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ABSTRACT

A FICTITIOUS DOMAIN SOLVER FOR COMPUTATION OF THE EFFECTIVE

PROPERTIES OF MATERIAL DISTRIBUTIONS GENERATED BY ITERATED AFFINE

MAPS

BY

EDWARD M. BRENNAN

The effective constitutive properties of a homogeneous material with a

fractal shaped microstructure were solved in two dimensions. The change in

material stiffness versus change in fractal mapping depth was studied.

Example problems were solved and compared to an optimal rank-2 geometry.

An image-based analysis was performed to Obtain the effective

material properties. The fictitious domain was used to embed the base cell

with periodic boundary conditions. Then, the domain was discretized using

finite elements and a Preconditioned Conjugate Gradient (PCG) solver

minimized the potential energy. The preconditioner matrix was inverted

using a second PCG algorithm. This PCG inside PCG approach makes the

convergence rate relatively insensitive to problem scale. Example problems

are included that study sensitivity to problem size.
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Chapter 1

Introduction

Material can be removed from a homogeneous structure by punching holes in the

structure. Along with the resulting reduction in weight, the material stiffness is

also reduced. The stiffness of the structure is a function of its weight as well as the

special distribution of the holes that are punched. Naturally, some structural

shapes created by hole punching are stiffer than others for a given loading, even if

the structures have the same weight. Now consider that a geometrical pattern is

employed to determine where material is to be removed from a homogeneous

domain (or where to punch holes in a material). As expected, for a given weight,

some geometrical patterns will be better at keeping a structure stiff than others.

The goal of this project is to study the stiffness of a structure as weight is

systematically removed using geometric patterns. By means of mathematical



formulas, highly structured geometric patterns can be generated in an iterative

fashion to choose where to remove material (where to the punch holes). Then, these

patterns can be applied to a domain of uniform material. As more iterations of the

geometrical pattern are applied, more material is removed. As the number of

iterations approaches infinity, the material weight will approach zero.

When a material with a microstructure is viewed from a macroscopic vantage

point, it appears to be homogeneous. But, when one zooms in for closer inspection,

one can see the fine geometrical pattern of the microstructure. The smallest

repetitive unit of holes in a microstructure is called a base cell. Here it is assumed

that, the micro-pattern of the entire structure can be represented by just the base

pattern that is repeated periodically. It will be shown that the periodicity of the

base cell makes the analysis of a material microstructure possible.

The type of geometric pattern employed in this project has some interesting

properties. The pattern can be applied once to slice up the homogeneous base cell

into pieces, removing a portion of material. Figure 1.1a shows a solid square broken

up into 12 solid pieces and one large void in the center. Then, the same pattern can

be re-applied, or mapped, to each remaining solid piece. Figure 1.1b shows this

same pattern applied to each of the 12 remaining solid pieces in figure 1.1a to

produce 144 solid pieces and 13 holes. The result is a geometric pattern that is

systematically refined into pieces containing the same pattern. This patterning

technique generates what is known as fractal geometry.



(a) One iteration (b) Two iterations

Figure 1.1: Example of geometric pattern applied twice

Fractal patterns are often encountered in nature. One such example is the

branch configuration of a tree. A branch has the same pattern as the tree itself.

Furthermore, a twig that extends from the branch has the same ‘tree’ pattern

repeated again and SO on.

This project presents the first time that the mechanical properties of

materials created by these unique geometrical patterns have been analyzed. Does a

certain geometrical pattern contain any inherent advantage as a method of weight

reduction? How does its stiffness / weight ratio behave as material is removed? ‘

What happens to the material properties of a fixed domain as the geometry of the

patterns is changed? These are some of the questions that this project attempts to

answer.

Using an iterative pattern to reduce material weight requires a very fine

mesh when performing analysis. As expected, the associated system of equations

used to solve the elasticity problem is very large. For example, the problem domain



presented in figure 1.1b is twelve times larger than in figure 1.1a after just one

iteration. That increase in complexity corresponds to the number of degrees of

freedom (using finite element quadrilaterals) increasing by a factor of 16 after just

one iteration. Thus, a new analysis tool had to be created to efficiently solve large

systems of equations. The state of the art consists of analysis using the fictitious

domain and wavelet compression to iteratively solve problems with a large number

of degrees of freedom. DeRose [8] recently used a wavelet-Galerkin method to solve

state equations for his optimization program. The wavelet approach was developed

to solve these problems because it was thought that convergence rates using finite

elements would not be acceptable. This project proposes that finite elements can

result in suitable convergence rates for 2-D elasticity analysis.

1.1 Research Objectives

There are a few reasons why fractal microstructures are of interest in mechanics.

First, as already mentioned, fractal patterns are often encountered in nature.

Secondly, an iterative-mapping algorithm can systematically remove material fiom

a homogeneous unit cell as shown in figure'1.1. More importantly, certain

mappings can remove material away from cell boundaries. This is a favorable

feature for keeping a cell stiff while removing material. Finally, fiactal patterns

have not been used in this context and therefore finding the strengths and

weaknesses of such a composite can provide new insights into the problem.



Obtaining a measurement of material stiffness requires that one first solve a

plane elasticity problem. The finite element method is a common means to

numerically approximate the solution to this problem. However, the analysis of the

fractal problem required a new, more efficient, finite element solution, due to the

large number of elements required to define a refined fractal shape. This memory

requirement forced the use of an iterative solution, which leads to the second

objective of the project: to create a design tool to perform finite element analysis

and calculate the effective properties of a base cell. The analysis package was to

have several exceptional components. It was preferred to employ a meshless

fictitious domain. The reasons for this will become evident by a discussion in

chapter 2. Also, the iterative solution developed was required to be insensitive to

problem size. While an iterative solver requires more computation time, it uses

much less in-core computer memory. In addition, using preconditioning schemes

can reduce the number of iterations and computation time. The ‘fractal analyzer’

package was written in FORTRAN 77 programming language to be a stand alone

executable. To meet the stated objectives, the development of this rather complex

program was broken down into the following phases:

1. Develop global stifi‘ness matrix assembler. Because of the uniform elements

encountered when using a fictitious domain, the element assembly is a critical first

development of the solver.



2. Develop a stand-alone finite element analysis (FEA) program. By creating a

stand-alone FEA program, the skeletal subroutines were tested and verified. Well

know problems were solved and verified with closed form solutions.

3. Develop an iterative solver. Memory storage requirements needed to be verified

and tested. This required the development of a new iterative solver.

4. Develop code to solve for effective material properties. Effective cell properties

were calculated using a solution method first presented by Bensousson and Lions

[5] and described in chapter 3. The user only needs to input the base cell image and

a few material properties to obtain the effective constitutive properties. This type of

procedure is called an image-based analysis.

1.2 Approach

This project consisted Of two main thrusts. First, to develop a two dimensional

elasticity analysis code employing use of the fictitious domain, finite elements, and

an iterative Preconditioned Conjugate Gradient (PCG) solver. Second, to use the

aforementioned program to analyze effective properties of material with

microstructure generated from iterated affine maps.

An image based analysis code was developed to solve the large-scale elasticity

problems with minimal memory requirements. During this development, new

approaches were used to solve the system of linear equations. A conjugate gradient

algorithm was chosen to solve the system of equations. To increase performance,



system preconditioning in the conjugate gradient algorithm was studied. An

efficient preconditioning scheme was achieved using a 2-level PCG algorithm,

inverting the preconditioner using again a PCG algorithm. The technique made the

number of iterations of the outer level PCG insensitive to the scale of the problem

number of elements. This insensitivity to scale, along with efficient memory

management, makes the solution of large-scale problems possible.

The effective properties of homogeneous materials were computed in two

dimensions using a solution presented by Sigmund [17]. This method was used to

solve for the effective properties of base cells exhibiting different geometrical

patterns. Lastly, the material stiffness of these base cells was compared to the

Optimal rank-2 material solution, e.g. as reported by Bendsoe [3]. The rank-2

material is a layered, multi-scale material that exhibits optimal stiffness under

specific loading conditions.

1.3 Organization of Thesis

The remainder of the thesis is presented as follows. Chapter 2 describes the

methods developed and used in the ‘fractal analyzer’ program. The preprocessor

and solver are described and examples that investigate accuracy and sensitivity to

’ problem size are included. Chapter 3 discusses the application of ‘fractal analyzer’

to the calculation of effective material properties using homogenization techniques.

Simple rank-1 materials are analyzed for software verification. Chapter 4 presents



the analysis of material microstructure created by successive mappings of a fractal

pattern. The results are compared to the benchmark rank-2 material. Appendix A

gives supporting data for fractal shapes. Appendix B gives a detailed description of

each subroutine used in the program. Appendix C details the input to the program.



Chapter 2

Iterative Solution Of Elasticity

Problems

2. 1 Introduction

The analysis of an elasticity problem where material microstructures are

characterized by refined fractal geometry requires a large number of finite

elements to accurately approximate the exact solution. Thus, the opportunity

arose to develop and use a new method to solve large problems. This section

discusses the algorithm for the preprocessor and processor used in this analysis.

