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ABSTRACT

BUCKLING AND POST-BUCKLING ANALYSIS OF NEO-HOOKEAN PLATES
AND ITS CORRELATION TO A DIRECT ENERGETIC STABILITY ANALYSIS

By

Sangwoo Kim

The elastic stability of buckling and post-buckling deformations for
inéompressible neo-Hookean rectangular plate subjected to a uni-axial thrust is
investigated. The buckling deformation is described by the small deformation superposed
on finite homogeneous deformations. Throughout the investigation the thickness of the
plate is not limited. The resulting nonlinear boundary value problem is analyzed by using
the perturbation expansion method in which an associated linear problem is solved at each
order.

Buckling onset is determined from the first order expansion and can occur in either
flexural or barreling mode shapes with any integer number of half wavelength in the
direction of thrust. The solutions from the higher order expansion correspond to post-
buckling deformations. The higher order problems inherit information from problems of
the previous order, both by the expansion procedure and by the application of
mathematical solvability conditions. The stability criterion for post-buckling deformations
is based on energy competition between the buckled deformation and unbuckled
homogeneous deformation in the vicinity of buckling onset. It is formally established that
the energetic favoribility correlates with the load following character of the buckled

solutions (progressive buckling vs. snap buckling).



Based on the expressions obtained by these procedures, it is found that the flexural
buckled deformation is energetically favored over the unbuckled homogeneous
deformation when mode number is small, otherwise the homogeneous deformation is
favored. The barreling buckled deformation is always energetically favored over the
homogeneous deformation. This contrasts with previous results of Sawyers and Rivlin
(1982), who obtain essentially opposite results for the elastic stability of homogeneous
deformation. The approach to evaluate the elastic stability by using the perturbation
method considered in this research gives more insights to understand the buckling
phenomena and is systematically applicable to higher order analysis.

Besides the main topic of stability evaluation, several approximate schemes for the
critical buckling load in neo-Hookean three-ply sandwich type plate were developed in
view of practical application. The schemes are based mostly on the Rayleigh quotients
approach and trial solutions. These schemes can be expanded to general multi-ply

composite plates and so reduce the effort to determine the critical buckling load.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Mechanical instabilities that lead to sudden structual rearrangement, have been a
considerable factor in structual design. Two significant examples of mechanical instability
are concerned with internal rupture (cavitation), in which a hole forms and grows in the
interior of a solid body under the tensile loading, and buckling, in which the structure
reconfigure its shape under the compressive loading. Both could eventually lead to failure.
These phenomena involve large deformations so that they cannot be easily explained by
the classical linear theory of elasticity, since the theory of elasticity on the material
subjected to large deformations is inherently nonlinear. Analysis on this subject can
predict a critical load at which the material fails its structual task and modes of instability
which enables us to prevent the possible failure.

Above examples can be described in mathematical terminology as a bifurcation
from a simple configuration known as the trivial solution. The concern of this research is
bifurcation due to buckling in rectangular slabs. The post-buckling behavior considers the
character of the buckled equilibrium paths in the vicinity of buckling initiation
(rigorously, initial post-buckling). The post-buckling analysis provides not only the
stability of equilibrium solutions but also the possibility of snap-buckling to be expected
in the case of imperfect loading.

Hyperelasticity is the theory of nonlinear (finite) elasticity for hyperelastic

materials whose elastic potential energy can be described by a strain energy function. The



mechanical behavior of rubberlike materials which bear large deformations such as
synthetic elastomers, polymers, and biological tissues as well as natural rubbers, can be
analyzed by hyperelasticity. The stability problem of such materials mentioned above has
been focused by many researchers since some theoretical materials have been suggested.
These ideal materials have a specific strain energy functions whose characteristics are
similar to rubberlike materials (Beatty, 1987). The neo-Hookean material is the simplest
model of an incompressible, isotropic, hyperelastic materials.

The void nucleation and growth in a hyperelastic material can be understood as the
bifurcation from a critical load at onset of void formation (Ball, 1982). The method of
energy competition for minimum between the deformations with void (bifurcated) and
without void (trivial) can be used to determine the stable - physically obtained -
configurations. The void or bifurcated solution grows smoothly for an isotropic material
with increasing tensile load on the exterior of material after the critical load of void
formation is attained. This phenomenon may change for a composite material depending
on its initial geometry as sudden cavity formation (snap-buckling) before the critical load
may occur.

Numerous investigations on the buckling instability for rectangular plates or
cylinder by using the linear theory of elasticity have been developed after von Karman
theory was formulated (Matkowsky and Putnick, 1974). This theory considers the higher
order terms added to small deformations. The governing equations are also nonlinear so
that the proper linearization such as perturbation method can be used. However this
approach is restricted to small strain conditions and therefore the material to be considered

is applied only to thin plate.



For the buckling problem of hyperelastic rectangular plates, the buckling
deformation can be described by using the technique of small deformation superposed on
finite homogeneous deformations (Biot, 1963). Two buckling solution for the linearized
equilibrium equations are possible with an arbitrary integer number of half-wave lengths.
The flexural mode has symmetric shape and the barreling mode, which always occurs at
higher load than the flexural mode, has antisymmetric shape with respect to loading
direction. The buckling load of the flexure (barreling) mode is monotonically increasing
(decreasing) with the geometrical aspect ratio and mode number. Hence the critical, or
minimum, buckling load is always obtained in mode-1 flexural deformation. Then at each
potential point of buckling initiation, the question is whether the buckling actually occurs
as the load is increased or whether the unbuckled state persists. The answer to this
question is related to the initial post-buckling analysis and stability evaluation. Here the
buckled and unbuckled states compete for stability. Due to the concepts of elastic stability
in a static setting which is independent on time, the state which has smaller energy holds
stability.

Some characteristics will change for the multi-layered hyperelastic composite
plate. The investigations on two- and three-ply sandwich plates reveal that the monotonic
ordering of the buckling loads may change its behavior and this change depends on the
initial geometry and mechanical properties of plies. The critical buckling which has
minimum buckling load may be either mode-1 flexural or wrinkling deformation. It has
also been shown that there exist a new family of buckling solutions in addition to the

original family which is a continuation of the buckling solutions of noncomposite plate.






The analysis on prediction of critical buckling load for a N-ply plate eventually
requires the nontrivial solutions of a 4Nx4N matrix eéuation originating from 4 boundary
conditions and 4(N-1) interface conditions. The entries of this matrix involve the load
parameter in a nonlinear way, giving rise to a nonlinear eigenvalue problem. The
dimension of this matrix can be reduced to 2Nx2N for a symmetrically stacked plate.
When the stacking number of plies goes higher, the complicated expression on matrix
elements and errors caused by standard numerical procedures can be expected so that it is
desirable to consider the approximate analysis for the buckling prediction. To establish the

proper approximate schemes constitutes the second subject of this research.

1.2 Literature Review

For the structual problem, mechanical instabilities make the structure to
reconfigure itself such that it often cannot achieve its assigned structual tasks.
Furthermore, these phenomena usually appear below the critical limit of material
property. The governing equations of equilibrium state for these cases will be nonlinear so
that they give more than one solution. Of all these solutions, one solution gives the
minimum total stored energy and typically the structure follows this solution in a physical
sense. This energetically favorable solution leads to the stable configuration. Other
solutions, which will be energetically unfavorable, leads to the unstable configurations.
The buckled and unbuckled configurations compete for energy minimizer and typically
the buckled form which is undesirable from the engineering point of view, appears to be
stable. Eventually these phenomena carry out large deformations so that the classical

linear theory of elasticity no longer applies.



The major contributions on elastic stability theory within the framework on finite
elasticity and on von Karman theory which is derived from the infinitesimal or linear
elasticity will be reviewed at first. Furthermore the literatures on bifurcation theory, which
include both the cavitation and buckling problems, will be examined. The research works
on buckling analysis of hyperelastic rectangular plate will be also reviewed in detail.
Finally, the literature on the critical buckling load of multi-ply composite plate will be
reviewed. This review is purposefully broad so as to emphasize how disparate phenomena
in solid mechanics (structual buckling, cavitation rupture) and fluid mechanics (transition
to turbulence) can be treated in a similar mathematical framework. Readers who are not

interested in this level of detail can proceed directly to Section 1.3.

1.2.1 Elastic Stability

The theory of buckling and postbuckling behaviors of elastic structures was
enunciated by Koiter (1981) for the case of small finite deformations from the
configuration of equilibrium. The general theory on these can be found in an explanatory
article by Budiansky (1974) where he presents the virtual work and energy approaches
and showed that they are equivalent. In an energy approach, the post-buckling analysis is
performed by variation of the potential energy functional and perturbation expansions of a
load parameter and displacements within the class of general elasticity.

The theory of elastic stability was studied firstly by Euler more than 200 years ago
for the lateral buckling of compressed slender bars and he used the idea of the method of
adjacent equilibrium. From this emerged, the energy theory of stability for thin bodies
which have large deflections but small strains was emerged. This type of problem leads to

von Karman plate theory which eventually gives a nonlinear eigenvalue problem. In the



most cases, the closed form solutions do not exist. For a thin elastic simply supported
rectangular plate subjected to a compfessive thrust, Bauer and Reiss (1965) obtained the
approximate buckled solutions by using perturbation method, energy methods and series
expansions. These buckled solutions are bifurcated from each eigenvalue of the linearized
problem. Here the lowest eigenvalue is equal to the buckling load. Matkowsky and
Putnick (1974) also studied possible equilibrium states after buckling onset as a
multiplicity of eigenvalue. They evaluated the stability of each buckled solution by the
amplitude decay of initial deviation on power series expansion. They showed that four of
the nine possible equilibrium solutions are stable while the other five are unstable. For the
buckling problem of a rectangular three-layered sandwich plate with soft core, the work of
He and Cheng (1992) is based on Reissner’s equation of sandwich plate and they found
the similar results to previous authors. In addition, the other kind of equilibrium states
which did not appear in noncomposite plate was shown. Above works were based on
modified linear theory of elasticity so that the materials to be considered were limited to
thin plates despite their large deflections.

The concept of elastic stability within the framework of finite elasticity theory was
developed by Pearson (1955). He formulated the energy criterion for stability under the
dead loading and pressure loading conditions by means of approximation in the
nonlinearity of the stress-strain law. He then focused on the relationship between the
existence of adjacent equilibrium and the energy criterion. It is found that both approaches
are equivalent for special situations such as at points where an originally stable structure
first becomes unstable. A review of various stability criteria may be found in the survey

articles by Beatty (1965, 1987). The energy criterion of stability is eventually equivalent



to the positiveness of second variation of energy function. The stability evaluation of an
equilibrium state varies on each investigation for the.speciﬁc material type and loading
condition. Hill (1957) also studied the criterion for stability of an elastic solid in a state of
finite strain under dead loading and showed that the stability criterion is closely related to
the unique solution of associated boundary value problem in a series of adjacent
equilibrium. Holden (1964) derived an inequality condition for stability based on energy
criterion and obtained an estimate of the critical load of a circular column. Beatty (1965)
considered static and dynamic implications of the stability theory generated from the
above papers and modified the criterion. Then Beatty (1971) estimates the critical load for
incompressible ideal models such as neo-Hookean and Mooney-Rivlin materials. In
summary, the energy criterion for stability (which is equivalent to the existence of
adjacent equilibrium) requires a minimum potential energy at that state.

The problem on void formation and growth in solids and sudden void formation in
vulcanized rubber has been focused as failure mechanism to many applied scientists. The
work of Ball (1982) which gives a theoretical basis to the most developments thereafter,
considered various problems of uniform radial traction or displacement at the boundary of
an elastic solid sphere. He investigated the bifurcation problems for the equations of
nonlinear elasticity as a branch of radially symmetric solutions with hole bifurcate from a
path of homogeneous radial expansions with no hole. It is also shown that such bifurcated
solution is the only stable solution for sufficiently large loads by minimization of the total
energy integral. According to the linear theory, a material without hole remains in the
same shape despite the amount of external loads. The changes in bifurcation behavior

when the material has inhomogeneity was examined by Horgan and Pence (1989) for a



composite sphere composed of two different neo-Hookean materials. Unlike the
homogeneous sphere, the bifurcation diagram for composite sphere may fold back in a
plot of hole radius vs. external load. This gives a discontinuity in path for stable
equilibrium configurations which turn out to be a snap-buckling by using the energy
competition for minimizer to a stable configuration. This concept is also used for non-
radially symmetric solutions by James and Spector (1991) for a large class of nonlinear
elastic materials. They found that the radial deformation of spherical void is energetically
unfavorable to the formation of long, thin filamentary void. An extensive bibliography on
the various application of void formation problems can be found by Polignone and Horgan
(1993) in which they studied the combined effects of material anisotropy and
inhomogeneity. Horgan and Polignone (1995) reviewed and summarized the
investigations on radially symmetric cavitation in nonlinearly elastic solids which focused
on results established using the bifurcation analysis.

The bifurcation approach has been considered as a useful tool in the wide fields of
nonlinear mechanics (Keller and Antman, 1967), especially when the qualitatively
different behaviors emerge from the original state. In nonlinear hydrodynamics, the fluid
flow changes from the laminar to the turbulent state at a critical value of certain parameter
such as Reynolds number. These two states compete for stability. Kirchgassner (1975)
reviewed the works on nonlinear hydrodynamic stability, especially for the Taylor and the
Benard models. The Couette-Taylor problem (Tagg, 1994) deals with the viscous flow
between two coaxial infinitely long cylinders rotating in the same direction. If the angular
velocity surpasses a critical value, the basic Couette flow changes to a new state as Taylor

vortices. The Benard problem deals with a viscous fluid in a horizontal layer which is



heated from below. If the temperature difference between lower and upper planes passes a
critical value, the convective motion is observed from the purely conductive state in which
the fluid remains at rest.

The method of incremental deformation superposed on finite deformations to
examine the buckled shape was introduced by Biot (1963). He then applied this theory to
incompressible thick rubberlike slabs in a uniaxial compression. He determined the
flexural - bending type - bifurcations. Wu and Widera (1969) formulated the general
nonlinear theory of a rectangular Mooney-Rivlin type solid subjected to a biaxial loading
by considering small deformations superposed on finite homogeneous deformation. The
bending (flexure) and bulging (barreling) type solutions were obtained. For compressible
Blatz-Ko material and incompressible neo-Hookean material in a biaxial loading, Burgess
and Levinson (1972) also found two kinds of buckling instabilities. Most of applications
are restricted to a plane strain condition so that all deformations can be described in a two
dimensional setting. Rivlin’s cube problem as a fundamental application of stability was
studied by Rivlin (1974) for the purely homogeneous deformation of a unit cube of
incompressible neo-Hookean material subjected to three pairs of equal and opposite
forces. From the variation of the energy functional, he showed that there exist seven
possible equilibrium states in a tensile loading condition. Also, based on the criterion that
an equilibrium state is stable if the second variation of the energy functional is positive, he
found that one trivial and three nontrivial solutions are unstable and the other three
nontrivial solutions are stable. For incompressible Mooney-Rivlin material in the equi-
triaxial loading, Ball and Schaeffer (1983) investigated the bifurcation and stability of

equilibrium solutions from the view of absolute minimizer of potential energy. Sawyers



(1976) studied the case of neo-Hookean cube where two pairs of loads on the cube are the
same, but different from the third. MacSithigh and Chen (1992) developed the stability
conditions based on energy minimization for general incompressible material in equi-
biaxial loading and applied this condition to Mooney-Rivlin material. For an infinitely
long neo-Hookean cylinder subjected to radial loading, Haughton (1992) found the
analytic nontrivial solutions and their stability based on the criterion that the second
variation of energy functional must be positive for its stability. The analytic solutions have
the form of modified Bessel functions in a polar coordinate system and he concluded that
all the nontrivial solutions are stable.

The brief summary on incremental deformation equations were presented in
Ogden (1992). Furthermore he examined the stability of the underlying deformation and
the connection between stability and uniqueness of solution. Ogden (1995) also discussed
the stability of the finite deformation near the point of bifurcation from the view point of
dynamics.

The perturbation expansion method has been well used to analyze the cases
concerned with the nonlinear boundary value problem. Elgindi et. al. (1992) considered
the case of long elastic cylindrical tube submerged in a liquid by means of perturbation
method. The obtained solutions in the neighborhood of the critical buckling pressure,
showed that the deformed shape changes drastically from the unbuckled circular tube.
Parker and Mote (1996) developed a perturbation method for self-adjoint eigenvalue
problems with perturbed boundary conditions. The finite order of expressions for the
eigenvalue perturbations are derived for distinct unperturbed and degenerate

eigensolutions. The eigensolutions are simpler than traditional eigenfuction expansion and
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are convenient for applications to further analysis. An asymptotic expansion technique
using power series, is applied to a nonlinear asymptotic membrane theory for thin
hyperelastic plates by Erbay (1997).

For the rectangular neo-Hookean plate subjected to uniaxial compression, the
buckled shapes and their critical loads depending on slenderness of initial geometry have
been the main issues. Levinson (1968) considered the small disturbance of homogeneous
deformation by using the first variation of energy functional with displacement potential
function. Nowinski (1969) and Sawyers and Rivlin (1974) analyzed the linearized
equilibrium equation of small deformation superposed on the finite homogeneous
deformation. They revealed that there exist two kinds of buckling - flexural and barreling
deformations - depending on the load parameter. The buckling load of flexural mode is
monotonically increasing and that of barreling mode is monotonically decreasing when
the mode number is increased. Finally both modes meet at the infinite mode or plate-like
geometry as shown in the figures from Chapter 4 so that the barreling occurs at higher
loading than flexure.

The subsequent paper by Sawyers and Rivlin (1982) investigated the stability of
homogeneous deformation at the buckling onset for a neo-Hookean rectangular plate on
the basis of an energy criterion that is related to the sign of second variation of the
difference in potential energies between buckled and homogeneous deformation. The
flexural buckling deformation, was found to be stable only if the aspect ratio /,/],, is less
than about 0.2 so that after this range, the buckling can occur. And the barreling buckling
deformation was found to be always stable. These results were obtained from the

linearized energy equation with linearized solutions and remainders. Meijers (1987)

11



studied the post-buckling behaviors of surface waves when a neo-Hookean half space is
compressed in perfect and imperfect geometries by using approach of previous paper. An
asymptotic expansion of the potential energy as a linear combination of two buckling
modes and remainder terms was used to show the reduction of critical loads in a imperfect
geometry. Lazopoulos (1996) has utilized this type of methodology to determine the
features of the post-bifurcation displacement solutions and given associated numerical
examples for incompressible materials including Mooney-Rivlin type which is more
general than the neo-Hookean type used here. His second order displacement solution
were compared with the experimental work by Beatty and Dadras (1976) where the
barreling type displacement exists. In this respect his work is similar to our work as well
as Sawyers and Rivlin (1982) in a respect of post-buckled solution space which will be
developed in Chapter 4. We, however, correlate the stability behavior directly to the
energy difference between the homogeneous (unbuckled) solution and the potential
buckled solution. In addition, we show how the third order displacement solution can be
eliminated from the immediate post-bifurcation analysis. Bajenitchev (1996) developed a
numerical procedure for incompressible material in nonlinear elasticity based on
perturbation methods and finite element approximations. The application to a plane
deformation of Mooney-Rivlin type rectangular body are compared with analytic results
for the behavior of force-displacement dependence. Beatty and Pan (1998) investigated
the elastic stability of thick plate as hyperelastic Bell material and incompressible neo-
Hookean model on the basis of Euler dead load criterion. They found the similar type
buckling solutions - symmetric and asymmetric mode. Also the critical load for extremely

thin plate was deduced to compare with classical Euler buckling load.
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1.2.2 Buckling Instability of Composite Plates

Buckling instability of sandwich composite plate based on the results of a
noncomposite plate was studied by Pence and Song (1991). They investigated a
symmetric three-ply plate consisting of neo-Hookean materials within the framework of
incremental deformation. Unlike the noncomposite case, the buckling onset prediction
curve shows non-monotonicity depending on some initial geometrical settings as shown in
Figure 3. Therefore the critical buckling load - the smallest load for buckling onset - is not
always mode-1 flexure. Based on this algorithm to predict the buckling onset, Song and
Pence (1992) implemented the optimal design scheme for a neo-Hookean sandwich plate.
For the three-ply plate, they compared the buckling load of one configuration (which has
the stiffer central layer) and its conjugate configuration (which has the stiffer outer layers).
It is found that there exists a transition point which changes the configurations having
lower critical load.

Further study on symmetric sandwich plate by Qiu, Kim and Pence (1994) showed
that there exist another family of onset buckling solutions above the original family as
shown in the figures of Chapter 6. The wrinkling load of the original family converges to
that of noncomposite case regardless of the initial geometry and material properties. The
wrinkling load of new family converges to a value that depends only on the shear modulus
ratio. Also, their investigation for the asymmetric 2-ply sandwich plate shows that there
are three onset buckling curves. The lower two solutions of these are the counterpart of the
original family of symmetric case. However, due to the nature of asymmetry, each
solution does not represent the flexure or barreling characteristics seen in the symmetric

case. For the onset buckling prediction of general N-ply neo-Hookean sandwich plate,
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investigation predicts that 4Nx4N nonlinear determinant equation should be solved. The
dimension of the matrix can be reduced to 2Nx2N for a symmetrically stacked composite
plate. If the number of plies in a plate is larger, the mathematical analysis encountered will
be difficult to handle even by the numerical computation. This motivates the consideration
of approximate methods.

The Rayleigh quotient approach is widely used for an approximation technique to
determine the natural frequency in vibration problems and the critical buckling load for
structual problems. With reasonable test functions, the Rayleigh quotient based on
displacement and stress as the independent field yields an upper bounds to the exact value
(Sagan, 1961). For the layered elastic composites, where the material properties are
discontinuous across an interface, Nemat-Nasser and Minagawa (1975) proposed a new
quotient which is obtained from combining the displacement and stress Rayleigh
quotients. Lang and Nemat-Nasser (1977) applied these quotients to the problems of
vibration and buckling. Horgan et. al. (1978) discussed the bound for various quotients

and showed the closer upper and lower bounds of the new quotient.

1.3 Thesis Organization

The main purpose of this thesis is to investigate the post-buckling instabilities of
thick rectangular plate near buckling initiation. This is the content of Chapter 2 through 5.
A somewhat related, and more applied issue, is the determination of convenient
approximate schemes for the buckling loads themselves in more complicated geometries,
such as a multi-layered composite plate. We give some development on this issue in
Chapter 6, but detailed further inquiry into this issue is not developed here. In all of these

efforts, we will concentrate our attention to an incompressible, isotropic, neo-Hookean
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type hyperelastic material in which the strain energy function is known to have the
simplest form of all ideal models and closest behavior to the rubber materials.

In Chapter 2, the basis hyperelasticity theories necessary for the buckling analysis
of neo-Hookean single layer plate will be presented with the associated boundary
conditions. The buckling phenomena are explained by an incremental deformation
superposed onto the finite homogeneous deformations (the trivial or unbuckled
deformation). The equilibrium equations and boundary conditions for buckling
deformations with the condition of incompressibility generate a fully nonlinear second
order boundary value problem. Also the stability criterion based on the concept of
minimum energy where the stable deformation achieves the lowest energy under that of
competitive deformations, will be constructed for stability evaluation. The potential
energies are derived for the buckled state and the homogeneous deformation which
compete for energy minimum. Then we will seek to determine which deformation is
energetically stable and whether this stability evaluation is directly related to the behavior
of the load parameter.

In Chapter 3, the formal perturbation expansion method in which the buckling load
parameter is expanded from the buckling onset will be introduced and applied to the
previously developed nonlinear problem. The nonlinear problem then produce the set of
linear boundary value problems. The solutions of each linear problem will construct a full
buckled deformation. Though this methodology will give an approximate result because
of the limitation of expansion, it is anticipated that the necessary post-buckling behaviors
in the vicinity of buckling onset will be obtained. Hence, the second term in the expansion

of load parameter is of interest since the sign of this term plays an important role in
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buckling development phenomena such as load shortening and snap-buckling in an
imperfect loading condition. Furthermore it will show that the load parameter can be
obtained from the relation of the first order solution and the nonhomogeneous terms in the
higher order problems since the differential operators between the first and higher order
problems are the same.

Chapter 4 will devote to find the nontrivial solutions of each linear boundary value
problem. The separation of variables will generate the partial differential equations to the
fourth order ordinary differential equation. Then by using the series expansion method,
the solutions of each order will be developed. The first order results show the behaviors of
buckling initiation. To evaluate the stability after bifurcation occurs, the higher order
solutions are necessary. However, it will show that the symmetric nature of the load
parameter reduces the efforts to find the third and higher order solutions.

The analytical procedure to find the stability parameter will be presented in
Chapter 5. The numerical results and their explanation will be followed. Because the
approach involves a highly complex calculation, an asymptotic analysis in limit cases will
be determined and their results for stability will be presented for comparison. This
concludes the major topic area of this thesis.

In Chapter 6, we will explore a related application, that of determining buckling
initiation in more complicated geometries by approximate methods. At first, the buckling
onset analysis of a single ply plate will be extended to multi-ply sandwich type plate. After
developing the energy criterion of stability, we will then apply this to determine the
critical buckling load for multi-layered composite plate composed of neo-Hookean

materials with two different moduli. The formulations on single ply plate will modify to
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adapt the composite plate. Since the onset of buckling corresponds to the homogeneous
equation of the first order in perturbation expansion, we will not need to consider the
complex higher order equations. Beside the formal approach to find the buckling onset
load (which will encounter much complex mathematical analysis), we will construct
various approximate schemes based on rather simple buckling solutions of the
noncomposite plate. These schemes will satisfy some parts of complete conditions which
will be discussed later. The result on the prediction of the buckling onset load for each
scheme can be compared with the exact results of the three-ply plate. Then we will
implement the schemes which will give the closest results to the general ply plate.

Finally, conclusions of this research and recommendations for future works
derived from this research are given in Chapter 7. In addition, this thesis includes two
Appendices. Appendix A discusses the stability evaluation by perturbation expansion
methods for relatively simpler example problems so as to better outline the structure of the
procedures for comparison to the main topic of thesis. Appéndix B contains a collection of
detailed formulations used in Section 5.2 which apply to a stability parameter equation.

