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ABSTRACT

REMOTE SENSING OF LEAF TISSUE NITROGEN CONTENT AND DISEASE
SEVERITY IN CREEPING BENTGRASS AND ANNUAL BLUEGRASS USING
NEAR INFRARED SPECTROSCOPY

By

Geoffrey Jordan Rinehart

Site-specific application of nutrients and pesticides based upon the specific needs
of turfgrass plants has the potential to save money and reduce the potential threat of
polluting the environment. The objectives of this study were to develop a method to
determine N content of leaf tissue and disease status of brown patch (Rhizoctonia solani
Kuehn) and dollar spot (Sclerotinia homeocarpa Bennett) on creeping bentgrass (Agrostis
stolonifera Huds.) and annual bluegrass (Poa annua var. reptans Hausskn) using a direct
light visible/near (VIS-NIR) infrared scanning monochromator. Nitrogen was applied at
rates of 0, 1.2, 2.4, 3.6, and 4.8 g N/m? periodically over two growing seasons to creeping
bentgrass and annual bluegrass mowed at heights of S mm and 14 mm. Absorbance was
expressed as “log 1/reflectance” between 400 and 2500 nm once color differences were
evident. After spectrometer readings were attained, clippings were harvested from each
plot and analyzed for N using a dry combustion analyzer. Modified partial least squares
regression analysis using the wavelengths from the entire spectrum demonstrated a
relationship between leaf tissue N content and canopy reflectance (r*= 0.78-0.92).
Wavelengths which illustrated the best association between lab values for the raw

spectrum occurred at wavelengths 670, 1450, and 1930 nm and correspond to chlorophyll



a transmission, a primary overtone O-H stretch attributable to water, and an O-H stretch
attributable to water, lignin, protein, nitrogen, and starch, respectively.

Brown patch and dollar spot are two common diseases of cool season turf grass in the
United States. As governmental and public scrutiny of golf course maintenance practices
increases, superintendents are beckoned to balance playability with fewer fungicide
inputs. Categorical disease symptom severity ratings of brown patch and dollar spot were
made on different turfgrass swards and associated spectra obtained. Discriminant analysis
of the data yielded categorical accuracy. In the dollar spot study, 20 out of 193 samples
(10.3%) were classified incorrectly using categories associating spectra with diseased
areas, areas close to the disease that appeared healthy, and healthy areas away from the
disease symptoms. In the brown patch study there were only 29 misses out of a total of
336 samples (8.6%) using three classification categories consisting of severe and medium
disease and healthy areas. These results suggest the feasibility of developing a VIS-NIR
sensor for the detection of disease severity. Future research should address how various
stresses interact to affect the spectral reflectance of the turfgrass plant. These results
indicate the potential for developing a real-time remote sensor for site specific nutrient

and fungicide applications in turfgrass management.
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CHAPTER ONE
INTRODUCTION

Pesticides and fertilizers are an integral part of golf course management today as
golfers expect a high level of course maintenance and playability. Accompanying this
phenomenon is the increased potential for these inputs to have detrimeﬁtal environmental
impact if applied without educated decisions about the needs of the turfgrass ecosystem.
As golfers’ expe¢tations increase, golf course superintendents are forced to balance
course playability with environmental considerations. Increasing public and
governmental scrutiny will continue to put a premium on a superintendent’s ability to use
necessary inputs judiciously. In light of this, it is important that fertilizer and pesticide
resources be used responsibly to both reduce environmental impact and maintain a
reasonable turfgrass quality.

Site specific management (SSM) or Precision Turf Management (PTM) refers to
the practice of assessing a property’s variability and adjusting management practices
accordingly. Site variability can be affected by a number of factors including soil texture
and fertility, terrain, slope and aspect, mowing height, drought stress, disease pressure,
turfgrass species and cultivar composition, and by environmental factors such as light
quality and intensity and air flow characteristics.

The four primary components of SSM involve the global positioning system
(GPS), geographic information systems (GIS), sensing, and variable rate technology
(VRT). The GPS refers to a collection of 24 orbiting satellites which are oriented
circumspherically about the earth and were originally established for military navigation

purposes. A GPS receiver communicates via radio signal with appropriate satellites and



the distance from the satellites to the reciever is calculated. Using trigonometric
principles, the reciver’s exact location can be determined and described in coordinates of
latitude and longitude. The precision of the transmitter measurements varies according to
sophistication and cost. Current technology allows precision down to millimeter
increments. Sub-meter resolution would be required for practical appli;:ation on golf
courses, which require greater precision than production agriculture.

Geographic information systems (GIS) refers to any of a number of computer
software programs which integrate information about site variability into a visual format,
typically in the form of a map. It provides a method by which spatial information may
be captured, stored, analyzed, displayed, retrieved and overlaid (Krzanowski et al., 1992).
Geographic information systems allow a manager to overlay maps containing information
about various parameters of interest and graphically observe relationships that may exist
among the parameters.

A cost-effective process for acquiring spatial information is currently the most
limiting aspect of SSM in the realm of turfgrass science. Real-time sensing is a
component of precision management which is necessary in order to collect a large
volume of data efficiently, quickly, and relatively inexpensively and is essential to
developing the full potential SSM. A sensor based upon reflectance from the canopy
could provide a cost- and labor-effective strategy for assessing turf leaf N content and
disease symptoms.

The information can be geographically referenced with GPS and assimilated with
GIS. Based upon the sensor data, a spray vehicle equipped with a manifold of variable-

output nozzles can vary the application rate of an input such as a fertilizer or pesticide.



The efficient use of chemical inputs on golf courses will help decrease environmental
impact. Variable rat? technology (VRT) is the process of adjusting the rate of applied
inputs according to the assessed needs of the plant. Information acquired in real-time can
be processed so that appropriate spray applications are conducted and referenced using
GPS and GIS. The goal of sensor-based VRT is “to instantaneously adjust application
rates based on sensor measurements of fertility [or other factors] as an applicator travels
across the field.” (Stone et al., 1993). Effective use of this technology will sponsor
precise applications of inputs needed to retain turfgrass quality and reduce the total
amount of inputs needed.

The sensing aspect of SSM is the focus of this research and involves scanning turf
with a spectrometer which is able to detect reflectance of the turf canopy in the range of
400 to 2500 nm. The objectives of this research were to: 1) determine if an association
exists between leaf N content and reflectance from the canopy; 2) determine how the
relationship is affected by turfgrass species or cultivar, mowing height; and soil type; 3)
to establish a spectral signature characterizing the presence of Rhizoctonia solani and

Sclerotinia homeocarpa on turf.



LITERATURE REVIEW

NITROGEN USES IN THE TURFGRASS PLANT

Nitrogen (N), potassium(K) and phosphorous(P) are referred to as macronutrients
because they are the mineral nutrients required in the greatest amounts for proper plant
nutrition, excluding atmospheric elements carbon, oxygen, and hydrogén which are
intrinsic to many plant biochemical functions (Marshner, 1995). Nitrogen is required by
the plant for the production of amino and nucleic acids, enzymes, and proteins and the
proper functioning of chlorophyll (Epstein, 1972). Although 78% of the atmosphere is
composed of N, atmospheric N is not available to turfgrass because of the diatomic
molecule’s high triple bond energy. Nitrogen is present in many forms, but nitrate (NO3")
and ammonium (NH() are the major sources utilized for plant uptake. These forms of N
are produced by aerobic microorganisms decomposing organic matter or by the input of
synthetic fertilizers. Symptoms of N deficiencies include shoot stunting, decreased
tillering, and development of chlorosis symptoms in older tissue because N is phloem-
mobile (Marshner, 1995). Turfgrass typically contains 3-5% N by dry weight. Turfgrass
N requirements depend on soil nutrient holding capacity, natural precipitation or
irrigation, mowing height, traffic, and species or cultivar (Beard, 1982). Unlike other
nutrients, there is no reliable test for soil N. Although rules of thumb are recognized as
guidelines, ultimate N application decisions are subjective and based upon a manager’s
experience with a particular turf (Turgeon, 1991; Beard, 1982). Sufficient N should be
supplied to maintain density, adequate recuperation and shoot growth and color (Beard,
1982). Excessive N can contribute to excessive thatch, greater disease incidence, a

restricted root system, lower recuperative capacity due to energy being allocated to aerial



growth, and environmental stress tolerance on account of depleted carbohydrates (Beard, .
1982; Couch, 1995).

NITROGEN CYCLING IN THE PLANT COMMUNITY
There are several fates of N applied to turf. Nitrogen can be taken up by the plant,

stored in the thatch/soil, volatilized, denitrified or leached. Starr and Deroo (1981)
reported that 19-27% of applied N may be immobilized in thatch. Relatively high N
levels within thatch can sustain high microbial populations. Leaching (loss of NO3;™-N
through the soil profile) is most prevalent with fast-release fertilizers and sandy soils.
Volatilization refers to gaseous phase losses of N as ammonia; these losses increase with
higher temperatures and relative humidity. Denitrification involves the reduction of
nitrate and nitrite to nitric oxides and N, The process occurs mainly in waterlogged or
anaerobic soil conditions as microbes use nitrate as an electron acceptor instead of
oxygen.

Mineralization and immobilization are the two dominant processes involving N in
soil organic matter turnover and are strongly affected by the carbon:nitrogen (C:N) ratio
of organic material present in a plant’s rootzone. Mineralization occurs as aerobic
heterotrophic organisms conduct aminization and ammonification, converting
organically-bound N to NH,". Ammonification is the process where fungi, bacteria, and
actinomycetes transform amino acids from organic matter into ammonia. Mineralization
generally increases with increasing temperature and adequate moisture. Conversely,
immobilization refers to the conversion of inorganic N to organic N and one of the main
factors contributing to this is the C:N ratio of the organic matter present. In a high C:N

organic matter environment, microbes will use ammonium and nitrate from the soil and



effectively immobilize it from use by plants. Subsequently, immobilized N can be
mineralized with the addition of high N organic matter (Tisdale et al., 1993).
NITROGEN ASSIMILATION BY THE PLANT

Ammonium assimilation begins with NH," uptake into roots and ends with its
incorporation into amino acids, amides, proteins and other nitrogen coﬁplexw. Upon
plant uptake, either protons are released for charge compensation or anion uptake
increases, depending on the soil ionic environment. Accordingly, roots are the primary
site of assimilation since they can better dispose of excess protons than shoots. Uptake is
optimal in neutral pH soils and decreases with an increase in acidity. Ammonium can be
dissociated to ammonia (NH3) or directly assimilated into amino acids and amides in the
root and subsequently amino acids in the shoot using carbon skeletons from the
tricarboxylic acid (TCA) cycle (Marshner, 1995).