Problem discretization using a fictitious domain and solution using a new

iterative minimization scheme are presented. Examples are included to study



accuracy and sensitivity to problem size. The examples in this paper are for 2-D

problems but these methods can be extended to 3-D.

2.2 Fictitious Domain Method

The preprocessor discretizes the domain using the so-called fictitious domain

method. The design domain is embedded into a regular periodic domain

consisting of comparatively weak material that is dubbed the fictitious domain.

The mesh is uniform over the entire domain. This grid is similar to the pixelized

image of a computer screen. Figure 2.1 shows the design domain represented by

solid material (.0. The fictitious domain containing void, or no material,

surrounds the design domain. The total domain is labeled $2 and is made up of

the fictitious domain plus the design domain.

 

Figure 2.1: Example design domain embedded in fictitious domain



The boundary conditions on the fictitious domain are periodic. The

degrees of freedom at the far right of the mesh are the same as those at the left

edge of the mesh. Figure 2.2 shows the location of point ‘p’ in two places on the

fictitious domain. Point ‘a’ is located at each of the domain’s four corners. In a

sense, the mesh ‘wraps’ around to the other Side. The periodicity can also be

thought of as an infinitely repeating mesh in each direction (up, down, left, and

right). As will be shown in chapter 3, this setting is advantageous in

computations of effective properties of material mixtures.

 

Figure 2.2: Illustration of periodicity of the fictitious domain

For an appropriate choice of fictitious material, the solution to an

elasticity problem defined on the periodic domain closely approximates the

solution in the original design domain. Thus, the following two problem

statements yield approximately the same solution:



Problem 1 Solution over design domain:

Find u(xl,xz)e R2 that

Minimizes r1,(u)=-;—j Dw€(u)£(u)da)—[[]tudl‘ (2.1)

w 1‘

Subject to u = 0 on F“ C are)

Where,

D0, = material elasticity matrix

II“, = Potential energy

t = surface traction

8 = strain

Problem 2 Solution over design and fictitious domain 52:

Find an e R, that

Minimizes 11,04) 312-] DQ£(u)£(u)dS2—[[]tudl‘ (2.2)

0‘ I"

Subject to u = 0 where P“ C 80) and I“

These two statements yield approximately the same solution in part because the

material in the fictitious domain is defined as very weak compared to the

material in the design domain.

l2



An indicator function x c an be used to describe the two distinct material

constituents that make up the domain, solid and void, i.e.,

VxER, 1(x):{i)1{f§(:a(i) (23)

The element material stiffness matrix is multiplied by the indicator function

before it contributes to the global stiffness matrix. Therefore, the fictitious

domain has no effect on the solution in the design domain (as long as the degrees

of freedom in the design domain are constrained).

The effective material density given by the indicator function as either 0

or 1 controls the stiffness of each element in the domain. For plane stress, using

an isotropic material, the material matrix is expressed as,

 

 

  

l v 0

D =,z'(x)xl v2 v 1 O , (2.4)

0 0 (1+0)

_ 2 _

where,

E = Young’s Modulus

v = Poisson’s Ratio

x = Material indicator function (0 = void; 1 = solid)

13



The fictitious domain mesh has several advantages over the standard

mesh found in a common commercial finite element (FE) package. First of all,

its geometry is very straightforward. This translates into fast meshing that

requires little user experience. Secondly, Since the elements are of the same size

and shape, numerical integration of each element is not required. Thirdly, as

will be shown later, this setting facilitates the construction of an effective

preconditioner. One disadvantage of using the fictitious domain is the need to

use a fine resolution for objects with a large amount of curvature.

2.3 Solution Using Finite Elements

Until recently, linear elastic analysis using the fictitious domain had been done

only using Wavelet-Galerkin methods. This next section presents the problem

formulation and solution using finite elements.

Governing Equations

The finite element method is used to solve the plane stress governing equations:

 

 

Mafia—”#50

ax By (25)
Bon+aay+f -0 '

3x 8y y—
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where,

O" = axial stress in the x-direction

(Iy = axial stress in the y-direction

(Iny = shear stress in the x-y plane

f,K and f, = body forces in the x and y directions respectively,

along with the constitutive equation,

0X 81

0', = [D] 8, (2.6)

on, 5,,

Using the minimum potential energy theorem, and upon discretization using

finite elements, problem (2.5) becomes

Find u e 9 that

Minimizes r1 = éuTKu — uTF (2.7)

Subject to u =0 on I‘“ c: are

where,

K = Global stiffness matrix of size n by n (n = number of degrees of freedom)

u = Nodal displacement vector of size n

F = Nodal source vector of size n

15



1'] = Potential Energy

Boundary Conditions

This section discusses the application of natural boundary conditions and

essential boundary conditions. Figure 2.3 illustrates a typical problem domain

with kinematic boundary conditions on the bottom face and traction on the right

face. The design domain (0 is embedded in the fictitious domain. The essential

boundary conditions are applied on F“ C are. The traction, is applied along the

boundary 1".

 

 

  

   

   
Figure 2.3: Design domain with constraints and loading

Two methods of imposing the constraint boundary conditions,

u = 0 where F“ C 3w , have been studied.

1. A penalty method.

2. Row / column elimination.

Below is a brief discussion of each method.

16



The penalty method involves reformulating the problem into one of

finding the minimum of a modified function,

. 1

mm HAIJ) = H(IJ)+E[%][H(X. )012 (2.8)

Here the objective function is II subject to the constraint equation H(x,y)=0.

Then partial differentiation is performed with respect to the modified function

T1,. (the 1A is included in equation 2.8 to simplify differentiation). As the penalty

parameter (1/8) becomes larger, the constraint equation is increasingly satisfied.

In the limit of (Us) approaching infinity, the solution to the modified problem

(2.8) approaches the exact solution.

8 (2.9)

The second method involves setting to zero the Off-diagonal rows and columns

associated with degrees of freedom on F". Equation 2.10 shows the imposition of

boundary conditions to matrix [K] of equation 2.7.

K0 =[M]+([I]—[M])x[K]x([I]—[M]) (2.10)

17



where,

M = diagonal matrix with M(i, i) = 1 where I‘“" C are) , otherwise M(i,i) = 0.

I = Identity Matrix

One should note that in problems associated with the computation of effective

properties, the only boundary conditions present are the periodic boundary

conditions on $2, i.e., (o and Q. are identical and F" = I“ = Q.

Evaluation of Element Matrices

Each pixel in the mesh is treated as a four node quadrilateral finite element.

The element has one node at each corner with 2 degrees of freedom per node.

Because all elements have the same square shape, numerical integration of the

element stiffness matrix is not necessary. When the Jacobian matrix is

calculated, the off diagonal terms are zero. Hence, the stiffness matrix will scale

exactly as is shown by the Jacobian matrix below where h is the length of an

element side.

1 0

J=h0 1 (2.11)



The only difference between the master element used in the normal finite

element method and an element used in this method will be a constant scale

factor.

2.4 PCG Iterative Solver

The global stiffness matrix is not banded due to the periodic nature of the

fictitious domain. This makes LU decomposition or Gaussian elimination a poor

choice for solving the matrix equations. However, the stiffness matrix is very

sparse and clever methods exist for an efficient solution. Also, the domain’s

periodicity presents some advantageous properties that will be discussed in this

section.

One of the goals of this project was to solve large degree of freedom

systems with an iterative scheme relatively insensitive to size. This section

describes a PCG solver and how it was used to accomplish this task. Several

preconditioning schemes were formulated and tested. Finally, this section

contains some examples that explore iteration sensitivity to problem size.

Need For An Iterative Solver

Owing to the large problem size, an iterative solver was implemented that would

allow for efficient memory use. First, this method would need to solve a system

of equations without storing a matrix in its entirety. Second, the solver would

19



need to store as few vectors as possible such that computer memory limits

wouldn’t be challenged. Finally, the solver would need to converge upon the

solution rapidly and within a number of iterations relatively insensitive to

problem size. The PCG method achieved these goals.

The use of the PCG algorithm involves finding conjugate direction vectors

to solve equation 2.7. This formulation is more advantageous than a Gaussian

elimination approach that requires storing an entire matrix and performing

operations on that matrix before solving a system of equations. Equation 2.12

shows how the conjugate gradient method forms the solution vector from the

linear combination of scalars and conjugate directions.

.7c*=aopo +....~i-a'n_,pn_l (2.12)

where,

x. = solution vector

CL, = scalar

p, = conjugate direction vector

Equation 2.12 represents one step (step 4) in the complete PCG algorithm, which

will be presented in section 2.4.2. It allows the solution to be produced by only

using less memory-intensive dot products.

20



2.4.1 Matrix Preconditioning

A preconditioner is used to increase convergence rates of the conjugate gradient

method. The preconditioner changes the matrix eigenvalues and makes the

system easier to solve. This is called ‘conditioning the stiffness matrix because

modifying the eigenvalues changes the matrix’s condition number.