The procedures developed in this research for the elastic stability of post-buckled
deformation may have the importance to determine the possible buckled shapes and may
contribute to design the structures. Also the results will be a basis of the analysis of
imperfect loading. The procedure can be expandable to higher order analysis to get more

accurate anticipation for structual stability.
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CHAPTER 2

PRELIMINARY WORKS ON NEO-HOOKEAN PLATE

2.1 Introduction

The theory of elastic materials subjected to large deformations has been evolved
through the investigations on rubberlike materials and founded a basis of finite elasticity
(Beatty, 1987). A hyperelastic material for which there exists an elastic potential energy
function has been also focused in the study of finite elasticity which is known as
hyperelasticity. The neo-Hookean material is the widely used theoretical model of
incompressible isotropic hyperelastic material and the simplest model of rubberlike elastic
behavior. Throughout the thesis on nonlinear elastic stability, our attention is restricted to
neo-Hookean materials. In this Chapter, the necessary equations used to describe finite
deformations of neo-Hookean rectangular plate are formulated and buckling behaviors of
thickness-independent plate are presented in the context of finite elasticity. For the
minimum energy principle of elastic stability analysis, the differences in energy between
unbuckled and buckled deformations are also formulated. It is shown that the buckling
deformations of neo-Hookean plate are characterized by solving a nonlinear boundary

value problem.

2.2 Problem Descriptions

We shall consider an rectangular plate of incompressible, isotropic, homogeneous
hyperelastic material which occupies a dimension of 2/, x 2/, x 2/; before any external
loads are applied. The three dimensional rectangular Cartesian coordinate system

X=X(X},X5,X3) is located in the center of the plate as its origin and its axes are parallel to
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the edges of the plate. Then the equal and opposite thrusts are applied to both ends on

X, = xl,. The geometry of considered neo-Hookean plate is described in Figure 2.1

— >

» 21,

2,

Figure 2.1 Description of the neo-Hookean rectangular plate under consideration. The
thrusts 7 are applied to the ends of surfaces at X;=t/, and the plate has a dimension
0f21|X212 X213.

The current configuration is defined by undeformed or reference coordinates so

that the deformation tensor is given by
x = x(X), 2.1

where X(X},X,,X3) and x(x;,x,,x;) are undeformed and deformed coordinates, respectively.

The deformation gradient tensor and Green’s deformation tensor are given as
F = (0x/0X), B = FF'. 2.2)

The condition of material incompressibility requires that the volume does not change after

deformation so that

19



detF = 1. (2.3)

The Cauchy stress tensor for the incompressible isotropic hyperelastic material is then

given by

_ oW 6W) . (aW) ,
. pl+2(a—ll+1,a—12B 257> (2.4)

where p is the hydrostatic pressure due to the incompressibility constraint, /, and /, are the
first and second invariants of B and W = W(I,,1,) is the strain energy density function of
hyperelastic material. The symmetric Cauchy stress tensor t described in a current
configuration is transformed to the Piola-Kirchoff stress tensor S in a reference
configuration which is given by
S = F'x, (2.5)
after applying the incompressibility condition (2.3). The equilibrium equations in a
reference frame are then expressed as
DivS’ = 0. (2.6)

The plate under consideration is subjected to a compressive load on each surfaces
X, = zl,. The boundary conditions for a frictionless thrust with an overall stretch ratio of

p are

SIZ = S|3 = 0, on Xl = ill, (27)
X = ipll on X| = :tll, (2.8)

where the case of compression requires 0<p<l. The traction free surfaces X, = %/,

require
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S =8 =8;=0 on X, = *l,. (2.9

The surfaces X; = */;, corresponding to a frictionless clamp, give boundary conditions
S5, =8;,=0 on X; = %, (2.10)
x3 = 4 on X; = 5. (2.11)

This type of plate problem was considered by Sawyers and Rivlin (1974,1982) and
extended to multi-layered plates by Pence and Song (1991), Song and Pence (1993) and
Qiu, Kim and Pence (1994).

From now on, we will focus to neo-Hookean type material for which the strain

energy density function is given by

I,-3
w = B 3 ) 2.12)
where p is the shear modulus. Then the Cauchy stress tensor (2.4) is reduced to
1 = -pl+uB. (2.13)

The boundary value problem given by (2.6) to (2.11) with incompressibility condition
(2.3) has only one homogeneous deformation solution to within a rigid body motion. This

deformation is expressed as
X, = pXy, x=p Xy  x =X, (2.14)

where the principal stretches are A/ = p, A = p-! and A/ = 1. With the Piola-

Kirchoff stress tensor (2.5) and the condition (2.9),, the hydrostatic pressure becomes

p=up. (2.15)
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Let A be the original area of the surface normal to the X, direction. Then the total
(compressive) thrust T applied to the faces X; = +/; for homogeneous deformation

(2.14), is given by
T = -S;dg = —4pll(p-p?). (2.16)

Thus T is monotonically decreasing with respect to p and vanishes when p=1 as shown in

Figure 2.2(a), by scaled thrust T,=7/(4ul,l5) vs. p. Introducing a new stretch ratio as
A= AM/A = p2, (2.17)

the thrust becomes monotonically increasing along the increasing A as shown in Figure
2.2(b), by scaled thrust T vs. A, so that A can play a role as a load parameter. However,
the simplicity in mathematical formulation urges us to use p so that, at the stage of
physical interpretation, the value p will be converted to A according to (2.17).

Compressive loading, which is of concern in this study, corresponds to 0<p<l and A > 1.

2.3 Bifurcation from Homogeneous Deformation
Motivated by boundary condition (2.11), we restrict attention to states of plane-
strain buckling taking place in the (X,,X;)-plane. The buckling can be described as the
bifurcation from the solution of homogeneous deformation (2.14) so that the incremental
deformations of buckling are superposed on finite homogeneous deformations. The fully
finite deformation is then expressed as
Xy = pX; + v (X}, X)),

X+ vy(X,, X), (2.18)

X3 = X3,

I

X2

and the pressure field is accordingly
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Figure 2.2 The relation between the scaled thrust T and load parameters p and A. The
thrust is the compressive load so for this study, the load parameter is restricted to
0<p<1 or A>1.

p = 1p+q(X}, Xa, X3). (2.19)

The functions v;(X},X3), vo(X(,X,), 9(X,X5,X5), as well as the values of p at which
bifurcation can occur (nontrivial v; and v,), are the unknowns in the mathematical
problem. Substituting from (2.18) and (2.19) into the condition of incompressibility (2.3)

gives

ViVa,2— Vi 2va 1 TPVt P-l"l,l = 0. (2.20)
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The Piola-Kirchoff stress tensor (2.5) after applying the incompressibility condition (2.20)

becomes

gl
|

-2 _ _
= u[ +P) =P (Vo2 + P DI=q(va + ),
S12 = pu(vy, +P_2V|,2)+‘IV|,2»

Sy = vy ,+p v, )+ qv ,
a = B(vy, 92 21) T qvy 2.21)
Spn = u(vy 2P Vi) —q(vi +P),

n(1-p?)-gq,
Si3 = 83 =83 =85 =0.

i
I

In equations (2.20) and (2.21), the commas in the subscript denotes differentiation with
respect to the associated coordinate X, i=1,2,3.

The equilibrium equations (2.6), ; for the buckled deformation now become

KV Jr"1,22)“1.1("2,2"’P_l)'*'q,z"z,l =0,

2.22)
ROyt V) *+q,1vi2—92(vi 1 +p) =0,

and the third equation (2.6); is simply —¢ ; = 0 so that g is confined to be a function of X
and X, only. Then the boundary value problem reduces to a two dimensional problem in
which the plate is described in the domain IT (-/;<X,</,, -I,<X,<l;) surrounded by the
boundaries I'; (X; = /)) and I'; (X; = 1/,). The boundary conditions on v,, v, and ¢
associated with (2.7),, (2.8) and (2.9),, with the Piola-Kirchoff stress tensor (2.21)

become

B(vy + P72V 0) Hqvy, = 0, on I (2.23)
v, =0, on r,, (2.249)
(v 2+ p2vy ) +gqvy = 0, on Iy, (2.25)
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H(vy =P 2V 1) =q(v, +p) = 0, on . (2.26)

The other boundary conditions (2.7),, (2.9);, (2.10) and (2.11) are automatically satisfied.
Condition (2.24) implies v, , = 0, and this reduces the condition (2.23) to

v2,| = O, on rl . (2.27)

Note that an arbitrary constant can always be added to v, without effecting the solution of
(2.22); this corresponds to the rigid body motion in X, mentioned earlier. Thus the
complete nonlinear boundary value problem for the buckling of neo-Hookean plate is
summarized as: Find v;(X},X3), v2(X},X3), 9(X1,X3) such that the following equations are

satisfied.

-1
ROVt vin)—qi1(va2tp )+qavy, =0,

H(Vo vy 2)+tq v 2—-q2(vi 1+ p) =0, in I,
-1
ViaVa 2= ViV 1t PV tp v =0, 229
v, =0, v, =0, on Iy,

BV 2+ P72y ) +qvy; = 0,
H(va 2= P2V ) =q(v,  +p) = 0,} o fx
The trivial solution v = (v,,v,,q) = 0 in which the system has no deformation away from
the homogeneous deformation (2.14), obviously satisfies the boundary value problem
(2.28). However the concern here is in configurations that buckle away from this
homogeneous deformation. Hence we seek nontrivial solutions v; these will only occur for
particular values of p and so will give particular values of thrust T according to (2.16). At
the instant of bifurcation, these will correspond to distinct values py; and Tj,; where the

subscript i indexes the potential multiplicity of bifurcation points.
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2.4 Energy Minimization of the Deformed Configuration

The potential energy of the deformation in a‘neo-hookean plate is formulated as
the strain energy by the strain energy density function (2.12) and work done by the
external load. The energy competition between the buckled and unbuckled state gives the
physical preference of elastic stability after buckling occurs. Obviously the plate will
follow the state which has smaller energy. The difference between the potential energies
of the buckled state (2.18) and homogeneous deformed or unbuckled state (2.14), denoted
by subscripts b and A respectively, is given by

ar=Jl L(W,,- W,)dX,dX,dX; + (W, — W)

" (2.29)
=2l ILi(zpvl, 1 H2p7 vy, +vE i, D, +vE)dXdX,.

where W is the strain energy density function of neo-Hookean material, = is the work
associated with the external loading in each state and V is the domain of the undeformed
configuration. Here the work difference vanishes since, on each external boundary, either
the difference in traction vanishes or the difference in displacement vanishes. The plate is
subjected to an incompressibility condition (2.20) so that the energy formulation for this

problem is reconstructed by the Lagrange multiplier method as
AE = AI-21, ”nE',(v,, V22— V12V 1 T PVa 2t p"lv,, DdX,dXx, (2.30)

with Lagrange multiplier £(X;,X3). It is then found that the multiplier £ becomes the
difference in hydrostatic pressures between the buckled and homogeneous deformations,
that is ¢ in (2.19). The equilibrium states are obtained from the first variation of the energy

functional (2.30) which subsequently yields the nonlinear boundary value problem (2.28).
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If AE<O, that is if the potential energy of the buckled state is less than that of the
homogeneous deformed state, then the deformation favors the buckled state. In other
words, the buckled state is energetically stable. The opposite statement is also clear. At the
instant of buckling initiation, the buckled state is not yet distinguished from the trivial
solution so both states have the same potential energy, that is, AE=0. However the sign of

AE shows which deformation is stable out of the possible postbuckling solution paths.

2.5 Summary

In this Chapter, we described the neo-Hookean plate under consideration and
formulated the nonlinear boundary value problem for the buckled deformation in view of
incremental deformation on the finite homogeneous deformation. With the boundary
conditions expressed in (2.28), the buckling equation reduced to two dimensional
problem. The energy difference between buckled and unbuckled homogenous states are

formulated in (2.30) for the elastic stability based on energy minimization.
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CHAPTER 3

BIFURCATION ANALYSIS BY PERTURBATION EXPANSION METHODS

3.1 Introduction

Solutions to the nonlinear boundary value problem (2.28) involve nontrivial
solutions v, v, g, at specific value of load parameter p which characterize the behavior of
buckled deformations. The elastic stability of buckled deformations can be determined
through the consideration into the energy difference equations (2.30) based on energy
minimization scheme. However the direct analytical solutions for the nonlinear problem
may not be obtained in a formal linear type process in view of the nonlinear natures.
Introducing perturbation expansion methods in which the solutions are expanded with
respect to the small parameter €, makes the nonlinear problem to cast into an infinite set of
iteratively coupled linear problems (see Bauer and Reiss, 1965; Matkowsky and Putnick,
1974; Budiansky, 1974). Upon truncation, this method will give approximate values to a
degree of accuracy that is quantified in terms of the expansion parameter €. In particular,
behaviors near the bifurcation initiation can be captured with a relative accuracy by
utilizing the perturbation expansion method. A discussion of this method for nonlinear
boundary value problems that are simpler than (2.28) can be found in Appendix A.

The linearized problems for the buckling of neo-Hookean plate will be formulated
via perturbation expansion methods in the subsequent section. Then analysis on the
characteristics of resulting equations are followed. The investigations on the load
parameters and energy difference equations based on the perturbation expansion methods

will be treated finally.
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3.2 Perturbation Expansion Methods

The buckling phenomena is well explainable as the bifurcation from the
homogeneous deformation. Mathematically, nontrivial solution to the problem (2.28)
corresponding to buckled deformation is bifurcated from the trivial solutions which is
homogeneous deformation in (2.14). Obviously if we have the nontrivial solutions
(v1,v2,9), then we can describe the buckled deformation of neo-Hookean plate. However
the boundary value problem for the buckled deformation contains nonlinear nature so that
it may not obtain the solution by linear type analysis. The perturbation expansion methods
have been adopted for nonlinear analysis in various areas of applied mathematics by
deriving groups of linear equations. Hence the formal linear analysis can be utilized but it
shows the approximate results at moderate degree of accuracy based on the limitation that
only the first few terms may be considered. The incremental terms in the fully finite
deformation (2.18), ; and the pressure field (2.19) are expanded with respect to relatively

small parameter € such as

vi(X, Xp) = Z;lﬁ"uf")(Xl,Xz),
X, Xp) = X (X, X,), (3.1)

q(X), X3) = Zk ls"p(")(X,,Xz).

In vector notations with v=(v,,v,,q) and u®=(u,® 1, p®), the deviations v away from the

homogeneous deformation state are expressed as
v = guD+e2u@+e3u®+ .. (3.2)
Here € is a measure of the amount of deformation away from the homogeneous solution

which is defined as
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€ = (v,uM)/(u®, uhy, (3.3)

in accordance with the orthogonality condition for the vector functions of each order u?

and u!
(uD,u®)) = 0, j=1. 3.9)

The brackets ( , ) denote the bilinear inner product on pairs of vector functions in a

domain IT so that

v, = o] wroyaxax,. (3.5)

In order to acknowledge the evolution of the postbuckling path with the thrust, the

overall stretch ratio p is also expanded from the stretch ratio on buckling onset p, as

p= po+zk=le"pk- (3.6)

The stretch ratios p or A represent the load parameters as shown in Figure 2.2. and their
expansions are related by the expansion of equation (2.17) such that

Ao = P32, A = -2p°p1s A = —-p3(2p2-3p5'p1)s

(3.7
A3 = =2pp%(p3—3po'PiP2 + 2p5%P1)s

where A=Ag+e),+e2A,+e303+0(e*). For the simpler analysis, the expansions of p will be
used but for the interpretation of the thrust load, A will be used after converting by the
relations (3.7). If the odd terms in (3.6) vanish, p,=0, i=1,3,5,..., then the deformation
bifurcates symmetrically with respect to the trivial solution path. The symmetric buckling
which is common to the perfectly loading plate and the analysis much easier than the case

of asymmetric buckling.
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3.3 Analysis on Neo-Hookean Plate
Entering the boundary value problem (2.28) with the expansions (3.1) and (3.6)
and collecting together common orders of €, give rise to the following general linearized
boundary value problem at each order ¢*:
n(ufd, +ufly) - pg'pP = DX, X5),

p(ui, +ufkh)) - pepP = fIN(X), X)), in 1, - (3.8)
pa'uft) + poutty = fO(X,, X3),

ufd =0, p(us +pp?uf) = 0, on [
p(uft +pgufl) = gfb(X,, th), (3.9
k ~2,.(k k) = ofk) on Iy,
p(udth - pg?ufl) - pop® = gi(X}, 1),
here k=1,2,.... The second in I} boundary conditions can be reduced to u{¥} = 0 because
the first condition gives u{*} = 0. Primarily the above equation is a nonhomogeneous
second order partial differential equation except for order € (k=1). The expressions on the
right hand side in (3.8) and (3.9), f¥ and g, depend upon the lower order solutions
u®) = [uf), uf), p»] and p;, j<k for each order k. The first few of f¥) and g are given as:
Ordere (k=1):

fiv=o, A =0, fiv =0,

gh=0, gh=o. 1

Order €2 (k= 2):

S = pOuy - pPus!} - p32p,p®,

2 = pQuf] - pPuf!} +p,pM,

£ = ufush) - ufus!y - pus!} + pg2p ufly, (3.11)
gf» = 2upgipus}-pMully,

g? = ppM + pMuf} - 2ppgp ufly.
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Order €3 (k = 3):

M = {pPully + pPuity} - {pPufl} + pPui}}

—-p?{PpP +(p2-pa'PIP{V},
A = {pPufly + pPuft} - {pPuf!y +pPuB} + {p,pP + ppP},
AV = {u@us) + ufBul) }-{uP us!} + uf uiZd }-{pul!} + p uil} }

+pp2{piuf + (p2—pi'PDulll},

gl = ppa’{2puf] + (2p2-3pg'pus} } - {pPDul} + pMufl },
g8 = {ppM+p p@} + {pPufl} + pMOuf?]}

—pups*{2p uft] + (2P, - 3p5' PPuf } .

(3.12)

Order £* (k= 4):

A9 = {pPul} + p@uit} + pOulB} — {pPus}} + pPu) + pPHuf?}}
P2 {PiPP + (P2—P3'PDPP + (P3 - 2p5' PiP2 + P3%P1IPD}
A9 = {pPuf} + pPuft} + pPu)} - {pPuf!} + pPuf?} + pPuf’}}
+{ppP +ppP +p PP},
AY = {uPuf} + u@u) + uf3u) }-{uP ufl) + ufu) + ufu}
—{p3ull} + pyuf?} + pulll} (3.13)
+pa2{puf’} + (P2 - p'PDufA] + (P3—2p5'PiP2 + Po2PDuf! ),
gl = pups?{2puf} + (2p, - 3p5' PPuf] +2(p3—3p5'PiP2 + 2P5%P 1)Ul }
~{p®uf] + p@uf?} + pMOuf}},
g5 = {psp™M + pp® + pp®} + {pOufl) + p@uf?] + puf))
-pupg*{2p 4} + (2p, = 3pg' PP uf?] +2(p3 - 3p5'P1P2 + 2p5%P1)uf!} }

The linear operators in the left hand sides of (3.8) and (3.9) are the same for all orders of €.

In the operator form, the boundary value problem (3.8) and (3.9) can be stated as
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Fuw=| o

0
o=l
0 Po aX|

0
nv ~Pozx,

7 0

Poa—X2

where V = §2/0X} +02/0X3% is Laplacian and

1
Gub=| 9o
HPo 5)7-2
i
Hax,
qu(k) =
, 0
—HPo ax,

0
0

”a_X,
2.9
HPo aXl
2
Hax,

I ¢ M) 5
u fl
Uy = fz Ef(k), in T
p /3
L -
l-(k)
u| =0, on T,
p
(k)
0 I pNO)
—Po|Lp

(3.14)

(3.15)

Note for k=1, fV=0 and g("=0 so that the boundary value problem for order € is

homogeneous and is given by

Fu® =0,
Glu(l) = 0’
qu“) = 0,

in II,
on I'},

on I5.

(3.16)

The solution for (3.16) determines the initiation of buckling and has been studied by

Sawyers and Rivlin (1974, 1982) who gave the nontrivial solutions for special values of

po- These solutions will be obtained and reviewed in sections 4.3.1 and 4.4 later. The cases

of k=2,3,... extend the solution into the postbuckling region bifurcated from the trivial

solution.

33



3.3.1 Linear Differential Operator

Let H,(T1) = {u}, u),p e I xxI1—> R3:Gu=0 onI';, Gju=0onT,} and
let u € H,(IT) be continuously differentiable. The subscript A as used here is to indicate
homogeneous boundary conditions. Notice also that H,(IT) is dependent on p, because the
boundary operators G, and G, depend on p,. In this Section 3.3, we disregard the order
superscript k in the equations for simplicity. Let F be the second order differential operator

defined in (3.14) and consider

(Fu,u) = ‘ﬁﬂn[(lru)fﬁ]dx,dxz. 3.17)

Then integration by parts twice upon (3.17) with respect to the variables either X, or X,

yields

_ 1 - -
(Fu,u) = —[I [{u(uy 1 —pauy2) - po'pu + p(uy  + 962“1,2)“2” dX,
+ IF. [r(uy, 2 + P52y, )y + {B(uy, 2—P52uy, 1) = Pop}azllrzdxl
—J‘rz[{ll(l-ll, 1= P5%Uz,2) — PP uy + (g + 0621—41.2)“2]|r|dX2 (3.18)
_Ir, (kU2 + pguy, Juy + { Ry, 2-p5U,1) - Poﬁ}“zllrzdxl
+ Hn[u.{u(ﬁn, nt U, 2) =Pt} + up{ Uz, 1 t Uy ) — Pap )}
+p(pg'us,1 + Poitz,2) 1dX, dX; ).
Applying the boundary condition requirements on u inherent in H,(IT) to (3.18) shows

that the second of the two terms in the first integral vanishes, as does the entire second

integral, and the first of the two terms in the third integral. Hence
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1 . o _
Fuiy = grrt] (s, - pitu.) - pitp (s + o3, Dl X,
I i+ pa2its Dy + (it 2-p2ins 1) = pop} ]| dX

rl[ll( 12+ Potuy, )uy + {u(uz, 2—po*uy 1) — pop} 2]|r2 I (3.19)
+ ”n[ux{ll(l-ll,n +up )= pg'Pat +uy{ Uy 1 + U2, 2) — PePa}

+p(pg'uy, 1 + potta,2) 1dX,dX, ].
This defines the adjoint operator to the triple consisting of the field operator F and the
boundary operators G, and G,. Let the associated adjoint operators be F* and G|°, G,°.
Then the integral over I'; shows that G,*=G,, the integral over I'; shows that G,°=G, and
the integral over IT shows that F*=F. In other words, the linear differential operator F'

restricted to H,(I1) is self-adjoint.

3.3.2 Different Formulations
The nonhomogeneous boundary value problems (3.14) and (3.15) can be
formulated in different ways (see Reddy, 1986). The weak (variational) formulation is

stated as follows: find u=(u,,u,,p) € H(IT) such that

B(w,u) = I(w), forall w e {(w,, w,, r)|jw,=0 on I}, (3.20)
where B(w,u) is the bilinear form and /(w) is the linear form given by

B(w,u) = P”n [(uy, Wy oy w2+ Uy Wy F Uy W, 5)
+pg2(uy Wy, |+ Uy (W) o — Uy W) | — Uy Wy 1) ]d X dX, (3.21)

-”n [P(Pa'wi \ + Powa,2) +r(po'uy y + pouy, ) ]1dX,dX,.

1w =-JJ oot e mpaxax,+ [ @mrgm) ax. 62

The solution space H(IT) indicates the boundary conditions that should be satisfied
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H(IT) = {(ul,uz,p)|G,u =0 onI'y, Gu=g onl,}. (3.23)

Note that B(w,u) is symmetric, i.e. B(w,u) = B(u,w). For sufficiently smooth functions,
the weak formulation (3.20) is equivalent to the direct formulation (3.14) and (3.15).
The energy functional on H(IT) corresponding to symmetric B(w,u) becomes

(Reddy, 1986)

]

E(u) %B(u, u) - /(u)

= %”r][uf,l +uty+ud +udy+2p52(uy Uy — Uy Uy 2)]dXdX,
I tpostun + poti ) + sy + sy + wf))ax;ax,

—‘[r, (&yu + g2u2)|r2dX|.

(3.24)

The energy (functional) formulation is to find u e H(I'1) which minimizes E(u). If B(u,u)
is positive for u e H(IT), then the weak and energy formulations are equivalent. In the
problem under study here, it is not clear under what circumstances B(u,u) is positive. The
first variation of E(u) gives (3.14) as its Euler equation, when the following boundary

conditions are specified:

pu(uy | —pguy ) —ps'lp = 0 or u, =0
on T, 11 o2 2,2 0 1 (3.25)
H(uy  +pg*u;2) = 0 or u =0

r H(uy 2+ poPuy) = & or u =0 (3.26)
on .
2 H(“z.z—%z“l.l)—f)op = & or u; = 0

In the condition (3.25) and (3.26), the right sides correspond to essential boundary
conditions and the left sides to natural boundary conditions. Comparison of (3.25) and
(3.26) with (3.9), shows that the boundary condition »; = 0 on I'; of the direct formulation

contributes the only essential boundary condition.
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3.4 Load Parameters

The load parameters p represent buckling behav.ior on and after the buckling
initiation. The homogeneous problem (3.16) for the case of &=1 will only have nontrivial
solutions for certain special values p, which define buckling initiation modes. At these
special values p, the differential operator trio {F,G,,G,} is singular. The same differential
operator trio as the homogeneous problem appears in (3.14) for the case of &=2,3,..., and
the special values p, are used here. These cases of k>2 will be a problem for solving
nonhomogeneous boundary value problem (3.14) and (3.15) for a singular operator trio
{F,G,,G,}. For most right hand sides, solutions will not exist. But for certain special right
hand side of equation, the solution can exist - eventually this is explained by the Fredholm
Alternative Theorem for solvability of the nonhomogeneous equation as developed next
for this particular problem.

At a fixed value of p,, let w=(w,, w,,7) be a nontrivial solution of the homogeneous
equation (3.16) and let u=(u,,u,,p) be a solution to the nonhomogeneous equations (3.14)

and (3.15) for given f and g. Then consider the expression

(Fu,w) — (u, Fw) = ﬁ“ﬂ{(Fu)Tw—uT(Fw)}dX,dX. 3.27)

Since Fw = 0 and Fu = f in I, the left side of the equation (3.27) is equivalent to (f, w).
After integration by parts twice and applying the boundary conditions G,u = 0 and G;w =
0 on I'; and G,u = g and G,w = 0 on I'; to the right hand side of equation (3.27), it

becomes

1 f !
(fw) = m;[ll(wlgl + W282)|_2,de|- (3.28)
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Thus if the nonhomogeneous problem (3.14) and (3.15) is to have solutions, then it is
necessary that f, g, and g, obey the solvability condition (3.28). In particular, since u'” is a
nontrivial solution of the homogeneous equation (3.16), any nonhomogeneous solution

(1,0,u,% p®), k=2,3,... to (3.14) and (3.15) for given f® and g¥ must satisfy
] porumax - | g+ ugrgg| ax, = o. (3.29)
1 2
In order for the nonhomogeneous problem of order £2 (k=2) to have a solution u®,

the condition (3.29) must be satisfied with corresponding terms f@ and g in (3.11).

