‘ . . Chart! u {3.5. 1%” . E i! 5...“? nun... to: 4b.? 3.. 1d! , IL... ..rv..¢l {it}; (in gnulausda Jinn.» .!... sauna: 2. i. u‘. I!" II! l 3....H ....l. .5: .l». -5 . Olr‘ .319}. I‘ll-“‘3‘ _ Il..r.'.. Inf-(10...; . . I J Il'l lllllllllllllle"Ill"llllllllllllllllllllllllllllllllll (1293 02074 1983 (are LIBRARY Michigan State University This is to certify that the thesis entitled BIOLOGICAL PERFORMANCE OF CUPROUS AND CUPRIC COPPER AGAINST HOOD DECAY FUNGI presented by Reining Cut has been accepted towards fulfillment of the requirements for "-5- ‘ degree in M MW Major professor Date ”'24- ’qqq 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN Box to remove this checkout from your record. To AVOID FINB return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE ERR! 9 50$ 11m ammunpespu BIOLOGICAL PERFORMANCE OF CUPROUS AND CUPRIC COPPER AGAINST WOOD DECAY FUNGI By Weining Cui A THESIS Submitted to Michigan State University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Department of Forestry 1999 ABSTRACT BIOGICAL PERFORMANCE OF CUPROUS AND CUPRIC COPPER AGAINST WOOD DECAY FUNGI By Weining (hi Copper naphthenate and copper ethanolamine solutions with various copper metal concentrations (0 to 1%) were formulated and used to treat southern yellow pine and sugar maple. After treatment, a post-treatment steaming was conducted at various length of time, from O to 240 minutes. Atomic absorption spectrometer (AAS) was used to analyze the copper concentration in treating solutions and in treated wood. A colorimetric method based on the specific reaction of cuprous copper (Cu (1)) and 2,2'-biquinoline in acetic acid matrix was used to monitor and to quantify Cu (1) in solutions and in treated wood. Data clearly indicate that the post-treatment steaming promotes the conversion of Cu (H) to Cu (1). This was confirmed by the increase of Cu (I) with the increase of the post-treatment steaming duration period. A laboratory soil block test was conducted using both white and brown rot fungi. The decay index of copper naphthenate treated southern yellow pine and sugar maple, and copper ethanolarnine treated sugar maple challenged by copper tolerant brown rot, Poria placenta, were significantly influenced by the content of Cu (I) / Cu (11). The weight loss was higher in treated wood with higher Cu (1) content, suggesting that the toxicity of Cu (1) to decay fungi is lower than that of Cu (II). It was hypothesized that Cu20 is less toxic because it is less soluble in water, which blocks the fiirther interactions between copper and fungi or wood components. ACKNOWLEDGEMENT I would like to express my sincere gratitude to my advisor Dr. D. Pascal Kamdem, for his guidance, support and patience during the course of my graduate studies. Thanks to the committee members, Dr. Prof. Emmett Braselton and Dr. Eugene A. Pasek for their support and their valuable suggestions. I am much obliged to Dr. Jun Zhang, Ismail Jusoh and Justin Zyskowski for their help and advise. Thanks to the student workers for their help in the sample preparation. The USDA-C SREES Eastern Hardwood Utilization Program in the Department of Forestry at Michigan State University provided funding for this research. The continued financial support throughout my research program was gratefully acknowledged. I would like to thank my parents for their love and understanding. iii TABLE OF CONTENTS LIST OF TABLES ................................................................................................... vii LIST OF FIGURES .................................................................................................. viii INTRODUCTION .................................................................................................... 1 1.1 Background and proposed work ......................................................... 1 LITERATURE REVIEW ......................................................................................... S 2.1 White rot decay .................................................................................. 5 2.2 Brown rot decay ................................................................................. 6 2.3 Soft rot decay ..................................................................................... 8 2.4 Classification of wood degradation by wood decay fungi .................... 8 2.5 Chemical properties of copper ............................................................ 9 MATERIALS AND METHODS .............................................................................. 11 3.1 Wood treatment ................................................................................. 11 3.1.1 Wood species and wood sizes ................................................. 11 3.1.2 Treating solutions .................................................................... 11 3.1.3 Wood treatment ...................................................................... 12 3.1.4 Sterilization of wood blocks .................................................... 12 3.2. Copper analysis ................................................................................... 13 3.2.] Analysis of elemental copper content in wood ......................... 13 3.2.2 Analysis ofCu (I) in wood ...................................................... 13 iv 3.3 Soil-block test of Cu-N and Cu-EA treated wood after post-treatment steaming ............................................................... 14 3.4 Statistical analysis ................................................................................ 16 RESULTS AND DISCUSSION ............................................................................... 17 4.1 Wood appearance ................................................................................ 17 4.2 Copper retention in treated wood ......................................................... 17 4.3 Cu (1) analysis in wood ......................................................................... 17 4.3.1 Characterization of Cu (I)—2,2'-biquinoline by UV/VI S spectrophotometer ................................................. 18 4.3.2 Quantification of Cu (I)-2,2'-biquinoline complex in solution .................................................................. 19 4.3.3 Cu (1) and Cu (11) content in treated wood .............................. 19 4.4 Mass balance for Cu (I) and Cu (II) analysis ........................................ 21 4.5 Soil block test results ........................................................................... 21 4. 5.1 Cu -N treated SYP after Poria placenta exposure .................. 22 4. 5.2 Cu —N treated SYP after Gloeophyllum trabeum exposure ..... 22 4. 5.3 Cu -N treated SM after Poria placenta exposure ................... 22 4. 5.4 Cu -N treated SM after Gloeophyllum trabeum exposure ....... 23 4. 5.5 Cu —EA treated SYP after Poria placenta exposure ............... 23 4.5.6 Cu —EA treated SYP after Gloeophyllum trabeum exposure ...23 4. 5.7 Cu —EA treated SMafier Poria placenta exposure .................. 24 4.5.8 Cu -—EA treated SM after Gloeoplnzllum trabeum exposure ....24 4.5 The weight losses and the copper content in wood .............................. 24 CONCLUSIONS ...................................................................................................... 27 APPENDIX: Initial data of weight of wood blocks for pressure treatment and soil block test ........................................... 63 REFERENCES ......................................................................................................... 8O Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. LIST OF TABLES Oxidation states and stereochemistry of copper ........................................ 28 Cu (I) content in Cu-N treated wood after various periods of post-treatment steaming ...................................... 29 Cu (1) content in Cu-EA treated wood after various periods of post-treatment steaming ...................................... 30 Mass balance for Cu (I) and Cu (II) analysis .............................................. 31 Weight losses of SYP after laboratory soil block test ................................ 32 Weight losses of SM alter laboratory soil block test .................................. 33 Spearman rank order correlation for copper species and average weight losses after soil block test .......................................... 34 Overall effect of post-treatment steaming on Cu-N treated SYP: weight losses fi'om soil block test: Statistical One Way ANOVA and Tukey ................................................. 35 Overall effect of post-treatment steaming on Cu-EA treated SYP: weight losses from soil block test: Statistical One Way ANOVA and Tukey ................................................. 36 Overall effect of post-treatment steaming on Cu-N treated SM: weight losses from soil block test: Statistical One Way ANOVA and Tukey ................................................. 37 Overall effect of post-treatment steaming on Cu-EA treated SM: weight loss from soil block test: Statistical One Way AN OVA and Tukey ................................................. 38 vii Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. LIST OF FIGURES Building blocks of lignin ........................................................................ 39 Oxidation/reduction potential data of Cu (I) and Cu (11) ......................... 40 Copper retention in wood after pressure treatment with Cu-N ................ 41 Copper retention in wood afier pressure treatment with Cu-EA .............. 42 Cu (1) analysis using 2,2'-biquinoline ....................................................... 43 UV/VIS spectrum of (a) Cu20 and Cu-N with 2,2'-biquinoline (b) Cu-N with 2,2'-biquinoline (c) Cu20 with 2,2'-biquinoline ................................................................ 44 UVNIS spectrum of (a) Cu20 and Cu-EA with 2,2'-biquinoline (b) Cu-EA with 2,2'-biquinoline (c) Cu20 with 2,2'-biquinoline ................................................................ 45 Calibration curve of Cu (I) -2,2'-biquinoline ........................................... 46 Cu (1) content in Cu-N treated SYP after post-treatment steaming .......... 47 Cu (1) content in Cu-EA treated SYP after post-treatment steaming ....... 48 Cu (1) content in Cu-N treated SM after post-treatment steaming ........... 49 Cu (1) content in Cu-EA treated SM after post-treatment steaming ......... 50 Cu (11) in Cu-N treated SYP after post-treatment steaming ..................... 51 Cu (11) in Cu-N treated SM afier post-treatment steaming ...................... 52 Cu (11) in Cu-EA treated SYP after post-treatment steaming .................. 53 Cu (II) in Cu-EA treated SM after post-treatment steaming .................... 54 Average weight losses of Cu-N treated SYP to brown-rot fungi ............. 55 Average weight losses of Cu-N treated SM to brown-rot firngi ............... 56 viii Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 22. Average weight losses of Cu-EA treated SYP to brown-rot fungi ........... 57 Average weight losses of Cu-EA treated SM to brown-rot fiingi ............ 