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ABSTRACT

FRICTION-INDUCED VIBRATION IN LINEAR

ELASTIC MEDIA WITH DISTRIBUTED CONTACTS

By

Choong-Min Jung

When there is friction between two parts in contact relative motions may generate

vibrations and noise which can cause serious problems in applications. In this study

friction-induced vibrations in elastic media subjected to distributed contacts are in-

vestigated in order to understand mechanisms responsible for generations of noise

and vibrations. We investigated system stability and stick-slip oscillations to explain

friction-induced vibration in linear elastic media with distributed contacts.

A one-dimensional elastic media with fixed-end boundary conditions are investi-

gated. The system is marginally stable when the coefficient of friction is a constant.

Under fixed-end boundary conditions distributed friction leads to a non-self-adjoint

system. A non-self-adjoint eigenvalue problem and an eigenvalue problem based on a

proper inner product are reviewed as alternative methods in handling non-self-adjoint



systems. A contradictory result between the exact and an assumed mode projection

based on the non-self-adjoint formulation is presented as a cautionary example.

Under periodic boundary conditions the one-dimensional system is destabilized

with a constant coefficient of friction. The destabilizing phenomena occur in the

form of unstable traveling waves propagating in the direction of the slider velocity.

External and internal damping play stabilizing roles in system stability. By construct-

ing a discretized lumped-parameter model, the non-symmetric eigenvalue problem is

studied. A negative-slope in friction-velocity curve destabilizes the system.

Stick-slip oscillations are analyzed with the lumped-parameter discretized model.

An algorithm for handling nonlinear stick-slip oscillations is presented. Series of

detachments over whole domains and localized small-grouped stick-slip oscillations

are observed. Effects of system parameters on stick-slip oscillations are considered

as well. Under high normal loads, the frequency of the series of detachments is

lowered and frequency of small-grouped motions is increased. Sustained stick-slip

oscillations are observed when the friction-velocity curve is discontinuous (Ms > me)

and the system is linearly unstable. With the help of finite element analysis dynamic

behaviors of one- and two-dimensional linear elastic systems are investigated.
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CHAPTER 1

INTRODUCTION

1 .1 Motivation

It is well known that troublesome noise and oscillations occur in systems subjected

to frictional contact. Friction-induced vibrations and accompanying noise are serious

problems in many industrial applications, for example brake systems in automobiles,

wheel and rail systems in trains, water-lubricated bearing systems in ships, robot

joint systems, and machine-tool/work-piece systems in manufacturing. These various

forms of vibrations are undesirable not only because of their detrimental effects on the

performance of the mechanical systems, but also as sources of discomfort in operating

environments.

Consider the example of frictional slip and stick-slip vibrations in the stabilizer

bar of automobile suspension systems. Figure 1.1 shows a simplified schematic model

of the elements in the squeak system. The clamped rubber bushing is represented as

the annulus. The outer surface of the annulus is fixed, and there is frictional con-
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Figure 1.1. A schematic diagram for the bushing squeaking noise problem in an

automotive suspension system. Squeaking noise is generated on the contact surface

between the rotating shaft and the rubber bushing material.

tact between the rotating shaft and the rubber bushing at the interface. Under some

circumstances, the rubber-on-steel contact between the bushing and the shaft gen-

erates an annoying, high-frequency, frictional squeaking noise. Such noise problems

motivate us to study vibrations and dynamics of the bushing system.

Previous studies which related how the friction generates such unwanted noise and

vibrations have shown that causes of friction-induced vibrations and noise depend on

numerous factors including:

0 Friction force characteristics with respect to relative sliding speed

0 Clamping torque producing normal contact pressure

0 Humidity and heat generation on the contact surface



 

   

 

 

Figure 1.2. A typical spring-mass model which has been used for explanations of

friction-induced vibrations.

0 Random roughness on the contact surface

0 Material nonlinearities

o Modal coupling effects in frictional steady sliding

In order to understand the dynamic system behavior of the elastic medium, which

results from self-excited vibrations and stick-slip oscillations, an appropriate math-

ematical model which explains the distributed friction effect is required. However,

only a limited number of studies have considered the influence of distributed friction

contact on system behavior. Most of the mathematical models in previous studies

have been based on simplified, discretized, low-degree-of-freedom models. For a basic

example, a spring-mass on a frictional moving belt model (Figure 1.2) has been used

to explain friction-induced vibrations in previous studies. Such a model has limi-

tations, and cannot describe the dynamics of a continuum subjected to distributed

frictional contacts.

One of the particular phenomena occurring in a frictionally excited elastic media



is the vibration in the form of waves. According to research on deformable elas-

tic materials, oscillations in the form of waves are generated by distributed friction

(Schallamach [26], Martins et al. [25], and Adams [23, 24]) and some of waves can

destabilize the overall system. Therefore, an investigation on frictional waves in an

elastic medium is required to understand the generating mechanisms of the noise and

vibrations caused by distributed friction.

Furthermore, when stick-slip oscillations occur over distributed contact surfaces,

stick-slip motions can be observed at the interface. This means that within the

system domain, micro-scale stick and slip regions are observed on the contact surface

of the continuum. This produces difficulties in defining the system configurations and

leads to complicated responses in the continuous elastic medium. The experimental

investigations by De Togni et al. [99] and Vallett and Gollub [101], who dealt with

the distributed friction contacts, revealed mechanisms responsible for friction-induced

vibrations including the stick-slip responses. However, there have been few analytic

investigations regarding stick-slip oscillations in a continuum and detailed system

behaviors that lead to vibrations and noise in a continuum have not been investigated.

Possible mechanisms for generating vibration and noise are hypothesized to be lin-

ear instability and nonlinear limit cycles. For linear instability we look for eigenvalues

of a system under a steady sliding condition and identify criteria for instability by

varying system parameters. Such instability means growth in vibration and is usually

expected to lead to stick-slip limit cycle behaviors. It is possible that a linearly sta-

ble system can have a stable stick-slip limit cycle. Thus by setting initial conditions

representing the bushing system we seek the possibility of sustained stick-slip limit



cycle behaviors.

The primary concerns of this study are determining the mechanisms

that can generate noise and vibrations in distributed friction systems, and

understanding the dynamic behaviors of the system.

Emphasizing the structural stability, several issues regarding system properties

are considered in this study. System properties which are introduced by distributed

friction contact are investigated. Effects of damping and boundary conditions on

system stability are considered in this investigation.

1 .2 Literature Review

1.2.1 Dynamic Instability due to Friction

Experimental and analytical investigations for noise and vibrations induced by friction

have shown that numerous system parameters have influenced on dynamic system

instability, which may result in chattering, squeaking, squealing noise. Although

it is not easy to distinguish system parameters as independent factors influencing

system stability, categorizations based on their functions will show several primary

parameters responsible for friction-induced vibrations and noise.

Crucial parameters which dominate system stability are friction force characteris-

tics with respect to relative speed, dependency of normal loads, coordinate couplings

by friction contact, random roughness of contact surface, temperature and humidity

around the contact surface, transient or time-dependent state variables, geometric



nonlinearities, frictionally destabilized waves on elastic materials, boundary condi-

tions and so on. In this section, previous studies related to dynamic stability are

organized and presented in order to understand principal mechanisms of friction-

induced vibrations and noise.

Characteristics of friction-speed relation
 

One of the main parameters which affects system stability is the slope of the friction-

speed relation. Brockley et al. [65] investigated fundamental mechanisms of friction-

induced vibrations of a system composed with a spring-damper-mass on a frictional

moving belt. The results suggested a critical sliding belt speed must be exceeded in

order to attenuate oscillations induced by friction. The operating under the critical

sliding speed, which depends on damping, normal loads, system stiffness, and friction

force characteristics, limited an incidence of vibrations and reduced the amplitude of

oscillations. They emphasized that the friction-speed curve plays an important and

crucial role in an occurrence of self-excited vibrations. Experimental verifications

were also conducted by Brockley and Ko [66].

Moreover, variations of the friction characteristics also effect stability. Cocker-

ham [67] presented analyses of stick-slip and sliding stability by using a discontinu-

ous friction model which consist of different coefficients of friction in acceleration and

deceleration. Additionally, nonlinear variations in coefficients of friction during oscil-

lation cycles were analyzed by Antoniou et al. [47]. Some researchers included ideas of

the discontinuous properties of static and kinetic frictional coefficients associated with

time dependency in modeling processes (Brockley [65], Gao et al. [45, 46], Tworzydlo



et al. [52]). For example, experimental studies by Gao et al. [45, 46] showed that the

rate of increase in static friction coefficient on sticking time is a crucial parameter in

addition to friction-speed effects on stick-slip and steady sliding motions.

Such friction-speed relations, sometimes with time-dependent forms, have influ-

enced the effective system damping and destabilized systems in many applications,

e.g., brake systems (Friesen [69], Abdelhamid [70], Black [71]), hearing systems

(Bhusha [73] Simpson and Ibrahim [74], Krauter [75]), and manufacturing systems

(Ulsoy [59], Palmov [31], Paslay [34], Dareing [33], Dawson [35], Belyaev [32]).

In the study by Krauter [75], unstable high-frequency vibrations, which result in

as squealing noise, were originated from the growth of unstable vibration modes. The

quantity most affected the onset of instability was the slope of friction-speed relation

and effective modal structural damping. In the research on water-lubricated compli-

ant rubber bearings (Bhusha [73] and Simpson and Ibrahim [74]), experimental and

analytical approaches by modeling of the system ascertained that instability mainly

depends on the negative slopes of friction properties. Stability analysis for machining

systems in manufacturing industries have confirmed the importance of friction-speed

relations on system stability as well (band saw system (Ulsoy [59]), drilling process

(Palmov [31], Paslay [34], Dareing [33], Dawson [35], Belyaev [32]), musical instrument

analysis (Schelleng [92]), audio system (Majewski [68]), and turbine blades systems

(Pfeiffer [91]).

Detailed explanations about dynamic stability by the effects of friction-speed re-

lations have been summarized in works by Nakai and Yokoi [72] and Ibrahim [93, 94].



Coupling instability associated with normal loads
 

Observations of experimental phenomena for friction-induced vibrations of multi-

degree—of-freedom systems have provided another significant mechanism responsible

for system instability: a coupling instability associated with normal loads.

Tolstoi [48] investigated experimental kinetic friction systems in the presence of

vibrations and informed that negative friction-speed slopes and frictional self-excited

vibrations are closely associated with the freedom of normal displacement of the

slider. Later, several researchers have confirmed that the self-excited oscillations

were accompanied by normal displacement of sliding elements (Aronov et al. [61],

Sakamoto [49, 50], Tworzydlo et al. [51, 52] and Dweib and D’Souza [55, 56]).

By using experimental works, Aronov et al. [61] showed when the normal load

reaches a critical value, which depends on the system rigidity, high frequency self-

excited vibrations are generated. These oscillations exhibited coupling between a

lateral and a normal degree of freedom. In their series of works (Aronov et al. [62,

63, 64]), stiffness couplings have significant effects on the normal load at which a

transition takes place from mild to severe friction and wear.

Further investigations related to coupled self-excited vibrations were performed

by Dweib and D’Souza [55, 56]. They determined four different friction regions,

such as linear, nonlinear, transient, and self-excited vibration region, as the normal

load increases. The self-excited vibrations occurred under high normal loads and a

small equivalent kinetic coefficient of friction. By using the linear stability theory

the conditions which caused the steady state sliding motions to become unstable



oscillations were presented.

A numerical study by Tworzydlo et al. [52] has confirmed that coupling between

the rotational and normal modes was the primary mechanism responsible for self-

excited oscillations. Oscillations with high-frequency stick-slip motions produced sig-

nificant reductions of the apparent kinetic coefficients of friction (Sakamoto [49, 50],

Gao et al. [45, 46]).

Coordinate coupling instabilities have been found in many applications as well.

Nakai and Yokoi [72, 57] investigated the squeal mechanisms of band brakes in order

to develop effective treatments of reduction or elimination of squealing noise. They

showed that squealing noise caused by frictional forces were originated from the cou-

pling between two modes of the brake band. Experimental studies on the disc brake

squeal (Ichiba and Nagasawa [54]) and multiple modes coupling effects have been

found in several applications as well (Hulten [58], Abdelhamid [70], Sherif [60]).

Surface roughness and other environmental effects
 

The dependence of surface treatment and environmental conditions on system sta-

bility have been investigated by several researchers who were interested in dynamic

behaviors with tribological effects. Surface roughness allowed the interlocking be-

tween two contacted bodies and also promoted the normal vibrations of the slider in

real situations. Soom et al. [42, 43] investigated the oscillations caused by the in-

teractions of normal and frictional forces when surface roughness is considered. The

normal oscillating forces were generated due to the surface irregularities being swept

through the contact region during sliding, and destabilized the system (Soom and
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Chen [41], Hess and Soom [40]).

Environmental conditions, such as temperature and humidity of the contact also

contributed to the system stability. Bhushan [73] investigated basic phenomena for

frictional sliding and stick—slip oscillations of the water-lubricated rubber bearing in

ships. The mechanism for noise generation was stick-slip motions of rubber at the

interface. Generated noise was closely related contact conditions, such as roughness,

temperature, and humidity. In humid conditions some dry spots deve10ped during

sliding, which would make nonuniform friction forces over the surface. This caused the

bearing to undergo stick-slip oscillations, resulting in chattering and squealing noise.

From an experimental study by Nakai and Yokoi [57] conditions for generating the

screaming noise were changed by the surface treatment and temperature of interfacial

surfaces. At high temperatures, slopes in the friction-speed curves became more

negative than at the ordinary operating temperature condition and resulted in severe

noise and vibrations. Stick-slip amplitudes by the effect of humidity showed that in

high humidity condition the stick-slip oscillations are apt to occur (Gao et al. [45, 46]).

1.2.2 Stick-Slip Oscillations induced by Friction

When elastic systems are driven by friction forces, the motions of the elastic body

may not continuous, but may be intermittent and proceed by processes of stick-slip

oscillations. The occurrences of stick-slip motions are unpredictable and system be-

haviors including chattering, squealing, squeaking noise and even chaotic phenomena

are expected.
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The analytical approaches for stick-slip behaviors have been performed by many

researchers. The periodically forced, single—degree-of-freedom system was considered

by Den Hartog [102]. He has made the exact solutions for the systematic steady

state responses. Later, Hundal [104] studied the analytical solutions in closed form

of continuous sliding and stick-slip motions. Dynamic responses and stability of a

system having discontinuous static and kinetic coefficients of friction were investigated

by Shaw [105].

Some simple deterministic systems are chaotic when they subjected to friction

forces. Feeny [106] and Feeny and Moon [107] provided chaotic motions in a harmon-

ically forced spring-mass—damper system. They used different friction law models and

showed the system dynamics in terms of maps for non-smooth systems. The extended

analyses associated with phase space reconstructions (Feeny and Liang [108]) and

a wavelet analysis in low dimensional characteristics (Liang and Feeny [109]) were

conducted as well. Other investigations related to two-degree-of—freedom frictional

systems were found in several works (Yeh [103], Pratt and Williams [110]).

Meanwhile, for investigations of non-periodic forcing systems, a mass on a fric-

tional moving belt has been used as a typical model for explaining stick-slip motions.

(Refer to Figure 1.2 for system configuration.) The analytical solutions and exper-

imental data were given by Banerjee [83] and Bo and Pavelescu [82] for influences

of kinetic friction on stick-slip motions. Additionally, the influence of friction—speed

relation in the stick-slip motions were investigated by You and Hsia [80] and Capone

et al. [81] with graphical techniques.

Nonlinear phenomena introduced by stick-slip motions were investigated by sev-
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eral researchers. Stelter and Sextro [85] and Popp and Stelter [78] investigated the

frictional system characterizations with one— and two-degree-of-freedom systems and

provided the bifurcation behaviors of deterministic systems. Period doubling and

Hopf bifurcations were observed in parameter variations and a jump phenomenon

in amplitude of responses of frictional systems was founded. Later, Galvalnetto et

al. [86, 87] investigated the stick-slip vibration with a two-degree-of-freedom mechan-

ical system and the global dynamics was characterized by using a Poincaré map.

Dynamics in two-degree-of-freedom stick-slip oscillations were studied by Awre-

jcewicz and Delfs [89, 90]. They showed the qualitative changes in equilibria by

changing system parameters along with integration techniques for stick-slip motions

in numerical aspects. In addition, Pfeiffer [91] studied dynamics of turbine blades

as a multi-dimensional stick-slip system. Studies for self-excited and stick-slip mo-

tions have been found in several works (Popp and Stelter [78], Popp [79], Hinrichs et

al. [84]).

Most of the previous research has dealt with low-degree-of-freedom systems, which

did not include distributed friction effects. However, real systems always have areas of

contact and sometimes that could have major influences on dynamic characteristics.

The model consist of blocks of masses have been used to describe the dynamics for

multi-dimensional systems and also used for earthquake fault analysis (Carlson and

Langer [97, 98], Carlson et al. [96], Takayasu [95]). Carlson and Langer [97, 98] have

investigated global stick-slip behaviors of a multi-degree—of-freedom system. They

also provided the system slipping instability and analyzed earthquake events.

Vallette and Gollub [101] studied the stick-slip motions with spatiotemporal dy-
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namic systems and explained the experimental behaviors of stick-slip motions in

terms of propagating waves. The instability occurred as consequences of Schallamach

waves [26] of detachment. Studies on the elastomeric friction system were found in

the works by De Togni et al. [99] and Rorrer [100].

Analysis related to the stick-slip oscillations in elastic systems, especially for elastic

continua, is difficult since stick-slip motions are unpredictable and generate variable-

degree—of-freedom systems. In this study, a discretized lumped-parameter model is

established and its stability is analyzed (Chapter 4). Dynamic system behaviors

including the stick-slip motions are numerically performed with various system pa-

rameters (Chapter 5).

1.2.3 Destabilized Waves due to Friction

When an elastic continuum is subjected to specific boundary conditions, materials

have been known to generate troublesome noise and vibrations. Such noise and

vibrations are originated from unstable motions around a contact surface. In steady

frictional sliding, unstable friction-induced waves have been reported.

For semi-infinite, homogeneous, isotropic, materials having free surface, waves

propagating around surface, known as Rayleigh waves, were observed in elastic ma-

terials. The Rayleigh wave, which has an exponentially decaying amplitude with the

distance from the free surface, propagates along the free surface of the elastic body

(Fung [37]). On the other hand, when two different materials bonded together, there

are waves between the bonded interfaces, called Stoneley waves [30], which are similar
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in nature to Rayleigh waves. Barnett et al. [29] investigated a variant of the Stone-

ley wave, namely a slip wave between two anisotropic elastic half-spaces in sliding

contact. Surface waves involving interface separation and unbonded interface were

investigated by Comninou and Dundurs [28].

When elastic media were subjected to distributed friction it was reported that

entire systems were destabilized due to unstable waves. In experimental works with a

continuous system, such as rubber on a moving rigid body, the unstable wave, called

a Schallamach wave, has been observed by Schallamach [26] and Best et al. [27]. The

unstable motions caused by static instability in the vicinity of the front part of contact

prOpagates as a wave of detachment sequence by the effect of static buckling.

Recently, Martins et al. [25] and Adams [23] investigated the wave propagation

in distributed friction contact in two-dimensional systems by analytic methods. A

mathematical model for a infinite compressed elastic medium was established and

unstable waves were found under a condition of a constant coefficient of friction.

Adams [24] studied a tensioned beam subjected to friction and found unstable solu-

tions in sliding contact as a one-dimensional system. These works showed that under

a constant coefficient of friction two sliding materials caused unstable oscillations,

which travel from front to rear in presence of friction. They found that the solutions

have properties of non-symmetry by the effect of friction and instabilities are caused

by the coupling of various degrees of freedom in the form of waves.

Togni et al. [99], Rorrer et al. [100], Vallette et al. [101] experimented on continu-

ous materials in contact. Rorrer et al. [100] experimented with elastomer on a sliding

body and revealed four different frequency regimes of sliding, such as steady state
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sliding, low frequency self-excited motions, high frequency motions and stick-slip mo-

tions. He showed that the stick-slip motion did not require a negative slope in the

friction-velocity curve. Vallette et al. [101] also investigated the unstable phenomena

using the stretched latex membranes in contact with a translating rod. He claimed

that the instability can occur even without a negative slope in friction-speed relation

as a consequence of wave of detachment, known as Schallamach waves [26].

In this thesis, friction-induced waves in an elastic medium are investigated in

Chapter 3. Instability mechanisms in the presence of friction are presented in terms

of the traveling wave mechanics.

1.2.4 System Properties related to Friction

Elastic systems subjected to nonconservative forces, such as friction forces or follower-

type traction forces, become unstable either statically or dynamically (Ziegler [17],

Beda [14]). Those instabilities also can be found in the area of aero-elasticity systems

(Dowell [8], Higuchi [9, 10]), friction involved systems [25], and some specific bound-

ary conditioned systems (Meirovitch and Hagerdorn [2], Meirovitch and Kwak[1]).

Unlike conservative systems, nonconservative systems can have dynamic instability

called flutter instability. The flutter destabilizing phenomena were investigated by

Herrmann and Bungay [11] and Herrmann and Jong [12]. Plaut [15] and Seyranian

and Pedersen [13] showed theoretical investigations about nonconservative instabil-

ities including system properties. Plaut [15] and Beta [14] formulated the material

stability conditions and classified the generic loss of stability scenarios in dynamic
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systems as fundamental researches.

By dealing such system stability which typically described by partial differential

equations (PDEs), evaluations of such system stability have primarily depends on

system eigenvalues, which can be evaluated after the model reduction. Due to infi-

nite dimensionality of partial differential equations, continuous systems are generally

difficult to analyze. Moreover the system subjected to specific boundary conditions

sometimes does not admit closed form solutions. These difliculties can be avoided

when the system is approximated by eliminating the spatial dependence through

discretization in space. There are two major classes of approximated discretization

procedures—one based on expansion of the solution in finite series of given func-

tions, and the other is consisting of simply lumping the system properties. Galerkin’s

method is the most appealing and reduces a continuous system to n—degree-of-freedom

system by assuming the solution with series of assumed functions.

