. ,Ui. “ . v V l. in ..V. 0: . Ewan“ Jag. . .5... .r. .J hzui V .. .9." . .4. .. (v.51? .5 . .‘ .nu. Ea: f. . Vls .. ael . rNivvnioV‘ “.1541 .ishahuuvwfifl x. . til-flu: .5 by C. I 5315, : 3 I... V 3153 . . . _( ... , V 1: (ill , y at, 13“} it.‘ ... .% . .rfinumu. Watt...‘ . u. 4,“va 3.2L... 0». I}; . «Hui A.» t... .. 333i. . . V . n. grids»: . . s .. l1 ruwha‘t’\r:zfl4 ll .31.. .‘ firing ‘ IKE...” a - . Elgwgldusa ;. afltv! .51 9. . ‘0. El. III. iv‘nfi‘i; 1.31:..1: . 3 . ... V|?. C. 5 . .vll. . 1. ._ I :lQaLIwQ.“ .v. at,» . i: ‘ Evil!) is :l K. .vfiiivr4‘ x. .0 xi . w“ o. . ‘ . O.“ V ultr‘l... I .. 1-I. . x I?! t! .v gin... ,.. .. .1 ,1! .0 (to e: V :15... . .u‘l‘l(”‘ll.. . ».a\v..§ “as! . . '11.}!!3 [(131,] I... V 3:7...) .1 I ll? «0 la . 13.!!! 111““ ICWJ.’ :l J! 5'. tifl:.\~1 I .Vx! :u :iaylfiliixa 5 .. .. 5:5...) (unit-a .Ltl.r5.§i.t}- 41:623., 804324.". ,3. 3|} 1..., 1.. Air: flv« V. v3.11. bx‘lpe. !..l (flirl.l£lo {it ix! 331 , -199)“; If) , It" . ,_ .mnw.wmamn,_onwsa....vfi% :vfi....§§fié§..t: . .. V. . ,. .I 1. V . V . .v, ‘ .. , .. .. , ., V ‘I' mlllllllllllllll 31293 02060 4082 This is to certify that the thesis entitled An Analysis of Factors Affecting-the Cost of Returnable Logistical Packaging Systems presented by Sangjin Lee has been accepted towards fulfillment of the requirements for JIM);— degree in mm. dulmlz/ Major professor Date ‘2 "7 -qq 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 11m chlRClDateDutfis-p. 14 AN ANALYSIS OF FACTORS AFFECTING THE COST OF RETURNABLE LOGISTICAL PACKAGING SYSTEMS By Sangjin Lee A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE School of Packaging 1999 AN AN? Th : six varat) exrstlrg lr vanabies a 030k quarf Significant da‘IY VOIUF. I5 l0W ieiat VlSUeIIZE 3. also finds T ABSTRACT AN ANALYSIS OF FACTORS AFFECTING THE COST OF RETURNABLE LOGISTICAL PACKAGING SYSTEMS By Sangjin Lee This paper develops a cost model and simulation to explore the effect of six variables on the cost of returnable packaging systems and the trade-off existing in the use of collapsible/nestable returnable containers. The six variables are 1) cycle time, 2) average daily volume, 3) peak volume factor, 4) pack quantity, 5) delivery distance, and 6) container unit cost. It finds that the significant cost drivers are the container unit cost, delivery distance, average daily volume, and pack quantity. The effect of cycle time and peak volume factor is low relative to the others. A production and logistics profile is developed to visualize and improve the cost justification of returnable container systems. It also finds that the return ratio of one-to—fifteen (1 :15) balances the trade-off between the increase in packaging cost and the decrease in transportation cost. Ided: I dedicate this paper to my parents who always have been there for me. II. In conlnbute snayeth encourage lhESSld€£ mebodck Livonia Er medordu ACKNOWLEDGMENTS I would like to express my appreciation and gratitude to those who have contributed to the development of this research. I would like to wish a most sincere thanks to my major professor, Dr. Twede for the great support and encouragement. I also like to thank my committee members, Dr. Closs for the thesis idea and guidance, and Dr. Burgess for the directions through methodology. I also like to record the acknowledgements to GM Powertrain, Livonia Engine Plant for the great internship opportunity, and to Pete Warner, my mentor during the internship, for your considerations. ACKNOWI TABLE 0 LIST OF T LIST OF F TABLE OF CONTENTS ACKNOWLEDGMENTS ...................................................................................... iv TABLE OF CONTENTS ........................................................................................ v LIST OF TABLES ................................................................................................ vii LIST OF FIGURES ............................................................................................. viii CHAPTER 1 .......................................................................................................... 1 INTRODUCTION .................................................................................................. 1 CHAPTER 2 .......................................................................................................... 4 LITERATURE REVIEW ........................................................................................ 4 Returnable Containers .......................................................................................... 4 Benefits of Returnable Containers ........................................................................ 6 Returnable Container Systems ............................................................................. 7 Packaging Cost ................................................................................................. 9 Cycle Time ...................................................................................................... 10 Average Daily Volume ..................................................................................... 14 Peak Daily Volume .......................................................................................... 15 Pack Quantity .................................................................................................. 16 Transportation cost: Motor carrier ....................................................................... 17 Other Important Costs ......................................................................................... 19 Collapsibility/Nestability ...................................................................................... 21 Chapter 3 ............................................................................................................ 23 METHODOLOGY ................................................................................................ 23 Expendable Container System Cost (ECSC) ...................................................... 23 Expendable Container Cost (ECC) .................................................................. 24 Transportation Cost for Expendable Container Systems (TCE) ...................... 25 Labor Cost for Expendable Container Systems (LCE) .................................... 26 Disposal Cost for Expendable Container Systems (DCE) ............................... 27 Returnable Container System Cost (RCSC) ....................................................... 28 Returnable Container Cost (RCC) ................................................................... 29 Transportation Cost for Returnable Container System (TCR) ......................... 31 Labor Cost (LCR) ............................................................................................ 32 Return Ratio (Rr) ................................................................................................. 33 Cost Simulation ................................................................................................... 36 Model Description ............................................................................................ 41 Data Evaluation ............................................................................................... 44 Chapter 4 ............................................................................................................ 46 RESULTS ........................................................................................................... 46 Single Variable Analysis ..................................................................................... 46 Cycle Time (CT) .............................................................................................. 46 Average Daily Volume (ADV) .......................................................................... 54 Peak Volume Factor (PVF) ............................................................................. 62 Pack Quantity (PO) ......................................................................................... 70 Delivery Distance (DD) .................................................................................... 77 Container Unit Cost (CUC) .............................................................................. 85 Return R Multi-Var Data E Manufz Chapter I DISCUSE Significar Optimal F Productic Managen Future Re APPEND A Guide I APPEND: Comparin APPENDI Multiple V APPENDI Multiple V APPENDI Multiple V. BlblIOg'ap Return Ratio (R,) ................................................................................................. 89 Multi-Variable Analysis ........................................................................................ 91 Data Evaluation ............................................................................................... 91 Manufacturing and Logistics System Profile .................................................... 95 Chapter 5 ............................................................................................................ 99 DISCUSSION ...................................................................................................... 99 Significant Cost Drivers and Their Effects ........................................................... 99 Optimal Return Ratio ........................................................................................ 101 Production and Logistics Structure ................................................................... 102 Management Implications ................................................................................. 105 Future Research Recommendations ................................................................ 107 APPENDIX A .................................................................................................... 11 1 A Guide to Returnable Containers and Racks (Pashall 1986) .......................... 111 APPENDIX B .................................................................................................... 113 Comparing Container Performance and Cost (Truck 1993) .............................. 113 APPENDIX C .................................................................................................... 114 Multiple Variable Simulation Data For Low Cost Container .............................. 114 APPENDIX D .................................................................................................... 123 Multiple Variable Simulation Data for Mid Cost Container ................................ 123 APPENDIX E .................................................................................................... 132 Multiple Variable Simulation Data for High Cost Container ............................... 132 Bibliography ...................................................................................................... 142 vi Table 1 UI Ship; 1991 Table 2 C:l Table 3 Cil' Table 4 Arl Table 5 A' Table 6 Val Table 7 LaI Table 8 8'. Table 9 Ir* Table 10 I Table 11 i Table 12 I Table 13 I Table 14 I Table 15 I Table 16 1 Table 17 I Table 18 l Table 19 I Table 20 I Table 21 I Table 22 I Table 23 l Table 24 l Table 25 ~ Table 25% Table 23:. Table 25.C Table 27 ;. LIST OF TABLES Table 1 Lifetime Cost Comparison of One-Way and Reusable 2-cubic Foot Shipping Containers, by Material (“How to Select Shipping Containers" 1991) ............................................................................................................. 7 Table 2 Container Cycle Time (Cozart 1997) ...................................................... 11 Table 3 Calculation of Cycle Time Using General Process Chart ....................... 13 Table 4 An Example of Variables and Ranges ................................................... 37 Table 5 An Example of Cost Simulation Using Variables and Ranges in Table 4 ..................................................................................................................... 38 Table 6 Variables and associated ranges ........................................................... 39 Table 7 Labor time involved in the two container systems .................................. 42 Table 8 Standardized Variables and associated ranges ..................................... 45 Table 9 Impact of Cycle Time for Low Cost Container Set ................................. 49 Table 10 Impact of Cycle Time for Mid Cost Container Set ................................ 51 Table 11 Impact of Cycle Time for High Cost Container Set ............................... 53 Table 12 Impact of Average Daily Usage for Low Cost Container Set ................ 57 Table 13 Impact of Average Daily Usage for Mid Cost Container Set ................. 59 Table 14 Impact of Average Daily Usage for High Cost Container Set ............... 61 Table 15 Impact of Peak Volume Factor for Low Cost Container Set ................. 65 Table 16 Impact of Peak Volume Factor for Mid Cost Container Set .................. 67 Table 17 Impact of Peak Volume Factor for High Cost Container Set ................ 69 Table 18 Impact of Pack Quantity for Low Cost Container Set ........................... 72 Table 19 Impact of Pack Quantity for Mid Cost Container Set ............................ 74 Table 20 Impact of Pack Quantity for High Cost Container Set .......................... 76 Table 21 Impact of Delivery Distance for Low Cost Container Set ..................... 80 Table 22 Impact of Delivery Distance for Mid Cost Container Set ...................... 82 Table 23 Impact of Delivery Distance for High Cost Container Set ..................... 84 Table 24 Impact of Container Unit Cost .............................................................. 88 Table 25 Trade-offs between container cost vs. transportation cost ................... 90 Table 26-a Regression Statistics ........................................................................ 93 Table 26-b Analysis of Variance (ANOVA) ......................................................... 93 Table 26-c Regression Results with Additional Diagnostic Statistics .................. 93 Table 27 Production and logistics profile for returnable container systems ........ 98 vii Figure 1 Al eleme Figure 2 T' Figure 3 8 Figure 4 "l Figure 5 Ir Figure 6 In Figure 7 In Figure 8 Ir Figure 9 ii Figure 10 I Figure 11 : Figure 12 5 Figure 13 : Figure 14 l:lgure 15 ‘ Flgure 16 Figure 17 Fltlure 18 Figure 19 LIST OF FIGURES Figure 1 An example of a random demand pattern with both trend and seasonal elements (Ballou 1998) ................................................................................ 16 Figure 2 Transportation cost associated with return ratio ................................... 34 Figure 3 Simulated Distribution Configurations ................................................... 41 Figure 4 Impact of Cycle Time for Low Cost Container Set ................................ 48 Figure 5 Impact of Cycle Time for Mid Cost Container Set ................................. 50 Figure 6 Impact of Cycle Time for High Cost Container Set ............................... 52 Figure 7 Impact of Average Daily Volume for Low Cost Container Set ............... 56 Figure 8 Impact of Average Daily Volume for Mid Cost Container Set ................ 58 Figure 9 Impact of Average Daily Volume for High Cost Container Set .............. 60 Figure 10 Impact of Peak Volume Factor for Low Cost Container Set ................ 64 Figure 11 Impact of Peak Volume Factor for Mid Cost Container Set ................. 66 Figure 12 Impact of Peak Volume Factor for High Cost Container Set ............... 68 Figure 13 Impact of Pack Quantity for Low Cost Container Set .......................... 71 Figure 14 Impact of Pack Quantity for Mid Cost Container Set ........................... 73 Figure 15 Impact of Pack Quantity for High Cost Container Set ......................... 75 Figure 16 Impact of Delivery Distance for Low Cost Container Set .................... 79 Figure 17 Impact of Delivery Distance for Mid Cost Container Set ..................... 81 Figure 18 Impact of Delivery Distance for High Cost Container Set .................... 83 Figure 19 Impact of Container Unit Cost ............................................................. 87 viii As container the econ: 1998. Kit cost of the manufact, manufact. areturnat Thr- relation to SITUCIUreS determinir Thi the rem”.U dOCUmen: manufacf‘ l W» 2- W.» 3' Wt» tet. CHAPTER 1 INTRODUCTION As more and more companies find economic benefits of returnable container systems over expendable packaging, several studies have addressed the economic justification of returnable packaging systems (Block 1999, Turvey 1998, Kibler 1997, Cozart 1997, and Findlay 1997). These studies compare the cost of the two types of packaging systems for a particular product with a specific manufacturing and logistics system. The studies have been the basis for manufacturers to make the decision to either stay with expendables or change to a returnable packaging system. These studies, however, do not generalize the container systems’ costs in relation to the other products and their various manufacturing and logistics structures. The need exists for research to develop generalized rules for determining when returnable container systems are cost effective. This paper evaluates returnable container systems, container costs, and the resulting total logistics costs. The research objective is to quantitatively document how activities of reverse logistics affect levels of costs in various manufacturing and logistics systems, focusing on the following questions: 1. What are the significant cost drivers in reusable packaging systems? 2. What is the effect of each cost driver on total packaging system cost? 3. What is the optimal return ratio in the use of nestabIe/collapsible returnable containers? aCthit‘y (WierSI develo; perforrr slmuiati that eco will help design a achieve ; It i System 3 8Islam. ' Specificag COmDOner manufacn If the deSlg hat/e a n6 keeping tr. 4. What are the appropriate production and logistics structures for the returnable container systems? Activity-based costing systems are applied as a tool to identify each activity and its cost drivers involved in a distribution packaging system (Wiersema 1995). Two cost functions, one for each packaging system, are developed for the purpose of cost comparison. Next, a cost simulation is performed under varying conditions of production and logistics. The cost simulation can specify a relevant range of production and logistics settings, so that economics of returnable container system can be evaluated. This research will help to identify systems that favor returnable packaging. It can be used to design a reverse material flow system by specifying the cost drivers in order to achieve an efficient system for returnable containers. It is important to analyze the role of each component as a part of the total system and consider its influence on the performance of the entire manufacturing system. The designer of a material flow system is faced not only with the specification of individual system components but also the association between components and the interaction of the material flow system with the manufacturing system itself. Individual system design may be optimal in itself, but if the design cannot be integrated into the overall supply chain system, it may have a negative impact on the manufacturing system performance. The design of material flow systems is required to achieve a comprehensive set of goals by keeping track of a large amount of information. This set of goals indicates the number of dr analysis of a The 5 regarding the systems. Th methodology implications. number of dependent decisions that have to be incorporated in the design or analysis of any supply network. The second chapter of this thesis reviews the supporting literature regarding the economics and environmental benefits of returnable container systems. The third chapter describes the cost models and the cost simulation methodology. Chapter 4 reports the results and Chapter 5 discusses the implications. This re\ discusses the the use of reti discusses six ll Cycle time 5) delivery d; RETURNAB Revel B0th the ma longth chai DtOducts an aDplltlation DTOGUQ Tet; dlsttibutiOn malerlals a I- deDendlng were” by" i~ CHAPTER 2 LITERATURE REVIEW This review begins with a discussion of the returnable containers. It discusses the role that will be played by reverse logistics in the future, including the use of returnable packaging systems. The remainder of the literature review discusses six variables known to affect the cost of returnable packaging systems: 1) cycle time, 2) average daily volume, 3) peak volume factor, 4) pack quantity, 5) delivery distance, and 6) container unit cost. RETURNABLE CONTAINERS Reverse logistics may be applied to several stages of the logistic chain. Both the materials management part and the physical distribution part of the logistic chain are potential areas of application. Reverse logistics systems pull products and/or packaging back from the point of use to specific facilities. This application of reverse distribution systems can be found most for supporting product recall, exchange, and repair programs. Increasingly, however, reverse distribution systems are designed to reuse or recycle secondary packaging materials and to a lesser extent recover products and primary packaging materials (Kopicky et al 1993). Opportunities for reducing the amount of packaging material vary, depending on the type of packaging involved. While packaging may exist in different types, such as containers, pallets, slipsheets, or bottles, depending on its major DUF two categorii Cons leg. soup c consumer e isdesgned Stimulate pr to facilitate - product. or Gamer). Con: l99islation t household Shopping b packaging obstacgeS ( lDdu packaging. dUl’lng tram l982). llld, VOld fi” 980 moreCtion. its major purpose, it is convenient to categorize containers. Packaging falls into two categories, consumer packaging, and industrial packaging. Consumer packaging is basic packaging that physically holds a product (e.g., soup can, soda bottle, soap powder box) and is intended to provide the consumer ease of use until the product is consumed. This consumer packaging is designed to contain and protect the product and to appeal to consumers and stimulate product sales. Sometimes additional secondary packaging is designed to facilitate self-service sales, to prevent theft, to further advertise and market the product, or to facilitate use by the consumer (e.g., toothpaste box, six-pack carrier). Consumer packaging waste is the primary target for waste recycling legislation because most of it has traditionally been Iandfilled. This is because household waste involves heterogeneous materials and is the result of complex shopping behavior, resulting in high costs to recycle. Reuse of consumer packaging is problematic at best due to sanitation, logistical and behavioral obstacles (Twede 1995). Industrial packaging (also called “distribution packaging,” “logistical packaging,” and transport packaging”) is packaging used for packaging products during transport from a sender to a recipient, either in retail or industry (Stock 1992). Industrial packaging often represents boxes, crates, pallets, banding, and void fill packaging (e.g., polystyrene “peanuts”) with great emphasis on protection, ergonomics, and shipping consideration. This type of container is usually designed for single or multiple use, depending on its destination. If it can be used or consumer materials a waste dis; Ret be used or reverse lo- packaging BENEFIT. Thi come up ‘ StllTlulatet from the S US, Wher SL Dackagin SYSIEmS Pasha” . millign ll". exPectin, Miner lnc be used only once, they are defined as one-way packaging material. Unlike consumer packaging, industrial packaging is made for relatively homogenous materials and is regularly recycled as a matter of business practice, to reduce waste disposal costs (Twede 1995). Returnable industrial packaging is a type of secondary packaging that can be used more than once in the same form. This thesis studies the application of reverse logistics in the area of physical distribution: the reuse of logistical packaging material. BENEFITS OF RETURNABLE CONTAINERS The use of returnable containers is one of the solutions that industry has come up with for our growing environmental concern. This development is stimulated by a growing responsibility towards the environment and regulations from the government in many European countries. But, this is not the case in the US, where the use of returnable containers has been driven by economics. Substantial amount of anecdotal evidence indicates that returnable packaging systems can have great cost savings over expendable container systems (Witt 1986, 1994, 1993; Auguston 1993; Andel 1995; Karen 1997; Pashall 1986; Trunk 1995). For example, John Deere & Co. has invested $20 million in a returnable container program with its suppliers of assembly parts expecting a positive cash payoff (Andel 1993). Another example is Herman Miller Inc., which has saved more than $600,000 during 2 years of returnable container practice. IBM, Ford, General Motors, and Toyota have also succes: cost (W T rehnnab nslde.tf inmalcos ofpackag dynanficr container: TabevlLr W lnMalcost ESIImated i (number of COSIDettn W successfully implemented a returnable container system and reduced packaging cost (Witt 1993; Auguston 1993). The economic benefit becomes possible mainly due to the longer life of returnable containers. When the cost of a returnable container is amortized over its life, the cost of packaging material can become lower, even with its higher initial cost, than that of a disposable container (see Table 1). However, the cost of packaging is not the only cost factor making savings possible because of the dynamic nature of activities involved in reverse logistics systems for reusable containers. Table 1 Lifetime Cost Comparison of One-Way and Reusable 2-cubic Foot Shipping Containers, by Material (“How to Select ShippingContainers" 1991) Corrugated One- Corrugated way Resuable Plastic Reusable Weight (pounds) 1.5 2.2 5.5 Initial cost $0.53 $1.06 $11.03 Estimated life (number of trips) 1 5 250 Cost per trip (average) $0.53 $0.21 $0.044 RETURNABLE CONTAINER SYSTEMS The nature of returnable container systems is dynamic, as it becomes a two-way flow system. For example, a large number of parts are shipped from suppliers to customers. Several activities take place. First parts have to be packed, then loaded on a transport i.e. truck. They travel either directly to the plant, to another supplier or to a consolidation center. Upon arrival to a specific dock door, the parts go into storage where they are physically stored until the point of use. The empty containers then have to be returned to their point of origin for re through a 51 distribution increases This costs of mo affects the ( operations I a