NODE=215

NODE=271

NODE=272

NODE=274

NODE=276

NODE=277

NODE=279

NODE=281

NODE=282

NODES 9

NODE= 67

NODE= 7O

NODE= 75

NODE= 90

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL-

LEVEL=l=

LEVEL-

LEVEL-

LEVEL=

LEVEL-

LEVEL-

LEVEL=

LEVEL=

LEVEL=

LEVEL-

LEVEL-

LEVEL=

LEVEL-

LEVEL-I

LEVEL=

w
w
w
w
w
N
N
M
N
N
M
M
M
M
N
N
N
N
N
M
N
M
N
N
N
N
N
M
H
H
H
H
H
H
H
H
H
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NAME:
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NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

12

13

NOTaO

NOTa1

NOTa2

NOTa3

NOT10

NOT11

NOT12

NOT13

t1

t3

t5

t6

t17

t109

t114

t115

t116

t0

t2

t4

t7

t8

t9

t18

t19

t20

-LC1_C14

t110

t111

t112

t113

t117

t162

t163

t164

t165

t166

t167

t168

t169

p0

_LC4_A10

_LC4_C3

_LC5_C3

-LC5_A4
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54)

55)

56)

57)

58)

59)

60)

61)

62)

63)

64)

65)

66)

67)
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74)

75)

76)

77)

78)

79)

80)

81)

82)

83)

84)

85)

86)

87)

88)

89)

90)

91)

92)

93)

94)

95)

96)

97)

98)

99)
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NODE=211

NODE=216

NODE=273

NODE=275

NODE=278

NODE=28O

NODE=283

NODE= 10

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE=

NODE= 82

NODE=101

NODE=103

NODE=113

NODE=155

NODE=157

NODE=167

NODE= 76

NODE= 77

NODE= 78

NODE= 83

NODE= 84

NODE= 91

NODE=100

NODE=102

NODE=110

NODE=111

NODE=112

NODE=115

NODE=122

NODE=124

NODE=154

NODE=156

NODE=164

NODE=165

NODE=166

NODE= 81

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL8

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=

LEVEL=
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LEVEL=
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LEVEL=

LEVEL= 0
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0
1
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
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p
p
h
p
p
p
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p
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p
b
p
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p
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w
w
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w
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NAME:
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NAME:
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NAME:

NAME:

NAME:

NAME:

NAME:
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NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

_LC5_C6

_LC4_A1

-LC1_A13

_LC1_C7

-LC1_A12

_LC1_A11

_LC5_A10

p1

NOT_LC5-C3

NOT_LC4_C3

NOT_LCI_A12

NOT_LCS_A1O

NOT-LCI_A11

NOT_LC4_A10

NOT_LC5_A4

NOT_LC1_A13

NOT_LCl_C7

NOT_LC4_A1

t13

t14

-LC6_C3

t27

t29

t37

t71

t73

t81

t10

t11

t12

t15

t16

t21

t26

t28

t34

t35

t36

t38

t44

t46

t70

t72

t78

t79

t80

_LC1_C3
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NODE= 32
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NODE=125
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NODE=145

NODE=147

NODE=149
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NODE=12O
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NOT_LC6_A10

NOT_LCI_C3

NOT_LC2_C3

NOT_LC6_A5

NOT_LC5_A5

NOT_LC7_A10

-LC2_C9

t30

t31
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t41
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t43

t45

t49

t53

t58
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t66

t74
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t40

_LC1_A10
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t59

t63
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193)

194)

NODE=134

NODE=150

NODE=163

NODE= 19

NODE= 33

NODE= 34

NODE= 39

NODE= 96

NODE= 97

NODE=129

NODE=130

NODE=136

NODE=169

NODE=170

NODE=172

NODE=175

NODE=176

NODE=180

NODE=181

NODE=187

NODE=217

NODE=218

NODE=22O

NODE=223

NODE=225

NODE= 27

NODE= 98

NODE=131

NODE=141

NODE=142

NODE=151

NODE=152

NODE=171

NODE=173

NODE=177

NODE=178

NODE=182

NODE=189

NODE=219
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NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

t54

_LC3_A4

_LC4_A5

NOT_LC3_C9

NOT_LCS_A10

NOT_LC2_A10

NOT_LC4_A5

t23

t24

t50

t51

-LC4_A4

t82

t83

t85

t87

t88

t91

t92

t96

t118

t119

t121

t123

t125

NOT_LC4_A4

t25

_LCI-A8

t60

t61

t68

t69

t84

t86

t89

t90

t93

t98

t120

t122

t124

t126

NOT_LCl_A8

-LC1-C9

t56

t57

_LC1_A4
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195) NODE=174 LEVEL= 12 NAME: _LC3_A5

