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ABSTRACT

BUCKLING AND POST-BUCKLING ANALYSIS OF NEO-HOOKEAN PLATES

AND ITS CORRELATION TO A DIRECT ENERGETIC STABILITY ANALYSIS

By

Sangwoo Kim

The elastic stability of buckling and post-buckling deformations for

incompressible neo-Hookean rectangular plate subjected to a uni-axial thrust is

investigated. The buckling deformation is described by the small deformation superposed

on finite homogeneous deformations. Throughout the investigation the thickness of the

plate is not limited. The resulting nonlinear boundary value problem is analyzed by using

the perturbation expansion method in which an associated linear problem is solved at each

order.

Buckling onset is determined from the first order expansion and can occur in either

flexural or barreling mode shapes with any integer number of half wavelength in the

direction of thrust. The solutions from the higher order expansion correspond to post-

buckling deformations. The higher order problems inherit information from problems of

the previous order, both by the expansion procedure and by the application of

mathematical solvability conditions. The stability criterion for post-buckling deformations

is based on energy competition between the buckled deformation and unbuckled

homogeneous deformation in the vicinity of buckling onset. It is formally established that

the energetic favoribility correlates with the load following character of the buckled

solutions (progressive buckling vs. snap buckling).



Based on the expressions obtained by these procedures, it is found that the flexural

buckled deformation is energetically favored over the unbuckled homogeneous

deformation when mode number is small, otherwise the homogeneous deformation is

favored. The barreling buckled deformation is always energetically favored over the

homogeneous deformation. This contrasts with previous results of Sawyers and Rivlin

(1982), who obtain essentially opposite results for the elastic stability of homogeneous

deformation. The approach to evaluate the elastic stability by using the perturbation

method considered in this research gives more insights to understand the buckling

phenomena and is systematically applicable to higher order analysis.

Besides the main topic of stability evaluation, several approximate schemes for the

critical buckling load in neo-Hookean three-ply sandwich type plate were developed in

view of practical application. The schemes are based mostly on the Rayleigh quotients

approach and trial solutions. These schemes can be expanded to general multi-ply

composite plates and so reduce the effort to determine the critical buckling load.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Mechanical instabilities that lead to sudden structual rearrangement, have been a

considerable factor in structual design. Two significant examples ofmechanical instability

are concerned with internal rupture (cavitation), in which a hole forms and grows in the

interior of a solid body under the tensile loading, and buckling, in which the structure

reconfigure its shape under the compressive loading. Both could eventually lead to failure.

These phenomena involve large deformations so that they cannot be easily explained by

the classical linear theory of elasticity, since the theory of elasticity on the material

subjected to large deformations is inherently nonlinear. Analysis on this subject can

predict a critical load at which the material fails its structual task and modes of instability

which enables us to prevent the possible failure.

Above examples can be described in mathematical terminology as a bifurcation

from a simple configuration known as the trivial solution. The concern of this research is

bifurcation due to buckling in rectangular slabs. The post-buckling behavior considers the

character of the buckled equilibrium paths in the vicinity of buckling initiation

(rigorously, initial post-buckling). The post-buckling analysis provides not only the

stability of equilibrium solutions but also the possibility of snap-buckling to be expected

in the case of imperfect loading.

Hyperelasticity is the theory of nonlinear (finite) elasticity for hyperelastic

materials whose elastic potential energy can be described by a strain energy function. The



mechanical behavior of rubberlike materials which bear large deformations such as

synthetic elastomers, polymers, and biological tissues as well as natural rubbers, can be

analyzed by hyperelasticity. The stability problem of such materials mentioned above has

been focused by many researchers since some theoretical materials have been suggested.

These ideal materials have a specific strain energy functions whose characteristics are

similar to rubberlike materials (Beatty, 1987). The neo-Hookean material is the simplest

model of an incompressible, isotropic, hyperelastic materials.

The void nucleation and growth in a hyperelastic material can be understood as the

bifurcation from a critical load at onset of void formation (Ball, 1982). The method of

energy competition for minimum between the deformations with void (bifurcated) and

without void (trivial) can be used to determine the stable - physically obtained -

configurations. The void or bifurcated solution grows smoothly for an isotropic material

with increasing tensile load on the exterior of material after the critical load of void

formation is attained. This phenomenon may change for a composite material depending

on its initial geometry as sudden cavity formation (snap-buckling) before the critical load

may occur.

Numerous investigations on the buckling instability for rectangular plates or

cylinder by using the linear theory of elasticity have been developed after von Karman

theory was formulated (Matkowsky and Putnick, 1974). This theory considers the higher

order terms added to small deformations. The governing equations are also nonlinear so

that the proper linearization such as perturbation method can be used. However this

approach is restricted to small strain conditions and therefore the material to be considered

is applied only to thin plate.



For the buckling problem of hyperelastic rectangular plates, the buckling

deformation can be described by using the technique of small deformation superposed on

finite homogeneous deformations (Biot, 1963). Two buckling solution for the linearized

equilibrium equations are possible with an arbitrary integer number of half-wave lengths.

The flexural mode has symmetric shape and the barreling mode, which always occurs at

higher load than the flexural mode, has antisymmetric shape with respect to loading

direction. The buckling load of the flexure (barreling) mode is monotonically increasing

(decreasing) with the geometrical aspect ratio and mode number. Hence the critical, or

minimum, buckling load is always obtained in mode-1 flexural deformation. Then at each

potential point of buckling initiation, the question is whether the buckling actually occurs

as the load is increased or whether the unbuckled state persists. The answer to this

question is related to the initial post-buckling analysis and stability evaluation. Here the

buckled and unbuckled states compete for stability. Due to the concepts of elastic stability

in a static setting which is independent on time, the state which has smaller energy holds

stability.

Some characteristics will change for the multi-layered hyperelastic composite

plate. The investigations on two- and three-ply sandwich plates reveal that the monotonic

ordering of the buckling loads may change its behavior and this change depends on the

initial geometry and mechanical properties of plies. The critical buckling which has

minimum buckling load may be either mode-1 flexural or wrinkling deformation. It has

also been shown that there exist a new family of buckling solutions in addition to the

original family which is a continuation of the buckling solutions of noncomposite plate.





The analysis on prediction of critical buckling load for a N-ply plate eventually

requires the nontrivial solutions of a 4Nx4N matrix equation originating from 4 boundary

conditions and 4(N-1) interface conditions. The entries of this matrix involve the load

parameter in a nonlinear way, giving rise to a nonlinear eigenvalue problem. The

dimension of this matrix can be reduced to 2Nx2N for a symmetrically stacked plate.

When the stacking number of plies goes higher, the complicated expression on matrix

elements and errors caused by standard numerical procedures can be expected so that it is

desirable to consider the approximate analysis for the buckling prediction. To establish the

proper approximate schemes constitutes the second subject of this research.

1.2 Literature Review

For the structual problem, mechanical instabilities make the structure to

reconfigure itself such that it often cannot achieve its assigned structual tasks.

Furthermore, these phenomena usually appear below the critical limit of material

property. The governing equations of equilibrium state for these cases will be nonlinear so

that they give more than one solution. Of all these solutions, one solution gives the

minimum total stored energy and typically the structure follows this solution in a physical

sense. This energetically favorable solution leads to the stable configuration. Other

solutions, which will be energetically unfavorable, leads to the unstable configurations.

The buckled and unbuckled configurations compete for energy minirnizer and typically

the buckled form which is undesirable from the engineering point of view, appears to be

stable. Eventually these phenomena carry out large deformations so that the classical

linear theory of elasticity no longer applies.



The major contributions on elastic stability theory within the framework on finite

elasticity and on von Karman theory which is derived from the infinitesimal or linear

elasticity will be reviewed at first. Furthermore the literatures on bifurcation theory, which

include both the cavitation and buckling problems, will be examined. The research works

on buckling analysis of hyperelastic rectangular plate will be also reviewed in detail.

Finally, the literature on the critical buckling load of multi-ply composite plate will be

reviewed. This review is purposefully broad so as to emphasize how disparate phenomena

in solid mechanics (structual buckling, cavitation rupture) and fluid mechanics (transition

to turbulence) can be treated in a similar mathematical framework. Readers who are not

interested in this level of detail can proceed directly to Section 1.3.

1.2.1 Elastic Stability

The theory of buckling and postbuckling behaviors of elastic structures was

enunciated by Koiter (1981) for the case of small finite deformations from the

configuration of equilibrium. The general theory on these can be found in an explanatory

article by Budiansky (1974) where he presents the virtual work and energy approaches

and showed that they are equivalent. In an energy approach, the post-buckling analysis is

performed by variation of the potential energy functional and perturbation expansions of a

load parameter and displacements within the class of general elasticity.

The theory of elastic stability was studied firstly by Euler more than 200 years ago

for the lateral buckling of compressed slender bars and he used the idea of the method of

adjacent equilibrium. From this emerged, the energy theory of stability for thin bodies

which have large deflections but small strains was emerged. This type of problem leads to

von Karman plate theory which eventually gives a nonlinear eigenvalue problem. In the



most cases, the closed form solutions do not exist. For a thin elastic simply supported

rectangular plate subjected to a compressive thrust, Bauer and Reiss (1965) obtained the

approximate buckled solutions by using perturbation method, energy methods and series

expansions. These buckled solutions are bifiircated from each eigenvalue of the linearized

problem. Here the lowest eigenvalue is equal to the buckling load. Matkowsky and

Putnick (1974) also studied possible equilibrium states after buckling onset as a

multiplicity of eigenvalue. They evaluated the stability of each buckled solution by the

amplitude decay of initial deviation on power series expansion. They showed that four of

the nine possible equilibrium solutions are stable while the other five are unstable. For the

buckling problem of a rectangular three-layered sandwich plate with soft core, the work of

He and Cheng (1992) is based on Reissner’s equation of sandwich plate and they found

the similar results to previous authors. In addition, the other kind of equilibrium states

which did not appear in noncomposite plate was shown. Above works were based on

modified linear theory of elasticity so that the materials to be considered were limited to

thin plates despite their large deflections.

The concept of elastic stability within the framework of finite elasticity theory was

developed by Pearson (1955). He formulated the energy criterion for stability under the

dead loading and pressure loading conditions by means of approximation in the

nonlinearity of the stress-strain law. He then focused on the relationship between the

existence of adjacent equilibrium and the energy criterion. It is found that both approaches

are equivalent for special situations such as at points where an originally stable structure

first becomes unstable. A review of various stability criteria may be found in the survey

articles by Beatty (1965, 1987). The energy criterion of stability is eventually equivalent



to the positiveness of second variation of energy function. The stability evaluation of an

equilibrium state varies on each investigation for theispecific material type and loading

condition. Hill (1957) also studied the criterion for stability of an elastic solid in a state of

finite strain under dead loading and showed that the stability criterion is closely related to

the unique solution of associated boundary value problem in a series of adjacent

equilibrium. Holden (1964) derived an inequality condition for stability based on energy

criterion and obtained an estimate of the critical load of a circular column. Beatty (1965)

considered static and dynamic implications of the stability theory generated from the

above papers and modified the criterion. Then Beatty (1971) estimates the critical load for

incompressible ideal models such as neo-Hookean and Mooney-Rivlin materials. In

summary, the energy criterion for stability (which is equivalent to the existence of

adjacent equilibrium) requires a minimum potential energy at that state.

The problem on void formation and growth in solids and sudden void formation in

vulcanized rubber has been focused as failure mechanism to many applied scientists. The

work of Ball (1982) which gives a theoretical basis to the most developments thereafter,

considered various problems of uniform radial traction or displacement at the boundary of

an elastic solid sphere. He investigated the bifurcation problems for the equations of

nonlinear elasticity as a branch of radially symmetric solutions with hole bifurcate from a

path of homogeneous radial expansions with no hole. It is also shown that such bifurcated

solution is the only stable solution for sufficiently large loads by minimization of the total

energy integral. According to the linear theory, a material without hole remains in the

same shape despite the amount of external loads. The changes in bifurcation behavior

when the material has inhomogeneity was examined by Horgan and Pence (1989) for a



composite sphere composed of two different neo-Hookean materials. Unlike the

homogeneous sphere, the bifurcation diagram for composite sphere may fold back in a

plot of hole radius vs. external load. This gives a discontinuity in path for stable

equilibrium configurations which turn out to be a snap-buckling by using the energy

competition for minimizer to a stable configuration. This concept is also used for non-

radially symmetric solutions by James and Spector ( 1991) for a large class of nonlinear

elastic materials. They found that the radial deformation of spherical void is energetically

unfavorable to the formation of long, thin filamentary void. An extensive bibliography on

the various application ofvoid formation problems can be found by Polignone and Horgan

(1993) in which they studied the combined effects of material anisotropy and

inhomogeneity. Horgan and Polignone (1995) reviewed and summarized the

investigations on radially symmetric cavitation in nonlinearly elastic solids which focused

on results established using the bifurcation analysis.

The bifurcation approach has been considered as a useful tool in the wide fields of

nonlinear mechanics (Keller and Antman, 1967), especially when the qualitatively

different behaviors emerge from the original state. In nonlinear hydrodynamics, the fluid

flow changes from the laminar to the turbulent state at a critical value of certain parameter

such as Reynolds number. These two states compete for stability. Kirchgassner (1975)

reviewed the works on nonlinear hydrodynamic stability, especially for the Taylor and the

Benard models. The Couette-Taylor problem (Tagg, 1994) deals with the viscous flow

between two coaxial infinitely long cylinders rotating in the same direction. If the angular

velocity surpasses a critical value, the basic Couette flow changes to a new state as Taylor

vortices. The Benard problem deals with a viscous fluid in a horizontal layer which is



heated from below. If the temperature difference between lower and upper planes passes a

critical value, the convective motion is observed from the purely conductive state in which

the fluid remains at rest.

The method of incremental deformation superposed on finite deformations to

examine the buckled shape was introduced by Biot (1963). He then applied this theory to

incompressible thick rubberlike slabs in a uniaxial compression. He determined the

flexural - bending type - bifurcations. Wu and Widera (1969) formulated the general

nonlinear theory of a rectangular Mooney-Rivlin type solid subjected to a biaxial loading

by considering small deformations superposed on finite homogeneous deformation. The

bending (flexure) and bulging (barreling) type solutions were obtained. For compressible

Blatz-Ko material and incompressible neo-Hookean material in a biaxial loading, Burgess

and Levinson (1972) also found two kinds of buckling instabilities. Most of applications

are restricted to a plane strain condition so that all deformations can be described in a two

dimensional setting. Rivlin’s cube problem as a fundamental application of stability was

studied by Rivlin (1974) for the purely homogeneous deformation of a unit cube of

incompressible neo-Hookean material subjected to three pairs of equal and opposite

forces. From the variation of the energy functional, he showed that there exist seven

possible equilibrium states in a tensile loading condition. Also, based on the criterion that

an equilibrium state is stable if the second variation of the energy functional is positive, he

found that one trivial and three nontrivial solutions are unstable and the other three

nontrivial solutions are stable. For incompressible Mooney-Rivlin material in the equi-

triaxial loading, Ball and Schaeffer (1983) investigated the bifurcation and stability of

equilibrium solutions from the view of absolute minimizer of potential energy. Sawyers



(1976) studied the case of neo-Hookean cube where two pairs of loads on the cube are the

same, but different from the third. MacSithigh and Chen (1992) developed the stability

conditions based on energy minimization for general incompressible material in equi-

biaxial loading and applied this condition to Mooney-Rivlin material. For an infinitely

long neo-Hookean cylinder subjected to radial loading, Haughton (1992) found the

analytic nontrivial solutions and their stability based on the criterion that the second

variation of energy functional must be positive for its stability. The analytic solutions have

the form of modified Bessel functions in a polar coordinate system and he concluded that

all the nontrivial solutions are stable.

The brief summary on incremental deformation equations were presented in

Ogden (1992). Furthermore he examined the stability of the underlying deformation and

the connection between stability and uniqueness of solution. Ogden (1995) also discussed

the stability of the finite deformation near the point of bifurcation from the view point of

dynamics.

The perturbation expansion method has been well used to analyze the cases

concerned with the nonlinear boundary value problem. Elgindi et. a1. (1992) considered

the case of long elastic cylindrical tube submerged in a liquid by means of perturbation

method. The obtained solutions in the neighborhood of the critical buckling pressure,

showed that the deformed shape changes drastically from the unbuckled circular tube.

Parker and Mote (1996) developed a perturbation method for self-adjoint eigenvalue

problems with perturbed boundary conditions. The finite order of expressions for the

eigenvalue perturbations are derived for distinct unperturbed and degenerate

eigensolutions. The eigensolutions are simpler than traditional eigenfuction expansion and
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are convenient for applications to further analysis. An asymptotic expansion technique

using power series, is applied to a nonlinear asymptotic membrane theory for thin

hyperelastic plates by Erbay (1997).

For the rectangular neo-Hookean plate subjected to uniaxial compression, the

buckled shapes and their critical loads depending on slenderness of initial geometry have

been the main issues. Levinson (1968) considered the small disturbance of homogeneous

deformation by using the first variation of energy functional with displacement potential

function. Nowinski (1969) and Sawyers and Rivlin (1974) analyzed the linearized

equilibrium equation of small deformation superposed on the finite homogeneous

deformation. They revealed that there exist two kinds of buckling - flexural and barreling

deformations - depending on the load parameter. The buckling load of flexural mode is

monotonically increasing and that of barreling mode is monotonically decreasing when

the mode number is increased. Finally both modes meet at the infinite mode or plate-like

geometry as shown in the figures from Chapter 4 so that the barreling occurs at higher

loading than flexure.

The subsequent paper by Sawyers and Rivlin (1982) investigated the stability of

homogeneous deformation at the buckling onset for a neo-Hookean rectangular plate on

the basis of an energy criterion that is related to the sign of second variation of the

difference in potential energies between buckled and homogeneous deformation. The

flexural buckling deformation, was found to be stable only if the aspect ratio 12”,, is less

than about 0.2 so that afier this range, the buckling can occur. And the barreling buckling

deformation was found to be always stable. These results were obtained from the

linearized energy equation with linearized solutions and remainders. Meijers (1987)
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studied the post-buckling behaviors of surface waves when a neo-Hookean half space is

compressed in perfect and imperfect geometries by using approach of previous paper. An

asymptotic expansion of the potential energy as a linear combination of two buckling

modes and remainder terms was used to show the reduction of critical loads in a imperfect

geometry. Lazopoulos (1996) has utilized this type of methodology to determine the

features of the post-bifurcation displacement solutions and given associated numerical

examples for incompressible materials including Mooney-Rivlin type which is more

general than the neo-Hookean type used here. His second order displacement solution

were compared with the experimental work by Beatty and Dadras (1976) where the

barreling type displacement exists. In this respect his work is similar to our work as well

as Sawyers and Rivlin (1982) in a respect of post-buckled solution space which will be

developed in Chapter 4. We, however, correlate the stability behavior directly to the

energy difference between the homogeneous (unbuckled) solution and the potential

buckled solution. In addition, we show how the third order displacement solution can be

eliminated from the immediate post-bifurcation analysis. Bajenitchev (1996) developed a

numerical procedure for incompressible material in nonlinear elasticity based on

perturbation methods and finite element approximations. The application to a plane

deformation of Mooney-Rivlin type rectangular body are compared with analytic results

for the behavior of force-displacement dependence. Beatty and Pan (1998) investigated

the elastic stability of thick plate as hyperelastic Bell material and incompressible neo-

Hookean model on the basis of Euler dead load criterion. They found the similar type

buckling solutions - symmetric and asymmetric mode. Also the critical load for extremely

thin plate was deduced to compare with classical Euler buckling load.
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1.2.2 Buckling Instability of Composite Plates

Buckling instability of sandwich composite plate based on the results of a

noncomposite plate was studied by Pence and Song (1991). They investigated a

symmetric three-ply plate consisting of neo-Hookean materials within the framework of

incremental deformation. Unlike the noncomposite case, the buckling onset prediction

curve shows non-monotonicity depending on some initial geometrical settings as shown in

Figure 3. Therefore the critical buckling load - the smallest load for buckling onset - is not

always mode—l flexure. Based on this algorithm to predict the buckling onset, Song and

Pence (1992) implemented the optimal design scheme for a neo-Hookean sandwich plate.

For the three-ply plate, they compared the buckling load of one configuration (which has

the stiffer central layer) and its conjugate configuration (which has the stiffer outer layers).

It is found that there exists a transition point which changes the configurations having

lower critical load.

Further study on symmetric sandwich plate by Qiu, Kim and Pence (1994) showed

that there exist another family of onset buckling solutions above the original family as

shown in the figures of Chapter 6. The wrinkling load of the original family converges to

that of noncomposite case regardless of the initial geometry and material properties. The

wrinkling load ofnew family converges to a value that depends only on the shear modulus

ratio. Also, their investigation for the asymmetric 2-ply sandwich plate shows that there

are three onset buckling curves. The lower two solutions of these are the counterpart of the

original family of symmetric case. However, due to the nature of asymmetry, each

solution does not represent the flexure or barreling characteristics seen in the symmetric

case. For the onset buckling prediction of general N-ply neo-Hookean sandwich plate,
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investigation predicts that 4Nx4N nonlinear determinant equation should be solved. The

dimension of the matrix can be reduced to 2Nx2N for a symmetrically stacked composite

plate. If the number ofplies in a plate is larger, the mathematical analysis encountered will

be difficult to handle even by the numerical computation. This motivates the consideration

of approximate methods.

The Rayleigh quotient approach is widely used for an approximation technique to

determine the natural frequency in vibration problems and the critical buckling load for

structual problems. With reasonable test functions, the Rayleigh quotient based on

displacement and stress as the independent field yields an upper bounds to the exact value

(Sagan, 1961). For the layered elastic composites, where the material properties are

discontinuous across an interface, Nemat-Nasser and Minagawa (1975) proposed a new

quotient which is obtained from combining the displacement and stress Rayleigh

quotients. Lang and Nemat-Nasser (1977) applied these quotients to the problems of

vibration and buckling. Horgan et. al. (1978) discussed the bound for various quotients

and showed the closer upper and lower bounds of the new quotient.

1.3 Thesis Organization

The main purpose of this thesis is to investigate the post-buckling instabilities of

thick rectangular plate near buckling initiation. This is the content of Chapter 2 through 5.

A somewhat related, and more applied issue, is the determination of convenient

approximate schemes for the buckling loads themselves in more complicated geometries,

such as a multi-layered composite plate. We give some development on this issue in

Chapter 6, but detailed further inquiry into this issue is not developed here. In all of these

efforts, we will concentrate our attention to an incompressible, isotropic, neo-Hookean
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type hyperelastic material in which the strain energy function is known to have the

simplest form of all ideal models and closest behavior to the rubber materials.

In Chapter 2, the basis hyperelasticity theories necessary for the buckling analysis

of neo-Hookean single layer plate will be presented with the associated boundary

conditions. The buckling phenomena are explained by an incremental deformation

superposed onto the finite homogeneous deformations (the trivial or unbuckled

deformation). The equilibrium equations and boundary conditions for buckling

deformations with the condition of incompressibility generate a fully nonlinear second

order boundary value problem. Also the stability criterion based on the concept of

minimum energy where the stable deformation achieves the lowest energy under that of

competitive deformations, will be constructed for stability evaluation. The potential

energies are derived for the buckled state and the homogeneous deformation which

compete for energy minimum. Then we will seek to determine which deformation is

energetically stable and whether this stability evaluation is directly related to the behavior

of the load parameter.

In Chapter 3, the formal perturbation expansion method in which the buckling load

parameter is expanded from the buckling onset will be introduced and applied to the

previously developed nonlinear problem. The nonlinear problem then produce the set of

linear boundary value problems. The solutions of each linear problem will construct a full

buckled deformation. Though this methodology will give an approximate result because

of the limitation of expansion, it is anticipated that the necessary post-buckling behaviors

in the vicinity of buckling onset will be obtained. Hence, the second term in the expansion

of load parameter is of interest since the sign of this term plays an important role in
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buckling development phenomena such as load shortening and snap-buckling in an

imperfect loading condition. Furthermore it will show that the load parameter can be

obtained from the relation of the first order solution and the nonhomogeneous terms in the

higher order problems since the differential operators between the first and higher order

problems are the same.

Chapter 4 will devote to find the nontrivial solutions of each linear boundary value

problem. The separation of variables will generate the partial differential equations to the

fourth order ordinary differential equation. Then by using the series expansion method,

the solutions of each order will be developed. The first order results show the behaviors of

buckling initiation. To evaluate the stability after bifurcation occurs, the higher order

solutions are necessary. However, it will show that the symmetric nature of the load

parameter reduces the efforts to find the third and higher order solutions.

The analytical procedure to find the stability parameter will be presented in

Chapter 5. The numerical results and their explanation will be followed. Because the

approach involves a highly complex calculation, an asymptotic analysis in limit cases will

be determined and their results for stability will be presented for comparison. This

concludes the major topic area of this thesis.

In Chapter 6, we will explore a related application, that of determining buckling

initiation in more complicated geometries by approximate methods. At first, the buckling

onset analysis of a single ply plate will be extended to multi-ply sandwich type plate. Afier

developing the energy criterion of stability, we will then apply this to determine the

critical buckling load for multi-layered composite plate composed of neo-Hookean

materials with two different moduli. The formulations on single ply plate will modify to
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adapt the composite plate. Since the onset of buckling corresponds to the homogeneous

equation of the first order in perturbation expansion, we will not need to consider the

complex higher order equations. Beside the formal approach to find the buckling onset

load (which will encounter much complex mathematical analysis), we will construct

various approximate schemes based on rather simple buckling solutions of the

noncomposite plate. These schemes will satisfy some parts of complete conditions which

will be discussed later. The result on the prediction of the buckling onset load for each

scheme can be compared with the exact results of the three-ply plate. Then we will

implement the schemes which will give the closest results to the general ply plate.

Finally, conclusions of this research and recommendations for future works

derived from this research are given in Chapter 7. In addition, this thesis includes two

Appendices. Appendix A discusses the stability evaluation by perturbation expansion

methods for relatively simpler example problems so as to better outline the structure of the

procedures for comparison to the main topic ofthesis. Appardix B contains a collection of

detailed formulations used in Section 5.2 which apply to a stability parameter equation.

The procedures developed in this research for the elastic stability of post-buckled

deformation may have the importance to determine the possible buckled shapes and may

contribute to design the structures. Also the results will be a basis of the analysis of

imperfect loading. The procedure can be expandable to higher order analysis to get more

accurate anticipation for structual stability.
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CHAPTER 2

PRELIMINARY WORKS ON NEO-HOOKEAN PLATE

2.1 Introduction

The theory of elastic materials subjected to large deformations has been evolved

through the investigations on rubberlike materials and founded a basis of finite elasticity

(Beatty, 1987). A hyperelastic material for which there exists an elastic potential energy

function has been also focused in the study of finite elasticity which is known as

hyperelasticity. The neo-Hookean material is the widely used theoretical model of

incompressible isotropic hyperelastic material and the simplest model of rubberlike elastic

behavior. Throughout the thesis on nonlinear elastic stability, our attention is restricted to

neo-Hookean materials. In this Chapter, the necessary equations used to describe finite

deformations of neo-Hookean rectangular plate are formulated and buckling behaviors of

thickness-independent plate are presented in the context of finite elasticity. For the

minimum energy principle of elastic stability analysis, the differences in energy between

unbuckled and buckled deformations are also formulated. It is shown that the buckling

deformations of neo-Hookean plate are characterized by solving a nonlinear boundary

value problem.

