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ABSTRACT

REMOTE SENSING OF LEAF TISSUE NITROGEN CONTENT AND DISEASE

SEVERITY IN CREEPING BENTGRASS AND ANNUAL BLUEGRASS USING

NEAR INFRARED SPECTROSCOPY

By

Geoffrey Jordan Rinehart

Site-specific application of nutrients and pesticides based upon the specific needs

of turfgrass plants has the potential to save money and reduce the potential threat of

polluting the environment. The objectives of this study were to develop a method to

determine N content of leaf tissue and disease status of brown patch (Rhizoctonia solani

Kuehn) and dollar spot (Sclerotinia homeocarpa Bennett) on creeping bentgrass (Agrostis

stolonifera Huds.) and annual bluegrass (Poa annua var. reptans Hausskn) using a direct

light visible/near (VIS-NIR) infrared scanning monochromator. Nitrogen was applied at

rates of 0, 1.2, 2.4, 3.6, and 4.8 g N/m2 periodically over two growing seasons to creeping

bentgrass and annual bluegrass mowed at heights of 5 mm and 14 mm. Absorbance was

expressed as “log l/reflectance” between 400 and 2500 nm once color differences were

evident. After spectrometer readings were attained, clippings were harvested from each

plot and analyzed for N using a dry combustion analyzer. Modified partial least squares

regression analysis using the wavelengths from the entire spectrum demonstrated a

relationship between leaf tissue N content and canopy reflectance (r2: 0.78-0.92).

Wavelengths which illustrated the best association between lab values. for the raw

spectrum occurred at wavelengths 670, 1450, and 1930 nm and correspond to chlorophyll



a transmission, a primary overtone O-H stretch attributable to water, and an O-H stretch

attributable to water, lignin, protein, nitrogen, and starch, respectively.

Brown patch and dollar spot are two common diseases of cool season turfgrass in the

United States. As governmental and public scrutiny of golf course maintenance practices

increases, superintendents are beckoned to balance playability with fewer fungicide

inputs. Categorical disease symptom severity ratings of brown patch and dollar spot were

made on different turfgrass swards and associated spectra obtained. Discriminant analysis

of the data yielded categorical accuracy. In the dollar spot study, 20 out of 193 samples

(10.3%) were classified incorrectly using categories associating spectra with diseased

areas, areas close to the disease that appeared healthy, and healthy areas away from the

disease symptoms. In the brown patch study there were only 29 misses out of a total of

336 samples (8.6%) using three classification categories consisting of severe and medium

disease and healthy areas. These results suggest the feasibility of developing a VIS-NIR

sensor for the detection of disease severity. Future research should address how various

stresses interact to affect the spectral reflectance of the turfgrass plant. These results

indicate the potential for developing a real-time remote sensor for site specific nutrient

and fungicide applications in turfgrass management.
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CHAPTER ONE

INTRODUCTION

Pesticides and fertilizers are an integral part ofgolfcourse management today as

golfers expect a high level ofcourse maintenance and playability. Accompanying this

phenomenon is the increased‘potential for these inputs to have detrimental environmental

impact if applied without educated decisions about the needs ofthe turfgrass ecosystem.

As golfers’ expectations increase, golf course superintendents are forced to balance A

course playability with environmental considerations. Increasing public and

governmental scrutiny will continue to put a premium on a superintendent’s ability to use

necessary inputs judiciously. In light ofthis, it is important that fertilizer and pesticide

resources be used responsibly to both reduce environmental impact and maintain a

reasonable tiu'fgrass quality.

Site specific management (SSM) or Precision TurfManagement (PTM) refers to

the practice of assessing a property’s variability and adjusting management practices

accordingly. Site variability can be affected by a number offactors including soil texture

and fertility, terrain, slope and aspect, mowing height, drought stress, disease pressure,

turfgrass species and cultivar composition, and by environmental factors such as light

quality and intensity and air flow characteristics.

The four primary components ofSSM involve the global positioning system

(GPS), geographic information systems (GIS), sensing, and variable rate technology

(VRT). The GPS refers to a collection of24 orbiting satellites which are oriented

circumspherically about the earth and were originally established for military navigation

purposes. A GPS receiver communicates via radio signal with appropriate satellites and



the distance fiom the satellites. to the reciever is calculated. Using trigonometric

principles, the reciver’s exact location can be determined and described in coordinates of

latitude and longitude. The precision ofthe transmitter measurements varies according to

sophistication and cost. Current technology allows precision down to millimeter

increments. Sub-meter resolution would be required for practical application on golf

courses, which require greater precision than production agriculture.

Geographic information systems (GIS) refers to any ofa number ofcomputer

software programs which integrate information about site variability into a visual format,

typically in the form ofa map. It provides a method by which spatial information may

be captured, stored, analyzed, displayed, retrieved and overlaid (Krzanowski et al., 1992).

Geographic information systems allow a manager to overlay maps containing information

about various parameters of interest and graphically observe relationships that may exist

among the parameters.

A cost-effective process for acquiring spatial information is currently the most

limiting aspect ofSSM in the realm of turfgrass science. Real-time sensing is a

component ofprecision management which is necessary in order to collect a large

volume of data efficiently, quickly, and relatively inexpensively and is essential to

developing the full potential SSM. A sensor based upon reflectance from the canopy

could provide a cost- and labor-effective strategy for assessing turf leafN content and

disease symptoms.

The information can be geographically referenced with GPS and assimilated with

GIS. Based upon the sensor data, a spray vehicle equipped with a manifold of variable-

output nozzles can vary the application rate of an input such as a fertilizer or pesticide.



The efficient use ofchemical inputs on golfcourses will help decrease environmental

impact. Variable rate technology (VRT) is the process ofadjusting the rate ofapplied

inputs according to the assessed needs ofthe plant. Information acquired in real-time can

be processed so that appropriate spray applications are conducted and referenced using

GPS and GIS. The goal ofsensor-based VRT is “to instantaneously adjust application

rates based on sensor measurements of fertility [or other factors] as an applicator travels

across the field.” (Stone et al., 1993). Effective use ofthis technology will sponsor

precise applications of inputs needed to retain turfgrass quality and reduce the total

amount ofinputs needed.

The sensing aspect ofSSM is the focus of this research and involves scanning turf

with a spectrometer which is able to detect reflectance ofthe turf canopy in the range of

400 to 2500 nm. The objectives ofthis research were .to: 1) determine ifan association

exists between leafN content and reflectance fi'orn the canopy; 2) determine how the

relationship is affected by turfgrass species or cultivar, mowing height; and soil type; 3)

to establish a spectral signature characterizing the presence ofRhizoctonia solani and

Sclerotinia homeocarpa on turf.



LITERATURE REVIEW

NITROGEN USES IN THE TURFGRASS PLANT

Nitrogen (N), potassium(K) and phosphorous(P) are referred to as macronutrients

because they are the mineral nutrients required in the greatest amounts for proper plant

nutrition, excluding atmospheric elements carbon, oxygen, and hydrogen which are

intrinsic to many plant biochemical functions (Marshner, 1995). Nitrogen is required by

the plant for the production ofamino and nucleic acids, enzymes, and proteins and the

proper functioning ofchlorophyll (Epstein, 1972). Although 78% ofthe atmosphere is

composed ofN, atmospheric N is not available to turfgrass because ofthe diatomic

molecule’s high triple. bond energy. Nitrogen is present in many forms, but nitrate (N03)

and ammonium (NH?) are the major sources utilized for plant uptake. These forms ofN

are produced by aerobic microOrganisms decomposing organic matter or by the input of

synthetic fertilizers. Symptoms ofN deficiencies include shoot strmting, decreased

tillering, and development ofchlorosis symptoms in older tissue because N is phloem-

mobile (Marshner, 1995). Turfgrass typically contains 3-5% N by dry weight. Turfgrass

N requirements depend on soil nutrient holding capacity, natural precipitation or

irrigation, mowing height, traffic, and species or cultivar (Beard, 1982). Unlike other

nutrients, there is no reliable test for soil N. Although rules ofthumb are recognized as

guidelines, ultimate N application decisions are subjective and based upon a manager’s

experience with a particular turf(Turgeon, 1991; Beard, 1982). Sufficient N should be

supplied to maintain density, adequate recuperation and shoot growth and color (Beard,

1982). Excessive N can contribute to excessive thatch, greater disease incidence, a

restricted root system, lower recuperative capacity due to energy being allocated to aerial



growth, and environmental stress tolerance on account of depleted carbohydrates (Beard, .

1982; Couch, 1995.).

NITROGEN CYCLING IN THE PLANT COMMUNITY

There are several fates ofN applied to turf. Nitrogen can be taken up by the plant,

stored in the thatch/soil, volatilized, denitrified or leached. Starr and Deroo (1981)

reported that 19-27% ofapplied N may be immobilized in thatch. Relatively high N

levels within thatch can sustain high microbial populations. Leaching (loss ofN03'-N

through the soil profile) is most prevalent with fast-release fertilizers and sandy soils.

Volatilization refers to gaseous phase losses ofN as ammonia; these losses increase with

higher temperatures and relative humidity. Denitrification involves the reduction of

nitrate and nitrite to nitric oxides and N2, The process occurs mainly in waterlogged or

anaerobic soil conditions as microbes use nitrate as an electron acceptor instead of

oxygen.

Mineralization and immobilization are the two dominant processes involving N in

soil organic matter turnover and are strongly affected by the carbonznitrogen (CzN) ratio

oforganic material present in a plant’s rootzone. Mineralization occurs as aerobic

heterotrophic organisms conduct arninization and ammonification, converting

organically-bound N to NHF’. Ammonification is the process where firngi, bacteria, and

actinomycetes transform amino acids from organic matter into ammonia. Mineralization

generally increases with increasing temperature and adequate moisture. Conversely,

immobilization refers to the conversion ofinorganic N to organic N and one ofthe main

factors contributing to this is the ON ratio ofthe organic matter present. In a high C:N

organic matter environment, microbes will use ammonium and nitrate from the soil and



effectively immobilize it from use by plants. Subsequently, immobilized N can be

mineralized with the addition ofhigh N organic matter (Tisdale et al., 1993).

NITROGEN ASSIMILATION BY THE PLANT

Ammonium assimilation begins with NIL;+ uptake into roots and ends with its

incorporation into amino acids, amides, proteins and other nitrogen complexes. Upon

plant uptake, either protons are released for charge compensation or anion uptake

increases, depending on the soil ionic environment. Accordingly, roots are the primary

site of assimilation since they can better dispose ofexcess protons than shoots. Uptake is

optimal in neutral pH soils and decreases with an increase in acidity. Ammonium can be

dissociated to ammonia (NH3) or directly assimilated into amino acids and amides in the

root and subsequently amino acids in the shoot using carbon skeletons fiom the

tricarboxylic acid (TCA) cycle (Marshner, 1995).

The nitrate assimilation pathway is cornerstone to incorporating inorganic N into

organic compounds. Contrasting ammonium uptake, high nitrate levels correspond with

an increase in uptake of organic cations by the roots. Nitrate reduction can occur in roots

and shoots. In low concentrations, a greater percentage ofnitrate is reduced in the roots

and with greater concentrations, more is translocated for reduction in the shoots.

Maximum nitrate assimilation occurs when leaf expansion rate is high (Salisbury and

Ross, 1992; Marshner, 1995). A

As opposed to ammonium, nitrate must be reduced to NIL.+ in order to be

incorporated into organic structures. Nitrate assimilation occurs via a specific transport



system and involves a two-step reaction which is spatially separated:

no; 9 N02' [Eq. 1]

N02- + 6e' +8H*9 NH3 [Eq. 2]

NO; + 8H“ +8e' -) NH3 + 21120 + OH [Eq. 3]

The first reaction [Eq. 1] is catalyzed by Nitrosomonas bacteria and the second step

[Eq. 2] is catalyzed by Nitrobacter bacteria. The electron donor in the processes is the

compound NAD(P)H. Good correlation has been observed between light intensity and

nitrate reduction, but it is unclear whether this is due to the increased light itself or

confounded by the fact that there are a greater number ofcarbon skeletons into which

additional fixed N could be assimilated (Marshner, 1995).