However in applying the approximate method (Galerkin’s method), careful at-

tentions should be needed in handling eigenvalue problems. Based on the previ-

ous studies (Prasad and Herrmann [4], Meirovitch [2]), the Galerkin’s approximate

method does not provide an estimated magnitude of the error involved, nor does it,

in general, guarantee convergence for non-self-adjoint systems. That statement about

non-convergence has been proved by Bolotin’s works [16]. Bolotin [16] investigated

the membrane exposed to a flow in research of aero-elasticity and showed that the

non-convergence of Galerkin’s method to that particular system. He showed that the

example of “flutter paradox” in the membrane flow and gave the range of application

for its method in order to reduce its dimension.
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Diprima and Sani [6] studied for the convergence of the Galerkin’s method for the

beam subjected to the non-conservative forces and Prasad and Herrman [4] and Peder-

sen and Seyranian [5] investigated the general non-self-adjoint problem. The proof of

convergence for the non-self-adjoint system can be found in few simple problems (Kan-

torovich [7], Diprima [6]). Several recent studies have investigated the convergence

of non-self-adjoint systems by using modified candidate functions (lV'leirovitch [1, 2],

Hagedorn [3]).

1.3 Proposed Research

The goal of this study is to investigate the dynamics of friction-induced vi-

brations in a continuous elastic medium subjected to distributed frictional

contact.

In order to understand dynamic stability and system behaviors by effects of fric-

tion, a mathematical model for a continuous elastic medium subjected to distributed

friction is established. The non-self adjointedness, which is the intrinsic property

introduced by friction, is shown in this study and the eigenvalue problem associated

with the non-symmetric property is investigated. In order to show the feasibility for

applying approximate discretization methods the exact and approximate eigenvalues

are compared.

Wave dynamics involving friction effect in one- and two-dimensional continuous

elastic medium are shown by imposing periodic boundary conditions. Stability anal-

yses including external, internal, and frictional damping, are performed with the
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lumped-parameter model.

Stick-slip oscillations dependent on spatial and temporal motions are analyzed

numerically. Visual presentations of stick-slip oscillations of the elastic system are

provided and mechanisms related to generating noise are explained with various sys-

tem parameters. The numerical results of stick-slip oscillations are verified by finite

element analysis.

1.4 Contributions

The chief contribution of this study is the dynamic analysis of an elastic medium

which are subjected to distributed frictional contact. Summaries of contributions are

as follows.

0 The construction of a mathematical model of continuous system with driving

friction can extend the scope of research from discretized systems to continuous

systems. Most of the previous work has focused on discrete, low-degree—of-

freedom systems. With the aid of modeling work, a mathematical description

of continuous elastic system subjected to friction can be established.

0 Using the established model, parameter effects on system stability can be ana-

lyzed in order to show the mechanisms how friction generates noise and vibra-

tion.

0 The validity of a discretization method—Galerkin’s method—is examined. A

non-convergence of Galerkin’s projection in calculating eigenvalues in this study
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provides a cautionary example on the blind application of projection method.

0 It has been known that the system stability closely depends on its boundary

conditions. The wave dynamics for one- and two-dimensional periodic boundary

condition models are provided to show the possible causes of unstable waves in

presence of friction.

o Stick-slip motions of the space and time dependent system explain how the

distributed friction generates noise and vibration in an elastic medium. Visual-

izations of stick-slip motions in high-dimension are shown.

0 Verification by finite element analysis assures the validity of this study.

1 .5 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 covers funda-

mental topics basic to the thesis. A mathematical model of a one-dimensional elastic

medium subjected to distributed frictional contact is derived. The exact solution

of the partial differential equation is obtained. The eigenvalue problem is non-self-

adjoint, and the self-adjoint transformation method is given as an alternative. An ap-

proximate discretization method is applied to show the validity of Galerkin’s method

to this problem.

In Chapter 3, mathematical models of frictional slip waves in one- and two-

dimensional systems are provided with periodic boundary Conditions. System sta-

bility, including the effects of general damping, is determined to explain the existence
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of unstable traveling slip waves in elastic systems.

In Chapter 4, a lumped-parameter model is established and its pure-sliding fric~

tional stability is obtained. By including general damping effects and nonlinear fric-

tion characteristics the system instability which initiates self-excited motion is eval-

uated.

In Chapter 5, using the model developed in the previous chapters, stick-slip vibra-

tion is simulated and then interpreted in terms of mechanisms of noise and vibration.

The numerical algorithms which deal with state-dependent boundary conditions are

explained and the visual presentations of stick-slip vibrations are shown. The trends

of behavior due to changing parameters are considered.

In Chapter 6, the stick-slip vibrations are simulated by using finite element anal-

ysis. The numerical algorithms used in the finite element analysis are given and the

comparisons between the approximate and exact solution are made. Numerical re-

sults for one- and two-dimensional elastic systems with parameter effects are provided

as well.

In Chapter 7, the conclusion and summaries of the research conducted, lessons

learned and directions for the future works are presented.



CHAPTER 2

FRICTIONAL SLIDING IN A

ONE-DIMENSIONAL MEDIUM

2. 1 Introduction

In most of the previous research related to friction-induced vibrations, low-degree-

of-freedom, discretized models have been used in order to explain dynamic stability

of frictional sliding and stick-slip vibrations. For example, a simple model composed

a spring-damper-mass on a moving rigid body has usually been used. Despite its

simplicity in modeling and analysis, such a system may have limitations in showing

characteristic features of an elastic medium subject to distributed friction. Especially,

in order to investigate a continuum in contact with a large area, such as in the

suspension bushing that motivates this study, a proper continuous model which can

capture dynamic features is required. In order to understand dynamic behaviors

of a continuous system a one-dimensional continuous system under fixed boundary

21
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conditions is investigated in this chapter.

This chapter is organized as follows. A mathematical model for a one-dimensional

elastic material subjected to distributed friction contact is established. Because of

the friction the boundary value problem is non-self-adjoint. The system properties

related to non-self-adjointness are presented, and the general eigenvalue problem,

which covers the non-self-adjoint eigenvalue problem, is explained. Using a proper

inner product, the transformation from a non-self-adjoint problem to a self-adjoint

problem is shown in this chapter. A cautionary example in applying an approximate

discretization method for finding the system eigenvalue is presented as well. The

effect of distributed friction on the system stability is explained based on the system

eigenvalues.

2.2 Equation of Motion

Consider a system shown in Figure 2.1. A linear elastic medium, placed between

a moving belt (a moving rigid body) and a frictionless linear bearing, represents a

one-dimensional, undamped, continuous system in distributed sliding contact. The

friction coeflicient is considered as a constant. Although a non-linear coeflicient of

friction has been known to be one of the crucial factors for system stability, the fric-

tion coefficient is assumed to be a constant with respect to relative speed. (Non-linear

friction coefficient effects on dynamic stability are mainly discussed in Chapter 4.)

In addition, any parameters having random properties, such as roughness of con-

tact surface, are not included in this development in order to emphasize on dynamic
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Figure 2.1. A schematic diagram for a one-dimensional elastic medium subjected to

distributed friction. Friction between a moving belt (a moving rigid body) and an

elastic medium induces vibrations and noise. A medium is under a fixed boundary

condition. A frictionless linear bearing is installed on top of a medium so as to allow

axial motions of an elastic medium.

stability by effects of uniform properties of materials. Moreover, any non-uniform

motions, such as stick-slip motion or loss of contacts are not included in this devel-

opment. (Demonstrations of stick-slip motions by using a lumped-parameter model

are presented in Chapter 5.)

A system composed of a linear elastic medium undergoes a axial sliding. An

equation of axial motion for undamped elastic medium is

603(x, t) 6211
— = — 2.1A(x) 62: + f(x, t) 12%,, ( )

where A(:r) is a cross sectional area of elastic medium, p is a mass density of elastic

material, o,(1:, t) is a stress over the cross section, u(a:, t) is an axial displacement, and

f (2:, t) is a friction force per unit length. Applying linear stress-strain relation, stress
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is expressed as 03(x, t) = E 63(1), t), where E is Young’s modulus of the material.

The friction force including Poisson’s ratio effect per unit length is given by

f(.’13,t) : —/10'y(.’13,t) : _/-‘{00 + VOICE, 15)}, (2'2)

where p is a friction coefficient, oy(a:,t) is a contact normal stress, and 00 is a pre-

loaded normal stress per unit length, which should be always less than zero (com-

pression) to generate friction force and maintain contact to the sliding rigid body.

By considering the linear strain-displacement relation, 61(x,t) = 9%?2, a non-

dimensional equation of motion is obtained by

 

 

0221 Bu 6211.

(9.70"2 813* g at“2 ( )

The dimensionless parameters used in equation (2.3) are a = ”7:1, fl = —%°é, cc“ =

%, and t* = t , where l denotes contact length and 17* and t* are the dimensionless

£13
.48

coordinate and time, respectively. For the sake of simplicity, the notation * will be

neglected in the following development.

The boundary conditions are

u(0, t) = u(1, t) = 0. (2.4)

For a typical system subjected to distributed friction contact a fixed boundary condi-

tion is selected. Stability analyses with a different boundary condition, e. g., a periodic

boundary condition, are analyzed in Chapter 3.
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2.3 Exact Solution

The exact solution for the equation (2.3) satisfying the boundary condition (2.4) is

obtained by using the separation of variables method. Consequently, the exact solu-

tion, u(:r, t), which is composed with the static solution u,(:1:) and dynamic solution

ud(:1:, t), is

u(:1:, t) = u,(a:) + ud(:r, t), (2.5)

in which

u,(:z:) — —(—é—5,—fl—:T)(ealf — 1) + 513:, (2.6)

and

ud(x, t) = : V267” sin(j7r:c) {aj COS(Cth) + bj sin(wjt)}, (2.7)

where natural frequencies of wj = (jvr)2 + “72, and aj, bj are constants determined

by initial conditions.

The exact static solution in equation (2.6) by changing fl and a are shown in

Figure 2.2 and Figure 2.3, respectively. Figure 2.2 depicts the variation in the static

solution u,(a:) for 6 in the range of 0.1 to 1.0 with increments of 0.1 under a condition

of a = 4.0. As 6 increases, i.e., as normal loads and contact length increase, or

Young’s modulus decreases, the non-symmetric static solution along the .1: axis gets
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Figure 2.2. The exact static solution 218(3) by changing B in the one-dimensional

system. Here 6 is in the range of 0.1 to 1.0 with increments of 0.1. In this example

a = 4.0.

larger. Figure 2.3 provides the trends of static solutions under variations in a from

1.0 to 10.0 with increments 1.0 with ,6 = 1.0. oz influences the asymmetry of u,(:c).

Static strain distributions, defined by diff), under changes 6 and a are shown in

Figure 2.4 and Figure 2.5, respectively. The static strains are increased by increasing

6 and a. High tensile regions are observed at the front, while high compressive regions

are located at the rear on the :1: axis. Moreover, a sensitivity on the variation of the

parameters is clearly shown. In the compressive region, i.e., where %3 < 0, stress

variations for varying 6 are larger than those of the tensile region because of the

existence of Poisson’s ratio.

Importances of the strain and stress in elastic material have been found by Schal-

lamach [26] and Krauter [75] through their experimental and theoretical studies. The
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Figure 2.3. The exact static solution u,(z) by changing a in the one-dimensional

system. Here a is in the range of 1.0 to 10.0 with increments of 1.0. In this example

6 = 1.0.

expectation of buckling by the effects of tangential stress has been found to be the

source of wave propagations in elastic materials. Detailed works related to stick-slip

motion are presented in Chapter 5.

The first three exact modes shapes, which depend on parameter a in equa-

tion (2.7), are shown in Figure 2.6. Increasing oz influences the shapes of the free-

vibration unsymmetric eigenfunctions. However, it does not destabilize system. In

other words, a determines the modes shapes, which are non-symmetric along the :z:

axis, and a affects the natural frequencies in equation (2.7). This is a conservative

system when or is a constant. It should be noted variations of a do not destabilize

the dynamic system under fixed boundary conditions with a constant coefficient of

friction.
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Figure 2.4. The exact static strain solution 513$?) by changing ,6 in the one-dimensional

system. Here 6 is in the range of 0.1 to 1.0 with increments of 0.1. In this example

oz = 4.0.

2.4 The Non-Self-Adjoint Eigenvalue Problem

Numerous systems encountered in structural dynamics are belonging to distinct

eigenvalues and self—adjoint. This means that such systems have symmetric prop-

erties. When a system is self-adjoint eigenvalues and eigenfunctions are real quan-

tities. Moreover, the eigenfunctions are orthogonal to each other. However, struc-

tural systems which endure aerodynamic forces, friction forces, and follower forces

have been reported to lose their symmetries and have non-self-adjoint properties

(Meirovitch [18], Martins et al. [25], Dowell [8], Higuchi [9, 10]). The orthogonal

relations and the expansion theorem which have been deve10ped on the bases of self-

adjoint properties are no longer applicable to the non-self-adjoint systems.
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Figure 2.5. The exact static strain solution d—fiéfl by changing a in the one-

dimensional system. Here a is in the range of 1.0 to 10.0 with increments of 1.0.

In this example 6 = 1.0.

Although non-self-adjoint systems can be transformed to self-adjoint systems

by defining a proper inner product, the problem of non-self-adjointedness can also

be handled through similar procedures of the self-adjoint cases (MacCluer [20],

Hochstadt [21]). (The techniques associated with transformations of system prop-

erties are presented in the next section.)

Let us review the general eigenvalue problem, which includes non-self adjoint

problems. Suppose that a solution u(a:, t) is represented as equation (2.5). Then the

term 06 in equation (2.3) is eliminated by static solution u,(:1:) in equation (2.6), and

a dynamic equation of motion in terms of ud(:1:, t) is obtained as

8221,, Bud _ 0271,;

3.32 “.97- 8t2' (28)
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Figure 2.6. The first three eigenfunctions in the dynamic solution. (8%“? sin(j7r:z:),

where j = 1, 2, 3 with a = 4.0.)

Let the dynamic solution of equation (2.8) can be represented in the form,

ud(x, t) = <I>(:c)Q(t). Then the eigenvalue problem is given by

82(1) 8(1)
__ _ = q) .8:132 ads: A , (2 9)

with the boundary conditions of

<I>(0) = <I>(1) = 0. (2.10)

The eigenvalue problem represented with system operator L is

L<I> = A<I>, (2.11)
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where the linear operator in equation (2.11) is defined by

def (12 d
= —— —. 2.12

L (12:2 + ads: ( )

We introduce the classical definition of an inner product of

< f,g >qg/f(:r)g(:r) dz. (2.13)

Then, the operator L has always an adjoint operator L" defined by

< \II,L<I> > = < L*\II,<I> >. (2.14)

And the original system and its adjoint system can be written as

Mr = )‘id’ia (2-15)

ij = A3215, (2.16)

where A, and A; are real or complex eigenvalues corresponding to L and L", respec-

tively. The operator L" is called as the adjoint operator of L and the set of eigenfunc-

tions 1b]- (j = 1, 2, . . .) is said to be adjoint to the set of eigenfunction o,- (z’ = 1, 2, . . .)

over the defined classical inner product (2.13).

A large class of structural dynamic systems with conservative forces are self-

adjoz'nt, which means that the two operators L and L“ are identical, L = L*, and

the two sets of eigenfunctions are the same for the corresponding eigenvalues. In such
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case orthogonality is expressed as

<¢,,¢,>=/D¢,¢,dx=o, we)" i,j=1,2,...oo. (2.17)

By using the orthogonality, coefficients of any function w(:r, t) = $11 ¢j(:r)qj(t) can

be written as

oo

(Ii =< (131310 >=< 451, Z <15ij >- (2-18)

i=1

This is called as the expansion theorem for self-adjoint system.

However, if the linear operator L is not the same to the adjoint operator L",

L 79 L“, the system is non-self-adjoint, and the orthogonality in equation (2.17) does

not hold. For the case in which L 79 L”, multiplying equation (2.15) by 1,0,, and

equation (2.16) by (15,-, and then integrating over the interval D yields

<¢,,L¢,> = [Dz/)chp,dx=A, f0 qufiidm, (2.19)

< ¢i,L*7,bj > = / ¢iL*'¢‘jd$ ‘2 A3/ (25,2/2jdx.

D D

Subtracting equations (2.19) leads to

(A, — A;) [D (bitbjda: = 0. (2.20)



33

Hence, if A,- 7é A;

<¢,,w,->=/D¢,w,dx=o, iaéj i,j=1,2,...oo. (2.21)

This is the bz’orthogonalz'ty of eigenfunctions ¢,- and 1b], which means an eigenfunction

of L corresponding to an eigenvalue A,- is orthogonal to an eigenfunction of L* cor-

responding to A}, where the A,- is distinct from A}. The non-self-adjoint operator L

has the same eigenvalues as the operator L". The general expansion theorem related

to non-self-adjoint systems, called the dual-expansion theorem, is presented in the

works by Meirovitch [18] and MacCluer [20].

Let us return to the problem of interest. In order to seek the adjoint operator L"

of this study, we examine the adjoint operator L"' defined in the equation (2.14):

l\IIL<I>d 11: d2 d (M[0 SE — A (—‘(E§+ag;) (I) (2.22)

dd) , 1 d<I> d\II

_ d<I> , dip,
_ \1:( + <I>)|0 (Dds (0 /a<I>—dz—/ cfi-dx

ll 9 “.
1
e 9
.
.

“
H

where the boundary conditions of equation (2.4) have been accounted for. Thus the

adjoint operator of this study is

“at :11_ _d_
L — (13:2 adx (2.23)
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with zero boundary conditions. Note that the adjoint operator L* in equation (2.23)

is not identical to the operator L in equation (2.12). Assuming that dynamic solutions

of this study can be represented by

umn=icmtm (us

then, by multiplying adjoint eigenfunction 1b,, and using biorthogonality in equation

(2.21), coefficients qj(t) are obtained as

qJ-(t) =< ((15,116: >=< 1,1213% ¢j($) qj(t) > . (2.25)

1:1

Thus the biorthonormal relations of the eigenfunctions are

1

/0 $101?) ¢j(33)d$ = (513‘, (2.26)

where

1,0,(113) = V262” sin(z'7r:1:), (2.27)

(VJ-(:13) = \/26%xsin(j7r:r), i,j=1,2,...,oo.

By multiplying the normalized adjoint eigenfunction, win), with equation (2.9)

and integrating from 0 to 1, an infinite set of decoupled ordinary differential equations

is obtained by
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Z mfiijj + Z 161'ij = 0, Z = I, 2, . . . , 00, (2.28)

i=1 1:1

where

1

mij = < 143% >=/0 ¢i¢jd$ = 513', (2-29)

1

[9,-j = < ¢i,L¢j >2] 1911102161113 = (V1265): = (j77)2 + 02/4, i,j = 1,2,. . . , OO.

0

Consequently, the projection by using the adjoint eigenfunctions in the non-self-

adjoint system yields the set of decoupled ordinary differential equations. In addition,

it is verified that eigenvalues derived from general eigenvalue problems are the same

as the exact solutions derived in the previous section.

2.5 Eigenvalue Problem based on a PrOper Inner

Product

The eigenfunctions derived in the previous section are not mutually orthogonal since

the system has a non-self-adjoint operator. However, it is folklore that such a non-self-

adjoint problem can be cast as self-adjoint by using a proper inner product (MacCluer

[20]). In this section, the method for choosing a proper inner product which enables

the system to be self-adjoint is reviewed. Then this method is applied to the problem

of interest in order to suggest an alternative way in solving the general eigenvalue
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problem.

The general second order partial differential equation in the form of

Po($)—x“ + meg—Z +mm +mm = o, (2.30)

with the auxiliary homogeneous boundary conditions

Cit/($0)

dx

619050)

(1:1:

(ii/(331)

dz

C131(331)

d2:

 
 

a0y(:r0) + a1 + 023/(151) + a3 = 0, (2.31)

 

boy($0) + bi + (bl/(371) + b3 = 0

is defined on the interval (170,231). This is the Sturm-Liouville problem subject to

homogeneous boundary conditions (Hochstadt [21], Powers [22]). Suppose that the

coefficients p0(:z:) and p3($) are positive and the p0(:z:),p1(:r), and 123(1) are twice

differentiable. Let

p<a=>=efroii‘5d“ q<x>=p———2(”)p(” ————) . (2.32)

and multiply equation (2.30) by weighting function £55. Then

die(23—):x}+{q<)+Ag(my» =0, (2.33)

which is a more convenient self-adjoint form. Thus by multiplying equation (2.30) by

the weight function £3), the system is shown to be self-adjoint.

Consider the problem of interest in equation (2.9) again. According to the self-
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adjoint transform in equation (2.33), the equation of motion (2.9) can be transformed

to self-adjoint system by using the weight function e‘“.

Thus the eigenvalue problem in self-adjoint form is given by

d —aqu) _ —023

—%{e d$}—A{e }<1>. (2.34)

The eigenvalue problem represented with self-adjoint operator L and a weight function

w(z) = e‘” is

L<I> = Aw(z)<I>, (2.35)

where the self-adjoint linear operator L is defined by

~ def d e_a$ d

— ‘E E}' (2.36)

The self-adjointness of operator L is verified by taking the classical inner product

(2.13) and integrating by parts, such that

~ 1 d d<I>

\II,L<I> = _ f _ —aa=_ .
< > 0 ‘Ild${e dz )dz (2 37)

_ _a,.d<I> , 1 _a$d<D dill

‘ 6 dz” '0 / dz d

— [1 e-azd—Qd—Wdz

— 0 dz dz
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In addition, the positive definiteness also can be shown from the fact that

- 1 d d<1>
= _ _ -ax_ 2.<<I>,L<I>> [(de{e dx}dz ( 38)

”(1(1) —az
= “ ‘d—q’lo‘l’+/Ole {£3—:leCC

=/: rag—‘0?—:-)x}2d >0

is always nonnegative. It is equal to zero only if <I>(z) is a constant throughout the

domain. Because of the boundary condition (2.4), however, this constant must be

zero, which would imply a trivial solution. It follows that the operator L in equa-

tion (2.36) is positive definite. Therefore, the non-self-adjoint operator L described

in equation (2.12) is transformed to the self-adjoint positive definite operator L in

equation (2.36) by taking the weight function 6““.