disposal c tahoredur d55l9ned to DaCklng, ha aneslmentl Operations 1 Seve SIStems, F estimated tl fresh pTOdu indUSlW. Kit investigated compreheHs Cttlttzau~,er 0; used in this . origin for reuse either by retracing the steps in the opposite order or by shipping through a separate container return logistical system (Huettner 1998). This distribution system can be even more complex if the number of participants increases. This number of activities that make up the distribution system, and the costs of most logistical operations are affected by packaging. Packaging cost affects the cost of packing, handling, transport, storage and unpacking operations for all channel members. The use of returnable containers eliminates a disposal costs and the need to repeatedly purchase packaging. In most cases, it also reduces logistical operation costs since the returnable containers can be designed to increase cubic efficiency for transport and storage as well as ease packing, handling and unpacking. On the other hand, it requires a large initial investment, additional transport costs and the need for empty container sorting operations (Twede 1999). Several studies have addressed cost-justification of returnable container systems. Findlay (1997) and Turvey (1998) proposed a cost model that estimated the cost of corrugated and plastic containers for use within the Ontario fresh produce industry. Cozart (1997) has done a similar study for automobile industry, Kibler’s study (1997) was in the furniture industry, and Block (1999) investigated medical device packaging alternatives. These studies present a comprehensive and clear understanding of the cost infrastructure of the defined container options. Most of them employed the activity based costing method used in this thesis. These studies, however, were limited to comparing specific I reusable ! in a specr' Re expendab associate individual cases.ret regardles: how logisl Be: supply ch; lower Ove- Of Other fa tranSporta Packagin The the materi requll’eme enter into 1 ”l anufaCtu TQQUlTed f0 reusable shipping containers as an alternative to single-use transport packaging in a specific system. Returnable container systems cannot be a direct substitute for the expendable container systems. Each firm works with different products that associated with unique market, customer, and facilities. It is necessary for the individual firm to develop a logistics system that is optimal for itself. In some cases, reusable shipping containers are an integral part of inbound supply chains regardless of their cost (Meagher 1998). It is important for a firm to understand how logistical factors affect the container system costs. Because of the activities involved and container’s compatibility with the supply chain strategy, the use of returnable containers does not always result in lower overall physical distribution costs than expendable containers. A number of other factors affect the overall system cost including type of packaging used, transportation, handling and labor and disposal costs. Packaging Cost The cost of packaging material in general varies widely and depends on the material, the level of protection desired for product, and marketing requirements. With some products, for which no merchandising considerations enter into the selection of the package (such as parts for automobile manufacturing), the packaging cost is usually based on the level of protection required for the product. The cost of distribution packaging for expensive electronic components, for example, may represent a small fraction of the product cost. The packaging cost for shipments of cement, on the other hand, may be IT cement rr‘ because t packaging In 9 expendab (Pashall 1 much large The unit cc containers distribution investment 2) Average CYCle Tlme The . lOOp betweE Containers a ready fOr the delivered to ' use fer fOU r C place on the DroduCtlon li TEIUrn to the may be much greater relative to the product cost. The level of protection for cement may be set to anticipate a certain percentage of product loss in shipment because the cost of replacing this loss may be less than the cost of improving packaging to provide full protection (Saphire 1994). In general, the returnable containers can provide better protection than the expendables and reduce shipping damage due to greater container strength (Pashall 1986). However, investing in a set of returnable containers requires a much larger initial investment than would be needed to buy one-way containers. The unit cost of returnable container is higher and the adequate number of containers that must be purchased at the onset to account for the fact that the distribution pipeline must be stocked at all times (Auguston 1995). The initial investment in the container fleet depends on the four major factors: 1) Cycle time 2) Average Daily Volume 3) Peak Volume Factor 4) Pack Quantity. Cycle Time The container cycle time refers to the total time it takes for a complete loop between the supplier and the customer. Table 3 represents a typical cycle. Containers are filled in one day. Filled containers are stocked for four days, ready for the shipment at supplier. They will then be loaded onto a truck and delivered to the customer in one day. The containers are stored till the point of use for four days. The consumption of the parts inside the containers takes place on the production line for one day. Empty containers at the end of the production line are stored at the customer location for 5 days and are sorted to return to the supplier for reuse. Then, containers are shipped back (one day) 10 and for tt loop is M Table 2 C ”T? Full conta Container process Empty cor The container t Payback pe cost invest; Sing. the Cycle tir anestment_ underestl‘mE 0V8iestlmatf llOthlng. In 0rd QEnerai pro docuhierm-ng DTOceSS (Me invoIVEd in tr filling In the ‘ and for three days await refilling. In this case, the cycle time for the complete loop is twenty days. Table 2 Container Cycle Time (Cozart 1997) AT SUPPLIER IN TRANSPORT AT CUSTOMER l Full containers 4 days :Ltll‘l’ltggqngfiners to 1 day Full containers 4 days Container in Container in . process 1 day process 1 day Empty containers 3 days fig‘rgtzuggggers 1 day Empty containers 5 days The cycle time is known to be the important cost determinant. When the container turnovers are speeded up, containers gain with a relatively short payback period (Trunk 1993). The shorter the cycle time, the lower the initial cost investment (low quantities to be purchased), and vice versa. Since the returnable container system requires a high initial investment, the cycle time tends to be underestimated in the attempt to lower the initial investment. Calculating the right cycle time is important. If the cycle time is underestimated, there will be a lack of containers. If the cycle time is overestimated, money will be wasted on excess containers sitting around doing nothing. ' In order to measure the accurate cycle time, it would be practical to use general process chart. Using a process flow chart is a technique for documenting activities in a detailed, compact, and graphic form to understand the process (Melnyk and Denzler 1996). Table 4 is a collection of general activities involved in the packaging cycle time as an example of the process chart. By filling in the time required per activity, a fairly accurate cycle time can be 11 measured. symbols. ' but can im activities. measured. The flow through the process can be shown by connecting the symbols. This technique cannot only help to calculate an accurate cycle time, but can improve the cycle time by eliminating redundant or unnecessary activities. 12 a Table 3 C A0_C_ C _C_I_I_|_CEI_I |_|_.Jl_-1 LIE (LIEIEJIIEINIFI ~1515| 90x0 cmzaazw 7x .059sz ~< LDLLQQDW C0 OCESOQQ 6... alpha OT Slor .n' Table 3 Calculation of Cycle Time UsigrLGeneral Process Chart Activities Time Description 0 I - D V Locate correct returnables in warehouse , O I - D V Transfer stored returnables to packaging line j . I _ ’ V Remove totes from palletand prepare for use B (cleaning, check for usability) l i O I -' D V Pack product into tote g 0 I - D V Unitize tote on pallet ‘2 O I - D V Inventory finished goods ,1 < O I - D V Locate the product ordered O I -v D V Transfer to loading dock O I -> D V Load product onto trailer 0 I - D V Ship product to customer 0 I -> D V Unload product pallets from truck 0 I - D V Transfer into inventory 0 I - D V Transfer product to assembly line 0 I -> D V Open totes 2 . I _. ’ V Remove product from tote and use in assembly 0 process ‘9' O I -> D V Stage empty tote for collection 2 . I n . V Egret and transfer empty totes to staging/sorting O I -> D V Sort empty totes by customer and it own kind 0 I -> D V Stage empty totes for supplier pick up 0 I -> D V Transfer empty totes to loading dock O I - D V Transfer empty totes onto truck trailer 5 O I -> D V Ship empty totes back to supplier '3 O I - D V Unload empty totes from truck g 0 I -> D V Transfer them to sorthg and accounting area 3’5 53 . I _. . V Inspect each tote for cleanliness, damage, and m >, separate If necessary ,5 0 O I -> D V Re unitrze totes for storage E O I - D V Transfer pallet of totes into inventory location C53; . I _. . V Enter number of totes, type, and location for Inventory account program Total 0 Operation I Inspection - Transportation of physical item D Delay V Storage 13 Average Th over a pe expected the dai‘y \ rate. This referred tc tapering p For purchasec UHit cost O 13’99 pr Odl Container 5 Should be i The same Way be differs. n t should not i containEr Cc Container. Tl Average Daily Volume The average daily volume represents the demand for the packed items over a period of time divided by the total workdays during that period. The expected impact of the average daily volume on the container system cost is as the daily volume goes up, the total system cost should go up, but at a decreasing rate. This impact of average daily usage on the container system cost can be referred to as the economies of scale existing in the production costs and tapering principle in the transportation costs (Bowersox and Closs 1996). For example, if the daily volume increases, more containers have to be purchased. As a consequence, the initial container investment increases, but the unit cost of container decreases because the high setup costs diminish over the large production quantities. in comparison of the expendable with the returnable container systems’ costs, the sensitivity of reaction, as a total system cost, should be different from each other. The average daily volume affects the both of container systems in the same way. However, the degree of reaction to the average daily volume should be different from each other. The expendable container cost, as a cost per part, should not be affected by average daily volume but by pack quantity only. The container cost per part depends on the number of part quantities in that container. The actual cost impact of average daily volume for the expendable container system is in the transportation cost. 14 C should t containe quanhhe containe Peak Da De seasonal of factors time. Cyc (T wede it be large e stock Out a The aCCurate or products w acmal you” Volume Can the ayerage time is abOL day‘ and a \ day wOU/d On the other hand, the returnable container cost, as a cost per part, should be affected by the average daily volume since the initial investment in the container fleet depends on the initial container quantities and the initial container quantities depends on the average daily volume. In addition, the returnable container cost is amortized by its useful life and pack quantity. Peak Daily Volume Demand variation with time is a result of growth or decline in sales rates, seasonality in the demand pattern, and general fluctuations caused by a multiple of factors (Ballou 1998). The demand variation is an important element of cycle time. Cycles with little variation are best for the returnable container systems (Twede 1999). When there is a lot of variation, the inventory of containers has to be large enough to cover the largest volume cycle in order to prevent container stock out and under estimation of the initial investment. The use of peak volume instead of average volume does not always give accurate container quantities. The use of peak volume is more suitable for products with the relatively long duration of peak demand. If, for example, the actual volume for a product draws a sine curve that has the highest and lowest volume can be canceled each other within one cycle, it is recommended to use the average daily volume rather than the peak volume. For example, the cycle time is about 20 days, the anticipated average volume is about 500 products per day, and a container holds 50 products, the average container consumption per day would be 200 containers. As shown in the Figure 1, the fluctuation in the 15 daily volL trend llf'lE . 1 1 Figure elements Dally Volume 5 Pack Quar The When l00kin Container. . becomes. The Since the U man the Ex daily volume is about i100 parts, equivalent to :20 containers, along the average trend line. This fluctuation doesn’t affect the initial container quantities. Figure 1 An example of a random demand pattern with both trend and seasonal elements (Ballou 1998) 0 Actual volume - - - -Trend in volume Smoothed trend and seasonal volume Daily Volume 40 Time, days Pack Quantity The pack quantity represents the number of products per standard container pack. Pack quantity should be an important factor in packaging costs when looking at the packaging cost in proportion to the number of parts per container. The more products per container, the cheaper the packaging cost becomes. The pack quantity affects both container systems’ cost in same way. Since the unit cost of returnable containers is more expensive than that of expendables, the decreasing rate should be higher for the returnable containers than the expendables when the pack quantity increases. 16 Tr materials line. Thi: encourag returnabl replenisr smaller v be more TRANSF C flanspor Provider: GOOds b.- origin‘ d, make u; semice i ReleVan 8qume T Si29 of a COnglder A: hundred\ The use of returnable containers is known for an ideal solution when materials are delivered in small lot size quantities directly to the manufacturing line. This is one of the applications in just-in-time (JIT) production, which have encouraged the returnable container system. JIT reduces the number of returnable containers required by increasing the speed of the inventory replenishment cycle (cycle time) (Twede 1999). if the pack quantity can be smaller with the support of quick change over, the smaller pack quantity should be more justifiable for the returnable container system. TRANSPORTATION COST: MOTOR CARRIER Cost of transport service to a shipper is simply the line-haul rate for transporting goods plus any accessorial or terminal charges for additional service provided. In the case of for-hire service, the rate charged for the movement of goods between two points plus any additional charges, such as for pickup at origin, delivery at destination, insurance, or preparing the goods for shipment, make up the total cost of service. When the shipper owns the service, the cost of service is an allocation of the relevant costs to the shipment in question. Relevant costs include such items as fuel, labor, maintenance, depreciation of equipment, and administrative costs (Bowersox and Closs 1996). Two basic economic considerations influence the cost of transport: (1) the size of a shipment, and (2) the length of haul. Each of these basic considerations are briefly discussed. As a general rule, the larger a shipment is, the lower the cost-per- hundredweight (CWT) per unit of distance (Bowersox and Closs 1996). 17 Distributir‘ costs. Th collecting The fixed pickup an sizes. Th the quanti truckload A 9 longer the on tranSpc terminal of follows Cos (Bowersox Charges ar. late that ca Slgnlficam I SimpllCllY al 1998). Tm Shlpper in f the ShOf‘t ll: COstS are Distributing the fixed costs over greater volume generally reduces the per-unit costs. The fixed costs, pickup and delivery platform handling, and billing and collecting, are highly sensitive to shipment sizes below 2,000 to 3,000 pounds. The fixed costs for shipments larger than 3,000 pounds continue to drop as pickup and delivery and handling costs are spread over the larger shipment sizes. This impact of shipment size on transportation cost is often referred to as the quantity discount (economies of scale), which is typically classified as truckload (TL) or less than truckload (LTL). A general rule for the rate associated with delivery distance is that the longer the haul, the lower the cost per unit of distance. The impact of distance on transport cost is traditionally referred to as the tapering principle. Because the terminal charges are often included in line-haul charges, a rate structure that follows costs will show rates increasing with distance but at a decreasing rate (Bowersox and Closs 1996). In other words, the terminal costs and other fixed charges are distributed over miles as the delivery distance increases. Another rate that can be found common is proportional rate. For those carriers with the significant line-haul cost components, a compromise between rate structure simplicity and service costs is provided by the proportional rate structure (Ballou 1998). This simple structure adversely discriminates against the long-haul shipper in favor of the short-haul shipper. Terminal charges are not recovered on the short haul. Truckload rates can have this characteristic because handling costs are minimal. 18 DIS Transport. return trar quantities, OTHER IN The The contai constructio are some ti Container li' number los Labc process of 5 different poi nunTber of a Thef Corllponents l. Grew 2. Placin 3' movi 4‘ loadir 5' trans, Distance is a critical issue for returnable container systems. Transportation cost is always higher for returnable container systems because of return transportation. This report examines distance-related rates for truckload quanfifies. OTHER IMPORTANT COSTS The container’s life is critical data for the returnable container system cost. The container’s life depends on the strength of the material and the container construction. Steel and plastic have a longer life than wooden packages. There are some tests can be used for estimation. However, the information concerning container life is not reliable enough. The number of trips also depends on the number lost (Rosenau 1996). Labor cost is related to the process of shipping and handling goods. The process of shipping goods may involve the participation of many parties at different points. The labor cost, as a function of time, must be increasing as the number of activities is increasing. The following procedures are found common in the process of shipping components from a supplier to an assembly factory: 1. erecting and packing containers 2. placing individual containers into bulk units on pallets or slipsheets 3. moving unitized loads to shipping docks 4. loading and unloading trucks 5. transporting unit loads from shipping docks to storage or assembly areas 6. fitting individual containers onto assembly line equipment 19 These 3: systems. Tr the time i truu Th4 reQuires Ie design an: GM Powe, intensive t d‘VSDOSing 1 Consumed Stor l9lurnabie I reClUlre mo' a facility air COst. EXpt The dlspos These are common procedures for both expendable and returnable container systems. The difference in the labor cost between these two container systems is the time involved in three activities: 7. container assembly 8. disposing for expendable container systems 9. sorting empty containers for returnable container systems and loading trucks for return. There is no general rule that tells which one of the two container systems requires less labor. It varies from industry to industry depending on packaging design and its ergonomics. l have learned, during my internship experience at GM Powertrain in 1999 that returnable container systems can be less labor- intensive than expendable containers. The time involved in cutting open and disposing the expendable containers usually takes as twice as the time consumed for sorting the returnable containers. Storage space is another factor. In comparison between expendable and returnable container systems, it is true that the empty returnable containers require more space than is necessary for the expendables. However, as long as a facility already has the available space, there should not be any additional storage cost. If extra space is needed, there would be an additional carrying cost Expendable container systems entail costs related to recycling or disposal. The disposal costs include charges for special handling equipment (compactors 20 and bailer approprla‘. package r The associatec available a container : 1994). This container 5 vahances. the numbe for these c COLLAPS and bailers), material pickup and disposal, and labor to sort and place items in appropriate waste containers, compactors, or bailers. However, expendable package recycling can also generate revenue. The returnable container systems, however, don’t have any costs associated with recycling or disposing. Usually, the regrind services are available at no charge. A different set of costs associated with the returnable container system would be the cost of cleaning and repairing containers (Saphire 1994) This section discussed some other important costs in the returnable container systems. It is hard to generalize the complexity involved in these variances. In addition, the amount of simulation results would be too large that the number of variables must to be limited. Thus, the fixed values are to be used for these costs. The fixed values will be further discussed in the Chapter 3. COLLAPSIBILITYINESTABILITY Returnable containers may be designed with features that reduce the cost of shipping, handling, and storaging empty containers, including (Saphire 1994): . Collapsibility: The walls of the container are designed to fold down when collapsed. - Nestability: Empty containers can easily be placed into one another. These features allow for a reduction in the space that empty containers take up in transportation and storage, and allow for more containers to be hauled back than were delivered full (Auguston 1993). 21 FOI advantage return trai Since em returned. container: For companies with limited storage space, collapsibility/nestability is an advantage. However, some companies utilizing the features in order to minimize return transportation cost may find that more containers must be purchased. Since empty containers are generally stockpiled until a full truckload can be returned, more collapsed/nested will be required in the system than if the containers were returned fully erected. 22 This research. developed as a basis torneasure Second.a multiple va results of ti irldel3€3l’ld8r measures ( developed‘ Containers Aise ratio in USe model5= Da EXl’ENDA FOL sylemS. I CHAPTER 3 METHODOLOGY This section describes cost models and the simulations used in this research. Two sets of cost models, one for each container system, were developed for the purpose of cost comparison. The cost models were then used as a basis of cost simulations. First, a single variable cost simulation was used to measure the impact of the six cost drivers on the container systems’ costs. Second, a multi-variable cost simulation was designed to capture the impact of multiple variables at once. A multiple regression analysis was applied to the results of the multi-variable cost simulation in order to identify the individual independent (six cost drivers) which had the greatest impact on the three measures of performance. A manufacturing and logistics system profile was developed, which can reveal when savings can be achieved over expendable container systems. A separate analysis was used in order to determine the optimal return ratio in use of nestable/collapsible containers. A discussion of the two cost models, parameters and dynamics follows. The results are provided in Chapter 4. EXPENDABLE CONTAINER SYSTEM COST (ECSC) Four types of cost were identified to be important in expendable container systems. 1. container cost 2. transportation cost 23 l The four types E CE whe E CC TCE LCE DCE For exbendable be reDrese E"bender; The an expend; ECc Whe EC Uc , PQ‘ 3. labor cost 4. disposal cost The expendable container system cost ECSC in $lpart is the sum of the four types of cost: ECSC = E00 + TCE + LCE + DCE (1) where ECC = expendable container cost, $/part TCE = transportation cost for expendable container system, $lpart LCE = labor cost for expendable container system, $lpart DCE = disposal cost for expendable container system, $lpart For the sake of comparison later in the cost simulation between expendable and returnable container system costs, all units of cost models will be represented as $/part. Expendable Container Cost (ECC) The expendable container cost ECC as $lpart can be given by unit cost of an expendable container UCE over standard pack PQ: UCE _ $lcontainer PQ parts/container ECC = = $lpart (2) where ECC = expendable container cost per product, $lpart UCE = unit cost of an expendable container, $lcontainer P0 = pack quantity: part quantity per container, part/container 24 If. $3.00. tt 30 parts expende and stre cost oft Twenty $39.50. label. 