196) NODE=179 LEVEL= 12 NAME: _LC7_A5

197) NODE=183 LEVEL= 12 NAME: _LC2_A1

198) NODE=192 LEVEL= 12 NAME: t100

199) NODE=222 LEVEL= 12 NAME: _LC5_A1

200) NODE=227 LEVEL= 12 NAME: _LC8_A1

201) NODE= 11 LEVEL= 13 NAME: p2

202) NODE= 40 LEVEL= 13 NAME: NOT_LC8_A1

203) NODE= 41 LEVEL= 13 NAME: NOT_LC3_A5

204) NODE= 42 LEVEL= 13 NAME: NOT_LC2_A1

205) NODE= 48 LEVEL= 13 NAME: NOT_LC1_CQ

206) NODE= 49 LEVEL= 13 NAME: NOT_LCl_A4

207) NODE=143 LEVEL= 13 NAME: _LC2_A4

208) NODE=184 LEVEL= 13 NAME: t94

209) NODE=186 LEVEL= 13 NAME: t95

210) NODE=188 LEVEL= 13 NAME: t97

211) NODE=228 LEVEL= 13 NAME: t127

212) NODE=231 LEVEL= 13 NAME: t130

213) NODE=234 LEVEL= 13 NAME: t132

214) NODE=235 LEVEL= 13 NAME: t133

215) NODE= 52 LEVEL= 14 NAME: NOT_LC2_A4

216) NODE=185 LEVEL= 14 NAME: _LC2_A5

217) NODE=190 LEVEL= 14 NAME: _LC1_A5

218) NODE=199 LEVEL= 14 NAME: t105

219) NODE=229 LEVEL= 14 NAME: t128

220) NODE=230 LEVEL= 14 NAME: t129

221) NODE=232 LEVEL= 14 NAME: t131

222) NODE=236 LEVEL= 14 NAME: t134

223) NODE=237 LEVEL= 14 NAME: t135

224) NODE= 35 LEVEL= 15 NAME: NOT_LC1_A5

225) NODE=I= 44 LEVEL= 15 NAME: NOT_LC2_A5

226) NODE=193 LEVEL= 15 NAME: t101

227) NODE=195 LEVEL= 15 NAME: t102

228) NODE=196 LEVEL= 15 NAME: t103

229) NODE=233 LEVEL= 15 NAME: _LC3_A1

230) NODE=238 LEVEL= 15 NAME: _LC6_A1

231) NODE=241 LEVEL= 15 NAME: t138

232) NODE= 12 LEVEL= 16 NAME: p3

233) NODE= 43 LEVEL= 16 NAME: NOT_L06_A1

234) NODE=191 LEVEL= 16 NAME: t99

235) NODE=197 LEVEL= 16 NAME: _LC1_B2

236) NODE=242 LEVEL= 16 NAME: t139

237) NODE=243 LEVEL= 16 NAME: t140

238) NODE=244 LEVEL= 16 NAME: t141

239) NODE=246 LEVEL= 16 NAME: t142

240) NODE=247 LEVEL= 16 NAME: t143

241) NODE=248 LEVEL= 16 NAME: t144
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269)

270)

271)

272)

273)

274)

275)

276)

277)

278)

279)

280)

281)

282)

283)