Nitrate reductase (NR), located in the cell cytoplasm, is a dimer molecule

composed ofa heme group, FAD, and a molybdenum cofactor (MoCo) and is located in

the cytoplasm. Nitrate reductase is regulated by enzyme synthesis and breakdown,

reversible inactivation, and the concentration ofthe substrate present (Solomonson and

Barber, 1990). Nitrite reductase (NiR) is located in chloroplasts and proplastids of roots

and other non—green tissue (Fig. 1.1). Nitrite rarely accumulates as this step ofthe

reaction is extremely rapid. Ferrodoxin is the primary electron donor in the reaction.

Ammonia can be toxic in high concentrations, but is usually rapidly incorporated

into organic compounds. Almost all ammonia produced by ammonium oxidation, nitrate

reduction, and photorespiration is processed by the glutamate—glutamine synthesis

pathway. With the addition ofNH3, glutamate synthetase catalyzes the production of

glutamine from glutamate. Light stimuli provide the impetus for 2-oxogluterate and

glutamate to be exported from the stroma to the cytoplasm, thus aiding nitrate reduction

and ammonium assimilation (Woo et al., 1987).



Glutamine synthetase and glutamate synthase (GOGAT) are the two primary

enzymes involved in ammonia assimilation. Glutamate synthase, facilitated by ferrodoxin

or NADPH, catalyzes the transfer of -NH2 from glutamine to 2-oxoglutarate. This

results in the production of two glutamate molecules, one of which can be used for

maintenance in the cycle and one that can be used for biosynthesis of low molecular

weight nitrogen compounds. When high amounts of ammonia are present, both glutamate

molecules can accept ammonia molecules (Fig. 1.2).

Glutamate and glutamine are used for the synthesis of amides, ureides, amino

acids, peptides and high molecular weight compounds such as proteins. Glutamate can be

used for amino acid synthesis by transarnination reactions which are catalyzed by

arninotransferases located in the cytosol, chloroplasts, and other organelles. Carbon

skeletons used for amino acid synthesis are obtained from photosynthesis, the

tricarboxylic acid (TCA) cycle, and glycolysis reactions. Proteins are polypeptides

constructed from amino acids and coupled by peptide bonds in a condensation reaction in

cellular ribosomes. Glutamine and asparagine are the primary low molecular weight

compounds produced by the pathway. Amino acids, amines, peptides, and ureides are

also produced and are used for transient storage and long distance transport from roots to

shoots.

Images in this thesis are presented in color.
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Figure 1. 1. Schematic representation ofthe sequence of nitrate assimilationm leaf

cells. (Adapted from Marshner,1995).
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BROWN PATCH (Rhizoctonia solani Kuehn).

Brown patch disease is caused by the fungus Rhizoctom‘a solani. Other species

(R oryzae, R. cerealis) are known to be pathogenic to turfgrass as well (Burpee and

Martin, 1992).. Brown patch disease occurs on many commonly cultivated turfgrass

species. The fungus produces tan to brown mycelium that are 4-15 mi in diameter with

constricted dolipore septae and no clamp connections (Couch, 1995). In the absence of

optimal growth conditions, the organism survives by dark brown sclerotia produced in

the plant tissue, or as a saprophyte, among the soil and thatch. As the ftmgus begins to

actively grow at temperatures of 15-20 C, the sclerotia provide a nutrient source as the

mycelia resume growth (Vargas, 1994). Hyphal aggregation leads to the formation of

appressoria and these infection cushions penetrate the leafbetween epidermal cells or

through stomates (Shurtleff, 1953). Ultimately, injury can be inflicted upon the plants in

two ways, infection ofthe plant by mechanical pressure and tissue necrosis caused by

enzymatic degradation ofthe cell walls (Couch, 1995).

Brown-patch disease symptoms vary with grass type, mowing height, and

environmental conditions. Individual leafblade symptoms are characterized by tan to

brown leaf lesions, which can grow to envelop the entire leafblade turning it light brown

and necrotic; lesions sometimes develop reddish-brown margins. Stems, crowns and roots

can be infected by the pathogen. Typical symptoms on a given turf sward include foliar

necrosis in brown to straw-colored irregular brown patches. A dark purple smoke ring

can develop on the leading front ofthe disease symptoms, especially on low-cut turf<13

mm, and can be seen most frequently in the presence of early morning dew. Disease

development ofthe disease is favored by nighttime temperatures >16 C and > 10 h of leaf

10



wetness (Burpee and Martin, 1992). Mycelia begin active growth at 15-20 c and initial

infections can occur at 21-26 C (Vargas, 1994). Temperatures between 27- 29 C are

optimal for infection by epidermal cell penetration and colonization is most rapid at 29-

32 C accompanied by high humidity. Above 32 C mycelia development is slowed. High

humidity and prolonged periods of leafwetness, as well as high N levels relative to

normal levels of P and K can encourage symptom development. Since dew and plant

guttation water contain high levels ofnutrients favored by the fungus, removing dew by

poling or early morning irrigation is recommended (Vargas, 1994). Chemical control is

attained with preventative applications of flutolanil, chlorothalonil, iprodione, or

azoxystrobulin applied at 14-28 day intervals when favorable environmental conditions

persist.

DOLLAR SPOT (Scleroa'nia hamoeocarpa Bennett)

Dollar‘spot is one ofthe most prevalent diseases on golfcourses in North

America, Australia and Japan (Smiley, 1983). Symptoms appear as circular and

sometimes sunken bleached straw-colored to brown patches approximately 2-5 cm in

diameter (Vargas, 1994). As the disease severity increases, spots can coalesce, blighting

large areas of turf. Individual leaves have bleached, water-soaked tan lesions with a

reddish-brown margin often appearing as an hourglass pattern. Mycelia appear as grayish

white to white and cottony and are especially visible in the presence ofmorning dew.

Under low N conditions, dollar spot symptoms are more prevalent, assuming adequate P

and K levels (Couch and Bloom, 1960).

The fungus rarely produces apothecia, and if present, they do not contain viable

reproductive organs such as ascospores or conidia (Smiley, 1983). It is believed that the

11



pathogen is primarily dispersed via equipment and traffic and survives as dormant

mycelia on leaf foliage. Active growth resumes as favorable conditions develop. The

pathogen affects the plant by producing a toxin in the foliage, which upon translocation

prevents root elongation, causes browning ofthe roots and encourages root thickening

and a decrease in root hairs. Toxin production is optimal between 15.5-26.8 C (Endo,

1964).

Cultural management strategies that reduce the duration ofleafwetness such as

poling greens, watering after dark and in the early morning to wash offdew and guttation

water fi'om leaves ”can alter environmental conditions that are optimal for the disease.

Chemical control is attained with applications oftriadirnefon, propiconazole,

cyproconazole, thiophanate-methyl, benomyl, iprodione, fenarimol, or chlorothalonil

when environmental conditions favorable to. disease development persist (Couch, 1995).

PROPERTIES OF LIGHT’

The electromagnetic spectrum contains radiant energy deScribed by parameters of

“wavelength”, “frequency”, and energy (Fig. 1.3). The entire spectrum covers 20 orders

ofmagnitude from cosmic rays which contain the most energy to radio waves containing

the least. In the middle ofthe spectrum are ultraviolet (200-400 nm range), visible (400-

700 nm), and near infrared (700-2500 nm range) wavelengths (Kemp, 1991). The visible

portion of the spectrum is known as “photosynthetically active radiation” since this is the

portion utilized by plants forphotosynthesis.

Light is a unique form of energy in that it exhibits properties ofboth waves and

particles. A light wave is a “transverse electromagnetic wave” in the shape ofa sine

where electric and magnetic fields are present perpendicularly to the direction ofwave

12
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prOpagation (Taiz and Zeiger, 1991). Wave properties are characterized by the

wavelength, the distance between two crests ofthe sine curve (nm); frequency, how

many crests occur in a given distance (Hz, /s); and the pattern. The equation c = Av

represents the speed of light, 2.998 x 108 m/S,’where A. is the wavelength and v is the

frequency; thus, it and v are inversely proportional. Particle (photon) properties of light

consist of discrete packets of energy called “quanta.” Energy is explained by the equation

E = hv where E is energy in joules, h is Planck’s constant (6.626 x 10'34 J05), and v is the

frequency of the radiation (/S or Hz). Subsequently, E = hc/k so a radiation wavelength is

inversely proportional to the energy which it contains.

Once light strikes an object it may be reflected, transmitted, or absorbed

(Woolley, 1971). Reflected light is returned to the atmosphere at a different angle from

which it struck the object incidentally. Transmitted light energy passes through the object

without being absorbed; transmittance is negligible through turfgrass because of its dense

canopy (Trenholm et al., 1999). Energy absorption occurs when incident light energy

matches the exact amount of energy needed to move electrons from a ground to excited

State. Excitation may be due to translational, vibrational, or rotational changes which

occur in the organic molecule. Since electron orbits represent discrete energy levels,

electrons require exact amounts of energy for excitement from one to another. The

relationship between transmission of energy through the sample and the concentration of

the absorbing molecular bonds is described by Beer’s Law. Energy light absorbed is

proportional to the molecule or pigment concentration of interest and is expressed as log

(l/reflectance) (Shenk and Westerhaus, 1993c).
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An absorption spectrum illustrates the change in absorption of electromagnetic

energy by an object across a range ofwavelengths. When transition of a molecule from

one energy state to another occurs at a specific wavelength, it corresponds to the energy

absorbed at that wavelength. The molecule will only absorb the energy if it is equal to

that required for the transition. Due to differences in bond and molecular structure (and

the energy required for transition), organic molecules absorb energy difierentially. Highly

conjugated molecules such as plant pigments chlorophyll, anthocyanins, carotenoids and

xanthophylls absorb at higher energy wavelengths in the visible spectrum. Organic

molecule functional groups such as hydroxyls, carbonyls, and amines, absorb at lower

energy wavelengths in the near infrared spectrum. Humans have the ability to

differentiate light in the visible region from 400-700 nm. Contained in this range is what

we traditionally think of as a “spectrum of colors.” (Fig. l .3). All objects absorb light

differentially to varying degrees and the human eye perceives an object as a certain color

because that color is reflected the most. Likewise, plant pigments absorb differentially

across the spectrum so that a plant’s perceived color, or appearance of an object

determined by eye response, consists of wavelengths which are absorbed the least. For

instance, in examining the absorption Spectrum of chlorophyll one finds that it absorbs

the greatest amount of light in the red and blue regions (75-90% absorbance) and absorbs

the least in the green region so that when chlorophyll, the dominant pigment is present,

plant leaves appear green (<20% absorbance). With an instrument that measures

“greenness” one could indirectly measure chlorophyll content. Since nitrogen is an

important component ofand closely correlated to chlorophyll, measures of “greenness”

would give an indication of the nitrogen status of the plant (Thomas and Oerther, 1972).
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ChlorOphyll produces a green color because it absorbs the least in the green

region (~550 nm). When chlorophyll absorbs light, the light energy causes the

chlorophyll molecules to be excited to a higher state from its initial “groun ” state. The

excited energy contained within the molecule can undergo one ofthree fates. The

molecule may undergo fluorescence where it re-emits the energy as it falls fi'om its

lowest excited state back to its ground state. This release is characterized by a

phenomenon called the Stokes Shift as the energy is re-ernitted at a wavelength

approximately 10 nm longer than that which it was absorbed. Second, the molecule may

return to its ground state without re-ernitting energy as a photon, but as heat. Finally, the

molecule may activate the plant’s photosystem network, stimulating the electron

transport chain in photosynthesis (Taiz and Zeiger, 1991).