Substituting @ and g®? into condition (3.29) gives
R,+p\R, =0, (3.30)

where R, and R, are constants defined as

Ry = S| (uoougy) - ueoug), 1ax

+ 1] 2p0uug - uprugyax, b
Ry = J] - oot - ufp) + (ughp — pougiyy1ax
~2upp |, uoug - uprugy] at,- | poug ax. O
If R, is not zero, then p; can be expressed as
P, = —R,/R,. (3.33)

Solutions u® to the linear equations of order two, will exist only if the equation (3.33) is
satisfied. Similarly for the nonhomogeneous problem of order &3 (k=3) with f®) and g® in

(3.12), the solvability condition (3.29) for the existence of u®®, gives

Ry+Rypy + Rspf+ Rypy = 0, (3.34)
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where R;, R, and R; are

By = ] 1@y + pougy), - up oy + poupy)
+ 2P g - uflhuf) (339)
+ U} POuf + pOuf)-uf ) (pOu) + pOugy) X,

Re = ] - ps2utop® - uflp) + shp - pougy 1ax

(3.36)
~2up5* || uiug) —upuy|, ax, - | poupoyax,

R = 11 togtvp - poutiy1ax + 3upst | uvugh -upupip), axi, 6.3

so that
P2 = —{R;+(p1Ry+ pIRs)} /Ry, (3.38)

if R, is not zero. The higher order parameter p,, i=3,4,5,..., can be obtained in a similar
way. Note that solving for a specific py requires full determination of u’s, i=1,..., N. In
particular, the conditions (3.33) and (3.38) must be satisfied for the existence of solutions
u" and u?. The freedom to choose the coefficients p,, p,,... in (3.6) are used to meet the
solvability condition (3.28). Each term p; in the expansion will give a key to the
postbuckling behavior of the system. Budiansky (1974) has discussed the mathematical
structure of general post-buckling problems through variational analysis and shows that

equation of the form (3.33) and (3.38) can be expected in the general case.

3.5 Auxiliary Conditions Associated with Incompressibility Constraint
A set of extra conditions from (3.8); and (3.9), are derived for simpler calculations

of necessary formulations. First double integration on (3.8), gives
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oot [ uyax + o] ugax = ] poax, (339)
and on (3.9), gives
,”numdx = L‘wh,dXZ =0, (3.40)
for k=1,2,3....,so that
1] uprax = o5t [ pwax. (.41

Using the expressions for £;¥ given in (3.10) to (3.13) yields

J] unaxiax, - o,

'”n ui}dX,dX, = pg'®,

(3.42)
“n ufldX,dX, = - p,pg*®@, + pg' ®,,
“n ufidX,dX; = pg*(Pterg' — PP, — 1P’ D, + P! @5,
where
o = I unugn - uptugax,ax;, (3.43)
0, = ] (gt + upiugt) - iy +upiugpInan, G
@y = J] tupug) + uprug) + upiug)

(3.45)

—(ufug} + uP ul} + uf ufl}) 1dX, dx,.

Here the results of each step in (3.42) was used for the calculations of subsequent step.
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3.6 Relation between Thrust and Load Parameter
After bifurcation away from the homogeneous deformation solution (2.14) and
(2.15), the associated values of the thrust T is obtained by substituting the expansion (3.6)
into the expression (2.16) as follows:
T = —4pbhL5[(po-pa’) + (Py +3pa*p1)e + (P2 + 3p5% P2 — 6p5°PP)E?
+(p3+3pg*ps— 12pg°p 1Py + 10p5pi)ed | + O(e*) (3.46)
=T, +eT, +€2T,+&3T; + O(e%).
The first term 7, represents the thrust at buckling onset and the other terms in (3.46) will
show the change in thrust load after buckling. If the terms except T, have a positive value,
then the thrust must increase to get a larger buckling deformation after buckling initiates -
progressive buckling. For the opposite case, the thrust must decrease when the buckling
deformation grows so that there is a possibility of snap buckling in which the buckling
mode jumps to another mode. If the bifurcation growth is symmetric with respect to the

trivial solution, then p,=p;=...=0 so that the thrust (3.46) becomes

3
T=- 41213u[(po -pg’) + Pz(l + p—3)52] +O0(e%)

= Ty, +€2T, + O(g*).

(3.47)

For this symmetric case, if p, <0, then T is an increasing function of € so that the buckling
is progressive. Otherwise, if p, >0, then T is an decreasing function of € so that the snap

buckling is possible.
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3.7 Energy Formulation
The energy equation (2.30) may be expanded accordingly. Substituting the
perturbation expansion (3.1) and (3.6) into the energy functional (2.30) and applying the

incompressibility (3.8);, the energy functional for each order becomes
AE = 213(SE| + 82E2 + 83E3 + 8454) + 0(85). (3.48)

where E|, E,, E;and E, are given as follows:

£, = ] peosugy + poutax,ax;, (3.49)

£, =[] nloit - pgtush) + (pouft) + prtughlax,a, + 82, (350)

£y =[] ultoaut) + 0507 - pupyugih )
+py(ufY] - pgtuf®) + (pouf?} + pp'ul’}) 1dX,dX; + pE,,

3.51)

E, = Hnu[{psum +pg(= pf + 2poP1P2 — PEP3)US!L }
+ {pyuf?] + pg> (Pt — Pop)us } + py(uf3] — pg2us?}) (3.52)
+(pouf] + pg'ufth) 1dX,dX, + 55y + n=,;.

Here we have introduced the notation:
=, = ] gy + uupy + ugug + ugrugnaxax,. (3.53)

Now direct application of the extra conditions (3.40) to (3.42) into the equations (3.49) to

(3.52) gives the following simplifications

E =0, (3.54)

E, = mpi?®, + 55, (3.55)



Ey = n((=2p,p®)®, + p3?®y) + pE,, (3.56)

E, = p{pa’(Bpirs' —2p)®@, - 2pipg®@, + pp? @} + %Ezz +uE;. (3.57)

Notice that each of the terms E,, k&=2,3,... make use of the solution expressions up to the
(k-1)th order, u*h.

If the parameter € is small enough, then the evaluation of AE depends upon the first
non-zero term in expansion (3.48). Hence if the first non-zero term appears in E,, then the
solution sets up to the (k-1)th order are required. If the odd terms in the expansion of load
parameter vanish (p,=p;=...=0), then the whole formulation becomes much simpler.
Specifically, if p;=0, then various terms within p, in (3.38), E; in (3.56) and E, in (3.57)
will vanish. If this is the case of the neo-Hookean plate, then the buckling grows

symmetrically with respect to the trivial solution path.

3.8 Summary

The nonlinear boundary value problem for buckling deformations of neo-Hookean
plate is analyzed by reducing to a set of linear type problems according to the perturbation
expansion method. The corresponding sets of linear differential equations and energy
equations are formulated. The load parameters in expansion are determined from a
solvability condition that arises because the differential operators in each set are the same.
The leading order analysis for buckling onset renders this differential operator singular,
hence the need for a solvability condition in the higher order analysis. The conditions for
the existence of solutions are generated by considering the first order homogeneous

problem and the higher order nonhomogeneous problems.
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CHAPTER 4
BUCKLING DEFORMATIONS FOR NEO-HOOKEAN PLATE

4.1 Introduction

The nonlinear boundary value problem for buckling deformations and energy
equations of neo-Hookean plate was reduced to the set of linear type problems through the
perturbation expansion methods in Chapter 3. The solvability evaluation near the
bifurcation initiation depends on the deformation solutions of each order in the expanded
set of linear problems so that we will focus to determine these solutions in this Chapter.
Since the differential operators in the linear equations of each order are the same, the
solvability of equations on each order (and the possibility of symmetric bifurcation) are
firstly checked. Then the solutions for generalized problems represented to all linear
problems of each order are investigated and the solutions of specific order are followed.
The solvability conditions of each order will give the relations between the load parameter
and deformations. In particular, symmetric bifurcation is verified. With the symmetric
behaviors of the load parameter, the formulations developed previously may be reduced to
much simpler forms which is beneficial to further calculations. We will examine the

symmetric behavior and the reduced equations thereafter.

4.2 General Solution for the Governing Linear Differential Operator

We will investigate in this section the solutions of the generalized
nonhomogeneous boundary value problem (3.8) and (3.9) for general order & under the
assumption that the associated solvability condition (3.28) has been met. Applying the

method of separation of variables to two dimensional boundary value problem (3.14) and
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(3.15) and matching the functions of X, indicates that the basis for generalized solutions
are four trigonometric functions, cos(Q,,X;), -sin(Q,,X;), sin(Q,,X;) and
cos(£2,.,X}). The basis functions which are orthogonal to each other, form a complete set

on the domain -/, < X, </, and modes are

=2n—l

n
n 2—117[, sz = =7 n = 1,2,... (41)

Q
Hence the solutions can be expressed as the infinite series in the following forms:

u~ 2 (A (X2)C0s(Q,X) = A2, (X)sin (X))
w~ 2 [Bi(X)sin(Q,X,) + By (Xr)cos(Qu, X)] + 3Bo(Xy),  (42)

pP- Z:= I [Crn(X2)sin(,,X)) + Cyyn(X3) cO5(€2,,,X1)] + %Co(xz)-

An expression of the form (4.2) will apply to each order &, consequently in (4.2) the order
superscripts (k) are ignored for the generalized view. In the expressions u,, u,, p, the
boundary conditions (3.9), on I'; has been applied so that the zeroth term in u; does not
appear. The coefficient functions, A,.,, B,,, C., which are in fact functions of X;, are

obtained as follows:

BT cos(€2;.,.X})

AinlX) = 1), '{—sin(szXl)}dX“
o sin(€;.,X})

Bi;n(X2) B I_l L {COS(QZ:"Xl)} ) (43)
1 p [sin(QuX0)

Cin(Xy) = I, {COS(Qz;erl)}Xm

and
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1 f 1
506 = 1L wax, o = L pax, @4

Here the upper terms correspond to /=1 and lower terms to i=2 and orthogonality of
different kinds of trigonometric functions has been considered.

The next procedure is to determine the coefficient functions of X; by eliminating
the functions of X, in boundary value problems which is done by the following ways.
First, multiply the differential equation (3.8) and boundary conditions (3.9) by the basis

functions and then integrate with respect to X, over -/, to /. This gives

,—llf ARG+ 0,22) = p5'P. ) {_Cs"l:((‘;'u"’;)) }dx, = I,(Xy),
,—llf_' (11 % 1 ) = pop,z}{zz((i'z‘f;l))}dx, = J,(Xy), (4.5)
l‘_lj'l {p3'uy , + pou,,z}{zz((ﬁ‘zﬁ)) }avr. = KX,
and
Il_lf_'h ((uy o+ pazuz'l)}{_c:::((?;z":‘;l)) }dx. = G,(ly),
(4.6)
,llf' , (RG22 =5y, ) - pop}{z:((izjl))}dx 1 = Hizh),

where the upper (lower) terms are for i=1 (i=2). The right hand side notations are
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1f i,
LX) =T f.,,f' (X, X 2)(-031((Q'£§|))) e

1F in(Q,.
s =1 SRS puirr s @)

1f in(Q,.
Ki(X;) = I [l,ﬁ(X"XZ)(:g;((Q]z,.:f\’l,))) dx,

and

1 Q,.
Gehy= I g0 2 o) ax,

Sin(Ql;nXl)

4.8)
1F
H(tly) = 1_1 -, g:(X), iIZ)((:OS(Qz;,,Xl)) axi.

Then apply integration by parts with respect to X, twice to terms with a double-
differentiated variable and once to terms with a single-differentiated variable. After
applying the I'|-boundary conditions (3.9), and substituting /, and -/, to the trigonometric
functions in the boundary terms, the partial differential equation (3.8) becomes an
ordinary differential equation with coefficient functions 4,,, B,,, C,,of X, defined in
(4.3). In conclusion, the differential equations (3.8) yield:
HA; —pQ24,-p5'Q,C;, = I(Xy),
WB; — pQ2B,~ poC’; = J{(Xy), 4.9)
-Po'Qid; * poB; = Ki(X)),
where i=1 or 2 and prime denotes the differentiation with respect to X,. Note that the
resulting equations (4.9) are consistent for either i=1 or 2. The mode numbers 7 in the
subscripts are suppressed to have a simpler formulation. That is, Q; and I(X;), J(X3),
K(X3) are in fact dependent on », and so give the dependence of 4(X;), B(X;) and C(X>)

on n as is required by (4.2) and (4.3). The boundary conditions on I'; in (3.9), become
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MA; +ups?QB, = G(zl,),

: ) (4.10)
HB; + upg*Qd, - poC; = H(lh).

Furthermore the three equations in (4.9) can be combined into one ordinary differential

equation with respect to one coefficient function B, as

Py’

B~ Q2(1 + p3*)B; + Qips*B, = “- Q- Py’

STOM (K- Q2K). (411

i

The other coefficient functions 4; and C, are then related to B, by

_ Po,  PE,.
Ai = —gTiKi + g—ziB,-,
) 3 4.12)
¢, = 2Ry K; + p,p&](.+p.p (B, -Q2B)".
Qj i Q 4 1
The boundary conditions (4.10) on I', are also expressed as
. Py’
B+ Q?pg*B, = pg' K+ —Q,G,,
# (4.13)

=2 —4
B -Q2(1 +2p5%)B, = p:QI"-p 1K - Q2p51(1 + p5? )K——Q2H

For the zeroth terms B, and C, the ordinary differential equation and its boundary

conditions become

. 1M
HBy—poCoy = T;[Ing(Xla th)dX,, PoBo = "'.r fstn, (4.14)

. 1
KBy - poCy = ﬂ-r_l,lgz(Xh th)dX,, on I,. (4.15)

Note that By(X;) is determined only to within a constant, thus By(X;) reflects the

previously mentioned possibility of arbitrary rigid body motion in the X, direction.
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4.3 Nonhomogeneous Ordinary Differential Equation
The equation (4.11) and the boundary conditions (4.13) form a nonhomogeneous
boundary value problem with respect to only X,. Denoting the right hand sides of (4.11)

and (4.13) as the notations 7, é,, éz respectively gives
B~ QX1+ pg) B+ Qp*B = f(X)), (4.16)

B"+Q2p5*B = g\(tl,),

- on I',, “4.17)
B"-Q¥(1+2p")B = gy(2l),

where the subscripts / in B and Q are also ignored for a generalized discussion. Next we
consider the possibility of nontrivial solutions to the problem (4.16) and (4.17) for the case
of zero right hand sides, the homogeneous problem. Then we consider the solution to the
problem (4.16) and (4.17) for the case of nonzero right hand sides, the nonhomogeneous

problem.

4.3.1 Nontrivial Solutions to Homogeneous Problem
The homogeneous problem consists of (4.16) and (4.17) with zero right hand sides,
} = é. = é; = 0. Clearly the trivial solution B, = 0 is one solution to this problem. Any

nontrivial solution B,, which is our concern for the general problem (4.16), can be written

as
B, = L cosh(uX;) + L,sinh(€LX;) + M, cosh(Qpg2X,) + M,sinh(Qpz2X,), (4.18)

where the coefficients L I 1:2, M s A}z are constants and can be determined by applying the
boundary conditions (4.17). Substituting the form (4.18) into these boundary conditions

on T, (X, = %l,) gives four algebraic equations which can be written in matrix form as
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Civala = 0. (4.19)

where

r 5 . - - i

(1+pi)C, (1+pg™S,  2p3C, 2p5"S;

e = [FFPIC -(+pS1 205G -205% (4.20)
2pp*S) 2p5*Cy P21 +p5")Sy P21 +pg*)C,

| =2p5*S,  2p3*Cy —pg*(1 +pg*)S,; pg2(1+ pg*)Cy

- e - 2T
I= [L, L, M, M;l : (4.21)

The new symbols used above are defined as

C, = coshn, S, = sinhn,
! . (4.22)
C, = cosh(pi?n), S, = sinh(pgn).
The scale parameter
n = Ql,, (4.23)

is eventually determined by the geometry of the plate considered (/,//,, see Figure 2.1) and
the mode value » in (4.1) of the nontrivial solutions. Considering the coefficient matrix C
in (4.20) with respect to symmetry reveals that there exist two different kinds of solution.
The first kind is a symmetric solution with respect to X, so that B,(-X;)=B,(X;) which is
known as a flexural solution. The other kind is an antisymmetric solution with respect to
X, so that B,(-X;)=-B,(X;) which is known as a barreling solution. These types of solution
can be also obtained by applying fundamental operations of matrix algebra to the

coefficient matrix in (4.20) and decoupling into two separate independent pairs.
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For the symmetric solution, B,(-X;) = B,(X;), set [2 = A712 = 0. Then the

decoupled matrix equation reduces to

(1+p9C1  2p5°Cy L

3 1 =o. (4.24)
2p*S1 (1 +pg)ps?Sy| | M,

To have the nontrivial solutions, L, and M,, the determinant of coefficient matrix in

(4.24) should vanish so that the following solvability condition must hold

(1+ pg*)?tanh(pg®n) - 4pgtanhn = 0. (4.25)
Then the symmetric solution becomes

B, = M[cosh(QX,) — scosh(Qpz2X;)], (4.26)
where M is an arbitrary constant for general solutions and the aspect ratio s denotes

_ (1 +p5*)coshn

* 7 Zpsicosh(pyPn)’ “427)

For the antisymmetric solution, B,(-X;) = -B,(X3), set i, = A:I, = 0. Then the

decoupled matrix equation from the coefficient matrix (4.20) reduces to

(+p8  205%8: || L,

) 1172 =o. (4.28)
2p*Cy (1 +pg*)pg?Cyf (M,

To have nontrivial solutions, 1:2 and Af}z, the following solvability condition from

vanishing determinant of coefficient matrix in (4.28) must hold
(1 + pg*)*tanhn - 4pgtanh(pgin) = 0. (4.29)

Then the asymmetric solution becomes
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B, = M[sinh(€LX,) — ssinh(Qp;2X,)], (4.30)
where the aspect ratio s is

(1 +pg*)sinhn
s = s .
2pg*sinh(p5in)

(4.31)

The symmetric and antisymmetric solutions B,, in (4.26) and (4.30) represent the
homogeneous solutions to the problem (4.16) and (4.17) for the case of
f =g = g = 0.Fora given 7 in (4.23), such solutions only exist for special values p,
that satisfy either (4.25) or (4.29). These values, which have been obtained previously by
Sawyers and Rivlin (1974) for the buckling of neo-Hookean plate, will be discussed in

section 4.4 later. The two aspect ratio in (4.27) and (4.31) can be rewritten as

s = (1+pgh) sinh2n

2p5* sinh(1 + pg?)n + vsinh(1 - pz2)n’ (4.32)

where v=1 for flexural deformations and v=-1 for barreling deformations. The two

solvability conditions (4.25) and (4.29) can then be rewritten into one expression as

sinh(1+pg?)n _ (1+pgh)2+4pg®

sinh(1 — pg2)n V(l +pg)-4ppt (4.33)
The expression for s? by using the combined solvability (4.33) becomes
Simh2n (4.34)

> 7 p¥sinh2py™m’

which is independent of the type of deformation. However s? depends on the value of p, so
that at a fixed value of 1, the value of (4.34) for flexural deformations is different from

that for barreling deformations.
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4.3.2 Solutions to Nonhomogeneous Problem

In order to determine the general solutions to the nonhomogeneous problem (4.16)

and (4.17), the method of variation of parameters can be used. The nonhomogeneous

solution B is found from the homogeneous solutions (4.18) by allowing the constant

coefficients [l, [2, A},, A:IZ to become functions of X;: L,(X;), Ly(X;), M\(X), My(Xy),

thus giving

B = L,(X,)cosh(€LX,) + L,(X,)sinh(€.X,)
+ M, (X;)cosh(Q2p2X,) + M, (X;) sinh (Q2p52X5).

These coefficient functions are subject to the following requirements

Ll'CI +L2'S|+M|'C2+M2'S2 = 0,
L2,QC| + LI'QSl + MZ'Qp62C2 + MI'QP(—)zSZ = O,
LI'QZCI + LZ'QZSI + M|'sz64C2 + M2'92p64S2 = 0,

with the similar notations as in (4.22):

C, = cosh(QXj;), M)
C, = cosh(pg?X), S,

]
I

sinh (Q.X}),
sinh(pg2QLX;).

(4.35)

(4.36)

4.37)

Substituting the form (4.35) into the nonhomogeneous equation (4.16) gives the fourth

equation to complement the three equations (4.36). Together this gives a 4x4 matrix

equation with respect to the first derivative of the functions L,(X3), L,(X3), M,(X3), My(X5):

- - - -

c, S G s, |z,
QS, QC, QpgS, Qpi2C, || L,
Q2C, Q2S, Q2pHC, Q2p7S,||M,’
Q35, Q3C, QS QpssCy| My

~N O O O
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Note that the 4x4 coefficient matrix is not singular so that L,’, L,’, M,’, M,’ can be
determined directly from pre-multiplying the right hand side of (4.38) by the inverse of the
4x4 coefficient matrix function. Then the coefficient functions L,, L,, M,, M, after

integrating with respect to X, are

—LI- -IfS.dXszL—l
Lyl _ 1 I}CldX2+l: (4.39)
M (1-p5")Q° I‘ 7 '
! p§ IfS,dX, + M,
M . —
L2 - P8 .[szdX2+M2_

Here the integrals are indefinite and L,, L,, M,, M, are integration constants. The full

form of solution B is

1
(1-pgh2?

+ p3( Gy Jsoaxy + 70y + 5= [rc,ax, + ) 1.

B(X;) = e s, + oy + s, frewax, + 1))

(4.40)

The function }’ is specified in the right hand side of (4.11). The complete solution B
contains four as yet undetermined constant coefficients L,, L,, M,, M, that are available
to satisfy the four boundary conditions (4.17). Substituting the solution (4.40) into these
four boundary conditions (4.17), the four equations for these constant coefficients are

expressed in matrix form as:
Civadaar = Gaxs (4.41)

where

T
J = [Ll LZ Ml M2] , (442)
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gTz - . . . - -
- (1+pg){LiCy+ L3S, } + 2pg{ M;Cy + M35, )
G- |@|_| (+pe)LIC-LiSi}+ 205" MiCmM; S5} (4.43)
82| | 2p5"{LISi+ L3C\} + pg?(1 + pg*) {M[ Sy + M3 Cy}

- | [2p*{-LiSi + L3C} + pg*(1 + pg){-MiS; + M3 Co }

and the coefficient matrix C is the same as that appearing in the homogeneous problem
(4.20). The functions with superscripts + or - denote that the functions are evaluated at
X,=I, or -1, respectively. Note that the matrix C is singular if and only if p, satisfies either
(4.25) or (4.29). If p, does not satisfy either of these equations, then (4.41) yields a unique
vector expression for J. On the other hand, if C is singular, then (4.41) gives solutions if
and only if G is orthogonal to the null space of CT which generates the solvability
condition as we will show in the following section. For this singular case, if the solvability
condition is not satisfied, then there is no solution to the problem (4.16) and (4.17). If the
solvability condition is satisfied, then there exist infinite solutions which is shown in
(4.40). The constant vector J can be obtained by using the psudoinverse matrix of the

singular matrix C or by connecting the solvability condition to (4.41).

4.3.3 Solvability Condition

The existence of a solution J = [L_l L, M, ﬂ;] ’ for the linear algebraic equation
(4.41) when p, satisfies either (4.25) or (4.29) requires satisfaction of an orthogonality
condition with the right hand side vector G and the null space of C”. If p, obeys (4.25)

which corresponds to the symmetric case, then the null space of C7 is given by
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- - - - T
S Ay C C
NS = Q3(1 - pg*) l ! ! . (4.44)
s T e T+ oy 2p5¢ 2pg

If py obeys (4.29), which corresponds to the antisymmetric case, then the null space of C”

is given by

- - - - T
C G 8 8
NS, = Q3(1-p5") ! ! Lo | 4.45)
’ P [l+pa“1+pa“296“ 206“] (

Together the orthogonality of the null space and the matrix G can be written
GT-NSs5:a = 0, (4.46)
and so yields the following solvability conditions with the relations (4.25) and (4.29). For
the case associated with (4.25) and hence a symmetric nontrivial homogeneous solution,
h

J‘~C CdX-l~“C'~+QS'~ 4.47
Q= sCd; = (1~ pit)| 55k + || - (447)

_[2

For the case associated with (4.29) and hence an antisymmetric nontrivial homogeneous

solution,

I](S S,)dX ( 4 S, - . QC, - L
_.s _ p—
r, 1 2)ai; Po [2964g2 a+ p#)gl] .

(4.48)

Thus, if there exist nontrivial solutions B, to homogeneous versions of (4.16) and (4.17),
then there exist solutions to (4.16) and (4.17) with nonzero _7, g~|, 8:2 if and only if these
functions satisfy either the condition (4.47) or (4.48), as appropriate

The solvability conditions (4.47) and (4.48) can be also obtained directly from the

ordinary differential equation problem (4.16) and (4.17) via similar procedure developed
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in Section 3.4 to get (3.28) for the partial differential equation problem. For the problem

(4.16) and (4.17), exchanging u to B, w to B, and f to ] in the formulation (3.27) gives

(FB,B) - (8.FB = 717 | 1(FB)B, - BFBIaN, (4.49)

Here F is the differential operator used in the left hand side of (4.16) so that FB = f and

F B, = 0. Applying the integration by parts and boundary conditions in (4.17) yields

I

- 1 - -
By = z77(82B,-81B,)| - (4.50)
41,1,

_[2

Then substituting B, in (4.26) and (4.30) into (4.50) gives the same conditions as (4.47)
and (4.48) after rigorous calculations with the relations of (4.25) and (4.29). Hence the
condition (3.28) represents solvability at the partial differential equation level, the
condition (4.50) represents solvability at the ordinary differential equation level and
conditions (4.47) and (4.48) represent solvability at the linear algebra level. The three
conditions (3.28), (4.50) and either (4.47) or (4.48) for solvability are perfectly matched to

each other.