NODE=249

NODE= 37

NODE=194

NODE=2OO

NODE=202

NODE=203

NODE=239

NODE=240

NODE=250

NODE= 45

NODE= 46

NODE=198

NODE=204

NODE=245

NODE=252

NODE= 13

NODE= 50

NODE=201

NODE=251

NODE=253

NODE= 47

NODE=254

NODE=255

NODE=256

NODE=257

NODE= 14

NODE=258

NODE=260

NODE=259

NODE=261

NODE= 15

NODE= 51

NODE=262

NODE=263

NODE=264

NODE=265

NODE=266

NODE=267

NODE=268

NODE=269

NODE=270

NODE= 16
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NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

t145

NOT_LC1_B2

_LC8_B2

t106

t107

t108

t136

t137

_LC1_A1

NOT_LC1_A1

NOT-LC8_B2

t104

_LC4_B2

_LC7_A1

t147

p4

NOT-LC4_B2

-LC2_B2

t146

t148

NOT_LC2_B2

_LC7_B2

t149

t150

t151

p5

t152

t153

-LC5_B2

_LC6-B2

p6

NOT-LC6_B2

t154

t155

t156

t157

t158

t159

t160

t161

_LC3_B2

p7
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B.5 SIS Activity and Power Estimation

The switching activity and power estimates provided by SIS are given below.

Script started on Fri Jun 11 02:25:50 1999

Combinational power estimation, with Zero delay model.

Network: bth4.b1f, Power 8 2292.5 uw assuming 20 MHz Clock and Vdd = 5V

sis> time

elapse: 1.0 seconds, total: 1.0 seconds

sis> power_print

Node [3393] Cap. 8

Node [3394] Cap. 8 Switch Prob. 8

Node [3395] Cap. Switch Prob. 8 .29 Power 8

Node _LC5_C3 Cap. 8 11 Switch Prob. 0.47 Power 8 12.9

Node NOT_LC5_C3 Cap. 8 8 Switch Prob. 8 0.47 Power 8 9.4

Node -LC4_C3 Cap. 8 12 Switch Prob. 8 0.22 Power 8 6.6

Node NOT_LC4_C3 Cap. 8 2 Switch Prob. 8 0.22 Power 8 1.1

Node _LC3_C9 Cap. 8 5 Switch Prob. 8 0.12 Power 8 1.5

Node NOT_LC3_C9 Cap. 8 3 Switch Prob. 8 0.12 Power 8 0.9

Node _LC1_A12 Cap. 8 46 Switch Prob. 8 0.50 Power 8 57.5

Node NOT_LC1_A12 Cap. 8 24 Switch Prob. = 0.50 Power = 30.0

Node _LC5_A10 Cap. 8 12 Switch Prob. 8 0.50 Power 8 15.0

Node NOT-LC5-A10 Cap. 8 9 Switch Prob. 8 0.50 Power 8 11.2

Node _LC1_A11 Cap. 8 26 Switch Prob. 8 0.38 Power 8 24.4

Node NOT_LC1_A11 Cap. 8 18 Switch Prob. 8 0.38 Power = 16.9

Node _LC6_A10 Cap. 8 16 Switch Prob. 8 0.34 Power 8 13.7

Node NOT_LC6_A10 Cap. 8 7 Switch Prob. 8 0.34 Power 8 6.0

Node _LC4_A10 Cap. 8 17 Switch Prob. 8 0.47 Power 8 19.9

Node NOT-LC4_A10 Cap. 8 14 Switch Prob. 8 0.47 Power 8 16.4

Node _LC1_C3 Cap. 8 17 Switch Prob. 8 0.47 Power 8 19.9

Node NOT_LC1_CS Cap. 8 14 Switch Prob. 8 0.47 Power 8 16.4

Node _LC1_A10 Cap. 8 16 Switch Prob. 8 0.38 Power 8 15.0

.46 Power 8

.43 Power 8

Switch Prob. 8

Node a0 Cap. 8 59 Switch Prob. 8 0.50 Power 8 73.8

Node a1 Cap. 8 75 Switch Prob. 8 0.50 Power 8 93.8

Node a2 Cap. 8 55 Switch Prob. 8 0.50 Power 8 68.8

Node a3 Cap. 8 48 Switch Prob. 8 0.50 Power 8 60.0

Node 10 Cap. 8 75 Switch Prob. 8 0.50 Power 8 93.8

Node 11 Cap. 8 32 Switch Prob. 8 0.50 Power 8 40.0

Node 12 Cap. 8 52 Switch Prob. = 0.50 Power 8 65.0

Node 13 Cap. 8 66 Switch Prob. 8 0.50 Power 8 82.5

Node [3388] Cap. 8 0 Switch Prob. 8 0.38 Power 8 0.0

Node [3389] Cap. 8 0 Switch Prob. 8 0.47 Power 8 0.0

Node [3390] Cap. 8 0 Switch Prob. 8 0.49 Power 8 0.0

Node [3391] Cap. 8 0 Switch Prob. 8 0.50 Power 8 0.0

Node [3392] Cap. 8 0 Switch Prob. 8 0.49 Power 8 0.0

0 0 0.0

O 0 0.0

O 0 0.0
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Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