The homogeneous stiffness matrix

When the properties in Q are homogeneous, the resulting homogeneous stiffness

matrix has some interesting properties that can be exploited to construct an

effective preconditioner. A stiffness matrix arising from a discretization of 52

consists of four sub-matrices:

K11 Kl2

_ h h . .
K}, — [Ki] K32] DImensron (n by n) (2.13)

where the notation [ ], denotes that the material properties are homogeneous,

and

K},2 = Ki,“ (2.14)

Each sub-matrix is a block circulant matrix that contains N x N circulant

matrices. Here N is the number of elements per side Of Q.



The circulant property of matrices means that each row of the matrix can be

created by cyclically Shifting each element from the row above by one place to

the right. A block circulant matrix is obtained by moving each block sub-matrix

from the above row of blocks by one to the right. A symmetric circulant matrix is

shown in (2.15),

  

—a b c d c b—

b a b c d c

c b a b c d

A:

d c b a b c

c d c b a b

-b C d C b ad (2.15)

The effect is to be able to have information about the entire matrix by only

storing one row of that matrix. We shall use K, to construct a preconditioner.

However, K, is a positive semi-definite matrix. Thus, it is singular and it has

two zero eigenvalues. Because the preconditioner must be inverted, the

homogeneous stiffness matrix cannot be used without some modification.

2.4.2 PCG in PCG Method

Below is the definition of the standard PCG algorithm to solve the system of

equations,



P,"Ku = Pf'F
(2.16)

where P1 is the preconditioner matrix and K(n by n) is symmetric and positive

definite.

Algorithm: PCGl

Given an initial guess u0 ,

1. r0 = F — Kuo

-1

Z0 : PI r0

Po : Z0

For j = O,1,...,n while "r1." > a given tolerance

a}. =(r,:°Zj)/(KP,-'P,-)

“1+1 = “,- +ajpj

5+1 =rj—aijj

_ -l

z141—1)] rj+1

flj=(r}:l°zj+l)/(rjr'zj)

pj+1 =Zj+l+fljpj

end
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In the PCG method, the preconditioner, P, must be inverted in step 6. This

presents a problem. A good preconditioner matrix can be difficult to invert, yet

the inversion process must be fast enough that the solution time is not

compromised.

The solution proposed here is to use a second PCG algorithm to invert P1 in

step 6. This allows for the best possible preconditioner choice to be used for the

first (outer) PCG algorithm. Figure 2.4 shows the main functions of the two

PCG solvers. The inner algorithm is called PCG2 and is used to invert P1.

— PCG]

Min. u‘Ku-u‘F

Invert P,: 2,: P'r,

—” PCG 2

Min. z‘,P,z,-z‘,r,

lnver’rP2

 
—— End

End

Figure 2.4: PCG in PCG algorithm

  

As shown in figure 2.4, each iteration of PCG1 may contain many PCG2

iterations. However, using PCG2 allows for a good choice of preconditioner P,.

It will be shown that devoting time to ensure that a good preconditioner is used

pays off. The preconditioner for the second (inner) PCG also needs to be

efficient, but more importantly it needs to be very easy to invert. The

performance of the PCG algorithm is discussed later in this chapter.
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First Preconditioner

The preconditioner used for the first (outer) PCG is:

R =[Ml+([Il-[Ml)><[K.]><([Il-[Ml) (2-17)

where,

[K,] = the homogeneous stiffness matrix of equation 2.13 with boundary

conditions imposed by the row and column elimination method as

mentioned earlier.

[I] = the identity matrix.

[M] = a diagonal matrix with M(i,i) = 1 for the i‘h constrained degree of freedom

and zero otherwise.

Note: the inclusion of boundary conditions makes P, non-singular even though

K, is singular.

Second Preconditioner

The preconditioner for PCG2 is,

Pz = (Ki. + Q) (2.18)

where,
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4,3,1 331,]

c: _
(2.20)

The strategy to invert the second preconditioner is to make the homogeneous

stiffness matrix positive definite by adding a matrix Q. The matrix Q is of size n

by n and has only 2 non-zero eigenvalues whose corresponding eigenvectors are

the rigid body modes of K,. As stated earlier, the homogeneous matrix K, has

some memory saving properties (it can be stored in only It memory locations). In

addition, some clever techniques can be employed to invert the matrix. For one,

the eigenvalues Of K, can be computed by using the Fast Fourier Transform

(FFT). This makes inversion possible by performing the FFT on each individual

block twice to generate a tri-diagonal matrix of eigenvalues. Then, Q from

equation 2.19, is added simply by adding C to the zero eigenvalue of K,. Then

the matrix is inverted. Finally, the inverse FFT is taken and the blocks of the

inverted matrix are reconstructed.

2.5 Performance OfThe Two Level PCG

Algorithm
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This section takes a look at the performance of the iterative solver and the

fictitious domain methodology. Also, the benefits of using the PCG inside

PCG method are Shown. Additionally, the advantages and disadvantages of

different preconditioners are studied in the development of the PCG in PCG

method. Finally, the effects of increasing problem Size are considered.

2.5.1 Sensitivity To Problem Size

The insensitivity of the PCG solver to problem size is illustrated by solving a

plane stress elasticity problem. Different total mesh and resolution

combinations were varied and compared.

The fractal shaped structure shown in Figure 2.5 was used to test

convergence properties. The design domain material values where v = 0.3

and E, = 1.0. The fictitious domain was made of weak material, E2 = 0.0, and

the boundary conditions and loading shown in Figure 2.5 were applied.

~>

 

 

o
’0‘

F
A
O
’0‘

Figure 2.5: Design domain in and boundary conditions for performance trials
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2.5.2 Affect Of Changing Domain Resolution

In this study three domains of three different sizes are tested for

convergence. Figure 2.6 illustrates the different meshes with differing design

and total domain sizes increasing. Table 2.1 shows the size of the design and

total domain doubling for D1, D2, and D3. The design domain geometry is

the same fractal shown in figure 2.5. Also, it is evident that the proportion of

design size / fictitious domain Size remains constant.

 

 

     

Design In Discretization w DOF £2 Discretization Total DOF

‘ 1 54 x 54 5832 54 x 64 3192

2 108 x 108 23328 128 x 128 32768

3 216 x 216 93312 256 x 256 131072
 

Table 2.1: Discretization levels for analysis of PCG performance
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(a) (b)

 

(C)

Figure 2.6: Adjustment of design domain size and resolution
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Figure 2.7 illustrates that the total number of degrees Of freedom driven by

the total domain size, Q, has little or no effect on the number ofPCG1

iterations.

 

Residual \s. PCG 1 llerations
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P06 1 Iterations

Figure 2.7: PCG1 Iterations

What then, is the cost of adding additional degrees of freedom? Additional

time is spent inverting P,, the preconditioner of PCG1. The price to pay for a

good preconditioner is the time spent inverting it. Figure 2.8 shows the

growth in iterations Of the second PCG loop, PCG2, as the size of the design

domain is increased. These results are from the trial domains described in

table 2.2 and the test geometry shown in figure 2.5.

 

 

     

Resolution Level (I) Discretization (o DOF £2 Discretization Total DOF

5 32 x 32 2048 512 x 512 524288

6 64 x 64 8192 512 x 512 524288

7 128 x 128 32768 512 x 512 524288

8 256 x 256 131072 512 x 512 524288
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Table 2.2: Domain characteristics to test PCG2

PCG 2 iterations per PCG 1 iter ior 4 by 4

140 i i . /x, i i [\J 

#
o
f
p
0
9
2

i
t
e
r

 
 

—le\eis

—-- level6

  —level8
   

0 5 10 15 20 25 30 35 40

pcg1 iter it

Figure 2.8: PCG2 iterations

Remark 1: It was observed that the size of the fictitious domain needed to be

greater than approximately 10% of the design domain. If the design domain

took up more than 90% of the total domain, the number of iterations rose

considerably and in some circumstances the problem could not be solved.

Remark 2: Solution time varied as a function Of several factors, the most

noticeable being problem difficulty. As the problem became more
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complicated, i.e. more boundary conditions were imposed or the geometry

complexity increased, the solution time increased.

2.5.3 PCG in PCG Development

Considering the computations associated with PCG2, what real benefit is

gained from using a preconditioner that is difficult to invert? Can we do

better? Different preconditioners were studied in order to find and

implement a more efficient solution strategy. Below is a brief discussion of

the preconditioners that lead to the development of the PCG in PCG scheme.

The design domain in each test consisted of the well-known elasticity

problem of a stressed plate with a center hole shown in figure 2.12. The

model details are listed in Table 2.3 below.

 

0) Discretization (o DOF Q Discretization ITotal DOF|

28 x 48 2688 64 x 64 I 8192 I

 

   
 

Table 2.3

Two single PCG schemes were initially considered. The first preconditioner

tried was the matrix of the diagonal of [K,]. The performance shown in

Figure 2.9 is no better than without a preconditioner.
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2 Diagonal Preconditioner Without Boundary Conditions

11111111111111111 1
_. i,-

.
1
-

  
 

0 100 200 300 400 500 600 700

Preconditioner Iterations

Figure 2.9: PCG Iterations for test preconditioner

In the second attempt, the same diagonal preconditioner was used with

boundary conditions applied. A large value was added to P,(i,i), where i

represents a constrained degree of freedom. A decrease in half the number of

iterations resulted. Figure 2.10 shows this drastic reduction in iterations.