The nitrate assimilation pathway is cornerstone to incorporating inorganic N into
organic compounds. Contrasting ammonium uptake, high nitrate levels correspond with
an increase in uptake of organic cations by the roots. Nitrate reduction can occur in roots
and shoots. In low concentrations, a greater percentage of nitrate is reduced in the roots
and with greater concentrations, more is translocated for reduction in the shoots.
Maximum nitrate assimilation occurs when leaf expansion rate is high (Salisbury and
Ross, 1992; Marshner, 1995). |

As opposed to ammonium, nitrate must be reduced to NH," in order to be

incorporated into organic structures. Nitrate assimilation occurs via a specific transport



system and involves a two-step reaction which is spatially separated:

NO; 2 NOy [Eq. 1]
NO; + 6¢” +8H'> NH; [Eq. 2]
NO;™ + 8H' +8¢” > NH; + 2H,0 + OH [Eq. 3]

The first reaction [Eq. 1] is catalyzed by Nitrosomonas bacteria and the second step
[Eq. 2] is catalyzed by Nitrobacter bacteria. The electron donor in the processes is the
compound NAD(P)H. Good correlation has been observed between light intensity and
nitrate reduction, but it is unclear whether this is due to the increased light itself or
confounded by the fact that there are a greater number of carbon skeletons into which
additional fixed N could be assimilated (Marshner, 1995).

Nitrate reductase (NR), located in the cell cytoplasm, is a dimer molecule
composed of a heme group, FAD, ar\nd a molybdenum cofactor (MoCo) and is located in
the cytoplasm. Nitrate reductase is regulated by enzyme synthesis and breakdown,
reversible inactivation, and the concentration of the substrate present (Solomonson and
Barber, 1990). Nitrite reductase (NiR) is located in chloroplasts and proplastids of roots
and other non-green tissue (Fig. 1.1). Nitrite rarely accumulates as this step of the
reaction is extremely rapid. Ferrodoxin is the primary electron donor in the reaction.

Ammonia can be toxic in high concentrations, but is usually rapidly incorporated
into organic compounds. Almost all ammonia produce& by ammonium oxidation, nitrate
reduction, and photorespiration is processed by the glutamate-glutamine synthesis
pathway. With the addition of NH3, glutamate synthetase catalyzes the production of
glutamine from glutamate. Light stimuli provide the impetus for 2-oxogluterate and
glutamate to be exported from the stroma to the cytoplasm, thus aiding nitrate reduction

and ammonium assimilation (Woo et al., 1987).



Glutamine synthetase and glutamate synthase (GOGAT) are the two primary
enzymes involved in ammonia assimilation. Glutamate synthase, facilitated by ferrodoxin
or NADPH, catalyzes the transfer of -NH, from glutamine to 2-oxoglutarate. This
results in the production of two glutamate molecules, one of which can be used for
maintenance in the cycle and one that can be used for biosynthesis of low molecular
weight nitrogen compounds. When high amounts of ammonia are present, both glutamate
molecules can accept ammonia molecules (Fig. 1.2).

Glutamate and glutamine are used for the synthesis of amides, ureides, amino
acids, peptides and high molecular weight compounds such as proteins. Glutamate can be
used for amino acid synthesis by transamination reactions which are catalyzed by
aminotransferases located in the cytosol, chloroplasts, and other organelles. Carbon
skeletons used for amino acid synthesis are obtained from photosynthesis, the
tricarboxylic acid (TCA) cycle, and glycolysis reactions. Proteins are polypeptides
constructed from amino acids and coupled by peptide bonds in a condensation reaction in
cellular ribosomes. Glutamine and asparagine are the primary low molecular weight
compounds produced by the pathway. Amino acids, amines, peptides, and ureides are
also produced and are used for transient storage and long distance transport from roots to
shoots.

Images in this thesis are presented in color.



Nirate reductase | Nitrite reductase

Figure 1.1. Schematic representation of the sequence of nitrate ass1m11at10n in leaf
cells. (Adapted from Marshner, 1995)

Figure 1.2. Model of ammonia assimilation pathways (1,2) Glutamine-synthetase-
glutamate synthase pathway, with low NH; supply (1) and with high NHj supply (2). (3)
Glutamate dehydrogenase pathway. (Adapted from Marshner, 1995).



BROWN PATCH (Rhizoctonia solani Kuehn)

Brown patch disease is caused by the fungus Rhizoctonia solani. Other species
(R. oryzae, R. cerealis) are known to be pathogenic to turfgrass as well (Burpee and
Martin, 1992). Brown patch disease occurs on many commonly cultivated turfgrass
species. The fungus produces tan to brown mycelium that are 4-15 um in diameter with
constricted dolipore septae and no clamp connections (Couch, 1995). In the absence of
optimal growth conditions, the organism survives by dark brown sclerotia produced in
the plant tissue, or as a saprophyte, among the soil and thatch. As the fungus begins to
actively grow at temperatures of 15-20 C, the sclerotia provide a nutrient source as the
mycelia resume growth (Vargas, 1994). Hyphal aggregation leads to the formation of
appressoria and these infection cushions penetrate the leaf between epidermal cells or
through stomates (Shurtleff, 1953). Ultimately, injury can be inflicted upon the plants in
two ways, infection of the plant by mechanical pressure and tissue necrosis caused by
enzymatic degradation of the cell walls (Couch, 1995).

Brown patch disease symptoms vary with grass type, mowing height, and
environmental conditions. Individual leaf blade symptoms are characterized by tan to
brown leaf lesions, which can grow to envelop the entire leaf blade turning it light brown
and necrotic; lesions sometimes develop reddish-brown margins. Stems, crowns and roots
can be infected by the pathogen. Typical symptoms on a given turf sward include foliar
necrosis in brown to straw-colored irregular brown patches. A dark purple smoke ring
can develop on the leading front of the disease symptoms, especially on low-cut turf <13
mm, and can be seen most frequently in the presence of early morning dew. Disease

development of the disease is favored by nighttime temperatures >16 C and > 10 h of leaf

10



wetness (Burpee and Martin, 1992). Mycelia begin active growth at 15-20 C and initial
infections can occur at 21-26 C (Vargas, 1994). Temperatures between 27- 29 C are
optimal for infection by epidermal cell penetration and éolonization is most rapid at 29-
32 C accompanied by high humidity. Above 32 C mycelia development is slowed. High
humidity and prolonged periods of leaf wetness, as well as high N levéls relative to
normal levels of P and K can encourage symptom development. Since dew and plant
guttation water contain high levels of nutrients favored by the fungus, removing dew by
poling or early morning irrigation is recommended (Vargas, 1994). Chemical control is
attained with preventative applications of flutolanil, chlorothalonil, iprodione, or
azoxystrobulin applied at 14-28 day intervals when favorable environmental conditions
persist.

DOLLAR SPOT (Sclerotinia homoeocarpa Bennett)

Dollar spot is one of the most prevalent diseases on golf courses in North
America, Australia and Japan (Smiley, 1983). Symptoms appear as circular and
sometimes sunken bleached straw-colored to brown patches approximately 2-5 cm in
diameter (Vargas, 1994). As the disease severity increases, spots can coalesce, blighting
large areas of turf. Individual leaves have. bleached, water-soaked tan lesions with a
reddish-brown margin often appearing as an hourglass pattern. Mycelia appear as gmyish.
white to white and cottony and are especially visible in the presence of morning dew.
Under low N conditions, dollar spot symptoms are more prevalent, assuming adequate P
and K levels (Couch and Bloom, 1960).

The fungus rarely produces apothecia, and if present, they do not contain viable

reproductive organs such as ascospores or conidia (Smiley, 1983). It is believed that the

11



pathogen is primarily dispersed via equipment and traffic and survives as dormant
mycelia on leaf foliage. Active growth resumes as favorable conditions develop. The
pathogen affects the plant by producing a toxin in the foliage, which upon translocation
prevents root elongation, causes browning of the roots and encourages root thickeriing
and a decrease in root hairs. Toxin production is optimal between 15.5;-26.8 C (Endo,
1964).

Cultural management strategies that reduce the duration of leaf wetness such as
poling greens, watering after dark and in the early morning to wash off dew and guttation
water from leaves can alter environmental conditions that are optimal for the disease.
Chemical control is attained with applications of triadimefon, propiconazole,
cyproconazole, thiophanate-methyl, benomyl, iprodione, fenarimol, or chlorothalonil
when environmental éonditidhs favorable to. disease development persist (Couch, 1995).
PROPERTIES OF LIGHT

The electromagnetic spectmm cohtains radiant energy described by parameters of
“wavelength”, “frequency”, and energy (Fig. 1.3). The entire spectrum covers 20 orders
of magnitude from cosmic rays which contain the most energy to radio waves containing
the least. In the middle of the spectrum are ultraviolet (200-400 nm range), visible (400-
700 nm), and near infrared (700-2500 nm range) wavelengths (Kemp, 1991). The visible
portion of the spectrum is known as “photosynthetically active radiation” since this is the
portion utilized by plants fo; 'iahotosynthesis.

Light is a unique form of energy in that it exhibits properties of both waves and
particles. A light wave is a “transverse electromagnetic wave” in the shape of a sine

where electric and magnetic fields are present perpendicularly to the direction of wave
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propagation (Taiz and Zeiger, 1991). Wave properties are characterized by the
wavelength, the distance between two crests of the sine curve (nm); frequency, how
many crests occur in a given distance (Hz, /s); and the pattern. The equation ¢ = Av
represents the speed of light, 2.998 x 10® m/s, where A is the wavelength and v is the
frequency; thus, A and v are inversely proportional. Particle (photon) properties of light
consist of discrete packets of energy called “quanta.” Energy is explained by the equation
E = hv where E is energy in joules, h is Planck’s constant (6.626 x 10°* Jes), and v is the
frequency of the radiation (/s or Hz). Subséquently, E = hc/A so a radiation wavelength is
inversely proportional to the energy which it contains.

Once light strikes an object it may be reflected, transmitted, or absorbed
(Woolley, 1971). Reflected light is returned to the atmosphere at a different angle from
which it struck the object incidentally. Transmitted light energy passes through the object
without being absorbed; transmitthncé is hegligible through turfgrass because of its dense
canopy (Trenholm et al., 1999). Energy absorption occurs when incident light energy
matches the exact amount of energy needed to move electrons from a ground to excited
state. Excitation may be due to translational, vibrational, or rotational changes which
occur in the organic molecule. Since electron orbits represent discrete energy levels,
electrons require exact amounts of energy for excitement from one to another. The
relationship between transmission of energy through the sample and the concentration of
the absorbing molecular bonds is described by Beer’s Law. Energy light absorbed is
proportional to the molecule or pigment concentration of interest and is expressed as log

(1/reflectance) (Shenk and Westerhaus, 1993c).
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An absorption spectrum illustrates the change in absorption of electromagnetic
energy by an object across a range of wavelengths. When transition of a molecule from
one energy state to another occurs at a specific wavelength, it corresponds to the energy
absorbed at that wavelength. The molecule will only absorb the energy if it is equal to
that required for the transition. Due to differences in bond and molecular structure (and
the energy required for transition), organic molecules absorb energy differentially. Highly
conjugated molecules such as plant pigments chlorophyll, anthocyanins, carotenoids and
xanthophylls absorb at higher energy wavelengths in the visible spectrum. Organic
molecule functional groups such as hydroxyls, carbonyls, and amines, absorb at lower
energy wavelengths in the near infrared spectrum. Humans have the ability to
differentiate light in the visible region from 400-700 nm. Contained in this range is what
we traditionally think of as a “spectrum of colors.” (Fig.1.3). All objects absorb light
differentially to varying degfees and the human eye perceives an object as a certain color
because that color is reflected the most. Likéwise, plant pigments absorb differentially
across the spectrum so that a plant’s perceived color, or appearance of an object
determined by eye response, consists of wavelengths which are absorbed the least. For
instance, in examining the absorption spectrum of chlorophyll one finds that it absorbs
the greatest amount of light in the red and blue regions (75-90% absorbance) and absorbs
the least in the green region so that when chlorophyll, the dominant pigment is present,
plant leaves appear green (<20% absorbance). With an instrument that measures
“greenness” one could indirectly measure chlorophyll content. Since nitrogen is an
important component of and closely correlated to chlorophyll, measures of “greenness”

would give an indication of the nitrogen status of the plant (Thomas and Oerther, 1972).
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Chlorophyll produces a green color because it absorbs the least in the green
region (~550 nm). When chlorophyll absorbs light; the light energy causes the
chlorophyll molecules to be excited to a higher state from its initial “grouﬁd” state. The
excited energy contained within the molecule can undergo one of three fates. The
molecule may undergo fluorescence where it re-emits the energy as it falls from its
lowest excited state back to its ground state. This release is characterized by a
phenomenon called the Stokes Shift as the energy is re-emitted at a wavelength
approximately 10 nm longer than that which it was absorbed. Second, the molecule may
return to its ground state without re-emitting energy as a photon, but as heat. Finally, the
molecule may activate the plant’s photosystem network, stimulating the electron
transport chain in photosynthesis (Taiz and Zeiger, 1991).

