

THESIS

This is to certify that the

thesis entitled

DEVELOPMENT OF A MICROSATELLITE MARKER PANEL FOR GENOTYPING MICHIGAN WHITE-TAILED DEER

presented by

Laurie Ann Molitor

has been accepted towards fulfillment of the requirements for

M.S. degree in Criminal Justice

MSU is an Affirmative Action/Equal Opportunity Institution

O-7639

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	D. 4555 D. 155	T
DATE DUE	DATE DUE	DATE DUE
	,	
		_

11/00 c:/CIRC/DateDue.p65-p.14

DEVELOPMENT OF A MICROSATELLITE MARKER PANEL FOR GENOTYPING MICHIGAN WHITE-TAILED DEER

By

Laurie Ann Molitor

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

School of Criminal Justice

1999

impoo of ide In for chara poten to quarte docum reacti marke of ger

individ

tailed.

one ele

 all_{0W11}

have a

inbreed

D

ABSTRACT

DEVELOPMENT OF A MICROSATELLITE MARKER PANEL FOR GENOTYPING MICHIGAN WHITE-TAILED DEER

By

Laurie Ann Molitor

Deoxyribonucleic acid (DNA) microsatellite markers are becoming an increasingly important tool for uniquely identifying individuals. Forensic scientists face the challenge of identifying individuals to the exclusion of all others with a high degree of probability. In forensic wildlife cases, it is necessary to identify the animal involved in the crime by characterizing genetic variability among the species in order to obtain high exclusion potential. Wildlife animals are being poached and illegally imported at a rate too difficult to quantify because the suspect is rarely caught red-handed and there is very little documented data about the poaching problem. With the advent of polymerase chain reaction (PCR) and fluorescent detection methods, amplification of DNA microsatellite markers for identification purposes in forensic science is becoming a widely used method of genetic typing. The hypervariability of microsatellites with their widespread distribution and high abundance in the genome allows for genetically typing an individual. Three highly polymorphic loci were found in this study of Michigan whitetailed deer and were multiplexed together in one PCR assay and run simultaneously in one electrophoretic lane of an Applied Biosystems, Inc. (ABI) 377 DNA Sequencer, thus allowing for increased speed and low cost of analysis. The benefits of this study will have a positive impact on our ability to enforce wildlife laws, derive estimates of inbreeding within the population and assist in wildlife management strategies.

Mic

this

and

Chri

sugg

statis

vaiua

Oncoj

F

for the

patient

ACKNOWLEDGEMENTS

I would like to thank Dr. Paul Coussens from the Department of Animal Science at Michigan State University for his guidance and assistance throughout the completion of this research project, and the Department of Natural Resources (DNR) and the U.S. Fish and Wildlife Service for funding this research project.

I would like to thank the committee members: Dr. Jay Siegel, Dr. Frank Horvath, Dr. Christina DeJong and Dr. Charles Barna for their time and effort reviewing and providing suggestions concerning this research project.

I would like to thank Dr. Kim Scribner and Dr. Robert Tempelman for their statistical expertise and Dr. Hsiao-Ching Liu and Dr. Christiane Hansen for sharing valuable knowledge and advice related to this research project.

Finally, I would like to thank Dr. Hans Cheng from the USDA Avian Disease and Oncology Laboratory in East Lansing for the use of his laboratory equipment, necessary for the completion of this research project, and my friends for supporting and being patient with me during the completion of this master's thesis.

TABLE OF CONTENTS

LIST OF TABLES	٠.٧
LIST OF FIGURES	.vi
NONTECHNICAL SUMMARY	.1
INTRODUCTION	.3
HISTORY OF "TYPING" TECHNOLOGY AND LITERATURE REVIEW	.6
METHODOLOGY4	43
FINDINGS5	51
DISCUSSION10)7
FUTURE DIRECTIONS11	8
APPENDICES	
Appendix A – Agarose Gel Preparation Procedure12	
Appendix B – Tissue Extraction Procedure	
Appendix C – Acrylamide Gel Preparation Procedure	
Appendix D – Multiplex PCR Protocol	10
REFERENCES13	32
BIBLIOGRAPHY14	1 1

Table

Table
Table

Table

Table

LIST OF TABLES

Table 1 -	Comparison of markers, techniques and methods of detection42
Table 2 -	Characteristics of the microsatellite markers used in this study45
Table 3 -	Amount of each component for a 25uL PCR46
Table 4 -	PCR thermocycler temperature programming
Table 5 -	Initial screening results in base pairs from an ABI 377 of eight markers using random deer samples
Table 6 -	Allelic data for the nine pedigreed white-tailed deer families from Figure 14
Table 7 -	Michigan white-tailed deer database69
Table 8 -	Summary data for all 450 sampled Michigan white-tailed deer96
Table 9 -	Statistical data testing Hardy-Weinberg equilibrium of Michigan white-tailed deer population subdivided into four regions of Michigan97
Table 10 -	Southern Michigan lower peninsula white-tailed deer data
Table 11 -	Northern Michigan lower peninsula white-tailed deer data
Table 12 -	Michigan upper peninsula white-tailed deer data102
Table 13 -	North East Michigan lower peninsula white-tailed deer data103
Table 14 -	North West Michigan lower peninsula white-tailed deer data104
Table 15 -	Frequency of alleles for each marker in the four regions of Michigan105
Table 16 -	F _{st} and Chi-Square values from comparing the frequency of alleles in the four regions of Michigan

Fig Fig Figi Figi Figu Figu Figu Figur Figu Figur Figu Figur Figur Figur

Figur

Figur

Figur

Figure

LIST OF FIGURES

Figure 1 -	Schematic diagram of polymerase chain reaction amplification	.20
Figure 2 -	Schematic diagram representing the fluorescent intensity of alleles differing by one repeat unit of a dinucleotide microsatellite marker	-
Figure 3 -	DNA quality of previously extracted genomic DNA samples	52
Figure 4 -	Additional genomic DNA samples previously extracted showing highly variable DNA quality	53
Figure 5 -	Comparison of genomic DNA samples extracted using two different lysis buffer and enzymes.	54
Figure 6 -	Agarose gel of marker: JP15	56
Figure 7 -	Agarose gel of marker: CSN3	56
Figure 8 -	Agarose gel of marker: IRBP2	57
Figure 9 -	Agarose gel of markers: CRFA and FCB304	57
Figure 10 -	Agarose gel of markers: IGF1 and OBCAM	58
Figure 11 -	Agarose gel of marker: JP23	58
Figure 12 -	Heterozygosity of eight markers screened on twenty random deer samples	61
Figure 13 -	Graphical representation of the degree of polymorphism for the three selected markers screened on twenty random deer samples	52
Figure 14 -	ABI gel file containing nine pedigreed white-tailed deer families	65
Figure 15 -	Example of an ABI gel file containing fifty samples with the three multiplexed markers	67
Figure 16 -	Example of ABI electropherograms of five samples from Presque Isle	68
Figure 17 -	Heterozygosity of the three microsatellite markers for Michigan white-tailed Deer	
Figure 18 -	Graphical representation of IGF1 alleles in the database) 1

Fi

Fi

LIST OF FIGURES (CONT'D)

Figure 19 - Graphical representation of CRFA alleles in the database	92
Figure 20 - Graphical representation of OBCAM alleles in the database	93

pos

illeg

shoo

poa

relia

evid

typii

taile mate

the n

posse

exclu

deve! by ma

wildli

T

ind_{ivio}

suspec

NONTECHNICAL SUMMARY

Poaching, as defined by the Colorado Division of Wildlife, is the illegal taking or possession of any game, fish or non-game wildlife (Zumbo, 1999). Poaching entails the illegal hunting of wildlife on other people's property, taking wildlife out of season or shooting more than the amount allowed. With any violation of poaching, the cost of these poaching crimes is well into the billions (Zumbo, 1999). Wildlife animals are being poached and illegally imported at a high rate and presently there is no economical, reliable, sensitive or time-efficient method of providing critical evidence linking evidentiary samples to an individual unless apprehended "red-handed".

The objective of this study is to develop a practical, economical, time-efficient DNA typing system for wildlife forensic scientists to utilize for individualizing forensic white-tailed deer evidence. In forensic wildlife cases it is most usual to "match" evidentiary material to material in the possession of the suspect (i.e. the gut pile at the crime scene to the meat in the suspect's freezer or a drop of blood from the deer in the suspect's possession). Forensic scientists face the challenge of identifying individuals to the exclusion of all others with a high degree of probability or with utmost certainty. To develop a DNA typing system that can positively place a suspect at the scene of a crime by matching two separate deer samples provides a powerful law enforcement tool for wildlife officials.

Three regions of the deer's DNA were found to be highly variable between individuals and in combination could distinguish an innocent suspect from a guilty suspect with an extremely high degree of probability. That is, there is almost 100 percent

cer

sus

me

wil

dev

enf

(pre

a su

mon

estat

is ver

There

after 1

the fu

accura

certainty that the evidence at the crime scene can be matched to the evidence in the suspect's possession. With the commission of any crime there needs to be a definitive method of placing the suspect at the scene of the crime and the DNA typing system developed in this project can do just that. This DNA typing system is a powerful tool for wildlife forensic scientists to utilize to match evidence samples and will assist law enforcement officers in enforcing wildlife laws and convicting poachers.

The benefits of having this DNA typing system are twofold in that of deterrence (prevention before the act of the crime) and of enforcement (conviction after the act of the crime). The enforcement of wildlife laws can immediately benefit by being able to place a suspect at the scene of the crime. The effect of deterrence is not so obvious because monitoring the effect of something not happening is hard to do unless a solid database is established to monitor and evaluate the numbers. According to Jim Zumbo (1999) there is very little data about poaching and the data is not being collected using universal criteria amongst organizations or agencies. The data can thus not be evaluated accurately. Therefore, the goal of this DNA typing system is to assist in the conviction of poachers after they commit the crimes and to prevent or deter criminal activity from occurring in the future. A future goal would be to establish a universal database from which an accurate evaluation of the deterrent effect can be achieved.

other

analy

the o

sunli

degra

to no

inclu

can b

turn.

suspe

1

DNA

exten

degra

specif

Potent

ı

molec

even p

P(

INTRODUCTION

Forensic scientists face the challenge of identifying individuals to the exclusion of all others with a high degree of probability. Evidence found at a crime scene is not always in the optimal condition for many traditional scientific assays. Many samples collected for analysis have been exposed to environmental insults, such as extreme temperatures, sunlight or moisture, which degrade the biological components. Typically proteins degrade rapidly while DNA may be more stable for use in several techniques.

Traditional serological techniques utilizing antigens, proteins or enzymes are limited to non-degraded samples and produce results with limited statistical probability of inclusion. Techniques using these biochemical markers are easy to perform and results can be scored unambiguously however, they are limited in their allelic variation which, in turn, lowers the statistical probabilities associated with matching the evidence to the suspect or victim.

Traditional restriction fragment length polymorphism (RFLP) technique utilizing DNA is also limited to non-degraded samples. This technique, while still being used extensively, is limited to the use of high quality DNA. Evidence samples containing non-degraded DNA are analyzed by this technique, which result in a unique "individual-specific" DNA profile. The RFLP technique has one of the highest discriminatory potentials and probability of inclusion between evidence and suspect amongst all the molecular biology DNA testing technologies.

PCR technology has superseded RFLP with its' ability to analyze very small and even partially degraded DNA isolated from environmentally challenged evidence

evid spec tech high

sam

micr

I

obtair

discr

freeze geneti

discri

fluores

assistii

poache

reliable

evident of mode

crimina

The

ubing 21

tailed dec

microsate

samples. This technique is performed utilizing minute quantities of DNA recovered from evidentiary material, amplified in repetitive cycles of denaturation, hybridization with specific primer pairs and extension to create an exponential amount of target DNA. PCR technology amplifying microsatellite markers with fluorescent detection results in a highly powerful discriminatory tool for identification purposes. Combining several microsatellite markers in a single analysis has allowed this technology to approach the discriminatory potential and probability of RFLP technology.

In forensic wildlife cases it is most usual to "match" evidentiary material to material obtained from the suspect (i.e. the gut pile at the crime scene to the meat in the suspect's freezer). Matching evidentiary and suspect derived samples requires characterizing genetic variability among the species in order to find DNA regions that offer high discriminatory potential. The use of PCR amplifying microsatellite DNA markers and fluorescent detection is a strong combination for such a matching process and thus, assisting law enforcement officials in enforcing wildlife laws. Wildlife animals are being poached and illegally imported at a high rate and presently there is no economical, reliable, sensitive or time-efficient method of providing critical evidence linking evidentiary samples to an individual unless apprehended "red-handed". The application of modern molecular biology techniques to DNA testing will help reduce the chance a criminal will evade conviction.

The objective of this study is to develop a practical, economical, time-efficient DNA typing system for wildlife forensic scientists to utilize for individualizing forensic white-tailed deer evidence. This involves the development of a panel of highly polymorphic microsatellite markers among the Michigan white-tailed deer population. Microsatellite

m

th se

of

(ca

the

each poin

requ

order

proba

exhib

multip
ABI 3

markers must show genetic diversity within the population in order to uniquely identify the individual and have high exclusion potential with regards to the evidence. The use of several highly polymorphic markers is necessary to achieve a high degree of probability of a match between the individual and the evidence.

To arrive at this DNA typing system, eight microsatellite markers from bovine (cattle), ovine (sheep) and cervine (deer) origin were used to amplify DNA from a representative sampling of Michigan white-tailed deer to assess genetic diversity among the population. The sampling population consisted of five random deer samples from each of 83 counties and two islands in Michigan. The database thus contains 850 data points per marker providing a large database for probability estimates. These estimates require a determination of the frequency with which alleles occur in the population in order to individualize a sample and match it to evidentiary material with a high degree of probability. Of the eight markers tested, three were found to be highly polymorphic and exhibit high heterozygosity (i.e. > 70 %). In combination, these markers were able to be multiplexed together in one PCR and run simultaneously in one electrophoretic lane of an ABI 377 DNA Sequencer.

Ser

leve.

anti

grou

the A

inher

Levir

disco

betwe

perfor

reaction

Each (

acid pi

E

transfe:

agarose

1955 (3

based o

the prot

HISTORY OF "TYPING" TECHNOLOGY AND LITERATURE REVIEW

Serological Typing Techniques

The beginning of human identification was established by using red blood cell antigen typing systems in order to facilitate disputed paternity cases at the biochemical level, with the following chronology listed in Melvin *et al.* (1988). The ABO blood group system discovered by Karl Landsteiner in 1901 was the start to resolving questioned paternity cases. Rubin Ottenberg in 1921 performed family studies applying the ABO typing system to paternity problems with the knowledge of Mendelian inheritance from von Dungern and Hirschfeld in 1911. Then in 1927, Landsteiner and Levine discovered another blood group system MN and in 1937 Landsteiner and Wiener discovered the Rh system. Several other red cell antigen systems were discovered between 1945 and 1965 given the names Kell, Kidd and Duffy. These systems are performed by immunological testing of allozymes using standard hemagglutination reactions of the antigen on the surface of the red blood cell to an antibody to the antigen. Each of these systems identifies between three and nine different phenotypes.

Electrophoretic separations of red blood cell isoenzymes (e.g. phosphoglucomutase, acid phosphatase, adenylate kinase and adenosine deaminase) and serum proteins (e.g. transferrin, haptoglobin and properdin factor B) through a medium (cellulose acetate, agarose, starch or acrylamide) under a constant applied electric field were developed in 1955 (Melvin *et al.*, 1988). This technology has allowed for the separation of proteins based on their electrical charge properties, and are detected by an enzymatic reaction to the protein or by staining of the protein using colored dyes. Isoelectric focusing

tattophoresi nier 10 separ poblems. Al kowing a his Gmes coding and show hig population (N These bi and enzymes providing exc can be scored variation (w) products, wh concerned w antigenicity. therefore nu components different m not disting testing ass codes for : biologica In additic

electrophoresis using a continual and linear pH gradient was developed in the 1970's in order to separate proteins with increased resolution and decreased electrophoretic problems. Also developed in the 1970's was the human leukocyte antigen (HLA) system showing a higher degree of polymorphism compared to previously mentioned systems. Genes coding for the HLA antigens reside at four loci and thus, exhibit high variability and show high exclusion potential due to the low frequency of allelic variants in the population (Melvin *et al.*, 1988).

These biochemical methods of differentiating individuals using antigens, proteins and enzymes are very powerful tools in identifying differences between individuals and providing exclusionary information. These techniques are easy to perform and the results can be scored unambiguously. However, they are systems limited in both their allelic variation (which limits the statistical probability of inclusion) and their use of protein products, which invariably degrade over time. Antigen-antibody systems have to be concerned with the intensity of the reaction due to loss of antigen in the sample or weak antigenicity. Proteins and enzymes are not stable molecules and thus are denatured easily therefore null results can be misleading from the testing of samples using these biological components. Contamination from mixed samples and rare cross reactivity between different marker systems may also produce erroneous results. Immunologic assays can not distinguish between all variations in amino acids and are not as sensitive as DNA testing assays. DNA is highly stable, can be isolated from both living and dead cells and codes for the synthesis of these secondary by-products using an exact blueprint for all the biological components necessary for building and maintaining the life of the organism. In addition, every nucleated cell in the body contains the same genetic "blueprint".

Tı

of

hз

<u>A</u>]

at t

Кга

•

.

)

li

S¢

This is

discove

biology.

Traditional serologic testing has been revolutionized by the use of DNA testing. The use of DNA is by far more preferred because the code itself is being tested and the results have greater discriminatory power.

A Brief History of DNA Advancements

While advances at the protein level were continuing to expand, so were the advances at the DNA (deoxyribonucleic acid) level according to the following chronology listed in Krawczak and Schmidtke (1994).

- In 1944 Avery and co-workers discovered that DNA is the genetic material, the "blueprint of life" and is in every nucleated cell of all living organisms.
- In 1953 Watson and Crick proposed a model for the structure of DNA.
- In 1961 Nirenberg and Matthaei deciphered the genetic code.
- In 1970 Arber, Nathans and Smith discovered restriction enzymes which cut DNA at specific sites.
- In 1972 Berg and co-workers developed molecular cloning of DNA.
- In 1977 Sanger and co-workers developed methods for sequencing DNA.
- In 1979 E.M. Southern developed a method of transferring single-stranded DNA fragments to a more permanent membrane called Southern blotting.
- In 1985 Kary Mullis and co-workers at Cetus discovered the amplification of DNA segments by PCR.

This is only a partial list of the contributions to science since the beginning of DNA discovery in 1944. The applications of these key contributions to the field of molecular biology will be discussed in this chapter, but for now a discussion of DNA is necessary.

cyto

this is mainta

purine

but on

base pa of nucle

.

instruct

DNA Structure

DNA is a long polymer comprised of four subunits, adenine (A), guanine (G), cytosine (C) and thymine (T) found in all nucleated cells. DNA encodes all information necessary for the primary structure of proteins and thus helps direct the necessary life processes of an organism. DNA subunits called nucleotides are classified into two groups, the purines are adenine and guanine and the pyrimidines are cytosine and thymine, with each nucleotide containing a phosphoric acid group, a deoxyribose sugar and a nitrogenous base. Both purines and pyrimidines are heterocyclic, flat, planar molecules with the purines having a double ring structure and the pyrimidines having a single ring structure which allows the bases to stack one on top of each other. Each nucleotide is joined together by their sugar and phosphate groups forming a repeating backbone of sugar-phosphate-sugar-phosphate, etc. along each strand of DNA. Two strands make up the double stranded DNA molecule which are antiparallel to each other and are hydrogen bonded together by adjacent nucleotides on opposite strands. The purine (A) on one strand will always bind to the pyrimidine (T) on the other strand and this is called a base-pair, as with (C) to (G) according to Chargaff's rule in order to maintain a stable DNA molecule. Therefore, each strand is complementary to the other but oriented in opposite directions along the duplex helical molecule. This specificity of base pairing allows for the storage and transfer of genetic information based on the order of nucleotides in each strand of DNA. The DNA sequence specifies the exact genetic instructions required to create a totally unique organism.

D

ge

nu

nec

reg

me mo

disp

com

none

whic

the g

Repe

no fu

the rep

Intersp

iandem

of the g rich reg

Alu I res

(SINE).

DNA Classification

DNA can be put into three classes based on the function and characteristics of the nucleotide sequence. The first and smallest class, comprising only about 3% of the total genome, contains the unique sequences that are rarely repeated, representing the coding regions for genes (Frank, 1997). These sequences carry the genetic information necessary for the synthesis of proteins required for building and maintaining the metabolic processes in an organism. The next class contains sequences, which are moderately repeated at least 1,000 times, are located adjacent to unique DNA and are dispersed throughout the genome. These gene-related sequences for the RNA components of ribosomes, such as tRNA and rRNA, along with histones are considered noncoding DNA (Lindquester, 1997). The last class contains highly repetitive sequences, which are repeated thousands to even millions of times and are found in certain regions of the genome.

Repetitive DNA

This repetitive or noncoding DNA, often referred to as 'junk' DNA because it serves no function in protein synthesis, can be further classified into groups based on whether the repeat sequences are situated in tandem or interspersed within the genome.

Interspersed elements are single units dispersed throughout the genome, usually not in tandem, but occur hundreds to thousands of times within the untranslated intronic regions of the genome. The most abundant sequence in the human genome associated with GC rich regions is called an Alu repeat element because the sequence contains the enzyme Alu I restriction site (AGCT) and is considered a short interspersed nuclear element (SINE), less than 500 bp long (Kobilinsky, 1993). The L1 or Kpn repeat element is

associated with AT rich regions because the sequence contains the enzyme *Kpn* I restriction site (GGTACC) and is considered a long interspersed nuclear element (LINE), greater than 500 bp long (Kobilinsky, 1993).

Tandem Repetitive DNA

Tandemly repeated or clustered sequences contain core sequences repeated numerous times and arranged side by side thus, in tandem. These core sequences, usually between two and six bases long (Tautz, 1989), repeated between ten and a hundred times, scattered throughout the genome millions of times, but localized to the centromeric region of the heterochromatin of chromosomes are called microsatellites or short tandem repeats (STR's). Minisatellites, often associated with the term VNTR, have core sequences ranging from 10 to 50 bases long, repeated two to several hundred times and are mainly clustered in the proterminal or telomeric regions of chromosomes, but have also been found in interstitial regions (Royle *et al.*, 1988).

Minisatellite Description

Minisatellite sequences can vary in both the sequence of nucleotides in the repeat and the number of repeat units and thus, with variable numbers of tandem repeats are called VNTR's. These hypervariable regions are excellent genetic markers due to their high polymorphic nature and their discriminating power for characterizing DNA.

Minisatellites are thought to arise from either unequal exchange during mitosis between sister chromatids or during meiosis between homologous chromosomes (Jeffreys et al., 1985a). These minisatellite sequences may be responsible for promoting recombination events similar to the chi sequence (GGGCAGGAXG) in Escherichia coli (Jeffreys et al., 1985a). The GC rich core sequence of minisatellites are considered to be a recombination

ho

sev

res

pol

RF

enzy

six o

a DN

domir

that is

polym

• •

Si

globin

Single 1

zigosity

results. I

two diffe

gene in H

White.]

scatterec

DNA fil

hotspot in human DNA (Jeffreys *et al.*, 1985a). VNTR's can be located at one locus or at several loci thus, given the names single-locus VNTR's and multi-locus VNTR's. respectively, and these genetic markers are identified by restriction fragment length polymorphisms (RFLP).

RFLP Description

RFLP's are variations in the length of DNA fragments as a result of a restriction enzyme cleaving the genomic DNA at a certain sequence recognition site, usually four, six or eight bases long. Variation is either due to a single nucleotide substitution creating or eliminating a cleavage site for a specific restriction endonuclease or a rearrangement of a DNA segment accounting for the variable length fragment. RFLP's are inherited dominantly in a Mendelian fashion, one allele from each parent, and are only dimorphic, that is, showing the presence or absence of a restriction site detected by length polymorphisms.

Single locus VNTR's were first analyzed by using RFLP's adjacent to the betaglobin locus in human DNA associated with sickle cell anemia (Kan and Dozy, 1978).

Single locus VNTR's create only one or two bands depending on the individual's

zygosity, which allows for unambiguous interpretation of the results. Single locus VNTR

results, however, are not very informative because each individual will have only one or

two different bands. The first highly polymorphic locus was identified in a nonspecific
gene in human DNA showing high variability with at least eight bands (Wyman and

White, 1980). Using a multi-locus VNTR, present at multiple loci in the genome,
scattered throughout the telomeric ends of chromosomes, creates an individual-specific

DNA 'fingerprint' resulting in multiple bands which are unique to an individual (Jeffreys

et e

ana

·fir

ma

who

loci RF

in ar

iden: begin

geno

stand

nonha

not sh

recogn

Th

low per

strande

soakin.

et al., 1985a). The work done by Alec Jeffreys initiated interest by forensic scientists to analyze forensic specimens using RFLP DNA typing. The use of several single-locus VNTR's (Nakamura et al., 1987) simultaneously will also create a unique DNA 'fingerprint' for identification purposes however, interpretation of the resulting pattern may be problematic due to possible band sharing between loci. Band sharing occurs when the size of bands from one locus overlap at the same size as bands from another locus, thus, creating ambiguous interpretation of the results.

RFLP Procedure

The RFLP DNA typing technique is an extensive multi-step procedure which results in an autoradiograph or fluorograph containing a unique DNA fragment pattern (except in identical twins) when several DNA probes are used or a multi-locus probe is used. The beginning of this procedure requires high quality and quantity, at least 5-10 µg of genomic DNA. The isolation and purification of the DNA can be performed using standard organic procedures (Sambrook *et al.*, 1989) or by using commercially available nonhazardous kits resulting in high molecular weight DNA, relatively free of proteins and not sheared into small pieces. The DNA is then digested with restriction enzyme(s) (RE) selected based on the frequency with which they cut the DNA and the sequence of their recognition site, so as to not cut within the probing sequence.