4.4 Buckling Onset (the First Order Solution 4=1)

The first order solution uV=(u,", u,", pM) of homogeneous boundary value
problem (3.16) represents the status of buckling initiation and was investigated by
Sawyers and Rivlin (1974). Since all the right hand side terms f) and g!! vanish, the
terms /, J, K; in (4.7) and G, H, in (4.8) as well as the right hand sides of the equations
(4.11) and (4.13) vanish. Therefore the boundary value problem for the case of k=1

becomes
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B = QF,(1+ pg*) B + Qf,pg*Bf)) = 0, (4.51)

B +QF,pg*Bf)) = 0,

BO™ -2 (1+2p;)BW = 0, I (4.52)

In view of the relations (4.12), the other coefficients in (4.3) become

A = Ppay o = pg—f(B;y"-Qz BOY. (4.53)
in

nn wn=nn

The first order solution of (4.51) and (4.52) can be derived from the solution of
homogeneous problem in (4.26) for the symmetric case, and the solutions of (4.30) for the

antisymmetric case by substituting B{!) into B, and adding subscript i to Q and 7.

4.4.1 Buckling Initiation by Flexure and by Barreling

Two different kinds of solution in view of symmetry represents two shapes of
deformation: flexural and barreling deformation. For the flexural deformation, the lateral
deflection u,") is symmetric with respect to X5, so that B{}))(X;) is an even function. It

follows essentially from (4.25) - (4.27) as
B{})(X;) = M[cosh(Q;,X,) -5, ,,c08h(L;,,p57X2)], (4.54)
under the solvability condition of
(1 + pg*)?tanh(n,,,ps?) - 4pgttanhn,, = 0. (4.55)

Here n,.,, which is given from (4.1) and (4.23) as n,,, = Q,.,/,. The constant M denotes
the amount of buckling from homogeneous deformation so that M will be determined

according to the normalization convention. The value of M will be determined later in this

58



section. For the barreling case, the lateral deflection is antisymmetric so that B{!)(X;) is

odd function and expressed from (4.29) - (4.31) as
B((X,) = M[sinh(Q,,X5) - 5,.,sinh (€, ,p52X)], (4.56)
under the solvability condition of
(1+ pg*)*tanhn,, — 4pgétanh(n,,p5?) = 0. (4.57)

Nontrivial solutions will only exist, at fixed mode number » and initial geometries /; and /,
(which will be shown in Q,, and n,.,), for particular values of p,. The conditions (4.55)
and (4.57) show the relations between p, and n,, which represent the load parameter

curve. The aspect ratio s for both types of deformation is

_(1+pgh) sinh2n;,,

2p3* sinh(1 + pg?)n;., + vsinh(1 - pg)n,.,’ (4.58)

in

where v=1 (v=-1) for flexural (barreling) deformation.
The value of the constant coefficient M in either (4.54) or (4.56) is determined

from normalization for which we define as

+ | In[(“‘”) (“152”) (I%”)L]dxldXz - 1. (4.59)

This is in contrast to the normalization used by Sawyers and Rivlin (1982) who instead
require that u§1(/;, 0) = £1 for flexure and u{"(l,,1,) = %1 for barreling deformation.
Their results are simple and procedures are relatively easy by introducing above special
rules of normalization. But in this work, we will follow the definition of normalization,
luM] = 1, as shown in (4.59). Applying the solutions (4.2) for k=1 to (4.59) with the

relations (4.53) and integrating over I'; give
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2
L pd ? ’) o
i |\ T B 2 B(y =
412 rzl:(Q,';,,IlB';”) +( l, QZ Ql;nBl;n) dXz 1. (4.60)

Then substituting the solution expression for B,,!" in the separate cases of flexural
deformation (4.54) and barreling deformation (4.56) and the aspect ratio s in (4.58) into
(4.60) and applying the solvability conditions (4.55) and (4.57) give the following

equation,

A{l lnh(zni;n)

. inh(2p0=2 n
415[{\,(1 —62p0)+(1 +0 0) 27];;,, SI__(pﬂ_))

-n2,s2p3(1 - pg* z(v_
} NinS°Ph Ps*) Zpein,,

s“lh(zpaznln)
+53v(l -02)+ (1 + 6})————— 4.61
{( )+ ( ) 200N, (4.61)
sinhn,,,(1 - pg? inh7,.,(1 + p3?
- D) s o)
Nim(1 - p5?) Nin(1 + pg?)

where 6=/,//; and v=1 for flexural deformation, and v=-1 for barreling deformation. When
the geometry /,, /, and mode number i, n of given plate are supplied, the value of M for

flexural or barreling deformation is determined by (4.61).

4.4.2 Load Parameters Associated with Buckling Initiation

The load parameter values p, at which the plate may initiate buckling, is dependent
upon the initial geometry through mode number, n,,. Their relations for the case of
flexure and barreling deformations are given in (4.55) and (4.57) and are shown in Figure
4.1. Sawyers and Rivlin (1974, 1982) first reached these first order solutions in terms of
A=py2 and ) by using the variational approach. It can be shown for each fixed value of i
and for each n (which then specifies a value for n,,>0) that there exists exactly one

solution p§ which satisfies (4.55). Also for each fixed value of i and for each n, there
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09}
Flexure mode
08}

07}

06} Poo

T ——

05}

04} Barreling mode
03} .
02}
0.1
0 . .
0 1 2 3 4 6

Figure 4.1 The load parameters for flexure and barreling modes. When n goes to
infinity, both modes converge to p,,=0.543689 as shown in (4.65).

exists exactly one solution p§ which satisfies (4.57). Therefore there exist only two
possible solutions for each fixed Q,,. The indices i=1 or 2 and n=1,2,3,... determine

special values for each solution
po = pb(isn), p(in), i=1,2, n=1273,... (4.62)

If py is not equal to one of the two special values, then no solution, other than the trivial
solution u(M"=0, exists for the homogeneous problem of k=1. That is buckling can not
initiate at loads other than those given by (4.62). On the other hand, if p, is equal to one of

the special values given by (4.62), then the solution of the first order problem consists of
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the single function from each of the infinite series in (4.2) that corresponds to the
particular i and n which satisfy (4.62).

Note that the two curves in Figure 4.1 are each monotonic and approach the
common asymptote p, as n—>co in which they share the same load parameter. When
n—o, both tanhn, and tanhpz2n,, have the same value since p,? is finite and hence the

conditions (4.55) and (4.57) lead to
(1+p)2-4p = 0. (4.63)
The solution except for trivial case of p,=1 in (4.63) is the real root of
P -3pt—-pt-1=0, (4.64)

and becomes by using Cardano’s solution for cubic equation (see Qiu, et al., 1993)

0. = [1+¥R+ JO+R+YR-JP+ R] " = 0.543689... (465)
- _(4/3), R=2.

The deformed shape of the plate at n—< involves an infinite number of wrinkles. In view
of the loading mechanism, when the thrust T is increasing, the load parameter p, is
decreasing starting from p,=1 according to (2.16) so that the buckling initiation modes

occur sequentially such as
Tf<T§<...<TE=T8<...<T§<T§. (4.66)

For the zeroth terms, the coefficient functions in (4.14) and (4.15), ignoring the

rigid body motion, become
B(X) = 0,  CEI(Xy) = 0. (4.67)

Hence the solutions of the homogeneous equation of order € (3.8) and (3.9) for &=1 are
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28 g1y cos(@,, ),

In

uf!) = 2 (4.68)

g5 B Sin(Q, 1),

B{!)sin(Ql,,X,),
it

" (B&chos(ﬂz.ﬂxo, (4.69)

PS B 02 B sin(Q

HQ%_"( i;ﬂ I P f.n) sin l;nXl)a

p = pg‘ (4.70)

hoag (B8" - 03,B8)) cos (),

where B{})(X,) are given by (4.54) for flexure and (4.56) for barreling. The particular

value of p§ or p# is obtained as the unique root of (4.55) or (4.57) for the given value of

Ni:n:

4.4.3 Asymptotic Expressions for Load Parameters

Equations (4.55) and (4.57) do not show the explicit form for p, and this will be a
difficulty to fully analytic study. Hence it is convenient to analyze the expressions (4.55)
and (4.57) in the separate limits of n—>0 and n—. This gives four separate cases
corresponding to: (i) flexural deformations at low mode number ((4.55) as n—0); (ii)
barreling deformation at low mode number ((4.57) as n—0); (iii) flexural deformation
corresponds to wrinkling ((4.55) as n—); (iv) barreling deformation corresponds to
wrinkling ((4.57) as n—). Later in Section 5.4.2, the low mode number flexure
expansion (i) is used in an asymptotic stability analysis. The other cases (ii)-(iv) are given
here for completeness.

(i) p, for flexural deformation when 1 goes to zero
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When 1 goes to zero for the flexural deformation in (4.55), the parameter p, goes

to one as shown in Figure 4.1, so that we assume the series polynomial expansion of p, as
Ppo = 1+thkm+km2+kmnd+.. 4.71)

The hyperbolic tangent can be expanded in a series form when 1 has small value as

1 2
tanhn = n - 3 3+—5n -... (4.72)

Introducing (4.71) and (4.72) to the condition (4.55) gives the polynomial equation of ] in
which each coefficient function vanishes simultaneously. The lowest order becomes 13

and its coefficient shows
k, = 0. (4.73)

Then the coefficient functions after substituting (4.73) become

16 I
(1 +3k)ns + 16k3(§ +2k) 8
+8(- S, ’521(; 1124 + 1643 + 22k, + 22ksky ) (4.74)

" 16( 145k 1391‘21‘3 21kgks + 2k3kq + %ks + 2k2k5)r|3 +0(n®) =

Because of small n, each term in (4.74) vanishes simultaneously so that the first term
gives

ky = - (4.75)

excluding the trivial case, k,=0. Subsequently the other coefficients show that

1 19
50 ks =0, k= -5 b

ky =0, ky = - 0. (4.76)



Therefore the asymptotic equation for p, when n goes to zero gives

1, 1T, 19 4 8
Po 1‘§Tl ~50M" ~ TRo0" +0(n?®), 4.77)

which is shown in Figure 4.2 up to the fourth order accompanied with the exact values
which is computed by using (4.55). As we can see in (4.77), p, is an even function of n.

The asymptotic equation (4.77) were also obtained by Sawyers and Rivlin (1982) in terms

of Aas A = pg? = 1+§n2+‘l‘§n4+0(n6).

Po
08} ]
Exact expression (4.55)
06}
Asymptotic expression
04} up to the fourth order
4.77)
02}
0

0 1 n 2

Figure 4.2 Asymptotic equations of load parameter p, for the flexural deformation
when ) has small value by using (4.77) up to the fourth order. For n<1, asymptotic
expression is quite close to exact expression.
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(i1) p, for barreling deformation when n goes to zero

For the case of barreling deformation shown in (4.57), the parameter p, goes to
zero when 1 goes to zero. However np,2 in hyperbolic tangent does not go to zero. A
consistent analysis of possible forms for the expansion of py(n) near n=0 shows that the

correct expansion form is
po = kin'2+ k0 + k2 + kn? + k2 + O(n?). (4.78)
Then the expansion
Npy? = k22k k302 + (3k3k* - 2k3k7)n + ... 4.79)
so that

limo(npaz) = k2. (4.80)
n-

Substituting (4.78) into the condition (4.57) and the Taylor series expansion of tanh(np,?2)
with respect to the value of (4.80) give an algebraic equation of n in which each

coefficient function vanishes. Then the first term becomes
ki8(1 — 4kftanhk;2)n=3 = 0 (4.81)

which shows the numerical value of k,=0.500169... The following terms show that k;, k3

and k, equal zero and the fifth term shows

k,(1-6k})

ks = 4 btk T 3kFtanhk?)’

(4.82)

Using the value of k,, the equation (4.82) shows ks=-0.05234..., numerically. Hence the

asymptotic equation of p, for barreling deformation when 1 goes to zero becomes

Po ~ 0.500169n1/2 - 0.05234n5/2 + O(n?) (4.83)
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which is shown in Figure 4.3 with exact equation.

0.6
Po

Exact expression (4.57)

0.5+t

04

Asymptotic expression (4.83)

0.3

02¢

0.1¢

Figure 4.3 Two-term asymptotic equation of load parameter p, for barreling
deformation when 1 has small value by using (4.83). Again when n<l1, the
asymptote is quite close to exact expression.

(iii) p, for flexural deformation when n goes to infinity
When 7 goes to infinity, the parameter p, goes to a finite value p,, so that p, can be

written as
Po = Puil+0(M)}, (4.84)

where & is remainder term that vanishes as 1 goes to infinity. The hyperbolic tangents are

expanded by using infinite series of exponential equation as
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1 —e2n

tanhn = —_—=]- 27N+ 24N e 6N+ |
I+en (4.85)
tanh(npg2) = 1-2¢720" + 27196 _ 276105 4
where
nps2 = Np;2(1-28+382-483+...). (4.86)

The possible form of 8(n) can be obtained from considering (4.85) with the conditions

(4.55) or (4.57) as
& = kje N+ ke n+ ... (4.87)

Substituting (4.84) and (4.85) into (4.55) for flexural deformation and equating each
coefficient function of each order of e to zero give algebraic equations which contain the

unknowns k;. The first term which is independent on 1 shows

and the real solution to (4.88) give a limit value of p,=0.5437... excluding the case of

unloading, p,=1, by using Cardano’s rule as shown in (4.65). The next leading terms show

that
_ P
kl - l_3p»20+pw,
) i3 ) (4.89)
L = (9-21p; +5py)ki—2ps(1 +6k))
2 2(1-3p3 +p3) ’
with the numerical values of p,,, the parameter p, when 1 goes to infinity becomes
Po~ Pu(1+1.47395¢-21 + 2.98066e4n + ...), (4.90)

which is shown in Figure 4.4 with exact solution.
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Po

09}

08}

Exact expression (4.50)

g

0.7 ¢

0s | /4

Asymptotic expression (4.90)

A

0.5

0 1 2 3 4 5 6 7 8 9 nIO

Figure 4.4 Three-term asymptotic equations of load parameter p, for flexural
deformation when 1 goes to infinity. When n>1.5, asymptotes is quite close to
exact expression.

(iv) p, for barreling deformation when n goes to infinity
For barreling deformation, the similar approaches can be used in the case of
flexural deformation when n goes to infinity. The expansions (4.84) and (4.87) are also

possible candidates for barreling. Then the results shows that

r = (1+p3)?
' a0 -3pi el 401
_ (184203 + 10p§)kp+ (1 + p4)(1 + 3 ~ 8k) @
- 4(1-3p3 + ) ’
which determines the asymptotic equation numerically as
Po~ P,(1-1.47391e-2n + 3494544 + ...). 4.92)
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The asymptotic equation (4.92) with exact equation are shown in Figure 4.5. and it

0.6
Po
Asymptotic expression (4.92)
0.55 ¢
Exact expression (4.57)
0_5 i A A " A i A A A
0 1 2 3 4 5 6 7 8 9 10

n

Figure 4.5 Three-term asymptotic equation of load parameter p, for barreling
deformation when n goes to infinity. When n>2.5, asymptotes is quite close to
exact expression. Otherwise, two expressions show totally different values.

is shown that the asymptotic equations are well matched when n has larger values in both

Figure 4.4 and Figure 4.5.

4.5 Post-buckling Deformation (Second Order Solution)

The higher order solutions u®, u®®,... are the expansion in € as given by (3.1) to
account for the postbuckled deformation. This is determined by the nonhomogeneous
nature of the equations which effect f and g in (3.8) and (3.9). To determine the second

order solution bifurcated from one mode of the first order solution, we now choose either
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flexure or barreling and also fix i=1 or 2 and mode number »n=1, 2, 3... in the first order
buckling solution u(V) in (4.68) to (4.70). It will be co;nvenient to rename i to j and n to m
as we wish to use j and m in what follows as the expansion indices for the chosen first
order mode. Thus for fixed j=1 or 2 and m=1,2,3,... as determined from the bifurcation
mode under consideration, we seek the coefficient functions B, ?, 4,,®, C.@, i=1,2,
n=1,2,3,..., in the second order case.

For the zeroth terms, the general equations (4.14) and (4.15) with the right hand

sides of the second order equation (3.11) become

pB&z)" Po C62) — _p___g_(Bij(l)l ’ , poBsz)l = pg(Bj(”g ,}n')'
(4.93)
on I, RBE - poCP = "P B!J"'BJ n
where
Bjm = Bfn" - Q. Bf). (4.94)

To within the rigid body motion given by a constant in B, the solution for (4.93) is
B = BB, P = [GUENY B ] @99

For the other coefficient functions, we will utilize the generalized solution for
nonhomogeneous equation, (4.43) with the solvability conditions (4.47) and (4.48).
Substituting ¥, g in (3.11) into the equations (4.7) and (4.8) shows the following results
for the right hand sides of the equation (4.9) and (4.10):

(A) If the mode of uV is j=1 and m, then only the expressions for i=1, =m and for i=2,

=2m-1 of u® are non-vanishing:
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152,3. = —PIPEZQl;mC”er Jﬁ’n = plC{?,l.',
K2 = —p,(Bf) +p52Q nA4{)), (4.96)
G2, = 2up,p5> Q2 Bl H2), = p(Cf) +2up*Q, ,4f),

and

-1 = 5 n(CLYBIY ~ CIABEN,

-1 = 3 (CL AL~ AL,

(4.97)

1 ’ ’
K&Qm-l = inl.m(AﬂiZl B"IL—A‘I;'B“'L ),
Ot = 3QaBUCH  HEw = 3,43

(B) If the mode of u(" is j=2 and m, then only the expressions for i=2, n=m and for i=2,

n=2m of u® are non-vanishing:

I, = —p,pg?Qy.aCil, J2, = p,CLL’,
KD, = —p (B + g2 mAS))s (4.98)
G§2), = 2up,pp*Q, Bl HP) = p(C) +2ups3Q, 451,

and

18}, =~ (CEBYY) - CLBEL),

T = 5 (CH) AL, - CILALY),
i (4.99)
Kfn = —3€0,n(A8 B - ADBID),
G = 5 DnBCE  HEl = —3C0,A0 B

For the modes which are not mentioned above, the right hand sides of the equation (4.9)
and (4.10) vanishes so that these modes have the same solutions as those for the

homogeneous case or u("). However, according to the orthogonality rule (3.4), the solution
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of these modes must be eliminated. For the cases of n=m in (4.96) and (4.98), the
differential operator are the same as those of homogeneous equation so that in most cases,
the solution does not exist. But for the special arrangement of the nonhomogeneous terms
which satisfy the solvability condition, the solutions exist. Substituting (4.96) and (4.98)
into the right hand side of (4.11) and (4.13) with the relations (4.53) for 41, and C1V), ,

gives

7=—4P196'(3};”" Q2 _B())", (4.100)

J.m=).m

and

g1 = —2p1p5! (B - Q2,p*BLY),

-~

g2 = ~4p1p5' (B - Q2 B’

Jm=).m

(4.101)

Substituting from (4.100) and (4.101) into the solvability conditions (4.50) with B,=B""), ,

and integration by parts to the left hand side gives

20,05 [{(BI" + Q2 BIDBLN' Y,
(4.102)
2 (@ @R - o
Considering the first order I',-boundary condition (4.52),, the condition (4.102) becomes
p;=0 since the integral is positive definite. Hence the solution for the case of n=m exists
only if p,=0. If the first order load parameter p,=0, the right hand sides, (4.96) and (4.98)
vanish so the modes n=m have the same solutions as the homogeneous solutions. Due to
the orthogonality between the first order and higher order solutions, the solutions of
modes n=m must be eliminated. Therefore if the mode of j=1, m is chosen for u”, then

only the mode associated with i=2 and n=2m-1 in the second order solution expansion u®
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is governed by an equation that has nonhomogeneous terms. That is, only B{},,_, has
nonhomogeneous solutions so that B{2) = 0 for all n and B{2) = 0 unless n=2m-1. On
the other hand, if j=2, m of u" is chosen, then only the mode i=2 and n=2m, that is, B§3},,
has nonhomogeneous solutions. Thus for fixed mode variables m=1,2,3,... and j=1,2, there
is exactly one nonzero B;;l,,f which corresponds to only B,.(.i,) governed by a
nonhomogeneous equation. The index i for this nonzero second order B,(i,) is always i=2
and »n is given by n=2m-1 if j=1 and n=2m if j=2. Note that the mode number »n of the
second order is different from the mode number m of the first order so that the differential
operators of the second order are different from those of the first order. Hence there exists
a unique nontrivial solution to the second order equation (4.16). After combining the two

cases in which the nontrivial solutions are possible to exist, the right hand sides become

1 1

1 Q—mYl;msn;Zm-l’ 1 Q_f;m’(l;msnﬁrn-l’
Ig) = suedl JE = suedl
-§;Yzw5nam 7 ¥2mOnam (4.103)
1 a, 'm8n‘2m— s
K = - 2( mOn,
£.n 2p0 —az;msn;zm,
and
L ;.3 BinB()'S
1 mBl;mBi;msn‘lm-l’ 1 gmﬁl;m ‘;m n2m-1s
GE) = pupll HE)= ghofl (4.104)
—Q_z‘—Bé;mBﬂrZ:Sn;Zm’ _Wﬁé;mBg)v'sn;Zm’

where the upper terms are for j=1 and the lower terms are for j/=2 and 4,,, and C;,,, have

been converted to B,,,. The notations used above are
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=B m= m Yym = BmB Q—B"m (l”:”
Jv”’ Jum =J 7 J.m J- J J J J (4105)

and 8, , is the Kronecker delta (5,,=1if p = g and3,,=0if p#q).
For the equations (4.103) and (4.104), the mode numbers i and » in the left hand
side of (4.9) and (4.10) are changed accordingly. And from the definitions of mode

number in (4.1), Q, , can be written in terms of €, ,, as
QZ§2"'- 1T 2Ql:ﬂl’ Q2;2m = 2Q2;m' (4.106)

so that the formulations for the second order can be considered as the generalized
formulations developed in Section 4.2 with 2Q ., in place of Q,,,. Applying the relations
(4.106) and the right hand side terms in (4.103) and (4.104) into the boundary value

problem (4.11) and (4.13) for both cases of j/=1 and 2, have the following format

B@»—4Q2 (1+ ps*)BY" +16Q4,,p5*B?

' ] . (4.107)
= (’)po(Yj;m _2Kj;m 2 2QJ m %, "') 1(2)’
onl,,
B®" + 4912;,,,[)643(2) = (Dpo(%a/";m + B/',MBJ(.l"Z) Eégz)’
B(z)m_4Qj2;m(l +2p64)B(2)' (4108)
l '
= (OPO['Y/,M+ 2 0= 2(1 + pg*)Q2}, 0 — 2B Bf ‘)] =g,
where
B3, |, 1 for j =1
B® =| * = ( ’ ’ 4.109
( B, C T =2 e

75



According to the relations (4.12), the other coefficients become

2 )

o (4.110)
; .
co = 200 Tpaym_g402 par 2P0y v 402 a +2
iQz, ) im%im + 2Yym) |
where
2 2 .
42 = ASdn-1, Cc? = Codn-1» J=1 4.111
2 2 . ( . )
Aﬁ;fm’ Cﬁ;im» J = 2.

Applying the first order solutions (4.54) and (4.56) with zero right hand side into (4.94)

and (4.105), then the right hand sides of (4.107) and (4.108) becomes

f@ = —mpon (Pg* = 10}, (4.112)
and

& = 30pe2, (o7 + 1)BRBLY

! ' : (4.113)
g9 = “20pyQ2,(2p5* - 1)(B')?

Substituting Bf}) for flexure in (4.54) or for barreling in (4.56) reduces the equations

(4.112) and (4.113) to

/2 = vas,n Q3,po(1 - pg*)2[v(1 - pg?)sinh{Q,.,,(1 + pg2). Xy}
+ (1 + pg?)sinh {Q;,,,(1 - p3?) X, 1],

(4.114)

2 = J0Mpy(Tp5* + 1), [Sinh(29,X;) + 52, pi2sinh 20,,p52y)

—8;m{(1 + pg?)sinh {Q; (1 + pg?)X,} + v(1 - pg?)sinh {Q; (1 - p5?) X3} } ],

(4.115)
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g = ~0Mpo(2p5* = QY [cosh(20,1 o) * s}upitcosh QXD 1o
= v(1 +52p5*) = 25;,,p52{ cosh {Q,,,,(1 + pg?) X3} — veosh{Q;.,(1 - pg?) X2} } 1,

where v=1 for flexural mode and v=-1 for barreling mode. The general solution to the
differential equation (4.107) with the boundary conditions (4.108) has the expression

B® = N,sinh(2p52Q;,,X;) + N,sinh(2€Q;,,X,)

. . 4.117
+ Njsinh {(p5? + 1)Q, ,X;} + Nysinh {(p5? - 1)Q;,,.X>}. ( )

Here the first two terms are from the homogeneous part and the rest are from
nonhomogeneous part with constants N,’s. Introducing (4.117) to the differential equation

(4.112) and matching the coefficients give N;and N, as

_3 s O (pg* - 1)(pg2+ 1)
4 jmm PoBpst+ 1)(P‘2+3)
3 ( 0 e 0 N (4.118)
B pg*— 1)(pg’ -
Ne = 3OVMS i mPo T Ty (o5 = 3)
and to the boundary conditions (4.113) give the values of other coefficients as
= _.._32T[4p D,cosh(2n) - (1 + pg*)D,sinh(2n)],
(4.119)
_ mng;mpo -2 : -2 —4 -2
Ny = ——ga —[Pa*D,sinh(2pg?n) - (1 + p3*) D, cosh(2pg?n) ],
where

= 4py®sinh(2pg2n)cosh(2n) - (1 + pg*)2cosh(2pg2n)sinh(21n), (4.120)
and

= d\(pg?) + vd,(-pp) — (Tpg* + D[sinh(2n) + 57, p5”sinh(2pg?n)], (4.121)
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D, = dy(pg?) + vdy(—pp?)