58 Average weight losses (%) after a soil block test versus the Cu (1) content (%) in Cu-N treated SYP (Cu retention: 1.88 mg/g) ...................................................................... 59 Average weight losses (%) after a soil block test versus the Cu (1) content (%) in Cu-EA treated SYP (Cu retention: 5.00 mg/g) ...................................................................... 60 Average weight losses (%) after a soil block test versus the Cu (1) content (%) in Cu-N treated SM (Cu retention: 2.50 mg/g) ...................................................................... 61 Average weight losses (%) after a soil block test versus the Cu (1) content (%) in Cu-EA treated SM (Cu retention: 4.44 mg/g) ...................................................................... 62 ix INTRODUCTION 1.1 Background and proposed work Wood bio-deterioration is generally caused by biological decay including fungi stains, insect infestation, etc. The properties mostly afl'ected are the density and the mechanical properties. The wood-destroying microorganisms are subdivided into four main groups: white rot, brown rot, soft rot, and mold/stain firngi (Eaton and Hale, 1993). White and brown rot fiingi are predominant agents of firngal degradation of wood. Their enzymatic capacities to depolymerize wood provide them with the potential to colonize wood at all stages of decomposition. Brown-rot firngi are mostly common in coniferous species, whereas white-rot firngi are frequent in angiosperms (Rayner and Boddy, 1988). Therefore, brown rot and white rot are the most frequently used firngi in study of wood protection. Copper compounds have been used as fungicides over a century. Water-home copper based preservatives such as ammoniacal copper arsenate (ACA), ammoniacal copper zinc arsenate (ACZA), acid copper chromate (ACC), chromated copper arsenate (CCA), copper bis (dimethyldithiocarbamate) (CDDC), ammoniacal copper citrate (CC), ammonical copper quat (ACQ-B and ACQ-D), copper azole-type A (CBA-A), and oil- borne copper based wood preservatives such as copper naphthenate, oxine copper (copper-8-quinolinate) are listed in American wood-preservers’ association standards (AWPA, 1999). Copper naphthenate (Cu-N) was introduced as a wood preservative in 1900. Cu- N is particularly efi'ective against cellulose-destroying fimgi and could afford long-lasting protection (Eaton and Hale, 1993). Freshly treated Cu-N products have a green / blue color and a strong odor that negatively impact their use (De Groot et al., 1988). To reduce the green color, the strong odor for environmental reasons, and to obtain a clean dried surface, Cu-N treated products are sometimes suggested to post-treatment steaming at 240°F (115°C) as recommended in the footnote of the AWPA book of standards (AWPA, 1996). The reduction of Cu (11) to Cu (I) and the formation of cuprous oxide (Cu20) in post-treatment steamed Cu-N treated southern pine were reported by Kamdem and Zhang (1998). It is explained that the formation of Cu20 is promoted by the carboxylic acids generated during the post-treatment steaming. These wood acids can protonate the naphthenate ligand of Cu-N into napthenate acid and the formation of copper carboxylate / acetate / forrnate / glucuronate / hydroxide. Under some specific conditions, the new form of copper may be transformed partially or totally into Cu20 (Kamdem and Zhang, 1998). The firngicidal activities of copper-based compounds such as copper naphthenate, copper amine, copper-8-quinolinate may depend on the valence or the oxidation states of the copper in the treating solutions and in the treated wood. Little information is available in the literature about the toxicity of metach copper, cuprous and cupric copper. Copper amine system is one of the main ingredients of ACQ-D, CDDC, and copper azole. Its relatively low mammalian toxicity and environmental risk may help its promotion as the preservatives in the future. Cu20 can also be obtained fi'om a copper- amine-treated wood after a post-treatment steaming, which is monitor in the lab by XRD. This provides an interesting question about the bio-performance of wood containing Cu20. Could the post-treatment steaming promote the formation of Cu (I)? Is there any difference in the bio-perfonnance between cupric copper and cuprous copper as wood preservatives? Efforts have been invested in studying the mechanisms of copper toxicity to fungi (Hill, 1977). Mocquot et al. (1996) reported that the activities of certain enzymes are afi‘ected by the copper content in young maize. Gastaldi et a1. (1993) reported that the cupric ion could inhibit the alcohol dehydrogenase 1 from Kluyveromyces marxianus. It is hypothesized that copper acts as a cofactor for electron donor and acceptor for many enzymatic reactions including oxidation, hydroxylation and dismutation. Excess of copper is reported to cause damage through oxidizing proteins and lipids and enhancing the toxic intra- and extra-cellular free radicals (Goyer and Cherian, 1995). Superoxide radicals (02") and H202 are known to be produced in many biological systems, but these are relatively harmless as they react with bio-molecules at low rates. Simpson et al. (1988) suggested that in the presence of Cu (II) ion complexes, 02" and H202 could lead to the formation of hydroxyl radical (OH), which could damage the protein molecules in tissue. Similar reactions could take place in the presence of organic hydroperoxides (ROOH), Cu (II) could be reduced to Cu (1) resulting in the formation of peroxy (ROO’) radical and the more reactive alkoxy (RO') radical (Hunt et al., 1988). Little information is available about the biochemistry of copper and proteins under normal conditions (Hamer, 1986). The absorption / reaction sites of copper and proteins are hypothesized to the carboxylic groups and the amino groups in the amino acids of the proteins. Therefore, the copper-oxygen and copper-nitrogen interactions may be determinant factors to the copper-fungi toxicity. The objective of this work is to characterize Cu (1) and Cu ([1), quantify Cu (I) and Cu (II) in treated wood and determine the biological performance of Cu (I) and Cu (II) in treated wood by challenging with laboratory pure culture of white and brown rot decay firngi. LITERATURE REVIEW It is important to understand the factors that afi‘ect the growth and development of fungi in wood substrates. Like all living organisms, fungi have certain requirements for growth and survival. The major growth needs of wood-inhabiting firngi are water, oxygen from air, a favorable temperature and a good food source. Fungi can digest wood to obtain energy and some compounds important for their metabolism (label and Morrell, 1992). Decay fungi are clarified in three main groups: white rot, brown rot and soft rot decay firngi. The control of oxygen and temperature to reduce the decay process is a little difficult. Water can be limited by using dried wood. The hygroscopicity nature of wood can not limit the absorption of water by wood used in eternal application. One of the most effective ways of controlling decay is to put toxicants in the food source, which is wood. 2.1 White rot decay White-rot fungi are known to degrade lignin. The degraded wood is white and soft. Most of the white-rot fungi prefer hardwoods. This may be due to the amount and the type of lignin (Schultz and Nicholas, 1997). The content of lignin in hardwood is about 18 to 25 % in dry weight and about 25 to 35 % in softwood (Haygreen and Bowyer, 1996). The building blocks for hardwood and softwood are shown in Figure 1. It is proposed that lignin in wood can act as antioxidant and disrupts various white-rot free radical degradative mechanisms (Schultz and Nicholas, 1997). An attack by white- rot fungi causes a decrease of strength properties and an increase of swelling (Fengel and Wegener, 1983). The most characteristic property of white-rot firngi is that they can produce ligninases. Staining and growth test of the fungal mycelium gave evidence of the presence of these enzymes (Paice and Jurasek, 1979; Schmidt and Liese, 1980). Lignin peroxidase was found in T rametes versicolor and other white rot fungi. It plays a key role in lignin degradation. Trametes versicolor requires H202 to oxidize and break the bond between carbons in phenyl propane units in lignin (label and Morrell, 1992). From the elemental analysis of isolated lignin after fungal attack, the amount of oxygen is higher compared to that in the isolated lignin without fungal attack (Kirk, 1971; Kirk and Chang, 1974). The increase of oxygen in the lignin molecule derives fi'om an oxidation of lignin. The hyphae of white rot fungi penetrate the wood tissue through the pit membranes and through the cell walls by forming bore holes (Rayner and Boddy, 1988). At the macroscopic level, this leads to a remarkable honeycomb-like pattern of decay (Kirk, 1973). Species of white-rot fungi include T rametes versicolor, Plumerochaete chrysoworium, Pleurotus ostreatus and Schizophyllum commune, etc. (Eaton and Hale, 1993). 2.2 Brown rot decay Brown-rot decay results in a selective degradation of cellulose and hemicellulose. Brown rot decay firngi can produce cellulase and hemicellulase, to digest or hydrolyze cellulose and hemicellulose. It is reported that the enzymatic degradation of cellulose is influenced by the presence of monosaccharides, which act as a starter-substance or aid in the decomposition of the crystalline structure (Koenigs, 1974; Highley, 1976, 1977, 1980) Chemical analysis of wood decayed by brown-rot firngi such as Poria monticola, Lenzites trabea and Lentinus lepideus shows a significant reduction of the polysaccharide content. The wood cellulose and polyoses undergo an extensive depolymerization before any significant weight loss is noticed (Kirk and Highley, 1973). The reduction of the mechanical properties at an earlier stage of decay is a good indication of brown rot decay. Lignin is also subjected to a limited degradation. UV spectrophotometn’c studies of brown rot decayed wood show a relative increase of the lignin content. This can be explained by the relatively larger amount of cellulose and hemicellulose depolymerized compared to that of lignin. X-ray difi‘raction study of cellulosic material treated with cellulase shows a reduction of the crystallite width of cellulose, indicating that attack by brown-rot firngi starts at the amorphous region of cellulose (Rayner and Boddy, 1988). Brown-rot fungi are more frequent on softwood. The effect of lignin type and quantity on the rate of brown rot decay is considerably less than that recorded with white rot fungi (Schultz and Nicholas, 1997). Decayed wood becomes fiiable, ultimately powdery, and cracks cubically. The mechanical strength of wood is reduced. The hyphae of brown rot decay fungi grow mainly in the lumen of the wood cell walls (Wilcox, 1973). Abnormal longitudinal shrinkage and deformation of the cell walls is also observed (Fengel and Wegener, 1983). Koenigs (1974) found that brown-rot fungi produce more H202 than the white-rot fungi, and suggested that the initial attack on crystalline cellulose by brown-rot fungi be via a non-enzyme H2O2/Fe2+ system, which generates hydroxyl radical. Species of brown-rot fungi include Coniophora puteana, Setpula lacrymans, Antrodia vaillantii, Gloeophyllum trabeum and Poria placenta, etc. (Eaton and Hale, 1993). 