

LIBRARY
Michigan State
University

This is to certify that the

thesis entitled

SOCIAL EQUITY AND THE SPATIAL VARIATION OF THE PROPERTY TAX STRUCTURE OF LANSING, MICHIGAN

presented by

Julie Louise Colby

has been accepted towards fulfillment of the requirements for

M.A. degree in Geography

Brue KS

Date_August 30, 1999

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
L & 1 C coop		
A 2 2 8 0 2		
JUO_311 3 2007		

11/00 c:/CIRC/DateDue.p65-p.14

SOCIAL EQUITY AND THE SPATIAL VARIATION OF THE PROPERTY TAX STRUCTURE OF LANSING, MICHIGAN

Ву

Julie Louise Colby

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Geography

1999

ABSTRACT

SOCIAL EQUITY AND THE SPATIAL VARIATION OF THE PROPERTY TAX STRUCTURE OF LANSING, MICHIGAN

By

Julie Louise Colby

Inequities in the property tax structure are tested for and examined using various econometric and GIS methodologies. The inequities under investigation include, vertical, spatial and those based on demographic, social-economic, and housing characteristics. Five years (1994 – 1998) of property sale transaction data from Lansing, Michigan are utilized. First, econometric models are used to test for vertical equity. In all cases, regressive vertical inequity is concluded. Next, the data are partitioned by sale year and subjected to semivariance analysis, *Moran's I* analysis and kriging to create surface maps. Results show that both positive and negative spatial autocorrelation exist at a variety of lag distances. Patterns are revealed that show there are spatial disparities and geographic inequities in the property tax structure. Finally, other biases of the assessment ratio are examined and identified in multiple regression analysis at three geographic scales. The property tax structure of Lansing, Michigan has significant inequity based on sale amount, race, income, housing stock and market dynamics. These inequities may be caused by dynamics in the real estate market and the assessment process itself. The assessment process must change so that inequities are alleviated.

ACKNOWLEDGMENTS

I would like to acknowledge and thank the following people; without them I could not have produced this document. I wish to thank Jim Myers at the Lansing City Assessor's Office who provided digital access to the parcel sale transaction data used in this thesis and spent time helping me understand the assessor's role in the property tax structure. I am also extremely grateful to the Michigan State University Geography Department and my supportive classmates. Mark Bowersox acted as my GIS consultant and put up with repetitive brain-picking as well as occasional freak-outs, and Colleen Garrity generously allowed me the use of her computer and home office. I owe special thanks to family members and Tim Priest for editing suggestions and general support. Finally, I would like to express appreciation for Bruce Pigozzi, my advisor, who is an excellent role model and provided me the inspiration and unending encouragement I needed to finish my Master's thesis work.

TABLE OF CONTENTS

LIST OF TAE	3LES	. vii
LIST OF FIG	URES	. iix
LIST OF ABI	BREVIATIONS	x
INTRODUCT	TON	1
CHAPTER 1		
TAXATION A	ND ASSESSMENT	3
	The Importance of Equity	
	Regressive Taxation	
	Assessment Process	
	Ideal Property Tax Structure	
	Purpose	12
CHAPTER 2		
DATA AND F	PREPARATION	
	Data from the Lansing City Assessor's Office	
	Census Data	
	Data Preparation	
	Three Scales of Analysis	19
CHAPTER 3		
VERTICAL E	QUITY TESTING	
	Paglin and Fogarty Model	27
	Cheng Model	
	The International Association of Assessing Officers Model	
	Clapp Two-Stage-Least-Squares Simultaneous Equations Model	
	Controlling for Year	
	Conclusion	40
CHAPTER 4		
SPATIAL AU	TOCORRELATION AND SURFACES OF INEQUITY	42
	Research Question 1: Is the Assessment Ratio Spatially	
	Autocorrelated?	
	Semivariance Analysis	
	Semivariance Results	
	Moran's I Tests	
	Morans' I Results	
	Research Question 2: What do the Spatial Patterns Look Like?	
	Semivariograms	
	Kriged Surfaces	63