Near Infrared Spectrum
The near infrared (NIR) region of the spectrum ranges from 700-2500 nm.

Functional groups such as =CH, (1090-1167, 1390-1400, 1406-1446, 1616-1626, and
2260-2510 nm), O-H water bonds (984-996, 1010, 1150, 1406-1416, 1788-1796 and
1936-1946 nm), N-H protein bonds (1048-1052, 1508-1516, 2050-2066, 2176-2186, and
2296-2308 nm), and other N-H groups (1464, 1470, 1480-1506, 1518-1536, 1906-1916,
1976-1996, and 2046-2056 nm) and organic molecules absorb energy in the NIR

(Winisi, 1999). Absorbance of NIR radiation corresponds to energy required for changes
in the internal vibrational frequencies of the molecule and functional groups of organic
molecules absorb NIR radiation differentially. A fundamental vibration occurs when the
energy supplied is proportional to the energy required to change the dipole moment of the
molecule so that the vibrational energy absorbed causes it to change from its ground state

to its first excited state (Zabik, 1997). Absorbance by organic functional groups produces
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characteristic bands in local areas of the near infrared spectrum (Zabik, 1997).
Absorption bands can be characterized by three criteria: location, height, and width. Near
infrared absorption patterns are very complex, existing in a mosaic of overtones,
combination bands and repititive bands. Typical NIR spectra exhibit a convolution of
Lorentzian and Gaussian distributions and may consist of seven to ten peaks with many
“shoulders” (Shenk and Westerhaus, 1993c). Band overlapping and composite banding
makes it difficult to estimate the three criteria so mathematical functions are needed to
provide accurate estimates of band locations. Additional confounding may occur due to
particle size multiplicative response, confounding with visible overtones in 1100-1400
region, and confounding with mid-infrared information contained in the 2300-2500 nm
region.

Reflected light can undergo a scattering effect as it strikes an object. Scatter is a
function of the diffuse nature (roughness) of the surface (Shenk and Westerhaus, 1993c).
Particle size can contribute to scatter, which can cause peak distortion and larger particles
make peaks appear higher than they should. Conversely, surface reflectance, or the
“shininess” of an object can “squash” peaks to appear lower than they should.
Essentially, the information contained in a NIR absorbance spectrum provides useful
insight into the physical and chemical composition of a substance (Shenk and
Westerhaus, 1999). Every substance has a unique spectral composite “signature”
contributed to by scatter, surface reflectance and absorption of chemical bonds (Shenk
and Westerhaus, 1999) and diffuse reflectance properties correlate to changes in chemical
composition (Morra et al., 1991). Ideally, since a spectrometer can detect wavelengths

over a wide spectrum of electromagnetic radiation, a specific band could be used to
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detect differences attributable to nitrogen status or disease presence in the turf canopy.
However, more practically, a combination of wavelengths would be used to develop a
model which characterizes the anomaly of interest.

A fundamental absorption may have several overtones, or secondary vibrations
which decrease in intensity (amplitude) and energy level, and exist in the range of 700-
1800 nm. Combination bands consisting of two or more overtones of these groups exist
in the 1800-2500 nm range. These combination bands indicate rotational and vibrational
movements such as stretching, bending, wagging, and rocking of the organic molecule.
Stretching vibrations occur at higher frequencies (lower wavelengths) than bending
vibrations. Molecular bending can occur in the plane of the molecule or out of the plane.
Each deformation absorbs energy of different intensity. Energy striking a compound will
be absorbed if it equals the energy required for a molecule to jump to a higher state. The
NIR region is composed of harmonic overtones of the functional groups which absorb
primarily in the mid-infrared (MIR). Major bands in the NIR region include second and
third overtones of O-H, C-H, and N-H functional groups. Theoretically, peak height of
the vibrations diminishes with each successive overtone. Molecular absorptions occur
with greater intensity as fundamental bands in the MIR region of the spectrum because
NIR bands are 10-100 times weaker than those found in the MIR. Organic molecule
functional groups O-H, C-H, and N-H absorb energy at different wavelengths due to their
stretching, bending and deformation vibrations (Shenk and Westerhaus, 1993c¢). Shifts in
the spectrum related to organic molecules can potentially be associated with
physiological changes in the plant. Characteristic wavelengths which indicate the

presence of these groups include O-H bonds stretches at 1440 and 1900 nm and N-H
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stretches in ranges from 1449-1555 nm and 1800-2080 nm. Within the umbrella of N-H
stretches are primary amines (1455-1553 nm), secondary amines (1506-1555), N-H
proteins (1535- 1614 ﬁm), nitrites (1800-2080 nm), NH; groups (1965-2050 nm) and
NH; amines (1449-1538 nm) (Shenk and Westerhaus, 1993c).

SPECTROSCOPY

As with any spectroscopic method, proper assessment of a sample for evaluation
is affected by several factors. Instruments used to detect visible and NIR spectra must be
accurate and repeatable. Temperature, relative humidity, and spectrometer light source
and intensity play significant roles in instrument performance. The ambient light
surrounding the stage of the sample will have an effect on how the light reflected,
absorbed, and transmitted by the sample will be detected by an instrument. In a
laboratory setting, enclosed spectrophotometers provide for a means of controlling
ambient light surrounding a sample.

Near infrared detection devices typically consist of several components. A source
of radiance, usually a tungsten light bulb, is needed to provide consistent illumination of
the sample. In order to process the quality of light, once detected, the light is transmitted
through a slit to limit radiation to a narrow band. A lens is used to focus a narrow band of
radiation and the energy is sent through a wavelength dispersion device to split the
energy into its component parts before passing through a focusing lens. The energy is
transmitted through another focusing lens before passing through an exit slit and
ultimately a photodetector. The placement of the detectors determines if the instrument

initially makes a transmission or reflectance measurement. Signal from the detector is
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amplified before being coﬁverted from analog to digital for computer processing and
monitor display. |

There are four primary wavelength dispersion devices used in NIR analysis.
Filters are used for detection of absorption in specific regions of the spectrum,
disallowing passage of light outside the range(s) of interest. In contrast, light emitting
diodes emit light energy only at specific wavelengths of interest. Accoustical optical
tunable filters (AOTF) are used for liquid solution analysis. Wavelength is controlled by
the frequency at which a crystal vibrates. A monochromator is a holographic grating
which divides light energ)ll into separate wavelengths at a given interval across the range
of detection (Shenk and Westerhaus, 1993c).

Light striking an object may be detected by reflectance, transmittance, folded
transmittance or direct light methods. Normal NIR reflectance and transmittance
measurements involve holding the sample in a ring cup, exposing it to a light source at a
path length of 1 cm in a closed compartment and detecting how much is reflected or
transmitted, depending on the location of the photodetector. Folded transmittance
measurements are ideal for materials in solution and use a narrower path length of 0.1
mm. All three of these measurements are made in chambers opaque to outside light. In
the direct light method, source radiation is introduced directly upon the sample. The
reflected radiation is then transmitted via fiber optic cable to the monochromator and,
subsequently, the photodetector.

General NIR Applications
Near infrared reflectance measurements are used for analysis of a wide range of

agricultural and industrial products (Wetzel, 1983). Notable agricultural applications
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have involved measurement of protein, moisture, fat, oil, and prediction of organic
carbon and total nitrogen (Wetzel, 1983; Dalal and Henry, 1986). Near infrared
spectroscopy (NIRS) has also been used to measure moisture content in soybeans and fat
and moisture in meat emulsions (Ben-Gera and Norris, 1968). The fact that NIR has been
used successfully for constituent analysis of forages (Norris, 1976; Windham, 1991)
lends to its potential effective use in turfgrass analysis.

Near infrared spectroscopy is an attractive alternative to traditional laboratory
methods that measure crude protein, acid detergent fiber, fats, moisture and other
constituents (Wetzel, 1983; Shenk and Westerhaus, 1991). It provides for rapid analysis
of plant constituents and requires minimal sample preparation (Couilliard et al., 1997).
Near infrared spectroscopy can accurately measure constituents such as water (O-H
bonds) and crude protein (N-H bonds) in the microgram per kilogram range (Roberts et
al., 1991). Near infrared spectroscopy does not actually measure N, but measures N-H,
from which N and protein can be interpolated (Shenk and Westerhaus, 1991a). Fox et al.
(1993) compared reflectance measurements in the NIR region with three other rapid tests
for predicting N-supplying capability and grain yield in corn and found that NIRS was as
statistically accurate as the pre-sidedress nitrogen test (PSNT) to predict the soil N-
supplying capacity and corn response to N.

Prediction equations for forage mixtures and monostands have been developed
using NIR (Shenk and Westerhaus, 1991a ). Principally used for detecting plant
constituents in agriculture, NIR has also been used for carbon and nitrogen analysis in
particle-size soil fractions (Morra et al., 1991). Near infrared spectroscopy can be useful

because it provides a window into biochemical workings of a plant that reflectance in the
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visible range may not. For instance, changes in leaf area index (LAI) can result in
changes in NIR region reflectance without altering the visible region reflectance
characteristics (Colwell, 1974).

Traditional sample preparation for NIR analysis involves oven-drying the samples
to remove moisture before grinding them to insure a uniform particle size. Samples are
then packed into a cell for spectral analysis on a laboratory benéhtop. model instrument.
However, use of NIR technology for real-time analysis will require development of a
field unit capable of conducting direct light measurements. Successful attempts to
analyze unprocessed samples have been accomplished for predicting turf soil profiles
(Couilliard et al., 1997).

Data Analysis

Analysis of NIR data is difficult due to factors such as particle size or spectral
(particularly water) overtones (Shenk and-Westerhaus, 1993c). Two corrections have
been developed to reduce interference caused by differences in particle size. First, de-
trend, a multiplicative scatter correction described by Bamnes et al. (1989), shifts the
spectra of interest to be more like a designated “target spectrum”, usually an average
spectrum of the spectra of interest. Second, a standard normal variate correction can be
used so that the standard deviation of each spectrum is 1.0.