2.2 Problem Descriptions

We shall consider an rectangular plate of incompressible, isotropic, homogeneous

hyperelastic material which occupies a dimension of 211 x 212 x 213 before any external

loads are applied. The three dimensional rectangular Cartesian coordinate system

X=X(X1,X2,X3) is located in the center of the plate as its origin and its axes are parallel to
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the edges of the plate. Then the equal and opposite thrusts are applied to both ends on

X1 = i1 1 . The geometry of considered neo-Hookean plate is described in Figure 2.1

 

 

i:>2’2

 
 

) 213

   
211

Figure 2.1 Description of the neo-Hookean rectangular plate under consideration. The

thrusts Tare applied to the ends of surfaces at X1=i11 and the plate has a dimension

0f 2]] X212 X213.

The current configuration is defined by undeformed or reference coordinates so

that the deformation tensor is given by

x = x(X), (2.1)

where X(X,,X2,X3) and x(x,,x2,x3) are undeformed and deformed coordinates, respectively.

The deformation gradient tensor and Green’s deformation tensor are given as

F = (ax/6X), B = FFT. (2.2)

The condition of material incompressibility requires that the volume does not change afier

deformation so that
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det F = 1. (2.3)

The Cauchy stress tensor for the incompressible isotropic hyperelastic material is then

given by

=_ 6W 5W) .. (6W) 2

where p is the hydrostatic pressure due to the incompressibility constraint, 1, and 12 are the

first and second invariants of B and W = W(I,,I;) is the strain energy density function of

hyperelastic material. The symmetric Cauchy stress tensor 1: described in a current

configuration is transformed to the Piola-Kirchoff stress tensor S in a reference

configuration which is given by

s = F41, (2.5)

after applying the incompressibility condition (2.3). The equilibrium equations in a

reference frame are then expressed as

DwsT=o. (am

The plate under consideration is subjected to a compressive load on each surfaces

Xr = i1 1 . The boundary conditions for a frictionless thrust with an overall stretch ratio of

pare

S12 = SD = 0, on X] = ill, (2.7)

x1 = ipl, on X1 = i1,, (2.8)

where the case of compression requires 0<p<l. The traction free surfaces X2 = :12

require
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52] = 522 = $23 = 0 011 X2 = i12.(2.9)

The surfaces X3 = :13 , corresponding to a frictionless clamp, give boundary conditions

S3, = .932 = 0 on X, = :13, (2.10)

x3 = il3 on X3 = :13. (2.11)

This type of plate problem was considered by Sawyers and Rivlin (1974,1982) and

extended to multi-layered plates by Pence and Song (1991), Song and Pence (1993) and

Qiu, Kim and Pence (1994).

From now on, we will focus to neo-Hookean type material for which the strain

energy density function is given by

I — 3
W = {1.9—}, (2.12)

2

where u is the shear modulus. Then the Cauchy stress tensor (2.4) is reduced to

t = —pI+uB. (2.13)

The boundary value problem given by (2.6) to (2.11) with incompressibility condition

(2.3) has only one homogeneous deformation solution to within a rigid body motion. This

deformation is expressed as

x1 = PX]. x2 = P-le, x3 = X3, (2~14)

where the principal stretches are 1’ p, 7t” = p‘1 and 1’” = 1. With the Piola-

Kirchoff stress tensor (2.5) and the condition (29);, the hydrostatic pressure becomes

p = up‘z. (2.15)
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Let As be the original area of the surface normal to the X, direction. Then the total

(compressive) thrust T applied to the faces X, = ii, for homogeneous deformation

(2.14), is given by

T 2 ‘SnAs = ‘4P1213(P‘P'3)- (2-16)

Thus T is monotonically decreasing with respect to p and vanishes when p=1 as shown in

Figure 2.2(a), by scaled thrust Ts=T/(4p1213) vs. p. Introducing a new stretch ratio as

A. = MUN = p'z, (2.17)

the thrust becomes monotonically increasing along the increasing 3. as shown in Figure

2.2(b), by scaled thrust Ts vs. 1., so that it can play a role as a loadparameter. However,

the simplicity in mathematical formulation urges us to use p so that, at the stage of

physical interpretation, the value p will be converted to 1. according to (2.17).

Compressive loading, which is ofconcern in this study, corresponds to 0<p<1 and A > 1 .

2.3 Bifurcation from Homogeneous Deformation

Motivated by boundary condition (2.11), we restrict attention to states of plane-

strain buckling taking place in the (X,,X2)-plane. The buckling can be described as the

bifurcation from the solution of homogeneous deformation (2.14) so that the incremental

deformations of buckling are superposed on finite homogeneous deformations. The fully

finite deformation is then expressed as

X] = PXI +v,(X,,X2),

p“X2+ v2(X..X2). (2.18)

X3 = X3,

x2

and the pressure field is accordingly
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Figure 2.2 The relation between the scaled thrust Ts and load parameters p and A. The

thrust is the compressive load so for this study, the load parameter is restricted to

0<p<1 or 791.

P = HP-2+q(X1aX2aX3)- (2.19)

The fitnctions v,(X,,X2), v2(X,,X2), q(X,,X2,X3), as well as the values of p at which

bifurcation can occur (nontrivial v, and V2), are the unknowns in the mathematical

problem. Substituting from (2.18) and (2.19) into the condition of incompressibility (2.3)

gives

-1 -

V1,1V2,2‘V1,2V2,1 + P"2,2+ P ”1,1 " 0- (220)
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The Piola-Kirchoff stress tensor (2.5) after applying the incompressibility condition (2.20)

becomes

-2 -1 —1

S11: Pi(V1,1+P)-P (V2,2+P )l—CI(V2,2+P ).

512 = “(V2.1 + P_2V1,2)+‘IV1,2’

S = v + ‘2v + v ,
21 M 1,2 P2 2,1) (12,1 (2.21)

522 = 11(V2,2—P V1,1)"‘1(V1,1+P),

—2

110-9 )-q,

513 = 523 = 531 = S32 = 0-

J
.
” 11

In equations (2.20) and (2.21), the commas in the subscript denotes differentiation with

respect to the associated coordinate X,, i=1 ,2,3.

The equilibrium equations (2.6),; for the buckled deformation now become

-1

“(V1.11+ V1.22) - 9,102.2 + P )+ 9,2V2,1 = 09
(2.22)

#02, 11 + V2, 22) + 9,1V1,2 — 9,2(V1,1+ P) = 0.

and the third equation (2.6)3 is simply —q3 = 0 so that q is confined to be a function ofX,

and X2 only. Then the boundary value problem reduces to a two dimensional problem in

which the plate is described in the domain I'I (-l,<X,<l,, -12<X2<12) surrounded by the

boundaries F, (X, = i1,) and F2 (X2 = .12). The boundary conditions on v,, v2 and q

associated with (2.7),, (2.8) and (2.9),; with the Piola-Kirchoff stress tensor (2.21)

become

1102,14” P'2V1,2) + qvm = O, on F,, (2.23)

v, = 0, on r,, (2.24)

“(V1,2 + P-2V2,1) + 9V2,1 = 0, on F2, (2-25)
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“(V22 " P'Z"1.1)-(I(V1,1+ P) = 0, on I72- (226)

The other boundary conditions (2.7)2, (2.9)3, (2.10) and (2.11) are automatically satisfied.

Condition (2.24) implies v,‘ 2 = 0, and this reduces the condition (2.23) to

v,, = 0, on 1",. (2.27)

Note that an arbitrary constant can always be added to v2 without effecting the solution of

(2.22); this corresponds to the rigid body motion in X2 mentioned earlier. Thus the

complete nonlinear boundary value problem for the buckling of neo-Hookean plate is

summarized as: Find v,(X,,X2), v2(X,,X2), q(X,,X2) such that the following equations are

satisfied.

—1

“(V1.11+V1,22)"‘1,1(V2,2+P )+q,2V2,1 = 0,

“(V211+V2,22)+9,1V1,2"9.2(V1,1+P) = 0. in H,

-1

V1.1V2,2—V1,2V2,1+PV2,2+P V1.1 = 0, (2.28)

V] = 0, V2,] = 0, on F1,

“(V1.2 + P’2V2, 1) + 9V2,1 = 0.

“(V2,2‘P'2V1.1)_9(V1,1+P) = 0,} on F2.

The trivial solution v = (v,,vz, q) = 0 in which the system has no deformation away from

the homogeneous deformation (2.14), obviously satisfies the boundary value problem

(2.28). However the concern here is in configurations that buckle away from this

homogeneous deformation. Hence we seek nontrivial solutions v; these will only occur for

particular values of p and so will give particular values of thrust T according to (2.16). At

the instant of bifurcation, these will correspond to distinct values p0,- and To, where the

subscript i indexes the potential multiplicity of bifurcation points.
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2.4 Energy Minimization of the Deformed Configuration

The potential energy of the deformation in aineo-hookean plate is formulated as

the strain energy by the strain energy density function (2.12) and work done by the

external load. The energy competition between the buckled and unbuckled state gives the

physical preference of elastic stability after buckling occurs. Obviously the plate will

follow the state which has smaller energy. The difference between the potential energies

of the buckled state (2.18) and homogeneous deformed or unbuckled state (2.14), denoted

by subscripts b and h respectively, is given by

A1 = ill,(W,,— Wh)dX,dX2dX3 + (W,— W1)

11
(2.29)

= 213iL§(2PV1,1+ 2P"'V2,2 + V12, 1 + Viz + V12.2 + V3.1)dX1dX2-

where W is the strain energy density function of neo-Hookean material, _ is the work

associated with the external loading in each state and V is the domain of the undeformed

configuration. Here the work difference vanishes since, on each external boundary, either

the difference in traction vanishes or the difference in displacement vanishes. The plate is

subjected to an incompressibility condition (2.20) so that the energy formulation for this

problem is reconstructed by the Lagrange multiplier method as

A5 = A1‘ 213nn§(v1, 1V2,2 “ V1.2V2,1+ PV2,2 + P-IV1,1)dX1dX2 (2-30)

with Lagrange multiplier §(X,,X2). It is then found that the multiplier é becomes the

difference in hydrostatic pressures between the buckled and homogeneous deformations,

that is q in (2.19). The equilibrium states are obtained from the first variation of the energy

functional (2.30) which subsequently yields the nonlinear boundary value problem (2.28).
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If AE<0, that is if the potential energy of the buckled state is less than that of the

homogeneous deformed state, then the deformation favors the buckled state. In other

words, the buckled state is energetically stable. The opposite statement is also clear. At the

instant of buckling initiation, the buckled state is not yet distinguished from the trivial

solution so both states have the same potential energy, that is, AE=0. However the sign of

AE shows which deformation is stable out of the possible postbuckling solution paths.

2.5 Summary

In this Chapter, we described the neo-Hookean plate under consideration and

formulated the nonlinear boundary value problem for the buckled deformation in view of

incremental deformation on the finite homogeneous deformation. With the boundary

conditions expressed in (2.28), the buckling equation reduced to two dimensional

problem. The energy difference between buckled and unbuckled homogenous states are

formulated in (2.30) for the elastic stability based on energy minimization.
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CHAPTER 3

BIFURCATION ANALYSIS BY PERTURBATION EXPANSION METHODS

3.1 Introduction

Solutions to the nonlinear boundary value problem (2.28) involve nontrivial

solutions v,, v2, q, at specific value of load parameter p which characterize the behavior of

buckled deformations. The elastic stability of buckled deformations can be determined

through the consideration into the energy difference equations (2.30) based on energy

minimization scheme. However the direct analytical solutions for the nonlinear problem

may not be obtained in a formal linear type process in view of the nonlinear natures.

Introducing perturbation expansion methods in which the solutions are expanded with

respect to the small parameter 8, makes the nonlinear problem to cast into an infinite set of

iteratively coupled linear problems (see Bauer and Reiss, 1965; Matkowsky and Putnick,

1974; Budiansky, 1974). Upon truncation, this method will give approximate values to a

degree of accuracy that is quantified in terms of the expansion parameter a. In particular,

behaviors near the bifurcation initiation can be captured with a relative accuracy by

utilizing the perturbation expansion method. A discussion of this method for nonlinear

boundary value problems that are simpler than (2.28) can be found in Appendix A.

The linearized problems for the buckling of neo-Hookean plate will be formulated

via perturbation expansion methods in the subsequent section. Then analysis on the

characteristics of resulting equations are followed. The investigations on the load

parameters and energy difference equations based on the perturbation expansion methods

will be treated finally.
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3.2 Perturbation Expansion Methods

The buckling phenomena is well explainable as the bifurcation from the

homogeneous deformation. Mathematically, nontrivial solution to the problem (2.28)

corresponding to buckled deformation is bifurcated from the trivial solutions which is

homogeneous deformation in (2.14). Obviously if we have the nontrivial solutions

(v,,v2,q), then we can describe the buckled deformation of neo-Hookean plate. However

the boundary value problem for the buckled deformation contains nonlinear nature so that

it may not obtain the solution by linear type analysis. The perturbation expansion methods

have been adopted for nonlinear analysis in various areas of applied mathematics by

deriving groups of linear equations. Hence the formal linear analysis can be utilized but it

shows the approximate results at moderate degree of accuracy based on the limitation that

only the first few terms may be considered. The incremental terms in the fully finite

deformation (2.18),; and the pressure field (2.19) are expanded with respect to relatively

small parameter a such as

V1(X11X2) = Z:=ls"u§")(X,,X2),

V2(X1.X2) = Z:=,s*u1*>(X..X2>. (3.1)

9(X1rX2) = Zk_,3kp(k)(X1.X2)-

In vector notations with v=(v,,v2,q) and u‘k)=(u,("),u2("),p(")), the deviations v away from the

homogeneous deformation state are expressed as

v = sum + azum + e3u(3) + .... (3.2)

Here a is a measure of the amount of deformation away from the homogeneous solution

which is defined as
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e = (v,u“))/(u('),u“)), (3.3)

in accordance with the orthogonality condition for the vector functions of each order 11")

and u“)

(u<1>,um) = o, j¢ 1. (3.4)

The brackets ( , ) denote the bilinear inner product on pairs of vector functions in a

domain 1'1 so that

__ 1

cm» — mliflmmdndxz. (3.5)

In order to acknowledge the evolution of the postbuckling path with the thrust, the

overall stretch ratio p is also expanded from the stretch ratio on buckling onset p0 as

P=%+2bfwr do

The stretch ratios p or 1. represent the load parameters as shown in Figure 2.2. and their

expansions are related by the expansion of equation (2.17) such that

lo = P62, M = 4135391. 12 = -pa3(202-3pa'pi),

(3.7)

13 = —2963(p3-3pa‘p1pz+295291),

where A=AO+SA1+82A2+83A3+0(84). For the simpler analysis, the expansions of p will be

used but for the interpretation of the thrust load, I. will be used afier converting by the

relations (3.7). If the odd terms in (3.6) vanish, pk=0, k=l,3,5,..., then the deformation

bifurcates symmetrically with respect to the trivial solution path. The symmetric buckling

which is common to the perfectly loading plate and the analysis much easier than the case

of asymmetric buckling.
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3.3 Analysis on Neo-Hookean Plate

Entering the boundary value problem (2.28) with the expansions (3.1) and (3.6)

and collecting together common orders of a, give rise to the following general linearized

boundary value problem at each order 8":

“(“lfil + 1492) - Pfilpfi‘) = fl")(X,,X2),

mum+amrmwa=awana. inn.~ cw)

Pfilulii + Pouiii = fSk)(X1./X2),

ulk) = 0, “(um +p52ugf5) = 0, on 1“,,

“(149+ pazulf‘l) = gi")(X,,i12), on r (3.9)

“("53 -Pazui{‘l)—pop<") = g£*)(X,,i12), 2’

here k=1,2,.... The second in F, boundary conditions can be reduced to ugf), = 0 because

the first condition gives riff} = O. Primarily the above equation is a nonhomogeneous

second order partial differential equation except for order a (k=1). The expressions on the

right hand side in (3.8) and (3.9), f“) and g“), depend upon the lower order solutions

uU) = [ufl'h up,pm] and pj,j<k for each order k. The first few of f“) and g“) are given as:

Order a (k = 1):

fln=m An=m Av=m

an=m gw=o. 3”)

Order 82 (k = 2):

fl” = pS‘MSII ~199’u531 - 9629,1251”,

fl” = pS’uifl -p,‘1”ui,‘l + pipfz”,

fl” = uifluifl -ui,'lu£,‘i-p1ui,'i+pazpiuifl, (3.11)

312’ = 2u963piuifl-pmulfl,

852) = P1P(')+Pmul,li‘21-1P63P1ul3i-
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Order 83 (k = 3):

fl” = {pfiz’uifi +P51”u£.2l} - {pff’ui‘l +P52"u§?l}

—P62{P1P,(12)+ (P2 - pa‘pi)pfi”},

fl” = {pfzz’uifl +p51’ui?l}-{p,‘12’ui,‘l+p,‘1"ul?l}+{pzp52”+mp9’},

1%”

2:1”

{141324531 + 143114.21 H 211,21 uill + 143114)?) i-{pzuifl + 91145.21}

+ 95% 9114,21 + (P2 - pa‘pi)ui,'l },

upa3{2mu£?l + (2192 - 3pa‘pi)u£,'l } - {12(2)qu +p‘”u£?l },

(3.12)

gt” = {pzp“’+p1p‘2’}+{p‘2’ui,'l +p‘”ul,2l}

fp) =

f54) =

fi“) =

81“) =

gi‘” =

-Hpa3{2mui?l + (292 - 3pa'pi)ui,‘l }-

Order 84 (k = 4):

{pfi3’ulfl +p82’ulfl +p8"ui?l} - {1292431 +pff’ut2l +p5"u£?l}

$549,128” + (P2 - pa‘pim‘?’ + (P3 - 296‘p192 + pazpiwfi'I},

{19914131 +p522’ui?l +p52')ui?l } -{p,‘1”ui,‘l +pf12’ui?l+pfi”ui?l}

+ {93129) + 9219522” 91129)},

{ui?lu5,‘l + uiilulfl + uiflufl H 141,31 24533 + 111,21 14,21 + 1413114133}

—{ will + pzuEl + mufl} (3.13)

+ szi 91111.31 + (P2 - pa'pi)ui?l + (p; - 2P6'P192 + 9629014131},

upa3i291u53‘l + (292 - 3pa'pi)u£?l + 2(93 - 396'9192 + 29629014531}

-{p‘”u£.'l +p‘2’u£?l +p"’u£?l },

{93pm + 92p”) + 0112‘”) + {#514131 +p‘2’ui?l +p“’ui,3l}

-upa3{291ui?l + (292 - 3pa'pi)ui?l + 2(93 - 395‘0192 + 29629014131}.

The linear operators in the left hand sides of (3.8) and (3.9) are the same for all orders of e.

In the operator form, the boundary value problem (3.8) and (3.9) can be stated as

32



      

r a - - -(k) r -(k)

“V 0 “Pfilgjfi “1 f1

Fu(k)E 0 [JV —pOa—-§- “2 = f2 5f“), III II

2

a a f
—1_ _ 3

p0 6X, pOa/Y2 0 hp- _ J

where V = 62/6X,2+62/6X§ is Laplacian and

l O 1 (k)

G,u(")= _2 6 a uz =0, on F,,

bILlPo 53,: Lia—X, 0 p

- 6 a
_ -2_ (k)

“OX2 “p0 OX, 0 l l (k)

qu(k) = a a “2 = EJ EgU‘), on 1'72.

_ —2_ _ _

5 “p0 6X, an2 Po p 

(3.14)

(3.15)

Note for k=1, f“)=0 and g(”=0 so that the boundary value problem for order a is

homogeneous and is given by

Fu“) = 0, in TI,

0...“) = 0, on 1“,,

62““) = 0, on F2.

(3.16)

The solution for (3.16) determines the initiation of buckling and has been studied by

Sawyers and Rivlin (1974, 1982) who gave the nontrivial solutions for special values of

po. These solutions will be obtained and reviewed in sections 4.3.1 and 4.4 later. The cases

of k=2,3,... extend the solution into the postbuckling region bifurcated from the trivial

solution.
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3.3.1 Linear Differential Operator

Let Hh(I'I) a {u,, u2,p e H x ITx l'I —> 933: G,u=0 on 1“,,qu = O on F2} and

let u e Hh(l‘I) be continuously differentiable. The subscript h as used here is to indicate

homogeneous boundary conditions. Notice also that Hh(I'I) is dependent on p0 because the

boundary operators G, and 62 depend on p0. In this Section 3.3, we disregard the order

superscript k in the equations for simplicity. Let F be the second order differential operator

defined in (3.14) and consider

(Fu,1—1) = 3717Aln[(Fu)Tfi]dX,dX,. (3.17)

Then integration by parts twice upon (3.17) with respect to the variables either X, or X2

yields

(F0. ii) = 4—llszl irziiMuL 1 " P62“; 2) - P6'Pll-‘1 + “(142,1 + P62”1,2)§21|rldX2

+ irllll(u1,2 + P62u2,1){‘1+{11(u2,2-P62u1,1)- Pupil-lzilrzdxi

—J'1‘2[{ M171, 1 - P132522) - P6113} “1 + “(172.1 + P6251,2)u2] ir,dX2 (3.18)

-irl[11(l-l1,2 + P132172, ,)u, + {P(l-42,2—P62{‘1. 1) — P0P} “2] lrde‘

+iiniu1{11(1-41,11+ 171,22)- PEIPJ} + “zillU-lz, 11 + l72,22) " P0132}

+P(P61{l1,1+ P0172,2)]dX1dX2]-

Applying the boundary condition requirements on u inherent in Hh(I‘I) to (3.18) shows

that the second of the two terms in the first integral vanishes, as does the entire second

integral, and the first of the two terms in the third integral. Hence
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_ 1 , - _ _

(F0. 11) = miLliMMn’P6‘“2,2)—P61P}“1—P(u2,1 + P62u1,2)u2]|rldX2

_ ' -2' " _ —2" _ "
Ir,[p(u"2+p° “21)"1 + {11042.2 P0 ”1.1) Papiuzllrdei (3.19)

+ iinlu1{P(i-l1,11+51,22)‘P6‘P.1} +u2{P(l—12,11+l72,22)‘P0F,2}

+P(P6"-11,1+ Pol-‘2,2)]dX1dX2]-

This defines the adjoint operator to the triple consisting of the field operator F and the

boundary operators G, and G2. Let the associated adjoint operators be P" and G,°, 02°.

Then the integral over F, shows that G,°=G,, the integral over F2 shows that GZ°=G2 and

the integral over II shows that F‘=F. In other words, the linear differential operator F

restricted to Hh(I'I) is self-adjoint.

3.3.2 Different Formulations

The nonhomogeneous boundary value problems (3.14) and (3.15) can be

formulated in different ways (see Reddy, 1986). The weak (variational) formulation is

stated as follows: find u=(u,,u2,p) e H(IT) such that

B(w, u) = l(w), for all w e {(w,, w2,r)|w,=0 on F,}, (3.20)

where B(w,u) is the bilinear form and l(w) is the linear form given by

B(w, u) = HHH[(“1,1W1,1+ “1,2W1,2 + “2.1%, 1 + “2,2W2,2)

+ P62(u1,2W2,1+ "2,1W1,2 - “2,2W1,1- “1,1W2,1)]dX1dX2 (3-21)

-i.in[P(P6'W1,1+ PoW2,2) + '(P61“1,1+ Po“2,2)]dX1dX2-

[(W) = —,i,in(w,f, + wzf2 + w3f3)dX,dX2 + in (g,w, + g2w2)|r2dX,. (3.22)

The solution space H(I‘I) indicates the boundary conditions that should be satisfied
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H(IT) = {(u,,u2,p)|G,u = O on F,' qu= g on F2}. (3.23)

Note that B(w,u) is symmetric, i.e. B(w,u) = B(u,w). For sufficiently smooth functions,

the weak formulation (3.20) is equivalent to the direct formulation (3.14) and (3.15).

The energy functional on H(FI) corresponding to symmetric B(w,u) becomes

(Reddy, 1986)

E(u) ll %B(u, u) - l(u)

= gliniuin + “12,2 + ”in + ”£2 + 2P62(u1,2u2, 1 - “1,1“2,2)]dX1dX2

(3.24)

’“n [P(P6'u1,1+ P0112,2)+ (“L/1 + uzfz + “3/3)]dX1dX2

—IF1 (8W1 + g2u2)|r2dX,.

The energy (functional) formulation is to find u eH(I'I) which minimizes E(u). If B(u,u)

is positive for u eH(FI), then the weak and energy formulations are equivalent. In the

problem under study here, it is not clear under what circumstances B(u,u) is positive. The

first variation of E(u) gives (3.14) as its Euler equation, when the following boundary

conditions are specified:

u(u -—p'2u )—-p"p = 0 or u = 0on F, 1,1 02 2.2 o 1 (3.25)

P(“2,1+P6 “1,2) = O 01' “2 = 0

F “(“1,2+P62u2,1) = 81 01' “I = 0 (3 26)

on .

2 P(“2,2‘P62u1,1)—P0P = 82 or “2 = 0

In the condition (3.25) and (3.26), the right sides correspond to essential boundary

conditions and the left sides to natural boundary conditions. Comparison of (3.25) and

(3.26) with (3.9), shows that the boundary condition u, = 0 on F, of the direct formulation

contributes the only essential boundary condition.
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3.4 Load Parameters

The load parameters p represent buckling behavior on and after the buckling

initiation. The homogeneous problem (3.16) for the case of k=1 will only have nontrivial

solutions for certain special values p0 which define buckling initiation modes. At these

special values p0, the differential operator trio {F,G,,Gz} is singular. The same differential

operator trio as the homogeneous problem appears in (3.14) for the case of k=2,3,..., and

the special values p0 are used here. These cases of k 2 2 will be a problem for solving

nonhomogeneous boundary value problem (3.14) and (3.15) for a singular operator trio

{F,G,,Gz}. For most right hand sides, solutions will not exist. But for certain special right

hand side of equation, the solution can exist - eventually this is explained by the Fredholm

Alternative Theorem for solvability of the nonhomogeneous equation as developed next

for this particular problem.

At a fixed value of po, let w=(w,, wz, r) be a nontrivial solution of the homogeneous

equation (3.16) and let u=(u,,u2,p) be a solution to the nonhomogeneous equations (3.14)

and (3.15) for given 1‘ and g. Then consider the expression

(Fu,w)— (u,Fw) = fin“{(Fu)Tw—uT(Fw)}dX,dX. (3.27)

Since Fw = 0 and Fu = 1' in F1, the left side of the equation (3.27) is equivalent to (f, w).