~4(2pg* - 1)[(cosh2n - v) + 52,,pg*(cosh2p52n - )], (4.122)
1 -E2)(1 2 .
dy(8) = =5;(] +¢)[3( (lé +)(3 585:55 )_a +7§2)}Smh(1 vEym, @123)

31 =82 +£)%(3-28 + 78?)
(1+38)(3+8)

dy(E) = =] +85(1-28) Jeosh(1 +E)n.  (4.124)

The denominator A represents the combination of the conditions (4.55) for flexure and
(4.57) for barreling such as

A = =2C,C,[8,5,{(1 + p3*)*tanhpj?n — 4p;6tanhn }

. (4.125)
+ C,C{(1 + pg*)*tanhn — 4pytanhpyn } ].

The solution (4.117) can be also obtained by modifying a generalized solution (4.43) with
replacing €,.,, by 2Q,.,. The particular solution (4.40) contributes to the last two terms
including N; and N, in (4.117). Using the variational analysis, Sawyers and Rivlin (1982)
also found the same type of second order solution (4.117) which only differs in the
notations. Finally, the corresponding second order nonhomogeneous solutions
u®@=(u,?,u,? p@) become from (4.2) with (4.95) for the zeroth term and (4.110) and
(4.111) for the higher order as

uf? = -A@sin(2Q,.,.X)),

1

u? ipoB};',gB};‘,,}' + B@cos(2Q; X)),

(4.126)

4
p® = B[(BIRBIY + oy I |+ CPc0s 29, ,X0),
J.m

where Bf{2) has only homogeneous solution and B{?) has nonhomogeneous solutions

B}, or B§}, forj=1 or 2, respectively. The nature of coefficients B2 depends on the
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choice of the first order solution - flexure or barreling mode and j=1 or j=2 and mode

number m.

4.6 Summary of Full Buckled Deformations

The fully finite buckled deformations v,(X},X3), v,(X,,X;) with pressure p(X,,X;)
after perturbation expansion are defined in (3.1) and solutions of the first and second
orders are determined in the previous two sections. Now we will summarize the results as
a reminder of complex procedure. The buckled deformation with respect to X, axis is

given from (3.1), as

va(X,, Xy) = eugD(X, X) + e2uf (X, Xy) + O(e?). (4.127)
More specific result is from (4.1), (4.69) and (4.126), as
v(X), Xp) =

m-1
21,

(st!},(Xz)sin(z nX,)

; sz{.‘;_"sg!,;cxz)ms;'(xg + B () cos( L2 Lnx)) } +0(),
1
(4.128)

eBﬁ!,),(Xz)cos(;an,)
I

2m

. ez{%? B{(X)BEY (Xy) + BR, (X cos( S, } +O(E),
1

where the upper solution is for /=1 and the lower solution is for j=2. The coefficients Bf))
are given in (4.54) for flexural deformation and (4.56) for barreling deformation and the
coefficients Bf2) are given in (4.117). The subscripts j=1,2 and m=1,2,3,... are indices of
the chosen onset bifurcation modes. Then deformation v,(X;,X;) along the X, axis and

pressure p(X,,X;) follow v, solution (4.128) in an appropriate order of € from (4.2), (4.53)
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and (4.110). In conclusion, there exist four different types of solution which depend on the
deformation types such as flexure or barreling and chosen value of j=1 or 2. In each type,

there exist infinite modes of solution.

4.7 Reduced Formulations Due to Symmetric Load Parameter

The first order solutions u(!?) obtained in (4.68) - (4.70) may affect the formulations
on the load parameter and the energy equations so that their equations will be reduced to
simpler forms. These simplified forms will make less efforts to investigate the stability

near buckling initiation.

4.7.1 Load Parameters

With the results on the first order solution in hand, the postbuckling formulations
given in solvability conditions can be much reduced. In particular, we now show that p, as
given by (3.33) must vanish. Applying integration by parts once with respect to X tb the

first two terms of R, in (3.31) yields

R, = | p0aupugy - upupy)_ax,
: ' (4.129)
+J1 3pocupyug - uyugyax,ax,

Then applying the I'j-boundary conditions in (3.9), to the first term, the numerator R, in

(3.33) becomes
R, = 3jjnp<‘)(u{}}u§}] - ufui)dX,dX,. (4.130)

Substituting from either option for the first order solution (4.68) into (4.130) and

performing the associated integration gives
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R, = 0. (4.131)

Rearranging R, in (3.32) yields

Ry = = J] oty ~ugppax+ ] poogaug) ~umax

~2pp | uiPug) —upyug)| ax,- [ poug))_ax,.
1 r 1 2

2

(4.132)

Integrating by parts on the first integral with respect to X, to the first term and .X; to the
second term produces the same terms as the second integral in (4.132). And in the third
integral, integration by part with respect to X, on the first term yields the same term as the

second. Then collecting all the remaining terms gives

R, = —pazj ufVpM|  dX;-2ppgiufVulh)|
r, r, r.r,
(4.133)
+4ppy’ !r uf uD| dX, + 2”np"’(pazuf,‘l - uf}})dX.
1 2

Entering the I'|-boundary conditions in (3.9), to the first two integrals in (4.133) shows
R, = 202pp5° | ugugn)ax, + [] poogzut - ugyax, (4.134)
1 2

Substituting the first order solutions (4.68) - (4.70) into (4.134) and integration with

respect to X, now yields
pa \ ” ” ’
Ry = ~4ul, DO BOY(@Fogt B+ BO| - ) (B + Qu(BI Y, @135
1

The I, boundary term in (4.135) vanishes by virtue of the homogeneous form of the I',-

boundary condition (4.13),. Then

R, = 4pl,f—z—ijrz{(3,(')")2+Q,.2(B,(l)')2}dX2. (4.136)
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It is significant to note that
R,>0, (4.137)

for nonconstant B". The results on R, in (4.131) and R, in (4.137) in conjunction with

(3.33) show that
p; = 0. (4.138)

This result simplifies the expression of p, in (3.38) to

P = - (4.139)

The numerator R; can be reduced via integration by parts with respect to X, on the first

two terms in (3.35) such as
Ry = Ir [ufV(@®ull} + pOul}) - ufI(@EDufly + pOuf})]| _ dX,
L o0y - ugiu) + POt ) - uguphlex
(4.140)
+ I apiuftyug) - ugtyupyax

1
+ J] o0 w2y — i) + PO ) uf g 1aX.

After introducing the I'|-boundary conditions (3.9), for &=1 and 2, the first row in (4.140)

vanishes and rearranging all the remaining terms yields

Ry = 2 Oty + uug) - i ug) + )
+ pO(uf g} -uf!| uf!}) 1dX, dX,.

(4.141)

4.7.2 Energy Equations
With p;=0 in the condition (4.138), the energy terms in (3.55)-(3.57) can also be

reduced. However, it is convenient to simplify first the terms in (3.43) - (3.45) and (3.53).
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After integration by parts with respect to the variables of u," on (3.43), the variables of

u?, i=1,2 on (3.44) and the variables of u,® and 4, on (3.45). then ®,, k=1,2,3, become

D, = Irz"f,'f“y)lr,dXz-Irl“f.'luﬁ"lrzd/\’n, (4.142)
®: Irz(”ffiuﬁz’—uﬁ,‘}ui”ﬂr,dxﬁ Ir @i {uf —ufjuf)| dX,,  (4.143)

@, = [ yu - ugtyup + unug)_ ax,

(4.144)
) e - ugup + upupn)_ax,

Substituting I"; - boundary condition in (3.9),, all the first integrals in (4.142) to (4.144)

vanish so that

@, = - ufup)ax,

A
]

I, gt - uptugy_ax, (4.143)

[ e - ugup + uptyupy) ax,

£
I

Similarly, after integration by part with respect to the variables for u,¥, the definition

E,»’s in (3.53) are reduced to

z, = | aiup v upupr) at+ ] i + | ax

(4.146)
Tt + iy + gty + ugyuprax,

where i=1,2 and j=1,2,3,.... For i=1, the coefficients of #,*? and 4,* in the third integral are
substituted by the governing equations in (3.8),, for k=1 and due to the I'}-boundary

condition in (3.9),, the first integral vanishes. Hence

Ey = Irl(“f.'iui” +ufhuf)| dX, - %I In(pa‘p‘,']uv) +ppJup)dX.  (4.147)
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Integration by parts with respect to the variables of p{!) in the second integral in (4.147)

and application of the boundary condition (3.9), yield

dx,

z, = ) (uhup + utup - Zpoug)
' ry (4.148)

1 . .
+ EIJﬂ(P(?'“f’,)l + Poufr’,)z)Pmdx-

The parentheses inside of the second integral in (4.148) is the left hand sides of
incompressibility conditions in (3.8); so that substituting the right hand sides of the
condition to (4.148) becomes for each j

dx,, (4.149)

T,

2 = L (uhat) + gty - Zopoag)

za = [ (ufthup + ugtyu - Sporug)| ax,

2 (4.150)

e 2] poocuhug) - uptjugpax,

dx,

z5 = [ (utsud+ gy - E2pug) )

(4.151)
e 2] P00 tpaortutt - ugth) + uhug-ut gy

+ (uffhuf-ufufl}) }aX.

When i # 1, in the case of =,,, the formulation is slightly different from the previous i=1
case. Since the coefficients of u,) and u,?) in the third integral in (4.146) cannot be

substituted by the simple terms, the formulation has more terms than i=1 case as
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dX,

I,

= = [ (upbur+ upyug - Zpoage)
e 1] g -unugpporax (4.152)
] gy - sy + uppgury - pjug ) ax

Then, from the abbreviated equations (4.145) and (4.149) to (4.152), the terms in the
expansion of energy difference (3.55) to (3.57) have reduced formulation. Substituting

(4.145) and (4.149) into (3.55) yields

E2=

NIE

dX,. (4.153)

T,

| H(um - pguf!}) - %’pm}us') + (uf'uf) - pg2uf) us”)]

The coefficient of u,(V in the first term in (4.153) vanish due to the I',-boundary condition
(3.9),, and after integration by part with respect to X, to the second term and applying the

I[',-boundary condition (3.9),, E, becomes
= EI 1 ~2,(1 1)
Ey = 50 i3+ pg?uf)ufD] dX,. (4.154)

Substituting again the I",-boundary condition in (3.9), to the coefficient of u,? in (4.154)
yields

E,=0. (4.155)

Similarly E; in (3.56) with (4.138), (4.143) and (4.150) becomes
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Ey = p(pg?®, +Epy)
Po
= 1) — 0=21(1)) — —=p(1) 2) 1 =294(1 2)
Ir,[{(us‘} pout'y) pP }“ﬁ +(uf!} + pgtud!})uf :l dX, (4.156)
r2
1
e 1] po0cutyugt - g, ax,
Applying the I'; -boundary conditions in (3.9), to the first integral, E; becomes
1 -
£ = 2] powsug -unugpax.ax, (4157)

The integrand of E; in (4.157) is the same as that of R, in (4.130) so that the procedure

leading to (4.131) also gives
E; = 0. (4.158)

Based on the results (3.54), (4.155) and (4.158), the first nonzero term in the energy

difference is, at minimum, the fourth order term E, so that
AE = 2I,E g% + O(g%). (4.159)

With (4.138), the formulation of E, in (3.57) becomes

| G
E, = P(— 2p5°p2 @, + pg* @3 + 55 + =-13) : (4.160)

Here @, requires use of ul!), =), requires use of u) and u'?, and ®; and Z,; requires use
of u, u®, and u®.
We now establish, however, that E, can in fact be determined without first having

obtained u®. Using (4.145); and (4.151) we may write
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p®;+ =y = | [-P3 g = g+ )

dx,
I

¥ &Ijnp“’[pz(pazui,'i —uf'y) + (uf3uf] + ufBus!y)
~(ufu?) + ufuf!})1dX.

+ Ul Juf? + g -Sp g |

(4.161)

Note that the third order solution u® appears only in the first boundary integral in (4.161)

and it may be rearranged into the form

dX,. (4.162)

r;

Ir [u?’{(us,‘} - po*ufll) - %"p‘”} +uf(uf} + pg?uill) - p5?ufl} u?’]

Note, however, that the multipliers of #,'¥ and u,® in (4.162) vanish by virtue of the I',-
boundary conditions in (3.9), for &=1. Hence the form of (4.161) is reduced to
o72®;+ 5, = —pit | upiu) ax,

* &I Inp‘”{ pa(ps2uf'} — ug) + (uf}uf) + uiBugly  (4163)
—(ufjud» + uffjuf}) }dX.

It is shown in (4.163) that the third order solution no longer appears. This means that
determining of u® is not necessary to evaluate the immediate postbuckling stability
competition between the buckled state and the homogeneous solution provided E,#0.

Substituting (4.145), (4.152) and (4.163) into (4.160) gives
E, = Rg+ Ryp,, (4.164)

where
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dX,

R = gul. (- 2p02utu + uphu + ugu + oponug)
1 rz

+ ] potcuiugy + uug) - i ugh + utugy) ) ax

, (4.165)
+ 2 POy - ugyuyyax
| In {uP (P us) - pHush) + uD(puf') - piuf'})}dX,
Ry = 200t | uttuo), ax, + IJ pocosug - uppax. (4.166)
Rearranging the first integral in (4.165) yields
mh [u?’{(ui,zi - pi?ufl}) - %"p‘”} + i - p?ufl) u52>)] X, (4.167)

I,

Substituting the I',-boundary conditions in (3.9), for &=2 into the first term and integration

by part with respect to X; to the second of second term in (4.167) give
2] wgpporugyy ax, + ]y + ptugyu), ax (4.168)
2°T, M, 20y L2 TR0 ooV '

Again substituting the I'; boundary condition in (3.9), for =2 into the second integral

yields
%J‘rlp(l)(u?)uﬂ] - uP)us"])lrdel, (4.169)

Hence R, in (4.165) becomes
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R¢ = %jrlp(l)(ug)u{” - ufZ)uﬂ])lrdel

+ ] prcuptyag) + uphugh) - ) + upiugth)]ax
| (4.170)
+ 211 pouptyug - ugyugyyax

5 J] @ g - pug) + u gy - p g D1,

4.7.3 Energy and Load Parameter

In equation (3.47), the relation between the thrust T and the load parameter p, is
re\./ealed for the case of symmetric bifurcation. Now we will investigate the relation
between the energy difference AE and the postbuckling behavior. The first non-zero term
of AE appears in E, and the postbuckling behavior depends on the sign of p,. If p, is
negative, then the progressive buckling occurs in view of the relation between T and p,.
Right after the buckling initiates, there exist an extension of trivial solution path and the
buckled paths. The actual deformation will follow the energy minimizer between these
solution paths - stable deformation.

Integration by parts to the last integral for R¢ in (4.170) with respect to the
variables of p( gives

_ % J‘rzp(l)(up)ugg - u52)u§,'})|rldXz - % Irlp“’(uiz)“f,’l - “fz)“5.'1)|rzdx' @.171)

5 1] PO + s -t ugeh - ugtugyax.

The first integral in (4.171) vanish after applying the boundary condition on Iy in (3.9),.

Then R, in (4.170) becomes
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Ro = 53] pOrGmg) +uehug) - g + upugyjax
, (4.172)
+J] pocuptyug] - uptugpax.

Comparing R in (4.172) with the result on R; in (4.141) and using the relation for R; in

(4.139), establish the following relation.

1o, = “Lrp,. (4.173)

ke =3 3

Note also that R, in (4.134) and R, in (4.166) are related by
R, = 3R,. (4.174)

In conclusion, the first non-zero term in the energy difference E, in (4.164) with (4.173)

and (4.174) becomes
1
E, = ZRzpz- (4.175)

The relation (4.175) shows that E, is simply related to p,. Since in (4.136), R, is always
positive for the nontrivial solutions so that the sign of E, depends on the sign of p,. If
p,<0, then E,<0 so that AE<0. In other words, the solutions corresponding to buckling
have lower energy than the trivial solution at the same load - the buckled path is stable.
Therefore when the progressive buckling occurs, the buckled path is stable in the vicinity
of the buckling onset. The other case is also clear. When the snap buckling is possible,
then the trivial solution path is stable in the vicinity of buckling onset. In view of the
above statement, if the values of p, are known, then the postbuckled behavior and the

stability of each path can be obtained.
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The parameter p, is given by (4.139) involves R, and R; so that the energy (4.175)

becomes

E, = —=R,. (4.176)

The parameter R; shown in (4.141) involves the first and second order solutions u‘” and

u®@ determined in Section 4.6.

4.8 Summary

The solutions of the first and second order in the expanded linear type boundary
value problems are obtained by using the separation of variables and infinite series
method. Physically, the higher order solutions are explained as the bifurcation from one of
infinite modes of the first order solution or buckling initiation. With the first order
solution, it is shown that the first load parameter p, vanish so that the buckling behaviors
become symmetric with respect to the trivial or homogeneous deformation. According to
the symmetric nature, the formulations on the higher order load parameters and energy
formulations are much reduced. By substituting the first order solutions and p,;=0 into the
energy formulations, it is revealed that the first nonzero terms come from the fourth order

energy equation for which only the first and second order solutions are necessary to solve.
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CHAPTER 5
STABILITY EVALUATION FOR A NEO-HOOKEAN PLATE

S.1 Introduction

The energy difference (3.48) between the buckled and homogeneous deformations
determines the energy minimal, or stable, path after bifurcation occurs. The equations
(3.54), (4.155) and (4.158) show that the first nonzero term in the energy difference is the

fourth order, E,, so that the energy difference (3.48) becomes
AE = 21,E*+ O(g%). 5.1

Also as we have seen in (4.175), E, is linearly related to the second order load parameter
p, as E4~R,p,/4. Specifically, the sign of E, is the same as the sign of p, since R,>0 in
(4.137) so that if p,<0, then E<0 which becomes AE<(0. Then from (4.139),
Sign(p,)=Sign(-R;) which shows Sign(E,)=Sign(-R;). These correlations are what one
would expect for a AE that is O(e*). That they have emerged here after a great deal of
tedious reduction is therefore comforting. The analogous correlations do not appear to be
present in the work of Sawyers and Rivlin (1982). A comparison between our
methodology and the Sawyers and Rivlin methodology is the subject of Appendix A in the
context of some simple problems. In particular, this shows that the two methodologies can
give different stability predictions.

The complete equation for E, is shown in (4.176) as E4=-R;/4 so that the energy

difference (5.1) becomes

AE = - %131?384 +0(e%). (5.2)
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Hence it is necessary to evaluate the sign of R; to determine the stability of buckled
deformations and from now on, we refer to R; as the stability parameter. If R;>0, then the
configurations on the bifurcated path have less energy than those on the homogeneous
solution path. Hence R;>0 gives that the nonhomogeneous deformation is more stable.
Conversely if R;<0, then the homogeneous deformation is more stable. In this Chapter, the
stability of the bifurcated nonhomogeneous deformations and homogeneous deformations
near the buckling initiation will be investigated by using the reduced formulations and the
buckling solutions.

Our comparison is to Sawyers and Rivlin (1982) who analyzed the stability of
those type of homogeneous deformations in a neo-Hookean rectangular plate by
comparing the energy of homogeneous deformation with that of the bifurcated
deformation. This was done in the vicinity of the bifurcation points. Their analysis,
however, is apparently not a direct energy comparison between the homogeneous and
nonhomogeneous bifurcated deformations, either flexure or barreling, ar the same level of
loading condition as analyzed in this work. On the basis of their analysis, the following
conclusions were obtained: (1) From Figure 3 of Sawyers and Rivlin (1982), the
homogeneous deformation is more stable than flexural buckled deformation when 1<0.32
and the flexural buckled deformation is more stable than homogeneous deformation when
1n>0.32. This is based on their equation (8.4). (2) From Figure 4 of Sawyers and Rivlin
(1982), the homogeneous deformation is more stable than barreling buckled deformation
at all values of . This is based on their equation (8.7). Note from (4.55) and Figure 4.1
that the value n=0.32 on the flexure branch corresponds to p=0.966. Also n—wo

corresponds to p,—>0.5437. Thus the analysis of Sawyers and Rivlin predicts the
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followings: For increasing compression ratio, and hence p decreasing from p=1, and near
bifurcation onset, (1) the homogeneous deformation is more stable than flexural buckled
deformation for p:1—50.966, (2) the flexural buckled deformation is more stable than
homogeneous deformation for p:0.966—0.5437, and (3) the homogeneous deformation is

more stable than barreling buckled deformation for p:0.5437—0.

5.2 Formal Determination of Stability Parameter

We first examine p,, which is related with stability parameter R;. The denominator
R, of p, in (4.139) is always positive for the nontrivial solution in view of (4.137). Hence
the formulation (4.139) shows Sign(p,)=Sign(-R;). Direct substitution of the first order
solutions (4.68) - (4.70) and the second order solutions (4.126) into the simplified

equation of R; in (4.141) give upon collecting values with X and X;:

C,5,5;
= 2Q” CHQAV' B + A@'BVY)| -
-GS,
2T, 32
+ C(AMBQ)! + 24BN " " [+ ZCAMBRY| _
CiC C?
o o (5.3)
fuormnf ) a0m )
+ C@OL A B[ 7+ gy T
G5t C,Ct
1 Ci 5t
+ zC{ A’ B - + A BAY ) dX.
2 3 &
Here the following trigonometric notations have been used,
C, = cosQX,, S, = sinQX,,
(5.4)

C; = cos2QX,, S; = sin2QYX,,
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and upper (lower) terms are for j=1 (j=2). Note that the subscripts j and m of the
coefficients A®, B® C® and Q which denote the chosen mode of the first order solution,

are ignored for simpler expressions. Integration (5.3) with respect to X, gives

R, = QI f’l [~ CO(AQBMD + 4B + 241 B@) 4+ 2 4@ B
~hy (5.5)

—@CO(AMBOY = 40Y BOY) + CHADBR' + CR(ADBMY 1dX,,

where =1 or -1 for j=1 or 2. According to the relations A¥ and C® to B® shown in

(4.53) and (4.110), the equation (5.5) becomes the function of only B® as

pd
= updl, -r 02(2(’390 Q4+ Qp)dX,, (5.6)
where
Q, = 2B {BD"BM + 4(BM)'BQ))'} + a(BR"-4Q2BQ)Y’,
0 = ~a{a”"-4Q% + 2(B"BD - BBV} +2B'(@ BV +2aBV)  (5.7)

+8(BMBW'Y {2B' B + Q2pz4(BMBM'Y'} |

Here P and o are defined in (4.94) and (4.105). Note from the new notations that Q, is
function of BV and B and that Q; is function of only B(). Note also that the second order
solution B® is more complex than B". One approach to evaluating (5.6) is directly
substituting B in (4.54) for flexure or (4.56) for barreling and B® in (4.117) into (5.6)
and integration over -/,<X,;</,. However this direct approach may be modified by reducing
the order of differentiation for B® in the integrand Q,. The third and first order
differentiations of B® reduce their order by one as shown in the followings.
aB'" = (aB")' -a'B",

B'”B'B' = (BIB"BI _ B"ZB)' + ZBanB _ B'B"B", (58)
BB'B' = (BB'B'-B'?B)'+2B'B"B- BB'B".
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Here the simpler symbols B=B) and B =B®? are used. Hence Q, becomes

0, = {aB"-4(2B'B" + Q2BB')B' + 8(B"2 + 2Q2B'?)B}’

- _ (59
- 8{B'B" +2(B"B'"" +2Q2B'B")}B—(a’' +2B'B—-8B'B" -4Q2BB")B".
Q3 can be also rewritten as
QOp = 2(ap’B)' —afa” +4(B"B-p'B’ - Q*a)}
(5.10)

+8(BB')' {2p'B’' + Q2p3*(BB')'}.

The symbols B, a and solutions B and B are substituted into (5.9) and (5.10), then the

equation (5.6) after linearization of the products of hyperbolic equations becomes

1
R, = pl,M4Q3[ 12=1Y[1,k]sinh(szX2)|_’I
2
(5.11)
+af’ 112,01+ X2 12, Kosh(z, 1%, |
—h

The coefficients ¥[1,k] and ¥[2,k] are functions of the load parameter p,, the aspect ratio
s(po,m), the switching constant v = +1 along the deformation types and the new
dimensionless definitions, 1\7,, i=1,2,3 associated with the coefficient functions N, for B.
The full definitions of ¥’s with variables Ay=p,? introduced in (3.7) are shown in

Appendix B. In general, these ¥’s involve products and quotients of hyperbolic functions.

The 12 different kinds of arguments Z, in the hyperbolic functions after considering n=Q/,

are

Zl = (l—}‘O)a ZZ = (1 +A’0)s

23 = (1—3)\.0), Z4 = (l +3x0)9

Z: = 2, Z, = 2N\,

s ¢ (5.12)

Z, = 2(1-1y), Zg = 2(1 + 1),

Zy = (3-21p), Zypy = (3+2),

Z” = 4, le = 4;\.0.



Since Y’s do not include the variable .X;, the simple calculus leads the equation (5.11) into

R; = 2p1,M4QJ{nY[2, O]+Z,"2=|(Y[l,k]+ Y[Zk]) sinh(Zm)}. (5.13)

Note that the terms of k=1 and 2, k=3 and 4, £=7 and 8, k=9 and 10 are antisymmetric for
flexural deformation of v=1 and symmetric for barreling deformation of v=-1 with respect
to Ay. Applying the coefficient notations }:’i from (4.118) and (4.119), s=s(py,n) from
(4.58), v=1 for flexure and v=-1 for barreling deformations and A from (4.120), into }’s in
(5.13) gives the full expression for the stability parameter R;. Note that s and A also
contain the hyperbolic functions which are shown in denominator of fully evaluated

stability parameter R;.