Identical results are also obtained by taking the weighted inner product which

defined as

< M >wdél / f<x>g<x>w<x> dz. (2.39)

where w(z) is weight function. By choosing a weight function w(z) : 6“”, we can

verify the self-adjointedness with respect to the weighted inner product as

< <I>,L\II >w=< \II, L<I> >,,,, (2.40)

where the operator L is defined in (2.12).



39

The equation of motion in equation (2.34) is identical to the equation of axial free

motion for an elastic rod having varying stiffness 6‘0“” and varying mass distribution

e‘a“ without friction.

The discretized equation of motion can be presented by taking the Lagrange for-

mula. Suppose that the solution ud(z, t) can be written as a series:

= f: (It-(2:) not). (241)

where ([5]-(z) can be any admissible function without loss of generosity. The kinetic

and potential energies of a continuous system have integral expressions. The kinetic

energy can be written in the familiar form of

6 t

T(t)- 2—/0 e-a${————“‘4‘”———)-}2dz. (2.42)

In the similar expression, the potential energy can be written as

_2[)1 e—az{_a—aud(:t) }2d£L‘ (2.43)

The natural boundary conditions are of no concern here because they are automati-

cally accounted for in the kinetic and potential energies. Consider Lagrange’s equa-

tions for conservative systems, namely,

dBT 8T6V

d—t-(a—-Tj)— 67j+6—_jr=0’ ]=1,2,...,OO. (2.44)
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The equation of motion in discretized form is obtained by

 

Z Trig—(122m + Z kijTjU) = 0, (2.45)

I—l dt2 ':IJ— .7

where

1

m..- = [0 e-“:¢.(:c)¢j(x)dx. (2.46)

_ 1 —azd¢i(x) d¢3($) - . __

k2] — [06 dz dz dz, z,]—1,2,...,oo.

By selecting the set of (VJ-(z) as normalized eigenfunction in equation (2.46),

i.e., (Ji,-(z) 2 \/2e%"’ sin(j7rz) from the results of the previous section, the dis-

cretized equations of motion are obtained. The eigenvalues for this system, which

are Aj = (j7r)2 + 0‘72, are identical to the exact solution (2.7). Thus, it is verified that

the system having a form of non-orthogonality in its eigenfunctions is a minor matter,

and it is correctable by projecting under the proper inner product.

2.6 Nonconvergence of Galerkin’s Method

The exact solution from the previous section shows that this system’s dynamic stabil-

ity is not dependent on the system parameters. The system is neutrally stable, behav-

ing like an undamped vibration system with natural frequencies of wj = (j7r)2 + 943.

The natural frequencies depend on the parameter, oz, but stability does not depend

on it. The effect of ,6 changes the system’s static solution and has no influence on

the linear stability. With the addition of modal damping, the eigenvalues will have
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negative real parts and steady sliding is expected to be asymptotically stable.

In this section the assumed mode projection—Galerkin’s projection—is applied in

the evaluation of system stability in order to verify a feasibility for applying an approx-

imate method. Even though the exact eigenvalue solutions have been obtained already

in the previous sections, an application of an approximate discretization method may

provides a cautionary example for its use.

Apply the assumed mode method to recast equation (2.3) to ordinary differential

equations. It should be noted that the equation (2.3) is cast as non-self-adjoint in

equation (2.9). Assuming that ud(z,t) can be represented with assumed modes sat-

isfying the geometric boundary conditions and p derivative in the partial differential

equation of order 2 p, where p = 1, such an approximate mode can be accepted as

one of the candidates. Thus the solutions are expressed by possible assumed modes.

Then

ud(z,t) = :dj(z)aj(t), (2.47)

where cij(z) = fisinUvrz) is chosen as an approximate mode. After projecting with

these assumed modes, an approximate ordinary different equation of motion is

00 (120' 00

Ema—2?- + Zkijaj = f,, i = 1,2,. ..00, (2.48)

j=l dt j=l
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Figure 2.7. A contradictory result: Eigenvalue trajectories versus a in the one-

dimensional friction system by applying the assumed mode method with two modes

included. (a) Imaginary and (b) real parts of the eigenvalues versus a are shown.

The selected assumed modes are $j(z) = x/2sin(j7rz) for j = 1, 2.

where

mi]- : 611', kij =k3~+k3 (2.49)

(95‘ = (jfll254j

i—‘L li—J'I =odd,[CA - 1.2-J?

ij ‘—

0 otherwise,

W 2' = odd,
f. _ I77

1 _

0 otherwise.

where k5 and [CA are symmetric and anti-symmetric stiffness matrix, respectively.

Focusing on the low-dimensional dynamics, the system can be approximated with
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Figure 2.8. A contradictory result: Imaginary parts of the eigenvalues versus a by

applying the assumed mode method in the one-dimensional friction system. (a) 3

modes, (b) 4 modes, and (c) 5 modes are included. The selected assumed modes are

(DJ-(z) = \/2sin(j7rz).

n—coupled ordinary differential equations. The real parts of the eigenvalues of this

system indicate predicted stability characteristics. The dependency of eigenvalues on

parameters by including two modes are shown in Figure 2.7. Instability apparently

occurs when the real part of an eigenvalue is positive at the critical condition a =

5.7 by a collision between two frequencies. This instability mechanism resembles

flutter, and has been seen as one of possible instability mechanisms, e.g, flow induced

vibrations (Bolotin [16]) and friction induced vibrations (Nakai [57]).

However, these results contradict the exact solution since it has no instability

mechanism in the exact solution by parameter (1 based on the results in the previous
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Figure 2.9. A contradictory result: Real parts of the eigenvalues versus a by applying

the assumed mode method in the one-dimensional friction system. (a) 3 modes, (b)

4 modes, and (c) 5 modes are included. The selected assumed modes are (VJ-(z) =

\/281H(j7l’$).

section. Bolotin [16] had investigated this “paradox” for flow across a membrane. The

work showed non-convergent characteristics in the assumed mode projections, and

gave a theoretical criterion for convergence based on the linear operator. According

to those results, conservative systems with second order operators are not guaranteed

to converge in assumed mode approximations.

Nonconvergence of this eigenvalue problem can be demonstrated by increasing the

number of assumed modes. Figure 2.8 and Figure 2.9 show the imaginary and real part

eigenvalues for 3 to 5 modes, respectively. Considering Figure 2.7 also, the two lowest-

frequency modes interact at a = 5.7, and a = 9.0 for two- and four-mode including
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approximations, but do not interact for three- and five-mode approximations. This

shows that the approximated solution by using assumed mode methods for finding

the smallest interaction value a diverges as increasing the modal coordinates. This

hints at faulty results when applying the assumed mode method to this problem.

The proof of nonconvergence has been shown by checking the matrix determinant

by Bolotin [16]. Consider the convergence of determinant in equation (2.48). The

equation (2.48) can be written as

d2a- °°

dt; +Qfai+772bijaj=0, i=1,2,...,oo. (2,50)

1:1

 

And the characteristic determinant becomes

I (Q? — ”511' + 77sz l = 0- (2-51)

Dividing the 1'”, row by Q,- and the jth column by (23-, determinant A can be expressed

in the form of

A =[ 6ij + Cij [ . (2.52)

According to the works of Bolotin [16] and Kantorovich and Krylov [7], the infinite

determinant converges if the double series

0000

ZZ l ca l (2.53)
i=1j=1
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converges. The determinant is described as normal when it satisfies this condi-

tion (2.53). By checking the determinant of the equation (2.48), it diverges as taking

infinite modes. Thus this series diverge and is not a normal determinant at all.
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Figure 2.10. Comparison between the exact and approximate eigenvalues: The square

roots of the exact eigenvalues, \/A: = (/(j7r)2 + “72, are shown with the solid lines.

The mode projected approximate eigenvalues obtained from a self-adjoint system are

shown with dotted line. The selected assumed modes are (VJ-(z) = fisinUnz) for

j = 1,2,3,4,5.

For verification, we apply the same assumed mode projection in (2.47) to the

equation of motion (2.46), which has the self-adjoint form derived in the previous

section by taking the proper inner product. Applying the assumed mode, \/2 sin(z'7rz),

to the equation of motion (2.46) and using the proper inner product, the approximate

eigenvalues have been numerically calculated by parameter a.
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Figure 2.11. Eigenvalues obtained from the non-self-adjoint system by projecting the

exact eigenfunctions ¢j(z) = x/2e%f sin(j7rz).

In this example, five modes are selected for the discretized system. Figure 2.10

presents the exact and approximate eigenvalues based on the proper inner product

versus a. The low frequency approximation has good accuracy in eigenvalues cal-

culation. Though there are still slight deviations from the exact solution in high

frequency eigenvalue approximations, a more accurate approximation is expected by

including more modes. Consequently, a contradictory result has been avoided in eval-

uating the eigenvalue for self-adjoint system. (When we use the exact eigenfunctions,

¢j (z) = 6%3 sin(j7rz), on the non-self-adjoint system (2.9) and project with the exact

eigenfunctions, (15,-(z) = 6%$Sin(i7l'13), we have eigenvalues which are identical to the

exact eigenvalues, shown in Figure 2.11.)

There are investigations into the approximation of non-self-adjoint systems.
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Meirovitch and Hagedorn [2] investigated the modeling of distributed non-self—adjoint

systems, such as damped boundary condition models. In using the method of weighted

residuals to produce the approximate solution to the eigenvalue problem, the displace-

ment of a non-self-adjoint system is ordinarily represented by a linear combination

of comparison functions, i.e., the functions that satisfy all the boundary conditions.

Because of difficulties in finding comparison functions the more feasible approach

consists of the construction of an approximate solution by using combinations of ad-

missible functions, called quasi-comparison functions, capable of satisfying all the

boundary conditions of the problem [2]. The similar approaches for solving the ap-

proximate solutions have been found in some literatures by Meirovich and Kwak [1]

and Hagedorn [3]. The proof of Galerkin’s method for non-self-adjoint boundary

value problems has been given by Diprima and Sani [6] and a sensitivity analysis in

the non-conservative problem by using adjoint variational method are presented by

Prasad and Herrmann [4] and Pedersen and Seyranian [5].

2.7 Conclusion

A one-dimensional continuous system with distributed sliding contact was investi-

gated in order to study the dynamic instability caused by friction. A partial dif-

ferential equation of motion was established and its exact solution was presented.

An eigenvalue problem in this non-self-adjoint system was shown and its solution was

provided with a different approach: using the proper inner product and a transforma-

tion to a self-adjoint system. A technique for choosing a proper inner product which
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switches the system properties from non-self-adjoint to self-adjoint was reviewed. The

system can overcome the difficulties in evaluating the approximate eigenvalues with

the help of the prOper inner product.

A contradictory result between the exact solution and the assumed modes ap-

proximation in evaluating the eigenvalues was shown as a cautionary example. In

this case, non-convergence of the assumed modes method can be easily detected.

The exact solution shows the undamped system is neutrally stable for all parame-

ter values. The constant coefficient of friction does not cause an instability. Boundary

conditions and non-linear friction force contributions to the system stability are in-

vestigated in Chapter 3 and Chapter 4, respectively.



CHAPTER 3

FRICTIONAL SLIP WAVES IN

AN ELASTIC MEDIUM

3. 1 Introduction

In the previous chapter, we saw that a one-dimensional elastic material with fixed

end points under distributed friction did not undergo an instability when the friction

coefficient is a constant. However, the fixed end points may not be representative of

our motivational annular system. A first correction might be to implement periodic

boundary conditions, which may enable traveling waves to exist.

The structural stability of waves generated in an elastic medium has been an inter-

esting t0pic for scientists and engineers. When there is contact between two materials,

waves, which are generated around the contact area, contain properties of dynamic

stability. Such dynamic stabilities have been used to explain the friction-induced

vibrations in an elastic medium, which are associated with chattering, squeaking,

50
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squealing noise, and stick-slip oscillations.

In classical interpretations of causes for the noise and vibrations, analyses

dealing with discretized mathematical models have prevailed (Brockley et al.[65],

Sakamoto [49, 50]). Moreover, most of the causes cited for steady sliding instabili-

ties have been based on friction-speed relations: a decreasing coefficient of friction in

sliding speed has played a primary role in instability of the system based on linear ,

stability criteria (Simpson [74], Nakai and Yokoi [72], Krauter [75])

Experimental and analytical studies associated with elastic continua have shown

that systems have various elastic waves (Stoneley [30], Barnett et al. [29], Dun-

durs [28]) and some of the waves destabilize the systems when elastic materi—

als were subjected to distributed friction forces (Schallamach [26], Martins[25],

Adams [23, 24]).

Observations of destabilized waves in elastic continua were performed by Schal-

lamach [26]. Experimentally, he observed that the relative motions between two

frictional members are due to waves of detachment crossing the contact area at high

speed, and that waves appear as moving folds or wrinkles on the surface of rubber.

When the tangential compressive stress reached a buckling state, the buckling of the

front edge induced detachment waves, known as Schallamach waves, which travel

from the front to rear.

Extended studies of occurrence conditions of such waves were investigated by Best

et al. [27], Martins et al. [25] and Adams [23, 24]. According to experimental studies

by Martins et al. [25], De Togni et al. [99], Rorrer et al. [100], and Vallette and

Gollub [101], dynamic instabilities can occur even in a condition with no decreasing
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characteristics in friction-speed relations. For example, Vallette and Gollub [101]

measured spatiotemporal internal displacements of an elastic continuum subjected to

friction contact and proved that unstable traveling waves can occur even without a

decreasing friction coefficient in sliding speed.

Using analytical approaches, the existence of destabilized waves in the presence

of friction was confirmed by Martins [25] and Adams [23, 24]. Martins et al. [25]

showed that the intrinsic non-symmetry of Coulomb’s friction contributions to equa-

tions of motion and couplings of various degree-of-freedom play an important role in

generations of dynamic instabilities. Under a condition of large couplings in spatial

coordinates caused by friction stresses, steady sliding motions are dynamically un-

stable even in a constant coefficient of friction. It is also claimed that a decrease of

coefficient of friction with sliding speed is not a necessary condition for the occur-

rence of unstable elastic waves. The deve10ped studies were found in the works by

Adams [23, 24] for one- and two-dimensional elastic medium in contact. He deter-

mined the existence of unstable waves by using a one-dimensional model composed

of a beam-on-elastic foundation. A beam placed on a series of springs was used as

a qualitative model for two bodies in sliding contact. This analysis indicated that

steady state solutions are dynamically unstable for any finite sliding speed even with

a constant coefficient of friction, due to interactions of complex modes of vibrations.

In this chapter investigations on the stability of waves of an elastic medium on

the condition under frictional steady sliding are presented in order to understand the

mechanisms which cause vibrations and noise. For a one-dimensional elastic system,

the presence of unstable waves in a continuum is investigated via the mathematical
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model developed in the previous chapter. The fact that the system’s stability depen-

dent on the boundary condition is emphasized in this study. Through evaluations

of characteristic solutions of waves, explanations for instabilities under a condition

of a constant coefficient of friction are provided. In addition, the effects of external

and internal damping on overall system stability are analyzed. For a two-dimensional

elastic system, a mathematical model of semi-infinite, isotropic, linear material with

a periodic boundary condition is presented and its characteristic solution is investi-

gated. Effects of system parameters, such as Poisson’s ratio and a friction coefficient,

on dynamic stability are shown.

3.2 One-Dimensional Elastic System

3.2.1 Stability Analysis of Elastic Waves

Unstable waves in elastic materials yield non-uniform motions, such as micro scale

stick-slip oscillations, or cause to loss of contact at the contact surface. Prior to

investigations of the nature of the non-uniform motions (discussed in Chapter 5 in

this study), primary causes for dynamic instability are investigated from a wave

dynamics point of view.

Consider the one-dimensional, undamped, elastic system developed in the previous

chapter. The dynamic equation of motion in the self-adjoint form is

6
—aa:a_u}_ —azfl 31

8:1: 6.7: _e 8t2' (')
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However, these time periodic boundary conditions

 
 

u(0, t) = u(1,t), (3.2)

du(0, t) _ du(1, t)

dz _ dz ’

are considered. Note that the system parameter a (2 nu) in equation (3.1) is a

constant value, which represents a fixed coefficient of friction and Poisson’s ratio.

Considering periodic boundary conditions (3.2), solutions are assumed to have the

form

u(:c, t) = Real{ei2"k($_“)}, (3.3)

where k is a positive real number representing the angular frequency of solutions

along the x axis, as the term % shows the wave periods along the :2: axis. (See Figure

2.1 for the system configuration. We will use the notation in equation (3.3) in this

chapter since references from wave dynamics in continua have used such notation in

their studies.)

Generally, c can be a complex value and plays an important role in dynamic system

stability. In the case of a real value of c, pure waves of constant shape are expected.

This implies that conservative non-dispersing waves exist in the elastic medium and

the system is in a neutrally stable state without damping. On the other hand, a

complex value of 0 contains information about the characteristics of the waves. This

can be easily expressed by c = R + Ii, i.e., c composed with a real component R and
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a imaginary component I. Thus the equation (3.3) can be rewritten as

u(:r, t) = Real{el2”k(x‘mle%“t}. (3.4)

A positive R indicates that there is a wave propagating toward the positive direction

and a positive I indicates that there isan unstable wave which increases its motion

exponentially in time. On the other hand, a negative R indicates that there is a wave

propagating toward the negative direction and a negative I indicates that there is a

stable wave which decreases its motion exponentially in time. Thereby, the imaginary

component of the characteristic solutions represents the stability of the wave.

A characteristic equation of c obtained by substituting the equation (3.3) into

equation (3.1) is

2 _ i
c (1+ 27mi): O. (3.5)

The imaginary and real parts of the characteristic solution are

 

 

R = \J 1+ \/1+(2(2()z/)27rk , (3.6)

(1 C!

47FkR 1+‘/1+(a/21rk)2
47rk 2

 

 

It is clear that without friction—the condition in which 0 equals zero—the char-

acteristic solution has pure real solutions for c and the traveling waves which keep

their wave shapes in time are pure sinusoidal functions.
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When friction is considered, however, the characteristic equation yields general,

complex conjugate solutions for c. From the result in equation (3.6), the waves

propagating toward the positive 3: axis, which are represented by a positive value R,

are unstable waves. In other words, the amplitude of the propagating waves increases

in time. On the other hand, when the waves propagate toward the negative :1: axis

they are stable since they have negative imaginary components in the characteristic
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Figure 3.1. The unstable characteristic solutions for the undamped, periodic bound-

ary conditioned model. (a) Imaginary and (b) real parts of the characteristic solution

versus a are shown.

Figure 3.1 shows the imaginary and real parts of the characteristic solution cor-

responding to an unstable wave by increasing the parameter oz. Those solutions are
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presented with various undetermined frequency factors Is. As (1 increases, i.e., as the

coefficient of friction or Poisson’s ratio increases, waves traveling toward the positive

a: direction (the direction of the moving rigid body) are increasingly unstable in any

finite sliding velocity. Clearly, waves traveling toward the negative z direction (not

shown in Figure 3.1) are stable waves.

Similar trends associated with such unstable traveling waves were found in previ-

ous studies. Regarding the traveling direction of unstable waves, the direction of the

moving rigid body indicates the direction of the unstable waves (Martins et al. [25],

Adams [23, 24]). In addition the traveling unstable waves make whole systems un-

stable even if the coefficient of friction is constant. By considering a beam subjected

to distributed friction, which was modeled mathematically as a fourth order partial

differential equation, Adams [24] proved that one-dimensional traveling waves make

whole systems unstable. He included random properties representing the roughness

of the contact surface in his modeling.

With the aid of this study, it has been analytically shown that elastic systems

subjected to distributed friction can also be unstable in the presence of a constant

coefficient of friction, without including any random properties. As described earlier,

it is expected that a destabilizing wave phenomenon is one of the possible causes

for unstable motions. In real situations, such unstable waves are expected to yield

non-uniform motions, such as stick-slip oscillations or loss of contact in materials.
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3.2.2 Addition of External Damping

An undamped elastic continuum subject to distributed friction is considered in the

previous section. In this section, effects of external damping on system stability

are considered. (External damping is defined as a relative dissipation between an

elastic material and a ground.) An equation of motion including an external damping

coefficient d is

8 Bu u an
e _

—aa: _ —a:c 62
'5;{ 8:17} —6 {37+dg}. (3.7)

Applying the periodic boundary condition (3.2) again, the characteristic equation is

c2 + —c — (1+ 7) = 0. (3.8)

A search for analytical solutions of quadratic equation (3.8) with complex coefficients

is not an easy job, so we apply numerical method in searching for solutions.

Since unstable waves affected by external damping are primary concerns of this

study, consider only the maximum value of imaginary parts in the characteristic equa-

tion (3.8). The maximum value of imaginary components determines the whole sys-

tem stability. Remember that a positive imaginary component indicates an unstable

traveling wave.