Finally, the PCG in PCG method was created in order to invert the most

desirable of the preconditioners (shown in equation 2.17). A second PCG was

introduced to invert the preconditioner. The result was a reduction in the

number of iterations by ten-fold as seen in Figure 2.11.
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Figure 2.10: PCG Iterations for test preconditioner
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Figure 2.11: PCG1 Iterations for PCG in PCG method
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2.6 Accuracy

This section explores the accuracy of the PCG in PCG method. Three example

problems are solved and the results are compared with the commercial finite

element package ANSYS 5.6. The closed form solution of one problem is

presented in appendix A.

2.6.1 Stressed Plate With Hole

The well-known plane stress elasticity problem of a stressed flat plate with a

center hole is examined for accuracy. Figure 2.12 shows the loading and

boundary conditions. Opposing traction forces are applied at the left and

right sides of the plate.

The problem size was greatly reduced using symmetry. Figure 2.13 shows

the problem that was solved by applying symmetry along the vertical and

horizontal axis of the hole. The boundary conditions now include two sets of

rollers. The first set restricts movement in the x direction only while the other

restricts motion in the y direction only.
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Figure 2.12: Stressed plate with hole

    

  

Y

Lx
/////////

Figure 2.13: Problem domain with symmetry
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Using a domain Size of 64 by 64, the design domain was meshed as seen in figure

2.14. The design domain is Of dimension 48 by 28 in the x and y directions

respectively. The hole has a dimension of 12 units radius. The results presented

are for an isotropic material with E = 2e5 units and v = 0.39. The load is a

constant traction of 10,000 units. Figure 2.14 shows the resulting Von Mises

stress distribution in the plate. Maximum Von Mises stress occurs at the bottom

of the hole. The minimum stress is located at the hole’s horizontal axis about

one of its lengths to the right.

Next, a standard finite element implementation (Ansys 5.6) was used to

verify the Von Mises stress results. The stresses are similar in magnitude and

in distribution. The contour bands in figure 2.14 have the same scale as figure

2.15 to make comparison easier.

The results were also verified with the analytical result that was first

calculated by G. Kirsch in 1898. These resulting calculations are provided in

appendix section A.3.
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Figure 2.14: Stress contour plot of stressed plate with hole

 

  
 

Figure 2.15: Stress contour plot generated by ANSYS 5.6
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The next two examples use the following data:

Young’s modulus: 100.0

Passion’s ratio: 0.30

Fictitious domain mesh size: 128 x 128 elements

2.6.2 ‘El’ Bracket Example

The ‘el’ bracket geometry and loading is pictured in figure 2.16. The

specimen is cantilevered from a wall with a fixed end boundary condition. A

pressure of 10 units is applied to the free end as illustrated below.

PM

60

4— 20 —>

     
////fl/)

Figure 2.16: Loading and geometry of ‘el’ bracket

The Von Mises stress contour plot of figure 2.17 shows a larger stress

gradient near the fixed end. This solution is similar to the solution generated

by ANSYS 5.6 in figure 2.18. The contour bands of each graph Show a similar

stress pattern. Note that the stress calculated by ANSYS is averaged over

each element.

39



50.4

66.7 _

82.9 ..

99.2

115.4

131.6

147.9

  
Figure 2.17: Stress contour plot of Bracket

 

147. 872

   
 

Figure 2.18: ANSYS 5.6 analysis of ‘el’ bracket
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2.6.3 Annular Circle Example

The annular circle shown in figure 2.19 is a disk with a hole in the center.

The outer disk radius measures 49 units and the inner hole radius measures

24 units. A pressure of 100 units is applied to a small region on the right Side

of the outer circle. At the left side, the circle is cantilevered to a wall with a

fixed end condition.

P<y>

 

Figure 2.19: Annular circle with boundary conditions

Figure 2.20 shows the stress distribution in the annular circle. The stress is

largest near the wall and the load. Regions of high stress also exist near the

edge of the hole in the center of the disk.

Comparison to the ANSYS solution yields Similar results. The stress

distribution patterns are alike as are the relative magnitudes of stress.
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Stress

 

    
Figure 2.21: Stress contour plot from ANSYS 5.6
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2.7 Summary

The proposed PCG in PCG solver accurately and efficiently meets the

required project specifications. The examples show that the convergence of

the PCG solver is independent Of the problem size. The fictitious domain

approach successfully approximates the solution to linear elasticity problems.
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Chapter 3

Computation of Constitutive

Properties

This section will discuss how effective properties are calculated. Also, a

detailed explanation of homogenization techniques is offered. Then, accuracy

verification of the computational approach is presented.

3.1 Background

A material microstructure can be thought of as a material composed of two

distinct constituents that are mixed at a small scale in a pattern that repeats
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periodically throughout the domain. When a material with a microstructure

is viewed from a macroscopic vantage point, it appears to be homogeneous.

But, when one zooms in for closer inspection, one can see the fine geometrical

pattern of the microstructure. The smallest repetitive unit in a

microstructure is called a base cell. It is assumed that the refined pattern

can be represented by this base pattern that is repeated periodically

throughout the material. Because of the cell’s periodicity, the analysis of only

one base cell is sufficient to calculate the effective properties for the entire

material.

In this project, the micro-geometry is constructed by puncturing holes

into a homogeneous substance. The result is a complex pattern. A different

material, as in the case of a composite material, could occupy the refined

holes. In this project it will be assumed that one could also leave the hole to

be void of material.

The periodic homogenization problem is one of determining the

effective material property tensor of structures that have a periodic

microstructure. Considering figure 3.1, the effective properties of the

macroscopic material are a function of:

1. The properties of the constituent materials labeled, 1 and 2, with

elastic tensors E, and E2, respectively.

2. The special distribution of the two materials in the cell.

3. The orientation angle of the base cell with respect to a global

coordinate system (x,, x,).
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The microstructure shown below characterizes the mixture of the two

materials, 1 and 2. The base cell geometry in the (y,, y,) domain is repeated

periodically in the macroscopic domain S2.

 

Figure 3.1: Periodic microstructure in a homogenized material

3.2 Homogenization Method

The homogenization method allows one to solve elasticity problems in which

materials with a microstructure are involved. This method allows for a

solution without having to individually discretize each small cell and solve

with finite elements. Instead, using homogenization, the behavior of the
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microstructure can be approximated by a ‘post processing’ of the macroscopic

stress analysis (Guedes [20]).

The methods of periodic homogenization were pioneered in 1978 by

Bensoussan, Lions, and Papanicolaou [6]. For the sake Of completeness, the

following derivation of the homogenization techniques is presented. This

derivation follows the methods presented by Bendsoe and Kikuchi [4] and

Guedes [20].

Let the domain occupied by the structure be $2, and let the body force fbe

applied to S2. Let the traction t be applied along a part of the boundary F, as

Shown in figure 3.1. Let I‘,, be the part of the boundary where prescribed

displacements are specified.

First, assume that the tensor E5.“ of material constants satisfies the

symmetry condition,

Efu = Ef'iu : E511; 7' Elf“; (3'1)11

Also consider the stress-strain relations,

e _ e a

0i] - Eijklgkl

5‘ =1 3“: +92:
(3.2)

u 2 8x, 3x,

 

47



Next, suppose that a periodic microstructure is in the neighborhood of an

arbitrary point x in a given linearly elastic structure (see figure 3.1).

Because the body forces and tractions vary within the large scale as well as

small scale they are functions ofx and x/c. Here a is a magnification factor

that is a measure of the microscopic! macroscopic dimension ratio (the level of

magnification is large enough to scale the microstructure to unit length).

Then, the elasticity tensor is E5“ (x) , where

E,.,£.k,(x) = Eijkl(x, y), y = x/ 8, for i, j, k,l =1, 2, (3.3)

Also, for fixed x, E,“ (x, y) is Y-periodic where, Y = (y, , y, )x (Y2, , yzL).

With these assumptions, equilibrium of the structure can be characterized

by the minimum potential energy principle. Thus, the displacements us for

equilibrium are the solution to the minimization problem

min II‘(v‘ ), (3.4)
V£EU

where H8 is the total potential energy defined by

Il‘(v‘) = éa‘(v‘,v‘) - L(v‘ ), (3.5)

a€(u,v) : JEgueu (u)£,. (v)dx , (3.6)

Q
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L(v)=[f*vdx+[t*vds, (3.7)

a r,

and U is the admissible linear manifold such that v is Y-periodic on the

domain 82,

U = {v:v, E H’(Q),v, = g, on PD} , (3.8)

where g is the specified displacement along the boundary PD, and 8(V) is the

linearized strain tensor

The solution to problem (3.4), u‘ , depends on the parameter E

characterizing the microstructure. This dependence Of u‘ on the large scale

and small scale means that an asymptotic expansion can be used with respect

to s,

u‘(x)=uo(x)+£u,(x,y)+..., y =x/E (3.9)

Now, assume that an arbitrary admissible displacement v‘ is expanded as

v‘(x)=vo(x)+£v,(x, y), y =x/8 (3.10)
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where v0 6 U and v,(x, y) is defined in QxY,v,(x,.) is Y-periodic, and v, = 0 on

1“,, = Y . Noting that for any Y-periodic function (p ,

a an 1 are_ , _ I, =_ .__ 3.118x, ((0(x DI.-. ) ax, + 8 a), ( )

and

limI<D(x,x/£) dx =-’—[[<I>(x, y)dy dx, (3.12)
e—ioa lYlQY

where IY I is the area of one cell,

we see that,

lingII‘(v‘) = l'l(vo,v,) , (3.13)

where,

 

Ova, +avlk a"oi +avlr' a: 14
n(v,,v,)=,—Y,2”E,,,(x, y)3x[ 8,1,, +ayj]dy dx——jf* vodx— j: vods (3. )
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If the pair {uo,u,} is the minimizer of the functional II, it satisfies the

following two equations:

 

Bu Bu )3v0 (x 01+ 1* O'dydx
[Yli‘iJ‘E U ”a“ +W.