5.3 Numerical Determination of Stability Parameter

Numerical calculation with the parameter n = QI/, is handled by inserting
specific values of n>0 and corresponding values of load parameter p, according to the
relation (4.55) or (4.57) into s in (4.58) and A in (4.120), and then substituting obtained
values into the stability parameter R; in (5.13). For the purpose of numerical setting, we

introduce the dimensionless stability parameter Rg = R;/(ul, M*Q3). Then
2,k]\ .
Rs - 2{nm, 01+ X%, (v + A5 smh(zkn)}. (5.14)

The Figure 5.1 and Figure 5.4 show the relations between Rg and n for flexure and
barreling modes, respectively. For the flexural deformation, Figure 5.1 and its detailed
Figure 5.2 and Figure 5.3 show that Ry is positive when 0<n<n=0.6443..., negative when

N<n<1.305, positive when 1.305<n<1.6283 and negative when n>1.6283. According to
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the relation (5.2), the signs of R and Rg are different from the sign of AE. Therefore when
n<n. and 1.305<n<1.6283, the buckled state has less energy than the unbuckled state so
that unbuckled state (the homogeneous deformation) is unstable. When 1n,<n<1.305 and
1n>1.6283, the unbuckled state is energetically favored and hence stable. Note that when n
goes to zero, the undeformed geometry looks like a rod subjected to thrust at its ends
which is similar to the conventional elastica problem. At n=1.6283 which corresponds to
Ao = Po’? = 3, there exists discontinuity. This comes from the fact that N, becomes infinity

at this value according to (4.118). For the case of barreling, Figure 5.4 shows that Ry is

Rq . :
|
400 } |
I
|
200 | '
I
I
[} [} I

... I . | " .
Positive | Negative | Positive : Negative

| | |
200 ! | ,
| l |
| | I

-400 } I I | 4
| | |

A N P | a A a ] A ad A
0 0.2 04 0.6 08 1 12 1.4 16 s 2

Figure 5.1 Dimensionless stability parameter Rg=Ry/(ul, M*Q3) for the flexural
deformation in (5.14) with v=1. At n=1.6283, the curve Ry has a discontinuity.
Right before this, it is positive and after this, Ry is negative. There are also sign
changes in 1=0.6443 and n=1.305. Their details are shown in Figure 5.2 and
Figure 5.3.
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Figure 5.2 The detailed curve of dimensionless stability parameter Rg for the flexural
deformation in (5.14). At n=n.=0.6443, the sign of Rg changes from positive to
negative and at n=1.305 the sign changes from negative to positive. More detail
near n=n is shown in Figure 5.3.

positive in a whole range of 1 so that the buckled state is always stable. Hence all buckled
barreling deformations has larger energy than homogeneous deformation.

Compared with results by Sawyers and Rivlin (1982), they conclude in Figure 3
and 4 of their paper that the homogeneous state at which bifurcation occurs is stable when
n<n.=0.32 and otherwise the homogeneous state is unstable for flexural deformation. For
barreling deformation, Sawyers and Rivlin found that the homogeneous state at which
bifurcation occurs is always stable. In contrast our results show that there are different
regions of sign Ry for flexural deformation and that the first transition occurs at n=0.6443.

We also find that the sign of Ry are different when n goes to infinity for flexural and
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Figure 5.3 The detailed curve of dimensionless stability parameter Rg for the flexural
deformation in (5.14). At n=n_=0.6443, the sign of R5 changes from positive to
negative. Hence when nj<n,, the homogeneous state has less energy than

bifurcated state. Sawyers and Rivlin (1982) find that the stability of flexural
deformation changes at ngg=0.32.

barreling deformations are different. Recall that when n goes to infinity, p goes to p

which corresponds to the wrinkling mode.

S.4 Asymptotic Study for Stability Parameter in Flexural Buckling at Low Mode
We now consider an asymptotic study of Rg as 1 goes to zero on the flexure
branch. However, first we consider an analogy to well known Euler buckling - the extreme

case of plate. Then the asymptotic analysis of R; near n=0 will be developed.
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Figure 5.4 Dimensionless stability parameter Rg=R,/(ul, M*Q23) for the barreling
deformation in (5.14) with v=-1. It is shown that the stability parameter has
positive sign on all range of 1 which means the bifurcated state involves less
energy than the homogeneous state (the homogeneous state is unstable).

S.4.1 Critical Load in Classical Euler Buckling

When n goes to zero, the geometrical shape of the considered plate approaches a
thin column compressed at its ends. This resembles the classical Euler column explained
in Timoshenko and Gere (1963). The critical buckling load, the lowest thrust load out of
infinite buckling mode and important factor for structual stability is given by the material
property and shape of the column.

The critical buckling load in this study is presented from the lowest load parameter
p which occurs at the first mode in flexure deformation as shown in Figure 2.2. Recall that

the thrust equation (2.16), T = —4ul,l;(p - p~3). Here l,, I, 1; are the half length of the
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considered plate. When m approaches to zero which means /, becomes very thin, the load
parameter p becomes the equation (4.77). According to (4.1), the first mode of flexure

deformation occurs at

!
n = —mn. (5.15)
h

[ ]

Then the thrust equation (2.16) becomes

T = p1213{gn2(§_?)2 + 4_85.1:4(5_?)4 + %“6(;‘?)6 + 0(5-?)8}. (5.16)

Now we consider the equivalent material properties of incompressible plate after
linearization. For incompressible neo-Hookean material in the conditions of plane strain
described in boundary conditions (2.7) to (2.11), the stress-strain relation is described as
(2.13). With (2.15), the stress in X, direction becomes

T = pu(p2-p). (5.17)

Let the principal stretch p = 1 +¢; where g, is the strain in X, direction, then (5.17)

becomes
T, = 4pg, + O(g}). (5.18)

Ignoring the higher order term in (5.18) for linearization, the relation between the Young’s

modulus E and the shear modulus p is obtained as
E = 4p. (5.19)

Also simple calculation reveals the Poisson’s ratio equals one and the linearized shear

modulus becomes G = p.
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Now for geometry, we introduce the new geometric variables L=2/,, =2/,, w=2I,

for convenience. The second moments of inertia of the rectangular cross section with

wt3

VB Substituting (5.19) into (5.16) with new variables L,

respect to mid-point gives I =

t, w, the thrust becomes

T = %Inz{l + %nz@z + 0(})4}. (5.20)

For Euler column, the ratio of height and length is negligible, 1% « 1. Therefore the thrust

equation (5.20) becomes

EI
Teuier = 137 (5:21)

The critical thrust (5.21) is the same critical buckling thrust as the Euler column with the
same boundary conditions such that one end is built-in and the other end is free to move
laterally but is guided in a manner that the tangent to the column remains vertical shown in
Figure 5.5 (Timoshenko and Gere, 1963). The result gives the verification for this study in

an extreme case of thin plate.

Figure 5.5 The Euler column subjected to the boundary conditions considered here.
Here the height-length ratio #/L has negligible value. The critical thrust for this
column is equated as in (5.21) which is the same critical thrust of plate studied here
after linearization.

103



5.4.2 Buckled Deformations with Asymptotic Equations

The load parameters p, of two types of buckled deformations when n has an
extremely small or large values were found in Chapter 4. The asymptotic equations of
buckled deformation then can be obtained by substituting associated asymptotic load
parameters into the solution terms of each order. Here we consider the case of flexural
deformation when 7 is small. The corresponding asymptotic relation between p, and 1 in
this case is given in equation (4.55). To develop the asymptotic analysis of this case

further, we introduce the dimensionless variable £ as the replacement of X, by

X
g = 1—2 (5.22)
2

Then the boundary value problem (4.51) and (4.52) for the first order solution

B(l,£)=BV(X,) are rewritten as

1dB_(1+ps*)a?B
i AL (5:23)

a8

n?dg?
1a&8 (1+2p59)dB _
n’dg} n dg

+py*B = 0,
on § = *]. (5.249)
0,

The solution B(n,£) for problem (5.23) and (5.24) with the expansion for py(n) which has

the expression in (4.77) can be obtained by proposing a series type solution. Here we note

that pg*(n) = 1+ §n2 + %n‘ + g—g—gn" +0(M?®). The previously obtained analytic

solution (4.54) is an even function with respect to both £ and n. This motivates the

consideration of a small n} expansion for B(n,C) in the following form
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B(n,C) = C{1+(ajg+a,C)m2+(ay+ayl2+antn?

(5.25)
+ (a3t a3 G +ayntt+antént+ 0(nd)

where C is constant. Here the other terms like vy, >/ vanish in the process. The
undetermined coefficients a,q, a;;, ay,..., a; are calculated by substituting the proposed
solution (5.25) into (5.23) and (5.24) with (4.77) and equating the coefficients of various
products of £ and n to zero. In fact, we immediately find that a,=0, for i=1,2,3,... by
considering the O(n?) term in (5.23). From (5.24), after substituting (5.25), the O(1) term

gives

1
ay = —. (5.26)
Substituting (5.26) into the expanded equations of (5.23), the O(1) terms give
1
ap = -3 (5.27)

The same result is separately obtained by considering the O(n) term in (5.24),. The other

coefficients can be obtained similarly. Namely the O(£’*n?) term in (5.23) gives

ay;; = —l—;-“ and the O(n?) term in (5.24), gives a,, = % Then the O(n?) term in (5.23)
after substituting known coefficients give a;, = ——1-. The same result for aj, is obtained

18
simultaneously considering the O(n?) term in (5.24),. Finally the O(n*) term in (5.24),

gives a;; = In summary, the first order solution B(n,£) becomes

4
5

B(n,g) = C{ €2n2+ Cz €4)n4+ 4§2_g_ 1§464)-n6+0(n8)} (528)

105



The constant coefficient C will be obtained from the normalization process explained in
Section 4.4.1. The reduced normalization equation (4.60) can be rewritten by using new

variable (5.22) as

2
1 0290 1dB B
413 _||: dg) tB S{dg[ 242 J}}dg =1, (5.29)

where 6=1,/1,. Substituting the solution (5.28) into (5.29) with p, in (4.77) gives

C = J2L,{1+0(n?)}. (5.30)

The O(n?) correction to (5.30) will put terms of order n%, k&=2,3,4,... in (5.28), but we have

previously shown that a,,=0, for all i. Hence we conclude that C = ,ﬁlz so that
_ ST (S S PV . S ST S W 8
B(n,¢) = flz{l—fn 55+ (G5 -5 - neromm . 63

The complete solution (5.28) with (5.30) may be compared with the direct small n

expansion of analytic solution (4.54). Here one finds that

2 16 16 22 ¢
B(n, ) = M{ +(32-%)n +(—m-%—f—2)n6+oms)}, (5.32)
and the coefficient M in (4.61) for small n expanded flexural deformation is found as
57525

M = ﬁlz{%n—z _4 2y O(n")}. (5.33)

Note that M is required to be positive by virtue of (4.61). Therefore this expansion is valid
only for 1 « 1.37. Thus both solutions (5.31) and (5.32) with (5.33) are the same in the

view of small n. The same expression for solution (5.31) can be also found in (7.7) of
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Sawyers and Rivlin (1982) except for the constant coefficient C = ﬁlz which is caused
by adopting the different normalization condition.
For the second order solution B(/,£) = B®(X,), the boundary value problem

(4.107) and (4.108) is rewritten here in terms of B(n,%) and B(n, §) as:

1d*B (1+pg*)dB = _ 30 (pa“-l)d(BdZB dBd

pas A g 16k B = sree—— w\Bm - @ (5.34)
Andon § = #1,
1 d*B - le
miggz T 4pe'B = 5r-po(7pgt +1)B C 535
1B (1+20i9dB _ o (2p5*~1)(dB)’ |
nag ma&  LP

Then substituting small n expansion of the first order solution (5.31) into the right hand

sides of (5.34) and (5.35) gives

4R 1+p74
%‘254( nf° )ZZIZ;“L 16p3*B = -2m12c;{8n4+( -C’) 6}+O(n“), (5.36)

andon = %1,

1 d*°B 2 26
2d§2 +4p6‘B 20)12( "'lz + 3"4 + = 15 ) + 0(113),

5.37
1d’B  (1+2p3*)dB 637

°dg T 4G

=- 2w12(2n3 +4n’+ gn’) +0(%).

After considering the solution (4.117), the expression for B(n,&) in (5.36) and (5.37)

must be an even function in n and an odd function in £. This motivates

B(M,8) = 220L,5{b;m?+ (by + bytIN* + (b3 + by, G2 + by E4)N°

(5.38)
+ (bgy + bypl2 + b3 + by CME+ O(10) }.
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Substitution of (5.38) into (5.36) and (5.37) and equating the coefficients of left and right
hand sides in terms of the product £ and 7, give the undetermined coefficients b,’s. The
details to obtain b,’s are as follows: O(n?) term in (5.37), and O(n)) term in (5.37), give b,,
and by,, O(En?) term in (5.36) gives b33, O(L2n?) term in (5.36) gives by, O(n?) term in
(5.37), and O(n’) term in (5.37), give b,; and b3,, O(En?) term in (5.36) gives b3, and
OM°®) term in (5.37); and O(n®) term in (5.37), give b3, and b,,. In summary, the
asymptotic second order solution B(n, &) for flexural deformation when 1 is small,

becomes

B(n,() = —ZwIzC{%nz—(%—%Cz)n‘ + (%—%C“r éC“)rﬁ

(5.39)
2
+ (b«u—%cz + §§4 + %ﬁ)n“ +0('% }

The coefficient by, is undetermined yet but it is not necessary for future calculation. As we
expected, since the B matches the second order solution of Sawyers and Rivlin (1982), the
asymptotic second order solution (5.39) is the same as the series equation (7.14) of theirs
except for the sign which is due to the difference of definition of © and the normalized
coefficient. The asymptotic solution (5.39) can be compared with the small n expansion of
analytic solution (4.117) for verification of its accuracy. Now we find from (4.118) and

(4.119) that
209 69, 6537 , .
Ns = ‘”Czr?{ﬁ‘m“ * 534000 T O )}’

(5.40)
ool 31107
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and

Q) 21 107 103
N, = mczﬁ{—6—4+m112+ 20" n*+ 0 6)}

(5.41)

_ W23 160, w7 ]
Nz‘mCT?{QJ'sTo“ 351 T OO )}

where C = ﬁlz. Here small 1 expansions of coefficient M in (5.33) and the notation A
in (4.120) as

32 512 64256
= N34 NS+ 7 9
A 3r| +15n + 94511 +0(n?), (5.42)

have been used. Then the second order solution B(n, ) in (4.117) becomes

B(n,§) = 22,60 + 356 + 22,53 + (42,6 + 152,83+ 32,58

(5.43)
+ (1525 + 72,63 + 352,85+ 2,57)n7 + O(nY),
where
Q | 28457
z = N1+N2+N3 = Cz {22400 "'0(716)},
_ 03151, 133007, .
2 = Ny +Ny+2N, = —0C’=5 {8 0" " 000 T OMO)
(5.44)
. o LQf3 .31, 121897,
zy = N;+2N, = - C-i{g“*m"l ~S5a00 " T O(M®) 1,
) Q261 33, 2161461 , o0,
Z4 = 13N3+36Nl = (X)CZ {32 80 —mn +0(T] )}.

Substituting (5.40) and (5.41) with Q = n/, and C = ./512 into (5.43) becomes
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= _ l (70321 _ 14107 , 4) 6 %
where ¢, is yet undetermined constant since it includes the terms of O(n®) in (5.40) and
(5.41) which are too difficult to obtain directly. It is shown that of the five common terms
in (5.39) and (5.45) for which the numerical prefactors have been obtained, that 3 of the 5
terms match and 2 terms do not match. The terms that do not match, O(n*) and O(£?n°®),

involve terms of O(n?*) or higher in (5.40) and (5.41).

5.4.3 Stability Parameters with Asymptotic Equations

In this section, we will investigate the behavior of stability parameter R; which is
directly related the energy difference AE for the flexural deformation when n is small.
This analysis will give the verification for the analytic results of stability parameter when
n has relatively small value. The asymptotic load parameter p, and solutions of the first
and second orders B and B were obtained in previous sections. When m is small, /, is
much shorter than /, in which the geometry considered may resemble to the thin plate with
thrusts at both ends. This type of buckling problem for thin plate known as elastica, has
been widely studied on the context of linear elasticity theory.

By using the new variable £ in (5.22), the terms O, and Qp in (5.7) is rewritten as

_ [ dB[ B  d(dB\|, ~d(d#B , .-
= —zg&{Bdgz 4d§(d§ )}+ac7;('d'§7_4"23):|’

B dpd dprda _-d
d—€3—4n2a+2(a—€28—d—§d— }+2 dg( TBraT dg)] (5.46)
Q"d dBdB
e f){ P °dc f)}
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where

. % _ L(‘(%*_nzg), a=2 - { - d@ } (5.47)

Substituting the asymptotic load parameter p, in (4.77), solutions B in (5.28) into (5.47)

gives
= —lez{z (-)ni- (g -g- phene + 0(n°)},
(5.48)
& - —21%{1 ~(3-20)m2 (55 -3 ne + 0(n6)},

and then substituting B in (5.39) as well as p, and B into (5.46) becomes

277 | 64
= 40Q613:2+2(1 +28)n2 - =T 2-42L4In*+ 0(n%) ¢,
0.(n) 2{ (1+ 262~ (3 + Fe2 - 4264 n*+ 0 )} 549
Op(n) = 16Q°13{1-(1+8C)n?+ O0(n*)}.
Here n = QI/, are used. Then the stability parameter R; in (5.6) in terms of new variable

€ becomes
npdly!
R = BT ] upsio, + Opdt. (5.50)
Substituting p, in (4.77), Q,, Qg in (5.49) and ©?=1 into the integrand of (5.50) gives

200510, + 05 = 16961;{2 +(3-6cn2+ O(n“)}- (5.51)

Also the stability parameter (5.51) shows that the small 1) behavior of R;(n) is O(n*) since

n = Ql,. We note that since py=0(1), the O(n*) behavior of Ry(n) is completely
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determined from the O(n%)=0(Q2°) behavior in Q,(n) and QOg(n) as given by the leading
order terms in (5.48) and (5.49). The O(n®) behavior in Q(1) and Qg(n) can be obtained

from the investigation of leading orders in each term of (5.46) which is shown as

S
Q4(m) = C“%%[{O(n6)} +{OM®)} + {3n*+0(M)} + {-n*+O0(®)}]

2C4Q5n;22 +0(Q51Y),
(5.52)
)}

6
Qp(M) C“%[{-‘*n2 +O0(MH}+ {402+ 0} + {-4n?+ O(n*)} + {O(n*

+{OMH} +{0(MmH)}]+ C‘%I{O(n“)} +{8n*+0(n®)}]
4C1Q5 + 0(Q62).

1

Now integrating (5.50) with respect to £ gives

Ry(n) = 8u1.12n“{1 -z O(n“)}- (5.53)

After substituting (5.53), the energy difference AE in (5.2) for the flexural deformation for

small ) gives
AE = —4pl|1213n“{1 - 1—677]2 + 0(1]“)}&:4 + O(g%). (5.54)

This gives a critical | values at which AE changes signs near n= J§=O.594. When
n<0.594, AE<0 so that the buckled deformation has less energy than the homogeneous
deformation. When n>0.594, the homogeneous deformation has less energy.

These stability conclusions are similar to those obtained by the numerical

procedures in Section 5.3, except that the asymptotic analysis predicts a critical n=0.594,

while the numerical analysis gave a critical n=0.6443. Note that the curve generated by
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(5.53) can not be directly compared with the numerical curve of Figure 5.3 because of the
presence of the normalizing M in (5.13). Performing a similar normalization on (5.53)

using asymptotic coefficient M in (5.33) makes dimensionless stability parameter Rg as

Ry(n) _ 16 7
Ry(m) = m = ﬁn°{2-gn2+0(n“)}, (5.55)

where n = QI, was used. The transition value here is n=1.195 but this value is not
important since the expansion for M in (5.33) is valid only for n « 1.37. The comparison

of Rg in numerical results (5.14) and asymptotic results (5.55) is shown in Figure 5.6.

0.15 v v v v v v

Asymptotic result (5.48)
01} ~a.

Numerical result (5.14)

|

005}

-0.05 }

-0.1¢

= =1.19
015t n=0.6443 n

.02 . N A A . A
0 0.2 0.4 0.6 0.8 1 1.2

Figure 5.6 Comparison of dimensionless stability parameters Rg of numerical result
(5.14) and asymptotic result (5.55) for flexural deformation. The asymptotic result
is valid only for very small 7.
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When 7 is near zero, the signs and slopes are close so that the results are consistent with

the numerical procedures.

5.5 Discussion

The sign of p, is opposite to the sign of R; according to (4.173) and the sign of E,
is the same as that of p, according to (4.175). E, is the leading term in the energy
difference AE. Positive (negative) values of p, denotes that the load must decrease
(increase) after the buckling onset value p, in order to follow the bifurcated branch of
buckling solutions. In other words, by converting p, to A, with A, = —2p,p;3, the load
must decrease if A,<0.

For flexural deformation the numerical results show if 1<0.6443 then Rg>0 which
means the bifurcated path involves less energy than the trivial solution so that the
homogeneous deformation near the bifurcation initiation is unstable. Otherwise when
1n>0.6443, the homogeneous deformation near the bifurcation initiation is stable. The
numerical results also suggest additional stability transitions near n=1.305 and n=1.6283
(Figure 5.1). However, these results are highly sensitive to the numerical evaluation
procedure and so are rather suspect since they involve Rg—o0. Further it is not obvious
how to treat these by asymptotic or perturbation procedures. These Rg—o transitions that
are only detected numerically will be dismissed from further discussion. In contrast, the
stability for small 1 on the flexural branch is consistent with the asymptotic analysis near
N=0 (although the value of ) for stability transition found by the asymptotic procedure is
different).

The numerical results also show for barreling deformation that Rg>0 for all i so

that the homogeneous deformation is unstable compared to the barreling deformation.
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These trends are in fact opposite to those found by Sawyers and Rivlin (1974) in the view
of stability evaluation. They also find that n=0.32 gives the transition in stability on the

flexural branch.

5.6 Summary

The stability of post-buckled deformation near buckling onset was evaluated by
using energy minimization scheme. Extensive use of symbolic algebra procedures enabled
certain simplifications, but the problem still remained very complex. Accordingly, a
combination of asymptotic and numerical procedures were employed to attempt to
determine stability transitions. The physical buckling behaviors are as follows. As the
thrust load increases from the original zero value, a family of infinitesimal flexural
deformation competes with the homogeneous deformation until the thrust reaches the
value associated with py=0.5437 (75=5.6786 in (2.16)). This thrust is known as the
wrinkling load. Then as the thrust exceeds the wrinkling load, the infinitesimal flexural
deformation family ceases to exist and is replaced by an infinitesimal barreling
deformation, which again competes with the homogeneous deformation family.

The energy analysis shows that the infinitesimal flexural deformation family is
energetically favored over the homogeneous deformation family at small loads (implying
small mode number), but that the homogeneous deformation family is energetically
favored at large loads (again dismissing Rg—>co transitions). Thus there is a transition load
value, and a corresponding transition mode value 1=0.6443 (See Equation (5.14)) for this
exchange in stability. In contrast, the infinitesimal barreling deformation family is always

found to be energetically favored over the homogeneous deformation family.
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Asymptotic analysis, valid only for small n, was employed to attempt to verify the
behaviors of stability pattern for the flexural deformat.ion. The results agree with those of
the numerical approach. A leading order value for transition of stability gives n=1.195
(See Equation (5.55)). This precise value (n=1.195) is not of importance since the
asymptotic analysis is only valid for n near zero.

Clearly there remain significant questions with respect to this work, especially
with regard to precise numerical transition value. It must also be admitted, since the
stability interpretation is dependent on the (+/-) sign of very complicated expressions
(Equation (5.13)), that additional efforts are necessitated for confirming those results.
This, however, should not obscure the fundamental basis provided by this work. Notably
the consistent perturbation analysis provides strict order expansions both of the energy
competition between homogeneous and bifurcated solutions (Equation (4.159)) and of the
relation to the bifurcated path near buckling onset (Equations (4.2), (4.69), (4.126),
(4.127)). Here the essential and consistent coupling between these is provided by (4.141)

and (4.176).
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CHAPTER 6

APPROXIMATE SCHEMES FOR BUCKLING LOAD OF MULTI-LAYERED
COMPOSITE PLATES

6.1 Introduction

The previous Chapters were concerned with the buckling and post-buckling
behavior for a noncomposite single ply plate and the stability of the various competing
solutions with respect to each other. However in this Chapter, we will investigate
somewhat practical topic - the critical buckling load on a composite plate. In a structure,
the critical buckling load plays an important role since it gives the lowest load to resist
against the compressed load. We had the critical buckling load on a single ply plate by
solving rather simple equations in (4.55) and (4.57) and showed the result in Figure 4.1 as
the relation between the load parameter p, and the mode number n. The curves of
buckling onset which give the load at the buckling onset for specified geometry and mode
number, are monotonic with mode number (increasing for the flexural deformation and
decreasing for barreling deformation). Hence the critical (lowest) buckling load is always
mode-1 flexural deformation. But for a multi-layered plate such as the three-dimensional
geometry of Figure 6.1, this behavior may be seriously altered. Pence and Song (1991)
and Qiu et. al. (1994) showed that in symmetric three-ply plate composed of two different
types of neo-Hookean material, there exist another family of buckling paths and they are
not always monotonic. This means the mode of the lowest critical buckling load is not
always mode-1 flexural deformation.

As the number of layers in a composite plate increases, the direct algebraic

analysis of the bifurcation conditions becomes increasingly complicated since it involves
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Figure 6.1 Geometry of the symmetric three-ply composite layer. The buckled
configurations involve deformations in the (X,,X;)-plane.

seeking roots to a determinant equation for which the matrix dimension grows with the
numbers of plies. Thus it is useful to seek alternate methods for determining buckling
onset load in the manner of simpler approaches and closer to the exact values. The

purposes of this final chapter is to present some developed observations on these issues.

6.2 Buckling Load of Multi-Layered Plates

The prediction for buckling onset load may change if the material is composed of
multi-layered composite plate. In this Chapter, we will consider the general N-ply plate
stacked along the X, direction. The undeformed configuration of whole plate occupies the
region 2/,x2/,x2[; and all plies are neo-Hookean materials. The shear modulus of each ply
is either p' or u!! and alternate by ply. Perfect bonding is assumed across the ply interfaces.
Again our attention is restricted to plane strain deformation where buckling takes place in
the (X,,X;)-plane as shown in (2.18). Then the mathematical formulation of composite

plate problem is similar to those of single ply plate studied in Chapter 2. The differences
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are (i) the shear modulus p of single ply plate alternates between p! and p", and (ii) the
assumption of perfect bonding yields the following interface conditions on the traction
and displacement.

x(X3) = x(X3 )

on interfaces i=1,2,3. (6.1
$,i(X3) = S3(X3)

Here the conditions for /=3 are automatically satisfied in a plane strain setting.
Let AY be the sum of original areas normal to X, direction of plies whose shear
modulus is ' (j=LII) so that A1+ A!l = 4/,1;. Then the total thrust on X, = %I, for

homogeneous deformation can be modified from (2.16) to
T = —(p-p)(ulal +pliglh, (6.2)

The buckling onset can be analyzed by the incremental deformation superposed onto
homogeneous deformation such as (2.18). The complete boundary value problem of a
composite plate then consists of that of noncomposite plate (2.28) in which p changes to

and the interface continuity conditions

Wy 2+ p2vy ) +qv,, 1],\3 = [W(v,+p vy ) Hqv,, 1y,

[W(v22-p 72V, ) —q(vi 1 +P)]y, = [W(v22-p2vi 1) —q(vi,) + Py, 63)

[V1]X5 = ["l]xi

[V, = [l
on interface. Here W is the shear modulus of top ply and p/ is of bottom ply on that
interface. Since the buckling onset occurs at the first order (&=1) in perturbation expansion
of deformation, we will consider only the homogeneous boundary value problem modified

from (3.16) with appropriate interface conditions (6.1) such that,
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Fu in I1,
Giu on I, (6.4)
Giu =0 on I,

I
(= —)

and

[GJZH])Q = [GiZ“]Xi

on interfaces (6.5)
[G3Il]/‘,; = [G3u]X3

where superscript j=1,1I, denotes the differential operator of ply j in a composite plate. For
simplicity in the expression of the first order equation, the superscript (V) will be

suppressed here and after. Here G; is the constant matrix

ol 0y

The difference in potential energy E in (2.30) for noncomposite plate can be used for
composite plate as the sum of the energy of each ply. For buckling onset, the energy

equation have the value up to the second order so that

(0]
E, = 2I3IIHE5'{2062(“|,2“2,|—“1,1“2,2)*’“%,1 +uj,tuf,tui }dXdx, (6.7)

where the integration on X; is sum of the integrations of each ply.