Figure 3.2 and Figure 3.3 provide the imaginary and real parts of equation (3.8) on

the parameter domains (1 and d, respectively. In Figure 3.2, the maximum imaginary

part is decreased by decreasing a or increasing d. In other words, a reduction of



59

p N J

p d

l

 

I;' . II

, II II

'0.1‘ " , III/I ’

IIIIIIIII/IllfIIIIII
IIIIIIIIIIIIIII;I’;I,I” "-

m
a
g
i
n
a
r
y
p
a
r
t
s
o
f
c

5
’

 

 

Figure 3.2. The imaginary parts of the characteristic solutions including the external

damping coefficient d. The maximum value of the imaginary parts is presented in the

parameter domains (1 and d. In this example k = 1.

friction, or an increase in external damping is required to stabilize the system. The

traveling speeds of waves, which are represented as the real parts of the characteristic

solution, are influenced by oz and d as shown in Figure 3.3. The speeds of waves

corresponding to the unstable ones are decreased by decreasing a or increasing al.

Figure 3.4 depicts trajectories of imaginary parts of c under variations in d for

several frequencies 1:. In this example, the overall system, which was unstable by

having complex conjugate pairs in imaginary characteristic solutions when d = 0.0,

becomes a stable system with sufficiently large external damping d. The solutions

of c no longer have complex conjugate imaginary pairs when d is not equal to zero.

Beyond the point (1 = 1.0, all characteristic solutions can have negative imaginary

parts, which implies the system is fully stable. Low frequency terms, such as k = 1,
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Figure 3.3. The real parts of the characteristic solutions including the external damp-

ing coefficient d. The real parts of the characteristic solution corresponding to the

maximum imaginary value is presented in the parameter domains a and d. In this

example k = 1.

are easily stabilized by increasing d, as indicated by the steep downward slopes with

increasing (1 in Figure 3.4.

Based on this interpretation, the system can undergo under an unstable condi-

tion; a condition that the system has some stable and unstable eigenvalues in its

parameters. (For example, the range 0 < d < 1.0 in Figure 3.4). Under such con-

dition, responses corresponding to the stable eigenvalues are damped out in time,

but responses corresponding to unstable eigenvalues can dominate the whole system

responses, generating squeaking or squealing noise and vibrations in experiments.
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Figure 3.4. The imaginary parts of the characteristic solutions including the external
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damping coefficient (1. In this example a = 1.0.

3.2.3 Addition of Internal Damping

Elastic materials such as rubber contain considerable internal damping. (Internal

damping is defined as a relative dissipation of strain energy in the materials.) Usu-

ally internal damping is stabilizing, but under some conditions, especially when there

are non-conservative forces, such internal damping is able to destabilize systems

(Bolotin [16], Hendricks [38], Shaw and Shaw [39], and Higuchi and Dowell [10]).

Effects of internal damping on the system being studied are not clear. In this section,

the effects of internal damping, referred to as structural damping, on system stability

are considered.
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A stress-strain relation including internal damping is given by

6'

0I(x,t) = E€+Vé=E§B+V u0:1: 873’ (3.9)

where E is the modulus of elasticity and V is the modulus of viscosity of the material.

Applying equation (3.9) to equations (2.1) and (2.2), an equation of motion including

internal damping 7 is given by

131

6:1:

_a_
6:1: (9th

8211 _m, 6211
 Kama—U} +

82: 7

where 7 is an internal damping coefficient defined as V/AE. A characteristic equation

obtained by substituting the periodic boundary condition is

2 2k'— —1—C£=. .c+7(7rz (1)0 (+27rk) 0 (311)

Figures 3.5 and 3.6 show the imaginary and real parts of the characteristic solution

corresponding to the maximum imaginary value in the parameter domains a and

7, respectively. The imaginary parts attain negative values when increasing 7 or

decreasing a, as shown in Figure 3.5. Internal damping in elastic materials stabilize

the system as the external damping does. The speed of waves versus 7 and a is

shown in Figure 3.6. From these results, it is concluded that the system is stabilized

by increasing internal damping.

Figure 3.7 shows trajectories of imaginary parts of c under variations in 7 for

several frequencies k. Like external damping does, the system is stabilized beyond
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Figure 3.5. The imaginary parts of the characteristic solution including the internal

damping coefficient 7. The maximum value of the imaginary parts is presented in the

parameter domains a and 7. In this example k = 1.

the point 7 = 0.025. Note that the high frequency terms, such as k = 5 in Figure

3.7, are easily influenced and stabilized as increasing internal damping 7.

Instabilities induced by internal damping have been reported for some specific

systems such as rotation systems (Shaw and Shaw [39], Hendricks [38], Bolotin [16],

Iwan and Stahl [76] and Iwan and Moeller [77]) and systems with follower forces

(Higuchi and Dowell [9, 10]). In such systems, small internal damping can destabilize

the system. For the instability by modal interactions, i.e., the instability accompanied

by colliding of frequencies with changing parameters, it is reported that small internal

damping can destabilize whole systems.
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Figure 3.6. The real parts of the characteristic solution including the internal damp-

ing coefficient 7. The real parts of the characteristic solution corresponding to the

maximum imaginary value is presented in the parameter domains a and 7. In this

example k = 1.
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3.3 Two-Dimensional Elastic System

A semi-infinite, linear elastic medium in contact with a moving semi-infinite rigid body

is considered as a two-dimensional elastic system subjected to distributed friction

(Martins et al. [25]).

/

\
\

/

.A/a
\

 

Figure 3.8. A schematic diagram for a semi-infinite, two-dimensional elastic medium

in contact with a moving rigid body.

In this section, dynamic stability as affected by a constant coefficient of friction

is investigated (Figure 3.8). The dynamic equation of the linear elastic material with

respect to a static equilibrium state is represented by

8
2 — —GV u+(z\+G)azA l :3

.

(3.12)

6

0V2 + A+G—Av ( )6],

|| :3
.
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2 .

where V2: 66:7 + :72,A = % + -g—Z,G—- 2713—1”, and A-—W. The variables u

and v are displacements in the x and y directions with respect to the static equilibrium

state, respectively. By rewriting equation (3.12) in terms of the speed of free vibration

waves, the equations of motions are

8221 8221 62a 62v 6211
2 2 2
— +— c — — + —- = —,

62v 621; 6% 62v 62v2 _ _ 2 _ 2 = _
Q4611? + ay2)+(cL OT)(axay + 83/2) atga

(3.13)

 

where 01, = ,/ A—‘L—pm and cT =\/§ represent the longitudinal and transverse speed of

waves, respectively (Fung [37], Saada [36]).

Boundary conditions on the contact surface at y = 0 are

v(a:, 0, t) = 0, (3.14)

ayx(a:, 0, t) = payy(x, 0, t),

where p is a coefficient of friction, assumed to be a constant. The stress-strain

relations are am, = C(g—Z + g—Z), and am, = Ag: + (A + 2G)g—:. The boundary condition

in equation (3.14) implies that there is no loss of contact between the medium and

the moving rigid body.

The dynamic solutions subjected to periodic boundary conditions are assumed to

have the form

u(:r, y, t) = Ae"byeik($—Ct), (3.15)
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v(:z:,y,t) = Be‘byeiklx"“),

where k is a positive real number, which represents an angular frequency along the :1:

axis, and b is a complex number, which contains a positive real value that allows ex-

ponentially decreasing oscillations in the y direction. Such boundary conditions have

been adopted in a development of the Rayleigh waves in elastic materials (Fung [37]).

Here a complex value 0 determines the stabilities of traveling waves induced by fric-

tion. Note that a imaginary value of 0 implies a neutrally stable wave.

Applying equation (3.15) to equation (3.13), nontrivial solutions are

 

”(2 — 2\/1— L\/1 — T — T) =z'T\/1— L, (3.16)

where L and T are defined as (c/cL)2 and (c/cT)2, respectively. For a case of a

compressible linear elastic material, i.e., the range 0 S u < 1 /2, the equation (3.16)

yields the following sixth order equation with respect to L (See Martins et al. [25] for

details.)

L2(L4 + (13L3 + a2L2 + a1L + a0) = 0. (3.17)

The coefficients a0, a1, a2, and (13 are given by

a0 = 16n2r2(1+u272), (3.18)

a1 = —8u27(2+T(3+u2(4T—1))),



with T = cT/cL.

Figure 3.9. The imaginary parts of the characteristic solution L in the parameter

(12

as
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= 41120 + 27(2 + r) + (u2(4r —1)+1)2,

= -2(u2(4T+ 1)),
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plane of friction coefficient )1 and Poisson’s ratio 11.

A numerical analysis of equation (3.17) is performed in the domains )1 and V.

Figure 3.9 and Figure 3.10 show the imaginary and real parts of L in equation (3.17).

The zeros in the solutions over the parameter domains, which are located in regions

of small 11 and small 11, indicate that there are no nontrivial solutions which satisfy

the boundary conditions in (3.14). Based on the relation of c = :lzx/L CL, the positive

imaginary and real components of L, which are shown by the non-zero values in
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Figure 3.10. The real parts of the characteristic solution L in the parameter plane of

friction coefficient )1 and Poisson’s ratio V.

Figure 3.9 and Figure 3.10, correspond to the first and third quadrants of the complex

plane c. Remember that the positive imaginary value of c implies an unstable wave

and the sign of the real part of 0 determines the direction of the wave. Thus the

solutions located in the first quadrant in the complex plane 0 (Real(c) > 0 and

Imaginary(c) > 0) indicate unstable waves traveling toward the positive x axis. On

the other hand, the solutions located in the third quadrant in the complex plane

c (Real(c) < 0 and Imaginary(c) < 0) indicate stable waves traveling toward the

negative :5 axis.

Therefore, according to these numerical solutions, the two—dimensional elastic

medium has unstable traveling waves, even with a constant coefficient of friction,

if Poisson’s ratio and a friction coefficient are large enough. The numerical results
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from the two-dimensional elastic systems are consistent with the one-dimensional sys-

tem developed in the previous sections. Both systems have unstable traveling waves,

which propagate toward the direction of the moving rigid body, in any finite speed

of the rigid body. (A two-dimensional elastic medium under distributed contact with

fixed ends boundaries is numerically investigated by applying finite element analysis

in Chapter 6.)

3.4 Conclusion

In this chapter, the dynamic stability of frictional steady sliding in one- and two-

dimensional systems was investigated. Under the periodic boundary condition un-

stable traveling waves in a one-dimensional elastic system were found to be depen-

dent upon a constant coefficient of friction and Poisson’s ratio. It was demonstrated

that high coupling in the coordinates due to Poisson’s ratio destabilizes the two-

dimensional elastic continuum.

It was concluded that a decreasing coefficient of friction is not a necessary condi-

tion for the occurrence of dynamic instability. In addition, the characteristic analysis

showed that dynamic instability occurs in the form of self-excited, unstable, traveling

waves. The stabilizing effects by adding external and internal damping were studied.

The system imposed by the fixed boundary conditions, presented in Chapter 2,

has no instabilities under the condition of a constant friction coefficient. Thus the

neutrally stable condition exists for the undamped one-dimensional system. However,

according to the results of this chapter, the same system under the periodic boundary
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condition becomes unstable because of the unstable traveling waves.

It should be noted that these analyses were based on the steady state frictional slid-

ing stability. Thus any noise and vibrations originated from the non-uniform motions

should be analyzed by different approaches. Chapter 5 illustrates these phenomena.



CHAPTER 4

STABILITY ANALYSIS IN A

LUMPED PARAMETER MODEL

4.1 Introduction

In order to investigate friction-induced vibrations and noise generated from large

frictional contact surface, for example regarding bushing squeaking noise in a vehi-

cle suspension system, noise generation from a band/drum brake system, and jerky

motions of a clutch engagement, a construction of a mathematical model which can

explain the dynamic behaviors including stick-slip oscillations is essential process in

system analysis.

However, it could be a painstaking job in handling the continuous model to explain

dynamic phenomena induced by friction. For a example, when the system undergoes

stick-slip motions, the prediction of stick-slip motions are difficult through analytical

approaches since they are dependent on the system states and occur anywhere over

72
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the domain of contact. In order to overcome such difficulties, it is necessary to build

a descretized model based on space coordinates.

In Chapter 2, we saw that improper discretization of the PDE led to misleading

results. If we are going to apply lumped parameter models to nonlinear stick-slip

studies later, it is important to investigate the quality such a discretization. One way

to gage the discretization is through a linear stability study, and its comparison with

previous analytical results.

Most of the works in the previous chapters were investigated based on a assump-

tion that the friction coefficient is a constant with respect to the relative speed. How-

ever, it has been reported that the frictional damping plays a crucial role in system

stability and should be included in stability analysis. Theoretical and experimental

studies by Brockley [66, 65], Tolstoi [48] have shown that a single degree-of-freedom

model with negative slope in friction-speed relation is unstable and leads to self-

excited vibrations.

In applied systems, for example automotive brake systems (Friesen [69],

Abdelhamid[70]), aircraft brake systems (Black [71]) and water lubricated bearing sys-

tems (Simpson [74], Krauter [75], Bhushan [73]), the friction-speed relation strongly

influences the overall system stability, and the cause of noise and vibrations. Such

noise generation mechanism was broadly investigated by Nakai and Yokoi [72] and an

importance of resultant structural damping has been recognized by Krauter [75] with

linear analysis for generation of squealing noise caused by dry friction. By using two

degree-of-freedom nonlinear models, Simson [74] and Krauter[75] have revealed that

chattering and squealing noise are generated due to the resultant structural damping.
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In this chapter, a lumped-parameter, multi degree-of-freedom model is constructed

as a discretization of the previous continuous system. (This model is adopted for

investigations of stick-slip oscillations in Chapter 5.) Non-symmetric properties in the

eigenvalue problems, which are usually introduced by friction, are properly handled

and analyzed. Stability analyses including damping, such as external, internal, and

frictional damping, are evaluated.

4.2 Stability Criteria

The condition of stability, i.e., the boundary between stable and unstable domains,

naturally depends on the parameters of the system such as boundary conditions,

distribution of loads, system damping, and nonlinearities of materials. For most

of the classical investigations related to the theory of elastic stability, the external

forces are expressed through the potential energies and the problems usually have

self-adjoint properties. Because the external forces have potentials, loss of stability

can take place only in the form of static instability—divergence—which has zero

frequency.

On the other hand, when a system contains nonconservative forces, for exam-

ple panels or shells in air flow, follower forces in elastic materials, and systems in-

cluding dry friction forces, the instability may occur either dynamically—fiutter—or

statically—divergence (Bolotin [16], Ziegler[17]).

For investigations of a stability of multi degree-of-freedom system the definition

of linear stability with respect to eigenvalues is explained as follows. When the linear
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system has the form of a homogeneous matrix equation, then the eigenvalue problem

is represented as

Lezo, (as

where the system matrix L depends on the real load parameter and the complex

eigenvalue, A = a + iw. We write the matrix L as a linear function of real matrices,

specifying the dependence on A explicitly by

L = A2M + AC + K, (4.2)

where the stiffness matrix K, damping matrix C, and the mass matrix M can be

non-symmetric matrices in general.

The dynamic stability of the system is determined quantitatively by the eigen-

values, A,. = a, + in), for r = 1,2,. ..,n. The eigenvalue with the maximum real

part is the important one and for this am“. since the stability of the whole system

is dominated by this value. Let wan,“ be the imaginary eigenvalue corresponding to

the am”. Then motions and stability are categorized by

Stable motion if am“. < 0

Critical motion (marginally stable) if am” 2 0

Flutter instability if am” > 0 and won,” 75 0

Divergence instability if amax > 0 and won,” = 0
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Base on these stability criteria, the possible unstable motions are evaluated by eigen-

values of the system.

4.3 A Lumped-Parameter Model under Fixed

Boundary Conditions

4.3.1 A Stability Analysis of an Undamped System

Investigations of the dynamic behaviors and stabilities of systems having consider-

ably large rubbing surfaces may encounter some difficulties in the evaluation of the

system eigenvalues since the classical approximate method which relies on the modal

coordinates may no longer valid and their convergence of eigenvalues are not guar-

anteed as discussed in Chapter 2. There is no reason to expect other discretizations

to converge, either. But we investigate the performance of other discretizations in

hope that those difficulties are overcome, so that the discretization can be applied to

nonlinear studies with some confidence.

In this section by using the lumped-parameter discretization method the continu-

ous system is simplified to a multi degree-of-freedom model and the system stability

is analyzed. (Analyses using the finite element method are shown in Chapter 6.)

Consider a system shown in Figure 4.1, which shows the lumped-parameter model

from the continuous system in Figure 2.1. The mass blocks connected to linear

springs are placed on the moving belt. There are frictional forces between the mass

blocks and the moving belt. In this model, the each mass block plays a role not
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Figure 4.1. A schematic diagram for the undamped, lumped-parameter model sub-

jected to distributed fn'ction. Fixed end boundary conditions are applied.

only as a lumped-mass, but also as a discrete elastic mass which can contract and

elongate based on the Poisson effect due to the forces exerted around the mass. Since

the normal displacement is restricted as shown in Figure 4.1, the contraction and

elongation influence the normal load, which causes the variation of the friction forces.

The equation of motion for undamped it}. mass is written as

mm,- (t) + k{—.’L‘,'_1(t) + 21'5“) — $i+1(t)} + fi(t) = 0, (4.3)

where m is a mass of each mass block, I: is a spring stiffness, x,(t),:i:.-(t), and :i':.-(t)

represent the displacement, velocity and acceleration of it), mass, respectively and

f,-(t) is the friction forces on the in. mass. Here the mass and stiffness are lumped

from the evenly distributed system. Let us include the Poisson’s ratio effect. Then

the friction force is

M0 = I‘M-(t) = #lNo + I’M-Mt) - xs—1(t)}], (4-4)
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where u is a friction coeflicient and N0 is the normal load on each block, which is a

negative constant value (No < 0), and N,(t) is the resultant normal load including

the Poisson’s ratio effects (N,(t) < 0). Thus the undamped equation of motion for

the it), mass block is

431(7) — (1+ HV)$1—1(T)+(2 + V#)$i(7') " 33:41“) + #NO/k = 0, (4-5)

1

61
where T = wpt, w; = k/m and the time derivative () denotes . This is a difference

equation of motion of the continuous system in equation (2.3).

It has been known that the system stability is closely dependent on its boundary

conditions. Firstly, consider a fixed boundary condition of

 =0 mm

The equation of motion for the undamped system is expressed by

MX+KX=Fm up

where
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2+u,u —1 0 0 0

-(1+1/,u) 2+V/1 —1 0 0

K: 0 —(1+1/11) 2+Vp 0 0 ’

O 0 O —(1+1/;1) 2+V,u

l. -

and

F0 = —pN0/k [1,1, . . ., 1]T.

The matrix I denotes a unit matrix. The stiffness matrix K is non-symmetric due to

the effect of friction and the Poisson’s ratio. The eigenvalues for the dynamic systems

are evaluated with respect to the static equilibria. Thus, the eigenvalue problem is

represented by

AM<P = K<I>. (4.9)

Since K 7:9 KT, the orthogonal relations obtained from the symmetric properties are

no longer valid. Furthermore, the expansion theorem derived from the symmetric

relations can not be applied to decompose any arbitrary vectors in terms of a set of

eigenvectors.

Let us briefly discuss the general eigenvalue problem, which covers the non-

symmetric prOperties in equation (4.9), and then return to the problem of interest.
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Consider the transposed eigenvalue problem associated with equation (4.9) and write

it in the form

AM\II = KTw. (4.10)

The eigenvalues of equation (4.10) are the same as those of equation (4.9). On the

other hand, the eigenvectors of equation (4.10) are different from those of equation

(4.9). Consider two distinct solutions of equation of (4.9) and (4.10). These solutions

satisfy the equations

AiM¢i = K65” Z = 1,2, . . .,n, (4.11)

and

AjMw, = Kij, j : 1,2,...,n. (4.12)

The equation (4.12) can also be written in the left eigenvector form by

Ajwa = fix, j = 1,2,. . .,n. (4.13)

Multiplying equation (4.11) on the left by d)? and equation (4.13) on the right by ()5,-

and subtracting one results from the other, then

(A1 — /\j) wJTQbi = O, (4.14)
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so that for distinct eigenvalues

333,70, A,¢/\,-, 2',j=1,2,...,n. (4.15)

This means that the left eigenvectors and right eigenvectors of the system correspond-

ing to distinct eigenvalues are orthogonal. It should be stressed that the eigenvectors

are not mutually orthogonal in the same ordinary sense as those associated with the

Hermitian matrix. Indeed, the two sets of eigenvectors <1),- and (I), are biorthogonal.

The fact that the eigenvectors d),- and 1,1), are biorthogonal permits to formulate an

expansion theorem for general case. Assuming that any vector can be represented by

infinite sum of eigenvectors there is a choice of expanding any arbitrary truncated n-

vector x in terms of the eigenvector (b,- or 1b,. Assuming that the truncated expansion

in terms of d),- closely approximates x, then

x = <I>q, (4.16)

where q = [q1, q2, . . . , qn]T is the vector of associated coefficients. Thus the coefficients

are obtained by

q = \IJTx. (4.17)

Similarly, an expansion in terms of the eigenvector w,- has the form

x = ‘Ilr, r = <I>Tx, (4.18)
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where r 2 [T1, r2, . . . , Tn]T is the vector of associated coefficients associated with 1,0,.

This procedure, which treats the non-symmetric eigenvalue problem in the lumped—

parameter system, corresponds to the non-self adjoint eigenvalue problem in the con-

tinuous system discussed in Chapter 2.
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Figure 4.2. Trajectories of the eigenvalues versus friction coefficient 11 in the un-

damped, lumped-parameter model.