2.3 Soft rot decay Soft-rot is found both in softwoods and hardwoods, and results in various rates of reduction of the strength properties (F engel and Wegener, 1983). Soft-rot fungi degrade cellulose and hemicellulose but do not appear to break down lignin appreciably (Rayner and Boddy, 1988). Sofi-rot attack is typified by the formation of unique longitudinal bore holes in the secondary cell wall (label and Morrell, 1992). The decay is characterized macroscopically by surface softness. Soft-rot fungi can produce cellulases and hernicellulases such as endo- and exo-l, 4-B-glucanases, B-glucosidases, which are capable of degrading cellulose and hemicellulose in wood (Eriksson and Wood, 1985). Species of soft-rot fungi include Chaetomium globosum, Lecythophora hofiinamii, Monodictys putredinis and Humicola alopallonella, etc. (Eaton and Hale, 1993). 2.4 Classification of wood degradation by wood decay fungi Liese (1970) presented a classification of decay types to wood tissue in decreasing severity of cell-wall damage: 1. Simultaneous white-rot fungi attack all cell-wall constituents, essentially uniformly during all decay stages; 2. Sequential white-rot fungi attack all cell-wall constituents; the initial attack is selective for hemicellulose and lignin; 3. Brown-rot fimgi primarily attack the cell-wall carbohydrates, leaving a modified lignin at the end of the decay process; 4. Soft-rot fungi preferentially attack cell-wall carbohydrates in the 82 layer of the secondary cell wall, forming longitudinal cavities or eroding the wood cell wall fiorn lumen surface in hardwoods or the $2 in conifers. 2.5 Chemical properties of copper Copper is the first element of Group [B in the periodic table. The most abundant oxidation states for copper are Cu (0), Cu (I) and Cu (11). The relative stability of the Cu (1) and Cu (11) are indicated by the oxidation / reduction potential data presented in Figure 2 (Cotton and Wilkinson, 1988). In aqueous solution only low equilibrium concentrations of Cu (I) can exist compared to the concentration of Cu (11) unless Cu (I) is complexed. For an example, CU(NH3)2+, etc. The only copper compounds stable in water are the highly insoluble Cu2O, Cu2S and CuCl, etc. The water instability of Cu (1) compounds is due partly to the greater lattice and solvation energies and higher formation constants for Cu (H) compounds. Ionic Cu (1) derivatives are readily to be oxidized to Cu (II), which is much more stable. Further oxidation to Cu (III) is possible but more dimcult. There are only a few Cu (III) complexes known (Cotton and Wilkinson, 1988). Table 1 lists some copper complexes and their oxidation states (Cotton and Wilkinson, 1988). Cu (1) is a d’" ion and it is diarnagnetic. Cu (11) is a d9 ion and it is paramagnetic. Cu (II) can be detected using electron paramagnetic resonance (EPR). No paramagnetic signal is obtained from Cu (I). The identification and quantification of the types and forms of copper is well established for liquid samples. Speciations of copper can be done on liquid samples using compleximetric titration, polarography and anodic stripping volametry (Zirinoode and Kounaves, 1980). X-ray photoelectron spectroscopy (XPS) is routinely used to determine the atomic composition and the valence states present on the surface of solid sample. It provides information such as the binding energy, the chemical shift of photoelectrons and Auger electron, which is used to identify the correspondent atom and the oxidative states. It was reported to detect the cupric and cuprous copper in Cu-N treated wood (Kamdem and Zhang, 1999). Cu (11) compounds have a specific color. This provides an opportunity to explore spectrophotometry as a means to identify and quantify the presence of Cu (I) and Cu (II) in liquid and solid. The color derives fi'om one of the following three rrrain possibilities: charge-transfer transitions, d —> d transitions and intraligand-orbital transitions. Most Cu (11) complexes have a blue or green color due to the d —9 d transition. Cu (11) has a specific absorption band in the 600 to 900 nm regions (Cotton and Wilkinson, 1988). Cu (O) is tough, soft, and ductile reddish metal. Little information is obtained describing the color of Cu (1) complexes. This might be due to the instability of Cu (1) complexes in aqueous solution. 10 MATERIALS AND METHODS 3.1 Wood preparation 3.1.1 Wood species and wood sizes Defect-flee kiln dried sapwood boards of southern yellow pine (SYP) and sugar maple (SM) were selected in the study. Cubes measuring 14 mm for SYP and 17 mm for SM were prepared from these boards and dried in at 40°C for 24 hours. The moisture content afier dried in oven was 4 :1: 1 percent. The densities of wood blocks were 32 pounds per cubic foot (pct) for SYP and 36 pcf for SM. 3.1.2 Treating solutions Cu-N and Cu-EA solutions with the copper strength in treating solutions ranging from 0.0, 0.25, 0.5 and 1.0 percent (w/w) were prepared for treatment. 3.1.2.1 Cu-Napthenate (Cu-N) A stock solution of Cu-N containing 2 % elemental copper, received fiom ISK Biosciences Corporation, was diluted with toluene from IT Baker Inc. Naphthenic acid is distilled from crude oil and may contain C5 to C35 carboxylic acids (Dzidic et al., 1988) 3.1.2.2 Cu-Ethanolamine (Cu-EA) Cu-EA was made by mixing copper hydroxide and monoethanolarnine with ethanolamine to copper molar ratio of 4:1 at room temperature in order for copper complexed with ethanolamine completely. Copper hydroxide and ethanolamine were both obtained from Aldrich Chemical Co. 11 3.1.3 Wood treatment A modified full cell process was used to pressure treat wood blocks. The treatment consists of two steps. During the first step, a cylinder measured 3 inches in diameter and 6 inches in length was used for the pressure treatment with Cu-N / Cu-EA solutions. An initial vacuum of about 84.6 kPa (25 inches of mercury) was pulled for 10 minutes prior to the injection of the treating solutions. A pressure level of 690 kPa (100 psi) was applied for 30 minutes. The extra solution was removed from the cylinder and then a final vacuum applied for 30 minutes. The second step consisted of post-treatment steaming. The treated blocks were placed on a tray and air-dried at room temperature for 24 hours. Three hundred blocks of Cu-N or Cu-EA treated wood were divided into 6 groups. Every fifty blocks were post- treatrnent steamed at 240°F (115°C) in autoclave for 0, 20, 40, 60, 120 or 240 minutes, respectively. After post-treatment steaming, wood samples were dried at 40°C until the weight reached constant weight. 3.1.4 Sterilization of wood blocks Wood samples were sterilized by ionizing radiation using Co-60 sources according to AWPA standard B 10-91 (AWPA, 1999). The wood blocks were sealed in polyethylene bags. Nitrogen was introduced in the bags to reduce the oxygen content and limit the oxidization. The envelopes were subjected to radiation at a level of 2.0 to 2.5 Mrad. Half of these treated wood blocks were used in soil block tests and the other half were used for analysis. 12 3.2 Copper analysis 3.2.1 Analysis of elemental copper content in wood Analysis of elemental copper content in treated cubes was determined by atomic absorption spectroscopy (AAS) using Atomic Absorption Spectrophotometer Model: Perking Elmer 3110 according to AWPA Standard A1 1-93 (AWPA, 1999). The wood blocks were ground into sawdust. About 0.2 g of wood sawdust was oven dried at 105°C and weighted. Samples were acid digested with nitric acid and perchloric acid following the AWPA Standard A7-93 (AWPA, 1999). The solutions after digestion were diluted to around 10 ppm for AAS analysis. The working standard for AAS was at wavelength of 324.8 nm with hollow cathode lamp as light source and air-acetylene as flame. 3.2.2 Analysis of Cu (1) in wood 3.2.2.1 Characterization of Cu (I) by UV/VIS spectrophotometery The 2,2'-biquinoline reagent was prepared at room temperature by dissolving about 0.25 g of 2,2'-biquinoline in 250 ml of glacial acetic acid. The chemicals were both obtained from Aldrich Chemical Co. The spectrum for different copper species in 2,2'-biquinoline reagent were collected by scanning respective solutions from 450 nm to 1000 nm using ultraviolet I visible spectrophotometer. A Beckrnan DU640 B spectrophotometer with a 10—mm light path silica cuvette fiom Sigma was used. All UV/VIS scans were performed at a speed of 600 nm/min. Cu2O mixed with Cu—N or Cu2O mixed with Cu-EA were prepared by mixing Cu2O with Cu-N or Cu-EA treating solutions in 2,2'-biquinoline reagent. 3.2.2.2 Quantification of Cu (1) -2,2'-biquinolinc complex in solution 13 The Cu (I)-2,2'-biquinoline complex was prepared by dissolving Cu2O in 2,2'- biquinoline reagent (0.004 moi/l). The concentration of Cu (I) ranged fi'om 0 ppm to 100 ppm (0 to 0.0016 mon) was determined by AAS. The solutions were stored for 20 minutes before detecting the WMS absorption at 540 nm, which is the wavelength of the maximum absorbance for Cu (I)-2,2'-biquinoline complex in glacial acetic acid. 3.2.2.3 Cu (I) content in treated wood The wood was ground to pass through 40-mesh sieve and then dried at 40°C in oven for 24 hours. The moisture content of wood powder was 4 i 1 percent. About 25 ml of 2,2'-biquinoline reagent was used to extract about 0.1 g wood powder by ultrasonic extraction for 5 minutes using ultrasonator Model: ULTRA sonik 57X from Cole-Farmer Instrument Co. with nitrogen protection against air oxidization. After centrifugation, the supematant was used for UV/VIS analysis. The absorption of the solution was measured at 540 nm (Felsenfeld, 1960). 