NOT_LC1_A10 Cap. 8 7 Switch Prob. 8 0.38 Power 8 6.6

-LC4_A4 Cap. 8 19 Switch Prob. 8 0.38 Power 8 17.8

NOT-LC4_A4 Cap. 8 6 Switch Prob. 8 0.38 Power 8 5.6

_LC5_A4 Cap. 8 23 Switch Prob. 8 0.47 Power 8 27.0

NOT_LCS_A4 Cap. 8 20 Switch Prob. 8 0.47 Power 8 23.4

-LC2_C3 Cap. 8 21 Switch Prob. 8 0.12 Power 8 6.2

NOT_LC2_C3 Cap. 8 20 Switch Prob. 8 0.12 Power 8 5.9

_LC1_A13 Cap. 8 39 Switch Prob. 8 0.50 Power 8 48.8

NOT-LCI_A13 Cap. 8 13 Switch Prob. 8 0.50 Power 8 16.2

_LC1-C7 Cap. 8 33 Switch Prob. 8 0.38 Power 8 30.9

NOT-LC1_C7 Cap. 8 25 Switch Prob. 8 0.38 Power 8 23.4

_LC6_A5 Cap. 8 16 Switch Prob. 8 0.34 Power 8 13.7

NOT-LC6_A5 Cap. 8 7 Switch Prob. 8 0.34 Power 8 6.0

_LC3_A10 Cap. 8 17 Switch Prob. 8 0.47 Power 8 19.9

NOT_LC3_A10 Cap. 8 14 Switch Prob. 8 0.47 Power 8 16.4

_LC2-A10 Cap. 8 13 Switch Prob. 8 0.49 Power 8 16.0

NOT_LC2_A10 Cap. 8 9 Switch Prob. 8 0.49 Power 8 11.1

Switch Prob. 8 0.40 Power 8 12.1

2 Switch Prob. 8 0.40 Power 8 2.0

Switch Prob. 8 0.49 Power 8 12.3

6 Switch Prob. 8 0.49 Power 8 7.4

Switch Prob. 8 0.22 Power 8 7.1

2 Switch Prob. 8 0.22 Power 8 1.1

Switch Prob. 8 0.43 Power 8 17.2

0

-LCl_A5 Cap. 8 12

NOT-LC1_A5 Cap. 8

-LCl_A8 Cap. 8 10

NOT_LC1_A8 Cap. 8

_L01_B2 Cap. 8 13

NOT-LCl_B2 Cap. 8

_LC4_A1 Cap. 8 16

NOT_LC4_A1 Cap. 8

_LC4_A5 Cap. 8 17

NOT_LC4-A5 Cap. 8

-LC8_A1 Cap. 8 16

NOT_LC8-A1 Cap. 8

_LC3_A5 Cap. 8 17

NOT_LC3_A5 Cap. 8

7 Switch Prob. 0.43 Power 8 7.5

Switch Prob. 8 .47 Power 8 19.9

14 Switch Prob. 8 0.47 Power 8 16.4

Switch Prob. 8 0.44 Power 8 17.6

7 Switch Prob. 8 0.44 Power 8 7.7

Switch Prob. 8 0.49 Power 8 20.9

14 Switch Prob. 8 0.49 Power 8 17.2

_LC2_A1 Cap. 8 20 Switch Prob. 8 0.50 Power 8 24.9

NOT_LC2_A1 Cap. 8 18 Switch Prob. 8 0.50 Power 8 22.4

_LC6_A1 Cap. 8 27 Switch Prob. 8 0.44 Power 8 29.9

6 Switch Prob. 8 0.44 Power 8 6.7

Switch Prob. 8 0.27 Power 8 13.0

18 Switch Prob. 8 0.27 Power 8 12.3

Switch Prob. 8 0.25 Power 8 8.7

4 Switch Prob. 8 0.25 Power 8 2.5