Let us return to the problem of interest. Figure 4.2 shows the numerical results

of the eigenvalues by changing the friction coefficient )1, which is assumed to be

constant with respect to the relative speed. The calculated eigenvalues can also

be compared to the exact eigenvalues of the continuous system, shown in Figure

2.10. As )1 increases the frequencies simply increase and no destabilizations are found

in Figure 4.2. This result shows a close approximation to the exact eigenvalues
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Figure 4.3. Static equilibria by increasing the friction coefficient 11. Here 11 is increased

from 0.0 to 0.7 by 0.07.

of the continuous system. Comparing with the exact eigenvalues the eigenvalues

obtained from the lumped-parameter model are usually underestimated, which are

explained in Chapter 6. In Chapter 2 the contradictory example in evaluation of

eigenvalues was presented. In this section, fortunately, there are no contradictory

results in evaluating the approximate eigenvalues in the lumped-parameter model

since the numerical method used in this study (MATLAB) utilizes an adjoint property

in evaluating the eigenvalues. We can expect that the numerical analysis using such

an algorithm generate reliable results.

Figure 4.3 shows the dependence of the static equilibria on the coefficient of fric-

tion )1. Comparing this result to Figure 2.3, which shows the static equilibria obtained

from the continuous model, indicates similar trends. Figure 4.4 shows eigenvectors
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Figure 4.4. The non-symmetric eigenvectors corresponding to the three lowest eigen-

values.

corresponding to the three lowest frequencies. These results show a close approx-

imation to the exact eigenfunctions obtained from the continuous model in Figure

2.6. It is verified that the non-symmetric system matrix produces the non-symmetric

eigenvectors. It is concluded that the system does not have any unstable motions by

the effects of parameter )1 assuming that the coefficient of friction is constant with

respect to relative speed.

4.3.2 Addition of Damping

In this section by including damping we evaluate the dynamic stabilities and show

the effect of damping on the system stability. Three typical damping are included:

external, internal, and general friction damping. In the previous chapters we inves-
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tigated the system stability by the effects of damping. Because it is difficult to find

analytical solutions by including a negative-slope friction damping we did not adopt

the negative-slope friction damping in the previous model. In this section we evaluate

the system stability by including a negative-SIOpe friction damping.

The equation of motion including the damping is

miilt) + diilt) + ”ff—553171“) + 23.31“) ‘ ii+1(t)} (4-19)

+ k{—$i_1(t) + 21:10:) — $14.10)} '1' f1“) = 0,

where the parameter d, 7, and f,(t) represent the external, internal and frictional

damping, respectively. The frictional force including the eflect of Poisson’s ratio is

f1“) = HM“) (4.20)

= /L[N0 + V{k($i — 171.1) + 7(551— ii_1)}].

Let us assume the friction characteristics in friction-speed relations is

u = 14561) = sign(V - iii){us +013 - #k)e"ci"v”’"}, (4-21)

:: sign(V — 1L3){Cl + Cg e—C3IV—x',|},

where the u, and 11;, represent static and dynamic coefficient of friction, respectively

(113 > pk) and the c3 has a positive value. The typical friction force f,(t), which is

dependent on the relative slipping speed between the 2'”, mass and driving speed V,



86
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relative speed (V - dx/dt)

Figure 4.5. The discontinuous coeflicient of friction 11 versus relative velocity [V — :i:,-|.

The coefficients of friction are represented by p = sign (V — in) {CI + 028—63lv_iil},

where c1 = 0.1, c3 = 1.0, and c2 = 0.1 for the dashed line, c2 = 0.2 for the dotted line,

c2 = 0.3 for the dash dot line, and c2 = 0.4 for the solid line.

is shown in Figure 4.5.

Substituting equation (4.20) to equation (4.19), the non-linear coupled equation

of motion is obtained as

5151 + ’Y{_(1 + I‘V)i'i-1+(d/'Y + 2 + ”ID-”bi — 43:41} (4-22)

+ {—(1 + uu):r,-_1+(2 + [Ll/)IE,‘ — 1314.1} + [IND/k = 0,

where the time derivative ( ) implies 5"; with 7' = wpt, a): = k/m = 1.

Examining the system’s dynamic stability can be facilitated by change coordi-

nates with respect to the static equilibrium state. The total displacements 23,-(t) are

represented by it,- + yi(t), where the i,- denotes the static equilibria satisfying the

equilibria status, i.e., :13,- = 515,- = 0, and the y,(t) indicates small displacement around



87

A j

2~-~'

 

I
m
a
g
i
n
a
r
y
p
a
r
t
o
f
e
i
g
e
n
v
a
l
e
u
s

o
L

0.02

 
Normal loads '60 '0'02 Real parts of eigenvalues

Figure 4.6. The locus of eigenvalues with varying normal loads for the damped model

under a fixed boundary condition. The normal load is increased by 5.0 N. Here

7 = 0.01, d = O, 01 = 0.1, c2 = 0.2, and c3 = 5.0 are selected.

the static equilibria. By taking the Taylor series expansion for the friction forces the

linearized equations of motion with respect to equilibria are obtained. The static

equilibria satisfies the following equation.

xx = F0, (4.23)

where the X is composed of [521,532, . . .,:En]T and F0 2 ——u(0)No/k[1, 1,. . ., 1]T. And
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Figure 4.7. The detailed presentations of the eigenvalues by increasing the normal
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the linearized equation of motion with respect to the equilibria is

Mi? + CY + KY = o, (4.24)

where M is the identity matrix, K is the same stiffness matrix to the undamped

model in (4.8), and the Y represents [311,312, . . . ,yn]T. The resultant damping matrix
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C is

" W

cm —*y 0 0 0

-7(1 + 141(0)) C22 —) 0 0

C = 0 —’y(1 + 142(0)) C33 ... 0 0 , (4-25)

L 0 0 0 ... —*y(1 + 141(0)) cm,

where

Cfi = d + ’)’{2 + V(Cl + Cze—cav)} + (02638—63v)[l/{11_3i — 53;:4} ‘l' No/k]

The elements in C are evaluated with respect to the static equilibria and they are

affected by the normal loads and friction forces. Consequently, the friction forces and

the Poisson’s ratio are responsible for the non-symmetric properties of K and C. The

system matrix in the form of state space is

M*Z + K*z = o, (4.26)

where the Z is defined as [YEY]. Here the M“, K“ are defined by

C

M‘ = , K“ = . (4.27)

This eigenvalue problem should be solved by following the general eigenvalue prob-
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lems, which are discussed in the previous section, since it has non-symmetric proper-

ties. When there is a negative SIOpe in friction characteristic (c3 > 0) the whole system

is destabilized by the resultant negative damping as the normal load increases. In

the compressive region, (17:,- — 22,..1 < 0), destabilizing effects are amplified. Obviously,

external and internal damping have stabilizing effects as presented in (4.25).

Figure 4.6 shows the locus of the eigenvalues with varying normal loads when the

coefficient of friction is expressed by equation (4.21). For small normal loads with

sufficient external and internal damping, the system is stable because the maximum

real parts of the eigenvalues is negative. When the normal load increases and produces

large compressive stress some eigenvalues placed in the left half plane approach and

cross over the imaginary axis. Then the system contains at least one positive real

eigenvalue, which indicates dynamic instability. The detailed transition steps of the

eigenvalues are shown in Figure 4.7 with varying the normal loads.

4.4 A Lumped-Parameter Model under a Periodic

Boundary Condition

4.4.1 A Stability Analysis of an Undamped System

The onset of self-excited oscillations in a continuous medium by linear instability has

been investigated by several researchers (Adams[24, 23], Martins et al.[25]). Accord-

ing to these studies a system with a periodic boundary condition becomes unstable

in the form of self-excited motions for any finite driving speeds even under a constant
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friction coefficient.

0
‘

v'|~/

Figure 4.8. A schematic diagram for the lumped-parameter model with a periodic

boundary condition.

Figure 4.8 shows a schematic diagram of the bushing system represented by

lumped elements. Assuming that any motions are expressed by circular coordinates

and any centrifugal effects are neglected (large radius), an equation of motion for the

undamped mass is

mix-(t) + k{—(1 + pu)x,-_1(t) + (2 + Vu)x,-(t) — $§+1(t)} + pNo = 0, (4.28)

where the friction coeflicient p is a constant. The periodic boundary conditions are

$1“) = $n+l(t)1 (4'29)

dxl (t) = dxn+1 (t)

dt dt ’
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which represent the ring-shaped configuration in Figure 4.8.

The system matrices consist of an identity mass matrix M and the stiffness matrix

  

' l

2+z/u —1 0 O —(1+uu)

—-(1+up) 2+1/ll —1 0 0

K: 0 -(1+Vp) 2+l/p 0 0 - (4.30)

—1 0 O —(1+Vu) 2+l/p.

:04“

32»
'3’

§°
:32.

Ed,» 
0.1

 —0.05

Friction coefficient 0 ’0-1 'l1 Real parts of eigenvalues

Figure 4.9. The locus of eigenvalues with varying u for the undamped lumped-

parameter model under a periodic boundary condition. Here ,u is increased by 0.05.

Figure 4.9 shows the locus of eigenvalues with various values of ,u, where ,u is

assumed a constant with respect to relative speed. When ,u equals to zero, all eigen-
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Figure 4.10. The detailed presentation of the trajectories of the eigenvalues by in-

creasing the friction coefficient.

values are located on the imaginary axis, which represents marginally stable pure

oscillations without increasing and decreasing motions. As the friction coefficient

11 increases, complex conjugate eigenvalues, which have positive and negative real

components, come into existence (Figure 4.10). Any non-zero value in the friction co-

efficient destabilizes the system. Comparing this result to those in Chapter 3, similar

trends are found. According to equation (3.6) in Chapter 3, the low frequency terms

(for small It) have a crucial role in destabilization since they have large imaginary com-

ponents in the characteristic equation. (Remember that in the analysis in Chapter 3,

the imaginary part of the characteristic solution determines overall system stabilities.
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Refer to Figure 3.1 for the unstable solutions.) Figure 4.10 verifies this trend by

showing the large positive real eigenvalue corresponding to the low frequencies. Here

the zero eigenvalue indicates the rigid body motion with no oscillations.

4.4.2 Addition of Damping

Consider the system again by including internal, external and general frictional damp-

ing. The equation of motion has the same form as equation (4.22). In order to find

the linear stability, take the coordinate change with respect to the static equilibrium,

and followed the same procedures of the previous section. Then linearized equation

of motion with respect to the equilibria is

Mv+CY+KY=a am)

where M and K are identical to that of the undamped system. The damping matrix

is

c11 —7 0 0 —70~+vufl0)

-v(1 + 141(0)) 622 -v 0 0

C3: 0 —dun+uuan) am .n 0 0 (432)
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where

Cfi 2' d + ’Y{2 + l/(Cl + 626—C3V)} + (0203e‘c3v)[u{:i:, — Ti_1} + NO/k].
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Figure 4.11. Trajectories of the eigenvalues for the damped lumped-parameter model

under a periodic boundary condition. Here 7 = 0.05, d = 0.05, CI = 0.1, c2 = 0.2, and

c3 = 5.0 are selected.

Figure 4.11 shows locus of eigenvalues with varying normal loads. When the

normal load is relatively small, the eigenvalues are placed on the left side of complex

plane, which indicates that the system is stable due to sufficient damping. However,
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as the normal load increases the eigenvalues move toward the imaginary axis from

the left-half plane and cross over the imaginary axis at critical value of normal load.

This produces positive real eigenvalues and makes the system unstable.

4.5 Conclusion

In this chapter the discretized lumped-parameter model has been established. In the

lumped—parameter model, the stiffness matrix is non-symmetric due to the friction

force. The general eigenvalue problem, which dealt with the non-symmetric eigenvalue

problem, was reviewed and the linear stability was evaluated.

Under the fixed boundary condition, the system is marginally stable when the

friction is a constant. This result is consistent with the exact results obtained in

Chapter 2. External and internal damping stabilize the system. On the other hand,

friction damping which has a negative slope in friction-speed relation destabilizes the

overall system. Under the periodic boundary condition the system becomes unstable

one even with a constant coefficient of friction. This is also consistent with the results

obtained in Chapter 3.

The consistency of results from the lumped-parameter system suggest that such

a discretization of the non-symmetric problem converges to true solutions without

having contradictory results. Thus we can use this lumped-parameter model for

further non-linear studies. We will use this lumped-parameter model in Chapter 5 in

order to investigate non-linear phenomena.



CHAPTER 5

STICK—SLIP OSCILLATIONS

5. 1 Introduction

Investigation and characterization of dynamic responses of systems subjected to fric-

tion are made difficult by the presence of stick-slip oscillations. Such stick-slip oscilla-

tions have been believed to be responsible for mechanisms of generating the noise and

vibrations. In explanations of such noise generating mechanisms most of the previous

researchers have devoted their efforts on system stabilities and characterizations by

using low-dimensional models.

Dynamic behaviors of multi-degree-of-freedom models including the stick-slip os-

cillations were investigated by Awrejcewicz and Delfs [89, 90]. They showed the

qualitative changes of equilibria by changing system parameters and explained nu-

merical integration techniques applicable to problems involving stick-slip oscillations.

Later, Pfeiffer [91] studied the turbine blades as a multi-dimensional stick-slip sys-

tem. Popp has explained and reviewed the previous stick-slip systems with various

97
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examples [78, 79].

In addition, some works have focused on the characterization of stick-slip oscilla-

tions induced by friction. Stelter and Sextro [85] investigated the characterization of

one- and two-degree-of-freedom frictional systems and provided the bifurcation be-

haviors due to friction. Later, Galvalnetto et al. [86, 87] investigated the stick—slip

vibrations of two-degree-of-freedom mechanical model. They showed that the global

dynamics of the system can be characterized by the periodic, quasi-periodic, and

chaotic oscillations in presence of friction.

Most of the previous research, however, has dealt with the models having low de-

grees of freedom, and with simplified friction models, such as the point-contact model.

A distributed friction system has been eluded in most of the previous studies since it

is hard to implement and analyze through numerical or experimental approaches.

In spite of these difficulties, several approaches using distributed contact systems

have been found in areas of the geophysics. The model consisting of blocks of masses

has been used to describe the earthquake fault phenomena and have explained the

dynamics of the multi-dimensional systems with stick-slip oscillations [95, 96, 97, 98].

Carlson and Langer [96, 97, 98] have incorporated stick-slip phenomena and pro-

vided mechanisms responsible for noise and the sequences of earthquake-like events.

Extended ideas to chaotic behaviors of earthquake events are found by Huang and

Turcotte [88].

Through experiment, the generation mechanisms for noise and vibrations in a

distributed contact friction system have been investigated. Vallette and Gollub [101]

studied the stick-slip oscillations of a spatiotemporal system by means of stretched
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latex membranes in contact with a translating glass rod and measured the internal

displacement field, u(:z:, t), with imaging techniques. They showed the experimental

behaviors of the stick-slip motions as propagating waves. Some other works related

to elastomeric friction systems are found in the works by De Togni et al. [99] and

Rorrer [100]. However, the analytical and numerical approaches for investigating

the mechanism responsible for noise and vibrations induced by friction need further

development.

Here are issues to be addressed through this study. The mechanisms responsible

for the generation of the stick and slip oscillations in elastic media subjected to a

distributed friction contacts are to be identified. In addition, the system parameter

effects on the generation of such noise need to be investigated through this study.

In this chapter, a discretized multi-degree—of-freedom model is adopted to ana-

lyze the dynamic behaviors of the elastic media subjected to distributed friction.

We choose the lumped-parameter model established in Chapter 4, because its linear

stability is convergent and it is straight forward to simulate and analyze stick-slip

motions. The numerical techniques in handling the stick-slip oscillations are pre-

sented and the detailed explanations associated with the stick-slip oscillations are

provided. The contributions of parameters, such as a normal load, a driving speed,

the Poisson’s ratio, and friction characteristics, are studied and their influences on

the stick-slip noise generation are explained. In this numerical study we also choose

a particular set of initial conditions, which have to do with motivational topic of a

squeaky bushing. The initial conditions are chosen as stuck since that might be rep-

resentative of bushing at beginning of some maneuver. We also seek the possibility
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of sustained stick-slip motions regardless of linearized stability in this chapter.

5.2 Numerical Aspects of Stick-Slip Phenomena

When a system is modeled as a discretized multi-degree-of-freedom and expected

to undergo alternating stick-slip oscillations during a time of interest, a numerical

algorithm to simulate the system behavior needs a special attention in handling the

problem. Since the alternating stick-slip oscillations produce a time-varying degree of

freedom and a time-varying boundary condition, an analytical approach looking for

the system behaviors is not an easy job and is limited only for a low-degree—of-freedom

system.

Theoretical backgrounds for handling such problems have been presented by

several researchers, who have formulated the switching contact status in terms of

constraint indicator functions (Pfeiffer [111], Glocker and Pfeiffer [113], and Wiisle

and Pfeiffer [114]). For example, impulsive and stick-slip phenomena for percus-

sion drilling machines (Glocker and Pfeiffer [113]), assembling and mating processes

(Pfeiffer and Glocker [112]), and frictional damping in turbine blade (Pfeiffer and Ha-

jeck [91]) have been analyzed with the constraint indicator functions. The described

phenomena, such as the stick-slip motions, the sliding-stop motion device, and the

impulsive impact process, have a common fact that the beginning and end of any of

the changing status are always represented. by certain constraint indicator functions,

which are controlled by the dynamical process itself.

Let us consider the system of interest which includes distributed friction force.
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Though the switching status, i.e., the changes from stick to slip, or vice versa,

influences the system’s degree of freedom and results in the variable multi-degree-

of-freedom systems, their motions are simply categorized by “stick” or “slip” state

dependent on their state variables. The undamped, n degree-of-freedom, lumped-

parameter model constructed in Chapter 4 is represented by

man-(t) + k{—$i_1(t) + 211%“) — $i+1(t)} '1' f1“) = 0, 2:1, 2, . . . , n. (5.1)

This can be rewritten as

man-(t) + g,(:r,-_1,:r,-,a:,~+1) + f1“) = 0, Z: 1, 2, . . . ,71, (5.2)

where f,-(t) and g,(t) are implicitly time dependent variables. The f,-(t) is the friction

force and g,(t) is the elastic force exerted to the 2,), mass at specific time t. (See the

system configuration in Figure 4.1.)

By setting kinetic and kinematic constraint indicator functions, which signal the

beginning and end of each switching status, the status of the it), lumped mass is

determined as stick or slip. The kinetic constraint indicator function h,(t) is defined

by

me) déf lfr(t)l — lg.(t)l. (5.3)

which indicates a magnitude difference of elastic spring and friction forces. Similarly,
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the kinematic constraint indicator function 3,-(t) is defined by

31(t) (grin-31,1 = 233' — V, (5.4)

where the 3,-(t) indicates the relative velocity between the it), mass and the driving

speed V.

The condition h,(t) Z 0 with zero relative velocity (5,-(t) = 0) implies the “stick

state”, which means that the it), mass remains without relative motion with respect

to the moving rigid body. In this state friction force is sufficient to counteract against

elastic force, so a mass can remain without having relative motion. The condition

of non-zero relative velocity (3,-(t) 96 0) represents the “slip state”, which means the

it), mass has relative motion with respect to the moving rigid body at specific time

t. In between the two states, there always is an instant in which the signs of the

constraint indicator functions changes. At this moment, called an event, the kinetic

and kinematic constraint functions are always complementary. Thus their scalar

product is always zero (Pfeiffer [111]).

Detection of events during each integration time step in digital computation needs

highly accurate numerical techniques. Calculation of the accurate switching moments,

which determine the beginning and end of the friction events causing the time-variant

or unsteady topological behaviors, influences the quality of the solutions.

The concepts of adapted integration algorithms are presented as follows. Firstly,

an e-limit should be chosen for computational tolerance. Then integration take

place over a predetermined time interval [t0, t1], during which indicator functions are
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checked in order to detect the switching time if any events occur in that time interval.

Let us check the kinematic indicator function for the it), mass. If the relation

8i(t0)'3i(t1) < 0 (5.5)

holds during the time interval [t0, t1], this indicates that the kinematics events hap-

pened during the interval. Then an adapted integrated time ts, is evaluated from the

equation

I 3i(t8l) I < 6:1 (5'6)

where the 15,, should be detected by several backstepping iterations to satisfy the

equation (5.5) within the kinematic accuracy limit 6?.

Similarly, the kinetic constraint indicator function is checked. If the relation

hi(t0)'hi(t1) < 0 1 (5-7)

holds during the time interval [t0,t1], an adapted integrated time th, is evaluated

based on the equation

I hi(thi) I < 6? (58)

in order to satisfy the kinetic accuracy limit 6?.

Considering a n degree-of-freedom model with 72 possible constraints, the time
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instant for which a change of status first occurs should be determined. The smallest

time step in kinematic event t is defined by
3min

t min (ts, | s,(ts,) = 0}, (5.9)
s - 2.
m'n 2:1,2,

and the smallest time step in kinetic event it), is also defined by
min

th = min {thsI hi(th,)=O}. (5.10)

mm i=l,2,...,n

Therefore, the final smallest adapted time integration step tf is selected by

tf = min{t3min’ thmin}' (5'11)

After finding the final adapted time integration step tf, the ending time is set to

tf instead of t1 in integration time interval on [to, tf].

5.3 Stick-Slip Oscillations with Fixed Boundary

Conditions

Numerical investigations for stick-slip oscillations using the lumped-parameter model

subjected to a distributed frictional contact are conducted to seek mechanisms related

to generating noise and vibrations. In this section descriptions of system configura-

tions and investigations related to stick-slip oscillations are presented.
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5.3.1 Conditions of Numerical Simulations

In this study the adaptive step size Runge-Kutta—Fehlberg integration methods using

a fourth and fifth pair, which have been proved to have high accuracies with small

time steps, are used in numerical integrations. In order to acquire the high quality

simulation results small predetermined integrations time steps are selected. Regarding

 

 

 

Normal Load Friction Mass Stiffness Poisson’s ratio Driving Speed

N0[N] c1 c2 c3 m [kg] k [N/m] V V [m/s]

-1.0 0.1 0.2 0.1 1.0 1.0 0.4 +1           

Table 5.1. The typical system parameters selected for numerical simulations in Chap-

ter 5.

to the system configuration, twenty blocks of lumped-masses connected with linear

springs are placed under evenly distributed normal loads. (Mass positions are assigned

from left to right direction in Figure 4.1.) In addition, fixed boundary conditions

are imposed at both ends. Neither external or internal damping is included in this

development. The friction-speed relations, which have primary effects on the stability

and dynamic behaviors, are expressed by equation (4.21), i.e.,

u = Ma's.) = sign<V — one. + c. e'cs'l'rii'}. (5.12)

Since we have already investigated Coulomb friction effects on system stability we

choose the speed-related friction model in this chapter. The typical parameter values
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selected in numerical simulations are summarized in Table 5.1. Throughout this

chapter, the same initial conditions are imposed for all numerical studies: zero relative

velocities and zero initial displacements to all masses. The set of initial conditions

might be a representative of bushing at beginning of some maneuver.