Following the similar analysis to noncomposite case, this composite plate problem
is reduced to one homogeneous ordinary differential equation, 4 boundary conditions and
4(N-1) interface conditions. Introducing the proper general solutions which is similar to
(4.18) with discrete constants L{™, L{™, M{™, M{™ m=1,2,...N of differential equation

(6.4), to the boundary and interface conditions (6.4),3 and (6.5) form a homogeneous
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4Nx4N matrix equation. For the buckling onset load (nontrivial solution), the determinant
of this matrix must vanish.

In particular case of symmetric plate, the dimension of matrix can be reduced to
two 2Nx2N - one for symmetric mode and the other for antisymmetric mode as explained
in Chapter 4. For the simple example of symmetric plate, the three-ply composite plate
(N=3) was considered by Pence and Song (1991, 1993). Here the central ply (material II)
has the thickness 2R (<2/,) and the shear modulus u" so that the shear moduli of outer
plies (material I) are p'. This problem then simplifies to 12 homogeneous linear equations
for the 12 constants L{™, L{™, M{™, M{™  m=1,2,3. The vanishing of the determinant of
12x12 coefficient matrix gives the loads for buckling onset. Due to the aspect of
symmetry, this problem can be considered by two 6x6 matrix equation - symmetric
(flexure) deformation and antisymmetric (barreling) deformation along the X, direction

with four dimensionless parameters as
Ao = P33 n = Ql,, g = pull/pl a = R/l,. (6.8)

When B=1 or a=0 or a=1, this problem reduces to the noncomposite case which is
analyzed previously by Sawyers and Rivlin (1974,1982).

The numerical computation for three-ply plate under various parameter sets shows
in Figure 6.2 that (i) the buckling onset load for composite plate does not guarantee its
monotonicity, i.e., the critical load is either mode-1 flexural deformation or wrinkling
deformation in which the mode number is infinity (Pence and Song, 1991), (ii) there exists
additional solutions for each original solution of flexure and barreling - we categorize
these into a new family and the original family of solutions, respectively, and (iii) the

wrinkling load of original family converges to that of noncomposite plate which is
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Figure 6.2 The buckling onset prediction curve for a symmetric tri-layer with different
values of B=p!/u!. The shear moduli of shaded plies are twice as large as those in
the unshaded plies. In both cases, the volume fraction of central ply, a, is 1/2.
Nonmonotonic behaviors, new curves at large A values, and asymptotes of all
curves are shown (Qiu, et al, 1993)
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constant for the material parameters and the wrinkling load of the new family converges to
a higher value than that of original family depending -on the stiffness ratio B (Qiu, et al.,
1993).

An asymmetric two-ply plate (N=2) is discussed in Qiu, et al. (1993). Due to the
lack of symmetric property in shape, the buckling deformations become a mixed mode of
flexure and barreling. Solving the resulting 8x8 determinant shows that there are three
solutions. The lower two curves are original family and the higher one is new family. The
wrinkling load of original family have the same values of noncomposite plate and the

wrinkling load of new family depends on the shear modulus ratio.

6.3 Approximate Schemes to Determine Buckling Load

To construct buckling onset prediction curves of buckling load vs. mode parameter
at fixed values of appropriate volume fraction and stiffness ratio, will be a key to
determine the critical buckling load and eventually require complicated numerical
procedures. For the general N-ply sandwich plate, this problem is reduced to solving a
4Nx4N determinant equation. An exact analytic solution satisfies the complete conditions:
the nonlinear constitutive equation (CE) in (2.13) for noncomposite plate, equilibrium
equation (EE) in (2.6), boundary conditions of a free surface condition (FSC) in (2.9) and
conditions of interface displacement continuity (IDC) in (6.1), and traction continuity
(ITC) in (6.1),. The simultaneous satisfaction of all these conditions gives much difficulty
when the plate consists of large number of ply stacking. This difficulty is stems from the
fact that standard numerical procedures to find the roots of the necessary determinant are
subject to various numerical errors and numerical instabilities. The possible

approximation schemes may involve procedures (specifically trial functions) that do not
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satisfy certain conditions mentioned above. Satisfaction of all these conditions gives an
exact solution and thus an exact prediction of the buckling load. Therefore the goal of the
research described in this Chapter is to construct useful approximation schemes which by
sacrificing some of the conditions, give a simpler mathematical formulation. The effect on
accuracy of these sacrifices will then be examined.

The simplest approximate scheme is based on equivalent modulus where the
composite structure is treated as a homogeneous media with volume averaged stiffness

modulus. For example as described in Figure 6.3, the three-ply plate which the central ply

H Heq
P" iZR 21, * =P'|(l-0.)+}-llla 21,
p!

D/ FE—— - —>

Figure 6.3 In the equivalent modulus scheme, the composite plate is treated as a single
layer of volume averaged stiffness, piq.

has p!' and top and bottom plies have p' considered previously, is treated as a single ply
which has the equivalent stiffness modulus p. = p'(1-a) + p'a where « is the volume
fraction explained in (6.8). Note that this scheme does not satisfy constitutive equation
pointwise, but does so in a volume averaged sense. However the buckling onset prediction
curves of single ply plate does not show the dependency on system parameters so that any

combinations of plies have the same buckling onset prediction curves as the noncomposite
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plate. Therefore the critical buckling load for equivalent modulus scheme is always mode-

1 flexure.

6.3.1 Variational scheme

Most approximation methods used in structual analysis are based on variational
mechanics in which the approximate solutions satisfy the weak (variational) form or
minimizes the energy functional (Reddy, 1986). The buckling load in a structual problem
or the natural frequency in a vibration problem can be determined approximately by so
called Rayleigh quotient obtained from the variational method.

The critical buckling load for the composite plate considered here can be
constructed from the boundary value problem of composite plate (6.4) and (6.5). The inner

product
(u, Fu) = 0 (6.9)

followed by the integration by parts once and applying boundary conditions (6.4), ; and

continuity conditions (6.5) gives the critical buckling load as

0]
JI B2, + gy 4wty + o DX, ax,
(6.10)

)\'0 —_ pp -
”n H(’)(“l. 1Uz,2 — Uy 2l 1dX,dX,

where A;=p,? is the load parameter and the integration on X, is sum of the integrations of
each ply. This quotient can be also obtained by energy formulation based on the fact that
deformed configurations with less strain energy than the unbuckled homogeneous
configuration only become available once the buckling load is attained. The difference in

energy from the homogeneous state to buckled state of a composite plate in (6.7) must be
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negative when the buckling takes place. At the buckling initiation, £, becomes zero.
Equating E,=0 gives the same quotient for the buckling load A, = pj? as (6.10). If we
have the exact solutions «, and u, of buckling onset, then the quotient (6.10) will give the
exact buckling onset load. However the procedure to determine the exact buckling
solutions u, and u, of the general ply composite plate is not that easy. So the approximate
(trial) solutions which will satisfy part of required complete conditions must be

considered. These will give a closer prediction to the exact buckling load.

6.3.2 Trial solutions

Recall that the exact solutions satisfy the requirements of complete conditions: CE,
EE, FSC, ITC, IDC. A simple approximation for the composite plate is to use exact
solutions of noncomposite plate (4.68) with (4.26) for flexure and (4.56) for barreling.
One approach is that the composite material can be considered as the combination of
corresponding single plies (combined single ply solution). For example as shown in
Figure 6.4, the geometry of mode-m flexural buckling of composite plate is similar to
mode-m flexure in each ply, while mode-m barreling of composite material is similar to
mode-m barreling in the central layer with mode-m flexure in the outer layers. Note that in
this approach, the length of X; as well as 1 in each single ply are scaled to those of single
ply and the X, coordinates in each ply are transformed to the origin. This approximation
does not satisfy the interface displacement (6.5),, although the displacements are close.

For a symmetric three-ply plate with (B,c0)=(0.1,0.5), the buckling onset curves in
Figure 6.5, are generated by the quotient with this combined single ply solutions. The
exact curves and the curves by equivalent modulus scheme are also shown. For flexure,

the variational scheme with combined single ply solutions gives better results than the
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Figure 6.4 In the direct energy scheme, the overall deformation is approximated by the
single layer deformations as shown. The deformation of the central layer
distinguishes overall flexure from overall barreling.

equivalent scheme. This is because the single deformed shapes are well matched to the
three-ply plate for flexure. However they are not well matched for the barreling case.

The other approach is that the single ply solutions can be applied directly to all the
plies (direct single ply solution) since the final displacement of deformed shape of
composite plate is similar to that of single ply plate. For example of three-ply case, the

mode-m flexural buckling of composite plate may use the solutions of single ply mode-m
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Figure 6.5 The onset prediction curves as given by the equivalence scheme, exact
scheme and the variational scheme with combined single ply solution for flexure
(top) and barreling (bottom) for tri-layer with (B,a)=(0.1,0.5).
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flexure. This approximate solution satisfies the boundary and interface conditions, but not
the constitutive equation.

For a three-ply plate with fixed pairs of (8,a)=(0.5,0.5) shown in Figure 6.6, the
buckling onset curves are close to the exact solutions for both flexural and barreling
modes. They form an upper bound as expected from the fact that the Rayleigh quotient

gives an upper bound.

6.4 Discussion

For an analysis for determining buckling onset load of a composite plate, we
examined some approximation schemes in which the approximate trial solutions satisfy
some parts of the complete conditions. Since general multi-ply plate is combination of
even or odd stacking, the approximate schemes developed previously can be applied to a
different ply stacking (like two-ply plate) in order to determine whether these schemes can
predict the buckling onset curves well enough.

Also we can consider other trial solutions based on combined single ply solution in
the variational scheme so as to satisfy the interface boundary conditions (IDC) in (6.1),.
One alternative is obtained by multiplying a suitable mollifier function of X, to a single
layer solution (4.26) for flexure or (4.56) for barreling. The example of mollifier function
is a simple polynomial forms with undetermined coefficients and play a role as a single
ply solution in each separated ply in a composite plate according to its shape. The
disadvantage of using mollifier function is the sacrifice of satisfaction on field conditions
(CE) and (EE) but the satisfaction of (IDC) may improve the accuracy of whole
approximation. Satisfaction with complete conditions of various schemes studied here and

suggested scheme is summarized in TABLE 6-1.
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Figure 6.6 Comparison of the flexure (top) and barreling (bottom) onset prediction
curves for symmetric tri-layer with (B,c0)=(0.5,0.5) as generated by the exact
scheme, the equivalent modulus scheme, and the variational scheme with direct
single ply solutions. The upper bound property of variational scheme is evident.
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Table 6-1 Summary of complete conditions and satisfaction for various schemes

CE' EE! FSC! ITC! IDC!

Exact solution yes yes yes yes yes
Equivalent modulus scheme no? yes yes yes yes
Variational scheme yes yes yes yes no’
(combined single ply solution)

Variational scheme no? yes yes yes yes
(direct single ply solution)

Variational scheme - suggested | no’ no’ possible? | possible?* | yes
(mollified single ply solution)

Condition (6.1),.

terms.

2. satisfied only in a volume averaged sense, not pointwise.

1. CE: Constitutive Equation (2.13); EE: Equilibrium Equation (2.6); FSC: Free Surface
Condition (2.9); ITC: Interface Traction Condition (6.1),; IDC: Interface Displacement

3. however expect the result to be close since the mode shapes should be well approxi-
mated by the single layer theory.

4. these interface conditions can be ensured for mollifier functions of sufficiently many

5. greater sacrifice of CE and EE will yield more improvement in FSC and ITC.

6.5 Summary

Three approximate schemes to determine the critical buckling load for three-ply
neo-Hookean plate were investigated. Each scheme satisfies with parts of the perfect

conditions and gives reliable values of critical load. The schemes developed here can

estimate the critical buckling load of general multi-ply plate in a simpler manner.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions of the Thesis

The elastic stability analysis for the post-buckled and homogeneous deformations
of single-ply neo-Hookean plate and the approximate schemes for buckling load of multi-
ply neo-Hookean plate have been investigated. The elastic stability near buckling onset
gives the prediction for physically existed deformation and can be evaluated by comparing
the energy of all possible deformations. The buckling behavior are understood by the
bifurcation theory in mathematical terminology.

Under these basis, two dimensional nonlinear boundary value problem for single
ply neo-Hookean rectangular plate was generated in the context of finite elasticity. The
perturbation expansion method was then applied to analyze the nonlinear problem intb the
set of linear equations by the order of €. Each set of linear equations gives rise to a
nonhomogeneous boundary value problem (except for the first order) and the solutions are
related to the solutions and parameters of previous order. The first order equation is
homogeneous and gives the thrust on buckling onset which is the critical buckling load.
Also the load parameter that is barometer for thrust, are determined by Fredholm
Alternative Theorem as a solvability conditions. The process for obtaining the solutions
and load parameter for each order was developed in a systematic way and the more
accurate results can be obtained from investigation of higher order equations. The
deformations and their behavior at buckling initiation was at first obtained from the first

order problem and shows the same results as other works.
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For the stability evaluation of post-buckled deformation, the solutions and load
parameters of second and third orders were obtained to analyze the energy difference
which has the fourth order as the first appearing term (see Equation (4.159)). Since
formulations is quite complex, a numerical analysis was applied at final evaluation of
stability parameter (Rg in (5.14)). The numerical analysis shows that for flexural
deformation, the buckled deformation has less energy than the homogeneous (unbuckled)
deformation when n<n.=0.6443 and 1.305<n<1.6283 and the opposite is true when
N.<nN<1.305 and n>1.6283. For barreling deformation, the buckled deformation has
always less energy than the homogeneous deformation (see Section 5.3).

The complexity of formulation and non-explicity of load parameter lead to an
asymptotic analysis for post-buckled deformation. The analysis on extreme shape gives
the same critical load as Euler buckling. Also for extreme case of flexural deformation, the
buckled deformation has less energy than the homogeneous deformation when n<1.195
and the opposite is true when n>1.195 (see Equation (5.55) and Figure 5.6). This
asymptotic analysis is valid when n is extremely small. Hence the analytic results of
energy comparison for the flexural deformation are true for limiting case of small 1.

In this study, the perturbation expansion approach was used for evaluating the
stability of homogeneous deformation. As a comparative work, Sawyers and Rivlin
(1974) applied the variational methods to determine the stability of homogeneous
deformation near the critical state. Their results are that the homogeneous deformation of
flexural deformation is stable (has less energy) when 11<0.32 and unstable elsewhere and
the homogeneous deformation of barreling deformation is always stable. Hence the results

of their works and this study have the opposite pattern. Also the transitional points n
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obtained by Sawyers and Rivlin are different from those found here. The perturbation
method used in this study is more direct and reasonable compared to the variational
methods but the procedure is equally complex. One possible source of the difference in
results stems from the different predictions that may be expected in general, as discussed
in Appendix A in the context of some simpler problems. A second possible source of
difference may be due to the difference in normalizations as explained in (4.59).

As an extended work from the stability of homogeneous deformation, the
aﬁalytical way of the determination of critical load for composite plate was also studied
(see Section 6.2). The critical load which can be found from the first order equation, plays
a major role in the design of load-bearing structures. However for multiple stack
composite plates, the determination of critical load requires the solution of a nonlinear
eigenvalue problem for a 4Nx4N matrix. As stack grows, the equation will be so complex
that we need simpler albeit approximate methods. In a beginning stage, three-ply
symmetric plate was analyzed for the critical load in three different schemes. Compared
with exact critical load in previous study by Qiu, et al. (1993), the results are quite close
(see Figure 6.5 and Figure 6.6). These schemes can be expanded to more general ply

plates.

7.2 Recommendations for the Future Work

Direct energy comparison for the stability of homogeneous deformation was
performed and the results showed the differences compared with those of previous works.
Hence as a verification of results, other limiting cases of infinite n for flexure, near zero n

for barreling and infinite n for barreling should be investigated.
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Though the computations on the values of higher order will give more accurate
behaviors of post-buckling for hyperelastic plate, this will also be confined in local
behavior because of the limitation of perturbation method. However the local stability

criterion such as the stability near critical buckling load will be ensured.
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APPENDIX A

STABILITY EVALUATION BY PERTURBATION EXPANSION METHODS

A.l1. Introduction

The analysis for the stability of buckled deformations in the vicinity of buckling
initiation for a neo-Hookean plate requires complex mathematical calculations, so that the
clarity of evaluations for each step is confused. In this Appendix, more simplified
examples than considered problem in the context will be investigated in order to obtain the
thorough acknowledgments for the concept of stability.

The well-known elastica problem will be considered at first as the simplest model.
A modified elastica problem will be considered next to investigate the relation between
the post-buckling behavior which is dependent upon a second order term in load
parameter and the stability. Finally a higher order problem, which in certain ways
resembles the neo-Hookean plate problem, will be examined. For the methods on stability
evaluation near the buckling initiation, the perturbation analysis (PA) which has been used
in the context and the analysis method adopted by Sawyers and Rivlin (SR) in (1982), will
be used for the comparison. In particular, it is shown that these methods can give different
stability predictions.

These examples will consider an energy equation E(u,A) where A and u are load
parameter and buckled deformation in the buckling problem or eigenvalue and solution in
the mathematical bifurcation problem, respectively. Then the first variation of the energy
equation gives a governing equation in a domain Q and boundary conditions on a

boundary I',
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F(Mu =0 in Q, G(\u = 0 on T, (A1)

where F and G are differential operators. The statement in (A.1) constitutes a nonlinear
boundary value problem.

With respect to (A.1), it is assumed that there is an obvious trivial solution u,,,;, for
all values of A. Thus u = u,,,(A) which is the family of trivial solutions. We now seek
additional solutions (competitors) that bifurcate from this trivial solution. These additional
solutions would also depend on A, say u = u,(A), so that a continuous parametric
dependence on A also defines a family or branch of those additional solutions. Unlike the
trivial solutions, the family u,,(A) may exist for only a restricted range of A. Now the
solution family (1) is said to bifurcate from the trivial family u,,() at the value A, if
Upin(Ng) = UpiXo)-

The stability evaluation is well explainable under the concept of energy
minimization. If, at a given load parameter A, the energy of the one equilibrium solution is
less than that of another competing equilibrium solution, then the original solution is
energetically preferable to that of the competitor (it is more stable). The energy difference

between the trivial solution and the buckled solution at certain load level A.
AE(A) = E(uyAN), M) - E(u,,;, (M), 1) (A.2)

will be considered in the following analysis. According to the energy minimization

scheme, if AE>0, then the state corresponding to the trivial solution is stable.
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A.2. The Perturbation Expansion Method
One of the well-established approaches to solve the nonlinear boundary value
problem is by using the perturbation method. This approach utilizes an expanded solution

which is perturbed from the trivial solution u;=u,,, with a small parameter € such as

u = uygt+eu +eu, +e3u;+ ... (A.3)
The load parameter A is also expanded accordingly,

A= Aptek +e2h, +e30+ . (A4)

Here A, is the critical load for bifurcation initiation so that the bifurcated solution u =u,;
in (A.3) is branched from the bifurcation initiation u, = u,,,,(A) at A=A,. Substituting (A.3)
and (A.4) into (A.1) and (A.2), and collecting along the same order of €, give the set of
linearized boundary value problem for each order of €. By solving each set of equations,
we can construct a complete expansion on ¥ and A. Budiansky (1974) also used the similar
procedures to this study for post-buckling analysis.

For the purpose of stability evaluation, the energy difference AE compares the
energy between the bifurcated and trivial path at a load level A as shown in (A.2). The
general solution (A.3) in this approach is an expansion in the vicinity of buckling initiation
so that the results will be limited to the local analysis. Again by using the expansions (A.3)

and (A.4), the energy difference (A.2) becomes along the order of € as
AE = 82E2 + 83E3 + 84E4 +... (A.S)

Here E|; is vanished automatically if we substitute the equilibrium solution. For i-th set of
the order ¢, the solution u; can be solved by the conventional way used in the analysis of

linear differential equation and the eigenvalue A, ; can be obtained through the Fredholm
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Alternate Theorem (FAT). The solutions and eigenvalues obtained are substituted into the
energy equation then E;,; can be determined. Since € is small, the first nonzero term on
energy equation (A.5) becomes the leading term on energy difference. If AE becomes
positive then E(uy;) > E(u,,,) so that the trivial solution is energetically preferable at the
same load level A. For the opposite case, the bifurcated solution is preferable. The
schematic diagram of the procedure is shown in Figure A.l1. During the process, it is
sometimes hard to find all the solutions ;. Instead of direct application, we introduce a
certain orthogonal condition to make some terms in energy equation vanish. This
condition can be obtained by using the integration by parts to the linearized equation.

Detailed calculation will be explained later for a specific examples.

Governing Equation 4_- Energy Expression
Boundary Condition )

u=ug+eu + u + uy +...
Dl 2 3 -
l=)»0+8)»|+8 XZ+8 )\.3+...

BVP on First Order (g) | — | Ao, 4y | 3| E,(u;, Ap)

BVP on Second Order (&) | | &y, uy | —8 | Eyu,[ug), Ao M)

-—

BVP on Third Order (€3) | = | Ay, [us]| = | Ey(u;,u,[u5],
)"0’ )"la A'2)

Figure A.1 The procedure for a perturbation method. Here the variables with a bracket
are not necessary if we introduce a certain orthogonal conditions.
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A.3. The Analysis Scheme by Sawyers and Rivlin

The approach to evaluate the stability of fundamental state which is the buckling
initiation for the buckling problem, makes reference to the work of Koiter (1981). The
energy of the admissible displacement » from the fundamental state characterize the
stability of the fundamental state as the second variation to the energy is positive definite.
Later Sawyers and Rivlin (1982) applied this approach to evaluate the stability of buckling
initiation for the neo-Hookean rectangular plate.

If the second variation P,(u) for the potential energy difference P(x) which is
eventually the same as AE in (A.2) under the dead loading condition, is determined as
positive definite then the fundamental state is regarded as stable. The neutral equilibrium
solution # which becomes buckling deformations, can be obtained by a zero minimum of
the second variation P,(u). Here P,(u) represents a linear version in the whole energy
analysis so that P,(u) vanishes with the neutral equilibrium solution. Hence for the further
condition on stability, the bifurcated path u is decomposed into a linear version of the
neutral equilibrium # and an additional term v. Substituting this new solution into the
energy equation P(u) leads to a new energy equation P(v). Again by solving the
equilibrium solution for v and substituting the solution into P(v), one can evaluate whether
P(v) as well as P(u) is positive definite. This approach is also based on energy
minimization scheme but the objects for competition is different from the perturbation

expansion scheme.

A.4. Example 1: Elastica Problem
An elastica problem in which a long slender beam is compressed axially, has been

a model for the buckling analysis (Thomson and Hunt, 1969). The vertical deformation or
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the buckled shape u is described mathematically as the bifurcation from the unbuckled
deformation at a critical load parameter A,. The potential energy for a slender beam with a

normalized length 0<x<1, is given as
.r -1
E(ll, )\,) (211'2 + Xcosu)dx. (A6)

The primes denotes the differentiation with respect to x. The governing equation and

boundary condition of (A.6) through the first variation lead to
u"+Asinu = 0, u'0) =u'(l) =0, (A7)

where A is an eigenvalue which represents the load parameter applied to the beam axially
and the boundary conditions are characterized as a natural condition. Clearly one solution
to the problem (A.7), valid for all possible A, is #(A) = 0. This is therefore the trivial
solution to this problem, u,,;, =0.

The linearized version for the nonlinear boundary value problem (A.7) is stated as

W+ =10,  w(0)=u(l)=0. (A.8)

For a variable v, the inner product (u«” + Au,v) = 0 gives the adjoint problem to the
linearized problem (A.8) through the integration by parts. The adjoint problem with
respect to v has the same differential operator as that in (A.8) so that the linear differential

operator in (A.8) is self-adjoint. The bracket used in inner product is defined as

/9 = | fmgas. (A9)

The solution to the linearized problem (A.8), u;, becomes

u,, = Acosmnx, A = (mmn)?, m=1273,... (A.10)
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where 4 is an arbitrary constant. The linear solution reveals that there is an infinite

sequence of bifurcation load (one for each m).

A.4.1 Perturbation Analysis (PA)
We now seek additional solutions w= u,, bifurcated from u, = u,,, =0 in (A.3)

such as
u = gu+eu, +3uy+ ... (A.11)
Here the perturbation parameter € is defined as e=<u u,> with an orthogonality condition
(u,uy =0, i1, (A.12)

The bracket denotes the inner product defined in (A.9). Substituting the expanded solution
(A.11) and load parameter (A.4) into the boundary value problem (A.7) leads to the set of
governing equations and boundary conditions which form the separate boundary value
problems that originate from the various order of €. Each set of governing equation
consists of a linear differential operator with i-th order deformation ; in the left hand side.
The right hand side of i-th equation involves all of the previous solutions including u; ; and

A..1- The boundary conditions of each equation becomes
u'(0) = u/'(1) = 0, i=1,2,.. (A.13)
For the coefficient of €, the first order equation becomes
u" + Aou; = 0. (A.14)
The solutions of (A.14) with the normalized coefficient are

u, = J2cosmnx, Ao = (mm)?, m=1273,... (A.15)
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The first order equation (A.14) and the solutions (A.15) are in fact the same as those found
in linearized problem (A.8) and (A.10) except for the subscript. Hence the first order
equation represents the linearized problem. There is an infinite sequence of bifurcation
loads according to the eigenvalue parameters A, in (A.15) but, from now on, we will

consider the lowest value, that is the case of m=1. The second order equation is shown as
uy" + houy = —hju,. (A.16)

Since the differential operator in the left hand side of (A.16) is same as that in (A.14), the
solutions u, will exist only if the right hand side of (A.16) is orthogonal to the solutions of
(A.14), namely (-A,u;,u;) = 0 according to the Fredholm Alternate Theorem (FAT).

