V" L" I 77' “A "U ‘3 2 2H. .5; .. i. In l...‘ . _ . .. . , , . _ f . .7 , . i . .y , . ...} . u .H... w l . .7 ; ; .. I. . ..4 .. . , , ‘. .. , A . < .u , . _ : v v. _ ‘ . .. . , ‘3 _ ... , .. A ... » V . .. . ‘ ... . ‘vu . , It . . .. . . I 1 .. .. V... ‘ I ... . ‘ A. . 1-n L . _., u . , t. c . . ; .d. _ . o . . . I _. . . . . I o _ 9 . ... . .. . . . .. fablkufl‘ aw: ., ... \‘ .. . ‘n, . n . . ... . .. _ v ‘ . . . . . . . .. o . ‘ . v a c . y l q - ,.. c n . . c u . . 1 .. ~ ‘ , . . . . . . . o ‘ . n v n A- -\, y u t '_ I u . . . ‘ . , . a . . . A k l .» Ir ‘ . ‘ u 1 n . u A . ‘ . t . . . s . . . h u . v u .. v _ . . c M. . nth I I , AB association model was used tO determine the dissociation binding constant for TFIIF, RAP74, and RAP30 binding to TFIIB. Both TFIIF subunits are capable of binding TFIIB individually. RAP30 binding to TFIIB yielded a KB of 1.49 x 10'7 M (Figure 4 A) while RAP74 binding to TFIIB had a dissociation constant of KD = 4.22 x 10’7 M (Figure 4 B). The TFIIFzTFIIB binding constant had a KB of 1.43 x 10'8 M (Figure 5). Both TFIIF subunits have dissociation constants within the same magnitude, however the TFIIF complex binds TFIIB with a 3.4 to 10 fold higher affinity. TFIIB-TFIIF contact is largely maintained through RAP74. It is possible that a conformational change occurs in RAP74 73 Figure 4. Binding kinetics analysis of TFIIF subunits RAP30 and RAP74 binding immobilized TFIIB. The physical interaction Of both RAP30 and RAP74 with TFIIB was measured by surface plasmon resonance using the BIACORE biosensor. The test ligand was immobilized on a CM5 sensor chip by amine coupling. Concentration-dependent binding studies were conducted to allow calculation Of kinetic parameters. Non-linear analysis Of the association and dissociation parts Of the sensorgrams showed good curve fitting to the 1:1 (A + B <:> AB) association model. The A + B <:> AB association model was used to determine the dissociation binding constant (KD) for RAP30 and RAP74 with TFIIB as indicated on the figures. Interaction of TFIIF with Bovine Serum Albumin protein was used as control to subtract non-specfic interactions that may occur between TFIIF and the carboxymethyl matrix on the chip. 74 Response ' sud . ,, r\-"“‘ ,A‘N‘ I RAP30 Binding TFIIB A KD =1.49 x 10-7 M .'\a \ " v '(--‘. , , . M ' --.. ‘V"‘-" l ., .. - . .I- 1‘ _... w ' ...W‘W , "drama“. AW ' . W: '5 \ "\"li‘V' ~w’u " - ' av“ ,_ , m-v‘fiK‘ 4r Rt“ Yaw 1, “NM-L“ I E WM \ “of aw-N‘H‘V” ~. I . . T““"..\~‘—\‘ — qvfl~ H‘" “V. 4"“ ' u“ WM ‘7 Z’MQJI-Y‘N‘Y.‘ {M ‘ i . 4 .AM- ,v'n...‘ fi-M‘ M“~"¥W,i.v-9« 84* e o 6, 8 2‘; Tim. »-~500rIMRAP3O ~400nMRAi=30 —-—~300nMRAP30 ~———200nMRAP30 RAP74 Binding TFIIB 135 i B 1 115 - '4 if T K = 4 22 x 10'7 M 95 ‘i ..r" ' ' U ”1' r ’ D i ’9'. I‘ I" 1...;- . , .30 ' ' ...! . , - 1,... .. . 75 '0 /’ J/f’ \ . -M . f, ' , u l , r . \ \ J I, ’\ \‘_ ~ , I ...-v , ‘ a -\ 55 43 l ,’ I’M-fl .1 \_ \ A. 1 .«' “'4‘. \ \ ‘ _. ‘- ~,/“ 1 \ w“ A \ l I /. . \\ “. ‘. ‘Os , I, , ‘- ..\ -._ m . ...~. l I’ / I'- ' - ' \‘_\ \‘—.‘. | TT". «... ‘ i 35-“ : a: I t/ 5“. l T‘- '-‘ ‘.’T-—-. hit 'T"{u ‘T . .‘ . ... I T'-‘--.‘ ..~‘ l; .7] V\‘\“‘~" . -. -'-~\—,, "K.“ -‘~‘~“'-“’—.'~./T {,1 - A‘. M“~-}.“.~ “1, ... ’- ‘ N v , V ‘ fi".4'.le’ .‘r ""“~ : .5. 11* M ~~-w....i......,-- A *— jl 2 '5 iTT'I'i i I 1': 7 T‘I I'I i'ifir'irrrr'r'i'r'i‘r I'i i'i'?’r'ifr*1*1*r*r'rrr T'i'r'r T'i‘TTTfiT'iTT'I i I I -1(X)-&J-60-40-20 00 30 50 70 90110130150170190210230250270290310330350370390 2001M RAP74 118 TI". - 175nM RAP74 118 _, --. 1501M RAP74 llB 125nM RAP74 118 -----~ 1m RAP74 "8 Figure 4 75 410 430 a Figure 5. Binding kinetics analysis Of wild type TFIIF binding immobilized TFIIB protein. Determination of kinetic parameters was identical to Figure 4. 76 “Eu: 2Com ll “Eu—... Zcov “Eu—H 2Com , ...—....t. Scam 05:. omv omv can own can 80 EN ovm o 5 F r p w b 1% 4»— 1i— .- “...“: 2.59. l. o2. .Cr r. — \ \v‘ a ) .. .....Ké.. sfixé»§é«fl0fl%§? ......n 2.; ggeéségéigfiRTEE . (<9... . )1151 ... . e A. r .. .3. r ..i , r . t. . . c . ...J ‘li . .‘pa‘i-Iu -. 7 r (I’DS/i ul‘rba I . A J ..\.'n 5.! a . 1.. Ab. I.) . 47.2.{4'} r 31.3%.. .5 3 . (v 21: x 22 ”ex . 11.....(rlr T4... . n . (f. .. S T. /\/1 3p (5:? .4. z . \ /r;.\1r.;... «ltir/rl . I ‘3 if. i 4 (17¢..(>))\.L at)...’ W.)Ju‘. ) \‘ . . . ...: >1: ... 1 a 1.. _ .51 J... 11.34.......s,f.sa.....§)u..?.,. (48L. .... ... . . u \(b( .9 \eu-q \ t e 1 A, s. 107...; r r . ’ . ) ... e Ks... « ...) .ffk c ......J .............:).i\.i.. 1.. c . \t . . .b IPA. I .\o. iii—k ‘11-?!)‘115!’.\(.\\Ih1..r~ (C‘. I K \u‘. r a .K 5») led {.(oif?2.\5$.. ., . , , ., . .. . . _ ’9‘ .( . , . . t w i... S .irs,t<~r.}{.r§)\ 1 15 37 124 200 218 294 31s ++++ 1 15 37 113 114124 200 218 294 316 ++++ TFIIB-N TFIIB-C Q E '— Figure 6 79 as a result of its association with RAP30 that allows it to bind TFIIB with much higher affinity, as is seen with the intact TFIIF complex. However, this scenario does not preclude RAP30’s participation in this interaction. T FIIF binds the N-terminal domain of TFIIB (1-113) In addition, the dissociation constant for TFIIF binding to the N- and C- terminus of TFIIB was determined using TFIIB truncation mutants. Two TFIIB deletion mutants, TFIIB-N (1-113) and TFIIB-C (114-316), were used to determine which domain of TFIIB interacts with TFIIF (Figure 6). These mutants segregate the protein into two domains containing the Zinc finger and the direct repeat sequence responsible for interaction with the TBP-TATA complex. TFIIB bears two unique structural features that reinforce its importance in preinitiation assembly and fimction. TFIIB contains at its N- terrninus a Zn2+ finger domain that is dispensable for interaction with TBP, but is important for efficient recruitment of polymerase-TFIIF and to support basal transcription initiation. The N-terminal domain Of TFIIB binds the RAP30 subunit of TFIIF and RNA polymerase 11. At the C-terminus lies two imperfect direct repeats that are necessary and sufficient for interaction with the TBP-TATA complex. BIACORE analysis revealed that TFIIF interaction with TFIIB takes place at the N-terminus of TFIIB (Figure 7A). The TFIIF:TFIIB-N binding indicates slightly higher affinity than TFIIF :TFIIB with a KD of 1.25 x 10‘8 M. The C-terminal repeats of TFIIB do not appear to interact with TFIIF based on the flat sensorgrarn from the interaction between TFIIF:TFIIB-C (Figure 7B). The structure of the TATA -TBP-TFIIBc complex strongly indicated that the interaction between TFIIB and TFIIF might be through the N-terminal region of TFIIB (Nikolov et 80 al., 1995). The TFIIF:TFIIB-N BIACORE analysis corroborates the inference previously made based on the three dimensional structure of TFIIB-C. A summary of the dissociation binding constants (K9) is presented in the table below : Binding Interaction KD - TFIIF : TFIIB 1.43 x 10" M TFIIF : TFIIB-N 1.25 x 10‘8 M TFIIF ; TFIIB-C NO binding RAP30 : TFIIB 1.49 x 10'7 M RAP74 : TFIIB 4.22 x 10'7 M Table 1 RAP 74 Region 492-517 Is Required For TFIIB Interaction With TFIIF. In the absence of the RAP30 subunit, RAP74 C-terminal deletion mutants 1-492, 1-472, and 1-450 were all able to tightly bind TFIIB, although the response was slightly lower than full length RAP74(1-517) (Figure 8A). TFIIF complexes with wild type RAP30 and RAP74 mutants were also tested for TFIIB binding. When RAP74 mutants 1- 492, 1-472, and 1-450 are complexed with RAP30, none , however, were able to bind TFIIB, as indicated by the flat sensorgram responses (Figure 8B). Truncation of the first C-terminal 25 amino acids significantly reduced or eliminated TFIIF binding to TFIIB. These results seem to indicate that, at least in vitro, TFIIB and TFIIF contact is mediated by the C-terrninal region of the RAP74 subunit . The region between RAP74 a.a. 492 and 517 is required for this interaction. Even though RAP30 is able to bind TFIIB, RAP30 does not seem to contribute to TFIIB binding when it is associated with RAP74 as measured with BIACORE. 81 Figure 7. Kinetic analysis Of TFIIF binding immobilized TFIIB-N (1-113) and TFIIB-C (114-316). Panel A) TFIIF interaction with TFIIB takes place at the N-terminus of TFIIB Panel B) The C-terminal repeats Of TFIIB do not appear to interact with TFIIF, based on the flat sensorgram from the interaction between TFIIF:TFIIB-C . The structure Of the TATA -TBP-TFIIBc complex strongly indicated that the interaction between TFIIB and TFIIF might be through the N-terminal region of TFIIB. The TFIIF:TFIIB-N BIACORE analysis corroborates the inference previously made based on the three dimensional structure of TFIIBc. 82 3o_. E 25 —- TFIIF Binding TFIIB-N ..~ s MW“... , Am" W" ‘ “""V‘wwfi. - i u! T'Mh‘ :; \ A...“ 5. r' _ '3 l “, ' e # i rfrfii i‘ii“f'+'rri'iriri'i'T'i 160 200 220 240 260 290 320 340 360 390 400 420 440 400 490 500 Time s ——IomMTFnF —80nMTFilF —60nMTFilF ------40rMTFilF —20nMTFIIF RU TFIIF Binding TFIIB-C 207 Response 10 aniF 100 nM IIF ~--- 60 nM llF — 40 nM IIF 20 nM llF Figure 7 83 Figure 8. Qualitative BIACORE analysis of RAP74 and TFIIF truncation mutants complexes binding to immobilized TFIIB. Panel A) In the absence of the RAP30 subunit, RAP74 C-terminal deletion mutants 1-492, 1-472, and 1-450 were able to bind TFIIB with the same apparent affinity as wild type RAP74. Panel B) When complexed with RAP30, the RAP74 region between a.a. 492 and 517 is required for TFIIF-TFIIB interaction, as indicated by the flat sensogram responses. TFIIF mutants (1-492, 1-472, 1-450) were unable to bind TFIIB. These results seem to indicate that TFIIF and TFIIB contact is largely mediated through the RAP74 C-terminus. 84 RAP74 Binding TFIIB .. TFIIF Binding TFIIB RAP74(1-492) Binding TFIIB TFIIF(1-492) Binding TFIIB :2 -. 1 no. / m 3: ‘21 l .. 1 at T ‘ .. I- I ~-- _ W “— RAP74(1-472) Binding TFIIB TFIIF(l-472) Binding TFIIB 3103 mi RAP74(1-450) Binding TFIIB TFIIF(l-450) Binding TFIIB It ’50 - 200 1 :00 < I" ,z.eemmr— “W I 150 . '_,- -" ' ' //’ 100 4 it!) I 1 \‘\~. '\ l l l .. «H l o < ”4.x.” 0 4 ~ w 40 V T 40 7 v T -& an O Q :0 In I” no 80 210 are on so 70 too no .0 .0 220 260 The The Figure 8 85 RAP 74 C-terminal Mutagenesis. There is a clear indication that RAP74 sequence from 493 to 517 is important for multiple round transcription. Truncation of 25 amino acids at the C-terminal end reduced the total transcription level by more than 50 % (Figure 3B) and compromised TFIIF’s ability to bind TFIIB. Detailed mutagenesis within this region was undertaken to reveal critical residues that are important for transcriptional function and TFIIB interaction. Alignment of the C-terminus of human RAP74 with homologues from Drosophila and yeast indicates that the region is very highly conserved among all three species (Figure 9). PHD secondary structure prediction analysis (Rost et al., 1994) indicates that the region encompassing a.a. 470 to 517 Of human RAP74 may be comprised of two or- helices that are likely to be preserved in RAP74 homologues. Hydrophobic cluster analysis (HCA) is a method that relies upon a two-dimensional representation of protein sequences for comparison and analysis of distantly related proteins when no three- dimensional data is available (Gaboriaud et al., 1987). Hydrophobic cluster analysis (HCA) was used to indicate amino acid clusters of likely importance for C-terminus function Of RAP74. Double, and triple amino acid substitutions are indicated beneath the sequence. Triple alanine and charge reversal mutagenesis in the 475 to 517 region was used as a screen to identify regions of importance in the C-terminal domain. A combination of alanine substitutions and charge-reversal mutations was constructed based on the notion that these mutations would cause changes in activity without inducing long-range changes in protein conformation. These mutants were subsequently assayed in transcription assays and monitored for TFIIB interaction. 86 Figure 9. Alignment of human, Drosophila, and S. cerevisiae of the C-tenninal region of RAP74. Shaded residues indicate conserved amino acids. PHD secondary structure prediction analysis indicates that the region encompassing a.a. 470 to 517 of human RAP74 may be comprised of two OL-helices that are likely to be preserved in RAP74 homologues. A combination of alanine substitutions and charge-reversal mutations in the 475 to 517 region was used to identify regions Of importance in the C-terminal domain. The substitutions are indicated beneath the sequence and are summarized in the bottom table. 87 (<82: mmvomxm (<5 ERIE (<83. mmmwvmx << mmomvxx <<z>aommmqoaxuaomuuqqauaez asses _ ......... _ _ ........ _ _----_ .ennau <0: sunnnnnnnsnnz: nannsnnnna Ora qummmzunzHsummmzquqnodq>2>aommmqwamueomuuqnnxaaz _:aam cam com ome one one com om¢ 8on3... memo—Bangs. BEEF—no :5 undo» naflsmomonn aneam «cos—:22 52:00 35550.70 #53 Ifigme9 88 TE 118- TE 11F interaction Is Not Important for Multiple-Round Transcription. The objective for doing the site-directed mutagenesis was to find specific RAP74 mutants that would be severely compromised for initiation or would at least mimic the multiple round transcription defect seen with the RAP74 C-terminal deletion mutants. This would establish a relationship or correlation between TFIIF mutants compromised for TFIIB interaction and a specific defect in multiple round transcription (Figure 3B), thereby assigning a functional assay for TFIIF C-terminal mutants. RAP74 C-terminal deletion mutant (1-492) supports a single round Of transcription approximately z 60 % of native TFIIF (Figure 3A). All Of the C-terminal point mutants were able to support a single round Of transcription within a range of 60-80 % of native TFIIF, roughly similar to 1-492 (Figure 10 A). We had hoped that detailed mutagenesis within RAP74 sequence 493 to 517 (important for TFIIF:TFIIB interaction) would reveal a few critical residues that are important for supporting multiple round transcription. Surprisingly, most of the point mutants affect multiple round transcription to varying degrees (Figure 10 A). Many of the mutants were moderately defective in both single and multiple round transcription, however the pattern was not clear which made the interpretation of these results complicated. None Of the defects in multiple round transcription seen with these mutants was as drastic as transcription levels reported previously (less than 50%) for the C- terrninal deletion mutants (1-493 and 1-472). Two mutants, KK480EE and EQT487AAA, supported maximal or near maximal levels of transcription compared to native TFIIF (Figure 10 A). Based on the premise that defects in multiple round transcription may be due to compromised TFIIBzTFIIF binding, the assay reveals that TFIIBzTFIIF interaction is not 89 Figure 10. Single and Multiple Round Transcription with TFIIF C-terrninal point mutants. In vitro transcription was done with a TFIIF depleted Hela nuclear extract (DE). Transcription was initiated from the adenovirus major late promoter digested with restriction endonuclease Smal to produce a +217 base runoff transcript. 5 pmol of TFIIF complex was used for all reactions. Preinitiation complexes were allowed to form for 60 min at 30 C’C. Panel A) For the single-round sarkosyl block assay, ATP, CTP, and radiolabeled UTP were added and incubated for 1 min. GTP and 0.25 % sarkosyl were added and transcription continued for 60 min. Reinitiation was blocked by sarkosyl. Panel B) For the multiple-round assay, ATP, CTP, and radiolabeled UTP were added. ATP, CTP, GTP and radiolabeled UTP were added and transcription continued for 60 minutes. 0.25 % sarkosyl was added afterwards to block new initiation, and transcription was continued for an additional 30 min to complete all previously initiated chains. F517 and F217 represent wild type TFIIF and TFIIF(1-217), respectively. Samples were electrophoresed in a 6% polyacrylamide gel containing 50 % urea (w/v). The accurately initiated transcript was quantitated using a phosphorimager. 90 Multiple Round // DE,DNA,30 74 or mutant ACU‘ 59 ' Stop Single Round //_l_l§___//m_m__ G/sarkosyl 60/min ACIGU‘ 60 min 30 min Step - // 'fi/r—l sarkosyl Single Round Assay 110% 100% - 90% - , 80% - 100% g 70%« 7 57% 69% 53% § 60% - I ' ’ g 50% ~ ' F 40% ~ . 3‘ 30% - ~- 20% - ‘ 10% — . 