Several regression methods may be used to create a prediction equation for using
NIR patterns to predict laboratory analysis numbers. Multivariate regression methods
such as modified stepwise regression (MSR), neural networks, and partial least squares
(PLS) have been used (Shenk and Westerhaus, 1993c). Shenk and Westerhaus (1991b)

found that a modified partial least squares regression (MPLSR) had better correlation
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than MSR in developing constituent calibration equations for diverse forage mixtures.
Comparing the MPLSR method to the MSR method, they demonstrated that MPLSR was
similar or better than MSR for predicting crude protein, acid detergent fiber, and in vitro
dry matter disappearance for two large groups of forage samples.

Algorithms CENTER and SELECT were developed to identify spectra suitable
for calibration development by eliminating samples with extreme or similar spectra.
These algorithms use the spectral data across a range of wavelengths with absorbance
values expressed as Log (1/R) and an associated reference value for the constituent(s) of
interest. The CENTER function computes a principal components file by full-spectrum
single value decomposition, which contains all information needed to calculate sample
scores and define H (Mahalanobis) values. Principal component analysis (PCA) identifies
patterns (also known as eigenvectors or loadings) in certain wavelength regions which
contain the most variation attributable to different laboratory values. Principal
component analysis also reduces the spectral information into a smaller number of
independent factors. The amount of a pattern present in a spectrum is referred to as a
score (Shenk and Westerhaus, 1993c). Principal component analysis uses a loading-score
method to compare spectra in multiple dimensions. Sample loadings are obtained by
multiplying the spectral data by the principal component scores (proportion of a pattern
present in a specific spectrum) which are associated with the largest eigenvalues.
Principal components are linear combinations of NIR data that maximize differences
between spectra and are calculated by multiplying NIR data points by linear
combinations of the spectra to form new variables. The CENTER function ranks each

spectrum according to its H distance from the average spectrum in hyperspace.
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Principal component analysis; is a technique for limiting the number of
intercorrelated spectral data pbints by using the information contained in the spectra to
compute independent variables. The first principal component (factor) accounts for the
greatest variation in the spectra, the second accounts for the next greatest amount and so
on. After ranking the spectra, an algorithm is used to eliminate samples that were
spectrally similar. The SELECT algorithm identifies spectra with the greatest number of
neighbors within a certain proximity (H<0.6) and retains that spectra to represent all of its
neighbors, while eliminating the neighbors. Using a standardized H to select samples
results in the use of fewer samples than would be recommended by the r* method
recommended in the USDA handbook (Windham et al., 1989). In experimenting with
neighborhood H (NH) limits, Shenk and Westerhaus found that lowering the limit
resulted in more samples and more terms being used in the equation. The limit of 0.6 was
found to be suitable for defining NH and provided accurate equation predictions. It was
unclear as to which factors from neighborhood size, the number of samples, or the
number of terms contributes the most to accurate calibrations.

In the next step, the spectra are mathematically treated to emphasize small
absorption peaks. Math treatments are typically described by three numbers where the
first is the derivative order; second is the segment length over which the derivative was
taken; and third, the number of data points in a running average smooth. Both principal
components regression and partial least squares regression reduce the data to a few
combinations of absorptions which account for most of the information contained in the
spectra. However, PLS differs from PCA in that it also relates the sample laboratory

reference values to the spectra. Shenk and Westerhaus (1991a) describe “modified”
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partial least squares regression method where the lab value data and absorbance data are
scaled at each wavelength to have a standard deviation of 1.0 before each PLSR term.
Modified partial least squares regression is a full-spectrum regression which uses all
regressors to compare factors which correlate with the dependent variable (Fox et al,
1993). Cross validation is conducted by splitting the spectra into equally sized sets
according to the file size and using one set to create a calibration equation for predicting
the remaining data. Alternately, each set is used to develop an equation for predicting the
others until all spectra have been used for predicting and have been predicted. The
number of MPLS factors are determined by cross validation so that the standard error of
cross validation (SECV) is minimized and the equation is not overfit (Shenk and
Westerhaus, 1991a). The number of factors increases until the sum of squared prediction
residuals is minimized (Fox et al., 1993). The SECV estimates equation performance
using the data from which the cross validation was conducted. Standard error of
performance (SEP) is an indication of equation prediction performance with an
independent, but similar set of data. Coefficients of determination are computed between
each sample spectrum and population average sample spectrum.

The quality and scope of spectra that are used to build a product library
determines the accuracy and robustness of a prediction equation developed from spectra
in the library. Roberts et al. (1997) found that a prediction equation for ergovaline could
only be used for as wide a population as it was developed. Broadening the database from
which predictions are developed can broaden the range of prediction, but can result in
lower prediction accuracy (Couilliard et al., 1997). To insure adequate prediction

equations, a library requires periodic expansion. The algorithms CENTER and SELECT
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provide improved population definition for local and global calibration development and
techniques have been developed to expand established calibrations. New samples can be
analyzed for spectral characteristics that are similar to samples already in the calibration
using the MATCH algorithm. By identifying local populations to which new samples
belong, local calibrations could be expanded by adding 10 new samples to the library and
recalibrating (Shenk and Westerhaus, 1991c).
Applications of Spectroscopy in Site Specific Management

Scientists have been searching for means to efficiently assess the nutrient, stress,
and quality status of plants for years. Of special interest has been development of a
method for rapid assessment of plant nitrogen content. Traditional methods of N analysis
such as the Kjeldahl method for determination of total N or dry combustion analysis
involve harvesting tissue, oven-drying for multiple days, and wet laboratory techniques
which can be time-, labor-, and materials-consuinptive. In the past, instrument
assessment of N content in plants has been found to be easier and faster than destructive
testing (Ma et. al., 1996). Because N is an important component of the chlorophyll
molecule, chlorophyll content is highly correlated with leaf N (Wolfe et al., 1988;
Schepers et al., 1992). Procedures have been developed to determine leaf N status by
measuring chlorophyll content (Blackmer et al., 1994) and several researchers have found
certain wavelengths in the visible portion of the spectrum correlate with chlorophyll
content (Gitelson and Merzylak, 1994; Knipling, 1970). Chlorophyll meter readings have
been used to estimate leaf N by assessing leaf greenness (Schepers et al., 1992; Wood et
al., 1992; Dwyer et al., 1995). Lower concentrations of chlorophyll resulting from

nutrient stresses have been detected by assessing leaf reflectance at different wavelengths
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(Al-Abbas et al., 1974). Wood et al. (1992) found a high correlation between field
chlorophyll measurements at 430 and 750 nm and corn tissue nitrogen . Other research
has found that leaf chlorophyll and carotenoid concentrations correlated best with
reflectance measured at S50 nm compared to 450 nm and 670 nm (Thomas and Gausman,
1977). Blackmer et al. (1994) used a Minolta SPAD 502 chlorophyll meter to measure
transmittance at 650 nm. They chose this wavelength because it lies between two
wavelengths associated with chlorophyll activity. Blackmer et al. (1994) and Thomas and
Oerther (1972) found that reflectance measurements at 550 nm could be used to detect N
deficiencies in corn leaves.

Multispectral radiometry (MSR) is another technique that has been used to assess
plant reflectance at different wavelengths. Using a multispectral radiometer to measure
canopy reflectance, Ma et al. (1974) found that reflectance measurements correlated to
“field greenness”. Experifﬁents have been conducted attempﬁng to associate plant
physiological stress with chlbrophyll. Using a multispectral radiometer, Trenholm et al.
(1999) found that single and combinations of wavelengths in the visible and near infrared
portions of the spectrum correlated well with visual turf quality, shoot density, and shoot
tissue injury ratings. Carter (1994) and Carter and Miller (1994) found the ratio 695:760
nm an indicator of stress due to the “blue shift” phenomenon associated with leaf
chlorophyll. In addition, Carter et al. (1996) and Carter and Miller (1994) found that leaf
chlorophyll changes due to physiological stress can be detected by MSR instruments.
Carter (1993) found wavelengths 535-640 nm and 685-700 nm to be good physiological
and herbicide-related stress indicators in forest/shrub canopies.

Identifying instrumentation that can evaluate leaf nitrogen content accurately and
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rapidly is paramount to the development of a real-time sensor necessary for integration
into a comprehensive site-speciﬁc management system. One of the primary goals of
sensor-based variable rate technology is to avoid the traditional costs and labor involved
in laboratory tissue analysis (Stone et al., 1993). Site specific management of nitrogen
can yield monetary and environmental savings for turf managers. Increasing concern for
groundwater quality is leading to efficient, economical and accurate assessment of plant
nitrogen in many different crops (Blackmer, 1994). This concern for curbing groundwater
pollution is echoed by the turf industry. To date, most experiments concerning the
practical implications of sit; specific nutrient applications have dealt with agronomic
field crops. Remote sensing of canopy reflectance offers the potential for monitoring
plant growth (Bauer, 1975§ Walburg et al., 1982 ) and differential fertilization could be
automated by sensing plant-reﬂected light (Blackmer,. 1994).

Various indices have been developed to derive association models between
reflectance at specific wavelengths and nitrogen and chlorophyll content and plant
biomass (Wanjura and Hatfield, 1987; Thomas and Oerther, 1972). Employing a plant
nitrogen spectral index (PNSI) defined as PNSI = ABS [(NIR + red)/(NIR - red)], Stone
et al. (1993) used photodiode detectors with interference filters for 671+ 6 nm (red) and
780 + 6 nm (near infrared) to determine a relationship between spectral radiance and
forage yield and forage N uptake to evaluate the potential for correcting in-season wheat
N deficiencies. Application of variable fertilizer N based on a PNSI reduced the spatial
variation and increased wheat grain yields when compared with application of a fixed N
rate. Cassman and Plant (1992) observed an increase in nitrogen use efficiency (NUE)

from spatially variable N applications depending on the native nutrient level of the soil.
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A normalized difference vegetative index (NDVI) defined as the inverse of PNSI was
used by Perry and Lautenschlager (1984) and Duncan et al. (1993). NDVI has been used
to correlate (= 0.97) with absorbed photosynthetically active radiation (Asrar et al.,
1984) in wheat (Triticum aestivum L.) and leaf area index (LAI = NIR wavelength
reflectance/Red region reflectance) (r = 0.96) in corn (Zea mays L.) and soybean
[(Glycine max (L.) Merr.] (Daughtry et al., 1992). Compared to conventional estimates
of plant N, PNSI and NDVI values demonstrated smaller coeffecients of variation (Stone
et al. 1993; Ma et al., 1996).

Application of Spectroscopy for Disease Sensing
A number of biotic and abiotic factors, can affect the pattern of the NIR spectra

such as plant pigments, leaf blade angle, diseases and plant growth stage (Raikes and
Burpee, 1998). In the presence of a disease, a number of physiological changes can occur
within the plant (Nilsson, 1995).Indices ;uch as the Leaf Area Index and Normalized
Difference Vegetative Index (NDVI) [(NIR reflectance-R reflectance)/(NIR reflectance +
R reflectance)] have been correlated with the presence of green biomass and provide a
quantitative estimate of general stress on a plant; however, it is often difficult to
determine exactly the nature of the stress (Nilsson, 1995). Typically, a given stress
reduces photosynthetic capability and causes an increase in reflectance in the red and
blue portions of the spectrum and decreased reflectance in the NIR region due to
deterioration of leaf tissue (Nilsson, 1995) and leaf structural changes (Raikes and
Burpee, 1998). The percent of light reflected in the NIR region provides important
information related to the physiological changes in the plant due to disease and provides
an earlier indication of stress than visible reflectance (Raikes and Burpee, 1998). Safir et.

al. (1991) found that corn infected with southern corn leaf blight (Helminthosporium
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maydis L.) caused higher reflectance in regions of the spectrum related to chlorophyll
(0.5-0.7 um and water (1.45-1.95 um) regions, indicating that the disease causes other
changes to occur.