The RE digested DNA is electrophoresed overnight, applying low voltage, through a low percentage agarose gel in order to separate the fragments based on size. The double-stranded DNA fragments in the gel are then denatured to become single-stranded by soaking the gel in an alkaline denaturing solution. It is necessary to transfer single-

strance
hybrid
know
transf
ultrav
the me
single
probe
comple

the siz

L

bands determ

immig

cell an

v Andr

13/1R

Michig

DNAF

Fo RFLP I

describ

stranded fragments to a sturdier membrane, usually nylon or nitrocellulose, so that hybridization of the single-stranded probe can be achieved. This transfer process is known as Southern blotting (Southern, 1975) and requires capillary action to perform the transfer. The membrane is then baked in an oven (nitrocellulose) or exposed to ultraviolet light (nylon) in order to cross-link or permanently fix the DNA fragments onto the membrane. Hybridization of the membrane-bound denatured DNA fragments to the single-stranded complementary sequence of the radioactive or chemiluminescent labeled probe is performed under optimal conditions for specific binding of the probe to the complementary sequence. Unbound probe is washed away under varying stringency conditions.

Lastly, the membrane bound with the labeled probe is exposed to x-ray film to detect the size of fragments showing complementarity to the probe. The resulting pattern of bands created by this RFLP DNA typing technique has proved useful for comparison in determination of paternity (Jeffreys *et al.*, 1985b; Wells *et al.*, 1989), in solving immigration cases (Jeffreys *et al.*, 1985c), in diagnosing medical diseases such as sickle cell anemia (Chang and Kan, 1982) and directly assisting in the first criminal case (State v Andrews, 1987) resulting in a conviction based on VNTR DNA testing evidence. VNTR was the first DNA evidence technique accepted by most courts, including those in Michigan.

DNA Fingerprinting in Forensic Casework

Forensic casework has gone through a major transition from traditional serology to RFLP DNA testing since the work done by Alec Jeffreys and coworkers in 1985 describing 'DNA fingerprinting' and its potential use in forensic science. Lifecodes

cas

the

tecl

the

Star

Gui

the s

guid

case

guide

the C_1

for for

assura

DNA A

laborat

laborato

these gi

Company in 1986 and Cellmark Diagnostics in 1987 both took interest in accepting casework by performing RFLP technology in their laboratories (Weedn, 1993). In 1988 the Federal Bureau of Investigation (FBI) started using RFLP for casework, along with the first state crime laboratory in Quantico, Virginia in 1989 (Weedn, 1993). This new technology has sparked interest from crime laboratories in every state in the United States, along with other private companies investing into this technologically advanced area.

Guidelines for DNA Testing

With any new technology, the reviews and criticisms are always there to follow from the scientific community, criminal justice professionals and the average intelligent person questioning the reliability and accuracy of this technique and any other DNA testing. The guidelines for the admissibility of scientific evidence were established in 1923 with the case United States v. Frye, also called the "Frye" hearings (Baird, 1992). These guidelines are used in determining whether DNA evidence should be admissible in a court of law based on the premise that there is general acceptance of the evidence from the scientific community. In 1990, the Office of Technology Assessment which is part of the United States Congress concluded that DNA evidence is reliable and can be utilized for forensic casework only if appropriate technology, quality control and quality assurance procedures are implemented (Weedn, 1993). The Technical Working Group on DNA Analysis Methods (TWGDAM) represented by scientists from North American laboratories developed DNA methodology and quality assurance guidelines for laboratories to follow for forensic RFLP typing (TWGDAM, 1989). Included within these guidelines is the application of external proficiency testing by a reputable laboratory

or a

and

in o

Res

TW

influ

Simi

have

and P

These

appro

potent

(Natio

_...

PCR I

 Mullis

Ti

replacin

enzyma

DNA in

expone:

to detect

or hi pt.

or accrediting agency (TWGDAM, 1990), such as the College of American Pathologists and the American Society of Crime Laboratory Directors Laboratory Accreditation Board in order to assure quality performance of the laboratory (Weedn, 1993). The National Research Council in 1992 issued a report stressing the guidelines developed by the TWGDAM regarding standardized laboratory procedures in 1990 (National Research Council, 1992). The American Society of Crime Laboratory Directors has also been influential in making recommendations regarding DNA technology in forensic science. Similar guidelines, quality assurance and accreditation programs for PCR technology have also been established by the TWGDAM. Revisions to these guidelines for RFLP and PCR DNA testing will be necessary as the technologies and experience advances. These methodologies are now widely accepted in the criminal justice community when appropriate quality control methods are followed however, current controversy focuses on potential human and technical errors and on the statistical interpretation of results (National Research Council, 1996; Weir, 1996).

PCR Description

The amplification of specific DNA segments by PCR discovered in 1985 by Kary Mullis and co-workers at Cetus has revolutionized molecular biology and is rapidly replacing RFLP DNA typing for identification of forensic evidence. This *in vitro* enzymatic amplification of a DNA segment is performed utilizing minute quantities of DNA in repetitive cycles of denaturation, hybridization and extension creating an exponential amount of target DNA. This amplified DNA can then be directly sequenced to detect single base polymorphisms, electrophoresed to detect sequence length variations or hybridized to allele-specific probes to detect sequence polymorphisms. Forensic

scier qual

DN.

low i

DNA

avail

inter

geno

gene

regio sectio

nano

micro

DNA

heme.

(ethyl

amour

comes

deal wi

investig

scientists have benefited tremendously by this new technology because the quantity and quality of recoverable DNA found at crime scenes is often less than optimal.

PCR technology does not require high molecular weight DNA or large quantities of DNA like RFLP technology. PCR can be performed with only a few copies of a target DNA sequence as long as the target sequence to be amplified is not degraded or exists as low molecular weight DNA. Degradation of DNA for RFLP analysis limits the availability of restriction sites for the enzyme being used which in turn affects the interpretation of the results. PCR can be performed with degraded DNA because 1 µg of genomic mammalian DNA corresponds to approximately 3 x 10⁵ copies of autosomal genes (Cha and Thilly, 1993). The chance that each copy shows degradation in the same region to be amplified is very small. Thus, in any sample, there is likely to be several sections that are suitable for amplification. Most PCR applications only require nanogram quantities of DNA per reaction as compared to RFLP requiring several micrograms. PCR amplification is sensitive to interfering polymerase inhibitors found in DNA samples extracted from materials containing forensic evidence such as detergents, heme, melanin pigments, dyestuffs, sodium acetate, metal cations, urea or EDTA (ethylenedinitrilo tetraacetic acid) (Sensabaugh and Blake, 1993).

The sensitivity of PCR to contamination is of major concern because only minute amounts of extraneous human DNA may cause erroneous results. Contamination often comes from mixed samples at the crime scene, which is a reality for forensic scientists to deal with. Another source is from laboratory personnel or crime scene technicians and investigators introducing their own DNA into the evidence. This can be a problem if the

prior requiproce

evide

<u>PCR</u>

T

the sp

Other

PCR (

amplif

thermo

has the

amoun include

primers

(dNTP

double

Tr

to thre

the sy:

evidence sample contains a very small amount of DNA. The last major source of contamination arises when other amplified samples are accidentally mixed with evidence prior to amplification. This can be a serious problem because only an aerosol droplet is required to cause preferential amplification of the contaminant. Careful laboratory procedures need to be adopted to minimize these sources of contamination. Many contamination errors are detectable and can be corrected by reanalyzing the evidence.

PCR Procedure

The PCR procedure, first developed as a technique by Saiki *et al.* in 1985 to amplify the specific beta-globin sequence, is a cyclic process that does nothing more than increase the subanalytical quantities of DNA to a level that can be detected by routine methods. Other studies quickly followed using enzymatic amplification of DNA *in vitro* by the PCR (Mullis *et al.*, 1986; Saiki *et al.*, 1986; Mullis and Faloona, 1987). The amplification procedure is a relatively simple laboratory technique to perform with a thermocycler doing most the work. The thermocycler is a programmable machine, which has the ability to cycle through various temperatures (0-100° C) in a relatively short amount of time with temperature homogeneity and accuracy. The sample preparation includes double-stranded DNA to be amplified, two single-stranded oligonucleotide primers flanking this DNA segment, a DNA polymerase, deoxynucleotide triphosphates (dNTP's), a buffer, magnesium chloride (MgCl₂), salts and deionized water.

The three step cyclic procedure begins with the denaturation step to separate the double-stranded DNA molecules into single strands by heating them to 94-95° C for one to three minutes. This creates two strands of DNA, which are both used as templates for the synthesis of complementary strands of DNA. The temperature is then lowered to

allo
and
sequ
of th
sequ
temp
doub
nucle
optim
range

order

T

cycle.

molecu

Figure

because

the leng

produc

polyme

product

both pr

allow the oligonucleotide primers (stretches of up to twenty nucleotides in length), to find and hybridize to their complementary sequences on opposite strands flanking the sequence to be amplified, called the annealing step. The last step involves the extension of the primers at the 3' end by the addition of nucleotides complementary to the target sequence mediated by a DNA polymerase, thus called the extension step. The temperature of the annealing step will vary between 45-65° C depending on the melting temperature $T_{\rm m}$ (the temperature at which half of the primer is single-stranded and half is double-stranded) of the oligonucleotide primers, which is directly related to their nucleotide length and content. The temperature of the extension step is dependent on the optimal temperature for the activity of the DNA polymerase being used, usually in the range of 70-75° C.

This three-step amplification process is cycled several times, usually 25 to 30 in order to generate millions of copies of the target sequence. After the first round of a cycle, one double-stranded molecule has been doubled to two double-stranded molecules and after the second round of a cycle, the two molecules have been doubled to four molecules and so on, an exponential (2ⁿ) fold increase, for each additional cycle (see Figure 1). The number of target sequence has in effect been doubled after each cycle because each strand serves as a template for replication in subsequent cycles. However, the length of the products generated after the first cycle are longer than the desired product size because the polymerase extends until the denaturation step forces the polymerase to separate from the DNA template. In subsequent cycles the short or desired product size increases exponentially because the ends of the product have been defined by both primers, whereas the original double-stranded molecule only increases linearly.

3

3

5

3

ı

3 -

3 dou

3 -

Figur

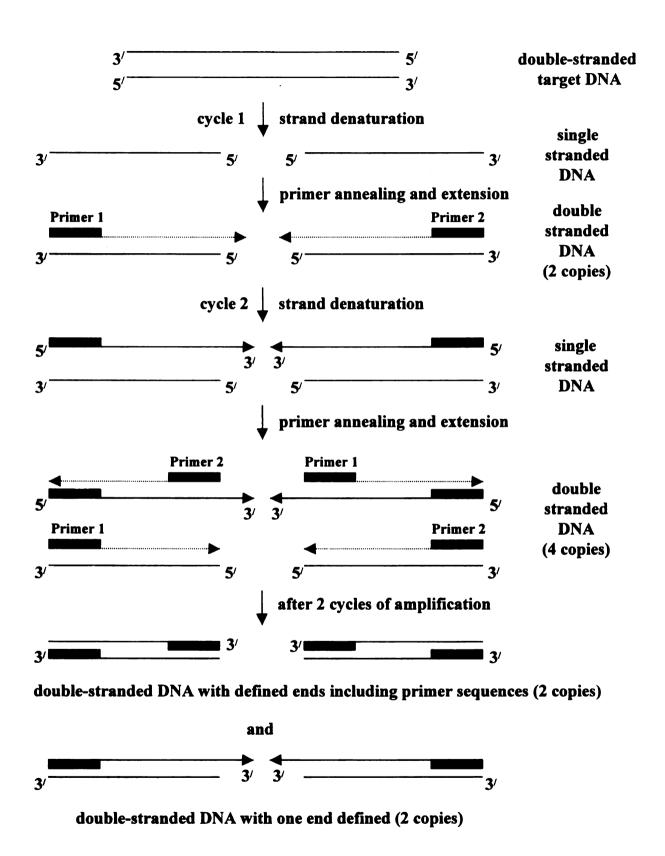


Figure 1. Schematic diagram of polymerase chain reaction (PCR) amplification.

optimic amplif thermothe am every to of Mg/

P

PCR '

with th

T

individ

temper initial t content primer

used, fo

of time

 $e_{Xten_{S_1}}$

time $f_{\mathbb{C}}$

PCR, with its specificity to the desired target sequence and extreme sensitivity to minute quantities of target DNA, is a technique that requires many components to be optimized in order to obtain the desired product and only the desired product. The amplification conditions, containing both the components in the reaction and the thermocycling temperatures, times and number of cycles, are variables that directly affect the amplification process. These variables need to be optimized for almost every locus studied, unless similarity exists between marker type, primer $T_{\rm m}$ and amount of MgCl₂ required for each reaction. Therefore, much time is spent optimizing the amplification conditions prior to validating a marker system for use in population studies, individual identification or other PCR applications.

PCR Thermocycler Programming

The temperature and amount of time selected for the thermocycling conditions, along with the number of cycles are dependent on the following criteria. The denaturation temperature should be close to boiling in order to completely separate the strands with an initial time of a few minutes. The annealing temperature depends on the length and GC content of the primers and, in general, should be around five degrees below the T_m of the primer pair. The extension temperature should be selected based on the polymerase being used, for *Thermus aquaticus* (Taq) the optimal temperature would be 72° C. The amount of time for this step is based on the length of the target DNA being amplified. That is, amplifying a fragment greater than 1Kb (kilobase) in length would require more extension time for the polymerase to complete the full sequence, otherwise a standard time for smaller fragments would be 30 seconds to 1 minute for each step. The number

of cycles depends on the amount of product generated based on the amount of starting template, which can vary from as little as 20 cycles to as many as 35 or even 40 cycles.

PCR Components

The components of a standard PCR are contained in a reaction volume of 25, 50 or 100 µl with 50 to 100 ng of genomic DNA mixed with 50 mM KCl, 10 mM Tris HCl pH 8.4, 0.25 µM of each primer, 200 µM of each dNTP (deoxynucleoside triphosphate), 1.5 mM MgCl₂, 2.5 units of *Taq* polymerase, deionized water and overlayed with a few drops of mineral oil (Saiki, 1989). The mineral oil is added to reactions when the thermocycler being used does not have the heated lid feature to prevent evaporation of the reaction mixture and to increase the rate of thermal equilibration. These are standard conditions that may not provide adequate results in all situations. Modifications may be necessary to obtain the desired specificity and yield of PCR product.

The component with the most dramatic effect on specificity and yield is the amount of MgCl₂ in the reaction, that is, the amount of free Mg++ available for *Taq* polymerase. The effect of dNTP's chelating magnesium will lower the optimal concentration of magnesium. If all the Mg++ is bound by the dNTP's, then none will be present to facilitate *Taq* in amplifying the target DNA. The absence of a PCR product can often be corrected by adding a higher concentration of MgCl₂ to the reaction, while the presence of too many products is the result of too high of MgCl₂. Optimal levels of free Mg++ should be around 1.0 mM for most PCR's. Concentrations of Mg++ approaching 10 mM MgCl₂ inhibit the activity of *Taq* (Gelfand, 1989).

dNTF

E

ampli

Mg+-

inhibi

these

of an

which

perce

20me

templ

Thilly

factor

added

becau

not ha

This i

Perfec

G or C

bases

Because they act as building blocks for the amplification product, the amount of dNTP's should always be in excess, 200 µM, of DNA target sequences for efficient amplification but, it is not recommended to increase this amount because it will chelate Mg++ as mentioned above. However, if amplifying a large target sequence, greater than 1 Kb, a higher concentration of dNTP's is necessary. *Taq* polymerase is actually inhibited in the presence of millimolar concentrations of dNTP's (Gelfand, 1989) and these high dNTP concentrations may actually promote misincorporations.

The selection of oligonucleotide primers is of paramount importance to the success of an amplification reaction. The criteria for primer design entails creating both primers which are between 20 and 30 bases in length with a GC content between 40 and 50 percent and with a random base distribution not containing stretches of similar bases. A 20mer has a specificity of 1/4²⁰ in locating the exact complementary sequence in the template DNA and with a 50 percent GC content has a T_m range of 56-62° C (Cha and Thilly, 1993). Each additional nucleotide will increase the specificity of the primer by a factor of four and increase the $T_{\rm m}$ by two or four degrees depending on which base is added. Primers should not be able to form secondary structures within themselves because then they will not be able to hybridize to the template DNA. They also should not have complementarity to each other in order to avoid the formation of primer dimers. This is of major concern when using multiple primer pairs in one reaction (multiplex). Perfect complementarity should exist at the 3' end of the primer, usually the presence of a G or C at the very end will assure primer extension by the polymerase because these bases form stronger bonds and will anchor the primer to the template. Lastly, each

pr

19

be D:

aq ad

he

sec dis

95

ma aft

for

ad

en

des

coı

noı

rela oth

. pro primer should be in a ten-fold excess of the target sequence during PCR (Cha and Thilly, 1993).

The specificity, sensitivity, yield and length of PCR products being amplified has been substantially improved with the replacement of the Klenow fragment of E. coli DNA polymerase I with an enzyme isolated from the thermophilic bacterium *Thermus* aquaticus (Taq) (Saiki et al., 1988). Prior to this discovery, fresh Klenow enzyme was added to the reaction mixture after each cycle of denaturation because this enzyme is heat-sensitive and would have no activity after one round of amplification. This sequential addition of polymerase to the reaction mixture has been eliminated with the discovery of Taq, which is very thermostable with repeated exposure to temperatures of 95° C. This allows the PCR cycling to be fully automated using thermal cycling machines and increases the yield of product because the enzyme still maintains activity after numerous cycles. The processivity of *Taq* polymerase during DNA synthesis allows for the amplification of longer DNA segments, up to 10 Kb (Jeffreys et al., 1988), which adds to the list of PCR applications. The specificity and sensitivity has been greatly enhanced by the use of *Taq* polymerase because at higher temperatures, the annealing of complementary primers to the template DNA will result in only amplification of the desired target sequence with an increase in the yield of that product, eliminating nonspecific amplification.

The fidelity of *Taq* polymerase in PCR amplification is not a strong feature with a relatively high error rate of 10⁻⁵ nucleotides/cycle (Gelfand and White, 1990) compared to other polymerases. This misincorporation of nucleotides is due to the lack of the 'proofreading' 3' to 5' exonuclease activity of *Taq* polymerase. Misincorporation of a

polynnucle

nucle

Source P

gener

preser

addition produce

separa

Both (

micro.

deal w

nucleotide would have to be during the early stages of PCR, with very limited amount of template, affecting many copies, in order to have a significant effect on the amount of PCR products detectable by electrophoretically visible bands (Saiki *et al.*, 1988). The errors made by *Taq* polymerase should not be a problem for many PCR applications because the analysis of several samples to establish a consensus sequence is performed to detect any misincorporated nucleotides. Using more initial template DNA molecules, fewer cycles of amplification and modifying the reaction conditions can reduce this problem exhibited by *Taq* polymerase. Other applications, such as cloning or point mutation analysis where fidelity is of concern, may require the use of the *Pfu* DNA polymerase isolated from *Pyrococcus furiosus* with an error rate of 6.5 x 10⁻⁷ nucleotide/cycle (Andre *et al.*, 1997). However, the thermostability, processivity and specificity of *Taq* polymerase has made it the most utilized polymerase in PCR to generate large quantities of a specific target sequence.

Sources of Error During Amplification of Microsatellites

PCR amplification of dinucleotide microsatellite markers using *Taq* polymerase presents two sources or error in genotyping studies. The catalysis of a nontemplated addition of a nucleotide, predominantly adenosine, to the 3' end of the amplified PCR product (Clark, 1988) and the appearance of shadow bands with the PCR products separated by intervals of two nucleotides (Hauge and Litt, 1993; Murray *et al.*, 1993). Both of these can cause problems when genotyping the sizes of dinucleotide microsatellite fragments generated by PCR. However, strategies have been proposed to deal with these biological occurrences.

differ additio only p known al., 19 source signifi produ which favor an add Modif facilita are all enzy n

T

repea:

 e_{XOnU}

1993

analy

penta:

slippe

The addition of the nontemplated nucleotide to the PCR product creates bands which differ in size by a single base and is primer specific (Smith et al., 1995). The degree of addition varies from marker to marker with some markers not affected at all and some only partially affected with both product sizes being present in similar quantities. The known fact that this situation occurs with some markers, PCR based strategies (Smith et al., 1995) and primer modifications (Brownstein et al., 1996) strategies to minimize this source of error have been addressed. Changing the PCR thermal cycling conditions can significantly reduce the error rate of inconsistent allele calling. To minimize the production of allele + A (adenine) products, a two step cycling protocol can be used which eliminates the extension step that causes the polymerase to add the extra A. To favor production of the allele + A product, a three step cycling protocol can be used with an additional final extension step facilitating the nontemplated nucleotide addition. Modifying the reverse primer on the 5' end by adding the sequence GTTTCTT can facilitate adenylation of the 3' end of the forward primer, thus generating products which are all allele + A (Brownstein et al., 1996). Other methods employing an additional enzymatic step after amplification by adding T4 DNA polymerase with a 3' to 5' exonuclease activity to remove the unpaired base have been proposed (Kimpton et al., 1993).

The characteristic feature of *Taq* polymerase is to frequently skip or occasionally add repeat units during the extension step of PCR amplification causing great difficulty in analyzing dinucleotide microsatellite markers. Other short tandem repeats (tri-, tetra- or pentanucleotides) exhibit this skipping by *Taq* polymerase very infrequently. This slipped strand mispairing by *Taq* is the major mechanism for the generation of shadow

bands.

(Haug

itself f

et al. i

shorte

band a

the act

amplif

•

unit. I

thermo

Multi

Timultip

PCR,

et al..

combi

loci o

seque

react;

The F

ovel

 $locu_{s}$

bands, which are less intense and intervals of two nucleotides short of the correct allele (Hauge and Litt, 1993). This slippage by Taq results from the temporary dissociation of itself from the template strand allowing repeats in the template to form a loop, which shortens the PCR product by the number of repeat units in the loop. The study by Murray et al. in 1993 also supports this mechanism because they sequenced the actual shadow band and found it to contain the flanking sequences on both sides of the repeat, but that the actual repeat sequence was ambiguous. This suggests that the shadow band is the amplified product with the repeat sequence being scrambled, but still short by one repeat unit. Presently, the only correction to the occurrence of these shadow bands is to use a thermostable DNA polymerase with a higher processivity than Taq.

Multiplex PCR

The ability of PCR to be extended even further to the simultaneous amplification of multiple loci using the same DNA template in a single PCR reaction, called multiplex PCR, has greatly increased the throughput of data in considerably less time (Chamberlain et al., 1988). However, more effort is required to develop optimal conditions for the combination of primer pairs being amplified simultaneously. Multiplexing two or more loci often can be performed under the same reaction conditions used to amplify the sequences separately. The main consideration is that the components of the amplification reactions and the temperature cycling conditions are the same for all the loci involved. The primers must not show homology to each other and the product sizes should not overlap each other. All the factors discussed previously for a single amplification of one locus must also be considered when optimizing a multiplex PCR. The adjustment of

these

avail

Mult

syste

(Kim

Walla

micro

with r

many

semi-a

fluoro

respec

amplii

of a D

specifi

length

T

every

elimi.

across

prese:

these variables is specific to the unique loci being amplified and general guidelines are available to assist the scientist in optimizing the multiplex PCR (Henegariu et al., 1997).

Multiplex PCR and Fluorescent Detection

The combination of multiplex PCR and semi-automated fluorescent detection systems has become a rapid and powerful technique for individual identification (Kimpton *et al.*, 1993). The amplification of loci consisting of two alleles (Skolnick and Wallace, 1988) has been extended to the amplification of highly polymorphic microsatellite loci and genotyping these loci using automated DNA sizing technology with multi-color fluorescent detection (Ziegle *et al.*, 1992). This ability to coamplify many loci in one PCR has been facilitated by the use of fluorescently labeled primers and semi-automated fluorescent DNA sequencers.

Oligonucleotide primers are labeled at their 5' end with one of three possible fluorochrome dye molecules: Fam, Hex or Tet, fluorescing blue, yellow and green, respectively. The labeling of the primers at the 5' end does not effect the PCR amplification, but it does allow for the simultaneous analysis of multiple loci in one lane of a DNA sequencing gel. The fluorescent dye is only on one primer of each locusspecific primer pair, since both primers are amplifying the same target sequence the length will be the same.

The use of an internal size standard, labeled with the red fluorescent dye TAMRA, in every gel lane is referenced when calling the fragment sizes. The benefit of this is to eliminate interpretation errors due to electrophoretic mobility differences between lanes across the gel and thus, increasing the size calling accuracy of the alleles. Fragments present in each lane are automatically sized against the internal size standard comigrating

in ea

TAN

139.

base

conv

et al.

advar have

abilit

quant

intens

et al..

lane.

canno

of PC

for a

easie!

of th:

in each lane, which compensates for any gel distortions in that lane. Size standard TAMRA 350 from ABI, for example, contains known fragments with sizes: 50, 75, 100, 139, 150, 160, 200, 250, 300, 340 and 350, representing fragment lengths in nucleotide base pairs.

Fluorescence-based detection of microsatellite PCR products compared with conventional autoradiographic methods (Schwengel et al., 1994) and silver staining (Lins et al., 1996; Budowle et al., 1997) for identification of individuals has resulted in many advantages. Fluorescent compounds are safer to use, easier and cheaper to dispose of and have a longer shelf life than radioisotopes. They are extremely more sensitive with the ability to detect picomole quantities of fluorescently labeled primers and picogram quantities of initial template DNA. Fluorescent signals are linear over a wider range of intensities, where signal strengths of multiple loci greatly vary in magnitude (Schwengel et al., 1994). Multiple loci can be simultaneously analyzed in a single electrophoretic lane, whereas with radioisotopes and silver staining this variation in signal intensity cannot be tolerated. The signal intensity of the peaks can be used to estimate the amount of PCR product present. Scoring alleles of a heterozygous individual being genotyped for a dinucleotide microsatellite marker with alleles differing by one repeat unit is much easier with fluorescence. The intensity of the smaller allele overlapping the stutter band of the larger allele will be greater than the intensity of the larger allele (see Figure 2).

C

sy th

fr

n

n

si

ti

ut al

Ŋ

di:

ap

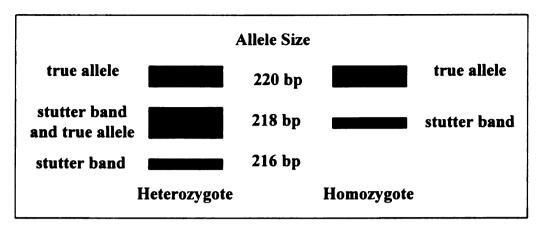


Figure 2. Schematic diagram representing the fluorescent intensity of alleles differing by one repeat unit of a dinucleotide microsatellite marker.