3.2.2.4 Mass balance of Cu (1) and Cu ([1) analysis After the ultrasonic extraction, the wood powder was washed with 3 ml of 2,2'- biquinoline reagent for 4 to 5 times until the filter liquor turned colorless. The solutions were collected for both Cu (1) analysis and AAS analysis for the elemental copper. The wood powder was analyzed by AAS to determine the amount of copper that remained in wood. The copper contents detected from these two steps were compared to the elemental copper content in treated wood. 3.3 Soil-block test of Cu-N and Cu-EA treated wood after post-treatment steaming l4 Wood cubes treated by 0.5 % in elemental copper (w/w) Cu-EA treating solution and 0.25 °/o in elemental copper (w/w) Cu-N treating solution were used in study the bio- perforrnance of cupric and cuprous copper challenged by wood decay fimgi. Two brown rot fungi, Poria placenta (Pp) (F r.) Cooke (Madison 698,ATCC 11538) and Gloeophyllum trabeum (Gt) (Pers ex. Fr.) Murr (Madison 617, ATCC 11539), two white rot fimgi, T rametes versicolor (Tv) (L. ex Fr.) (FP-lOl664-Sp, ATCC 42462) and Pleurotus ostreatus (Po) (Jacq. Ex Fr.) Kummer (ATCC 3223 7) were used to evaluate the bio-performance of cupric and cuprous copper in wood cubes as described in AWPA Standard E10-91 (AWPA, 1999) with some slight modification. Aspen cut in 3 by 28 by 34 m (1/8 x 1‘/. x 13/. in.) blocks were used as feeder strips. About 3.5 :i: 0.5 g of malt extract agar was poured on the surface of feeder strips and the blocks were sterilized in an autoclave before introducing the wood cubes. The malt extract agar was prepared by dissolving 7.5 g Difco Bacto malt extract and 10.0 g and Difco Bacto-agar fiom Difco Laboratories in 500 ml distilled water by stirring and heating below 80°C until it became transparent (Wang and label, 1990). Boxes were inoculated with a monoculture of firngus and incubated until the feeder strip was covered. Five replica for each sample group were introduced. The soil boxes were kept in a growing room at the temperature of 76°F and relative humidity of 90 % during the test. After 16 weeks for brown-rot firngi exposure and 20 weeks for white- rot fungi exposure, the cubes were removed from the culture boxes, scraped clean to remove superficial mycelium and reconditioned in an oven at 40°C until the weight stabilized. The percentage of weight loss after exposure to pure monoculture of test 15 fungus was used as the index of decay. Wood blocks were introduced to soil boxes with no fungi to obtain the operational weight losses due to the process. The average moisture content of a soil box was taken by comparing the weight of the culture medium to the dried culture medium. The soil boxes were randomly selected and the weight of dried culture medium was obtained by oven drying at 105°C until the weight reached constant. 3.4 Statistical analysis The correlation between the copper species (Cu (1) and Cu (11)) and the weight losses obtained after a soil block test were evaluated by Spearman order correlation analysis. One way AN OVA and Tukey analysis were used to evaluate the overall efi‘ect of post-treatment steaming on the weight losses of Cu-N and Cu-EA treated wood. All pairwise multiple comparison were evaluated within different duration periods of post- treatment steamed wood to certain fungus exposure. 16 RESULTS AND DISCUSSION 4.1 Wood appearance Cu-N treated wood has a green / blue color with a strong odor. Cu-EA treated wood has a blue color with no noticeable odor. The color changed to brown after post- treatment steaming and became darker with the increase of post-treatment steaming duration period for both Cu-N and Cu-EA treated wood. 4.2 Copper retention in treated wood The copper retentions were achieved in mg/g: 1.88, 3.44 and 5.31 mg/g for Cu-N treated SYP, 3.13, 5.00 and 10.31 mg/g for Cu-EA treated SYP, 1.39, 2.50 and 4.17 myg for Cu-N treated SM and 2.50, 4.44 and 7.50 for Cu-EA treated SM in elemental copper (Tables 2 and 3). The copper retention after pressure treatment for SYP was higher than that of SM for the same treatment. The copper retentions in wood increase with the increase of the concentration of copper in the treating solutions as shown in Figures 3 and 4. 4.3 Cu (1) analysis in wood Little research has been reported to estimate the Cu (1) content in treated wood quantitatively. Kamdem and Zhang (1998) used X-ray difi‘raction photoelectron spectroscopy (XRD) and (1999) X-ray photoelectron spectroscopy (XPS) successively to detect the Cu (1) in wood. Klotz and Klotz (1955) used a colorimetric reagent namely 17 2,2'-biquinoline in glacial acetic acid to determining the concentration of cuprous copper in Busycon hemocyanin. This method has been applied to determine the concentration of Cu (1) in protein chemistry, notably for the tyrosinase enzyme (F elsenfeld, 1960). The reaction scheme between Cu (1) and 2,2'-biquinoline is presented in Figure 5. 4.3.1 Characterization of Cu (1) - 2,2' - biquinoline by UVNIS spectrophotometer Cu (1) reacts with 2,2'-biquinoline in glacial acetic acid matrix yielding a pink color solution. Such color is not noticeable with cupric copper. The 2,2'-biquinoline reagent was colorless with pH value ranged around 2 :1: 0.5. It takes about 20 minutes for the pink color to develop at room temperature. The pink color results from the solubilization of cuprous oxide and the formation of a Cu (1) complex with 2,2'- biquinoline (Kertesz, 1957). Figure 6 presents the UV/VIS spectrum of Cu2O, Cu-N, Cu20 mixed with Cu-N in 2,2'-biquinoline reagent. An absorption band with Amax at 540nm was observed fi'om Cu2O dissolved in 2,2'-biquinoline reagent in spectra (c). The band was attributed to the new complex formed between Cu2O and 2,2'-biquinoline. This maximum absorbance at 540 nm remained stable in presence of Cu-N as shown in spectra (3). There is no absorbance from Cu-N dissolved in 2,2'-biquinoline reagent at 540 nm in spectra (b). Figure 7 presents the UVNIS spectrum of Cu2O, Cu-EA, Cu2O mixed with Cu- EA in 2,2'-biquinoline reagent. The maximum absorbance for Cu (1)- 2,2'-biquinoline complex at 540 nm remained stable in presence of Cu-EA as shown in spectra (a). There is no absorbance from Cu-EA dissolved in 2,2'-biquinoline reagent at 540 nm in spectra (b). 18 The absorbance band for Cu-N and Cu-EA in 2,2'-biquinoline reagent were broadened when the concentrations of Cu-N and Cu-EA were decreased. These attributed to that Cu-N and Cu-EA were destroyed in acetic acid and Cu (11) - acetate was formed in acetic acid matrix (Zyskowski and Kamdem, 1999). These results agreed with the conclusion from Klotz and Klotz (1955) that 2,2'- biquinoline react with cuprous copper to form a stable complex. Therefore, 2,2'- biquinoline was used to complex Cu (1) and the complex was quantified as the cuprous copper. 4.3.2 Quantification of Cu (I) -2,2'-biquinoline complex in solution A calibration curve was constructed for cuprous concentration and the Cu (I)-2,2'- biquinoline complex in solution. Known amount of cuprous oxide was diluted with 2,2'- biquinoline reagent. A linear regression of Y = (X-0.681)/6.885 with R2 value of 0.991 was obtained between the copper concentration determined by AAS and the UVNIS absorbance between 4 and 10 ppm of elemental copper (Figure 8). X is the concentration of cuprous ion in ppm and Y is the UVNIS absorbance at 540 nm. This regression line assumed that all Cu (1) in the solution was complexed with 2,2'-biquinoline and the intensity of absorbance was proportional to the amount of complex formed. 4.3.3 Cu (1) and Cu (II) content in treated Wood About 7.9 °/o of the 1.88 mg/g elemental copper in Cu-N treated SYP was determined to be in the form of Cu (1). The content of Cu (1) increased to 37.0 % after 20 minutes of post-treatment steaming. Cu (1) content increased to 53.2 % after 60 minutes. The Cu (1) content was 55.6 % after 120 minutes and 51.9 % after 240 minutes (Table 2). l9 The Cu (1) content increased with the increasing of the post-treatment steaming duration period. The formation of Cu (1) increased sharply during the first 60 minutes of post-treatment steaming and reached a plateau after 60 nrinutes. This confirms the XRD and XPS finding reported by Kamdem and Zhang (1998, 1999). The equations presenting the Cu (1) content related to the post-treatment steaming time are listed in Figures 9, 10, 11 and 12. The equations were obtained fi'om the every mean value of three replicas. Y represents the Cu (1) content (%) in form of elemental copper in wood, and X represents the post-treatment duration periods in minutes. Cuprous copper was detected from Cu-N and Cu-EA treated wood without post-treatment steaming as well. Nearly 10 :1: 5 % ofCu (1) in terms ofelemental copper was detected. The Cu (1) contents in untreated wood were 0.1% for SYP and 0.1% for SM and less than 0.1% in treating solutions. This suggests that the Cu (1) detected came from the vacuum pressure treatment or drying in oven at 40°C. The equations reflected the Cu (1) detected with 0 minute of post-treatment steaming. There was a slight decrease of Cu (1) content observed after 240 minutes of post- treatrnent steaming compared to the Cu (1) content after 120 minutes of post-treatment steaming in most specimens. The reason of this decrease was not clear. But it can be theorized that solid deposit of copper in the surface was lost during the sample preparation. Similar trends were observed for both Cu-N and Cu-EA treated wood with difi’erent copper retentions. Figures 13, 14, 15 and 16 present the initial Cu (11) content and the Cu (11) content after post-treatment steaming. The Cu (11) contents in both Cu-N and Cu-EA treated SYP 20 and SM after post-treatment steaming increase with the increase of initial Cu (11) contents in wood, and decrease with the increase of post-treatment steaming time. 4.4 Mass balance for Cu (1) and Cu (II) analysis The first column of Table 4 contains the value of Cu (1) determined by UV/VIS for several specimens. The second column represents the data of the AAS analysis of elemental copper content in ultrasonic extracts. The third column represents the data of elemental copper remained in solid wood sawdust after the extraction. The forth column is the copper content in specimens determined by AAS afier vacuum pressure treatment with no extrication. Data obtained from the AAS analysis of elemental copper content in ultrasonic extracts and in wood sawdust after ultrasonic extraction were compared to the elemental copper content in wood with no extraction. About 96 to 106 °/o of copper was detected. About 64 °/o of copper was extracted after the ultrasonic extraction by comparing the elemental copper content in extracts and the elemental copper content in wood with no extraction. About 79 % of copper in extracts was determined as Cu (1) by comparing the UV/VIS analysis of Cu (1) content in extracts and the AAS analysis of elemental copper content in extracts. This suggests that some Cu (11) was extracted by 2,2'- biquinoline reagent during the ultrasonic extraction. 4.5 Soil block test The moisture content in the soil substrate in boxes was 130 i 5 %. 21 The average weight losses in percentage after fungi exposure and the descriptive statistics analysis for the standard deviation are listed in Tables 5 and 6 and Figures 17 to 20. One way ANOVA analysis and Tukey test listed in Tables 8 to 11 present the overall effect of post-treatment steaming on the weight losses of copper treated wood. 4.5.1 Cu-N treated SYP after Poria placenta exposure The average weight loss was 1.1 °/o for Cu-N treated SYP with 0 minute of post- treatrnent steaming after Poria placenta exposure. The weight loss increased to 24.2 % after 120 minutes of post-treatment steaming. The weight loss for untreated control was 56.9 %. There was a significant difference observed between wood samples groups of 0 minutes and 120 minutes of post-treatment steaming; and 0 minutes and 240 minutes; and 20 minutes and 240 minutes (Table 8 and Figure 17). No significant difference was observed among other sample groups. 4.5.2 Cu-N treated SYP after Gloeophyllunr trabeum exposure The average weight loss was 2.4 % for Cu—N treated SYP with 0 minute of post- treatrnent steaming after Gloeophyllum trabeum exposure. The weight loss increased to 9.0 % after 60 minutes of post-treatment steaming. The weight loss for untreated control was 40.0 %. There was a significant difference observed between wood samples groups of 40 minutes and 120 minutes of post-treatment steaming (Table 8 and Figure 17). No significant difference was observed among other sample groups. 