Near Infrared Spectrum

The near infrared (NIR) region of the spectrum ranges from 700-2500 nm.

Functional groups such as =CH2 (1090-1167, 1390-1400, 1406-1446, 1616-1626, and

2260-2510 nm), O-H water bonds (984—996, 1010, 1150, 1406-1416, 1788-1796 and

1936-1946 nm), N-H protein bonds (1048-1052, 1508-1516, 2050-2066, 2176-2186, and

2296-2308 nm), and other N-H groups (1464, 1470, 1480-1506, 1518-1536, 1906-1916,

1976-1996, and 2046-2056 nm) and organic molecules absorb energy in the NIR

(Winisi, 1999). Absorbance ofNIR radiation corresponds to energy required for changes

in the internal vibrational frequencies ofthe molecule and functional groups oforganic

molecules absorb NIR radiation differentially. A fundamental vibration occurs when the

energy supplied is proportional to the energy required to change the dipole moment of the

molecule so that the vibrational energy absorbed causes it to change from its ground state

to its first excited state (Zabik, 1997). Absorbance by organic ftmctional groups produces
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characteristic bands in local areas ofthe near infrared spectrum (Zabik, 1997).

Absorption bands can be characterized by three criteria: location, height, and width. Near

infi'ared absorption patterns are very complex, existing in a mosaic of overtones,

combination bands and repititive bands. Typical NIR spectra exhibit a convolution of

Lorentzian and Gaussian distributions and may consist of seven to ten peaks with many

“shoulders” (Shenk and Westerhaus, 19930). Band overlapping and composite banding

makes it difficult to estimate the three criteria so mathematical functions are needed to

provide accurate estimates 0fband locations. Additional confounding may occur due to

particle Size multiplicative response, confounding with visible overtones in 1100-1400

region, and confounding with mid-infrared information contained in the 2300-2500 nm

region.

Reflected light can undergo a scattering effect as it strikes an object. Scatter is a

function of the diffuse nature (roughness) ofthe surface (Shenk and Westerhaus, 19930).

Particle size can contribute to scatter, which can cause peak distortion and larger particles

make peaks appear higher than they should. Conversely, surface reflectance, or the

“shininess” of an object can “squash” peaks to appear lower than they should.

Essentially, the information contained in a NIR absorbance spectrum provides useful

insight into the physical and chemical composition of a substance (Shenk and

Westerhaus, 1999). Every substance has a unique spectral composite “signature”

contributed to by scatter, surface reflectance and absorption of chemical bonds (Shenk

and Westerhaus, 1999) and diffuse reflectance properties correlate to changes in chemical

composition (Morra et al., 1991). Ideally, Since a spectrometer can detect wavelengths

over a wide spectrum of electrOmagnetic radiation, a specific band could be used to
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detect differences attributable to nitrogen status or disease presence in the turf canOpy.

However, more practically, a combination ofwavelengths would be used to develop a

model which characterizes the anomaly of interest.

A fundamental absorption may have several overtones, or secondary vibrations

which decrease in intensity (amplitude) and energy level, and exist in the range of 700-

1800 nm. Combination bands consisting oftwo or more overtones ofthese groups exist

in the 1800-2500 nm range. These combination bands indicate rotational and vibrational

movements such as stretching, bending, wagging, and rocking ofthe organic molecule.

Stretching vibrations occur at higher frequencies (lower wavelengths) than bending

vibrations. Molecular bending can occur in the plane ofthe molecule or out of the plane.

Each deformation absorbs energy of different intensity. Energy striking a compound will

NIR region is composed ofharmonic overtones ofthe fimctional groups which absorb

primarily in the mid-infiared (MIR). Major bands in the NIR region include second and

third overtones of O-H, C-H, and N-H functional groups. Theoretically, peak height of

the vibrations diminishes with each successive overtone. Molecular absorptions occur

with greater intensity as fundamental bands in the MIR region ofthe Spectrum because

NIR bands are 10-100 times weaker than those found in the MIR. Organic molecule

functional groups O-H, C-H, and N-H absorb energy at different wavelengths due to their

stretching, bending and deformation vibrations (Shenk and Westerhaus, 1993c). Shifts in

the spectrum related to organic molecules can potentially be associated with

physiological changes in the plant. Characteristic wavelengths which indicate the

presence of these groups include O-H bonds stretches at 1440 and 1900 nm and N-H
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stretches in ranges fiom 1449-1555 nm and 1800-2080 nm. Within the umbrella ofN-H

stretches are primary amines (1455-1553 nm), secondary amines (1506-1555), N-H

proteins (1535- 1614 rim), nitrites (1800-2080 nm), NH; groups (1965-2050 nm) and

NH; amines (1449-1538 nm) (Shenk and Westerhaus, 1993c).

SPECTROSCOPY

As with any spectrosc0pic method, proper assessment of a sample for evaluation

is affected by several factors. Instruments used to detect visible and NIR spectra must be

accurate and repeatable. Temperature, relative humidity, and spectrometer light source

and intensity play significant roles in instrument performance. The ambient light

surrounding the stage ofthe sample will have an effect on how the light reflected,

absorbed, and transmitted by the sample will be detected by an instrument. In a

laboratory setting, enclOsed spectrophotometers provide for a means of controlling

ambient light surrounding a sample.

Near infrared detection devices typically consist of several components. A source

ofradiance, usually a tungsten light bulb, is needed to provide consistent illumination of

the sample. In order to process the quality of light, once detected, the light is transmitted

through a slit to limit radiation to a narrow band. A lens is used to focus a narrow band of

radiation and the energy is sent through a wavelength dispersion device to split the

energy into its component parts before passing through a focusing lens. The energy is

transmitted through another focusing lens before passing through an exit slit and

ultimately a photodetector. The placement of the detectors determines if the instrument

initially makes a transmission or reflectance measurement. Signal from the detector is
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amplified before being converted from analog to digital for computer processing and

monitor display. A

There are four primary wavelength dispersion devices used in NIR analysis.

Filters are used for detection of absorption in specific regions ofthe Spectrum,

disallowing passage of light outside the range(s) of interest. In contrast, light emitting

diodes emit light energy only at Specific wavelengths of interest. Accoustical optical

tunable filters (AOTF) are used for liquid solution analysis. Wavelength is controlled by

the frequency at which a crystal vibrates. A monochromator is a holographic grating

which divides light energy into separate wavelengths at a given interval across the range

of detection (Shenk and Westerhaus, 1993c).

Light striking an object may be detected by reflectance, transmittance, folded

transmittance or direct light methods. Normal NIR reflectance and transmittance

measurements involve holding the sample in a ring cup, exposing it to a light source at a

path length of 1 cm in a closed compartment and detecting how much is reflected or

transmitted, depending on the location of the photodetector. Folded transmittance

measurements are ideal for materials in solution and use a narrower path length of 0.1

mm. All three of these measurements are made in chambers opaque to outside light. In

the direct light method, source radiation is introduced directly upon the sample. The

reflected radiation is then transmitted via fiber optic cable to the monochromator and,

subsequently, the photodetector.

General NIR Applications

Near infrared reflectance measurements are used for analysis of a wide range of

agricultural and industrial products (Wetzel, 1983). Notable agricultural applications
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have involved measurement ofprotein, moisture, fat, oil, and prediction of organic

carbon and total nitrogen (Wetzel, 1983; Dalal and Henry, 1986). Near infrared

spectroscopy (NIRS) has also been used to measure moisture content in soybeans and fat

and moisture in meat emulsions (Ben-Gera and Norris, 1968). The fact that NIR has been

used successfirlly for constituent analysis of forages (Norris, 1976; Windham, 1991)

lends to its potential effective use in turfgrass analysis.

Near infiared spectroscopy is an attractive alternative to traditional laboratory

methods that measure crude protein, acid detergent fiber, fats, moisture and other

constituents (Wetzel, 1983; Shenk and Westerhaus, 1991). It provides for rapid analysis

of plant constituents and requires minimal sample preparation (Couilliard et al., 1997).

Near infrared spectroscopy can accurately measure constituents such as water (O-H

bonds) and crude protein (N-H bonds) in the micrograrn per kilogram range (Roberts et

al., 1991). Near infrared. spectroscopy does not actually measure N, but measures N-H,

from which N and protein can be interpolated (Shenk and Westerhaus, 1991a). Fox et a1.

(1993) compared reflectance measurements in the NIR region with three other rapid tests

for predicting N-supplying capability and grain yield in corn and found that NIRS was as

statistically accurate as the pre-Sidedress nitrogen test (PSNT) to predict the soil N-

supplying capacity and corn response to N.

Prediction equations for forage mixtures and monostands have been developed

using NIR (Shenk and Westerhaus, 1991a ). Principally used for detecting plant

constituents in agriculture, NIR has also been used for carbon and nitrogen analysis in

particle-size soil fiactions (Morra et al., 1991). Near infiared spectroscopy can be useful

because it provides a window into biochemical workings ofa plant that reflectance in the
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visible range may not. For instance, changes in leaf area index (LAI) can result in

changes in NIR region reflectance without altering the visible region reflectance

characteristics (Colwell, 1974).

Traditional sample preparation for NIR analysis involves oven-drying the samples

to remove moisture before grinding them to insure a uniform particle size. Samples are

then packed into a cell for spectral analysis on a laboratory benchtop. model instrument.

However, use ofNIR technology for real-time analysis will require development ofa

field unit capable ofconducting direct light measurements. Successful attempts to

analyze unprocessed sammes have been accomplished for predicting turf soil profiles

(Couilliard et al., 1997).

Data Analysis

Analysis ofNIR data is difficult due to factors such as particle size or spectral

(particularly water) overtones (Shenk and'Westerhaus, 1993c). Two corrections have

been developed to reduce interference caused by differences in particle size. First, de-

trend, a multiplicative scatter correction described by Barnes et al. (1989), Shifts the

spectra of interest to be. more like a designated “target spectrum”, usually an average

spectrum ofthe spectra of interest. Second, a standard normal variate correction can be

used so that the standard deviation of each spectrum is 1.0.

Several regression methods may be used to create a prediction equation for using

NIR patterns to predict laboratory analysis numbers. Multivariate regression methods

such as modified stepwise regression (MSR), neural networks, and partial least squares

(PLS) have been used (Shenk and Westerhaus, 1993c). Shenk and Westerhaus (1991b)

found that a modified partial least squares regression (MPLSR) had better correlation
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than MSR in developing constituent calibration equations for diverse forage mixtures.

Comparing the MPLSR method to the MSR method, they demonstrated that MPLSR was

similar or better than MSR for predicting crude protein, acid detergent fiber, and in vitro

dry matter disappearance for two large groups of forage samples.

Algorithms CENTER and SELECT were developed to identify Spectra suitable

for calibration development by eliminating samples with extreme or similar spectra.

These algorithms use the spectral data across a range of wavelengths with absorbance

values expressed as Log (UK) and an associated reference value for the constituent(s) of

interest. The CENTER function computes a principal components file by full-spectrum

single value decomposition, which contains all information needed to calculate sample

scores and define H (Mahalanobis) values. Principal component analysis (PCA) identifies

patterns (also known as eigenvectors or loadings) in certain wavelength regions which

contain the most variation attributable to different laboratory values. Principal

component analysis also reduces the spectral information into a smaller number of

independent factors. The amount of a pattern present in a spectrum is referred to as a

score (Shenk and Westerhaus, 1993c). Principal component analysis uses a loading-score

method to compare spectra in multiple dimensions. Sample loadings are obtained by

multiplying the spectral data by the principal component scores (proportion of a pattern

present in a specific spectrum) which are associated with the largest eigenvalues.