	Expected Map Patterns64
	Description of Map Patterns71
	Research Question 3: Do the Patterns Vary From Year to Year?. 72
	Map Interpretation and Results72
	Research Question 4: Is an Assessment Correction Process
	Present?
	Correlation Results77
	Conclusion
CHAPTER 5	
	ON OF THE ASSESSMENT RATIO VARIATION 80
	Framing the Hypotheses
	Correlation85
	Ordinary Least Squares Modeling
	Tract Scales
	Block Group Scale97
	Parcel Scale
	Conclusion
	Sources of Inequity
CHAPTER 6	
CONCLUSIO	N 108
	Findings 108
	Causes of Bias
	Future Research
	Implementing Geographic Process and Methodology 111
APPENDIX A	1
	NCE VALUES FOR 1994 DATA118
	102 V/L020 1 011 100 1 D/11/
APPENDIX E	1
	NCE VALUES FOR 1995 DATA
	TOE VALUE OF OTT 1999 DATA
APPENDIX (
	NCE VALUES FOR 1996 DATA
OCIVII VAI IIAI	TOL VALUED I OIT 1000 DATA
APPENDIX D	1
	NCE VALUES FOR 1997 DATA 124
SEIVII VANIAI	10L VALUES I ON 1997 DATA 124
APPENDIX E	:
	- NCE VALUES FOR 1998 DATA 126
	10- 1/1-0-01 OIL 1000 D/11/1

APPENDIX F 1994 MORAN'S I 12	28
APPENDIX G 1995 MORAN'S I13	32
APPENDIX H 1996 MORAN'S I13	36
APPENDIX I 1997 MORAN'S I14	10
APPENDIX J 1998 MORAN'S I14	14
APPENDIX K CENSUS TRACT SCALE CORRELATIONS14	18
APPENDIX L BLOCK GROUP SCALE CORRELATIONS15	50
APPENDIX M PARCEL SCALE CORRELATIONS15	52
BIBLIOGRAPHY15	<u>5</u> 4

LIST OF TABLES

Table 1 - Estimated Paglin and Fogarty Model	29
Table 2 – Estimated Cheng Model	33
Table 3 – Estimated I.A.A.O. Model	36
Table 4 – Estimated Clapp 2SLS Simultaneous Equation Model	38
Table 5 – Year Specific Cheng Model Results	40
Table 6 – Chapter 4 Research Questions	44
Table 7 – Null Hypothesis Rejections by Year	53
Table 8 – Semivariogram Results	63
Table 9 – Correlation Statistics	78
Table 10 – Hypothesized Correlation with AR	86
Table 11 – Bivariate Pearson's Correlation Results at Three Scales	86
Table 12 – Simple Regressions, Dependent Variable = AR, df = 40	. 90
Table 13 – Tract Multiple Regression 1	93
Table 14 – Tract Multiple Regression 2	. 94
Table 15 – Simple Regressions, Dependent Variable = AR, df = 116	. 97
Table 16 – Block Group Multiple Regression 1	. 98
Table 17 – Block Group Multiple Regression 2	. 98
Table 18 – Simple Regressions, Dependent Variable = AR, df = 8055	100
Table 19 – Parcel Multiple Regression 1	102