The time required to score alleles and the number of genotyping errors drop considerably due to the combination of automated fluorescence-based electrophoretic systems and genotyping analysis software. Genotyping analysis is being facilitated by the use of internal size standards and analysis software for the accurate assignment of fragment sizes and the unambiguous scoring of alleles. Ghosh *et al.* in 1997 describe methods for accurate sizing of alleles in order to reduce genotyping error rates. Manual methods of scoring autoradiographs or gels stained with silver lead to more typing and sizing errors because both DNA strands are being detected. These methods are extremely time-consuming and are not compatible with high throughput genotyping.

Several validation studies, for use in forensic applications, have been performed utilizing multiplex PCR of short tandem repeats with fluorescent detection (Fregeau et al., 1999; Budowle et al., 1997). These studies support the use and benefit of this genetic typing system for forensic identification and according to Fregeau et al., could provide discriminatory power of approximately 0.9999. This discriminatory potential of fluorescent multiplex STR marker systems in human identification is the basis for applying this technology to individualize evidence samples in forensic wildlife cases.

2

_

p

m

01

st

D

W

m

(E

рc

ol

tra

Hy am

the

con

alle

Multiplex PCR using microsatellite markers for characterizing genetic variability among Michigan white-tailed deer, for the purpose of individualizing evidence samples, should be both cost-effective and beneficial. The homology between microsatellite loci is often conserved among related species (Moore et al., 1991), saving time and effort in primer development. Bovine microsatellites are highly conserved among Red deer (Kuhn et al., 1996) and Sika deer (Slate et al., 1998) of the cervine family. White-tailed deer microsatellites are conserved in bovids (DeWoody et al., 1995), microsatellites are conserved in bovine, ovine and caprine (Kemp et al., 1995) and also conserved between other species of artiodactyls (Engel et al., 1996). The selection of primer pairs for this study then focused on known primers that amplify bovine, ovine and cervine DNA.

Dot Blot Procedure

The first PCR based genetic typing kit of the HLA-DQ alpha locus using dot blot methodology for detection of sequence polymorphisms was in 1986 (Saiki et al., 1986), with the first use in a criminal case in Pennsylvania in 1986, Pennsylvania v Pestinikis (Blake et al., 1992). PCR amplification of the HLA-DQ alpha locus and detection of point mutations in the different allelic forms using dot blot procedures and allele-specific oligonucleotide (ASO) probes (Saiki et al., 1986; Erlich et al., 1986) has made the transition from RFLP to PCR a simpler technology for detecting polymorphisms. Hybridization, under highly stringent conditions, of a complementary DNA probe to the amplified sequence bound to the membrane is indicated by a color reaction as a spot on the membrane for that particular allele. The presence of a spot is indicative of perfect complementarity in DNA sequence between probe and target DNA thus, identifying the allele present. Reverse dot blot procedure was developed to simultaneously hybridize the

DNA

proce

al.. 19

preser

RAPI

A

ampli

This t

oligor

70 per

to opp

be am

.

are ur

separi

polyn

(Wels

and s.

seque

al., 1

for u

dinuc

DNA to the immobilized ASO probes on the nylon membranes (Saiki et al., 1989). This procedure identifies six different alleles and twenty-one possible genotypes (Helmuth et al., 1990). This method is simple and very time efficient because it will detect the allele present in a single hybridization step by a simple colorimetric reaction.

RAPD Technique

Another segregating dominant genetic marker amplified by PCR is called random amplified polymorphic DNA (RAPD) and was developed by Williams et al. in 1990. This technique involves the amplification of genomic DNA using an arbitrary oligonucleotide primer, usually nine or ten bases long with a GC content between 50 and 70 percent. This primer binds to homologous sites in genomic DNA and when they bind to opposite DNA strands, which are relatively close to each other, amplification of the region between them will occur. Several sites, randomly distributed in the genome, will be amplified by the oligonucleotide primers thus, creating discrete DNA products which are unable to distinguish a heterozygote from a homozygote. PCR fragments are separated by gel electrophoresis and detected by one of several methods to identify polymorphisms between individuals and generate a genomic profile of PCR products (Welsh and McClelland, 1990). RAPD's were used to detect genetic diversity in cattle and sheep (Kantanen et al., 1995) and these species show homology with cervids. DNA sequences of RAPD fragments showed high sequence similarity in artiodactyls (Kostia et al., 1996). This allows for characterization of the fragments from one species to another for use in genome mapping of these markers in closely related species, similar to dinucleotide microsatellite homology among closely related species (Moore et al., 1991).

SSC

and dena

subs

sam

elec

stand

prod elect

diffe

confe

(Orit

Micr

by Po

genor simp

genor

mamr

tander

 $(CA)_{\epsilon}$

Webe

SSCP Technique

Single-stranded conformational polymorphisms (SSCP) are also amplified by PCR and are variations in the mobility of single-stranded DNA fragments under non-denaturing conditions. This method of detecting sequence changes, including single base substitutions, is based on the fact that DNA fragments with different sequences but the same length will migrate differently during non-denaturing polyacrylamide gel electrophoresis (Orita *et al.*, 1989a). DNA, in an area of interest, is amplified under standard PCR conditions using 5' end labeled oligonucleotide primers synthesizing products in the range of 150-250 base pairs (Tuggle, 1994). Fragments generated are electrophoresed and polymorphisms are detected between individuals based on differences in band migration. Single-stranded DNA fragments form folded conformations that are sequence specific and are stabilized by intrastrand interactions (Orita *et al.*, 1989b).

Microsatellite Description

Microsatellites are excellent codominant genetic markers, amenable to amplification by PCR, due to their high variability, high abundance and widespread distribution in the genome (Weber and May, 1989). Microsatellites are regions of DNA consisting of simple sequence motifs repeated in tandem and abundantly scattered throughout the genome. They are found in many eukaryotic genomes (Tautz and Renz, 1984) and all mammalian genomes so far examined (Stallings *et al.*, 1991). These motifs can be tandem arrays of di-, tri-, tetra-, or pentanucleotides, with dinucleotide motifs such as the (CA)_n repeat being the most abundant in humans (Hamada *et al.*, 1982; Beckmann and Weber, 1992) and are also found to be in high abundance in most mammals such as

white-tailed deer (DeWoody et al., 1995). The first locus to be tested for microsatellite polymorphisms using PCR was in an intron in the human cardiac muscle actin gene containing variable numbers of the tandem dinucleotide (TG)_n repeats, resulting in twelve different allelic fragments (Litt and Luty, 1989).

Microsatellite markers exhibit variability based on the number of repeats that are in tandem at a locus and in the repeat sequence type (Tautz, 1989). Microsatellites can be classified into one of three categories: perfect repeat sequences, imperfect repeat sequences or compound repeat sequences (Weber, 1990). Perfect repeat sequences have no interruptions in the repeat sequence, imperfect repeat sequences have a few scattered single repeat interruptions of a different sequence in the repeat sequence and compound repeat sequences have a tandemly repeated sequence of a different sequence within the repeat sequence. Microsatellite length variations are thought to arise from either unequal exchange during mitosis between sister chromatids or during meiosis between homologous chromosomes or by DNA slippage during replication of the lagging strand (Schlotterer and Tautz, 1992).

Microsatellites are presently considered functionless because many of them lie outside genes in 3' or 5' untranslated regions and roughly ten percent are located in introns between genes. Research suggests that they may facilitate the production rate of proteins according to David G. King of Southern Illinois University, may play a role in forming left-handed conformation (Z-DNA) (Hamada *et al.*, 1982), may regulate transcription (Hamada *et al.*, 1984), may play a role in recombination (Pardue *et al.*, 1987) or may facilitate the pairing of chromatids during mitosis. The positioning of microsatellites in noncoding regions of heterochromatin is forgiving of a high mutation

rate, varia from anem 1999 mark genet

allozy

A

not pa

protei

inheri

geneti

diagn and p

these

states

that t

princ

other

rate, estimated to be approximately between 10⁻⁴ and 10⁻⁵, leading to extensive allelic variation (Saiki *et al.*, 1988). "... it is 10,000 times more likely to gain or lose a repeat from one generation to the next than a gene such as the one responsible for sickle cell anemia is to undergo the single-base mutation leading to that disease" (Moxon and Wills, 1999). This variability of microsatellites, along with their existence as codominant markers following Mendelian inheritance of alleles gives an excellent reason to use these genetic markers for individual identification.

Marker Requirements

A marker is a genetic unit (gene, microsatellite, minisatellite, restriction site, allozyme, etc.) within the genome that can be followed from generation to generation. that is, from both parents to their offspring. If a region of interest within the genome does not pass from each parent to their offspring, then Mendelian inheritance of that region is not observed and can not be used as a marker to identify individuals. All DNA, whether protein coding or having no sequence dependent function, follows the same rules of inheritance. Mendelian inheritance allows scientists to perform numerous applications: genetic mapping and linkage studies, mapping disease loci, paternity testing, medical diagnostics, pedigree analysis, individual identification, anthropological, evolutionary and population studies and the list goes on. In order for a genetic marker to be useful for these purposes it must follow Mendel's laws of inheritance. The principle of segregation states that each of the two alleles, one from each homologous chromosome segregate so that the offspring has an equal chance of obtaining either allele from both parents. The principle of independent assortment states that these alleles segregate independently of other alleles at different loci. Individual identification requires population allele

freque

that th

for id

infor

leng:

calcu

diver

indiv

inher

mark

ident Sele

dete

iden

mar)

tech

inter

mei

rest

frequencies of unlinked polymorphic genetic markers following Mendelian inheritance so that the power of discrimination can be achieved and utilized in forensic applications.

The use of genetic markers for characterizing genetic variability between individuals for identification purposes relies on several factors. The nature of the marker must be informative by showing measurable polymorphisms either in DNA sequence or DNA length between individuals. The polymorphism information content (PIC) of a marker is calculated from allele frequencies in the population. Markers must exhibit genetic diversity among the population, that is, high allelic variation in order to distinguish individuals from each other. The marker must show Mendelian inheritance of the alleles, that is, one allele from each parent must be present in the offspring and should be inherited independently of any other markers being analyzed simultaneously. Lastly, markers that can be easily genotyped will be the marker of choice for individual identification.

Selection of Marker, Technique and Method of Detection

The selection of the most appropriate molecular marker, molecular technique and detection system for answering a particular question, for example in this study individual identification, is based on several important considerations. The informativeness of the marker, the speed, ease and reliability of the method, costs of the materials, the quality and quantity of DNA, the amount of sequence information required to perform the technique, the dominance of the marker, the detection system and the ease of analysis and interpretation of results, will all be compared between various markers and methodologies. They all have their strong points and weaknesses depending on the results desired and the informativeness needed to answer the desired question.

to rest
the cr
due to
marke
requir
degrae
to the
where
single
(Pena
suital
using

T

befor want.

assa_!

relat

as, P

appa

requ

sev_e

The first consideration that might limit the choice of method is how much and what quality of DNA can be obtained from the type of samples at hand. Forensic samples tend to result in a limited quantity of DNA due to the often minimal amount of evidence left at the crime scene. The quality of DNA is usually poor, as samples are partially degraded due to environmental insults. Based on these initial limitations, one may rule out a marker system based on RFLP and Southern hybridization because this technique requires microgram quantities of DNA of very high quality. Using RFLP on low quantity degraded DNA will lead to ambiguous results which will be very difficult to interpret due to the presence of extra fragments in the already complex band pattern. In paternity cases where non-degraded samples are readily available, RFLP is an excellent choice using single or multi-locus minisatellite probes where Mendelian inheritance is maintained (Pena and Chakraborty, 1994). PCR amplification of small fragments using any of the suitable systems (RAPD, SSCP, STR) would be the favored choice to resolve questions using minute quantities (nanogram amounts) of degraded DNA (Lorente et al., 1997).

The ease and amount of time required to perform a technique and the length of time before obtaining the results are major concerns in this fast-paced society where results are wanted yesterday and for a competitive price. Traditional serologic methods and dot blot assays are the easiest to perform in a short amount of time, usually a few hours, with relatively low cost considering identification kits are manufactured by companies, such as, Perkin-Elmer and Cetus Corporation which do not require expensive detection apparatus. RFLP using Southern hybridization, on the other hand, is very labor intensive requiring restriction digests, gel electrophoresis, Southern transfer, probe hybridization, several washes and film exposure, with results generated in about a week or more. The

cost o

chemi

requir

hybrid

The r

can be

hund:

staini

fluore

disad

chem

longe

ampl

throu

al.. !

cha-[

mar,

to₀

othe

cost of the materials is high for enzymes, membranes, x-ray film and the radioactive or chemiluminescent detection of polymorphisms, to say nothing of the highly skilled labor required to perform the technique. PCR based methods are easy to perform with no hybridizations and results are obtained in a few hours utilizing minimal technologist time. The major cost is in the initial purchase of a PCR machine and a detection system, which can be quite high. The continual purchase of PCR reagents and oligonucleotide primers, if radioactively or fluorescently labeled, is expensive but spreading the cost over several hundred assays reduces the per assay cost.

Detection systems can range from simple and inexpensive ethidium bromide, silver staining or colorimetric to the more expensive chemiluminescent, radioactive or fluorescent detection of polymorphisms. The advantages of using ethidium bromide, silver staining or colorimetric are the cost of materials and the ease of use. The disadvantage of using radioactivity is the isotopic component, while the benefit of using chemiluminescence or fluorescence is that they are non-isotopic, safer to use and have a longer shelf life than radioisotopes. Fluorescent detection allows for simultaneous amplification and detection of three or more loci, which greatly increases the speed and throughput of samples with an increase in sensitivity compared to other systems (Lins et al., 1996).

The informativeness of the marker along with the dominance or codominance characteristic are very important considerations when choosing the most appropriate marker for the job. Allozyme markers are not very informative because they represent too few loci and exhibit too little variation. RFLP's probed with minisatellites are at the other end of the marker spectrum, with hypervariability across many loci. Multi-locus

minisatellite RFLP's are extremely informative because they result in numerous bands representing a unique individual-specific DNA profile, except in identical twins. The disadvantage of multi-locus markers is that they are dominant markers only, with some genetic information possibly being lost or hidden due to the absence of a restriction site. Single-locus minisatellite or cDNA probe is not very informative because a single locus will only result in one or two alleles depending on the individual's zygosity. They are codominant markers with both alleles being represented, one band for homozygous individuals and two bands for heterozygous individuals. The use of several unlinked single-locus probes will increase the informativeness of the technique. In fact this was the first accepted use of DNA testing in forensics. RAPD's are dominant markers with polymorphic bands scored as present or absent. The informativeness of this marker is limited because a heterozygous individual cannot be distinguished from a homozygous individual. SSCP is considered a codominant marker, with the ability to detect heterozygotes and with limited informativeness because only a single base pair mutation is being detected and only if the substitution changes the mobility of the DNA fragment. Microsatellites are also codominant markers and are extremely informative based on the high degree of polymorphism present among individuals.

The amount of sequence information required prior to performing the technique is a matter of concern if money and time are an issue when choosing the method of analysis.

RFLP using Southern hybridization does not require actual sequence information, but it does require known gene (cDNA) probe information, though this information may not have to be regenerated for each species tested. The use of a previously identified gene as a probe eliminates the time and money required to obtain species-specific sequence

information. Multi-locus probes for DNA typing are VNTR's which are not necessarily species-specific, but require sequence information, with no effort and cost to attain. PCR derived systems require exact sequence information for the development of oligonucleotide primers with high cost and effort to obtain. However, comparative mapping utilizing primer pairs from closely related species can be both economical and time efficient when there is conservation of heterologous primer pairs between species (Moore *et al.*, 1991). RAPD's, on the other hand, do not require any sequence information due to the arbitrary generation of oligonucleotide primer pairs used in the technique.

Interpretation and analysis of results can be ambiguous or straightforward depending on which marker and detection method are used. Traditional serologic procedures using agglutination of antigens and staining of allozymes with colored dyes, along with the colorimetric detection in dot blot assays are very straightforward analyses. The presence of a reaction taking place, detected by agglutination, staining or color development, is very unambiguous, that is, present or absent. Analysis of RFLP's when a single-locus probe is used is straightforward, depending only on the presence of one or two bands of a specific size. Use of a multi-locus probe can lead to a very problematic analysis. The banding pattern can be complex due to the number of fragments present, the possibility of extra fragments from slightly degraded samples or the sharing of bands between loci can make interpretation of the data challenging. The use of size standards in adjacent lanes of an RFLP gel can result in estimates of allele sizes, usually with errors of 2-5 bp. RAPD's can also be difficult to interpret because of the presence of many bands, some of which could be similarly sized alleles from different loci and some of which are artifactual

based on the sensitivity of the assay to the PCR conditions. SSCP analysis can be difficult if the running conditions are not optimized because slight changes can effect the mobilities of single-stranded DNA molecules leading to unpredictable results. Lastly, microsatellites can be easy to score if the tandem repeat is not a dinucleotide motif because these alleles show a characteristic stutter band due to the slippage of the polymerase during extension of the PCR product (Hauge and Litt, 1993; Murray et al., 1993). The stutter usually creates a band two and four base pairs smaller in size than the original fragment size, creating ambiguities in calling a true heterozygote with alleles differing by a single repeat unit from a homozygote with a strong stutter band. However, the presence of these characteristic stutter bands is beneficial in separating true alleles from background noise. Fluorescent detection of microsatellite alleles makes calling the sizes of fragments more accurate because of the use of an internal size standard in each lane of the gel, thus, correcting for lane to lane and gel to gel variability.

The information presented here, summarized below in Table 1, and in this literature review is the basis for the selection of using ubiquitous, microsatellite markers, fluorescent detection and PCR technology to achieve the goal of this research project.

The objective of this study is to develop a practical, economical, time-efficient DNA typing system for wildlife forensic scientists to utilize for individualizing forensic evidence related to Michigan white-tailed deer.

Table 1. Comparison of markers, techniques and methods of detection.

		Marker/Technique		
Characteristic	serologic/dot blot/	RAPD,SSCP,	RFLP/Southern	
	dot blot-PCR	STR/PCR	hybridization	
quality of	relatively fresh samples	low molecular	high molecular	
sample	dot blot-PCR: low	weight DNA	weight DNA	
_	molecular weight DNA			
quantity of	minimal	nanogram	microgram	
sample	amounts	amounts	amounts	
turn around time	few hours	one or two	several days to	
for results		days	a week or more	
technologist time	minimal time	minimal time	labor intensive	
required to	easiest to perform	easy to perform	requires a skilled	
perform technique			technologist	
	commercial kits	initial cost:		
cost of	can be expensive	expensive	cost:	
materials	overall:	continual cost:	very high	
	very cheap	inexpensive		
	least informative	most informative	most informative	
Informativeness		_	when using multi-	
of marker	very informative	otherwise very	locus probes	
	dot blot-PCR: when using STR's, were informative otherwise very limited			
marker		RAPD's: dominant	single-locus:	
characteristic	dominant	SSCP: codominant	codominant	
		STR's: codominant	multi-locus: dominant	
sequence	none	RAPD's: none	single-locus: none	
information	dot blot-PCR:	SSCP: complete	multi-locus: complete	
requirement	complete	STR's: complete		
		RAPD's and SSCP:	single-locus:	
interpretation	straightforward	ambiguous	straightforward	
of results		STR's:	multi-locus:	
		unambiguous	ambiguous	
		Detection System		
	silver staining		chemiluminescent	
	ethidium bromide	radioisotope	fluorescent	
	colorimetric			
_		high sensitivity	safer to use	
advantage of	simple to use	clear interpretation	easier to dispose of	
detection system	inexpensive	of results	longer shelf-life	
		·	high sensitivity	
disadvantage of	limited sensitivity	use of		
detection system	ethidium bromide is a	radioactivity	expensive	
	carcinogen			

METHODOLOGY

This study involved using random samples of the population of Michigan whitetailed deer to establish a database. Tissue samples were collected from deer in all 83 counties in Michigan by Tim Tesmer, Jessie Marcus, Ron Southwick and Dr. Paul Coussens. The Department of Natural Resources (DNR) and the U.S. Fish and Wildlife Service jointly funded the project in 1994. Hunters were asked at DNR checkpoints to voluntarily allow these samples to be collected. The deer's age, sex, county and deer management unit (DMU) were documented on the collection tube for each sample collected. Muscle tissue was collected and samples were placed in polypropylene tubes with caps and kept in a -20° C freezer until needed for DNA extraction. To date approximately 1200 deer tissue samples have been collected with only a few counties not totally represented. Bay, Clinton, Macomb and Sanilac counties have only one collected sample, while Lapeer has four and Keweenaw has none. These counties will not be fully represented in the database on the basis of five random deer samples per county unless additional samples are collected prior to the completion of this study.

Tissues for many of the counties had DNA already extracted by Ms. Jean Robertson using a standard protein digestion, phenol/chloroform extraction and ethanol precipitation procedure (Sambrook *et al.*, 1989). The quality and quantity of these DNA samples when initially measured seemed to be good on paper however, many of these DNA samples have since degraded. The quality of these DNA's was tested on a 0.8% agarose gel (SeaKem LE Agarose from FMC) (see Appendix A for gel preparation). Good quality

used for database acquisition, while the remainder of the samples, about 185, were reextracted using a slightly modified procedure (see Appendix B for extraction procedure). The reason for this modification was to obtain the highest quality and quantity DNA possible from these tissues.

DNA samples used for the initial screening of the eight fluorescently labeled microsatellite markers (see Table 2 for details) along with the 425 samples necessary for the database were selected at random. DNA samples with low quantitation (less than 15 ng/μl) and/or low absorbance ratio, 260/280, (less than 1.5) were ultimately excluded for failure to provide acceptable data. Twenty samples were randomly selected from the approximate 1200 deer samples collected in 1994, measured on a Milton Roy Spectronic Genesys 5 spectrophotometer for an estimate of DNA quality and on a Hoefer TKO 100 fluorometer for DNA concentration and adjusted to be approximately 30 ng/μl. The 425 samples for the database, five from each county and two islands, were processed in the same manner. All samples were thus quantitatively standardized prior to performing polymerase chain reactions.

Table 2. Characteristics of the microsatellite markers used in this study.

LOCUS	LOCUS	PRIMER SEQUENCES (5'-3')	FLUORO- CHROME AT 5'END	ALLELE SIZE RANGE	MAMMALIAN SOURCE AND LOCATION
ОВСАМ	Opiod binding cell adhesion protein	CCTGACTATAATGTACAGATCCCTC GCAGAATGACTAGGAAGGATGGCA	FAM (Blue)	195-211	Bovine Chromosome 29
IGF1	Insulin-like growth factor 1	CATATTTTCTGCATAACTTGAACCT GAGGGTATTGCTAGCCAGCTG	TET (Green)	128-146	Bovine Chromosome 5
CRFA	Corticotrophin releasing factor	GCTGAGCAGCCGTCTAAGTTGC CTCGCTCACCTGCAGAAGCACC	TET (Green)	226-252	Ovine Chromosome 9
JP23	Cervine DNA Segment, JP0023	GAAAATCCAAGCGACAAAGG CCGCAGAACAACTAAGCCCAAG	FAM (Blue)	140-200	Cervine Linkage Group 4
JP15	Cervine DNA Segment, JP0015	CCTTCTTTCTCATTGCTAACTTATATTAAATATCC GGAAATACCTTATCTTTCATTCTTGACTGTGG	TET (Green)	110-134	Cervine Linkage Group 2
IRBP2	Interphotoreceptor retinoid binding protein	GTATGATCACCTTCTATGCTTCC CCCTAAATACTACCATCTAGAAG	HEX (Yellow)	137-145	Bovine Chromosome 28
CSN3	Casein, Kappa	ATGCACCCTTAACCTAATCCC GCACTTTATAAGCACCACAGC	HEX (Yellow)	188-192	Bovine Chromosome 6
OarFCB304	Ovine DNA Segment, OarFCB304	CCCTAGGAGCTTTCAATAAAGAATCGG CGCTGCTGTCAACTGGGTCAGGG	HEX (Yellow)	121-149	Ovine Chromosome 19

Markers in bold were multiplexed together to create the database.

PCR conditions were optimized for amount of MgCl₂ (Perkin-Elmer, 25mM), dNTP's (GeneAmp dNTP's from Perkin-Elmer, 10 mM), oligonucleotide primers (Integrated DNA Technologies, Inc., Operon Technologies, Inc., Gibco BRL and MSU, 2 mM each), Ampli-Taq DNA polymerase (Perkin-Elmer, 5 U/µl), GeneAmp 10X PCR buffer containing no MgCl, (Perkin-Elmer) and deionized water. The working concentration of each component used in the PCR was as follows: 2.5 mM dNTP solution, 5 U/µl Ampli-Taq DNA polymerase, 20 µM each primer and 25 mM MgCl₂ solution. All PCR reactions were performed using 60 ng of template DNA, in a volume of 25 µl, overlayed with one drop of mineral oil. The amounts of each PCR component, depending on the primer set, are listed in Table 3. Multiplexing OBCAM, CRFA and IGF1 together in one reaction changed the amount of each primer from 0.5 µl to 0.25 µl and deionized water from 14.25 µl to 13.75 µl, while maintaining the same concentrations of the other components. PCR thermocycler running conditions using the PTC-100 Thermocycler from MJ Research were also optimized for each primer set and are listed in Table 4.

Table 3. Amount of each component for a 25 µl PCR.

Marker	10X Buffer	2.5mM dNTPs	25mM MgCl ₂	20µM Primer	5U/μl TAQ	30ng/μl DNA	dH ₂ O
OBCAM	2.5µl	2.0µl	3.0µl	0.5μl	0.25µl	2.0µl	14.25µl
CRFA	2.5µl	2.0µl	3.0µl	0.5µl	0.25µl	2.0µl	14.25µl
IGF1	2.5µl	2.0μl	3.0µl	0.5μl	0.25μl	2.0µl	14.25µl
IRBP2	2.5µl	2.0µl	3.0µl	0.5µl	0.25µl	2.0µl	14.25µl
CSN3	2.5µl	2.0μl	3.0µl	0.5µl	0.25µl	2.0µl	14.25µl
JP15	2.5µl	2.0µl	3.0µl	0.5µl	0.25µl	2.0µl	14.25µl
FCB304	2.5µl	2.0µl	3.0µl	0.5µl	0.25µl	2.0µl	14.25µl
JP23	2.5µl	2.0µl	1.5µl	0.5µl	0.25µl	2.0µl	15.75µl

Table 4. PCR thermocycler temperature programming.