4.5.3 Cu-N treated SM after Poria placenta exposure The average weight loss was 14.2 % for Cu-N treated SM with 0 minute of post- treatment steaming after Poria placenta exposure. The weight loss increased to 35.4 % 22 after 40 minutes of post-treatment steaming. The weight loss for untreated control was 58.2 %. There was a significant difi‘erence observed between wood samples groups of 0 minutes and 40 minutes of post-treatment steaming; and 0 minutes and 60 minutes; and 0 minutes and 120 minutes; and 0 minutes and 240 minutes; and 20 minutes and 40 minutes; and 20 rrrinutes and 60 minutes; and 20 minutes and 120 minutes; and 20 minutes and 240 minutes (Table 10 and Figure 18). No significant difference was observed among other sample groups. 4.5.4 Cu—N treated SM after Gloeoplryllunr trabeurn exposure The average weight loss was 0.4 % for Cu-N treated SM with 0 minute of post— treatrnent steaming after Gloeophyllum trabeum exposure. The weight loss increased to 4.6 % after 60 minutes of post-treatment steaming. The weight loss for untreated control was 66.3 %. There was a significant difference observed between wood samples groups of 0 minutes and 60 minutes of post-treatment steaming; and 0 minutes and 120 minutes; and 20 minutes and 60 minutes; and 20 minutes and 120 minutes (Table 10 and Figure 18). No significant difference was observed among other sample groups. 4.5.5 Cu-EA treated SYP after Porr’a placenta exposure The average weight loss was 32.1 % for Cu-N treated SM with 0 nrinute of post- treatrnent steaming after Poria placenta exposure. The weight loss increased to 56.4 % after 20 minutes of post-treatment steaming. The weight loss for untreated control was 56.9 %. There was no significant difference observed among wood samples groups (Table 9 and Figure 19). 4.5.6 Cu-EA treated SYP after Gloeophyllum trabeum exposure 23 The average weight loss was 4.8 % for Cu—N treated SM with 0 minute of post- treatrnent steaming after Gloeophyllum trabeum exposure. The weight loss increased to 9.0 % after 60 minutes of post-treatment steaming. The weight loss for untreated control was 40.0 %. There was a significant difference observed between wood samples groups of 0 minutes and 60 minutes of post-treatment steaming; and 0 minutes and 120 minutes; and 0 minutes and 240 minutes; and 20 minutes and 60 minutes; and 20 minutes and 120 minutes; and 20 minutes and 240 minutes; and 40 minutes and 60 minutes; and 40 minutes and 120 minutes; and 40 minutes and 240 minutes (Table 9 and Figure 19). No significant difi‘erence was observed among other sample groups. 4.5.7 Cu—EA treated SM after Porr'a placenta exposure The average weight loss was 50.2 % for Cu—EA treated SM with 0 minute of post- treatment steaming afier Poria placenta exposure. There is a slight increase of weight losses observed with the increase of post-treatment steaming time. The weight loss for untreated control was 58.2 %. There was no significant difference observed among wood samples groups (Table 11 and Figure 20). 4.5.8 Cu-EA treated SM after Gloeophyllunr traberun exposure The average weight loss was 0.7 % for Cu-EA treated SM with 0 minute of post- treatment steaming after Gloeophyllum trabeum exposure. There is a slight increase of weight losses observed with the increase of post-treatment steaming time. The weight loss for untreated control was 66.3 %. There was no significant difference observed among wood sample groups (Table 11 and Figure 20). 4.6 The weight losses and the copper content in wood 24 Figures 21 to 24 suggest that the average weight losses of Cu-N treated SYP and SM increased with the percentage of Cu (1) in wood exposed to Porr'a placenta. The relation between the weight losses and the Cu (1) content is not clear in Cu-EA treated wood after Poria placenta exposure. There was a slight variation but no significant difi‘erence in weight losses observed in most wood blocks exposed to Gloeophyllwn trabeum, T rametes versicolor and Pleurotus ostreatus. The weight loss is relatively lower for samples exposed to Gleophyllum trabeum, Trarnetes versicolor and Pleurotus ostreatus compared to the specimens exposed to Porr'a Placenta. The increment of weight losses fiom 0 minute of post-treatment steaming to 240 minutes was no more than 10 % compared to the increment of 25 i 5 % for the specimens exposed to Poria Placenta. This is attributed to the good performance of copper-based wood preservatives to most wood decay fungi (label and Morrell, 1992). However, Poria placenta is a copper tolerant fungus (Sutter et al., 1983). The copper tolerance of Poria placenta is reported in both laboratory experiments and in service situation (Schimidt and Liese, 1996; Da Costan and Kerruish, 1964; Williams and Fox, 1994; Collett, 1992; Thornton and Tighe, 1987). This explained the relatively high weight losses obtained fiom both Cu-N and Cu-EA treated wood exposed to Poria placenta and the relatively lower weight loss exposed to Gloeophyllum trabeum, T rametes versicolor and Pleurotus ostreatus in this test. Statistic analysis using Spearman rank order correlation presented the correlation coefiicient for the Cu (1) or Cu (11) contents in wood and the weight losses after soil block test as shown in Table 7. A high correlation coefficient (more than 0.8) with low P value (less than 0.05) were observed in Cu-N treated SYP, Cu-N treated SM and Cu—EA treated 25 SM afier Poria placenta exposure. The weight losses increased with the increase of Cu (1) content and decreased with the increase of Cu (11) content in wood samples. No significant correlation was observed between the copper species and the weight losses for most specimens after Gloeophyllum trabeum, T rametes versicolor and Pleurotus ostreatus exposure. Marten and Leach (1994) reported that the toxicity of Cu20 toward Pythium debaryanum depends on its solubility in difi‘erent conditions. Cu2O is less toxic because it is less soluble in certain solution, which leads to less susceptible to interact with the wood decay fungi such as the amino acid functional groups. Comparing the data obtained from soil block test to the data obtained from copper analysis, we suggest that the toxicity of Cu-N treated SYP and SM, and Cu-EA treated SM towards wood brown rot decay fungi Poria placenta is attributed to the Cu (H) in wood in this post-steaming treatment. 26 CONCLUSIONS Cuprous copper content in presence of Cu (H) in treated wood could be determined by the 2,2'-biquinoline method for Cu-N and Cu-EA treated SYP and SM after post-treatment steaming. Based on the analysis of Cu (1) and Cu (H) content in treated wood and the data of soil block tests, Cu (H) can be converted to Cu (1) by using post-treatment steaming. The conversion ratio increases with the increase of post-treatment steaming duration period in the first 60 minutes for Cu-N and Cu-EA treated SYP cubes measuring 14 mm and SM cubes measuring 17 mm of copper retention ranged from 1.88 mg/g to 10.31 mg/g. The weight losses of Cu-N and Cu-EA treated wood increase with the increasing of post-treatment steaming duration period in Poria placenta. The weight losses increase with the decrease of Cu (H) content, while the total copper retention remains the same. In conclusion, Cu2O in Cu-N treated SYP and SM and Cu-EA treated SM to Poria placenta is less toxic than Cu (H) in post-steaming treated wood. 27 Table l. Oxidation States and Stereochemistry of Copper Oxidation Coordination Geometry state number 2 Linear Cu20, CuClz' 3 Planar KlCu(CN)2] I 4' Tetrahedral CuI, (Cu(CN)4l" 4 Distorted planar CuL° I I 5 sp (CuLCOl‘ I J I 6 Octahedral eP Re Cu Cu (H), d9 3 Trigonal planar Cu2(u-Br)2Br 4"” Tetrahedral (N -Isopropylsalicylaldininato)2Cu (distorted) Cs,(CuCl,) ! 4"” Square CuO, (N11,),(CuCll4 6"” Distorted CuCl2 octahedral I 5 tbp (CuClslz’ I 5 sp lCu(NH;,),l2+ ‘ I 6 Octahedral K,Pb(Cu(NOz)6] 7 Pentagonal lCu(I-IZO)2(dps)l2+ ° bipyramidal 8 Distorted CaICu(co,Me),1' 611,0 dodecahedron Cu (1H), d' 4 Square KCuO2 I 6 Octahedral KiCuFi I ' Most common states. " These three cases are often not sharply distinguished. ° L= a macrocyclic N4 anionic ligand. ‘ In KCU(NH3)s (PR); ° dps= 2,6—diacetylpyridine bis(semicarbazone) 28 en. «3 MS a: 3; 3o 3" ”2 m2 8.0 and e3 2: 8— 3; 3.. Se — o: a; 2: 8. e2 02 who 3; was as 2. m3 «we who «no «no 2.5 3 as ”no .8 Ed 8.0 mg e E ..0 e0 23.. :0 :4. can e2 2.“ a; a: 3.5 ”£53: Ami—5 net—.83— 3..an — E253... . .32. SE _ gm he 5:959 86on use? mason 808305-68 mo mecca 3093 not“ too? 8305 2.30 E 28:50 5 :U .N 03am. 29 me; 004 . mwd N0.m bvN mad 0'" 00d m0._ 3.0 2N 0m.N vwd 0n— hwg v»; 00.0 0_.N 00d 50 00 SA 09— 5.0 an; MNN N50 0v no.0 $4 3.0 0&0 50.0 no.0 0N find mad 0 ,I one 3:. _ can H :2 8a A; 3.5 . win—a3» Anus—0 55:0qu 523.5 2.253.: .32— Em — gm he net-2.5 .383 e83 meg: 285.38 .«o 30:00 30.53 San coo? 0885 D :80 3:330 00:00:.an 2:882: 0000 ”0880.5 5 A395 88:00 8 =0 “.20 :2 as. 2: :a ”2 as ea $.50 22 8e we; 8s and 8 ea <03 Nee wen NE SN E 9a 5 <03 92: a: as a: N3 an an 2.5 nee NS 8.0 2: who ex as 2-5 as t: as as is 9. 5 2-5 @050 .5 Assesses ease .6 seas 055.5 @050 .5 $02 woo? 0800: m<< woo? “0800508 m<< 308:8 m<< $08008 mE>D sass. AB 8 es. 6 =0 é 85} as: .e 2.3 31 .5235“. 23:85 28 38052 55058.30 E 82.3 .3032 o>m mo 2on 05 E883: 002.5 .. 2 55.2 2.35.8 335.8 3.35.3 5285:: $9.2 8.85.2 3.33 9.55.3 555% 2.5 9.80.: 8.8: 3.83 9.325 5:52 2.5 352: ad; 3355 : 55.2 558 2.5 8.83 @555 6.955 39.2 558 2.5 3:3 8:3. $.33 $.33 5:5“ 2-5 as} 3.83 3.9% 2 .9 ._ 5:5 2-5 3:02 3.33: 3:5,: 30:25 5:53 5-5 3%.: 3.85.: 8.355. 55:5,: 5:52 H on 5 mm ...Ao\ov 82 Ems? too? «:25qu :2 :85 =8 52285 :5: ea 5 822 5503 .m as: 32 5233: “5:585 28 5:88:05 2:05:03: 5 503.; 550:3. 26 «o 5:85 05 5:823: 825:» .. €5.92 5595.2 3:555 2 .3555 8525: 8:55 85:55 3:55 3.35.: 55555 2-5 G555 8:55 3:3. 85:35 5:52 2-5 2:5 35:55 8.25.: 9:52 5:55 2-5 €555 €855 8:55 655.2 558 2-5 €555 95:55 2:52 3:555 558 2-5 $555 3:: .5- @555 3.25.: 5:5 2-5 3:55 2:3 355.5 8.3555 55555 $50 8:55 8055 G5: .2 6:5: 5:52 5.5 3:55 8:55 35:52 2.05.55 5:55 $2.50 3:? 3:55 55:3 5525 558 $50 9:55 @255 35:55 3:25 558 5-5 35:55 3:55 3.255 35:5 3:555 5:5 H om 5 mm .55 9.2 £203 woo? 5508550; :3 :83 58 53585 5:: 25 5o 852 5503 5 as: 33 Table 7. Spearman rank order correlation for copper species and average weight losses after soil block test WL (Pp) I WL (Gt) J WL (Po WL Tv Co 8 'es ’ pp“ pea Cu-N treated SYP Cu (1) content ‘0.829 0.486 0.714 0.829 "0.0583 0.356 0.136 0.0583 °6 6 6 6 Cu (11) content -0.829 -0.486 -0714 -0.829 0.0583 0.356 0.136 0.0583 6 6 6 6 Cu-EA treated SYP Cu (I) content 0.257 0.714 0.429 0.771 0.658 0.136 0.419 0.103 6 6 6 6 Cu (II) content -0257 -0714 -0429 -0771 0.658 0.136 0.419 0.103 Cu-N treated SM . --—~ —-———— - --——— —-+ L — Cu (1) content 1.000 0.600 0.265 0.706 0.00278 0.242 0.564 0.136 6 6 6 6 Cu (II) content -1000 -0.600 -0.265 -0.706 0.00278 0.242 0.564 0.136 6 6 _ %_ 6 I Cu-EA treated SM Cu (I) content 0.943 0.257 -0.232 -0.232 0.0167 0.658 0.658 0.658 6 6 6 6 Cu (11) content 0.943 0.257 -0.232 -0.232 0.0167 0.658 0.658 0.658 6 6 6 6 ‘zCorrelation coefficient; I’: P value; ‘: Number of samples 34 39: mm." £2832 =0 .. 