_LC8_B2 Cap. 8 8 Switch Prob. 8 0.48 Power 8 9.6

NOT_LC8_B2 Cap. 8 11 Switch Prob. 8 0.48 Power 8

_LC2_B2 Cap. 8 8 Switch Prob. 8 0.43 Power 8 8.7

NOT_LC2_B2 Cap. 8 8 Switch Prob. 8 0.43 Power 8 8.7

_LC1_C9 Cap. 8 18 Switch Prob. 8 0.30 Power 8 13.7

NOT_LCl_C9 Cap. 8 16 Switch Prob. 8 0.30 Power 8 12.2

_LCl_A4 Cap. 8 18 Switch Prob. 8 0.09 Power 8 4.0

NOT_LC1_A4 Cap. 8 16 Switch Prob. 8 0.09 Power 8

NOT_LC6_A1 Cap. =

_LC2_A5 Cap. - 19

NOT_LC2_A5 Cap. =

_LC1_A1 Cap. = 14

NOT_LCI_A1 Cap. =

13.2

3.6
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Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

_LC4_B2 Cap. 8 18 Switch Prob. 8 0.03 Power 8 1.4

NOT_LC4_B2 Cap. 8 16 Switch Prob. 8 0.03 Power

_LC6_B2 Cap. 8 17 Switch Prob. 8 0.01 Power

NOT_LC6_B2 Cap. 8 16 Switch Prob. 8 0.01 Power

_LC2_A4 Cap. 8 12 Switch Prob. 8 0.44 Power

NOT_LC2_A4 Cap. 8 7 Switch Prob. 8 0.44 Power

_LC5_A5 Cap. 8 9 Switch Prob. 8 0.47 Power 8 10.5

NOT_LC5_A5 Cap. 8 4 Switch Prob. 8 0.47 Power

_LC7_A10 Cap. 8 9 Switch Prob. 8

NOT_LC7_A10 Cap. 8 4 Switch Prob.

NOTaO Cap. 8 26 Switch Prob. 8

NOTa1 Cap. 8 21 Switch Prob. 8

NOTa2 Cap. 8 32 Switch Prob. 8

NOTa3 Cap. 8 21 Switch Prob. 8

NOT10 Cap. 8 41 Switch Prob. 8

NOT11 Cap. 8 21 Switch Prob. 8

NOT12 Cap. 8 48 Switch Prob. 8

NOT13 Cap. 8 20 Switch Prob. 8

_LC1_C14 Cap. 8 1 Switch Prob. "
0
0
0
0
0
0
0
0

0.47 Power 8

8 0.47 Power

.50 Power 8 32.

.50 Power 8 26.

.50 Power 8 40.

.50 Power 8 26.

.50 Power 8 51.

.50 Power 8 26.

.50 Power 8 60.

.50 Power 8 25.

0.38 Power 8
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H
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M
N
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N
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0.3

13.

8 7.6

- 4.7

1 .

0 O
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N
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O
N
O
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I
I
I
O

E
n
i
o
i
o
i
o
'
s
z
'
q
é
n
.

16.