1 cost of actual t $3.001: Trans; XDDH pr 090$ If, for example, a container holds 30 parts and the container unit cost is $3.00, the expected expendable container cost ECC is ECC = $3.00/container + 30 parts/container = $0.10/part. It should be noted that the unit cost of an expendable container includes the cost of materials, such as pallets, labels, tape, and stretch wrap. Suppose, for example, the cost of a container is $0.99. The cost of tape to seal the bottom and the top plus one label on the side is $0.01. Twenty of these containers will be unitized on a pallet and the cost of pallet is $39.50. After palletizing, the package requires stretch wrapping and a master label. The stretch wrapping and the master label cost $0.50 together, so that the cost of the pallet, stretch wrap, and label is $40 + 20 = $2 per part. Thus, the actual unit cost an expendable container CE would be $0.99 + $0.01 + $2 = $3.00/part in this e.g. Transportation Cost for Expendable Container Systems (TCE) Whether it is for expendable or returnable container systems, transportation cost should be in proportion to the delivery distance DD: TCE = R x DD, where R is the constant rate per mile. The cost of TCE per part can be proposed as: miles TCE = R x DD = mile x = $lpart (3) FOSx ADV day“ 9313 day where FOS = frequency of supply, days ADV = average daily volume, parts/day 25 The made betv. place once takes even fiequencyi that the fre Thereasor customer. delivery be Sup delivers 10 time betWe apart from miles + 1 d LabOr COS Labc LCE whe LC TE The frequency of supply FOS represents how often the deliveries are made between the shipper and the consignee. For example, if delivery takes place once every four days, frequency of supply is 4 + 1 = 4 days, and if delivery takes everyday, frequency of supple is 1, and if delivery takes four times per day, frequency of supply would be 1 + 4 = 0.25 days, and so on. It should be noted that the frequency of supply could not be longer than the container cycle time. The reason is that the cycle time includes at least one delivery from supplier to customer. If frequency of supply is greater than cycle time, there would be no delivery between supplier and customer. Suppose, for example, a trucking company with a rate of $1 .40/mile delivers 100 parts of average daily volume from supplier to customer. The cycle time between supplier and customer is 20 days long and they are 1000 miles apart from each other. Thus, the transportation cost would be $1 .40/mile x 1000 miles -:- 1 day + 100 parts = $14/part. Labor Cost for Expendable Container Systems (LCE) Labor cost is driven by the amount of time involved in the set of activities. Thus, labor cost can be expressed as 3 LR _ hours X hour PQ — container parts container LCE = TE x = $Ipart (4) where LCE = labor cost for expendable, $Ipart TE = time needed to handle expendable container, hours/container 26 LF?= FKD= Supr or 0.84 + 6i the point of and the hor expendable parts/coma cacmafion takes 0.005 disDosing t Calculation SlZJhOUT). Disillosarl l Dis; dBDOSed_ be exprESj DC th DR LR = labor rate per hour, $/hour PQ = pack quantity, parts/container Suppose, for example, a plant consumes an average time of 0.84 minutes or 0.84 + 60 = 0.014 hours per expendable container from packing at a shipper to the point of disposal at a consignee. The pack quantity is 20 parts per container and the hourly rate is $12.00. Thus, the expected labor cost for such an expendable container system would be 0.014 hours/container x $12Ihour -:- 20 parts/container = $0.0084/part. If labor rate is different for each activity, the calculation should break down to individual activity. For example, if packing takes 0.005 hours per container and the hourly rate is $8, and unpacking and disposing takes 0.009 hours per container and the hourly rate is $12, the calculation would be (0.005 hours/container x $8/hour + 0.009 hours/container x $12Ihour) -:- 20 parts/container = 0.0074/part. Disposal Cost for Expendable Container Systems (DCE) Disposal cost should be in proportion to the amount of material to be disposed. Thus, the disposal cost for an expendable container system DCE can be expressed as $ X lbs _ DR XCW _ lb- container _ DCE — PQ - parts — $Ipart (5) container where DCE = disposal cost, $Ipart DR = disposal rate per lb, $/Ib 27 CV1 PO Sui pans.and is 500475 be noted 1 So: EC RETURN! Thr Container: 1. con 2. trap 3. labc The three t‘ipes RC5 Whe RC Tc- LC CW= container weight, lbs/container P0 = pack quantity, parts/container Suppose, for example, a container with a tare weight of 3 pounds holds 20 parts, and the disposal charge is $00475 per pound. Thus, the disposal cost DC is $0.0475/lbs x 3 lbs/container + 20 parts/container = $0.007125/part. It should be noted that this model does not account for any revenue from recycling. So; TEX UCE R x DD LR DR x cw ECSC = = / rt PQ + FOS x ADV + PQ + PQ $ pa (6) RETURNABLE CONTAINER SYSTEM COST (RCSC) Three types of cost have been identified to be important in returnable container systems. 1. container cost 2. transportation cost 3. labor cost The returnable container system cost RCSC in $Ipart is the sum of the three types of cost: RCSC = RCC + TCR + LCR (7) where RCC = returnable container cost, $Ipart TCR = transportation cost for returnable container system, $Ipart LCR = labor cost for returnable container system, $Ipart 28 cost ir Retur to beg antkfl; Assun return; From the literature review, it is known that there is virtually no disposal cost involved in returnable container systems. Returnable Container Cost (RCC) A returnable container system requires a certain number of containers N to begin with. The number of returnable containers N is expected to handle the anticipated amount of material flow during the time period of the containers life. Assuming that AV is annual volume and container life is CL in years, the returnable container cost RCC in per part units can be expressed as: $ . R C C = Container cost = UCRx N = container x containers = $ Ipa rt Product quantity AV x CL parts x years year (8) where RCC = returnable container cost, $Ipart UCR = unit cost of returnable container, $lcontainer N = initial container quantities to be purchased, containers AV = annual volume, parts/year CL = container life, years The important task here is to establish the initial container quantity to be purchased N. N, in other words, is number of containers required to hold a number of products during the container cycle time CT: N = w, where PO is pack quantity representing quantity of products per container and ADV is 29 average daily volume. In reality, however, not all containers can make it through their lifetime. Some of the containers must be damaged, stolen, or misplaced, and they will have to be replaced with new containers. The container return rate CRR, as percentage of N, can capture these unexpected situations: _CTxADV N x ORR. In addition, there must be variations in daily volume. Peak volume factor PVF is a multiple factor used to capture the variations in the daily volume: PVF = %, where PDV is the anticipated peak daily volume. Thus, the number of containers is: N = CT—;SD—V x CRR x PVF . Thus, returnable container cost RCC becomes: UCRX[CTXADV x CRR x PVF] RCC = (9) A V x CL Suppose, for example, the returnable container unit cost is $5.00 and the expected useful life of a container is 2 years. Due to the harsh distribution environments, 30 percent of the containers are expected to get stolen, damaged, or misplaced. Again, the unit cost represents all the material costs involved in shipping containers. Due to the stable stackability, stretch wrapping may not be required. However, the cost of the label and a fraction of pallet cost must be included if the containers are palletized. This container has pack quantity P0 of 10 parts. The average consumption of the product in a day is 100 parts. Due to the production variation, the manufacturer anticipates peak consumption to be 150 parts. Based on the anticipated peak daily volume, the cycle time is 30 calculated to be 20 days. The official working days of this plant are 250 days per year. Thus, the returnable packaging cost is $5.00/container x 20 days x 100 parts/day + 10 parts/container x 1.3 x 1.5 + 25000 parts/year + 2 years = $0.03/part. Transportation Cost for Returnable Container System (TCR) The transportation cost for a returnable container system is the same as that of an expendable container system plus additional charges for back hauling empty containers. These charges are for the extended delivery distance from customer back to supplier plus charges for stoppage. However, the mileage rate for a returnable container system is often lower than the rate for an expendable container system. It is usually 20 ~ 40 % cheaper depending on the amount of transported goods. Assuming that the discount rate is fixed at 30 %, the transportation cost for a returnable container can be proposed as: TCRsz0.7xDDx2+NSxSR=$lpart (10) FOSxADV where TCR = transportation cost for returnable container system, $Ipart R x 0.7 = rate per mile including discount rate of 30 %, $/mile DD x 2 = delivery distance (round trip), miles NS = number of stoppages, stops SR = stoppage rate, $/stop FOS = frequency of supply, days ADV = average daily volume, parts/day 31 The term R x 0.7 represents the discount mileage rate at 30%. The term DD x 2 represents the extended delivery distance for the back hauling. It should be noted that sometimes the charges for inbound and outbound transportation is different because the inbound transport is for full containers and the outbound transport is for empty containers. The transportation cost model in this study represents one fixed rate with 30% discounts for both inbound and outbound transports. Usually this is the case when a company hires a third party company for the dedicated transportation service. If, for example, in the same situation as the expendable container system, one stoppage and $50 per stoppage, the transportation cost for the returnable container system TCR would be ($1 .40/mile x 0.7 x 1000 miles x 2 + 1 stop x $50/stop) + 1 day -:- 100 parts = $20.1/part. Labor Cost (LCR) The labor cost can be proposed as it was in the expendable container system LCE previously. The labor cost between the expendable and returnable container systems becomes different because each system requires a different set of activities. Thus, the labor cost for the returnable container system LCR is: LR LCR=TR —= lart 11 x PQ $ p l l where TR = time needed to handle returnable container, hours/container So; 32 UCRX[CTX ADV x CRR x PVF +M'RXOJXDDXZ-l-NSXSR RCSC = AVxCL FOSXADV LR TR —= lart + xF>Q $p (12) RETURN RATIO (R,) In the use of collapsible or nestable returnable containers, two important cost functions can be found: 1. cost of transportation C, 2. cost of containers Cc (for additional containers for holding days) Using collapsible/nestable containers reduces the transportation cost by maximizing the cubic efficiency. On the other hand, more containers are needed since no empty containers are returning to the supplier while waiting for the truck to be fully loaded. lntuitively, it can be assumed that as R, increases, C, decreases and Cc increases. Trade-offs can be made to find the best compromise such that the total cost Cr reduces to a minimum. CT(R,) = C,(R,) + Cc(R,) (13) The expected situation when utilizing collapsible returnable containers isthat the supplier receives the same number of trailerloads as it ships, on a one- to-one basis, and that it avoids shipping packages back LTL. If, for example, the return ratio is one-to-four, and the supplier delivers once every day, then the supplier would be receiving the empties back every four days. Figure 2 shows that three out of four deliveries are not closed loop. 33 Figure 2 Transportation cost associated with return ratio —‘ 1St delivery *———* _— 2nd delivery ——> —— 3'“ delivery —’ _‘I 4th delivery 3 Thus, the transportation cost should be based on the one-way rate for the Supplier Jewozsng first through third deliveries and the two-way rate for the fourth delivery. To capture this relationship, the transportation cost can be calculated by a combination of the transportation cost for expendable container system and returnable container system: C,(R,) =aT(l—R,)+bTR, =aT-aTR, +bTR, (14) where a = cost per one-way trip, $Itrip T = number of trips over the time period of container life, trips/year b = cost per two-way trip, $Itrip A further definition of these terms is: a = $/mile x mile = R x DD as in TCE previously b = $lmile x 0.7 x mile x 2 = MR x 0.7 x DD x 2 as in TCR previously T(1 - R,) = number of one-way deliveries out of the total number of trips in a container’s life 34 TR, = number of two-way deliveries out of total number of trips in a container’s life Container cost 0,; is for the additional containers to the given float of returnable container. For example, if a float of returnable containers was determined for a 20-day cycle time based on a daily delivery basis using a one- to-one return ratio, the number of returnable containers based on one-to-four return ratios would make the cycle time 23 days, adding two extra days of holding empty containers with the customer. This additional cost CC can be expressed: Cc(Rr) ———-'-_=_Rr (15) where c = unit cost of a returnable container, $Icontainer Q = quantity of container consumed at customer, containers/day I= container life, years The term (R;1 — 1) represents extra days of cycle time caused by decreasing the return ratio. If, for example, the return ratio decreased from one to one to one to four, the three extra days would be added to the total cycle time: -1 3 = :1- — 1. As the additional containers becomes a part of the container fleet being used over the container life, Cc is the one-time cost that should be amortized over the container life I. The total cost C,(R,) is the sum of C,(R,) and Cc(R,): 35 c,(R,)= C,(R,)+CC(R,)= aT —aTR, +bTR, +9l9R;‘ -319 (16) In order to get the optimal return ratio, while balancing additional container cost and transportation cost, CT was differentiated with respect to R,: dC,(R) dC,(R) dC (R) CO -2 r = r c r =_ T bT___R = dR dR, + dR, a + r ’ 0 (17) f The derivative was then set to zero and solved for the optimal return ratio R, .-= l (b 0:)TI . Assuming a, b, c, and [are rate constant, the two major determinants for an optimal return ratio are daily container consumption Q and total number of trips Tduring the container lifetime I. As the Q increases, the optimal return ratio increases. As the T increases, the optimal return ratio decreases. COST SIMULATION In order to examine the paper’s basic research questions, two different methods were proposed. First, by changing the key variables one by one, it can be observed that how the individual variable affects the total cost. The six variables found to be important are: 1. Cycle time . Average daily usage Pack quantity 2 3 4. Delivery distance 5 Peak volume factor 6 Container unit cost (returnable and expendable) 36 The limitation with this method is that it cannot capture the magnitude of impact by the multiple variables at once. The cost simulation was designed to capture the possible manufacturing and logistics conditions under which the returnable container systems can be justified. To be more specific, the two sets of cost models, one set of models representing the total cost of expendable container systems and another representing the total cost of returnable container systems, were compared under the various settings of manufacturing and logistics system. The collection of these settings under which returnable systems are the least expensive can be expressed as a relevant range for using returnable container systems. In order to generate the various system settings, a spreadsheet static simulation method was developed using Microsoft Excel. Each variable was given three values representing the ranges of systems settings (low, mid, high) (see table 4). Table 4 An Example of Variables and Ranges Variable 1 Variable 2 Variable 3 Low 1 4 7 Mid 2 5 8 Hig 3 6 9 Assuming that there are m variables, each will be tested at n levels. The total number of test combinations will be n”'. The simulations in this example perform cost analysis with the three variables at the three different levels. Thus, the simulation tested the total of twenty-seven combinations: 27 = 33. The container system cost for each container option can be calculated and compared 37 at each combination (see Table 5). The collection of combinations in favor of returnable container system is shown as the manufacturing and logistics profile limitations to each variable. Table 5 An Example of Cost Simulation Usin Variables and Ranges in Table 4 Ret. Exp Variable1 Variable2 Variable3 System System Cost Cost Difference (Ret-Exp) Seq. No. CDCDVQU'I-th—K ODOODO’IU’IU'l-h##CDODODOIU'IUI-b-bhODOJODUIUIUD-fib# Omflmmflmmflomflomflom\ICDCDVCOCDVCOCD\l I I 0 .x O) QQQWQQQWQNNNNNNNNNA—t-fi—s—t—k—t—x—s The actual simulation was performed with the five variables at three levels for three different container categories. The total number of combinations tested was 243 = 35 for each container category. The variables and ranges are 38 swnma fiomth heder hede; Theva onmy Tahel Low ‘— Mode CT:cy PVF'p CUC:< gwenl manuf COMaI deflet lhGav ind,a anyde ”Umbe vane“: Goddt “RISE summarized in the Table 6. These numbers are selected, based on the results from the individual variable analysis. For the variables with the depleting points, the depleting points was selected as the high value because any point beyond the depleting points wouldn’t be much impact on the container systems cost. The variables without depleting points were given numbers for the ranges based on my internship experience and data from literatures. Table 6 Variables and associated ranges CT on PVF PQ DD CUC Exp Ret Low 14 1,000 1.1 10 500 0.5 6 Middle 28 5,000 1.5 50 1,500 3 24 High 42 10,000 2.0 100 3,000 60 400 CT: cycle time, days ADV: average daily volume, parts/day PVF: peak volume factor PQ: pack quantity, parts/container CUC: container unit cost, $lcontainer DD: delivery distance, miles Since the cycle time doesn’t have depleting point, the cycle time was given the numbers of 14, 28, 42 days as the range. Although it varies from manufactures to manufactures, the automobile industry practices 14 days of container cycle time which is know as short. The container system costs starts depleting when the average daily volume is around 10,000 parts. The ranges for the average daily volume are 1,000 parts per day as low, 5,000 parts per day as mid, and 10,000 parts per day as high. The container system costs do not have any depleting point for peak volume factor, so the peak volume factor was given numbers of 10, 50, and 100 percent of the average daily volume. Considering various characteristics of products, 100 percent of the average daily volume could be considered as high in the demand fluctuation. The container system cost starts depleting when the pack quantity is around 100 parts per container, so 39 the give Deliver approx distanc and mc thigh) f the exp contain on the I made c molded tooling based ( Odd sh; made c presen- Contain designg x45 x 4 Wlth W0 the given numbers for the range are 10 for low, 50 for mid and 100 for high. Delivery Distance was tested at 500, 1,500, and 3,000 miles. Considering the approximate distance from east coast to west coast is 3,000 miles, the high distance was set to 3,000 miles. The other two values were set based on low and moderate distance moves representing low and mid ranges. Container unit cost was given ranges of $6 (low), $24 (mid), and $400 (high) for the returnable containers and $0.5 (low), $3 (mid), and $60 (high) for the expendable containers. These are approximate costs for the existing containers that are used in GM Powertrain. The low range containers are based on the container size 15 x 12 x 8 and 48 x 45 pallet. The expendable container is made of single wall corrugated board. The returnable container is injection molded tote. This is one of the standard size containers that doesn’t require tooling charges for both expendable and returnable. Mid range containers are based on the 24 x 15 x 18 containers and 48 x 45 pallet. This container is for odd shape and relatively big and heavy part. The expendable containers are made of single wall corrugated with customized inserts for protection and part presentation. The returnable container is customized vacuum formed plastic containers. No separate insert is required since the contour of the containers is designed for the specific product shape. The high container cost is based on 48 x 45 x 45 steel rack for returnable container and same size corrugated container with wood supports for expendable container. This container holds heavy parts. 40 oldest Howevr Model was all! wasass single p hmsu oleont the lelu emphr FlQure 1 The container unit costs vary in terms of its size, material used, complexity of design, etc. Container cost also varies among the container manufacturers. However, it should be able to capture the impact of container unit cost. Model Description Figure 3 depicts the basic supply chain configuration (fixed variables) that was utilized in the both container cost simulations. As illustrated in the figure, it was assumed that a supplier serves a manufacturing facility (customer) for a single part. The line represents the transportation link that moves containers from supplier to customer. In the expendable container system model, the flow of containers is one-way, so no empty containers are going back to supplier. In the returnable container system model, the flow of containers is two-way, and the empty containers are going back to the supplier. Figure 3 Simulated Distribution Configurations Full containers (expendables or returnables) Supplier $ Customer Empty containers (returnables only) The transportation from supplier to customer is scheduled once every day for both models. The trucks take the empties back to supplier after unloading full containers. The amount of empty containers going back to supplier is supposed to be the same as what is came into customers (one-to-one return ratio). In reality, however, containers get damaged, stolen, etc. It is assumed that it is 41 NECESS next tvI dzflere related 2-year contair possib. tolerate the act will be return; some t Inform 1999, necessary to purchase the additional 10% of the initial container quantities for the next two years. Two other assumptions associated with the transportation system are the difference of cubic efficiency and weight factors. The cubic efficiency and weight related rate between the two container systems are assumed to be same. The simulation calculates the returnable container systems cost based on 2-year return on investment, so the container life is fixed at 2 years. Returnable containers, in general, last longer than 2 years. The container life represents two possibilities. First, regardless of amount of investment, a customer cannot tolerate any investment that can’t pay back within two years. Second, although the actual container life is longer than 2 years, it is assumed that the product life will be supplied for only 2 years. For example, GM Powertrain implements returnable container system only if 2-year return on investment is possible, and some of the parts become obsolete as new model comes out every year. Labor cost calculation is based on the information in table 7. The information is based on GM Powertrain Engine Plant during my internship in 1999, and captures the major activities involved in the both container systems. The model does not include any activities at the supplier assuming that suppliers’ labor costs are the same for both packaging systems. Table 7 Labor time involved in the two container systems \ Seq. Expendable Returnable No. [1 Load box to tugger Load tote to tugger \2 Cut open box (300~400 sq. in. top Unload tote to creform/load per box) empty to tugger E Dispose box tops (estimated per Place empty tote to dunnage box) sort area (estimate**) 42 both p The tL line (Vt cut 0p works hours Contas 90hdc estim, come ()0 no Works The 9r eSllma l 4 Unload box to creform/load empty to Load tote to truck (per pallet L tugger estimate***) 5 Dispose empty box in gondola (per 4 boxes) 0) Empty gondola (per gondola”) Total: 0.65 min per container Total: 0.38 min per container * Assume 50 empty boxes per gondola ** Assume (4) totes at a time brought from tugger to sort area *** Assume: 32 empty totes/pallet and 500’ round trip from/to tote storage to dock Table 7 represents the time taken for the set of activities involved in the both packaging systems. For expendable containers, it is loaded to a tugger. The tugger is a delivery vehicle routing between the storage area and production line (workstations). As loading the containers to tugger, the container tops are cut open. The box tops are disposed. The containers are delivered to the proper workstations. Each workstation has a creform (gravity rack) where at least two- hours inventory should be available for an assembler all the time. As loading containers to the creforms, pick up empties and dispose them in gondola. The gondola is emptied on the regular basis depends on the filling rates. The estimated time consumption for expendable container system is 0.65 min per container. i For returnable containers, it is loaded to tugger. The returnable containers do not require cutting tops. The containers are delivered to the designated workstations and unloaded to creform. After unloading full containers, empties are loaded to tugger. The tugger driver places empty containers to sorting area. The empties, then, staged and loaded to truck going back to the supplier. The estimated time for this set of activities is 0.38 min per container. 43 cotah lpoun cotar any oti jufito 50047 Data E motiw mdepe indepe wheny Symen USGdtr Where reDIES one-Ur Uhngt lblGOr Disposal cost for expendable container system is based on a fixed container weight for each classification. Low cost containers are assumed to be 3 pounds. Mid cost containers are to be 5 pounds and 50 pounds for high cost containers. This weight should include any fraction weight of pallet, label, and any other shipping material. There is no logic or data behind this numbers. It is just to make a distinction between the classes. The disposal rate for recycling is $0.0475 per pound (National Solid Waste Management Association 1992). Data Evaluation Multiple regression analysis was used to evaluate the result data from the multi-variable cost simulation in order to estimate the relationship between the independent variables (X1) and the dependent variable (Y). In this study, the independent variables are the five cost drivers and the dependent variable is the difference between the returnable container systems’ cost and expendable systems’ cost. For each dependent variable, the technique of least—squares was used to estimate the regression coefficients (b,) in an equation of the form: Y =bo +b1X1+b2X2 +...