Several methods have been developed in attempts to quantify the presence of
disease symptoms on plants. Infrared aerial photographs have been used with moderate
success to remotely sense sugar cane rust fungus (Puccinia kuehnii)(Karteris et al.,1980);
sugarbeet blackroot disease, one of the causal agents of which is Rhizoctonia solani
(Schneider and Safir, 1975); and southern corn leaf blight (Safir et al., 1972). Contrary to
others, they found that visible reflectance changes preceded infrared reflectance changes.
Multispectral radiometry has been used for detection of tomato early blight and rust and
late leaf spot of peanut (Nutter, 1987). Multispectral radiometry has been used for
detecting dollar spot (Sclerotinia homeocarpa Bennett) (Nutter, 1987) and brown patch
(Rhizoctonia solani Kuhn) (Raikes and Burpee, 1998) on creeping bentgrass (4grostis
stolonifera L.) and brown patch and gray leaf spot (Pyriculara grisea) on tall fescue
(Festuca arundinacea L.) (Green et al., 1999). Generally, the purpose of these
experiments has been to develop an objective method for assessing disease severity in

research plots.
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CHAPTER TWO
REMOTE SENSING OF LEAF TISSUE NITROGEN CONTENT IN CREEPING
BENTGRASS AND ANNUAL BLUEGRASS USING NEAR INFRARED
SPECTROSCOPY
ABSTRACT

Site-specific application of nutrients based upon the specific needs of turfgrass plants has
the potential to save money and reduce environmental threats. The objectives of this
study were to develop a method to determine N content and of turfgrass in the field and
greenhouse using a visible/near-infrared scanning monochromator and evaluate this
application for different turf species and different mowing heights. Nitrogen was applied
at rates of 0, 1.2, 2.4, 3.6, and 4.8 g N/m? periodically over two growing seasons to
creeping bentgrass (Agrostis stolonifera Huds.) and annual bluegrass (Poa annua var.
reptans Hausskn) mowed at heights of 5 mm and 14 mm. Absorbance was expressed as
“log 1/reflectance” between 400 and 2500 nm once color differences were evident.
Following spectrometer readings, clippings were harvested from each plot and analyzed
for nitrogen using a dry combustion nitrogen analyzer. Modified partial least squares
regression analysis demonstrated a relationship (r* = 0.78-0.95) between leaf tissue N
content and canopy reflectance. Wavelengths which illustrated the greatest differences
between lab values for the raw spectrum occurred at wavelengths 670, 1450, and 1930
nm, corresponding to chlorophyll a transmission, a primary overtone O-H stretch
attributable to water, and an O-H stretch attributable to water, lignin, protein, nitrogen,

and starch. These results indicate the potential for developing a real-time remote sensor

for site specific nutrient applications in turfgrass management.
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INTRODUCTION

Nitrogen is the mineral nutrient required in the greatest amount for proper
functioning of the turfgrass plant. Nitrogen is required for production of amino and
nucleic acids, low molecular weight transport molecules, and the proper functioning of
chlorophyll (Epstein, 1972). Nitrate and ammonium are the major sources utilized by the
plant. Unlike other nutrients, there is no reliable test for soil N. Although rules of thumb '
are recognized as guidelines; ultimate N application decisions are subjective and based
upon a manager’s experience with a particular turf (Beard, 1982). Excessive application
of N can encourage disease development and reduce tolerance to environmental stress
and traffic. Nitrate leaching and subsequent pollution of ground water is an increasing
concern, especially on sandy sites.

As golf courses continue to fill the role of urban green areas and are the subject of
increased public and governmental scrutiny, a premium is placed upon superintendents to
balance environmental impact and playability. Site specific application of nitrogen inputs
has the potential to save money, optimize plant nutrition balance and reduce the potential
of overapplication and subsequent nutrient leaching. Since N is mobile in the soil and is
needed in relatively high amounts (4-5%) by the plant, a sensor capable of attaining a
rapid, real-time assessment of turfgrass leaf nitrogen content is necessary for a feasible
site specific management program.

Since N is an important component of the chlorophyll molecule (Wolfe et al.,
1988; Schepers et al., 1992) procedures have been developed to determine leaf N status
by measuring chlorophyll content (Blackmer et al., 1994) and several researchers have

found certain wavelengths in the visible portion of the spectrum correlate with
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chlorophyll content (Gitelson and Merzylak, 1994; Knipling, 1970). The fact that NIR
has been used successfully for constituent anai ysis‘ of forages lends to its potential
effective use in turfgrass analysis (Norris et al., 1976, Windham et al., 199 1.).

Various indices have been developed to derive association models between
reflectance at specific wavelengths and nitrogen and chlorophyll content and plant
biomass (Thomas and Oerther, 1972). Employing a plant nitrogen spectral index (PNSI)
defined as
PNSI =I[(NIR + red)/(NIR - red)]l, Stone (1993) used photodiode detectors with
interference filters for 671 £ 6 nm and 780 + 6 nm to determine a relationship between
spectral radiance and forage yield and forage N uptake to evaluate the potential for
correcting in-season wheat N deficiencies. Application of variable fertilizer N based on a
PNSI reduced the spatial variation and wheat grain yields when compared with
application of a fixed N rate (Stone et al., 1993).  Near infrared spectroscopy (NIR) is
used for analysis of a wide range of agricultural and industrial products (Wetzel, 1983).
Notable agricultural applications have involved measuring protein, moisture, fat, oil, and
prediction of organic carbon and total nitrogen (Wetzel, 1983; Dalal and Henry, 1986).
Absorbance of NIR radiation corresponds to energy required for changes in the internal
vibrational frequencies of the molecule and functional groups of organic molecuies
absorb NIR radiation differentially. Though not able to measure elemental N directly,
NIR has the capability of measuring concentrations of N-H functional groups found in
the regions of 1020 nm, 1510 nm, 1980 nm, 2060 nm, and 2180 nm (Hatchell, 1999). The
fact that NIR has been used successfully for constituent analysis of forages (Norris, 1976;

Windham, 1991) lends to its potential effective use in turfgrass analysis. Fox et al.

33



(1993) compared reflectance measurements in the NIR regton with three other rapid tests
for predicting N-supplying capability a;ld grain yield in corn and found that NIRS was as
statistically accurate as the pre-sidedress nitrogen test (PSNT) to predict the soil N-
supplying capacity and corn response to N.

The objectives of this research were to determine if an association exists between
leaf N content and reflectance from the canopy and determine how the relationship is

affected by turfgrass species or cultivar, mowing height, and soil type.
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MATERIALS AND METHODS

Turfgrass Culture

Field experiments were conducted and repeated during 1998 and 1999 on swards of
turfgrass at the Michigan State University Hancock Turfgrass Research Center (HTRC)
in East Lansing, MI. The swards consisted of mature monostands of: annual bluegrass
(Poa annua var. reptans Hausskn) grown on an Owosso sandy loam [fine-loamy, mixed,
mesic Typic Hapludalfs] and mowed at either S mm (Poa annua green) or 14 mm (Poa
annua fairway), Penncross creeping bentgrass (4grostis stolonifera Huds.) grown on a
90:10 (v/v) sand:peat mixture and mowed at either 5 mm (Penncross green) or 14 mm
(Penncross fairway), and Providence creeping bentgrass grown on an Owosso sandy loam
and mowed at 14 mm (Providence fairway).

Mowing pattern and direction was altered in accordance with typical golf course
management practices. To combat any effect of mowing direction on canopy reflectance,
mowing was performed in one direction before spectrometer readings were obtained. To
avoid possible confounding from the presence of free water on the leaves, dew was
removed when necessary. Pesticides were applied as necessary in order to maintain
healthy stands of turf during the experiments.

Nitrogen application

Urea ammonium nitrate (UAN; 28-0-0) was applied to each area every 2-4 weeks
depending on the growing conditions to produce and maintain turf color and N
differences. Treatments consisted of five N application rates of 0, 1.2, 2.4, 3.6, and
4.8 g N/m’ replicated three times in a randomized complete block design (RCBD).

Experimental plots measured 1.2 m x 1.9 m with 0.3-m plot borders. A bicycle sprayer
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calibrated for an output of 375 L/ha was used to apply the N solution. Spray applications
were made by passing over the plots at 0.7 m/sec with a boom containing three 8002VS
nozzles. Following application, plots were irrigated with approximately 40-60 mm water
to wash the liquid off the leaves into the soil. Soil acidity, P, and K were adjusted to
adequate levels based on soil testing.
Spectrometer Measurements

Spectral reflectance from the turf canopy was acquired with a NIRSystems (Silver
Spring, MD) Model 6500 online scanning monochromator. Spectral data were obtained
every 2 nm from 400 to 2500 nm and expressed in absorbance units as the log
(1/reflectance). The spectrometer was adapted for field use by mounting onto the rear of
a garden tractor. The acquired spectral signal was sent to the spectrometer via a fiber-
optic cable that was connected to a 30-cm by 15-cm metal box that was mounted onto
four 15-cm diameter wheels. .The box was suspended approximately 13 cm above the
surface of the turf canopy and collected radiation from a 3.5-cm by 12-cm area. The box
was designed to minimize the effects of incident solar radiation by shading the area
where reflectance measurements were taken. Furthermore, direct light was provided
from the box to the measured area using a tungsten-halogen bulb. Three measurements
were taken from different locations within each plot during each sampling time.
Measurements were taken between the hours of 0730 and 1830 h when visual differences
attributable to N were present.

In order to maintain accuracy and repeatability with the instrument, a reference
was attained for each scan and the spectrum for the scan was subtracted from that of the

reference. In this regard, the NIRS Online 6500 performs similarly to a double beam
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spectrometer where a reference and sample spectrum are obtained simultaneously and the
differences plotted on the output.

Diagnostic tests were conducted prior to sample readings for repeatability and
photometric accuracy. To insure instrument repeatability, diagnostics were conducted
prior to sample readings. A Coors ceramic reference plate, which is 80% reflective was
scanned once as a reference and again as a sample to measure repeatability. A noise test
was conducted by obtaining 32 scans of the reference and 32 more scans using the
reference as a sample. The repeatability noise was plotted as the difference between those
two sets. The root mean square (RMS) of noise errors across the entire spectra was used
to gauge repeatability. Accuracy tests were conducted with a polystyrene standard with
known peaks at 1143, 1681, 2166, and 2305 nm (Foss NIRSystems, 1993).

Clipping collection

Following spectrometer readings, clippings were collected with a walking mower.
One or two passes were made over each experimental unit with the mower in order to
collect enough clippings for N analysis. Clippings were collected from the same swath
where scans were obtained. After harvest from each plot, clippings were emptied into
paper bags, oven-dried for 72-96 hours at 60° C, ground with a UDY Sample Grinding
Mill (UDY Comp., Fort Collins, CO) using a Imm or 2mm screen, and stored in ethylene
oxide-treated plastic bags until N analysis.