5.3.2 Investigations of Stick-Slip Oscillations

In this section stick-slip oscillations of the one dimensional multi-degree-of—freedom

system are presented and their dynamic characteristics are explained based on their

numerical results. Investigations based on displacements and velocity responses with

typical initial conditions in Table 5.1 are performed.

Analyses based on the Velocity Response
 

Figure 5.1 shows the time evolution of the mass velocities. At the beginning

of the time evolution, all masses move together with the moving rigid body. For

better presentation the velocities are placed on the negative velocity axis, so —1

[m/3] indicates the driving velocity. The potential energies in the left and right ended

springs gradually increase as the rigid body moves. There are particular moments,

such that the increased spring forces are no longer resisted by the counting frictional

forces. At this moment the masses begin to slide on the driving rigid body, which

implies the stick to slip event.

The sudden changes in motions from the stick to slip state give the momentum

to the neighbor masses and sometimes can trigger series of events in a short time like

falling “domino blocks”. The slip motions are shown as the peaks in Figure 5.1.
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Figure 5.1. Velocity responses of stick-slip oscillations for the lumped-parameter

model. (The selected parameters are in Table 5.1.)

Phenomena which are similar to that events are also found in nature, for examples,

avalanches in a pile of sand and an earthquake fault phenomena. When small amounts

of sand are added on a pile of sand very slowly, it is expected to exhibit avalanches

once a sandpile achieves steady state.

The earthquake fault phenomena have similar structures. Series of the events of

stick-slip motions, sometimes happened only in localized regions or over whole do-

mains of contact, are generated and amplified, which result in the earthquake fault

phenomena (Huang and Turcotte[88]). Carlson and Langer [97, 98] and Carlson et

al. [96] investigated that possible sizes of events and slip wave instabilities for explana-

tion of catastropical events of earthquake faults by using the Burridge and Knoppoff

model, which consists of infinite masses connected with springs. They showed that
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Figure 5.2. A contour plot of the stick-slip response in velocity. (The selected pa-

rameters are in Table 5.1.)

such events from stick to slip are responsible for generations of the noise, which are

based on the nature of frictional characteristics (Carlson et al. [96]). Generally, the

difference between static and dynamic friction coefficient (i.e., a condition of u, > pk)

produces sudden changes in accelerations. The changing forces can influence the

neighboring masses. When the systems have large discontinuities in the static and

kinetic friction characteristics, their effects on the neighbor masses are generally in-

creased. Detailed explanations about the stick-slip motions related to the friction

parameters are shown in the next section.

With the presence of the Poisson’s ratio in elastic materials, the stick-to—slip events

are more apt to occur in axial tensioned regions then compressive regions. Since in

the tensioned region the potentially countable static friction forces are reduced by
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Figure 5.3. A power spectral density of the velocity responses. (The selected param-

eters are in Table 5.1.)

effects of the Poisson ratio, the stick-to-slip events are more likely initiated from

the axially tensioned regions. The stick-to—slip motions, called detachments [26], are

first triggered in the axially tensioned regions, and propagate toward the compressive

regions. Thus the series of the detachment motions, which are like propagating waves

of detachments, travel over the contact domain. They may collide each other and

bounced back from the boundary conditions. Shallamach [26] has observed these

detachment waves in his experimental works by rubbing a rubber on a hard track.

The series of stick-to—slip events are amplified from the local motions to the whole

scale motions. Such stick—to-slip phenomena over whole regions are believed to be

responsible for frequencies of the noise. The frequency dependency on the stick-slip

motions are investigated in the next section.
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Figure 5.4. Displacement responses of stick-slip oscillations for the lumped-parameter

model. (The selected parameters are in Table 5.1.)

Figure 5.2 shows the contour presentation of the velocity responses. The series

of stick-slip events, which are shown as the crossing lines from the one boundary to

the other boundary, are observed distinctly. The high slipping velocities are observed

around the rear masses since the presence of the Poisson’s ratio increase the friction

forces for the rear masses. (Refer to a configuration of the mass position in Figure 4.1.

The rear masses are defined the masses positioned at the end of driving direction.

Thus in Figure 4.1 the masses positioned at right hand side are the rear masses.)

The power spectral density diagrams (FFT) of the velocity responses are shown in

Figure 5.3.
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Figure 5.5. Strain presentations from the displacement responses. (The selected

parameters are in Table 5.1.)

Analyses based on the Displacement Response
 

Figure 5.4 shows the displacement responses of the stick—slip oscillations. All the

masses oscillate with respect to their static equilibria. Each mass experienced low

frequency stick-slip oscillations accompanied by high frequency oscillations. The stick—

slip oscillations are not distinguishable in Figure 5.4. By considering the strains,

defined by Ax,(t) = x,(t) — mi+1(t), the releasing strain energies are observed in

Figure 5.5.

The strains, which represent the potential energies stored in the connected springs,

are released abruptly under the stick-to-slip events in a short time interval. These

are seen as the propagating sharp waves of relieved strains. The waves sweeping over

the domains represent the series of relieved energy over the stick-to—slip events. The
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Figure 5.6. Sticking events versus time. The mark ‘*’ indicates “the stick state”

and the others (the blanks) indicate “the slip state” for each mass. (The selected

parameters are in Table 5.1.)

propagating wave speeds are influenced by system parameters and are investigated

in the next section. According to the works by Carlson and Langer [97, 98], the

small spatial inhomogeneities in displacement are amplified during the large scale

stick-to—slip event.

Figure 5.6 shows the time evolution of the sticking regions. The ‘*’ marks posi-

tions with sticking status in a specific time. The state-space (displacement-velocity)

presentations for 5th, 9th, 13th, and 17th positioned masses are shown in Figure 5.7.

The each mass experienced stick-slip oscillations with respect to its static equilibrium

position.
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Figure 5.7. State-space (displacement versus velocity) presentations for several po-

sitioned masses. (The 5th, 9th, 13th, and 17th positioned masses are shown.) The

selected parameters are in Table 5.1.

5.4 Parameter Effects on Stick-Slip Oscillations

Limited studies have been conducted to predict, analysis, and control the stick-slip

oscillations resulting the chattering and squealing noise and vibrations. Moreover,

experimental investigations of the previous studies have not clearly explained the

general mechanisms generating the stick-slip noise and vibrations induced by friction

since the experimental results and analyses have been closely related to the experi-

mental apparatuses and operating environmental conditions, such as contact surface

conditions and small geometrical misalignment of contacting materials. These may

generate non-repeatable responses even in the same operating conditions and may

cause difficulty in doing system analyses via systematic approaches. Explanations of
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the stick-slip mechanisms using mathematical models have not been fully achieved so

far, especially for the parameter effects on distributed friction contacts, and system-

atic approaches for the analyses of the noise generation mechanisms have not been

conducted as well.

In this section, analyses and interpretations of numerical results and discussions

associated with system parameter effects, such as the normal load, driving speed,

Poisson’s ratio, and the friction characteristics, are provided.

5.4.1 Effects of Normal Loads

The experimental and analytical approaches in the previous studies have shown that

the normal load has a primary influence on the ability to generate noise, and the

frequency and intensity of the noise. Generally, the friction-induced noise are dis-

tinguished by the chattering and squealing noise according to their frequencies and

intensities of noise signals.

The squealing noise is characterized by the high frequency with small amplitudes

of oscillations, while the chatter is usually generated at low frequency with relatively

large amplitudes and much higher intensity than the squealing noise. For example,

in the experiment associated with a rubber-bearing noise investigation by Bhushan

[73], the noise which had low frequency characteristics, namely chatter, typically had

frequencies around 30 to 310 Hz with the maximum amplitude of 15 pm. On the

other hand, the high frequency squealing noise, which had 770 to 830 Hz, had the

maximum amplitude of 1.5 pm. Though these frequency values were not typical
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frequencies representing the chattering and squealing noise, but they were totally

dependent on system parameters, especially the normal load. It should be noted that

the chattering noise had large amplitude with low frequencies, while the squealing

noise had relatively high frequencies and small amplitude from the real experimental

results. In the following discussions, the low frequency noise is termed “chatter”

and the high frequency noise is termed “squeal” for explanations of the noise signal

characteristics.

Figure 5.8 shows responses of displacements of each mass by increasing the normal

load with —1,—5, and —10 N. The static equilibria for the masses are changed by

the normal load. The static equilibria have unsymmetric shapes along the spatial

axis and their unsymmetries are amplified as the normal load increases, as can be

recalled from the static equilibria for the continuous system in equation (2.6) and for

the lumped-model in equation (4.7).

 

 

 

Normal Load Mass position

N0[N] 5th mass 9th mass 13th mass 17th mass

-1 7 12 14 10

-5 12 17 17 I5

-10 25 40 45 25         
 

Table 5.2. The approximate peak-to—peak amplitudes in displacement responses by

changing the normal load.

In Figure 5.9 trends in the velocity response with increasing normal load are shown.

The maximum velocity magnitudes are increased as the normal load increases. For
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Normal Load Mass position

N0[N] 5th mass 9th mass 13th mass 17th mass

-1 1.5 2 1.7 1.8

-5 2.5 3 3 3.5

-10 3.5 5.5 9 7          
 

Table 5.3. The approximate peak—to—peak amplitudes in velocity responses by chang-

ing the normal load.

an example, comparing the maximum velocity the velocities in the slipping state

reach about 2, 3, and 8 m/sec magnitude when the normal loads are —1 N, —5

N, and —-10 N, respectively. (Recall that (-) velocity responses are plotted in Figure

5.9.) Moreover, the amplitude of the stick-slip oscillations (measured by peak-to—peak

amplitudes during the stick-slip oscillations) of the displacements and velocities are

increased by the normal load increases. As shown in Figure 5.10 of the displacement-

velocity presentations of several masses (the 5th, 9th, 13th and 17th positioned mass),

the approximate stick-slip oscillating amplitudes are increased in high normal load.

Table 5.2 and 5.3 show the summarized approximate peak-to-peak amplitudes in

displacement and velocity responses, respectively.

With a closer look in Figure 5.9 and 5.10, small amplitude high frequency oscil-

lations, which are usually superposed on the low frequency responses, are observed.

Especially, under the high normal load condition, these small amplitude stick-slip

oscillations, called as “creep motions” by Carson and Langer [97 , 98], dominate in re-

sponses along with the low frequency responses. They attribute the high frequency of

stick-slip oscillations, which implies the partial relaxation of strain energy in the form

of “small-grouped motions”. In this numerical response the localized small-grouped
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motions are observed under the high normal load condition. Such oscillations are

responsible for the high frequency noise (the squeaking noise) under the high normal

load. These phenomena can be analyzed by using frequency analysis.
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Figure 5.8. The stick-slip displacement responses for normal loads of (a) N0 = —1 N,

(b) N0 = —5 N, (c) N0 = —10 N. The other parameters are in Table 5.1.
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Figure 5.9. The stick-slip velocity responses for normal loads of (a) N0 = —1 N, (b)

= —5 N, (c) N0 = -—10 N. The other parameters are in Table 5.1.
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Figure 5.10. Projections of state-space trajectories (displacement versus velocity) for

several positioned masses (the 5th, 9th, 13th, and 17th positioned masses) for normal

loads of (a) N0 = —1 N, (b) N0 = -—5 N, (c) N0 = —10 N. The other parameters are

in Table 5.1.
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As shown in Figure 5.11 the intensity of the low frequency spectra, which are lower

than 0.05 Hz, increases as the normal load increases. This is a reason for the chattering

noise has low frequencies under the high normal load condition. In addition, the high

frequency terms are also affected by the normal load. The intensity of high frequency

spectra increases as the normal load increases because of the prevailing small-grouped

motions in stick-slip oscillations. (The lowest natural frequency of the linear model

is 0.0328 Hz.)

As the normal loads increases, the mass positioned in the middle domain (around

the middle positioned mass over the twenty masses in this response) experiences low

frequency stick-slip oscillations. On the other hand, the masses positioned around

the boundary ends show the high frequency oscillations even under the high normal

load condition. Note that this stick-slip phenomenon totally depends on the applied

boundary conditions. Thereby, if the boundary conditions are changed different stick-

slip oscillations are expected.

Consequently, as the normal load increases from —1 N to —10 N, the high normal

load contributes to both low and high frequency terms in the noise generated from the

stick-slip oscillations. In other words, as the normal load increases the low frequencies

of the signals, which are originated from the propagating waves of detachments, are

lowered (Dweib and D’Souza [55, 56], Nakai and Yokoi [72, 57], and Bhushan [73]).

On the other hand, the high normal load increase the high frequencies of signals,

which generally come from the stick—slip oscillations with the localized small-grouped

motions.

Strain distributions over the domain can give clear explanations about the strain
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recoveries. Figure 5.12 shows that the speed of the sweeping strain relief waves are

lowered as the normal load increases. On the other hand, the creeping motions in

part (c), which are characterized by high frequency small-grouped motions, usually

can not give enough strain relief compared to the effects of propagating wave of

detachment represented by the crossing lines in Figure 5.12. The propagating waves

of detachments have been also observed in the work by Carlson and Langer [97]. They

claimed that such motions give large irregularities in strain of the elastic materials

after experiencing the stick—slip oscillations. The irregularities are amplified after each

event, so the system may experience catastrophic events or chaotic behaviors under

the stick-slip oscillations.

By presentations in contour plots, shown in Figure 5.13, the high and low velocity

regions are clearly distinguished on the two-dimensional plots. The sweeping waves of

detachments are shown as the deflected lines reflecting off the boundary ends. Under

the high normal load conditions in Figure 5.13 (c), the transient motions from the

initial condition to the formation of the propagating waves of detachments are shown

in detail. At the beginning stage in Figure 5.13 (c), from 0 to about 100 seconds of

the simulation time, the small-grouped stick-slip motions are initiated and gradually

propagate toward the stick regions by repeating the stick and slip ”oscillations. Because

that repetition of the stick-slip oscillations can not release enough strain energies

the localized stick-slip motions around the both boundary ends are observed. Such

repetitive stick-slip oscillations, which has begun from both boundary ends, proceed

until both detachment waves meet each other. At around 110 seconds in Figure 5.13

(c), both proceeding waves of detachments collide and produce large strain reliefs
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over the entire domain. After such transitions of strain reliefs, finally the large strain

relief motions are observed in the form of the waves of detachments over the entire

domain. Such phenomena can explain the generating mechanisms of the low frequency

chattering noise.

Effects of the normal load on the sticking area, i.e., the contact area, are shown

in Figure 5.14. The high normal loads make possible to produce the large sticking

areas, which are shown as the extend areas in Figure 5.14 (c). Under the light normal

load condition, shown in Figure 5.14 (a), the relatively small sticking areas localized

in the middle-positioned masses are observed. However, as the normal load increases

(—5 N, —10 N), the sticking areas are enlarged and almost extended to the boundary

ends (Figure 5.14 (b) and (c)). These phenomena can be explained by the fact that

high static friction force capacity which can hold the masses with no relative motions,

f,(t) in equation (5.2), is increased under the high normal load condition.

On the other hand, under the light normal load condition, stick-slip oscillations

are rarely observed since the kinetic constraint indicator functions in equation (5.3)

can not easily satisfy the sticking condition. Thus in this condition the oscillations

can not experience the stick-slip oscillations and the motions are observed under the

pure slipping motions with relatively high frequencies than the stick-slip oscillations.

These phenomena are confirmed in Chapter 6 by finite element analysis.
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Figure 5.11. Power spectral density of the stick-slip velocity responses for normal

loads of (a) N0 = —1 N, (b) N0 = —5 N, (c) N0 = —10 N. The other parameters are

in Table 5.1.
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Figure 5.13. Stick-slip responses in contour plot of velocity for normal load of (a)
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Figure 5.14. Sticking events versus times for normal loads of (a) N0 = —1 N, (b)

N0 = —5 N, (c) N0 = —10 N. The other parameters are in Table 5.1.
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5.4.2 Effects of Driving Speed

Figure 5.15 shows numerical results in the velocity of each mass as the driving

speed V increases. Parameter values are based on Table 5.1. In this numerical

analysis a negative slope friction model is adopted. As the driving speed increases

the maximum velocities are increases. For V = 0.1, 0.5, and 1.0 m/sec, the magnitude

of maximum velocities of 0.2, 1.2, and 2.0 m/sec are obtained, respectively.

In the low driving speed (V = 0.1 m/sec), the small-grouped stick-slip motions are

dominated as shown in Figure 5.16 (a). This means when the masses are driven by

the low driving speed, the slipping velocities are usually low since the kinetic energies

stored during the stick state are relatively low compared to the high speed driving

condition.

When kinetic energy is not enough to provoke the series of triggering events from

stick to slip motions to neighboring masses, this appears as intermittent stick-slip

oscillations in the form of small-grouped motions. They are shown as the creeping

motions in the beginning of simulation time in Figure 5.16 (a). Thus under the low

driving speed, the intermittent small-grouped stick-slip motions are expected to be

observed. Under very low driving speeds it is expected that the distinct low frequency

stick-slip motions expressed in the form of waves of detachments may not be obtained

since the small-grouped, high frequency, creeping motions are generated. In real

situations, having large material damping, this high frequency can easily be damped

out by the system internal damping, so the noise may not be a serious problem.

On the other hand, under a very high driving speed, the system can not experience
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steady-state stick-slip motions, but it can only undergo pure slipping motions. In

this case the system experiences high frequency slipping motions generating high

frequency noise. The frequency spectra of the velocity responses and projections of

the state-space trajectories for selected masses are shown in Figure 5.17 and Figure

5.18, respectively.

 

 

 

       

Driving Speed Mass position

V [m/sec] 5th mass 9th mass 13th mass 17th mass

0.1 1.0 1.1 2.0 2.0

0.5 3.7 7.0 8.0 6.0

1.0 7.0 14.0 17.0 11.0
 

Table 5.4. The maximum peak-to—peak amplitudes in displacement response by

changing the driving speed.

 

 

 

       

Driving Speed Mass position

V [m/sec] 5th mass 9th mass 13th mass 17th mass

0.1 0.15 0.2 0.25 0.3

0.5 0.8 1.0 1.3 1.5

1.0 1.7 2.1 2.7 3.1
 

  

  
Table 5.5. The maximum peak-to—peak amplitudes in velocity responses by changing

the driving speed.

According to this investigation, the high driving speed increases the amplitudes of

oscillations in stick-slip motions. In Table 5.4 and 5.5 the approximate peak-to—peak

displacement and velocity amplitudes in stick-slip motions are presented, respectively.
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As the driving speed increases the amplitude of stick-slip oscillations are increases.

It should be noted that such responses are affected by the frictional properties. The

dependency on frictional properties are shown in the work by Martins et al. [118].

According to his work, as the driving speed increases the stick-slip amplitudes are

decreased when they adopted the positive slope friction model.
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Figure 5.15. The stick-slip responses for driving speeds of (a) V 2 0.1m/s, (b) V =

0.5m/s, (c) V = 1.0m/s. The other parameters are in Table 5.1.
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Figure 5.18. Projections of state-space trajectories of the stick-slip response by chang-

ing the driving speeds of (a) V = 0.1m/s, (b) V = 0.5m/s, (c) V = 1.0m/s. The

other parameters are in Table 5.1.
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5.4.3 Effects of the Poisson’s ratio

The Poisson’s ratio effects on the linearized system stability have been investigated

in the previous chapters. Here let us check Poisson effects on stick-slip oscillations

using the lumped-parameter model. The stick-slip regions for the several different

Poisson’s ratio are shown in Figure 5.19. For a case 1/ = 0.0 in Figure 5.19 (a),

the system is symmetric in the stick-slip oscillations. These phenomena can also be

confirmed by checking the strains, as shown in Figure 5.20 (a). The shapes of stick

regions and their strains are symmetric, and this symmetry is preserved in time.

However, when there is a non-zero Poisson’s ratio, the system can not preserve

its symmetry in the stick-slip behaviors. It is reasonable to expect such unsymmetric

stick-slip behaviors because the eigenvectors have non-symmetric shapes along the

spatial axis in the lumped-parameter model. Strain profiles in Figure 5.20 show that

the strain evolutions are distorted as the Poisson’s ratio increases. The asymmetric

and propagating profiles are also found in Figure 5.21 presenting with contour plots.

Moreover, the Poisson’s ratio can contribute to the frequencies of stick-slip oscil-

lations. The frequencies of stick-slip oscillations are increased as shown in Figure 5.19

and Figure 5.22. Since the system’s modal frequencies are increased as the Poisson’s

ratio increases (refer to the result in section 2.3 of this study), it is obvious that

the stick-slip oscillation with non-zero Poisson’s ratio have relatively high frequencies

than the case of zero Poisson’s ratio.

State-Space presentations for the masses positioned at the 5th, 9th, 13th, and 17th

are shown in Figure 5.23 and their approximate peak-to-peak amplitudes in displace-
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Poisson’s ratio Mass position

11 5th mass 9th mass 13th mass 17th mass

0.0 9.0 16.0 16.0 7.0

0.1 8.5 16.0 16.0 7.5

0.4 6.5 12.0 15.0 10.0
 

Table 5.6. The maximum peak-to-peak amplitude in displacement responses by

changing the Poisson’s ratio.