Principal components are linear combinations ofNIR data that maximize differences

between spectra and are calculated by multiplying NIR data points by linear

combinations of the spectra to form new variables. The CENTER function ranks each

spectrum according to its H distance from the average spectrum in hyperspace.
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Principal component analysis iS a technique for limiting the number of

intercorrelated spectral data pOints by using the information contained in the spectra to

compute independent variables. The first principal component (factor) accounts for the

greatest variation in the spectra, the second accounts for the next greatest amount and so

on. Afier ranking the spectra, an algorithm is used to eliminate samples that were

spectrally similar. The SELECT algorithm identifies spectra with the greatest number of

neighbors within a certain proximity (H<O.6) and retains that spectra to represent all of its

neighbors, while eliminating the neighbors. Using a standardized H to select samples

results in the use of fewer samples than would be recommended by the r2 method

recommended in the USDA handbook (Windham et al., 1989). In experimenting with

neighborhood H (NI-I) limits, Shenk and Westerhaus found that lowering the limit

resulted in more samples and more terms being used in the equation. The limit of 0.6 was

found to be suitable for-defining-NH and provided accurate equation predictions. It was

unclear as to which factors fi'om neighborhood size, the number of samples, or the

number ofterms contributes the most to accurate calibrations.

In the next step, the spectra are mathematically treated to emphasize small

absorption peaks. Math treatments are typically described by three numbers where the

first is the derivative order; Sec-0nd is the segment length over which the derivative was

taken; and third, the number of data points in a running average smooth. Both principal

components regression and partial least squares regression reduce the data to a few

combinations of absorptions which account for most ofthe information contained in the

spectra. However, PLS differs from PCA in that it also relates the sample laboratory

reference values to the Spectra. Shenk and Westerhaus (1991a) describe “modified”
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partial least squares regression method where the lab value data and absorbance data are

sealed at each wavelength to have a standard deviation of 1.0 before each PLSR term.

Modified partial least squares regression is a full-spectrum regression which uses all

regressors to compare factOrS which correlate with the dependent variable (Fox et a1,

1993). Cross validation is conducted by splitting the spectra into equally Sized sets

according to the file size and using one set to create a calibration equation for predicting

the remaining data. Altemately, each set is used to develop an equation for predicting the

others until all spectra have been used for predicting and have been predicted. The

number ofMPLS factors are determined by cross validation so that the standard error of

cross validation (SECV) is minimized and the equation is not overfit (Shenk and

Westerhaus, 199 la). The number offactors increases until the sum of squared prediction

residuals is minimized (Fox et al., 1993). The SECV estimates equation performance

using the data fromwhich the cross validation was conducted. Standard error of

performance (SEP) is an indication of equation prediction performance with an

independent, but similar set of data. Coefficients of determination are computed between

each sample spectrum and population average sample spectrum.

The quality and scope of spectra that are used to build a product library

determines the accuracy and robustness of a prediction equation developed from spectra

in the library. Roberts et a1. (1997) found that a prediction equation for ergovaline could

only be used for as wide a population as it was developed Broadening the database from

which predictions are developed can broaden the range ofprediction, but can result in

lower prediction accuracy (Couilliard et al., 1997). To insure adequate prediction

equations, a library requires periodic expansion. The algorithms CENTER and SELECT
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provide improved population definition for local and global calibration development and

techniques have been developed to expand established calibrations. New samples can be

analyzed for spectral characteristics that are Similar to samples already in the calibration

using the MATCH algorithm. By identifying local populations to which new samples

belong, local calibrations could be expanded by adding 10 new samples to the library and

recalibrating (Shenk and Westerhaus, 1991c).

Applications of Spectroscopy in Site Specific Management

Scientists have been searching for means to efficiently assess the nutrient, stress,

and quality status ofplants for years. Of special interest has been development of a

method for rapid assessment ofplant nitrogen content. Traditional methods ofN analysis

such as the Kjeldahl method for determination of total N or dry combustion analysis

involve harvesting tissue, oven-drying for multiple days, and wet laboratory techniques

which can be time, labor-, and materials-consumptive. In the past, instrument

assessment ofN content in plants has been found to be easier and faster than destructive

testing (Ma et. al., 1996). Because N is an important component of the chlorophyll

molecule, chlorOphyll content is highly correlated with leafN (Wolfe et al., 1988;

Schepers et al., 1992). Procedures have been developed to determine leafN status by

measuring chlorophyll content (Blackmer etal., 1994) and several researchers have found

certain wavelengths in the visible portion ofthe Spectrum correlate with chlorophyll

content (Gitelson and Merzylak, 1994; Knipling, 1970). Chlorophyll meter readings have

been used to estimate leafN by assessing leaf greenness (Schepers et al., 1992; Wood et

al., 1992; Dwyer et al., 1995). Lower concentrations of chlorophyll resulting fi'om

nutrient stresses have been detected by assessing leaf reflectance at different wavelengths
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(Al-Abbas et al., 1974). Wood et al.- (1992) found a high correlation between field

chlorophyll measurements at 430 and 750 nm and corn tissue nitrogen . Other research

has found that leaf chlorophyll and carotenoid concentrations correlated best with

reflectance measured at 550 nm compared to 450 nm and 670 nm (Thomas and Gausman,

1977). Blackrner et a1. (1994) used a Minolta SPAD 5.02 chlorophyll meter to measure

transmittance at 650 nm. They chose this wavelength because it lies between two

wavelengths associated with chlorophyll activity. Blackrner et a1. (1994) and Thomas and

Oerther (1972) found that reflectance measurements at 550 nm could be used to detect N

deficiencies in corn leaves.

Multispectral radiometry (MSR) is another technique that has been used to assess

plant reflectance at different wavelengths. Using a multispectral radiometer to measure

canopy reflectance, Ma et a1. (1974) found that reflectance measurements correlated to

“field greenness”. Experiments have been conducted attempting to associate plant

physiological stress with cthrophyll. Using a multispectral radiometer, Trenholm et a1.

(1999) found that Single and combinations of wavelengths in the visible and near infrared

portions ofthe Spectrum correlated well with visual turf quality, shoot density, and Shoot

tissue injury ratings. Carter (1994) and Carter and Miller (1994) found the ratio 695:760

nm an indicator of stress due to the “blue shift” phenomenon associated with leaf

chlorophyll. In addition, Carter et a1. (1996) and Carter and Miller (1994) found that leaf

chlorophyll changes due to physiological stress can be detected by MSR instruments.

Carter (1993) found wavelengths 535-640 nm and 685-700 nm to be good physiological

and herbicide-related stress indicators in forest/shrub canopies.

Identifying instrumentation that can evaluate leaf nitrogen content accurately and
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rapidly is paramount to theidevelopment ofa real-time sensor necessary for integration

into a comprehensive site-specific management system One of the primary goals of

sensor-based variable rate technology is to avoid the traditional costs and labor involved

in laboratory tissue analysis (Stone et al., 1993). Site specific management of nitrogen

can yield monetary and environmental savings for turf managers. Increasing concern for

groundwater quality is leading to efficient, economical and accurate assessment ofplant

nitrogen in many different crops (Blackrner, 1994). This concern for curbing groundwater

pollution is echoed by the turf industry. To date, most experiments concerning the

practical implications of site specific nutrient applications have dealt with agronomic

field crops. Remote sensing ofcanopy reflectance offers the potential for monitoring

plant growth (Bauer, 1975: Walburg et al., 1982 ) and differential fertilization could be

automated by sensing plant-reflected light (Blackrner, 1994).

Various indices have been developed to deriVe association models between

reflectance at specific wavelengths and nitrogen and chlorophyll content and plant

biomass (Wanjura and Hatfield, 1987; Thomas and Oerther, 1972). Employing a plant

nitrogen spectral index (PNSI) defined as PNSI = ABS [(NIR + red)/(NIR — red)], Stone

et a1. (1993) used photodiode detectors with interference filters for 671: 6 nm (red) and

780 :6 nm (near infrared) to determine a relationship between spectral radiance and

forage yield and forage N uptake to evaluate the potential for correcting in-season wheat

N deficiencies. Application of variable fertilizer N based on a PNSI reduced the spatial

variation and increased wheat grain yields when compared with application of a fixed N

rate. Cassman and Plant (1992) observed an increase in nitrogen use efficiency (NUE)

from spatially variable N applications depending on the native nutrient level ofthe soil.
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A normalized difference vegetative index (NDVI) defined as the inverse ofPNSI was

used by Perry and Lautenschlager (1984) and Duncan et al. (1993). NDVI has been used

to correlate (r2 = 0.97) with absorbed photosynthetically active radiation (Asrar et al.,

1984) in wheat (Triticum aestivum L.) and leaf area index (LAI = NIR wavelength

reflectance/Red region reflectance) (r2 = 0.96) in corn (Zea mays L.) and soybean

[(Glycine max (L.) Merr.] (Daughtry et al., 1992). Compared to conventional estimates

ofplant N, PNSI and NDVI values demonstrated smaller coeffecients of variation (Stone

et a1. 1993; Ma et al., 1996).

Application of Spectroscopy for Disease Sensing

A number ofbiotic and abiotic factors, can affect the pattern of the NIR spectra

such as plant pigments, leaf blade angle, diseases and plant growth stage (Raikes and

Burpee, 1998). In the presence of a disease, a number ofphysiological changes can occur

within the plant (Nilsson, .1995).Indices such as the Leaf Area Index and Normalized

Difference Vegetative Index (NDVI) [(NIR reflectance-R reflectance)/(NIR reflectance +

R reflectance)] have been correlated with the presence of green biomass and provide a

quantitative estimate of general stress on a plant; however, it is often difficult to

determine exactly the nature ofthe stress (Nilsson, 1995). Typically, a given stress

reduces photosynthetic capability and causes an increase in reflectance in the red and

blue portions of the spectrum and decreased reflectance in the NIR region due to

deterioration of leaf tissue (Nilsson, 1995) and leaf structural changes (Raikes and

Burpee, 1998). The percent of light reflected in the NIR region provides important

information related to the physiological changes in the plant due to disease and provides

an earlier indication of stress than visible reflectance (Raikes and Burpee, 1998). Safir et.

al. (1991) found that com infected with southern corn leaf blight (Helminthosporium
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maydis L.) caused higher reflectance in regions ofthe spectrum related to chlorophyll

(0.5-0.7 um and water (1.45-1.95 um) regions, indicating that the disease causes other

changes to occur.

Several methods have been developed in attempts to quantify the presence of

disease symptoms on plants. Infrared aerial photographs have been used with moderate

success to remotely sense sugar cane rust fungus (Puccinia kuehniz')(Ka.rteris et al.,1980);

sugarbeet blackroot disease, one of the causal agents ofwhich is Rhizoctonia solanz'

(Schneider and Safrr, 1975); and southern corn leaf blight (Safir et al., 1972). Contrary to

others, they found that visible reflectance changes preceded infrared reflectance changes.

Multispectral radiometry has been used for detection of tomato early blight and rust and

late leaf spot ofpeanut (Nutter, 1987). Multispectral radiometry has been used for

detecting dollar spot (Sclerotim’a homeocarpa Bennett) (Nutter, 1987) and brown patch

(Rhizoctom’a solam' Kuhn) (Raikes and Burpee, 1998) on creeping bentgrass (Agrostis

stolonifera L.) and brown patch and gray leaf spot (Pyriculara grisea) on tall fescue

(Festuca amndinacea L.) (Green et al., 1999). Generally, the purpose of these

experiments has been to develop an objective method for assessing disease severity in

research plots.
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CHAPTERTWO

REMOTE SENSING OF LEAF TISSUE NITROGEN CONTENT IN CREEPING

BENTGRASS AND ANNUAL BLUEGRASS USING NEAR INFRARED

SPECTROSCOPY

ABSTRACT

Site-specific application ofnutrients based upon the specific needs ofturfgrass plants has

the potential to save money and reduce environmental threats. The objectives of this

study were to develop a method to determine N content and ofturfgrass in the field and

greenhouse using a visible/near-infrared scanning monochromator and evaluate this

application for different turf species and different mowing heights. Nitrogen was applied

at rates of 0, 1.2, 2.4, 3.6, and 4.8 g N/m2 periodically over two growing seasons to

creeping bentgrass (Agrostis stolonifera Huds.) and annual bluegrass (Poa annua var.

reptans Hausskn) mowed at heights of 5 mm and 14 mm. Absorbance was expressed as

“log l/reflectance” between 400 and 2500 nm once color differences were evident.