+b,,X,, +u where u denotes a random disturbance term. The regression coefficient (b,-) represents the expected change in the performance indicator associated with a one-unit change in the ith independent variable. The coefficients (bi) depend upon the units of measurement for Y and X,-. Using the standardized independent variables (Xi), the regression coefficients (b,-) do not depend upon the units of measurement and facilitate a comparison of the relative impact of different variables. The standardized independent 44 rariab Y is e' The 5' fl Middl l'llGl' CT. 0 PVF. CUC: variables (X) can then be interpreted as the number of standard deviations that Y is expected to change in response to a one standard deviation change in X,7. The standardized variables from Table 6 are presented in the Table 8. Table 8 Standardized Variables and associated ranges CT ADV PVF PQ DD CUC Low -1 -0.96 -O.96 -0.96 -O.93 -O.64 Middle 0 -0.07 -0.07 -0.07 -O.13 -0.54 High 1 1.04 1.04 1.04 1.06 1.15 CT: cycle time PVF: peak volume factor CUC: container unit cost ADV: average daily volume PQ: pack quantity DD: delivery distance 45 expen mahul oollap: impac ophhu srhuh the nu SHIGI Cycle lime (s phser conhn CHAPTER 4 RESULTS This section provides a discussion of the cost comparisons between the expendable and the returnable container system models for various manufacturing and logistics settings and the optimal return ratio for collapsible/nestable returnable containers. First, discussion addresses the impact of individual variable to the total container system cost. Second, the optimal return ratio is discussed. Third, the results from the multi-variable cost simulation are discussed using findings from the multiple regression analysis and the manufacturing and logistics profile. SINGLE VARIABLE ANALYSIS Cycle Time (CT) The returnable container system cost increases in proportion to the cycle time (see Figure 4). The specific parameters associated with the Figure 4 are presented in Table 9. As cycle time increases from 7 to 34 days, the increase in container system cost was from $04182 to $04645 (about $ 0.05) per part. As the cycle time increases, the total returnable container system cost increases because more containers are required. The magnitude of the impact by the cycle time is relatively low. The increase in the cycle time increases the container initial investment. However, 46 the ad the co oontai cost o of low any a) about cost or the ret the additional container cost for the increased cycle time is not significant after the cost is amortized over the container life. The same cost prediction was performed with mid and high cost containers. Figure 5 and Table 10 represent the cost prediction results for mid cost container set, and Figure 6 and Table 11 for high cost container set. In case of low cost containers, a returnable container system could not be justified with any cycle time between 7 and 34. However, savings became possible up to about 30 days of cycle time for mid cost containers, and all cycle times for high cost containers. As the container unit cost increases, the cycle can be longer for the returnable container system to be justified. 47 em 4 “mm 0 east Co. as» 226 om ow or o L ll. , i .. Fl-) . twill- ..r--r -.lll . 11+ 8 6m .9, m...» 9m. new $59.60 7.00 26.. .2 9:: £96 Lo 63E. v 9:9“. no.3 o to» m fow omd» mmda omda and» 93» 9.3 omda uedls 3903 0.191353 Jeugezuoa 48 :85 .38 E953 559:8 5.555595 ”Owom 55:5 .55. 5: 99 .5886 ”mo 559525988 559:8 5.555595 5.89. 9 55:55: 9:: Mt. 59:5 .99 555. um... 55.: 58:5 No 85:55: ”won. 55__E 55:95.5 852.55 ”an. 555.» .9: 559:8 1.0 55955355 5.55:: 3.55: “On. 55: .5E: 5.96 PO .595 .38 E958 559:8 5.55535: Howom 5595955. .2952, 559:8 H>>O 559595 559:8 5.555595 5o 88 5:: ”mo: 559553988 55595: 5.55595: 5.55: 9 55555: 55. um... 5.85 .99 585...: “ms. 5295: .5555: 2.9: 559525 H>o< 99 8588.539 559:8 ”mmo 589 5.8.8 55: H...>n. 559525 559:8 53855: No 38 5:: ”mo: 5.55 5555.55 58:: 5 55.: 55.55 8 8.: F FvF 85 88 N .F 8 5F 5 8.55 8.3 35.3 88.: 5 55.: 3.3 8 8.: F F: 85 88 N .F :F 5F F: 8.3 8.55 «85.55 58:: 5 55.: 55.55 5F 8.: F :1 85 88 N .F :F 5F N 8.55 8.3 F533 5:8: 5 55.: 3.3 9 8.: F :1 :8 88 N .F :F 5F 8 8.3 8.3 83.3 88.: 5 55.: 3.3 9 8.: F F: 85 88 N .F :F 5F N 8.3 5.8 581:5 58:: m 55.: 55.55 8 8.: F FvF 85 88 N .F 8 5F F 8.55 8.3 585.3 558.: 5 55.: 3.3 8 8.: F F: 85 88 N .F :F 5F 5F 8.3 8.3 585.3 52:: 5 55.: 3.3 5F 8.: F F: :8 88 N .F :F 5F F 8.3 8.3 85.3 5N8: 5 55.: 3.3 8 8.: F F: :8 88 N .F m” M" ”F “Wm“ . 5.: 528.: m 55.: 3.3 5F 5.: F :1 :5 88 N .F . . 8 35858F owe: m: 2,: 5:. mo: 5 E won. as. 8 >8 8 :8 o: “S: 5 mo: 5.5 55950 5500 26.. :9 5E:. 5.80 50 555E. m 5.555 49 me 5 5m 0 5>au to. as: 226 ov om cm 9 o _ - : I! : t : I I i 1! -LT F U D D r U D D D a I m 4 4 a 4 4 q d T «N5 8: .2, 3 9m. 55 55980 3:0 5:2 8.. 5:55 5.80 5: 859:. 5 9:95 0 F69 cud» and» 8.05 and» 00.05 05:5 wed/s 1803 masks Jaumuoa 50 E38 .88 E988 552:8 mzmucmaxm Homom 3.8 .3. .3 9m. .8086 ”mo 558828556 859:8 988098 2.89. 9 886: 9:: “w... 595 .29 Bow. My... 88 .238 .6 55:3: ”m0“. mm__E doc—3.0.6 >638 do 28> .mE .8888 Jo 5:5:onth .bzcmsc xoma ”Ga 88. .98 226 F0 :88 .88 828m 559:8 038.39 Homom 553F523. .2.ng .mEmEoo H>>o 558:0on .hmEmEoo 282.598 .6 88 55 “mo: 5588082355 8559.80 038.29 mica; 2 888.: me: ”E. 883 .99 88.8 ”as. >88th .88: >85 399m “>04. .29 EmEszmEQ .mEmEoo ”mmo 88$ 0E2? xmma i>n_ 858.508 .hmEmEoo 28539 8 88 :5. ”mo: 8.8 8.8 88.0 m 88 8.3 F 8.0 F FvF o8 88 F.F oF 0F 8 863 88 No.8 888 8 mod 8.3 F 88 F F: 8o 88 N F.F 2 OF 8 8.8» _3.8 8.8 888 m 88 8.3 F 8.o F F: 28 88 N F.F oF 8F N 863 8.8 8.8 888 m 8.0 8.3 F and F F: 28 88 N F.F oF 0F 8 8&3 8.8 8.8 88.0 m 88 8.3 F 88 F F: 28 88 N F.F OF .3 NN 8&3 8.8 3.8 888 m 88 8.3 F 88 F :1 o8 88 N F.F 8 OF 8 863 8.8 3.8 888 m 88 8.3 F and F :1 8o 88 N F.F oF mF 8 863 8.8 8.8 888 m 88 8.3 F 8.o F F: 08 88 N F.F OF 3 8F 883 8.8 2.8 888 m 8.0 8.3 F and F F3 08 88 N x m" MN mF “um” . . . 86 8.3 F 8.o F F: o8 88 N . 8 808mg. 888.23 exam/>0 8 mo: 5 E won. a; 8 >8 .5 mac on. “Sn. a5 Moan .1 8885380800 2522 mEF mV.90 88m E_ 8 E h 51 wa < “mm 0 m>au So. as; 226 8 8 ON 88 .3. .2, 8» 9m. L .l .. .Il .llllll'liw .7 l‘lllitluvl’lll'll'llx .4“lt o 11:11; I” D . OO.—‘$ m 8.8 m... w . s I. 88 Wk. 7 . S 8.8 u m - 8.8 w 0 - 8.8 m . 8 cos» Em .8580 800 :9: .3 9:: 280 8 88:: o 9:9“. 52 50.5 .88 E555 559:8 5.550595 ”050m. 55.5 .50. 50 99 55005.0 ”mo 5595259058 559:8 5.550595 5.05: 9 05055: 58: m: 58.5 .99 555. ”m... 550 .2008 5 55:05: ”50“. 5...: 50:95.0 .5550 do 555.» .55.. 559:8 1.0 55950550 55:80 550 ”Ga 5.80 .58: 5.0.6 #0 .505 .58 8555 559:8 5.55535: ”050m. 5595055. .2053 559:8 H>>o 559505 559:8 5.598595 5 500 5:: ”mo: 5595059052. 5:559:05 5.55535: 5.05.. 9 05055: 58: ”E. 5...:5 .99 5055.? is. 525.50 .5055: 2.95 50.555 ”>n.< 99 858585.05: 559:8 ”$5 559 5E:.o> 5.550 ”n.>n. 559505 559:3 5.55535: 5 500 5:: ”mo: .855 05.55 580.0 05 55.0 00.055 5F 55.0 F :1 005 0005 N F.F 0F 5.F 5 00.035 W555 55.55 580.0 05 55.0 00.055 5F 55.0 F FvF 005 0005 N F.F F 5.F F5 00.0055 .5555 F555 5300 05 55.0 00.055 5F 55.0 F Fv.F 005 0005 N F.F 0F 5F 5 00.005 75.55 3.55 5550.0 05 55.0 00.055 5F 55.0 F Fv.F 005 0005 N F.F 0F 5.F 5N 00.0055 V5.55 N5.N5 55.0.0 05 55.0 00.055 5F 55.0 F Fv.F 005 0005 N F.F 0F 5.F NN 00.005 75.55 5555 580.0 05 55.0 00.055 5F 55.0 F FYF 005 0005 N F.F 0F 5F .2. 00.0055 @555 N55 53.0.0 05 55.0 00.055 5F 55.0 F Fv.F 005 0005 N F.F 0F 5.F 5.. 0.0055 .855 8.8 580.0 8 55.0 8.08 8 8.0 F F: 005 88 N F.F 0F 5F .2 8.88 .855 8.8 580.0 8 55.0 8.85 8 8.0 F FF..F 005 88 M w." w” 5“” WF “an” . . 55.0.0 8 55.0 8.08 5F 8.0 F F: 005 008 . .8 505505.FN ””505 50 2,0 5 mo: 5 E 50“. ms. 00 >8 5 55 8. ”Sn. .5 mo: 55 55950 5500 50.... :8 5.5.5 5.5.6 50 550E. FF 5.555 53 Average Daily Volume (ADV) Increasing the average daily volume reduces costs for both kinds of container systems. Figure 7 and Table 12 show the results of the low cost container set in comparison of expendable and returnable container system cost. As the average daily volume was increased from 1,000 to 10,000 parts, the returnable container system cost decreased from $1.20 to $0.13 per part, and the expendable container system cost decreased from $0.93 to $0.17 per part. The interesting observation is that the cost of returnable container system decreases at a faster rate than expendable container system. As the container cost increases, the decreasing rate increases. Figure 8 and Table 13 show the results for cost prediction for mid cost set, and the Figure 9 and Table 14 show the results for cost prediction. The savings become possible when the average daily volume was greater than 6,000 parts per day for the low cost container set, 2,000 parts per day for the mid cost container set, and any daily volumes for the high cost container set. The economies of scale are the reason for this behavior. The sensitivity of economies of scale is greater with the returnable container systems because the returnable container unit cost is higher than expendable container unit cost. In other words, when the higher container cost diminishes over the large amount of the daily volume, it does faster than the lower container cost. For example, if 2 divide a number 20, it becomes 10. If a number 40 divided by 2, it becomes 20. The number decreased by 10 in the first case, and by 20 in the second case. It is clearly shown that the decreasing rate is faster for the higher number. In 54 addition, the expendable container cost is expense, but the returnable container cost diminishes over number of trips between the supplier and customer for the given period of time. Returnable container system cost can be more easily justified with higher daily volume and higher cost containers. 55 $2852. $05 oE:_c> 2.50 om8c>< OOONF oooo ooow Doom ooov OOON o _I i ; _ i p i c -Liiillllglf c c o 0 I I a m j q 9m. 1 a com o i o» «om .m> m6» nxm omda ovdw 00.0» end» 8. a . cm. 5 0.... 3 «mm 55950 $00 26.. .8 oE:_o> >__mo 00.90216 53:: 5 9:9“. wed/s 1909 mate‘s Jeumuoo 56 :59» .58 E355 553:8 5355595 ”owow 55$ .55 5: 33 58:56 ”me 553:85335E 553:8 5335:5555 56:5: 2 .5555: 5E: ”m5 505$ .33 525. mm... 555 .2335 5 5:535: “won. 55E: 58356 >525: do 95> .52. 553:8 1.0 55352355 .5236 555: ”on. 55: .5E: 5.96 #0 .o :53» .88 E355 553:8 535535: Howom 5535255 .2953 553:8 H>>o 553839 553:8 5355595 he 58 5:: ”mo: 5535355335.: .m553:8 535535.. 56:5: 3 55555: 55: ”E. 5:55» .33 585:5 is. 5235: .5955: 555 5m55>m H>o< 33 3:5E:m_:5_:5: 553:8 “$5 583 5559 v.55: m>n_ 553:83 553:8 535535.. 5 «moo 5:: ”mo: v9 we 553:8 500 26.. :2 NF 53m... 57 em 4 «mm 0 >335: 55$ 8.2.; 53 3222 occur oooov coo coco ooov OOON o iliiLlli ii l1-_- 5| L|lill : o n. ONO» 4 4 4 4 0 V- ovdw 4 0 . cod» 4 Y omd» oo. re a i ON. a 5 CV. Fm :8 6: .2, 3 ea 5m 553:00 500 2.2 :8 oE:_o> €50 5mm5>< *0 659.5 w 059”— uedls 3803 masks Jeumuoo 58 :59: 5:8 E559: 553:8 5555:5555 Homom. :55: .3. 5:. 555: .5852: ”mm. 5:.3:8\:55:5E 553:8 5355:5555 5.5:5: 55 55:55: 5.55 m... 59.5: .555: 555. Nm... 5.53: 5.55:: 55 55:55: ”won. :55: 55:35: >525: do 955.. .55. 553:8 Jo 5553:8595: 5.65:: 5.55: ”On. :55 .555 5.98 #0 :59: 5:8 53:5 553:8 5.55535: ”owom 5555:8555. 5:953 553:8 H>>o 555E859 553:8 5355595 55 5:8 5:: ”mo: 553:855355: 6.55558 5.55535: 5.55: 3 55555: 555 um... 55:55» .35.. 5055:: “ms. 52:5: 555:: .55: 55555 ”>95 35: 5585.55.55: 553:8 ”mmo 5553 55:29 5.55: ”n.>n. 555E859 553:8 5.55535: 55 5:8 5:: ”mo: 59 ::.:: 5:: :53: : ::.: ::.:: 5 ::.: 5 55.5 8: ::::5 N 5.5 :5 :5 : ::.eN: .:: 5:: :53: : ::.: ::.:: :5 ::.: 5 5.5.5 ::: :8: N 5.5 :5 :5 : ::.:N: ::.:: 5:: :53: : ::.: ::.:: :5 ::.: 5 5:5 8: 8:: N 5.5 :5 :5 : ::.:.N: 5:: :N.:: :53: : ::.: ::.:: :5 ::.: 5 55.5 8: ::2. N 5.5 :5 :5 : :32 v.:: :N.:: :53: : ::.: ::.:: :5 ::.: 5 5.5.5 :8 8:: N 5.5 :5 :5 : ::.:.N: 5::: 55:: :53: : ::.: ::.:: :5 ::.: 5 5:5 :8 ::.: N 5.5 5 :5 ::.VN: ::.:: ::.:: :53: : ::.: ::.:: :5 ::.: 5 5:5 :8 ::8 N 5.5 :5 :5 : ::.:N: swam ”Mn” :55: : ::.: ::.:: :5 ::.: 5 55.5 8: :8: N 5.5 :5 :5 : 8.5:: H . ::.:: : ::.: ::.:: :5 ::.: 5 5:5 8: :::N N 5.5 :5 . . 5 5: NN5: :53: ::.: ::.:: :5 ::.: 5 5:5 :8 :85 N 5.5 :5 M." : ::.eN: 5:55 555:. m: 255 55 55; m: E :0”. : :: «N: :2. :: >2 .6 ::o a: “S: 5 :5 55m 553:8 5:00 :52 5:5 5 5:: >550 5:555. 5: 55:5. :5 535... me d 55m 5 55523.55 .>:<. oE=_o> 2.5: 82:2 :::N5 885 8:: :8: :85. :::N : .1 f.Ill|nhu||-m IliniIIUl M U W 0 5 H.“ o o a .5 8 5: m i ::.N: m. ::.:: 3m , 85.: w. .m. . u s 5 o: m: m ......... ,::.::m < 1 008» W 5 ::.:: :8: 5:: .2, 8: ea :5w 555.50 :80 :9... :55 5E:.o> 2.50 5m5:5>< 55 859:. 5 555.“. 60 :53: .855 5:58.»: .8668 5358598 6wa ::.: .m:_ :5: 555: .5886 ”mo 5556558565.: :5:_5::55 5656:5558 5.6:5: 2 65655: 58: ME. 55:3 .555: 5:5. ”m... «$56 23:: 5o 8:535: ”won. :26. 55:58.6 b5>=56 do 955.» .55.. .555655 1.0 655652.065: 5.65:: 5.55: ”on. 956 .58.: 5.5.8 #0 :53: .855 E588 5:65:55 565535: ”owom 5556523. 4:953 5:65:55 H>>0 855655: .:5:_5::55 5656:5955 6 ::55 5_:: ”mo: 55565585658 8555655 565525: 56:5: 9 65655: 58.: ”a: 5.65 .555: 5:556: ”ms. 868:5: .5m5m: 2.56 5m5:5>5 ”>045 555: 658865.55: 555655 ”mmo .5555: 5829 x55: ”u.>n_ 5556553 .:5:_5::o5 565535: 6 855 5_:: ”mo: :8 5:: :28: 8 :: 8.8: :5 ::.: 5 5.5.5 8 885 N 5.5 :5 :.5 : 8.8:: ::.:: ::.:: :28: 8 ::.: 8.8: :5 ::.:5 55.5 8 ::8 N 5.5 :5 :5 : 8.83 ::.:: 8:: :28: 8 ::.: 8.8: :5 ::.:5 3.5 8 8:: N 5.5 :5 :5 : 8.85.: ::.:: :8 :28: 8 ::.: ::.8: :5 ::.:5 5:5 8 82. N 5.5 :5 :5 : 8.8.: ::.:: :8 ::8: 8 ::.: 8.8: :5 ::.:5 5.1 8 88 N 5.5 :5 :5 : 8:8: ::.:: ::a :53: o: :5: 55.55: :5 ::.: 5 55.5 :5 5::: N 5.5 :5 .5 55.53: ::.:: ::.:: :28: 8 ::.: 8.8: :5 ::.:5 3.5 8 88 N 5.5 :5 :5 : 8.85.: :3“ “Mom :28: 8 ::.: 8.8: :5 ::.:5 55.5 8 8:: N 5.5 5 :5 : 8.83 . .: :25: 8 ::.: 8.8: :5 ::.:5 5:5 8 88 N 5.5 :5 :. . :E: :5: :28: :: ::.: 8.8: :5 ::.:5 5:5 8 :85 N 5.5 :5 :H M “an” 5:55. 5:5: mo .55 5:. 55: m... E .50“. :2. 5: >2 .6 Eu 0: ”Sn. .8 mo: :5w 555650 ::50 : .I 85 555:: 2.50 58:52: 6 5559:. 5.5 5. :5: 61 Peak Volume Factor (PVF) Recall that the peak volume factor (PVF) is a measure of the fluctuations in the average daily volume (ADV). The impact of fluctuations for the low cost container set was observed for the peak volume increasing from 10 "/0 to 100 %. As the peak volume factor was increased, the returnable system cost increased very little, from $04106 to $04141 per part (see Figure 10 and Table 15). High fluctuations did affect the container system cost. However, the impact is relatively low. Increasing the peak volume factor actually increases the average daily volume, 3,000 parts per day in this case. The increase from 10% to 100% was actually the increase of average daily volume from 3,100 to 6,000. The impact of average daily volume was relatively high in the previous section. The increase in the average daily volume (ADV) increases the annual volume that causes the significant increase in the initial investment. However, unlike average daily volume (ADV) in the previous section, this increase by peak volume factor is not related to annual volume (see equation for returnable container system cost). The peak volume factor only measures the cost impact of additional containers for the daily fluctuation. The additional containers cost for daily fluctuation become significantly low after the cost amortized by number of usages over containers’ life. Higher container cost overcomes the effect of peak volume factor significantly as it did for the other variables. Figure 11 and Table 16 present the results for mid cost container set, and Figure 12 and Table 17 present the results 62 for high cost container set. With the higher cost containers, the peak volume factor does not affect the overall system’s cost. 63 90 < :5m. 0 :55: :28: oE=_o> 5.8.: :.N N :5 5 ddddd‘dd“ 0000000000 :: 8: .9, :8 9.: -- ::.:: wad: - and» ::.:: - ovd» .. 5.5.5: - Ned: uedls 1803 mate‘s Jeugeauog :5w 555650 850 35.. :5: 6:55... 5:::_o> 5.551 :5 :55aE_ 0.. 559.... 64 5:59: .88 E588 555::8 5656:5555 ”owom. ::.:: ::.:. 5: 55: .5886 do 5556885655 .55588 5656:5555 5.6:5: 2 65655: 5.5: m... 55:: .555: 5:5. My... m>56 5.55:: :o 55:55:: ”:0... :5..:: 55:58.6 5:52.56 do ::55> .55. 555::8 Jo 55568855: 5.65:: 5.55: ”On. 8:56 .5555 5.5555 #0 :53: .88 E588 555::8 565525: ”0:01 5555:5585 5:952, 55568 ”:50 :0:_mucoo\6 ...®c_m~c00 wamflcwaxm :0 “woo «E: ”MOD :0c_mucoo\m0«:c_E .m:0c_mucoo 0_Dmc:3«m: EDEN...— Ou Umflmmc 05.5 ”NE. 55.5: .555: 5:556: ”ms. 568:5: .5555: 2.56 5m55>5 ”>95. 55: 858865.55: 555::8 “mmo 5:55: 5E:.o> x55: ”u.>n. 55588:: 555::8 565535: 55 855 5:: ”mo: End: ::.:: mnvod m mmd and: :5 and F 3... com coo: N we or N a cod: #06: 9.16: @256 m mod and: we and 5 5:... com Doom N 5.5 or .m._. m cad: 5:6: :36: mnvod m mod and: 9 mad w 3.: com coon N _.... 0.. .m.—. m cod: End: Need: mnvod m mod and: :5 and .. 3.: com 000: N we 0.. h... a cad: had: vavd: mnvod m. mod and: w.. and 5 3.5 600 ooom N F... or o... m 2.6: had: N36: @556 m mod and: :5 wad .. ::.: coo ooom N F... or m... m cod: had: 5.3.0: mnvod m mod and: :5 and .. 3.5 coo coon N 5... or .—. m 09.0» had: :56: mwvod m mod and: we and .. 3.: com Doom N ..... 0.. .—. m 6:6: 5:6: 2.3.9: @556 m mod 6nd: :5 mmd F ::.5 com coon N ..... or N._. m cad: 5:6: 6:36: 055.0 m med and: w: wmd _. 3.: Com coon N 5... .. v... m ad: Umom Umom. mm. >>0 m... m0: w... «E wOu 1.2. CD >04 ..0 $10 On. “5a: ._. ”.02. :5: 555::50 850 26.. :o: 5555“. 5E:_o> 5.55.: 6 5559:. m5 565... 65 wa 1 :5”. a £3. :38: 2.5:; 5.8.: 55 N 5.. : no .- 111 ‘x- .31.! . ‘. , .. : 0000000000 d‘dfifidfidfid a» :3. .2, 8 am. 2.3 5 8.3 one» .- 3.8 one» 8.9: . Ed» :5w 55580 800 5.5. :o: 8:55“. 5E:_o> v.55n. :o 859:. 55 5:39“. wed/S 3903 masks Jaumuog 66 :55.» .855 558$ :5:.5::55 5.55.5595 Howow ::55:5 .855 558.6 :5:.5::55 5.55535: ”050m 55:5 .55. :55 5:5: 55555.5 ”mo :5:.5::5585. 5.5.53 :5:.5::55 H>>o :5:.5::5585555 :5:.5::55 5.5555595 5.5:5: 5: 55555: 55.: ”w... :5:.5::555 :5:.5::55 5.555555 :5 855 :.:5 ”mo: 5555 5:5: :555. ”m... :5:.5::5585555 .m:555::55 5.55535: 5.5:5: 5: 55555: 55.: “m... 9.55 5.598 :5 5:55.55: ”won. 5:55 .5:5: 5555..:: ”as. 55:5 55:58.: 552.55 do 558.55 .5558: 2.55 555:5>5 ”>05. 5:55.. .5:.. :5:.5::55 5.0 5:5: 555855.55: :5:.5::55 ”mmo :5:.5::558555 .>:.::5:5 5.55: ”On. :5:55: 5:::.5> 5.55: “5?... 955 .55.: 5.55 “.50 :5:.5::55} :5:.5::55 5.55535: :5 855 :.:5 ”mo: W555 $555.55 55555 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 N 5 55.5N5 .5555 555.5» 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 .5... 5 55.5N5 55.55 555.55 555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 .5 5 55.5N» 5.55 5555.5» 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 5.5 5 55.5N5 W555 555.5» 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 5.5 5 55.5N5 .5555 5555.55 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 5... 5 55.5N5 55.55 .55N5.55 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 .5 5 55.5N5 55.55 W5N555 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 .5 5 55.5N5 .5555 N5N555 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 N... 5 55.5N5 .5555 55N5.55 5555.5 5 55.5 55.55 55 55.5 5 55.5 555 555 N 5.5 55 5... 5 55.5N5 050m 0501 me >>Q m... mu: m... a... mo“. E2. on >o< :0 mac On. “5 .50 mo :55 :5:.5::50 850 5:2 :5: 8:55“. 55:_5> 5.555 :5 85%. 55 5.55... 67 IE. :33“: oE=_o> 5.8a. 55 N 5.5 : 5.5 0 0000000000 co...» 8.55 qud 00.5» .010 00.3 8.8 5 8.5» 5 8.5» ‘1‘fi‘Q‘dC‘ 8... a :3. .2, 58 em :55 55.3550 850 :5... :5. 5:55“. 55:.o> x55n. :5 :5555. N5 5:55.". wed/s 1803 masks Jaumuoo 68 tméw .umoo 899$ 559:8 mEmccmaxm “owom 3:» .8. .3 2m. :30qu ”mo 558523ng $58.80 293596 295: 2 33m: 9:: ”w... 505» .92 Sam. My... 38 $.33. ho 55:3: ”won. mm__E .mocmumfi 39:8 do 93> .9: 85250 Jo .mEmEooBtma $5.530 xoma ”Ga gun 6E: 298 #0 E25 .58 8296 558:8 mEmEBQ Homom 5598039. .3903 559:8 H>>o 558.50% 359.50 mfimucmaxm be “moo HE: ”mo: 5535032358 .mmemEoo 23:53. 20:9. 2 830: 0E: ”E. 05E» .mfi. momm=E ”m2 >m2mtma .mmmm: >=mu 399m H>o< 9m. EmEcmEmEQ .mEmEoo ”mmo .203 9:29 :93 m>n_ $5953» 65250 $32.29 *0 $8 ES ”mo: ind» nwd» nvod m mod ocdoa P and F 3‘... Com com N F.F F N m @96ch ~36» 36» @556 on mod codma wv wmd r 21‘ com com N F.F _. 3;. a 6:60?“ @969 and» mnvod m mod oodm» 9‘ mad _. rvé com com N F... _. _w._, m codov» 3.6» end» mhvod om mod 69cm» 9. and F 5‘? com com N F... F Ev m 092.?» "36» and» mnwod om mmd 69cm“ 9. and F 3... com com N _.._. F 9—. m coda?» @669 and» mnvod cm mod ccdm» fir wmd _‘ 3... com com N 2‘ _. m... m codovw @md» mud“ mtuod om mod code» w? and _. 3‘... com com N v.9 F at? a ocdcv» wand» who“ mnvod on 60.0 codom mp wmd P IVA com com N F.F P n.—. m @6695 dea find» mnvod cm 00.0 codmm aw wmd _. 36 com com N E, P N... a 2:53 dea and“ mnvod om med 69.3» 9. wmd _. 3;. com com N 7? w —..—. m ocdcv» Uwom Umom mo >>Q wk m0: «3 1h won. m OD >01 40 mmo Om u..>n_ H0 “02 “mm $5350 .80 :9: .8 Baum“. mE:.o> xmmn. “6 6mg: 5 min... 69 Pack Quantity (P0) The pack quantity was varied from 10 to 560 parts per container. The results for the low cost container set are shown in Figure 13 and Table 18. As the pack quantity increased, the cost decreased from $0.4113 to $03951 per part for the returnable container system and from $03658 to $02835 per part for the expendable container system. Returnable container systems can be more easily justified with lower pack quantity. Economies of scale can explain this behavior. The increase in pack quantity is spread over the fixed container investment, labor cost, and disposal cost. The reason that the returnable container system cost is less sensitive is that since the container unit cost is already amortized over its lifetime, the pack quantity does not impact as mush as on the expendable container systems. With higher container unit cost, the savings can be achieved more easily. The returnable container systems could not be justified for the low cost container set. As the container cost increased to the mid and high cost container set, the economic justification became possible. For the mid cost container set, savings was possible up to 20 parts per container (see Figure 14 and Table 19). For the high cost container set, the savings was available up to 480 parts per container, and the savings was greater than the mid cost container set (see Figure 15 and Table 20). 7O 9m. 4 Em a com 353203353 .9: £226 x28 com oov com com oer o e Q Q Q Q Q Q Q T Q Q t o D 0 o 0 0 o D on . r 3 8m .2, no» em -m no.3 Mu So» m. 9.3 m. 8.3 m us 3.3 m.“ 8.3 m 8.8 m. 9.3 m 3.3 “mm .mEScoo “moo 26.. .8 bzcmac xomd co 838. m? 059“. 71 :25 .38 839$ 553:8 mfimucmaxm Homom 33 .3. .3 9m. .3036 “mo 553838558 358:8 mEmucmaxm mica: 2 880: as: m: 59:» .29 Bow. ”m: 98 .233 yo 65:3: ”won. mm__E .mocmumfi >553 do 2mm.» 6:. 558:8 no 559503th .bzcmaa xoma ”on. 9% .mE: 298 #0 :25 .38 Ema? 553:8 032.39 ”owom 553538. .5903 558:8 u>>o 55953» 359:8 033595 3 $8 5:: ”mo: 559828555. 905980 53532 0.95: 9 880: we: “a... 2:5» .29 momma: ”ms. 323.8 .mmmm: >=mu mmmbm>m ”>o< 9m. EoEcmEmEQ 553:8 ”mmo .203 9:29 xmma «Sm 858.52% 359:8 29255. 8 $8 5:: ”mo: anda wmwnda mnvod 0.0 omdm F wmd w Sir om Doom N _..w 6mm me m 690» hmde» vmamda mngd mmd omdw 9. and F 3.? co coon N F.F cm... mé m 6.96» wvad» Nmmmd» mnvod mod cmd» 2 and _. EV... om coon N F._. 69‘ m... m 06» @vad» Rwanda mnvod mod and» _. wad F :9 om boom N _.._. cNm we a cd» mmmNd» mmmnda mnvod mad cmda a? and F :5 cm coon N F... OQN me m cad» thNd» wmmnd» mnvod mod and“ 9 and _. EV... om ooom N F.F 02. m... m and» NaNd» mommda mnvod mod omdm ww mmd —. EXP o0 com N F... m me n coda fiNonda mmmnd» mnvod mod and» 9. mad F :1. oo Doom N re v m... m cod» FnNnd» wnovdw mnvod mod and» we and w 3... 00 Doom N _.._. ON a9 m cod» fimmnda 236» 65.0.0 med and» Q and F EV... om Doom N F... 2. me a cod» omom Owom mo 26 m... m0: 1.. 1 m0“. «:2 DD >O< 4Q me Oar “5n. ._.Q «.0 “om $59.80 $00 26.. at 5580 xomn. B 885. 2 033 72 me 4 “mm 0 358202853 6.: 55:0 58.. com com cow com com co? o _ I - ELI}: _ - LI: 1.. -8 8.8 - 8.8 Q Q Q Q Q Q Q r OM.O$ a 0 0 0 a 0 0 man.5 ovda . - 8.8 .., 8.8 - 8.8 «8 .3. .2, 8 ea uedls 3803 masks Jaumuoo “am 55550 “moo 5.2 .2 33:30 52$ *0 63.5 3. 93¢ 73 .595 .58 5555 55558 5.55595 deem 55.5 .55. .55 55. .5585... ”mo 5555555555.: .55558 5.555595 5.55.. o. .5555: 5:... ”wk 55:5 .55. .555. Mm... 555 5.558 .5 5:53.55: ”won. 55...: 55:55... 552.55 do 5.55.. .5... .55558 1.0 555585.55 5.5535 555 ”on. 5.55 .55.. 5.55 #0 5.55.5 .58 E555 5:.558 5.55535. Home”. 5555855. .5553 .555555 H>>o 55558.5 .555555 5.55.5595 .5 .555 5:: ”mo... 555555.555... 5.555555 5.55535. 5.5:5: 5. 55555: 5:... mm... 5.5.5 .55. 5555.5. is. 555.55 .5555: 2.55 555.55 H>o< 55. 555555.55. 555555 Name .955. 5E:.o> x555 “u.>n. 5555585 .55558 5.55535. .5 .58 .5: ”mo: 74 weeNda madda envod m med ddd» er eed .. EV... doe doom N ...F Gee eé e ddéum NmeNdm mend» mwvod m med dddm er eed .. .5... doe doom N F... dev dé d ddéN» edmNd» emmddm mnvod m med ddd» e.. emd _. EV... doe doom N ..... ddv 0.? m ddéN» thNdm emmdd» muvod m med add» e.. end .. .5... doe doom N _.... de me e ddéua emNd» remade envod m med dddm er end .. EV... doe doom N ...F dVN eé e ddéNu mnemdm eemddm envod m med ddda er emd .. eve doe doom N F... oer e... m ddéN» EVNdd» eemdda mnvod m med dd» er end P 3.? doe doom N ...F de me e ddéN» bend” eNdvd» muvod med Odd» e.. end w .55 doe doom N F.F dc m... e ddéN» deed» edwvda mnvod m med Odd» er eed .. EV... doe doom N F.F dN e9 5 2.de .dmNed» .eeNvda mnvod m med ddd» er end P 36 doe doom N w... d.. d... e ddéN» Umom omum mo w... m0: w... a... m0“. ”:2. DD >O< ..0 me On. “Sn. ...0 mo: .55 55985 .85 2.2 .o. 55:85 5.85 .o .89... 2 285 559555.355 .5... £2.35 5.8: com com oov com com go. o _ I I .I L41 limlr‘ Q . 1% .n_nw.nlrfl.fl -6 O 4 , 8.; m 4 .85» M. 9m: 4 . cod» Mm. .3... - 8... mm , 8...» m 4. oo o» N - 8.5 83 .3. .2, 8» 9.5 l ‘+'|I$|IIIJG||III ».'16t\" ‘Jl-ulil. 5» 555550 .550 :9... .5. 3.55:0 x55 .5 .5555. or 5.35.“. 75 :33 .58 :55? 552:8 mfimucmaxm ”owom 55B .3. 5a 5.9 .5836 ”mo 5585055558 559:8 535235 5.95; 2 555: 58: ”wk 505$ .55. 595 my: gas .233 5 55:55: ”m0“. 55:8 .8556 >553 do m55> .55. 559:8 50 559505th .5253 xoma ”on. 59» .58 :55? 559:8 535539 “owom 5595035 .5953 559:8 n>>o 559505 553:8 5359595 5 58 5:: ”mo: 5558855558 $555.50 5.99.55. 5.95: 2 555: 56: ”a... 55:5 .55. 595:6 ”as. >52»th .595»: 55g mmm5>m 50¢. 55. «cmecflcmam. 558:8 ”mmo 553 5829 V53 H..._>n_ 9.3 .58: 5.26 Po bmcfiuconuxw £0:_mucoo gnaw—=50. ho “moo ::3 .103 and» :ovd» mnvod om mod oodma 9 and _. 3... com com N r._. 0mm m... m .56an :6» NNovdfi @256 cm mod cede» fir and _. 3.? com com N re O»? we a 69.2?» 36» hmovda 055.0 om mod codma mv mmd _. EV; 00 com N _..F 69* m... m 2.60?» we...“ mmcvdw @556 on mmd ocdoa 9‘ and w 3... com com N F.F ON” m... m codovm 6» 023.0» mwvod om mod ocdm» mw and _. 3... com com N F.F OVN we m ocdcva Roda 2.36m mwvod om mod 6:60» we and _. Sir com com N fr cow mé m 2:31» $9.; $915 @356 cm mod code» w? and r 21‘ com com N .2? on m... m 2.69% mg; named» mhvod om mod ocdm» m: amd _. 51‘ com com N we ov mé m ccdcva 3d» 359:» nnvod om mod 69.5» m: mod F Sue com com N F.F ON mé m 2.693 find» achdm @556 cm mod ccdm» mv mad r EXP com com N w... 3. me M 2:53 Owou Umog m0 >>0 m3. mu m... m... m0“. a; DO >D< .6 mac 0; n.>n_ ._.O 102 “mm 555:8 .80 c i .8 5:25 53 .o 3%.. cm 533 76 Delivery Distance (DD) The delivery distance was varied from 500 to 3,200 miles. The response to the increase in the delivery distance was to increase the both container systems' costs. This increase is due to the increase in the transportation cost by the increased delivery distance. The results are shown in Figure 16 and Table 21 for the low cost container set, in Figure 17 and Table 22 for the mid cost container set, and in Figure 18 and Table 23 for the high cost set. For the low cost container set, no savings was available for the returnable container system at any distance. The returnable container system cost for the low cost container increased from $0.35 for short distance to $2.12 per part for long distance, and from $0.32 to $1.59 per part for expendable container system. However, savings can be expected if the cost prediction was projected to the lower than 500 mile. It is more likely that the returnable container system can be justified with the higher cost containers. The mid cost returnable containers were cost effective up to 1400 miles. High cost containers were cost justified all the way to 3200 miles. The returnable container system cost increased at a faster rate than the expendable container system cost. In other words, the transportation cost for the returnable container system increases faster than expendable with the increase in the delivery distance. According to the tapering principle, the graph should show the both container systems’ cost increases at a decreasing rate. In this analysis, a fixed mileage rate (proportional rate) was used in the calculation, so the graph shows a linear relationship between the delivery distance and the 77 container systems’ cost. In any cases, the results agree to that the transportation cost for returnable container systems increases at a faster rate than for the expendable container systems. Therefore, the shorter the delivery distance, the greater is the chance for a returnable container system to be justified. 