(3.15)

=If*dex+It*vds forevery V0.

rr

and

 
Buck +aulk\ l

’d (ix: 0 f 3.16I7,” En<x y>+[,, 31,3,” y oreveryv < >

If u, is assumed to be decomposed into

 

a

u..(x.y>=—z."°(y> 5:" (x), (3.17)

q

and if 1”” satisfies

31" av

E, —E,. -—P " dy= 0 fork, [=1 and 2, (3.18)

![ 1“ 1m ayq_]ay—j
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the second equation (3.16) is automatically satisfied. Substitution Of

equation 3.17 into the first equation (3.15) yields the homogenized equation

IE,;,(x)il-°—*-%dx=[f*vodx+ [1*v0ds for every v0,

Q 9
3x, 3x,

r1

where,

Id

31,,

an

 

l

5.51, (x) = m](E... (x, y) — Emu. y) W
Y

Next, define

éflfldx
a.(u.v)= [Elm a, in .

Q J'

315 i

ayq ayj

 

a. (1“.v) = IEmu, y) dy,
Y

and

Ed,
Lil (V) : {Emu By,
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(3.20)

(3.21)

(3.22)

(3.23)



Thus, the following problem at the microscopic level and associated

homogenized problem at the macroscopic level constitute necessary (and

sufficient) conditions that are obtained by passing to the limit 8 —> 0 in the

minimum principle.

Problem At Small Scale In Cell Y:

ZUEUY: a,,(,t’“,v)=L';‘(v) forevervaUy, (3.24)

where UY is the admissible space defined in the cell Y:

U, = {v:v, is Y- Periodic} (3.25)

Problem At The Large Scale, The Homogenized Problem On 82:

u E U 2a,, (u,v) = L(v) for every ve U0, (3.26)

where U0 is the homogeneous case of U, i.e., g = 0.

The microscopic problem can be solved using the finite element method. In

doing so, the cell domain Y is discretized using finite elements and the

admissible space UY is approximated by U,,. Thus, the finite element
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approximation on x,“ E Uy, of the )5" is obtained as the solution of the

discrete problem

,‘(f’eUmz a,,(;(,’f‘,v,)=L’;‘(v,) foreveryv,eU,.,, (3.27)

Using the above approximation, the homogenized elasticity tensor is defined

 

by

l 83'“

hErild (x) = MI(EUIKI (x’ y) _ Eiqu (x, y) 8 hp )dy

Y yr (3.28)

Following Sigmund [17], we can define

P” = yflue, (3.29)

where,

6 = kronecker delta

e, = Cartesian base vector

And note that equation 3.28 can be stated as,

 

ax‘m ariav.

E, P — P 'dY=0 (3.30)

l "i ay, away,-
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where,

 

an>
F;— = 82;“) = three independent cases of initial strain

4

61“”

a; = 6,1,“) = solution to the problem

4

Given the substitutions above, equation 3.30 can be written as simply,

I .H _ 00.1) (k!)

Eijkl _ Ml. Eiqu (Em _8pq MY

1’
(3.31)

Solving 3.31 involves creating a finite element model and solving for 8' given

three independent cases of initial strain, 8°. The initial strains are shown in

are normal strains.equation 3.32 below. The initial strains 82;”) and 82:22)

The third initial strain, 82;”) , is a shear strain, i.e.,

0W) _
8p, -—

0(11) _ 0(22) _ 002) _
8,, —1.0 8,, —0.0 8,, —0.0

532‘“) =0.o 53,92) =1.o 53;”) =0.0

0 2 2

s,,‘“’=0.0 5,0,(2’=0.0 8,0,")=I.O (3,32)
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The initial strains are applied to the finite element model as equivalent nodal

loads. Finally, equation 3.33 can be written in terms of mutual energies. The

expansion of this equation allows for direct calculation of the Six unique

entries of the constitutive properties tensor.

1 t .. , ..

H _ 00:!) (Id) 0(1)) (v)

Eijkl _ IYI l(qurs (qu —£pq )(Ers —Ers ))

(3.33)

The constitutive tensor can be written in the following matrix form,

Ellll £1122 E1112

[El = 51122 E2222 E2212

E1112 £2212 E1212 (3.34)

Boundary Conditions

The boundary conditions for the homogenization problem are periodic. As

such, the fictitious domain approach is well suited to enforcing these

boundary conditions. Thus, filling the entire domain with a square base cell

automatically enforces equation 3.35 and additional constraints aren’t

required. In other words, there is no weak material surrounding the design

domain. The periodic boundary conditions are shown in figure 3.2 and can be

stated as,
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VI =Vl Vl =V|‘y)=0 ‘yi=y)°’2yi=0 2yi=yi’

=v,|
Vl V I =V|‘ y2=0 Y2=Y2° ’ 2 y2=0 2 y2=y3 (335)

\(anz)

(viivz)  
1']

Figure 3.2: Periodic boundary conditions applied to fictitious domain.

3.3 Verification of Accuracy

This section verifies the accuracy of the calculations of effective base cell

properties. The results are validated by a comparison to a closed form

solution for layered materials.

The rank-1 material is a sandwich of strong material held together by a

weak material. Figure 3.3 shows a rank-1 microstructure that repeats

periodically throughout a domain. The material labeled E+ is stiffer that the

material labeled E'. Note that this geometry would be the stiffest possible

microstructure per weight for a loading parallel to the y2 axis. However, if
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material E' were void it would collapse under any loading with components in

the y, direction.

Y2

 

 

Figure 3.3: Rank-1 material used for algorithm verification

Bendsoe [3] presented an analytical solution for the effective properties of

the rank-1 material shown in figure 3.3. In that solution, two material layers

were isotropic, had the same Poisson’s ratio v, the Young's moduli were E’

and E” respectively, and the corresponding layer thicknesses y and (1-y).

Using the matrix notation of equation 3.34, the five non-zero stiffnesses are

given by equation 3.36 below.

Elli” = I) ’ E2322 = (1'V2)12 +VZII (3.36)

H l-V H

E1212 =71], E1122 =VI|

E‘Ei , _

I,=—— IZ=7E (1-7)E

[rE' + (l-r)E‘]’
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The accuracy of the finite element implementation will be tested using a base

cell with a 16 by 16 finite element mesh constructed to model figure 3.3. The

material characteristics of the layers are: E" = 100; E' = 20, v = 0.3; y = 0.5.

Below are the constitutive property matrices calculated analytically and

computationally.

36.63 10.99 0 36.63 10.99 0

[E]: 10.99 63.30 0 [E]: 10.99 63.30 0

0 0 12.82 0 0 12.82

(a) Analytical solution (b) Computational solution

Note that the computational results are accurate to four significant digits.

3.4 Summary

The homogenized properties were calculated using finite element analysis of

the base cell. Boundary conditions were automatically imposed by the

periodicity of the mesh. The fictitious domain approach was well suited to

the calculation of effective material properties because of its square domain

and periodic properties. Results were successfully verified by comparison to a

known closed form solution for rank-1 materials.
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Chapter 4

Analysis Of Structures Created By

Iterated Affine Maps

4. 1 Introduction

This section looks at the performance of a base cell with geometry created by

iterated maps. The effective properties will be compared to the benchmark

rank-2 material. Then, the change in cell stiffness with respect to changing

fractal coefficients will be studied. Also, this section explains some important

properties of fractal geometries and how they are generated using iterated

affine maps. In addition, the iterative affine transformations will be

explained as well as how they are applied to homogenization.
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4.2 Background

4.2.1 Key Concepts

The first concept of fractal geometry is fractal dimension. Man made

geometry can be described almost exclusively by Euclidian geometry. The

building blocks of Euclidian geometry are smooth objects such as lines,

planes, cylinders, and rectangular volumes. These objects have integer

dimensions. For example, to define a point on a line requires one uniquely

defined point. Hence, a line is exactly one-dimensional. To define a point on

a plane, one requires two numbers to define it, usually from an orthogonal

coordinate system. This concept can be extended to three-dimensions.