							T
MARKER	INITIAL DENATURATION	DENATURATION	ANNEALING	EXTENSION	AUTO- EXTEND	# OF CYCLES	FINAL
ОВСАМ	95°C for 3 minutes	95°C for 45 seconds	55°C for 45 seconds	72°C for 45 seconds	1 second per cycle	30	N/A
CRFA	95°C for 3 minutes	95°C for 45 seconds	55°C for 45 seconds	72°C for 45 seconds	l second per cycle	30	N/A
IGF1	95°C for 3 minutes	95°C for 45 seconds	55°C for 45 seconds	72°C for 45 seconds	l second per cycle	30	N/A
IRBP2	95°C for 3 minutes	95°C for 45 seconds	50°C for 45 seconds	72°C for 45 seconds	l second per cycle	30	N/A
CSN3	95°C for 3 minutes	95°C for 45 seconds	55°C for 45 seconds	72°C for 45 seconds	l second per cycle	30	N/A
JP15	95°C for 3 minutes	95°C for 45 seconds	50°C for 45 seconds	72°C for 45 seconds	N/A	30	N/A
FCB304	95°C for 3 minutes	95°C for 45 seconds	58°C for 45 seconds	72°C for 45 seconds	N/A	30	V/N
JP23	95°C for 3 minutes	95°C for 45 seconds	55°C for 45 seconds	72°C for 45 seconds	N/A	30	72°C for 5 minutes

Verification of optimal conditions was performed on 2% agarose gels, with ethidium bromide staining. All sample runs during optimization contained positive and negative controls, two random deer samples and DNA size standards in the first and last lanes of the gel. 5 µl of each standard combined with 1 µl of loading dye (Blue Dextran and Ficoll from Sigma) mixed with fragment comigration indicator dyes xylene cyanole FF (Sigma) and bromphenol blue (Sigma) were loaded in the wells of the gel. 15 µl of each sample combined with 3 µl of loading dye as described above were loaded in the wells of the gel. The test samples used were 95201 and RP85, the positive control was a sample of muscle from a single white-tailed deer and the negative control contained no DNA. The size standards used were 100 bp ladder (Gibco BRL), pUC19 digested with Hae III purified from Haemophilus aegyptius and/or pUC19 digested with Hpa II purified from Haemophilus parainfluenzae. These size standards have known fragment sizes in the range similar to the expected size fragments of the eight markers. The appearance of a single band in the approximate fragment size range was an indicator that the PCR conditions were specifically amplifying only the locus of interest. Once optimization was achieved for each marker, the 20 random samples were amplified using each marker's optimal PCR conditions. These samples were subsequently analyzed on a Perkin-Elmer ABI Prism 377 DNA Sequencer for more accurate size determinations of each allele and to determine the extent of genetic diversity among the species.

Fluorescently labeled PCR samples were electrophoresed on a standard 4% polyacrylamide denaturing gel of 0.2mm thickness (see Appendix C for gel preparation).

1.5 µl of each sample was loaded on the ABI containing the following components: 0.5

μl of PCR product, 0.5 μl ABI Prism GeneScan-350 TAMRA (Perkin-Elmer) internal size standard, 2.0 μl formamide (Amresco) and 1.0 μl ABI loading buffer (Blue Dextran, 50 mg/ml and EDTA, 25 mM). Samples were electrophoresed at 3000 Volts for 2 hours using 1X TBE (Tris/boric acid/EDTA) buffer, data was collected using standard ABI protocols of the ABI 377XL DNA Sequencer Data Collection 2.0 software and analyzed using the recommended local Southern method algorithm of the GeneScan Analysis 3.1 software.

Scoring of alleles was performed after the analysis software extracted the raw data from each lane and applied the local Southern algorithm when calculating the molecular length of unknown fragments using the selected internal size standard. The fragment sizes listed for each sample were represented as a number to the 100th decimal. The GeneScan Analysis 3.1 software generated sizes for all peaks detected and then alleles were manually scored as whole numbers. Similar alleles, differing by one base pair, were "binned" together because alleles of a dinucleotide microsatellite marker will differ by multiples of 2. The scoring of alleles differing by only one dinucleotide repeat was performed based on the signal intensity for each allele. That is, a true heterozygote should display a more intense signal for the smaller sized fragment compared to the larger fragment, which is caused by the overlap of the smaller allele with the stutter band of the larger allele. The presence of only one fragment was scored as a homozygote with both alleles being the same size. All other samples were genotyped based on the presence of fragments within the allele size range showing the characteristic stutter bands.

Initial screening using the twenty random samples with each of the eight markers, was performed to identify which markers were polymorphic and the percent heterozygosity. Three of the eight markers tested were able to be multiplexed together and analyzed simultaneously on approximately 425 Michigan white-tailed deer to create a database with approximately 850 data points. A large database is necessary for probability estimates in order to individualize a sample and match it to evidentiary material with a high degree of probability. These selected three markers for database acquisition were tested for Mendelian inheritance using nine two-generation known pedigree white-tailed deer families from a captive deer population in Savannah River, Georgia.

FINDINGS

DNA QUALITY ASSESSMENT

The first set of results were obtained after an initial assessment of DNA quality by electrophoresing random samples of genomic DNA on agarose gels. Figures 3 and 4 exhibit highly variable DNA quality between samples previously extracted beginning in 1994. Samples with detected bands near the loading wells represent good quality DNA, while samples showing a smear or at the lower end of the gel represent highly degraded DNA. Several samples have since degraded and show an appreciable amount of low molecular weight DNA. High molecular weight DNA is not a requirement for PCR technology however, the presence of high quality DNA will make the optimization of PCR's and evaluation of results easier to interpret. Figure 5 shows genomic DNA extracted using both Qiagen lysis Buffer ATL and homemade lysis buffer, along with Proteinase K (Gibco BRL) and Qiagen Protease enzymes. The selection of the Qiagen lysis Buffer ATL with Proteinase K resulted in the highest quality DNA and was used for all subsequent DNA extractions. The quality or purity of DNA, absorbance ratio (260nm/280nm), of these samples ranged from 1.7-1.9, which represents high quality DNA because the amount of DNA in the sample (i.e. absorbance at wavelength 260nm) exceeds the amount of protein (i.e. absorbance at wavelength 280nm) by almost two-fold. A₂₆₀ corresponds to the amount of absorbance of light by DNA in the sample at wavelength 260nm and A₂₈₀ corresponds to the amount of absorbance of light by protein and other contaminants in the sample at wavelength 280nm. The Milton Roy Spectronic Genesys 5 spectrophotometer, used in this study, measures absorbances and calculates

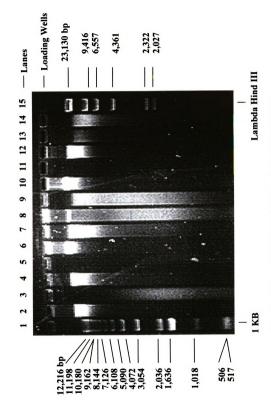


Figure 3. DNA quality of previously extracted genomic DNA samples.

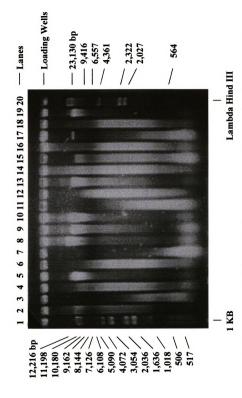


Figure 4. Additional genomic DNA samples previously extracted showing highly variable DNA quality.

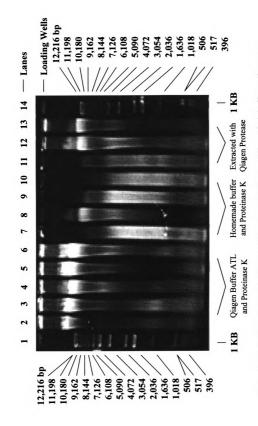


Figure 5. Comparison of genomic DNA samples extracted using two different lysis buffers and enzymes.

the 260nm/280nm absorbance ratio from the absorbance readings at wavelengths 260nm and 280nm. The ratio provides an estimate of the purity of the DNA.

PCR OPTIMIZATION OF EIGHT MARKERS

Two samples along with negative and positive controls were selected and used for initial PCR optimization of the eight markers. Figures 6 through 11 show the eight markers optimized and electrophoresed on agarose gels along with known size standards in external lanes. The presence of a single band in the approximate fragment size range based on species homology listed in Table 2 indicated that the PCR conditions were optimally amplifying the locus of interest. The absence of a band for the negative control indicates no DNA contamination and no PCR artifacts present in the size range of interest.

INITIAL SCREENING OF MARKERS WITH TWENTY SAMPLES

Two of the most important aspects of DNA markers are heterozygosity and diversity. A goal of this study was to identify a set of markers with high heterozygosity and numerous possible alleles in the test population. The next set of results were obtained to determine the extent of genetic diversity and to select those markers exhibiting high polymorphism among the species using twenty random samples containing high quality DNA. These samples were amplified with fluorescent primers using each marker's optimal PCR conditions and electrophoresed on an ABI 377XL DNA Sequencer. The initial screening data for the twenty samples for each marker along with the number of heterozygous samples, percent heterozygous, number of different alleles, the allele size range and polymorphic information content (PIC) are presented in Table 5. The PIC value was calculated using the formulation of Botstein *et al.* (1980) and is indicative of a

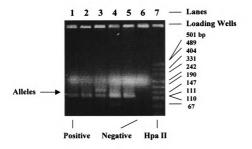


Figure 6. Agarose gel of marker: JP15.

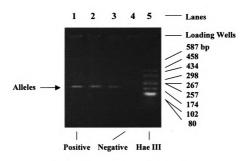


Figure 7. Agarose gel of marker: CSN3.

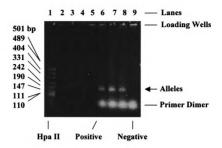


Figure 8. Agarose gel of marker: IRBP2.

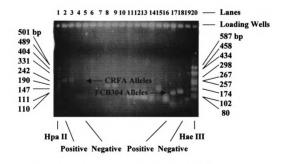


Figure 9. Agarose gel of markers: CRFA and FCB304.

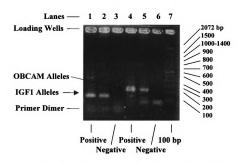


Figure 10. Agarose gel of markers: IGF1 and OBCAM.

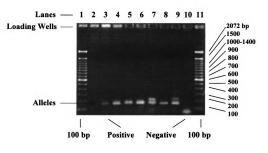


Figure 11. Agarose gel of marker: JP23.

Table 5. Initial screening results in base pairs from an ABI 377 of eight markers using random deer samples.

	_	т	ī	ī	_		_	_	1			ι		_	_	ı —	r –	_		r		_	T-	Ι	г—	r	, —	
JP23 FAM	Ž	М	154	158	158	158	152	168	ğ	ž	170	152	158	ğ	162	154	152	154	170	158	154	152	152	3	11	0.70	9	152-170
E 4	άŽ	Ν	154	158	158	158	152	154	ξ	ğ	170	152	158	δŽ	158	154	152	154	154	158	154	152	152			0		152
F.	127	127	141	127	141	131	141	141	127	127	141	135	127	141	131	135	141	133	129	143						8 6		143
IGFI	127	127	127	127	127	127	127	133	127	127	129	129	127	135	129	127	135	127	127	135			uo	4	20	0.68	7	127-143
× 2	179	175	177	179	181	175	177	177	173	181	187	181	177	175	173	175	175	179	179	181			cquisiti			7		187
IRBP2 HEX	173	175	177	175	173	173	177	173	691	177	177	175	177	173	173	173	173	179	177	175			apase a	14	70	0.77	7	169-187
M M	211	215	203	207	221	207	219	215	201	205	213	122	509	202	211	502	209	509	207	215			for dat					121
OBCAM FAM	205	207	195	207	209	203	203	506	195	203	203	205	195	201	205	201	205	209	205	203		roduct	ogether	<u>8</u>	8	0.87	=	195-221
2	113	113	Ξ	Ξ	Ξ	Ξ	Ξ	E	Ξ	Ξ	115	Ξ	Ξ	Ξ		Ξ	E	Ξ	111	=======================================		NP means no amplified product	Shaded markers were selected to be multiplexed together for database acquisition			2		15
JP15 TET	E	107	=	107	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	107	107	Ξ	Ξ	H	Ξ	Ξ	Ξ	=	107		no am	e multip	9	30	0.32	4	107-115
▼	254	240	244	244	254	246	252	244	250	258	254	242	252	248	246	250	238	254	250	252		means	ed to b					58
CRFA	254	238	244	240	244	240	244	238	238	252	238	242	248	240	242	250	238	246	242	230		Ż	e select	15	75	0.88	=	230-258
4	120	120	134	134	120	134	120	134	134	134	134	120	120	134	120	134	120	120	134	134			ers wer	-			_	34
FCB304 HEX	120	120	120	120	120	134	120	134	120	120	120	120	120	120	120	134	120	120	134	120			ed mark	7	35	0.36	2	120-134
E 14	192	192	192	88	192	192	881	881	881	881	192	192	881	188	881	881	188	192	188	192			Shad	<u> </u>				92
CSN3 HEX	192	192	192	881	192	881	881	881	881	881	881	192	881	881	188	881	881	192	188	881				3	15	0.36	2	188-192
.80)																												
O.D. (260/280)	1.6	- 8.	<u>∞</u> .	1.7		 8.	1.9	1.5	 	1.9			1.7	 8.	1.5	1.8 8.	1.5	1.9	1.7	 8.	1.6	1.7	1.7	es	<u>د</u>	Ę		
CONC. (ng/uL)	28	20	25	65	12	25	125	21	20	125	63	93	36	75	40	19	17	911	38	45	001	08	85	s Sampl	Sample	n Conte	Alleles	ဥ
		_				_	_	_	_				_	_									_	zygou	ygous.	rmatio	ferent ,	e Rang
SAMPLE	AL 94	AL 90	BR 191	PW 109	95168	RP 273	95295	RL 19	RP 190	95290	BR 108	95045	JK 99	AL 5	BG 43	95083	95256	95087	BR 254	95005	95114	95082	95259	Number of Heterozygous Samples	Percent Heterozygous Samples	Polymorphic Information Content	Number of Different Alleles	Allele Size Range
COUNTY	Delta	Gogebic	GD??	Kalamazoo	Hillsdale	Emmet	Beaver Island	33	Emmet	Beaver Island	losco	N. Manitu Island	Washtenaw	Dickinson	نن	Wayne	Ottawa	Monroe	Alcona	Leelanan	Van Buren	Wayne	Ottawa	Number	Percen	Polymo	Num	
5		Ű		Kal	王	Ш	Beav		Ξ	Beav		N. Ma	Wa	Ď		^	٥	2	٧	ב	Va							

marker's ability to differentiate individuals. Heterozygosity was calculated by dividing the number of heterozygous individuals by the total number of individuals. Heterozygosity of the eight markers screened on twenty random deer samples is graphically represented in Figure 12. Marker loci CRFA, OBCAM, IRBP2 and IGF1 displayed a minimum 70% heterozygosity and appeared to be highly polymorphic. These markers were selected for use in analysis of database samples. Figure 13 shows a graphical representation of the degree of polymorphism for the three selected markers CRFA, OBCAM and IGF1. These three markers could be amplified under similar PCR conditions and thermocycler temperature programming (multiplexed). The ability to multiplex was considered critical since the final test needed to conserve cost as well as

time. In addition, these markers also have non-overlapping allele size ranges so as to be

able to be analyzed in one lane of a polyacrylamide gel.

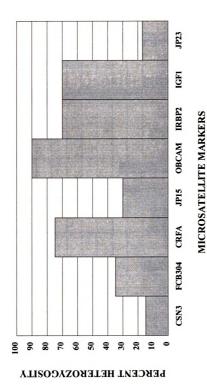


Figure 12. Heterozygosity of eight markers screened on twenty random deer samples.

61

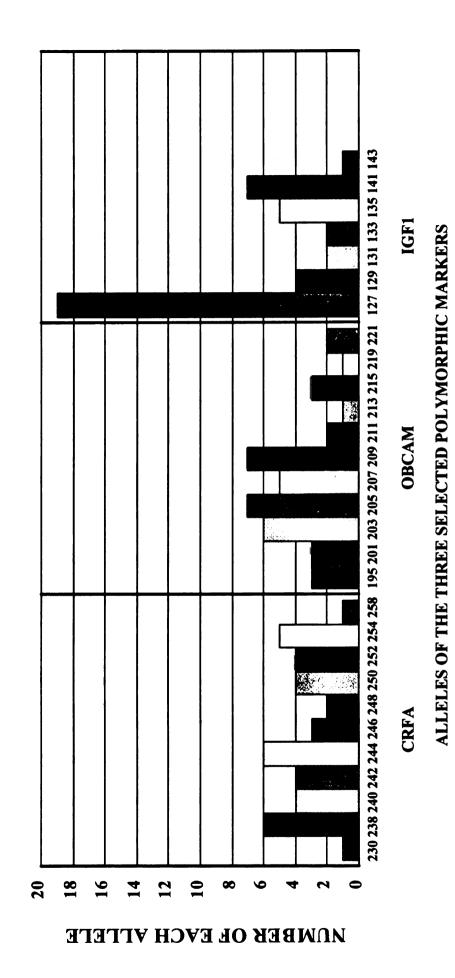


Figure 13. Graphical representation of the degree of polymorphism for the three selected markers screened on twenty random deer samples.

WHITE-TAILED DEER FAMILY STUDY

The three selected markers, in order to be considered genetic markers must follow Mendel's laws of inheritance, prior to database acquisition. This study analyzed nine two-generation white-tailed deer families originating from a captive deer population in Savannah River, Georgia, and supplied by Dr. Jerry L. Ruth with the Fish and Wildlife Service of the United States Department of the Interior. The results from these families prove Mendelian inheritance of the three markers used for database acquisition in this study. Figure 14 shows the ABI gel file containing nine pedigreed white-tailed deer families for the three selected markers and Table 6 shows the allelic data for the nine pedigreed white-tailed deer families contained in Figure 14. Notice that each offspring contains one allele from each of the two parents, thus, proving Mendel's principle of segregation of alleles for the three markers.

DATABASE ACQUISITION AND STATISTICAL ANALYSIS

Database results were obtained by amplifying the selected three markers (CRFA, OBCAM and IGF1) together and simultaneously running them in one lane of an ABI 377XL DNA Sequencer (multiplexing). An example of an ABI 377 gel file containing 50 deer DNA samples amplified by this method using the three multiplexed markers together in each lane is shown in Figure 15. Data from these gel files is displayed in an electropherogram (Figure 16) using GeneScan software to analyze and "call" allele sizes, based on comparison to internal size standards. Note that the table in Figure 16 accounts for the presence of two alleles per locus and that all three loci are discernable in the electropherogram. To construct a "representative" database against which allele frequencies could be determined for forensic samples, 450 different deer DNA samples

were analyzed by multiplex PCR using the three markers CRFA, OBCAM and IGF1 on the ABI 377 (Table 7). NP means that there was no amplified product for that marker for that deer sample and? means that the allele for that deer sample and marker was unable to be scored confidently. Statewide, average heterozygosity of the three loci, OBCAM and CFRA exceeded 80% while that for IGF1 exceeded 60% (Figure 17). Figures 18, 19 and 20 show a graphical representation of the frequency of IGF1, CRFA and OBCAM alleles in the database, respectively.

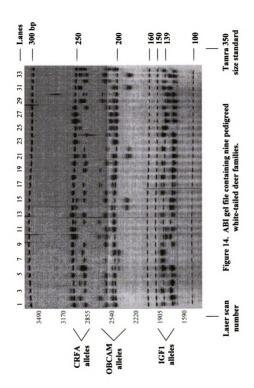
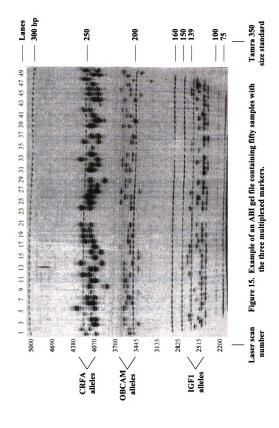



Table 6. Allelic data for the nine pedigreed white-tailed deer families from Figure 14.

GEL				MAR	KERS		
LANE	SAMPLES	IG	F1	OBO	CAM	CR	IFA
#		(b	p)	(t	p)	(b	p)
1	Father 1	127	143	201	211	236	250
2	Mother 1	127	129	203	219	242	254
3	Offspring 11A	129	143	203	211	236	254
4	Offspring 11B	127	127	203	211	236	242
5	Father 1	127	143	201	211	236	250
6	Mother 2	127	141	195	203	236	238
7	Offspring 12A	141	143	195	211	236	250
8	Offspring 12B	141	143	195	201	238	250
9	Father 1	127	143	201	211	236	250
10	Mother 3	129	135	209	219	248	248
11	Offspring 13A	127	135	201	209	248	250
12	Offspring 13B	129	143	201	219	236	248
13	Father 1	127	143	201	211	236	250
14	Mother 4	129	129	185	203	246	250
15	Offspring 14A	127	129	185	211	236	246
16	Father 1	127	143	201	211	236	250
17	Mother 5	127	143	203	219	238	250
18	Offspring 15A	127	143	201	203	250	250
19	Offspring 15B	127	127	201	219	236	238
20	Father 1	127	143	201	211	236	250
21	Mother 6	127	127	185	203	238	248
22	Offspring 16A	127	143	185	211	238	250
23	Offspring 16B	127	127	201	203	248	250
24	Father 1	127	143	201	211	236	250
25	Mother 7	137	143	203	207	246	248
26	Offspring 17A	127	137	201	207	248	250
27	Offspring 17B	127	137	201	207	248	250
28	Father 1	127	143	201	211	236	250
29	Mother 8	127	135	203	217	240	242
30	Offspring 18A	127	135	201	217	236	240
31	Father 2	133	143	185	203	246	246
32	Mother 9	127	143	211	215	238	240
33	Offspring 29A	127	133	185	215	238	246
34	Offspring 29B	127	143	203	211	240	246

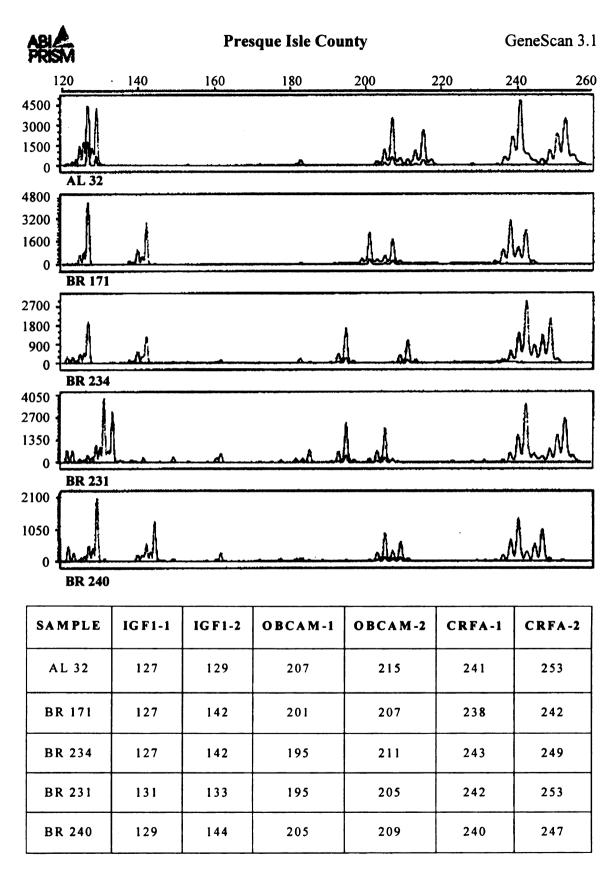


Figure 16. Example of ABI electropherograms of five samples from Presque Isle.

Table 7. Michigan white-tailed deer database.

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
		100								
-	ALCONA	BR 173	100	1.8	203	211	129	137	244	244
		BR 230	48	1.7	203	207	133	137	242	252
		BR 238	62	1.6	195	215	127	135	242	248
		BR 37	57	1.9	203	215	127	141	240	254
		BR 90	89	1.9	201	205	129	141	244	244
		BR 254	38	1.7	205	207	127	129	242	250
2	ALGER	RP 278	20	1.9	202	213	127	127	238	252
		AL 114	85	2	205	213	127	127	238	252
		RP 113	344	1.9	203	203	127	127	252	252
		ES 58	62	1.7	205	213	127	127	238	248
		RP 154	112	1.9	209	213	127	127	238	248
		RP 277	104	2	203	205	127	135	NP	NP
3	ALLEGAN	PW 101	100	1.8	205	205	127	141	238	238
		PW 108	52	1.6	201	205	127	141	244	248
		PW 116	80	1.7	203	205	127	127	244	252
		PW 118	63	1.6	203	205	127	127	248	252
		PW 120	32	1.5	203	205	127	129	238	244
4	ALPENA	BR 246	104	1.9	209	213	127	133	246	246
		BR 208	25	2	207	207	127	127	244	248
		BR 218	06	1.9	207	207	141	141	238	246
		BR 116	112	1.7	209	213	127	135	238	240
		RP 81	260	1.6	201	207	121	127	238	238
		DD 147	150	1.0	206	000	127	137	340	253

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE CONC.	CONC.	0.D.	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
NUMBER	NAME		(ng/uL)	(260/280)						
5	ANTRIM	AL 55	70	2	207	213	129	141	242	246
		RP 40	130	1.8	205	219	127	135	244	246
		AL 119	70	1.9	203	205	127	6	238	250
		BR 200	06	1.8	205	209	135	ć	232	240
		BR 43	91	1.9	195	205	127	127	240	240
		RP 23	54	1.9	207	213	127	135	244	244
		BR 248	70	1.9	209	209	127	127	238	244
9	ARENAC	BR 4	100	1.8	201	205	141	141	252	252
		BR 3	95	1.8	205	205	127	141	242	246
		BR 65	70	1.7	207	211	131	141	238	238
		BR 33	165	1.8	195	205	127	143	238	244
		BR 11	21	1.8	203	209	127	127	NP	NP
		BR 174	74	1.7	201	205	131	135	240	242
		BR 164	72	1.8	207	215	127	141	252	6.
7	BARAGA	RP 210	25	1.8	203	205	127	127	238	240
		AL 110	85	1.8	205	205	127	141	242	242
		RP 199	15	1.8	195	205	127	129	242	250
		RP 136	25	1.9	211	221	135	135	244	248
		RP 157	78	1.8	213	219	127	127	240	246
00	BARRY	95029	435	1.9	195	205	127	127	244	244
		95025	163	1.8	205	215	141	143	244	248
		95032	85	1.9	185	205	127	141	238	240
		BR 100	145	1.9	205	207	129	143	236	236
		95023	140	1.8	203	203	127	141	238	248

Table 7. (cont'd).

COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
BAY	BR 96	30	1.8	209	215	127	127	238	242
BENZIE	AI. 146	72	1.9	195	203	121	127	238	244
	BR 127	99	1.9	205	209	137	141	244	248
	BR 229	15	1.9	203	205	127	127	NP	NP
	BR 118	70	1.9	195	211	127	135	250	250
	BR 50	101	1.9	203	213	131	141	238	244
	BR 223	74	1.8	203	209	127	135	250	250
BERRIEN	95304	80	1.6	203	205	127	127	244	256
	95306	70	1.6	203	209	121	127	252	256
	95307	80	1.6	195	205	127	141	244	244
	95308	90	1.7	203	205	127	127	238	246
	95309	89	1.7	195	207	127	127	238	244
BRANCH	JK 90	33	1.9	203	205	133	141	238	238
	JK 92	25	1.8	203	209	127	135	238	240
	95149	74	2	203	215	133	141	240	248
	95151	52	1.9	203	205	127	127	242	254
	95152	130	1.9	203	209	127	133	238	252
								1	
CALHOUN	JK 100	80	1.8	205	213	127	127	238	244
	95156	100	1.8	201	209	121	127	244	246
	95160	170	1.8	201	213	141	141	238	244
	95162	06	1.9	205	205	127	141	238	240
	95164	100	1 0	201	205	127	127	244	246

Table 7. (cont'd).

CRFA-2	244	248	246	242	248	244	244	250	250	244	244	250	256	256	252	258	244	246	NP	246	240	244
CRFA-1	238	244	238	238	242	234	232	242	232	238	244	246	252	244	244	252	040	230	NP	238	240	242
IGF1-2	141	141	127	127	135	127	129	135	141	135	125	127	133	127	141	127	141	141	135	135	127	129
IGF1-1	127	127	127	127	127	127	127	127	127	127	125	127	127	. 127	127	127	127	135	127	127	127	127
OBCAM-2	207	205	209	201	205	207	203	195	209	203	209	219	203	203	219	205	2002	205	203	209	209	207
OBCAM-1 OBCAM-2	205	203	185	185	203	205	201	195	209	203	203	207	203	203	203	203	200	195	201	203	205	203
O.D. (260/280)	1.8	1.9	1.9	1.8	1.8	1.9	2	1.6	1.7	1.9	1.8	2	1.8	1.8	1.9	1.9	0.	8	1.7	1.8	1.7	1.9
CONC. (ng/uL)	172	80	135	35	70	45	62	20	25	325	06	58	134	90	125	125	13	51	110	148	09	250
SAMPLE	95312	95313	95316	95319	95321	RP 116	BR 66	RP 259	AL 133	RP 263	95299	95284	95286	95289	95295	95290	DD 44	BR 117	BR 85	BR 115	BR 215	RP 134
COUNTY	CASS					CHARLEVOIX					BEAVER ISLAND						CIEDOVOAN	CHEBOTORIA				
COUNTY	14					15					15B						,	IO				

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
17	CHIPPEWA	RP 213	180	1.9	201	207	127	133	238	238
		AL 30	78	1.5	213	221	127	139	244	256
		RP 197	160	1.9	205	205	127	131	240	248
		RP 91	350	1.9	201	205	127	133	242	250
		BR 243	195	1.9	201	205	127	127	244	250
	CIADE	DD 201	150	10	201	200	127	141	240	250
		RP 200	95	1 9	205	213	121	127	238	238
T		AL 9	75	1.5	201	209	127	127	238	248
		AL 7	200	1.9	203	209	127	127	226	252
		RP 204	150	1.9	201	207	127	141	240	242
61	CLINTON	RP 53	375	1.9	205	205	135	143	238	244
20	CRAWFORD	BR 67	325	1.9	205	215	127	133	238	244
		AL 17	220	1.6	205	211	127	127	234	246
		AL 41	130	1.5	203	205	127	133	248	248
		BR 123	232	1.8	201	201	127	143	NP	NP
		AL 125	320	1.8	205	209	141	141	246	246
		BR 58	473	1.9	209	209	127	127	248	6.
;	AT INC	020 000	9	0.1	2002	202	107	107	244	253
17	DEELA	BR 251	136	1.5	205	215	127	135	238	. 238
		BR 258	166	1.7	201	211	127	135	244	250
		RP 125	70	1.9	203	205	127	135	240	244
		RP 146	160	1.8	195	205	127	129	246	248
		AI. 94	28	16	205	211	12.7	127	254	254

Table 7. (cont'd).

COUNTY NUMBER	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
22	DICKINSON	AL 160	17	1.7	203	205	ć	6.	242	246
		AL 159	30	1.9	213	215	127	127	248	248
		AL 5	75	1.8	201	205	6	6.	240	248
		RP 257	06	1.8	203	203	127	127	238	242
		95104	09	1.8	205	207	127	127	244	254
		RP 71	37	1.8	201	209	127	127	246	252
		RP 42	272	1.8	203	203	127	135	NP	NP
23	EATON	RL 1	55	1.9	203	213	127	133	238	252
		RL 8	48	1.8	205	209	121	127	244	246
		RL 18	115	2	195	209	127	127	238	242
		95064	360	1.9	195	205	127	135	246	248
		95063	250	1.9	201	215	133	141	242	246
		RL 3	30	1.7	195	203	127	141	238	238
24	EMMET	RP 190	35	1.8	195	201	127	127	238	248
		RP 151	25	1.8	201	203	127	145	232	238
		BR 98	35	1.8	203	213	127	135	240	240
		RP 150	16	1.8	203	213	127	137	242	248
		RP 273	38	1.8	203	207	127	131	240	246
	8	DB 63	31	0 -	200	000	107	301	330	246
		DD 101	30	0.1	201	200	121	277	244	244
		DR 191	67	1.0	193	503	171	141	544	++7

Table 7. (cont'd).

CRFA-2	252	246	250	242	252	252	244	244	238	232		242	240	240	248	252	250	250	252	246	254
CRFA-1	238	240	236	238	248	238	238	244	226	226		240	238	238	246	238	246	240	238	230	244
IGF1-2	141	127	127	135	141	143	141	135	151	135	*	141	127	127	127	141	127	129	141	127	135
IGF1-1	127	127	127	135	141	127	127	127	133	127		135	127	127	127	127	127	127	127	127	127
OBCAM-2	209	209	209	205	201	203	213	205	209	205		207	215	205	213	207	203	209	211	205	203
OBCAM-1 OBCAM-2	203	203	203	201	195	203	203	201	203	201		195	207	195	209	207	195	195	195	195	195
O.D. (260/280)	1.9	1.9	1.9	2	1.9	1.8	1.8	1.7	1.9	1.8		1.6	1.8	1.8	1.8	1.7	1.8	1.8	1.9	1.8	2
CONC. (ng/uL)	130	70	320	200	255	28	8	20	480	480		09	30	20	30	53	20	140	110	300	100
SAMPLE CONC. (ng/uL)	BR 256	95138	95125	BR 257	95147	BR 189	RP 100	BR 255	BR 22	BR 16		RP 169	AL 90	RP 43	RP 186	RP 143	95013	95014	95015	95018	95020
COUNTY	GENESEE					GLADWIN						GOGEBIC					GRAND TRAVERSE				
COUNTY	25					26						27					28				

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
00	CDATIOT	AI 149	35	8	201	205	127	141	240	252
7.7	TOTT COLO	95124	70	16	203	205	127	135	238	242
		95130	116	1.6	203	203	127	143	248	248
		95131	132	1.7	209	215	127	127	244	244
		AL 2	135	2.3	201	203	141	141	238	240
	11 x 7 110 x 222 x	77.00	0.5		500	2002	127	141	040	253
30	HILLSDALE	JA 63	301	1.7	205	202	122	141	248	250
		95176	54	1.7	203	209	127	141	238	244
		95178	80	1.7	203	213	127	135	252	252
		95179	105	8	201	203	127	141	244	246
		95168	51	1.8	209	221	127	141	244	254
31	HOUGHTON	AL 45	80	1.9	203	211	127	141	236	250
		RP 30	295	1.8	213	6.	127	127	252	254
		RP 29	175	2	205	209	127	141	246	262
		RP 215	120	1.7	209	211	127	127	240	242
		RP 198	102	1.9	205	209	127	133	244	244
		RP 57	414	1.9	203	205	135	141	246	248
										-
32	HURON	SP 2	70	1.7	209	211	127	127	250	252
		SP 4	70	1.7	209	221	127	127	246	252
		95180	85	1.8	195	203	127	141	248	248
		SP 6	20	1.6	203	205	127	133	242	244
		S D S	70	16	203	205	127	133	240	244

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
+	INGHAM	95070	105	1.8	205	205	129	135	244	246
H		95132	70	1.9	205	209	129	141	232	238
-		95136	125	1.8	205	209	131	141	244	244
		95146	85	1.9	205	207	121	141	244	252
H		95071	50	1.6	205	205	127	6.	238	242
+	IONIA	95137	265	1.7	203	203	127	127	242	244
		95181	86	1.9	203	203	127	127	238	248
-		95183	95	2	195	203	127	141	238	246
-		95185	09	1.8	205	205	121	135	242	248
		95188	89	1.9	205	205	127	131	242	248
+	IOSCO	BR 181	75	1.8	201	213	131	133	238	246
-		BR 210	85	1.8	205	205	127	141	240	252
		BR 73	48	1.8	209	213	127	135	242	248
		BR 57	120	1.9	201	213	141	141	230	252
		BR 95	32	1.5	209	209	127	131	238	240
H		BR 108	63	1.8	203	213	129	141	238	254
+	NOGI	AI 22	115	81	203	300	135	130	244	253
+		RP 97	110	1.9	205	209	127	141	246	248
-		BR 159	218	1.8	195	205	127	127	234	238
-		AL 104	240	1.9	203	207	133	135	238	240
		AL 74	250	1.9	195	203	127	135	238	240
-		AL 106	353	1.9	211	211	135	139	226	246

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
37	ISABELLA	BR 104	228	1.8	203	207	127	127	238	238
		AL 132	267	1.9	203	205	127	141	238	238
		AL 131	276	1.9	207	215	133	135	246	246
		BR 62	272	1.9	205	209	135	141	238	246
		AL 11	278	1.8	509	215	127	141	238	246
36	IACKSON	IK 81	811	8	195	203	127	141	242	244
20	NO CONTRACT	95192	100	8	203	205	127	127	244	248
		95194	06	1.9	201	203	127	141	244	246
		95200	85	1.9	205	205	127	127	238	244
		JK 76	124	1.7	203	213	127	127	244	252
39	KALAMAZOO	FCTC 3	155	1.7	203	203	127	141	244	248
		FTC 1	145	1.7	205	209	127	135	242	244
		FTC 6	200	2	209	209	141	141	244	244
		PW 105	92	1.8	205	215	127	127	238	252
		PW 104	65	1.7	195	203	127	141	244	244
		PW 109	65	1.7	207	207	127	127	240	244
40	KALKASKA	AL 164	150	2	205	209	127	127	238	248
		BR 226	163	1.9	195	209	127	135	240	242
		BR 131	160	1.9	203	213	135	135	242	242
		RP 241	127	1.8	209	213	127	135	238	240
		AT 42	136	10	205	205	131	141	242	244

Table 7. (cont'd).

COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
KENT	RP 243	95	1.9	203	213	127	131	244	244
	95206	160	1.8	203	209	127	141	242	250
	95209	100	1.9	203	205	127	127	244	246
	95211	09	1.9	201	203	127	141	238	244
	95213	50	1.9	195	203	127	127	238	254
VEWFENAW	m/M								
LAKE	AL 156	58	1.7	209	215	127	127	244	248
	RP 182	170	2	203	209	131	141	238	238
	BR 111	225	1.8	195	205	127	141	238	244
	AL 153	160	1.9	203	213	127	127	238	246
	AL 137	170	1.8	201	209	127	127	238	244
LAPEER	BR 160	440	1.9	203	205	127	127	250	6
	95098	38	1.6	203	209	127	127	240	252
	95128	290	1.6	203	205	133	143	242	244
	95097	61	1.6	195	205	127	141	244	246
LEELANAU	U BR 221	280	1.7	203	219	127	131	232	240
	RP 28	110	1.9	195	201	127	129	232	254
	95005	45	1.8	203	215	135	143	230	252
	RP 167	125	1.8	203	205	127	133	6.	6
	RP 209	128	1.6	201	209	127	135	238	254
	60056	50	1.7	205	209	129	141	250	250

Table 7. (cont'd).

N. MANITU ISLAND 95043 95086 95087 95042 95042 95045 95045 95045 95045 95045 95045 95045 95045 95045 95045 95045 95045 95045 95066 95	50 18 66 1.9 66 1.9 18 18 93 1.8 80 1.7 40 1.6 40 1.6 40 1.7 40 1.7	213 207 195 195 205 205 205 205 205 205	221				
95038 95036 95045 95049 95049 95045 95215 95217 95210 95220 95220 95220 95220 95220 95220 95220 95220 95220 95220 95216 95216 95216 95216 95216		207 195 195 205 205 205 205 205 205	213	137	133	240	244
95036 95036 95042 95040 95040 95040 95040 95045 95045 95045 95045 95215 95215 95220 95222 95223 95223 95233		195 195 205 205 205 205 201		135	135	244	244
95042 95045 95046 95046 95045 95017 95217 95220 95220 1K 97 95220 1K 97 95220 1K 97 95216 95216 95216 95101 95101		205 205 205 205 205 201	209	127	129	244	252
95049 95045 95045 95015 95215 95220 95220 95220 95220 95220 95220 95216 95216 95216 95216		205 205 205 205 201	221	133	135	244	244
95045 95072 95072 9515 95216 95220 95220 95220 95220 95220 95220 95220 95216 95216 95216 95216 95216 95216 95216 95216 95216 95216 95217		205 205 201	207	127	135	240	242
95072 95217 95217 95220 1K 97 95220 1K 97 95226 95226 95216 95216 95106 95106		205	221	129	135	242	242
95217 95217 95220 95220 95220 95226 9523 8R 206 RL 11 95106 95106		201	200	137	171	330	253
95217 95220 95220 1K 97 1K 97 95216 95223 1K 97 95223 1K 97 95216 95106 95106		NO. W	203	135	141	NP NP	NP
95220 95222 JK 977 95216 95216 95223 BR 206 RL 11 95101 95106		203	209	131	135	244	248
95222 95216 95216 95223 BR 206 RL 11 95106 95106		203	205	127	143	238	248
95216 95223 95223 BR 206 RL 11 95101 95106	1	201	209	121	127	244	244
95216 95223 BR 206 RL 11 95101 95106		205	213	135	141	238	240
95223 BR 206 RL 11 95101 95145		203	203	141	143	NP	NP
BR 206 RL 11 95101 95106 95145	38 1.6	205	209	141	141	NP	NP
BR 206 RL 11 95101 95106 95145	+						
+HH	55 1.9	195	213	127	127	244	246
	55 1.8	213	221	127	133	246	248
++	585 1.7	205	209	133	141	238	242
-	145 1.9	203	205	127	141	230	240
	80 1.8	205	209	141	141	238	238
$\frac{1}{1}$							
Н	328 1.9	205	213	127	131	238	252
RP 86 1:	158 1.8	203	215	127	127	246	248
	230 1.9	203	211	127	141	242	254
BR 167 2'	275 1.9	207	207	127	127	246	250
RP 188 4	460 1.9	205	205	127	127	238	244

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
49	MACKINAC	RP 152	215	2	203	207	127	127	250	252
		BR 101	225	1.9	203	209	141	141	242	244
		BR 201	336	1.9	207	213	135	141	246	248
		RP 249	212	1.9	205	209	127	127	238	252
		AL 85	195	1.9	203	205	127	141	244	252
50	MACOMB	RP 233	406	8	205	211	127	141	238	246
51	MANISTEE	BR 139	166	1.9	195	213	127	127	238	246
		RP 225	300	1.8	203	205	127	131	238	246
		BR 48	190	1.8	203	215	127	127	242	252
		AL 40	275	1.8	207	207	127	133	238	248
		RP 65	230	1.8	209	213	127	133	238	240
52	MAROUETTE	BR 262	146	1.9	205	215	129	141	238	246
		AL 54	247	1.9	195	221	131	135	242	248
		AL 88	215	1.9	211	221	127	135	248	252
		RP 170	235	1.9	205	205	127	127	242	246
		RP 10	265	1.9	207	211	129	129	246	252
53	MASON	RP 211	173	1.9	203	219	127	127	238	238
		RP 214	222	1.8	203	209	127	127	6.	6
		AL 62	222	1.9	209	219	127	127	238	244
		AL 66	302	1.8	203	219	127	127	238	250
		RP 192	382	1.8	209	219	127	127	240	246
		RR 244	555	1.8	203	215	12.7	12.7	238	252

Table 7. (cont'd).

NUMBER	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
1	ATSOCIA	11 00	370	8 1	203	200	135	141	238	246
46	MECOSIA	RR 219	172	1.0	203	205	127	135	238	248
		RP 14	139	1.9	203	205	127	129	244	252
		BR 197	212	1.9	195	209	131	141	238	240
		RP 141	200	1.8	209	209	141	141	238	242
	dui W colour	140	000		d.V	Q.V	127	139	242	248
22	MENOMINEE	DR 142	206	10	200	200	127	127	238	256
T		RR 141	174	1 9	201	207	127	133	240	244
		RP 46	188	1 9	203	205	127	127	238	246
		RR 124	45	1 9	195	207	127	135	242	242
		RP 48	490	1.9	205	207	127	127	238	250
36	MIDI AND	BR 103	205	1.8	205	209	127	129	226	244
		AI. 161	250	1.9	207	209	127	127	238	242
		AL 148	275	1.9	203	209	129	141	244	250
		AL 100	240	1.9	195	209	127	151	238	242
		BR 77	200	1.9	203	207	127	143	230	242
57	MISSAUKEE	AL 107	240	1.8	205	213	127	141	242	246
		BR 183	208	1.9	201	209	127	143	232	252
		BR 86	135	1.8	195	195	127	143	238	238
		RP 77	170	1.9	195	203	129	141	232	242
		RR 151	270	10	203	213	133	141	238	240

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
58	MONROE	95075	205	8	203	205	177	135	24.2	153
		92020	130	0.1	000	207	121	100	747	7070
		05020	100	1.0	202	217	171	171	230	007
		930/9	171	1.9	502	217	135	135	250	252
		95084	80	1.9	209	215	127	141	242	246
		95085	120	1.9	203	205	127	135	246	248
		95087	116	1.9	209	209	127	133	246	254
59	MONTCALM	95224	06	1.9	201	209	135	141	238	250
		95226	168	1.7	6.	207	127	135	238	238
		95229	90	1.7	203	205	133	141	238	238
		95231	99	1.8	6	207	141	141	242	248
		95232	40	1.9	203	209	127	135	230	238
		95228	92	1.7	203	205	127	127	244	252
		95233	138	2	203	215	127	141	238	244
		95225	88	1.8	205	209	127	135	238	238
09	MONTMORENCY	BR 68	328	1.7	209	209	133	135	240	250
		RP 267	178	1.9	203	203	127	133	242	252
		BR 88	188	1.8	195	6.	127	127	228	238
		RP 140	220	1.9	203	203	127	141	244	252
		BR 91	490	1.9	201	205	127	133	232	232
		BR 79	009	1.8	203	207	127	141	242	244
19	MISKEGON	95241	308	1.0	203	213	107	133	244	244
		95239	195	1.0	203	200	133	133	244	346
		95243	190	1.8	195	213	127	141	238	244
		95236	165	1.9	209	209	127	127	238	244
		05247	000	10	305	000	100		000	

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
		200	20.	,	300	010	137	133	238	244
62	NEWAYGO	RP 73	310	7 81	207	6	127	127	244	244
+		RP 132	245	1 6	205	209	127	127	244	246
t		RP 128	385	1.9	209	213	127	127	238	244
t		RP 195	348	1.9	203	213	127	135	238	254
		RP 33	762	1.7	203	205	127	133	244	244
								-		010
63	OAKLAND	95091	50	1.7	195	203	127	137	238	242
		95093	46	1.8	209	211	129	141	244	248
		95094	92	1.9	205	209	137	137	240	256
T		95092	84	2	203	209	127	135	248	254
		95090	89	1.8	205	213	127	127	240	244
		68086	09	2	205	205	127	127	238	248
64	OCEANA	95253	346	1.9	203	209	127	127	244	246
		95245	180	1.8	195	213	133	141	244	244
		95250	360	1.9	6.	205	127	141	238	252
T		RP 6	195	1.8	203	203	127	127	238	244
T		RP 232	210	1.8	195	209	127	141	238	238
T		95252	572	1.9	203	209	127	127	244	246
65	OGEMAW	BR 89	252	1.7	205	213	127	127	232	244
		BR 14	235	1.8	207	213	127	133	244	246
		BR 19	510	1.8	199	199	127	127	238	240
T		BR 84	385	1.9	205	209	127	133	242	242
t		050 00	900	1.8	200	213	127	129	246	252

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
99	ONTONAGON	BR 83	160	1.9	205	219	127	135	238	244
		RP 32	242	1.8	201	201	127	135	236	246
		RP 119	488	1.9	201	211	127	127	238	242
		RP 268	350	1.9	195	205	127	135	238	246
		RP 138	830	1.8	205	215	127	141	238	246
19	OSCEOLA	RP 218	264	1.6	195	195	127	141	238	238
		RP 105	168	1.7	207	209	133	141	244	244
		RP 108	455	1.7	185	203	127	135	250	252
		RP 103	218	1.7	209	209	133	135	238	244
		RP 58	285	1.8	195	213	127	135	240	252
		RP 224	328	1.9	203	203	127	143	240	240
89	OSCODA	BR 106	100	1.9	201	203	127	127	242	242
		BR 110	100	1.8	213	213	127	143	240	246
		BR 21	90	1.8	195	209	127	127	244	244
		BR 245	120	2	201	201	141	141	250	252
		BR 36	30	1.8	195	205	127	141	252	252
69	OTSEGO	BR 250	345	8	203	209	127	127	244	250
		BR 192	350	1.8	201	205	127	127	232	242
		BR 180	250	1.8	207	209	127	143	238	238
		BR 242	350	1.9	201	215	129	135	242	242
		BR 145	510	1.9	195	207	129	135	244	246

Table 7. (cont'd).

COUNTY	COUNTY	SAMPLE	CONC. (ng/uL)	O.D. (260/280)	OBCAM-1	OBCAM-1 OBCAM-2	IGF1-1	IGF1-2	CRFA-1	CRFA-2
+	OTTAWA	05254	20	8	203	209	127	127	238	242
\dagger	OHOHO	95257	35	8	201	209	127	145	238	250
t		95259	85	1.7	203	205	127	133	244	244
t		95263	22	1.7	203	209	127	127	240	244
t		95255	30	1.9	203	203	127	135	254	254
T		95256	17	1.5	205	209	135	141	238	238
H								00.	070	030
	PRESQUE ISLE	AL 32	470	1.7	207	215	127	129	240	757
		BR 171	140	1.9	201	207	127	141	238	242
t		BR 234	135	1.9	195	211	127	141	242	248
t		BR 231	210	1.8	195	205	131	133	242	252
T		BR 240	55	1.8	205	209	129	143	240	246
T	ROSCOMMON	RP 55	194	1.8	201	205	127	127	240	242
T		RP 79	166	1.8	195	201	127	135	240	252
T		BR 239	400	1.9	201	203	137	141	248	252
T		BR 199	404	1.8	205	213	127	141	248	250
T		RP 19	410	1.8	195	209	127	135	242	248
	SAGINAW	95074	89	1.7	205	209	121	127	242	242
T		AL 13	225	1.8	201	201	127	133	238	242
T		BR 236	420	1.9	205	209	133	133	244	244
T		AL 12	288	1.9	203	203	127	131	238	246
T		41 100	320	0	000	200	107	127	244	254

Table 7. (cont'd).

CRFA-2	252	207	744	252	252	250	246	244	254	252	252	-	6	246	244	248	252	248
CRFA-1	244	070	740	248	244	242	242	238	246	238	242		6	236	242	240	240	238
IGF1-2	133	661	141	135	129	129	141	141	141	143	141		141	131	149	127	127	141
IGF1-1	107	121	171	127	129	127	127	135	127	127	129		127	127	127	127	127	127
OBCAM-2	300	507	502	215	209	205	205	205	207	203	205		205	215	213	209	213	205
OBCAM-1 OBCAM-2	203	502	502	195	203	205	203	203	205	195	203		203	209	205	205	205	201
O.D. (260/280)	0.	1.0	1.8	1.8	1.7	1.6	1.9	1.7	1.8	1.6	1.7		1.9	1.9	1.8	1.9	1.5	1.9
CONC. (ng/uL)	37	60	80	92	105	06	140	165	70	118	80		322	380	440	410	165	300
SAMPLE CONC. (ng/uL)	1104	LI 04	LI 06	LI 07	LI 08	LI 01	95328	95331	95334	95330	95329		95264	RP 265	RP 115	RP 264	AL 3	AI. 97
COUNTY	CT CI AIB	SI. CLAIN					ST. JOSEPH						SANILAC	SCHOOLCRAFT				
COUNTY		+					75						92	77				

Table 7. (cont'd).