78 5::. no 8:3»5 53.8 5 .ii-;.| .5 111-..! if»! u a Lt — a 4m <5>__5n_ ho 5595 or 559”. uedls :sog wetslis .Ieugezuoo 79 .530 .555 85.5.6 555855 5.55.8595 ”000m. 55..» .55 5a 5.5. .5585... ”5.0 55585555858 .555855 5.55.8595 5:85.. 5. 55555: 58.. ”m... 555.0 .55. .555. ”m... 9.55 5.5535 .5 585355... ”00... 55:8 55.5.5.5 852.55 “00 5.55.. .5... .555855 no 5558855.. 5.8535 5.555 ”on. 5.55 .58.. 5.55 #0 .530 .855 85.95 555855 5.55835. ”0005.. 55585555. .8052, 555855 .30 .0c_muCOo\$ chfiucoo 0350:0me ho “—000 :c... ”MOD .mc_m~:00\m0«3c_e .m..m:_mucoo EON-Psam. 06cm... 0. “um—00m: we: ”NP—u 558.0 5.5. 505558 is. 525.55 .5055: 555 5055>5 ”>04. 55. 858855.55. 555855 ”110 .955. 58:.o> x555 ”u.>n. 55588.0 .555855 5.55835. .5 .555 .8: ”mo: .00...“ ...N0 550.00 00.0 0.00 0? 00.0 w ...«.w .00N0 0000 N .2? 0w 0; 0 00.0» 0v...» 0...» 05.0.00 00.0 00.0» 0? 0.0 .. Eve 000N 0000 N ..... 0F .06 0 00.0» .0...» 5.0 05.000 00.0 00.0» 0F 00.0 .. EV... 000N 0000 N ..... 0? .v 0 00.00 09...“ 0...“ 050.00 00.0 00.00 0? 00.0 .. EXP 000N 0000 N ...F or 0... 0 00.00 N0...“ 0.; 050.00 00.0 00.0» 0.. 00.0 _. Sue 000N 0000 N ...F 0? 0e 0 00.0» 00.00 w...» 0550.00 00.0 00.00 0.. 00.0 .. ...V... 005.. 0000 N we 0.. 0... 0 00.0» E00 0.00 020.00 00.0 00.00 0.. 00.0 .. .5... 003. 0000 N F.F 0.. 0... 0 00.0» 00.0» N0» 020.00 00.0 00.0» 0.. 00.0 w 3‘? 00.... 0000 N we 0? 0... 0 00.00 0800 0.00 020.00 00.0 00.0» 0? 00.0 .. $9 000 0000 N F... 0? 04 0 00.00 N000 0.0» 05.0.00 00.0 00.0» 0? 00.0 .. EXP 00m 0000 N ..... 0.. 0... 0 00.0» Umow 000m. mo >>0 M... mu: m... m... 00“. 1.2. an >04 40 me On. n.>n. H0 ”.02. .50 555850 .550 26.. .5. 5585.50 852.50 .5 .5558. .N 5.55.. 80 med £55.”. 55:8 55 8:855 52.55 85... 88 88 88 82 82 85 c _ ,. 9|- . r -. -«rl: a}!!! . ii]... ..|. 152.5 1115!. --i .. I” D o D ‘ ; cm 0” D ‘ 4 o 8. a m a . m . on. a < 0 d a - 8.55 D 5 8.3 a» .3. .2, 3 5x5 50 555850 .550 5.2 .5. 55:55.0 >.5>..50 .5 .5558. t 5.50.“. uedls 1903 masks Jaumuoa 81 F595 .58 E555 559:8 5355:5555 Howom 55$ .55 5a 555: .5585: ”mo 5552855558 .555E8 5355595 56:5: 2 55555: 58: ”m: 59:» .555: 555. My: 95: .2335 5 5:53:55. ”m0”. 55:8 58556 E5255 do m55> .55. 558:8 1.0 5555:8355 55:53: 5.55: ”on. 355 .55: 5.55 “.Fo .555 .58 855% 552:8 535525: Howom 5558855 .5953 559:8 H>>o 555285 55585 5355595 5 58 5:: ”mo: 555E855S5E .5555E8 535535: 55:5: 2 55555: 55: ”m... 55:3 .55: 5555.7: is. 52955 .5555: >555 5m55>5 H>o< 555: #:5655535: 55558 #30 555* 5829 x55: u.._>n_ 555E555 559:8 535529 5 58 5:: ”mo: m9; VFNa muted mod cad» mF wmd F FvF SON” Doom N F.F oF 0F m ooéNa FNF» #3.; mhvod m mod ooé» wF and F FvF oomN Doom N F.F oF 5F m océN» hméa $5.3 mnvod m mod bod» wF and F FvF ocmN Doom N F.F OF m.F m océu» VF» mmé» @556 m mod Gad» mF and F FvF can ooom N F.F OF m.F a ccéN» NF» 9:.» mnvod m mod bed» mF wad F FvF OQON Doom N F.F oF 6F m ooéNa ?F.Fa at; @256 m med God» mF mmd F FvF cat. coon N F.F OF m.F n coéNw 69F» mmda mnvod m mod 09”» mF and F Fv.F oovF coon N F.F oF NF m 09an mod» Show mmvod 0 mod cod» wF and F FvF chF coon N F.F 6F 0F 0 2..va N56“ omdw @5506 m mod Goa» mF and F FvF bow coon N F.F oF 0F m éoéN» and» and» mnvod 0 mod coda mF and F FYF com coon N F.F 6F mF m océN» omom omom mo >>Q ME mu: m.— m._. m0“. KS: 00 >O< .50 $10 On. n.>n_ #0 mo: 5m 555500 500 5.2 :8 8:555 552.50 5 53:5 NN 5B5... 82 wa 5 “mm 0 «5::. on 8:85.: 52.8 88 88 88 88 83 82 com o n. , .5- . :L 311..-.-- - .- ma 0 8.; a a a o a - 8.8 .. 8.8 - 8.3 8.8 5 8.3 ....... -85» 8.8 5 8.8 I - .lllllillw- Ir- 0 D D uedls 1303 man‘s Jeumuoa .5m 555.80 .80 :9... :8 55:55.0 .5550 .o 855E. 5F 559... 83 .590 .58 E555 559:8 5350595 ”0000 3:0 .8. 5: 5.9 .5836 “10 5595555558 559:8 5350595 56:9. 9 05.55: 55.. ”m: 595 .99 595. my... 9.95 .233 v6 5:53.50 ”00“. 55:8 50:95: >525“. “00 555.. .53 559:8 10 5595295: 50:52: v.09. ”on. 9.95 .55.. 5.96 0.0 .590 .58 E955 559:8 535535. ”000”. 559555... .3053 559:8 n>>0 559:8.» 559:8 5395595 .o 58 5:: ”mo: 559:85555E 955980 5.25525: 56:9. 2 05.55: 55. ”mp 5:8.» .99 50555:. is. >505th .5055: 2.5: 50955 ”>0< 99 5565.535: 559:8 5.00 559 553.9 5.55: ”u.>n. 559:8.» 559:8 535535: .o 58 5:: ”mo: Emma 0v.N0 $0.0 00 00.0 00.000 0.. 00.0 .. 3.? 0N0 0000 N F... 0.. 0... a 00.00%» NOKa 0N.N0 05.0.0 00 00.0 00.000 0.. 00.0 F Fvé 000N 0000 N ...P or 0.? 0 00.0.3» 0‘50 ~0.N0 050.0 00 00.0 00.000 0.. 00.0 F 3... 000N 0000 N ..... 0.. 0.? 0 00.03.” «K» 50.; 050.0 00 00.0 00.000 0.. 00.0 v EXP 000N 0000 N r... 0.. ... 0 0.0.3» 0NKa 50...» 050.0 00 00.0 00.000 2 00.0 .. 3.? 000N 0000 N ..... 0.. m... 0 00.0.30 00.50 51—.» 050.0 00 00.0 00.000 0? 00.0 .. Sue 00x... 0000 N F... or 0... 0 00.00vw N00» 0”; 03.0.0 00 00.0 00.000 0.. 00.0 .. 3... 003. 0000 N w... 09 we 0 00.001» 55.0» 00.; 050.0 00 00.0 00.000 0.. 00.0 F 3.? 00:. 0000 N F... 0.. 06 m 00.00%» 00.00 00.00 020.0 00 00.0 00.00» 0.. 00.0 .. 3.... 000 0000 N P4 or mé 00.00%» .0100 0.00 05.3.0 00 00.0 00.000 0.. 00.0 _. 3... 000 000 N F.F 0w 0... m 00.00.} 000m_ 000m. 10 >>0 m... m0: m... 1... won. 0.2. 00 >04. 00 ~30 On. n.>n. ._.0 103 .50 559:00 500 :9... 5. 8:950 052.50 .0 559:. mN 5.05:. 84 Container Unit Cost (CUC) The returnable container unit costs were increased from $6.25 to $62.50, and from $0.69 to $6.90 for the expendable containers. This increment is based on the assumption that the container cost increases at the one-to-nice ratio between the expendable and returnable containers cost. Although both the returnable and expendable container unit costs increase at the same rate, the impact of container unit cost on the expendable container system cost was much more dramatic than that on returnable container system cost. While the returnable container system cost varied from $0.42 to $0.53 per part, the expendable container system cost varied from $0.38 to $1.01. The results are presented in Figure 19 and Table 24. The impact of the container unit cost over the container system cost was shown in the other variables. In general, the effect of container costs is a lot greater than the other variables, so the returnable container system can be more easily justified with the higher container cost. The expendable container cost diminishes over the pack quantity only. On the other hand, the cost of returnable container diminishes over the pack quantity and number of usage over its lifetime, 500 trips for two years in this analysis. When the expendable container cost is low, less than a dollar, the container cost can be absorbed by the pack quantity and result in lower system cost than returnable container system cost. However, the relatively expensive 85 expendable container results in higher container system cost than the returnable container system cost considering return transportation cost. 86 0000 o 0001 4 559:8.» .85 5:: 355:8 0 0 0 0 0 0 0 0.050 0.000 0.000 0.000 0.000 0.0N0 0.090 -0 ll 5 . lLl: lillLllllll» l : i3 0N.00 : . ‘ ‘ DD 0.? O” 00.00 00.00 000.0 0Né0 uedls 330:) weaslis Jeugetuoa 500 5:0 559:o0 .o 559:. 0? 550.“. 87 050.0 ..88 E958 559:00 5350:5005 “000.... 55.0 .80. 5a 5.5: 55008.0 ”00 555.80.55.35... 559:8 5350:5008 50:5: 0. 05055: 5.5. ”m... 50:.0 5.9 505. ”m... 950 .2838 .o 55:05.. ”00“. 85...: 50:98.0 552.50 ”00 855.. .5... 559:8 1.0 555500.809. 5.55:0 0.058.. ”on. 0.50 5.5. 55.6 #0 050.0 ..88 85.8.6 559:00 5.05525: ”0008. 5598050. .5053 559:8 H>>0 559:8.0 559:8 5.050598 .0 .500 5:: “mo: 555.50.85.25... 8:559:00 5.05535: 50:5: 0. 05055: 55.. um» 5.8.0 5.5. 5055...: ”ms. 80.8050 .5058: 2.50 5055>5 ”>04. 55: 55.5.5555: 55980 ”08.0 5.05. 505.9 0.550 ”0).. 559:8.0 559:8 5.05535: .0 .800 5:: ”mo... .88 ...8 8.8.8 8 8.8 8.8.8. 8.8 . .8. 8 88 8 ... 8. 8.. 8 8.880 8.8 ...8 8.8.8 8 8.8 .8808. 88.8 . 3.. 8 88 8 ... o. 8.. 8 88.880 ..88 8.8 8.8.8 8 88.8 88.808. 88.8 . .8. 8 88 8 ... o. 8.. 8 8.80 8.8 8.8 8.8.8 8 88.8 88.808. 88.8 . .... 8 88 8 ... o. 8.. 8 88.80 88.8 8.8 8.8.8 8 88.8 3.808. 88.8 . .... 8 88 8 ... 8. 8.. 8 8.880 8.8 ...8 8.8.8 8 88.8 88.808. 88.8 . .8. 8 88 8 ... o. 8.. 8 88.80 8.8 ...8 8.8.8 8 88.8 88.808. 88.8 . ...... 8 88 8 ... 8. 8.. 8 8.880 88.8 ...8 8.8.8 8 8.8 3.808. 88.8 . .... 8 88 8 ... o. 8.. 8 8.8.0 8.8.8 ...8 8.8.8 8.8 88.08. 88.8 . .... 8 88 8 ... 8. 8.. 8 8.8.0 88.8 8.8 8.8.8 8 8.8 8.08. 88.8 . .... 8 88 8 ... o. 8.. 8 88.80 0805 080: me .50 5. m0: 5 E 508 ms. 8 >9. ..0 8:0 8 “Sn. .0 :0; .80 .85 58.8.80 .o .88.. 8 533 88 RETURN RATIO (R,) Using collapsible/nestable returnable containers are often a trade-off between additional container costs vs. savings in transportation costs. Using collapsible/nestable returnable containers can reduce transportation cost. Since the collapsible/nestable returnable containers can be less volume when they are empty, the number of transports for the empties can be reduced by sending more empties per transport (increasing cubic efficiency for returning empties). For example, the returnable containers with a return ratio of one-to-three can reduce the return transportation cost by two third. On the other hand, the associated time spent accumulating collapsible/nestable returnable containers to their return ratio requires higher initial container quantities than when fully erected returnable containers are used. Assuming the mileage rate is $1.41 and delivery distance is 1000 miles, the cost per one way trip a becomes $1 ,410/trip and the cost per two-way trip b becomes $1 ,974Itrip. Let container unit cost 0 be $8.00 and container lifetime I be 2 years. The daily container consumptions are 300 containers and total of 500 trips takes place over 2 years period. According to the equation, the optimal return ratio is 0.065233. Table 25 shows the total cost (C6 + To) is minimized between 0.07 and 0.06, which is about 1 to 15 return ratio. 89 Table 25 Trade-offs between container cost vs. transportation cost R r Ct CC CC+ TC 0.09 $730,380.00 $12,133.33 $742,513.33 0.08 $727,560.00 $13,800.00 $741,360.00 0.07 $724,740.00 $15,942.86 $740,682.86 0.06 $721,920.00 $18,800.00 $740,720.00 0.05 $719,100.00 $22,800.00 $741,900.00 0.04 $716,280.00 $28,800.00 $745,080.00 0.03 $713,460.00 $38,800.00 $752,260.00 0.02 $710,640.00 $58,800.00 $769,440.00 0.01 $707,820.00 $118,800.00 $826,620.00 In reality, however, the optimal return ratio of 0.065233 (about 1:15) is not available. The smallest return ratio available on the market today is container with one-to—ten return ratios, which is about 0.10. The reason for such huge gap is that the additional container cost is one-time cost that is amortized over container life. On the other hand, the transportation cost keeps occurring during the container lifetime. Depends on the container unit cost, additional container quantities, and delivery distance, the optimal return ratio can be found. This optimal return ratio measures and balance the savings in transportation cost and additional container cost. In general, however, the transportation cost is a lot higher than the cost for additional containers. Unless there is a situation where container unit cost is high enough, and additional container quantity is high because the average volume is so big, and delivery distance is short that the investment on the additional containers can be bigger than the savings in the transportation cost, utilizing the nestable/collapsible containers decrease the total cost. 90 MULTl-VARIABLE ANALYSIS Data Evaluation The regressions run on the dependent variable, returnable container systems’ cost minus expendable container systems’ cost, contained the six independent variables. The results are reported in Tables 26-a, b, and c. These Tables report the t statistics and regression results, along with some additional diagnostic statistics. The various combinations of the six independent variables could account for 41 percent of the variation (see Table 26-a for R2 value). Of the six independent variables, the container unit cost (CUC) was the most significant. The effects of the variables are in order of the most effect to the least effect: 1. Container Unit Cost (CUC): -8.3 2. Average Daily Volume (ADV): -0.41 3. Delivery Distance (DD): 0.31 4. Cycle Time (CT): 0.29 5. Pack Quantity (PQ): 0.22 6. Peak Volume Factor (PVF): 0.16 The estimated regression relationship for the savings is: Savings (Ret - Exp) = 1.1796 + 0.279997 (cycle time) + 0.164684 (peak volume factor) + 0.222529 (pack quantity) - 0.409972 (average daily volume) + 0.30753 (delivery distance) - 8.316537 (container unit cost; expendable/returnable). Since the dependent variable is the returnable container system cost minus the expendable container system, the returnable container systems’ cost is cheaper than the expendables” when the dependent variable is negative. 91 The interpretation of this equation is that the container unit cost and average daily volume has a negative effect upon savings (i.e. higher cost containers and higher average daily volume are negatively correlated with savings for expendables), while others have positive correlation with savings for expendable. The variables with a positive effect are cycle time (CT), peak volume factor (PVF), pack quantity (PO), and delivery distance (DD). An increase in any of these variables is expected to decrease savings for returnable systems container. As mentioned in the methodology previously, the amount of increase expected wouldn't differ for each variable since the independent variables were deviated and standardized. The coefficients of the six variables then can be used to measure the impact. The regression equation characteristics of savings indicate an R2 of 0.41. This indicates that 41 percent of the variation in container systems’ cost is explained by this equation. The order of the variables’ entry into the regression equation is presented, as they are in Table 26-c. When the coefficient is used to indicate impact, the variable with the greatest effect is container unit cost (- 8.316537), followed by average daily volume (0409972), delivery distance (0.30753), cycle time (0.279997), peak volume factor (0.164684), and pack quantity (0.222529). The results agree to the single variable analysis. The container unit cost has the most impact. The impact of the average daily volume and delivery distance has relatively higher impact than the cycle time, peak volume factor, and pack quantity. The peak volume factor has the least impact. 92 00000.0- 00..0.- 0.0000 00800.0- 00000.0 00.0.0. 030 0000000 000000 .0030 0080.00 00.000 00800.0 00 000000- .800- 00000.0 0.000.- 00.000 800000- >9. 8000000 00.0..0 0.0000 00000..8 00.000 0000000 08. 0.00.0 0.00.0 80000.. 0080000 00.000 00000.0 n.>n_ 000.000 00.00 0.0000 00.0000 00.000 000800 .5 .0000... 80000.0 0000.. 0000.0. 0003.0 008... E50052. 8\800 058...: 0800 5.50.. 50.5.71 .50. .0Em. 85025.0 0.05.0580 88888.8 88888.0 8888.. 5.; 8888: 8.888888 8-8N 838. E88888 N. .86. $88.08 88.38 NN. 58.888 88.58... 88.08 808.88 880.8 8 8.88980 u. 88.8.88 n. 0:. mm .8 A<>OZ< 50:5...5> .0 0.02598. 0-0m 5.05.- 8. 888828880 .8888 5:5 8.8828 8.8808 8.888 8 88.88.88. 88. .08 9888 m .8588 m 888.8 00.00050 00.005558. 00.8.5.0 :0.885:05m. 5.00 5.05.: 93 While the results presented thus far have focused on the level of savings variation explained by the regression equations, it is also helpful to indicate the amount of dependent variable variation not explained. ln this study, the independent variables were not able to account for 59 percent of the variation. As noted previously, there are several other important cost drivers that were excluded. The author believes that some of the most important variables excluded in this analysis were the container return rate (CRR) and container lifetime (CL). This analysis dealt only with the one to one relationship between a shipper and a consignee. There are many other reverse distribution system that may not agree to the results. For example, many companies utilizing milk run and cross dock facilities in order to reduce the transportation cost. Then, the savings with the milk run and cross-dock would be much greater for using returnable container system. Another important limitation is that the use of linear regression equations suggests that the addition of one more unit of the independent variables will continue to produce a positive or a negative effect on a continual basis. Nonlinear specifications might provide useful insight on an optimal level of average daily volume, pack quantity, etc. 94 Manufacturing and Logistics System Profile The results of the cost simulation are summarized in Table 27. Based on the individual variable analysis, the variables are placed in order that is in favor of expendable container system as the numbers move to the right. The actual simulation results are included in Appendix C, D, and E (C for low, D for mid, and E for high container cost). The categories of container represent three different level of container cost (low, mid, high). The actual costs used for each level are converted and shown as ratios. Within the colored areas, it is less expensive to use a returnable container system than an expendable container system. It does not mean that all the combinations within the shaded area are less expensive to use returnable containers. Each variable has 81 combinations, and the number of combinations that was savings for returnable container systems is converted to percentage and shown in the parenthesis underneath the variables. For example, if 2 out of 81 combinations were the savings for the returnable container systems, it would be shown as 2.5%. It should be noted that this profile is subject to change if the parameters change. These results agree with the individual variable analyses. The individual analyses cannot be a direct comparison to the profile. However, the profile can be explained by the results from the individual variable. For the cycle time from 7 to 34 days, the returnable container system cost was always higher than the expendable container system cost when it was tested for the low cost container set (see Figure 4). The reason is that the system cost was calculated for the average daily volume of 3,000 (see Table 9). Recall that the returnable container 95 system cost can be more easily justified with higher daily volume and higher cost containers. The profile shows that with the combination of the higher average daily volume, 10,000 parts per day, the savings for the returnable container system becomes possible. Peak volume factor had relatively low impact on the overall container system cost, and the returnable container system was more expensive to use for the all peak volume factors tested (see Figure 10). However, the profile shows that the returnable container system can be less expensive to use for up to 50 percent daily fluctuations. As the peak volume factor was increased from 10 to 50 percent, the returnable container system cost increased from $04106 to $04121 per part (see Table 15). This increase is too low, even after the increase by cycle time is added, that the container system costs are driven by the average daily volume. The pack quantity had a relatively low impact in as much as the less the pack quantity, the less expensive it can be to use the returnable container systems. However, the returnable container system cost was higher for the low cost container set (see Figure 13). The difference between the two container system costs was $00456 higher for the returnable container system when the pack quantity was 10 parts per container (see Table 18). This difference is still so small that the average daily volume can drive the savings for the returnable container system, but the savings is no longer available as the pack quantity becomes 50 parts per container. 96 The shorter the delivery distance, the greater is the chance for a returnable container system to be justified. The delivery distance of 500 miles is about the point where the returnable container system cost is about to be lower than the expendable container system cost (see Figure 16). Again, with the high average daily volume, the returnable container system can be justified in the profile, but the average daily volume is not big enough to justify the returnable container system when the delivery distance becomes 1,500 miles. The impact of container unit cost was that the higher cost containers is greater than the other variables. The returnable container system can be more easily justified when the container cost is higher. In other word, the returnable container system cost is driven most by the container unit cost. The same observation can be made through the profile. When the container unit costs are low (first column), the economic justification of returnable container system is more constrained by the tight variables. As the container unit cost move onto mid and high cost container columns, the variable ranges become more open. The impact of unit cost is so great that the returnable container system still can be justified with the wide ranges of variables. 97 . _, . 2 .. 88.8. 88.8. _ 82.5 , . . . 888.8 88.. 8858.0 082.80 .888. .. 0.08.8. 8.88. . 8:88 .. ... a...” . . : -.. ... OOF. - . - aim. OCF om . ..HWW bar—“=5 v—ONQ . 2 .. , , 8.8.8. . . .... .. ...... . . . .. .. . 88. ...-...... . 3.88.. 2.5.2. 0.88.". .,,. a. .8... .... . 8.8.. .. 8.8.8. . . 88.8. 88.8. we 8:88 . 888.. . . 888.. 888.8 2 82281888 88282 , .... .. . . .88. 8.8.8. 8.88 .. . . N0 00 5E: 5.080 :8... - ._ . . - .88” .0 .88 .9 em. .8” .0 .88 8., em. .N: .0 .8”. .8> em. 88.88., 00.... 0..... 30.. .800 E5009... 5Eow .000 8...: >0 b00350 0555.000 3.5.880 :5:.5E00 5.05E35. 00.. 5.00.0 0008.00. 0:5 5003000.". 80 5.05 ... 98 CHAPTER 5 DISCUSSION This section discusses the results and gives recommendations for future research. Some of my internship experience at GM Powertrain during Fall 1999 was applied to this discussion. SIGNIFICANT COST DRIVERS AND THEIR EFFECTS The both of individual variable and multiple variable simulations agreed to that the cost of container was the most dominant cost driver among the six variables. The cost of the container is the most significant determinant if the returnable container system can be cost justified or not. If the container cost is low, it is less likely that the returnable container system can be cost justified and vice versa. The expendable container unit cost is an expense that diminishes over the pack quantity while the returnable container investment is amortized over the number of parts held during the container lifetime. This explains why the automobile industry has been the leading manufacturers in using returnable container system. Automobile parts, such as engines and transmissions, require sturdy containers which are very expensive. For example, an engine racks costs six hundred dollars. The equivalent expendable container costs about two hundred dollars. In this case, the savings can be as much as seventeen dollars per engine. 99 The impact of average daily volume over the container system cost is relatively high. As the average daily volume increases, the returnable container system cost decreases at a faster rate than the expendable container system cost. Economies of scale can explain this. The high initial investment for the returnable container system decreases much faster as the average daily volume increases, and the decreasing rate decreases as the average daily volume becomes large because the investment diminishes over the large daily volume. Since this decreasing rate is faster for the returnable container system then expendable container, the returnable container system can be justified with the larger daily volume. The delivery distance is also a cost driver. Distance has a great impact on the cost of a returnable container system. The transportation cost is always higher for the returnable than the expendable container systems due to return transportation cost, and this transportation cost gap becomes bigger with the increasing distance. With the shorter distance, the difference of transportation cost between the two container systems is smaller. Unless the savings from the container unit cost can surpass the additional transportation cost for back hauling, a returnable container system cannot be justified. This research confirms that the pack quantity matters. In smaller sized packages with a lower pack quantity, returnable packages can be more cost effective than expendable, and it is true only when the both container unit cost are high enough to be sensitive to the changes in the pack quantities (see Figure 13, 14 and 15). As expressed in the equation for the Expendable Container Cost 100 (ECG) and the Returnable Container Cost (RCC), the pack quantity affects the unit cost of expendable container more directly than the unit cost of returnable container. The unit cost of an expendable container is amortized only by the pack quantity. But, since the unit cost of returnable container becomes low after the returnable container cost is amortized over its lifetime, the impact of pack quantity is not significant anymore. The continued popularity of just-in-time delivery strategies, under which items are delivered to the production line in small lot-size quantities, is one factor that has helped to stimulate a growing interest in returnable containers. The cycle time and peak volume factor does impact the overall container system cost, but the impact is relatively low. The cycle time and peak volume factor measure the additional containers that need to be purchased for the increased cycle time and demand fluctuations. This additional container investment is not significant after the cost is amortized over the container life. OPTIMAL RETURN RATIO Many companies are trying to utilize the benefits of collapsible/nestable returnable containers to decrease storage space and return transportation cost. On the other hand, the additional containers have to be purchased for a longer container cycle time due to the longer waiting to accumulate a cubic volume, such as a truckload of empties, which minimizes return transport cost. The optimal return ratio that balances the trade-off between the decrease in transportation cost and the increase in initial investment was found. The optimal return ratio found in this study was about one-to-fifteen (1:15), which is smaller 101 than what is available on the market (1:10). The reason is that the transportation cost is a lot higher than the investment for the additional containers. The collapsible/nestable returnable containers with the lower return ratio can give more savings than using fully erected containers. Using the fully erected containers minimizes the initial investments in the container fleet, but the savings in return transport cost by using collapsible/nestable containers can be a lot greater unless the container cost is so high that purchasing additional container can be more expensive than the savings in the return transport cost. However, the management of a returnable container system is already complex. Using collapsible/nestable returnable containers increases the complexity of management. For example, if filled containers with a one-to-three return ratio come into a facility palletized three high, the emptied containers can be palletized nine high for return. This means that two returnable pallets are left without any containers, which have a high possibility of being misplaced or not being returned to suppliers with the corresponding containers that came in with. PRODUCTION AND LOGISTICS STRUCTURE The manufacturing and logistics profile (Table 27) shows the appropriate production and logistics structure in which the returnable container system can be cost justified. With the given sets of parameters, it was found that the ranges turned out to be relatively narrow for the low cost containers. As the container cost increased, the range becomes wider. When comparing the expendable container at $0.5 to the returnable container at $6 (low cost containers at ratio of 1:12), the appropriate production 102 and logistics structures are when the cycle time is 14 days or less, the average daily volume is 10,000 parts or more. the peak volume factor is 50 percent or less, the pack quantity is 10 parts or less, and the delivery distance is 500 miles or less. These combinations represent only 2 out of 243 (0.82%) combinations. Recall the amortized returnable container cost becomes lower than the expendables (see Table 1). However, the unit cost of containers is so low that the savings on the packaging material cost from using the returnable containers cannot justify the return transportation cost for empties. It is difficult to justify the returnable container system for low cost containers. When comparing the expendable container at $3 to the returnable container at $24 (mid cost containers at ratio of 1:8), more combinations are cost justified for returnable container systems. 