1 7

1.2

8 2.0

2 7

2 7

_LC5_C6 Cap. 8 3 Switch Prob. 8 0.47 Power 8

_LC5_A1 Cap. 8 3 Switch Prob. 8 0.49 Power 8

_LC3_A1 Cap. 8 3 Switch Prob. 8 0.50 Power 8

_LC7_A1 Cap. 8 4 Switch Prob. 8 0.49 Power 8

_LC7_B2 Cap. 8 2 Switch Prob. 8 0.46 Power 8

_LCS_B2 Cap. 8 3 Switch Prob. 8 0.43 Power 8

_L03_B2 Cap. 8 5 Switch Prob. 8 0.29 Power

to Cap. 8 5 Switch Prob. 8 0.22 Power

t1 Cap. 8 5 Switch Prob. 8 0.22 Power 8

t2 Cap. 8 5 Switch Prob. 8 0.22 Power

t3 Cap. 8 5 Switch Prob. 8 0.22 Power

t4 Cap. 8 4 Switch Prob. 8 0.12 Power 8

t5 Cap. 8 4 Switch Prob. 8 0.12 Power 8

t6 Cap. 8 5 Switch Prob. 8 0.22 Power 8

t7 Cap. 8 5 Switch Prob. 8 0.22 Power 8

t8 Cap. 8 5 Switch Prob. 8 0.22 Power 8

t9 Cap. 8 6 Switch Prob. 8 0.12 Power 8

t10 Cap. 8 6 Switch Prob. 8 0.06 Power 8

t11 Cap. 8 6 Switch Prob. 8 0.00 Power 8

t12 Cap. 8 5 Switch Prob. 8 0.40 Power 8

t13 Cap. 8 5 Switch Prob. 8 0.22 Power 8

t14 Cap. 8 5 Switch Prob. 8 0.00 Power 8

_LC6_C3 Cap. 8 13 Switch Prob. 8 0.49 Power

t15 Cap. 8 4 Switch Prob. 8 0.17 Power 8

t16 Cap. 8 4 Switch Prob. 8 0.12 Power 8

_LC3_C3 Cap. 8 3 Switch Prob. 8 0.26 Power

t17 Cap. 8 5 Switch Prob. 8 0.22 Power 8

t18 Cap. 8 5 Switch Prob. 8 0.22 Power 8
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Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

t19 Cap. 8

t20 Cap. 8

t21 Cap. 8

_LC2_C9 Cap.

t22 Cap. 8

t23 Cap. 8

t24 Cap. 8

t25 Cap. 8

t26 Cap. 8

t2? Cap. 8

t28 Cap. 8

t29 Cap. 8

t30 Cap. 8

t31 Cap. 8

t32 Cap. 8

t33 Cap. 8

t34 Cap. 8

t35 Cap. 8

t36 Cap. 8

t37 Cap. 8

t38 Cap. 8

t39 Cap. 8

t40 Cap. 8

t41 Cap. 8

t42 Cap. 8

t43 Cap. 8

t44 Cap. 8

t45 Cap. 8

t46 Cap. 8

t47 Cap. 8

t48 Cap. 8

t49 Cap. 8

t50 Cap. 8

t51 Cap. 8

t52 Cap. 8

t53 Cap. 8

t54 Cap. 8

t55 Cap. 8

t56 Cap. 8

t57 Cap. 8

t58 Cap. 8

t59 Cap. 8

t60 Cap. 8

t61 Cap. 8

t62 Cap. 8

t63 Cap. 8

t64 Cap. 8 0
1
0
1
0
1
m
o
m
m
a
a
1
0
1
0
1
0
1
0
1
0
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0
1
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Switch

Switch

Prob.

Prob.
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5 Switch Prob.

Switch
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Switch

Prob.

Prob.
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Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob. 8

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.
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Prob.

Prob.

Prob.

Prob.

Prob.

Prob.
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Prob.

Prob.

Prob. 8

Prob.
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Prob.

Prob.

Prob.

Prob.

Prob. 0
0
0
0
0
0
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0
0
0
0
0
0
0
0
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0
0
0
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.22

.12

.12

Power

Power

Power

0.49 Power

.12

.00

.00

.30

.22

.22

.22

.22

.38

.22

.22

.12

.17

.12

.12

.12

.30

.17

.24

.17

.03

.17

.22

.06

.12

.16

.03

.30

.18
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t93 Cap. 8
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Node t157 Cap. 8 6 Switch Prob. 8 0.00 Power — 0.0

Node t158 Cap. 8 6 Switch Prob. 8 0.00 Power 8 0.0

Node t159 Cap. 8 6 Switch Prob. 8 0.02 Power 8 0.3

Node t160 Cap. 8 6 Switch Prob. 8 0.03 Power 8 0.5

Node t161 Cap. 8 6 Switch Prob. 8 0.25 Power 8 3.8

Node t162 Cap. 8 3 Switch Prob. 8 0.38 Power - 2.8

Node t163 Cap. 8 3 Switch Prob. 8 0.38 Power 8 2.8

Node t164 Cap. 8 2 Switch Prob. 8 0.38 Power 8 1.9

Node t165 Cap. 8 3 Switch Prob. 8 0.38 Power -. 2.8

Node t166 Cap. 8 3 Switch Prob. 8 0.38 Power - 2.8

Node t167 Cap. 8 2 Switch Prob. 8 0.38 Power 8 1.9

Node t168 Cap. 8 3 Switch Prob. 8 0.38 Power - 2.8

Node t169 Cap. 8 3 Switch Prob. 8 0.38 Power - 2.8

Total Power: 2292 . 467728

B.6 BLAPE Activity and Power Estimation

The switching activity and power estimates provided by BLAPE are given below.