LIST OF FIGURES

Figure 1 – Parcel Sale transactions Observations	19
Figure 2 – Census Tract Boundaries in Lansing, MI	21
Figure 3 – Census Block Group Boundaries in Lansing, MI	22
Figure 4 – Parcel Scale Transaction Observations on Block Groups	23
Figure 5 – Paglin and Fogarty Model (under the null)	28
Figure 6 – Estimated Paglin and Fogarty Model	30
Figure 7 – The Cheng Model (under the null)	32
Figure 8 – Estimated Cheng Model	34
Figure 9 – The I.A.A.O Model (under the null)	35
Figure 10 – Estimated I.A.A.O. Model	36
Figure 11 – 1994 Semivariogram with Maximum Active Lag Distance	55
Figure 12 – 1995 Semivariogram with Maximum Active Lag Distance	56
Figure 13 – 1996 Semivariogram with Maximum Active Lag Distance	56
Figure 14 – 1997 Semivariogram with Maximum Active Lag Distance	57
Figure 15 – 1998 Semivariogram with Maximum Active Lag Distance	57
Figure 16 – Idealized Semivariogram with Parameters	59
Figure 17 – 1994 Truncated Semivariogram with Exponential Model	60
Figure 18 – 1995 Truncated Semivariogram with Exponential Model	60
Figure 19 – 1996 Truncated Semivariogram with Exponential Model	61
Figure 20 – 1997 Truncated Semivariogram with Exponential Model	61
Figure 21 – 1998 Truncated Semivariogram with Spherical Model	62
Figure 22 – Grid of Kriged Surface of AR from 1994 Sale transaction Data	66

Figure 23 - Grid of Kriged Surface of AR from 1995 Sale transaction Data	67
Figure 24 – Grid of Kriged Surface of AR from 1996 Sale transaction Data	68
Figure 25 – Grid of Kriged Surface of AR from 1997 Sale transaction Data	69
Figure 26 – Grid of Kriged Surface of AR from 1998 Sale transaction Data	70
Figure 27 – 1995 Surface Subtracted by 1994 Surface	73
Figure 28 – 1996 Surface Subtracted by 1995 Surface	74
Figure 29 – 1997 Surface Subtracted by 1996 Surface	74
Figure 30 – 1998 Surface Subtracted by 1997 Surface	75
Figure 31 – 1998 Surface Subtracted by 1994 Surface	75
Figure 32 – 1997 Surface Subtracted by 1994 Surface	76
Figure 33 – Census Tract Residuals	96
Figure 34 – Block Group Residuals	99
Figure 35 – Parcel Residuals1	03
Figure 36 - Three Dimensional Residual Surface	Ω 4

LIST OF ABBREVIATIONS

AR	Assessment Ratio
	Assessed Value
	percent of population that is black
	percent of population that is Hispanic
INC	median household income
LNAV	natural log of AV
LNS	natural log of S
MV	Market Value
PUBLIC	percent of households on public assistance
RENTOCC	percent of housing units that are renter occupied
S	dollar amount of parcel sale transaction
SEASON	binary variable: summer = 1, winter = 0
VACANT	percent of housing units that are vacant
WHITE	percent of population that is white
YEAR	median age of housing stock

INTRODUCTION

The problem under investigation in this thesis is to understand the nature and extent of inequity in the property tax structure of Lansing, Michigan. The objective of this research is to synthesize previous research efforts as well as to incorporate some new GIS technologies in a methodologically comprehensive examination of the social and geographic equity or inequity in property taxation.

This work is not intended to be a case study that exemplifies all property tax structures in the United States. However, in using several years worth of data from one midsize, midwestern capital city, it is hoped that this study will identify any problems and dynamics in the assessment process that are affecting the level of social equity realized by tax payers.

The assessor's offices in Lansing, Michigan and many other cities of similar size and nature are still forced to operate in pre-GIS systems due to lack of appropriated funding and expertise. In fact, in Lansing, the assessor's office does not use geographic methods or evaluate assessments spatially. While the lack of GIS technology would never by the underlying cause of any inequity, this particular technologic and geographic deficiency in local government is especially vexing because the property tax assessment process is inherently geographic and could be greatly aided by the implementation of a geographic information system. Therefore, an additional goal of this thesis is to demonstrate how a precise spatial evaluation of property tax equity could be important for local assessor's offices. However, it should be understood, that although GIS is a powerful tool and could be used to better the assessment process, when used

incorrectly, it could just as easily not improve the system. Just because a municipality uses GIS to assess properties, that municipality is not necessarily eliminating inequity from its property tax structure.