CRFA-2	244	6.	238	248	238	252	248	246	248	252	242	252	248	244	244	240	250	256	246
CRFA-1	232	6.	238	248	238	248	242	244	244	240	242	244	248	240	240	238	248	248	242
IGF1-2	127	127	133	127	133	141	135	141	141	135	135	141	127	135	127	127	141	151	141
IGF1-1	127	127	127	127	127	127	127	127	127	127	127	141	127	127	121	127	127	135	141
OBCAM-2	209	217	205	203	209	215	215	207	203	209	221	209	203	205	209	205	205	205	300
OBCAM-1 OBCAM-2	195	205	203	201	205	205	205	205	195	205	195	203	203	203	205	203	205	203	300
O.D. (260/280)	1.8	1.8	1.8	2	1.9	1.9	1.9	1.9	1.8	1.8	1.9	1.9	1.8	1.9	1.7	1.6	1.6	1.6	10
CONC. (ng/uL)	85	95	110	50	46	15	64	89	40	284	338	316	370	315	65	220	100	90	30
SAMPLE	RL 14	69056	95123	95134	95119	RL 13	RL 7	RL 22	89056	BR 113	BR 70	BR 2	95268	BR 38	PW 103	95111	95114	95336	06230
COUNTY	SHIAWASSEE									TUSCOLA					VAN BUREN				
COUNTY	78									79					08				

Table 7. (cont'd).

CRFA-2	252	6.	244	6.	250	248	252	6.	248	240	246	6.	252	250	250	250	238	244	242	244	244
CRFA-1	238	238	238	6.	240	244	248	٥.	242	238	238	250	248	244	250	240	232	238	240	230	230
IGF1-2	135	141	141	141	141	141	127	141	141	129	135	133	127	133	135	127	135	127	143	131	141
IGF1-1	129	127	129	127	141	127	127	127	121	121	127	127	127	129	127	127	127	127	135	127	127
OBCAM-2	203	203	207	209	209	209	209	203	203	209	209	217	221	213	209	205	205	215	205	211	203
OBCAM-1 OBCAM-2	203	195	205	205	209	207	195	203	195	209	203	209	203	213	201	195	195	205	205	205	203
O.D. (260/280)	1.9	1.8	1.8	1.8	1.7	1.8	1.7	1.8	1.8	1.7	1.8	1.7	1.8	1.8	1.8	1.9	1.9	1.9	1.9	1.8	1.9
CONC. (ng/uL)	45	95	55	35	35	91	99	30	06	40	50	08	100	09	29	120	452	702	430	250	525
SAMPLE	JK 86	95272	95275	95278	95280	BR 158	JK 99	95274	95277	95057	95058	95082	98056	98056	95083	RP 24	RP 114	RP 235	BR 260	RP 178	RP 106
COUNTY	WASHTENAW									WAYNE						WEXFORD					
COUNTY	81									82						83					

? means allele unable to be scored confidently. NP means no amplified product. Allele sizes are in base pairs.

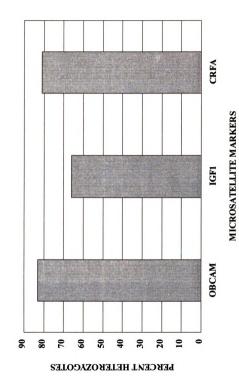


Figure 17. Heterozygosity of the three microsatellite markers for Michigan white-tailed deer.

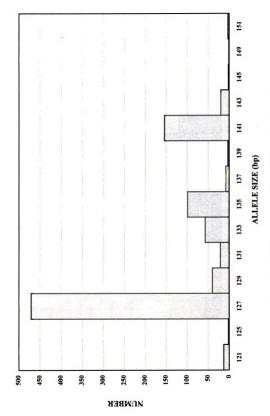


Figure 18. Graphical representation of IGF1 alleles in the database.

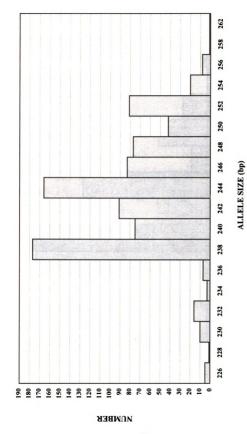


Figure 19. Graphical representation of CRFA alleles in the database.

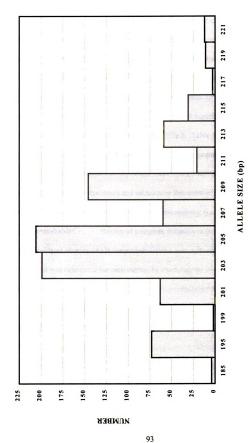


Figure 20. Graphical representation of OBCAM alleles in the database.

Table 8 lists the frequency of alleles, heterozygosity data, PIC values, Fisher Exact test probabilities, and the probability of identity for the three markers present in the database of 450 deer samples. The data presented in this table is based on only complete genotypic information for each sample and marker, with incomplete genotypes being eliminated from further testing. If a sample had an incomplete genotype, where one or both alleles was unable to be scored for a locus, then the data for that marker was not included in the frequency data or in the calculations. This explains the difference in the number of complete samples for each marker in Table 8. Table 7 contains all the complete and incomplete genotypic information for the test population. The expected heterozygosity under Hardy-Weinberg equilibrium (HWE) was calculated by summing the squares of each allele frequency and subtracting that number from one. This calculation was used to compare the observed heterozygosity (i.e. observed number of heterozygotes divided by the number of complete samples) in the sampled population. The probability of identity (P_i) is the probability that two individuals will have the same genotype and was calculated for each marker by summing the squares of each genotype frequency (National Research Council, 1996). This probability was calculated in order to determine the power of discrimination (P_d) for this microsatellite system, which by multiplying the P_i for each marker and subtracting from one resulted in a P_d of 0.99984 or 99.98 %. The P_d signifies the ability of the system to discriminate between individuals with this degree of probability. The Fisher Exact test, or probability test, tests for exactness to Hardy-Weinberg equilibrium by rejecting the hypothesis (i.e. the population of white-tailed deer sampled in this study are in HWE) if the observed genotypic frequencies deviate from what is expected under HWE (Weir, 1990) and was calculated

by the software program GENEPOP V3.1d (Raymond and Rousset, 1995). The Fisher Exact test was selected to test the population for HWE because of the possibility of rare alleles occurring in a rather large sampled population, such that, the frequency of the alleles and genotypes would be too small for the chi-square statistic. Even though the chi-square test statistic was also calculated by this program using the same inputed genotypic data, both of these tests resulted in compatible outcomes at the 0.004 level of significance for each test after correcting to account for multiple testing. This correction was done using the Bonferroni procedure which, simply stated, is the desired significance level (0.05) divided by the number of tests conducted. Along with the overall HWE testing for the whole population of sampled deer in Michigan, Table 9 also contains the statistical data testing Hardy-Weinberg equilibrium for four subdivisions of Michigan in order to assess regional differences in HWE.

Table 8. Summary data of all 450 sampled Michigan white-tailed deer.

Number	CR	FA	OBC	AM	IGI	F1
of	Allele Size	Number	Allele Size	Number	Allele Size	Number
Alleles	(bp)		(bp)		(bp)	
1	226	5	185	4	121	13
2	228	1	195	73	125	2
3	230	10	199	2	127	471
4	232	16	201	63	129	40
5	234	3	203	199	131	21
6	236	7	205	206	133	57
7	238	177	207	60	135	99
8	240	75	209	146	137	8
9	242	91	211	21	139	3
10	244	166	213	59	141	154
11	246	83	215	31	143	20
12	248	77	217	3	145	2
13	250	42	219	11	149	1
14	252	81	221	12	151	3
15	254	20				
16	256	8				
17	258	1				
18	262	1				
# of Comp	lete Samples	432		445		447
Total #	of Alleles	864		890		894
# of Diffe	rent Alleles	18		14		14
	ved # of					
	ous Samples	350		367		294
Heterozyg	ted # of ous Samples	376		378		299
Hetero	erved zygosity	0.81		0.83		0.66
Hetero	ected zygosity	0.87		0.85		0.67
Prob	Exact Test ability	0.0555		0.3722		0.2424
Informati (P	norphic on Content IC)	0.86		0.83		0.64
(1	y of Identity P _i)	0.0287		0.0408		0.1357
	ze Range	226-262		185-221		121-151
Power of Di	scrimination (P_d) for this sy	stem is 0.9998	or 99.98%		

Table 9. Statistical data testing Hardy-Weinberg equilibrium of Michigan white-tailed deer population subdivided into four regions of Michigan.

		FISHER EXACT	OVERALL	
POPULATION	MARKER	TEST	CHI-SQUARE	CHI-SQUARE
		PROBABILITY	(X ₃)	PROBABILITY
	CRFA	0.0555		
All Michigan	IGF1	0.2424	10.6	0.1018
,	OBCAM	0.3722		
	CRFA	0.5811		
Upper Peninsula	IGF1	0.6217	5.3	0.5095
1	OBCAM	0.1983		
	CRFA	0.1723		
Southern Lower	IGF1	0.2545	7.8	0.2511
Michigan	OBCAM	0.4555		
	CRFA	0.0131		
North East	IGF1	0.2919	15.7	0.0154
Lower Michigan	OBCAM	0.1016		
	CRFA	0.0751		
North West	IGF1	0.4162	8.2	0.2254
Lower Michigan	OBCAM	0.5362		

* Significant at P = 0.004 after Bonferroni correction.

To identify possible substructuring or inbreeding within the total sampled population, it is necessary to subdivide Michigan into regions for an assessment of the structuring of the deer population. Tables 10, 11, 12, 13 and 14 show the distribution of alleles among the subdivided regions of Michigan and the contributing counties are listed below each table. Table 10 contains data from all 31 counties south of M-57 and including the 3 counties in the thumb region north of M-57 (i.e. southern lower Michigan). Table 11 contains data from all 39 counties north of M-57 excluding the 3 counties in the thumb region (i.e. northern lower Michigan). Table 12 contains data from all 15 counties in the upper peninsula (i.e. upper peninsula). Lastly, northern Michigan was further subdivided into the east and west and Tables 13 and 14, respectively, contain data from those counties listed beneath the tables. Michigan and thus, the database was subdivided this way in order to roughly identify possible regions of substructuring or inbreeding. The selection was not geographically based on natural barriers (e.g. streams, steep hills, highways, cities, etc.), but based on the DNR's accepted subdivision of Michigan. Therefore, the interpretation of the data can only be an estimate of what is possibly occurring in those regions. A more accurate evaluation of the data would take into account other factors, outside the realm of this study, when subdividing the deer population in Michigan.

Establishing a database for future forensic applications in paternity testing or identification of unknown samples for the purpose of matching them to evidentiary material requires the use of allele frequencies of the markers in this system in order to calculate an accurate probability of a match. Along with the previous tables listing the number of occurrences of each allele for each marker for each region of Michigan, Table

15 shows the frequencies of each allele for each marker for each region. This presentation of the data allows for a visual comparison of frequencies for each marker across regions, with a noticeable variation between regions for many alleles. Statistical testing of this inter-region variance in allele frequencies was performed using the Fstatistic (F_{st}) and the chi-square and are also listed in this table. Statistical analysis using the F-statistic was performed by GENEPOP V3.1d software with this statistic measuring the variance in the genetic structure (allelic frequencies) in the subdivided population. The chi-square approximation for F_{st} was calculated using the formula 2N x F_{st} x (K-1), with degrees of freedom = $(S-1) \times (K-1)$ where N = # of samples, K = # of alleles and S = # of populations (Workman & Niswander, 1970). A significant chi-square would be indicative of heterogeneity in allele frequencies. Table 16 shows the comparison between regions for variance in allele frequencies between each other using the F-statistic and the chi-square. The inter-region variance in allele frequencies is low, but after taking into account the large sample size, the chi-square values for all but three comparisons become significant. The level of significance for the F-statistic and chi-square has been corrected in order to account for multiple testing, which again was done using the Bonferroni procedure.

Table 10. Southern Michigan lower peninsula white-tailed deer data.

Number	CR	FA	OBC	AM	IG	F1
of	Allele Size	Number	Allele Size	Number	Allele Size	Number
Alleles	(bp)		(bp)		(bp)	
1	230	1	185	3	121	9
2	232	2	195	23	127	159
3	236	4	201	16	129	13
4	238	57	203	87	131	4
5	240	21	205	95	133	18
6	242	28	207	10	135	30
7	244	68	209	54	137	3
8	246	26	211	3	141	73
9	248	38	213	13	143	7
10	250	12	215	8	145	1
11	252	31	217	3	151	1
12	254	8	221	5		
13	256	4				
# of C	omplete					
	mples	150		160		159
Total #	of Alleles	300		320		318
Heter	ved # of ozygous mples	127		130		107
Heter	cted # of ozygous mples	129		128		108
Hetero	served ozygosity	0.85		0.81		0.67
Hetero	ected ozygosity	0.86		0.80		0.68
	Exact Test pability	0.1723		0.4555		0.2545

Counties: Allegan, Barry, Berrien, Branch, Calhoun, Cass, Clinton, Eaton, Genessee, Hillsdale, Huron, Ingham, Ionia, Jackson, Kalamazoo, Kent, Lapeer, Lenawee, Livingston, Macomb, Monroe, Oakland, Ottawa, Sanilac, Shiawassee, St. Clair, St. Joseph, Tuscola, Van Buren, Washtenaw, Wayne.

Table 11. Northern Michigan lower peninsula white-tailed deer data.

Number	CR	FA	OBC	AM	IG	F1
of	Allele Size	Number	Allele Size	Number	Allele Size	Number
Alleles	(bp)		(bp)		(bp)	
1	226	4	185	1	121	4
2	228	1	195	40	125	2
3	230	9	199	2	127	214
4	232	14	201	36	129	21
5	234	2	203	89	131	14
6	238	91	205	69	133	33
7	240	40	207	33	135	48
8	242	46	209	77	137	5
9	244	80	211	7	141	65
10	246	36	213	34	143	13
11	248	21	215	16	145	1
12	250	22	219	9	151	2
13	252	34	221	3		
14	254	7				
15	256	2				
16	258	1				
# of C	omplete					
	nples	205		208		211
	of Alleles	410		416		422
	ved # of ozygous	155		172		145
Sar	nples					
Heter Sar	eted # of ozygous nples	178	·	179		148
Hetero	erved zygosity	0.76		0.83		0.69
Hetero	ected ezygosity	0.87		0.86		0.70
	Exact Test ability	0.0034		0.3434		0.1990

Counties: Alcona, Alpena, Antrim, Arenac, Bay, Beaver Island, Benzie,
Charlevoix, Cheboygan, Clare, Crawford, Emmet, Gladwin, Grand
Traverse, Gratiot, Iosco, Isabella, Kalkaska, Lake, Leelanau, Manistee,
Mason, Mecosta, Midland, Missaukee, Montcalm, Montmorency,
Muskegon, Newaygo, North Manitu Island, Oceana, Ogemaw, Osceola,
Oscoda, Otsego, Presque Isle, Roscommon, Saginaw, Wexford.

Table 12. Michigan upper peninsula white-tailed deer data.

Number	CR	FA	OBC	AM	IG	F1
of	Allele Size	Number	Allele Size	Number	Allele Size	Number
Alleles	(bp)	:	(bp)		(bp)	
1	226	1	195	9	127	96
2	234	1	201	11	129	6
3	236	3	203	21	131	4
4	238	28	205	42	133	5
5	240	14	207	17	135	20
6	242	17	209	14	139	3
7	244	16	211	11	141	15
8	246	20	213	12	149	1
9	248	18	215	7		
10	250	8	219	2		
11	252	16	221	4		
12	254	5				
13	256	2				
14	262	1		,		
# of Co	omplete					
	nple s	75		75		75
Total #	of Alleles	150		150		150
Obser	ved # of					
	ozygous	67		62	-	40
	nples ted # of					
-	ozygous	67		65		42
	nples	07		0.5		42
	erved					
	zygosity	0.89		0.83		0.53
	ected	0.90		0.06		0.56
	zygosity	0.89		0.86		0.56
	Exact Test ability	0.5811		0.1983		0.6217

Counties: Alger, Baraga, Chippewa, Delta, Dickinson, Gogebic, Houghton, Iron, Keweenaw, Luce, Mackinac, Marquette, Menominee, Ontonagon, Schoolcraft.

Table 13. North East Michigan lower peninsula white-tailed deer data.

Number	CR	FA	OBC	AM	IG	F1
of	Allele Size	Number	Allele Size	Number	Allele Size	Number
Alleles	(bp)		(bp)		(bp)	
1	226	4	195	11	121	3
2	228	1	199	2	127	5
3	230	2	201	28	129	12
4	232	5	203	34	131	6
5	234	1	205	35	133	16
6	238	36	207	23	135	17
7	240	19	209	35	137	3
8	242	30	211	4	141	36
9	244	27	213	14	143	8
10	246	19	215	10	151	2
11	248	13				
12	250	6				
13	252	20				
14	254	3				
# of C	omplete					
	mples	93		98		99
Total #	of Alleles	186		196		198
Obser	ved # of					
	ozygous	69		79		71
	mples					
	cted # of					
	ozygous	82		84		71
	mples					
	served	0.74		0.01		0.70
	ozygosity	0.74		0.81		0.72
-	pected pzygosity	0.88		0.86		0.72
	Exact Test					
ł	ability	0.0131		0.1016		0.2919

Counties: Alcona, Alpena, Arenac, Bay, Cheboygan, Clare, Crawford, Gladwin, Gratiot, Iosco, Isabella, Midland, Montmorency, Ogemaw, Oscoda, Otsego, Presque Isle, Roscommon, Saginaw.

Table 14. North West Michigan lower peninsula white-tailed deer data.

Number	CR	FA	OBC	AM	IG	F1
of	Allele Size	Number	Allele Size	Number	Allele Size	Number
Alleles	(bp)		(bp)		(bp)	
1	230	6	185	1	121	1
2	232	9	195	29	125	2
3	234	1	201	8	127	119
4	238	55	203	55	129	9
5	240	21	205	34	131	8
6	242	16	207	10	133	17
7	244	53	209	42	135	31
8	246	20	211	3	137	2
9	248	8	213	20	141	29
10	250	16	215	6	143	5
11	252	14	219	9	145	1
12	254	4	221	3		
13	256	2				
14	258	1				
# of C	omplete					
	mples	113		110		112
Total #	of Alleles	226		220		224
	ved # of					
	ozygous nples	86		93		74
	ted # of					
	ozygous	96		94		75
1	nples	70		77		73
Obs	erved					· · · · · · · · · · · · · · · · · · ·
	zygosity	0.76		0.85		0.66
_	ected	0.05		0.00		0.65
	ozygosity	0.85		0.85		0.67
	Exact Test pability	0.0751		0.5362		0.4162

Counties: Antrim, Beaver Island, Benzie, Charlevoix, Emmet, Grand Traverse, Kalkaska, Lake, Leelanau, Manistee, Mason, Mecosta, Missaukee, Montcalm, Muskegon, Newaygo, North Manitu Island, Oceana, Osceola, Wexford.

Table 15. Frequency of alleles for each marker in the four regions of Michigan.

		CRFA					OBCAM					IGF1		
Allele	North	North			Allele	North	North			Allele	North	North		
Size	East	West	South	U.P.	Size	East	West	South	U.P.	Size	East	West	South	U.P.
(pb)	Lower	Lower	Lower		(pb)	Lower	Lower	Lower		(pb)	Lower	Lower	Lower	
226	0.021			0.007	185		0.005	0.009		121	0.015	0.004	0.028	
228	0.005				561	0.056	0.132	0.072	090'0	125		600.0		
230	0.016	0.027	0.003		199	0.010				127	0.480	0.531	0.500	0.640
232	0.027	0.041	0.007		201	0.143	0.036	0.050	0.073	129	0.061	0.040	0.041	0.040
234	0.005	0.005		0.007	203	0.173	0.250	0.272	0.140	131	0.030	0.036	0.013	0.027
236			0.013	0.020	507	0.179	0.155	0.297	0.280	133	0.081	0.076	0.057	0.033
238	0.191	0.248	0.190	0.187	202	0.117	0.045	0.031	0.113	135	980.0	0.138	0.094	0.133
240	0.101	0.095	0.070	0.093	209	0.179	0.191	0.169	0.093	137	0.015	600.0	0.009	
242	0.160	0.072	0.093	0.113	211	0.020	0.014	600.0	0.073	139				0.020
244	0.144	0.239	0.227	0.107	213	0.071	0.091	0.041	0.080	141	0.182	0.129	0.230	0.100
246	901.0	0.072	0.087	0.133	215	0.051	0.027	0.025	0.047	143	0.040	0.022	0.022	
248	0.069	0.036	0.127	0.120	212			600'0		145		0.004	0.003	
250	0.032	0.072	0.040	0.053	219		0.041		0.013	149				0.007
252	0.106	0.063	0.103	0.107	221		0.014	0.016	0.027	151	0.010		0.003	
254	0.016	0.018	0.027	0.033										
256		600.0	0.013	0.013										
258		0.005												
797				0.007										
Fst for	Fst for CRFA = 0.0069	0900.			Fst for	Fst for $OBCAM = 0.0168$	= 0.0168			Fst for	Fst for IGF1 = 0.0091	0001		
Chi-Sa	Chi-Souare = $101.3 (df = 51)$	(df = 3)	\$10 *		Chi-Sar	uare = 19	Chi-Square = $194.4 \ (df = 39)$	* (68		Chi-Sau	are = 10	Chi-Square = $105.8 (df = 39)$	* (68	
5										F				

Blank spaces = absence of that allele in that region of Michigan.

* Significant at P = 0.004 after Bonferroni correction.

Table 16. F_{st} and Chi-Square values from comparing the frequency of alleles in the four regions of Michigan.

Regions of Michigan		Z	North East Lower	Z	North West Lower		Southern Lower
	Markers	Fst	Chi-Square (X')	Fst	Chi-Square (X')	Fst	Chi-Square (X')
North West Lower	CRFA IGF1 OBCAM	0.0097 0.0019 0.0134	59.655 (df 15) * 8.820 (df 11) 66.893 (df 12) *			;	
Southern Lower	CRFA IGF1 OBCAM	0.0054 -0.0008 0.0210	39.528 (df 15) * 0 (df 10) 130.032 (df 12) *	0.0061 0.0067 0.0140	44.579 (df 14) * 39.945 (df 11) * 90.720 (df 12) *		
Upper Peninsula	CRFA IGF1 OBCAM	-0.0012 0.0240 0.0096	0 (df 16) 91.872 (df 11) * 36.538 (df 11) *	0.0164 0.0067 0.0249	97.613 (df 16) * 30.070 (df 12) * 101.343 (df 11) *	0.0052 0.0257 0.0176	35.100 (df 15) * 144.331 (df 12) * 99.264 (df 12) *

* Significant at P = 0.0028 after Bonferroni correction.

DISCUSSION

DNA quality and quantity is of major concern when utilized in molecular biology procedures, especially for forensic scientists handling minute amounts of degraded DNA samples. PCR does not require the highest quality or quantity DNA, however, amplification of the markers in this study was affected by these two variables. Samples exhibiting low quality and/or low quantity DNA often lead to unpredictable and unreliable results. Samples of this nature, containing either minimal amount of intact target DNA and flanking primer sites or very few copies of the target sequence, resulted in weak amplification products which were unable to be scored confidently. Problems were encountered in accurately scoring the alleles present for many samples with optical densities less than 1.5 and/or concentrations less than 15 ng/µl. Therefore, DNA was extracted from many deer samples in order to alleviate any scoring discrepancies. Freshly extracted DNA samples resulted in high molecular weight DNA facilitating unambiguous scoring of alleles.

The most successful method for extracting these tissue samples, resulting in the highest quality and quantity of DNA, was Proteinase K protein digestion using Qiagen lysis Buffer ATL followed by phenol/chloroform extraction and ethanol precipitation. Digestion with Proteinase K instead of Protease and the use of a commercial lysis buffer instead of a homemade lysis buffer yielded higher quality DNA. Also, the use of the Qiagen QIAamp tissue kit using spin columns resulted in low quality and quantity DNA, (data not shown). The options tried in this research project are not all inclusive of the

many different possible combinations of tissue extraction materials and methods that can be used. However, this combination clearly worked the best for the needs of this research project.

Along with the benefits of using PCR-based systems for individualizing forensic evidence, such as extreme sensitivity and specificity, simple and quick to perform, speed of amplification and the applicability to small quantities of degraded samples, comes the concern of PCR misincorporation rate, error and contamination. The issue of contamination was not observed because samples were handled under good laboratory practices and when they were genotyped, the results clearly comprised of no more than one or two alleles for each sample. The appearance of shadow bands, two nucleotides shorter than the correct allele, is a resultant error on the part of the polymerase due to slippage during chain elongation. These bands were present for all the markers used in this study and their appearance did not affect the scoring of the correct alleles. To the contrary, having these shadow bands made the identification of alleles easier whenever the allele intensity was weak. The other source of error by the polymerase is the addition of a nontemplated nucleotide, usually an A, to the 3' end of the PCR product. This situation is marker specific with some markers being affected and some not at all, as was the case in this study. All the markers were not affected by this polymerase error, except the marker JP23, which resulted in both products, the true allele and the true allele + A. Correction for this error was to facilitate the nontemplated nucleotide addition by adding an additional five minute final extension step to the end of the thermocycler program in order to favor the production of the allele + A product. The misincorporation rate of Taq polymerase used in this study is approximately 10⁻⁴ nucleotides/cycle (Saiki et al., 1988).

This error rate is minimal and would only be detectable by electrophoretically visible bands if the misincorporation was during the beginning cycles of PCR, with very limited amount of template and affecting many copies (Saiki *et al.*, 1988). Misincorporated nucleotides will not be detected because the visible product on the gel will be the majority of the amplified product. The incorporation of an incorrect nucleotide will not change the length of the fragment.