27 out of 243 combinations (11.1%) turned out to be cost justified for returnable container systems. The apprOpriate production and logistics systems is when the cycle time is less than 28 days, the average daily volume is more than 5,000 parts, the peak volume factor is less than 100 percent, the pack quantity is 50 parts, and the delivery distance is less than 3,000 miles. With the increased container cost, the savings on the packaging material cost becomes big enough to pay off the return transportation cost, and allow longer delivery distance, more pack quantities, higher fluctuations in daily demand, smaller average daily volume and longer container cycle times than it was for low cost containers. Although the mid cost container can be more easily cost justified, the savings on the packaging material cost by using 103 returnable containers is not still big enough to be cost justified for the all the combinations. This impact becomes bigger when comparing higher cost containers, a $60 expendable container to a $400 returnable container. In this case, 161 out of 243 combinations (66.3%) were favor to the returnable container systems. As the unit cost of container become higher, the savings on packaging material become bigger. The bigger savings can pay off the cost associated with the longer cycle time, longer delivery distance, higher demand fluctuations, and less daily volume, and more pack quantities. The profile visualizes the manufacturing and logistics system, so that a company can improve the system setting under which the returnable container system can be justified. For most logistics structures with low container costs, it is shown that the returnable container systems cannot easily be cost justified. This explains why the automobile industry is still utilizing expendable containers for small parts, such as fasteners. Usually, a 9 x 9 x 5 container can hold between 1000 and 8000 fasteners depending on the size of fasteners. The cost of this expendable container is low, and when the low container cost diminishes over the high pack quantity that the amortized, savings from returnable container is not significant to cover the return transport cost. In order to improve this situation, Automobile Industry Action Group (AlAG) has been working on using a standardized returnable container for the fasteners between Ford, GM, and Daimler Chrysler. The expected benefits and savings from the project can be shown in the results of this research. Although 104 Ford, GM, and Daimler Chrysler are separate automobile manufacturers, if they share a standardized container they can be considered as one huge company. In other words, the daily volume subject to the container would be a lot higher than when they utilized three different kinds. From the analysis, it is known that as the daily volume increases, there is better chance for the returnable container system cost to be justified. At the same time, container unit cost will decrease due to the high container volume to be purchased (quantity break). Service charge from suppliers should also decrease since they do not have to sort three different containers. MANAGEMENT IMPLICATIONS The results of this study have provided insight into some prediction factors that have an important impact in explaining the variation in savings for returnable container systems. The findings from this study should assist in developing a set of activities in manufacturing and logistics systems that can potentially help their savings in distribution system. What is most significant in this regard is that those factors found to drive the savings in using returnable container systems were container unit cost, average daily volume, and delivery distance. The characteristic of average daily volume is that the larger the average daily volume, the bigger the savings can be. It is not possible to increase the daily volume over night to justify the container system. However, there are many ways that can improve the situations. The consolidation and standardization of containers increases the average daily volume subject to that container without increasing the actual volume. The delivery distance can be tweaked by utilizing 105 the milk run and cross-dock. The milk run and cross-dock reduces the transportation cost without decreasing the physical distance. Cycle time, peak volume factor, and pack quantity didn’t affect the savings of returnable container system as much as the other three. However, the degree of effects increased with the higher container cost. Developing a set of strategies support the short cycle time, low in daily volume fluctuation, and small lot pack quantity can maximize the savings in use of returnable container system. These characteristics of returnable container system overlap just-in-time and postponement manufacturing environment. These applications have been driven more by marketing strategies that the packaging system is not incorporated. Implementation of returnable container system can increase the benefits of those applications and overall material flow system. This study also quantified the importance of other cost involved in the returnable container systems besides the packaging material cost. Two main cost involved in the returnable container system are packaging material cost and transportation cost. If the savings in the packaging material is larger than the additional transportation cost for back hauling empties, the returnable container system is more likely cost justified as long as the packaging material cost is based on the descent values of cycle time, average daily volume, peak volume factor, and pack quantity. Same variables were tested for three different cost container sets. For the low cost containers, the findings suggest that the implementing the returnable container system is hardly cost justified. Even if the returnable container system 106 can be cost justified, the savings wouldn’t be big enough to sacrifice the complexity involved in the two-way flow systems. The returnable container systems are more recommended for the mid and high cost containers. The results suggest that the production and logistics systems have to be planned accordingly in order to justify economics of returnable container system. Recall Table 1 (Lifetime Cost Comparison of One-Way and Reusable 2-cubic Foot Shipping Containers, by Material) shows the reason how returnable container pays itself as the cost of returnable container amortized over its life. Using the numbers in the table, it was $11.03 returnable container vs. $0.53 expendables. Simply thinking, if the returnable container can be used 21 times (Initial cost of returnable _ $11.05 , , — z 20], the investment evens out and savings Initial cost of returnable $0.53 starts. However, the accuracy of this estimation is not good because of the factors discussed previously. Even if the returnable container can be used infinite times, the maximum savings can be expected is about $0.53. This is the maximum savings can be achieved without consider the other variables that make up the actual returnable packaging material cost. After considering the other variables, the saving must be decreased. Assume that the saving become $0.25 after considering every other variable. Then, there is return transportation cost that has to be paid off before the savings can start. FUTURE RESEARCH RECOMMENDATIONS This report provides an understating of some important cost variables and the manufacturing and logistics system profile for returnable container systems. 107 It can be useful to decision-makers who are considering a returnable packaging system. But through my internship experience at GM and the literature, I have found that there are still plenty of cost and operational concerns after a returnable system is adopted. An important area of potential research is in the area of strategies for returnable packaging logistics management. I found the information system must to be established along with the returnable container implementation. The loss and misplacement of empties represent a significant amount of money. The container shortage due to the lost has to be replaced. The misplaced empties have to be expedited to the right place with premium transportation cost. In worst case, the production line has to be shut down or the product is not available for sale because the containers were not available. It is crucial to acknowledge the importance of container flow management. It is important to develop a system that better integrates the container systems. The complexity of a multi-location returnable container system is much greater than the way it has been represented in this model. There are so many activities incorporated in returnable container systems that a container can cause a company to lose a lot more money than savings from the returnable container itself. It may be easy to show that the implementation of returnable container systems could save millions of dollars in the cost analysis. Without the adequate management, the use of returnable container systems is nothing more than headache. 108 The economic benefits of returnable container system are not something that can just happen. It has to be earned. Many practitioner articles state that using the returnable container system can save a lot of money, but they do not emphasize enough how hard it is to implement and manage the returnable container system. It is true that using returnable container system can save money. However, savings are not what is shown in the predictive calculation; they are in the execution. 109 APPENDICES 0000.00.00. .0.-. 0. 000.000 .0. 00 0600.. 0003000200 50.; 080 38.0: .09 .020 03-50.. E. 0.0 2 80 580 20.0: 03203.00 088.0528 m .8 20.0; 05 =2 805 003 .0 ”.5 .0 2 0.. so... 5205 8_ 888.0 2 0: 03.80.00 E000x0 00.00000 0000 00 00.0 0 000.0000 00 000 000.0000 00.0.08 0.30 00902000.. 000 02000000. 00.0 .0. on x 0.00 x 3V 0.30 000000000 .00.. 0000.0 0002000 0.: 0>00.0 00.000000 :0. 0. 00.0 .0. on x 3‘ x mm 0. 000.0 0. 0: 000000000 00.00.05 00.00.00 000 0.0000 0.00000 0000 0003000 00.000000 >0 005000 00.. 00:00:000 >000 .000. 0000.0 0002000 .0 000 0.00.0000. 00.00. E00... .5 0. 000.0000 0000> 0000> 000020000 0_0 .0000 0000.00. 00.00.0000 000 000.000 000 0.0050 20.0003 00.0 0000.0 00.0 .0. on x 00 x 00 0.0 000E020 00... 00.0.00000 000. 003000 ..000000 0. ...v 000 .mm o. 00.0 .0. o. x mm x cm 0. 000.0 0. 0: 03.00900 5.00000 0000. 00 00... 0 000.0000 00 000 000.000 0002, 0.0 000000 00. 00.00 000 0000 050000 0.0008 00.0 .0. mm x 00 x mm 000350200 0.80 0:8 000. .8. 58.988 20.0350: .0 o. .0... .5 0.0 x 80 x mm ... 888... 2 880.. 03.8000 0.0000 000 .000 000.0000 00.030.0000 .00._00 000 000.0008 0. com; 0. E0000 0 0000 E 0000 00 3009 0 0. 00x00 000... o 00 .m .0 .v .N 00:00 .0. 000-000.0008 000.0000 00:000.. 000000000000 .050 .0. 0000 .mm .00 x .mm 00 0.00 x .00 .0. 80.10.00 00.0005. 00000 00:00:00.0. 000. 0020. 002000.05 0.000000 00.: 00.00000 00.000000 000.. 00000.60 60¢. ....(Im000 0 00.... 00.00.. 008 500.... ...v .... 00 59.3 E. .0 20.0: E. E o. .0 52. 50.2. 0. oood 0. 0: x00. 590 0.0.8000 x00. 112 000000.000 .0. 00.0.0 0.0 0 .00.0.000 00. .0. 0.0.. 000. 000300.300... 000 .000 ..0: 000030 000 ..00.0 0 .0 0.2.00 00. 00 .00.0.000 00. £0.03 .000. 00. 0. 0.00000 0.03m 00.00 .00.0.000 0000 000. 000.0>0 00. 0. 000. .00....02 0050.000 30.00 00 .0 £0.02. 0.0 00. 0. .00.0.s 00.0.“. ... :0 0.. .0 0N.0 00.00 00. 0.02. 0.00.0.000 00. :0 .E0.0>0 00.00.00 .00.0.000 0.00530. 0 0. 000: 0.00.0.000 0000.0 000 00.003000 .0 000.0. 0:0..0> 00 0.00 00.00050 0000 0.0.. 00 00 .0 0 F . 0.3. 0.5. .0. 05F 003 5. .8. 0o. 00. 0.. 00. .0. 0... .00 .80 +83 000 000 80 0 F 000.0 0.; 8.890 00.0. 8.0 om. : 8..: 00. 00. .0. .000 ...5 80.0 08.. 80.. 80.. 00 .... .02. 508.0 0.00.0 80 o. 0.: o. 9. 00 .02. 003 00.055. 0.0 0... 0.0 00 0.. 0.. .02. .2. 00...... 000.900.... 000.05. .000“. 000”. .9000 .0000 ©0205. Cozum—c— 8.3.03.5 Easom> US$90.50 Dm.mm:..00 :o_wwm.QEoO . . GENE—081 >m>>-®cO 8000 xonmb ...mOO QZ< woz<2m00mwa meEFZOO 025010.200 m x_ozmn_n.< 113 Ndmdd Rod deFd mused F mmd md F and F Fv.F ddm ddddFN F.F 02 0F NV mmNdd mnhdd NudFd mnvod F mmd md F and F FvF ddm ddddFN F.F 03 N mN o dded mnnod mmdFd mnvod F mod md F and F FYF ddm ddddFN F.F ddF F.F NV 0 wded Vmwdd NmFFd ded F med md F and F FYF don ddddFN F.F om F.F NV 0 mNNdd awhdd vmdFd mnvod F mod md F mmd F Fv.F com ddddFN F.F ddF m.F wN o noNdd T0000.0 FNFFd 003d F mod md F and F Fv.F ddm ddddFN F.F om m.F mN o moNdd mvde FFNFd vaod F mod md F and F F.V.F do... ddddFN F.F dF F.F NV o d©Ndd munod mmdFd mnvod F mod md F wmd F FYF com ddddFN F.F ddF F.F mN o omNdd mused mmdFd mwvod F mod md F mod F FYF ddm ddddFN F.F 63 N VF o RVNdd ohnod oNdFd muvod F nod md F and F F.V.F don ddddFN F.F 09 0F VF @ mmNdd mused 0FdFd mnvod F mod md F and F Fv.F do... ddddFN F.F ddF F.F F m medd $.de FmdFd 055.0 F mod @d F mmd F F.V.F ddm ddddFN F.F do F.F wN o dMNdd .vmmdd .deFd mmvod F mod md F and F FYF ddm coedFN F.F om N .F o mFNdd mmFNd m©MNd mnvod F mod @d F wmd F Fv.F com 0000 N F.F dF m.F 0F 0 NFNdd medd modFd mnvod F mod md F and F FvF don ddddFN F.F om m.F .VF o wONdd wvde mmoFd mnvod F mod md F and F FYF com ddddFN F.F dF m.F wN m andd vmmdd dmdFd mwvod F mod md F and F FYF ddm ddddFN F.F om F.F .F 0 003.0 mmFNd FONNd mwvcd F mod md F mad F FYF com 0000 N F.F oF F.F 0F 0 doddd 32.. 003.0 025.0 F mod md F and F Fv.F com ddddFN F.F dF F.F wN 0 «Need wvde anFd mnvod F mod md F and F FYF ddm ddddFN F.F oF N .F o 0oood- $0.de wand mhvod F mmd md F and F FYF ddm dddoFN F.F oF m.F VF o vadd- wvde wded 035d F mmd md F and F FvF ddm ddddFN F.F dF F.F ...F o owowéwom owom owom mo >>O m... m0: m... «.0. mo“. ”:27 DO >D< ..0 mac On. n_>n. ...Q mo: mm2_<..ZOO ...mOO 30.. KO“. <0 m._n=._.._3_2 0 x_ozwn_n_< 114 NF00d 40de 000Nd 05V0d F 00.0 0.0 F 00.0 F FYF 000 0000 N F.F 00F N No. 0 0000.0 000Fd 00FNd 05V0d F 00.0 0.0 F 00.0 F FvF 000 0000 N F.F 00 0F NV 0 5000.0 000Nd 030.0 050.0 F 00.0 0.0 F 00.0 F Fv.F 000F0000FN F.F 0F N L.VF 0 0000.0 000Fd 0¢FNd 05v0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00 N 0N 0 0000.0 03.0 000Nd 05V0d F 00.0 0.0 F 00.0 F FYF 000 0000 N F.F 00F 0.F Nv 0 0500.0 #0de 000Nd 05v0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00F N 0N 0 N000d ¢0de 0v0Nd 053d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00F F.F NV 0 0000.0 000Fd 0FFNd 05V0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00 F.F NV 0 5000.0 ¢0de FVONd 05¢0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00F 0.F 0N 0 0V00d 000Fd 00FNd 053d F 00.0 0.0 F 00.0 F FYF 000 0000 N F.F 00 0F 0N 0 0v00d 00FNd 000Nd 05v0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 0F F.F NV 0 NV00d ¢0VFd 0NONd 05v0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 0F F.F 0N 0 0000.0 03.0 NNONd 05v0d F 00.0 0.0 F 0.0 F FYF 000 0000 N F.F 00F N VF 0 0N00d *0de 0FONd 05v0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00F 0.F VF 0 FN00.0 603d 000Nd 053d F 00.0 0.0 F 00.0 F FYF 000 0000 N F.F 00F F.F fivF 0 0N00d 000Fd 050Nd 053d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00 F.F 0N 0 NF00d 000Fd F50Nd 05v0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00 N T.VF 0 0.0.0 000Nd N000d 05¢0d F 00.0 0.0 F 00.0 F FvF 000F0000FN F.F 0F 0.F .vF 0 V0v0d 000Fd NO0Nd 05v0d F 00.0 0.0 F 00.0 F FYF 000 0000 N F.F 00 0F F 0 00V0d 0FNd Nv0Nd 05v0d F 00.0 0.0 F 00.0 F FYF 000 0000 N F.F 0F 0.F 0N 0 00vod 03Fd 000Fd 053d F 00.0 0.0 F 00.0 F Fv.F 000 0000FN F.F 0F 0.F NF‘ 0 053.0 000Fd 500Nd 053d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F 00 F.F .vF 0 FNv0d 000Nd 05N0d 05v0d F 0.0 0.0 F 00.0 F FVF 000F0000FN F.F 0F F.F FF 0 0000.0 0Fade 0VOFd 05v0d F 00.0 0.0 F 00.0 F FYF 000 0000FN F.F OF N 0N 0 0500.0 #000.0 NONFd 05F.0d F 00.0 0.0 F 00.0 F FYF 000 0000FN F.F 00 N Nv 0 NV00d 00FNd 00VNd 05¢0d F 00.0 0.0 F 00.0 F FvF 000 0000 N F.F 0F F.F 0N 0 0000.0 0550.0 00FFd 05¢0d F 00.0 0.0 F 00.0 F FvF 000 0000FN F.F 00F N Nv 0N00d €000d 05FFd 053.0 F 00.0 0.0 F 00.0 F FYF 000 0000FN F.F 00 0F Nv 0 0000.0 00FNd 00VNd 05V0d F 00.0 0.0 F 00.0 F Fv.F 000 0000 N F.F OF N VF 0 V000d #000d 00FFd 05v0d F 00.0 0.0 F 00.0 F FvF 00 0000FN F.F 00 N 0N 0 115 50NFd 050Vd 00N0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 0F F.F VF 0 50NFd 050Vd 00N0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 0F F.F VF 0 0VOFd 000Nd 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 0F 0.F NV 0 VVdFd 00FNd 50F0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 0000 N F.F OF N NV 0 5000.0 000Nd VF00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F F N 0N 0 NV00.0 VONNd 00N0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 N NV 0 V000d 00FNd 0000.0 05V0.0 F 00.0 0.0 F 0.0 F FV.F 000F0000FN F.F 00F N NV 0 5000.0 VONNd 00F0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 0.F NV 0 0000.0 VONNd NOF0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 N 0N 0000.0 00FNd 0000.0 05V0.0 F 00.0 0.0 F 0.0 F FV.F 000F0000FN F.F 00F 0.F NV 0 5000.0 00FNd 0V00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00F N 0N 0 VV00d 00FNd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 0F F.F NV 0 NV00.0 VONNd 00F0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 F.F NV 0 0000.0 00FNd 0N00d 05V0.0 F 00.0 0.0 F 0.0 F FV.F 000F0000FN F.F 00F 0.F 0N 0 F000d VONNd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 0.F 0N 0 5N00d 000Nd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 0F F.F NV 0 VN00.0 00FNd 0F00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00F F.F 0N 0 0N00d 00FNd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00F N VF 0 FF00.0 00FNd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00F 0.F VF 0 0000.0 00FNd 00Nd 05V0.0 F 00.0 0.0 F _00.0 F FV.F 000F0000FN F.F 00F F.F VF 0 N00dd VONNd 0000.0 05V0.0 F 00.0 0.0 F _00.0 F FV.F 000F0000FN F.F 00 F.F 0N 0 V050d VONNd 0000.0 05V0.0 F 00.0 0.0 F 0.0 F FV.F 000F0000FN F.F 00 N VF 0 0550.0 VONNd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 0.F VF N550d 000Nd 0N00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 0F 0.F 0N 0 5050.0 00FNd 0NONd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 0000 N F.F 0F 0.F NV 0 N050d 0VVFd 0FNNd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 0000FN F.F 0F N NV 0 F050d VONNd VN00.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000FN F.F 00 F.F VF 0 0500.0 00FNd 5NONd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 0000 N F.F 0F N 0N 0 0000.0 000Fd 0FNNd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 0000 N F.F 00 N NV 0 VN00.0 000Nd NOV0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00F0000FN F.F F F.F 0N 0 116 000Fd 00Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F 0.F 0N 0 550Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 0.F 0N 0 550Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 0.F 0N 0 050Fd 050Vd 0V00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000 000FN F.F 0F F.F NV 0 050Fd 050Vd 0V00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 0F F.F NV 0 050Fd VO0Vd V500d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F F.F 0N 0 050Fd VO0Vd V500d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F F.F 0N 0 000Fd VO0Vd 0500.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F N VF 0 000Fd VO0Vd 0500.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F N _VF 0 500Fd VO0Vd F000d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F 0.F VF 0 500Fd VO0Vd F000d 05V0.0 F 000 0.0 F 00.0 F FV.F 000F0000 N F.F 00F 0.F _VF 0 0VOFd VO0Vd V000d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F F.F €F 0VOFd VO0Vd V000d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F F.F VF 0 0VOFd 050Vd 0N00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 F.F 0N 0 0VOFd 050Vd 0N00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 F.F 0N 0VOFd 050Vd 0F00d 05V0.0 F 00.0 0.0 F 0.0 F FV.F 00000000FN F.F 00 N VF 0 0VOFd 050Vd 0F00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 N F 0 NNOFd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 0.F VF 0 NNOFd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 0.F VF 0 0FOFd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 0F 0.F 0N 0 0FOFd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 0F 0.F 0N 0 500Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 0.0 F FV.F 00000000FN F.F 00 F.F VF 0 500Fd 050Vd 000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 F.F VF 0 05VFd 050Vd 0VVOd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 0F F.F 0N 0 05VFd 050Vd 0VVOd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 0F F.F 0N 0 00VFd 050Vd 00V0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 0F N VF 0 00VFd 050Vd 00V0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F OF N VF 0 FVOFd 050Vd 0F00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 0F 0.F VF 0 FVOF.0 050Vd F00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 0F 0.F VF 0 0NOFd 000Nd VOFVd 05V0.0 F 0.0 0.0 F 0.0 F FV.F 00F 000FN F.F F N NV 0 117 005Nd 00F5d 0V00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 00F N F.F 00 0.F VF 0 0V5Nd 0055.0 0000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 003 N F.F 0F 0.F 0N 0 005Nd 00F5d 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 003 N F.F 00 F.F VF 0 000Nd 0055.0 F000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 0F F.F 0N FO0Nd 0055.0 V000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 003 N F.F OF N VF 0 00VNd 0055.0 FON0.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00 002 N F.F 0F 0.F VF 0 000Nd 0055.0 50F0.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 0F F.F VF 0 N5FNd 050Vd 0VF5d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F OF N NV 0 N5FNd 050Vd 0VF5d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F OF N NV 0 000Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000FN F.F 0F 0.F NV 0 000Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 0F 0.F NV 0 000Fd 050Vd 0550.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000FN F.F OF N 0N 0 000Fd 050Vd 0550.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F OF N 0N 0 005Fd 050Vd 50F0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 N NV 0 005Fd 050Vd 50F0d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 N NV 0 0V5Fd VO0Vd VV00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F N NV 0 0V5Fd VO0Vd VV00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F N NV 0 005Fd 050Vd FFFOd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 0.F NV 0 005Fd 050Vd FFFOd 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 0.F NV 0 VF5Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 N 0N 0 VF5Fd 050Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F 000 N F.F 00 N 0N 0 NF5Fd VO0Vd 5F00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F 0.F NV 0 NF5Fd VO0Vd 5F00d 05V0.0 F 00.0 0.0 F 0.0 F FV.F 000F0000 N F.F 00F 0.F NV 0 005Fd VO0Vd 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F N 0N 0 005Fd VO0Vd 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F N 0N 0 000Fd VO0Vd V000d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00F F.F NV 0 000Fd VO0Vd V0000 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00F F.F NV 0 000Fd 050Vd 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000FN F.F 00 F.F NV 0 000Fd 050Vd 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F0000 N F.F 00 F.F NV 0 000Fd VO0Vd 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000 000FN F.F 00F 0.F 0N 0 118 FV00d 00.0 50F.F 5V0d F 0.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F F.F VF 0 0V00d 0000.0 0VOF.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 F.F 0N 0 N000d 0000.0 FVOF.F 05V0.0 F 00.0 .0 F 00.0 F FV.F 00000000 N F.F 00 N VF 0 VF00d 0000.0 NNOF.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 0.F VF 0 300.0 00N0d NFON.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F 0.F 0N 0 0000.0 0055.0 000F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 002 N F.F OF N NV 0 00N0d 0000.0 500F.F 05V0.0 F 0.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 F.F VF 0 NOF0d 00N0d 000N.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F F.F N 0 0NFOd 00N0d 0NON.F 05V0.0 F 00.0 .0 F 00.0 F FV.F 00000000 N F.F OF N VF 0 0000.0 .00N0d 00NN.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F 0.F VF 0 0N00d 0055.0 0F00.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 0F 0.F NV 0 000Nd 00N0d FOFN.