Nitrogen Analysis
Clippings were analyzed for percent N by dry combustion method on a Leco CNS-
2000 analyzer (Leco Comp., St. Joseph, MI). An amount of 1.00 + 0.03 g catalyst and

0.1000-0.2300 g of dried and ground sample were weighed into ceramic boats and
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homogenized with a microspatula prior to analysis . Apple, tomato, and peach National
Institute of Standards and Testing (NIST) standards were alternately queued between 3-4
clipping samples and orchard leaf standards were queued approximately every 10
samples. Each sample was fed into a 1350° C combustion chamber, where all N was
converted to N or NO,. After exiting the furnace, the sample gas flowed through
Anhydrone™ (Leco Comp.) tubes and a particle filter before it was collected in the ballast
tank. When the ballast was filled, the gas equilibrated before passing through IR cells (for
C and S analysis) and an aliquot loop. With He used as the carrier gas, an aliquot doser
sends the sample gas to a catalyst heater that reduces all NO, to N,. Residual CO, and
water were removed from the sample by passing through tubes containing KClO4 and
Anhydrone™. A thermal conductivity cell consisting of two pairs of matched filaments in
a wheatstone bridge configuration detected the amount of N in the sample. The reference
pair was in contact with only the He carrier gas; whereas the measurement pair was in
contact with the sample gas. Nitrogen contained in the sample gas caused the filament
temperature to rise because N has a lower thermal conductivity than He. As the current
through the measurement pair changes, the bridge became unbalanced and produced an
electrical voltage proportional to the amount of N contained in the sample. The output
was then fed to a preamplifier and A/D converter before the digital output signal was
used by the computer to display the “percent N” contained in the sample. Following
analysis, data was drift corrected by calibration with the orchard leaf. standards (Leco

Comp., 1994).
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CENTER and Principal Component Development

Spectra were analyzed using the entire spectrum of measurement from 400-2496
nm using ISI chemometric software (Infrasoft International, Port Matilda, PA). Three
spectra from each plot were averaged and the average spectrum was matched with the
corresponding laboratory N value. A 1,4,4 math treatment was applied to the spectra
where the first number is the order of the derivative, the second number is the range in
data points (taken every 2 nm) over which the derivative is calculated and the third is the
number of data points that are used in a running average smooth (Shenk and Westerhaus,
1991a). Each sample spectrum was ordered according to its distance from the mean
spectrum of all measurements taken within a sampling period by the CENTER program
(Infrasoft International, Port Matilda, PA). Two passes were made on each file to identify
and remove spectral outliers as designated by those spectra with a standardized
Mahalanobis (H) distance [Eq.1] > 3.0 or T-value [Eq.2] >2.5.

H = (xi-Xpar) (X’ X)" (Xt-Xe)’ (Eq. 1]

T = (Difference between 2 samples/ standard error of the difference) [Eq. 2]
A principal component analysis file was created on the third pass without removing
additional files.
Calibration Equation Development

Soﬁware used for all calculations was provided by Infrasoft International, Port
Matilda, PA. Using the default setting of the program, ordered files were used for cross
validation where one set of samples is used to create a regression equation and the
remainder are predicted. All sets are used alternately for equation development until all

samples have been used for prediction and have been predicted. Using the best fitted
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equation as determined by the cross validation procedure, a coefficient of determination
() was calculated. According to Shenk and Westerhaus (1993c), r*>0.90 represents
acceptable association between spectra values and N values obtained by laboratory NIR
instruments during calibration development. - Accounting for greater variability in field
conditions, r* values > 0.80 were deemed acceptable for this study. The calibration
method used was a modified partial least squares regression (MPLSR) using detrend, and
standard normal variate standardization to create a full spectrum regression model (Shenk
and Westerhaus, 1991b; Barnes et al., 1989). Because MPLSR used all 208 wavelengths
in the calibration, no calibration equations are shown due to their size and complexity.

During cross validation, each sample spectrum has the opportunity to be predicted
as if its laboratory reference value were unknown. The standard deviation of these
differences between the predicted value of the sample treated as an unknown and the
actual laboratory reference value is the:standard error of cross validation (SECV). The
SECYV values estimate the actual values of the equation when samples are within the
global H limits. Using each sample for both calibration and validation of the equation,
the lowest model error is used in conjunction with the lowest prediction error to develop
an equation with a low performance error. After the equation is created, the difference
between the actual N reference values and the predicted N values is calculated. The
standard deviation of these differences is the standard error of calibration (SEC). and the
SEC describes how well the predicted values fit the regression line.

Standard error of calibration will always be lower than SECV since SEC reflects
the fitted values; SECV reflects the actual reference values. The standard error of cross

validation is a more accurate means of assessing the equation accuracy than the SEC. The
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SECYV indicates acceptable equation accuracy if it is lower than the standard deviaiton of
the laboratory analysis. The variance ratio (1-VR) is calculated as 1-SECV*(SD?)’!
where SD = the standard deviation of the laboratory values (Couilliard et. al., 1997). The
variance ratio is the ratio of the total variance in the population to the variance predicted
by the equation and provides an indication of the accuracy of the model since an accurate
model will explain a greater amount of the variation that exists. The coefficient of
determination (r’) calculation involves actual values, while the variance ratio uses
predicted values, but in many instances they are similar. Instances where the unexplained
variance, determined by the variance ratio, is greater than the SECV would indicate an
unacceptable association between spectral analysis and actual N content.
Lab Value Predictions

The MONITOR program was used to predict the laboratory values among
species/cultivar, soil type and mowing height by using the equation developed from one
population to predict the laboratory N values for another as if they were unknown. For
prediction evaluation, the bias was calculated as the difference of the two populations’
means and is used as a baseline to adjust the calculated standard error of differences
(SED) between spectra. The standard error of differences was expressed as the standard
error of performance (SEP) to gauge prediction accuracy in the MONITOR program.
The bias confidence limits (0.6 x SEC) were calculated to identify any bias greater than
1.0 x SEC with 90% confidence when using a one tailed Type I error probability = 0.10.
SEP(Corrected) limit of 1.3 x equation SEC was used to determine acceptable

performance error (Windham et al., 1989).
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RESULTS AND DISCUSSION

Laboratory Reference Values

Dry combustion analysis of the turfgrass clippings ranged from 1.47 to 6.28% N
for all treatments following N applications ranging from 0 to 4.8 g/m? (Table 2.1). A
representative VIS-NIRS raw spectra comparison of turf that received a range of applied
N is shown in Fig. 2.1. Greatest spectral differences in clipping N content were located at
670 nm, 1450 nm, 1510 nm and 1950 nm and these absorption bands are associated with
chlorophyll a electron transmissions a primary overtone O-H stretch attributable to water,
a first overtone N-H stretch attributable to protein and nitrogen, and O-H stretch and
deformation attributable to water, lignin, protein, nitrogen, and starch, respectively (Fig.
2.1). Greatest first derivative spectra differences were observed approximately 30 nm
higher than raw spectra difference;s. |
Visible-Near Infrared Reflectance Spectra and Predictions

The first objective of this research was to determine if a relationship exists
between the laboratory reference N values and the VIS-NIR spectra. Calculations of H
distance by the program CENTER indicate a right-skewed histogram because the median
of H values was lower than the mean (Fig. 2.2). Calibration statistics, estimated through
cross validation, for the turfgrass swards and their combination are presented in Tables
2.2-2.7. The r* (explained variation) and SEC (prediction accuracy) values were 0.92 and
0.25 for the Penncross green, 0.85 and 0.28 for the Penncross fairway, 0.81 and 0.38 for
the Providence fairway, 0.80 and 0.45 for the Poa annua green, 0.80 and 0.40 for the Poa

annua fairway, and 0.78 and 0.49 for the combination of all turfgrass swards.
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Table 2.1. Laboratory values of nitrogen (N) content in turfgrass clippings.

Number of
Treatment Samples f Mean N(%) Range (%) Std. Dev.
'"Penncross' green 83 4.10 2.08-6.28 0.89
"Penncross' fairway 119 3.87 2.15-5.29 0.74
'"Providence' fairway 85 4.24 é.37-6.00 0.87
Poa annua green 104 3.38 1.47-5.84 1.00
Poa annua fairway 77 4.07 2.05-6.05 0.91
All treatments 498 3.92 1.47-6.28 0.93

+ Number of samples used in development of global equation
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Table 2.2.Calibration statistics for ‘Penncross’ green combined over both seasons.

Term Wavelengtht SECH R*§ F-value SECV# 1-VRtt
686 0633 0495 9029 0.658 0458

[ )

1876 0.445 0.75 92.72 0.501 0.686
1896 0405 0794 19.75 0464 0.73

686 0359 0837 2463 0525 0.655
686 0302 0885 3746 0.744 0.308

028 0897 1059 0578  0.582
0274  0.905 8.67 0.521 0.66
0.267 0.91 5.34 043 0.769
0249 0922 1355 0375 0.824

O 00 I ONWL b WM

Table 2.3.Calibration statistics for ‘Penncross’ fairway combined over both seasons.
Term Wavelengtht SECt R?§ F-value SECV# 1-VRtt

1 1896 0471 0597 17587 0477  0.587
2 1886 0404 0704 = 4333 0427 0.669
3 716 0339 0792 4997 0379 0.739
4 716 0285 0852 47.84 0332 0.800

Table 2.4. Calibration statistics for ‘Providence’ fairway combined over both seasons
Term Wavelengtht SECi R?§ F-value SECV# 1-VRtt

1 686 0647 0447 68.84 0.663 0425
2 1876 0571 0569 2466 0.598 0.533
3 686 0.536 0.62 11.86  0.558  0.592
4 686 0429 0757 46.64 0481 0.697
5 1886 0403 0.786 11.80 0463 0.72

6 0.380 0809 1052 045 0.736

T Most important wavelength for the first five loading terms used in the equation
1Standard error of calibration

§ Coeffecient of determination

# Standard error of cross validation

ttExplained variance
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Table 2.5.Calibration statistics for Poa annua green combined over both seasons.
Term Wavelengtht SEC§ R’ § F-value SECV# 1-VRit

1 1396 0.821 0337 5327 0855 0.276
2 1876 0.623 0.618 76.24 069  0.529
3 686 0546 0706 31.28 0.613 0.628
4 1896 0.49 0764 2528 0566 0.682
5

1396 0446 0.804 2149 0.543 0.708

Table 2.6.Calibration statistics for Poa annua fairway combined over both seasons.
Term Wavelengtht SECt R* § F-value SECV# 1-VRtt

1 716 0692 0416 55.16 0.764 0.303
2 1876 0.587 0580 30.21 0.707 0.403
3 1876 0524 0666 2007 0664 0474
4 686 0493 0703 1026 0.597 0574
5 686 0436 0769 2128 0.553 0.634
6

0403 0.802  13.02 0.53 0.664

Table 2.7.Calibration statistics for all populations combined over both seasons.
Term Wavelengtht SECi R?* § F-value SECV# 1-VRtt

686 0.73 0386 31386 0734 0.381
686 0.681 0465 74.25 069 0452
686 0571 0.624 21044 0.602 0.583

1876 0525 0682 91.16 0552 0.649
1876 0475 0741 11198 0.515 0.695
0461 0.756 3136 0509 0.702
0448 0769 2936 0499 0.714
0435 0784 2920 0491 0.723

00 NO\WL B W -

T Most important wavelength for the first five loading terms used in the equation
$Standard error of calibration

§ Coeffecient of determination

# Standard error of cross validation

ttExplained variance
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Prediction accuracy of the global equation is illustrated graphically in Fig. 2.3. Shenk
and Westerhaus (1993c) identified r*>0.90 as acceptable for NIRS applications in
the laboratory. Accounting for greater variability under field conditions, *>0.80 was
deemed acceptable in this study. Furthermore, the SEC values for all turfgrass swards
were lower than the standard deviation values calculated from the laboratory N analysis
(Table 2.1), thus indicating greater prediction accuracy of N using VIS-NIRS compared
to conventional laboratory techniques.