Following spectrometer readings, clippings were harvested from each plot and analyzed

for nitrogen using a dry combustion nitrogen analyzer. Modified partial least squares

regression analysis demonstrated a relationship (r2 = 0.78-0.95) between leaftissue N

content and canopy reflectance. Wavelengths which illustrated the greatest differences

between lab values for the raw spectrum occurred at wavelengths 670, 1450, and 1930

nm, corresponding to chlorophyll a transmission, a primary overtone O-H stretch

attributable to water, and an O-H stretch attributable to water, 1ignin, protein, nitrogen,

and starch. These results indicate the potential for developing a real-time remote sensor

for site specific nutrient applications in turfgrass management.
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INTRODUCTION

Nitrogen is the mineral nutrient required in the greatest amount for proper

functioning of the turfgrass plant. Nitrogen is required for production of amino and

nucleic acids, low molecular weight transport molecules, and the proper functioning of

chlorophyll (Epstein, 1972). Nitrate and ammonium are the major sources utilized by the

plant. Unlike other nutrients, there is no reliable test for soil N. Although rules of thumb I

are recognized as guidelines; ultimate N application decisions are subjective and based

upOn a manager’s experience with a particular turf (Beard, 1982). Excessive application

of N can encourage disease development and reduce tolerance to environmental stress

and traffic. Nitrate leaching and subsequent pollution of ground water is an increasing

concern, especially on sandy sites.

As golf courses continue to fill the role of urban green areas and are the subject of

increased public and governmental scrutiny, a premium is placed upon superintendents to

balance environmental impact and playability. Site specific application of nitrogen inputs

has the potential to save money, optimize plant nutrition balance and reduce the potential

of overapplication and subsequent nutrient leaching. Since N is mobile in the soil and is

needed in relatively high amounts (4-5%) by the plant, a sensor capable of attaining a

rapid, real—time assessment of turfgrass leaf nitrogen content is necessary for a feasible

site specific management program.

Since N is an important component of the chlorophyll molecule (Wolfe et al.,

1988; Schepers et al., 1992) procedures have been developed to determine leaf N status

by measuring chlorophyll content (Blackmer et al., 1994) and several researchers have

found certain wavelengths in the visible portion of the spectrum correlate with
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chlorophyll content (Gitelson and Merzylak, 1994; Knipling, 1970). The fact that NIR

has been used successfully for constituent anaiysis‘ of forages lends to its potential

effective use in turfgrass analysis (Norris et al., 1976; Windham et al., 1991.).

Various indices have been developed to derive association models between

reflectance at specific wavelengths and nitrogen and chlorophyll content and plant

biomass (Thomas and Oerther, 1972). Employing a plant nitrogen spectral index (PNSI)

defined as

PNSI =|[(NIR + red)/(NIR — red)]l, Stone (1993) used photodiode detectors with

interference filters for 671 :1: 6 nm and 780 :1: 6 nm to determine a relationship between

spectral radiance and forage yield and forage N uptake to evaluate the potential for

correcting in-season wheat N deficiencies. Application of variable fertilizer N based on a

PNSI reduced the spatialvariation and wheat grain yields when compared with

application of a fixed N rate (Stone et al., 1993). Near infrared spectroscopy (NIR) is

used for analysis of a wide range of agricultural and industrial products (Wetzel, 1983).

Notable agricultural applications have involved measuring protein, moisture, fat, oil, and

prediction of organic carbon and total nitrogen (Wetzel, 1983; Dalal and Henry, 1986).

Absorbance of NIR radiation corresponds to energy required for changes in the internal

vibrational frequencies of the molecule and functional groups of organic molecules

absorb NIR radiation differentially. Though not able to measure elemental N directly,

NIR has the capability of measuring concentrations of N-H functional groups found in

the regions of 1020 mm, 1510 nm, 1980 nm, 2060 nm, and 2180 nm (Hatchell, 1999). The

fact that NIR has been used successfully for constituent analysis of forages (Norris, 1976;

Windham, 1991) lends to its potential effective use in turfgrass analysis. Fox et al.
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(1993) compared reflectance measurements in the NIR region with three other rapid tests

for predicting N-supplying capability and grain yield in corn and found that NIRS was as

statistically accurate as the pre-sidedress nitrogen test (PSNT) to predict the soil N-

supplying capacity and corn response to N.

The objectives of this research were to determine if an association exists between

leaf N content and reflectance from the canopy and determine how the relationship is

affected by turfgrass species or cultivar, mowing height, and soil type.
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MATERIALS AND METHODS

Turfgrass Culture

Field experiments were conducted and repeated during 1998 and 1999 on swards of

turfgrass at the Michigan State University Hancock Turfgrass Research Center (HTRC)

in East Lansing, MI. The swards consisted ofmature monostands of: annual bluegrass

(Poa annua var. reptans Hausskn) grown on an Owosso sandy loam [fme-loarny, mixed,

mesic Typic Hapludalfs] and mowed at either 5 mm (Poa annua green) or 14 mm (Poa

annua fairway), Penncross creeping bentgrass (Agrostis stolonzfera Huds.) grown on a

90:10 (v/v) sandzpeat mixture and mowed at either 5 mm (Penncross green) or 14 mm

(Penncross fairway), and Providence creeping bentgrass grown on an Owosso sandy loam

and mowed at .14 mm (Providence fairway).

Mowing pattern and direction was altered in accordance with typical golf course

management practices. To combat any effect ofmowing direction on canopy reflectance,

mowing was performed in one direction before spectrometer readings were obtained To

avoid possible confounding from the presence of fi'ee water on the leaves, dew was

removed when necessary. Pesticides were applied as necessary in order to maintain

healthy stands of turf during the experiments.

Nitrogen application

Urea ammonium nitrate (UAN; 28-0-0) was applied to each area every 2-4 weeks

depending on the growing conditions to produce and maintain turf color and N

differences. Treatments consisted of five N application rates of O, 1.2, 2.4, 3.6, and

4.8 g N/m2 replicated three times in a randomized complete block design (RCBD).

Experimental plots measured 1.2 m x 1.9 m with 0.3-m plot borders. A bicycle sprayer
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calibrated for an output of 375 L/ha was used to apply the N solution. Spray applications

were made by passing over the plots at 0.7 m/sec with a boom containing three 8002VS

nozzles. Following application, plots were irrigated with approximately 40-60 mm water

to wash the liquid ofi‘ the leaves into the soil. Soil acidity, P, and K were adjusted to

adequate levels based on soil testing.

Spectrometer Measurements

Spectral reflectance from the turf canopy was acquired with a NIRSystems (Silver

Spring, MD) Model 6500 online scanning monochromator. Spectral data were obtained

every 2 nm from 400 to 2500 nm and expressed in absorbance units as the log

(1/reflectance). The spectrometer was adapted for field use by mounting onto the rear of

a garden tractor. The acquired spectral signal was sent to the spectrometer via a fiber-

optic cable that was connected to a 30-cm by 15-cm metal box that was mounted onto

four lS-cm diameter wheels. .The box was suspended approximately 13 cm above the

surface of the turf canopy and collected radiation from a 3.5-cm by 12-cm area. The box

was designed to minimize the effects of incident solar radiation by shading the area

where reflectance measurements were taken. Furthennore, direct light was provided

from the box to the measured area using a tungsten-halogen bulb. Three measurements

were taken from different locations within each plot during each sampling time.

Measurements were taken between the hours of 0730 and 1830 h when visual differences

attributable to N were present.

In order to maintain accuracy and repeatability with the instrument, a reference

was attained for each scan and the spectrum for the scan was subtracted from that of the

reference. In this regard, the NIRS Online 6500 performs similarly to a double beam
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spectrometer where a reference and sample spectrum are obtained simultaneously and the

differences plotted on the output.

Diagnostic tests were conducted prior to sample readings for repeatability and

photometric accruacy. To insure instrument repeatability, diagnostics were conducted

prior to sample readings. A Coors ceramic reference plate, which is 80% reflective was

scanned once as a reference and again as a sample to measure repeatability. A noise test

was conducted by obtaining 32 scans ofthe reference and 32 more scans using the

reference as a sample. The repeatability noise was plotted as the difference between those

two sets. The root mean square (RMS) ofnoise errors across the entire spectra was used

to gauge repeatability. Accuracy tests were conducted with a polystyrene standard with

known peaks at 1143, 1681, 2166, and 2305 nm (Foss NIRSystems, 1993).

Clipping collection

Following spectrometer readings, clippings were collected with a walking mower.

One or two passes were made over each experimental unit with the mower in order to

collect enough clippings for N analysis. Clippings were collected from the same swath

where scans were obtained. After harvest from each plot, clippings were emptied into

paper bags, oven-dried for 72-96 hours at 60° C, ground with a UDY Sample Grinding

Mill (UDY Comp., Fort Collins, CO) using a 1mm or 2mm screen, and stored in ethylene

oxide-treated plastic bags until N analysis.

Nitrogen Analysis

Clippings were analyzed for percent N by dry combustion method on a Leco CNS-

2000 analyzer (Leco Comp., St. Joseph, MI). An amount of 1.00 a: 0.03 g catalyst and

0.1000-0.2300 g of dried and ground sample were weighed into ceramic boats and
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homogenized with a microspatula prior to analysis . Apple, tomato, and peach National

Institute of Standards and Testing (NIST) standards were alternately queued between 3-4

clipping samples and orchard leaf standards were queued approximately every 10

samples. Each sample was fed into a 1350° C combustion chamber, where all N was

converted to N2 or NO,. After exiting the furnace, the sample gas flowed through

AnhydroneTM (Leco Comp.) tubes and a particle filter before it was collected in the ballast

tank. When the ballast was filled, the gas equilibrated before passing through IR cells (for

C and S analysis) and an aliquot loop. With He used as the carrier gas, an aliquot doser

sends the sample gas to a catalyst heater that reduces all NOx to N2. Residual CO2 and

water were removed from the sample by passing through tubes containing KC104 and

Anhydronem. A thermal conductivity cell consisting oftwo pairs ofmatched filaments in

a wheatstone bridge configuration detected the amount ofN in the sample. The reference

pair was in contact with only the He carrier gas; whereas the measurement pair was in

contact with the sample gas. Nitrogen contained in the sample gas caused the filament

temperature to rise because N has a lower thermal conductivity than He. As the current

through the measurement pair changes, the bridge became unbalanced and produced an

electrical voltage proportional to the amount ofN contained in the sample. The output

was then fed to a preamplifier and A/D converter before the digital output signal was

used by the computer to display the “percent N” contained in the sample. Following

analysis, data was drift corrected by calibration with the orchard leaf. standards (Leco

Comp., 1.994).

38



CENTER and Principal Component Development

Spectra were analyzed using the entire spectrum ofmeasurement from 400-2496

nm using 181 chemometric software (Infrasoft International, Port Matilda, PA). Three

spectra from each plot were averaged and the average spectrum was matched with the

corresponding laboratory N value. A 1,4,4 math treatment was applied to the spectra

where the first number is the order of the derivative, the secOnd number is the range in

data points (taken every 2 nm) over which the derivative is calculated and the third is the

number of data points that are used in a running average smooth (Shenk and Westerhaus,

199 l a). Each sample spectrum was ordered according to its distance from the mean

spectrum of all measurements taken within a sampling period by the CENTER program

(Infrasoft International, Port Matilda, PA). Two passes were made on each file to identify

and remove spectral outliers as designated by those spectra with a standardized

Mahalanobis (H) distance [Eq.l] > 3.0 or T-value.[Eq.2] >2.5.