The existence condition and orthogonality (A.12) give

A, = 0. (A.17)
Introducing (A.17) into (A.16), the solutions with the orthogonality (A.12) become

u, = 0. (A.18)

In a similar way, the third order BVP is expressed as

uy" + houy = %)\.Ouf—kluz—hzu,. (A.19)

Applying the FAT again to the right hand side of (A.19) and the first order solutions in

(A.14) gives
A.2 = -ko. (A.20)

With the eigenvalues (A.17) and (A.20) into (A.19), the solution for the third order

becomes
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uy = -—66%0053mnx. - (A.21)

For the fourth order problem, the similar approaches give the boundary value problem as

U4" + )\.0“4 = %Kou%uz - l,(u_’, - éllf) - )\.2112 - )\.3“[, (A.22)

and the results are
Ay =0 and u, = 0. (A.23)

The higher order solutions can be obtained in a similar way. Then the buckled solution and

load parameter up to the fourth order are summarized as follows.

U= Uy, = (ﬁcosnx)s—(£c053nx)e3+ 0(g%), (A.24)
A=Ayt %loez + 0(g%), Ao = m2. (A.25)

The equation (A.25) represents the post-buckled solution path in A-€ curve.
To evaluate the stability of the equilibrium solution near the buckling initiation,
the energy minimization between the bifurcated and trivial solutions at the load level 2, is

used. The energy difference (A.2) becomes
j‘ 1
AE = | [5u?+ Meosu—1) Jdx. (A.26)

If AE >0, then the trivial solution is stable. Substitution the bifurcated solution u,, in
(A.24) and eigenvalues (A.25) into (A.26) give the even-ordered series of energy

difference
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AE = €2E, +€4E, + ... (A.27)

The odd-order terms vanish automatically. The second order term, E, in (A.27) is
—_ ] ‘[1 [yl 2
E, = 3 0(u, —Aoup)dx. (A.28)
With the solutions u, in (A.15), E, vanishes. The fourth order term, E, is
E =J1|:u'u'—luu—lluf+lku4:|dx (A.29)
4 o| Y143 o#U3— 542 53 voU1 |- .

Substituting all the solutions and eigenvalues in (A.24) and (A.25) into (A.29) gives

E4 = —1?\. +l;\.0 = —ilz

M 1g Ao. (A.30)

In fact, it is not necessary to know u; explicitly to evaluate (A.29). To see this, multiplying
the first order problem (A.14) by u;, k=1,2,3,... and integrating over the domain 0<x<lI,

gives
_[(')(u," + Aou)udx = 0. (A31)

Then applying the integration by parts to the first term in (A.31) and the boundary

conditions (A.13) for i=1, gives
_‘:I)(ul'uk'—-lou,uk)dx = 0, k = 1,2, 3, e (A.32)

Hence in (A.28), E, and in (A.29), the first two terms in E, vanish according to (A.32). For
these terms, we do not need the solution ;.

Regardless of how E, is obtained, the energy difference (A.27) now becomes

AE = —11—6).084"'0(86), 10 = 1t2. (A.33)
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The dominant term E, in (A.33) is always negative giving E(u,) < E(u,,) so that the
bifurcated solutions are always stable in the vicinity of bifurcation initiation.

In this problem, A,=0 in (A.17) so that the post-buckled path is symmetric and
A,>0 in (A.21) so that the load is increased when the bifurcation grows. Hence,
considering the local behavior near the first bifurcation, m=1, there exists only one
solution before bifurcation initiation, which is trivial and stable. After bifurcation
initiation, there exist three local solutions of which one solution is trivial and unstable, and

two other solutions follow the bifurcated path and are stable.

A.4.2 The Sawyers and Rivlin (SR) Scheme

Now consider the elastica problem with the approach used in the paper by Sawyers
and Rivlin (1982). Starting from the potential energy equation for the admissible
displacement u defined in (A.6). The energy difference which is in (A.26) is now rewritten

as
P(u) = E(u,A) - E(u,,,, \) = ]:) {%u'2+1(cosu— 1)}dx, (A.34)

where u = u,,, the bifurcated branch of solutions that we seek to construct. With the power

series expansion of cos u, equation (A.34) becomes

P(u) = Jl{%u'u x(— %u2+ 21—4u"— ) }dx. (A.35)

The second variational term in the expansion (A.35) is

P, = %J:) (u'? - Au?)dx. (A.36)
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The necessary condition for stability of trivial solution is non-negative P, > 0. To find the

stationary P,, set 5P,=0
6P, = J:)(u'Su'—luSu)dx = 0. (A.37)

After integration by parts, equation (A.37) yields
u"+Aiu =0, u'(0) = u'(1) = 0. (A.38)
The solutions of (A.38) are

u = Acosmnx, A = (mn)?, m=1,2,3,..., (A.39)
which retrieves the bifurcation initiation values A, and u,; previously given in (A.15) and
also the linearized solution u,, in (A.10). Again we will stick to the lowest bifurcation

value m=1. Here u is only a linearized version of the solution branch u,, near the point of

bifurcation initiation. By substituting (A.39) into (A.36), the result is
P, =0. (A.40)

Hence the state for which P, has a stationery value, is regarded as a state of neutral
equilibrium.
Now we decompose # = u,, into the linearized solution (A.39) and the remainder

term v as
u=autv % = cosmx, (A4])

where # = Acosmx comes from the linearized u in (A.39) and a is the coefficient given
by a = (i,u)/ (i, ). The solution components # and v have the orthogonality

condition
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(i, vy = 0. (A42)

Substituting the bifurcation solution u,, as given in (A.41) into the energy difference
(A.35) gives
'r 1 270! a2 0 4! ~ 1 ' 1 y 4
P(u) = 139 (u' = Au)+a(u'v' —Auv) + i(v 2—lv2)+§-zx(au+v) + ... pdx.
(A.43)

It is to be noted that, unlike the PA method, the SR scheme always use A = A, associated
with bifurcation initiation. Now consider the multiplication v to the equation (A.38) with

changed variable # and integration over the domain 0<x<1 as

J:)(fz" + Ai)vdx = 0. (A.44)
Using integration by parts and boundary conditions in (A.38) will give

J:(z‘z'v' —Auv)dx = 0. (A.45)

Introducing the condition (A.45) and the equation (A.38), the energy equation (A.43)

becomes
j’ 1, 1 " 4
P(u) = 0{E(v 2_Av2)+ ﬁl(au+v) }dx+0(a5). (A.46)

Now we determine the new solution v for which P(u) has a stationary value. According to
(A.46), v has the value O(a?). Then let v = a?u with the orthogonality
(i, u) = 0. (A47)

Neglecting terms of order higher than a*, equation (A.46) becomes
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at J; {(&'2 -Au?)+ lxa“}dx + 0(ad). (A.48)

N —

PQu) = 12

To find u for which P(u) has stationary value, the first variation with respect to u is

applied so that
1 4 ] L .‘1 n - -
8P(u) = 5a 2u 6u|0—2 0(u + Au)dudx } = 0. (A.49)

Substituting for # from (A.39) and using A=n? and boundary conditions (A.38),, equation

(A.49) is rewritten as
- ]: (u" + ix)diuds + '8, = 0. (A.50)
This yields
u"+Au = 0, u'(0) = w'(1) = 0. (A.51)
The solution of (A.51) with orthogonality (A.47) gives

u=0. (A.52)

Substituting the additional solution (A.52) into the energy difference (A.48) results
P(u) = éMa‘ + 0(ad). (A.53)

Since P(u) in (A.53) is always positive for small value of a, the trivial solution in the
vicinity of bifurcation initiation is regarded as stable. This result is different from that of
perturbation analysis analyzed in Section A.4.1. This difference arises from the
corresponding load level A. The A used in PA scheme is the load level on the bifurcated

mode, however A used in SR scheme is that on the bifurcation initiation. In fact, note from
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(A.30) that omitting the A, term from the PA scheme would give a conclusion similar to

the SR scheme.

A.S. Example 2: Modified Elastica Problem

To determine the relationship between the second term in expanded load
parameter, A, and the stability of its solution path, the coefficient of the fourth term in an
expansion of the elastica problem is replaced by an arbitrary constant. The sign of this
constant coefficient represents the shape of post-buckled deformation in the vicinity of
buckling initiation. Now we modify the elastica problem so as to include a coefficient a in

the following energy functional.
E = _r lu’+)~ l—lu2—gu4+0(u“) dx (A.54)
0|2 2 4 ’ '

Note that if a=-1/6, then this problem is consistent with the original elastica problem. The

boundary value problem for (A.54) becomes
u"+Au+aul+0W)} =0, u'(0) =u'(l) = 0. (A.55)

The trivial solution for the problem (A.55) is obviously u,,;,=0 for any load level A, and the

linearized problem becomes
u"+Au =0, u'(0) = u'(1) = 0. (A.56)

The linearized problem (A.56) is the same as that in previous example (A.8) so that the

linear operator is self-adjoint and the linearized solution is in (A.10).
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A.S5.1 PA Scheme
By substituting the expanded bifurcation solution u=u,, in (A.11) and the
eigenvalues A in (A.4) to the nonlinear problem (A.55), the boundary value problems for

each order becomes

O(e): " +hou; = 0, (A.57)
0(82): uzn + ;\.olI2 = —K,ul, (A.58)
0(83): u3" +k0u3 = -anu?—)\.luz—kzul, (A.59)

and so on. The boundary conditions are the same as those shown in (A.13). With the

orthogonality (A.12) and the FAT, the solutions for each order become

u = (Jf2cosmx)e + (T'féacoshx)eﬂ + O(g%), (A.60)
A= Ay-— %a)\oez + O(g*) Ay = m2. (A.61)

Here we omitted the detailed process because this and previous examples are the same
except for the parameter a. With the trivial solution u,,,, =0, the energy difference (A.2)
between the bifurcated and trivial solutions at a load level A based on the energy (A.54) is

stated as
I 1 2,% 4 4
AE ]:)[iu —K(iu + 7Y + O(u ))]dx. (A.62)

Substituting the perturbation expansions (A.4) and (A.11) into (A.62) becomes

1

AE = ,E[%(u,'z—}».ouf)ez+(ul'u3'—7\.0ulu3—2

hut-Fhout)et + 0(56)]dx. (A.63)
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By applying the orthogonality (A.12) and the results obtained in (A.32) to the energy

equation (A.63), finally we have

AE = %akoe“ +0(g%) = Eet+ O(g%). (A.64)

If a>0, then from (A.61) and (A.64), A,<0 and E,>0. Since E, is the dominant term in
energy difference, the trivial solution has smaller energy than the bifurcated solution, that
is, energetically stable. If a<0, there exist three solutions before bifurcation initiation and

A,>0 and E,;<0 so that the trivial solution is unstable.

A.5.2 SR Scheme
We now analyze this problem using the SR method used in Section A.4.2. The

potential energy equation is expressed in (A.54) as
PGy = [ +ad 1= Lur - %us 4 0gusy b ax (A.65)
0|2 2 4 ) ’

The second variational term P, in (A.65) is exactly same as (A.36) in previous example so

that the resulting equations and their equilibrium solutions are in (A.37) to (A.39).
u = Acosnx A = n2, (A.66)

By using the same decomposed new solution in (A.41), the new energy equations with the

similar orthogonal condition (A.45) are

a“J:) [(74'2 - xaz)-%w‘]dx. (A.67)

N —

P(u) =
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The only difference between (A.67) and (A.48) in the previous example is the last term
which contains a. But this term has only # so that the procedures to find « are the same as

(A.49) to (A.52). Then the result for energy equation is

P(u) = - é—;lAa“ + 0(ad). (A.68)

If >0, P(u) becomes negative so that the trivial solution is unstable. This result is

opposite to the PA method.

A.6. Example 3: A Higher Order Problem Represented Neo-Hookean Buckling

The buckling and post-buckling problem for a neo-Hookean plate considered in
the context by using the perturbation analysis, have a slightly different form from the
previous two examples. Namely, the neo-Hookean plate involves u, # 0 (see (4.128)) and
A,=0 (p,=0, (4.138))so that the expansion for the deformation « and eigenvalue A become

gu, +€2u, +3uy + ..,

A= Agte2r, teth ...

I
I

(A.69)

In order to understand this type of expansion, it is useful to examine a simpler model than
the neo-Hookean plate buckling problem. Such a simple model may be provided by

considering the following energy expression

E(u,1) = J:) [%u’z— %xuz + éu'(uz + u'2)]dx, (A.70)

for a function u obeying u(0) = u(1) = 0. The governing Euler equation for the energy

equation (A.70) are given by the first variation as

u"+Au+u'u" = 0. (A.71)
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The trivial solution for the problem (A.71) is obviously u,,,=0. The linearized problem to
(A.71) is stated as
u"+iu =0, u(0) = u(1) = 0. (A.72)

The boundary condition in (A.72) is different from previous two examples. However this
does not affect the self-adjointness for the linear operator. The linear solution is obtained

by solving (A.72) directly
u = Asinnx, A= mnl (A.73)

Here we considered the lowest value of bifurcation (m=1).

A.6.1 PA Scheme
The bifurcated solution u=u,, is an expansion from the trivial solution u,,=0.
Substituting the expansions in (A.69) into the problem (A.71), the resulting boundary

value problems for each order become

O(e): u," +Aou; = 0, (A.74)
O(g?): uy" + Aoty = = Auy—uy'u,", (A.75)
O(g?): u3" + houy = ‘ll“i“xzul 'y —uy'uy”, (A.76)

and so on. The boundary conditions are
u(0) =u(l) =0 i=12,.. (A.77)

Since the trivial solution for this problem is u,,=0, the energy difference between the
bifurcated and trivial solutions is the same as (A.70). By using the expansions (A.69), this

energy difference AE can be expanded accordingly.
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AE = E,e2+ Ese3 + Ee* + O(e%), (A.78)

where the components are

1
E, = J: 5(uy"2 = houf)dx, (A.79)
[ 1 PR P
E3 - O[ul uZ —l0u|u2+§ —}\.lu|2+§u| U|2+§(u| )3 ](ﬁ, (A.80)

1
E, = .ro‘z'{z(ul'“s' = Nouyuz) + (uy')2 — Aous — 20 uyuy — Myufdx

ol (A.81)
M) Jl{g(z"nun'uz +ufuy’) + uf'uz'}dx,

and so on. Now we consider the first order equation. By solving directly the solution

becomes for the lowest value of bifurcation (m=1) as
u, = J2sinnx, Ao = m2. (A.82)
In a similar way in (A.32), consider the following integration
,[l)(u," + Xou)updx = 0 k=1,23,.. (A.83)

Integration by part once and applying the boundary condition in (A.77) lead to the
equation (A.32). This equation can apply to E, in (A.79) and the first two terms in (A.80)
and (A.81) so that it is not necessary to solve u; in (A.81).

The solution in (A.82) is substituted into the second order solution and the results

become

J

Uy = —Tosinan, A, = 0. (A.84)
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Then applying the inner product with the right hand side of (A.76) and u; and the FAT

gives the next order eigenvalue as

A, = —%xg. (A.85)

With the previous solutions (A.82), (A.84) and (A.85), the third order solution for the

equation (A.76) becomes

A
uy = — sin3nx. (A.86)

4.2

However the third order solution (A.86) is not necessary to evaluate E, since there are no
u; terms in (A.81) after considering the equation (A.83)!. Substituting all the solutions and
eigenvalues obtained previously into the energy equation, then E, in (A.79) and E; in

(A.80) vanish and E, in (A.81) gives

1
E, = ﬁxg, (A.87)
so that the energy difference becomes
AE = 1—12138“ + 0(g%). (A.88)

In this case, A, is always negative and then AFE is always positive so that the trivial solution

near the bifurcation initiation is always stable.

1. This parallels the results in Section 4.7.2 where the u‘® terms are eliminated in
the energy expression (4.164) by using the boundary conditions (3.9), for &=1.
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A.6.2 SR Scheme
The energy equation for the neo-Hookean plate is expressed in (A.70). The second

variation in energy P, to (A.70) is given by
P, = J (Sy2-Sru)ax. (A.89)
0\2 2
After first variation to P,, the linearized governing equation becomes
u"+iu = 0, u(0) = u(l) = 0. (A.90)
The solution to the boundary value problem (A.90) is
u = Asinnx A = m2 (A91])
Again we stick to the first mode m=1. Substituting the solution (A.91) into (A.89) gives
P, = 0. (A.92)

Then the decomposition of u=u, into the linearized solution u=u,, (A.91) and remainder

term as

u=au+v, (A.93)
where a is a small coefficient and the following orthogonality holds

(a,v)y = 0. (A.94)

After applying the new solution (A.93) to the energy equation (A.70) and set v = a?u,

the energy equation after ignoring the order higher than 4 becomes

P(u) = a“j:) [{%1‘4'(&& )+ %a'(ff @)+ %((a')2 _ xaz)}]dx (A.95)
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The first variation for the equation (A.95) gives the governing equation about u as
u"+Au = -i'it" u(0) = u(1) = 0. (A.96)

The solution for (A.96) with orthogonality condition (A.94) becomes
- A
U= Fn sin(2nx). (A.97)

Substitution the solution (A.97) and linearized solution (A.91) to the energy equation

(A.95) gives

244
P= —%a“. (A.98)

The equation (A.98) reveals that P is negative so that the trivial solution is regarded as

unstable.

A.7. Discussions

In this Appendix, we examined the stability in the vicinity of buckling initiation
for more simplified problems than the buckling problem of neo-Hookean plate by using
the perturbation method and the method used in the paper by Sawyers and Rivlin (1982).
The whole procedure and their corresponding equations are summarized in Table 1. and 2.

The perturbation approach compares the energy between the bifurcation and the
trivial solutions on the same load level of A and on the first mode (m=1). The sign of an
energy difference determines the lower energy level of two competing solutions which
shows more energetically preferable solution. Also the results tell the relation between the
post-buckling behavior (A,) and the energy difference (£,). From the results on A, and E,,

(A.20) and (A.30) for the elastica problem, (A.61) and (A.64) for the modified elastica

159



problem and (A.85) and (A.87) for the simplified neo-Hookean buckling problem, it can

be shown that

E4 = —-lz. (A.99)

Therefore the signs of A, and E, are different so that, if A, is negative then the trivial
solution is energetically preferable. Otherwise the bifurcated solution is preferable.

In the SR method, the eigenvalue is not expanded so that the energy difference
used in this method just compares the energy on the bifurcation initiation. This will give a
confusion that on the eigenvalue (load parameter) at the bifurcation initiation. It also can

generate opposite conclusions as to the stability of the bifurcated branch of solutions.
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Table A.1 Summary of the procedures and their corresponding equations for the
perturbation expansion.

Modified Simplified Neo-Hookean

Step Elastica Elastica neo-Hookean | plate (context)
1. Nonlinear (A.6), (A.26) (A.55),(A.62) | (A.7]) (2.28), (2.30)
BVP, Energy
equation
2. Applyingthe | (A.11),(A.4) (A.11),(A4) (A.11),(A4) @3G.D)
expansion
3-1. Istorder | (A.14) (A.57) (A.74) (3.8), (3.9),
BVP (3.10)
4-1. ), (A.15) (A.61) (A.82) (4.62)
5-1. y, (A.15) (A.60) (A.82) (4.68)-(4.70)
6-1. E, (A.28), E,=0 (A.64), E,=0 (A.88), E,=0 (4.155),E,=0
3-2.2nd order | (A.16) (A.58) (A.75) (3.8),(3.9),
BVP G.11)
4-2. 3 (A.17), A,=0 (A.61),7,=0 (A.84), A,=0 (4.138), p,=0
5-2. u, (A.18), u,=0 (A.60), u,=0 (A.84) (4.126)
6-2. E; E=0 E=0 (A.88),E;=0 (4.158),E5,=0
3-3.3rd order | (A.19) (A.59) (A.76) (3.8),(3.9),
BVP (3.12)
4-3. ), (A.20), (A.61), (A.85),

A=1/4 4, A=-3/2 ah, Ay=-1/3 A,?
5-3. u; (A.21) (A.60) (A.86) N/A
6-3. E, (A.30), (A.64), (A.87),

E&=-1/16 A\y< | Es=3/8 aky E=1/12 042> 0

0
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Table A.2 Summary of the procedures and their corresponding equations for the
Sawyers-Rivlin method.

Modified Simplified Neo-Hookean
Step Elastica Elastica neo-Hookean | plate (1984)
1. Energy (A.35) (A.65) (A.70) (2.12)
equation, P(u)
2. Second vari- | (A.36) (A.36) (A.89) 3.1
ation, P,
3. Solving for | (A.37)-(A.39) | (A.37)- (A.90)-(A91) | (3.8)
neutral qunllb- (A39), (A66) (314) (316)
rium ’
4. Define new | (A.41) (A4]) (A.93) 4.1)
solution
S. Energy with | (A.48) (A.67) (A.95) 4.7), (4.10)
new solution
6. Solving for | (A.49)- (A.52) | (A.49)-(A.52) | (A.97) 4.13)
new solution (5.5)
7. Evaluate (A.53), (A.68), (A.98), 6.1)
energy wx}h P=1/6424>0 | P=-3/32 aAA P=-1/48 2\24* Fig.3, Fig.4
new solution
(4th order)
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APPENDIX B
COEFFICIENTS FOR STABILITY PARAMETER

The coefficient functions Y]i;] used in equations (5.11) and (5.12) for stability

parameter R; are defined as follows:

ML 1] = ga010h0) + vt st0) =By 30+ By (ko) = VR s10))
M1,2] = 35011 (A0)-Fiyi2(Ao)-Fays s(A)-VR a(ho) + Ny, s(-o)]
M11,3] = 335301,600) + Ny 1 (o) = VR0 400,

V1,41 = 37301, 6(-ha)-F,s(-2o) + Fayr a(-ho)l,

FI1,5] = 1ayal-25K301 =281 +872) = Ny, 5(ho) + VN o(-o)]

YI1,6] = ~palstho(l =13) + 16N (1 -2D(1 + 25208 + Fayy, 0Cho) + VRan1 ()],

(1+2) _ o
¥1,7] = ‘—WD’I,11(7~0)-2{VN4}’|,|2(10)—24N| + Noyy 13(Ro) } ],
_ (=% - I
M1,8] = "‘W[yl,ll(_ko)—2{—N3yl,|2(_)"0)+24Nl + Noyp13(=29) } 1,
_ V(l +).0) - =
¥1,9] = -—4T{3VN4—N25(1 -2},
1,101 = L2 38+ Rs1 + 401
) 47\8 3 2 075>
1,11] = 0,
N|S2

11,12] = 7);(1—7»3).
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2,01 = g2yl = 2AR-Fs(1 = h) + vR(1 + )]

L(1+29)

47 4 2 4 2
—gaag {16(1+5%8) + 10hg + 5833+ 3)),

M2,11 = ~gala 1)+ Fia (ko) + By s(ha) + By o))

M12,2] = ~1alan(F0)-Fuya (ko) + R s(Ao)-vRuvz a(-ho)),
112,31 = grolasCho) + My o(ho) = vy, 100)),

M12,4] = ~grDns(-R)- M (o) + Bz (D)),

Y[2,5] = %ig[s(l A3 +64r2-308) - 6{N3y2 g(Ag) — vN4y2 s(-2)}1,
Y[2,6] = 3—;;—8[“1 —-A3)(3 +32A% =308 +3252A8) + 6{N3y2,3()»0) - vl_\’4y2’8(—)»0)}],
Y[2,7] = %M[yz_g(xo) +192N,(1 = A3) + Noyy 10(Xo) + VN4, 11(A0)],
M2.8] = rlas(-h-192W(1 -23) + Navy o(-ho)-Fya, (o)l
112,91 = ~gla.2(ho) + VN2, 1304) + Ny 1(ho)],

M2,10] = —ga002.2(-ho)-Fays 15(-Ao) + Bava (o))

211 = 5

12, 12] = —%"xo(l —2A3).
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Here the 27 notations y; (%) used in coefficient functions ¥]i] are defined as;
y1,1(6) = —sG(1-E2){4+52(1-28+58%)},

y1,2(6) = 8s€(1+&)(10+E8+&2),

y1,3(6) = 24s(1+)(1+30),

y1,4(€) = 8{s2L(1 +55+282+48%) -3(3 + )},
y1,5(8) = -8(1 +&){(3-&) +s2L2(7-50)},

y1,6(6) = s2(1-8)(1 +&)°,

y1,7(8) = =8(1 +&)(1-6)(6 +Q),

y1,8(6) = 8s(1+E)(1+20),

y1,0(6) = —-(1-8)(3+23-382+ %),

yi,10(8) = s(1-8)(5-315-1382-83),

yi,n(8) = =s24(1 - &) (1 + &),

yi,12(6) = =s(3+136-782-83),

y,i3(6) = 8S2C(1 +E+E2),

Y2.1(€) = s(1+O){(7+ 50+ 1782 +38%) + s2L2(15 - 198 + 4182 - 58%) },
¥2.2(€) = 125¢(1 -&)(1 +5)(2+ 35 - 82,

¥2,3(C) = -125(1 = C)(1 + £)(1 +30),

¥2,4(8) = —6(1 -8){2(3 + &) —s25(1 +38)(1 + &)},
¥2,5(8) = 2525(1-8)(1 -35-582+38?),

Y2.6(€) = —6(1+8)*(2+3L-2?),

¥2,7(8) = =3s(1 +)(1-35)(1 +&2),

¥2.8(8) = (1-8)(1 +65-1682-65% - 1),
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V2 9(8) = s2(3+340-1982-483 + 17384 - 62C° +.3§"),
¥2,10(8) = -9652¢(1-C2)(1 + &),

Y2 () = 12s(1-8)*(1 + ),

Y2.12(6) = 2sL(1 -6)(1 +28-C?),

Y2.13(6) = 3(1+6)(3-0),

¥2,14(8) = 3s(1 +&)(1-5)(1-3C).
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