We now consider a more mathematical definition Of dimension. The given

definition considers how the size of an object changes as a linear dimension

increases. For example, as the linear dimension of a line segment doubles, its

length doubles by a factor Of 1. As the linear dimensions of a rectangle are

doubled, its area increases by a factor of 4. The relationship between the

dimension D, linear scaling L, and the increase in size can be written as,

S=LD

or,
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D = log(S)

log(L)

For Euclidian Shapes, the dimension given by the above definition is always

an integer of 1, 2, or 3. Fractal shapes behave differently. If a planar fractal

Shape is linearly scaled by a factor L, then its area does not scale by an

integer power of L. Using the concepts from above, one can find the fractal

dimension by dividing the log of the number of self-similar pieces by the log of

the magnification factor. This will result non-integer dimension.

Another important property of fractal geometry is self-similarity. A figure

is termed self-similar if it can be decomposed into parts that are exact

replicas of the whole. The twig on a tree is an example of self-similarity in

nature. Another example would be to stand between two mirrors facing each

other. One would see one’s self-looking into a mirror that would again be

looking at one’s self in a self-similar manner.

A third important property is box self-similarity. This is simply a

definition that a self-Similar figure can be finitely ‘boxed in’ (discretized) for

so long, at which point refining the mesh no longer yields differences in the

figure. The box self-similarity property can be used to test for self-similarity.

Obviously, if the additional mesh refinement yields the same figure then it is

self-similar.

Finally, the depth of an iterated map and level of resolution of a mesh are

two additional significant characteristics. The depth is defined as how many
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times the mapping has been applied. The level of resolution is the size of the

base cell mesh and is a power of 2 such as 2", where j is the level of resolution

of the mesh.

For this project, self-similarity is desired in the base cell images. For that

reason, adequate refinement is required. Because we are meshing the image

with an equally spaced grid, we are ensuring the definition Of self-similarity

by the ‘box self-similarity’ definition. However, problems arise when base

cells of dimension other than 2" are generated. As mentioned in the last

chapter, the base cell dimension of 2’j is required so the FFT can be

implemented in the PCG computations. Thus, if a fractal only produces a

mesh that can be box self-similar with an odd integer number of elements,

then the FFT can’t be employed. This limited the selection of possible base

cells to shapes that could be self-similar and meshed into an even multiple of

elements.

 

u-E
Figure 4.1: Geometry generated by parameters in table 1
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4.2.2 Iterated Affine Mapping

In this study, a deterministic algorithm uses affine maps to create the true

fractal geometry (before discretization). An affine transformation is a

combination of linear transformation (given by a linear operator) and then a

translation applied to an initial shape. The linear operator can be very

complex (such as a scaling and rotation), or it can be a simple scaling of an

object. Starting with an initial set of points, an affine transformation is

mapped n times. After each succeeding mapping, the cell density decreases

toward zero.

The mesh size of the fractal geometry becomes large as the number of

mappings increases. As an example, the discretization size of the geometry

in figure 4.1 increases at the rate 4" where n is the number of mappings.

Thus, the memory efficient PCG in PCG solver presented earlier becomes a

useful tool to study these geometries.

Below is the notation used to describe the affine maps:

will: 21:11le
(4.1)

This transformation maps i quadrilaterals with corners defined by a, b,c, and

d. The values e and fdefine the location of the quadrilateral. Table 4.1

shows the coefficients used to define the ‘sponge’ pattern of figure 4.1. This



first mapping is made up of 12 squares of size 1/1 by 1/4, whose x and y

positions are defined by e and frespectively.

 

 

2'; a b c d e F

1 0.25 0 0 0.25 0 O

2 0.25 0 0 0.25 0 0.25

3 0.25 0 0 0.25 0 0.50

4 0.25 0 0 0.25 0 0.75

5 0.25 0 0 0.25 0.25 0

6 0.25 0 0 0.25 0.25 0.75

7 0.25 0 0 0.25 0.50 0

8 0.25 0 0 0.25 0.50 0.75

9 0.25 0 0 0.25 0.75 0

10 0.25 0 0 0.25 0.75 0.25

11 0.25 0 0 0.25 0.75 0.50

12 0.25 0 0 0.25 0.75 0.75
 

Table 4.1: Coefficients for sponge shape

As the 4 by 4 pattern of table 4.1 is mapped, the amount of material in the

cell exhibits exponential decay. Table 4.2 shows the fraction of the cell

occupied by material and the number of elements required to define the

domain as fractal maps are applied.

 

 

 

 

 

 

 

 

Depth Weight Number of Elements In 0)

0 1 .000 1

1 0.750 4

2 0.563 16

3 0.422 64

4 0.316 256

5 0.237 1024

6 0.178 4096      
Table 4.2: Weight reduction due to mapped material removal
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4.3 Performance of Iterative Affine Maps

The goal is to test the stiffness of material created by iteratively mapped

geometries. The previous chapter discussed the computation of effective

properties associated with specific material arrangements. Using those

techniques the base cells are now compared by strain energy density, a

measure Of overall stiffness. For a fixed density, the material is put side by

side to a rank-2 material exhibiting optimal strain energy per unit weight.

The following assumptions are imposed:

1. The deformation is linear elastic

2. All constituents are isotropic

3. Plane stress conditions

4.3.1 Problem Statement

The goal here is to study the effective stiffness of materials with a fractal,

periodic microstructure. The strain energy density present in a cell subjected

to a fixed strain field provides a measure of the stiffness. A larger amount of

strain energy density corresponds to a stiffer structure. Thus, the problem

becomes to study the strain energy density for a fixed amount of material and

a fixed strain field 8(w). For a fixed strain field the strain energy density is:
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l
w =— T

(8) 28 [E18 (4.2)

where,

E = effective material property tensor

8 = fixed strain field

For an orthotropic material, the effective property matrix, E, can be written

as,

E11 E12 0

[E] = E21 E22 0 (4.3)

O O E

The strain energy density in equation 4.2 can be expanded to,

l I

For a given effective property matrix [E], the strain energy can be expressed

as a function ofvarying principal strains 8, and 8,,. We choose |£,| > |8,,| such

that the strain ratio 77 = E’L is in the range -1<n<1. The strain energy

£1

density can be re-written as,
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l l

W =EE,,772 +E,27]+5E22 (4.5)

4.3.2 Baseline Material Distribution

An analytical calculation of effective properties exists for a material

distribution exhibiting the greatest stiffness for a given amount of material

when oriented along the axis of principal strain. The material distribution is

called rank-2, and will serve as a benchmark with which iteratively mapped

geometry can be compared.

The rank-2 microstructure is created by mixing material at two scales. At

the first scale, the geometry appears layered like a rank-1 material (figure

4.2 a). At the second scale, perpendicular and between the first scale, is a

material mixture that gives the impression of a rank-1 material (figure 4.2 b).

     
  

   
   

  
a.) First scale b.) Second scale

Figure 4.2: Rank-2 material distribution at two levels
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The rank-2 material is unique because it provides no shear stiffness (E66=0.0).

Hence, if oriented correctly, it provides optimum stiffness in the directions of

principle strain. On the other hand, if loads are applied that differ from the

design load (which provides for optimal stiffness), the material is unstable

and will perform mechanism-type motion (Sigmund [17]).

The layered pattern of the rank-2 material is characterized by the

parameters 8 and y as shown in figure 4.3.

.
e
w
-
-
.
.
a
_
_
,
.
/
§

 

5
‘

 

§
~

 

Y 1—y

Figure 4.3: Parameters y and 8 characterize the rank-2 pattern.

It can be thought of as alternating layers of stiff and rank-1 material with

average densities of 6 and 1-5 respectively. The average densities of stiff and

flexible layers within the rank-1 material are y and 1-y. Then, the bulk

density of the material can be written as,

p=6+y—y6 (4.6)
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Note that as y approaches 1.0, the structure becomes a rank-1 material. As 8

approaches 1.0, the structure becomes uniformly solid. Naturally, the stiffest

material distribution would be for 6 = 1.0.

4.3.3 Strain Energy Density Formulation For Rank-2 Materials

The effective properties for a rank-2 material can be derived using the

homogenization formulas presented in chapter 3 as described by Jog, Haber,

and Bendsoe [11].

The rank-2 material that exhibits an optimal strain energy curve for a

fixed p has continuously adjusted layer densities. This means for differing 11

there are different combinations of optimal 8 and y. In other words, as the

material axes are rotated to remain aligned with the instantaneous principal

axis, a new geometric optimality exists. For differing values Of p there are

four regions or modes, each with its own optimal values of 8 and y. Modes I

and II are defined by values of 6 and 7 between zero and one. Modes III and

IV correspond to lower-bound and upper-bound constraints on 8 (i.e. values of

0.0 and 1.0 respectively).