H=(x1-xba,)(X’X)"(x1-xbu)’ 1 [Eq. 1]

T = (Difference between 2 samples/ standard error of the difference) [Eq. 2]

A principal component analysis file was created on the third pass without removing

additional files.

Calibration Equation Development

Software used for all calculations was provided by Infrasoft International, Port

Matilda, PA. Using the default setting ofthe program, ordered files were used for cross

validation where one set of samples is used to create a regression equation and the

remainder are predicted. All sets are used alternately for equation development until all

samples have been used for prediction and have been predicted. Using the best fitted
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equation as determined by the cross validation procedure, a coefficient of determination

(r2) was calculated. According to Shenk and Westerhaus (1993c), r2>0.90 represents

acceptable association between spectra values and N values obtained by laboratory NIR

instruments during calibration development. Accounting for greater variability in field

conditions, r2 values > 0.80 were deemed acceptable for this study. The calibration

method used was a modified partial least squares regression (MPLSR) using detrend, and

standard normal variate standardization to create a full spectrum regression model (Shenk

‘ and Westerhaus, 1991b; Barnes et al., 1989). Because MPLSR used all 208 wavelengths

in the calibration, no calibration equations are shown due to their size and complexity.

During cross validation, each sample spectrum has the opportunity to be predicted

as if its laboratory reference value were unknown. The standard deviation of these

differences between the predicted value of the sample treated as an unknown and the

actual laboratory reference value is the=standard error ofcross validation (SECV). The

SECV values estimate the actual values of the equation when samples are within the

global H limits. Using each sample for both calibration and validation ofthe equation,

the lowest model error is used in conjunction with the lowest prediction error to develop

an equation with a low performance error. After the equation is created, the difference

between the actual N reference values and the predicted N values is calculated. The

standard deviation of these differences is the standard error ofcalibration (SEC). and the

SEC describes how well the predicted values fit the regression line.

Standard error of calibration will always be lower than SECV since SEC reflects

the fitted values; SECV reflects the actual reference values. The standard error of cross

validation is a more accurate means of assessing the equation accuracy than the SEC. The
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SECV indicates acceptable equation accuracy if it is lower than the standard deviaiton of

the laboratory analysis. The variance ratio (l-VR) is calculated as l-SECV2(SD2)'l

where SD = the standard deviation of the laboratory values (Couilliard et. al., 1997). The

variance ratio is the ratio of the total variance in the population to the variance predicted

by the equation and provides an indication ofthe accuracy ofthe model since an accurate

model will explain a greater amount ofthe variation that exists. The coefficient of

determination (r2) calculation involves actual values, while the variance ratio uses

predicted values, but in many instances they are similar. Instances where the unexplained

variance, determined by the variance ratio, is greater than the SECV would indicate an

unacceptable association between spectral analysis and actual N content.

Lab Value Predictions

The MONITOR program was used to predict the laboratory values among

species/cultivar, soil type and mowing height by using the equation developed from one

population to predict the laboratory N values for another as if they were unknown. For

prediction evaluation, the bias was calculated as the difference ofthe two populations’

means and is used as a baseline to adjust the calculated standard error of differences

(SED) between spectra. The standard error of differences was expressed as the standard

error ofperformance (SEP) to gauge prediction accuracy in the MONITOR program.

The bias confidence limits (0.6 x SEC) were calculated to identify any bias greater than

1.0 x SEC with 90% confidence when using a one tailed Type I error probability = 0.10.

SEP(Corrected) limit of 1.3 x equation SEC was used to determine acceptable

performance error (Windham et al., 1989).
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RESULTS AND DISCUSSION

Laboratory Reference Values

Dry combustion analysis of the turfgrass clippings ranged from 1.47 to 6.28% N

for all treatments following N applications ranging from 0 to 4.8 g/m2 (Table 2.1). A

representative VIS-NIRS raw spectra comparison ofturf that received a range of applied

N is shown in Fig. 2.1. Greatest spectral differences in clipping N content were located at

670 nm, 1450 nm, 1510 nm and 1950 nm and these absorption bands are associated with

chlorophyll a electron transmissions a primary overtone O-H stretch attributable to water,

a first overtone N-H stretch attributable to protein and nitrogen, and O-H stretch and

deformation attributable to water, lignin, protein, nitrogen, and starch, respectively (Fig.

2.1). Greatest first derivative spectra differences were observed approximately 30 nm

higher than raw spectra differences. ’

Visible-Near Infrared Reflectance Spectra and Predictions

The first objective of this research was to determine if a relationship exists

between the laboratory reference N values and the VIS-NIR spectra. Calculations ofH

distance by the program CENTER indicate a right-skewed histogram because the median

ofH values was lower than the mean (Fig. 2.2). Calibration statistics, estimated through

cross validation, for the turfgrass swards and their combination are presented in Tables

2.2-2.7. The r'2 (explained variation) and SEC (prediction accuracy) values were 0.92 and

0.25 for the Penncross green, 0.85 and 0.28 for the Penncross fairway, 0.81 and 0.38 for

the Providence fairway, 0.80 and 0.45 for the Poa annua green, 0.80 and 0.40 for the Poa

annua fairway, and 0.78 and 0.49 for the combination of all turfgrass swards.
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Table 2.1. Laboratory values ofnitrogen (N) content in turfgrass clippings.
 

 

Number of

Treatment Samples 1‘ Mean N(%) Range (%) Std. Dev.

'Penncross' green 83 4.10 2.08-6.28 0.89

'Penncross' fairway 119 3.87 2.15-5.29 0.74

'Providence' fairway 85 4.24 2.37-6.00 0.87

Poa annua green 104 3.38 1.47-5.84 1.00

Poa annua fairway 77 4.07 2.05-6.05 0.91

All treatments 498 3.92 1.47-6.28 0.93
 

1' Number of samples used in development of global equation

43



(an) 60':

2
.
0
2
7

1
.
6
2
6

1
.
2
2
5

0
.
0
2
4

0
.
4
2
3 4
0
0

9
2
5

1
4
4
9

1
9
7
4

2
4
9
0

—
-
4
_
—
_
_
-
-
_
.
.
—

-
-
-
-
-
-
—
-
.
.
—
_
_
-
-
-
-
.
.
-
.
_
-
.
-
—

L-—--—---—-_--L----

 

 

 

4

I

I

J

(
:
n
g
h
N

<
-
-
M
e
d
l
u
m
N

<’
—-
L
o
w
N

1.-....----..-----J--------------

I

I

r

I

I

l

I

t

I

I

an

 
 

 
 

p
-
-
-
—
-
—
-
«
-
-
—
-
—
—

-
—
-
-
-
—
—
-
-
-
-
-
-

.
-
—
~
-
-
-
-

.
-
-
—
.
-
.
-
-
—
—
—
—
-
-
—
.
-
-
-
—
-
.
.
—
-
-
.
-
-
-
-
-
-
~
-
-
-
.
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-
-
-
.
-
-
—

 

--.--------—--q

-—---------—-.4

----- .. ou- c-4

W
a
v
e
l
e
n
g
t
h
s

F
i
g
u
r
e
2
.
1
S
p
e
c
t
r
a
c
o
m
p
a
r
i
s
o
n
o
f
l
o
w
r
a
n
g
e
(
<
3
%

N
)
,
m
i
d
d
l
e
r
a
n
g
e
(
3
.
2
-
4
.
0
%
)
,
a
n
d
u
p
p
e
r
r
a
n
g
e
(
>
4
.
5
%
)

a
v
e
r
a
g
e
s
p
e
c
t
r
a
a
c
r
o
s
s

a
l
l
m
e
a
s
u
r
e
d
w
a
v
e
l
e
n
g
t
h
s
.

 



45

H
D
l
s
t
a
n
c
e
s

 
1
3
2

to

seldwas )o requrnN

M

M

 

 
o

-
.

-
a

a
-
m
_
m

_
.

..
.

0
.
2
9

2
.
1
6

4
.
0
3

F
i
g
u
r
e

2
.
2
.
H
i
s
t
o
g
r
a
m
o
f
H

d
i
s
t
a
n
c
e
s
f
r
o
m
t
h
e
m
e
a
n
s
p
e
c
t
r
u
m
f
o
r

a
l
l
s
a
m
p
l
e
s
.

5
.
9
1

 
7
.
7
0



Table 2.2.Calibration statistics for ‘Penncross’jreen combined over both seasons.

 

Term Wavelengtht SEC: R2§ F-value SECV# l-VRTT

1 686 0.633 0.495 90.29 0.658 0.458

2 1876 0.445 0.75 92.72 0.501 0.686

3 1896 0.405 0.794 19.75 0.464 0.73

4 686 0.359 0.837 24.63 0.525 0.655

5 686 0.302 0.885 37.46 0.744 0.308

6 0.286 0.897 10.59 0.578 0.582

7 0.274 0.905 8.67 0.521 0.66

8 0.267 0.91 5.34 0.43 0.769

9 0.249 0.922 13.55 0.375 0.824
 

Table 2.3.Calibration statistics for ‘Penncross’ fairway combined over bog seasons.

 

Term WavelengthT sac: R2 § F-value SECV# l-VRTT

1 1896 0.471 0.597 175.87 0.477 0.587

2 1886 0.404 0.704 ' 43.33 0.427 0.669

3 716 0.339 0.792 49.97 0.379 0.739

4 716 0.285 0.852 - 47.84 0.332 0.800
 

Table 2.4. Calibration statistics for ‘Providence’ fairway combined over both seasons

 

Term Wavelength‘l' sncr R2§ F-value SECV# r-vrw

1 686 0.647 0.447 68.84 0.663 0.425

2 1876 0.571 0.569 24.66 0.598 0.533

3 686 0.536 0.62 1 1.86 0.558 0.592

4 686 0.429 0.757 46.64 0.481 0.697

5 1886 0.403 0.786 1 1.80 0.463 0.72

6 0.380 0.809 10.52 0.45 0.736

 

‘1' Most important wavelength for the first five loading terms used in the equation

iStandard error of calibration

§ Coeffecient of determination

# Standard error of cross validation

“H'Explained variance
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Table 2.5.Calibration statistics for Poa annua green combined over both seasons.

 

Term Wavelength? SEC: R2 § F-value sracwr l-VRTT

1 1396 0.821 0.337 53.27 0.855 0.276

2 1876 0.623 0.618 76.24 0.69 0.529

3 686 0.546 0.706 31.28 0.613 0.628

4 1896 0.49 0.764 25.28 0.566 0.682

5 1396 0.446 0.804 21.49 0.543 0.708
 

Table 2.6.Calibration statistics for Poa annua fairway combined over both seasons.
 

 

Term Wavelengtht sac: R2 § F-value SECV# l-VR‘H'

1 716 0.692 0.416 55.16 0.764 0.303

2 1876 0.587 0.580 30.21 0.707 0.403

3 1876 0.524 0.666 20.07 0.664 0.474

4 686 0.493 0.703 10.26 0.597 0.574

5 686 0.436 0.769 21.28 0.553 0.634

6 0.403 0.802 13.02 0.53 0.664
 

Table 2.7.Calibration statistics for all populations combined over both seasons.
 