 

 

 

       

Poisson’s ratio Mass position

v 5th mass 9th mass 13th mass 17th mass

0.0 2.1 2.5 2.4 2.0

0.1 2.0 2.4 2.4 2.2

0.4 1.5 2.0 2.7 2.8
 

  

  
Table 5.7. The maximum peak-to-peak amplitudes in velocity responses by changing

the Poisson’s ratio.

ment and velocity are summarized in Table 5.6 and Table 5.7 versus the Poisson’s

ratio. For the front positioned masses (in this example the 5th and 9th positioned

masses) the peak-to—peak amplitude of displacement and velocity are decreased by in-

creasing the Poisson’s ratio. However, for the rear positioned masses (17th positioned

masses) the peak-to-peak amplitudes of displacement and velocity are increased by

increasing the Poisson ratio. The asymmetry due the Poisson’s ratio changes the re-

sultant friction force and apparently increases the friction force at the rear positioned

masses.
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Figure 5.19. Sticking events versus time for Poisson’s ratios of (a) V = 0.0, (b) V = 0.1,

(c) V = 0.4. The other parameters are shown in Table 5.1.
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5.4.4 Effects of Friction Characteristics

From the analysis of the single degree-of-freedom model a negative slope in the

friction-speed relations destabilizes the system as a result of apparent negative damp-

ing effects. This results also can be applied to the lumped parameter model having

negative frictional characteristics. As shown in the previous chapter, the negative

slope in lumped multi degree-of-freedom model make the whole system unstable based

on the linear stability criteria. In this section the dependence of stick-slip oscillations

on the friction characteristics are investigated.

If the static and dynamic friction coefficients are constants and equivalent to each

other, i.e., 11, = in, condition, the steady state oscillations do not experience the

stick-slip oscillations under the fixed boundary conditions. Figure 5.24 (a) shows the

transient stick-slip oscillations subjected to the specific initial condition. After the

transient oscillations are damped out the steady-state oscillations have no stick-slip

oscillations in their responses (which is not shown).

A case of discontinuous coefficient of friction characteristics, for example 11, =

0.3 and 11,, = 0.1, the stick-slip oscillations are observed after transient responses are

damped out, as shown in Figure 5.24 (b). When the system has a negative slope in

the friction-speed relation the system can experience the stick-slip motions, as shown

in Figure 5.24 (c). Since that condition indicates the unstable motions in slipping

state, the motions generate more stick-slip oscillations. The state-space presentations

are shown in Figure 5.25 for the specific masses.

As mentioned earlier, since the system stability is closely related to friction-
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speed characteristics, the peak-to—peak amplitudes during stick-slip oscillations (Fig-

ure 5.25) and the dynamic behaviors during the stick-slip oscillations are influenced

by the operating driving speed (V) as well.
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Figure 5.24. Sticking events versus time for the following friction-speed relations:

(a) a discontinuous function, 11, = 11,, = 0.1, (b) a discontinuous function, u, = 0.3,

11k = 0.1, (c) p = cl + Cge‘c3l‘fi‘vl, where c1 = 0.3, 02 = 0.2, and c3 = 0.1. The other

conditions are in Table 5.1.



v
e
l
o
c
i
t
y
[
m
/
s
]

V
6
l
0
0
l
l
y
[
m
/
s
]

a
t

N
J

9
d

l 1
0

position - 5

 

9

 

145

 
 

 

  
 

O 5

displacement [m]

position - 5

 

 

  
 

 

  
 

 

5

displacement [m]

position — 5

 

 

 

 
 

 

 

20

   

 

\\ .

l

my, "’9 “19,“!

«my
&. «‘l‘ll'“

WV  
 

1 O

displacement [m]

 

VC
'O

Cl
lY

[
W
8
]

ve
lo

ci
ty

[m
/s

]

(C)

l N

I ..
i

I '
0

position = 9

 
        

 

C ‘

-‘-‘<v\~
  

‘/

‘9'

k
‘O   O49

 

 

‘: 9 a

/’ “V " 9 ‘k‘\

W\ ‘

»‘\\_A .14- ‘ ’\$ ’393'/

  

 
 

5

position = 17

1O

 

 

  
 

 

O

l .
1

  
 

d 

O

 
 

 
 

5

displacement [m]

position a: 9

 

1O

 
 

 

   
 

1 O

displacement [m]

Figure 5.25. Projected state-space trajectories for the following friction-speed rela-

tions: (a) a discontinuous function, 11, = M = 0.1, (b) a discontinuous function,

11,, = 0.3, 11k = 0.1, (c) 11 2 c1 + C2e-Cali’—V|, where c1 = 0.3, 62 = 0.2, and c3 = 0.1.

The other conditions are in Table 5.1.
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5.4.5 Effects of Other Parameters

Numerical results for different values system stiffness k are shown in Figure 5.26.

As the stiffness It increases the stick-slip oscillation frequencies increases. When the

stiffness is high, the system can not satisfy the kinematic constraint function for the

sticking condition. Figure 5.27 shows the state-space presentation for several specific

masses.

As investigated in Chapter 3, the boundary condition plays an important role in

system stability. In this section the investigations are thoroughly devoted to the fixed

boundary conditioned model, which is on the neutrally stable state in the stability

under a constant coefficient of friction. If periodic boundary conditions are used, the

system is linearly unstable from the result of Chapter 3 and is able to experience

more nonlinear stick-slip oscillations, as will be seen in section 5.6.

It has been reported that the surface roughness is able to increase a apparent

coefficient of friction and may contribute to stick-slip oscillations in real situations

(Nakai and Yokoi [72]). Thus the final treatment for contacting surface affects the

stick-slip conditions and the generation of noise induced by friction.

Small geometric misalignment in system may generate stick-slip motions. Accord-

ing to the experimental work in compliant rubber bearings in ships (Bhushan [73]) the

shape of elastic materials between the channels was an important factor for generating

stick-slip oscillations. The divergent shape of elastic materials along the sliding direc-

tion can more easily generate the stick-slip oscillations than the convergent shaped

materials. Dweib and D’Souza [55, 56] and Tworzydlo et al.[52] investigated the in-
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fluence of the angle of attack of the contact on the stability. In the experimental

work, the small misalignment of the angle of attack in the sliding contact caused

the coupling of the normal and rotational mode. This result confirmed a well known

sensitivity of stability to the angle of attack, which is one of the reasons for the poor

reproductivity of the results of various frictional experiments.
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Figure 5.26. Stick events versus time for stiffnesses of (a) k = 1, (b) k = 2, (c) k

The other conditions are in Table 5.1.
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5.5 Stick-Slip Oscillations: Modal Projection

Method

In the previous sections we have used the lumped-parameter model to show multi-

dimensional behaviors of stick-slip oscillations. In this section, by applying the modal

projection method to the continuous system a possible alternative method in handling

the low-dimensional stick-slip oscillations is proposed.

du(x,t)/dt // // stick region

R

l

\ \ \ \1 l\ slip region

Position x

 

  

Figure 5.28. A possible velocity profile showing the stick-slip motions in a continuous

one-dimensional system: High dimensional model.

We may encounter some difficulties in analyzing the continuous system experi-

encing stick-slip phenomena since a system may have high frequency oscillations and

discontinuous properties within their domains. For an example, as shown in the Fig-

ure 5.28, a possible stick-slip configuration at specific instant in time has numerous

stick and slip regions within the domain. There are infinitely many possible stick-slip
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du(x t)/dt stick region

 

 slip region

1 1 k

BI 82 L Position x

Figure 5.29. A possible velocity profile showing the stick-slip motion in a continuous

one-dimensional system with bounded boundary condition model: Low dimensional

model.

configurations, making it difficult to formulate analytical or numerical solutions.

On the other hand, when we consider low frequencies in stick-slip motions only,

we can simplify the stick-slip system and are able to overcome the difficulty. Possible

typical subregions are shown in Figure 5.29. We divide the whole system (a: 6 [0, L])

into three subregions of low dimensional systems—a slipping region in the front (:1: E

[0,B1]), a sticking region in the middle (:1: E [81, B2]), and a slipping region in the

rear (:1: 6 [32, L]). The low dimensional characteristics of each region are assembled

to approximate the whole system behaviors.

Assuming that the system has a configuration shown in Figure 5.29, the indicator

function for the kinetic constraint equations at the stick-slip boundaries (2; = Bl, or

82) are

H(2:, t) “é‘ |F(:z:, t)| — |G(:z:,t)|, (5.13)
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Table 5.8. Equations of motion, boundary conditions, and projected motions on

modal coordinates for the stick-slip oscillations with fixed boundary conditions. Here

‘5 - in 1:—

”— t‘ = t/,/..E, 453%>= a sum—1".1'" WW)= e-3sln(4—Cl).a :

n-m
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where

02110:, t) ,,
F($,t) = W, (0.14)

_ 00 u 011(33, t)

C(x’t) _ “4 AE A 8.11 }’

And the indicator function for kinematic constraint equation is

def 3U

S(;r,t) = bit-(x, t) — Vl. (5.15)

The F(:r,t) represents the stiffness forces at stick-slip boundary a: and time t. The

function G (:17, t) express the frictional forces including the Poisson effect of the ma-

terials at the boundary. The condition of H(:13, t) 2 0 with zero relative velocity

(S (as,t) = 0) is necessary for the stick status. On the other hand, non-zero rela-

tive velocity (S (3:, t) 75 0) yields a slipping status. These constraint formulations are

similar to those of the lumped-parameter models in the previous study.

Considering the system which can be divided into the slip and stick regions (Fig-

ure 5.29), characteristics for each slipping region (a: 6 [0,31], and :r E [32, L]) are

summarized on Table 5.8. Table 5.8 presents the equations of motion, boundary

conditions, the modal projected motions and solution for each slipping region.

Within the sticking region, which is placed on between those two slipping regions,

all motions are constrained. Thus it is represented as

—(:c, t) = V, (5.16)
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where a: 6 [B1, Bo].

By taking its adjoint function 1/1,(:c), the motion in both slipping regions are ob-

tained by casting to the modal coordinates rj(t) and sj(t), respectively. (Refer to

Table 5.8.) Note that the obtained equations of motion are only valid until the ki-

netics and kinematic conditions do not change their sign at their boundaries.

 

 

A slipping region, as E [0, L]
 

_c?_ «'1ng _ —6x62u

Equatlon of mot1on a: 372

 

Boundary condition u(0, t) = 9%(0, t) = u(L,t) = %(L,t) = 0

 

Solution u(a:, t) = 3:1 <1)?!” ($)(Ij (t)

 

Projected motion qJ-(O) = % If 11;” (a:)u(a:, 0)d:1:,

«11(0) = 313 «13L(z)u(x, 0)dx     
 

Table 5.9. The equation of motion, boundary condition, and projection to modal

coordinates for pure sliding oscillations under the fixed boundary condition.

When the system is in a pure sliding state, i.e., the state that does not have

any stick regions inside of the domain a: E [0, L], the whole system is represented in

Table 5.9. The integration should continue as long as the constraint equations (5.13)

and (5.15) do not change their sign during its integration period. In each iteration

the boundary conditions must be updated from the system state. In doing so its
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Figure 5.30. Schematic diagrams showing stick-slip oscillations. (a) a pure sliding

stage, (b) a growing sticking stage, (c) an enlarged sticking stage, and (d) a shrinking

sticking stage.

motion is de-projected to have real configuration and projected again to integrate its

states in time. The growing and shrinking of the sticking regions are determined by

checking the constraint boundary equations (5.13) and (5.14). In this simulation we

discretized the domain :5 E [0, L] with 20 divisions and applied a difference method to

equation (5.13) in order to determine and update the sticking boundaries 31 and 32.

Schematic diagrams of stick-slip oscillations are shown in Figure 5.30. Figure 5.30

(a) represents a schematic diagram showing a pure sliding stage. In Figure 5.30 (b)

and (c) a sticking region is grown and extended. A shrinking sticking stage is shown

in Figure 5.30 ((1).

Figure 5.31 shows a displacement profile of a numerical simulation and Figure

5.32 shows the stick events on the contact surface. (All stuck initial conditions are
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Figure 5.31. Stick-slip responses in displacement by applying the modal projection

method. Here 118 = 0.3, and #1: = 0.1. (Displacement variations with respect to static

equilibria are shown.)

selected.) Comparing the results obtained in Figure 5.8 (a) and Figure 5.14 (a)

these results reveal qualitative agreement in the analysis of low dimensional stick-slip

motions.

Note this approach still has some limitations in its application to all parameter

conditions. If actual frequencies of bushing squeak noise are too high and the fre-

quency of the low-dimensional model suggested in this study is too low then we may

need to use high-frequency models. However many other applications can be analyzed

with low-frequency models. This algorithm only valid as long as the system can keep

the configuration in Figure 5.29. Alternatively the high dimensional dynamic motions

can be obtained by finite element analysis, presented in Chapter 6.
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5.6 Stick-Slip Oscillations under Periodic Bound-

ary Conditions

Let us return to the motivation of this study—the bushing model. The simplified

model and its stability have been investigated in the previous chapters. In this section

stick-slip oscillations with periodic boundary conditions are investigated. The model

in Figure 4.8 and boundary condition (4.29) in Chapter 4 are adopted for numerical

studies. The equation of motion is shown in (4.22), and small damping which can

suppress several unstable modes are added.

 

Figure 5.33. A contour presentation of the velocity response for the model with

periodic boundary conditions. Here (1 = 0.01,'y = 0.01, 113 = 0.3, and 11k = 0.1. The

other parameters are in Table 5.1.

Figure 5.33 shows a contour plot of stick-slip responses in velocity with small ex-

ternal ( = 0.01) and internal (7 = 0.01) damping terms. With sufficient damping,
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Figure 5.34. Stick events versus time for the periodic boundary condition model.

such that the overall system is stable based on the linear stability criteria, it is ob-

served that the oscillations are damped out, so that the system can not experience any

sustained stick-slip oscillations under the condition of a constant coefficient of friction

(which are not shown in a figure). However including “small” damping, such that

suppress several unstable modes are suppressed, the system experiences sustained

stick-slip oscillations, as shown in Figure 5.33. Stick-slip oscillations are detected as

series of detachments and shown as propagating waves around the contact surface.

Figure 5.34 shows the stick events versus time. The series of detachments, like

as falling dominos, are observed distinctly. The state-space presentations for selected

masses are shown in Figure 5.35. Under this condition with small damping, the

responses seem to have steady state sustained stick-slip oscillations. In this numerical

simulation the system is slightly modified by adding small spring stiffness (1 / 10 of the

connected spring stiffness k) between each mass and the ground. Random velocities
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Figure 5.35. A state space diagram for several positioned masses under a periodic

boundary condition model.

are selected as the initial conditions.

Note that since the model used in this section is a simplified one-dimensional model

the responses obtained from numerical analysis may not express the whole dynamic

behaviors for the actual bushing squeaking phenomena. Detailed mathematical mod-

eling, which includes coordinate couplings such as the interactions between the radial

and circumferential motions and radial and coriolis acceleration effects, is needed for

future study. (The influence of the interactions of two coordinates on stick-slip oscil-

lations are shown in Chapter 6 for the two-dimensional system through finite element

analysis.)
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5.7 Conclusion

In order to explain the stick-slip oscillations in the distributed contact system,. the

discretized, lumped-parameter model was established and the numerical techniques

for handling such systems—the variable degree of freedom and the variable boundary

conditions—were presented. Since it was confirmed that linear stability of the lumped-

parameter model is convergent in the previous chapter, we adopted that model for

simulations and analyses of stick-slip oscillations.

Detailed dynamic behaviors in presence of distributed friction are presented and

the parameter effects on system responses were investigated. According to the nu-

merical responses of the stick-slip oscillations, the generation of noise and vibrations

originated from the mechanisms of series of detachments on the contact surface [26].

The characteristics of series of detachments slips were influenced by various system

parameters. The high normal loads had two effects: decrease the frequencies of de-

tachements slips and increase the frequencies of small-grouped stick-slip oscillations.

Moreover, the sticking regions were enlarged by increasing the normal loads. The

driving speed and the characteristics of friction were closely related in responses of

stick-slip oscillations. The Poisson’s ratio increased the stick-slip frequencies and

broke the symmetry of system responses. The friction characteristics had effects on

the stick-slip oscillations and the discontinuous friction model (113 > #1:) produced

the steady state stick-slip motions in the multi-degree—of-freedom model.

By applying the modal projection method to the continuous system a possible

alternative method in handling the low-dimensional stick-slip oscillations was pro-
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posed. Numerical algorithms in handling such a system were presented. The qualita-

tive agreement in the analysis of low-dimensional stick-slip oscillations was obtained.

By using the modal projection method we simulated the low-dimensional system in

less computational time.

Under periodic boundary conditions—the same boundary condition of the bushing

model—the system with small damping underwent sustained stick-slip oscillations

even with a constant friction coefficient. Stick-slip oscillations were detected as series

of detachments. With sufficient damping, such that the overall system was stable,

oscillations were damped out and sustained oscillations were not observed.



CHAPTER 6

FINITE ELEMENT ANALYSIS

6. 1 Introduction

Finite element analysis has became the dominant system analysis method as a result

of the continual developments in computer technologies. In recent years, a rapid

development of the digital computer has made the finite element approach to nonlinear

contact problems possible, and its applications have become numerous in engineering

practice. Some applied examples include a shrink-fitted shaft in a gear (Okamoto

and Nakazawa [116]), rail-wheel contact problems (Schneider and POpp [115]), and

cutting systems (Marusich and Ortiz [119]).

However, there have been limited studies for investigation of friction-induced vi-

brations of elastic media with distributed contact. Oden and Pires [44] have formu-

lated contact problems in elasticity and investigated the dynamic behaviors due to

the distributed contact. Later, Oden and Martins [117] established an elastodynamic

model and developed the computational methods for dynamic friction phenomena.
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In this chapter a formulation of frictional elastodynamics in the form of finite ele-

ment analysis is performed in order to verify and confirm the results obtained in the

previous chapters. The comparisons between the computational results obtained from

the lumped-parameter method and finite element analysis are shown. By adopting a

smooth approximation to the nonsmooth friction characteristic, responses of the con-

tinuous system under the distributed contact are analyzed. One— and two-dimensional

elastic systems are numerically investigated by using finite element analysis.

6.2 One-Dimensional System

6.2.1 Formulation and Algorithm for Nonlinear Finite Ele-

ment Analysis

This section is devoted to a finite element formulation of the one-dimensional time

dependent problem and its numerical technique for solving a nonlinear problem. An

equation of motion for the model of interest is written as

021.1 Bu 0211

—‘a—+“3=o?Orr? 01: (61)

where the a is a velocity dependent parameter, a = oz(,u(1'1)), and the 6 depends on

the normal load and friction coefficient, [3 = [3(No,11(1'1)). Here the fixed boundary

conditions, which are expressed as u(0, t) = u(L, t) = 0, are applied.

The algorithm for solving the discrete dynamical system is based on the schemes

in nonlinear structural dynamics calculations. Let us begin with the presentation of
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a Newmark-type algorithm that has been proved to be effective for many problems in

computational studies. Assuming that the velocities and accelerations at time tk are

expressed as functions of the displacement, velocities and accelerations at time tk_1

and displacement at time tk, the following relations are obtained.

, 9 a . 0 ..
n, = fiz(uk—uk-1)+(l—g(f-)uk_1+At(1—56%)uk_1, (6.2)

" — —1——( — )——1—a —<—1——1)a (63)“I: — 01At2 W 7111—1 Blt k—l 261 k—I, -

where 00 and 01 are called as Newmark parameters (usually those parameters are

used as [3 and 'y in finite element analysis, respectively), and At(= tk — tk_1) denotes

the interval of time length for integration time in the whole time domain of [0, T]

with t0(= 0), t1, . . . , tk, . . . , tM(= T). The parameter 00 and 01 are selected based on

the stability schemes in numerical convergence, thus 00 = % and 01 = i are selected

since the Newmark-type algorithm has been proved to be an unconditionally stable

algorithm, which corresponds to the constant-average-acceleration method.

The equation of motion (6.1) is put in the operator form of defined residual Rk(uk),

then

Rk(uk) = ilk — 112+ an), — C15. (6.4)

From the weighted residual method, the solution 11,, is approximated by setting

the integral of the weight residual of the approximations over the domain to zero,
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that is

< Rk(uk),v > = < ilk — 112+ an;c —— afiw > = 0. (6.5)

Let Kk(uk) = DRk(uk) be the derivative of the R), at 11],. Then the Newton-

Rapson iteration technique for solving the weighted residual becomes an iteration

process seeking for the solution.

Using the standard finite element procedure, the system can be constructed in

finite-dimensional subspaces. For each of a certain mesh h, the nodal values the

h
displacements 11", velocity 1')", and accelerations, ii are expressed in the form of

vh(:r,t) = ZN-zr()v,(t), (6.6)

1')"(:c,t) = ZNi(x)ii,-(t),

where Ne denotes the number of nodes of the elements, Ni(a:) is the element shape

test function associated with the node 2'.

Given the starting value of “[0), successive approximations of the solution 11,, are

obtained by using the recurrence formula

u(‘+1)—u("— R—k(uk)
uk “ k K]:(—:u(i)) (6'7)

where (2') is the iteration counter. The termination of iterative procedure at each
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time k can be checked by a convergence ratio in relative displacement conditions.

The convergence ratio is defined as

[éulmax _ [Auli'l'll "' A”(immax

— . , 6.8

[dulmax lAu("|max ( )

  
convergence ratio =

where léulmaz and [dulmax denote the maximum displacement change and maximum

displacement increment in each iteration, respectively. In this numerical analysis

(MARC/MENTAT [120]) the relative displacement tolerance is set as 0.1 and the

maximum iteration number is set as 30.