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F F.F VF 0 FO0Nd 0055.0 0N50.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F OF N 0N 0 0FONd 00F5d 0FFO.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 002 N F.F 00 N NV 0 000Nd VNF5.0 N000d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 009 N F.F 00F N NV 0 FO0Nd 00F5d 0000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 002 N F.F 00 0.F NV 0 VONd 00F5d FV00.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 00 N 0N 0 0VONd VNF5.0 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 003 N F.F 00F 0.F NV 0 FO0Nd VNF5.0 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 00F N 0N 0 0FONd VNF5.0 NV00.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 0F F.F NV 0 0FONd 00F5d 0F00.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 002 N F.F 00 F.F NV 0 0FONd VNF5.0 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 00F 0.F 0N 0 000Nd 00F5d V000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 009 N F.F 00 0.F 0N 0 FO0Nd 0055.0 V000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00 003 N F.F 0F F.F NV 0 005Nd VNF5.0 NN00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 000F N F.F 00F F.F 0N 0 V05Nd VNF5.0 0F00d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 003 N F.F 00F N VF 0 005Nd VNF5.0 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 009 N F.F 00F 0.F VF 0 555Nd VNF5.0 N000d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 003 N F.F 00F F.F F 0 055Nd 00F5d V500d 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000 009 N F.F 00 F.F 0N 0 005Nd 00F5d 5000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00 009 N F.F 00 N VF 119 00V0.0 VNNF.N N000.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00F F.F 0N 0 VOV00 VNNF.N 0000.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00F N VF 0 0NV00 VNNF.N 0V00.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00F 0.F VF 0 5FV00 VNNF.N NV00.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00F F.F VF 0 0FV00 00NF.N VF50.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00 F.F 0N 0 00V0.0 00NF.N 5050.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00 N VF 0 0000.0 00NF.N 0000.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00 0.F VF 0 0000.0 000FN 05N0.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 0F 0.F 0N 0 0500.0 00NF.N 0500.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 00 F.F VF 0 00N0d 000FN FOF0.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 0F F.F 0N 0 FON0d 000FN V0000 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F OF N VF 0 020.0 000FN F0000 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 0F 0.F VF 0 0000.0 000FN 5N00.N 05V0.0 F 00.0 0.0 F 00.0 F FV.F 000F000F N F.F 0F F.F VF 0 V0000 00N0d 5000.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F OF N NV 0 5000.0 00N0d 005N.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F 0.F NV 0 00V0.0 00N0d 500N.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F N 0N 0 00V0.0 0000.0 000N.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 N NV 0 NOV00 V0000 000F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F N NV 0 0NVOd 0000.0 000N.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 0.F NV 0 00V0.0 0000.0 0FON.F 05V0.0 F 00.0 0.0 F 0.0 F FV.F 00000000 N F.F 00 N 0N 0 VOV00 V0000 000F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F 0.F NV 0 000.0 V0000 0NOF.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F N 0N 0 000.0 V0000 0FOF.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F F.F NV 0 0000.0 0000.0 000F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 F.F NV 0 5500.0 V0000 FFOF.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F 0.F 0N 0 0000.0 0000.0 050F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00 0.F 0N 0 0000.0 00N0d 000N.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 0F F.F NV 0 N000d V0000 000F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F F.F 0N 0 0000.0 V0000 NO0F.F 05V0.0 F 00.0 0.0 F 00.0 F FV.F 00000000 N F.F 00F N VF 0 0V00d V0000 00F.F 5V00 F 00.0 0.0 F 00.0 F FV.F 0000 000 N F.F 0F . VF 120 F00.F 50N.V 50N0.0 5V00 F 00.0 F 00.0 F FV.F 0000000F N F.F 00F 0.F 0N 0 0000.F 0VVN.V V0000 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00 0.F 0N 0 F000.F 0V00.V VV00.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 0F F.F NV 0 0000.F V50N.V N5N0.0 05V0.0 F 00.0 F 00.0 F FV.F 0000 00F N F.F 00F F.F 0N 0 V000.F V50N.V 00N0.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00F N VF 0 0000.F V50N.V 00N0.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00F 0.F VF 5500.F V50N.V NON0.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00F F.F VF 0 0500.F 0VVN.V VN00.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00 F.F 0N 0 0000.F 0VVN.V 5F00.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00 N VF 0 0000.F 0VVN.V 00N0.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00 0.F VF 0 0V00.F 0V00.V 0000.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 0F 0.F 0N 0 0000.F 0VVN.V 00N0.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 00 F.F VF 0 0000.F 0V00.V FV50.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 0F F.F 0N 0 F000.F 0V00.V V0500 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F OF N VF 0 0000.F 0V00.V FF00.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 0F 0.F VF 0 00V0.F 0V00.V 5000.0 05V0.0 F 00.0 F 00.0 F FV.F 0000000F N F.F 0F F.F VF 0 0V000 000FN 0000.0 05V0.0 F 00.0 F 0.0 F FV.F 000F000F N F.F 0F N NV 0 0000.0 000FN 0000.0 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 0F 0.F NV 0 F5000 000FN 00V0.0 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F OF N 0N 0 0000.0 00NF.N 0000.N 05V0.0 F 00.0 F .000 F FV.F 000F000F N F.F 00 N NV 0 0000.0 VNNF.N N050.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00F N NV 0 F0000 00NF.N 0050.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00 0.F NV 0 NOV00 00NF.N F050.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00 N 0N 0 00V0.0 VNNF.N 0050.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00F 0.F NV 0 F5V00 VNNF.N 0000.N 05V0.0 F 00.0 F 000 F FV.F 000F000F N F.F 00F N 0N 0 00V0.0 VNNF.N N000.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00F F.F NV 0 00V0.0 00NF.N 0050.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00 F.F NV 0 00V0.0 VNNF.N 5500.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00F 0.F 0N 0 0VVOd 00NF.N VV50.N 05V0.0 F 00.0 F 00.0 F FV.F 000F000F N F.F 00 0.F 0N 0 FVVOd 000FN V0000 05V0.0 F 0.0 F 00.0 F FV.F 00F 00F N F.F 0F F.F NV 0 121 :85 .58 E895 558:8 538595 ”0000 8:0 .8. :8 88 .8850 ”mo 558:8\m8:5E 558:8 538595 56:5: 8 .5055: 5:5 mm: 50:0 .88 :85 ”m... 98 $.88 5 5:525: ”00“. m5__E .8:8m_n >558 ”00 «55> .8: 558:8 Jo 558:8?th 50:58 58 ”Ga 98 .58: 5.96 ”50 :85 .88 E886 558:8 5.8535: “0000 558:855 8:053 558:8 H>>o 558:80 558:8 5.98595 5 58 5:: ”mo: 558:858358 .m558:8 535585.. 56:8. 8 .555: 8:: ”a... 5.550 .88 508:8 ”ms. >52th0 .508: 5:8 50855 ”>0< 88 0:55:5538 558:8 ”000 558 8:28 5.50 a); 558:80 558:8 5.8585: 5 58 5:: ”mo: 00V5.F 0V00.V 0VVd.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000 00F N F.F 0F N NV 0 0NF5.F 0V00.V 00F0.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 0F 0.F NV 0 F005.F 0V00.V 0500.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000 00F N F.F OF N 0N 0 0F05.F 0VVN.V 0V0.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00 N NV 0 0000.F V50N.V NV00.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00F N NV 0 F000.F 0VVN.V 00V0.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00 0.F NV 0 NV00.F 0VVN.V F0000 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00 N 0N 0 0V00.F V50N.V 0F00.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00F 0.F NV 0 F000.F V50N.V 0000.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00F N 0N 0 0F00.F 50N.V NON0.0 05V0.0 F 00.0 0.0 F 00.0 F FV.F 0000000F N F.F 00F F.F NV 0 0F00.F 0VVN.V 0000.0 05V0.0 F 0.0 0.0 F 00.0 F FV.F 0000 00F N F.F 0 F.F NV 0 122 00F00- 00V0.0 00N0.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0000F N F.F 0F 0.F 0N VN 00N0.0- 050Fd N5FFd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0000F N F.F 00 F.F VF VN 0NN00- 0V5Vd 5NOVd 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F 0F F.F NV VN 0NV00- 0005.0 0VF5d 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0003 N F.F 0F 0.F VF N 0NV00- 0005.0 0VF5d 05V0.00 00.0 0 0F 00.0 F FV.F 000F 0000 N F.F 0F 0.F VF N NVVdd- 0V5Vd 000V0 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F 0F 0.F 0N N N0000- 0VOVd 0V00d 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0000F N F.F 0F F.F NV VN 0500. 0005.0 0V00d 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0000F N F.F 0F F.F VF VN 0F500- 0005.0 0V00d 05V0.00 00.0 0 0F 00.0 F FV.F 000F 0000 N F.F 0F F.F VF N VN500- 0VOVd 0F00d 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0002 N F.F 0F 0.F 0N VN F0500- 00V0.0 F05Vd 05V0.0 0 00.0 0 F 00.0 F FV.F 000F 0003 N F.F 0F F.F 0N VN 0000.0- 00V0.0 000Vd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0002 N F.F OF N VF VN 000Fd- 0V5Vd VF50d 05V0.00 00.00 F 00dF FV.F 000 0000 N F.F 0F F.F 0N VN FOFFd- 0V5Vd 0000.0 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F OF N VF VN 00NFO- 00V0.0 VOFVd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0002 N F.F 0F 0.F VF VN 0FOFd- 0VOVd 5N5Nd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0003 N F.F 0F F.F 0N VN 00VFO- 0VOVd 050Nd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0002 N F.F OF N VF VN FO0Fd- 0V5Vd 0F0d 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F 0F 0.F VF VN VO0F.0.. 00V0.0 0000.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0002 N F.F 0F F.F VF VN 000Fd- VOVd 0FNNd 05V0.0 0 00d 0 0F 00.0 F FV.F 000 003 N F.F 0F 0.F VF VN 0VOFd- 0V5Vd FO0Nd 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F 0F F.F VF VN 0NFNd- 0VOV0 FOFd 05V0.00 00.0 0 0F 00.0 F FV.F 000 0002 F.F 0F F.F VF VN Omowémom 000m 000m mo 30 mt. mu: m.— 15 won. 1 DD >O< .5 ~30 Ga “_>n_ .50 mo: «02.4.5200 .500 0:2 m0“. <._. 01.0.5435. 0 x_ozmn_m< 123 V0000 005N0 0VF00 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0002 N F.F 00 F.F VF VN 0000.0 050Nd 0VVNd 05V0.00 0000 0F 00dF FV.F 000 0000 N F.F 00 0.F 0N VN 0000.0 VV5Fd 000Nd 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F 00F 0.F VF VN 0N000 VV5Fd 500Nd 05V0.0—0 00.0 0 0F 00.0 F FV.F 000 0000 N F.F 00F F.F VF VN 0000.0 050Fd 050Fd 05V0.00 00.00 0F 00.0 F FV.F 000 0000FN F.F 00 0.F NV VN 50N0.0 0V5Vd 0V00d 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F F N 0N VN NON00 000Fd FO0Fd 05V0.00 00.0 0F 00dF FV.F 000 0000FN F.F 00F 0.F NV VN 00N0.0 000Fd VONFd 05V0.00 00.00 0F 0.0F FV.F 000 0000FN F.F 00F N N N 0VN00 050Nd NNONd 05V0.00 00.90 0F 00dF FV.F 000 000 N F.F 00 F.F 0N VN NN00 050Fd FO0Fd 05V0.00 00.00 0F 00.0 F FV.F 000 0000FN F.F 00 N 0N VN 0FN00 050Nd NONNd 05V0.00 0000 0F 000F FV.F 000 0000 N F.F 00 N VF VN VON00 000Fd NVNFd 05V0.00 00.0 0 0F 00.0 F FV.F 000 0000FN F.F 00F F.F NV VN 05.0 002.0 0NNFO 05V0.00 00.0 0F 00dF FV.F 000 0000FN F.F 00F 0.F 0N VN FVFdd 050Nd 0FNNd 05V0.00 00.00 0F 00dF FV.F 000 0000 N F.F 00 0.F VF VN 0NF00 050Fd 00VFd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0003 N F.F 00 F.F NV VN NNFdd 0030 0:0 05V0.00 00.0 0F 00dF FV.F 000 0000FN F.F 00F F.F 0N VN 503.0 002.0 0VFFd 05V0.00 00d_0 0F 00dF FV.F 000 0000FN F.F 00F N VF VN 0000.0 0005.0 N005d 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0002 N F.F 0F F.F 0N VN 0000.0 0005.0 N005d 05V0.00 00.050 0F 00dF FV.F 000F 0000 N F.F 0F F.F 0N VN N0000 050Nd 00FNO 05V0.00 00.0—0 0F 00dF FV.F 000 0000 N F.F 00 F.F VF VN F0000 050Fd 00VFd 05V0.00 00.0—0 0F 00.0 F FV.F 000 0000FN F.F 00 0.F 0N VN F5000 000Fd 0FFO 05V0.0 00.00 0F 00.0 F FV.F 000 0000FN F.F 00F .F VF VN N0000 00V0.0 VF00d 05V0.0—0 00.0 0 0F 00.0 F FV.F 000F 0000F N F.F 0F F.F NV VN FV000 000Fd 000F0 05V0.00 00.00 0F 00dF FV.F 000 0000FN F.F 00F F.F VF VN 0500 0VOVd 000Vd 05V0.0—0 00.0 0 0F 00.0 F FV.F 000 0000FN F.F 0F N 0N VN 5000.0- 050Fd 000Fd 05V0.0 0 00d 0 0F 00.0 F FV.F 000 0000F N F.F 00 F.F 0N VN 0000.0- 0005.0 VF05d 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0000F N F.F OF N VF VN 0000.0- 0005.0 VF05d 05V0.00 00.0 0 F 00.0 F FV.F 000F 0000 N F.F 0F N VF VN 50000- 050Fd 000Fd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0002 N F.F 00 N VF VN FVF00- 050Fd NONFd 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0002 N F.F 00 0.F VF VN 124 050.0 0VVNO 0FN00 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00F F.F NV VN 0V500 0VVNd VOF0d 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00F 0.F 0N VN 050.0 0000.F 000F.F 05V0.00 0F 00.0F FV.F 000 N F.F 0F 0.F VF VN 0000.0 005Nd N5V00 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00 F.F NV VN 0000.0 0VVNd 00F00 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00F F.F 0N N 0000.0 0005.0 VON0d 05V0.00 0F 00.0F FV.F 0000 0000FN F.F 0F 0.F 0N N 0000.0 0005.0 VON0d 05V0.00 0F 00.0F FV.F 000F 0000 N F.F 0F 0.F 0N VN 0000.0 VV5Fd 0NVNO 05V0.00 0F 00.0F FV.F 000 N F.F 00F N NV VN F5000 0VVNd 0NFOd 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00F N VF N 5000.0 0V5Vd VFVOd 05V0.00 0F 00.0F FV.F 000 N F.F 0F 0.F NV _VN 0V000 005Nd 5NV00 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00 0.F 0N N 0000.0 0VVNO 0000.0 05V0.00 0F 00.0F FV.F 000F N F.F 00F 0.F VF VN 0000.0 0VVNO V0000 05V0.00 0F 00.0F FV.F 00F N F.F 00F F.F VF VN 0000.0 050Nd NO0Nd 05V0.00 0F 00.0F FV.F 000 N F.F 00 0.F NV VN 0500.0 00V0.0 N000d 05V0.00 0F 00.0F FV.F 000F N F.F OF N 0N VN V5000 VV5Fd 0FONd 05V0.00 0F 00.0F FV.F 000 N F.F 00F 0.F NV VN 5000.0 VV5Fd FONNO 05V0.00 0F 00.0F FV.F 000 N F.F 00F N 0N VN 5N000 005Nd 0000.0 05V0.00 0F 0.0F FV.F 000F N F.F 00 F.F 0N VN VN00.0 050Fd 500Fd 05V0.00 0F 00.0F FV.F 000 N F.F 00 N NV VN FF00.0 050Nd 000Nd 05V0.00 0F 00.0F FV.F 000 N F.F 00 N 0N VN 50V00 005Nd 05N0.0 05V0.00 0F 00.0F FV.F 000F N F.F 00 N VF VN 00V0.0 VV5F0 0NNNd 05V0.00 0F 00.0F FV.F 000 N F.F 00F F.F NV VN 00V0.0 VV5Fd 50NNd 05V0.00 0F 00.0F FV.F 000 N F.F 00F 0.F 0N VN 0NV00 005Nd 00N0.0 05V0.00 0F 00.0F FV.F 000F 0000FN F.F 00 0.F F VN 0FV00 0000.F 5050.F 05V0.00 0 0F 00.0F FV.F 000 N F.F 0F F.F VF VN 50V00 050N0 00VNO 05V0.00 0 0F 00.0F FV.F 000 N F.F 00 F.F NV VN VOV00 VV5Fd 0VFNd 05V0.00 0 0F 00.0F FV.F 000 N F.F 00F F.F 0N VN 00V0.0 000Fd NVVFd 05V0.00 0 0F 00.0F FV.F 000 N F.F 00F N NV VN 0000.0 VV5Fd 00FNO 05V0.00 0 0F 00.0F FV.F 000 N F.F 00F N VF VN 0000.0 0VOVd 5NVVd 05V0.00 0 0F 00.0F FV.F 000 N F.F 0F . NV VN 125 FOVFd 00Vd 0000.0 05V0.0 0 00d 0 0F 0.0 F FV.F 0000 0009 N F.F 00 0.F 0N VN FOVFO 000Vd 0000.0 05V0.0 00.00 0F 00.0F FV.F 000F 0000 N F.F 00 0.F 0N VN FOVFd VO0Vd VV00.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0009 N F.F 00F 0.F VF VN FOVFd VO0Vd VVd00 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00F 0.F VF VN FOVFd VO0Vd 0F00d 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0009 N F.F 00F F.F VF VN FOVFO VO0Vd 0F00d 05V0.00 00.00 F 00.0F FV.F 000F 0000 N F.F 00F F.F F VN 0NVFd 0005.0 0000.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0002 N F.F 0F N 0N VN 0NVFd 0005.0 0000.0 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 0F N 0N VN 050Fd 000Vd 05N0.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0002 N F.F 00 F.F 0N VN 050Fd 000Vd 05N0.0 05V0.00 00.0 0 0F 00.0 F FV.F 000F 0000 N F.F 00 F.F 0N VN 0VOFd 000Vd 0VNOd 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0000F N F.F 00 N VF VN 0VOFd 000Vd 0VN00 05V0.00 00d 0F 00.0F FV.F 000F 0000 N F.F 00 N VF VN 00NFd 005F.F 000.F 05V0.00 00.00 0F 00.0 F FV.F 0000 0000 N F.F 0F 0.F VF VN 00NFd 000Vd 50F0d 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0002 N F.F 00 0.F VF VN 00NFO 000Vd 50F00 05V0.00 00.00 0F 00.0F FV.F 000F 000 N F.F 00 0.F VF VN 0NNFd 0000.F FOF.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 0F F.F 0N VN 0FNFd 000Vd 50F0d 05V0.0 0 00.0 0 F 00.0 F FV.F 0000 0000F N F.F 00 F.F VF N 0FNFO 000Vd 50F0d 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0000 F.F 00 F.F VF VN 0090 005Nd F5000 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0009 N F.F 00 NV N 050Fd 0000.F NOVF.F 05V0.00 00.00 0F 00.0F FV.F 000 000F F.F 0F N VF VN V5000 005F.F F55N.F 05V0.00 00.0 0F 00.0F FV.F 0000 0000 N F.F 0F F.F VF _VN 5000.0 0VVNd 0FV00 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0002 N F.F 00F N NV _VN 0V000 00V0.0 FOV0d 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0002 N F.F 0F 0.F NV N 0000.0 0005.0 05V0.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0009 N F.F 0F F.F NV VN 0000.0 0005.0 05V0.0 05V0.00 00.00 0F 00.0 F FV.F 000F 0000 N F.F 0F F.F NV VN 5000.0 005Nd 0V00d 05V0.0 0 00.90 F 00.0 F FV.F 000F 0009 N F.F o0 0.F NV VN 0000.0 0VVNd 0000.0 05V0.0 0 00.00 0F 00.0 F FV.F 000F 0000F N F.F 00F 0.F NV VN 0000 0VVNd 00N0.0 05V0.0 0 00d 0 0F 00.0 F FV.F 000F 0009 N F.F 00F N 0N VN 0000.0 050Nd VO0Nd 05V0.00 00.00 0F 00.0F FV.F 000 0000 N F.F 00 N NV VN 0050.0 005N0 0500.0 05V0.0 00.0 0 0F 00.0 F FV.F 000F 0000F N F.F 00 N N VN 126 000Nd 000.F 0NVN.F 05V0.0 00.0 0F 00.0F FV.F 000 002 N F.F 0F F.F NV VN VO0Fd 000Vd N000d 05V0.00 00.0 0F 00.0F FV.F 0000 0000FN F.F 00 N NV VN VO0Fd 000Vd N000d 05V0.00 00.0 0F 00.0F FV.F 000F 0000 N F.F 00 N NV VN VFOFd 0000.F NONN.F 05V0.00 00.0 0F 00.0F FV.F 000 003 N F.F 0F 0.F 0N VN 0FOF0 VO0V0 5500.0 05V0.00 00.90 0F 00.0F FV.F 0000 0000FN F.F 00F N NV VN 0FOFd VO0Vd 5500.0 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00F N NV VN 005Fd 0005.0 N000d 05V0.00 00.0 0F 00.0F FV.F 0000 0000FN F.F 0F 0.F NV N 005Fd 0005.0 N000d 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 0F 0.F NV VN 505Fd 005F.F V000.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 0F F.F 0N VN 055Fd 0V5Vd 0N00d 05V0.00 0000 0F 00.0F FV.F 000 0000 N F.F OF N NV VN 0F5Fd 000V0 0F00d 05V0.00 00.0 0F 00.0F FV.F 0000 0000FN F.F 00 0.F NV VN 0F5Fd 000V0 0F000 05V0.00 0.0 F 00.0F FV.F 000F 0000 N F.F 00 0.F NV VN N05Fd VO0V0 00N0.0 05V0.00 000w... 0F 00.0F FV.F 0000 0000FN F.F 00F 0.F NV VN N05Fd VO0Vd 00N0.0 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00F 0.F NV VN 000Fd VO0Vd 0NNOd 05V0.00 00.0 0F 00.0F FV.F 0000 0000FN F.F 00F N 0N VN 000Fd VO0V0 0NNOd 05V0.00 00.0 0F 00.0F FV.F 000F 0000 N F.F 00F N 0N VN 000Fd 005F.F 00V0.F 05V0.00 00.0 0F 00.0F FV.F 0000 0000 F.F OF N VF VN 000Fd 000Vd 0000.0 05V0.00 00d 0F 00.0F FV.F 0000 0000FN F.F 00 N 0N VN 000Fd 000Vd 0000.0 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00 N 0N VN VFOF0 VO0Vd 55F0d 05V0.00 00.0 0F 00.0F FV.F 0000 0000FN F.F 00F F.F NV VN VFOFd VO0Vd 55F0d 05V0.00 00.00 0F 00.0F FV.F 000F 0000 F.F 00F F.F NV VN FO0Fd VO0Vd 00F0d 05V0.00 00.00 0F 00.0F FV.F 0000 0000FN F.F 00F 0.F 0N VN FO0Fd VO0Vd 00F00 5V000 00.00 0F 00.0F FV.F 000F 0000 N F.F 00F 0.F 0N VN 000Fd 000Vd 00V0.0 05V0.00 00.00 0F 00.0F FV.F 0000 0000FN F.F 00 F.F NV VN 000Fd 000Vd 00V0.0 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00 F.F NV VN NO0Fd VO0Vd 0000.0 05V0.00 00.00 0F 00.0F FV.F 0000 0000FN F.F 00F F.F 0N VN NO0Fd VO0Vd 0000.0 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00F F.F 0N VN 5FOFd VO0Vd F0000 05V0.00 00.00 0F 00.0F FV.F 0000 0000FN F.F 00F N VF VN 5FOFd VO0Vd F0000 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F 00F N VF VN VOVFd 0VOVd 0000.0 05V0.00 00.00 0F 0.0F FV.F 000 0003 F.F OF N NV N 127 5FF00 005F.F 0FOV.F 05V0.00 0000 0F 00.0F FV.F 0000 0000 N F.F 0F N 0N VN 0000.0 0NFOd NOFN.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00 F.F 0N VN N000d 0F550 0050.F 05V0.00 00.00 0F 00.0F FV.F 000 003 N F.F 00 N NV VN 0000.0 0NF00 NOFN.F 05V0.0 0000 0F 00.0F FV.F 0000 0000 N F.F 00 N VF VN FO0Nd 0NFOd 000N.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00 0.F VF VN FVONd V0050 0N00.F 05V0.00 00.00 0F 00.0F FV.F 000 003 N F.F 00F N NV VN 0NONd 0000.F 0F00.F 05V0.00 00.00 0F 00.0F FV.F 000 003 N F.F 0F 0.F NV VN VO0Nd 0005.0 F5V0.F 05V0.00 00.00 0F 00.0F FV.F 0000 000FN F.F OF N NV VN VO0Nd 0005.0 F5V0.F 05V0.00 00.00 0F 00.0F FV.F 000F 0000 N F.F F N NV VN NO0N0 0NF00 0NON.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00 F.F VF VN FVONd 0F55d 0000.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00 0.F NV VN 000Nd V0050 VFNO.F 05V0.00 00.00 F 00.0F FV.F 000 009 N F.F 00F 0.F NV VN 005Nd V0050 55F0.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00F N 0N VN 505N0 0F55d VOV0.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00 N 0N VN NV5Nd V0050 0NFO.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00F F.F NV VN 0F5N0 V0050 00F0.F 05V0.00 00.00 F 00.0F FV.F 000 000F N F.F 00F 0.F 0N VN 000N0 0F55d F000.F 05V0.00 00.00 0F 00.0F FV.F 000 000F N F.F 00 F.F NV VN 000Nd V0050 VVddF 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00F F.F 0N VN 0VONd V0050 0N00.F 05V0.00 00.00 0F 00.0F FV.F 000 000F N F.F 00F N VF ~VN 0FONd 0F55d 0000.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00 0.F 0N N 000Nd V0050 N000d 05V0.00 00.00 0F 00.0F FV.F 000 003 N F.F 00F 0.F VF VN 000Nd 005F.F 500V.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 0F F.F NV VN 050Nd V0050 0000.0 05V0.00 0000 0F 00.0F FV.F 000 000F N F.F 00F F.F VF VN 000Nd 0000.F FVON.F 05V0.00 00.00 0F 00.0F FV.F 000 003 N F.F 0F N 0N VN FO0Nd 0F550 0FNO.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 00 F.F 0N _VN F5VNO 0F550 00F0.F 05V0.00 00.00 0F 00.0F FV.F 00 000F N F.F 00 N VF N 500Nd 0F55d 0FFO.F 05V0.00 00.00 0F 00.0F FV.F 000 003 N F.F 00 0.F VF N 050Nd 005F.F 05FV.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 0F 0.F 0N VN 000Nd 0F55d 0000.F 05V0.00 00.00 0F 00.0F FV.F 000 009 N F.F 00 F.F VF VN 000Nd 00V0.0 F050 05V0.00 0.00 0F 0.0F FV.F 000F 0000FN F.F 0F N NV N 128 m. .. Ea-.- 0VN00 VOVF.N 050.N 05V0.00 00.00 0F 00.0F FV.F 000F 00F N F.F 00F 0. VF VN 0FN00 VOVF.N 0050.N 05V0.00 00.00 0F 00.0F FV.F 000F 009 N F.F 00F F.F VF VN 0000 00VV.N FO0N.0 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F OF N 0N VN FVFOd 0FOF.N 0000.N 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F 00 F.F 0N VN FFFOd 0FOF.N 0N00.N 05V0.00 00.00 0F 00.0F FV.F 000F 003 N F.F 00 N VF VN 5000.0 0FOF.N 0000.N 05V0.00 00.0 0F 00.0F FV.F 000F 003 N F.F 00 0.F VF VN 0505.0 0FOF.N 0050.N 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F 00 F.F VF VN 0505.0 00VV.N 00FN.0 05V0.00 00.00 0F 00.0F FV.F 000F 000F N F.F 0F F.F NV VN VOV5d .00VV.N NVOF.0 05V0.00 00.0.0 0F 00.0F FV.F 000F 002 N F.F 0F 0.F 0N VN 0000.0 00VV.N 000F.0 05V0.00 00.00 0F 00.0F FV.F 000F 000F F.F 0F F.F 0N VN 0500 00VV.N NONF.0 05V0.00 00.050 0F 00.0F FV.F 000F 003 N F.F OF N VF VN 0V00d 00VV.N 0000.0 05V0.00 00.00 0F 00.0F FV.F 000F 000F N F.F 0F 0.F VF VN 0000.0 00VV.N 5000.0 05V0.00 00.00 0F 00.0F FV.F 000F 009 N F.F 0F F.F VF VN 000Vd 005F.F 0000.F 05V0.0 0 00d 0 0F 00.0 F FV.F 0000 0000 N F.F OF N NV HVN NO0Vd 0000.F 0FVV.F 05V0.00 00.00 0F 00.0F FV.F 000 002 N F.F 0F N NV _VN 0N00d 0NF00 V05N.F 05V0.00 00.0 0F 00.0F FV.F 0000 0000 N F.F 00 N NV VN 0000.0 V0500 00NN.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F N NV VN 50V00 005F.F VON0.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 0F 0.F NV VN 00V0.0 0NFOd NO0N.F 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 0000 N F.F 00 0.F NV HVN V0000 V0500 00FN.F 05V0.0 00.00 0F 00.0F FV.F 0000 0000 N F.F 0F 0.F NV ?N 5000.0 V0500 FOFN.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F N 0N HVN F0000 0NFOd 00VN.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00 N 0N VN 0000.0 V0500 000N.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F F.F NV VN 00N0.0 V0500 550N.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F 0.F N VN 5NNOd 0NFOd 000N.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00 F.F NV N VNNOd V0500 0FON.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F F.F 0N VN 00N0.0 V0500 000N.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F N VF N 00F00 0NF00 0FON.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00 0.F 0N _VN 05F00 V0500 000F.F 05V0.00 00.00 0F 00.0F FV.F 0000 0000 N F.F 00F 0.F VF VN 0VFOd V0500 500F.F 05V0.00 00.00 0F 00.0F FV.F 0000 000 N F.F 0F F.F F N 129 0050.F VO0N.V V0000 05V0.00 00.30 0F 00.0F FV.F 0000 009 N F.F 00F F.F 0N VN 0V50.F VO0N.V 0500.0 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00F N VF VN 0F50.F 000N.V 0000.0 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00 0.F 0N VN 0050.F VO0N.V NV00.0 05V0.00 00.00 0F 00.0F FV.F 0000 009 N F.F 00F 0.F VF VN 0500.F VO0N.V 0F000 05V0.00 00.00 0F 00.0F FV.F 0000 00F N F.F 00F F.F VF VN 0000.F 0000.V FONN.0 05V0.00 00.00 0F 00.0F FV.F 0000 000F N F.F 0F N 0N VN F000.F 000N.V 0000.0 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00 F.F 0N VN F500.F 000N.V 000.0 05V0.0 00.00 0F 00.0F FV.F 0000 003 N F.F 00 N VF VN 50V0.F 000N.V 00V0.0 05V0.00 00.00 0F 00.0F FV.F 0000 003 F.F 00 0.F VF VN 00V0.F 000N.V 00V0.0 05V0.00 00.00 0F 00.0F FV.F 0000 000F N F.F 0 F.F VF VN 00F0.F 0000.V 055F.0 05V0.0 00.00 0F 00.0F FV.F 0000 002 N F.F 0F F.F NV VN VF00.F 0000.V NO0F.0 05V0.00 00.00 0F 00.0F FV.F 0000 000F N F.F 0F 0.F 0N VN 0N00.F 0000.V 0000.0 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 0F F.F 0N VN 05F0.F 0000.V NF00.0 05V0.00 00.00 0F 00.0F FV.F 0000 000F N F.F 0F N VF VN 000V.F 0000.V 0VVd.0 05V0.00 00.00 0F 00.0F FV.F 0000 009 N F.F 0F 0.F VF VN 0FOV.F 0000.V 5VF0.0 05V0.00 00.00 0F 00.0F FV.F 0000 003 N F.F 0F F.F VF VN N500d 00VV.N 00FV.0 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F 0F N NV VN N050d 0FOF.N 0N00.0 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F 00 N NV VN F0000 VOVF.N 0000.0 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F 00F N .NV VN 0000.0 00VV.N 0000.0 05V0.00 00.0—0 0F 00.0F FV.F 000F 003 N F.F 0F 0.F NV N FOV00 0FOF.N 00N0.0 05V0.0 00.0—0 0F 00.0F FV.F 000F 000F F.F 00 0.F NV VN 05V0.0 VOVF.N V000.N 05V0.00 00.00 0F 00.0F FV.F 000F 003 N F.F 00F 0.F NV VN 00V0.0 VOVF.N 5F00.N 05V0.00 00.00 0F 00.0F FV.F 000F 000F N F.F 00F N 0N VN 50V0d 0FOF.N VNN0.0 05V0.0—0 0000 0F 00.0F FV.F 000F 000F N F.F 00 N 0N VN N000d VOVF.N 0000.N 05V0.00 00.00 0F 00.0F FV.F 000F 000F N F.F 00F F.F NV VN 0000.0 VOVF.N 0V00.N 05V0.00 00.00 0F 00.0F FV.F 000F 003 N F.F 00F 0.F 0N VN 0000.0 0FOF.N FNF0.0 05V0.00 00.00 0F 00.0F FV.F 000F 00F N F.F 00 F.F NV VN 0000.0 VOVF.N V050N 05V0.00 00.00 0F 00.0F FV.F 000F 009 N F.F 00F F.F 0N VN 00N0.0 VOVF.N 0050.N 05V0.00 00.00 0F 00.0F FV.F 000F 000F N F.F 00F N VF VN 00N0.0 0FOF.N 0500.0 05V0.00 00.00 0F 00.0F FV.F 000F 002 N F.F 00 0.F 0N VN 130 .580 .858 E8555 558:8 538595 ”0000 8:0 .55 5a 88 .8855 ”me 558:858358 558:8 538595 56:5: 8 5855: 58: ”m... 585 .88 :85. ”0.. 558 .5385 .6 55:53.55: ”00”. 555.: 58855 552.8 ”00 5555 .55. 558:8 Jo 5588888 50:58 5.58 ”On. 558 .58: 5.555 ”.5 :80 .858 E8555 558:8 5.55585: 600m 558:855 .5053 558:8 H>>o 558:80 558:8 538595 ho .58 5:: ”mo: 558:858358 .5558c8 5.55585: 56:5... 