The wavelength regions that contributed most to explaining the spectral variation
are listed in Tables 2.2-2.7 and shown as both raw and derivatized spectra in Figs. 2.4-
2.5. It should be noted that the derivative treatment causes a shift in the spectra. Using
derivatized spectra from the 1,4,4,1 math treatment the wavelength regions used most
often in equation development were 686-696 and 716-726 nm in the VIS region and
1870-1890, 1386-1396, 1480-1515, and 2360-2380 nm in the NIR region. Figure 2.6
illustrates comparison spectra of the first six eigenvector loading terms used in the
creation of the global equation. The wavelengths in the VIS region correspond to green
absorbance and have been associated with chlorophyll content in sweet pepper leaves
(Thomas and Oerther, 1972), corn (Walburg et al., 1982), and N content in wheat (Stone
et al., 1995). The major absorbance peaks for free water and water lattice occur around
1440 and 1900 nm, and 2200 nm, respectively (Bowers and Hanks, 1965; Hunt and
Salisbury, 1970). The major absorbance peaks for N-H occur around 1020 nm, 1510 nm,
1980 nm, 2060 nm, and 2180 nm (Hatchell, 1999). Wavelength areas that contributed

most to equation development were consistent among turfgrass swards indicating the
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Figure 2.4. Raw spectra comparison of the average spectrum of five populations.

1 — Penncross green

2 — Penncross fairway
3 - Providence fairway
4 - Poa annua green

5 - Poa annua fairway
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Figure 2.5. First derivative spectra comparison of the average spectrum of five
populations.

1- Penncross green
2- Penncross fairway
3- Providence fairway
4- Poa annua green
5- Poa annua fairway
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potential for development of one sensor that could used to predict N in shoot tissue across
a range of turfgrass species and cultivars, mowing heights, and soil types (Figs. 2.5-2.6).
Inter-population Predictions

The second objective of this research was to determine how the relationship
between VIS-NIRS and N in shoot tissue is affected by species or cultivar, mowing
height, and soil type. To accomplish this, N from one turfgrass sward was predicted using
the equation developed from another turfgrass sward and vice versa. The comparisons
evaluated were: Poa annua fairway vs. green on a sandy loam; Penncross creeping
bentgrass fairway vs. green on sand:peat; Poa annua vs. Providence on sandy loam
fairway; and Poa annua vs. Penncross creeping bentgrass across soil types. Prediction
statistics showing these comparisons are presented in Table 2.8. In general, the ability of
one population to predict N from another was very poor and unacceptable for
applications in SSM. Coefficients of determination ranged from 0.07 to 0.55 and standard
errors of performance (SEP) exceeded the acceptable limited determined as 1.3 times
SEC of the equation used for prediction. Poor prediction performance in these
experiments indicates that, although there is an association between laboratory N values
and spectra patterns, the equations developed in this research were population-specific.
These results may due to differences in leaf canopy architecture resulting from different
mowing heights, and genetic color differences among species and cultivars. More
importantly, however, is the fact that the prediction accuracy inherent in this statistical
procedure is optimized by using a broad database of samples. Therefore, it would be

difficult to deiect an association between two similar but different populations if the
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prediction equation was based upon only one population. Developing a calibration
equation with only one population’s data provides a local calibration specific to that
species/cultivar and mowing height. To illustrate this point, a separate prediction
equation was developed for a portion of the global data set, and then used to predict N
from the remaining population. The average r and SEP for the five subsets used in this
comparison were 0.65 and 0.58, respectively (Table 2.9). The lower prediction accuracy
compared to the overall global equation (Table 2.7) was most likely due to fewer samples
used to develop the equation.
CONCLUSIONS

These results indicate that a relationship exists between VIS-NIRS and turfgrass
leaf N content. The lower prediction accuracy between laboratory N values and VIS-
NIRS spectra demonstrated in this study as compared to other research using the same
instrumentation and statistical analysis may attributed to a number of factors. Typical
NIRS analysis involves uniform grinding of the sample and use of a laboratory benchtop
model for spectral acquisition. Although procedures were taken to minimize the
variability due to extraneous factors, conducting experiments in the field and analyzing
plants in situ lends itself to a veritable plethora of complex influences. Differences in
canopy architecture, affected by leaf angle, texture, surface characteristics, mowing
height and density, and phenotypic variation among species and cultivars can change
reflectance from the plant canopy (Green et al., 1998; Jackson and Pinter, 1986). Since
O-H functional group bonding has a considerable affect on spectral absorbance patterns,

differences in plant or soil water relations may change the prediction accuracy of N.
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Table 2.9. Statistics for predicting subsets of the global equation using the remaind
global data for equation calibration.

Population Equation Population Equation
predicted predicting predicted predicting
Subset 1 lo i0 Subset 2 Global Equation
SEPt 0.438 0.674
Means 3.767 3.785 3.922 4.012
Biast -0.018 -0.090
Bias Limit 0.440 0.279
SEP (C)§ 0.440 0.672
SEP (C) Limit 0.678 0.454
Std. Dev. 0.897 0.790 0.881 0.759
Slope 0.990 0.782
R 0.760 0.604
Average H# 0.390 0.398
N 102 102
ulation Equation P ion Equation
predicted predicting predicted predicting
set Global Equation Subset 4 Global Equation
SEPt 0.594 . 0.612
Means 3.975 3.950 3916 3.870
Biast 0.025 0.040
Bias Limit 0.296 0.280
SEP (C)§ 0.546 0.614
SEP (C) Limit 0.64 0.607
Std. Dev. 1.044 0.767 1.028 0.884
Slope 1.123 0.935
R* 0.682 0.647
Average H# 0.393 0.408
N 104 104
Population Equation
predicted predicting
Subset 5 Global Equation
SEPt 0.603
Means 3.923 3.952
Biast -0.024
Bias Limit 0.605
SEP (C)§ 0.605
SEP (C) Limit 0.676
Std. Dev. 091 0.795
Slope 0.865
R? 0.571
Average H# 0.384
N 103

+ Standard error of performance
1 Mean of differences due to instrument performance

§ Standard error of performance, corrected for bias
# Average Mahalonobis distance from the mean spectrum

59



The practical use of the association between leaf N and VIS-NIRS depends upon
the degree of scrutiny desired. The ability to sense and apply N in SSM by explaining
80% of the variation and with 95% accuracy would be an imprdvement over standard soil
testing practices and blanket applications of N. Using SSM, a turf manager would be able
to apply N based on an optimal leaf N range between, for example, 4 to 5%. Further
research is needed to determine the optimal range of leaf tissue N for various turfgrass
species and under different management conditions.

The MPLSR procedure for NIRS has been found to provide greater prediction
accuracy compared to other procedures such as stepwise regression (Shenk and
Westerhaus, 1991a). According to Couillard et al. (1997) and Shenk and Westerhaus
(1993c), the success of using spectroscopy and MPLSR analysis to predict plant and soil
constituents is highly dependent upon the development of a broad database of samples
with known analysis. Accordingly, this research has only begun to develop such a
database to accurately predict N in creeping bentgrass and Poa annua. Although MPLSR
analysis may be the most useful technique for improving prediction accuracy in NIRS, it
is not the preferred technique to analyze how individual factors such as cultivar, mowing
height, and soil type affect VIS-NIRS. Therefore, additional analysis is required to
determine which wavelengths and wavelength combinations should be used to develop a
sensor to detect N or other constituents in different turf environments. Furthermore, this
research was conducted under conditions where only one variable was intentionally
imposed. To develop an accurate sensor for use in SSM, the influence of other anomalies
and their interactions with VIS-NIRS need to be explored. For example, since fungal

pathogens affect turf by disrupting phloem translocation and subsequent macromolecule
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synthesis and assimilation, an interaction between pathogen presence and N content

would be expected.
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CHAPTER THREE

REMOTE SENSING OF DISEASE SEVERITY IN CREEPING BENTGRASS AND
ANNUAL BLUEGRASS USING NEAR INFRARED SPECTROSCOPY

ABSTRACT

Brown patch (Rhizoctonia solani Kuehn) and dollar spot (Sclerotinia homeocarpa
Bennett) are two common diseases of cool season turfgrass in the United States. As
governmental and public scrutiny of golf course maintenance practices increases,
superintendents are beckoned to balance playability with fewer fungicide inputs. The
objective of this study was to develop a method of evaluating disease severity using a
direct light visible/near-infrared scanning monochromator on creeping bentgrass
(Agrostis stolonifera Huds.) and annual bluegrass (Poa annua var. reptans Hausskn).
Categorical disease symptom severity ratings of brown patch and dollar spot were made
on different turfgrass swards and associated spectra obtained so that absorbance was
expressed as “Log 1/reflectance” between 400 and 2500 nm. Discriminant analysis of the
data yielded classification accuracy. In the dollar spot study, 20 out of 193 samples
(10.3%) were classified incorrectly and in the brown patch study using three severity
categories, accuracy improved greatly as there were only 29 misses out of a total of 336
samples (8.6%). These results suggest the feasibility of developing a visible/near-
infrared sensor for the detection of disease severity. Future research should address
investigation of how various stresses interact to affect the spectral reflectance of the

turfgrass plant.
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INTRODUCTION

Increasing governmental regulation of pesticides and growing public scrutiny of
golf course management practices are leading to the development of improved methods
to decrease fungicide inputs on golf courses. As golf courses continue to fill the role of
urban green areas and are the subject of increasing public and governmental scrutiny, a
premium is placed upon superintendents to balance environmental impact and playability.
Although modern chemistry has led to advances on improving fungicide efficacy with
lower active ingredient rates, typical management practices involve widespread “blanket”
applications of fungicides during periods conducive to disease development. Site specific
application of fungicide has the potential to save money, provide an efficient means for
effective disease control, and reduce the amount of fungicide applied. Since disease
pathogens are dynamic and can infect plants quickly in the presence of optimal growing
conditions, a sensor capable of attaining a rapid, real-time assessment of disease status is
necessary for incorporation into a site specific management program.