602030 832 Emfi? 5 3580.3: 2.3—mama o: 682%: :88— 088 on: 3 330:8 mvotoa =2:qu 808585-50m .. $58.85 80585.58 55» 58 583 :8 a be: 59.no— EwMoB mo 33> :88 05 $558052 xfifimaooofi coo—=8 on: 5828 E 3.5 n : 5:52 o o 5 5553 5 8 5:5: 6 e o o 5:52 o a 5:55 o e 558 o e 5:5 5 n 559. o e 558 o e 558 e 558 8. 5:5 6 :5 5.55. 5: «>92 53 6:0 36:55 ”58 383 :8 88m momma— EwmoB “gm 358.: 2.30 so £5835 58585.58 mo 80%» =80>O .w 033. 35 3&8 cow ”cows—38 :0 .. .uotomno moane— EwmoB E 83.8% ESE—$3 on 88038 buo— 088 05 F 330:8 atom—on :3an “88305.38 _. $3.33 38§85-3m8 .33 33 x83 =8 3 33.3 832 Emmok mo 33> :88 2: waucomoae mfiamueos @838 93 5:38 5 San _. a 5.8.. a 5:53 a 5.83 a £88 a 5.82 3 secs a 558 a 588 a £58 a 55¢ a 58¢ a 5:5 6 E >83 23 <>oz< 35 25 33:3 “33 3005 :8 82m $2 :303 ”am @885 :88 2: $582.52 5535552055 5838 03 5:28 5 Sam 5 o 5 5:55 5 5:52 5 5 55:52 5 5:55 5 5 55555 5 5:58 5 5 5 5:55 5 5:55 5 5:55 5 5:55 5 5:5 5 5:5 5 :5 .5353. 5:5 <>oz< 55% 5:0 55555.58 ”88 5.83 :8 Bob 82 5.333 ”Em 330.5 250 no $5888 558325-83 .«o “8&0 =80>O .2 2539 37 Ema $5.55 ”505852 =0 .5 .3850 5852 Emma? 55 38.8% «gag—ma 9. E82552 528— 088 05 B 330:0.“ atom—on 52356 82535802 .5 _ $55308 555585-83 5E? 83 5.83 :8 a 533 882 2303 ac 33> :38 2: msg#50522 53:53.85 5938 0.3 5:28 .5 53a 5. 5 55555 5 5:52 5 5:55 5 5:58 5 5:55 5 5:55 5 5:55 5 5:55 5 5:52 5 5:55 5 5:5 5 5:5 5 55 555:... 5:5 <>oz< 555.5 5:0 55555555 H88 583 :8 885 82 Emma? ”Em 35305 O .: 23,—. 38 652 55538 555 5525555 .5555 .55 9.83 5.555555 ._ 25555 3832.5: 0 5:00 0556 $8325: 28 mcooéom 39 Cu+ + e = Cu E° = 0.52v Cu2++ c = Cu+ 15" = 0.153v Cu +Cu2*= 2Cu+ °=-o.37v K= [Cu’j / [Cu+ )2 = ~1o‘S Figure 2. Oxidation/reduction potential data of Cu (1) and Cu (II) (Cotton and Wilkinson, 1988) 40 Copper retention in wood (mg/g) 5 5 4 .5 3 ... 2 -l O... --o-- SM 1 T I 1 I 0.2 0.4 0.6 0.8 1.0 1.2 Copper content in treating solution (%) Figure 3. Copper retention in wood after pressure treatment with Cu-N 41 Copper retention in wood (mg/ g) 12 10- 8.4 65 4- o" 2 T r I I 02 04 0.6 08 1o 12 Copper content in treating solution (%) Figure 4. Copper retention in wood after pressure treatment with Cu-EA 42 802 a? 8 =88 oéofiacfi..~.m mafia £53555 8 :0 .m 832m 43 __ Absorbance (I) (b) (c) 540 nm 450 nm IOOOnm Figure 6. UVNIS spectrum of (a) Cu20 and Cu-N with 2,2'-biquinoline (b) Cu-N with 2,2'-biquinoline (c) Cu20 with 2, 2'-biquinoline 540 nm (8) (b) § *— 'E 8 Q < (C) 500 nm 1000 nm Figure 7. UVNIS spectrum of (a) Cu20 and Cu-EA with 2,2'-biquinoline (b) Cu-EA with 2,2'-biquinoline (c) Cu20 with 2,2'-biquinoline UV/VISabsat540nm Figure 8. Calibration curve of Cu (1) -2,2'-biquinoline 1O Cu (1) content in form of elemental copper (%) 20.. 10~ O 50 1 00 1 50 200 250 300 Duration of post-treatment steaming (min) + Cu: 1.88 mg/g Y= 7.8+50.3X/(12.3+X), R’=o.9s —0— Cu: 3.44 mg/g Y=10.9+40.2X/(26.8+X), 112:0.95 + Cu: 5.31 mg/g Y=8.2+36.9X/(37.5+X), R’=o.85 Figure 9. Cu (1) content in Cu-N treated SYP after post-treatment steaming 47 Cu (1) content in form of elemental copper (%) 30“ I4 20~ -. 1o~ / 0 T T I T T I O 50 100 1 50 200 250 300 Duration of post-treatment steaming (min) + Cu: 3.13 mg/g Y=9.0+19.4X/(14.3+X), R’=o.99 —0— Cu: 5.00mg/g Y=5.4+S3.9X/(22.2+X), R’=o.88 —v— Cu: 10.31 mg/g Y=4.3+33.5X/(85.1+X), R’=o.97 Figure 10. Cu (I) content in Cu-EA treated SYP afier post-treatment steaming 48 Cu (1) content in form of elemental copper (%) o I I I I I T O 50 1 00 1 50 200 250 300 Duration of post-treatment steaming (min) + Cu: 1.39 mg/g Y=7.5+50.2X/(8.2+X), R2=0.97 —0— Cu: 2.50 mg/g Y=14.9+54.3X/(35.5+X),R2=0.99 + Cu: 4.17 mg/g Y=9.2+35.7X/(34.4+X), R’=0.94 Figure 11. Cu (I) content in Cu-N treated SM afier post-treatment steaming 49 Cu (I) content in form of elemental copper (%) 40q 20- 10~ I I T I I T 0 50 100 1 50 200 250 300 Post-treatment steaming time (min) + Cu: 2.50 mg/g Y=14.7+20.3X/(9.6+X), R2=0.78 —0— Cu: 4.44 mg/g Y=S.6+42.9X/(17.2+X), R2=0.97 —v— Cu: 7.50 mg/g Y=6.8+22.2X/(35.3+X), R’=0.81 Figure 12. Cu (1) content in Cu-BA treated SM afier post-treatment steaming 50 Cu (11) after post-treatment steaming (mg/g) O O 4 n V 8 3 « . I O v 2 ‘ U o o ‘ ‘ I o I I I I 1 2 3 4 5 6 Cu (H) initial (mg/g) 0 min of post-treatment steaming 20 min of post-treatment steaming 40 min of post-treatment steaming 60 min of post-treatment steaming 120 min of post-treatment steaming 240 min of post-treatment steaming DIG‘O. Figure 13. Cu (11) in Cu-N treated SYP afier post-treatment steaming 51 Cu (11) after post-treatment steaming (mg/g) o O 3 .5 v v D o 2 .. O v O 1 i a D o I T I 1 2 3 4 5 Cu (11) initial (mg/g) 0 min of post-treatment steaming 20 min of post-treatment steaming 40 min of post-treatment steaming 60 min of post-treatment steaming 120 min of post-treatment steaming 240 min of post-treatment steaming DIQ‘O. Figure 14. Cu (11) in Cu-N treated SM afier post-treatment steaming 52 Cu (II) after post-treament steaming (mg/g) 12' 105 [3.40. CD. a I I 4 6 8 1O 12 Cu (11) initial (mg/g) J Cu(Il) 0 min of post-treatment steaming Cu (11) 20 min of post-treatment steaming Cu (11) 40 min of post-treatment steaming Cu (II) 60 min of post-treaming steaming Cu (II) 120 min of post-treatment steaming Cu (11) 240min of post-treatment steaming DIG‘O. Figure 15. Cu (H) in Cu-EA treated SYP afier post-treatment steaming 53 Cu (H) after post-treatment steaming (mg/g) 8 7 -* . o 4 v 6 n V I 5 _ 4 4 ' O 3 5 2 4 6 1 I I I I I 2 3 4 5 6 8 Cu (11) initial (mg/g) O Cu(II) 0 min of post-treatment steaming 0 Cu (H) 20 min of post-treatmnet steaming v Cu (H) 40 min of post-treatment steaming v Cu (11) 60 min of post-treatment steaming I Cu (II) 120 min of post-treatment steaming Cu (II) 240 min of post-treatment steaming E] Figure 16. Cu (11) in Cu-EA treated SM after post-treatment steaming 54 Rea 52.5565 8 gm 85.585 2.30 .«o 5852 Emma}, omEo>< .2 onE 99: 8... E03222 :0 3:5 2:: 9:83.» “co—53.33.. 35:00 9.5. on. «0 8 9 8 .. l I l . l ...fiwwmmmn ' as ..H nmmi .' O biwmmv. tun/Amman? _ 8..., ..... {'5 n . . ” I 1.5. ...... or - F 5' 8 $5.533”. N . fi . .8. on Q? on _ 5.5m /// 8 55 (%) sassm :qfigaM aSeJaAv 35 58.5565 2 2m 3585 2.5.0 .«o 5852 Emu?» ow£o>< .E 255E EOE an... 5:03:22 :0 .555 2:3 9:53: 5:252:33.“— _ OVN ON _. 5 a I 8 9 55 5 o ..9.”.......n.. .mwmmmuu I o t o t ....... .52.. ......... ......... fl 3 0 N i r, . um: N 52 (%) sassol auBIaM afieJaAv Bea 58.55305 3 55m 3585 5 <96 555:555 >5. <96 55555 >5 <96 55655 >5. <96 55555 >5. <96 55555555 <96 555555555 <96 5585555 <96 55555555 <96 5555555.5 <96 5555556 <96 555.55556 <96 5558556 <96 555555556 <96 5555556 <95 55555555 <96 5.5555: <95 5555.555; <96 65 ad 55 N.m5 Q55 m.5.m v. an o. 5.0 0.3. 5..5m 5..o5 0.05 5.55 55.55 v.N5 0.05 m.m5 5..o5 N.o5 m. 55 5 d 5.» m. 555 m. m md 5.00 Yum m. NN h. 00 c. an m.m5 o.N5 55.5 95.5 3.5 55.5 who de mvd Nbd find no.5 o5. 5 we. 5 mo. 5 0o. 5 o5. 5 we. 5 8.5 00.5 8.5 05.5 55.5 3.5 55.5 5.0.5 3.6 5.5.. o a. 0 av. o on. o 3. 5 o5. 5 hNN 3.5 5.5.N v5.N 35 50.5 3.0 35.5 9.5 55 8.5 5.5 m0. 5 00. N mo. N 5.5 3.5 2.5 5.w.5 v5.N avN mNN 0N.N a0.5 5m. 0 a. 5 0m. N n55 36 N05 VNN 5N.5 5N.5 5N.5 0N.5 0N5 ”N5 mN.5 om.5 w5.5 5N.5 85 5.5.5 ”5.5 5N.5 mN.5 mN.5 NN.5 m5.5 NN.5 5N.5 nN.5 55.5 5N.5 w5.5 5.N.5 0N5 5N.5 NN.5 2.5 MN.5 mN.5 55..5 M05 5.0.5 ”0.5 00.5 550.5 N5..5 o5..5 w0.5 55.5 m0. 5 00. 5 N5... 5 05.5 555.5 50.5 a0.5 Na. 5 v». 5 mm. 5 3.. 5 5N. 5 $5 5N.5 5.0. 5 v0. 5 CV. 5 05.5 ”5.5 3.5 95.5 mwN 555.. N 00. N m0. N 50.N 05.. N 55». N nm. N N5..N Nw.N 5.5.. N 00. N ow. N a5..N 0w.N o5..N 5w.N 5a.N 3N avN me NN.N o5..N NmN ONN a5..N 5.v.N 5.N.N omN NYN 50.N 555.5 55.5 00.5 55.5 no.5 555 N55 m5 5 v0.5 55 5 v5 5 00.5 8.5 2: M55 5.0.5 N5 5 8.5 55 5 55.5 555 5 005 55 5 no.5 55.5 05.5 505 55.5 N55 505 N55 55555556 <96 555555556 <96 555555550 <96 5555555556 <96 5555555 5 5.5 <96 55555.55 5 5.5 <96 555555 5 5.5 <96 55555555555596 5555555 92 96 5555555555 <96 555555555 <96 5585555 <95 58555.5 <96 5555555 <96 55585525 <96 5585535 <95 5585535. <96 55555:. <96 5555555 <96 558556 <96 5558556 <96 5558556 <96 5555556 <96 555555550 <95 5555555 <96 55555555 <96 55855.55 <95 5.555555 <95 5.585555 <96 55555555 5.5 <95 55555555 5.5 <96 N.m0 0.50 w. on 5.. 00 a. 0N v. a a. 505 0.55 v.N5 Q55 0.2 ”.55 v.55 m.m5 md5 md5 o.m5 5.05 5.555 5.55 9.05 0.55 N.N5 Nd5 0. N5 N. a 5 .555 55.05 N555 md5 5555 055d wvd Rd mvd 5.wd 8.5 35 we. 5 0o. 5 no. 5 no. 5 0o. 5 8.5 8.5 56.5 005 we. 5 a. o 05. 5 we. 5 00.5 no.5 do. 5 0o. 5 o5. 5 N5. 5 we. 5 N5. 5 8.5 55. 5 8. 5 0nd wad 05.N mad 3.. N we. N 55 .N 05.N 05.N 0o.N 5N.N v5.N 50.N 35 3.5 555 .N 00. 5 a0. 5 3.5 ovN 3.5 3.5 05.N No.N M55 35 50. 5 550. N m5.. 5 m5.N 5N.N mN.5 mN.5 ”N5 NN.5 $5.5 3.5 «N5 NN.5 5N.5 2.5 mN.5 MN.5 MN.5 0N.5 05.5 5.5.5 5.N.5 ”5.5 wN.5 5.5.5 $5.5 ”5.5 £5 35 55.N.5 NN.5 5N.5 mN.5 0N5 VN.5 5(.N.5 00.5 a5..5 $5 3.5 3.5 55..5 3.5 5.0.5 «.05 w5..5 «0.5 50.5 5.5 ”0.5 5.0.5 5.5..5 o5..5 5.55.5 N0.5 00.5 5.m.5 ”0. 5 v0. 5 N5.. 5 50. 5 V0. 5 50. 5 a0.5 m0.5 N5..5 55..5 M5..N NQN awN ”0N awN mm. N 3. N 5.. N 05..N mwN m5..N 55..N wwN Nw.N m0.N 0w.N mwN omN F. N v0. N m0. N 5.5..N 05..N 5w.N 5w.N dwN «0N va a0.N 0w.N 5m.N 5855555 <96 5555555555 <96 55555555555 <96 558555.55 <96 5555555555 <96 55555556 <96 55555556 <96 5585556 <96 5585556 <96 55565556 <96 5585555 <96 555555555 <96 5555555595. <96 5555555 <96 55555555 <96 55855555 <96 =5555555 <96 55555555 <96 555555555 <96 55855555 <96 55555 5 5.5 <96 555555555 <96 55855 5 5.5 <96 555555 5 5.5 <96 5555555555 <95 5555.555 5 >5 <95 55555555 <96 555555 5 >5 <96 5555 5 >5. $5.56 5555555 5 >5 $5.550 5555555550 <95 67 Om En 5S m.m $.55 m5. 0.55 «.5. 5.0 Nd n5” wé 5.5. 0.5 5.5- 0.5 «.5. 5.v 55.» m5. N.m m.N v.5” 5.0 06 wd wd md wd QN dd 05.5 5.5.5 ”5.5 05.5 5.5.5 m5.5 0N5 05.5 VN.5 w5.5 ”5.5 ”5.5 «5.5 mN.5 mN.5 MN.5 w5.5 ”5.5 8.5 5.5.5 0N5 2.5 n55 N5.5 25 55.5 a5.5 wN.5 5.N.5 No.5 65.5 v5..N 3.5 Nm.5 moN OWN ”0.5 0N.N mNN 35 EN N5..5 5m.N Nm.N a0.N 5.d.N 5.5....N v0.5 0a.5 35 N05 «0.5 m0.5 3.5 3.5 3.5 Nm.5 ow.5 v5.55 md.N 05.5 me 0N5 5.N.5 5.N.5 dN.5 MN.5 VN.5 555.5 mN.5 Nm.5 055.5 NN.5 5.N.5 mN.5 5N.5 5N.5 0N5 VN.5 MN.5 m5.5 5N.5 5N.5 NN.5 a5.5 0N5 5N.5 5N.5 0N5 aN.5 nN.5 35 5.5 .5 05.5 No.5 55.5 5.5.5 v5.5 5.0.5 05.5 55.5 8.5 25 555.5 no.5 8.5 N5.5 0N5 005 M55 8.5 3.5 00.5 55.5 N5.5 3d VN.5 55.5 555.5 5N.5 5.5.5 NN.5 35 8.5 0N.N m5 .N 0N.N aN.N 5.N.N a5 .N mN.N NN.N 0N.N aNN m5 .N 55 .N 555 .N 5.N.N aNN w5 .N mN.N NN.N woN m 5 .N 5.N.N 5.N.N de Nm.N 5N.N 0N.N 0N.N dmN Nm.N mmN N5 .N F‘NMNMNWMF‘ v-II—Ov—flv-Ir-Ii-iI—II-II— I-d—iv—I—nv-Iv-OI-OI-Ifi 8.3.3. v—II-Iv-I 00.5 05.5 8.5 M55 N5.5 555.5 85 8.5 555.5 N5.5 05.5 no.5 05.5 55.5 35 555.5 555.5 n55 no.5 5585555 2.6 55555.5 2.6 558555 2.6 5555555 2.6 5555555 2.6 555555 2.6 55555555 2.6 55555555 2.6 5555555 2.6 5585555 2.6 5555555 2.6 5.5556 2-5 55556 2.6 555856 2.6 55856 2.6 555856 2-6 5555555 2.6 555.5555 2.6 55855.5 2.6 55855.5 2.6 55555.5 2.6 5555555 2.6 55595 2.6 55555 2-6 555855 2.6 55855 2.6 55655.5 2.6 55855.5 2.6 55555.5 2.6 55555.5 2.5 55555.5 2.6 68 a.« m.N5 «.m5 0.n5 a.m5 n.5v m. 05 0. 5 «d. m.m v.5. 5..5- «.0 55.55. «.5. «.w v.« 0.m 0.0 0.0 0.a «.m a.m 0.5 55.55 m.