Eight microsatellite markers were initially used to assess genetic diversity among twenty random deer DNA samples resulting in four highly polymorphic loci. CRFA, OBCAM, IGF1 and IRBP2 all exhibit high heterozygosity and high polymorphic information content (PIC) and therefore show genetic variability. The calculated PIC value, according to the formulation of Botstein et al. (1980), is an indicator of a genetic markers' ability to distinguish between individuals and was used in selecting markers for database acquisition. A marker with a high PIC value is indicative of numerous allelic variants in the sampled population, and this makes it less likely that two random individuals will have the same alleles. The presence of several different alleles occurring in heterozygous individuals allows for the greatest power of discrimination, and the larger the excluded population, the greater the weight of the evidence. While CSN3, FCB304 and JP15 do not show a high enough degree of variability to have high discriminatory potential, JP23 has a high PIC value, but very low heterozygosity and thus could be an informative marker if combined with other polymorphic markers. The low heterozygosity with a high PIC value could be due to the presence of nonamplifying or 'null' alleles, which would result in mistyping a heterozygous individual as a homozygous individual. This was probably due to the loss of complementarity in

nucleotide sequence or mutation at the primer binding sites (Callen *et al.*, 1993;

Pemberton *et al.*, 1995), or too few intact copies of target DNA at that locus resulting in weak amplification of alleles, unable to be scored accurately. This marker, JP23, was not selected for database acquisition because many samples had amplification problems resulting in no products. Amplification problems often occur when using primers derived from species other than the one which it was cloned.

Marker selection criteria for database acquisition focused on the development of a practical, economical, time-efficient DNA typing system for individualizing forensic evidence. This entails being able to multiplex several markers in one PCR and run them simultaneously in one electrophoretic lane of an ABI 377 DNA Sequencer in order to save on both money and time. Three of the four highly polymorphic markers were selected for database acquisition based on these criteria: OBCAM, CRFA and IGF1. The marker IRBP2 was eliminated because the annealing temperature was five degrees lower than the other three markers and therefore, could not be multiplexed together.

The three selected markers have high heterozygosities, high PIC values and a high number of allelic variants making them the obvious choices for the development of a marker panel with a potentially high power of discrimination. These markers also satisfy the quest for one multiplex PCR to be analyzed simultaneously in a single lane of a polyacrylamide gel. Optimal PCR conditions for all three markers were performed using the same amounts of each PCR component and the same annealing temperature of the thermocycler running conditions. The allele size ranges of these markers do not overlap, thus allowing them to be run simultaneously in one lane of a polyacrylamide gel. Each

marker is also separated by a different fluorescent dye, which eliminates any miscalling of alleles between each marker.

The use of heterologous primer sequences for these markers derived from bovine and ovine sources are homologous in cervines. Many studies have shown that within the order Artiodactyla, primer pairs from other species can amplify homologous products in related species of deer (DeWoody et al., 1995; Engel et al., 1996; Roed, 1998; Slate et al., 1998; Kuhn et al., 1996; Pepin et al., 1995; O'Connell and Denome, 1999; Talbot et al., 1996). This conservation of heterologous PCR primer pairs between related species has facilitated the development of this microsatellite marker system for individual identification by saving time and money that would have been required for cervid primer development.

Primer pairs for the loci OBCAM and IGF1 were derived from bovine DNA and CRFA was derived from ovine DNA. These microsatellite loci must follow Mendel's laws of inheritance in order to be considered genetic markers. Moore *et al.* in 1992 proved Mendel's principle of segregation for both OBCAM and CRFA by showing that in one bovine family, one allele from each parent was present in the five offspring sampled. Adams & Maddox in 1994 proved Mendelian inheritance of the IGF1 microsatellite in two two-generation ovine families. This study analyzed nine two-generation white-tailed deer families of a captive deer population from Savannah River, Georgia, and supplied by Dr. Jerry L. Ruth with the Fish and Wildlife Service of the United States Department of the Interior. The results from these families proved Mendelian inheritance of all three microsatellite markers used in this study. Mendel's principle of independent assortment states that alleles for one marker segregate

independently of alleles for the other loci being analyzed simultaneously. The location of IGF1 is on bovine chromosome 5, OBCAM is on 29 and CRFA is on ovine chromosome 9. As all three markers are on separate chromosomes for the related species bovine and ovine, which verifies independent assortment of alleles, and with the proven homology between species of Artiodactyls, the same assumption was made for cervids. There is no evidence of association of alleles among the three loci selected for database acquisition. The alleles for each marker show no signs of being linked to each other. These loci are inherited independently, which allows for the product rule to be applied when calculating multiple loci profiles from the observed allele frequencies under the assumption of Hardy-Weinberg equilibrium.

To address the issue of deviations from random mating in the sampled population of Michigan white-tailed deer, tests for Hardy-Weinberg equilibrium (HWE) were conducted. HWE was statistically tested for the sampled population in this study by using the Fisher Exact test, which tests for exactness to HWE by comparing the observed genotypic frequencies with those expected under HWE. That is, Hardy-Weinberg law states that genotypic frequencies will remain constant from generation to generation as long as the following assumptions remain true: the absence of selection, migration and mutation along with the continuation of random mating (King and Stansfield, 1990). The Fisher Exact test was selected because of the possibility of rare alleles occurring in very low frequency in the sampled population, and these small numbers will have very little effect on other tests performed at the 5% level of significance even in large sampled populations. The Fisher Exact test can identify significant differences between low frequency alleles and genotypes.

The P-values for the three markers for the sampled population along with the four separate regions of the population all show no significant deviation from HWE at the Bonferroni corrected significance level of P = 0.004 (Table 9). This probability or significance level measures the probability of a type I error, that is, the probability of falsely rejecting a true hypothesis. However, the marker CRFA appears to approach significance for the overall population and especially for the North East Lower Michigan region, which indicates the possibility of population substructure or inbreeding in that region. This could be particularly true for this region because of the feeding arrangement set up by hunters for deer in the area where tuberculosis was recently detected at higher levels. The microsatellite marker CRFA is associated with the gene corticotropinreleasing factor, which is involved in the body's response to stress and has an effect on the immune system. The incidence of tuberculosis in this region may therefore have resulted in selection pressure at that locus. This makes sense because the deer in the North East Lower Michigan were exposed to tuberculosis around the time the tissue samples were collected in 1994 and CRFA was the only marker of the three approaching significant deviation from HWE. The deer contained to this area, because of the excellent feeding arrangement, would thus constantly inbreed amongst each other and result in homozygote excess at the CRFA locus. This excess of homozygotes or deficiency of heterozygotes can readily be seen in Table 8 for CRFA, 81% observed heterozygosity compared to 87% expected heterozygosity. Table 11 shows that much of this excess of homozygotes is attributed to the Northern part of the lower peninsula with Table 13 showing that the North East region is causing much of the deviation from the expected heterozygosity. There are obvious deviations in observed heterozygosity compared to

HWE expectations, but only for CRFA. Another possible reason for the deviations could be the migration of deer northward because of fires in the southern part of the state years ago, causing the deer to be in close proximity to each other and to breed among siblings. The scope of this study cannot fully address the reasons for the homozygote excess for the marker CRFA in the population without additional testing however, this study did address the question of whether the population is consistent with HWE. The results (Table 9) were that HWE holds true at each locus in each region of Michigan and the state as a population. This means that the sampled population exists in equilibrium to the expectations of the Hardy-Weinberg law and genotype frequencies can be reliably estimated from allele frequency data. Further continuation of microsatellite marker testing on Michigan white-tailed deer can be based on random mating and statistical analyses assuming HWE can be performed. If not in HWE, then future testing would have to use different statistical analyses to account for disequilibrium.

An overall chi-square (X^2) was also calculated along with the Fisher Exact test by the GENEPOP V3.1d software program resulting in the same insignificant results when comparing all three markers for each region of Michigan for deviations from HWE at the same P = 0.004 (Table 9). These differences have a high probability of occurring by chance and are statistically insignificant, thus no deviation from Hardy-Weinberg equilibrium. A goodness of fit chi-square test means that the observed results do not differ significantly from what would be expected. This test aims to test the hypothesis that there is close agreement between what was observed in the sampled population and the expectations of HWE. These two statistical tests for Hardy-Weinberg equilibrium are not good indicators of population substructure therefore, the results cannot imply the

absence of substructure. To detect substructure, the population of Michigan was subdivided into selected regions and statistical analyses were performed on them. However, the best and most accurate way to detect substructuring is to sample the individual subgroups and observe the genotype frequencies between them.

To address this issue of a possible substructured population of Michigan white-tailed deer sampled in this study, tests for inter-population variance in allele frequency were conducted. That is, if there are differences in allele frequencies between the four regions in Michigan, then population substructuring exists. Even though tests for random mating under HWE were insignificant for each marker within each region of Michigan, testing for differences between these regions using the F-statistic (F_{st}) to estimate spatial heterogeneity in allele frequencies was conducted. Table 15 lists the allele frequencies for each marker in each region along with the calculated F_{st} value for each marker analyzed across the four regions. The calculated chi-square value measures the degree of significance of the F_{st} value, taking into account the large sample size of approximately 450 samples. The F_{st} values for the three markers across the four regions were low but statistically significant based on the chi-square values. This means that there is not a lot of variance between regions for allele frequency, but considering the large amount of samples, the F_{st} values for each marker become statistically significant after the chisquare test. Chi-square values greater than the level of significance (P = 0.004) after Bonferroni correction rejects the hypothesis of population homogeneity $(F_{st} = 0)$ in allele frequencies and thus, indicates spatial heterogeneity within the sampled population of Michigan white-tailed deer.

Table 16 shows pair-wise comparisons between all regions for allelic frequency differences. The chi-square values are statistically significant at P = 0.0028 after Bonferroni correction. All combinations are significant except when comparing the three regions to the North East Lower region. The marker IGF1 for North West Lower and Southern Lower and CRFA for the Upper Peninsula are insignificant when compared to the allele frequencies in the North East Lower. Overall, allele frequencies differ between the four regions in Michigan, also known as the Wahlund effect because the population consists of a number of subpopulations having different allelic frequencies. Accurate calculations of probability estimates for linking forensic evidence to a suspect should apply the appropriate allele frequencies for the region of Michigan where the crime was committed. In the event of a match, the calculated probability using allele frequencies at the population level compared to using subpopulation frequencies, will not have a significant effect on the value of the match; the match will still be a match whether the probability is one in a million or one in ten million. A match between evidence at the crime scene and evidence on the suspect or in the suspect's possession clearly places the suspect at the crime scene.

The purpose of this research project was to develop a practical, economical, timeefficient DNA typing system for wildlife forensic scientists to utilize for individualizing
forensic evidence. This DNA typing system has the ability to match two physically
separated deer samples, thus placing the suspect at the scene of the crime and providing a
powerful law enforcement tool for wildlife officials. This research project has developed
a microsatellite marker panel which can be multiplexed in one PCR and run
simultaneously in one electrophoretic lane of a DNA sequencer. This panel of markers

along with the application of molecular biology techniques will save forensic wildlife scientists time and money by assisting them in achieving their goal of enforcing wildlife laws. This DNA typing system has a power of discrimination of 0.9998 or 99.98 %, and in the event of matching two physically separated samples with forty-six possible allelic variants, accuracy in calculating probability estimates can be achieved, even when the population is substructured. Forensic wildlife scientists can also use this system for parentage determinations, which was validated by the testing of the nine pedigreed families in this study, and distinguishing native white-tailed deer from either imported white-tailed deer or deer from outside the Michigan area.

FUTURE DIRECTIONS

Recommendations for future improvements to this study for continued research in this area of forensic identification of Michigan white-tailed deer will be discussed. The group of samples used in the present study was limited to five samples per county, representing a random sampling of all Michigan deer, but not a representative sampling from each county. Some counties were underrepresented in the total sampled population of Michigan deer. Therefore, the frequency of alleles will not be an accurate representation of the whole Michigan deer population at large and when calculating the probability of a match, the estimate will not be truly accurate. If more samples were genotyped from each county, the allele frequencies would be exceedingly more accurate and new or rare alleles would arise, thus resulting in higher genetic variability. The goal of any identification system is to obtain all possible genetic variants in the population prior to analyzing evidentiary material.

This study resulted in four highly polymorphic markers of which three were ultimately used for database acquisition. The fourth marker, IRBP2, would be an excellent marker to add to the panel for many reasons. The percent heterozygosity, polymorphic information content and number of different alleles is relatively high. The allele size range would allow the marker to be analyzed simultaneously with the other three markers in one lane of a DNA sequencer. The fluorescent tag is HEX and with the neighboring markers in the panel being labeled with FAM and TET, IRBP2 could be used without the risk of any interfering problems. The PCR conditions are compatible with the other three markers, however, the annealing temperature used in the thermocycler

temperature programming is 50 degrees instead of 55 degrees as for the developed panel. This means that in order to add this marker to the panel, the length of the oligonucleotide primers would need to be extended an additional few nucleotide bases so that the $T_{\rm m}$ for each primer would be five degrees higher. The addition of an AC to the 3' end of the primer 5'-GTATGATCACCTTCTATGCTTCC-3' would raise the T_m by approximately six degrees because for every A or T added the T_m raises approximately two degrees and for every C or G added the T_m raises approximately four degrees. The addition of a CA to the 5' end of the primer 5'-CCCTAAATACTACCATCTAGAAG-3' would also raise the $T_{\rm m}$ by approximately six degrees. In order to have optimal PCR conditions, both primers need to have similar T_m 's and a G or C at the 3' end to anchor the primer so efficient elongation by the polymerase can occur. Other considerations when adding these two bases are sequence complementarity between primers and the formation of secondary structures, so checking these new sequences through an oligonucleotide primer design program prior to synthesizing the primers is highly recommended. These additional bases were selected from adjacent sequence information for the primers for this marker, located in GenBank (Accession # M20748). This sequence information was unavailable during this research project, therefore, not pursued for this microsatellite panel. The addition of this marker along with other polymorphic markers to the developed panel will increase the power of discrimination of the system, thus making it an even more powerful tool for individualizing forensic evidence.

A more accurate evaluation of the data presented here for testing the substructure of the population of white-tailed deer in Michigan would take into account other factors when subdividing the deer population in Michigan. For this study, the assessment of the structure of the population was based on dividing the state into four regions based on county lines, which has no relevance biologically. A future study could accurately assess the division of Michigan based on actual geographical barriers, which would be more relevant to answering questions concerning the structuring of the Michigan white-tailed deer population.

Wildlife forensic scientists will benefit from the results of this study in several ways. They will have an easy, low cost, reliable scientific test to perform, with results in less than one day, on evidence linking a suspect to a crime when a suspect has been identified. That is, to determine whether the field evidence matches the evidence found in the possession of the suspect with a high degree of probability. This DNA typing system will assist law enforcement officials in convicting poachers by providing critical evidence linking evidentiary samples and parentage testing for illegal importation cases. The mere fact of having the ability to individualize a deer for forensic purposes will hopefully deter the criminal from committing the crime. As for many crimes committed by humans, members in the criminal justice system use deterrence, usually harsh sentencing and high penalties, to decrease the number of committed crimes. However, the effectiveness of this deterrence remains to be seen, but for wildlife law enforcement officers it would be a step in the right direction to minimizing poaching crimes. A future study could evaluate the deterrent effect and the number of convictions based on having this DNA typing system available to wildlife forensic scientists.

The data presented in this study has laid the groundwork for several future applications, other than individual identification, of Michigan white-tailed deer.

Database acquisition is a necessary requirement for calculating probability estimates for individual identification, and exclusion/inclusion of parentage as well as the determination of the extent of population substructure, genetic diversity, population size and the detrimental effects of inbreeding. Evolutionary and comparative mapping studies between related species can also be accomplished utilizing the accumulated data from this study. The assessment of captive breeding programs for the loss of genetic diversity is another possibility. Identification of relatedness among pedigreed and captive populations, so that the selection of matings will preserve genetic variability in order to maintain the species, can furthermore be accomplished.

APPENDIX A

APPENDIX A

AGAROSE GEL PREPARATION PROCEDURE

- 1. Determine the gel percentage and the number of wells needed.
- 2. A small gel (15cm x 15cm) requires at least 125 ml of agarose solution.
- 3. Weigh the correct amount of agarose (SeaKem LE Agarose, Cat # 50007 from FMC) based on the gel percentage and place in a 250 ml Erlenmeyer flask.
- 4. A 0.8% gel (for genomic DNA) would need 1 g agarose and a 2% gel (for PCR products) would need 2.5 g agarose in 125 ml of 1X TBE (Tris/boric acid/EDTA).
- 5. Prepare a 10X TBE solution with 108 g Tris, 55 g boric acid, 8.3 g EDTA and quantity sufficient to 1 L with deionized water. Dilute to 1X TBE with deionized water for use in gel preparation and for the electrophoresis buffer.
- 6. Mix the agarose and 1X TBE in the flask by either heating on top of a heated stir plate or on low in a microwave until the agarose has completely dissolved. Watch the solution in the microwave to prevent the solution from boiling over and becoming a different concentration. Once dissolved, add deionized water to correct for any loss due to evaporation during heating.
- 7. Let the solution cool until the flask is able to be handled by the hands; too cool will show signs of hardening in the flask and too warm will warp the plastic tray.
- 8. Ethidium bromide (Cat # E-8751 from Sigma) is not added to the solution for possible interference with fragment migration. The gel after electrophoresis is submerged in an ethidium bromide solution in order to detect the fragments.
- 9. Place appropriate comb(s) into the level gel tray and carefully pour the agarose solution into the tray so as to not introduce bubbles.
- 10. Allow the gel to stand and harden for at least 30 minutes at room temperature. Quicker hardening may be achieved by placing the tray in the refrigerator.
- 11. Remove the comb(s) with the gel submerged in the electrophoresis buffer (1X TBE) to prevent tearing the wells.
- 12. Add enough buffer to the electrophoresis chamber to cover the gel and load the samples into the wells when ready.

APPENDIX B

APPENDIX B

TISSUE EXTRACTION PROCEDURE

A. TISSUE DIGESTION

- 1. Cut 50 mg of frozen tissue into very tiny pieces with a sterile scalpel and place in a 1.5 ml polypropylene tube.
- 2. Add 250 µl of Qiagen Buffer ATL (Cat # 19076) to each tube.
- 3. Add 25 µl of 20 mg/ml Proteinase K (Cat # 25530-015 from Gibco BRL) to each tube.
- 4. Vortex each tube vigorously for 30 seconds until a homogeneous mixture is obtained.
- 5. Incubate all tubes in a 55° waterbath overnight or until the tissues are lysed completely.

B. PHENOL/CHLOROFORM EXTRACTION

- 1. Add 300 μl of phenol:chloroform:isoamyl alcohol, 25:24:1, saturated with 10mM Tris, pH 8.0, 1mM EDTA (Cat # 0883-100mL from Amresco) to each tube.
- 2. Invert the tubes several times to thoroughly mix the contents.
- 3. Spin the tubes for 5 minutes at full speed (12,000 rpm) in a microcentrifuge.
- 4. Remove the top aqueous layer (approx. 300 μl) and add to a fresh tube.
- 5. Repeat steps 1 through 4.
- 6. Add 300 µl of chloroform (Cat # 9180-03 from J.T. Baker) to each tube.
- 7. Invert the tubes several times to thoroughly mix the contents.
- 8. Spin the tubes for 5 minutes at full speed (12,000 rpm) in a microcentrifuge.
- 9. Remove the top aqueous layer (approx. 300 µl) and add to a fresh tube.

10. Perform steps 1-9 in a vented hood due to the carcinogenicity of the chemicals.

C. ETHANOL PRECIPITATION

- 1. Add 600 μl of 100% ethanol and 30 μl of 3M sodium acetate to each tube.
- 2. Invert the tubes several times to fully precipitate the DNA.
- 3. Spin the tubes for 5 minutes at full speed (12,000 rpm) in a microcentrifuge.
- 4. Carefully decant the contents of each tube without losing the pelleted DNA at the bottom.
- 5. Add 1 ml of 70% ethanol to each tube.
- 6. Invert the tubes several times to thoroughly wash the DNA.
- 7. Spin the tubes for 5 minutes at full speed (12,000 rpm) in a microcentrifuge.
- 8. Carefully decant the contents of each tube without losing the pelleted DNA at the bottom.
- 9. Resuspend the DNA in the tubes, after the DNA has air dried, in 200 μl Tris/EDTA (TE), pH 8.0. This amount should give a yield of approximately 200 ng/μl of high quality DNA with an absorbance ratio (260nm/280nm) in the range of 1.7-1.9.
- 10. Measure the quantity of DNA in the samples using a fluorometer which yields a measurement of only DNA and not RNA. Measure the quality of DNA in the samples using a spectrophotometer which yields a ratio of both DNA and RNA to protein in the samples.
- 11. Dilute the DNA samples to approximately 30 ng/μl with deionized water. These samples are now ready for a polymerase chain reaction (PCR).

APPENDIX C

APPENDIX C

ACRYLAMIDE GEL PREPARATION PROCEDURE

- 1. Prepare a 10X Tris/boric acid/EDTA solution (TBE) with 108 g Tris, 55 g boric acid, 8.3 g EDTA and quantity sufficient to 1 L with deionized water.
- 2. Add 18 g urea (Cat # IB72064 Molecular Biology Grade from Kodak), 5.3 ml 40% Acrylamide/Bis 19:1 (5% C) (Cat # 161-0120 from Biorad), 25 ml deionized water, 5.5 ml 10X TBE and approximately 0.5 g of Amberlite MB-150 (Cat # A-5710 from Sigma) to an Erlenmeyer flask.
- 3. Mix the contents using a magnetic stir bar on a stir plate until dissolved completely.
- 4. Filter and degas the solution using a 0.45 micron bottle top filter (Cat # 290-3345 from Nalgene).
- 5. Prepare a 10% ammonium persulfate (Cat # 0486-100G-APP from Amresco) solution (APS) with deionized water.
- 6. Add 250 μ l of the 10% APS to the acrylamide solution.
- 7. Gently swirl the bottle to mix the contents without introducing bubbles.
- 8. Add 35 µl TEMED (Cat # 161-0800 from Biorad) to the acrylamide solution.
- 9. Gently swirl the bottle to mix the contents without introducing bubbles.
- 10. Pour the solution quickly into the clamped ABI 377 DNA sequencing plates without introducing bubbles and before the solution polymerizes.
- 11. Place the appropriate sized comb into the plate opening and clamp together.
- 12. Let the gel stand for at least 1 ½ hours before using to assure complete polymerization.
- 13. Acrylamide is a neurotoxin so extreme care should be taken and appropriate safety equipment should be worn during the above steps.

APPENDIX D

APPENDIX D

MULTIPLEX PCR PROTOCOL

A. MULTIPLEX PCR COMPONENTS FOR A 25 μl REACTION

- 1. Pipet 2 μl of each 30 ng/μl DNA sample into separate microcentrifuge tubes.
- 2. Pipet 13.75 µl deionized water to each tube.
- 3. Pipet 3.0 µl MgCl₂ (25mM) to each tube.
- 4. Pipet 2.5 μl 10X buffer (100 mM KCl, 20 mM Tris-HCl, pH 8.0, 0.1 mM EDTA) to each tube.
- 5. Pipet 2.0 µl dNTP's (2.5 mM) to each tube.
- 6. Pipet 0.25 μ l each primer (20 μ M) to each tube.
- 7. Pipet 0.25 µl AmpliTaq DNA polymerase (5 Units/µl) to each tube.
- 8. Overlay each sample mixture with 1 drop of mineral oil.

B. MULTIPLEX PCR THERMOCYCLER TEMPERATURE PROGRAMMING

- 1. Initial denaturation 95°C for 3 minutes.
- 2. Denaturation 95°C for 45 seconds.
- 3. Annealing 55°C for 45 seconds.
- 4. Extension 72°C for 45 seconds.
- 5. Autoextend 1 second per cycle.
- 6. Repeat steps 1 through 5 for 29 cycles.
- 7. End with a 4°C hold.

REFERENCES

REFERENCES

- Adams, L. J. & Maddox, J. F. (1994). A dinucleotide repeat polymorphism in the ovine insulin-like growth factor-I gene 5' flanking region. Animal Genetics, 25(1), 61.
- Andre, P., Kim, A., Khrapko, K. & Thilly, W. G. (1997). Fidelity and mutational spectrum of *Pfu* DNA polymerase on a human mitochondrial DNA sequence. Genome Research, 7, 843-852.
- Baird, J. (1992). Forensic DNA in the Trial Court 1990-1992: A Brief History. In P.
 R. Billings (Ed.), <u>DNA on Trial: Genetic Identification and Criminal Justice</u>.
 (pp.61-77) New York: Cold Spring Harbor Laboratory Press.
- Beckmann, J. S. & Weber, J. L. (1992). Survey of human and rat microsatellites. Genomics, 12, 627-631.
- Blake, E., Mihalovich, J., Higuchi, R., Walsh, P. S. & Erlich, H. (1992). Polymerase chain reaction (PCR) amplification and human leukocyte antigen (HLA)-DQa oligonucleotide typing on biological evidence samples: Casework experience. Journal of Forensic Sciences, 37(3), 700-726.
- Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms.

 American Journal of Human Genetics, 32, 314-331.
- Brownstein, M. J., Carpten, J. D. & Smith, J. R. (1996). Modulation of non-templated nucleotide addition by *Taq_DNA* polymerase: primer modifications that facilitate genotyping. BioTechniques, 20, 1004-1010.
- Budowle, B., Moretti, T. R., Keys, K. M., Koons, B. W. & Smerick, J. B. (1997). Validation studies of the CTT STR multiplex system. <u>Journal of Forensic Sciences</u>, 42(2), 701-707.
- Callen, D. F., Thompson, A. D., Shen, Y., Phillips, H. A., Richards, R. I., Mulley, J. C. & Sutherland, G. R. (1993). Incidence and origin of "null" alleles in the (AC)_n microsatellite markers. American Journal of Human Genetics, 52, 922-927.
- Cha, R. S. & Thilly, W. G. (1993). Specificity, efficiency and fidelity of PCR. <u>PCR</u> Methods and Applications, 3, S18-S29.
- Chamberlain, J. S., Gibbs, R. A., Ranier, J. E., Nguyen, P. N. & Thomas, C. (1988).

 Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research, 16(23), 11141-11156.