After integration by parts twice and applying the boundary conditions G,u = 0 and G,w =

0 on F, and qu = g and sz = 0 on F2 to the right hand side of equation (3.27), it

becomes

1 1 l

(‘3 W) = m[,l(W181+ W282)|_2,2dX1~ (3-23)
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Thus if the nonhomogeneous problem (3.14) and (3.15) is to have solutions, then it is

necessary that f, g, and g2 obey the solvability condition (3.28). In particular, since u“) is a

nontrivial solution of the homogeneous equation (3.16), any nonhomogeneous solution

(u,“",u2“",p(")), k=2,3,... to (3.14) and (3.15) for given fl") and g“) must satisfy

llnwumdx— l, <u11>gr>+ urgent dX. = o. (3.29)

In order for the nonhomogeneous problem of order 82 (k=2) to have a solution “(2),

the condition (3.29) must be satisfied with corresponding terms 1(2) and gm in (3.11).

Substituting 1‘” and gm into condition (3.29) gives

R1+ P1R2 = 0. (3-30)

where R, and R2 are constants defined as

R. = ”niui”(p“)ul,‘l),.—u£"(p"’ui,'l),,]dx

+ Iin 2P"’<u1.'1u531 — uiriusliidx, (3'31)

R2 = lin 1— 962(ui”p,‘1" - u1}1p<1>)+<ut>p9>-p<*>us,'1>1dx

— zupaln (ui”u$,‘l - um usnnrzdx. - inpmusuirzdxr (3'32)

If R2 is not zero, then p, can be expressed as

p, = —R,/R2. (3.33)

Solutions “(2) to the linear equations of order two, will exist only if the equation (3.33) is

satisfied. Similarly for the nonhomogeneous problem of order 83 (k=3) with 1‘” and g”) in

(3.12), the solvability condition (3.29) for the existence of “(3), gives

R3+R4P1 +R5P12+R2P2 = 0, (3-34)
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where R3, R4 and R5 are

R. = lintui‘Kp‘Z’ulfl +p<l>u5?1>,,— ut"(p‘2’ui,'l +p<'>u1?1),,

+ 2p‘”(ui,'lu§,2i - uiiium) (335)

+ u£}I(p“’ui?l +p<2>u1,'r)-u1}1(p<l>us?) +p<2>ur,'))1dx.

R4 = linl-p52(ui”p,‘12’-ui?lp“’) +(u£”p52’-p“’u$?l)]dx
(3.36)

— 211p53ir1(u1'>u1?1 — u1?1us'>)|,2dX.- lrlp<2>uil>lrzdxh

R5 = linlpa3(ui”pfi”-p“’ui,‘l)1dX+3upa4irl(ui”u$,‘l —u£”ui,'l)|r2dX1, (3.37)

so that

P2 = —{R3 + (P1R4 + PiR5)}/R2, (338)

if R2 is not zero. The higher order parameter p,, i=3,4,5,..., can be obtained in a similar

way. Note that solving for a specific pN requires full determination of um’s, i=1,..., N. In

particular, the conditions (3.33) and (3.38) must be satisfied for the existence of solutions

u“) and “(2). The freedom to choose the coefficients p ,, p2,... in (3.6) are used to meet the

solvability condition (3.28). Each term p,- in the expansion will give a key to the

postbuckling behavior of the system. Budiansky (1974) has discussed the mathematical

structure of general post-buckling problems through variational analysis and shows that

equation of the form (3.33) and (3.3 8) can be expected in the general case.

3.5 Auxiliary Conditions Associated with Incompressibility Constraint

A set of extra conditions from (38);, and (3.9), are derived for simpler calculations

of necessary formulations. First double integration on (3.8); gives
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1351”” ude+ pollnugfwx = ”f/S’de, (3.39)

and on (3.9)l gives

”nuif‘ldx = Ilik’lridXz = 0, (3.40)

for k=1,2,3...., so that

””2455ng = p51 llnfgwx. (3.41)

Using the expressions forf3“) given in (3.10) to (3.13) yields

”n “iiidX1dX2 0,

“it “EidXflIXz = PEICDI’

(3.42)

”n “iiidX1dX2 = - P1P62¢1+ p51¢2,

ll” ult‘lXmdXz = P62(Pi96' - P2)(D1_ ptp52¢z + 95W.»

where

«D. = lln(ui,'lu£,'l -u131u53))dxldxs. (3.43)

«>2 = ”n[(ui,'lu£?l + uiilu£}I)-(ui,‘1ul?l + ulflulflfldXthz, (3.44)

<1). -- M [(434.31 + anus?) + mum)
n (3.45)

411131145?) + 111,21 "El + ”Pl “Find/Y1“:-

Here the results of each step in (3.42) was used for the calculations of subsequent step.
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3.6 Relation between Thrust and Load Parameter

After bifurcation away from the homogeneous deformation solution (2.14) and

(2.15), the associated values of the thrust T is obtained by substituting the expansion (3.6)

into the expression (2.16) as follows:

T = -4u1213[(po - 953)+(t>1+ 3P6401)€ + (P2 + 3p6‘pz - 695591082

+ (P3 + 3P64P3 - 1213559192 + 10966pi)e31+ 0(34) (3.46)

5 TO + ST, + 2:sz + 83T3 + 0(84).

The first term T0 represents the thrust at buckling onset and the other terms in (3.46) will

show the change in thrust load after buckling. If the terms except To have a positive value,

then the thrust must increase to get a larger buckling deformation after buckling initiates -

progressive buckling. For the opposite case, the thrust must decrease when the buckling

deformation grows so that there is a possibility of snap buckling in which the buckling

mode jumps to another mode. If the bifurcation growth is symmetric with respect to the

trivial solution, then p,=p3=...=0 so that the thrust (3.46) becomes

T = — 41213P[(Po — p53) + p.(1 + 53.):2] + 0(24)
0

= To + {:sz + 0(84).

(3.47)

For this symmetric case, if p2 <0, then T is an increasing function of s so that the buckling

is progressive. Otherwise, if p2 >0, then T is an decreasing function of a so that the snap

buckling is possible.
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3.7 Energy Formulation

The energy equation (2.30) may be expanded accordingly. Substituting the

perturbation expansion (3.1) and (3.6) into the energy functional (2.30) and applying the

incompressibility (3.8)3, the energy functional for each order becomes

AE = 213(3E, + ezEz + 83E3 + 8454) + 0(85).

where E,, E2, E3 and E, are given as follows:

E, = ”nMpa'ulfl + poni31)dX1dX2,

E. = ”nulp1(ui,‘l — 95214le (pour) + Pa'ui?3)1dXthz + 551..

E3 = ”filliiqulii + P63(P12 " POP2)ui,li}

+ 91041.21 - pazulil) + (9014,31 + pa'u£?l)ldX1dXz + #512.

E4 = ”null psuifl + p6“(- of + 2909192 - 939044535}

+ {92141.21 + 963(Pf - popz)ul?l} + 9.042) - 9521453)

+(pou1‘31 + pa'usfiiidXtdxz + gs... + #313-

Here we have introduced the notation:

at} = ”nWlpiulfh + ulfzulfb + “if’1u§{)1 + ugf)2u§{)2)dX,dX2.

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

Now direct application of the extra conditions (3.40) to (3.42) into the equations (3.49) to

(3.52) gives the following simplifications
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133 = u((-291953)¢1+ 962432) + #312, (356)

E4 = Iii P63(3P12P6l " 2P2)<D1’ 2P12P64¢2 + P62¢3i + 5322 + “513- (357)

Notice that each of the terms Ek, k=2,3,... make use of the solution expressions up to the

(k-l)th order, u‘k'”.

If the parameter s is small enough, then the evaluation ofAE depends upon the first

non-zero term in expansion (3.48). Hence if the first non-zero term appears in Ek, then the

solution sets up to the (k-1)th order are required. If the odd terms in the expansion of load

parameter vanish (p,=p3=...=0), then the whole formulation becomes much simpler.

Specifically, if p,=0, then various terms within p2 in (3.38), E3 in (3.56) and E4 in (3.57)

will vanish. If this is the case of the neo-Hookean plate, then the buckling grows

symmetrically with respect to the trivial solution path.

3.8 Summary

The nonlinear boundary value problem for buckling deformations of neo-Hookean

plate is analyzed by reducing to a set of linear type problems according to the perturbation

expansion method. The corresponding sets of linear differential equations and energy

equations are formulated. The load parameters in expansion are determined from a

solvability condition that arises because the differential operators in each set are the same.

The leading order analysis for buckling onset renders this differential operator singular,

hence the need for a solvability condition in the higher order analysis. The conditions for

the existence of solutions are generated by considering the first order homogeneous

problem and the higher order nonhomogeneous problems.
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CHAPTER 4

BUCKLING DEFORMATIONS FOR NEO-HOOKEAN PLATE

4.] Introduction

The nonlinear boundary value problem for buckling deformations and energy

equations of neo-Hookean plate was reduced to the set of linear type problems through the

perturbation expansion methods in Chapter 3. The solvability evaluation near the

bifurcation initiation depends on the deformation solutions of each order in the expanded

set of linear problems so that we will focus to determine these solutions in this Chapter.

Since the differential operators in the linear equations of each order are the same, the

solvability of equations on each order (and the possibility of symmetric bifurcation) are

firstly checked. Then the solutions for generalized problems represented to all linear

problems of each order are investigated and the solutions of specific order are followed.

The solvability conditions of each order will give the relations between the load parameter

and deformations. In particular, symmetric bifurcation is verified. With the symmetric

behaviors of the load parameter, the formulations developed previously may be reduced to

much simpler forms which is beneficial to further calculations. We will examine the

symmetric behavior and the reduced equations thereafter.

4.2 General Solution for the Governing Linear Differential Operator

We will investigate in this section the solutions of the generalized

nonhomogeneous boundary value problem (3.8) and (3.9) for general order k under the

assumption that the associated solvability condition (3.28) has been met. Applying the

method of separation of variables to two dimensional boundary value problem (3.14) and
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(3.15) and matching the functions ofX,, indicates that the basis for generalized solutions

are four trigonometric functions, cos(Q,.J,X,), —sin(QZ;,,X,), sin(Q,;,,X,) and

cos(§22;,,X,). The basis functions which are orthogonal to each other, form a complete set

on the domain —I, < X, < l, and modes are

=2n—1 n

'.N T“, (22; — —T[ n —' 1,2,... (4.1)Q1

Hence the solutions can be expressed as the infinite series in the following forms:

u, ~ 2: , [A1;n(X2)COS(Q1;nX1) ‘A2m(X2)Sin(Qz;nX1)]

“2 ~ Z:=,[B1;n(X2)Sin(Q1;nX1)+ Bzm(X2)COS(Qz-.nX1)I + $300“), (4-2)

F "' 2:: 1 [C1 ;n(X2)Sin(Ql;nXl) + C2m(X2)COS(Qz;nX1)I + %C0(X2)-

An expression of the form (4.2) will apply to each order k, consequently in (4.2) the order

superscripts (k) are ignored for the generalized view. In the expressions u,, u;, p, the

boundary conditions (3.9), on F, has been applied so that the zeroth term in u, does not

appear. The coeflicient fimctions, A ,..n, B”, C,...,, which are in fact functions of X2, are

obtained as follows:

— 1 1
008(lexl)

Ai;n(X2) " i: 1, {—sm(Qz~,nXI)} l,

— 1 1 srn(91;nX1)

Bi;n(X2) ‘- T, “’1 {008(Q2;,,X1)} l,

(4.3)
_ 1 , srn(Q1wXI)

C,;,,(X2) — fl —1, {005(QZWX1)} l

and
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1 I l 1

BO<X2)=,—,l_,u2dx,, C0(X2)=,—,l_,pdxl. (4.4)

Here the upper terms correspond to i=1 and lower terms to i=2 and orthogonality of

different kinds of trigonometric functions has been considered.

The next procedure is to determine the coefficient functions of X2 by eliminating

the functions of X, in boundary value problems which is done by the following ways.

First, multiply the differential equation (3.8) and boundary conditions (3.9) by the basis

functions and then integrate with respect to X, over -I, to 1,. This gives

21-1]; {Mum + u,,22)-PE'P,1}{_c:i:((::§l)) }dX1 = 1M3),

71;]; {11042.11 + 112,22) - pop,2}{ :;:((::12:::1))}dxl = J.-(X2). (4-5)

2:11;. + pouz.»(:::i::;.:)e =
and

71;_r_|11{t1(u,,2+ pgzu,,)}{_::((:‘2:2))}dx, = 64:12),

(4.6)

H, {Mum- 962141, 1)- pmlfiifiififfidfl = ”((ilz)’

where the upper (lower) terms are for i=1 (i=2). The right hand side notations are
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l 1 Q .

14X.) a ,—l lg. (Xt X2)(-c:iit((0';:irl,))) dX.,

l 1 ' Q.

401’.) a ,7 l,lf2(X1a X2)(:;’;(,Q‘21"§,),) dXI. (4.7)

1 I ' Q .

K1(X2) E [-1 LYN/Y1, X2)(:;:((le:§ll))) dX,,

and

l 1 Q .

G1’(i12)E [-1 [,IgI(XIr i12)(f;:((912:§l))) dXI 9

sin(Q, ;nX1)

(4.8)
l 1

Hi(i[2) E j: _,182(X1, i12)(005(92mX1)) “1-

Then apply integration by parts with respect to X, twice to terms with a double-

differentiated variable and once to terms with a single-differentiated variable. After

applying the F,-boundary conditions (3.9), and substituting l, and -l, to the trigonometric

functions in the boundary terms, the partial differential equation (3.8) becomes an

ordinary differential equation with coefficient functions A”, B“, C”, of X2 defined in

(4.3). In conclusion, the differential equations (3.8) yield:

11141" — 110.24.— pa‘Q-C. = 1.09).

1:8: — 110.28.- - pOC'. = .409). (4.9)

-pa‘Q.-A.-+poB£ = K.(X2).

where i=1 or 2 and prime denotes the differentiation with respect to X2. Note that the

resulting equations (4.9) are consistent for either i=1 or 2. The mode numbers n in the

subscripts are suppressed to have a simpler formulation. That is, Q,- and 1,(X2), J,(X2),

K,(X2) are in fact dependent on n, and so give the dependence ofA,(X2), B,(X2) and C,(Xz)

on n as is required by (4.2) and (4.3). The boundary conditions on F2 in (3.9); become
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“Ai + P9520181 = Gi(il2)’

. 2 (4.10)

1131* I195 OtAt- 90C.- = H.(ilz).

Furthermore the three equations in (4.9) can be combined into one ordinary differential

equation with respect to one coefficient function B,- as

-2

B}V— 93(1 + p54)B,'-' + 04,3543 = p—Oo1; 9700,24 + p51(K;'- (23K). (4.11)

The other coefficient functions A, and C,- are then related to B, by

_ P0

m—-%K+QB

(4.12)

C= 31—(9—9K4L K+ 38—3; (2313'..- . II( uni II,-,-z( )

The boundary conditions (4.10) on F2 are also expressed as

962
132+ 9.296413.- = p6‘K + —9G19

2 p (4.13)

pa Po
3;" —Q,2(1 +2p54)B; “QM-Pp‘j’K —Q,?-p5'(l+p540,)K—TQ,2H.

For the zeroth terms 8,, and C0, the ordinary differential equation and its boundary

conditions become

. l I

“Bo—POCO = E-[I'g2(Xlsi[2)Xma P030 = ‘.i:f3dX,, (4-14)

. 1 I
uBO—pOCO = EL,g2(X,,ilz)dX,, on 1“,. (4.15)

Note that BO(X2) is determined only to within a constant, thus BO(X2) reflects the

previously mentioned possibility of arbitrary rigid body motion in the X2 direction.
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4.3 Nonhomogeneous Ordinary Differential Equation

The equation (4.11) and the boundary conditions (4.13) form a nonhomogeneous

boundary value problem with respect to only X2. Denoting the right hand sides of (4.11)

and (4.13) as the notations Z §., g2 respectively gives

B.._ 02(1 + p598" + 0413548 = 70(2), (4.16)

34029543 = §1(i12),
~ on F2, (4.17)

B'" — 02(1 + 2pa4)B' = 82(i12).

where the subscripts i in B and Q are also ignored for a generalized discussion. Next we

consider the possibility of nontrivial solutions to the problem (4.16) and (4.17) for the case

of zero right hand sides, the homogeneous problem. Then we consider the solution to the

problem (4.16) and (4.17) for the case of nonzero right hand sides, the nonhomogeneous

problem.

4.3.1 Nontrivial Solutions to Homogeneous Problem

The homogeneous problem consists of (4. 1 6) and (4.17) with zero right hand sides,

]” = g, = g, = 0. Clearly the trivial solution B), = O is one solution to this problem. Any

nontrivial solution B,” which is our concern for the general problem (4.16), can be written

as

B, = L~lcosh(QX2) + fzsinh(QX2) + M,cosh(op52X,) + 11:125inh(0p52X2), (4.18)

where the coefficients 1:}, 1:2, 11:1,, 11:12 are constants and can be determined by applying the

boundary conditions (4.17). Substituting the form (4.18) into these boundary conditions

on 1‘2 (X2 = ilz) gives four algebraic equations which can be written in matrix form as

49



C4X4I4xl = 0- (4-19)

where

,- ~ ~ ~ ~ 1

(1+P64)C1 (1+p64)81 2954C: 2130452

C = (1+pa“~)C1 -(1 +1953”. 2064C2 ~ 496452 ~ (4.20)

296451 2964C1 962(1 + pflSz 962(1 + pa‘)C2

_ 4135451 2964C1 -paz(1+pa“)Sz 962(1 + 964)C2_  

~ ~ ~ ~ T

1 = [L1 L2 M1M2] . (4.21)

The new symbols used above are defined as

C~ = coshn, S: = sinh'q,

-1 .' . (4.22)

C2 = cosh(pazn), $2 = smh(pazn)-

The scale parameter

1] = 012, (4.23)

is eventually determined by the geometry of the plate considered (12/11, see Figure 2.1) and

the mode value n in (4.1) of the nontrivial solutions. Considering the coefficient matrix C

in (4.20) with respect to symmetry reveals that there exist two different kinds of solution.

The first kind is a symmetric solution with respect to X2 so that Bh(-X2)=B,,(X2) which is

known as aflexural solution. The other kind is an antisymmetric solution with respect to

X2 so that Bh(-X2)=-B,,(X2) which is known as a barreling solution. These types of solution

can be also obtained by applying fundamental operations of matrix algebra to the

coefficient matrix in (4.20) and decoupling into two separate independent pairs.
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For the symmetric solution, B),(-X2) = B;,(X2), Set [:2 = M2 = 0. Then the

decoupled matrix equation reduces to

(1+ 126%} 295452 L:
~ ~ ~ = 0. (4.24)

295451 (1+pa4)pazSz Ml

To have the nontrivial solutions, L, and M, , the determinant of coefficient matrix in

(4.24) should vanish so that the following solvability condition must hold

(1+ pa‘)2tanh(pazn)-4pa6tanhn = 0- (425)

Then the symmetric solution becomes

8,, = MIcosh(QX2) — scosh(Qp52X2)], (4.26)

where M is an arbitrary constant for general solutions and the aspect ratio s denotes

_ (1+pa“)coshn

S ' 2954608h(962n)'

 (4.27)

For the antisymmetric solution, Bh(-X2) = -B;,(X2), Set 1:, = A}, = 0. Then the

decoupled matrix equation from the coefficient matrix (4.20) reduces to

(1 + 96%”: 296432 L2
~ ~ ~ =0. (4.28)

2p64C1 (1+pa“)pazC2 M2

To have nontrivial solutions, [:2 and 11:12, the following solvability condition from

vanishing determinant of coefficient matrix in (4.28) must hold

(1 + pa‘)2tanhn — 4056mnh(pazn) = 0. (429)

Then the asymmetric solution becomes
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B, = M[sinh(QX2) -ssinh(Qp52X2)], (4.30)

where the aspect ratio 5 is

_ (1+pa4)sinhn
s — . . 4.31

296481nh(pazn) ( )

 

The symmetric and antisymmetric solutions 8,, in (4.26) and (4.30) represent the

homogeneous solutions to the problem (4.16) and (4.17) for the case of

f = g, = g2 = O. For a given 11 in (4.23), such solutions only exist for special values p,,

that satisfy either (4.25) or (4.29). These values, which have been obtained previously by

Sawyers and Rivlin ( 1974) for the buckling of neo-Hookean plate, will be discussed in

section 4.4 later. The two aspect ratio in (4.27) and (4.31) can be rewritten as

S = (111364) sinh2n

2954 Slim“ + 962M + vsinh(1 — p52)n’
(4-32)

 

where v=1 for flexural deformations and v=-1 for barreling deformations. The two

solvability conditions (4.25) and (4.29) can then be rewritten into one expression as

sinh(1+ 952M _ (1+ 96“)2+4PB”
  

 

sinh(1 —- 962)“ — V(1 + p64)2 _4p66'
(4.33)

The expression for s2 by using the combined solvability (4.33) becomes

_ sinh2n

'- 96253111213621] 2
(4.34)

which is independent ofthe type of deformation. However s2 depends on the value of p,, so

that at a fixed value of 11, the value of (4.34) for flexural deformations is different from

that for barreling deformations.
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4.3.2 Solutions to Nonhomogeneous Problem

In order to determine the general solutions to the nonhomogeneous problem (4.16)

and (4.17), the method of variation of parameters can be used. The nonhomogeneous

solution B is found from the homogeneous solutions (4.18) by allowing the constant

coefficients 5,, 1:2, 11:1,, 11:12 to become functions of X2: L,(X2), L2(X2), M,(X2). M2(X2).

thus giving

B = L,(X2)cosh(QX2) + L,(X,)sinh(oX,)

+ M1(X2)005h(QPEZX2) + M2(X2) sinh(Qp52X2).

These coefficient functions are subject to the following requirements

Ll’Cl+L2'Sl+MI'C2+M2'SZ — O,

142'ch + LI'QS1+ MZ'Qp62C2 + Ml'Qpb-ZSZ = O,

L1'92C1+ L2'9251+ M,'sz54C2 + 44292136452 '

1

P
with the similar notations as in (4.22):

CI COSh(QX2), Si Sinh(QX2)s

C2 = cosh(p520X2), $2 = sinh(p52§2X2).

(4.35)

(4.36)

(4.37)

Substituting the form (4.35) into the nonhomogeneous equation (4.16) gives the fourth

equation to complement the three equations (4.36). Together this gives a 4x4 matrix

equation with respect to the first derivative of the functions L,(X2), L2(X2), M,(X2). M2(X2):

C, S, C2 S2 L,’

QS, QC, QpazSz QpaZCz L2'

02C, (225, (22p54C2 92p5452 M,’

_Q3S, 93C, Q3p56S2 Q3p56C2_ Mz'

I

J

      \
r
o
o
o

r l
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Note that the 4x4 coefficient matrix is not singular so that L,',L2',M,', M2' can be

determined directly from pre-multiplying the right hand side of (4.38) by the inverse of the

4x4 coefficient matrix function. Then the coefficient functions L,, L2, M,, M2 after

integrating with respect to X, are

    

FL,“ - ifS,dX2+1:

L2 = l IicldX2+ITZ (4 39)

M (1‘1364)Q3 I” — i
' 133 szdX2+M,

M - _

_ 2‘ _‘ pgiszdX2+M2d

Here the integrals are indefinite and 2:, 1:, 17,, AZ are integration constants. The full

form of solution B is

1 2 _ .. _

Wucm— lfl1dX2+L1>+S.(l/C.dX2+L2)} (4.40)

+ p31C21iisde2 + 17,) + 52(‘ liczdxz + 472)}1.

B(Xz) =

The function f is specified in the right hand side of (4.11). The complete solution B

contains four as yet undetermined constant coefficients E, 1:, 117,, 117, that are available

to satisfy the four boundary conditions (4.17). Substituting the solution (4.40) into these

four boundary conditions (4.17), the four equations for these constant coefficients are

expressed in matrix form as:

C4X4J4xl = G4,,“ (4.41)

where

T

J = [L1 ,2 M1 M2] , (4.42)
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92 F 2 ~ ~ - '

é, (1+ pmro + L3811+ 296“{M1*C2 + 41352}

G ___ of _ (1+964){L1C1-L5251}+29641MIC2-M552} (4,3)

g2 29641Li51+L2+C1i+962(1+064){M152+M3C2}

_2P64 'L151+L2C1} + 962(1 + P64)l—M152 +M2C2}d  
  

and the coefficient matrix C is the same as that appearing in the homogeneous problem

(4.20). The fianctions with superscripts + or - denote that the functions are evaluated at

X2=12 or -12 respectively. Note that the matrix C is singular if and only if p,, satisfies either

(4.25) or (4.29). If p,, does not satisfy either of these equations, then (4.41) yields a mnque

vector expression for J. On the other hand, if C is singular, then (4.41) gives solutions if

and only if G is orthogonal to the null space of CT which generates the solvability

condition as we will show in the following section. For this singular case, if the solvability

condition is not satisfied, then there is no solution to the problem (4.16) and (4.17). If the

solvability condition is satisfied, then there exist infinite solutions which is shown in

(4.40). The constant vector J can be obtained by using the psudoinverse matrix of the

singular matrix C or by connecting the solvability condition to (4.41).

4.3.3 Solvability Condition

r

The existence of a solution J = [L 1 L2 M1 M2] for the linear algebraic equation

(4.41) when p,, satisfies either (4.25) or (4.29) requires satisfaction of an orthogonality

condition with the right hand side vector G and the null space of CT. If p,, obeys (4.25)

which corresponds to the symmetric case, then the null space of CT is given by
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~ ~ ~ ~ T

NSS=Q3(1-p54) s, 4 514 C14 C14 . (4.44)

1+P6 1+Po 2130 2130

If p,, obeys (4.29), which corresponds to the antisymmetric case, then the null space of CT

is given by

~ ~ ~ T

C C s 5
NS = Q3(l—p‘4) I I I 1 . (4.45)

A 0 [1+0641+96429642P64]

Together the orthogonality of the null space and the matrix G can be written

67- NSSorA = 0, (4.46)

and so yields the following solvability conditions with the relations (4.25) and (4.29). For

the case associated with (4.25) and hence a symmetric nontrivial homogeneous solution,

[2

i~C CdX=1 4C1~+QS‘~ 447)
r2f(1—S 2) 2 —( —Po )[2p—6482 mgi] . (~

..[2

For the case associated with (4.29) and hence an antisymmetric nontrivial homogeneous

solution,

S] ~ QC] ~ ]|12

-l

£27151 - 552)dX2 = —(1 — Pfi4)[m82 + (1756—4381 (4-48)

Thus, if there exist nontrivial solutions 8,, to homogeneous versions of (4.16) and (4.17),

then there exist solutions to (4.16) and (4.17) with nonzero f, g, g2 if and only if these

functions satisfy either the condition (4.47) or (4.48), as appropriate

The solvability conditions (4.47) and (4.48) can be also obtained directly from the

ordinary differential equation problem (4.16) and (4.17) via similar procedure developed
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in Section 3.4 to get (3.28) for the partial differential equation problem. For the problem

(4.16) and (4.17), exchanging u to 8, w to 8),, and f to f in the formulation (3.27) gives

(BB, Bh> — <13, B8,) = 3711,31. [(138)81. — B(BBMdXZ. (4.49)
2

Here F is the differential operator used in the left hand side of (4.16) so that i:B = f and

133,, = 0. Applying the integration by parts and boundary conditions in (4.17) yields

[2
~ 1 ~ ..