0% - ' ’\ ’\ <9 <9 to <9 ,4 ,4 game gee ée‘gqx’gev’ge bgovtbgegovfif \>’ 43‘ 43‘ 00‘ 4" 5' § 9* \t g» Q/ ‘1‘ Miltiple Round Assay 110% 100% 93% 101% % Transcription Figure 10 91 important for multiple round transcription. Most likely, the defects in multiple round transcription that we see involve more than simple disruption of TFIIBzTFIIF interaction. The C-terminus of RAP74 is also involved in RNA polymerase II binding (Wang and Burton, 1995) and CTD phosphatase stimulation (Chambers et al., 1995). Compromised TFIIF: CTD phosphatase interaction could affect the pool Of competent RNAPII available for re-initiation (recycling) from a promoter. Changes in the affinity of TFIIF for RNA polymerase 11 could affect both initiation and elongation. Reconstituted Transcription Assay With Purified Components And RAP74 C-terminal and Point Mutants. The initiation transcription assay that we employ is complicated and is based on a depleted nuclear extract. Results obtained can be Obscured by other steps in the transcription cycle such as elongation, termination, pausing, and recycling. Therefore, we postulated that a transcription system based on purified components could potentially be dependent on TFIIF, because TFIIF plays important roles both in initiation, isomerization, elongation, and recycling. We were particularly interested in how TFIIF mutants would behave in such an assay. A transcription assay based on purified components was adapted and developed (Malik et al., 1998; Parvin and Sharp, 1993) . This system consisted of purified calf thymus RNA polymerase II, recombinant human TFIIA, TFIIB, TFIIE, TBPc (core TATA Binding Protein), TFIIF, and negatively supercoiled DNA template. The use Of a negatively supercoiled template obviated the requirement for the general initiation factor TFIIH (Holstege et al., 1996), which is necessary for promoter melting using relaxed DNA. 92 Figure 11. TFIIF C-teminal deletion and point mutants in a purified transcription assay system. Recombinant TBPc, TFIIB, TFIIA, TFIIE, and TFIIF and calf thymus RNA polymerase II were used in a defined transcription system with supercoiled pML(C2AT)A71 DNA that contains a G-less cassette downstream from the transcriptional start site. Both bands (denoted with the arrows) represented specific transcription products because they were sensitive to Ot-amanitin (lane 1), dependent on RNAPII and general factors, and resistant to digestion with RNase T1 (data not shown). TFIIF C-teminal deletion and the point mutants tested do not have any visible transcriptional defects in this assay. 93 Deletion Mutants _ TFIIF Point Mutants l4 13 12 ll 10 Figure 11 94 The results from the above experiment revealed that TFIIF C-terminal deletion and point mutants spanning from a.a. 472 to 513 do not have any discemable transcriptional defects (Figure 11). Transcription in this assay does not depend on RAP74 C-terminal sequence. TFIIF (1-217) mutant, which represents a truncation of 300 amino acids from the C-terminus, supports the same level Of activity (100%) as native TFIIF (data not shown). It is possible that RNA polymerase II and some of the other general transcription factors can compensate for any binding defects between TFIIB and TFIIF. Alternatively, the nuclear extract system may contain factors that make the interaction between TFIIB and TFIIF more important for transcription. Interaction between T F 11F C-terminal Point Mutants and T FIIB Using BIACORE, TFIIF C-terminal point mutants were measured for their interaction with TFIIB. 200 nM of each protein was used to determine a qualitative assessment of the binding (Figure 12 and 13). A summary of the binding results is presented below in conjunction with multiple round transcription data: TF 11F Mutant TFIIB Binding Transcription * LL473AA + 56 % (Moderate Defect) KK475EE - 69 % (Moderate Defect) KK480EE - 93 % (N0 defect) EQT487AAA - 101 % (N0 defect) VL492AA - 66 %(Moderate Defect) IL496AA - 78 % (Mild to N0 Defect) KR498EE - 82 %(Mild to No defect) LNP500AAA + 60 %(MOderate Defect) RK504EE - 56 % (Moderate Defect) M1506AA + 48 % (Defect) MHF511AAA + 52 % (Defect) Table 2 * Relative to wild type TFIIF 95 Figure 12. BIACORE qualitative analysis Of TFIIF point mutation complexes capable Of binding to immobilized TFIIB. 200 nM Of each protein was used to determine a qualitative assessment of the binding. 96 ((sznil . a...» 98 En 9a o& 8. 8. 8p 8 8 8 o 8. Pil b b h .— h > F P b rep are m 0 T0— E’J r 8 3 _ .. inn as 2.23 a...» a («Sn—All - ea..— § 2n 0". 9a 8, 8. 8.. 8 3 3 o 8 rlr .— » r w _ B h e .l p or. 3.7 .... u .e. Era 1.. 1n— .8 ran 13 m .8 rev 2.35 use: a e an: RN E 36 2N 8, 8p 8— 8 8 8 o 8 P 5 Li bl} L h P h - Li? i “'0 4 u _ 1 Or. . fr _ riir o .N r o a I. . .. r 9 )1 «Iii-tr 2 a /, a r 3 1.. .x 1 a .m Xx n. liilik \( 4.?.i..( T: “Writes 1’ fits .W a. 8 _. r av 2.2.3 a...» $23.. 1.- o In» con Eu 9n 2~ 8. 8. o9 8 8 8 o 8 r Fl b P p h i L lr 1L1 p > 0P0 : VI 9 Ir _— i B r 9 . mu 0. r .e {II/I/ .I a I \ler\.Lf\t . ..l I 0‘ ”Triplex I a. I a _ r 8.83 as: 93,—. 92m “as; 3:832 “Eon ”an: Figure 12 97 Figure 13. BIACORE qualitative analysis of TFIIF point mutation complexes compromised for TFIIB binding. 200 nM of each protein was used to determine a qualitative assessment Of the binding. 98 W301! l (iv.- l (at; e In a l.— o I.— ofl 2m 03 9~ 8. 8. 8r 8 8 8 o 8 08 2n 0.0 en a 8. 8' 8 8 8 o 8 8 2h 9a or" 3. 8w 8. 3 3 8 o 8 p _ b . P p p b p b p p p p b P . p b . 0’. . i L h . . p c p w 09. M. .9. -2. +9. A 1? 1.: _ AV? A A .../'1: . _ if l..:\.1;e\... 1) . .I To IO 54/ a. \Vi F0 1 if:." ..r e— ’0‘ 1 . ... I ... AVG f I 7 “A ehhla’r‘ I).'t.l1v%.l.. (rr.i.e\ \ .9 .9 _. .2 A .2 .2 A“ i a. . R r 8 . 1 R v on 1 an A .1 an r on r 8 , r 8 on r 8 . 8 r 8 r 9 i 9 as}: in: a 8.93 in: a 2.9.3 9% a. ((5323 l. mg I! 8539 1.1 o a,» a a.» o I» 98 EN. can 08 g 3. an. 8 3 8 o 8 98 En ova 9a a 09 8' 3 8 8 o 8 a 2n 3a 9a 8' 8' on, 8 8 8 o 8 . . . . . . . i t . A. 2. t . . . . r . . . . w 2. Fl . . . . . . . i A. 2 )1} -...r 1 r. .2. A .2. AA .2. .. A _. . v .A . o. L . r o- . 1.. r (it... .... i .. e i 3 BR. Tl; .tri. i i o A . AJIort -\.I\ r n m to J?) tot/.1)! {tilts/(lit)! 11313.... r a w $319.11 (I, 1511583318} v o ..A . 2 A. r o. A (Its 2 .A r o. A r 2 r 9 AA . R A 1 8 .r 9.. A r . a A . a R A v 8 AA r 8 r 8 r 8 A r on A 8 A be. A” r 9 3 2.2.3 a...» a 8.33 on“: a 8.3:. a...» a wficfim mam... Com comAEoEEoU 8< 35. $5332 «Eon BE... Figure 13 99 hRAP74 470 KDLLKKFQTKKTGLSSEQTVNVLAQILKRLNPERKMINDKMHFSLKE 517 EE EE EE‘. BB 492 Indicates TFIIF mutants that are able to bind TFIIB. It was previously reported that TFIIF mutants 1-450, 1-472, and 1-492 are unable to bind TFIIB. Based on those studies, we defined the region between amino acid 492 and 517 that was critical for TFIIB interaction. The BIACORE studies with the TFIIF point mutants further indicates that the region between 475 and 505 is important for TFIIB interaction. Surprisingly, the LNP500AAA substitution does not affect TFIIF- TFIIB interaction despite the drastic amino acid substitution; however reversing the charge on the residues adjacent to those amino acids disrupts TFIIF-TFIIB interaction. Interestingly, the defects in TFIIBzTFIIF interaction did not correlate with any significant transcriptional impairment, as evidenced by multiple and single round transcription in Figure 10. Expression And Purification Of T FIIB Deletion Mutants. To systematically localize the region(s) of TFIIB important for TFIIF interactions, 24 TFIIB mutants comprising C-terminal , N- terminal, and short internal deletions were expressed in and purified to near homogeneity from bacteria (Figures 14 and 15). Using gel mobility shift assays, these mutants were previously characterized for their ability to form TBP-TFIIB-DNA complexes (Hisatake et al., 1993) (Figure 14). We obtained these mutants to study the domains of TFIIB important for TFIIF interaction. These TFIIB mutants had certain solubility and expression problems that made them challenging to use in BIACORE. To compensate for these difficulties, we instead used gel mobility shift. 100 l'll‘lllll Jill‘ll‘ Figure 14. Effects of N- and C-terminal deletions of TFIIB on DB complex formation and basal transcription. Summary of mutant TFIIB proteins obtained from M. Horikoshi. Figure was adapted from published Nature 363:744-747 paper. Inner two right columns summarize previously published gel mobility shift data of DB complexes and basal transcription functional analyses. Outer two right columns summarize data obtained from our gel mobility shift data of DBPolF complexes and basal transcription functional analyses (see text for more details). Key: nt - not tested; Basal Txn — basal transcription. lOl sub 1.... - ... + I\+ ' ... .\+ I + + t + + .. ... + I + + + + + + .Q + + ... + ... ... + I + + I .7 + .l + + + + 533.3 B IO? 59:... ...-3— 5.9.5 I Al 5% 85.53 Eat—.0 39832.. 0 5' o a '1 l 0000 0000 uqoaou outta anon!» can!“ hogan-0.3a .3300. Idol-on cook:— 35332 mini. unuuh =1 Udnlnon Q wealth oanovvn O U I p QQCQQQC 64 hINIOFN d qvulnvfl d O'NIQNN d ENNIS.“ d Ooulhou 4 noutnvn Q noulovu Q vvulhfld Q dfldlvou G noulnn d v« -3 c 1:» 3.... Figure 14 102 Figure 15. SDS-PAGE of TFIIB mutants stained with Coomassie blue. Panel A) and Panel B) represent TFIIB internal deletion mutants. Panel C) represents TFIIB N- and C- terminal truncation mutants. Histidine-tagged recombinant TFIIB were overexpressed in E. coli BL21(DE3) ArgU and purified to near homogeneity from inclusion bodies by affinity chromatography on Ni2+-NTA resin. Key: M) Protein standard marker; wt) wild type TFIIB. 103 . 2 F LBZ'OLZ v ’. G‘ 69:ch v co wzozz v Lzz-soz v l‘ 9oz—Lsiv ‘° {SI-£9! v W 591-va v * m-th v 1%.} m E N 2 v-' I I I I I I I Oh In N IZI'901 V £01138 V 0819 V 99'” V 9IE‘WZ V ' 50H V 98%: V 69'L V Figure 15 I u- M 21.5- 91011 8 assays to look at the recruitment of RNA polymerase II and TFIIF to the TBP-TFIIB- DNA complexes. The hypothesis is that if TFIIF:TFIIB interaction is compromised or completely abrogated, RNA Polymerase II and TFIIF will not be recruited to TBP- TFIIB-DNA preinitiation complex. It has long been speculated that the N-terminus of TFIIB is required for RN APII recruitment (via TFIIF) to the preinitiation complex. It has previously been shown by gel mobility shift and basal transcription assays that disruption of the N-terminal domain of TFIIB, and in particular the Zinc finger, eliminates transcriptional activity and recruitment of RNAPII (Barberis et al., 1993; Buratowski and Zhou, 1993). T FIIB N— Terminal Deletions Support Recruitment 0f RNA Polymerase II.'TFIIF Wt Into The Preinitiation Complex. Using an electrophoretic mobility shift assay, N-terrninal deletions of TFIIB A4- 11, A6-20, A3-3 7, A3-55, and A7-69, were shown to be capable of supporting active recruitment of RN APllzTF IIF into the preinitiation complex apparently with the same affinity as wild type TFIIB (Figure 16, compare lanes 5-9 with lane 4). TFIIB mutants A3-86 and A3—103 were slightly impaired for the formation of the DBPolF complex (Figure 16, lane 11). The results indicate that the N-terminal domain can be removed up to the first C-terminal direct repeat of TFIIB and still maintain recruitment of RNAPII and TFIIF. In this same assay, C-terminal deletions of TFIIB A244-3l6, A279-316, and A305-316 can support weak recruitment of the DBPolF complex, with TFIIB A244- 316, A279-316 being slightly more disabled (Figure 16, lane 12-15) and collapsing into an unidentified complex (Figure 16, asterisk). 105 A gel mobility shift assay with the short TFIIB internal deletions corroborated the results above (Figure 17). Mutants removing segments of the N-terminus are able to recruit RN APllzTFIIF into the preinitiation complex. TFIIB internal deletions Al 1- 24, A27-44, A45-64, A67-80, A83-103 formed distinct DBPolF complexes (Figure 17, lanes 5-9). TFIIB internal deletion mutants within the C-terminal domain (A106- 121, A127-144, A148-l63, A163-183, A187-206, A208-227, A226-246, A249- 269, A270—287) formed very unstable DBPolF complexes, also collapsing into an unidentified complex (Figure 17, lanes 10-18 asterisk). These mutants previously had been shown to be compromised for DB complex formation (Figure 14) (Hisatake et al., 1993), suggesting that the ability to form a stable DBPolF does not require TFIIF:TFIIB but rather requires a stable DB preinitiation complex. Taken together, these results suggest that no specific sequence between a.a. 11-103 is required for DBPolF assembly. T FIIB N-Terminal Deletions Support Recruitment 0f RNA Polymerase II: TFIIF(1-217) Into The Preinitiation Complex. Previously, we showed that the C-terminus region of RAP74 spanning amino acids 492 to 517 is critical for TFIIF :TFIIB interaction. TFIIF complex mutants containing RAP74(1-217) are not able to bind TFIIB as shown by BIACORE analysis (data not shown). TFIIF (1 -217) was used to test the importance of the C-terminus of RAP74 for the recruitment of RNAPllzTFIIF to the preinitiation complex with TFIIB mutants. Gel mobility shift assays with TFIIF(l-217) and TFIIB mutants mirrored the results obtained with wild type TFIIF (Figures 18 and 19). TFIIB N-terminal truncation and internal deletion mutants are fully able to recruit Polymerase:TFIIF(1-217) into the 106 DB complex (Figure 18, lanes 5-11 and Figure 19, lanes 5-9). Truncation mutants of TFIIF (1-492, 1-172, 1-158) were also capable of being recruited with RNAPII to preinitiation complexes containing wild type and TFIIB N-terminal mutants (data not shown). C-terminal TFIIB deletion mutants are very unstable for the formation of DBPolF complexes containing truncation mutants of TFIIF (1-492, 1-217, 1-172, 1-158) (Figure 20, lanes 5-9). These TFIIB mutants had previously been shown to be incapacitated for DB complex formation, presumably because the mutations disrupt the direct repeat domains responsible for interacting with promoter bound TBP (Figure 14). Adding TFIIE can compensate for TFIIB mutants that do not have the capacity to stably recruit RNAPllzTFIIF . A representative gel mobility shift experiment with TFIIB(A208-227) showed that TFIIE allows the formation of DBPolFE complexes containing C-terminal truncated versions of TFIIF (Figure 20, lanes 10-14). TFIIE may work to stabilize the preinitiation complex (DB) allowing polymerase to dock. The collective gel mobility data seems to indicate that TFIIF:TFIIB interaction through the C-terminus of RAP74 may not be important for the recruitment of RNAPII to the preinitiation complex in vitro. While TFIIF is absolutely required for the delivery of RN APII to the preinitiation complex, that delivery does not appear to be mediated through TFIIBzTFIIF interaction, or interaction between TFIIB-N and RNAPII. It is possible that polymerase may have undescribed pathways for docking to the preinitiation complex . 107 Figure 16. Gel mobility shift assay of TFIIB N-terminal and C-terminal deletion mutants. DBPol complex formation is inefficient without TFIIF (lanes 3-4). N-terminal deletions of TFIIB A4-11, A6-20, A3-3 7, A3-55, A7-69, were all able to support active recruitment of RNAPllzTFIIF into the preinitiation complex apparently with the same affinity as wild type TFIIB (lanes 4-8). TFIIB mutants A3-86 and A3—103 were slightly unstable for the formation of DBPolF complex. C-terminal deletions of TFIIB A244- 316, A279-3l6, and A305-3l6 can support weak recruitment of the DBPolF complex, with TFIIB A244-3l6, A279-316 being slightly more disabled (lanes 12-15) and collapsing into an unidentified complex (asterisk). 108 «x + 14 :IIOJ(9I£-SOE WHO 13 :IIOJ(9I£-6LZ V)8(I . 12 510.1031 s-wz WHO 11 swarm-c v)aa == ‘ 10 :II°d(98'€ V)EI(I dl°d(69-L v)a(1 I ‘ atoms-s WHO I 1 Jl°d(LE-£ V)HCI steam-9 Wad moan I-v v)aa :IIOJEIG IOJHCI SCI «101.1 DB_> :1 O FreeProbc—b Figure 16 109 Figure 17. Gel mobility shift assay of TFIIB internal deletion mutants. TFIIB internal deletions Al 1-24, A27-44, A45-64, A67-80, A83-103 formed distinct DBPolF complexes just as wild type DBPolF complexes (lanes 4-9). Internal deletions within the C-terminal direct repeats of the protein do not form stable DBPolF complexes (lanes 10-18) and collapse into an unidentified complex (asterisk). 110 ‘ TFIIB Mutants :IIOJ(L8z-0Lz V)8(I :IIOJ(69z-6vz V)8CI m0d(9vz-9zz V)8CI :IIOJ(LZZ'80Z V)H(I :110d(90Z'L81 V)EI(I :IIOJ(£8I'£9I V)EICI :IIOJ(£9I'8H V)E[CI JIOJ(WI-LZI WHO :IIOJ(IZI-9OI V)8CI Jl°d(£OI'€8 v)ac1 JI°d(O8'L9 V)£ICI JI°d(v9-sv Wad :II°d(W-LZ Wad ~22 :II°d(irZ-II V)8(IH> DBPolF -+ DBPol-p DB» Figure 17 111 Free Probe—P Figure 18. Gel mobility shift assay of TFIIB N-terminal, C-terminal deletion mutants using TFIIF (1-217). TFIIB N-terminal truncation mutants are able to recruit RNAPII:TFIIF(1-217) into the DB complex (lanes 5-11). Similar to result using wt TFIIF, TFIIB mutants A3-86 and A3—103 were slightly impaired for the formation of the DBPolF complex (lanes 10-11), while C-terminal deletions of TFIIB A244-316, A279- 316, and A305-316 support very poor recruitment of the DBPolF complex (lanes 12-14). 