Activity Computation delay 8 0.03 Seconds

Node Activity Capacitance

a0 0.5000 cap859

a1 0.5000 cap875

a2 0 . 5000 cap855

a3 0 . 5000 cap848

10 0 . 5000 cap875

11 0 . 5000 cap832

12 0 . 5000 cap852

13 0 . 5000 cap866

p0 0 . 3750 cap80

pl 0 . 4851 cap80

p2 0 . 4982 cap80

p3 0 . 4992 cap80

p4 0 . 4994 cap80

p5 0 . 4736 cap80

p6 0 . 3864 cap80

p7 0 . 4304 cap=0

NOT-LC5_C3 0 . 4672 cap88

NOT_LC4_C3 O . 2129 cap=2

NOT_LC3_C9 O . 1318 cap83

NOT_LCI_A1 2 0 . 4922 cap824

NOT_LCS_A10 0 . 4922 cap89
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NOT_LC3-A5

NOT_LC2-A1
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_LC1_A5
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_LC8_B2
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_LC1_B2
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_LC2-B2
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_LCI_C14
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t113 0.2188 cap85

_LC5-C6 0.4851 cap82

t114 0.2188 cap85

t115 0.2188 cap85

t116 0.2188 cap85

t117 0.2188 cap85

-LC4_A1 0.4851 cap815

t118 0.4076 cap85

t119 0.2784 cap85

t120 0.1180 cap85

t121 0.2081 cap85

t122 0.0850 cap85

_LC5_A1 0.4982 cap82

t123 0.2445 cap85

t124 0.1918 cap85

t125 0.2081 cap85

t126 0.1620 cap85

_LC8_A1 0.4736 cap815

t127 0.3986 cap85

t128 0.2809 cap85

t129 0.1289 cap85

t130 0.1892 cap85

t131 0.0829 cap85

_LC3_A1 0.4992 cap82

t132 0.2371 cap85

t133 0.1892 cap85

t134 0.1998 cap85

t135 0.1583 cap85

_LC6_A1 0.4687 cap-26

t136 0.0929 cap85

t137 0.3875 cap85

t138 0.0751 cap85

t139 0.3320 cap=5

t140 0.0286 cap85

t141 0.1463 cap85

-LC7_A1 0.4994 cap82

t142 0.0289 cap85

t143 0.1452 cap85

t144 0.0286 cap85

t145 0.1463 cap85

_L01_A1 0.2908 cap813

t146 0.4947 cap84

t147 0.3963 cap84

t148 0.0772 cap84

_LC7_B2 0.4736 cap82

t149 0.4257 cap85

t150 0.4975 cap85
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t151 0.4050 cap85

t152 0.0344 cap85

-LC5_B2 0.3864 cap82

t153 0.0344 cap=2

_LC6_B2 0.0344 cap816

t154 0.0001 cap85

t155 0.0003 cap85

t156 0.0007 cap85

t157 0.0221 cap85

t158 0.0015 cap85

t159 0.0454 cap85

t160 0.0956 cap85

t161 0.3756 cap85

_LC3-B2 0.4304 cap82

t162 0.3750 cap83

t163 0.3750 cap83

_LC1_A13 0.4922 cap839

t164 0.3750 cap82

_LC1-C7 0.3750 cap80

t165 0.3750 cap83

t166 0.3750 cap83

_LC1_A12 0.4922 cap846

t167 0.3750 cap82

_LCI,A11 0.3750 cap80

t168 0.3750 cap83

t169 0.3750 cap83

_LC5_A10 0.4922 cap812

Power 8 2289.34 uW assuming 20 MHz CLK, Vdd 8 5V

The Bar and Level views of the 4-bit Booth multiplier are illustrated in Figures

6.5 and 6.4 The BLAPE implementation, using a depth-accuracy of 1 performs the

activity and power estimation in just 0.03 seconds; SIS runs in 1.0 seconds. The

percent error, when compared to SIS, is just 0.13%.
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