« 5.5- a.m «6 od van N5.5 v5.5 5.5 5 «0.5 55 5 a5.d ao.5 5N.5 NN.5 «5.5 N5.5 NN.5 n55 m5 5 00.5 555 5 85 a5 5 «5.5 m5 5 v0.5 05. 5 NN.5 5N.5 0N5 a5.5 NN.5 55.5 5.5.5 m5.5 05.5 00.5 m0.5 0m.N «5..5 am.N 50.5 «N.N 05.N «0N «a.5 mmN 55. N 00. 5 a0. 5 N55 85 5m.5 35 «a. 5 8. N a«. 5 5N.N m0.N NYN m0.N 50.N m5.N 5.0. 5 v«. 5 00.5 00.5 «N5 355 mm. 5 «N 5 Nn. 5 2.5 aN.5 nN.5 5N.5 NN.5 5N.5 ON.5 dN.5 a5.5 n55 5N.5 a5.5 0N.5 5N.5 a5.5 55.5.5 85 5.N.5 «N5 mN.5 85 85 «5.5 5N.5 5N.5 a5.5 8.5 5.0.5 v5.5 a5.5 5N.5 N5.5 mad v5.5 m5.5 ao.5 8.5 55. 5 no.5 N5.5 N5.5 55.5 5.ad 05.5 05.5 «0.5 8.5 m5 5 3.5 v5. 5 n55 «05 5.55.5 8.5 v5. 5 05.5 «5.5 05.N 5.5.N 5N.N «N.N VMN «N. N va. 5 0N. N «N.N 5.5. N 550. N «N. N «5.N VNN m5.N NN. N we. N 0N. N a5.N «5.N 5o.N 5.N.N «5.N 5.N.N 5.N.N NN.N a5 .N 05.N 0N.N 0N.N aN.N 00.5 05.5 «5 5 3.5 «5 5 55.5 aad N5.5 «5.5 «9.5 3.5 N5 5 «0.5 N5.5 «05 55.5 5.555 m5 5 8.5 05 5 50.5 N5.5 555.5 55.5 N5.5 v5.5 N5.5 0o.5 N5.5 05.5 55.5 5555555 2.6 5585555 2.6 55565555 2.6 555555555 2.6 55.55555 2.6 55.55555 2.6 5555555 2.6 558556 2.6 555556 2.6 5555555 2-6 55555556 2.6 555556 2.6 55555.5 2.6 558555 2.6 5558555 2.6 5.555555 2-6 558555 2.6 5585555 2.6 5565555 2.6 5585555 2-6 5585555 2-6 55555555 2-6 5558556 2.6 5.555556 2.6 55555555 2-6 5555556 2.6 5555556 2-6 5555555 2.6 5555555 2-5 55585555 2.6 55555555 2.6 69 «.5. a0 N.55 5.«5 v.«5 0.N5 0.05 m.« 0.« v.0 N.5. 5.5. V0 0.«N 5dN o.mN 0.NN 55.5. «.0 0.« 5.5. 055 N0 5.a N.55 «.55 Na N.55 m.a V0 «.0 «5.5 NN.5 55.5 «5.5 05.5 55.5 «5.5 a5.5 5.5.5 «5.5 05.5 85 «5.5 85 55.5 aad «d5 0N.5 «N5 «5.5 NN.5 «5.5 NN.5 ON.5 55.5 «5.5 a5.5 55.5 «5.5 5.5.5 a5.5 50.N 05..N «TN «65 omN 0a.5 «N.N 5.d.N 5m.N aN.N No.N o«.N CNN N«.N ««.N No.N «5.N 05 .N «0.N 5.«.N «0.N «5 .N 5.N.N 5.5 .N 05.5 50.N 50.N «a5 a0.5 50.5 ««.5 «N5 5«.5 «N5 d«.5 5N.5 5.N.5 N«.5 85 «N5 0N.5 «N5 055.5 0N.5 95.5 a«.5 N«.5 ««.5 0«.5 N«.5 a5.5 «N5 5.N.5 d«.5 N«.5 «N5 ««.5 5«.5 «N5 5.N.5 «N5 5.N.5 «0.5 555.5 8.5 85 85 «N5 55.5 55.5 N5.5 5.o.5 0N.5 00.5 5.5.5 05.5 05.5 5.0.5 «ad 05.5 «0.5 «0.5 5.0.5 ««d 5.5.5 8.5 05: N5.5 N5.5 3.5 5.5.5 5.0.5 5555 «5.N «N.N 5.d.N 55.N 05.N d«.N 0N.N 0N.N 0N.N CNN 5.«.N ««.N «N.N 5N.N 5.N.N 05 .N 5.a.5 «N.N «N.N 05 .N NN.N Na.5 5.N.N NN.N N5 .N 0N.N 5.N.N 05 .N «N.N 0N.N 5.N.N 05.5 55.5 5.55.5 55.5 no.5 no.5 «5.5 «5.5 5.5.5 «5.5 55.5 5.N.5 555.5 55.5 55.5 85 aad «5.5 «5.5 50.5 05.5 85 «5.5 «5.5 85 v5.5 «5.5 85 85 «5.5 55.5 5555556 2.6 555.55555 2.6 55555556 2.6 5555555 2.6 55555.5555 2.6 5585555 2.6 55585555 2.6 5555555 2.6 5555555555 2.6 5555555555 2.5 5555.5 2.6 555555 2.6 5555555 2.6 5555555 2.6 55585555 2.6 5555555 2-6 55585555 2.6 5555555 2.6 55555556 2-6 55555550 2.6 5558556 2.6 555556 2.6 55555556 2-6 555555 2.6 555555 2.6 5556555 2.6 5555555 2-6 55555595 2.6 5585555 2.6 5565555 2.6 55.555555 75.550 70 N.a55 «.a55 d.N« «.a 0.55 Nd5 hd5 N5 5 55.5.5 92 o.v5 Ta «.a «.v «.5. « .0 55.05 0.5 v.«N 5.5.5 an «.N« «.5.N 5..0N 5.5.N «.555 «.5.N o.«N a.v «.0 0N.5 N«.5 d«.5 5.5.5 v5.5 «5.5 55.5 55.5 «5.5 no.5 55.5 05.5 55.5 a5.5 aN.5 05.5 N5.5 dN.5 5ad No.5 N5.d v«d 3.0 ««d a«d «5.5 0ad 0ad 05.5 «N.5 «5.5 55 ««.5 SN «a.5 3N aN.N NdN 05.5 ddN 55N «5.N O55 VON N5..N «ON 5.«.N «ON aN.5 a5.N «5.5 NN.5 «5.5 5.5..5 no.5 NON «a.5 5.5.5 N«.5 «dN «vN «0N 5bN aN.5 aN.5 «N.5 5«.5 «N.5 N«.5 «N.5 aN.5 «N5 «N5 «N5 0N.5 5N.5 «N5 NN.5 NN.5 5.N.5 0N.5 5.N.5 0N.5 0N5 NN.5 « «.5 N«.5 «N.5 NN.5 N«.5 a0.N oo.« o«.N o5.5 N5.5 «ad «0.5 «0.5 Nad 55.5 3.5 «0.5 «o5 N5.5 «o5 N5.5 3.5 5.5.5 05.5 3.5 05.5 55.5 N5.5 85 550.5 5«.5 50.5 «5.5 No.5 «d5 05.« 50.« «v.« «N.N VNN «dN «N.N «5 .N SN 05 .N 555 .N «N.N 555 .N «N.N «N.N . «N.N 5.5 .N aN.N 5N.N 05 N d«.N aN.N 5.N.N VNN N5 N «vN voN 5«.N 55N «N.N th 50.N «0N «5.5 N5.5 «5.5 «5.5 «d5 N5.5 «0.5 555.5 «5.5 85 «5.5 «5.5 «5.5 «5.5 N5.5 55.5 055.5 555.5 «5.5 «5.5 «5.5 «d5 N5.5 «d5 «5.5 85 «5.5 555.555.55.96 555555.296 5585555596 555 55855555 2.6 555555555 2.6 555555555 2-6 55555555555 2.6 555855555 2.6 55555555 2.6 555.55555 2.6 5555555 2.6 5555555 2.6 5585555 2.6 555555556 2-6 55555556 2-6 5555556 2.6 5555.5556 2.6 555.55556 2.6 555555555 2-6 5585555 2.6 55555.5 2.6 5558555555 2.6 5555555555 2.6 5555555 2.6 5585555 2-6 5555555 2.6 555555555 2.6 5555555 2.6 5585556 2.6 5585556 2.6 71 5.« N. 5 5. 5 «. N 5 .0 o.« N5. 0.« «.« «5.« 0. aV «. 00 O «V o. 5« «. « N.0 a. N5 O « «.5. ON 06 od «.o «.0 «.5. N. 05 V. a V5. «.0 «.VV «.«« NN.N «ON «0. N V«. N 0V.N «V.N ««.N aN.N VO N 8. 5 ««. 5 «ad 0N5 «V. 5 00. N NV. N 0«.N 5.N.N 0«.N NV.N N0. N 00. N 00.N VON aN.N 5«.N 5«.N ««.N NON aV.5 NN.5 5.N.V a5..V o5. « ca. V «0. V a«.V 0«.« «V.V Na.V «0.5 Na.5 OVN 2.. 5 ac. N «N. V «a.V a0.V 5o.V ««.V NOV «0. « Vo. « 0o.« V5.« N0.« 0«.V «N.V ««.V «a.V 05. N ca. 5 aN. N 00. N «0. N 00. N N0. N V0. N 5«. N 5V. N V0. N 5.«. N «0.N a«.N CV. N 0a. N ««. N ««.N 5«.N «V.N 0«.N «V.N N0. N o0. N «0. N 05..N «V. N V0. N «O N ««.N a0.N 05..N «5.N 5«.N «0.N 5«.N VON 5a.N 0«.N 5.5.N «0.N a«.N 05.. N Va. N Va. N 0«.N 05.« aN.« V5 .« «0.N 5a.N «0.« N«.N ««.N «a.N 55. « Va. N Va. N ««. N oa. N 5a. N 00. « no. « 55.« «a.V «5.« 5V.« aN.« V«.« 0V.« «N.« «o.« aV.« «0.« «O« 0N.« «5.« 50.0 N5 .0 00. « aN « OV.« V«.« «N.« «V.« «V.« 0«.« «0.« a«.« «V.« NV.« «V.« 55.« «5.« 5«.« NN.N 5O N 00. N ««. N «O N 00. N 0V.N 5.«. N 00. N N«. N 50.N N«.N ««.N 5a.N ««.N NO N 00. N «V. N 5«.N «V.N a«.N ««.N «0.N ««.N «V. N 00. N NO N VON «0. N 00. N on. N 555505050 5583050 55093050 558095050 5589050 5559.20.50 5559.20-50 55595050 55902050 55852050 55892050 55892050 55892050 55892050 559.2050 559.2050 559.2050 559.2050 5532050 55552050 5523050 55905050 5593050 5523050 5593050 5593050 559.3050 5595050 559.2050 55955050 559.5050 72 «.«« 5.50 «.V« 5.«« d.a« 5.«« O«« 5. «« V. o. d. d« V. d «d Vd a.5 O« «.V O0 «.5.. «.V V.V 0.V a5. 5.V o.« OV a.« 0.V O 05 N. « 5.« «.5 N55 «ad 5.5.5 «5. 5 do. 5 N5. 5 ad. 5 55. 5 VV. N 5.«. 5 V0. N N«. N 5«.N 50.N a5.N 0«.N aV.N 0«.N 5V.N 0V.N oON 0«.N N«.N «N.N NV.N 5V.N N«.N «V.N ««. N 0d. N ««. N a0.5 5N.N aN.N 5a5 50.« 5.a.N «0.5 505 0N.« 50. N Vo. « 0N. « V«.« «a.V ««.V 50.« «5.V NOV ««.V N«.« V«.V «5.« «5.V 0V.V 0«.V V«.V «V.V N0.« «0.V «d. V ad. « 0V. N VV. N 0« .N 0« .N VV. N «0. N 0V. N 5.V. N «V.N VON «0.N VON N«. N 00 N «N. N «0.N 50.N ««.N ««.N 5«.N N0.N «ON NV.N dVN VON 0O N V0. N NO N 5«.N «5 .N a«.N ««. N ad. « «a. N hd.« N«. N 0a. N «a. 5 «0.N ««.N 5«.N N«.N a«.N N«.« «ON 5V.N d5. « do. « aO N 50.« a«.N 5a. N do. « da.N «ON a0.N ««.N «o.« 50. « Vo. « VO N 5a.N 05.« «V.« «V.« ««.« NN.« a«.« ««. V ad. « «N. « «V.« 0V.« ««.« «N.0 ««.« N0.V oO« o0.« «N.« h«.« N«.« «V.« «0.« «N.« 55.« a5.« V«.« «0. « 00. « 5.V. « «0.V aV.« 5«.N a«.N «V.N 5«. N dV. N «0. N dV.N 5V.N ««.N 50.N ««. N V. N «O N 50.N 5N. N 00. N 00.N aV.N oON «V.N N«.N «0.N N«.N ««.N CON 5«. N 00. N «0. N «V.N 5 5.N N«.N 55852050 55592050 55592050 55892050 55892050 5832050 55552050 5532050 55532050 55092050 55802050 55852050 55852050 55802050 55802050 5559.20-50 55092050 5509,2050 55092050 5592050 55552050 55592050 55592050 55852050 55592050 55882050 55892050 55882050 55892050 55892050 55502050 73 o. 50 0. 5 0.5 Vd ad N.5 V.0 «.V «.V 0.V «. 55 O V V. N5 O V «.0 N0 0.« V.« «.« V.V V.« 5.0 «.0 N.« «.« 5.V 05 ON 05 «.5 V5 5555 N«.N «V.N ««.N ««.N N«.N «V.N ««.N «0.N oON 0«.N ««.N ««.N ««.N «V.N «V.N ««. N VV. N Vo.N ««. N a. 5 ««. N ««.N «V.N «V.N N«.N oON «V.N «V.N ««.N «5.N 5V. N a. V 50. V 50.V dOV «5 .« V«. V «d. « «OV NN.« a5.V ««.V a«.« N0.« V«.V 5«.V hOV «0.V ««.« VN.V 50.V Va.« NN.V ««.V «N.V «5.V hOV V«.V «0.V «V.V VN.V N«.N 0«.N «V.N ««.N ««.N ««.N «0.N «0.N aON N0. N 00. N VV.N 00.N «0. N 00. N a«. N aV.N ««.N «N.N aV. N 0d. N «V. N ««.N «0.N «ON NV.N VON «V.N aV.N OVN «5.N Va.« «a.N VON 5«.N ««.N Nd.« «o. « do. « aa.N oo.« NON «ON a«.N «0.« 0ON «a. N 0a. N «a. N a«.N «ON «V.N 0«.N «o.« «a.N ««.N ««.N bON «0.« ««.N V«.N aV.N «O « 0V. « «5. « 55.« 05.« «V. « o0. « ««. « a0.« ««.« ««.« V5.« a5.« «0.« «N.« aV.« ««.« «V.« «V.V a5. « 0V. V dN. « hV.« 50.« a«.« «N.« N.« «V.« 5«.« 05. « 00. V 5ON «V.N a«.N d«.N «N.N «V.N ««.N ««.N 0ON ««.N 50.N a«. N 00. N «O N N«.N 5«.N NV.N 5«.N «5 .N 5V. N a. 5 0V. N VV. N «0. N 5«.N ««.N oON 0V.N «V.N N«.N 5 5.N 5583205 55352050 558502050 555552050 558.52050 55822050 55892050 5589,2050 55892050 558 92050 55832050 55832050 55892050 558 _ 92050 55832050 558 0 92050 55892050 55892050 55892050 55892050 55852050 55882050 55832050 558.5050 55852050 55592050 55852050 55852050 55852050 55852050 55852050 74 Vd dd «.05 «.05 5.«5 «.N. «d5 5.50 N. o« 0. 00 «. 5« O 5.« «. N «d «.N V5 0.N «.« «.V d.« a.0 a5. «.0 0.« N0 o.V a.« N50 dd« N.0« 0.5.« 00.N a«.N 05.N 5.0. N 00. N 50. N VN. N do. 5 «N. 5 50.5 «5.5 55.5 0«.N 50.N 0«.N «d.N 50.N V«.N 5.V.N «V.N «V. N VV. N V«. N dON aN.N N0.N o«. N Vd. 5 «N. 5 «5.5 50.5 5OV N«.« ««.V aOV 05.V «a.« V«. V 00. V ««. 5 Na.5 a0.5 «O5 «N.« 5a.V «a. V 0V. V Nd. « aO V 3. « N0. V «a.« Va.« NOV 5.«« EV VO V da. V 50. N 05.5 55.. 5 00. 5 50.N aON ««.N «V.N ««.N V«.N 5«.N 5.«.N 5«.N 0«.N «V.N 50.N N0.N «0.N N0.N «0.N «0.N 5.V.N ««.N ««.N 50.N «0.N 5«.N 0«. N VV. N «O N NV.N «0. N 0V. N «O N ««.N V«.5 Na5 «O5 «a5 ««.5 Nd. N V«. 5 a«. N NON oON 5O N V«. N «ON ««.N a0.N 5V.N ««.N ««.N «a. N oa. N «ON Nd.« ««.N 50.« V«.N «5.« «ON 0d. « «ON «ON 05..N NN.V «N.V 05.V 0N. V 8. V ««. V 5.5.V a«.« «N.« 0N.« 55.« 5.«.« 5«.« «V.« «N.« «V.V 5O « 0a. V aV. « 5V.« «N.« N0.« aN.« 5«.« «N.« 5.«« 05.« ««.« 05.« «N. « do. « ««.N 0«.N 5«.N «N.N N5.N 5«.N ««.N oON 5«.N oON dVN ««.N ««.N ««.N 0«.N N0.N «0.N 5V.N 5«.N 5«.N ««. N 00. N 0V. N d«.N a«.N a0.N ««.N aV.N ««.N 5.V.N VN.N 559.5 250 559.5 250 55500 250 5580 250 55500 250 55500 250 55500 250 555892050 555892050 5558002050 5558002050 5585002050 555852050 558852050 558502050 55852050 555852050 55892050 55892050 55892050 55892050 558902050 558802050 558802050 555892050 555892050 5558502050 558 0 92050 55892050 558092050 558002050 75 Vd 5.5 Vd 5.5 5.« N.N 0.N Vd dd Vd «.d Vd Vd. 5.5N ON5 a.«N a5.N 0.«N Vd d5 «.d «.d Vd. Vd- ON- «.5 N5 Vd. «.d Vd. Vd 5.V.N VON d«.N 50.N 5«.N «ON «0.N d«.N aV.N ««.N d0.N 5.V.N NON VN.N N«.N Va5 Nd.N Na5 5«.N 0«.N V0.N ««.N «ON d«.N d«.N ««.N a«.N 5V.N 5.V.N N«.N N«.N VOV «V.« 50.V ««.V 50.V d0.V «V.V 5d.« VO« dV.« 50.V 5«.V 5.«.V «d.« «d.« 5.0.V Na.N aON «5 .V 0«.V «0.V «OV ««.V VOV aN.V 5«.V «V.V «V.V dOV 5.5 .V ««.« «V.N 5.5..N 5«.N V0.N aON aON «ON 5«.N aV.N V«.N N0.N «V.N 5ON V«.N «0.N «ON d«.N ««.N N«.N a«.N 00.N d0.N N5..N aV.N VV.N N0.N NV.N dV.N aV.N 5«.N ««.N 35 «5.N ««.5 «O5 «O5 a0.5 5.«5 a0.5 a«.5 «O5 ««.5 «O5 Na5 «d.N Vd.N 5«.5 «a5 aa.5 N5.5 N05 aO5 5.5..5 Na5 0d.N «a5 «d.N ««.5 Va5 Nd.N 5a5 0a.5 55.V d«.V 5N.V «5 .V 05 .V «N.V «V.V 0«.V «5 .V «a.« ««.V a«.« «V.V VOV NOV a«.V hOV NV.V d5 .V V«.V «d.V VN.V NOV 5«.V a5 .V 0V.V d5 .V «5 .V ««.V «N.V 0«.V 5«.N N0.N ««.N «V.N 5V.N a«.N ««.N 5.0N «N.N «5 .N d«.N 5«.N ««.N 00.N «V.N ««.N N0.N «V.N ««.N N5..N 0V.N 5.V.N d0.N «N.N 5N.N «V.N «N.N 5N.N 5«.N N«.N dV.N 55800 250 55850 250 55800 250 55850 250 55850 250 55850 250 55850 250 55850 250 5583 250 55895 250 558.5 250 558.5 250 558.5. 250 55800 250 55800 250 55800 250 55800 250 55800 250 5590 250 555.0 250 55050 250 55050 250 55050 250 5580 250 5580 250 5580 250 5580 250 5580 250 5595 250 559.5 250 559.5 250 76 «.d a. 5- V. d Vd dd Od 05 Vd. «.d 0. «N V. VV V. «. «5V O 5« O V a.N a5 «5 «.5 «.d Vd. 5.5 Vd. Vd «.d «.5 Vd- Vd Vd «d. Vd «V.N 5ON «0.N dO N «V. N «0.N N«.N 5.0.N aV.N «0.5 a«5 ««.N a«.5 d5..5 ««. N 00. N «O N «ON «5.N ««.N ««.N d«.N d5..N 5«.N «V. N dd. N 0«. N d«.N 0«.N 5.0.N ««.N «V.V NOV «d.