- Chang, J. C. & Kan, Y. W. (1982). A sensitive new prenatal test for sickle-cell anemia. New England Journal of Medicine, 307(1), 30-32.
- Clark, J. M. (1988). Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA. <u>Nucleic Acids Research</u>, <u>16</u>(20), 9677-9686.
- DeWoody, J. A., Honeycutt, R. L. & Skow, L. C. (1995). Microsatellite markers in white-tailed deer. The Journal of Heredity, 86(4), 317-319.
- Engel, S. R., Linn, R. A., Taylor, J. F. & Davis, S. K. (1996). Conservation of microsatellite loci across species of artiodactyls: Implications for population studies. Journal of Mammalogy, 77(2), 504-518.
- Erlich, H. A., Sheldon, E. L. & Horn, G. (1986). HLA typing using DNA probes. BioTechnology, 4, 975-981.
- Frank, T. S. Topics in molecular oncology: Microsatellite instability. [Online] http://zapruder.pds.med.umich.edu/users/Frank/MIN.html, September 10, 1997.
- Fregeau, C. J., Bowen, K. L. & Fourney, R. M. (1999). Validation of highly polymorphic fluorescent multiplex short tandem repeat systems using two generations of DNA sequencers. Journal of Forensic Sciences, 44(1), 133-166.
- Gelfand, D. H. (1989). *Thermus aquaticus* DNA polymerase. In H. A. Erlich, R. Gibbs & H. H. Kazazian, Jr. (Eds.), <u>Current Communications in Molecular Biology:</u>

 <u>Polymerase Chain Reaction</u>. (pp. 11-17) New York: Cold Spring Harbor Laboratory Press.
- Gelfand, D. H. & White, T. J. (1990). Thermostable DNA polymerases. In M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (Eds.), <u>PCR Protocols: A Guide to Methods and Applications</u>. (pp. 129-141) New York: Academic Press.
- Ghosh, S., Karanjawala, Z. E., Hauser, E. R., Ally, D., Knapp, J. I., Rayman, J. B., Musick, A., Tannenbaum, J., Te, C., Shapiro, S., Eldridge, W., Musick, T., Martin, C., Smith, J. R., Carpten, J. D., Brownstein, M. J., Powell, J. I., Whiten, R., Chines, P., Nylund, S. J., Magnuson, V. L., Boehnke, M., Collins, F. S. & the FUSION (Finland-U.S. Investigation of NIDDM Genetics) Study Group (1997). Methods for the precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labeled dinucleotide markers. Genome Research, 7, 165-178.
- Hamada, H., Petrino, M. G. & Kakunaga, T. (1982). A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proceedings of the National Academy of Sciences, USA, 79, 6465-6469.

- Hamada, H., Seidman, M., Howard, B. H. & Gorman, C. M. (1984). Enhanced gene expression by the poly(dT-dG) poly(dC-dA) sequence. Molecular and Cellular Biology, 4(12), 2622-2630.
- Hauge, X. Y. & Litt, M. (1993). A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. <u>Human Molecular</u> Genetics, 2(4), 411-415.
- Helmuth, R., Fildes, N., Blake, E., Luce, C., Chimera, J., Madej, R., Gorodezky, C., Stoneking, M., Schmill, N., Klitz, W., Higuchi, R. & Erlich, H. A. (1990). HLA-DQa allele and genotype frequencies in various human populations, determined by using enzymatic amplification and oligonucleotide probes. American Journal of Human Genetics, 47, 515-523.
- Henegariu, O., Heerema, N. A., Dlouhy, S. R., Vance, G. H. & Vogt, P. H. (1997). Multiplex PCR: Critical parameters and step-by-step protocol. <u>BioTechniques</u>, 23, 504-511.
- Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985a). Hypervariable 'minisatellite' regions in human DNA. Nature, 314, 67-73.
- Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985b). Individual-specific 'fingerprints' of human DNA. Nature, 316, 76-79.
- Jeffreys, A. J., Brookfield, J. F. Y. & Semeonoff, R. (1985c). Positive identification of an immigration test-case using human DNA fingerprints. Nature, 317, 818-819.
- Jeffreys, A. J., Wilson, V., Neumann, R. & Keyte, J. (1988). Amplification of human minisatellites by the polymerase chain reaction: Towards DNA fingerprinting of single cells. <u>Nucleic Acids Research</u>, 16(23), 10953-10971.
- Kan, Y. W. & Dozy, A. M. (1978). Polymorphism of DNA sequence adjacent to human B-globin structural gene: Relationship to sickle mutation. <u>Proceedings of the National Academy of Sciences</u>, USA, 75(11), 5631-5635.
- Kantanen, J., Vilkki, J., Elo, K. & Tanila, A. M. (1995). Random amplified polymorphic DNA in cattle and sheep: Application for detecting genetic variation. Animal Genetics, 26, 315-320.
- Kemp, S. J., Hishida, O., Wambugu, J., Rink, A., Longeri, M. L., Ma, R. Z., Da, Y., Lewin, H. A., Barendse, W. & Teale, A. J. (1995). A panel of polymorphic bovine, ovine and caprine microsatellite markers. <u>Animal Genetics</u>, 26, 299-306.

- Kimpton, C. P., Gill, P., Walton, A., Urquhart, A., Millican, E. S. & Adams, M. (1993). Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods and Applications, 3, 13-22.
- King, R. C. and Stansfield, W. D. (1990). <u>A Dictionary of Genetics</u> (fourth edition). New York: Oxford University Press.
- Kobilinsky, L. (1993). Deoxyribonucleic acid structure and function A review. In R. Saferstein (Ed.), Forensic Science Handbook Vol. III. (pp. 287-357) New Jersey: Regents/Prentice-Hall.
- Kostia, S., Palo, J. & Varvio, S-L. (1996). DNA sequences of RAPD fragments in artiodactyls. Genome, 39, 456-458.
- Krawczak, M. & Schmidtke, J. (1994). <u>DNA Fingerprinting</u>. Oxford, UK: Bios Scientific Publishers Limited.
- Kuhn, R., Anastassiadis, C. & Pirchner, F. (1996). Transfer of bovine microsatellites to the cervine (*Cervus elaphus*). Animal Genetics, 27, 199-201.
- Lindquester, G. J. Eukaryotic DNA content. [Online] http://glindquester.biology.rhodes.edu/molbiol/eukcontent.html, 1997.
- Lins, A. M., Sprecher, C. J., Puers, C. & Schumm, J. W. (1996). Multiplex sets for the amplification of polymorphic short tandem repeat loci silver stain and fluorescence detection. BioTechniques, 20, 882-889.
- Litt, M. & Luty, J. A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 44, 397-401.
- Lorente, M., Lorente, J. A., Alvarez, C., Budowle, B., Wilson, M. R. & Villanueva, E. (1997). Sequential multiplex amplification: Utility in forensic casework with minimal amounts of DNA and partially degraded samples. <u>Journal of Forensic Sciences</u>, 42(5), 923-925.
- Melvin, Jr., J. R., Kateley, Jr., J. R., Oaks, M. K., Simson, Jr., L. R. & Maldonado, W. E. (1988). Paternity testing. In R. Saferstein (Ed.), Forensic Science Handbook Vol. II. (pp. 273-346) New Jersey: Prentice-Hall.
- Moore, S. S., Sargeant, L. L., King, T. J., Mattick, J. S., Georges, M. & Hetzel, D. J. S. (1991). The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 10, 654-660.

- Moore, S. S., Barendse, W., Berger, K. T., Armitage, S. M. & Hetzel, D. J. S. (1992). Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases. Animal Genetics, 23, 463-467.
- Moxon, E. R. & Wills, C. (1999). DNA microsatellites: Agents of evolution? <u>Scientific</u> American, January, 94-99.
- Mullis, K. B. & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335-350.
- Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. & Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. <u>Cold Spring Harbor Symposium of Quantitative Biology</u>, 51, 263-273.
- Murray, V., Monchawin, C. & England, P. R. (1993). The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. <u>Nucleic Acids Research</u>, 21(10), 2395-2398.
- Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E. & White, R. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping. <u>Science</u>, <u>235</u>, 1616-1622.
- National Research Council. (1992). <u>DNA Technology in Forensic Science</u>. Washington, D. C.: National Academy Press.
- National Research Council. (1996). <u>The Evaluation of Forensic DNA Evidence</u>. Washington, D. C.: National Academy Press.
- Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. (1989a). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. <u>Proceedings of the National Academy of Sciences</u>, USA, 86, 2766-2770.
- Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. (1989b). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 5, 874-879.
- Pardue, M. L., Lowenhaupt, K., Rich, A. & Nordheim, A. (1987). (dC-dA)_n (dG-dT)_n sequences have evolutionarily conserved chromosomal locations in *Drosophila* with implications for roles in chromosome structure and function. <u>EMBO</u> Journal, 6(6), 1781-1789.

- Pemberton, J. M., Slate, J., Bancroft, D. R. & Barrett, J. A. (1995). Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Molecular Ecology, 4, 249-252.
- Pena, S. D. J. & Chakraborty, R. (1994). Paternity testing in the DNA era. <u>Trends in</u> Genetics, 10(6), 204-209.
- Raymond, M., Rousset, F. & Slatkin, M. (1995). Genepop (V1.2): A population genetics software for exact tests and ecumenicism. <u>Journal of Heredity</u>, <u>86</u>, 248-249.
- Royle, N. J., Clarkson, R. E., Wong, Z. & Jeffreys, A. J. (1988). Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics, 3, 352-360.
- Saiki, R. K. (1989). Optimization of the polymerase chain reaction. In H. A. Erlich, R. Gibbs & H. H. Kazazian, Jr. (Eds.), <u>Current Communications in Molecular Biology: Polymerase Chain Reaction</u>. (pp. 25-30) New York: Cold Spring Harbor Laboratory Press.
- Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1986).

 Analysis of enzymatically amplified B-globin and HLA-DQa DNA with allelespecific oligonucleotide probes. Nature, 324, 163-166.
- Saiki, R. K., Walsh, P. S., Levenson, C. H. & Erlich, H. A. (1989). Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes.

 <u>Proceedings of the National Academy of Sciences, USA, 86, 6230-6234.</u>
- Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487-491.
- Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. & Arnheim, N. (1985). Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350-1354.
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
- Schlotterer, C. & Tautz, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 20(2), 211-215.

- Schwengel, D. A., Jedlicka, A. E., Nanthakumar, E. J., Weber, J. L. & Levitt, R. C. (1994). Comparison of fluorescence-based semi-automated genotyping of multiple microsatellite loci with autoradiographic techniques. <u>Genomics</u>, <u>22</u>, 46-54.
- Sensabaugh, G. F. & Blake, E. T. (1993). DNA analysis in biological evidence:

 Applications of the polymerase chain reaction. In R. Saferstein (Ed.), <u>Forensic</u>
 Science Handbook Vol. III. (pp. 416-452) New Jersey: Regents/Prentice-Hall.
- Skolnick, M. H. & Wallace, R. B. (1988). Simultaneous analysis of multiple polymorphic loci using amplified sequence polymorphisms (ASPs). Genomics, 2, 273-279.
- Slate, J., Coltman, D. W., Goodman, S. J., MacLean, I., Pemberton, J. M. & Williams, J. L. (1998). Bovine microsatellite loci are highly conserved in red deer (*Cervus elaphus*), sika deer (*Cervus nippon*) and Soay sheep (*Ovis aries*). Animal Genetics, 29, 307-315.
- Smith, J. R., Carpten, J. D., Brownstein, M. J., Ghosh, S., Magnuson, V. L., Gilbert, D. A., Trent, J. M. & Collins, F. S. (1995). Approach to genotyping errors caused by nontemplated nucleotide addition by *Taq* DNA polymerase. Genome Research, 5, 312-317.
- Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503-527.
- Stallings, R. L., Ford, A. F., Nelson, D., Torney, D. C., Hildebrand, C. E. & Moyzis, R. K. (1991). Evolution and distribution of (GT)_n repetitive sequences in mammalian genomes. <u>Genomics</u>, <u>10</u>, 807-815.
- State v. Andrews, case no. 87-1565, Ninth Judicial Circuit Ct., Orange County, Fla., Division 15, Nov. 6, 1987.
- Tautz, D. & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12(10), 4127-4138.
- Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. <u>Nucleic Acids Research</u>, <u>17</u>(16), 6463-6471.
- Technical Working Group on DNA Analysis Methods (TWGDAM) (1989). Guidelines for a quality assurance program for DNA restriction fragment length polymorphism analysis. Crime Laboratory Digest, 16, 40-59.

- Technical Working Group on DNA Analysis Methods (TWGDAM) (1990). Guidelines for a quality assurance program for DNA restriction fragment length polymorphism analysis. Crime Laboratory Digest, 17, 50-60.
- Tuggle, C. K. (1994). DNA Technology: Its use in animal breeding. Presented at a symposium on future genetics for the animal industry, St. Louis, MO, May 4.
- Weber, J. L. & May, P. E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. <u>American Journal of Human Genetics</u>, 44, 388-396.
- Weber, J. L. (1990). Informativeness of human (dCdA)_n (dGdT)_n polymorphisms. Genomics, 7, 524-530.
- Weedn, V. W. & Roby, R. K. (1993). Forensic DNA testing. <u>Archives of Pathology and Laboratory Medicine</u>, 117, 486-491.
- Weir, B. S. (1990). <u>Genetic Data Analysis</u>. Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers.
- Weir, B. S. (1996). The second National Research Council report on forensic DNA evidence. American Journal of Human Genetics, 59, 497-500.
- Wells, R. A., Green, P. & Reeders, S. T. (1989). Simultaneous genetic mapping of multiple human minisatellite sequences using DNA fingerprinting. Genomics, 5, 761-772.
- Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24), 7213-7218.
- Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535.
- Wyman, A. R. & White, R. (1980). A highly polymorphic locus in human DNA.

 <u>Proceedings of the National Academy of Sciences</u>, <u>USA</u>, <u>77</u>(11), 6754-6758.
- Ziegle, J. S., Su, Y., Corcoran, K. P., Nie, L., Mayrand, E., Hoff, L. B., McBride, L. J., Kronick, M. N. and Diehl, S. R. (1992). Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics, 14, 1026-1031.
- Zumbo, J. (1999). Taking aim at poachers, part III. Outdoor Life, October, 204(3), 55-59, 102.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Balazs, I. (1990). Properties of hypervariable single locus polymorphisms and their application to identity testing. In J. Robertson, A. M. Ross & L. A. Burgoyne (Eds.), <u>DNA in Forensic Science: Theory, Techniques and Applications</u>. (pp. 112-124) New York: Ellis Horwood Limited.
- Bruford, M. W. & Wayne, R. K. (1993). Microsatellites and their application to population genetic studies. <u>Current Opinion in Genetics and Development</u>, 3, 939-943.
- Buchanan, F. C. & Crawford, A. M. (1993). Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. <u>Animal Genetics</u>, 24, 145.
- Budowle, B., Deadman, H., Murch, R. S. & Baechtel, F. S. (1988). An introduction to the methods of DNA analysis under investigation in the FBI laboratory. <u>Crime</u> Laboratory Digest, 15(1), 8-21.
- Budowle, B., Sajantila, A., Hochmeister, M. N. & Comey, C. T. (1994). In K. B. Mullis, F. Ferre & R. A. Gibbs (Eds.), <u>The Polymerase Chain Reaction</u>. (pp. 244-256) Boston: Birkhauser.
- Carrano, A. V., Lamerdin, J., Ashworth, L. K., Watkins, B., Branscomb, E., Slezak, T., Raff, M., de Jong, P. J., Keith, D., McBride, L., Meister, S. & Kronick, M. (1989). A high-resolution, fluorescence-based, semiautomated method for DNA fingerprinting. Genomics, 4, 129-136.
- Chamberlain, J. S. & Chamberlain, J. R. (1994). Optimization of multiplex PCR's. In K. B. Mullis, F. Ferre & R. A. Gibbs (Eds.), <u>The Polymerase Chain Reaction</u>. (pp. 38-46) Boston: Birkhauser.
- Cook, J. M. (1999). New Zealand's AgResearch maps 500 deer traits using rare hybrid breed. Agricultural Genomics, 2(13), 3-4.
- Easteal, S., McLeod, N. & Reed, K. (Ed.) (1991). <u>DNA Profiling: Principles, Pitfalls and Potential</u>. Philadelphia: Harwood Academic Publishers.
- Erlich, H. A., Gelfand, D. & Sninsky, J. J. (1991). Recent advances in the polymerase chain reaction. Science, 252, 1643-1651.
- Erlich, H. A. (Ed.) (1989). PCR Technology: Principles and Applications for DNA Amplification. New York: Stockton Press.

- Fowler, C. (1990). Polymorphism in the major human repetitive DNA sequences:
 Theory, practice, and comparison with other methods of measuring human
 genome variation. In J. Robertson, A. M. Ross & L. A. Burgoyne (Eds.), <u>DNA in</u>
 Forensic Science: Theory, Techniques and Applications. (pp. 87-111) New
 York: Ellis Horwood Limited.
- Fowler, J. C. S., Burgoyne, L. A., Scott, A. C. & Harding, H. W. J. (1988). Repetitive deoxyribonucleic acid (DNA) and human genome variation-a concise review relevant to forensic biology. <u>Journal of Forensic Sciences</u>, 33(5), 1111-1126.
- Garza, J. C., Slatkin, M. & Freimer, N. B. (1995). Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size.

 Molecular Biology Evolution, 12(4), 594-603.
- Gill, P., Jeffreys, A. J. & Werrett, D. J. (1985). Forensic application of DNA 'fingerprints'. Nature, 318, 577-579.
- Haig, S. M. (1998). Molecular contributions to conservation. Ecology, 79(2), 413-425.
- Herrera, R. J. & Tracey, Jr., M. L. (1992). DNA fingerprinting: Basic techniques, problems, and solutions. Journal of Criminal Justice, 20, 237-248.
- Higuchi, R. & Blake, E. T. (1989). Applications of the polymerase chain reaction in forensic science. In J. Ballantyne, G. Sensabaugh & J. Witkowski (Eds.), <u>DNA Technology and Forensic Science: Banbury Report 32</u>. (pp. 265-281) New York: Cold Spring Harbor Laboratory Press.
- Huang, P. L., Huang, P. L. & Lee-Huang, S. (1990). DNA polymorphism and forensic identification. In H. C. Lee & R. E. Gaensslen (Eds.), <u>DNA and Other Polymorphisms in Forensic Science</u>. (pp. 1-25) Chicago: Year Book Medical Publishers, Inc.
- Hughes, A. E. (1993). Optimization of microsatellite analysis for genetic mapping. Genomics, 15, 433-434.
- Inman, K. & Rudin, N. (1997). An Introduction to Forensic DNA Analysis. Florida: CRC Press, Inc.
- Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (1990). <u>PCR Protocols: A Guide to Methods and Applications</u>. New York: Academic Press.
- Jarman, A. P., Nicholls, R. D., Weatherall, D. J., Clegg, J. & Higgs, D. R. (1986). Molecular characterization of a hypervariable region downstream of the human a-globin gene cluster. EMBO Journal, 5(8), 1857-1863.

- Jeffreys, A. J., Wilson, V., Wong, Z., Royle, N., Patel, I., Kelly, R. & Clarkson, R. (1987). Highly variable minisatellites and DNA fingerprints. <u>Biochemical</u> Society Symposium, Great Britain, 53, 165-180.
- Jeffreys, A. J. & Pena, S. D. J. (1993). Brief introduction to human DNA fingerprinting. In S. D. J. Pena, R. Chakraborty, J. T. Epplen & A. J. Jeffreys (Eds.), <u>DNA Fingerprinting: State of the Science</u>. (pp. 1-20) Boston: Birkauser Verlag.
- Jeffreys, A. J. (1993). DNA typing: Approaches and applications. <u>Journal of the Forensic Science Society</u>, 33(4), 204-211.
- Jeffreys, A. J., Wilson, V., Thein, S. L., Weatherall, D. J. & Ponder, B. A. J. (1986). DNA "fingerprints" and segregation analysis of multiple markers in human pedigrees. American Journal of Human Genetics, 39, 11-24.
- Jin, Li, Underhill, P. A., Buoncristiani, M. & Robertson, J. M. (1997). Defining microsatellite alleles by genotyping global indigenous human populations and non-human primates. <u>Journal of Forensic Sciences</u>, 42(3), 496-499.
- Jurka, J. & Pethiyagoda, C. (1995). Simple repetitive sequences from primates: Compilation and analysis. Journal of Molecular Evolution, 40, 120-126.
- Kasai, K., Nakamura, Y. & White, R. (1990). Amplification of a variable number of tandem repeats (VNTR) locus (pMCT118) by the polymerase chain reaction (PCR) and its'application to forensic science. <u>Journal of Forensic Sciences</u>, 35(5), 1196-1200.
- Kemp, S. J., Brezinsky, L. & Teale, A. J. (1993). A panel of bovine, ovine and caprine polymorphic microsatellites. <u>Animal Genetics</u>, 24, 363-365.
- Kirkpatrick, B. W. (1992). Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-I gene 5' flank. Animal Genetics, 23, 543-548.
- Kobilinsky, L. (1993). Deoxyribonucleic acid structure and function a review. In R. Saferstein (Ed.), Forensic Science Handbook Vol. III. (pp. 287-357) New Jersey: Regents/Prentice-Hall.
- Lander, E. S. (1989). DNA fingerprinting on trial. Nature, 339, 501-505.
- Lander, E. S. (1991). Invited editorial: Research on DNA typing catching up with courtroom application. American Journal of Human Genetics, 48, 819-823.
- Lander, E. S. (1991). Lander Reply. <u>American Journal of Human Genetics</u>, 49, 899-903.

- Lee, H. C. (1982). Identification and grouping of bloodstains. In R. Saferstein (Ed.), Forensic Science Handbook. (pp. 267-337) New Jersey: Prentice-Hall.
- Lewontin, R. C. & Hartl, D. L. (1991). Population genetics in forensic DNA typing. Science, 254, 1745-1750.
- Mansfield, D. C., Brown, A. F., Green, D. K., Carothers, A. D., Morris, S. W., Evans, H. J. & Wright, A. F. (1994). Automation of genetic linkage analysis using fluorescent microsatellite markers. Genomics, 24, 225-233.
- Mullis, K. B. (1989). The polymerase chain reaction: Why it works. In H. A. Erlich, R. Gibbs & H. H. Kazazian, Jr. (Eds.), <u>Current Communications in Molecular Biology: Polymerase Chain Reaction</u>. (pp. 237-243) New York: Cold Spring Harbor Laboratory Press.
- Mullis, K. B. (1990). The unusual origin of the polymerase chain reaction. <u>Scientific</u> American, April, 56-65.
- Nelson, D. L., Ledbetter, S. A., Corbo, L., Victoria, M. F., Ramirez-Solis, R., Webster, T.
 D., Ledbetter, D. H. & Caskey, C. T. (1989). Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proceedings of the National Academy of Sciences, USA, 86, 6686-6690.
- O'Connell, A. & Denome, R. M. (1999). Microsatellite locus amplification using deer antler DNA. BioTechniques, 26, 1086-1088.
- Odelberg, S. J. & White, R. (1990). Repetitive DNA: Molecular structure, polymorphisms, and forensic applications. In H. C. Lee & R. E. Gaensslen (Eds.), <u>DNA and Other Polymorphisms in Forensic Science</u>. (pp. 26-44) Chicago: Year Book Medical Publishers, Inc.
- Parker, P. G., Snow, A. A., Schug, M. D., Booton, G. C. & Fuerst, P. A. (1998). What molecules can tell us about populations: Choosing and using a molecular marker. Ecology, 79(2), 361-382.
- Queller, D. C., Strassmann, J. E. & Hughes, C. R. (1993). Microsatellites and kinship. <u>Trends in Ecology and Evolution</u>, 8, 285-288.
- Reed, P. W., Davies, J. L., Copeman, J. B., Bennett, S. T., Palmer, S. M., Pritchard, L. E., Gough, S. C. L., Kawaguchi, Y., Cordell, H. J., Balfour, K. M., Jenkins, S. C., Powell, E. E., Vignal, A. & Todd, J. A. (1994). Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genetics, 7, 390-395.

- Reynolds, R., Sensabaugh, G. & Blake, E. (1991). Analysis of genetic markers in forensic DNA samples using the polymerase chain reaction. <u>Analytical Chemistry</u>, 63(1), 2-15.
- Scribner, K. T. & Pearce, J. M. (In Press). Microsatellites: Evolutionary and methodological background and empirical applications at individual, population, and phylogenetic levels. In A. Baker (Ed.), Molecular Methods in Ecology. (Chapter 7) London: Blackwell Scientific.
- Sensabaugh, G. F. (1982). Biochemical markers of individuality. In R. Saferstein (Ed.), Forensic Science Handbook. (pp. 338-415) New Jersey: Prentice-Hall.
- Sensabaugh, G. F. & von Beroldingen, C. (1989). The application of polymerase chain reaction in forensic science. In H. A. Erlich, R. Gibbs & H. H. Kazazian, Jr. (Eds.), <u>Current Communications in Molecular Biology: Polymerase Chain Reaction</u>. (pp. 147-150) New York: Cold Spring Harbor Laboratory Press.
- Sensabaugh, G. F. (1991). Genetic typing of biological evidence using the polymerase chain reaction. In G. Berghaus, B. Brinkmann, C. Rittner & M. Staak (Eds.), DNA-Technology and Its Forensic Application. (pp. 33-40) New York: Springer-Verlag.
- Sprecher, C. J., Puers, C., Lins, A. M. & Schumm, J. W. (1996). General approach to analysis of polymorphic short tandem repeat loci. BioTechniques, 20, 266-276.
- Trent, R. J. (1997). Molecular Medicine: An Introductory Text, Second Edition. New York: Churchill Livingstone.
- Waye, J. S. & Fourney, R. M. (1993). Forensic DNA typing of highly polymorphic VNTR loci. In R. Saferstein (Ed.), <u>Forensic Science Handbook Vol. III</u>. (pp. 358-415) New Jersey: Regents/Prentice-Hall.
- Weir, B. S. (1992). Population genetics in the forensic DNA debate. <u>Proceedings of the</u> National Academy of Sciences, USA, 89, 11654-11659.
- Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G. & Lathrop, M. (1992). A second-generation linkage map of the human genome. Nature, 359, 794-801.
- Worley, J., Lee, S., Ma, M. S., Eisenberg, A., Chen, H. Y. & Mansfield, E. (1997). Fluorescence imaging in human identity testing. <u>BioTechniques</u>, 23, 148-153.
- Zietkiewicz, E., Rafalski, A. & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.

 Genomics, 20, 176-183.