Typically, a given stress reduces photosynthetic capability and causes an increase
in reflectance in the red and blue portions of the spectrum and decreased reflectance in
the NIR region due to deterioration of leaf tissue (Nilsson, 1995) and leaf structural
changes (Raikes and Burpee, 1998). Several methods of remotely sensing plant disease
status have been evaluated in past research. Indices such as the Leaf Area Index (LAI)

" (IR reflectance/Red reflectance) and Normalized Difference Vegetative Index (NDVI)
[(IR-R)/(IR+R)] have been correlated with the presence of green biomass and provide a
quantitative estimate of general stress on a plant; however, it is often difficult to

determine exactly the nature of the stress (Nilsson, 1995). Infrared aerial photographs



have been used with moderate success to remotely sense sugar cane rust fungus (Puccinia
kuehnii)(Karteris et al.,1980); sugarbeet blackroot disease, one of the causal agents of
which is Rhizoctonia solani (Schneider and Safir, 1975); and southern corn leaf blight
(Helminthosporium maydis L.) (Safir et al., 1972). Contrary to others, they found that
visible reflectance changes preceded infrared reflectance changes.

The objective of this research was to assess disease severity of two common cool-
season turfgrass diseases, brown patch (Rhizoctonia solani Kuehn) and dollar spot
(Sclerotinia homeocarpa Bennett) using a scanning monochromator capable of

measuring spectral reflectance from 400-2400 nm.
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MATERIALS AND METHODS

Two experiments were conducted at the Michigan State University Hancock
Turfgrass Research Center (E. Lansing, MI). The first experiment was conducted to
assess dollar spot (Sclerotinia homeocarpa Bennett) on swards consisting of mature
annual bluegrass (Poa annua var. reptans, Hausskn) grown on a Owosso sandy loam
[fine-loamy, mixed, mesic Typic Hapludalfs], ‘Providence’ creeping bentgrass (Agrostis
stolonifera, Huds.) grown on a Owosso sandy loam, and ‘Penncross’ creeping bentgrass
grown on a 90:10 (v/v) sand:peat mix that conformed to United States Golf Association
(USGA) specifications. The former two swards were maintained as fairways and mowed
at 14 mm and the latter maintained as a green and mowed at 5 mm. Spectrometer
readings were obtained from June 16-19, 1999 from portions of the sward naturally
infested with dollar spot. Spectra measurements were categorized qualitatively by visual
assessment as diseased (diseased); close to the disease but visually healthy (disease
front); and visually healthy within the same sward, but not close to disease symptoms.
(healthy).

The second set of experiments was conducted to assess brown patch (Rhizoctonia
solani Kuehn) on a mature sward of ‘Penncross’ creeping bentgrass grown on a 90:10
USGA sand:peat mix maintained as a green and mowed at a height of 5 mm.
Spectrometer readings were conducted during September 2-9, 1999 from areas included
in a curative fungicide treatment study. Spectra measurements were qualitatively
categorized by visual assessment according to disease severity as severe, moderate, and

light.
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Spectrometer Measurements

Spectral reflectance from the turf canopy was acquired with a NIRSystems (Silver
Spring, MD) Model 6500 online scanning monochromator. Spectral data were obtained
every 2 nm from 400 to 2500 nm and expressed in absorbance units as the log
(1/reflectance). The spectrometer was adapted for field use by mounting onto the rear of
a garden tractor. The acquired spectral signal was sent to the spectrometer via a fiber-
optic cable that was connected to a 30-cm by 15-cm metal box that was mounted onto
four 15-cm diameter wheels. The box was suspended approximately 13 cm above the
surface of the turf canopy and collected radiation from a 3.5-cm by 12-cm area. The box
was designed to minimize the effects of incident solar radiation by shading the area
where reflectance measurements were taken. . Furthermore, direct light was provided
from the box to the measured area using a tungsten-halogen bulb. Three measurements
were taken from different locations within each plot during each sampling time.
Measurements were taken between the hours of 0730 and 1830 h when disease symptoms
were present.

In order to maintain accuracy and repeatability with the instrument, a reference
was attained for each scan and the spectrum for the scan is subtracted from that of the
reference. In this regard, the NIRS Online 6500 performs similarly to a double beam
spectrometer where a reference and sample spectra are obtained simultaneously and the
differences plotted on the output.

Diagnostic tests were conducted prior to sample readings for repeatability and
photometric accuracy. To insure instrument repeatability, diagnostics are conducted prior

to sample readings. A Coors ceramic reference plate, which is 80% reflective was
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scanned once as a reference and again as a sample to measure repeatability. A noise test
was conducted by obtaining 32 scans of the reference and 32 more scans using the
reference as a sample. The repeatability noise was plotted as the difference between those
two sets. The root mean square (RMS) of noise errors across the entire spectra is used to
gauge repeatability. Accuracy tests were conducted with a polystyrene standard with
known peaks at 1143, 1681, 2166, and 2305 nm (Foss NIRSystems, 1993).

Data Analysis

Data were analyzed by multivariate discriminant analysis as described by
Morrison (1990) using software provided by Infrasoft International (Port Matilda, PA).
The three qualitative dollar spot categories were discriminated in the first analysis. In
another separate analysis, attempts were made to discriminate among spectra from the
three qualitative brown patch disease categories and spectra gathered from a healthy
‘Penncross’ green during a nitrogen assessment experiment. A third analysis combined
all levels of disease (excluding “healthy” samples) for each of the two diseases and
attempted to discriminate between the two diseases.

The variables used for classification assume that each population were
characterized by a multivariate normal distribution and has a common correlation variate.
Following these calculations, cross validation was conducted as described in Chapter 2 so
that each set of spectra was used to develop the prediction equation and was placed into
one of the categories. Analysis was conducted using the default settings for the
DISCRIMINATE program of the Infrasoft Software with a wavelength scanning range
from 400-1000 nm and 1100-2100 nm in 4 nm increments and a math treatment of

1,4,4,1 (derivative, gap, smoothing factor 1, smoothing factor 2) without scatter
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correction (Shenk and Westerhaus, 1999). Eight cross validation groups were used in
creating the prediction equation. In addition to the discrimination comparisons described
above, an analysis was conducted to discriminate between brown patch and dollar spot.
A 10% error rate for prediction of the samples was deemed acceptable in the evaluation

of the results.
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RESULTS AND DISCUSSION

Dollar spot study

In the dollar spot study, 20 out of 193 samples (10.3%) were classified incorrectly
(Table. 3.1). Comparison spectra for the raw and derivatized data are presented in Fig.
3.1. Attempting to identify the spectra obtained from the “disease front” resulted in the
highest percentage of misclassified samples. These results indicate the possibility of
identifying the disease before symptoms become manifest; however the question still
remains whether this is due only to its close proximity to the disease and if the same
results would be measured in a symptom-free sward that is on the verge of developing
symptoms. A concern that may contribute to confounding is the fact that the scanning
view of the spectrometer was often larger than the diseased area for some scans classified
as “diseased.” This discrimination suggests the possibility of using information from the
VIS-NIR portion of the electromagnetic spectrum for a sensor desi gned to spray variable
rates of fungicide preventatively or curatively for the dollar spot disease.
Brown Patch

Using all four categories, 87 of a total 336 samples (26%) were misclassified
(Table. 3.2). Comparison spectra for the raw and derivatized data are presented in Figs.
3.2 and 3.3, respectively. This was most prevalent as “severe” spectra were misidentified
as “moderate,” and “moderate” spectra mistaken for “light.” In an effort to improve
prediction accuracy at the expense of reduced prediction precision, the “light” and
“moderate” categories were combined and the data were analyzed using three categories
for discrimination. Prediction accuracy improved greatly as there were only 29 misses out

of a total of 336 samples (8.6%) (Table 3.3). It is unclear whether or not these results
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Table 3.1. Predicted v. Actual Category Classification for Dollar Spot Spectra

Spectra Catego

Predicted Category
% of
Close Diseased Healthy Total Total % Error

Close 56 6 6 68 35.2 17.6

Diseased 5 58 1 64 33.1 93
Healthy 2 0 59 61 31.6 33

Totals 63 64 66 193
Misses for
Category 7 6 7
Uncertain 22 21 18
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Table 3.2. Predicted v. Actual Category Classification for Brown
Patch Spectra Using Four Categories.

Predicted Catego

Light Moderate Severe % of
. Healthy disecase disease  disease Total Total % Error

Healthy 68 0 0 0 68 20.2 0.00

f Light disease 0 42 19 1 62 185 32.2

Lg Moderate disease 0 28 73 14 115 342 36.5

7 Severe disease 1 3 21 67 112 333 223

Totals 68 73 113 82 336

Misses for Category 1 31 40 15
Uncertain 6 41 64 44

Table 3.3. Predicted v. Actual Category Classification for Brown Patch Specira Using
Three Categories.

Predicted Category

Medium  Severe % of
Healthy disease disease Total Total ¢ Error

g Healthy 68 0 0 68 20.2 0.00
|
<
(: Medium disease 0 175 17 192 57.1 8.26
5
A Severe disease 1 11 65 77 229 14.3
Totals 68 186 82 336
Misses for Category 1 11 17
Uncertain 0 27 16
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suggest the subjectivity of qualitative severity ratings and subsequent broad overlap of
populations classified as “light” and “moderate”. For practical applications, three
categories, “healthy”, “light-moderate”, and “severe” may prove sufficient for effective
site-specific applications and subsequent savings in fungicide.
Brown Patch v. Dollar Spot

Combining the three categories of brown patch severity spectra and “diseased”
and “front” categories of dollar spot, respectively, analysis was conducted to assess the
accuracy of discriminating between the two diseases. Results indicate these populations
are significantly different enough to be predicted with 100% accuracy in this particular
study; however, the fact that the dollar spot spectra were gathered on 3 different grass
swards and the brown patch on only sand-based, green-height creeping bentgrass
provides for the strong likelihood of a confounding effect due to grass species, mowing
height, and soil type.

CONCLUSIONS

These results indicate that VIS-NIRS is a viable method for assessing brown
patch and dollar spot severity. According to the data presented, the spectrometer can
qualitatively categorize disease severity with a suitable degree of accuracy. Unlike
previous experiments-involving the association of turfgrass disease severity with
reflectance at discrete spectral wavelengths, the discriminant analysis described above
used continuous portions of the visible and near infrared portions of the spectrum for
analysis. Previous research indicates that reflectance values measured at 660-, 710-, 760-
, and 810-nm and subsequent mathematical combinations of these provide for the best

correlation between spectral and disease severity ratings on brown patch and gray leaf
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spot (Raikes and Burpee, 1998; Green et al., 1998). The raw data (Fig. 3.2) illustrate
spectral differences at these wavelengths and throughout the NIR portion of the spectrum,
notably at 1448-nm and 1932-nm. First derivative results (Fig. 3.3) illustrate the greatest
differences between categories at 700-, 1400-, and 1930-nm. Because of the various
physiological effects produced by pathogens as they degrade leaf tissue, it is difficult to
focus on one particular portion of the spectrum for differences in reflectance.

For practical integration into a site-specific management regime, threshold levels
of disease need to be gleveloped for proper fungicide treatment. One of the caveats of this
technology is the limited amount of data that has been collected. Studies such as these
have been conducted by focusing on one anomaly of interest and experimental
procedures seek to exclude all other extraneous factors that could affect the absorption
pattern of the instrument. HoWevér, any intcra;:tion effect of multiple anomalies (i.e.
water stress, disease, insect darﬁage, chlorosis, ;:tc;) on plant reflectance patterns and their
subsequent interpretation is relatively unexplored. To further assess the feasibility of
VIS-NIRS technology in site-specific management, experiments need to be conducted

exploring interactions among various anomalies.
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