« ««.V VOV ««.V d«. V 00. V 05.. V 5«.N N5.« «a. V Vd. V «5 .V 5.V.V 0«.V 5.0.V N«.V «0.« «d.V 5O V V0 V da.V V5. V V0. V da.« «V.V 5a.V «d.« «OV «V.V «V. N 00. N V0.N 5«.N «V.N d5..N 0O N 00. N 5O N 05 .N d«. N dV. N a«. N aV. N 0V. N VON «0.N «ON NN. N d0. N 5O N ««.N a0.N N«.N 5.V.N «d.N ««.N 5«.N ««.N «0.N V«.N a0. 5 Va. 5 Na. 5 Nd.N aO5 «O5 «a5 ««5 5.5..5 ««.5 «O5 V«5 5d.N «a5 a5.5 ««.5 «a5 ««. 5 VV. 5 «a. 5 Va.5 5«.5 a«.5 «a5 N5.N aO5 5a5 V«5 «5.N 5a5 N«.5 dd.V «V.V 5V. V dV. V d5 .V ««.V V«.V 5.N.V d5 .V V«. « «d. V ad. V 5N. V «N.V 5.5.V 5V.V 5.«.V NV.V V«.« 0«.V V«.V d«.V dV.V d«.V dV.V 0V.« VN.V 05. V VV. V 5V. V Nd.V 5«.N 5«.N aV.N ««.N 5«.N ««.N 5V.N NV.N ««.N 5d.N «N.N «N.N dN.N N«.N ««.N 0O N VV. N aO N d5.N «V.N dV.N a0.N 5«.N 5.«.N «N.N 5.«5 ««.N N«.N 5«.N d«.N dN.N 55090. 250 558.5 250 558.5 250 5583. 250 55850 250 55800 250 55850 250 55800 250 55850 250 55800 250 55800 250 55800 250 55800 250 55800 250 55850 250 55850 250 55850 250 55850 250 55.850 250 5588 250 5559.5 250 55095 250 558.5 250 55090. 250 55950 250 55800 250 55850 250 55850 Z50 55800 250 55850 250 55800 250 77 O5- «. d V. d «.d Vd N5 Vd dd «.d V. d- O N «.« 0.V N.0 «.« V.d« V.NN OV« 5.«« 5.a« 5.«N «.5« 5d5- N.«V O 0N N. 0 «.0 a.« a5 «.V Vd V0.N VV.N 5.«.N NV.N 0«.N NV.N «V.N d«.N «a.N a«.N a5.N aV.N 5.V.N VON 0«.N a5.5 «a. 5 d0. 5 «V. 5 0«.5 «d. N 00. 5 «a. N ««5 «d.N 0«.N «V.N VON aON d«.N ««.N ««.V d«.V «d.« aOV «d.« 55.V «N.V 5«.« aN.« a«.V V«.« «N.V «d.V N«.V d«.V 0«.« «0.N 5V.N dN.V «V.V 5«.V a5.V «d. « 0d. « «O N NOV ««. « 0a. V d0.V da.V 0OV d0.N 0V.N ««.N VV.N ««.N «V. N 0V. N dO N aa. N ««. N «N. N V0. N aO N Na. N 0«. N .dV.N ««.N «V.N a«.N 0«.N 5«.N «V.N «0.N N«.N a«.N «ON «0.N ««. N V0. N N«. N aON ««.5 a«5 ««5 ««5 «a5 ««5 5a5 ««. 5 dd. N «a. 5 ««. 5 V0. 5 d«. 5 ««5 V«5 N«.5 SN «0. 5 da. 5 85 «d.N V«. 5 da. 5 Va. 5 SN a0. 5 V0. 5 «O 5 0d. N ««. 5 da. 5 d«.V 0N.V VN.V d5.V ««.V 5N.V NN.V d5.V d«.V 05 .V da. « «d. V ad. V «V. V ««.V Nd.V ««.V «a.« 5 5.V NN.V «0.V «d.V a«.V aN.V a«.V NN.V dN.V VN.V V«.V 0«.V N«.V «V.N ««.N 5V.N N«. N dV. N ««. N 5«.N ««.N d«.N «5.N N5 .N VV. N a«. N N«. N V0. N dN. N ««.N «N.N 5N.N N«.N ««.N 5«.N aV.N ««.N ««.N ««.N 0«.N «0.N «V.N «0.N NV.N 55830 250 55830 250 55830 250 55830 250 55830 250 55835 250 5583.5 250 55835 250 5583.5 250 55835 250 558:0 250 558:0 250 558:0 Z50 558:0 Z50 558:0 250 558000 250 558000 250 55830 250 55830 250 558000 250 55800 250 55800 250 55800 250 55800 250 55.800 250 5580 250 5585 250 5580 250 558.0 250 5580 250 558.5 250 78 N.N- V.«- V.V d.N ON «.d- «.d 5.5 V.d- «.d N5 «5- «.5 «.d Vd 0.«N a.«« d.d« a.«V 55« mON N«.N dV.N a«.N 5«.N NV.N «d.N ««.N aON d0.N ««.N «N.N 5«.N d0.N V«.N «O5 «« .5 ««5 ««5 N05 8008 385% 5 2.5 2050 .02 5a 250 .080 “5853 05525 52 585 80 0 0.502. 5.85 58..., 8 5053 053 550 5 52 U.85 :8 a 58 55 2303 .585 583 8 5053 5 88505 ”.5 58.58: 2380.5 .8550 5.5 80.52. 85005.5 033 .50 250503 :5 3500,5555. ”CB 53 085 =8 a 58 0.8 5 8.6 5 5 3.5. 08: 583 8 5053 ”.3 53 0.85 8a 5 55. 585 583 3 5053 .555 ”.3 58853.: 058000 .8550 0.0V 8 00.6 :0 05 500.5 05003 50003 .50 53503 “555 505035 05520 55. 085 39, 8 5525 555 “.3 0.8 5 8.6 5 35. 55. 085 583 8 5.05... 03 00.0 ««.V 0V.V dd.« 0N.V ««.V V«.V ««.V N«.V dd.« «5 .V a5 .V «V.V «a.V a«.V a«.N d«.N «V.N ad.V a.« ««.N «0.N 5«.N «a.N ««.N dV.N «d.N d«.N ««.N N0.N 0«.N «N.N V«.N N0.N ««.N a«.N ««.N d«.N 0V.N ««.N V0.5. 5«.5 5«.5 a0.5 505 5«.5 a«5 «O5 V0.5 a«5 ««.5 a05 «a5 0«.5 «O5 5«.5 «a5 ««5 5a.5 ««5 «WV V«.V 5N.V «V.V d«.« Vd.V a«.« dV.V Vd.V 0N.V «N.V a«.« 05 .V «N.V dN.V Vd.V 0«.V 0a.« NN.V 0a.« ««.N «0.N dV.N ««.N a5 .N «N.N dd.N «0.N dV.N «V.N 5V.N d5 .N «N.N 5V.N NV.N «N.N 5V.N ««.N 5«.N 5N.N EEOVQO 250 55800 250 558:0 7050 558:0 250 55800 250 55830 250 55830 250 55880 250 55830 250 55830 250 55890. 250 55890. 250 55890. 250 5589.5 250 55895 250 558000 250 558000 250 55830 250 55830 250 55830 250 79 REFERENCES American Wood Preservers’ Association (AWPA). 1999. Standard for waterborne preservatives, P5-99; Standard for oil-home preservatives, P8-99; Standard method of testing wood preservatives by laboratory soil-block cultures, E1 0-91; Analysis of treated wood and treating solutions by atomic absorption spectroscopy, A1 1-93; Wet ashing procedure for preparing wood for chemical analysis, A7-93; Granbury, TX. American Wood Preservers’ Association (AWPA), 1996. Woodstock, MD. Collett, O. 1992. Comparative tolerance of the brown-rot fimgus Antrodia vaiIlantii (DC:Fr)Ryv. Isolates to copper. Holzforschung, 46: 293-298. Cotton FA. and Wilkinson G. 1988. Advanced Inorganic Chemistry. John Wiley & Sons. Pp: 755-775. Da Costa, E.W.B. and RM. Kerruish. 1964. Tolerance of Poria species to copper-based wood preservatives. Forest Products Journal, 14: 106-112. De Groot, R. C., C.L. Link, and J .B. Huffman, 1988. Field trails of copper naphthenate treated wood. Proceeding of American Wood Preservers’Association, 84: 186- 200. Deon, G., Bombardi, L. and Fort, N. 1969. Dosage Spectrophotometriques Rapides Du Chrome, Du Cuivre Et De L’Arsenic Dans Les Bios Traites, Centre Technique Forestier Tropical, 9: 11-13. Dzidic, 1., A. C. Somerville, J. C. Raia, and H.V.Hart. 1988. Dtermination of naphthenic acids in California crudes and refinery wastewater by fluoride ion chemical ionization mass spectroscopy. Analytical Chemistry, 60: 1318-1320. Eaton, R.A.and Hale, M.D.C. 1993, Wood Decay, pests and protection, Chapman & Hall. Pp: 320-326. Eriksson, KB. and Wood, TM. 1985. Biosynthesis and biodegradation of wood components. (Eds. Higuchi,T.) Academic press. Pp: 476-480. Felsenfeld, G., 1960, The determination of cuprous ion in copper proteins, Archives of Biochemistry and Biophysics, 87: 247-251. Fengel, D. and Wegener, G. 1983. Wood chemistry, Ultrastructure reactions. Walter de Gruyter. Pp: 373- 402. Gastaldi, D., Pessione, E., Vanni, A.and Giunta, C., 1993, Metal-enzyme interactions in ADHi fi’om Kluyveromyces marxianus, International Journal of Biochemistry, 25(3): 349-352. Goyer, R A and Chen'an M. G. 1995. Toxicology of Metals, Biochemical Aspects. Springer-Verlag. Pp: 100-103. Hamer, D. H. 1986. Metallothionein. Annual Review of Biochemistry, 55: 913-951. Haygreen, J. G. and Bowyer, J. L. 1996. Forest products and wood science. Iowa state university press/AMES. Pp: 41-45. Hill, R. 1977. Copper toxicity. 1. The British veterinary journal, 133(3): 219-224. Highley, TL. 1976. Hemicellulose of White- and Brown-rot Fungi in Relation to Host Preferences. Material und Organismen, 11: 33-46. Highley, TL. 1977. Requirements for Cellulose Degradation by a Brown-rot Fungus. Material und Organismen, 12: 25-36. Heighley, TL. 1980. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose- Clearing Brown-Rot Fungi. Applied and Environmental Microbiology, 40: 1 145-1 147. Hunt, J. Simpson J. and Dean, R, 1988, Hydroperoxide-mediated fragmentation of Proteins. Biochemical Journal, 250:87-93. Kamdem, DP. and Zhang, J ., 1999. Identification of cupric and cuprous copper in Cu-N treated solid wood by X-ray photoelectron spectroscopy (submitted). Kamdem, DP. and Zhang, J ., 1998. The effect of post-steaming on copper naphthenate treated southern Pine. Wood and Fiber, 30(2): 210-217. Kertesz, D., 1957, State of copper in polyphenoloxidase, Nature, 180:506-507. Kirk, T.K. 1973. Polysaccharide Integrity as Related to the Degradation of Lignin in Wood by White-rot Fungi. Phytopathology, 63: 1504-1507. Kirk, T.K. 1971. Effects of Microorganisms on Lignin. Annual Review of Phytopatholgy, 9: 1 85-210. Kirk, T.K. and Chang, H. 1974. Decomposition of Lignin by White-rot Fungi, 1. Isolation Of Lignin of Heavily Degraded Lignins from Decayed Spruce. Holzforschung, 28: 81 2 1 7-222. Kirk, T.K. and Highley, TL. 1973. Quantitative Changes in Structural Components of Conifer Woods During Decay by White- and Brown-Rot Fungi. Phytopathology, 63: 1338-1342. Klotz, I.M. and Klotz, TA, 1955. Oxygen-carrying proteins: a comparison of the oxygenation reaction in hemocyanin and hemerythrin with that in hemoglobin. Science, 121(8): 477-480. Koenigs, J .W. 1974. Hydrogen Peroxide and Iron: A proposed System for Decomposition of Wood by Brown-rot Basidiomycetes. Wood and Fiber, 6: 66-80. Liese, W. 1970. Ultrastructural Aspects of Woody Tissue Disintegration. Annual Review . of Phytopathology, 8: 231-258. Marten EA and Leach J .G., 1944. Some factors influencing the solubility of cuprous oxide in relation to its toxicity as a fimgicide. Phytopathology, 34: 459-470. Mocquot, B., Vangronsveld, J ., Clijsters, H. and Mench, M., 1996. Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activites. Plant and Soil, 182: 287-300. Paice, MG. and Jurasek, L. 1979. Structural and Mechanistic Comparison of some B-(1-4) Glycoside Hydrelases. In: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis (Brown, RD, Jr. and Jurasek, L., Eds). Advances in Chemistry Series, 181. ACS. Washington, DC. 361-374. Rayner, A.D.M. and Boddy, L. 1988. Fungal Decomposition of Wood, Its Biology and Ecology. John “filey & Sons. Schmidt, 0. and Liese, W. 1980. Variability of Wood Degrading Enzymes of Schizophyllum Commune. Holzforschung, 34: 67-72. Schultz, T.P. and Nicholas, D. D. 1997. Susceptibility of andiosperm sapwood to white-rot fungal colonization and subsequent degradation: a hypothesis, IRG/WP 97-10211. Whistler, Canada. Simpson, J ., Cheeseman, K, Smith, S. and Dean, R., 1988, Free-radical generation by copper ions and hydrogen peroxide stimulation by hepes buffer. Biochemical Journal, 245: 519-523. Sutter, H.-P., E.B.G. Jones and 0. Walchli. 1983. The mechanism of copper tolerance in Poria placent (F r.) Cke. and Poria vaillantii (Pers.) Fr. Material und Organismen, 18(4): 241-26. 82 Thornton, J .D. and Tighe, MA, 1987. Comparative laboratory testing of strains of the dry rot fungus serpula lacrymans (Schum. Ex Fr.) S.F. Gray III The action of copper naphthenate in wood. Holzforschung, 41(3): 195-197. Wang C. J. K. and label, R. A, 1990. Identification Manual for Fungi from Utility Poles in the Eastern United States. Allen Press. Pp: 21. Wilcox, W.W. 1973. Degradation in relation to wood structure, in Wood Deterioration and its prevention by preservative treatments. Vol. 1 (ed. Nicholas, D.D.). Syracuse University Press. Pp: 107-148. Williams, GR. and Fox, RF. 1994. The control of copper tolerant basidiomycete fungi in preservative treated wood in ground contact, Proceedings ninetieth annual meeting of the American Wood-Preservers’ Association, TX: 156-176. Zabel RA. and Morrell, J .J ., 1992, Wood microbiology Decay and its prevention, Academic Press. Zirinoode A. and SP. Kounaves. 1980. Stripping polarography and the reduction of copper (II) in sea water at the hanging mercury drop electrode. Analytica chemica acta, 113: 79-90 Zyskowski, J. and Kamdem, DP. 1999. Ultraviolet spectrophotometry and fourier transform infrared spectroscopy characterization of copper naphthenate, Wood and Fiber. 31(4): 441-446. 83 "Illlll11.111171111111111S