6.2.2 Eigenvalue Comparison

In this section the system eigenvalues calculated from both models—the finite

element model and the lumped-parameter model—are compared under the same pa-

rameter conditions. The system domain selected in the finite element analysis is an

elastic medium of 10 inches x 1 inch with the unit thickness (1 inch). The continuum

is assumed to be in plane strain. It has fixed boundary conditions at both ends and

under goes a compressive stress by means of a preload on top of the elastic medium.

The elastic material selected in this simulation is polyethelen, which has a properties

of E = 2.0 x104 lb/in2, Poisson’s ratio V = 0.45, and the mass density p = 0.033

1b/in3 (28.55 x10‘5 lb-secz/in"). Refer to the system description in Figure 6.1. Here

front and rear nodes are defined the nodes positioned in the left- and right-hand sides,

respectively.

The equivalent discrete system is obtained by dividing the material into 71 equal
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Figure 6.1. A schematic diagram of the system used in finite element analysis. The

model is composed of twenty elements. The top rigid body is stationary without

friction. The lower rigid body moves at 1 inch/sec to the positive 2: direction. There

is friction between the elastic material and the lower moving body. Selected nodes

are shown.

segments, lumping the mass of the segment in the center and regarding the each

lumped mass M as being connected by springs of equivalent stiffness k, where k

is selected such that the springs undergo the same elongation as the corresponding

material segment would under identical loading. Thus the each lumped mass has the

value of m = pAL/n and the spring constant is k = nEA/L, where L, A is the length

and the area of cross section of the material, respectively. The normal load on each

mass in the distributed loading condition can also be discretized by N.- = aoAL/n,

where the 00 denotes the normal stress.

Table 6.1 presents the approximated eigenvalues with a = 0, which is a condition

without friction forces. The left column in Table 6.1 shows the exact eigenvalues
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Exact Freq. 10 elements 20 elements 40 elements

x 103[Hz] x 103 [Hz] Error[%] x 103 [H2] Error[%] x 103 [Hz] Error[%]

1 0.7647 0.767 0.41 0.765 0.10 0.764 0.02

2 1.5294 1.555 1.67 1.536 0.43 1.531 0.10

3 2.2941 2.380 3.74 2.315 0.91 2.299 0.03

4 3.0588 3.262 6.67 3.109 1.67 3.071 0.42

5 3.8236 4.216 10.26 3.922 2.57 3.848 0.63

6 4.5883 5.246 14.33 4.759 3.72 4.631 0.93

7 5.3530 6.322 18.10 5.625 5.08 5.421 1.26

8 6.1177 7.348 20.11 6.523 6.62 6.219 1.65

1 9 6.8824 8.132 18.15 7.458 8.36 7.026 2.08
 

Table 6.1. The approximate modal frequencies by applying finite element analysis.

The numerical results including 10, 20, and 40 elements are presented with the exact

 

 

 

 

frequencies.

Exact Freq. 10 masses 20 masses 40 masses

x 103 [Hz] x 103 [Hz] Error[%] x 103 [Hz] Error[%] x 10T[Hz] Error[%

1 0.7647 0.5718 25.2 0.6546 14.0 0.7099 7.17

2 1.5294 1.1339 25.8 1.3164 13.9 1.4188 7.23

3 2.2941 1.6766 26.9 1.9662 14.2 2.1258 7.33

4 3.0588 2.1907 31.0 2.6060 14.8 2.8297 7.49

5 3.8236 2.6673 30.3 3.2324 15.4 3.5298 7.68

6 4.5883 3.0983 32.4 3.8424 16.2 4.2249 7.92

7 5.3530 3.4761 35.0 4.4329 17.1 4.9141 8.19

8 6.1177 3.7965 37.9 5.0008 18.2 5.5963 8.52

9 6.8824 4.0479 41.1 5.5432 19.4 6.2708 8.88         
 

Table 6.2. The approximate modal frequencies from the lumped-parameter model.

The numerical results including 10, 20, and 40 masses are presented with the exact

frequencies.
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of one-dimensional axial motions with natural frequencies of w, = ing/5%, where

7‘ = 1,2,. . ..9. From this table it is obvious that with high numbers of nodes, i.e.,

with fine meshes in the finite element model, the more accurate approximate solutions

which approach the exact solutions are guaranteed. Table 6.2 shows the numerical

solution for the lumped-parameter model in evaluating the approximate frequencies.

The system eigenvalues of the lumped-parameter model are lower than the exact

solutions calculated from the continuous model. The reason is that, although the total

mass is the same in both systems, in the discrete model the mass is shifted toward the

center of the system instead of being uniformly distributed (Meirovitch [19]). This

tends to increase the effect of the system inertia relative to its stiffness, resulting in

lower natural frequencies. Of course, accuracy can be improved by increasing the

number of degrees of freedom of the lumped-discrete system.

It should be noted that when the friction forces are large, i.e., large value a in the

equation of motion in (6.1) it is expected that the finite element method may be poor

in accuracy. The argument is quite general. The Galerkin’s approximate method

may be unsatisfactory when the odd-derivative term is of significant size (Strang and

Fix [121]). Since a strongly influences the eigenvalues and eigenfunctions in the PDE

solution as [a] increases to 00, the first order term dominates the second derivative,

and the system model is a boundary-layer problem. Thus at the far end there should

be a rapid variation in :1: in order to satisfy the boundary condition, and an extremely

fine mesh is required to satisfy good approximations in such case. In this study

extremely large values a of are excluded for good convergence.
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6.2.3 Numerical Results
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Figure 6.2. The friction coefficient versus relative velocity. 11 = sign (V -

1'1),uk%arctan(JLE—i‘1), where C = 0.1 for dotted line and C = 0.01 for solid line.

In order to formulate and analyze the friction system we need to model the friction

characteristics in a mathematical form. The friction function used in the previous

chapter, which is a discontinuous function, may be inappropriate for finite element

analysis. Instead of using the discontinuous friction function a smooth function having

a steep variation of friction coefficient is usually adopted in finite element analysis.

When we choose a steep slope and a small integration time step we can expect this

smooth function can represent the discontinuous properties well. Strictly, stick-slip

motion no longer exits, but approximate or near stick-slip behavior takes place (Feeny

and Moon [107]). The analytical model for the friction coefficient used in this study
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is expressed as

IV—ul

C

 

2

11 = sign(V — 1'1) 11],; arctan( ), (6.9)

where the parameter C determines the slope of the dynamic friction coefficient at

zero relative velocity. Figure 6.2 shows typical continuous friction model used in

finite analysis. For a small value C a steep slope is generated around the relative

velocity of zero. Thus a small integration time step is needed to satisfy the dynamics

around near sticking conditions. For a large value C an gentle slope is generated, but

near stick-slip dynamics may not be seen. In this study C = 0.01 and 111: = 0.3 are

chosen.

The finite element meshes used in this analysis consist of twenty-four—node isopara-

metric quadratic elements, illustrated in Figure 6.1. The total simulation time is set

as T = 0.005 sec, and iteration steps during the time are 5,000, which make the time

step for the integration is set as At = 1 x 10‘6 sec. The initial conditions applied to

this numerical analysis are u‘(t) = 0, and 11i(t) = +1 inch/sec for all nodes 1'.

In the presence of Poisson’s ratio, in this study V = 0.45 , the distributions of

the friction forces, which are not symmetric along the nodes on contact, are shown in

Figure 6.3. Since the near sticking motions are associated with the steep slope with

respect to relative velocity, the friction forces around the sticking regions can have a

value between —|11k022| to +|pk022|, where the normal stress 022 is not a constant,

but a variable value. Higher friction forces are observed around the rear nodes than

the front nodes. The friction forces traveling on the contact surface are observed like

the sliding rubber mechanisms performed by Schallamach [26].
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The axial strain on changes the normal stress and also influences the friction forces

since the system is under a constraint in y direction. The variations in axial stress

011 are shown in Figure 6.4. The front and rear nodes are under tensile (011 > 0) and

compressive (011 < 0) stress conditions, respectively. After the stick to slip transition

the traveling stress waves propagate back and forth within the medium.

Figure 6.5 shows a velocity response of nodes 19. Since the friction model used in

this simulation has identical static and dynamic friction coefficients (113 = 11),), “pure

sliding oscillations” are observed, which agrees with results obtained in the previous

chapters. (See Figure 5.24 (a) for details.) Quasi-harmonic oscillations which carry

high frequencies are observed. From the investigation by De Togni et al. [99] in

the bushing-squeak system, similar oscillations, which have sawtooth waveforms, are

detected in their experimental studies. Usually they have higher frequencies and

smaller amplitudes in pure sliding oscillations than the stick-slip oscillations.

Figure 6.6 represents the friction force versus velocity presentations for various

nodal responses. At velocity near +1 inch/sec, which represents the near sticking

state, the steep slope in the friction characteristics is apparent. Since the normal

forces are changed by displacements the friction forces exerted on each nodes are

not only a velocity dependent, but also position dependent. Large friction forces

are observed at rear nodes. Figure 6.7 shows the friction force versus displacement.

After some transient motions, which are shown as sparse trajectories, each mass has

steady state responses represented as dense trajectories. At node 35 the friction force

increases as the displacement increases. On the other hand, at node 11 and 19 the

friction forces are decreased linearly with respect to the displacement. At node 27 it
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apparently looks as if the friction forces are independent of the displacement, shown

as flat trajectories. These phenomena result from the coupled effect of the Poisson’s

ratio between friction force and linear strains. These results are verified by the results

in equation (2.2). Figure 6.8 shows the displacement and velocity relation for node

19. The results obtained in this study have qualitatively similar behaviors as those

worked by Oden and Martins [117].
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Figure 6.3. The distributions of friction forces versus time at nodes on contact.
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Figure 6.5. Velocity response at node 19.
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Figure 6.6. Friction force versus velocity at nodes 11, 19, 27, and 35.
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Figure 6.7. Friction force versus displacement at nodes 11, 19, 27, and 35.
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Figure 6.8. Displacement versus velocity at node 19.
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6.3 Two-Dimensional System

We investigated the two-dimensional elastic model with periodic boundary conditions

in Chapter 3. In this section a two-dimensional elastic medium under distributed

contact with fixed boundaries is numerically investigated by applying finite element

analysis.

(0,5) (10,5)

 
(0,0) (10,0)

47 102 146 190

>
 

Figure 6.9. A schematic diagram for a two-dimensional elastic medium under dis-

tributed contact. The lower rigid body moves at 1 inch/sec to the positive a: direction.

Selected nodes are shown.

Figure 6.9 shows the schematic diagram for a meshed block. The polyethelen

block with dimensions of 10 inches x 5 inches x 1 inch is divided into a 20 x 10

mesh. The lower rigid body moves toward to positive a: direction at 1 inch/sec. Here

front and rear nodes are defined the nodes positioned in the left- and right-hand
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sides, respectively. The govern equation of motions for the elastic medium are shown

in equation (3.12). The boundary conditions are represented as

11(0, y) = u(10, y) = 0, for 0 < y < 5, (6.10)

v(0, y) = 11(10, y) = 0, for 0 < y < 5,

11(17, 5) = 0, for 0 < :1: < 10,

v(:r, 5) = 0, for 0 < :1: < 10.

The boundary conditions on the contact surface at y = 0 are

v(:r,0,t) = 0, (6.11)

0yx(:r,0,t) = payy(.1:,0,t),

where p is a coefficient of friction, which is represented in Figure 6.2. The stress-strain

relations are 0y; = C(g—Z + g—Z), and 0W 2 A-g—‘x‘ + (A + 2G)g—;. (Stability analysis of

this two-dimensional system in pure sliding motions will be a furture work.)

Given the sticking initial conditions for all contacting nodes at y = 0, the nu-

merical integrations are performed by following the same procedures in the previous

section with small time step of At = 1 x 10‘6 sec.

Figures 6.10 shows that the axial stress distributions at specific nodes on contact.

The nodes at 47 and 102 oscillate under tensile stresses and the nodes 146 and 190

are under the compressive stresses. Since in two-dimensional system we consider
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the normal directional motions and include that oscillations to the normal stress in

equation (6.11), the system responses are more complicated and strongly coupled by

the y-directional motions. The resultant friction forces are shown in Figure 6.11.

The stick-slip oscillations are onbserved in the two-dimensional system even un-

der a condition with a constant coefficient of friction. They are easily expressed

by state-space presentations, shown in Figure 6.12. The stick motions are shown

as nearly flat trajectories in the state-space presentations. Based on the results of

the one-dimensional system studied the previous section the nodes oscillate with

quasi-harmonic pure sliding motions without having any stick-slip oscillations under

a constant friction coefficient model.

The friction forces versus displacement are shown in Figure 6.13. The responses

in friction-displacement are similar to the responses in one-dimensional system in

Figure 6.7. However, in the two-dimensional model the variations of friction froces

with displacement do not have constant slopes, but include normal oscillations. The

importance of the normal vibrations in the stick-slip oscillations have been investi-

gated by several researchers (Tolstoi [48], Sakamoto [49, 50], Tworzydlo and Becker

[51], Tworzydlo et al [52], Pires and Oden [53]).

According to these numerical responses the near stick-slip oscillations can be ob-

served in the two-dimensional model even under a constant coeflicient of friction

model.
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Figure 6.10. Stress distributions (0“) versus time for nodes at the contact.
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Figure 6.11. fiiction forces versus time at nodes on contact.
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Figure 6.12. Displacement versus velocity at node 102.
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Figure 6.13. Friction force versus displacement at nodes 146 and 190.
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6.4 Conclusion

In this chapter we investigated one- and two-dimensional elastic systems under the

distributed frictional sliding contact by applying finite element analysis. The system

eigenvalues were evaluated and compared to those obtained by the previous studies.

Numerical analyses show that the one-dimensional system undergoes pure sliding

oscillations under the condition of same static and dynamic coeflicient of friction

(p, = 11),). The relation between friction and displacement shows that the system

has properties which depend not only on velocity but also on displacement. Such

relations are determined by the Poisson’s ratio and the positions of the nodes in the

system. The stress and strain have the form of traveling waves in the continuum.

In the continuous model the system undergoes quasi-harmonic oscillating motions

including high frequency signals.

Through the finite element analysis we demonstrated the possible stick-slip os-

cillations in a two-dimensional system. According to this investigation it is possible

to generate stick—slip oscillations in the two-dimensional system under a constant

coefficient of friction condition due to oscillations in the normal degrees of freedom.



CHAPTER 7

CONCLUSIONS AND FUTURE

WORKS

In order to investigate dynamic behaviors of an elastic medium under the distributed

friction forces we constructed mathematical models and analyzed their dynamic sta-

bilities. The stick-slip phenomena of friction-driven systems were investigated and

verified by finite element analysis, lumped-parameter method, and modal projection

method. This study yielded the some mechanisms responsible for vibrations, and

presumably noise, in the elastic materials and revealed the instability mechanisms of

the continuous system under distributed friction.

In Chapter 2, a continuous elastic medium with fixed boundary conditions sub-

jected to the distributed friction was introduced, mathematically modeled, and its

exact solutions were provided. The friction made the system non-self-adjoint. The

approaches in handling such problems were provided as well. By using the adjoint

operator the problem was treated pr0per1y. In addition, by projecting through the

189
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proper inner product the system was seen to truly be self-adjoint. A contradictory

result between the exact solution and an assumed modes approximation in evaluating

the eigenvalues was presented as a cautionary example. Consequently, under a con-

stant coefficient of friction (11, = #1:) the system was shown to be marginally stable.

Thus an instability mechanism does not exist under the fixed boundary conditions.

In Chapter 3, the effect of boundary conditions on the system stability was ex-

amined. Under periodic boundary conditions the one-dimensional system was desta-

bilized even under a constant friction (11, = 1111)- The destabilizing phenomenon

occurred in the form of an unstable traveling wave propagating in the direction of the

slider velocity. The effect of internal and external damping were evaluated and they

played stabilizing roles in the overall system stability. For a two-dimensional system

under periodic boundary conditions the system was destabilized under a condition of

a constant coefficient of friction when the system coordinates are strongly coupled by

Poisson’s effect.

In Chapter 4, the lumped-parameter method was applied to discretize the con-

tinuous model which was investigated in the previous chapters. It was shown that

the system stability was closely related to the friction characteristics. The negative

slope in the friction-velocity curve had a destabilizing effect. By using the lumped-

parameter model the previous investigations were verified. Internal and external

damping were also proven to be stabilizing factors. Based on consistent results from

the lumped-parameter system it was verified that the lumped parameter model pro-

vided a convergent discretization.

In Chapter 5, by using the lumped-parameter model which was analyzed in the
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previous chapter, the stick-slip oscillations under the distributed contact were inves-

tigated. For a background study the numerical algorithm for solving the nonlinear

stick-slip oscillations of the multi-degree-of-freedom model was provided. Using the

typical stick-slip responses the system dynamic characteristics were explained. Stick-

slip motions were observed in the form of propagating waves of detachments. The

analyses based on the velocity and displacement data were provided. We observed

two distinct motions in the stick-slip oscillations: the series of detachment waves

sweeping over the whole domain and small-grouped localized stick—slip motions. The

detachment waves were ground for the low-frequencies stick-slip oscillations generated

on the contact surface. The small-grouped localized stick-slip motions influenced the

high frequencies of stick-slip oscillations. Several parameter effects on the stick-slip

motions were evaluated. Under high normal loads the frequencies of the sweeping

detachment waves were lowered. In addition, high-frequency small-grouped motions

prevailed. The high Poisson’s ratio increased the natural frequencies of the linear sys-

tem and stick-slip frequencies as well. It was shown that the Poisson’s ratio breaks

the symmetry in the stick-slip motions and amplified the irregularity over the stick-

slip motions. It was proved that the driving speed was closely related to amplitudes

of stick-slip oscillations. The friction characteristics, which had a primary effect on

stick-slip motions, were considered. It was observed that the steady state stick-slip

oscillations were prevalent when the system is linearly unstable. It is also shown that

the system having a discontinuous friction model (11, > 11],) generates steady state

stick-slip oscillations. By applying the modal projection method a possible alterna-

tive method in handling the low-dimensional stick-slip oscillations was proposed. The
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sustained stick-slip oscillations were observed as series of detachments in the busing

system.

In Chapter 6, by adopting the finite element analysis the continuous system under

distributed friction was numerically analyzed. In case of 11, = 11],, the one-dimensional

system underwent steady state pure slipping motions with quasi-harmonic oscilla-

tions. On the other hand, for the two-dimensional system it was possible to sustain

the stick-slip oscillations even under the 11, = #1: condition. The influence of the

normal directional motions on the stick-slip oscillations were presented .

Conclusions related to the bushing system are listed as follows. Under periodic

boundary conditions the bushing system was unstable even with a constant friction

coefficient due to the unstable traveling waves (Chapter 3). In addition, the negative

slope in friction-speed relation destabilized the system (Chapter 4). The instability

led to nonlinear stick-slip oscillations, observed as series of detachments (Chapter

5). Coordinates couplings of the two-dimensional elastic system induced stick-slip

oscillations even with a constant coefficient of friction (Chapter 6). These results

were verified through the lumped-parameter method (Chapters 4 and 5), the modal

projection method (Chapter 5), and finite element analysis (Chapter 6) along with

the exact solution (Chapter 2).

The analytical and numerical investigation in this dissertation dealt with compli-

cated friction-induced vibration phenomena. Listed below are the additional specific

problems to be investigated in future, which include analytical, numerical, and ex-

perimental studies.
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0 Material and Friction related Issues

In this investigation there is an assumption that the material has linear prop-

erties. However under high normal loads the elastic material can undergoes

relatively large amplitude stick-slip oscillations. In such case the large oscilla-

tions may not result from the linear material properties. The nonlinear material

properties in stick-slip oscillations need to be investigated for the one- and two-

dimensional systems. When we consider finite radius bushing models coupling

effects between radial and circumferential motions need to be investigated.

All materials have roughness on the surface. Especially in an elastic material,

such as rubber, the system roughness and noise generation are closely related

(Soom and Kim [42, 43]). Thus including the contact surface roughness is

required in the system modeling for more accurate analysis.

For friction related issues, it has been reported from the experimental studies

that the friction force is not a single function dependent on relative velocities.

It has hysteresis effects caused from the material intrinsic properties (Martins

et al.[118]). Moreover friction models including the properties dependent on the

load and displacement need to be investigated (Dweib and D’Souza [55, 56]).

When the friction is involved heat is generated on the contact surface. In

real operating conditions huge amounts of heat can not be neglected in system

modeling. The system analysis based on the friction-heat relations need to be

investigated (Nakai and Yokoi [72]).

0 Load and Boundary Condition related Issues



194

It has been reported that when friction is involved, results may not be repeatable

even under apparently the same conditions. As investigated by Dweib and

D’Souza [56] geometrical misalignments can generate unpredictable results and

small mistunings can produce undesirable noise (Bhushan [73]). Sometimes

evenly distributed load conditions can not implemented in real situations. In the

bushing system uneven load conditions may occur in some operating conditions

due to a thrust force on the rotating bar. Effects including uneven loads and

external periodic forcing on a system stability need to be investigated.

Stability analysis of pure sliding motions for a two-dimensional elastic system

with fixed ends boundary conditions (the model studied in Chapter 6) remains

as a future work.

System Analysis and Characterization

This dissertation has been devoted to the system analysis through analytical

and numerical approaches. Experimental verifications should be conducted.

However there may be difficulties in sensing the motions and handling huge data

sets from the continuous elastic media. The challenging part of the experimental

studies would be presentations of motions of the materials caused by the stick-

slip oscillations. The finite element analysis including issues described above

will also be needed in numerical approaches. The characteristic behaviors of

such non-linear phenomena, for example a relation between large fluctuations in

slipping group size and spatial self-similarity, called as self-organized criticality

(Carlson and Langer [97, 98]), would be a great challenge in analysis of stick-slip
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oscillations induced by friction.
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