 

Term Wavelength'l SEC: R2 § F-value SECV# l-VRTT

1 686 0.73 0.386 313.86 0.734 0.381

2 686 0.681 0.465 74.25 0.69 0.452

3 686 0.571 0.624 210.44 0.602 0.583

4 1876 0.525 0.682 91.16 0.552 0.649

5 1876 0.475 0.741 111.98 0.515 0.695

6 0.461 0.756 31.36 0.509 0.702

7 0.448 0.769 29.36 0.499 0.714

8 0.435 0.784 29.20 0.491 0.723
 

1’ Most important wavelength for the first five loading terms used in the equation

iStandard error of calibration

§ Coeffecient of determination

# Standard error of cross validation

TTExplained variance
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Prediction accuracy ofthe global equation is illustrated graphically in Fig. 2.3. Shenk

and Westerhaus (1993c) identified r2>0.90 as acceptable for NIRS applications in

the laboratory. Accounting for greater variability under field conditions, r2>0.80 was

deemed acceptable in this study. Furthermore, the SEC values for all turfgrass swards

were lower than the standard deviation values calculated fiom the laboratory N analysis

(Table 2.1), thus indicating greater prediction accuracy ofN using VIS-NIRS compared

to conventional laboratory techniques.

The wavelength regions that contributed most to explaining the spectral variation

are listed in Tables 2.2-2.7 and shown as both raw and derivatized spectra in Figs. 2.4-

2.5. It should be noted that the derivative treatment causes a shift in the spectra. Using

derivatized spectra from the 1,4,4,1 math treatment the wavelength regions used most

often in equation development were 686-696 and 716-726 nm in the VIS region and

1870-1890, 1386-1396, 1480-1515, and 2360-2380 nm in the NIR region. Figure 2.6

illustrates comparison spectra ofthe first six eigenvector loading terms used in the

creation of the global equation. The wavelengths in the V18 region correspond to green

absorbance and have been associated with chlorophyll content in sweet pepper leaves

(Thomas and Oerther, 1972), corn (Walburg et al., 1982), and N content in wheat (Stone

et al., 1995). The major absorbance peaks for free water and water lattice occur around

1440 and 1900 nm, and 2200 nm, respectively (Bowers and Hanks, 1965; Hunt and

Salisbury, 1970). The major absorbance peaks for N-H occur around 1020 nm, 1510 run,

1980 nm, 2060 nm, and 2180 nm (Hatchell, 1999). Wavelength areas that contributed

most to equation deve10pment were consistent among turfgrass swards indicating the

49



Figure 2.4. Raw spectra comparison of the average spectrum of five populations.

1 — Penncross green

2 — Penncross fairway

3 — Providence fairway

4 - Poa annua green

5 - Poa annua fairway

50



2.200

 
 

 
 

 
 

1930 11m

670 nm

, ‘ ‘

1444 nm
\

fi

\\\\_fl_/\

.—l

0.433

2.200

1930 nm

670 mn

\

1444 nm

é

\’//\\

DD

0.433

/

2100 670 nm
1930 nm

1444 nm
\V

g. /‘\/

8° /
..r

/_J\

0.433

1930 nm
4

2.200

 

L
o
g

l
/
R

1444 nm
/ \ AM‘

f\\_fl,

,/

\

I- ~..-_ _/

 

 

\‘f/r

0.433

1930 nm
5

2200 l 670 nm

\

1444 nm
\~.

:5:

\ \N f”

\
/

\

2‘. fl / \ \

.8 /
V,”

.-’/~—/

0.433
\2,/

 

51



Figure 2.5. First derivative spectra comparison of the average spectrum of five

populations.

1- Penncross green

2- Penncross fairway

3- Providence fairway

4- P061 annua green

5- Poa annua fairway
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potential for development of one sensor that could used to predict N in shoot tissue across

a range of turfgrass species and cultivars. mowing heights, and soil types (Figs. 2.5-2.6).

Inter-population Predictions

The second objective of this research was to determine how the relationship

between VIS-NIRS and N in shoot tissue is affected by species or cultivar, mowing

height, and soil type. To accomplish this, N from one turfgrass sward was predicted using

the equation developed from another turfgrass sward and vice versa. The comparisons

evaluated were: Poa annua fairway vs. green on a sandy loam; Penncross creeping

bentgrass fairway vs. green on sandzpeat; Poa annua vs. Providence on sandy loam

fairway; and Poa annua vs. Penncross creeping bentgrass across soil types. Prediction

statistics showing these comparisons are presented in Table 2.8. In general, the ability of

one population to predict N from another was very poor and unacceptable for

applications in SSM. Coefficients of determination ranged from 0.07 to 0.55 and standard

errors of performance (SEP) exceeded the acceptable limited determined as 1.3 times

SEC of the equation used for prediction. Poor prediction performance in these

experiments indicates that, although there is an association between laboratory N values

and spectra patterns, the equations developed in this research were p0pulation-specif1c.

These results may due to differences in leaf canopy architecture resulting from different

mowing heights, and genetic color differences among species and cultivars. More

importantly, however, is the fact that the prediction accuracy inherent in this statistical

procedure is optimized by using a broad database of samples. Therefore, it would be

difficult to detect an association between two similar but different populations if the
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prediction equation was based upon only one population. Developing a calibration

equation with only one population’s data provides a local calibration specific to that

species/cultivar and mowing height. To illustrate this point, a separate prediction

equation was developed for a portion of the global data set, and then used to predict N

from the remaining population. The average r2 and SEP for the five subsets used in this

comparison were 0.65 and 0.58, respectively (Table 2.9). The lower prediction accuracy

Compared to the overall global equation (Table 2.7) was most likely due to fewer samples

used to develop the equation.

CONCLUSIONS

These results indicate that a relationship exists between VIS-NIRS and turfgrass

leaf N content. The lower prediction accuracy between laboratory N values and VIS-

NIRS spectra demonstrated in this study as compared to other research using the same

instrumentation and statistical analysis may attributed to a number of factors. Typical

NIRS analysis involves uniform grinding of the sample and use of a laboratory benchtop

model for spectral acquisition. Although procedures were taken to minimize the

variability due to extraneous factors, conducting experiments in the field and analyzing

plants in situ lends itself to a veritable plethora of complex influences. Differences in

canopy architecture, affected by leaf angle, texture, surface characteristics, mowing

height and density, and phenotypic variation among species and cultivars can change

reflectance from the plant canopy (Green et al., 1998; Jackson and Pinter, 1986). Since

O-H functional group bonding has a considerable affect on spectral absorbance patterns,

differences in plant or soil water relations may change the prediction accuracy of N.
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Table 2.9. Statistics for predicting subsets of the global equation using the remaind

global data for equation calibration.

 

 

 

my. .Bep___ulation Lennard

12mg: creme—ted mama

lo a 'o Subset 2 Global Quation

SEPT 0.438 0.674

Means 3.785 3.922 4.012

Biaszl: -0.018 -0.090

Bias Limit 0.440 0.279

SEP (C)§ 0.440 0.672

SEP (C) Limit 0.678 0.454

Std. Dev. 0.790 0.881 0.759

Slope 0.990 0.782

122 0.760 0.604

Average H# 0.390 0.398

N 102 102

Quation P 'on Egpgjpn

predicting predicted predicting

Glo Subset 4 lepal Eguatipn

SEPT 0.594 . 0.612

Means 3.950 3.916 3.870

Bias: 0.025 0.040

Bias Limit 0.296 0.280

SEP (C)§ 0.546 0.614

SEP (C) Limit 0.64 0.607

Std. Dev. 0.767 1.028 0.884

Slope 1.123 0.935

R‘ 0.682 0.647

Average H# 0.393 0.408

N 104 104

Equation

Mining

Global FAuation

SEPT 0.603

Means 3.952

Biast -0.024

Bias Limit 0.605

SEP (C)§ 0.605

SEP (C) Limit 0.676

Std. Dev. 0.795

Slope 0.865

R2 0.571

Average H# 0.384

N 103
 

‘1 Standard error of performance

1 Mean of differences due to instrument performance j

§ Standard error of performance, corrected for bias

# Average Mahalonobis distance from the mean spectrum
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The practical use of the association between leaf N and VIS-NIRS depends upon

the degree of scrutiny desired. The ability to sense and apply N in SSM by explaining

80% of the variation and with 95% accuracy would be an improvement over standard soil

testing practices and blanket applications of N. Using SSM, a turf manager would be able

to apply N based on an optimal leaf N range between, for example, 4 to 5%. Further

research is needed to determine the optimal range of leaf tissue N for various turfgrass

species and under different management conditions.

The MPLSR procedure for NIRS has been found to provide greater prediction

accuracy compared to other procedures such as stepwise regression (Shenk and

Westerhaus, 19913). According to Couillard et a1. (1997) and Shenk and Westerhaus

(1993c), the success of using spectroscopy and MPLSR analysis to predict plant and soil

constituents is highly dependent upon the development of a broad database of samples

with known analysis. Accordingly, this research has only begun to develop such a

database to accurately predict N in creeping bentgrass and Poa annua. Although MPLSR

analysis may be the most useful technique for improving prediction accuracy in NIRS, it

is not the preferred technique to analyze how individual factors such as cultivar, mowing

height, and soil type affect VIS-NIRS. Therefore, additional analysis is required to

determine which wavelengths and wavelength combinations should be used to develop a

sensor to detect N or other constituents in different turf environments. Furthermore, this

research was conducted under conditions where only one variable was intentionally

imposed. To develop an accurate sensor for use in SSM, the influence of other anomalies

and their interactions with VIS-NIRS need to be explored. For example, since fungal

pathogens affect turf by disrupting phloem translocation and subsequent macromolecule
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synthesis and assimilation, an interaction between pathogen presence and N content

would be expected.
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CHAPTER THREE

REMOTE SENSING OF DISEASESEVERITY IN CREEPING BENTGRASS AND

ANNUAL BLUEGRASS USING NEAR INFRARED SPECTROSCOPY

ABSTRACT

Brown patch (Rhizoctonia solam‘ Kuehn) and dollar spot (Sclerotinia homeocarpa

Bennett) are two common diseases of cool season turfgrass in the United States. As

governmental and public scrutiny of golfcourse maintenance practices increases,

superintendents are beckoned to balance playability with fewer fungicide inputs. The

objective of this study was to develop a method of evaluating disease severity using a

direct light visible/near—infi‘ared scanning monochromator on creeping bentgrass

(Agrostis stolom'fera Huds.) and annual bluegrass (Poa annua var. reptans Hausskn).

Categorical disease symptom severity ratings ofbrown patch and dollar spot were made

on different turfgrass swards and associated spectra obtained so that absorbance was

expressed as “Log l/reflectance” between 400 and 2500 nm. Discriminant analysis ofthe

data yielded classification accuracy. In the dollar spot study, 20 out of 193 samples

(10.3%) were classified incorrectly and in the brown patch study using three severity

categories, accuracy improved greatly as there were only 29 misses out of a total of 336

samples (8.6%). These results suggest the feasibility of developing a visible/near-

infiared sensor for the detection ofdisease severity. Future research should address

investigation ofhow various stresses interact to affect the spectral reflectance ofthe

turfgrass plant.
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INTRODUCTION

Increasing governmental regulation of pesticides and growing public scrutiny of

golf course management practices are leading tothe development of improved methods

to decrease fungicide inputs on golf courses. As golf courses continue to fill the role of

urban green areas and are the subject of increasing public and governmental scrutiny, a

premium is placed upon superintendents to balance environmental impact and playability.

Although modern chemistry has led to advances on improving fungicide efficacy with

lower active ingredient rates, typical management practices involve widespread “blanket”

applications of fungicides during periods conducive to disease development. Site specific

application of fungicide has the potential to save money, provide an efficient means for

effective disease control, and reduce the amount of fungicide applied. Since disease

pathogens are dynamic and can infect plants quickly in the presence of optimal growing

conditions, a sensor capable of attaining a rapid, real-time assessment of disease status is

necessary for incorporation into a site specific management program.