112 ‘—- TFIIF(l-217)+TFIIB Mutants ———> Sufismezén 11 12 13 14 10 Figure 20 117 Reconstituted Transcription Assay With Purified Components And TFIIB Mutants. Using a reconstituted transcription assay with recombinant human TBPc, TFIIA, TFIIB, TFIIE, TFIIF, and a negatively supercoiled DNA template (Malik et al., 1998; Parvin and Sharp, 1993) the ability of the TFIIB mutants was assessed to support basal transcription. These mutants had previously been assayed for basal transcription, albeit in a cruder assay system using partially purified components such as TFIID/TBP and TFIIE/TFIIF fraction, RNAPII and recombinant TFIIB (Hisatake et al., 1993). Although, the N-terminal domain was dispensable for DB complex formation; in the transcription assay, disruption within the N-terminal Zinc finger domain up to the first direct repeat eliminated or markedly reduced transcription. Residues in this region whose removal reduced, but did not eliminate transcription included amino acids 6-20, 67-80, and 83-103 (Figure 14). All mutations that eliminated DB-promoter DNA complex formation (such as C-terminal disruptions) also eliminated basal transcription. In our revised basal transcription assay, total disruption of TFIIB’s N-terminus (Figure 21, lanes 13-17) and specific deletion of the Zinc finger (A1 1-24, A27-44) eliminated transcription (Figure 21, lanes 4-5). In contrast to TFIIB A1 1-24 and A27-44, but similar to previous results, N- terminal deletion A6-20 (Figure 21, compare lane 12 to lanes 4-5) reduced but did not abrogate transcription. Regions within the N-terminus (A67-80, and A83-103) whose deletion did not eliminate transcription were also observed as previously characterized (Figure 21, lanes 7-8). Disruptions flanking both these regions (A45-64 and A106-121), however, indicated that our assay is slightly more sensitive than the one previously used, as deletions within those regions were also capable of supporting low level basal transcription. Though the TFIIB AlO6-121 was severely incapacitated for basal 118 transcription (Figure 21, lane 9). Mutations that eliminated DB complex formation by interfering with TFIIB’s direct repeats (A187-206 and A208-227) also eliminated basal transcription (Figure 21, lanes 10-11). The above functional data indicate that the region between a.a. 11 to 45 is required for basal transcription. Because all the TFIIB mutants were purified under denaturing conditions, the presence of guanidine hydrochloride could have obscured the obtained results. However, as a control, TFIIB purified under native conditions was used to assess the effect of guanidine in this sensitive assay. TFIIB purified under denaturing conditions supported the same level of basal transcription as TFIIB purified under native conditions (Figure 21 , compare lane 3 to 2). 119 Figure 21. TFIIB N- and C-terminal mutants in a purified transcription assay system. This assay is similar to the one described in Figure 11. Disruption of TFIIB’s N-terminus (lanes 13-17) and specific deletion of the Zinc finger (A1 1-24, A27-44) eliminated transcription (lanes 4-5). Mutations compromising DB complex formation by interfering with TFIIB’s direct repeats (A187-206 and A208-227) also eliminated basal transcription (lanes 10-1 1). N-terminal deletion A6-20 (lane 12) reduced but did not abrogate transcription. Regions within the N-terminus (A67-80, and [183-103) whose deletion did not eliminate transcription were also observed (lanes 7-8). In contrast to results published elsewhere, disruptions flanking both these regions (1145-64 and A106-121) (lanes 6 and 9) were also capable of supporting low level basal transcription. Although TFIIB A106-121 is significantly more impaired than TFIIB A45-64. Lane 1) a-Amanitin added to the complete reaction inhibiting RNAPII transcription. Lane 2) Complete reaction containing recombinant TBPc, TFIIB (not in guanidine HCl), TFIIA, TFIIE, wt TFIIF, and supercoiled pML(C2AT)A71 DNA . Lane 3) Identical to Lane 2 but with TFIIB diluted from guanidine HCl stock. Lanes 4-17) TFIIB mutants. 120 N-terminal Deletion Mutants Internal Deletion Mutants f sor-s v 98'E v 69-1. v ss-s v we v oz—9 v 112-802 V 9OZ'L81 v 121-901 v cor-£8 v 08'L9 v w-sv v W'LZ v 92'“ V 811:1]. 1M maldurog mmwv-n + Figure 21 121 14 15 l6 17 13 12 10 DISCUSSION Evidence suggests a functional interaction between TFIIF and TFIIB. These factors cooperate to bring RNAPII into the preinitiation complex (Buratowski et al., 1989; Conaway et al., 1991; Serizawa et al., 1994; Zawel and Reinberg, 1993). Furthermore, in vivo studies with yeast have established a genetic relationship between the RAP74 subunit of TFIIF and TFIIB that can affect transcription initiation start-site selection (Sun and Hampsey, 1995). TFIIB contains at its N-terminus a Zinc finger domain that is dispensable for interaction with TBP, but is important for efficient recruitment of RNAPII-TFIIF, support of basal transcription initiation (Barberis et al., 1993; Buratowski and Zhou, 1993; Hisatake et al., 1993) and accurate start-site selection in vivo (Pardee et al., 1998; Pinto et al., 1994). Mutations at the N-terminus inhibit assembly of transcription intermediates presumably because they fail to interact with either TFIIF or RNAPII (Buratowski and Zhou, 1993; Ha et al., 1993; Hisatake et al., 1993; Malik et al., 1993). The N-terminal domain of TFIIB binds the RAP30 subunit of TFIIF and RNA polymerase II (Ha et al., 1993; Hisatake et al., 1993). At the C-terminus of TFIIB lies two imperfect direct repeats similar to the core domain of cell cycle regulatory proteins (Bagby et al., 1995; Gibson et al., 1994). The two cyclin-like C-terminal repeats of TFIIB (TFIIBc) are necessary and sufficient for interaction with the TBP-TATA complex (Hisatake et al., 1993). Based on the three-dimensional structure of TFIIBc (Bagby et al., 1995) and the TFIIBc-TBP-DNA ternary complex (N ikolov et al., 1995), the C-terminal region of TFIIB binds TBP, 122 activators (Roberts and Green, 1994) and DNA. The N-terminus is postulated to be a scaffold for the assembly of RNA polymerase II-TFIIF. In addition to the functional interaction between TFIIB and TFIIF during transcription initiation, both factors may control the dephosphorylation of the Carboxy Terminal Domain of RNA polymerase 11 after transcription termination (Chambers et al., 1995) in a process known as recycling. Dephosphorylated RNAPII preferentially enters the preinitiation complex, and CTD kinases phosphorylate RNAPII within the preinitiation complex or shortly after initiation (Chambers and Dahmus, 1994; Laybourn and Dahmus, 1989). During elongation, RNAPII is hyperphosphorylated on the CTD (Chambers and Dahmus, 1994; Lu et al., 1991). The CTD phosphatase has been independently isolated by HeLa cell extract fractionation (Chambers and Dahmus, 1994) and a two-hybrid screen for RAP74 C-terminal interacting proteins (Archambault et al., 1997), hence its name FCPl (TFIIE-associating QT D phosphatase). Despite its role in CTD dephosphorylation, Fcplp does not resemble known eukaryotic protein phosphatases, and it is essential for most transcription by RNAPII in vivo (Kobor et al., 1999). The C-terminal domain of RAP74 stimulates a CTD phosphatase (Archambault et al., 1997; Archambault et al., 1998; Chambers et al., 1995). The C-terminal domain of RAP74 is also responsible for interaction with TFIIB (Fang and Burton, 1996) and RNAP 11 (Wang and Burton, 1995). TFIIB which can directly bind the CTD phosphatase (Jack Greenblatt, unpublished data), blocks stimulation of CTD phosphatase activity by RAP74 (Chambers et al., 1995). Because RAP74 stimulates and TFIIB blocks stimulation of CTD phosphatase activity (Chambers et al., 1995), TFIIB has been 123 suggested to be present in elongation complexes to block CTD dephosphorylation in order to prevent premature termination (Lei et al., 1998). Multiple-round transcription in vitro using a Hela extract system appears to reflect a physiological recycling system, because this process involves activation of transcription complexes as a function of time (Lei et al., 1998). We originally initiated RAP74 C- terminal truncation mutagenesis to study the effects of that region in initiation and multiple round transcription. Three RAP74 C-terminal mutants (1-492, 1-472, and 1- 450) were constructed and reconstituted with RAP30 to make TFIIF. All the RAP74 C- terminal truncation mutants were severely defective in the multiple-round transcription assay . In particular, RAP74(1-492) mutant, which represented a truncation of 25 amino acids, was significantly compromised for transcription . This truncation reduced the total transcription signal by more than 50 % (Figure 3B). Using biosensor surface plasmon resonance studies (BIACORE), we determined that these RAP74 C-terminal truncation mutants when complexed with RAP30 were defective for their interaction with the general initiation factor TFIIB (Figure 8). Similar to wild type RAP74, the RAP74 C- terminal truncation mutants by themselves were able to stably associate with TFIIB. It is possible that a conformational change occurs in RAP74 as a result of its association with RAP30 that modifies the C-terminus for TFIIB binding . This conformational change could enhance the overall affinity of TFIIF for TFIIB (3 to 10X higher affinity) as opposed to RAP74 or RAP30 interaction with TFIIB by themselves (Figures 5 and 4). Because TFIIF and TFIIB are intimately intertwined at the most crucial stages of the transcription cycle, we speculated that defects in transcription as seen with the C-terminal RAP74 mutants could be due to compromised binding with TFIIB. 124 As expected, both TFIIF subunits were capable of binding TFIIB individually, with tight binding affinities (Figure 4). TFIIF is thought to mediate the interaction between RNAPII and the DB complex and this function had long been attributed specifically to the RAP30 subunit (Flores et al., 1991). Consistent with this premise, TFIIB binds to RAP30, and this interaction has been mapped to the N-terminal domain of TFIIB (Fang and Burton, 1996; Ha et al., 1993). However, second site suppression genetic experiments in yeast have implicated RAP74 interaction with TFIIB (Sun and Hampsey, 1995). Both subunits of TFIIF, therefore are possibly involved in TFIIB binding. However, the N-terminus of RAP74 has been shown to block RAP30:TFIIB interaction by binding the N-terminal region of RAP30 (Fang and Burton, 1996). RAP30’s TFIIB interaction domain overlaps its RAP74 binding domain. Also, by sequestering TFIIB, the C-terminus of RAP74 can compete for TFIIB binding and dissociate RAP30 :TFIIB interactions (Fang and Burton, 1996). This indicates that when TFIIF is intact, TFIIBzTFIIF contact would be maintained through the C-terminus of RAP74 and the N-terminus of TFIIB. If RAP30:TFIIB interaction is physiologically important, the TFIIF complex would have to dissociate within some complexes. The TFIIF:TFIIB binding dissociation constant (K0) was 1.43 x 10'3 M, indicating a strong binding interaction (Figure 5). The TFIIF:TFIIB-N binding showed slightly higher affinity than TFIIF:TFIIB with a KD of 1.25 x 10'8 M ( Figure 7). Roger Kornberg’s lab has attempted to observe interactions between yeast transcription factors using a similar biosensor system, but has not been able to detect the TFIIF :TFIIB interaction (Bushnell et al., 1996). However, the concentration and purity of yeast TFIIF that was used was low and consequently the detection was near the low limit of the assay. 125 BIACORE binding studies with TFIIB and the adenovirus ElA 13 S transcriptional activator (Paal et al., 1997) have indicated that the dissociation constant is within the same order of magnitude (10’8 M) as the value that has been calculated for TFIIF:TFIIB and TFIIF:TFIIB-N. The C-terminal repeats of TFIIB do not appear to interact with TFIIF, based on the flat sensorgram for the interaction (Figure 7). The solved 3D structure of the TATA -TBP-TFIIBc complex strongly indicated that the interaction between TFIIB and TFIIF might be facilitated by the N-terminal region of TFIIB (N ikolov et al., 1995). The TFIIF:TFIIB-N BIACORE analysis corroborates the inference previously made based on the crystallographic structure of TFIIB-C (Figure 7). Based on multiple round transcription and BIACORE analysis, RAP74 sequence from 492 to 517 was deemed important for multiple round transcription and binding to TFIIB when RAP74 was complexed with RAP30. Point mutations in a.a. 470 to 517 region of full length RAP74 were made to identify regions of the C-terminal domain that are important for transcriptional function and TFIIB interaction. The BIACORE studies with the TFIIF point mutants indicated that the region between RAP74 a.a. 475 and 505 was critical for TFIIB interaction (Figures 12 and 13). Interestingly, the LNP500AAA substitution did not affect TFIIF-TFIIB interaction; however reversing the charge on the residues adjacent to those amino acids disrupted TFIIF-TFIIB interaction. Noticeably, charged residues K476, K480, K481, K498, K499, R504, K505 are conserved between human, Drosophila, and yeast RAP74 (Figure 9). It is possible that these residues may form a salt bridge with acidic amino acids on TFIIB and thereby form the basis for the TFIIF-TFIIB interaction. The N-terminus of TFIIB harbors several acidic amino acids that are conserved between human, Drosophila, and yeast TFIIB (data not shown). We 126 know from BIACORE data that TFIIF binds slightly more strongly to the N-terminus of TFIIB than to the full-length protein. It is plausible that the reason why TFIIF binds slightly better to the N-terminus of TFIIB is because the conserved acidic amino acid groups are unmasked as a result of the truncation of the C-terminus, allowing TFIIF easy access to the TFIIB region responsible for that interaction. Transcriptional defects seen in multiple round transcription appear to be more complicated than simple TFIIBzTFIIF interaction disruptions. Using the RAP74 C- terminal point mutants, there did not seem to be a clear linkage between transcription function and TFIIBzTFIIF interaction (Figures 10, 12, 13, Table 2). Although, the TFIIF C-terminal point mutants described have some transcriptional defects, these cannot be attributed totally to compromised TFIIBzTFIIF, because some of the same C-terminal point mutant (TFIIF: LL473AA, LNP500AAA, MISO6AA, MHF51 lAAA) could still maintain TFIIBzTFIIF interaction. The above results may implicate the RAP74 C-terminus in CTD phosphatase interaction and stimulation rather than TFIIB interaction. Transcriptional defects may be due to disruptions in the functional complex responsible for polymerase recycling and CTD phosphorylation /dephosphorylation. Changes in the affinity of TFIIF for CTD phosphatase could affect elongation and polymerase’s ability to reinitiate. The calf thymus RN APII used in the reconstituted purified components transcription was prepared by the method of Hodo and Blatti (Hodo and Blatti, 1977) and was primarily in the IIb form, lacking the carboxy terminal domain (CTD). Moreover, CTD kinases and phosphatases are not included in the purified components transcription system. Therefore, CTD phosphorylation and dephosphorylation are not relevant in the reconstituted 127 transcription system. This might explain why no transcriptional defect is seen with TFIIF C-terminal truncation (including TFIIF(1-217)) and point mutants in the purified transcription assay (Figure 11). TFIIF C-terminal mutations affecting CTD phosphatase interaction may, therefore, be the main reason for the presumed inhibition of RNAPII recycling in the HeLa TFIIF-depleted nuclear extract system . Evidence suggests that TFIIB is conforrnationally pliable and that TFIIB N- and C- terminal regions are involved in an intramolecular interaction that potentially sequesters the N- terminus from associating with other factors (Roberts and Green, 1994). If TFIIF interacts with TFIIB’s N terminal domain as a docking scaffold, then TFIIB must be conforrnationally unlocked where the N and C terminal intramolecular interactions are disrupted in order to recruit TFIIF interaction. This disruption can be facilitated by specific activators such as VP16 (Roberts and Green, 1994). This model is consistent with recent structural studies of human TFIIB showing that interaction of either VP16 or the N-terminus of TFIIB with the C-terminus of TFIIB induce distinct changes in the orientation of the two repeat domains of the C-terminal region of TFIIB relative to each other (Hayashi et al., 1998). The studies however did not address the potential role of TFIIB conformational changes on transcription. Recently, an activation-specific role for TFIIB in vivo was observed with an activator-induced TFIIB conformational change that may facilitate PIC assembly (Wu and Hampsey, 1999). The yeast activator Pho4’s interaction with TFIIB induces a conformational change that might represent disruption of the nIIB-cIIB interaction which then stimulates PH05 transcription in vivo. Some activators may stimulate transcription by inducing a conformational change in TFIIB that drives preinitiation complex assembly forward. 