(£31.) = —(ngh‘gIBh') - (450)
41,12 —1

Then substituting B, in (4.26) and (4.30) into (4.50) gives the same conditions as (4.47)

and (4.48) after rigorous calculations with the relations of (4.25) and (4.29). Hence the

condition (3.28) represents solvability at the partial differential equation level, the

condition (4.50) represents solvability at the ordinary differential equation level and

conditions (4.47) and (4.48) represent solvability at the linear algebra level. The three

conditions (3.28), (4.50) and either (4.47) or (4.48) for solvability are perfectly matched to

each other.

4.4 Buckling Onset (the First Order Solution k=1)

The first order solution u“)=(u,(”, uz“), pl”) of homogeneous boundary value

problem (3.16) represents the status of buckling initiation and was investigated by

Sawyers and Rivlin (1974). Since all the right hand side terms 1“) and g“) vanish, the

terms 1,, J,, K, in (4.7) and G, H, in (4.8) as well as the right hand sides of the equations

(4.11) _and (4.13) vanish. Therefore the boundary value problem for the case of k=1

becomes
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Bf;1.””—912.n(1 + P6039?" + 914;..pr ’ = 0. (4-51)
(1
IL”

81.1.2“ 024541312 0.
F - 4.52

31.L"”-Q?;.(1+2064)B,‘.‘,2'—0, °“ 2 < >

In view of the relations (4.12), the other coefficients in (4.3) become

 

2

A112 = 5" 8112', C112= up—§(Bf.1"'-Qin8112)'- (4.53)
i;n aim

The first order solution of (4.51) and (4.52) can be derived from the solution of

homogeneous problem in (4.26) for the symmetric case, and the solutions of (4.30) for the

antisymmetric case by substituting 85],) into B), and adding subscript i to Q and 7].

4.4.1 Buckling Initiation by Flexure and by Barreling

Two different kinds of solution in view of symmetry represents two shapes of

deformation: flexural and barreling deformation. For the flexural deformation, the lateral

deflection uz“) is symmetric with respect to X2, so that B};‘,,)(X2) is an even function. It

follows essentially from (4.25) - (4.27) as

811209) = M1cosh(n.-..Xz)-s.,.cosh(n.,.paZX2)1, (454)

under the solvability condition of

(1 + p64)2tanh(nmpaz)—4pa‘5tanhn,-.. = 0- (455)

Here 1],”, which is given from (4.1) and (4.23) as 11,," = lez. The constant M denotes

the amount of buckling from homogeneous deformation so that M will be determined

according to the normalization convention. The value ofM will be determined later in this
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section. For the barreling case, the lateral deflection is antisymmetric so that B§,',,)(X2) is

odd function and expressed from (4.29) - (4.31) as

31,1206) = Mlsinh(Q.-;nX2) - S.;nsinh(91;nt>62X2)l, (456)

under the solvability condition of

(1+ pa“)2tanhn.-.n-4paétanh(n,~..paz) = 0. (4.57)

Nontrivial solutions will only exist, at fixed mode number n and initial geometries I, and 12

(which will be shown in 0,," and 11,"), for particular values of p,,. The conditions (4.55)

and (4.57) show the relations between p,, and 11,," which represent the load parameter

curve. The aspect ratio 5 for both types of deformation is

_(1+ 1») sinhzn...

2p0 Sinh“ + 962M”, + vsinh(1— p62)n,m’
(4-58)

 

i;n

where v=1 (v=-1) for flexural (barreling) deformation.

The value of the constant coefficient M in either (4.54) or (4.56) is determined

from normalization for which we define as

4171,,” [(11,113 (Lf:’)2+(8,‘1'_’)jdx,dx, = 1- (4.59)

This is in contrast to the normalization used by Sawyers and Rivlin (1982) who instead

require that u§‘)(l,, 0) = :1 for flexure and u5')(l,, 12) = i1 for barreling deformation.

Their results are simple and procedures are relatively easy by introducing above special

rules of normalization. But in this work, we will follow the definition of normalization,

Hum" = 1, as shown in (4.59). Applying the solutions (4.2) for k=1 to (4.59) with the

relations (4.53) and integrating over F, give
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   ii ( p6 B"")2+('B—"2+3 pg 1”"— 92 B“)' 2 (1X — 1 460
412 F2 (T3171 1;" [2 Dim i;n 1;") 2 _ ° ( ' )

Then substituting the solution expression for B,_.,,“) in the separate cases of flexural

deformation (4.54) and barreling deformation (4.56) and the aspect ratio 5 in (4.58) into

(4.60) and applying the solvability conditions (4.55) and (4.57) give the following

equation,

 

 

  

M2 2 4 nh(2n.,.) sinh(2952n.-.n))
_ + +0 2 2 2 _ —4 2 _

4—I§[{V(l 0' Po) (1 Po)T—Smn “711,115 90(1 Po ) (V 296271.35.

nh2( 052111..)
+s2 v l—cr2 +1+cr2 4.61

l ( ) ( )Si 295211,. ( )

sinhn,.,,(1- P62) SiflhT],n(1 + p02)

—2svl—0'22 ' +l+o'22 =1.

i( W 111511-952) ( p0) n1,"(l+p5)

where o=lz/l, and v=1 for flexural deformation, and v=-1 for barreling deformation. When

the geometry 1,, 12 and mode number i, n of given plate are supplied, the value ofM for

flexural or barreling deformation is determined by (4.61).

4.4.2 Load Parameters Associated with Buckling Initiation

The load parameter values p,, at which the plate may initiate buckling, is dependent

upon the initial geometry through mode number, n”. Their relations for the case of

flexure and barreling deformations are given in (4.55) and (4.57) and are shown in Figure

4.1. Sawyers and Rivlin (1974, 1982) first reached these first order solutions in terms of

A=p0’2 and n by using the variational approach. It can be shown for each fixed value of i

and for each n (which then specifies a value for n,,.,,>0) that there exists exactly one

solution of which satisfies (4.55). Also for each fixed value of i and for each n, there
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0.8 .

0.7 -

0.5 . p,,,

p—————————_—

0.5 ..

 

   0.4 . Barreling mode

0.3 .

0.2 -
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Figure 4.1 The load parameters for flexure and barreling modes. When 11 goes to

infinity, both modes converge to pm=0.543689 as shown in (4.65).

exists exactly one solution p}? which satisfies (4.57). Therefore there exist only two

possible solutions for each fixed Q”. The indices i=1 or 2 and n=1,2,3,... determine

special values for each solution

po = p57(i;n), p63(i;n), i = 1,2, n = 1,2,3, (4.62)

If p,, is not equal to one of the two special values, then no solution, other than the trivial

solution u")=0, exists for the homogeneous problem of k=1. That is buckling can not

initiate at loads other than those given by (4.62). On the other hand, if p,, is equal to one of

the special values given by (4.62), then the solution of the first order problem consists of
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the single function from each of the infinite series in (4.2) that corresponds to the

particular i and n which satisfy (4.62).

Note that the two curves in Figure 4.1 are each monotonic and approach the

common asymptote p,,, as n—>oo in which they share the same load parameter. When

n-—>oo, both tanhnw and tanhpaznw have the same value since of is finite and hence the

conditions (4.55) and (4.57) lead to

(1 + 9.54? - 49.3" = 0. (4.63)

The solution except for trivial case of pw=1 in (4.63) is the real root of

95.6 - 312.54 - 13;} - 1 = 0. (4.64)

and becomes by using Cardano’s solution for cubic equation (see Qiu, et al., 1993)

  

poo = [1 +3JR+ iQ3+R2+3~/R_ ,lQ3+R2]-“2 = 0.543689... (4 65)

Q = —(4/3), R = 2.

The deformed shape of the plate at n—wo involves an infinite number of wrinkles. In view

of the loading mechanism, when the thrust T is increasing, the load parameter p,, is

decreasing starting from p0=1 according to (2.16) so that the buckling initiation modes

occur sequentially such as

Tf<T{<...<T£= T£<...<T§<Tf. (4.66)

For the zeroth terms, the coefficient functions in (4.14) and (4.15), ignoring the

rigid body motion, become

BS‘KXz) = 0. C1800) = 0. (4.67)

Hence the solutions of the homogeneous equation of order a (3.8) and (3.9) for k=1 are
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gBflg'Coflngfl,us” : ,8,
(4.68)

-§;’_B§gg'sin(02,nX1),
2;"

 

B lgsin Q . ,

141” =[ i’ ( ”X0 (4.69)
B§Qcos(§22.,,X,),

98 ,,,, 2 0 , .

”le.n(Bi;n _leBim) Sln(Ql;nX1)s

p“) = p8, (4.70)

 

140%- (Biirin ‘— 9%;nBiiri)’cos(QZ;nX1)s

where B8,)(X2) are given by (4.54) for flexure and (4.56) for barreling. The particular

value of of,” or p53 is obtained as the unique root of (4.55) or (4.57) for the given value of

711,-»-

4.4.3 Asymptotic Expressions for Load Parameters

Equations (4.55) and (4.57) do not show the explicit form for p,, and this will be a

difficulty to fully analytic study. Hence it is convenient to analyze the expressions (4.55)

and (4.57) in the separate limits of n—->0 and n—mo. This gives four separate cases

corresponding to: (i) flexural deformations at low mode number ((4.55) as 1190); (ii)

barreling deformation at low mode number ((4.57) as 71-90); (iii) flexural deformation

corresponds to wrinkling ((4.55) as n—-)oo); (iv) barreling deformation corresponds to

wrinkling ((4.57) as '11—)00). Later in Section 5.4.2, the low mode number flexure

expansion (i) is used in an asymptotic stability analysis. The other cases (ii)-(iv) are given

here for completeness.

(i) p,, for flexural deformation when 11 goes to zero
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When 11 goes to zero for the flexural deformation in (4.55), the parameter p,, goes

to one as shown in Figure 4.1, so that we assume the series polynomial expansion of p,, as

p,, = 1+k,n+k,n2+k3n3+... (4.71)

The hyperbolic tangent can be expanded in a series form when n has small value as

1n3+3n5—... (4.72)tanhn=n—§ 1

Introducing (4.71) and (4.72) to the condition (4.55) gives the polynomial equation ofn in

which each coefficient function vanishes simultaneously. The lowest order becomes 113

and its coefficient shows

k, = 0. (4.73)

Then the coefficient firnctions after substituting (4.73) become

l3§k,(1+ 3k,)n5 + 161.3(1 + 215,),6
3

+ 8(— $9., — 1:31., — 112k, + 16k; + 13—6k4 + 32k,k,)n7 (4.74)

4 19 1
+16(fik3 — -3—k,k3 — 211531., + 2k,k, + ik, + 2k,k, n8 + 0(119) = 0.

Because of small 11, each term in (4.74) vanishes simultaneously so that the first term

gives

k, = __. (4.75)

excluding the trivial case, k,=0. Subsequently the other coefficients show that

_1 19

k5 = 0, k6 = "Tg'g—O, k7 = O. (4.76)
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Therefore the asymptotic equation for p,, when 1] goes to zero gives

1 1 19

which is shown in Figure 4.2 up to the fourth order accompanied with the exact values

which is computed by using (4.55). As we can see in (4.77), p,, is an even function of n.

The asymptotic equation (4.77) were also obtained by Sawyers and Rivlin (1982) in terms

oflask = p57- =1+§n2+gn4+0(n6).

 

   

   

 

  

Po

0.8 .

Exact expression (4.55)

0.6 .

Asymptotic expression

0-4 - up to the fourth order '

(4.77)

0.2 .

0 A 1 A A J
 

0 l n 2

Figure 4.2 Asymptotic equations of load parameter p,, for the fiexural deformation

when n has small value by using (4.77) up to the fourth order. For n<1, asymptotic

expression is quite close to exact expression.
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(ii) p,, for barreling deformation when 11 goes to zero

For the case of barreling deformation shown in (4.57), the parameter p,, goes to

zero when 11 goes to zero. However npo'2 in hyperbolic tangent does not go to zero. A

consistent analysis of possible forms for the expansion of p,,(n) near n=0 shows that the

correct expansion form is

Po = km “2 + km + km” + 15,112 + km” + 0013). (478)

Then the expansion

11ng = k72—2k2kf3n “2 + (3k3-k,‘4 — 2k3k,‘3)n + (4.79)

so that

lim0(np52) = kfz. (4.80)

n->

Substituting (4.78) into the condition (4.57) and the Taylor series expansion of tanh(np0'2)

with respect to the value of (4.80) give an algebraic equation of n in which each

coefficient function vanishes. Then the first term becomes

k73(1 - 4k',’-tanhk,‘2)n‘3 = 0 (4.81)

which shows the numerical value of k,=0.500169... The following terms show that k,, k;,

and k4 equal zero and the fifth term shows

k,(1—6k?)

k5 = 24(- tanth;2 + 315301511153)
(4.82) 

Using the value of k,, the equation (4.82) shows k5=-0.05234..., numerically. Hence the

asymptotic equation of p,, for barreling deformation when 11 goes to zero becomes

p0 ~ 050016911“2 - 0.05234115/2 + 0(03) (4.83)
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which is shown in Figure 4.3 with exact equation.

0.6

Po

 

Exact expression (4.57)

   

 

0.5 -

0.4 .

 

Asymptotic expression (4.83)

0.3 1-

0.2 -

0.] I

  
 

Figure 4.3 Two-term asymptotic equation of load parameter p,, for barreling

deformation when n has small value by using (4.83). Again when n<1, the

asymptote is quite close to exact expression.

(iii) p,, for flexural deformation when 1] goes to infinity

When 1] goes to infinity, the parameter (3,, goes to a finite value pw so that p,, can be

written as

Po = 9.11 +800}. (4.84)

where 6 is remainder term that vanishes as 1] goes to infinity. The hyperbolic tangents are

expanded by using infinite series of exponential equation as
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= __ -_— _ —2 —4 _ —6tanhn 1+e-20 1 2e rI+2e '1 28 0+... (4.85)

tanh(n 952) = 1 — 262"“? + 2.540962 — 2e'6np52 +

where

npa2 = np;.2(1—25+382—483+...). (4.86)

The possible form of 6(1)) can be obtained from considering (4.85) with the conditions

(4.55) or (4.57) as

5 = k,e’7-‘1 + k,e‘4" + (4.87)

Substituting (4.84) and (4.85) into (4.55) for flexural deformation and equating each

coefficient function of each order of e to zero give algebraic equations which contain the

unknowns k,. The first term which is independent on 11 shows

(1 + p54)2-4p;1’ = 0 (4.88)

and the real solution to (4.88) give a limit value of pw=0.5437... excluding the case of

unloading, p0=1, by using Cardano’s rule as shown in (4.65). The next leading terms show

 

 

that

2

k1= p. ,

1-3p$+pw 489

k =(9-21p.2.+51>;1)Ic%--2p.2.(1+6k.) (' )

2 204917-91) ’

with the numerical values of p,,, the parameter p,, when 11 goes to infinity becomes

p0 ~ p,,,(l + 1.47395e72'1 + 2.98066e‘4" + ...), (4.90)

which is shown in Figure 4.4 with exact solution.
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Asymptotic expression (4.90)
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Figure 4.4 Three-term asymptotic equations of load parameter p,, for flexural

deformation when n goes to infinity. When n>1.5, asymptotes is quite close to

exact expression.

(iv) p,, for barreling deformation when r] goes to infinity

For barreling deformation, the similar approaches can be used in the case of

flexural deformation when 11 goes to infinity. The expansions (4.84) and (4.87) are also

possible candidates for barreling. Then the results shows that

 

 

k _ (1 + PW

‘ _ 4(1- 393. + pt)’
(4.91)

_ (13-4295+1098)ki+(1+P$)(1+P$-8k1)

2 _ 4(1-3p?.+p:‘.) ’

which determines the asymptotic equation numerically as

p,, ~ pw(1—1.47391e-2'1 + 34,94543—40 + ...). (4.92)
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The asymptotic equation (4.92) with exact equation are shown in Figure 4.5. and it

 

  

  

 

 

   

0.6 2 .

Po

Asymptotic expression (4.92)

0.55 . 1

1

Exact expression (4.57)

05 4 A n . . . . 1 1

0 1 2 3 4 5 6 7 8 9 10

1]

Figure 4.5 Three-term asymptotic equation of load parameter p,, for barreling

deformation when 11 goes to infinity. When n>2.5, asymptotes is quite close to

exact expression. Otherwise, two expressions show totally different values.

is shown that the asymptotic equations are well matched when 1] has larger values in both

Figure 4.4 and Figure 4.5.

4.5 Post-buckling Deformation (Second Order Solution)

The higher order solutions “(2), u‘”,... are the expansion in e as given by (3.1) to

account for the postbuckled deformation. This is determined by the nonhomogeneous

nature of the equations which effect f and g in (3.8) and (3.9). To determine the second

order solution bifurcated from one mode of the first order solution, we now choose either
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fiexure or barreling and also fix i=1 or 2 and mode number n=1, 2, 3... in the first order

buckling solution u“) in (4.68) to (4.70). It will be convenient to rename i to j and n to m

as we wish to use j and m in what follows as the expansion indices for the chosen first

order mode. Thus for fixed j=1 or 2 and m=1,2,3,... as determined from the bifurcation

mode under consideration, we seek the coefficient functions BM”), A”(2), Cm”), i=1,2,

n=1,2,3,..., in the second order case.

For the zeroth terms, the general equations (4.14) and (4.15) with the right hand

sides of the second order equation (3.11) become

II p8 ' I I I I I

11382) “—90%” = -u,—,—,—;(B,..B11.2 ) 5 90362) = OMB/($13}; ) ,

" 5 (4.93)

. Po . .
on F, 11832) —poC62) = #155519» 3,93 .

where

Brim = B};1ni"_'sz;InBJ(;iri° (4°94)

To within the rigid body motion given by a constant in 80(2), the solution for (4.93) is

I I I p8 I I

812’= 1258112810. C19 = {(311.2319) Jrq‘im 311.2] (4.95)

For the other coefficient functions, we will utilize the generalized solution for

nonhomogeneous equation, (4.43) with the solvability conditions (4.47) and (4.48).

Substituting {(2), gm in (3.1 1) into the equations (4.7) and (4.8) shows the following results

for the right hand sides of the equation (4.9) and (4.10):

(A) If the mode of u“) is j=1 and m, then only the expressions for i=1, n=m and for i=2,

=2m-1 of “(2) are non-vanishing:
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Iizrii = —PIPBZQI;mCii}n Jig): = plCiirir'a

K132. == -p1(31!.’.'+p5201..A1!.2.). (496)

G132. = 2119195391....3111. H132. = 91(C112.+21195301;mr41!3.),

and

.
.
.
.
N
I
H

[
\
N
‘
“
b

112.3..-1 01,m(C1!.1.'31§2.-C1!,2.31!2.').

0an 915461354112.-C1§2.All.2.'),

(4.97)

Kiym-l = iQI;m(Aiirir’Bilrir _AilrirBiirir')a

l l

GSQm-l = ioleiirirCiirir’ Hiiim—r = iQI'JnAi‘IiIBiirir

(B) If the mode of u“) is j=2 and m, then only the expressions for i=2, n=m and for i=2,

n=2m of "(2) are non-vanishing:

[£2121 = _plp0202mC3irin J39: = plciirir'a

K113. = -p.(31!.2.'+p5202-,.A11.2.), (4.98)

0132. = 20910530253131, H132. = 91(C122.+ZMP5302..A1!,2.),

and

1 . .
119.. = —,92..(C1!.2. 8121-6111810. 1.

1 I I

J19. = 792.4610. A112. $121419. 1,
1 (4.99)

K59»: = —§QZ;M(A$irir'B£lrir-A$irirBii,rir')9

1 1

059m = —§QZ;InB£itiIC£irin H53»: = —§QZ.MA$LZIB£BV

For the modes which are not mentioned above, the right hand sides of the equation (4.9)

and (4.10) vanishes so that these modes have the same solutions as those for the

homogeneous case or u“). However, according to the orthogonality rule (3.4), the solution
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of these modes must be eliminated. For the cases of n=m in (4.96) and (4.98), the

differential operator are the same as those of homogeneous equation so that in most cases,

the solution does not exist. But for the special arrangement of the nonhomogeneous terms

which satisfy the solvability condition, the solutions exist. Substituting (4.96) and (4.98)

into the right hand side of (4.11) and (4.13) with the relations (4.53) for Am,“ and C111,,"

gives

]=-4plp5'(B11."'-Q-2-3.1”)” (4.100)
1’" 1’"

and

g“, = ‘2P196'(B}-,in)"—sz;m 9643193)

2'. = 49195'(B,1.,.""-Q?BB-'-1'2)
Jv’" 1’"

(4.101)

Substituting from (4.100) and (4.101) into the solvability conditions (4.50) with Bh=B“)J-_.m

and integration by parts to the left hand side gives

2p1p5'[{(B,<,0" + 0,2,..prB<1.2)B<1.> 1|:

(4.102)

—2 1: {(31.202 + 9,2..(B1.‘,.2)214X2] = 0.

Considering the first order Fz-boundary condition (4.52),, the condition (4.102) becomes

p,=0 since the integral is positive definite. Hence the solution for the case of n=m exists

only if p,=0. If the first order load parameter p,=0, the right hand sides, (4.96) and (4.98)

vanish so the modes n=m have the same solutions as the homogeneous solutions. Due to

the orthogonality between the first order and higher order solutions, the solutions of

modes n=m must be eliminated. Therefore if the mode ofj=1, m is chosen for u“), then

only the mode associated with i=2 and n=2m-1 in the second order solution expansion “(2)
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is governed by an equation that has nonhomogeneous terms. That is, only Bfim, has

nonhomogeneous solutions so that 81%,} = 0 for all n and B5?) = 0 unless n=2m-1. On

the other hand, ifj=2, m of u“) is chosen, then only the mode i=2 and n=2m, that is, 8533",

has nonhomogeneous solutions. Thus for fixed mode variables m=1,2,3,... andj=1,2, there

is exactly one nonzero B3,? which corresponds to only BS} governed by a

nonhomogeneous equation. The index i for this nonzero second order B3,) is always i=2

and n is given by n=2m-1 ifj=1 and n=2m ifj=2. Note that the mode number n of the

second order is different from the mode number m of the first order so that the differential

operators of the second order are different from those of the first order. Hence there exists

a unique nontrivial solution to the second order equation (4.16). After combining the two

cases in which the nontrivial solutions are possible to exist, the right hand sides become

1 l

1 Q—TWYIMSan—la 1 g—lfi—MKlmsnflm—l’

11?) = 31198 1 J1?) = 51198 ,

-mY2m5n2m9 -mx2;m8n;2m’ (4.103)

1 0’] 'msn‘Zm— 19

K?) = _ 2( ’ ’

in 2‘30 —O'2:m6n;2m2

and

'_1_'Bl Biirirsn'Zm-lr LBlunBiirir'an'Zm-l’

, 1 9....2"'~ ,1 or... '
G1,.) = 51198 1 H§,,2= 511123 1 (4.104)

'KTz—BimBiirirfinfim’ _EB'ZynBilyir'éan’

where the upper terms are forj=1 and the lower terms are forj=2 and A1,," and C”, have

been converted to Bj_.,,,. The notations used above are
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(1., = B};1Iri"Bj(;lni‘-Bj(;lni'Bj(;iri'9 71;»: = B" BU)... iLMBJ(#i'i"Jv’" 1;"! 14’"

= " BU)’ — 8,.,,,B<.1>"
Kj;m j;m jLM 1,"! 9

(4.105)

and SM is the Kronecker delta (6M = 1 ifp = q and SW, = 0 ifp i q).

For the equations (4.103) and (4.104), the mode numbers i and n in the left hand

side of (4.9) and (4.10) are changed accordingly. And from the definitions of mode

number in (4.1), Q," can be written in terms of Q”, as

02:2711-1 = 291m: Q2;2m = 292;».- (4-106)

so that the formulations for the second order can be considered as the generalized

formulations developed in Section 4.2 with 29m in place of Qw- Applying the relations

(4.106) and the right hand side terms in (4.103) and (4.104) into the boundary value

problem (4.11) and (4. 13) for both cases ofj=1 and 2, have the following format

B12)” — 4912,,(1 + p54)B(2)" + 169,1, (5543(2)

' 1 .. ' ~ (4.107)

= mPO(Y/‘;m — 2Kj;m + iaJ‘M—ZQJZWGJW) 51(2)’

011 F2,

II
1 ' I ~

8(2) + 4szynp6430) = mp0(§aj;m + BjJflBJ(.lni) E gin,

B(z)m-4QJ'2;,,,(1 + 2p64)B(2)'
(4.108)

1 . . r "
= wpo[Yj;m + iajmr " 2(1 + P04)sz;majzm " zflj;mBj(;iri :15 81(22):

where

3522m_ 2 19 for . = 1’

B<2> = ’ ' 55 = ( I, (4.109)

359m, _1’ for J = 2
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According to the relations (4.12), the other coefficients become

 

2

Am 90 (3121233100,m)

 

2:2. 2
m

4.110

C121 —- 1153 B121"'—4Q.2.,,,B(21'wp0 —4Q2.55 +2 ( )
_ 40}, l ‘T(°‘Bm" ma)... 175)],

where

A2 , c2m_ , -___

A12) = 53”“ Co) = 5'3 ‘ J 1’ (4.111)

A13... C13... = 2-

Applying the first order solutions (4.54) and (4.56) with zero right hand side into (4.94)

and (4.105), then the right hand sides of (4.107) and (4.108) becomes

1‘” = -55002,..(p5 _15')5,.,,,, (4.112)

and

812’ = l912591-2-...(7p5“+ 03,15,231!»
.III

2 ’ (4.113)

g1” = -255,a,2,,(2p,4 —1)(B}}.2')2

Substituting 3,1,1”; for flexure in (4.54) or for barreling in (4.56) reduces the equations

(4.112) and (4.113) to

im= ,3,,-va2s..9.-..p5(1-pr)21v(1-pa2)sinh{n,..<1+55%}

+(1+p5z)sinh{Q--,m(1—952)X2}].

(4.114)

gi2) = 4911421300130'1'1)Qj3yn[51nh(29j;n-X2)+5};m9625mh(291m902X2)

—Sj;m{ (1 + 962)Sinh{ 0);..(l 7‘ 962))(21 + V(1 - 962)Sinh{Q,-,m(1 - (262)21’2} } 1.