Typically, a given stress reduces photosynthetic capability and causes an increase

in reflectance in the red and blue portions of the spectrum and decreased reflectance in

the NR region due to deterioration of leaf tissue (Nilsson, 1995) and leaf structural

changes (Raikes and Burpee, 1998). Several methods of remotely sensing plant disease

status have been evaluated in past research. Indices such as-the Leaf Area Index (LAI)

‘ (R reflectance/Red reflectance) and Normalized Difference Vegetative Index (NDVI)

[(R-R)/(R+R)] have been correlated with the presence of green biomass and provide a

quantitative estimate of general stress on a plant; however, it is often difficult to

deternrine exactly the nature of the stress (Nilsson, 1995). Infrared aerial photographs
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have been used with moderate success to remotely sense sugar cane rust fungus (Puccinia

kuehnii)(Karteris et al.,1980); sugarbeet blackroot disease, one of the causal agents of

which is Rhizoctonia solani (Schneider and Safir, 1975); and southern corn leaf blight

(Helminthosporium maydis L.) (Safir et al., 1972).. Contrary to others, they found that

visible reflectance changes preceded infrared reflectance changes.

The objective of this research was to assess disease severity of two common cool-

season turfgrass diseases, brown patch (Rhizoctonia solani Kuehn) and dollar spot

(Sclerotinia homeocarpa Bennett) using a scanning monochromator capable of

measuring spectral reflectance from 400-2400 nm.
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MATERIALS AND METHODS

Two experiments were conducted at the Michigan State University Hancock

Turfgrass Research Center (E. Lansing, MI). The first experiment was conducted to

assess dollar spot (Sclerotinia homeocarpa Bennett) on swards consisting of mature

annual bluegrass (Poa annua var. reptans, Hausskn) grown on a Owosso sandy loam

[fine-loamy, mixed, mesic Typic Hapludalfs], ‘Providence’ creeping bentgrass (Agrostis

stolonifera, Huds.) grown on a Owosso sandy loam, and ‘Penncross’ creeping bentgrass

grown on a 90: 10 (v/v) sand:peat mix that conformed to United States Golf Association

(USGA) specifications. The former two swards were maintained as fairways and mowed

at 14 mm and the latter maintained as a green and mowed at 5 mm. Spectrometer

readings were obtained from June 16-19, 1999 from portions of the sward naturally

infested with dollar spot. Spectra measurements were categorized qualitatively by visual

assessment as diseased (diseased); close to the disease but visually healthy (disease

front); and visually healthy within the same sward, but not close to disease symptoms.

(healthy).

The second set of experiments was conducted to assess brown patch (Rhizoctonia

solam' Kuehn) on a mature sward of ‘Penncross’ creeping bentgrass grown on a 90: 10

USGA sand:peat mix maintained as a green and mowed at a height of 5 mm.

Spectrometer readings were conducted during September 2-9, 1999 from areas included

in a curative fungicide treatment study. Spectra measurements were qualitatively

categorized by visual assessment according to disease severity as severe, moderate, and

light.
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Spectrometer Measurements

Spectral reflectance from the turf canopy was acquired with a NRSystems (Silver

Spring, MD) Model 6500 online scanning monochromator. Spectral data were obtained

every 2 nm from 400 to 2500 nm and expressed in absorbance units as the log

(1/reflectance). The spectrometer was adapted for field use by mounting onto the rear of

a garden tractor. The acquired spectral signal was sent to the spectrometer via a fiber-

0ptic cable that was connected to a 30-cm by lS-cm metal box that was mounted onto

four 15-cm diameter wheels. The box was suspended approximately 13 cm above the

surface of the turf canopy and collected radiation from a 3.5-cm by l2-cm area. The box

was designed to minimize the effects of incident solar radiation by shading the area

where reflectance measurements were taken. . Furthermore, direct light was provided

from the box to the measured area using a tungsten-halogen bulb. Three measurements

were taken from different locations within each plot during each sampling time.

Measurements were taken between the hours of 0730 and 1830 h when disease symptoms

were present.

In order to maintain accuracy and repeatability with the instrument, a reference

was attained for each scan and the spectrum for the scan is subtracted from that of the

reference. In this regard, the NRS Online 6500 performs similarly to a double beam

spectrometer where a reference and sample spectra are obtained simultaneously and the

differences plotted on the output.

Diagnostic tests were conducted prior to sample readings for repeatability and

photometric accuracy. To insure instrument repeatability, diagnostics are conducted prior

to sample readings. A Coors ceramic reference plate, which is 80% reflective was
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scanned once as a reference and again as a sample to measure repeatability. A noise test

was conducted by obtaining 32 scans of the reference and 32 more scans using the

reference as a sample. The repeatability noise was plotted as the difference between those

two sets. The root mean square (RMS) of noise errors across the entire spectra is used to

gauge repeatability. Accuracy tests were conducted with a polystyrene standard with

known peaks at 1143, 1681, 2166, and 2305 nm (Foss NRSystems, 1993).

Data Analysis

Data were analyzed by multivariate discriminant analysis as described by

Morrison (1990) using software provided by Infrasoft International (Port Matilda, PA).

The three qualitative dollar spot categories were discriminated in the first analysis. In

another separate analysis, attempts were made to discriminate among spectra from the

three qualitative brown patch disease categories and spectra gathered from a healthy

‘Penncross’ green during a nitrogen assessment experiment. A third analysis combined

all levels of disease (excluding “healthy” samples) for each of the two diseases and

attempted to discriminate between the two diseases.

The variables used for classification assume that each population were

characterized by a multivariate normal distribution and has a common correlation variate.

Following these calculations, cross validation was conducted as described in Chapter 2 so

that each set of spectra was used to develop the prediction equation and was placed into

one of the categories. Analysis was conducted using the default settings for the

DISCRIMINATE program of the Infrasoft Software with a wavelength scanning range

from 400-1000 nm and 1100-2100 nm in 4 nm increments and a math treatment of

1,4,4,1 (derivative, gap, smoothing factor 1, smoothing factor 2) without scatter
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correction (Shenk and Westerhaus, 1999). Eight cross validation groups were used in

creating the prediction equation. In addition to the discrimination comparisons described

above, an analysis was conducted to discriminate between brown patch and dollar spot.

A 10% error rate for prediction of the samples was deemed acceptable in the evaluation

of the results.
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RESULTS AND DISCUSSION

Dollar spot study

In the dollar spot study, 20 out of 193 samples (10.3%) were classified incorrectly

(Table. 3.1). Comparison spectra for the raw and derivatized data are presented in Fig.

3.1. Attempting to identify the spectra obtained from the “disease front” resulted in the

highest percentage of misclassified samples. These results indicate the possibility of

identifying the disease before symptoms become manifest; however the question still

remains whether this is due only to its close proximity to the disease and if the same

results would be measured in a symptom-free sward that is on the verge of developing

symptoms. A concern that may contribute to confounding is the fact that the scanning

view of the spectrometer was often larger than the diseased area for some scans classified

as “diseased.” This discrimination suggests the possibility of using information from the

VIS-NR portion of the electromagnetic spectrum for a sensor designed to spray variable

rates of fungicide preventatively or curatively for the dollar spot disease.

Brown Patch

Using all four categories, 87 of a total 336 samples (26%) were misclassified

(Table. 3.2). Comparison spectra for the raw and derivatized data are presented in Figs.

3.2 and 3.3, respectively. This was most prevalent as “severe” spectra were misidentified

as “moderate,” and “moderate” spectra mistaken for “light.” In an effort to improve

prediction accuracy at the expense of reduced prediction precision, the “light” and

“moderate” categories were combined and the data were analyzed using three categories

for discrimination. Prediction accuracy improved greatly as there were only 29 misses out

of a total of 336 samples (8.6%) (Table 3.3). It is unclear whether or not these results
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Table 3.1. Predicted v. Actual Categog Classification for Dollar Smt Smptra

 

 

Predicted Category

% of

Close Diseased Healthy Total Total % Error

0

.3 Close 56 6 6 68 35.2 17.6

‘5 Diseased 5 58 l 64 33.1 9.3

0 Healthy 2 0 59 61 31.6 3.3

V)

Totals 63 64 66 193

Misses for

Category 7 6 7

Uncertain 22 21 18
 

73



Table 3.2. Predicted v. Actual Category Classification for Brown

Patch Spectra Using Four Categories.

Predicted CategorY

 

 
 

Light Moderate Severe % of

. Healthy disease disease disease Total Total % Error

Healthy 68 0 0 0 68 20.2 0.00

E Light disease 0 42 19 1 62 18.5 32.2

g! Moderate disease 0 28 73 14 l 15 34.2 36.5

(g Severe disease 1 ' 3 21 67 112 33.3 22.3

Totals 68 73 113 82 336

Misses for Category 1 31 40 15

Uncertain 6 41 64 44

 

Table 3.3. Predicted v. Actual Category Classification for Brown Patch Spectra Using

Three Categories.

Predicted Category

Medium Severe % of

Healthy disease disease Total Total ‘70 Error

 

0 Healthy 68 0 0 68 20.2 0.00

3
CU

5: Medium disease 0 175 1'7 192 57.1 8.86

8

a; Severe disease 1 l 1 65 77 22.9 14.3

Totals 68 186 82 336

Misses for Category 1 1 1 l7

Uncertain 0 27 16
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suggest the subjectivity of qualitative severity ratings and subsequent broad overlap of

populations classified as “light” and “moderate”. For practical applications, three

categories, “healthy”, “light-moderate”, and “severe” may prove sufficient for effective

site-specific applications and subsequent savings in fungicide.

Brown Patch v. Dollar Spot

Combining the three categories of brown patch severity spectra and “diseased”

and “front” categories of dollar spot, respectively, analysis was conducted to assess the

accuracy of discriminating between the two diseases. Results indicate these populations

are significantly different enough to be predicted with 100% accuracy in this particular

study; however, the fact that the dollar spot spectra were gathered on 3 different grass

swards and the brown patch on only sand-based, green-height creeping bentgrass

provides for the strong likelihood of a confounding effect due to grass species, mowing

height, and soil type.

CONCLUSIONS

These results indicate that VIS-NR8 is a viable method for assessing brown

patch and dollar Spot severity. According to the data presented, the spectrometer can

qualitatively categorize disease severity with a suitable degree of accuracy. Unlike

previous experimentsinvolving the association of turfgrass disease severity with

reflectance at discrete spectral wavelengths, the discriminant analysis described above

used continuous portions of the visible and near infrared portions of the spectrum for

analysis. Previous research indicates that reflectance values measured at 660-, 710-, 760-

, and 810-nm and subsequent mathematical combinations of these provide for the best

correlation between spectral and disease severity ratings on brown patch and gray leaf
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spot (Raikes and Burpee, 1998; Green etal., 1998). The raw data (Fig. 3.2) illustrate

spectral differences at these wavelengths and throughout the NR portion of the spectrum,

notably at 1448-nm and 1932-nm. First derivative results (Fig. 3.3) illustrate the greatest

differences between categories at 700-, 1400-, and 1930-um. Because of the various

physiological effects produced by pathogens as they degrade leaf tissue, it is difficult to

focus on one particular portion of the spectrum for differences in reflectance.

For practical integration into a site-specific management regime, threshold levels

of disease need to be developed for proper fungicide treatment. One of the caveats of this

technology is the limited amount of data that has been collected. Studies such as these

have been conducted by focusing on one anomaly of interest and experimental

procedures seek to exclude all other extraneous factors that could affect the absorption

pattern of the instrument. However, any interaction effect of multiple anomalies (i.e.

water stress, disease, insect damage, chlorosis, etc.) on plant reflectance patterns and their

subsequent interpretation is relatively unexplored. To further assess the feasibility of

VIS-NR8 technology in site-specific management, experiments need to be conducted

exploring interactions among various anomalies.
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