128 We obtained C-terminal , N- terminal, and short internal deletion TFIIB mutants to localize regions of TFIIB important for TFIIF interactions (Hisatake et al., 1993) (Figure 14). These TFIIB mutants had certain solubility and expression problems which made them challenging to use in BIACORE. To compensate for these difficulties, we instead used gel mobility shift assays to look at the recruitment of RNA polymerase II and TFIIF to the TBP-TFIIB-DNA complexes. The results of the gel mobility shift experiments indicated that removal of the N- terminal domain of TFIIB up to the first direct repeat of the protein was able to maintain recruitment of polymerase and TFIIF. TFIIB sequence from amino acid 11 to 103 is dispensable for the assembly of DBPolF complexes (Figure 16-19) but amino acid sequence between 11 to 45 is required for basal transcription (Figure 21). These results were in marked contrast to those previously published in which N-terminal disruptions that affected the Zinc finger domain could form a DB complex but could not recruit PolF to form DBPolF (Buratowski and Zhou, 1993). The reagents used previously were Hela fractionated components that might have harbored contaminants which could have obscured these results. In our assay we have used recombinant protein for all the general transcription factors and purified calf thymus RNAPII. Functional data indicated that the region between a.a. 11 to 45 is required for basal transcription. This region encompasses the Zinc finger domain, located between a.a. 15 to 37, and suggests that the region immediately flanking the Zinc finger is also important. Moreover, partial deletion of the Zinc binding domain (A6-20) severely compromises basal transcription but does not eliminate it. Deletion of region 45-103 can maintain moderate level of transcription, whereas further deletion beyond this region (affecting DB complex formation) does not 129 support basal transcription as expected. The Zinc finger and the region immediately flanking it are essential for basal transcription but are not required for recruitment of RNAPII and TFIIF (Figure 21). It has long been thought that TFIIB’s Zinc finger could recruit RNAPII through protein-protein interaction with TFIIF and/or polymerase. Zinc finger motifs can function as a metal-linked interaction domain. In fact, several RNA polymerase II subunits contain zinc-binding domains that are known to be functionally important (Treich et al., 1991). Our data show that the N-terminal region of TFIIB is not primarily required for the recruitment of polymerase and TFIIF but rather for another function in initiation. This finding does not diminish possible TFIIB:TFIIF interactions important downstream of the pathway, though recruitment of polymerase to the PIC may take place through undescribed docking interactions with the DB complex. TFIIB mutations that disrupt the C-terminal repeats form very unstable DBPolF complexes that collapse into a complex which, based on size, might be a DBF complex having lost polymerase (Figures 16 and 17, asterisk). These C-terminal mutants have been shown to be compromised for DB complex formation (Figure 14) (Hisatake et al., 1993). The inability to form a stable DB complex, a result of disruption of TFIIB domains that interact with TBPzDNA, is the cause for poor recruitment of RNAPII:TFIIF. The addition of TFIIE can partially compensate for TFIIB’s inability to form a stable DB and recruit RNAPII:TFIIF to form a DBPolFE complex (Figure 20) but does not restore function (Figure 21). TFIIE contributes to DNA wrapping around RNA polymerase within the PIC (Robert et al., 1998; Robert et al., 1996) which may compensate for defective TBPzDNAzTFIIB complexes. TFIIE-0t has a zinc-ribbon motif and yeast TFIIE binds single-stranded DNA, 130 which suggests that TFIIE may participate to form or stabilize the melted DNA in the initiator region (Kuldell and Buratowski, 1997). 131 REFERENCES Agarwal, K., Back, K. H., Jeon, C. J ., Miyamoto, K., Ueno, A., and Yoon, H. S. (1991). Stimulation of transcript elongation requires both the zinc finger and RNA polymerase II binding domains of human TFIIS. Biochemistry 30, 7842-7851. Agostini, 1., Navarro, J. M., Rey, F., Bouhamdan, M., Spire, B., Vigne, R., and Sire, J. (1996). The human immunodeficiency virus type 1 Vpr transactivator: cooperation with promoter-bound activator domains and binding to TFIIB. J Mol Biol 261, 599-606. Akoulitchev, S., Makela, T. P., Weinberg, R. A., and Reinberg, D. (1995). Requirement for TFIIH kinase activity in transcription by RNA polymerase 11. Nature 377, 557-60. Allison, L. A., Moyle, M., Shales, M., and Ingles, C. J. (1985). Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42, 599-610. Archambault, J ., Chambers, R. S., Kobor, M. 8., Ho, Y., Cartier, M., Bolotin, D., Andrews, B., Kane, C. M., and Greenblatt, J. (1997). An essential component of a C- terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94, 14300-5. Archambault, J ., Chambers, R. S., Kobor, M. 8., Ho, Y., Cartier, M., Bolotin, D., Andrews, B., Kane, C. M., and Greenblatt, J. (1997). An essential component of a C- terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94, 14300-14305. Archambault, J ., Lacroute, F ., Ruet, A., and Friesen, J. D. (1992). Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol Cell Biol 12, 4142-4152. Archambault, J., Pan, G., Dahmus, G. K., Cartier, M., Marshall, N., Zhang, S., Dahmus, M. E., and Greenblatt, J. (1998). FCPl, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase 110. J Biol Chem 273, 27593-27601. Aso, T., Conaway, J. W., and Conaway, R. C. (1995). The RNA polymerase II elongation complex. Faseb J 9, 1419-1428. Aso, T., Haque, D., Barstead, R. J ., Conaway, R. C., and Conaway, J. W. (1996). The inducible elongin A elongation activation domain: structure, function and interaction with the elongin BC complex. EMBO J 15, 5557-66. Aso, T., Vasavada, H. A., Kawaguchi, T., Germino, F. J., Ganguly, S., Kitajima, S., Weissman, S. M., and Yasukochi, Y. (1992). Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF. Nature 355, 461-4. 132 Auble, D. T., Hansen, K. E., Mueller, C. G., Lane, W. S., Thorner, J ., and Hahn, S. (1994). Motl , a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8, 1920-34. Avvrey, D. E., Weilbaecher, R. G., Hemming, S. A., Orlicky, S. M., Kane, C. M., and Edwards, A. M. (1997). Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J Biol Chem 272, 14747-14754. Bagby, S., Kim, S., Maldonado, E., Tong, K. I., Reinberg, D., and Ikura, M. (1995). Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell 82, 857-67. Bangur, C. S., Pardee, T. S., and Ponticelli, A. S. (1997). Mutational analysis of the Dl/El core helices and the conserved N- terminal region of yeast transcription factor IIB (TFIIB): identification of an N-terminal mutant that stabilizes TATA-binding protein- TFIIB-DNA complexes. Mol Cell Biol 1 7, 6784-6793. Barberis, A., Muller, C. W., Harrison, S. C., and Ptashne, M. (1993). Delineation of two functional regions of transcription factor TFIIB. Proc Natl Acad Sci U S A 90, 5628-32. Bartholomew, B., Dahmus, M. E., and Meares, C. F. (1986). RNA contacts subunits 110 and He in HeLa RNA polymerase II transcription complexes. J Biol Chem 261, 14226- 14231. Bartolomei, M. S., Halden, N. F., Cullen, C. R., and Corden, J. L. (1988). Genetic analysis of the repetitive carboxyl-tenninal domain of the largest subunit of mouse RNA polymerase 11. Mol Cell Biol 8, 330-9. Bengal, E., Flores, 0., Krauskopf, A., Reinberg, D., and Aloni, Y. (1991). Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase 11. Mol Cell Biol 11, 1195-206. Bentley, D. L. (1995). Regulation of transcriptional elongation by RNA polymerase II. Curr Opin Genet Dev 5, 210-216. Berger, S. L., Cress, W. D., Cress, A., Triezenberg, S. J ., and Guarente, L. (1990). Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61, 1199-1208. Blanco, J. C., Wang, 1. M., Tsai, S. Y., Tsai, M. J., BW, O. M., Jurutka, P. W., Haussler, M. R., and Ozato, K. (1995). Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci U S A 92, 1 535-9. 133 Borukhov, S., Polyakov, A., Nikiforov, V., and Goldfarb, A. (1992). GreA protein: a transcription elongation factor from Escherichia coli. Proc Natl Acad Sci U S A 89, 8899- 902. Borukhov, S., Sagitov, V., and Goldfarb, A. (1993). Transcript cleavage factors from E. coli. Cell 72, 459-66. Bradsher, J. N., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1993). RNA polymerase II transcription factor 8111. 1. Identification, purification, and properties. J Biol Chem 268, 25587-25593. Bradsher, J. N., Tan, 3., McLaury, H. J ., Conaway, J. W., and Conaway, R. C. (1993). RNA polymerase II transcription factor 8111. 11. Functional properties and role in RNA chain elongation. J Biol Chem 268, 25594-25603. Brent, R., and Ptashne, M. (1985). A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729-36. Bunick, D., Zandomeni, R., Ackerman, S., and Weinmann, R. (1982). Mechanism of RNA polymerase II--specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts. Cell 29, 877-886. Buratowski, S., Hahn, S., Guarente, L., and Sharp, P. A. (1989). Five intermediate complexes in transcription initiation by RNA polymerase 11. Cell 56, 549-61. Buratowski, S., and Zhou, H. (1993). Functional domains of transcription factor TFIIB. Proc Natl Acad Sci U S A 90, 5633-7. Buratowski, S., and Zhou, H. (1992). Transcription factor IID mutants defective for interaction with transcription factor IIA. Science 255, 1130-2. Burke, T. W., and Kadonaga, J. T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII6O of Drosophila. Genes Dev 11, 3020-3031. Burke, T. W., and Kadonaga, J. T. (1996). Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 10, 711-24. Burley, S. K., and Roeder, R. G. (1996). Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 65, 769-99. Burton, Z. F ., Killeen, M., Sopta, M., Ortolan, L. G., and Greenblatt, J. (1988). RAP30/74: a general initiation factor that binds to RNA polymerase 11. Mol Cell Biol 8, 1602-13. 134 Burton, Z. R, Ortolan, L. G., and Greenblatt, J. (1986). Proteins that bind to RNA polymerase II are required for accurate initiation of transcription at the adenovirus 2 major late promoter. EMBO J 5, 2923-30. Busby, S., and Ebright, R. H. (1994). Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79, 743-6. Bushnell, D. A., Bamdad, C., and Kornberg, R. D. (1996). A minimal set of RNA polymerase II transcription protein interactions. J Biol Chem 271 , 20170-4. Cadena, D. L., and Dahmus, M. E. (1987). Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J Biol Chem 262, 12468- 12474. Cairns, B. R., Henry, N. L., and Kornberg, R. D. (1996). TFG/T AF 30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol 16, 3308-16. Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument Bromage, H., Tempst, P., Du, J ., Laurent, B., and Kornberg, R. D. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-60. Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Du, J ., Laurent, B., and Kornberg, R. D. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-60. Carcamo, J ., Buckbinder, L., and Reinberg, D. (1991). The initiator directs the assembly of a transcription factor IID- dependent transcription complex. Proc Natl Acad Sci U S A 88, 8052-8056. Carrozza, M. J ., and DeLuca, N. A. (1996). Interaction of the viral activator protein ICP4 with TFIID through TAF 250. Mol Cell Biol 16, 3085-93. Cavallini, B., Huet, J ., Plassat, J. L., Sentenac, A., Egly, J. M., and Chambon, P. (1988). A yeast activity can substitute for the HeLa cell TATA box factor. Nature 334, 77-80. Chambers, R. S., and Dahmus, M. E. (1994). Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J Biol Chem 269, 26243-26248. Chambers, R. S., and Dahmus, M. E. (1994). Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terrninal domain of RNA polymerase II. J Biol Chem 269, 26243-8. Chambers, R. S., and Kane, C. M. (1996). Purification and characterization of an RNA polymerase II phosphatase from yeast. J Biol Chem 271, 24498-504. 135 Chambers, R. S., Wang, B. Q., Burton, Z. F ., and Dahmus, M. E. (1995). The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. J Biol Chem 270, 14962-9. Chang, C., Kostrub, C. F., and Burton, Z. F. (1993). RAP30/74 (transcription factor IIF) is required for promoter escape by RNA polymerase II. J Biol Chem 268, 20482-9. Chang, J., Kim, D. H., Lee, S. W., Choi, K. Y., and Sung, Y. C. (1995). Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J Biol Chem 270, 25014-9. Chao, D. M., Gadbois, E. L., Murray, P. J., Anderson, S. F., Sonu, M. S., Parvin, J. D., and Young, R. A. (1996). A mammalian SRB protein associated with an RNA polymerase 11 holoenzyme. Nature 380, 82-5. Chasman, D. 1., Flaherty, K. M., Sharp, P. A., and Kornberg, R. D. (1993). Crystal structure of yeast TATA-binding protein and model for interaction with DNA. Proc Natl Acad Sci U S A 90, 8174-8. Chen, J. L., Attardi, L. D., Verrijzer, C. P., Yokomori, K., and Tjian, R. (1994). Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79, 93-105. Chen, X., Farmer, G., Zhu, H., Prywes, R., and Prives, C. (1993). Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev 7, 1837-1849. Chesnut, J. D., Stephens, J. H., and Dahmus, M. E. (1992). The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit Ila. J Biol Chem 26 7, 10500-10506. Chi, T., and Carey, M. (1996). Assembly of the isomerized TFIIA--TFIID--TATA ternary complex is necessary and sufficient for gene activation. Genes Dev 10, 2540-50. Chi, T., and Carey, M. (1993). The ZEBRA activation domain: modular organization and mechanism of action. Mol Cell Biol 13, 7045-55. Chiang, C. M., and Roeder, R. G. (1995). Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267, 531-6. Chiang, Y. C., Komarnitsky, P., Chase, D., and Denis, C. L. (1996). ADRl activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J Biol Chem 271, 32359-65. 136 Chiba, H., Clifford, J ., Metzger, D., and Chambon, P. (1997). Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol Cell Biol 17, 3013-3020. Chibazakura, T., Kitajima, S., Yonaha, M., and Yasukochi, Y. (1994). Enhancement of bacterial transcription initiation in vitro by the 74 kDa subunit of human general transcription factor IIF (RAP74). Biochim Biophys Acta 1219, 592-600. Cho, H., Kim, T. K., Mancebo, H., Lane, W. S., Flores, 0., and Reinberg, D. (1999). A protein phosphatase functions to recycle RNA polymerase II. Genes Dev 13, 1540-52. Cho, H., Maldonado, E., and Reinberg, D. (1997). Affinity purification of a human RNA polymerase II complex using monoclonal antibodies against transcription factor IIF. J Biol Chem 272, 11495-11502. Cho, H., Orphanides, G., Sun, X., Yang, X. J ., Ogryzko, V., Lees, E., Nakatani, Y., and Reinberg, D. (1998). A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 18, 5355-5363. Chodosh, L. A., Fire, A., Samuels, M., and Sharp, P. A. (1989). 5,6-Dichloro-1-beta-D- ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J Biol Chem 264, 2250-7. Choy, B., and Green, M. R. (1993). Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366, 531—6. Cisek, L. J ., and Corden, J. L. (1989). Phosphorylation of RNA polymerase by the murine homologue of the cell- cycle control protein cdc2. Nature 339, 679-684. Coleman, R. A., and Pugh, B. F. (1997). Slow dimer dissociation of the TATA binding protein dictates the kinetics of DNA binding. Proc Natl Acad Sci U S A 94, 7221-6. Coleman, R. A., Taggart, A. K., Burma, 8., Chicca, J. J ., 2nd, and Pugh, B. F. (1999). TFIIA regulates TBP and TFIID dimers . Mol Cell 4, 451-7. Colgan, J ., Ashali, H., and Manley, J. L. (1995). A direct interaction between a glutamine-rich activator and the N terminus of TFIIB can mediate transcriptional activation in vivo. Mol Cell Biol 15, 2311-20. Comai, L., Tanese, N., and Tjian, R. (1992). The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68, 965-76. Conaway, J. W., and Conaway, R. C. (1989). A multisubunit transcription factor essential for accurate initiation by RNA polymerase II. J Biol Chem 264, 2357-62. 137 Conaway, J. W., and Conaway, R. C. (1990). An RNA polymerase II transcription factor shares functional properties with Escherichia coli sigma 70. Science 248, 1550-3. Conaway, J. W., and Conaway, R. C. (1990). An RNA polymerase II transcription factor shares functional properties with Escherichia coli sigma 70. Science 248, 1550-1553. Conaway, J. W., Hanley, J. P., Garrett, K. P., and Conaway, R. C. (1991). Transcription initiated by RNA polymerase II and transcription factors from liver. Structure and action of transcription factors epsilon and tau. J Biol Chem 266, 7804-11. Conaway, R. C., and Conaway, J. W. (1993). General initiation factors for RNA polymerase II. Annu Rev Biochem 62, 161-190. Conaway, R. C., and Conaway, J. W. (1993). General initiation factors for RNA polymerase II. Annu Rev Biochem 62, 161-90. Conaway, R. C., and Conaway, J. W. (1989). An RNA polymerase II transcription factor has an associated DNA- dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. Proc Natl Acad Sci U S A 86, 7356-7360. Conaway, R. C., and Conaway, J. W. (1990). Transcription initiated by RNA polymerase II and purified transcription factors from liver. Transcription factors alpha, beta gamma, and delta promote formation of intermediates in assembly of the functional preinitiation complex. J Biol Chem 265, 7559-7563. Conaway, R. C., Garrett, K. P., Hanley, J. P., and Conaway, J. W. (1991). Mechanism of promoter selection by RNA polymerase II: mammalian transcription factors alpha and beta gamma promote entry of polymerase into the preinitiation complex. Proc Natl Acad Sci U S A 88, 6205-9. Corden, J. L., Cadena, D. L., Aheam, J. M., Jr., and Dahmus, M. E. (1985). A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc Natl Acad Sci U S A 82, 7934-7938. Cormack, B. P., Strubin, M., Ponticelli, A. S., and Struhl, K. (1991). Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65, 341-8. Cormack, B. P., and Struhl, K. (1992). The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69, 685-96. Cortes, P., Flores, 0., and Reinberg, D. (1992). Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor 11A and identification of transcription factor IIJ. Mol Cell Biol 12, 413-21. 138 Cote, J ., Quinn, J ., Workman, J. L., and Peterson, C. L. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53-60. Coulombe, B., and Burton, Z. F. (1999). DNA bending and wrapping around RNA polymerase: a "revolutionary" model describing transcriptional mechanisms. Microbiol Mol Biol Rev 63, 457-78. Coulombe, B., Killeen, M., Liljelund, P., Honda, B., Xiao, H., Ingles, C. J ., and Greenblatt, J. (1992). Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Expr 2, 99-110. Coulombe, B., Li, J ., and Greenblatt, J. (1994). Topological localization of the human transcription factors IIA, IIB, TATA box-binding protein, and RNA polymerase 11- associated protein 30 on a class 11 promoter. J Biol Chem 269, 19962-7. Cress, W. D., and Triezenberg, S. J. (1991). Critical structural elements of the VP16 transcriptional activation domain. Science 251 , 87-90. Croston, G. E., Kerrigan, L. A., Lira, L. M., Marshak, D. R., and Kadonaga, J. T. (1991). Sequence-specific antirepression of histone Hl-mediated inhibition of basal RNA polymerase II transcription. Science 251, 643-9. Dahmus, M. E. (1996). Reversible phosphorylation of the C-terrninal domain of RNA polymerase II. J Biol Chem 271, 19009-19012. Damania, B., Lieberman, P., and Alwine, J. C. (1998). Simian virus 40 large T antigen stabilizes the TATA-binding protein- TFIIA complex on the TATA element. Mol Cell Biol 18, 3926-3935. Defossez, P. A., Baert, J. L., Monnot, M., and de Launoit, Y. (1997). The ETS family member ERM contains an alpha-helical acidic activation domain that contacts TAF 1160. Nucleic Acids Res 25, 4455-4463. DeJong, J ., Bernstein, R., and Roeder, R. G. (1995). Human general transcription factor TFIIA: characterization of a cDNA encoding the small subunit and requirement for basal and activated transcription. Proc Natl Acad Sci U S A 92, 3313-7. DeJong, J ., and Roeder, R. G. (1993). A single cDNA, hTFIIA/alpha, encodes both the p35 and p19 subunits of human TFIIA. Genes Dev 7, 2220-34. Dikstein, R., Ruppert, S., and Tjian, R. (1996). TAP 11250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84, 781-90. Dikstein, R., Zhou, S., and Tjian, R. (1996). Human TAFII 105 is a cell type-specific TFIID subunit related to hTAF 11130. Cell 87, 137-46. 139 Dombroski, A. J ., Walter, W. A., Record, M. T., Jr., Siegele, D. A., and Gross, C. A. (1992). Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell 70, 501-12. Drapkin, R., Le Roy, 6., Cho, H., Akoulitchev, S., and Reinberg, D. (1996). Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc Natl Acad Sci U S A 93, 6488-93. Drapkin, R., Reardon, J. T., Ansari, A., Huang, J. C., Zawel, L., Ahn, K., Sancar, A., and Reinberg, D. (1994). Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase 11. Nature 368, 769-72. Drapkin, R., and Reinberg, D. (1994). The multifunctional TFIIH complex and transcriptional control. Trends Biochem Sci 19, 504-8. Duan, D. R., Pause, A., Burgess, W. H., Aso, T., Chen, D. Y., Garrett, K. P., Conaway, R. C., Conaway, J. W., Linehan, W. M., and Klausner, R. D. (1995). Inhibition of transcription elongation by the VHL tumor suppressor protein . Science 269, 1402-6. Dubois, M. F ., Marshall, N. F., Nguyen, V. T., Dahmus, G. K., Bonnet, F., Dahmus, M. E., and Bensaude, O. (1999). Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II. Nucleic Acids Res 27, 1338-44. Dvir, A., Garrett, K. P., Chalut, C., Egly, J. M., Conaway, J. W., and Conaway, R. C. (1996). A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. J Biol Chem 271, 7245-7248. Dynlacht, B. D., Hoey, T., and Tjian, R. (1991). Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66, 563-76. Egyhazi, E., Ossoinak, A., Filhol-Cochet, 0., Cochet, C., and Pigon, A. (1999). The binding of the alpha subunit of protein kinase CK2 and RAP74 subunit of TFIIF to protein-coding genes in living cells is DRB sensitive. Mol Cell Biochem 191, 149-59. Eick, D., Wedel, A., and Heumann, H. (1994). From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends Genet 10, 292- 296. Emili, A., Greenblatt, J ., and Ingles, C. J. (1994). Species-specific interaction of the glutamine-rich activation domains of Spl with the TATA box-binding protein. Mol Cell Biol 14, 1582-93. 140 Fang, S. M., and Burton, Z. F. (1996). RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J Biol Chem 271, 11703-9. Feaver, W. J ., Gileadi, 0., Li, Y., and Kornberg, R. D. (1991). CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67, 1223-30. Feaver, W. J ., Svejstrup, J. Q., Bardwell, L., Bardwell, A. J ., Buratowski, S., Gulyas, K. D., Donahue, T. F ., Friedberg, E. C., and Kornberg, R. D. (1993). Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379- 87. F eaver, W. J ., Svejstrup, J. Q., Henry, N. L., and Kornberg, R. D. (1994). Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103- 9. Finkelstein, A., Kostrub, C. F., Li, J., Chavez, D. P., Wang, B. Q., Fang, S. M., Greenblatt, J., and Burton, Z. F. (1992). A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase 11. Nature 355, 464-7. Flores, 0., Ha, 1., and Reinberg, D. (1990). Factors involved in specific transcription by mammalian RNA polymerase II. Purification and subunit composition of transcription factor IIF. J Biol Chem 265, 5629-34. Flores, 0., Lu, H., Killeen, M., Greenblatt, J., Burton, Z. F ., and Reinberg, D. (1991). The small subunit of transcription factor 11F recruits RNA polymerase II into the preinitiation complex. Proc Natl Acad Sci U S A 88, 9999-10003. Flores, 0., Lu, H., and Reinberg, D. (1992). Factors involved in specific transcription by mammalian RNA polymerase 11. Identification and characterization of factor IIH. J Biol Chem 26 7, 2786-93. Flores, 0., Maldonado, E., Burton, 2., Greenblatt, J ., and Reinberg, D. (1988). Factors involved in specific transcription by mammalian RNA polymerase 11. RNA polymerase II-associating protein 30 is an essential component of transcription factor IIF. J Biol Chem 263, 10812-6. Flores, 0., Maldonado, E., and Reinberg, D. (1989). Factors involved in specific transcription by mammalian RNA polymerase 11. Factors IIE and IIF independently interact with RNA polymerase II. J Biol Chem 264, 8913-21. Forget, D., Robert, F ., Grondin, G., Burton, Z. F., Greenblatt, J ., and Coulombe, B. . (1997). RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box. Proc Natl Acad Sci U S A 94, 7150-7155. 141 Forget, D., Robert, F., Grondin, G., Burton, Z. F., Greenblatt, J., and Coulombe, B. (1997). RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box. Proc Natl Acad Sci U S A 94, 7150-5. Franklin, C. C., McCulloch, A. V., and Kraft, A. S. (1995). In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB. Biochem J 305, 967-74. F riedberg, E. C. (1996). Relationships between DNA repair and transcription. Annu Rev Biochem 65, 15-42. Fujinaga, K., Cujec, T. P., Peng, J ., Garriga, J ., Price, D. H., Grana, X., and Peterlin, B. M. (1998). The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J Virol 72, 7154-7159. Gaboriaud, C., Bissery, V., Benchetrit, T., and Mornon, J. P. (1987). Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett 224, 149-155. Garcia-Martinez, L. F ., Mavankal, G., Neveu, J. M., Lane, W. S., Ivanov, D., and Gaynor, R. B. (1997). Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. Embo J 16, 2836-2850. Garrett, K. P., Serizawa, H., Hanley, J. P., Bradsher, J. N., Tsuboi, A., Arai, N., Yokota, T., Arai, K., Conaway, R. C., and Conaway, J. W. (1992). The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function. J Biol Chem 26 7, 23942-9. Garrett, K. P., Serizawa, H., Hanley, J. P., Bradsher, J. N., Tsuboi, A., Arai, N., Yokota, T., Arai, K., Conaway, R. C., and Conaway, J. W. (1992). The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function. J Biol Chem 26 7, 23942-23949. Gaudreau, L., Schmid, A., Blaschke, D., Ptashne, M., and Horz, W. (1997). RNA polymerase 11 holoenzyme recruitment is sufficient to remodel chromatin at the yeast PH05 promoter. Cell 89, 55-62. Ge, H., and Roeder, R. G. (1994). The high mobility group protein HMGl can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J Biol Chem 269, 17136-40. Ge, H., and Roeder, R. G. (1994). Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class 11 genes. Cell 78, 513- 23. 142 Geiger, J. H., Hahn, S., Lee, S., and Sigler, P. B. (1996). Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272, 830-836. Geiger, J. H., Hahn, S., Lee, S., and Sigler, P. B. (1996). Crystal structure of the yeast TFIIA/TBP/DNA complex . Science 272, 830-6. Gerber, H. P., Hagmann, M., Seipel, K., Georgiev, 0., West, M. A., Litingtung, Y., Schaffner, W., and Corden, J. L. (1995). RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 3 74, 660-2. Gibson, T. J ., Thompson, J. D., Blocker, A., and Kouzarides, T. (1994). Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107. Nucleic Acids Res 22, 946-52. Gill, G., Pascal, E., Tseng, Z. H., and Tjian, R. (1994). A glutamine-rich hydrophobic patch in transcription factor Spl contacts the dTAFIIl 10 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A 91, 192-6. Gill, G., and Tjian, R. (1992). Eukaryotic coactivators associated with the TATA box binding protein. Curr Opin Genet Dev 2, 236-42. Gill, G., and Tjian, R. (1991). A highly conserved domain of TFIID displays species specificity in vivo. Cell 65, 333-40. Goodrich, J. A., Hoey, T., Thut, C. J ., Admon, A., and Tjian, R. (1993). Drosophila TAF 1140 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75, 519-30. Goodrich, J. A., and Tjian, R. (1994). TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr Opin Cell Biol 6, 403-9. Goodrich, J. A., and Tjian, R. (1994). Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase 11. Cell 77, 145-56. Gralla, J. D., Carpousis, A. J ., and Stefano, J. E. (1980). Productive and abortive initiation of transcription in vitro at the lac UV5 promoter. Biochemistry 19, 5864-5 869. Grant, P. A., Duggan, L., Cote, J ., Roberts, S. M., Brownell, J. E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C. D., Winston, F., Berger, S. L., and Workman, J. L. (1997). Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11, 1640-50. 143 Grant, P. A., Sterner, D. E., Duggan, L. J ., Workman, J. L., and Berger, S. L. (1998). The SAGA unfolds: convergence of transcription regulators in chromatin- modifying complexes. Trends Cell Biol 8, 193-197. Greenblatt, J ., Nodwell, J. R., and Mason, S. W. (1993). Transcriptional antitermination. Nature 364, 401-6. Groft, C. M., Uljon, S. N., Wang, R., and Werner, M. H. (1998). Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc Natl Acad Sci U S A 95, 9117-9122. Gu, W., and Reines, D. (1995). Identification of a decay in transcription potential that results in elongation factor dependence of RNA polymerase II. J Biol Chem 270, 11238- 44. Guzder, S. N., Qiu, H., Sommers, C. H., Sung, P., Prakash, L., and Prakash, S. (1994). DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase 11. Nature 367, 91-94. Guzder, S. N., Sung, P., Bailly, V., Prakash, L., and Prakash, S. (1994). RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 369, 578- 581. Ha, 1., Lane, W. S., and Reinberg, D. (1991). Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352, 689-95. Ha, 1., Roberts, 8., Maldonado, E., Sun, X., Kim, L. U., Green, M., and Reinberg, D. (1993). Multiple functional domains of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. Genes Dev 7, 1021-32. Hadzic, E., Desai-Yajnik, V., Helmer, E., Guo, 8., Wu, S., Koudinova, N., Casanova, J., Raaka, B. M., and Sarnuels, H. H. (1995). A 10-amino-acid sequence in the N-terrninal A/B domain of thyroid hormone receptor alpha is essential for transcriptional activation and interaction with the general transcription factor TFIIB. Mol Cell Biol 15, 4507-4517. Hahn, S., Buratowski, S., Sharp, P. A., and Guarente, L. (1989). Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc Natl Acad Sci U S A 86, 5718-22. Hampsey, M. (1998). Molecular genetics of the RNA polymerase 11 general transcriptional machinery. Microbiol Mol Biol Rev 62, 465-503. Hampsey, M., and Reinberg, D. (1997). Transcription: why are TAFs essential? Curr Biol 7, R44-6. 144 Hanna Rose, W., and Hansen, U. (1996). Active repression mechanisms of eukaryotic transcription repressors. Trends Genet 12, 229-34. Hansen, S. K., and Tjian, R. (1995). TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82, 565-75. Harrison, S. C. (1991). A structural taxonomy of DNA-binding domains. Nature 353, 715-719. Hawley, D. K., and Roeder, R. G. (1985). Separation and partial characterization of three functional steps in transcription initiation by human RNA polymerase II. J Biol Chem 260, 8163-72. Hayashi, F., Ishima, R., Liu, D., Tong, K. 1., Kim, S., Reinberg, D., Bagby, S., and Ikura, M. (1998). Human general transcription factor TFIIB: conformational variability and interaction with VP16 activation domain. Biochemistry 3 7, 7941-7951. Hebbes, T. R., Thome, A. W., and Crane-Robinson, C. (1988). A direct link between core histone acetylation and transcriptionally active chromatin. Embo J 7, 1395-402. Hengartner, C. J ., Thompson, C. M., Zhang, J ., Chao, D. M., Liao, S. M., Koleske, A. J ., Okamura, S., and Young, R. A. (1995). Association of an activator with an RNA polymerase 11 holoenzyme. Genes Dev 9, 897-910. Henry, N. L., Campbell, A. M., Feaver, W. J., Poon, D., Weil, P. A., and Kornberg, R. D. (1994). TFIIF-TAF-RNA polymerase II connection. Genes Dev 8, 2868-78. Henry, N. L., Sayre, M. H., and Kornberg, R. D. (1992). Purification and characterization of yeast RNA polymerase II general initiation factor g. J Biol Chem 26 7, 23388-92. Hernandez, N. (1993). TBP, a universal eukaryotic transcription factor? Genes Dev 7, 1291 -3 08. Hisatake, K., Ohta, T., Takada, R., Guermah, M., Horikoshi, M., Nakatani, Y., and Roeder, R. G. (1995). Evolutionary conservation of human TATA-binding-polypeptide- associated factors TAFII31 and TAF1180 and interactions of TAF1180 with other TAFs and with general transcription factors. Proc Natl Acad Sci U S A 92, 8195-9. Hisatake, K., Roeder, R. G., and Horikoshi, M. (1993). Functional dissection of TFIIB domains required for TFIIB-TFIID-promoter complex formation and basal transcription activity . Nature 363, 744-7. Hodo, H. G. d., and Blatti, S. P. (1977). Purification using polyethylenimine precipitation and low molecular weight subunit analyses of calf thymus and wheat germ DNA- dependent RNA polymerase II. Biochemistry 16, 2334-2343. 145 Hoey, T., Dynlacht, B. D., Peterson, M. G., Pugh, B. F., and Tjian, R. (1990). Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61, 1179-86. Hoffman, A., Sinn, E., Yamamoto, T., Wang, J ., Roy, A., Horikoshi, M., and Roeder, R. G. (1990). Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346, 387-90. Hoffmann, A., Chiang, C. M., Oelgeschlager, T., Xie, X., Burley, S. K., Nakatani, Y., and Roeder, R. G. (1996). A histone octamer-like structure within TFIID. Nature 380, 356-359. Hoffmann, A., Oelgeschlager, T., and Roeder, R. G. (1997). Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc Natl Acad Sci U S A 94, 8928-8935. Holstege, F. C., Fiedler, U., and Timmers, H. T. (1997). Three transitions in the RNA polymerase II transcription complex during initiation. Embo J 16, 7468-7480. Holstege, F. C., Tantin, D., Carey, M., van der Vliet, P. C., and Timmers, H. T. (1995). The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. EMBO J 14, 810-9. Holstege, F. C., van der Vliet, P. C., and Timmers, H. T. (1996). Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J 15, 1666-77. Hori, R., and Carey, M. (1994). The role of activators in assembly of RNA polymerase II transcription complexes. Curr Opin Genet Dev 4, 236-44. Horikoshi, M., Bertuccioli, C., Takada, R., Wang, J ., Yamamoto, T., and Roeder, R. G. (1992). Transcription factor TFIID induces DNA bending upon binding to the TATA element. Proc Natl Acad Sci U S A 89, 1060-4. Horikoshi, M., Hai, T., Lin, Y. S., Green, M. R., and Roeder, R. G. (1988). Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033-42. Horikoshi, M., Yamamoto, T., Ohkuma, Y., Weil, P. A., and Roeder, R. G. (1990). Analysis of structure-function relationships of yeast TATA box binding factor TFIID. Cell61, 1171-8. Horiuchi, J ., Silverrnan, N., Marcus, G. A., and Guarente, L. (1995). ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol Cell Biol 15, 1203-1209. 146 Huet, J ., and Sentenac, A. (1992). The TATA-binding protein participates in TFIIIB assembly on tRNA genes. Nucleic Acids Res 20, 6451-4. Imbalzano, A. N., Kwon, H., Green, M. R., and Kingston, R. E. (1994). Facilitated binding of TATA-binding protein to nucleosomal DNA . Nature 3 70, 481-5. Imbalzano, A. N., Zaret, K. S., and Kingston, R. E. (1994). Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA. J Biol Chem 269, 8280-6. lmhof, A., Yang, X. J ., Ogryzko, V. V., Nakatani, Y., Wolffe, A. P., and Ge, H. (1997). Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7, 689-92. Ingles, C. J ., Shales, M., Cress, W. D., Triezenberg, S. J ., and Greenblatt, J. (1991). Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature 351, 588-90. Inostroza, J ., Flores, O., and Reinberg, D. (1991). Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of general transcription factor IIE. J Biol Chem 266, 9304-8. Inostroza, J. A., Mermelstein, F. H., Ha, 1., Lane, W. S., and Reinberg, D. (1992). Dr], a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70, 477-89. Izban, M. G., and Luse, D. S. (1992). Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J Biol Chem 267, 13647-55. Izban, M. G., and Luse, D. S. (1993). The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompetent RNA polymerase II ternary complexes. J Biol Chem 268, 12874-85. Izban, M. G., and Luse, D. S. (1992). The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'----5' direction in the presence of elongation factor 811. Genes Dev 6, 1342-56. Izban, M. G., and Luse, D. S. (1993). SII-facilitated transcript cleavage in RNA polymerase II complexes stalled early after initiation occurs in primarily dinucleotide increments. J Biol Chem 268, 12864-73. Jackson-Fisher, A. J ., Burma, S., Portnoy, M., Schneeweis, L. A., Coleman, R. A., Mitra, M., Chitikila, C., and Pugh, B. F. (1999). Dimer dissociation and therrnosensitivity kinetics of the Saccharomyces cerevisiae and human TATA binding proteins. Biochemistry 38, 11340-8. 147 Jackson-Fisher, A. J ., Chitikila, C., Mitra, M., and Pugh, B. F. (1999). A role for TBP dimerization in preventing unregulated gene expression. Mol Cell 3, 717-27. Jacob, G. A., Kitzmiller, J. A., and Luse, D. S. (1994). RNA polymerase 11 promoter strength in vitro may be reduced by defects at initiation or promoter clearance. J Biol Chem 269, 3655-63. Jacq, X., Brou, C., Lutz, Y., Davidson, 1., Chambon, P., and Tora, L. (1994). Human TAF 1130 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79, 107-1 7. Jeon, C., and Agarwal, K. (1996). Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc Natl Acad Sci U S A 93, 13677-13682. Jiang, Y., Smale, S. T., and Gralla, J. D. (1993). A common ATP requirement for open complex formation and transcription at promoters containing initiator or TATA elements. J Biol Chem 268, 6535-6540. J iang, Y., Triezenberg, S. J ., and Gralla, J. D. (1994). Defective transcriptional activation by diverse VP16 mutants associated with a common inability to form open promoter complexes. J Biol Chem 269, 5505-5508. Jiang, Y., Yan, M., and Gralla, J. D. (1996). A three-step pathway of transcription initiation leading to promoter clearance at an activation RNA polymerase 11 promoter. Mol Cell Biol 16, 1614-1621. Johnson, T. L., and Chamberlin, M. J. (1994). Complexes of yeast RNA polymerase 11 and RNA are substrates for TFIIS- induced RNA cleavage. Cell 77, 217-224. Joliot, V., Demma, M., and Prywes, R. (1995). Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Nature 3 73, 632-5. Kaiser, K., and Meisterernst, M. (1996). The human general co-factors. Trends Biochem Sci 21 , 342-345. Kamakaka, R. T., Bulger, M., and Kadonaga, J. T. (1993). Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev 7, 1779-95. Kassavetis, G. A., Joazeiro, C. A., Pisano, M., Geiduschek, E. P., Colbert, T., Hahn, S., and Blanco, J. A. (1992). The role of the TATA-binding protein in the assembly and firnction of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71, 1055-64. 148 Kaufmann, J ., and Smale, S. T. (1994). Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev 8, 821-9. Kelleher, R. J. d., Flanagan, P. M., and Kornberg, R. D. (1990). A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61, 1209-15. Kephart, D. D., Wang, B. Q., Burton, Z. F., and Price, D. H. (1994). Functional analysis of Drosophila factor 5 (TFIIF), a general transcription factor. J Biol Chem 269, 13536- 43. Kerppola, T. K., and Kane, C. M. (1991). RNA polymerase: regulation of transcript elongation and termination. Faseb J 5, 2833-42. Kibel, A., Iliopoulos, O., DeCaprio, J. A., and Kaelin, W. G., Jr. (1995). Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444- 1446. Killeen, M., Coulombe, B., and Greenblatt, J. (1992). Recombinant TBP, transcription factor IIB, and RAP30 are sufficient for promoter recognition by mammalian RNA polymerase II. J Biol Chem 26 7, 9463-6. Killeen, M. T., and Greenblatt, J. F. (1992). The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA. Mol Cell Biol 12, 30-7. Kim, J. B., Yamaguchi, Y., Wada, T., Handa, H., and Sharp, P. A. (1999). Tat-SFl protein associates with RAP30 and human SPTS proteins. Mol Cell Biol 19, 5960-8. Kim, J. L., Nikolov, D. B., and Burley, S. K. (1993). Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520-527. Kim, J. L., Nikolov, D. B., and Burley, S. K. (1993). Co-crystal structure of TBP recognizing the minor groove of a TATA element . Nature 3 65 , 520-7. Kim, T. K., Lagrange, T., Wang, Y. H., Griffith, J. D., Reinberg, D., and Ebright, R. H. (1997). Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc Natl Acad Sci U S A 94, 12268-12273. Kim, T. K., and Roeder, R. G. (1994). Proline-rich activator CTFl targets the TFIIB assembly step during transcriptional activation. Proc Natl Acad Sci U S A 91, 4170-4. Kim, W. Y., and Dahmus, M. E. (1988). Purification of RNA polymerase 110 from calf thymus. J Biol Chem 263, 18880-18885. 149 Kim, Y., Geiger, J. H., Hahn, S., and Sigler, P. B. (1993). Crystal structure of a yeast TBP/TATA-box complex . Nature 365 , 512-20. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H., and Kornberg, R. D. (1994). A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase 11. Cell 77, 599-608. Kingston, R. E., Bunker, C. A., and Imbalzano, A. N. (1996). Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 10, 905-20. Kingston, R. E., and Green, M. R. (1994). Modeling eukaryotic transcriptional activation. Curr Biol 4, 325-32. Kitajima, S., Chibazakura, T., Yonaha, M., and Yasukochi, Y. (1994). Regulation of the human general transcription initiation factor TFIIF by phosphorylation. J Biol Chem 269, 29970-7. Kitajima, S., Tanaka, Y., Kawaguchi, T., Nagaoka, T., Weissman, S. M., and Yasukochi, Y. (1990). A heteromeric transcription factor required for mammalian RNA polymerase II. Nucleic Acids Res 18, 4843-4849. Klein, C., and Struhl, K. (1994). Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 266, 280-282. Klemm, R. D., Goodrich, J. A., Zhou, S., and Tjian, R. (1995). Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc Natl Acad Sci U S A 92, 5788-92. Kobayashi, N., Boyer, T. G., and Berk, A. J. (1995). A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol Cell Biol 15, 6465-73. Kobayashi, N., Horn, P. J ., Sullivan, S. M., Triezenberg, S. J ., Boyer, T. G., and Berk, A. J. (1998). DA-complex assembly activity required for VP16C transcriptional activation. Mol Cell Biol 18, 4023-4031. Kobor, M. S., Archambault, J ., Lester, W., Holstege, F. C., Gileadi, O., Jansma, D. B., Jennings, E. G., Kouyoumdjian, F., Davidson, A. R., Young, R. A., and Greenblatt, J. (1999). An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 4, 55-62. Koleske, A. J ., and Young, R. A. (1995). The RNA polymerase 11 holoenzyme and its implications for gene regulation. Trends Biochem Sci 20, 113-6. Koleske, A. J ., and Young, R. A. (1994). An RNA polymerase 11 holoenzyme responsive to activators . Nature 368, 466-9. 150 Kolodziej, P. A., and Young, R. A. (1991). Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly. Mol Cell Biol 11, 4669-78. Kuldell, N. H., and Buratowski, S. (1997). Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions. Mol Cell Biol 1 7, 5288-5298. Lagrange, T., Kapanidis, A. N., Tang, H., Reinberg, D., and Ebright, R. H. (1998). New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12, 34-44. Landick, R. (1997). RNA polymerase slides home: pause and termination site recognition. Cell 88, 741-744. Laybourn, P. J ., and Dahmus, M. E. (1990). Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J Biol Chem 265, 13165-13173. Laybourn, P. J ., and Dahmus, M. E. (1989). Transcription-dependent structural changes in the C-terrninal domain of mammalian RNA polymerase subunit Ila/o. J Biol Chem 264, 6693-6698. Lee, D. K., DeJong, J ., Hashimoto, S., Horikoshi, M., and Roeder, R. G. (1992). TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol Cell Biol 12, 5189-96. Lee, D. K., Horikoshi, M., and Roeder, R. G. (1991). Interaction of TFIID in the minor groove of the TATA element. Cell 6 7, 1241-50. Lee, J. M., and Greenleaf, A. L. (1991). CTD kinase large subunit is encoded by CTKl , a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr I , 149-67. Lee, T. I., and Young, R. A. (1998). Regulation of gene expression by TBP-associated proteins. Genes Dev 12, 1398-408. Lei, L., Ren, D., Finkelstein, A., and Burton, Z. F. (1998). Functions of the N- and C- terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase 11. Mol Cell Biol 18, 2130-2142. Lei, L., Ren, D., Finkelstein, A., and Burton, Z. F. (1998). Functions of the N- and C- terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase 11. Mol Cell Biol 18, 2130-42. 151 Leong, G. M., Wang, K. S., Marton, M. J., Blanco, J. C., Wang, 1. M., Rolfes, R. J., Ozato, K., and Segars, J. H. (1998). Interaction between the retinoid X receptor and transcription factor IIB is ligand-dependent in vivo. J Biol Chem 273, 2296-2305. Lesley, S. A., and Burgess, R. R. (1989). Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry 28, 7728-34. Leuther, K. K., Bushnell, D. A., and Kornberg, R. D. (1996). Two-dirnensional crystallography of TFIIB- and IIE-RN A polymerase II complexes: implications for start site selection and initiation complex formation. Cell 85, 773-9. Levin, J. R., Krummel, B., and Chamberlin, M. J. (1987). Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base. J Mol Biol 196, 85-100. Li, Y., Flanagan, P. M., Tschochner, H., and Kornberg, R. D. (1994). RNA polymerase II initiation factor interactions and transcription start site selection. Science 263, 805-7. Liao, S. M., Zhang, J ., Jeffery, D. A., Koleske, A. J ., Thompson, C. M., Chao, D. M., Viljoen, M., van Vuuren, H. J ., and Young, R. A. (1995). A kinase-cyclin pair in the RNA polymerase 11 holoenzyme . Nature 374, 193-6. Lieberman, P. M., Schmidt, M. C., Kao, C. C., and Berk, A. J. (1991). Two distinct domains in the yeast transcription factor IID and evidence for a TATA box-induced conformational change. Mol Cell Biol 11, 63-74. Liljelund, P., Ingles, C. J ., and Greenblatt, J. (1993). Altered promoter binding of the TATA box-binding factor induced by the transcriptional activation domain of VP16 and suppressed by TFIIA. Mol Gen Genet 24], 694-9. Lin, Y. S., Ha, I., Maldonado, E., Reinberg, D., and Green, M. R. (1991). Binding of general transcription factor TFIIB to an acidic activating region. Nature 353, 569-71. Linn, S. C., and Luse, D. S. (1991). RNA polymerase II elongation complexes paused after the synthesis of 15- or 35-base transcripts have different structures. Mol Cell Biol 11, 1508-22. Lis, J., and Wu, C. (1993). Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74, 1-4. Liu, M., Xie, Z., and Price, D. H. (1998). A human RNA polymerase II transcription termination factor is a SWIZ/SNFZ family member. J Biol Chem 273, 25541-25544. 152 Liu, X., Miller, C. W., Koeffler, P. H., and Berk, A. J. (1993). The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biol 13, 3291-300. Lobo, S. M., Tanaka, M., Sullivan, M. L., and Hernandez, N. (1992). A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 71, 1029-40. Lofquist, A. K., Li, H., Imboden, M. A., and Paule, M. R. (1993). Promoter opening (melting) and transcription initiation by RNA polymerase I requires neither nucleotide beta,gamma hydrolysis nor protein phosphorylation. Nucleic Acids Res 21 , 3233-3238. Lorch, Y., LaPointe, J. W., and Kornberg, R. D. (1992). Initiation on chromatin templates in a yeast RNA polymerase II transcription system. Genes Dev 6, 2282-7. Lu, H., Fisher, R. P., Bailey, P., and Levine, A. J. (1997). The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol 17, 5923-5934. Lu, H., Flores, 0., Weinmann, R., and Reinberg, D. (1991). The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci U S A 88, 10004-8. Lu, H., Zawel, L., Fisher, L., Egly, J. M., and Reinberg, D. (1992). Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase 11. Nature 358, 641-645. Lu, H., Zawel, L., Fisher, L., Egly, J. M., and Reinberg, D. (1992). Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II . Nature 358, 641-5. Luse, D. S., and Jacob, G. A. (1987). Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter. J Biol Chem 262, 14990-7. Ma, D., Olave, I., Merino, A., and Reinberg, D. (1996). Separation of the transcriptional coactivator and antirepression functions of transcription factor IIA. Proc Natl Acad Sci U S A 93, 6583-8. Ma, D., Watanabe, H., Mermelstein, F ., Admon, A., Oguri, K., Sun, X., Wada, T., lmai, T., Shiroya, T., Reinberg, D., and et al. (1993). Isolation of a cDNA encoding the largest subunit of TFIIA reveals functions important for activated transcription. Genes Dev 7, 2246-57. MacDonald, P. N., Sherman, D. R., Dowd, D. R., Jefcoat, S. C., Jr., and DeLisle, R. K. (1995). The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem 270, 4748-52. 153 Majello, B., Napolitano, G., De Luca, P., and Lania, L. (1998). Recruitment of human TBP selectively activates RNA polymerase II TATA- dependent promoters. J Biol Chem 273, 16509-16516. Makela, T. P., Parvin, J. D., Kim, J ., Huber, L. J ., Sharp, P. A., and Weinberg, R. A. (1995). A kinase-deficient transcription factor TFIIH is functional in basal and activated transcription. Proc Natl Acad Sci U S A 92, 5174-8. Maldonado, E., Drapkin, R., and Reinberg, D. (1996). Purification of human RNA polymerase II and general transcription factors. Methods Enzymol 274, 72-100. Maldonado, E., Ha, I., Cortes, P., Weis, L., and Reinberg, D. (1990). Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, IID, and IIB during formation of a transcription-competent complex. Mol Cell Biol 10, 6335-47. Maldonado, E., and Reinberg, D. (1995). News on initiation and elongation of transcription by RNA polymerase II. Curr Opin Cell Biol 7, 352-61. Maldonado, E., Shiekhattar, R., Sheldon, M., Cho, H., Drapkin, R., Rickert, P., Lees, E., Anderson, C. W., Linn, S., and Reinberg, D. (1996). A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86-9. Malik, S., Guermah, M., and Roeder, R. G. (1998). A dynamic model for PC4 coactivator function in RNA polymerase II transcription. Proc Natl Acad Sci U S A 95 , 2192-7. Malik, S., Lee, D. K., and Roeder, R. G. (1993). Potential RNA polymerase II-induced interactions of transcription factor TFIIB. Mol Cell Biol 13, 6253-9. Markovtsov, V., Mustaev, A., and Goldfarb, A. (1996). Protein-RNA interactions in the active center of transcription elongation complex. Proc Natl Acad Sci U S A 93 , 3221-6. Marshall, N. F ., Peng, J ., Xie, Z., and Price, D. H. (1996). Control of RNA polymerase II elongation potential by a novel carboxyl- terminal domain kinase. J Biol Chem 271, 27176-27183. Marshall, N. F., Peng, J., Xie, Z., and Price, D. H. (1996). Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 271, 27176-83. Marshall, N. F., and Price, D. H. (1992). Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol 12, 2078-2090. Marshall, N. F ., and Price, D. H. (1995). Purification of P-TEF b, a transcription factor required for the transition into productive elongation. J Biol Chem 270, 12335-12338. 154 Martinez, E., Chiang, C. M., Ge, H., and Roeder, R. G. (1994). TATA-binding protein- associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class 11 promoter. EMBO J 13, 3115-26. Martinez, E., Ge, H., Tao, Y., Yuan, C. X., Palhan, V., and Roeder, R. G. (1998). Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFIIlSO-containing TFIID complex. Mol Cell Biol 18, 6571-6583. Matsui, T., Segall, J ., Weil, P. A., and Roeder, R. G. (1980). Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 255 , 11992-11996. Maxon, M. E., Goodrich, J. A., and Tjian, R. (1994). Transcription factor IIE binds preferentially to RNA polymerase 11a and recruits TFIIH: a model for promoter clearance. Genes Dev 8, 515-24. Mazzarelli, J. M., Mengus, G., Davidson, 1., and Ricciardi, R. P. (1997). The transactivation domain of adenovirus ElA interacts with the C terminus of human TAF(II)135. J Virol 71, 7978-7983. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J ., Patterson, S. D., Wickens, M., and Bentley, D. L. (1997). The C-terminal domain of RNA polymerase 11 couples mRNA processing to transcription. Nature 385, 357-61. McCracken, S., and Greenblatt, J. (1991). Related RNA polymerase-binding regions in human RAP30/74 and Escherichia coli sigma 70. Science 253, 900-902. McCracken, S., and Greenblatt, J. (1991). Related RNA polymerase-binding regions in human RAP30/74 and Escherichia coli sigma 70 [published erratum appears in Science 1992 Mar 6;255(5049):1195]. Science 253, 900-2. McEwan, I. J ., Dahlman-Wright, K., Ford, J ., and Wright, A. P. (1996). Functional interaction of the c-Myc transactivation domain with the TATA binding protein: evidence for an induced fit model of transactivation domain folding. Biochemistry 35, 9584-9593. McEwan, I. J ., and Gustafsson, J. (1997). Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci U S A 94, 8485-8490. Melcher, K., and Johnston, S. A. (1995). GAL4 interacts with TATA-binding protein and coactivators. Mol Cell Biol 15, 2839-48. Memet, S., Saurin, W., and Sentenac, A. (1988). RNA polymerases B and C are more closely related to each other than to RNA polymerase A. J Biol Chem 263, 10048-51. 155 Merino, A., Madden, K. R., Lane, W. S., Charnpoux, J. J ., and Reinberg, D. (1993). DNA topoisomerase I is involved in both repression and activation of transcription. Nature 3 65 , 227-32. Metzger, W., Schickor, P., and Heumann, H. (1989). A cinematographic view of Escherichia coli RNA polymerase translocation. Embo J 8, 2745-2754. Mitchell, P. J ., and Tjian, R. (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-8. Mitsui, A., and Sharp, P. A. (1999). Ubiquitination of RNA polymerase 11 large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc Natl Acad Sci U S A 96, 6054-9. Mittal, V., and Hernandez, N. (1997). Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science 275, 1136-1140. Mizzen, C. A., Yang, X. J ., Kokubo, T., Brownell, J. E., Bannister, A. J ., Owen Hughes, T., Workman, J ., Wang, L., Berger, S. L., Kouzarides, T., Nakatani, Y., and Allis, C. D. (1996). The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 8 7, 1261-70. Moreland, R. J ., Hanas, J. S., Conaway, J. W., and Conaway, R. C. (1998). Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form. J Biol Chem 273, 26610-7. Moreland, R. J ., Tirode, F., Yan, Q., Conaway, J. W., Egly, J. M., and Conaway, R. C. (1999). A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J Biol Chem 274, 22127-30. Mustaev, A., Kozlov, M., Markovtsov, V., Zaychikov, E., Denissova, L., and Goldfarb, A. (1997). Modular organization of the catalytic center of RNA polymerase. Proc Natl Acad Sci U S A 94, 6641-6645. Myer, V. E., and Young, R. A. (1998). RNA polymerase II holoenzymes and subcomplexes. J Biol Chem 273, 27757-60. Na, J. G., and Hampsey, M. (1993). The Kluyveromyces gene encoding the general transcription factor IIB: structural analysis and expression in Saccharomyces cerevisiae. Nucleic Acids Res 21 , 3413-7. Nakajima, N., Horikoshi, M., and Roeder, R. G. (1988). Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box-promoter interactions of TFIID. Mol Cell Biol 8, 4028-40. 156 Neish, A. S., Anderson, S. F., Schlegel, B. P., Wei, W., and Parvin, J. D. (1998). Factors associated with the mammalian RNA polymerase 11 holoenzyme. Nucleic Acids Res 26, 847-53. Nikolov, D. B., Chen, H., Halay, E. D., Hoffman, A., Roeder, R. G., and Burley, S. K. (1996). Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci U S A 93, 4862-7. Nikolov, D. B., Chen, H., Halay, E. D., Usheva, A. A., Hisatake, K., Lee, D. K., Roeder, R. G., and Burley, S. K. (1995). Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377, 119-28. Nikolov, D. B., Hu, S. H., Lin, J ., Gasch, A., Hoffmann, A., Horikoshi, M., Chua, N. H., Roeder, R. G., and Burley, S. K. (1992). Crystal structure of TFIID TATA-box binding protein . Nature 360, 40-6. Nonet, M., Sweetser, D., and Young, R. A. (1987). Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50, 909-15. Nonet, M. L., and Young, R. A. (1989). Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715-24. O. Brien, T., Hardin, S., Greenleaf, A., and Lis, J. T. (1994). Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370, 75-7. O. Brien, T., and Lis, J. T. (1991). RNA polymerase II pauses at the 5' end of the transcriptionally induced Drosophila hsp70 gene. Mol Cell Biol 11, 5285—90. Ohkuma, Y., Hashimoto, S., Wang, C. K., Horikoshi, M., and Roeder, R. G. (1995). Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha. Mol Cell Biol 15, 4856-66. Ohkuma, Y., and Roeder, R. G. (1994). Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 368, 160-3. Ohkuma, Y., Sumimoto, H., Hoffmann, A., Shimasaki, S., Horikoshi, M., and Roeder, R. G. (1991). Structural motifs and potential sigma homologies in the large subunit of human general transcription factor TFIIE. Nature 354, 398-401. Ohkuma, Y., Sumimoto, H., Horikoshi, M., and Roeder, R. G. (1990). Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. Proc Natl Acad Sci U S A 8 7, 9163-7. 157 Orphanides, G., Lagrange, T., and Reinberg, D. (1996). The general transcription factors of RNA polymerase II. Genes Dev 10, 2657-83. Ossipow, V., Tassan, J. P., Nigg, E. A., and Schibler, U. (1995). A mammalian RNA polymerase 11 holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83, 137-46. Ozer, J ., Lezina, L. E., Ewing, J ., Audi, 3., and Lieberman, P. M. (1998). Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol 18, 2559-70. Ozer, J ., Moore, P. A., Bolden, A. H., Lee, A., Rosen, C. A., and Lieberman, P. M. (1994). Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev 8, 2324-35. Paal, K., Baeuerle, P. A., and Schmitz, M. L. (1997). Basal transcription factors TBP and TFIIB and the viral coactivator ElA 13S bind with distinct affinities and kinetics to the transactivation domain of NF-kappaB p65. Nucleic Acids Res 25, 1050-5. Pan, G., Aso, T., and Greenblatt, J. (1997). Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase 11 holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J Biol Chem 2 72, 24563-24571. Pan, G., and Greenblatt, J. (1994). Initiation of transcription by RNA polymerase II is limited by melting of the promoter DNA in the region immediately upstream of the initiation site. J Biol Chem 269, 30101-4. Pandey, N. B., Williams, A. 8., Sun, J. H., Brown, V. D., Bond, U., and Marzluff, W. F. (1994). Point mutations in the stem-loop at the 3' end of mouse histone mRN A reduce expression by reducing the efficiency of 3' end formation. Mol Cell Biol 14, 1709-20. Parada, C. A., and Roeder, R. G. (1996). Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384, 375-8. Paranjape, S. M., Kamakaka, R. T., and Kadonaga, J. T. (1994). Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63, 265-97. Pardee, T. S., Bangur, C. S., and Ponticelli, A. S. (1998). The N-tenninal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J Biol Chem 273, 17859-64. Park, E., Guzder, S. N., Koken, M. H., Jaspers-Dekker, 1., Weeda, G., Hoeijmakers, J. H., Prak ash, S., and Prakash, L. (1992). RAD25 (SSL2), the yeast homolog of the human 158 xeroderrna pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci U S A 89,11416-11420. Parker, C. S., and Topol, J. (1984). A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell 37, 273-83. Parvin, J. D., and Sharp, P. A. (1993). DNA topology and a minimal set of basal factors for transcription by RNA polymerase 11. Cell 73 , 533-40. Payne, J. M., Laybourn, P. J., and Dahmus, M. E. (1989). The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem 264, 19621-19629. Pearson, A., and Greenblatt, J. (1997). Modular organization of the E2F1 activation domain and its interaction with general transcription factors TBP and TFIIH. Oncogene 15, 2643-2658. Peng, J ., Marshall, N. F ., and Price, D. H. (1998). Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem 273, 13855-13860. Peng, J ., Zhu, Y., Milton, J. T., and Price, D. H. (1998). Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12, 755-762. Peterson, C. L. (1996). Multiple SWItches to turn on chromatin? Curr Opin Genet Dev 6, 171-175. Peterson, C. L., and Tamkun, J. W. (1995). The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci 20, 143-146. Peterson, M. G., Tanese, N., Pugh, B. F ., and Tjian, R. (1990). Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248, 1625-1630. Pinto, I., Ware, D. E., and Hampsey, M. (1992). The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68, 977-88. Pinto, 1., Wu, W. H., Na, J. G., and Hampsey, M. (1994). Characterization of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast. J Biol Chem 269, 30569-73. Platt, T. (1986). Transcription termination and the regulation of gene expression. Annu Rev Biochem 55, 339-72. 159 Poon, D., Bai, Y., Campbell, A. M., Bjorklund, S., Kim, Y. J ., Zhou, S., Kornberg, R. D., and Wei], P. A. (1995). Identification and characterization of a TFIID-like multiprotein complex from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92, 8224-8. Powell, W., Bartholomew, B., and Reines, D. (1996). Elongation factor 811 contacts the 3'-end of RNA in the RNA polymerase II elongation complex. J Biol Chem 271, 22301- 22304. Price, D. H., Sluder, A. E., and Greenleaf, A. L. (1989). Dynamic interaction between a Drosophila transcription factor and RNA polymerase 11. Mol Cell Biol 9, 1465—75. Proudfoot, N. J. (1989). How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem Sci 14, 105-10. Ptashne, M. (1988). How eukaryotic transcriptional activators work. Nature 335, 683-9. Ptashne, M. (1989). How gene activators work. Sci Am 260, 40-7. Ptashne, M., and Gann, A. (1997). Transcriptional activation by recruitment. Nature 386, 569-77. Pugh, B. F. (1996). Mechanisms of transcription complex assembly. Curr Opin Cell Biol 8, 303-11. Pugh, B. F., and Tjian, R. (1990). Mechanism of transcriptional activation by Spl: evidence for coactivators. Cell 61, 1187-97. Purnell, B. A., Emanuel, P. A., and Gilmour, D. S. (1994). TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class 11 genes. Genes Dev 8, 830-42. Quinn, J ., Fyrberg, A. M., Ganster, R. W., Schmidt, M. C., and Peterson, C. L. (1996). DNA-binding properties of the yeast SWI/SNF complex. Nature 379, 844-847. Qureshi, S. A., and Jackson, S. P. (1998). Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. Mol Cell 1, 389-400. Ranish, J. A., and Hahn, S. (1991). The yeast general transcription factor TFIIA is composed of two polypeptide subunits. J Biol Chem 266, 19320-7. Ranish, J. A., Lane, W. S., and Hahn, S. (1992). Isolation of two genes that encode subunits of the yeast transcription factor IIA. Science 255 , 1127-9. Rasmussen, E. B., and Lis, J. T. (1993). In vivo transcriptional pausing and cap formation on three DrOSOphila heat shock genes. Proc Natl Acad Sci U S A 90, 7923-7. 160 Ratner, J. N., Balasubrarnanian, B., Corden, J ., Warren, S. L., and Bregman, D. B. (1998). Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem 273, 5184-9. Rawling, J. M., and Alvarez-Gonzalez, R. (1997). TFIIF, a basal eukaryotic transcription factor, is a substrate for poly(ADP-ribosyl)ation. Biochem J 324, 249-253. Reinberg, D., Horikoshi, M., and Roeder, R. G. (1987). Factors involved in specific transcription in mammalian RNA polymerase 11. Functional analysis of initiation factors 11A and IID and identification of a new factor operating at sequences downstream of the initiation site. J Biol Chem 262, 3322-30. Reinberg, D., and Roeder, R. G. (1987). Factors involved in specific transcription by mammalian RNA polymerase II. Transcription factor IIS stimulates elongation of RNA chains. J Biol Chem 262, 3331-7. Reines, D., Conaway, J. W., and Conaway, R. C. (1996). The RNA polymerase 11 general elongation factors. Trends Biochem Sci 21 , 351-355. Reines, D., Wells, D., Chamberlin, M. J ., and Kane, C. M. (1987). Identification of intrinsic termination sites in vitro for RNA polymerase 11 within eukaryotic gene sequences. J Mol Biol 196, 299-312. Robert, F., Douziech, M., Forget, D., Egly, J. M., Greenblatt, J ., Burton, Z. F., and Coulombe, B. (1998). Wrapping of promoter DNA around the RNA polymerase II initiation complex induced by TFIIF . Mol Cell 2, 341-51. Robert, F., Forget, D., Li, J ., Greenblatt, J ., and Coulombe, B. (1996). Localization of subunits of transcription factors [IE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J Biol Chem 271, 8517-20. Roberts, S. G., and Green, M. R. (1994). Activator-induced conformational change in general transcription factor TFIIB. Nature 371, 717-20. Roberts, S. G., Ha, I., Maldonado, E., Reinberg, D., and Green, M. R. (1993). Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363, 741-4. Rochette-Egly, C., Adam, S., Rossignol, M., Egly, J. M., and Chambon, P. (1997). Stimulation of RAR alpha activation function AF -1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90, 97-107. Roeder, R. G. (1976). Eukaryotic nuclear RNA polymerases. pp. 285-329. In: Losick R, Chamberlin M, ed. RNA polymerase. Cold Spring Harbor, NY. Cold Spring Harbor Laboratory 58, 11. 161 Roeder, R. G. (1996). The role of general initiation factors in transcription by RNA polymerase 11. Trends Biochem Sci 21, 327-35. Rossignol, M., Keriel, A., Staub, A., and Egly, J. M. (1999). Kinase activity and phosphorylation of the largest subunit of TFIIF transcription factor. J Biol Chem 274, 22387-92. Rost, B., Sander, C., and Schneider, R. (1994). PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10, 53-60. Roy, A. L., Malik, S., Meisteremst, M., and Roeder, R. G. (1993). An alternative pathway for transcription initiation involving TFII-I. Nature 3 65 , 355-9. Roy, R., Adamczewski, J. P., Seroz, T., Vermeulen, W., Tassan, J. P., Schaeffer, L., Nigg, E. A., Hoeijmakers, J. H., and Egly, J. M. (1994). The M015 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79, 1093-101. Roy, R., Schaeffer, L., Humbert, S., Vermeulen, W., Weeda, G., and Egly, J. M. (1994). The DNA-dependent ATPase activity associated with the class 11 basic transcription factor BTF2/TFIIH. J Biol Chem 269, 9826-32. Rudd, M. D., Izban, M. G., and Luse, D. S. (1994). The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc Natl Acad Sci U S A 91, 8057-61. Ruppert, S., and Tjian, R. (1995). Human TAF 11250 interacts with RAP74: implications for RNA polymerase II initiation. Genes Dev 9, 2747-55. Samkurashvili, 1., and Luse, D. S. (1998). Structural changes in the RNA polymerase II transcription complex during transition from initiation to elongation. Mol Cell Biol 18, 5343-5354. Sancar, A. (1996). DNA excision repair. Annu Rev Biochem 65 , 43-81. Sauer, F., F ondell, J. D., Ohkuma, Y., Roeder, R. G., and Jackie, H. (1995). Control of transcription by Kruppel through interactions with TFIIB and TFIIE beta. Nature 375, 162-164. Sauer, F., Hansen, S. K., and Tjian, R. (1995). DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila bicoid. Science 270, 1825- 1828. Sauer, F., Hansen, S. K., and Tjian, R. (1995). Multiple TAFIIs directing synergistic activation of transcription. Science 270, 1783-1788. 162 Sawadogo, M., and Roeder, R. G. (1984). Energy requirement for specific transcription initiation by the human RNA polymerase II system. J Biol Chem 259, 5321-6. Sawadogo, M., and Roeder, R. G. (1985). Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci U S A 82, 4394-8. Sawadogo, M., and Roeder, R. G. (1985). Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165-75. Sawadogo, M., and Sentenac, A. (1990). RNA polymerase B (11) and general transcription factors. Annu Rev Biochem 59, 711-54. Sayre, M. H., Tschochner, H., and Kornberg, R. D. (1992). Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem 26 7, 23376-82. Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H., Chambon, P., and Egly, J. M. (1993). DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58-63. Schmidt, M. C., Kao, C. C., Pei, R., and Berk, A. J. (1989). Yeast TATA-box transcription factor gene. Proc Natl Acad Sci U S A 86, 7785-9. Schuck, P. (1997). Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26, 541-66. Schwerk, C., Klotzbucher, M., Sachs, M., Ulber, V., and Klein Hitpass, L. (1995). Identification of a transactivation function in the progesterone receptor that interacts with the TAFIIl 10 subunit of the TFIID complex. J Biol Chem 270, 21331-8. Scully, R., Anderson, S. F., Chao, D. M., Wei, W., Ye, L., Young, R. A., Livingston, D. M., and Parvin, J. D. (1997). BRCAl is a component of the RNA polymerase 11 holoenzyme. Proc Natl Acad Sci U S A 94, 5605-5610. Selby, C. P., and Sancar, A. (1997). Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J Biol Chem 272, 1885-90. Serizawa, H., Conaway, J. W., and Conaway, R. C. (1994). An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl- terminal domain by TFIIH. J Biol Chem 269, 20750-20756. 163 Serizawa, H., Conaway, J. W., and Conaway, R. C. (1993). Phosphorylation of C- terrninal domain of RNA polymerase II is not required in basal transcription. Nature 3 63, 371-3 74. Serizawa, H., Conaway, R. C., and Conaway, J. W. (1992). A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver. Proc Natl Acad Sci U S A 89, 7476-7480. Serizawa, H., Conaway, R. C., and Conaway, J. W. (1992). A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver. Proc Natl Acad Sci U S A 89, 7476-80. Serizawa, H., Conaway, R. C., and Conaway, J. W. (1993). Multifunctional RNA polymerase II initiation factor delta from rat liver. Relationship between carboxyl- terrninal domain kinase, ATPase, and DNA helicase activities. J Biol Chem 268, 17300- 17308. Serizawa, H., Conaway, R. C., and Conaway, J. W. (1993). Multifunctional RNA polymerase II initiation factor delta from rat liver. Relationship between carboxyl- terrninal domain kinase, ATPase, and DNA helicase activities. J Biol Chem 268, 17300- 8. Serizawa, H., Makela, T. P., Conaway, J. W., Conaway, R. C., Weinberg, R. A., and Young, R. A. (1995). Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 3 74, 280-2. Severinov, K., Mustaev, A., Kukarin, A., Muzzin, 0., Bass, 1., Darst, S. A., and Goldfarb, A. (1996). Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem 271, 27969-74. Shapiro, D. J ., Sharp, P. A., Wahli, W. W., and Keller, M. J. (1988). A high-efficiency HeLa cell nuclear transcription extract. DNA 7, 47-55. Sharp, P. A. (1992). TATA-binding protein is a classless factor. Cell 68, 819-21. Shen, F., Triezenberg, S. J ., Hensley, P., Porter, D., and Knutson, J. R. (1996). Critical amino acids in the transcriptional activation domain of the herpesvirus protein VP16 are solvent-exposed in highly mobile protein segments. An intrinsic fluorescence study. J Biol Chem 2 71, 4819-4826. Shen, F ., Triezenberg, S. J ., Hensley, P., Porter, D., and Knutson, J. R. (1996). Transcriptional activation domain of the herpesvirus protein VP16 becomes conforrnationally constrained upon interaction with basal transcription factors. J Biol Chem 271, 4827-37. 164 Shi, X., Chang, M., Wolf, A. J., Chang, C. H., Frazer Abel, A. A., Wade, P. A., Burton, Z. F ., and Jaehning, J. A. (1997). Cdc73p and Paflp are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme. Mol Cell Biol 17, 1160-9. Shi, X., F inkelstein, A., Wolf, A. J ., Wade, P. A., Burton, Z. F., and Jaehning, J. A. (1996). Pafl p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol Cell Biol 16, 669-76. Shilatifard, A., Duan, D. R., Haque, D., Florence, C., Schubach, W. H., Conaway, J. W., and Conaway, R. C. (1997). ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc Natl Acad Sci U S A 94, 3639-3643. Shilatifard, A., Haque, D., Conaway, R. C., and Conaway, J. W. (1997). Structure and function of RNA polymerase II elongation factor ELL. Identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex. J Biol Chem 272, 22355-22363. Shilatifard, A., Lane, W. S., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1996). An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 1873-6. Shilatifard, A., Lane, W. S., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1996). An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 1873-1876. Simmen, K. A., Bemues, J ., Lewis, J. D., and Mattaj, I. W. (1992). Cofractionation of the TATA-binding protein with the RNA polymerase III transcription factor TFIIIB. Nucleic Acids Res 20, 5889-98. Smale, S. T. (1997). Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta 1351, 73-88. Sopta, M., Burton, Z. F., and Greenblatt, J. (1989). Structure and associated DNA- helicase activity of a general transcription initiation factor that binds to RNA polymerase 11. Nature 341, 410-4. Sopta, M., Carthew, R. W., and Greenblatt, J. (1985). Isolation of three proteins that bind to mammalian RNA polymerase II. J Biol Chem 260, 10353-60. Spencer, C. A., and Groudine, M. (1990). Transcription elongation and eukaryotic gene regulation. Oncogene 5, 777-785. Starr, D. B., and Hawley, D. K. (1991). TFIID binds in the minor groove of the TATA box. Cell 6 7, 1231-40. 165 Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12, 599-606. Sun, X., Ma, D., Sheldon, M., Yeung, K., and Reinberg, D. (1994). Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev 8, 2336-48. Sun, Z. W., and Hampsey, M. (1995). Identification of the gene (SSU71/T F G1) encoding the largest subunit of transcription factor TFIIF as a suppressor of a TFIIB mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92, 3127-31. Svaren, J ., Schmitz, J ., and Horz, W. (1994). The transactivation domain of Pho4 is required for nucleosome disruption at the PHOS promoter. Embo J 13, 4856-62. Svejstrup, J. Q., Vichi, P., and Egly, J. M. (1996). The multiple roles of transcription/repair factor TFIIH. Trends Biochem Sci 21 , 346-50. Sweetser, D., Nonet, M., and Young, R. A. (1987). Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci U S A 84, 1192-6. Taggart, A. K., Fisher, T. S., and Pugh, B. F. (1992). The TATA-binding protein and associated factors are components of pol III transcription factor TFIIIB. Cell 71, 1015-28. Taggart, A. K., and Pugh, B. F. (1996). Dimerization of TFIID when not bound to DNA. Science 272, 1331-3. Takagi, Y., Conaway, R. C., and Conaway, J. W. (1996). Characterization of elongin C functional domains required for interaction with elongin B and activation of elongin A. J Biol Chem 271, 25562-25568. Tan, 8., Aso, T., Conaway, R. C., and Conaway, J. W. (1994). Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J Biol Chem 269, 25684-91. Tan, 8., Conaway, R. C., and Conaway, J. W. (1995). Dissection of transcription factor TFIIF functional domains required for initiation and elongation. Proc Natl Acad Sci U S A 92, 6042-6. Tan, 8., Garrett, K. P., Conaway, R. C., and Conaway, J. W. (1994). Cryptic DNA- binding domain in the C terminus of RNA polymerase 11 general transcription factor RAP30. Proc Natl Acad Sci U S A 91 , 9808-12. Tan, 8., Hunziker, Y., Sargent, D. F., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381, 127-151. 166 Tan, 8., Hunziker, Y., Sargent, D. F ., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex . Nature 381, 127-51. Tanese, N., Pugh, B. F., and Tjian, R. (1991). Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev 5, 2212-24. Tang, H., Sun, X., Reinberg, D., and Ebright, R. H. (1996). Protein-protein interactions in eukaryotic transcription initiation: structure of the preinitiation complex. Proc Natl Acad Sci U S A 93, 1119-24. Tennyson, C. N., Klamut, H. J ., and Worton, R. G. (1995). The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9, 184- 90. Thompson, C. M., Koleske, A. J ., Chao, D. M., and Young, R. A. (1993). A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361-75. Thummel, C. S., Burtis, K. C., and Hogness, D. S. (1990). Spatial and temporal patterns of E74 transcription during Drosophila development. Cell 61 , 101-11. Timmers, H. T. (1994). Transcription initiation by RNA polymerase 11 does not require hydrolysis of the beta-garnma phosphoanhydride bond of ATP. EMBO J 13, 391-9. Tintut, Y., Wang, J. T., and Gralla, J. D. (1995). Abortive cycling and the release of polymerase for elongation at the sigma 54-dependent glnAp2 promoter. J Biol Chem 270, 24392-24398. Tong, X., Drapkin, R., Yalamanchili, R., Mosialos, G., and Kieff, E. (1995). The Epstein- Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15, 473 5-44. Treich, I., Carles, C., Riva, M., and Sentenac, A. (1992). RPClO encodes a new mini subunit shared by yeast nuclear RNA polymerases. Gene Expr 2, 31-7. Treich, I., Riva, M., and Sentenac, A. (1991). Zinc-binding subunits of yeast RNA polymerases. J Biol Chem 266, 21971-6. Triezenberg, S. J. (1995). Structure and function of transcriptional activation domains. Curr Opin Genet Dev 5, 190-196. Truant, R., Xiao, H., Ingles, C. J ., and Greenblatt, J. (1993). Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J Biol Chem 268, 2284-7. 167 Tsukiyama, T., Daniel, C., Tamkun, J ., and Wu, C. (1995). ISWI, a member of the SW12/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83 , 1021-1026. Tsukiyama, T., and Wu, C. (1995). Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83, 1011-1020. Tyree, C. M., George, C. P., Lira DeVito, L. M., Wampler, S. L., Dahmus, M. E., Zawel, L., and Kadonaga, J. T. (1993). Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev 7, 1254-65. Tyree, C. M., George, C. P., Lira-DeVito, L. M., Wampler, S. L., Dahmus, M. E., Zawel, L., and Kadonaga, J. T. (1993). Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev 7, 1254-1265. Ucker, D. S., and Yamamoto, K. R. (1984). Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates. J Biol Chem 259, 7416-7420. Uesugi, M., Nyanguile, 0., Lu, H., Levine, A. J ., and Verdine, G. L. (1997). Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277, 1310-1313. Uptain, S. M., Kane, C. M., and Chamberlin, M. J. (1997). Basic mechanisms of transcript elongation and its regulation. Annu Rev Biochem 66, 117-72. Usheva, A., Maldonado, E., Goldring, A., Lu, H., Houbavi, C., Reinberg, D., and Aloni, Y. (1992). Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell 69, 871-81. Usheva, A., and Shenk, T. (1994). TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase 11 direct basal transcription on supercoiled template DNA. Cell 76, 1115-21. Van Dyke, M. W., Roeder, R. G., and Sawadogo, M. (1988). Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. Science 241, 1335-8. Van Dyke, M. W., Sawadogo, M., and Roeder, R. G. (1989). Stability of transcription complexes on class 11 genes. Mol Cell Biol 9, 342-4. van Vuuren, A. J ., Vermeulen, W., Ma, L., Weeda, G., Appeldoom, E., Jaspers, N. G., van der Eb, A. J ., Bootsma, D., Hoeijmakers, J. H., Humbert, S., and et al. (1994). 168 Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). EMBO J 13, 1645-53. Verrijzer, C. P., Chen, J. L., Yokomori, K., and Tjian, R. (1995). Binding of TAFs to core elements directs promoter selectivity by RNA polymerase 11. Cell 81, 1115-25. Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., and Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo J 15, 2508-18. von Hippel, P. H. (1998). An integrated model of the transcription complex in elongation, termination, and editing. Science 281, 660-665. Wade, P. A., Werel, W., Fentzke, R. C., Thompson, N. E., Leykam, J. F., Burgess, R. R., Jaehning, J. A., and Burton, Z. F. (1996). A novel collection of accessory factors associated with yeast RNA polymerase 11. Protein Expr Purif 8, 85-90. Wang, B. Q., and Burton, Z. F. (1995). Functional domains of human RAP74 including a masked polymerase binding domain. J Biol Chem 270, 27035-44. Wang, B. Q., Kostrub, C. F., F inkelstein, A., and Burton, Z. F. (1993). Production of human RAP30 and RAP74 in bacterial cells. Protein Expr Purif 4, 207-14. Wang, B. Q., Lei, L., and Burton, Z. P. (1994). Importance of codon preference for production of human RAP74 and reconstitution of the RAP30/74 complex. Protein Expr Purif 5, 476-85. Wang, E. H., Zou, S., and Tjian, R. (1997). TAF11250-dependent transcription of cyclin A is directed by ATP activator proteins. Genes Dev 11, 2658-2669. Wang, W., Carey, M., and Gralla, J. D. (1992). Polymerase 11 promoter activation: closed complex formation and ATP- driven start site opening. Science 255 , 450-453. Wang, Z., Svejstrup, J. Q., Feaver, W. J ., Wu, X., Kornberg, R. D., and Friedberg, E. C. (1994). Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 368, 74-6. Weeda, G., Eveno, E., Donker, 1., Vermeulen, W., Chevallier Lagente, O., Taieb, A., Stary, A., Hoeijmakers, J. H., Mezzina, M., and Sarasin, A. (1997). A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am J Hum Genet 60, 320-9. Weeda, G., Rossignol, M., Fraser, R. A., Winkler, G. S., Vermeulen, W., van't Veer, L. J ., Ma, L., Hoeijmakers, J. H., and Egly, J. M. (1997). The XPB subunit of repair/transcription factor TFIIH directly interacts with SUGl , a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res 25 , 2274-2283. 169 Weeda, G., van Ham, R. C., Vermeulen, W., Bootsma, D., van der Eb, A. J ., and Hoeijmakers, J. H. (1990). A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62, 777-91. Weil, P. A., Luse, D. S., Segall, J ., and Roeder, R. G. (1979). Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18, 469-484. Weis, L., and Reinberg, D. (1992). Transcription by RNA polymerase II: initiator- directed formation of transcription-competent complexes. FASEB J 6, 3300-9. Welch, M. D., and Drubin, D. G. (1994). A nuclear protein with sequence similarity to proteins implicated in human acute leukemias is important for cellular morphogenesis and actin cytoskeletal function in Saccharomyces cerevisiae. Mol Biol Cell 5, 617-32. Welch, M. D., Vinh, D. B., Okamura, H. H., and Drubin, D. G. (1993). Screens for extragenic mutations that fail to complement actl alleles identify genes that are important for actin function in Saccharomyces cerevisiae. Genetics 135, 265-74. White, J ., Brou, C., Wu, J ., Lutz, Y., Moncollin, V., and Chambon, P. (1992). The acidic transcriptional activator GAL-VP16 acts on preformed template-committed complexes. EMBO J 11, 2229-40. Wilson, C. J ., Chao, D. M., Imbalzano, A. N., Schnitzler, G. R., Kingston, R. E., and Young, R. A. (1996). RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84, 235-44. Workman, J. L., Taylor, I. C., and Kingston, R. E. (1991). Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64, 533- 44. Woychik, N. A., Liao, S. M., Kolodziej, P. A., and Young, R. A. (1990). Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev 4, 313-23. Wright, S. (1993). Regulation of eukaryotic gene expression by transcriptional attenuation. Mol Biol Cell 4, 661-8. Wu, W. H., and Hampsey, M. (1999). An activation-specific role for transcription factor TFIIB in vivo. Proc Natl Acad Sci U S A 96, 2764-9. Wu, Y., Reece, R. J ., and Ptashne, M. (1996). Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15, 3951-63. 170 Xiao, H., Friesen, J. D., and Lis, J. T. (1995). Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol Cell Biol 15, 5757-61. Xiao, H., Pearson, A., Coulombe, B., Truant, R., Zhang, S., Regier, J. L., Triezenberg, S. J ., Reinberg, D., Flores, O., Ingles, C. J ., and et al. (1994). Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 14, 7013- 24. Xie, Z., and Price, D. (1997). Drosophila factor 2, an RNA polymerase II transcript release factor, has DNA-dependent ATPase activity. J Biol Chem 272, 31902-31907. Xie, Z., and Price, D. H. (1996). Purification of an RNA polymerase II transcript release factor from Drosophila. J Biol Chem 2 71 , 11043-11046. Xing, L., Gopal, V. K., and Quinn, P. G. (1995). cAMP response element-binding protein (CREB) interacts with transcription factors IIB and IID. J Biol Chem 270, 17488-17493. Yamashita, S., Hisatake, K., Kokubo, T., Doi, K., Roeder, R. G., Horikoshi, M., and Nakatani, Y. (1993). Transcription factor TFIIB sites important for interaction with promoter-bound TFIID. Science 261, 463-6. Yokomori, K., Admon, A., Goodrich, J. A., Chen, J. L., and Tjian, R. (1993). Drosophila TFIIA-L is processed into two subunits that are associated with the TBP/T AF complex. Genes Dev 7, 2235-45. Yokomori, K., Zeidler, M. P., Chen, J. L., Verrijzer, C. P., Mlodzik, M., and Tjian, R. (1994). Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes Dev 8, 2313-23. Yonaha, M., Aso, T., Kobayashi, Y., Vasavada, H., Yasukochi, Y., Weissman, S. M., and Kitajima, S. (1993). Domain structure of a human general transcription initiation factor, TFIIF. Nucleic Acids Res 21 , 273-9. Yonaha, M., Tsuchiya, T., and Yasukochi, Y. (1997). Cell-cycle-dependent phosphorylation of the basal transcription factor RAP74. FEBS Lett 410, 477-80. Yoon, H., Sitikov, A. S., Jeon, C., and Agarwal, K. (1998). Preferential interaction of the mRNA proofreading factor TFIIS zinc ribbon with rU.dA base pairs correlates with its function. Biochemistry 37, 12104-12112. Young, R. A. (1991). RNA polymerase II. Annu Rev Biochem 60, 689-715. Zandomeni, R., Bunick, D., Ackerman, S., Mittleman, B., and Weinmann, R. (1983). Mechanism of action of DRB. 111. Effect on specific in vitro initiation of transcription. J Mol Biol 167, 561-574. 171 Zawel, L., Kumar, K. P., and Reinberg, D. (1995). Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 9, 1479-90. Zawel, L., and Reinberg, D. (1995). Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem 64, 533-61. Zawel, L., and Reinberg, D. (1993). Initiation of transcription by RNA polymerase II: a multi-step process. Prog Nucleic Acid Res Mol Biol 44, 67-108. Zaychikov, E., Martin, E., Denissova, L., Kozlov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A., and Mustaev, A. (1996). Mapping of catalytic residues in the RNA polymerase active center. Science 273, 107-9. Zehring, W. A., and Greenleaf, A. L. (1990). The carboxyl-terminal repeat domain of RNA polymerase II is not required for transcription factor Spl to function in vitro. J Biol Chem 265, 8351-3. Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S., and Greenleaf, A. L. (1988). The C-terminal repeat domain of RNA polymerase 11 largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc Natl Acad Sci U S A 85 , 3698-702. Zhou, Q., Boyer, T. G., and Berk, A. J. (1993). Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev 7, 180-7. Zhou, Q. A., Schmidt, M. C., and Berk, A. J. (1991). Requirement for acidic amino acid residues immediately N-terrninal to the conserved domain of Saccharomyces cerevisiae TFIID. EMBO J 10, 1843-52. Zhu, H., Joliot, V., and Prywes, R. (1994). Role of transcription factor TFIIF in serum response factor-activated transcription. J Biol Chem 269, 3489-97. Zhu, W., Zeng, Q., Colangelo, C. M., Lewis, M., Summers, M. F ., and Scott, R. A. (1996). The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat Struct Biol 3, 122-124. Zhu, Y., Pe'ery, T., Peng, J ., Rarnanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997). Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11, 2622-2632. Zwilling, S., Annweiler, A., and Wirth, T. (1994). The POU domains of the Oct] and 0th transcription factors mediate specific interaction with TBP. Nucleic Acids Res 22, 1 655-62. 172