(4.115)

76



812’ = —90sz5(21>54 -1)Qj‘,m[cosh(2§2).mX2)+ 3,2;m964005h(201;m1362X2)
(4.116)

- V(1 + .9295“) - 28);..9521 cosh { 9,...(l + p52)X2} - vcosh { Q,...(1 - p52)X2} 1].

where v=1 for flexural mode and v=-1 for barreling mode. The general solution to the

differential equation (4.107) with the boundary conditions (4.108) has the expression

B121 = N, sinh(2p52(2,,,,X,) + N, sinh(20,-.,,,X,)

. . (4.117)

+1\1_w.smh{(p52 + 1)Q,,..X2} 211’5smh{(p52 ~1)Q),..X2}-

Here the first two terms are from the homogeneous part and the rest are from

nonhomogeneous part with constants N,’s. Introducing (4.117) to the differential equation

(4.112) and matching the coefficients give N3 and M, as

_ 3 (954-1)(p52+1)

N3 — mesjimflji’"p°(3p52+1)(p52+3)’

3 (p54— 1)(p52- 1)
N4 = -O)VWSj-;mflj;mp0(3p62_1)(p62—3),

 

(4.118)

 

and to the boundary conditions (4.113) give the values of other coefficients as

_ wngmpa

' _ 32A

(011129.. p0
= 1""

N2 16A

[4954D1905h(211)‘ (1 + p54)Dzsinh(2n)],
 

(4.119)

 

[p5zDzsinh(295zn) — (1 + PB4)D1°05h(290211)],

where

= 4p5fisinh(2952n)cosh(20) — (1 + p54)zcosh(295zn)sinh(20). (4.120)

and

01 = 211(952) + vd1(—95)—(7p5“ +1)[sinh(20)+51%mp5zsinh(2952n)]. (4.121)
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D2 = d2(962)+vd2(-962)

 

_4(2964 -1)[(cosh2n -— v) + 512;»: 904(90511206211. _ v)], (4.122)

1— 2 2 '
,

6W) = "31""(1 + ”if (2215,??? L“ + 7501521120 + 5..)11, (4.123)

512(E.) = 4.431149“ “112134“ 752)(1 +3§)(3+e=,) +8§(1—2§2)]cosh(1+§)n. (4.124)

The denominator A represents the combination of the conditions (4.55) for fiexure and

(4.57) for barreling such as

A = 45153213132101: p54)2tanhp5zn -4p56tanhn}
.. .. (4.125)

+ C1C2{(1+ p54)2tanhn — 4955tanhp52011.

The solution (4.117) can be also obtained by modifying a generalized solution (4.43) with

replacing 0,," by 20m. The particular solution (4.40) contributes to the last two terms

including N3 and N4 in (4.117). Using the variational analysis, Sawyers and Rivlin (1982)

also found the same type of second order solution (4.117) which only differs in the

notations. Finally, the corresponding second order nonhomogeneous solutions

u‘2’=(u,(2), u212),p(21) become from (4.2) with (4.95) for the zeroth term and (4.110) and

(4.1 1 I) for the higher order as

up) = .A12)sin(ZQ,-,MX1)2

1
u)” '2'PoB(l)B(1)'+B<21cos(20,;mX1).

1;"! 1;"!
(4.126)

4

2‘” = 202191218) + 12)-18.818? “220828.220,
Jim

where Bfig has only homogeneous solution and 853,} has nonhomogeneous solutions

359m , or 8533", forj=1 or 2, respectively. The nature of coefficients B12) depends on the
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choice of the first order solution - flexure or barreling mode and j=1 or j=2 and mode

number m.

4.6 Summary of Full Buckled Deformations

The fully finite buckled deformations v,(X,,X,), v,(X,,X,) with pressure p(X,,X,)

after perturbation expansion are defined in (3.1) and solutions of the first and second

orders are determined in the previous two sections. Now we will summarize the results as

a reminder of complex procedure. The buckled deformation with respect to X, axis is

given from (3.1), as

v2(X1.X2) = eu1'>(X.,X2)+ e2u1221X..X2)+ 0(22). (4.127)

More specific result is from (4.1), (4.69) and (4.126), as

V2(X1,X2) =

1 , . 2m—
831,2,(X,)srn( 211 7tX,) 

+ 52{.p2_°B(g,),(X,)B(§,2,'(X,) + 81?;(X2)cos(2m, lit/1’1) } + 0023),
I

(4.128)

 

<

cB,l,2,(X,)cos(lflrtX,)

1

+ e2{9,-°Bs!.2.(X.)B12.2.'(X.) + 812.1(X2)cos(2,—’"-nX.) } + 00:2).
I 

where the upper solution is forj=1 and the lower solution is forj=2. The coefficients 8,9,}

are given in (4.54) for flexural deformation and (4.56) for barreling deformation and the

coefficients 8,13,} are given in (4.117). The subscripts j=1,2 and m=1,2,3,... are indices of

the chosen onset bifurcation modes. Then deformation v,(X,,X,) along the X, axis and

pressure p(X,,X,) follow v, solution (4.128) in an appropriate order of e from (4.2), (4.53)
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and (4.110). In conclusion, there exist four different types of solution which depend on the

deformation types such as flexure or barreling and chosen value ofj=1 or 2. In each type,

there exist infinite modes of solution.

4.7 Reduced Formulations Due to Symmetric Load Parameter

The first order solutions u“) obtained in (4.68) - (4.70) may affect the formulations

on the load parameter and the energy equations so that their equations will be reduced to

simpler forms. These simplified forms will make less efforts to investigate the stability

near buckling initiation.

4.7.1 Load Parameters

With the results on the first order solution in hand, the postbuckling formulations

given in solvability conditions can be much reduced. In particular, we now show that p, as

given by (3.33) must vanish. Applying integration by parts once with respect to X, to the

first two terms of R, in (3.31) yields

8. = ir2P(')(uI”“i,li"ui')ul,'i)|r|dX2
(4.129)

+ 11,3121'2018431 — u131u13))dx.dx..

Then applying the F,-boundary conditions in (3.9), to the first term, the numerator R, in

(3.33) becomes

12. = sllnpuxumum -u131u13))dX.dX.. (4.130)

Substituting from either option for the first order solution (4.68) into (4.130) and

performing the associated integration gives
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R, = 0. (4.131)

Rearranging R, in (3.32) yields

R. = 41111552491201 — u12>p<0>dx + 11np<n(5,25(31— u1}))a'x

4.1 2

-2up531,l(u1”u1,‘l-u1,‘lu1") dX,-.irl(p“1u§'1)|r2dX,. ( 3 )

 
2

Integrating by parts on the first integral with respect to X, to the first term and X, to the

second term produces the same terms as the second integral in (4.132). And in the third

integral, integration by part with respect to X, on the first term yields the same term as the

second. Then collecting all the remaining terms gives

= _ —2 1) (1) _ -3 1) 1)
R2 PO 1314 P lrldXZ 21190 “I ”i Irhrz

(4.133)

+ 411953 Jr. 12131 u1"|,2dX1 + Zlinp‘”(p52u1,‘l- 12133.)“-

Entering the F,-boundary conditions in (3.9), to the first two integrals in (4.133) shows

R. = 21211552 1,. 121312194, dX.+11np<l>(pa2u131— agndxr. (4.134)
I 2

Substituting the first order solutions (4.68) - (4.70) into (4.134) and integration with

respect to X, now yields

p8 I II II I

B. = -41211,72-B1"(Q%p5431"+31" )|,2— lrzuBs') )2+Q..(B1'> )2)dX.. (4.135)

The F, boundary term in (4.135) vanishes by virtue of the homogeneous form of the F,-

boundary condition (4.13),. Then

R. = 4011%11,1181”")2+£2.2(B12>')2)dX.. (4.136)
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It is significant to note that

R, > 0, (4.137)

for nonconstant 8,1”. The results on R, in (4.131) and R, in (4.137) in conjunction with

(3.33) show that

p, = 0. (4.138)

This result simplifies the expression of p, in (3.38) to

p, = 772. (4.139)

The numerator R3 can be reduced via integration by parts with respect to X, on the first

two terms in (3.35) such as

R3 = irz[u(|>(p(2)u§_')+p‘11u§?3)- u§1)(p(2)u(]) +p(l)u(?))]|rldX,

41,, 029013142) — 4131u12))+p<2>(41}14531— :43) u13))1dx

(4.140)

+ 112500131421 - u131u121)dx
n

+ 11” 15944314412)—u131u12))+p<2><u131u13) —u131u1,'))1dx.

After introducing the F,-boundary conditions (3.9), for k=1 and 2, the first row in (4.140)

vanishes and rearranging all the remaining terms yields

R. = Ziinlp1"{(u131u1?1+ u12)u131)—<u131u1.2)+ up 431))

+p‘2’(u1.'1u1.‘l-u1.'l22131)]dX1dX2-

(4.141)

4. 7.2 Energy Equations

With p,=0 in the condition (4.138), the energy terms in (3.55)-(3.57) can also be

reduced. However, it is convenient to simplify first the terms in (3.43) - (3.45) and (3.53).
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After integration by parts with respect to the variables of u,“) on (3.43), the variables of

ma), i=1,2 on (3.44) and the variables of u,(21 and u,(31 on (3.45). then (1),, k=1,2,3, become

(I), = irzumufilqueririu111u511|r2dXh (4.142)

9. = 1r <u131u122—u10u12>)|,2992+ 1, (u111u12>-43141201,de5 (4.143)

9. = 12012142413342” 4314420122.
1

(4.144)

- ..(u121u12>—u111u122+ 4431412221.Xm-

Substituting F, - boundary condition in (3.9),, all the first integrals in (4.142) to (4.144)

vanish so that

9. = -l,lu131u1'>|,zdx.,

(D2 = i,l(u1,‘lu12’-22131u12’)|,2dX1, (4.145)

9. = -l, <u121u12>—u131u12>+ 43149)), 420.

Similarly, after integration by part with respect to the variables for 12,01, the definition

E,J,’s in (3.53) are reduced to

E..- = 1201:1410 + us: 1221”)|,,dX2 + 1,011.4» + u155u22)|,de.
(4.146)

—lln 104:1. + 2415.291) + 04:21. + u1€2.)uy>ldx,

where i=1,2 andj=1 ,2,3,.... For i=1, the coefficients of u,” and 11,11) in the third integral are

substituted by the governing equations in (3.8),, for k=1 and due to the F,-boundary

condition in (3.9),, the first integral vanishes. Hence

E..- = 1, 043114» + u131u1/1)|,24X1--,l-,iln(p5‘p‘,'lu1”+ P0P(,liuy))dx- (4.147)
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Integration by parts with respect to the variables ofp“) in the second integral in (4.147)

and application of the boundary condition (3.9), yield

._ . . P .

=.,- = ((5213154) + 431119795949) 4X.
r2

 
(4.148)

1 . .

+ T1 iin(p5'u1,’1 + p5u2’2)p‘”dx-

The parentheses inside of the second integral in (4.148) is the left hand sides of

incompressibility conditions in (3.8), so that substituting the right hand sides of the

condition to (4.148) becomes for eachj

 

 

 

3.. = 1,1041%!”u1,')usl>—%’p<'>u1”) 4X5 (4.149)

a. = l, (24,042+u131u122—39pmu122) 4X.
' ,1 ’2 (4.150)

+ 5,1inp‘”(u1,'1u1.'l — u131u13))dx.

3.. = ((53,50).. u131u12>-%p<1>u12>) 426

(4.151)

+fillnp<l>152<p52u131-u1'))+01391219131421)

+ ("132291-1413 22131) }dX.

When i at 1 , in the case of 3,, the formulation is slightly different from the previous i=1

case. Since the coefficients of u,“ and u,“ in the third integral in (4.146) cannot be

substituted by the simple terms, the formulation has more terms than i=1 case as
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E:22 = irl(ui,ziu12)+ ug?)u§21—%2p121u§21) dX’r

r2

+ $11,101,843) - u1,'1u1}3)p<2>dx (“52)

-,l,11n1u12>(p<3141}1—p<3)u131)+ 2422029124131 -p<,') 4111))dx.

Then, from the abbreviated equations (4.145) and (4.149) to (4.152), the terms in the

expansion of energy difference (3.55) to (3.57) have reduced formulation. Substituting

(4.145) and (4.149) into (3.55) yields

dX,. (4.153)

r2
 

B. = ,1, H013) - p52u1fl)-P,fp1"}u1”+(u111u1‘2- 5524311410]

The coefficient of u,(” in the first term in (4.153) vanish due to the F,-boundary condition

(3.9),, and after integration by part with respect to X, to the second term and applying the

F,-boundary condition (3.9),, E, becomes

E. = 51,013) +pa2u1}))u1'>|,2dX.. (4.154)

Substituting again the F,—boundary condition in (3.9), to the coefficient of u,‘” in (4.154)

yields

E, = 0. (4.155)

Similarly E3 in (3.56) with (4.138), (4.143) and (4.150) becomes
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E3 = ”(P62¢2+Elz)

 

Po
= 1_-21__(1) 2) 1 —21 2)1,1101.) 5.221)) ,p }u1+(u1,)+p.u1,1)u1] 4X. (4.155)

r2

+ ,111594511840 — 431439444X.

Applying the F, -boundary conditions in (3.9), to the first integral, E3 becomes

3: p u u —u u , ,. .E 31”“ (0(1 3 1 ])dXdX (4157)

The integrand of E3 in (4.157) is the same as that of R, in (4.130) so that the procedure

leading to (4.131) also gives

E3 = 0. (4.158)

Based on the results (3.54), (4.155) and (4.158), the first nonzero term in the energy

difference is, at minimum, the fourth order term 13., so that

AB = 213E434+ 0(85). (4.159)

With (4. 138), the formulation of E4 in (3.57) becomes

1... .—

E4 = P(- 29133sz1 '1' 962(1’3 '1' 5:22 '1' :43)- (4-160)

Here (I), requires use of u“), 3,, requires use of u“) and “(2), and CD3 and 3,, requires use

of u“), “(2), and um.

We now establish, however, that E, can in fact be determined without first having

obtained “(3), Using (4.145), and (4.151) we may write
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5,25, +2, = 1r. [-pa2(u12)u12>—u1}1u12>+ 440:4”)

dX,+ u111u12>+ u1})u12>—%9pmu9>]
r2

 (4.161)

+fillnp<l>1pz<pa2u13w u13))+<u18u1,21+ 42141))

414131142152 24.21221?de-

Note that the third order solution “(3) appears only in the first boundary integral in (4.161)

and it may be rearranged into the form

dX,. (4.162)

I.2
 

11424013) —552u1}1)—9,,°pm}+ u12><u131+ p52u1fl)-p52u1?lu12’]

Note, however, that the multipliers of u,(31 and u,(31 in (4.162) vanish by virtue of the F,-

boundary conditions in (3.9), for k=1. Hence the form of (4.161) is reduced to

P62¢3 + E13 = “962 J11 “1,21 “inlrzdxl

+ 31392152155913) - u13))+(u131u1,21+ 44122212131) (4163)

4:431:12. + u121u13)))dx.

It is shown in (4.163) that the third order solution no longer appears. This means that

determining of “(3) is not necessary to evaluate the immediate postbuckling stability

competition between the buckled state and the homogeneous solution provided E4 at 0.

Substituting (4.145), (4.152) and (4.163) into (4.160) gives

E4 = R6+ R7132. (4-164)

where
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B. = $51,, (— 2552u121u12>+ u121u12> + u12)u12>+ 1,95%?) 4X.
I.2

+ 115940182112) + ut2)u1}1)- 0431542) + 2:121u13)))dx

 

1 (4.165)

+ , llnp<2><u131u131 — ugliumwx

$11,, {4202012431 42012431) + 420012431—p<31u131))dx,

R7 = 2111253 19131219456111) + iinp1')(p52u1,'l -u£,‘1)dX. (4.166)

Rearranging the first integral in (4.165) yields

i. 12 In ["12’{ (441,21 - 952221.21) - $100)} + (241212412) - 952221.21 22121)] 011’1. (4-167)

 
F,

Substituting the F,-boundary conditions in (3.9), for k=2 into the first term and integration

by part with respect to X, to the second of second term in (4.167) give

11 2429024100 dX + 111 0412) + p-2u121)u12>| dX (4 168)
2 Ian ’ r2 1 2 1‘, ’ O ’ r2 1. .

Again substituting the F, boundary condition in (3.9), for k=2 into the second integral

yields

11,506,251}, - u12>u131 4.,an- (4.159)

Hence R6 in (4.165) becomes
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R. = 11,015,250, —u12>u131)|,de.

+ 11115940131421 + u12)u131)—(u111u1.2) + u121u13))1dx

(4.170)

+ i11np<2>1u131u91 — 4943092

51151212991213 91,8481) + 1420;015:131 —p<31 u13))1dx.

4.7.3 Energy and Load Parameter

In equation (3.47), the relation between the thrust T and the load parameter p, is

revealed for the case of symmetric bifurcation. Now we will investigate the relation

between the energy difference AE and the postbuckling behavior. The first non-zero term

of AE appears in E4 and the postbuckling behavior depends on the sign of p,. If p, is

negative, then the progressive buckling occurs in view of the relation between T and p,.

Right afier the buckling initiates, there exist an extension of trivial solution path and the

buckled paths. The actual deformation will follow the energy minimizer between these

solution paths — stable deformation.

Integration by parts to the last integral for R6 in (4.170) with respect to the

variables ofp“) gives

_ % Jr2p(1)(u(2)u§1) — u§2)u(1))|r‘dX2 -%irlp‘”(u12’u1,'1 - u,2)u(1])|r2dX, (4 17,)

«1 11159013142) +u131u121—u131u12)—u13)u121)dX-

The first integral in (4.171) vanish after applying the boundary condition on F, in (3.9),.

Then R6 in (4.170) becomes
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B. = ,1Inp<1>uu10u121 + u12)u12))— 0:131:42) + u121u13).)1dx
, (4.172)

+ 11np<2>(u1})u131- u1})u13))dx.

Comparing R6 in (4.172) with the result on R, in (4.141) and using the relation for R3 in

(4.139), establish the following relation.

1 1
,R, = —-R,p,. (4.173)R6= 4

Note also that R, in (4.134) and R7 in (4.166) are related by

R, = R,. (4.174)

N
I
H

In conclusion, the first non-zero term in the energy difference E4 in (4.164) with (4.173)

and (4.174) becomes

1

B, = Z8,5,. (4.175)

The relation (4.175) shows that E, is simply related to p,. Since in (4.136), R, is always

positive for the nontrivial solutions so that the sign of E4 depends on the sign of p,. If

p,<0, then E4<0 so that AE<0. In other words, the solutions corresponding to buckling

have lower energy than the trivial solution at the same load - the buckled path is stable.

Therefore when the progressive buckling occurs, the buckled path is stable in the vicinity

of the buckling onset. The other case is also clear. When the snap buckling is possible,

then the trivial solution path is stable in the vicinity of buckling onset. In view of the

above statement, if the values of p, are known, then the postbuckled behavior and the

stability of each path can be obtained.
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The parameter p, is given by (4.139) involves R, and R3 so that the energy (4.175)

becomes

154 = --R3. (4.176)

The parameter R3 shown in (4.141) involves the first and second order solutions u“) and

“(2) determined in Section 4.6.

4.8 Summary

The solutions of the first and second order in the expanded linear type boundary

value problems are obtained by using the separation of variables and infinite series

method. Physically, the higher order solutions are explained as the bifurcation from one of

infinite modes of the first order solution or buckling initiation. With the first order

solution, it is shown that the first load parameter p, vanish so that the buckling behaviors

become symmetric with respect to the trivial or homogeneous deformation. According to

the symmetric nature, the formulations on the higher order load parameters and energy

formulations are much reduced. By substituting the first order solutions and pl=0 into the

energy formulations, it is revealed that the first nonzero terms come from the fourth order

energy equation for which only the first and second order solutions are necessary to solve.
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CHAPTER 5

STABILITY EVALUATION FOR A NEO-HOOKEAN PLATE

5.1 Introduction

The energy difference (3.48) between the buckled and homogeneous deformations

determines the energy minimal, or stable, path after bifurcation occurs. The equations

(3.54), (4.155) and (4.158) show that the first nonzero term in the energy difference is the

fourth order, E4, so that the energy difference (3.48) becomes

AE = 213E424 + 0(85). (5.1)

Also as we have seen in (4.175), E, is linearly related to the second order load parameter

p, as E4=R,p,/4. Specifically, the sign of E4 is the same as the sign of p, since R,>0 in

(4.137) so that if p,<0, then E4<O which becomes AE<O. Then from (4.139),

Sign(p,)=Sign(-R3) which shows Sign(E4)=Sign(-R3). These correlations are what one

would expect for a AE that is 0(84). That they have emerged here after a great deal of

tedious reduction is therefore comforting. The analogous correlations do not appear to be

present in the work of Sawyers and Rivlin (1982). A comparison between our

methodology and the Sawyers and Rivlin methodology is the subject ofAppendix A in the

context of some simple problems. In particular, this shows that the two methodologies can

give different stability predictions.

The complete equation for E4 is shown in (4.176) as E4=-R3/4 so that the energy

difference (5.1) becomes

AE = — %I3R384 + 0(85). (5.2)
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Hence it is necessary to evaluate the sign of R3 to determine the stability of buckled

deformations and from now on, we refer to R, as the stability parameter. If R3>0, then the

configurations on the bifurcated path have less energy than those on the homogeneous

solution path. Hence R3>O gives that the nonhomogeneous deformation is more stable.

Conversely ifR3<0, then the homogeneous deformation is more stable. In this Chapter, the

stability of the bifurcated nonhomogeneous deformations and homogeneous deformations

near the buckling initiation will be investigated by using the reduced formulations and the

buckling solutions.

Our comparison is to Sawyers and Rivlin (1982) who analyzed the stability of

those type of homogeneous deformations in a neo-Hookean rectangular plate by

comparing the energy of homogeneous deformation with that of the bifurcated

deformation. This was done in the vicinity of the bifurcation points. Their analysis,

however, is apparently not a direct energy comparison between the homogeneous and

nonhomogeneous bifurcated deformations, either flexure or barreling, at the same level of

loading condition as analyzed in this work. On the basis of their analysis, the following

conclusions were obtained: (1) From Figure 3 of Sawyers and Rivlin (1982), the

homogeneous deformation is more stable than flexural buckled deformation when n<0.32

and the flexural buckled deformation is more stable than homogeneous deformation when

n>0.32. This is based on their equation (8.4). (2) From Figure 4 of Sawyers and Rivlin

(1982), the homogeneous deformation is more stable than barreling buckled deformation

at all values of n. This is based on their equation (8.7). Note from (4.55) and Figure 4.1

that the value n=0.32 on the flexure branch corresponds to p=0.966. Also n—mo

corresponds to poo-90.5437. Thus the analysis of Sawyers and Rivlin predicts the
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followings: For increasing compression ratio, and hence p decreasing from p=1, and near

bifurcation onset, (1) the homogeneous deformation is more stable than flexural buckled

deformation for p:l—>O.966, (2) the flexural buckled deformation is more stable than

homogeneous deformation for p:O.966—->O.5437, and (3) the homogeneous deformation is

more stable than barreling buckled deformation for p:0.5437—>O.

5.2 Formal Determination of Stability Parameter

We first examine p,, which is related with stability parameter R3. The denominator

R, of p, in (4.139) is always positive for the nontrivial solution in view of (4.137). Hence

the formulation (4.139) shows Sign(p,)=Sign(-R3). Direct substitution of the first order

solutions (4.68) - (4.70) and the second order solutions (4.126) into the simplified

equation of R3 in (4.141) give upon collecting values with X, and X,:

+ Q ,
E

'
9
:

‘2
':
8 + N h
; E ‘7
2

C
5

r
—
‘
fi

C
l
)
!

~
N

Q
l

L
L

1
\

+ Q 5
5

6
5

O
R 1
3

A

'
-
.
J

L
/

(5.3)

+02) Aume _ _ +A(”B(‘>' _ _

Casi C3Ci

+-C62’ Aurgm _ +A(1)B(')' _

2 5.2 cf

Here the following trigonometric notations have been used,

C, = cosQXl, S, = sinflXl,

' sinZQXl,
_ (5.4)

C3 = cos2QX1, S3
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and upper (lower) terms are for j=1 (j=2). Note that the subscripts j and m of the

coefficients A“), 3"", Cl") and (2 which denote the chosen mode of the first order solution,

are ignored for simpler expressions. Integration (5.3) with respect to X1 gives

R3 = Q]l J12 [-coC(')(A(2>’B(”+A“)B(2)'+2A“)'B(2)+2A‘2)B“)')

42 (5.5)

—o)C‘2)(A(”B“)' _Am'Bm) + C(1)A(11362)' + C52>(A<‘>B“))']dX,.

where m=1 or -1 for j=1 or 2. According to the relations A“) and CI") to 8"" shown in

(4.53) and (4.110), the equation (5 .5) becomes the function of only B“) as

2 p4

R3 = 1491i]! [,2'3'5'2(2(0961QA + QB)dX2’ (5-6)

where

_25' { 3(2)"B(1) + 4(8“)'B(2))'} + a(B(2)"—4QZB(2))',

-a{a" - 40201 + 2([3"B(‘) — B'B(”')} + 213'(a'B(') + 2018“") (5.7)

+ 3(3(1)3(1)')1{2p'3(1)'+ szflgamury},

QA

Q3

Here B and a are defined in (4.94) and (4.105). Note from the new notations that Q, is

function of B“) and 3(2) and that Q, is function of only 8‘”. Note also that the second order

solution 8‘” is more complex than B“). One approach to evaluating (5.6) is directly

substituting B“) in (4.54) for flexure or (4.56) for barreling and 3‘” in (4.117) into (5.6)

and integration over -l,<X,<l,. However this direct approach may be modified by reducing

the order of differentiation for 3(2) in the integrand Q4. The third and first order

differentiations of 3(2) reduce their order by one as shown in the followings.

ail-3'" = (a§")'—a'§",

BH'B'B' ___ (BrBrer _ B"ZE)' + 28198:"? _ BanFn’ (58)

BB'P' = (BB'E' - B'2§)' + 23'3"? - BB'E".
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Here the simpler symbols B=B“) and 3 :8”) are used. Hence QA becomes

Q, = (0173" — 4(23'3" + QZBB')1‘§'+ 803”2 + 2923'2)1‘3)'

_ _ (5.9)

— 8 { B'B" + 2(B"B'" + 2QZB'B")}B — (a’ + ZB'B — SB’B" — 4QZBB')B".

Q, can be also rewritten as

Q3 = 2(0113'BY - 01101" + 4(13"3 - B'B' - 02(1)}

(5.10)

+ 8(BB’)'{ZB'B' + 02p54(BB')' }.

The symbols [3, 01 and solutions B and B are substituted into (5.9) and (5.10), then the

equation (5.6) after linearization of the products of hyperbolic equations becomes

12

R3 = pllM4Q3l: ;2=,Y[1,k]sinh(z,QX2)|_l

2 (5.11)

+ of: [112, 0] + ,1: 1 Y[2, k] cosh(Z,,QX,)]dX,:|.

The coefficients Y[1,k] and Y[2,k] are functions of the load parameter p0, the aspect ratio

s(p0,n), the switching constant v = :1 along the deformation types and the new

dimensionless definitions, 17,-, i=1,2,3 associated with the coefficient functions N,- for B.

The full definitions of Y’s with variables Ao=po’2 introduced in (3.7) are shown in

Appendix B. In general, these Y’s involve products and quotients of hyperbolic functions.

The 12 different kinds ofarguments Z, in the hyperbolic functions afier considering 11:01,

are

zl = (1-10), 22 = (1 +10),

2, = (1—310), 24 = (1 +310),

4:2, %=2%, 6n)

27 = 2(1—2.0), Z, = 2(1 +40),

Z9 " (3’Ao), Z10 = (3 +7vo),

2,, = 4, 2,2 = 410.