8 5855: 5::: ”E. 5:83 .88 50555.: ”ms. 552855 .508: 5:8 50855 50.4 88 8:585:85: 558:8 “000 .858 5828 x555 ”n55 558:80 558:8 5.55585: 5 58 5:: ”mo: NOF0.F 0000.V 050.0 05V0.00 0.00 0F 00.0F FV.F 0000 000F N F.F OF N NV VN NOF5.F 000N.V 00F0.0 05V0.00 00.00 F 00.0F FV.F 0000 000F N F.F 00 N NV VN FV05.F VO0N.V 0500.0 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00F N NV VN 0N05.F 0000.V 000N.0 05V0.00 00.0 F 00.0F FV.F 0000 003 N F.F 0F 0.F V N FV00.F 000N.V 0000.0 05V0.00 00.0 0F 00.0F FV.F 0000 003 N F.F 00 0.F NV VN 0000.F VO0N.V V0000 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00F 0.F NV _VN 0000.F VO0N.V 5N000 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00F N 0N _VN 5000.F 000N.V V0000 05V0.00 00.00 0F 00.0F FV.F 0000 002 N F.F 00 N 0N 5VN NV00.F VO0N.V 05V0.0 05V0.00 00.0 0F 00.0F FV.F 0000 009 N F.F 00F F.F NV N 0F00.F VO0N.V 00V0.0 05V0.00 00.0 0F 00.0F FV.F 0000 003 N F.F 0F 0.F 0N N 0050.F 000N.V F0500 05V0.00 00.0 0F 00F FV.F 0000 00F N F.F 00 F.F NV VN 131 000N.0- VOF.0 00N0.N 05V0.0 00.0 0 0F 00.0 F FV.F 000 0000F N F.F F F.F 0N 00V VON0.0- 0VF.0 VON0.V 05V0.0 0 00.0 00 0F 0.0 F FV.F 000F 000F F.F 0F 0.F VF 00V N000.0- 00V.0 0500.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0002 N F.F 0F N VF 0V N000.0- 00V.0 0500.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F N VF 00V 005V.0- 0VN.0 0F55.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0009 N F.F 0F N _VF 00V 0N00.0- V5F.0 0N50.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 0F N F 00V N000.0- VOF.0 FV50.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 0F N VF 00V NFN0.0- 0VF.0 05N0.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 0F F.F VF 00V 0000.0- 050.0 00V0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0F 0.F VF 00V VN00.0- 005.0 VOV0.N 05V0.0 0 0.0 00 0F 0.0 F FV.F 000 002 N F.F 0F 0.F VF 00V N000.V. 00V.0 0FOV.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 0F 0.F _VF 00V N000.V. 00V.0 0FOV.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F .F VF 00V 0000.V. 0VN.0 000FN 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 0F 0.F VF 00V 00FF.V. V5F.0 0000.N 05V0.0 0 00.0 00 0F 0.0 F FV.F 000 0000 N F.F 0F 0.F VF 00V NOVF.V. VOF.0 F000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 0F 0.F VF 00V 00N0.V. 050.0 0F00.N 05V0.0 0 00.0 00 0F 0.0 F FV.F 0000 0000 N F.F 0F F.F VF 00V N000.V. 005.0 0000.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 0F F.F VF 00V 000V.V. 00V.0 0000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 0F F.F F 0V 000V.V. 00V.0 0000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F F.F VF 00V 0N00.V. 0VN.0 5N00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0002 N F.F 0F F.F VF 00V 00F0.V. V5F.0 0V00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 0F F.F VF 00V 0000.V. VOF.0 000V.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0003 N F.F 0F F.F VF 00V Owowéwom 000w 000m. mo >>0 M5. mo: m... «E. 00”. m 00 >O< ..Q me On. n_>n_ ._.Q mo: ”00225200 .5000 10:... 10.... <._. 0.F—EMS.)— m x_n_zmn_n_< 132 00FF.F- 0VF.0 0000.5 05V0.0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 0F F.F NV 00V VO0V.F- 0VF.0 V0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 0F 0.F 0N 00V VOF0.F- 050.0 VFON0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F F F.F NV 00V 00N0.F- 00N.0FO0V0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 0F F.F 0N 00V 0V50.F- 005.0 0V00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 0F F.F NV 00V 0505.F- 00V.0 N000.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0009 N F.F 0F F.F NV 0V 0505.F- 00V.0 N000.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F F.F NV 00V V000.F- 00N.0FV500.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 003 N F.F 0F N VF 00V NN50.F- 0VN.0 F050.V 05V0.0 0 00.0 00 F 00.0 F FV.F 000F 0000F F.F 0F F.F NV 00V V000.F- V5F.0 VV5N.V 05V0.0 0 00.0 00 F 00.0 F FV.F 000 0000 N F.F 0F F.F NV 00V 00N0.F- VOF.0 505F.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0009 N F.F 0F F.F NV 00V 0000.F- 050.0 0F00.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0F 0.F 0N 00V VVVO.N- 005.0 VV00.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 003 N F.F 0F 0.F 0N 00V N50F.N- 00V.0 000N.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 0F 0.F 0N 00V N50F.N- 00V.0 000N.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F 0.F N 00V 0FVN.N- 0VN.0 0000.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 0F 0.F 0N 00V 005N.N- V5F.0 0V00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 0F 0.F 0N 00V NO0N.N- VOF.0 F0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 0F 0.F 0N 00V 000V.N- 0VF.0 0N00.0 05V0.0 0 0.0 00 0F 00.0 F FV.F 000F 002 N F.F 0F F.F 0N 00V VNOV.N- 00N.0FVF05.5 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 0F 0.F VF 00V VNF5.N- 0VF.0 VO0V.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 003 N F.F 0F N VF 00V 0050.N- 050.0 N000.0 05V0.0 0 00.0 00 F 0.0 F FV.F 0000 0000 N F.F 0F F.F 0N 00V N050.N- 00N.0F000N5 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 0F F.F VF 00V 0000.0- 005.0 0005.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 009 N F.F 0F F.F 0N 00V 0NVF.0- 00V.0 0VF0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 0F F.F 0N 00V 0NVF.0- 00V.0 0VF0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F F.F 0N 00V 00NN.0- 050.0 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0F N VF 00V V5NN.0- 0VN.0 05F0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0003 N F.F 0F F.F 0N 00V 000N.0- V5F.0 NOF0.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 0F F.F 0N 00V V05N.0- 005.0 VNOV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F OF N VF 0V 133 000V.0- N00.N 0000.F 5V0.0 00.0 00 0F 00.0 F FV.F 0000 0000 F.F 00 0.F VF 00V 0NV0.0- 0N0.F 0500.F 05V0.0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00 N VF 00V 0NV0.0- 0N0.F 0500.F 05V0.0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 N VF 00V 0N00.0- FFO.F 0000.F 05V0.0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00 0.F VF 00V 0550.0- 0FV.F 00V0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 0 F.F 0N 00V 0000.0- N00.N 550V.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00 F.F VF 00V 0000.0- 5V0.F 0FV5.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 F.F 0N 00V F5N0.0- 0FV.F NF05.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00 N VF 00V NV00.0- 55N.F FOV0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 00 F.F 0N 00V VV00.0- 00N.0FVON00 05V0.0 0 00.0 0 0F 00.0 F FV.F 0000 00F N F.F 0F 0.F 0N 00V VF00.0- FFO.F 000N.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00 F.F VF 00V 0000.0- 5V0.F 0N00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 N VF 00V 5000.0- 0N0.F FV000 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00 0.F VF 00V 5000.0- 0N0.F FV000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 0.F VF 00V 0000.0- 55N.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0009 N F.F 00 N VF 00V 0005.0- 0FV.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00 0.F VF 00V 0005.0- 050.0 00NF.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0F N N 00V NV05.0- 0N0.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00 F.F VF 00V NV05.0- 0N0.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 F.F VF 00V 0055.0- 5V0.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 0.F VF 00V 5000.0- 55N.F 005V.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 00 0.F F 00V 0NF0.0- 005.0 VON00 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 002 N F.F 0F N 0N 00V 00V0.0- 0FV.F V0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00 F.F VF 00V 0550.0- 5V0.F 505V.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 F.F VF 00V N000.0- 55N.F 0N50.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 00 F.F VF 00V FON0.0- 00V.0 0F000 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F OF N 0N 0V FON0.0- 00V.0 0F000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F N 0N 00V 0000.F- 0VN.0 000N.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0002 N F.F OF N 0N 0V 0000.F- V5F.0 000F.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F OF N 0N 00V N000.F- VOF.0 F0000 05V0.0 0 00.0 00 0F 0.0 F FV.F 000 0002 F.F OF N 0N 00V 134 FO0N.0- 0N0.F 5000.F 05V0.0 0 0.0 00 0F 0.0 F FV.F 0000 0009 N F.F 00 0.F 0N 00V FO0N.0- 0N0.F 5000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 0.F 0N 00V 050N.0- 0N0.F 00N5.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0003 N F.F 00F F.F VF 00V 050N.0- 0N0.F 00N5.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00F F.F F 00V VO0N.0- VV5.0 0VVV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00FN VF 00V 0000.0- 050.0 0050.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 00F F.F 0N 00V 0000.0- 0FV.F 0FFF.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00 F.F NV 00V N000.0- 00V.0 05VF.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0003 N F.F 0F 0.F V 00V N000.0- 00V.0 05VF.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 0F 0.F NV 00V 0VN0.0- N00.N 00N5.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 F.F 0N 00V 05N0.0- 050.0 NOV0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 00 0000F N F.F 00FN _VF 00V 0N00.0- VF0.0 0NOV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00F0.F 5VF 00V 0000.0- 5V0.F 0NFO.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 F.F NV 00V 2000- VV5.0 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00F0.F VF 00V N000.0- 55N.F FVF0.0 05V0.0 0 00.0 0 0F 00.0 F FV.F 000 0002 N F.F 00 F.F NV 00V 0050.0- N00.N 0050.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000 N F.F 00 N _VF 00V V0000- FFO.F VF00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 009 N F.F 00 F.F 0N 00V 5000.0- 0FV.F 0500.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0002 N F.F 0 0.F 0N 00V FN00.0- VF0.0 0NOV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00F F.F F 00V N000.0- 050.0 0VON.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0003 N F.F 00F0.F .VF 00V 0000.0- 0VN.0 0F000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 0F 0.F NV 00V 000V.0- 5V0.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 0.F 0N 00V 00FV.0- VV5.0 FV000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00F F.F VF 00V 0NN.V.0- V5F.0 0N050 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 0F 0.F NV 00V 50NV.0- FFO.F FNOV.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 009 N F.F 00 N VF 00V F50V.0- 55N.F NOV0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 00 0.F 0N 00V 000V.0- 050.0 VO0N.0 05V0.0 0 00.0 00 0F 0.0 F FV.F 000 0003 N F.F 00F F.F VF 00V NO0V.0- VOF.0 FV000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 0F 0.F NV 00V NO0V.0- 0N0.F 000F.F 05V0.0 0 00.0 00 F 00.0 F FV.F 0000 0009 N F.F 00 F.F 0N 00V NO0V.0- 0N0.F 000F.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000 N F.F 0 F.F 0N 00V 135 VO0F0- FFO.F N00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00 F.F NV 00V FFFFO- VF0.0 0005.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 00F 0009 N F.F 00F F.F NV 00V 00NF.0- N00.N 00N0.F 05V0.0 0 0.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00 0.F 0N 00V 00NF.0- 0VV.F FFNO.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00F F.F VF 00V 0VOF0- 0FV.F 0VON.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0009 N F.F 00 N 0N 00V VO0F0- 000.F 0N5F.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 00F F.F 00F0.F VF 00V 000F0- VV50 F0000 05V0.0 0 0.0 00 0F 00.0 F FV.F 000 0000 F.F 00F F.F NV 00V 00VFO- 050.0 0005.0 05V0.0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0F 0.F NV 00V 00VFO- VF0.0 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0002 N F.F 0F0.F 0N 00V 0NOF0- 0N0.F VV00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0002 N F.F 00F F.F 0N 00V 0NOF0- 0N0.F VV00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00F F.F 0N 00V 0NOF0- 5V0.F 000F.F 05V0.0 0 000 00 0F 00.0 F FV.F 00 0000 F.F 00 N 0N 00V 050F0- 050.0 V0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 00F F.F NV 00V N05F0- VV5.0 F0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00F0.F 0N 00V 000F0- FFO.F 00N5.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00 0.F 0N 00V 5VOF0- 000.F 50NF.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00F F.F F 00V 000F0- 0N0.F 000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0002 N F.F 00FN VF 00V 000F0- 0N0.F 5000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00FN VF 0V 500F0- 55N.F 0000.F 05V0.0 0 00.0 00 F 00.0 F FV.F 000 0002 N F.F 00 N 0N 00V 000F0- 005.0 VNV0.0 05V0.0 0 000 00 0F 00.0 F FV.F 000 000F N F.F 0F 0.F NV 00V VVON0- 050.0 VO0V0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 00F0.F 0N 00V NNNNO- 0N0.F 050V.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0009 F.F 00 F.F NV 00V NNNNO- 0N0.F 050V.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 F.F NV 00V 00VNO- VF0.0 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0003 N F.F 00F F.F 0N 00V NOVNO- 0N0.F F0550 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00F0.F VF 00V NOVNO- 0N0.F F0550 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 0000 F.F 00F0.F VF 00V VOVNO- 0VF.0 V0005 05V0.0 0 00.0 0 0F 00.0 F FV.F 000F 00F N F.F OF N N 00V 0VON0- 00N.0F00000 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 0F F.F NV 00V NF5N0- VF0.0 00V0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0002 N F.F 00FN VF 00V 0V5N0- VV5.0 000V0 5V0.0 0 00.0 00 0F 00.0 F FV.F 000 000 N F.F 00F F.F 0N 00V 136 0000.0 000.F 5V00.F 05V0.0 0 00.0 00 F 00.0 F FV.F 000 00F N F.F 00F F.F NV 00V 0050.0 0N0.F 0005.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00 0.F NV 00V 0050.0 0N0.F 0005.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 0.F NV 00V F0000 FFO.F 0V50.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 002 N F.F 00 N 0N 00V 0000.0 0N0.F F000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00FN 0N 00V 0000.0 0N0.F F000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00FN 0N 00V VOV00 000.F 5500.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 003 N F.F 00F0.F 0N 00V 0000.0 VF0.0 0F000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0003 N F.F 00F0.F NV 00V FFF00 FN0.0 0N00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 0 0.F _VF 00V 0000.0 VV5.0 0N050 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00F0.F NV 00V N5000 0VV.F 000V.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00F F.F 0N 00V FFF00- 0FV.F N50V.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0002 N F.F 00 0.F NV 00V V5F00- 0VV.F 0FOV.F 05V0.0 .0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00FN VF 00V 00F00- 050.0 NV00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0003 N F.F 00F0.F NV 00V 0VN0.0- VF0.0 0005.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 00F 0009 N F.F 00FN 0N 00V 00N0.0- 0N0.F 0000.0 05V0.0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00F F.F V 00V 00N0.0- 0N0.F 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000 N F.F 00F F.F NV 00V 00000- 5V0.F 0000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 00 0000 N F.F 00 0.F NV 00V NOV00- 000.F NO0N.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 002 N F.F 00F F.F 0N 00V 50V00- 0N0.F F000.F 05V0.0 0 000 00 0F 00.0 F FV.F 0000 0000F N F.F 00 N 0N 00V 50V00- 0N0.F F000.F 05V0.0 0 000 00 0F 00.0 F FV.F 000F 0000 N F.F 00 N 0N 00V 0N00.0- N00.N 0000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 F.F 00 F.F NV 00V 0000.0- VV5.0 0F000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00FN 0N 00V V0000- 0N0.F 0N00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00F0.F 0N 00V V0000- 0N0.F 0N00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00F0.F 0N 00V 0500.0- 55N.F 000N.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 00 0.F NV 00V 0050.0- 000.F 0VON.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00FN VF 00V 0050.0- 0VV.F 0050.F 05V0.0 0 00.0 00 F 00.0 F FV.F 0000 0000 N F.F 00F0.F VF 00V NF00.0- 050.0 0N00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0003 N F.F 00FN 0N 00V V5000- FN0.0 0VON.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 00F N F.F 0 F.F VF 00V 137 V05V0 0VV.F 5VNO.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00FN NV 00V 5VOV0 FN0.0 V0550 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 00 F.F NV 00V FOVVO 0N0.F 0N50.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0002 N F.F 00 N NV 00V FOVVO 0N0.F 0N50.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00 N NV 00V 00NVO 0F5.N 00VF.0 05V0.0 0 000 00 0F 00.0 F FV.F 000F 003 N F.F 00F0.F VF 00V 00FV.0 000.F 05N5.F 05V0.0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00FN NV 00V 5000.0 FN0.0 0N05.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 002 N F.F 00 0.F 0N 00V 0050.0 0F5.N 5500.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 002 N F.F 00F F.F VF 00V 05000 0VF.0 VOF0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 0F 0.F NV 00V 0000.0 0FV.F 0055.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00 N NV 00V 0000.0 5V0.F F050.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 N NV 00V N000.0 0N0.F 0N00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0009 N F.F 00FN NV 00V N000.0 0N0.F 0N00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00FN NV 00V FN00.0 55N.F V050.F 05V0.0 .0 00.0 00 0F 00.0 F FV.F 000 0002 N F.F 00 N NV 00V 000N.0 0VV.F 0005.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00F0.F NV 00V 5NVNO N00.N 000N.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00 0.F NV 00V NVON0 000.F 0NVO.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 00F0.F NV 00V 00NNO 0VV.F 0050.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0FN 0N 00V 0FNNO VF0.0 V000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000F N F.F 00FN NV 00V VO0F0 VV5.0 5500.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 00FN NV 00V 000F.0 FFO.F F000.N 05V0.0 0 000 00 0F 00.0 F FV.F 000 000F N F.F 00 0.F NV 00V 000F.0 FN0.0 V0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 00 F.F 0N 00V 0N5F0 000.F 000V.F 05V0.0 0 00.0 00 0F 0.0 F FV.F 000 000F N F.F 00FN 0N 00V NO0F0 050.0 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0009 N F.F 00FN NV 00V 5NVFO 0VV.F FN00.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00F F.F NV 00V 0VOF0 FN0.0 FO0V.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 00 N VF 00V VFNFO 0N0.F 55VF.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 00F0.F NV 00V VFNFO 0N0.F 55VF.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0000 N F.F 00F0.F NV 00V 00FFO N00.N 0N5F.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00 N 0N 00V 000F.0 0VV.F F000.F 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 00F0.F 0N 00V 138 000V.F 000.V 0N0.0 5V0.0 0 00.0 00 F 00.0 F FV.F 0000 009 N F.F 00F F.F NV 00V F05V.F 00V.0 0000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 009 N F.F 00 N 0N 00V VO0V.F 000.V 5NON.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 00F0.F 0N 00V 0VOV.F 0VN.0 0000.5 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 0003 N F.F 0F N NV 00V FONV.F V5F.0 0000.5 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 N F.F 0F N NV 00V 0500.F VOF.0 FN00.5 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000F N F.F 0F N NV 00V 0000.F 000.V NVOF.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 003 N F.F 00F F.F 0N 00V N000.F 000.V 000F.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 009 N F.F 00F N _VF 00V 5000.F 00V.0 V5050 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 00 F.F NV 00V 0V5N.F 000.V 050F.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00F0.F F 00V 50NN.F 00V.0 0000.0 05V0.0 0 00.0 00 0F 0.0 F FV.F 0000 000F N F.F 00 0.F 0N 00V 00NN.F 000.V 5000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 009 N F.F 00F F.F VF 00V 50FN.F 00NOF 55V.FF05V00 0 00.0 00 0F 00.0 F FV.F 0000 003 N F.F 0F 0.F NV 00V 00FF.F FN0.0 5FVV.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 002 N F.F 00 NV 00V 00N0.F 00V.0 VO0V.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00 F.F 0N 00V 0000.0 0F5.N 0F05.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F F.F 00FN V 00V 0000.0 00V.0 F5FV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00 N F 00V F5000 00V.0 000N.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00 0.F VF 00V N0050 0F5.N 00F0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 00F0.F NV 00V 0005.0 00V.0 000F.0 05V0.0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00 F.F .VF 00V 0005.0 FN0.0 FN50.V 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 002 N F.F 00 0.F NV 00V 0005.0 0F5.N 0VOV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 00FN 0N 00V 0000.0 0F5.N 5000.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 002 N F.F 00F F.F NV 00V F5N00 FN0.0 00V0.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 003 N F.F 00 N 0N 00V VOF00 0F5.N 5F00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 003 N F.F 00F0.F N 00V 0NF00 N00.N F000.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 0000 F.F 00 N NV 00V 5500.0 00NOF F000F05V00 0 000 00 0F 00.0 F FV.F 0000 000F N F.F F N 0N 00V 0000.0 FFO.F 550V.N 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 002 N F.F 00 N NV 00V 0VF0.0 0F5.N NO0N.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 00F F.F 0N 00V NO0V0 0F5.N 000N.0 5V0.0 0 00.0 00 0F 00.0 F FV.F 000F 002 N F.F 00F N VF 00V 139 5550 .8555 E58555 558:8 5.555555 ”0000 55.0 .55. 55 85. 55555.5 00 558:585835E 558:8 5.555555 55:8. 8 55555: 5E: ”0.F 55:0 .85: 555. mm... 5555 5.55:5 5 55:53.50 ”00”. 55._E 55:85.5 55555 ”00 5555 .55. 558:55 50 55858855 55:58 5.55 ”On. 5555 .55. 5.555 5.0 5550 .858 E8555 558:8 5.55585: ”0000 555E855. 8:053 558:8 H>>o 558:80 558:8 5.555555 .5 858 5:: ”mo: 558:585835E 5:558:55 5.55::85: 5.5:5: 8 55555: 5E: Hm..- 5._E0 .85: 5055..E 0.2 555555 .5055: 5555 5055>5 ”>04. 85: E5E:5.:5.58 558:55 ”000 .858 5E:.o> x555 ”...>n. 558:80 558:8 5.55585: 5 8555 5:: ”mo: 5F00.0 00NOF 0N0.0F05V00 0 00.0 0 0F 00.0 F FV.F 000 00F N F.F 0F N NV 00V 50FN.N 0VF.0 V000F05V00 0 00.0 00 0F 00.0 F FV.F 000F 000F N F.F 0F N NV 00V 0000.F 00V.0 5NOV.5 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00 N NV 00V 00N0.F 000.V 0N00.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00F N NV 00V F005.F 050.0 0500.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000 N F.F 0F N NV 00V 5F00.F 005.0 V0000 05V0.0 0 00.0 00 0F 00.0 F FV.F 000 000F N F.F 0F N NV 00V NVVO.F 000.V 055V.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 00F0.F V 00V 0000.F 00V.0 F0005 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 002 N F.F 0 0.F NV 00V 0N00.F 000.V 00FV.0 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 000F N F.F 00F N 0N 00V 0000.F 00V.0 0000.5 05V0.0 0 00.0 00 0F 00.0 F FV.F 0000 0000F N F.F 0F N NV 00V 0000.F 00V.0 0000.5 05V0.0 0 0.0 00 0F 00.0 F FV.F 000F 000 N F.F OF N NV 0V 140 BIBLIOGRAPHY BIBLIOGRAPHY Andel, T. 1995. “Conversion to Returnable Wins Believers." Transportation & Distribution. Vol. 36, No. 9,: 94. ---------- . 1993. “The Environment's right for a packaging plan.” Transportation & Distribution. Vol. 34, No. 11: 66-74. Auguston, K. 1995. “A Selection Guide to Returnable Containers.” Modem Material Handling. Vol. 50, No. 13: 42-43. ---------- . 1993. “Reduce Packaging Costs with Resuable Containers.” Modem Material Handling. Vol. 47, No. 2: 14. Ballou, HR. 1998. Business Logistics Management: Planning, Organizing, and Controlling the Supply Chain. New Jersey: Prentice Hall Block, OS. 1999. A Returnable Container System for Medical Device Components. Thesis. Michigan State University, The School of Packaging, East Lansing, Michigan. Bowersox, D.J. and Closs D.J. 1996. Logistical Management: The Integrated Supply Chain Process. McGraw-Hill, lnc., New York, New York. Cozart, T. 1997. “Economic Justification of Returnable Containers.” Proceedings of Current Issues in Retumabie Packaging Conference, East Lansing, MI. Findlay, R. 1997. “Costs for Corrugated and Reusable Plastic Shipping Containers for the Ontario Fresh Produce Industry.” Proceedings of Current Issues in Returnable Packaging Conference, East Lansing, MI. “How to Select Shipping Containers.” 1991. Buckhom, |nc., Milford, Ohio. Huettner, K. 1998. “Packaging: A Key Element of Supply Chain Management.” Packaging Technology & Engineering. Vol. 31, No. 6: 13-18. 142 Karen, AF. 1997. “Ford Windsor Saves Millions with Returnable Containers." Modern Material Handling. Vol. 52, No. 10: 42-45. Kibler, SE. 1997. Retumable/Reusable Logistical Packaging: A Decision Support Framework and Modular Fumiture Case Study. Thesis. Michigan State University, The School of Packaging, East Lansing, Michigan. Kopicky, R.J., Berg, M.J., Legg, L., Dasappa, V. and Maggioni, C. 1993. Reuse and Recycling: Reverse Logistics Opportunities. Council of Logistics Management, Oak Brook, IL. Meagher, D. 1998. “Getting Control of Returnable Container System." Proceedings of Current Issues in Returnable Packaging Conference, East Lansing, MI. Melnyk, SA. and Denzler, DR. 1996. Operations Management: A Value-Driven Approach. Von Hoffmann Press, Inc. National Solid Waste Management Association. 1992. “The Cost to Recycle at a Materials Recover Facility," Washington, DC. Pashall, RM. 1986. “Returnable Container Systems boost handling economy.” Modem Material Handling. Vol 41, No. 12; 74-75 -------- -. 1986. “Returnable Containers Save Automakers over $20 Million.” Modem Material Handling. Vol. 41, No. 12: 76-78. Rosenau, V.W, Twede, D, Mazzeo, AM, and Singh, PS. 1996. “Returnable/Reusable Logistical Packaging: A Capital Budgeting Investment Decision Framework.” Journal of Business Logistics. Vol 17, No.2, 139-164. Saphire, David. 1994. “Delivering the Goods: Benefits of Reusable Shipping Containers.” INFORM. Stock, JR. 1992. Reverse Logistics. Council of Logistics Management. Oak Brook, IL. 143 Trunk, C. 1995. “Reusable Containers Blast Off for Manufacturing.” Material Handling Engineering. Vol. 50, No. 3: 57. ---------. 1993. “Making Ends Meet with Returnable Plastic Containers.” Material Handling Engineering. Vol 48, No. 10: 79-85. Turvey, H. 1998. “Spreadsheet Analysis of Packaging Alternatives.” Proceedings of Current Issues in Returnable Packaging Conference, East Lansing, MI. Twede, D. 1999. “Current Issues in Returnable Packaging." Proceedings of 11th I IAPRI (The International Association of Packaging Research Institute? World Conference on Packaging: Challenges of Packaging in the 215 Century, Singapore. -------. 1995. “Less Waste on The Loading Dock: Competitive Strategy and The Reduction of Logistical Packaging Waste." Working Paper #2: Program on Solid Waste Policy. School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut. Witt, CE. 1994. “Ford Clix with Hot Six.” Material Handling Engineering. Vol 49, No. 8: 34-38. -------. 1986. “Oldsmobile Cuts Cost, Reduces Handling with Returnable Containers.” Material Handling Engineering. Vol. 41, No. 4: 81-85. ---.---- 1993. “Returnable distribution packaging saves money.” Material Handling Engineering. Vol. 48, No. 2: 14. Wiersema, W.H. 1995. Activity based management. New York: American Management Association. 144 I'IICHIGQN STRTE UNIV. LIBRQRIES lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 31293020604082