As presented by Jog, Haber, and Bendsoe [11], the strain energy density

for the four modes is defined as:
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Mode-I

w: E(l+277(l-p+v)o)+n’)

2(l-V)(2- p + VP)

 

Mode-II

w = E(l-277(l-p-vp)+772)

2(l+ V)(2- )0 -Vp)

 

Mode-III

W=%pE as)

Mode-IV

W _ E(l+2vn+172)

2(l—v2)

 

The ranges ofvalidity for the four modes are functions of p and n,

mode-I: 1—+’l<p<l

l-v

1+0 1-

mode-III:OSpS— and 05,05—

l—v l+v

4.4 Examples

mode-II: 1—1 < p <1 (4.8)

l+v

mode-IV: p = 1

This section presents analysis of fractal patterns created by the iterative

method described earlier. Fair comparison of two different fractal geometries

would require that the cell density be the same. This is seldom possible when

discretely iterated shapes are involved. Instead, the materials are compared

to the analytical calculation of rank-2 material for a given density. The

example patterns are solved with the finite element solver described in

chapter 2 and the homogenization techniques of chapter 3. The isotropic
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material tensor was created using E° = 100.0 and v0 = 0.30. The convergence

tolerance for the residual in each iterative solver was 1 x 10".

IBM!

I”

a) ‘Sponge’ blueprint b) Chain of 9, Depth 2 cells

 

Figure 4.4: ‘Sponge’ fractal geometry

‘Sponge’ Geometry Example

Figure 4.5 shows four sequential fractal maps that were created using the

‘sponge’ map described earlier in section 4.2.3. First, the pattern removes a

square of material away from the center of the cell. Then, at each

consecutive iteration, a square is removed from the center of each sub-cell.

As a result, material is removed furthest away from the edges of each cell.

However, because of sharp corners, stresses are quite large at a hole’s edge.

Appendix A contains a plot illustrating the Von Mises stress of the cell under

axial loading.
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a.) Depth 1 b.) Depth 2

 

c.) Depth 3 (1.) Depth 4

 

Figure 4.5: Fractals generated by successive mappings from table 4.1
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Optima normalized strain energy density. Material Density s 0 31641
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Figure 4.6 shows the strain energy density plots of the ‘sponge’ shaped

base cell for various cell densities. The performance of the rank-2 material is

also plotted. Note that the strain energy density for the rank-2 material is

greater than that of the ‘sponge’ geometry. Furthermore, the curves are not

symmetric about the axis Eu / 8] = 0.0. The fractal dimension of this shape is

H .79.

 

a) ‘Plus’ blueprint b) Chain of 9, Depth 2 cells

Figure 4.7: ‘Plus’ fractal geometry

‘Plus’ Geometry Example

The next example showcases the ‘pluS’ geometry of figure 4.7. The fractal

coefficients of the ‘plus’ geometry are documented in table A.1 of appendix A.

Material is removed from each cell in the pattern of a ‘plus’ Sign at two levels.

The first level is four large squares and the second level is eight smaller
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squares. As the pattern is iteratively mapped, the cell remains symmetric

about the horizontal and vertical axes. This pattern will reduce more cell

weight per iteration than the ‘sponge’ shape of figure 4.5. However, the ‘plus

pattern is less stiff than the ‘sponge’ pattern.

-I
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II

.I

Al

.I

.I

II

II

.I

J

.I

 

a) ‘El’ blueprint b) Chain of 9, Depth 2 cells

Figure 4.8: ‘El’ fractal geometry

‘El’ Geometry Example

Shown in figure 4.8, the ‘el’ pattern is not symmetric about the horizontal or

vertical axes. The coefficients to construct this shape are presented in table

A.2 appendix A. This geometry also has two different scale levels in the

affine maps. In figure 4.8 it is shown by affine map 3 having a larger
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a.) Depth 1 b.) Depth 2
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c.) Depth 3
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Figure 4.9: ‘Plus’ shaped geometry.
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transformation scaling than the other affine maps. Figure 4.12 shows the

strain energy density comparison to the rank-2 material. The stiffness per

unit weight of this cell is also less than the ‘sponge’ shape as shown in figures

4.19-4.21.

 

3) Depth 1 b) Chain of 9, depth 2 cells

Figure 4.13: ‘Inv4’ fractal geometry

‘Inv4’ Geometry Example

The ‘Inv4’ geometry shown above is a symmetric pattern whose performance

falls between the ‘sponge’ and ‘plus’ shapes. It doesn’t reduce weight as

severely as the ‘plus’ per iteration, but it is a stiffer pattern per unit weight

(see figure 4.19-4.21). Figure 4.13b shows the result of connecting 9 cells of
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‘inv4’ shape.



the depth two pattern of ‘inv4’. The affine maps for the ‘inv4’ pattern are

listed in table AA of appendix A. The ‘inv4’ pattern has a fractal dimension

of 1.79.

{
I
s

 

a) Depth 1 b) Chain of 9, Depth 2 cells

Figure 4.15: ‘Inv8’ fractal geometry

‘Inv8’ Geometry Example

The ‘Inv8’ pattern was the stiffest fractal pattern per unit weight that was

tested. As shown in figure 4.15, the ‘Inv8’ pattern has a greater strain energy

density per density than the ‘sponge’ shape. Figure 4.15b shows the small-

scale structure resulting from the depth 2, ‘Inv8’ base pattern. The ‘inv8’

pattern has a fractal dimension of 1.67.
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a) Depth 1 b) Chain of 9, Depth 2 cells

Figure 4.17: ‘f4d’ fractal geometry

‘Fd4’ Geometry Example

The ‘fd4’ fractal pattern has very similar performance to the ‘inv4’ pattern.

The differences are in the pattern symmetry. One cell of the ‘fd4’ pattern is

not vertically or horizontally symmetric. Nevertheless, the effective

properties calculation considers the material to be periodic as shown in 4.17b.

Thus, the structure is similar in the vertical and horizontal directions, which

is why its stiffness in these directions is similar. It should be noted that the

‘inv4’, ‘sponge’, and ‘fd4’ shapes all reduce the same fraction of weight per

iteration. Also, the ‘fd4’ pattern has a fractal dimension of 1.79.
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Figure 4.18: Stiffness of the

‘fd4’ shape.



Relative Performance of Fractal Shapes

Figure 4.19-4.21 show the relative stiffness of the six fractal patterns when

8,,/e, = 1.0, 0.5, and —O.75 respectively. The stiffness is directly proportional to

normalized strain energy density. Each series of points represents a

sequence of a mapped fractal shape. The black curve represents the

benchmark rank-2 material. This material was calculated at each density

corresponding to the discretely mapped fractal patterns.

All six fractal shapes that were analyzed had a lower strain energy

density than the optimal solution for all ratios of principal strain. Thus, the

rank-2 microstructure presents a stiffer solution per unit weight. It is

evident that the ‘Inv8’ shape is the stiffest of the six tested fractal shapes.

Conversely, the ‘plus’ and ‘el’ shapes are the most compliant patterns for a

given density.

It should be noted that the ‘sponge’, ‘fd4’, and ‘inv4’ fractal patterns all

have the same fractal dimension. As the number of mapping iterations

increases, these three shapes all reduce the effective density at the same

rate. The discrepancy in effective density on the following graphs is due to

discretization error of the image based input generation software.

Remark: if the rank-2 material was allowed to have its upper bound value of

8 = 1.0, and thus a uniformly solid material, the blue curve would be a
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straight line. Instead the blue curve is a mode-II distribution described in

equations 4.7 and 4.8.
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Figure 4.19: Stiffness comparison of fractal patterns for en/e, = 1.0
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Figure 4.20: Stiffness comparison of fractal patterns for 8,,/s, = 0.5
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Figure 4.21: Stiffness comparison of fractal patterns for 8,,/e, = -0.75
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4.5 Summary

Iterated affine maps were used to create the patterned periodic

microstructure. Then, the fictitious domain approach was applied to solve for

the effective properties. Then, the results were compared to known optimal

solutions. The strain energy density formulation was used as a metric for

comparison between two materials of equal material density.
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Chapter 5

Conclusions

5.1 Summary

The fictitious domain method was used with a new iterative scheme to solve

for the effective properties of two-dimensional iteratively mapped

microstructures. Below is a list of conclusions concerning PCG performance,

effective property calculations, and performance of fractal patterns.

PCG Performance

1. The fictitious domain and PCG in PCG methods produced size

insensitive convergence rates.

2. The proposed method met the memory storage requirements for

efficient computer use.
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3. The implementation of the image-based method of periodic

microstructure analysis was successful. Simple image based input was

functional and practical.

Performance Of Fractal Patterns

1. By comparing strain energy density, the fractal shaped microstructure

did not emit greater stiffness than the optimal rank-2 material.

2. The ‘inv8’ was the most efficient pattern of material removal. Per unit

weight, the ‘inv8’ pattern was the stiffness.

3. The iterative mapping technique proved to be a convenient way of

creating material microstructures.

4. As material was removed, stiffness decreased from the base cell in a

regular fashion.

5.2 Areas Of Future Work

Based on the conclusions, the following areas should be explored:

1. Analyze all mesh sizes: A new FFT method could be implemented for

the preconditioning system such that mesh sizes other than powers of

two can be explored. This would increase the possible fractal

geometries that can be studied.
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2. Create an ‘optimal’ pattern: Optimize the stiffness of the base cell by

finding fractal mapping coefficients a,b,c,d,e, and f such that the

compliance is minimized. This could be achieved by modifying the

existing program.