Since Y’s do not include the variable X,, the simple calculus leads the equation (5.11) into

 R3 = 2p11M4g23{n1/[2,01+Z;2=I(Y[1,k]+ ”21(1) sinh(an)}. (5.13)

Note that the terms of k=1 and 2, k=3 and 4, k=7 and 8, k=9 and 10 are antisymmetric for

flexural deformation of v=1 and symmetric for barreling deformation of v=-1 with respect

to 10. Applying the coefficient notations A7,. from (4.118) and (4.119), s=s(p0,11) from

(4.58), v=1 for flexure and v=-1 for barreling deformations and A from (4.120), into Y’s in

(5.13) gives the full expression for the stability parameter R3. Note that s and A also

contain the hyperbolic filnctions which are shown in denominator of fully evaluated

stability parameter R3.

5.3 Numerical Determination of Stability Parameter

Numerical calculation with the parameter 1] = Q], is handled by inserting

specific values of n>0 and corresponding values of load parameter p0 according to the

relation (4.55) or (4.57) into s in (4.58) and A in (4.120), and then substituting obtained

values into the stability parameter R3 in (5.13). For the purpose of numerical setting, we

introduce the dimensionless stability parameter Rs = R3/(ullM4Q3). Then

 Rs = 2{nn2,01+2,‘.1.(1'11.k1+ ”é;kl) 41111121111}. (5.14)

The Figure 5.1 and Figure 5.4 show the relations between RS and n for flexure and

barreling modes, respectively. For the flexural deformation, Figure 5.1 and its detailed

Figure 5.2 and Figure 5.3 show that Rs is positive when 0<n<nc=0.6443..., negative when

nc<n<l.305, positive when l.305<n<1.6283 and negative when n>1.6283. According to
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the relation (5.2), the signs of R and R5 are different from the sign of AE. Therefore when

n<nc and 1.305<n<1.6283, the buckled state has less energy than the unbuckled state so

that unbuckled state (the homogeneous deformation) is unstable. When nc<n<1.305 and

n>1.6283, the unbuckled state is energetically favored and hence stable. Note that when 11

goes to zero, the undeformed geometry looks like a rod subjected to thrust at its ends

which is similar to the conventional elastica problem. At n=1.6283 which corresponds to

7&0 = po'2 = 3, there exists discontinuity. This comes from the fact that N4 becomes infinity

at this value according to (4.118). For the case of barreling, Figure 5.4 shows that RS is
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Figure 5.1 Dimensionless stability parameter RS=R3/(ul,M“Q3) for the flexural

deformation in (5.14) with v=1. At n=1.6283, the curve Rs has a discontinuity.

Right before this, it is positive and afier this, RS is negative. There are also sign

changes in 11:0.6443 and n=1.305. Their details are shown in Figure 5.2 and

Figure 5.3.
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Figure 5.2 The detailed curve of dimensionless stability parameter R5 for the flexural

deformation in (5.14). At n=rIc=0.6443, the sign ofRs changes from positive to

negative and at n=l .305 the sign changes from negative to positive. More detail

near n=m, is shown in Figure 5.3.

positive in a whole range of n so that the buckled state is always stable. Hence all buckled

barreling deformations has larger energy than homogeneous deformation.

Compared with results by Sawyers and Rivlin (1982), they conclude in Figure 3

and 4 of their paper that the homogeneous state at which bifurcation occurs is stable when

n<nc=0.32 and otherwise the homogeneous state is unstable for flexural deformation. For

barreling deformation, Sawyers and Rivlin found that the homogeneous state at which

bifurcation occurs is always stable. In contrast our results show that there are different

regions of sign R3 for flexural deformation and that the first transition occurs at n=0.6443.

We also find that the sign of RS are different when 1] goes to infinity for flexural and
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Figure 5.3 The detailed curve of dimensionless stability parameter RS for the flexural

deformation in (5.14). At n=nc=0.6443, the sign ofRS changes from positive to

negative. Hence when n<rIc, the homogeneous state has less energy than

bifurcated state. Sawyers and Rivlin (1982) find that the stability of flexural

deformation changes at nSR=O.32.

baneling deformations are different. Recall that when 1] goes to infinity, p goes to P66

which corresponds to the wrinkling mode.

5.4 Asymptotic Study for Stability Parameter in Flexural Buckling at Low Mode

We now consider an asymptotic study of Rs as 11 goes to zero on the flexure

branch. However, first we consider an analogy to well known Euler buckling - the extreme

case of plate. Then the asymptotic analysis of R3 near n=0 will be developed.
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Figure 5.4 Dimensionless stability parameter RS=R3/(uIIMIQ3) for the barreling

deformation in (5.14) with v=-1. It is shown that the stability parameter has

positive sign on all range of n which means the bifurcated state involves less

energy than the homogeneous state (the homogeneous state is unstable).

5.4.1 Critical Load in Classical Euler Buckling

When TI goes to zero, the geometrical shape of the considered plate approaches a

thin column compressed at its ends. This resembles the classical Euler column explained

in Timoshenko and Gere (1963). The critical buckling load, the lowest thrust load out of

infinite buckling mode and important factor for structual stability is given by the material

property and shape ofthe column.

The critical buckling load in this study is presented from the lowest load parameter

p which occurs at the first mode in flexure deformation as shown in Figure 2.2. Recall that

the thrust equation (2.16), T = -4I.11213(p - p73). Here 11, 1,,13 are the half length of the
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considered plate. When n approaches to zero which means 1, becomes very thin, the load

parameter p becomes the equation (4.77). According to (4.1), the first mode of flexure

deformation occurs at

1
n = —n. (5.15)

11

h
)

Then the thrust equation (2.16) becomes

4 12 2 8 (12) 4 43 (12)6 (12):;
7 pl,l3{31t ([1) +451: 11 +5121: 11 +0 11 . (5.16)

Now we consider the equivalent material properties of incompressible plate after

linearization. For incompressible neo-Hookean material in the conditions of plane strain

described in boundary conditions (2.7) to (2.11), the stress-strain relation is described as

(2.13). With (2.15), the stress in X1 direction becomes

T1 = 11(02-9'2) (5.17)

Let the principal stretch p = 1 + e, where 81 is the strain in X1 direction, then (5.17)

becomes

'1:l = 4pcl + 0(212). (5.18)

Ignoring the higher order term in (5.18) for linearization, the relation between the Young’s

modulus E and the shear modulus u is obtained as

E = 4p. (5.19)

Also simple calculation reveals the Poisson’s ratio equals one and the linearized shear

modulus becomes G = u.
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Now for geometry, we introduce the new geometric variables L=21,, t=21,, w=213

for convenience. The second moments of inertia of the rectangular cross section with

wt3

12 . Substituting (5.19) into (5.16) with new variables L,respect to mid-point gives 1 =

t, w, the thrust becomes

T: gnle+I2§.2(Ig)z+o(gI (5.20)

For Euler column, the ratio of height and length is negligible, i « l . Therefore the thrust

equation (5.20) becomes

Tm, = gal (5.21)

The critical thrust (5.21) is the same critical buckling thrust as the Euler column with the

same boundary conditions such that one end is built-in and the other end is free to move

laterally but is guided in a manner that the tangent to the column remains vertical shown in

Figure 5.5 (Timoshenko and Gere, 1963). The result gives the verification for this study in

an extreme case of thin plate.

 

Figure 5.5 The Euler column subjected to the boundary conditions considered here.

Here the height-length ratio t/L has negligible value. The critical thrust for this

column is equated as in (5.21) which is the same critical thrust ofplate studied here

after linearization.
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5.4.2 Buckled Deformations with Asymptotic Equations

The load parameters p0 of two types of buckled deformations when 11 has an

extremely small or large values were found in Chapter 4. The asymptotic equations of

buckled deformation then can be obtained by substituting associated asymptotic load

parameters into the solution terms of each order. Here we consider the case of flexural

deformation when 11 is small. The corresponding asymptotic relation between p0 and 11 in

this case is given in equation (4.55). To develop the asymptotic analysis of this case

further, we introduce the dimensionless variable Q as the replacement ofX, by

X
g=f. an)

2

Then the boundary value problem (4.51) and (4.52) for the first order solution

B(l,§)=BII)(X,) are rewritten as

1 d‘IB (1 + 964mg
 

 

"—4E— 112 dC2+9543 = 0’ (5'23)

16123

on = i1. 5.24

_1_d33_(1+2pa4)d_3 = 0 C I I

11361? 11 dc ’

The solution B(11,§) for problem (5.23) and (5 .24) with the expansion for p0(11) which has

the expression in (4.77) can be obtained by proposing a series type solution. Here we note

that p54(n) = l + gnz + fin“ + $96 + 0(713). The previously obtained analytic

solution (4.54) is an even function with respect to both C and 11. This motivates the

consideration of a small 11 expansion for B(11,§) in the following form
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B(WC) = C{1+(aI0+aII§2)112+(a,0+a,I§2+a,,§4)114

(5.25)

+(€130 + 031? + “32? + 033C6l'06 + 0018) l ,

where C is constant. Here the other terms like Cry, 1>j vanish in the process. The

undetermined coefficients am, a“, a,0,.. ., ay- are calculated by substituting the proposed

solution (5.25) into (5.23) and (5.24) with (4.77) and equating the coefficients of various

products of C; and 11 to zero. In fact, we immediately find that aI-0=0, for i=1,2,3,... by

considering the 0(11‘") term in (5.23). From (5.24), after substituting (5.25), the 0(1) term

gives

1

all = —§. (5.26)

Substituting (5.26) into the expanded equations of (5.23), the 0(1) terms give

1

022 = —§. (5.27)

The same result is separately obtained by considering the 0(r1) term in (5.24),. The other

coefficients can be obtained similarly. Namely the 0(Q2112) term in (5.23) gives

a33 = -1_;—44 and the 0(112) term in (5.24)I gives a,l = %. Then the 0(112) term in (5.23)

after substituting known coefficients give a,, = ——1-. The same result for 03, is obtained
18

simultaneously considering the 0(113) term in (5.24),. Finally the 001‘) term in (5.24)]

gives a3l = 415-. In summary, the first order solution B(11,§) becomes

2 4 6

B(n.€)= C{1—-2-n2+(3(9—-§§-4)n‘+(4-% —%—I-I--I—%—4)n6+0(n8)}. (5.28)
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The constant coefficient C will be obtained from the normalization process explained in

Section 4.4.1. The reduced normalization equation (4.60) can be rewritten by using new

variable (5.22) as

2

1 6263 d 2 d 1 6213 _
m -1I—n'2—(21g) + Bz+pg{E[?a?—BII Idg — 1, (5.29)

where o=l,/l 1- Substituting the solution (5.28) into (5.29) with p0 in (4.77) gives

C = [21211 + 0012)}. (5.30)

The 0(112) correction to (5.30) will put terms of order 112", k=2,3,4,... in (5.28), but we have

previously shown that aI0=0, for all i. Hence we conclude that C = J21, so that

= C2 2 (C2 C 4 (4? C“ C6) 6 3
B(‘LQ filz{I-7Tl + 3‘? 11 + E-Tg-m 11 +001) - (5-31)

The complete solution (5.28) with (5.30) may be compared with the direct small 11

expansion of analytic solution (4.54). Here one finds that

= 22(16Q4Il6 263996 8

B(TlaC) M{§Tl + 4—5—‘3- '1 + ‘9—43—75-‘1- 11 +001) , (5-32)

and the coefficient M in (4.61) for small 11 expanded flexural deformation is found as

_ 3 _2 4 244 2 4

Note that M is required to be positive by virtue of (4.61). Therefore this expansion is valid

only for 11 « 1.37. Thus both solutions (5.31) and (5.32) with (5.33) are the same in the

view of small 11. The same expression for solution (5.31) can be also found in (7.7) of
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Sawyers and Rivlin (1982) except for the constant coefficient C = J21, which is caused

by adopting the different normalization condition.

For the second order solution B(l,§) = BI2’(X,), the boundary value problem

(4.107) and (4.108) is rewritten here in terms of B(11,§) and B(n, Q) as:

1 4141? “+0604”? 4- _ 30) (064-1) d( c123 dBd

4'44?— TEEHM B ‘ 5690—17—12 IRE-2742" (534)

And onq = i1,

1d21‘3 _4_ _ 1(1) _4 dB

TEE-MPG B — 212—90090 +1)Bd—§

(5.35)

31:11 4(1+2pa“0)d3_ _9 (2pa4-1)d_

1134K3 11 dc lzp"

Then substituting small 11 expansion of the first order solution (5.31) into the right hand

sides of (5.34) and (5.35) gives

1d473 (1+064)dzB
fid—Cr 4—nz°_d__§2+16p543 = —2ml,§{8114+(%++-§2)116}+0(118), (5.36)

andonq = :1,

d2? _

lid—2+ 40643 = -2wlz(4n2+gn‘+§06) + 0(113),

n C 3 15 (5 37)

1d31'3 (1+2p54)dB I 3 5 5 7) 9 '

1-1—33E— T3: = -2(Dl, 21’] +411 +3311 +00] ).

After considering the solution (4.117), the expression for 73(11, Q) in (5.36) and (5.37)

must be an even function in T] and an odd function in Q. This motivates

E(Tl, C) = —2wl,§{b”112 +(b21+ b,,§2)114 +(b31'I’ b32C2 “I b33C‘)n6

(5.38)

+(b41 ‘I' b42§2 + b43C4 ‘I' bug‘s)“8 + 00110) l-
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Substitution of (5.38) into (5.36) and (5.37) and equating the coefficients of left and right

hand sides in terms of the product Q and 11, give the undetermined coefficients b,,—’s. The

details to obtain bIj’s are as follows: 0(112) term in (5.37)I and 0(11) term in (5.3 7), give b”

and b,,, 0(Q112) term in (5.36) gives b,,, 0(Q211‘I) term in (5.36) gives b411, 0(114) term in

(5.37), and 0(113) term in (5.37), give b,I and b,,, 0(Q114) term in (5.36) gives b,,,, and

0(116) term in (5.37), and 0(115) term in (5.37), give b3, and b,,,. In summary, the

asymptotic second order solution 73(11, Q) for flexural deformation when 11 is small,

becomes

3014) = -21912C l112- Z-ICZ 114+ g-ZCHIC‘ 116
4 6 2 72 9 6

(5.39)

2

110741-33? + 5%“ + 4:5?)118 + 0(11 10) I

The coefficient b,,, is undetermined yet but it is not necessary for future calculation. As we

expected, since the B matches the second order solution of Sawyers and Rivlin (1982), the

asymptotic second order solution (5.39) is the same as the series equation (7.14) of theirs

except for the sign which is due to the difference of definition of (0 and the normalized

coefficient. The asymptotic solution (5.39) can be compared with the small 11 expansion of

analytic solution (4.117) for verification of its accuracy. Now we find from (4.118) and

(4.119) that

o 9 69 6537
= _ ___— 2 __ 4 6

N3 ”C2112I32 160TI +22400'I +0“ I}:

(5.40)

3

1 3 1 2107 4 6
- mCZQI—§+§11 “274-611 +0(11)},
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and

N _mczoI 21 107 103
I- _ __ __ 2114 6

112 64+640'I+40'I +0“ )I

_ 29 3 169 2_447116

N2“°°C1?I671+a—o" 2'37)" “10‘ I}

(5.41)

where C = J21, Here small 11 expansions of coefficient M in (5.33) and the notation A

in (4.120) as

have been used. Then the second order solution B(n, Q) in (4.117) becomes

7301, o = 22.411 + §<zzc + 221431113 + 4114224 +152343+ 321451115

(5.43)

+3-15(1522€ + 7Z4? + 3523? 1‘ 221C007 + 0019)

where

Q 28457

7'1 = N1+N2+N3=(0—C2nz{22400114+0(116)}a

_ _ 20 3 151 2 133097 4 6

2 — N3+N4+2N1— " C 7I§+mn ‘72—4'60-‘1 +0“! )}

(5.44)

_ _ 2(2 3 31 2 121897 4 6

Z3 — N3+2N1- - C —2{'8'+m11 “m“ 0(11)},

_ Q 261 33 2 2161461 4 6

24 — 13N3+36NI = ”'(DCzTI2{-3-2— 801] --mn +001] )}.

Substituting (5.40) and (5.41)with o = 1112 and C = [21, into (5.43) becomes
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— 1 70321 14107 )0
= _ _ 2 4 6 88m, 4) 291.4{411 —(3-3——600— ,4)n4 +—(c.. I——68004 + 6411+ 001 1}, (5.45)

where C, is yet undetermined constant since it includes the terms of 0(116) in (5.40) and

(5.41) which are too difficult to obtain directly. It is shown that of the five common terms

in (5.39) and (5.45) for which the numerical prefactors have been obtained, that 3 of the 5

terms match and 2 terms do not match. The terms that do not match, 0(114) and 0(Q2116),

involve terms of 001‘) or higher in (5.40) and (5.41).

5.4.3 Stability Parameters with Asymptotic Equations

In this section, we will investigate the behavior of stability parameter R3 which is

directly related the energy difference AE for the flexural deformation when 11 is small.

This analysis will give the verification for the analytic results of stability parameter when

11 has relatively small value. The asymptotic load parameter p0 and solutions of the first

and second orders B and [—3 were obtained in previous sections. When 11 is small, I, is

much shorter than I, in which the geometry considered may resemble to the thin plate with

thrusts at both ends. This type of buckling problem for thin plate known as elastica, has

been widely studied on the context of linear elasticity theory.

By using the new variable 6; in (5.22), the terms QA and QB in (5.7) is rewritten as

—1451511++5155+91h

426' ~ .126. .. .1213 dfid d0 d
L.a{-d—é§—4n2a+2(d—QZB—a:7 }+2d-—;(€é218+ 20161—3] (546)

155.0551155-5 +5051)
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where

~_B_1dzB ~_a__

Substituting the asymptotic load parameter p, in (4.77), solutions B in (5.28) into (5.47)

gives

”_ 2 2 2 8 2 I 4 4 6
I3 - -~/§lz{2—(§‘C)Tl -(45-—€ 7,6011 +001) ,

(5.48)

~ 2 8 1 )
=_2___22______44 6

a 212{1 (3 ZCIn (45 3C 11 +001 )},

and then substituting B in (5.39) as well as p0 and B into (5.46) becomes

277 64

=403§26l4 2+21+22 2 -—(—+—2— 42 4) 4+0 6 ,@101) 2{ ( 011-45 C C 11 (11)} (5.49)

Q1101) = 16961§{1-(1+ 8400” 0014)}.

Here 11 = Q], are used. Then the stability parameter R3 in (5.6) in terms of new variable

Q becomes

11

R3 = 5%31I(2copa'Q,1 + Qa)d€- (5.50)

Substituting pa in (4.77), QA, QB in (5.49) and (02:1 into the integrand of (5.50) gives

2w96'Q2 + QB = 16061§{2 + G - 6C2)112 + 0014)}. (5.51)

Also the stability parameter (5.51) shows that the small 11 behavior of R3(11) is 0(114) since

= 01,. We note that since p0=0(1), the 0(114) behavior of R3(11) is completely
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determined from the 0(11")=0(Q6) behavior in QA(11) and QB(11) as given by the leading

order terms in (5.48) and (5.49). The 0(116) behavior in QA(11) and QB(11) can be obtained

from the investigation of leading orders in each term of (5.46) which is shown as

5

Q1011 = C4fIl.-§i:110(n6)1 + 10016)} + 13114 + 0016)} + {-114 + 0016111

= 2C4QSII;_° + 0(an3),

2

6 5.52

Q1901) = C“%[{-4112 + 0014)} + {4112+ 0(114)}+{-4112+ 0(114)}+{0(114)(} )

6

+ 1001411 + 10014111+ 023711001611 + 18114 + 0016111

= 401426 + 0(o6n2).

Now integrating (5.50) with respect to Q gives

_ 4 17 2 4

R301) - 811111211 {I -;11 +001 )}. (5.53)

After substituting (5.53), the energy difference AE in (5.2) for the flexural deformation for

small 11 gives

AE = —4plIl,l3rI4{l — ~1—67'r12 + 0014)}34 + 0(3"). (5.54)

17

rI<0.594, AE<0 so that the buckled deformation has less energy than the homogeneous

This gives a critical 11 values at which AE changes signs near 11=J§=0.594. When

deformation. When 11>0.594, the homogeneous deformation has less energy.

These stability conclusions are similar to those obtained by the numerical

procedures in Section 5.3, except that the asymptotic analysis predicts a critical 11=0.594,

while the numerical analysis gave a critical 11=O.6443. Note that the curve generated by

112



(5.53) can not be directly compared with the numerical curve of Figure 5.3 because of the

presence of the normalizing M in (5.13). Performing a similar normalization on (5.53)

using asymptotic coefficient M in (5.3 3) makes dimensionless stability parameter RS as

R301) _ 16 9I 7
= —_ _ _ __ 2 4

15,01) 01.444423 8111 2 511 +0011}. (555)

where 11 = Q], was used. The transition value here is 11=l.l95 but this value is not

important since the expansion for M in (5.33) is valid only for 11 « 1.37. The comparison

of RS in numerical results (5.14) and asymptotic results (5.55) is shown in Figure 5.6.
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Figure 5.6 Comparison of dimensionless stability parameters Rs of numerical result

(5.14) and asymptotic result (5.55) for flexural deformation. The asymptotic result

is valid only for very small 11.
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When 11 is near zero, the signs and slopes are close so that the results are consistent with

the numerical procedures.

5.5 Discussion

The sign of p, is opposite to the sign of R3 according to (4.173) and the sign of E4

is the same as that of p, according to (4.175). E, is the leading term in the energy

difference AE. Positive (negative) values of p, denotes that the load must decrease

(increase) after the buckling onset value p0 in order to follow the bifurcated branch of

buckling solutions. In other words, by converting p, to 71, with 7L, = —2 p,ij3 , the load

must decrease if K,<0.

For flexural deformation the numerical results show if 11<0.6443 then Rs>0 which

means the bifirrcated path involves less energy than the trivial solution so that the

homogeneous deformation near the bifurcation initiation is unstable. Otherwise when

11>0.6443, the homogeneous deformation near the bifurcation initiation is stable. The

numerical results also suggest additional stability transitions near 11=1.305 and 11=1.6283

(Figure 5.1). However, these results are highly sensitive to the numerical evaluation

procedure and so are rather suspect since they involve R5—>oo. Further it is not obvious

how to treat these by asymptotic or perturbation procedures. These Rs—mo transitions that

are only detected numerically will be dismissed from further discussion. In contrast, the

stability for small 11 on the flexural branch is consistent with the asymptotic analysis near

11=0 (although the value of 11 for stability transition found by the asymptotic procedure is

different).

The numerical results also show for barreling deformation that Rs>0 for all 11 so

that the homogeneous deformation is unstable compared to the barreling deformation.
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These trends are in fact opposite to those found by Sawyers and Rivlin (1974) in the view

of stability evaluation. They also find that 11=0.32 gives the transition in stability on the

flexural branch.

5.6 Summary

The stability of post-buckled deformation near buckling onset was evaluated by

using energy minimization scheme. Extensive use of symbolic algebra procedures enabled

certain simplifications, but the problem still remained very complex. Accordingly, a

combination of asymptotic and numerical procedures were employed to attempt to

determine stability transitions. The physical buckling behaviors are as follows. As the

thrust load increases from the original zero value, a family of infinitesimal flexural

deformation competes with the homogeneous deformation until the thrust reaches the

value associated with p0=0.5437 (TS=5.6786 in (2.16)). This thrust is known as the

wrinkling load. Then as the thrust exceeds the wrinkling load, the infinitesimal flexural

deformation family ceases to exist and is replaced by an infinitesimal barreling

deformation, which again competes with the homogeneous deformation family.

The energy analysis shows that the infinitesimal flexural deformation family is

energetically favored over the homogeneous deformation family at small loads (implying

small mode number), but that the homogeneous deformation family is energetically

favored at large loads (again dismissing Rs—wo transitions). Thus there is a transition load

value, and a corresponding transition mode value 11=0.6443 (See Equation (5.14)) for this

exchange in stability. In contrast, the infinitesimal barreling deformation family is always

found to be energetically favored over the homogeneous deformation family.
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Asymptotic analysis, valid only for small 11, was employed to attempt to verify the

behaviors of stability pattern for the flexural deformation. The results agree with those of

the numerical approach. A leading order value for transition of stability gives 11=1.195

(See Equation (5.55)). This precise value (11=1.195) is not of importance since the

asymptotic analysis is only valid for 11 near zero.

Clearly there remain significant questions with respect to this work, especially

with regard to precise numerical transition value. It must also be admitted, since the

stability interpretation is dependent on the (+/-) sign of very complicated expressions

(Equation (5.13)), that additional efforts are necessitated for confirming those results.

This, however, should not obscure the fundamental basis provided by this work. Notably

the consistent perturbation analysis provides strict order expansions both of the energy

competition between homogeneous and bifurcated solutions (Equation (4.159)) and of the

relation to the bifurcated path near buckling onset (Equations (4.2), (4.69), (4.126),

(4.127)). Here the essential and consistent coupling between these is provided by (4.141)

and (4.176).
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CHAPTER 6

APPROXIMATE SCHEMES FOR BUCKLING LOAD OF MULTI-LAYERED

COMPOSITE PLATES

6.1 Introduction

The previous Chapters were concerned with the buckling and post-buckling

behavior for a noncomposite single ply plate and the stability of the various competing

solutions with respect to each other. However in this Chapter, we will investigate

somewhat practical topic - the critical buckling load on a composite plate. In a structure,

the critical buckling load plays an important role since it gives the lowest load to resist

against the compressed load. We had the critical buckling load on a single ply plate by

solving rather simple equations in (4.55) and (4.57) and showed the result in Figure 4.1 as

the relation between the load parameter p0 and the mode ntunber 11. The curves of

buckling onset which give the load at the buckling onset for specified geometry and mode

number, are monotonic with mode number (increasing for the flexural deformation and

decreasing for barreling deformation). Hence the critical (lowest) buckling load is always

mode-1 flexural deformation. But for a multi-layered plate such as the three-dimensional

geometry of Figure 6.1, this behavior may be seriously altered. Pence and Song (1991)

and Qiu et. al. (1994) showed that in symmetric three-ply plate composed of two different

types of neo-Hookean material, there exist another family of buckling paths and they are

not always monotonic. This means the mode of the lowest critical buckling load is not

always mode-1 flexural deformation.

As the number of layers in a composite plate increases, the direct algebraic

analysis of the bifurcation conditions becomes increasingly complicated since it involves
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Figure 6.1 Geometry of the symmetric three-ply composite layer. The buckled

configurations involve deformations in the (X,,X,)-plane.

seeking roots to a determinant equation for which the matrix dimension grows with the

numbers of plies. Thus it is useful to seek alternate methods for determining buckling

onset load in the manner of simpler approaches and closer to the exact values. The

purposes of this final chapter is to present some developed observations on these issues.

6.2 Buckling Load of Multi-Layered Plates

The prediction for buckling onset load may change if the material is composed of

multi-layered composite plate. In this Chapter, we will consider the general N-ply plate

stacked along the X, direction. The undeformed configuration of whole plate occupies the

region 21,x21,><213 and all plies are neo-Hookean materials. The shear modulus of each ply

is either III or 11" and alternate by ply. Perfect bonding is assumed across the ply interfaces.

Again our attention is restricted to plane strain deformation where buckling takes place in

the (X1,X,)-plane as shown in (2.18). Then the mathematical formulation of composite

plate problem is similar to those of single ply plate studied in Chapter 2. The differences
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are (i) the shear modulus p of single ply plate alternates between Ill and u", and (ii) the

assumption of perfect bonding yields the following interface conditions on the traction

and displacement.

XXX?) = X.(Xi )
+ on interfaces i = 1,2,3. (6.1)

521(le = 521(X2 )

Here the conditions for i=3 are automatically satisfied in a plane strain setting.

Let A” be the sum of original areas normal to X1 direction of plies whose shear

modulus is p’ (i=I,II) so that AI +AII = 41,13. Then the total thrust on X, = ill for

homogeneous deformation can be modified from (2.16) to

T = -(P - 9’3)(H1AI+ WA”)- (62)

The buckling onset can be analyzed by the incremental deformation superposed onto

homogeneous deformation such as (2.18). The complete boundary value problem of a

composite plate then consists ofthat ofnoncomposite plate (2.28) in which It changes to p"

and the interface continuity conditions

[Pj(V1,2 + 13-2121) + qu,1IX2+ = IHJIVLz + 13.2121)+ 9V2, 11x,

[11102.2 ' P72V1, 1) -‘I(V1,1 'I‘ NIX; = [111.(v,,, — p-2v1, 1) —9(V1,1 + 9)]X5 (6 3)

IVIIX3 = [VIIXi

IV2IX; = [VZIXE

on interface. Here 11! is the shear modulus of top ply and pi is of bottom ply on that

interface. Since the buckling onset occurs at the first order (k=1) in perturbation expansion

of deformation, we will consider only the homogeneous boundary value problem modified

from (3.16) with appropriate interface conditions (6.1) such that,
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Flu = 0 in IT,

GIu = 0 on I], (6.4)

0 on F,,

and

[61'2“]3 = [szulXi

on interfaces (6.5)

IG3“IX2+ = [63“],i

where superscriptj=I,lI, denotes the differential operator of plyj in a composite plate. For

simplicity in the expression of the first order equation, the superscript I” will be

suppressed here and after. Here 0, is the constant matrix

4 = 1:, 1 31

The difference in potential energy E in (2.30) for noncomposite plate can be used for

composite plate as the sum of the energy of each ply. For buckling onset, the energy

equation have the value up to the second order so that

0')

E2 = 213IIIIE5'12902(“1,2“2,1 ‘ “1,1“2,2) + ”1,1 + “22.2 + ui, + “i, 1 }dXIdX, (6+7)

where the integration on X, is sum of the integrations of each ply.

Following the similar analysis to noncomposite case, this composite plate problem

is reduced to one homogeneous ordinary differential equation, 4 boundary conditions and

4(N-1) interface conditions. Introducing the proper general solutions which is similar to

(4.18) with discrete constants L1“), L5"), MI"), My"), m=1,2,...,N of differential equation

(6.4), to the boundary and interface conditions (6.4),, and (6.5) form a homogeneous
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4Nx4N matrix equation. For the buckling onset load (nontrivial solution), the determinant

of this matrix must vanish.

In particular case of symmetric plate, the dimension of matrix can be reduced to

two 2Nx2N - one for symmetric mode and the other for antisymmetric mode as explained

in Chapter 4. For the simple example of symmetric plate, the three-ply composite plate

(N=3) was considered by Pence and Song (1991, 1993). Here the central ply (material 11)

has the thickness 2R (<21,) and the shear modulus Ir" so that the shear moduli of outer

plies (material I) are 11'. This problem then simplifies to 12 homogeneous linear equations

for the 12 constants L1“), L5”), MI"), My") , m=1,2,3. The vanishing of the determinant of

12x12 coefficient matrix gives the loads for buckling onset. Due to the aspect of

symmetry, this problem can be considered by two 6x6 matrix equation - symmetric

(flexure) deformation and antisymmetric (barreling) deformation along the X, direction

with four dimensionless parameters as

2.0 = p52, 11 = (21,, B = pII/IrI, or = R/l,. (6.8)

When [3:] or a=0 or CF], this problem reduces to the noncomposite case which is

analyzed previously by Sawyers and Rivlin (1974,1982).

The numerical computation for three-ply plate under various parameter sets shows

in Figure 6.2 that (i) the buckling onset load for composite plate does not guarantee its

monotonicity, i.e., the critical load is either mode-1 flexural deformation or wrinkling

deformation in which the mode number is infinity (Pence and Song, 1991 ), (ii) there exists

additional solutions for each original solution of flexure and barreling - we categorize

these into a new family and the original family of solutions, respectively, and (iii) the

wrinkling load of original family converges to that of noncomposite plate which is
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Figure 6.2 The buckling onset prediction curve for a symmetric tri-layer with different

values of B=uII/I.rI. The shear moduli of shaded plies are twice as large as those in

the unshaded plies. In both cases, the volume fraction of central ply, a, is 1/2.

Nonmonotonic behaviors, new curves at large 3. values, and asymptotes of all

curves are shown (Qiu, et a1, 1993)
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constant for the material parameters and the wrinkling load of the new family converges to

a higher value than that of original family depending on the stiffness ratio 13 (Qiu, et al.,

1993).

An asymmetric two-ply plate (N=2) is discussed in Qiu, et al. (1993). Due to the

lack of symmetric property in shape, the buckling deformations become a mixed mode of

flexure and barreling. Solving the resulting 8x8 determinant shows that there are three

solutions. The lower two curves are original family and the higher one is new family. The

wrinkling load of original family have the same values of noncomposite plate and the

wrinkling load of new family depends on the shear modulus ratio.

6.3 Approximate Schemes to Determine Buckling Load

To construct buckling onset prediction curves of buckling load vs. mode parameter

at fixed values of appropriate volume fraction and stiffiress ratio, will be a key to

determine the critical buckling load and eventually require complicated numerical

procedures. For the general N-ply sandwich plate, this problem is reduced to solving a

4Nx4N determinant equation. An exact analytic solution satisfies the complete conditions:_

the nonlinear constitutive equation (CE) in (2.13) for noncomposite plate, equilibrium

equation (BE) in (2.6), boundary conditions of a free surface condition (FSC) in (2.9) and

conditions of interface displacement continuity (IDC) in (6.1), and traction continuity

(ITC) in (6.1),. The simultaneous satisfaction of all these conditions gives much difficulty

when the plate consists of large number of ply stacking. This difficulty is stems from the

fact that standard numerical procedures to find the roots of the necessary deterrrrinant are

subject to various numerical errors and numerical instabilities. The possible

approximation schemes may involve procedures (specifically trial fimctions) that do not
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satisfy certain conditions mentioned above. Satisfaction of all these conditions gives an

exact solution and thus an exact prediction of the buckling load. Therefore the goal of the

research described in this Chapter is to construct useful approximation schemes which by

sacrificing some of the conditions, give a simpler mathematical formulation. The effect on

accuracy of these sacrifices will then be examined.

The simplest approximate scheme is based on equivalent modulus where the

composite structure is treated as a homogeneous media with volume averaged stiffness

modulus. For example as described in Figure 6.3, the three-ply plate which the central ply
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Figure 6.3 In the equivalent modulus scheme, the composite plate is treated as a single

layer of volume averaged stiffness, ucq.

has It" and top and bottom plies have 11' considered previously, is treated as a single ply

which has the equivalent stiffness modulus ucq = IrI(1-01) + uIIa where a is the volume

fraction explained in (6.8). Note that this scheme does not satisfy constitutive equation

pointvvise, but does so in a volume averaged sense. However the buckling onset prediction

curves of single ply plate does not show the dependency on system parameters so that any

combinations of plies have the same buckling onset prediction curves as the noncomposite

124



plate. Therefore the critical buckling load for equivalent modulus scheme is always mode-

1 flexure.

6.3.1 Variational scheme

Most approximation methods used in structual analysis are based on variational

mechanics in which the approximate solutions satisfy the weak (variational) form or

minimizes the energy functional (Reddy, 1986). The buckling load in a structual problem

or the natural frequency in a vibration problem can be determined approximately by so

called Rayleigh quotient obtained from the variational method.

The critical buckling load for the composite plate considered here can be

constructed from the boundary value problem ofcomposite plate (6.4) and (6.5). The inner

product

(u,Ffu) = 0 (6.9)

followed by the integration by parts once and applying boundary conditions (6.4),, and

continuity conditions (6.5) gives the critical buckling load as

(I)

IIin(ui,1+ “3,2 + “i,2 + “inldxrdxz

(6.10) 

x0 = on _

.I.In “(1)011, 1u2,2 " “1.2“2, 1)dX1dX2

where kozpo‘z is the load parameter and the integration on X, is sum of the integrations of

each ply. This quotient can be also obtained by energy formulation based on the fact that

deformed configurations with less strain energy than the unbuckled homogeneous

configuration only become available once the buckling load is attained. The difference in

energy from the homogeneous state to buckled state of a composite plate in (6.7) must be
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negative when the buckling takes place. At the buckling initiation, E, becomes zero.

Equating E,=0 gives the same quotient for the buckling load A, = p52 as (6.10). If we

have the exact solutions a, and u, of buckling onset, then the quotient (6.10) will give the

exact buckling onset load. However the procedure to determine the exact buckling

solutions u, and u, of the general ply composite plate is not that easy. So the approximate

(trial) solutions which will satisfy part of required complete conditions must be

considered. These will give a closer prediction to the exact buckling load.

6.3.2 Trial solutions

Recall that the exact solutions satisfy the requirements of complete conditions: CE,

EE, FSC, ITC, IDC. A simple approximation for the composite plate is to use exact

solutions of noncomposite plate (4.68) with (4.26) for flexure and (4.56) for barreling.

One approach is that the composite material can be considered as the combination of

corresponding single plies (combined single ply solution). For example as shown in

Figure 6.4, the geometry of mode-m flexural buckling of composite plate is similar to

mode-m flexure in each ply, while mode-m barreling of composite material is similar to

mode-m barreling in the central layer with mode-m flexure in the outer layers. Note that in

this approach, the length ofX, as well as 11 in each single ply are scaled to those of single

ply and the X, coordinates in each ply are transformed to the origin. This approximation

does not satisfy the interface displacement (6.5),, although the displacements are close.

For a symmetric three-ply plate with (B,a)=(0.l,0.5), the buckling onset curves in

Figure 6.5, are generated by the quotient with this combined single ply solutions. The

exact curves and the curves by equivalent modulus scheme are also shown. For flexure,

the variational scheme with combined single ply solutions gives better results than the
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Figure 6.4 In the direct energy scheme, the overall deformation is approximated by the

single layer deformations as shown. The deformation of the central layer

distinguishes overall flexure from overall barreling.

equivalent scheme. This is because the single deformed shapes are well matched to the

three-ply plate for flexure. However they are not well matched for the barreling case.

The other approach is that the single ply solutions can be applied directly to all the

plies (direct single ply solution) since the final displacement of deformed shape of

composite plate is similar to that of single ply plate. For example of three-ply case, the

mode-m flexural buckling of composite plate may use the solutions of single ply mode-m
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Figure 6.5 The onset prediction curves as given by the equivalence scheme, exact

scheme and the variational scheme with combined single ply solution for flexure

(top) and barreling (bottom) for tri-layer with (B,a)=(0.1,0.5).

128



flexure. This approximate solution satisfies the boundary and interface conditions, but not

the constitutive equation.

For a three-ply plate with fixed pairs of (B,a)=(0.5,0.5) shown in Figure 6.6, the

buckling onset curves are close to the exact solutions for both flexural and barreling

modes. They form an upper bound as expected from the fact that the Rayleigh quotient

gives an upper bound.

6.4 Discussion

For an analysis for determining buckling onset load of a composite plate, we

examined some approximation schemes in which the approximate trial solutions satisfy

some parts of the complete conditions. Since general multi-ply plate is combination of

even or odd stacking, the approximate schemes developed previously can be applied to a

different ply stacking (like two-ply plate) in order to determine whether these schemes can

predict the buckling onset curves well enough.

Also we can consider other trial solutions based on combined single ply solution in

the variational scheme so as to satisfy the interface boundary conditions (IDC) in (6.1) 1-

One alternative is obtained by multiplying a suitable mollifier function of X, to a single

layer solution (4.26) for flexure or (4.56) for barreling. The example of mollifier function

is a simple polynomial forms with undetermined coefficients and play a role as a single

ply solution in each separated ply in a composite plate according to its shape. The

disadvantage of using mollifier function is the sacrifice of satisfaction on field conditions

(CE) and (EE) but the satisfaction of (IDC) may improve the accuracy of whole

approximation. Satisfaction with complete conditions of various schemes studied here and

suggested scheme is summarized in TABLE 6-1.
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Figure 6.6 Comparison of the flexure (top) and barreling (bottom) onset prediction

curves for symmetric tri-layer with (B,or)=(0.5,0.5) as generated by the exact

scheme, the equivalent modulus scheme, and the variational scheme with direct

single ply solutions. The upper bound property of variational scheme is evident.
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Table 6-1 Summary of complete conditions and satisfaction for various schemes

 

 

 

 

 

 

     

CEl EEI FSCI ITC I IDCI

Exact solution yes yes yes yes yes

Equivalent modulus scheme no2 yes yes yes yes

Variational scheme yes yes yes yes no3

(combined single ply solution)

Variational scheme no2 yes yes yes yes

(direct single ply solution)

Variational scheme - suggested no5 no5 possible4 possible4 yes

(mollified single ply solution)

 

Condition (6.1)..

IBI'ITIS. 
2. satisfied only in a volume averaged sense, not pointwise.

1. CE: Constitutive Equation (2.13); EE: Equilibrium Equation (2.6); FSC: Free Surface

Condition (2.9); ITC: Interface Traction Condition (6.1),; IDC: Interface Displacement

3. however expect the result to be close since the mode shapes should be well approxi-

mated by the single layer theory.

4. these interface conditions can be ensured for mollifier functions of sufficiently many

5. greater sacrifice of CE and EE will yield more improvement in FSC and ITC.

 

6.5 Summary

Three approximate schemes to determine the critical buckling load for three-ply

neo-Hookean plate were investigated. Each scheme satisfies with parts of the perfect

conditions and gives reliable values of critical load. The schemes developed here can

estimate the critical buckling load of general multi-ply plate in a simpler manner.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions of the Thesis

The elastic stability analysis for the post-buckled and homogeneous deformations

of single-ply neo-Hookean plate and the approximate schemes for buckling load of multi-

ply neo-Hookean plate have been investigated. The elastic stability near buckling onset

gives the prediction for physically existed deformation and can be evaluated by comparing

the energy of all possible deformations. The buckling behavior are understood by the

bifurcation theory in mathematical terminology.

Under these basis, two dimensional nonlinear boundary value problem for single

ply neo-Hookean rectangular plate was generated in the context of finite elasticity. The

perturbation expansion method was then applied to analyze the nonlinear problem into the

set of linear equations by the order of a. Each set of linear equations gives rise to a

nonhomogeneous boundary value problem (except for the first order) and the solutions are

related to the solutions and parameters of previous order. The first order equation is

homogeneous and gives the thrust on buckling onset which is the critical buckling load.

Also the load parameter that is barometer for thrust, are determined by Fredholm

Alternative Theorem as a solvability conditions. The process for obtaining the solutions

and load parameter for each order was developed in a systematic way and the more

accurate results can be obtained from investigation of higher order equations. The

deformations and their behavior at buckling initiation was at first obtained from the first

order problem and shows the same results as other works.

132



For the stability evaluation of post-buckled deformation, the solutions and load

parameters of second and third orders were obtained to analyze the energy difference

which has the fourth order as the first appearing term (see Equation (4.159)). Since

formulations is quite complex, a numerical analysis was applied at final evaluation of

stability parameter (Rs in (5.14)). The numerical analysis shows that for flexural

deformation, the buckled deformation has less energy than the homogeneous (unbuckled)

deformation when 11<11c=0.6443 and 1.305<11<1.6283 and the opposite is true when

11c<11<1.305 and 11>1.6283. For barreling deformation, the buckled deformation has

always less energy than the homogeneous deformation (see Section 5.3).

The complexity of formulation and non-explicity of load parameter lead to an

asymptotic analysis for post-buckled deformation. The analysis on extreme shape gives

the same critical load as Euler buckling. Also for extreme case of flexural deformation, the

buckled deformation has less energy than the homogeneous defamation when 11<1.l95

and the opposite is true when 11>1.195 (see Equation (5.55) and Figure 5.6). This

asymptotic analysis is valid when 11 is extremely small. Hence the analytic results of

energy comparison for the flexural deformation are true for limiting case of small 11.

In this study, the perturbation expansion approach was used for evaluating the

stability of homogeneous deformation. As a comparative work, Sawyers and Rivlin

(1974) applied the variational methods to determine the stability of homogeneous

deformation near the critical state. Their results are that the homogeneous deformation of

flexural deformation is stable (has less energy) when 11<0.32 and unstable elsewhere and

the homogeneous deformation of barreling deformation is always stable. Hence the results

of their works and this study have the opposite pattern. Also the transitional points 11
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obtained by Sawyers and Rivlin are different from those found here. The perturbation

method used in this study is more direct and reasonable compared to the variational

methods but the procedure is equally complex. One possible source of the difference in

results stems from the different predictions that may be expected in general, as discussed

in Appendix A in the context of some simpler problems. A second possible source of

difference may be due to the difference in norrnalizations as explained in (4.59).

As an extended work from the stability of homogeneous deformation, the

analytical way of the determination of critical load for composite plate was also studied

(see Section 6.2). The critical load which can be found from the first order equation, plays

a major role in the design of load-bearing structures. However for multiple stack

composite plates, the determination of critical load requires the solution of a nonlinear

eigenvalue problem for a 4Nx4N matrix. As stack grows, the equation will be so complex

that we need simpler albeit approximate methods. In a beginning stage, three-ply

symmetric plate was analyzed for the critical load in three different schemes. Compared

with exact critical load in previous study by Qiu, et a1. (1993), the results are quite close

(see Figure 6.5 and Figure 6.6). These schemes can be expanded to more general ply

plates.

7.2 Recommendations for the Future Work

Direct energy comparison for the stability of homogeneous deformation was

performed and the results showed the differences compared with those of previous works.

Hence as a verification of results, other limiting cases of infinite 11 for flexure, near zero 11

for barreling and infinite 11 for barreling should be investigated.
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Though the computations on the values of higher order will give more accurate

behaviors of post-buckling for hyperelastic plate, this will also be confined in local

behavior because of the limitation of perturbation method. However the local stability

criterion such as the stability near critical buckling load will be ensured.
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APPENDIX A

STABILITY EVALUATION BY PERTURBATION EXPANSION METHODS

A.1. Introduction

The analysis for the stability of buckled deformations in the vicinity of buckling

initiation for a neo-Hookean plate requires complex mathematical calculations, so that the

clarity of evaluations for each step is confused. In this Appendix, more simplified

examples than considered problem in the context will be investigated in order to obtain the

thorough acknowledgments for the concept of stability.

The well-known elastica problem will be considered at first as the simplest model.

A modified elastica problem will be considered next to investigate the relation between

the post-buckling behavior which is dependent upon a second order term in load

parameter and the stability. Finally a higher order problem, which in certain ways

resembles the neo-Hookean plate problem, will be examined. For the methods on stability

evaluation near the buckling initiation, the perturbation analysis (PA) which has been used

in the context and the analysis method adopted by Sawyers and Rivlin (SR) in (1982), will

be used for the comparison. In particular, it is shown that these methods can give different

stability predictions.

These examples will consider an energy equation E(th) where 71 and u are load

parameter and buckled deformation in the buckling problem or eigenvalue and solution in

the mathematical bifurcation problem, respectively. Then the first variation of the energy

equation gives a governing equation in a domain 9 and boundary conditions on a

boundary F,
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111).. = 0 in :2, 6(1):. = 0 on r, (A.l)

where F and G are differential operators. The statement in (A1) constitutes a nonlinear

boundary value problem.

With respect to (Al), it is assumed that there is an obvious trivial solution um, for

all values of 7.. Thus u = u,,,vOt) which is the family of trivial solutions. We now seek

additional solutions (competitors) that bifurcate from this trivial solution. These additional

solutions would also depend on 3., say u = u,,/(1.), so that a continuous parametric

dependence on 7t also defines a family or branch of those additional solutions. Unlike the

trivial solutions, the family u,,/(71.) may exist for only a restricted range of 7.. Now the

solution family u,,-10.) is said to bifurcate from the trivial family u,,-,0.) at the value 3.0 if

quO) = ”611(10)-

The stability evaluation is well explainable under the concept of energy

minimization. If, at a given load parameter A, the energy of the one equilibrium solution is

less than that of another competing equilibrium solution, then the original solution is

energetically preferable to that of the competitor (it is more stable). The energy difference

between the trivial solution and the buckled solution at certain load level 1..

415(1) = £14.51). 111-150....0). 1) (42)

will be considered in the following analysis. According to the energy rrrinirnization

scheme, if ADO, then the state corresponding to the trivial solution is stable.
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A.2. The Perturbation Expansion Method

One of the well-established approaches to solve the nonlinear boundary value

problem is by using the perturbation method. This approach utilizes an expanded solution

which is perturbed from the trivial solution u0=u,,,-, with a small parameter s such as

u = u0+sul +82u,+83u3+ (A.3)

The load parameter A is also expanded accordingly,

7» = lo+sll +szl,+s3k3+ (A.4)

Here 3.0 is the critical load for bifurcation initiation so that the bifurcated solution u =ubI-f

in (A.3) is branched from the bifurcation initiation u, = u,,-,0.) at k=1, Substituting (A.3)

and (A.4) into (Al) and (A2), and collecting along the same order of a, give the set of

linearized boundary value problem for each order of a. By solving each set of equations,

we can construct a complete expansion on u and 1.. Budiansky (1974) also used the similar

procedures to this study for post-buckling analysis.

For the purpose of stability evaluation, the energy difference AE compares the

energy between the bifurcated and trivial path at a load level it as shown in (A2). The

general solution (A.3) in this approach is an expansion in the vicinity ofbuckling initiation

so that the results will be limited to the local analysis. Again by using the expansions (A.3)

and (A.4), the energy difference (A.2) becomes along the order of e as

AE = 22E, + 23E, + 24E, + (A.5)

Here E1 is vanished automatically if we substitute the equilibrium solution. For i-th set of

the order 8, the solution u,- can be solved by the conventional way used in the analysis of

linear differential equation and the eigenvalue X,,, can be obtained through the Fredholm
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Alternate Theorem (FAT). The solutions and eigenvalues obtained are substituted into the

energy equation then EH, can be determined. Since a is small, the first nonzero term on

energy equation (A.5) becomes the leading term on energy difference. If AE becomes

positive then E(ube) > E(uI,,-,,) so that the trivial solution is energetically preferable at the

same load level 71.. For the opposite case, the bifurcated solution is preferable. The

schematic diagram of the procedure is shown in Figure A.1. During the process, it is

sometimes hard to find all the solutions uI-. Instead of direct application, we introduce a

certain orthogonal condition to make some terms in energy equation vanish. This

condition can be obtained by using the integration by parts to the linearized equation.

Detailed calculation will be explained later for a specific examples.

 
 

Governing Equation ‘__. Energy Expression

Boundary Condition 5
     

 

 

u = 110+ 8111+ azu,+ e3u3 +...

‘ 2 3 .
l=lo+skl+8 k,+8 1.3+...

   

   

BVP on First Order (a) —> Mu. —> E,(u,,>.,)
         

 

 

 

  

BVP on Second Order (82) ‘V 7m u, —> E3(u,,[u,], 7(0, 7+1)

/

BVP on Third Order (83) ‘> 12, [113] —> E4(u1,u2.[u3l,

A'09 kl, A'2)

   

    

 

  

     
 

   

Figure A.1 The procedure for a perturbation method. Here the variables with a bracket

are not necessary if we introduce a certain orthogonal conditions.
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A.3. The Analysis Scheme by Sawyers and Rivlin

The approach to evaluate the stability of fundamental state which is the buckling

initiation for the buckling problem, makes reference to the work of Koiter (1981). The

energy of the admissible displacement u from the fundamental state characterize the

stability of the fundamental state as the second variation to the energy is positive definite.

Later Sawyers and Rivlin (1982) applied this approach to evaluate the stability of buckling

initiation for the neo-Hookean rectangular plate.

If the second variation P,(u) for the potential energy difference P(u) which is

eventually the same as AE in (A2) under the dead loading condition, is deterrrrined as

positive definite then the fundamental state is regarded as stable. The neutral equilibrium

solution u which becomes buckling deformations, can be obtained by a zero minimum of

the second variation P,(u). Here P,(u) represents a linear version in the whole energy

analysis so that P,(u) vanishes with the neutral equilibrium solution. Hence for the further

condition on stability, the bifurcated path u is decomposed into a linear version of the

neutral equilibrium it and an additional term v. Substituting this new solution into the

energy equation P(u) leads to a new energy equation P(v). Again by solving the

equilibrium solution for v and substituting the solution into P(v). one can evaluate whether

P(v) as well as P(u) is positive definite. This approach is also based on energy

minimization scheme but the objects for competition is difi‘erent from the perturbation

expansion scheme.

A.4. Example 1: Elastica Problem

An elastica problem in which a long slender beam is compressed axially, has been

a model for the buckling analysis (Thomson and Hunt, 1969). The vertical deformation or
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the buckled shape u is described mathematically as the bifurcation from the unbuckled

deformation at a critical load parameter 110. The potential energy for a slender beam with a

The primes denotes the differentiation with respect to x. The governing equation and

boundary condition of (A6) through the first variation lead to

u" + ksinu = 0, u'(O) = u'(1) = 0, (A7)

where l. is an eigenvalue which represents the load parameter applied to the beam axially

and the boundary conditions are characterized as a natural condition. Clearly one solution

to the problem (A.7), valid for all possible A, is u(7t) = 0. This is therefore the trivial

solution to this problem, um, =0.

The linearized version for the nonlinear boundary value problem (A7) is stated as

u"+?tu = 0, u'(0) = u'(l) = 0. (A8)

For a variable v, the inner product (u" + ku, v) = 0 gives the adjoint problem to the

linearized problem (A.8) through the integration by parts. The adjoint problem with

respect to v has the same differential operator as that in (A8) so that the linear differential

operator in (A8) is self-adjoint. The bracket used in inner product is defined as

14g) = III/mane. (A9)

The solution to the linearized problem (A.8), u,,-,I becomes

u,,-,I = Acosmrtx, A = (M102, m = 1,2,3, (A.10)
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where A is an arbitrary constant. The linear solution reveals that there is an infinite

sequence of bifurcation load (one for each m).

A.4.l Perturbation Analysis (PA)

We now seek additional solutions u= u,,,f, bifurcated from uo = u,,II, =0 in (A.3)

such as

u = 8u1+82u,+s3u3+... (A.11)

Here the perturbation parameter a is defined as e=<u, uI> with an orthogonality condition

(u,, uI) = 0, i1: 1. (A.12)

The bracket denotes the inner product defined in (A9). Substituting the expanded solution

(All) and load parameter (A.4) into the boundary value problem (A.7) leads to the set of

governing equations and boundary conditions which form the separate boundary value

problems that originate from the various order of 8. Each set of governing equation

consists of a linear differential operator with i-th order deformation u, in the left hand side.