3. Add graphical user interface (GUI): Although the current method uses

an image for input, a truly integrated system is more desirable. A

complete package could have an integrated preprocessor and processor

with graphical implementation of boundary conditions.
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Appendix A

A.1 Coefficients for Fractal Maps

 

 

 

g a b c d e f

1 3/8 0 O 3/8 0 0

2 1/8 0 O 1/8 0 3/8

3 1/8 0 0 1/8 0 1/2

4 3/8 0 O 3/8 0 5/8

5 1/8 0 O 1/8 3/8 0

6 1/8 0 O 1/8 3/8 7/8

7 1/8 0 O 1/8 1/2 0

8 1/8 0 O 1/8 1/2 7/8

9 3/8 0 0 3/8 5/8 0

10 1/8 0 O 1/8 7/8 3/8

11 1/8 0 0 1/8 7/8 1/2

12 3/8 0 0 3/8 5/8 5/8
 

Table A.1: ‘Plus’ fiactal coefficients

 

 

é a b c d e f

1 1/4 0 0 1/4 0 0

2 1/4 0 0 1/4 0 1/4

3 1/2 0 O 1/2 0 1/2

4 1/4 0 O 1/4 1/4 0

5 1/4 0 0 114 1/2 0

6 1/4 0 O 1/4 1/2 3/4

7 1/4 0 O 1/4 3/4 0

8 1/4 0 0 1/4 3/4 1/4

9 1/4 0 O 1/4 3/4 1/2

10 1/4 0 O 1/4 3/4 3/4

Table A2: ‘El’ fractal coefficients
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x a b C d e f

1 1/4 0 0 1/4 0 0

2 1/4 0 0 1/4 0 1/4

3 1/4 0 O 1/4 0 1/2

4 1/4 0 O 1/4 0 3/4

5 1/4 0 0 1/4 1/4 1/4

6 1/4 0 O 1/4 1/4 3/4

7 1/4 0 O 1/4 1/2 0

8 1/4 0 O 1/4 1/2 3/4

9 1/4 0 O 1/4 1/2 1/4

10 1/4 0 O 1/4 3/4 1/4

1 1 1/4 0 O 1/4 1/2 1/2

12 1/4 0 0 1/4 3/4 3/4

Table A.3: ‘f4’ fractal coefficients

é a b c d e i

1 1/4 0 0 1/4 1/4 1/4

2 1/4 0 0 1/4 0 1/4

3 1/4 0 0 1/4 0 1/2

4 1/4 0 0 1/4 1/4 1/2

5 1 l4 0 0 1/4 1/4 0

6 1/4 0 0 1/4 1/4 3/4

7 1/4 0 0 1/4 1/2 0

8 1/4 0 0 1/4 1/2 3/4

9 1/4 0 0 1/4 1/2 1/4

10 1/4 0 0 1/4 3/4 1/4

1 1 1/4 0 0 1/4 1/2 1/2

12 1/4 0 0 1/4 3/4 1/2

Table A.4: ‘Inv4’ fractal coefficients
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é a b c d e 1

1 1/8 0 O 1/8 3/8 0

2 1/8 0 0 1/8 3/8 1/8

3 1/8 0 0 1/8 3/8 1/4

4 1/8 0 0 1/8 3/8 3/8

5 1/8 0 0 1/8 3/8 1/2

6 1/8 0 0 1/8 3/8 5/8

7 1/8 0 0 1/8 3/8 3/4

8 1/8 0 0 1/8 3/8 7/8

9 1/8 0 0 1/8 0 3/8

10 1/8 0 0 1/8 1/8 3/8

1 1 1/8 0 0 1/8 1/4 3/8

12 1/8 0 0 1/8 1/2 3/8

13 1/8 0 0 1/8 5/8 3/8

14 1/8 0 0 1/8 3/4 3/8

1 5 1/8 0 0 1/8 7/8 3/8

16 1/8 0 0 1/8 1/2 0

17 1/8 0 0 1/8 1/2 1/8

18 1/8 0 0 1/8 1/2 1/4

19 1/8 0 0 1/8 1/2 3/8

20 1/8 0 0 1/8 1/2 1/2

21 1/8 0 0 1/8 1/2 5/8

22 1/8 0 0 1/8 1/2 3/4

23 1/8 0 0 1/8 1/2 7/8

24 1/8 0 0 1/8 0 1/2

25 1/8 0 0 1/8 1/8 1/2

26 1/8 0 0 1/8 1/4 1/2

27 1/8 0 0 1/8 3/8 1/2

28 1/8 0 0 1/8 5/8 1/2

29 1/8 0 0 1/8 3/4 1/2

30 1/8 0 0 1/8 7/8 1/2

31 1/8 0 0 1/8 1/4 1/4

32 1/8 0 0 1/8 1/4 5/8

33 1/8 0 0 1/8 5/8 1/4

34 1/8 0 0 1/8 5/8 5/8

Table A5: ‘Inv4’ fractal coefficients
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A.2 Stress In An Axially Loaded Block

The isotropic material tensor was created using E0 = 100.0 and v0 = 0.30. An

axial load was applied to the structure as shown below:

 

Figure A.2: Loading conditions for stress analysis

 

Figure A.1: Stress analysis of fractal geometry depth 2
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A.3 Analytical Solution Of The Stressed Plate With Hole

 

Table A.3: Value of stress along the r axis, see figure A.3

 

Figure A.3: Illustration of coordinate axis for plate with hole



Appendix B

Description Of Subroutines

Input routines

INPUT

This subroutine reads the program input data from two files. ‘INPUT.DAT’

contains material properties. ‘RHO.DAT’ contains the size N by N mesh in

binary format. Material is denoted by a 1 and void by 0.

STIFF

Loads local stiffness matrix for one element. Element equations and finite

element model were pre-computed using four noded quadrilateral elements

employing linear interpolation functions.

OUTSTRAIN

This subroutine outputs strain.

Math Subroutines

DOTP

Calculates the scalar (Dot) product

MATMULT

Multiplies two matrices.

IMATMULT

Multiplies the global stiffness matrix, with boundary conditions applied, by a

vector. This matrix times vector operation is done iteratively such that the

global stiffness matrix is never assembled.
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[M]+<[I]-[M]>><K><<[I]-[M]>><p

- I is the identity matrix

- M is a matrix of zeros with M(i,i) = 1 where i is a constrained degree of

freedom

. K is the global stiffness matrix

- p is a vector

HOMOMATMULT

Multiplies a homogenous matrix, with boundary conditions applied, by a

vector. This matrix times vector operation is done iteratively such that the

global stiffness matrix is never assembled. Identical to IMATMULT except

rho is not multiplied by the material matrix.

DIAGBLKCIRC

Takes fft of vector twice. This creates the diagonal blocks.

EXPBLKCIRC

This routine ifft’s the blocks.

INVTRID

This subroutine inverts a tri-diagonal matrix.

FFT

This subroutine takes the fast Fourier transform of a vector of size 2’.

Solver Subroutines

PRE_P_INVERT (called once)

Builds, fft’s, and inverts the second preconditioner P2 =(A1, + Q).

PCGSOLVER

Solve:

[M]+([1]-[M])><[K]><([I]-[M]>><x=([I]-[M])><F

Using a Preconditioned Conjugate Gradient (PCG) algorithm. The

Preconditioner for this system is:

P.=[M]+([1]-[M]>><[Ai.]><([1]-[M]>
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However, this is difficult to invert. Therefore,

2 = P]—1 X r

is solved using a second preconditioner. This can be found in

SECONDARYPCG.

SECONDARYPCG (In PCGSOLVER loop)

2 = P,-1 X r

Is solved using the same PCG algorithm with the preconditioner:

P2 = (Ah 1' Q)

Notice that Abis a singular matrix and that the rigid body mode and thus its

singularity is eliminated by the addition of Q.

P_INVERT (In SECONDARYPCG loop)

Multiplies:

-1
P1 xr

This requires the FFI‘ of vector r and the multiplication and IFFT of the

product.

AHASSEMBLER (Called Once)

Assembles Auu, Auv, Avu, and AW.

MAKEF (Called once)

Creates the three initial strain vectors.

Post Processor Subroutines

STRESSSTRAIN (Called 3 times)

For each prestrain, this subroutine calculates the strain field over the entire

domain. Also, it calculates the Von Mises stress over the domain.

GMAT (Called once)

Loads data for the stress calculation.

HOMOGENIZATION
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Calculates base cell effective properties.
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Appendix C

Program Input

The following is a listing of the sample input to the fractal analyzer program.

Two input files are required:

1. Rho.dat contains the image. Integer values are required without

spaces. Below is a sample

111111111

111111111

111111111

111000111

111000111

111000111

111111111

111111111

111111111

2. Input.dat contains the required information in FOTRAN77 format.

Below is a sample input,

SPONGE d2 , 1 / 1 6 / 2 0 O 0 Title line, 60 characters maximum

100 . 0 Young’s Modulus, F8.2

. 3 0 Poisson’s ratio, F8.2

1 . 0 P ratio, not currently used

2 56 Domain, must be an integer power of 2
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