The right hand side of i—th equation involves all ofthe previous solutions including u,,, and

X,,]. The boundary conditions of each equation becomes

uI'(O) = uI'(1) = 0, i = 1,2,... (A.13)

For the coefficient of s, the first order equation becomes

u," + 1.0a, = O. (A.14)

The solutions of (AM) with the normalized coefficient are

u1 = J2cosm11x, 1.0 = (mn)2, m = 1,2,3, (A.15)
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The first order equation (A. 14) and the solutions (A. 15) are in fact the same as those found

in linearized problem (A8) and (A.10) except for the subscript. Hence the first order

equation represents the linearized problem. There is an infinite sequence of bifurcation

loads according to the eigenvalue parameters 2.0 in (A.15) but, from now on, we will

consider the lowest value, that is the case of m=1. The second order equation is shown as

u,” + kou, = 4.114,. (A.16)

Since the differential operator in the left hand side of (A.16) is same as that in (A.14), the

solutions u, will exist only if the right hand side of (A.16) is orthogonal to the solutions of

(A.14), namely (—}.Iu1, 111) = 0 according to the Fredholm Alternate Theorem (FAT).

The existence condition and orthogonality (A.12) give

rI = 0. (A17)

Introducing (A. 17) into (A. 16), the solutions with the orthogonality (A. 12) become

u, = 0. (A18)

In a similar way, the third order BVP is expressed as

u3"+}\.0u3 = éloU?—xlu2‘}\.2ul. (A.19)

Applying the FAT again to the right hand side of (A.19) and the first order solutions in

(A.14) gives

l.2 = -)l‘0' (A.20)

With the eigenvalues (A.17) and (A20) into (A.19), the solution for the third order

becomes
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u, = ~36‘71cos3m11x. ~ (A.21)

For the fourth order problem, the similar approaches give the boundary value problem as

u,," + 2.0114 = 52.011111, — k,(u3 — £11?) — 74,21, — 13m, (A22)

and the results are

A, = O and u,, = 0. (A23)

The higher order solutions can be obtained in a similar way. Then the buckled solution and

load parameter up to the fourth order are summarized as follows.

u = u,,If = (J2cos1tx)e — (gai- cos3rtx) e3 + 0(85), (A.24)

)4 = 2.0 + £71,082 + 0(34), 10 = 112. (A25)

The equation (A.25) represents the post-buckled solution path in A-e curve.

To evaluate the stability of the equilibrium solution near the buckling initiation,

the energy minimization between the bifurcated and trivial solutions at the load level it, is

used. The energy difference (A.2) becomes

II 1

AB = (II-2.152 + A(cosu—1)]dx. (A.26)

If AE >0, then the trivial solution is stable. Substitution the bifurcated solution 14be in

(A.24) and eigenvalues (A.25) into (A.26) give the even-ordered series of energy

difference
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AE = 82E2 + 84E4 + (A.27)

The odd-order terms vanish automatically. The second order term, E2 in (A27) is

_ 1 J1 :2 2

With the solutions u] in (A.15), E2 vanishes. The fourth order term, E4 is

E =f[u'u'-kuu—lkuf+iku4]dx (A29)
4 0 1 3 0 l 3 2 2 24 O l ' '

Substituting all the solutions and eigenvalues in (A.24) and (A25) into (A.29) gives

In fact, it is not necessary to know u3 explicitly to evaluate (A.29). To see this, multiplying

the first order problem (A.14) by uk, k=1,2,3,... and integrating over the domain 0<x< 1,

gives

J1(Ul" + K0u1)ukdx = 0. (A.31)

Then applying the integration by parts to the first term in (A.31) and the boundary

conditions (A.13) for i=1, gives

E(ul'uk'—Aouluk)dx = 09 k = 1929 39 (A.32)

Hence in (A.28), E2 and in (A.29), the first two terms in E4 vanish according to (A32). For

these terms, we do not need the solution u3.

Regardless of how E4 is obtained, the energy difference (A.27) now becomes

AE = -11—67l.084+ 0(86), 10 = 19. (A33)
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The dominant term E4 in (A33) is always negative giving E(uw) < E(um‘) so that the

bifurcated solutions are always stable in the vicinity of bifurcation initiation.

In this problem, AI=O in (A.17) so that the post-buckled path is symmetric and

K2>O in (A.21) so that the load is increased when the bifurcation grows. Hence,

considering the local behavior near the first bifurcation, m=1, there exists only one

solution before bifurcation initiation, which is trivial and stable. After bifurcation

initiation, there exist three local solutions of which one solution is trivial and unstable, and

two other solutions follow the bifurcated path and are stable.

A.4.2 The Sawyers and Rivlin (SR) Scheme

Now consider the elastica problem with the approach used in the paper by Sawyers

and Rivlin (1982). Starting from the potential energy equation for the admissible

displacement u defined in (A.6). The energy difference which is in (A26) is now rewritten

as

P(u) = E(u,l)—E(u,,,v,k) = £{éu'2+k(cosu— 1)}dx, (A.34)

where u = um], the bifurcated branch of solutions that we seek to construct. With the power

series expansion of cos u, equation (A.34) becomes

P(u) = i1 lu’2+k(— lu2+-l—u“- ) dx (A 35)
o 2 2 24 ' '

The second variational term in the expansion (A35) is

P2 = %£(u'2—lu2)dx. (A36)
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The necessary condition for stability of trivial solution is non-negative P2 2 0. To find the

stationary P2, set 8P2=0

8P2 = £(u’5u’—Au5u)dx = O. (A.37)

After integration by parts, equation (A.3 7) yields

u" + Au = 0, u'(0) = u’( l) = 0. (A.38)

The solutions of (A38) are

u = Acosmnx, X = (mn)2, m = 1,2,3, , (A.39)

which retrieves the bifurcation initiation values A0 and u, previously given in (A.15) and

also the linearized solution u,,-n in (A.10). Again we will stick to the lowest bifurcation

value m=1. Here u is only a linearized version of the solution branch u,,,f near the point of

bifurcation initiation. By substituting (A.39) into (A.36), the result is

P2 = O. (A.40)

Hence the state for which P2 has a stationery value, is regarded as a state of neutral

equilibrium.

Now we decompose u = u,,,f into the linearized solution (A39) and the remainder

term v as

u = a£4+v it = cosnx, (A.41)

where it = A cos nx comes from the linearized u in (A39) and a is the coefficient given

by a = (fl, u)/ (fl, 1?). The solution components 2": and v have the orthogonality

condition
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(a, v) = 0. (A.42)

Substituting the bifurcation solution u,,,f as given in (A.41) into the energy difference

(A.35) gives

P(u) = £{éazfiz' - 1545+ a(a'v' — 7m) + 5.0/2 — W) + ilzuaa + v)4 + }dx.

(A.43)

It is to be noted that, unlike the PA method, the SR scheme always use 7L = 1.0 associated

with bifurcation initiation. Now consider the multiplication v to the equation (A38) with

changed variable 2? and integration over the domain O<x<1 as

EU)" + Ml)vdx = 0. (AM)

Using integration by parts and boundary conditions in (A38) will give

E(z‘z’v' — sz)dx = 0. (A.4S)

Introducing the condition (A.45) and the equation (A.38), the energy equation (A.43)

becomes

J1 l , 1 . 4

P(u) = 0{§(v 2 — 1%) + fluau + v) }dx + 0(a5). (A.46)

Now we determine the new solution v for which P(u) has a stationary value. According to

(A.46), v has the value 0(02). Then let v = a2; with the orthogonality

(12,17) = 0. (A.47)

Neglecting terms of order higher than 0“, equation (A.46) becomes
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H

P(u) = a4£{(z_4'2 — A1?) + 113M?“ }dx + 0(a5). (A.48)

To find 17 for which P(u) has stationary value, the first variation with respect to 17 is

applied so that

1 -I -l r _n - '-

5P(u) = 5a“ 214 5240—2 0(u +Au)6udx = O. (A.49)

Substituting for 1‘1 from (A39) and using k=7? and boundary conditions (A.38)2, equation

(A.49) is rewritten as

_ J16.» + mm. + 175;); = 0. (A50)

This yields

aux; = 0, 17(0) = {4(1) = 0. (A51)

The solution of (A51) with orthogonality (A.47) gives

2
|

II

0 (A52)

Substituting the additional solution (A52) into the energy difference (A.48) results

P(u) = éAAa“ + 0(05). (A53)

Since P(u) in (A53) is always positive for small value of a, the trivial solution in the

vicinity of bifurcation initiation is regarded as stable. This result is different from that of

perturbation analysis analyzed in Section A.4.1. This difference arises from the

corresponding load level A. The A used in PA scheme is the load level on the bifurcated

mode, however A used in SR scheme is that on the bifurcation initiation. In fact, note from
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(A.30) that omitting the A2 term from the PA scheme would give a conclusion similar to

the SR scheme.

A5. Example 2: Modified Elastica Problem

To determine the relationship between the second term in expanded load

parameter, A2 and the stability of its solution path, the coefficient of the fourth term in an

expansion of the elastica problem is replaced by an arbitrary constant. The sign of this

constant coefficient represents the shape of post-buckled deformation in the vicinity of

buckling initiation. Now we modify the elastica problem so as to include a coefficient a in

the following energy functional.

E= PEu'+l{l—-u2-%u4+0(u6)}:ldx. (A54)

Note that if a=-1/6, then this problem is consistent with the original elastica problem. The

boundary value problem for (A54) becomes

u" + Mu+ au3 + 0(u5)} = O, u'(0) = u'(1) = 0. (A55)

The trivial solution for the problem (A55) is obviously um=0 for any load level A, and the

linearized problem becomes

u”+7tu = O, u'(0) = u'(l) = 0. (A56)

The linearized problem (A56) is the same as that in previous example (A.8) so that the

linear operator is self-adjoint and the linearized solution is in (A. 1 O).
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A.5.l PA Scheme

By substituting the expanded bifurcation solution u=u,,,f in (All) and the

eigenvalues A in (A.4) to the nonlinear problem (A55), the boundary value problems for

each order becomes

0(8): u,"+A0u, = 0, (A57)

0(82): uz" + Aouz = —A1u,, (A58)

0(83): U3"+;\.0u3 = ‘Aoau?—xlu2—)\.2ul, (A.59)

and so on. The boundary conditions are the same as those shown in (A.13). With the

orthogonality (A.12) and the FAT, the solutions for each order become

u = (J2cosnx)e + (ligacos3nx)e3 + 0(85), (A.60)

A = A0— getAoe2 + 0(84) A0 = 1:2. (A.61)

Here we omitted the detailed process because this and previous examples are the same

except for the parameter a. With the trivial solution um, =0, the energy difference (A.2)

between the bifurcated and trivial solutions at a load level A based on the energy (A54) is

stated as

AE = JLBu’Z — AG—u2 + %u4 + 0(u4))]dx. (A.62)

Substituting the perturbation expansions (A.4) and (A.11) into (A.62) becomes

AE = NEW,” — Aoufla2 + (ul'u3' -— Aoulu3—%A2uf—%Aouf) e4 + 0(86)]dx. (A.63)
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By applying the orthogonality (A.12) and the results obtained in (A32) to the energy

equation (A.63), finally we have

AE = §a7~054 + 0(86) = E484 + 0(86). (A.64)

If or>0, then from (A.61) and (A.64), A2<O and E4>O. Since E4 is the dominant term in

energy difference, the trivial solution has smaller energy than the bifurcated solution, that

is, energetically stable. If a<0, there exist three solutions before bifurcation initiation and

A2>O and E4<O so that the trivial solution is unstable.

A.5.2 SR Scheme

We now analyze this problem using the SR method used in Section A.4.2. The

potential energy equation is expressed in (A54) as

P(u) = £[éu' + A{1—%u2 — (ii-u“ + 0(u6)}:|dx. (A65)

The second variational term P2 in (A.65) is exactly same as (A36) in previous example so

that the resulting equations and their equilibrium solutions are in (A.37) to (A.39).

u = A cosrtx A = 1:2. (A.66)

By using the same decomposed new solution in (A.41), the new energy equations with the

similar orthogonal condition (A.45) are

041:)[0-1'2 — A172)—;Az‘44]dx. (A.67)

N
I
"

P(u) =
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The only difference between (A.67) and (A.48) in the previous example is the last term

which contains on. But this term has only it so that the procedures to find 17 are the same as

(A.49) to (A52). Then the result for energy equation is

P(u) = — 3g—(ZJLAAa4 + 0(05). (A.68)

If 0t>0, P(u) becomes negative so that the trivial solution is unstable. This result is

opposite to the PA method.

A.6. Example 3: A Higher Order Problem Represented Neo-Hookean Buckling

The buckling and post-buckling problem for a neo-Hookean plate considered in

the context by using the perturbation analysis, have a slightly different form from the

previous two examples. Namely, the neo-Hookean plate involves u2 at 0 (sec (4.128)) and

A1=0 (p,=0, (4.138))so that the expansion for the deformation u and eigenvalue A become

u = 8u1+82uZ+83U3+ ...,

A.69

A = A0+32A2+84A4+.... ( )

In order to understand this type of expansion, it is useful to examine a simpler model than

the neo-Hookean plate buckling problem. Such a simple model may be provided by

considering the following energy expression

2 1 '2 1 2 1 ' 2 '2E(u, A) Mia 7M +5u(u +u )]dx, (A70)

for a function u obeying u(0) = u( 1) = O. The governing Euler equation for the energy

equation (A.70) are given by the first variation as

u"+Au+u'u" = 0. (A71)
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The trivial solution for the problem (A.71) is obviously u,,,v=0. The linearized problem to

(A71) is stated as

u"+Au = O, u(O) = u(1) = 0. (A.72)

The boundary condition in (A.72) is different from previous two examples. However this

does not affect the self-adjointness for the linear operator. The linear solution is obtained

by solving (A.72) directly

u = Asimrx, A = n2. (A.73)

Here we considered the lowest value of bifurcation (m=1).

A.6.] PA Scheme

The bifurcated solution u=u,,,-f is an expansion from the trivial solution u,,,v=0.

Substituting the expansions in (A.69) into the problem (A.71), the resulting boundary

value problems for each order become

0(8): u,"+A0ul = 0, (A74)

C(82): u2"+A0u2 = —A.u, -u,'u,", (A.75)

0(83): u3"+Aou3 = -A1u§-A2u, —u,'u2"—u2'u1", (A.76)

and so on. The boundary conditions are

u,.(0) = u,(1) = 0 i= 1,2,... (A.77)

Since the trivial solution for this problem is u,,-50, the energy difference between the

bifurcated and trivial solutions is the same as (A.70). By using the expansions (A.69), this

energy difference AE can be expanded accordingly.
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AE = E282 + E383 + E484 + 0(85), (A.78)

where the components are

1
E2 = vi:§(u,'2—A0u12)dx, (A.79)

_ f I I 1 1 I l '

E3 — O[u, u, —A0ulu2+§ —x,u,2+§ul .4430.l )3 ]dx, (A.80)

E4 = £%{2(u1'u3' — A0u1u3) + (142')2 - 7‘0“? ‘ 211“]“2 — A2u%}dx

1 1 (A.81)

+ 2 Ji){§(2“1u1'u2 + “12“2') + “1 'uz'}dx,

and so on. Now we consider the first order equation. By solving directly the solution

becomes for the lowest value of bifurcation (m=1) as

u, = Jisinnx, A0 = 1:2. (A.82)

In a similar way in (A.32), consider the following integration

kw," + A0u1)ukdx = O = 1, 2, 3, (A.83)

Integration by part once and applying the boundary condition in (A.77) lead to the

equation (A.32). This equation can apply to E2 in (A.79) and the first two terms in (A.80)

and (A.81) so that it is not necessary to solve 143 in (A.81).

The solution in (A.82) is substituted into the second order solution and the results

become

x
u2 = —Tosin21tx, A, = o. (A.84)
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Then applying the inner product with the right hand side of (A.76) and ul and the FAT

gives the next order eigenvalue as

1

With the previous solutions (A.82), (AM) and (A.85), the third order solution for the

equation (A.76) becomes

A

u3 = isin3nx. (A.86)

4f2

However the third order solution (A.86) is not necessary to evaluate E4 since there are no

u3 terms in (A.81) after considering the equation (A.83)]. Substituting all the solutions and

eigenvalues obtained previously into the energy equation, then E2 in (A.79) and E3 in

(A.80) vanish and E4 in (A.81) gives

E4 = —A3, (A.87)

so that the energy difference becomes

AE = 115138” 0(85). (A88)

In this case, A2 is always negative and then AE is always positive so that the trivial solution

near the bifurcation initiation is always stable.

 

1. This parallels the results in Section 4.7.2 where the u”) terms are eliminated in

the energy expression (4.164) by using the boundary conditions (3.9)2 for k=1.
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A.6.2 SR Scheme

The energy equation for the neo-Hookean plate is expressed in (A.70). The second

variation in energy P2 to (A.70) is given by

P = f (l(u')2 -1Au2)dx (A 89)
2 o 2 2 ' '

After first variation to P2, the linearized governing equation becomes

u" + Au = O, u(O) = u(1) = 0. (A.90)

The solution to the boundary value problem (A90) is

u = Asinnx A = n2. (A.91)

Again we stick to the first mode m=1. Substituting the solution (A.91) into (A.89) gives

P, = 0. (A92)

Then the decomposition of u=u,,,~finto the linearized solution u=u,,,, (A91) and remainder

term as

u = ail + v, (A.93)

where a is a small coefficient and the following orthogonality holds

(it, v) = 0. (A.94)

After applying the new solution (A.93) to the energy equation (A70) and set v = 022-4,

the energy equation after ignoring the order higher than 4 becomes

P(u)=a4£[{%fi'(&§+£¢"+§)+504 +(“'))+2((u)2 Au)H. (A95)

158



The first variation for the equation (A.95) gives the governing equation about {I as

17" + A2} = —z‘4'£4" 27(0) = 5(1) = O. (A.96)

The solution for (A.96) with orthogonality condition (A.94) becomes

- A2 .

u = Knsrn(2nx). (A.97)

Substitution the solution (A.97) and linearized solution (A91) to the energy equation

(A.95) gives

9.2.44 4
P = - 48 a . (A98) 

The equation (A.98) reveals that P is negative so that the trivial solution is regarded as

unstable.

A.7. Discussions

In this Appendix, we examined the stability in the vicinity of buckling initiation

for more simplified problems than the buckling problem of neo-Hookean plate by using

the perturbation method and the method used in the paper by Sawyers and Rivlin (1982).

The whole procedure and their corresponding equations are summarized in Table 1. and 2.

The perturbation approach compares the energy between the bifurcation and the

trivial solutions on the same load level of A and on the first mode (m=1). The sign of an

energy difference determines the lower energy level of two competing solutions which

shows more energetically preferable solution. Also the results tell the relation between the

post-buckling behavior (A2) and the energy difference (E4). From the results on A2 and E4,

(A20) and (A30) for the elastica problem, (A61) and (A.64) for the modified elastica
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problem and (A85) and (A.87) for the simplified neo-Hookean buckling problem, it can

be shown that

E, = "1,. (A99)

Therefore the signs of A2 and E4 are different so that, if A2 is negative then the trivial

solution is energetically preferable. Otherwise the bifurcated solution is preferable.

In the SR method, the eigenvalue is not expanded so that the energy difference

used in this method just compares the energy on the bifurcation initiation. This will give a

confusion that on the eigenvalue (load parameter) at the bifurcation initiation. It also can

generate opposite conclusions as to the stability of the bifurcated branch of solutions.
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Table A.1 Summary of the procedures and their corresponding equations for the

perturbation expansion.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Modified Simplified Neo-Hookean

Step Elastica Elastica neo-Hookean plate (context)

1. Nonlinear (A6), (A26) (A55),(A.62) (A.7l) (2.28), (2.30)

BVP, Energy

equation

2. Applying the (A. 1 1),(A.4) (A. 1 1),(A.4) (A. l 1),(A.4) (3.1)

expansion

3-1. lst order (A.14) (A57) (A.74) (3.8), (3.9),

BVP (3.10)

4-1. A0 (A.15) (A.61) (A.82) (4.62)

5-1. u, (A.15) (A.60) (A.82) (4.68)-(4.70)

6-1. E2 (A.28), E2=0 (A.64), E2=0 (A.88), E2=O (4.155),E2=O

3-2. 2nd order (A.16) (A58) (A.75) (3.8), (3.9),

BVP (3.11)

4-2. A, (A.17), AI=O (A.61), A1=0 (A.84), AI=O (4.138), p,=0

5-2. uz (A.18), u2=0 (A.60), u2=0 (A.84) (4.126)

6-2. E3 E3=O E3=O (A.88),E3=0 (4.158),E3=O

3-3. 3rd order (A.19) (A59) (A.76) (3.8),(3.9),

BVP (3.12)

4-3. A2 (A20), (A61), (A.85),

A2=1/4 A0 A2=-3/2 0er A2=-1/3 A02

5-3. u3 (A.21) (A.60) (A.86) N/A

6-3. E4 (A.30), (A.64), (A.87),

E4=-1/16 A0 < E4=3/8 0er E4=l/12 A02> O

O
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Table A2 Summary of the procedures and their corresponding equations for the

Sawyers-Rivlin method.

 

 

 

 

 

 

 

 

 

Modified Simplified Neo-Hookean

Step Elastica Elastica neo-Hookean plate (1984)

1. Energy (A.35) (A65) (A70) (2.12)

equation, P(u)

2. Second vari- (A.36) (A.36) (A.89) (3.1)

ation, P2

3. Solving for (A.37) - (A.39) (A.37) - (A.90) - (A.91) (3.8)

neutral CQUlilb- (A.39), (A.66) (314) (3.16)

rium ’

4. Define new (A.4l) (A.41) (A.93) (4.1)

solution

5. Energy with (A.48) (A.67) (A.95) (4.7), (4.10)

new solution

6. Solving for (A.49) - (A52) (A.49) - (A52) (A.97) (4.13)

new solution (5.5)

7. Evaluate (A53), (A.68), (A.98), (6.1)

energy “,9 P=1/64 AA > o P=-3/32 (1AA =-1/48 2.2.44 Fig.3, Fig.4
new solution

(4th order)     
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APPENDIX B

COEFFICIENTS FOR STABILITY PARAMETER

The coefficient functions Y[i,j] used in equations (5.11) and (5.12) for stability

parameter R3 are defined as follows:

1 _ _ _ _

Y“, 1] = mlymao)+N1)’1,2(7~o)-N2.Y1,30~0)+N3y1,4(}~o)-VN4)’1,5(7¥0)]

Ylll, 2] = 3—2ngb’1,1(‘xo)—N|yl,2(—xo)-Nzy1,3(‘xo)—VN4)’1,4(-}t-o) + N3J’I, 5910)]

 
”193] = figiyraao)+N1Y1,7()~0)—VN4}’1,8(7~0)], i

Y[l, 4] = -§;T§D’1,6(—7\o)—N1y1,7(-7~0) +N3Y1,8(-7~0)],

O

1’11. 51 = gi—at—zwo — A3)(1 + 317,)- 1-)-’3)’1,9(7~o)‘r mum—m].

v _ ._ _

Y[I, 6] = —m[3210(1- 1110+ 16M“ — Ad)(1+ 2523-193‘ N3y1,1o(}~o) + VN4y1,1o(-7¥o)la

(1+Ao) — — -

”1,71 = "Wb’mlafi-ZWNWI,12(10)‘24N1+N2V1,13(7~0)}],

l—A _ _ _

Y[l, 8] = “%§18L)U1,11(4~o)—Zi—N3J’1,12(-}~o)+ 24N1+N2y1,13(—}~o)}],

V(1+ Ao)

Y[1,9] = ———41—8—{3VM—st(l 40)},

Y[l 10] = M9137 +Ns(1+A )}
, 41-8 3 2 0 9

111,11] = 0,

N132

1,12 = — l-A2 .
Yl ] 2x0( 0)
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1'12. 01 = —1—2§73(1—7~8)2{—N3(1—ko)+vF/4(1 + m}

+(1+A%)
W{16(1+s4x3)+52(3x3+ 58A3 + 3)},

1'12, 11 = —%}:gly2,1(7~o) + N1y2,2(?~o) + 1852,30.) + 7852,4001].

112. 21 = —1—6V-,7,-1yz,.(—xo)-N1y2,z(—xo) + My. 3(—x0)—vK/4y2, 46-14)].

1'12. 31 = 5362,41.» N1y2,.(xo)— vN4y2,7(xo)1.

Y12. 41 = fi—gm, .(-xo)—N1y2,.(—xo) + NW2, 76710)].

1'12, 51 = gg—igtso — W3 + 6418 — 313) — 6131mm.) - VN4y2,s(-}~o)}],

Y[2, 6] = .3:—:B[s(1 - x3)(3 + 32x3 — 313 + 32:21.3) + 6{]V3y2,8(A0) — mum—1.0)} ],

Y[2, 7] = 64—17L3-[y2’9(AO)+ 1927\7.(1— A8) + Nzyz,10(A0)+ VIV4y2, ”(A0)],

1’12, 81 = gawk—ka—wzml — x8) + N212, Mao-My. ”Hon.

1’12. 91 = —-4—‘,:—8 Uz, no.) + vN4y2,13(7»o) + My), I.01..)1.

1’12, 101 = 7&8 Dz, 12(-7~o)-N3y2, ”(280) + N216, ”(4491.

Y12. 111 = 71-0.

112,12] = —‘2—41.0(1 —21.g).
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Here the 27 notations yum) used in coefficient functions Y[i,j] are defined as;

yi,i(€) = -S§(1-€2){4+52(1-2§+5€2)},

yi,2(C) = 85C(1+§)(10+§+C2),

yi,3(C) = 24S(I+€)(1+3§),

yi,4(€) = 8{SZC(1+5€+2§2+4€3)-3(3+€)},

yi,s(C) = -8(1+C){(3-C)+52€2(7-5€)},

yi,o(C) = 52(1-€)(1+C)3~

yi,7(€) = -8(1+ €)(1-€)(6+C),

yi,s(€) = 85(1+§)(1+24),

yi,9(€) = -(1-€)(3 +23C-3CZ+€3),

yi,io(€) = 5(1-€)(5-31C-13€2-€3),

yi,u(€) = -52C(1-C)(1+€)2,

yi,12(C) = -S(3 + 134-762-519,

yi,13(§) = 852C(1+€+C2),

y2,i(€) = S(1+C){(7+5€+17CZ+3€3)+SZCZ(15-19C+41C2-5C3)}.

y2,2(€) = 128€(1-€)(1+§)(2+3€-€2).

y2,3(€) = -125(1-€)(1 + C)(1+ 3C),

y2,4(€) = -6(1-§){2(3+€)-52€(1 +3€)(1+C2)}.

y2,5(C) = 2S2§(1-§)(1-3C-5€2+ 3C3),

y2.o(€) = -6(1 + 92(2 + 3C - C2),

yz,7(§) = -3S(1 +€)(1-3€)(1+€2),

y2,s(§) = (1-€)(1+6€-16€2-6€3-§4),
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y2,9(C) = s2(3 +34C-19Q2—4Q3+173Q4—62§5+_3§6),

y2,io(€) = -9652€(1-C2)(1+€2).

y2,n(§) = 125(1-C2)2(1+€).

y2,iz(€) = 28C(1-€)(1+2§-C2),

y2,13(C) = -3(1 +€)(3 -§),

y2,14(C) = 35(1 +C)(1-C)(1-3§).
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