The research is empirical by nature and highly data intensive. Many different software packages are used in this thesis. They include ArcView, ARC/INFO, Access, Excel, GS+, SPSS, SYSTAT and Transcad. In addition, many procedures and methods are applied to the data. For this reason, the organization of this thesis will be atypical. Rather than one traditional "methodology" chapter, this thesis will detail methodologies as they are discussed in the body of the paper. Aside from the first two chapters, which are "Taxation and Assessment" and "Data Preparation" respectively, there are three distinct research avenues in this thesis: Chapter 3, "Vertical Equity Testing", Chapter 4, "Spatial Autocorrelation and Surfaces of Inequity", and Chapter 5, "Explanation of the Assessment Ratio Variation". Each of the three has separate research questions, hypotheses, literature grounding, methodologies, results and conclusions. The final chapter, Chapter 6, will be dedicated to interpreting the meaning and use of this thesis to assessors' offices as well as to recommend future research foci.

CHAPTER 1

TAXATION AND ASSESSMENT

This chapter is intended to provide the reader background on the thesis topic, the property assessment process and the legal obligations of taxing bodies to provide taxpayers with a fair and *equitable* property tax. The term equitable, throughout this thesis, will refer to anything "having or exhibiting equity" of which equity is "freedom from bias or favoritism" (Mish 1998, p. 392). These terms should not be confused with *equality* or any others coming from the root *equal*. Things equal are "of the same measure, quantity, amount, or number." That is, to be equal is to be "identical in mathematical value" (Mish 1998, p.391). If property taxes were equal, all property owners would pay the same dollar amount in taxes and *that* would not be equitable.

The Importance of Equity

There have been two main theories of taxation, the *benefit theory* and the *ability to pay theory*, from which modern day property taxation was born. Central to both the *benefit theory* of taxation and *the ability to pay theory* of taxation are their principles of equity (McCluskey et. al, 1998). Without equity, taxation of any kind by local government is vulnerable to the acceptance and approval of taxpayers. In fact, a pillar of American democracy is jeopardized if equity is not present. Because of this, equity in the property tax structure is of vital importance and has been the topic of many research endeavors and papers. It shall also be the topic of this thesis, in which property tax inequities will be

evaluated, spatially examined and statistically explained. The objective of this research is to synthesize previous research efforts in a methodologically comprehensive paper aimed at examining the social and geographic equity of the property tax structure in Lansing, Michigan.

It was the primary purpose of an international research project to examine the efficacy of market value as a basis of assessment for an equitable property taxation system (McCluskey et al, 1998). While the research effort has not yet concluded, initial findings identify a need for criteria from which the collection of revenues by local government can be measured. One such criterion the group asserts is the status of equity, a term used interchangeably with the phrase, "how well the property tax is administered and assessed."

Typology of Equity

Generally, there are two kinds of equity recognized in the literature surrounding property tax equity, *horizontal* and *vertical*. Horizontal equity exists when properties of the same value are, on average, taxed the same. Vertical equity exists when properties of different value are, on average, taxed at the same proportion of market value. These "principles of both horizontal and vertical equity are vital to the perceived equity of any landed property—based tax, and, therefore, its social acceptability" (McCluskey et. al 1998).

Horizontal and vertical equity are very important. They are much discussed in taxation literature and this paper will deal with them. However, spatial equity, which incorporates the principles of both horizontal and vertical inequities, will be the primary target of investigation in this paper. For the

purpose of this paper, spatial equity will refer to the situation that exists if all geographic areas of the taxing jurisdiction are taxed at the same rate. This means that if spatial equity exists, properties that are over- or under-taxed are spatially independent or not spatially autocorrelated. Indeed, if spatial equity exists there will be no discernable spatial pattern to the property tax structure.

It is sensible to study spatial equity in addition to horizontal equity and vertical equity, which are generally studied separately and aspatially, because if horizontal or vertical inequity exists, the inequity is likely to be spatial as well. Both vertical and horizontal inequities tend to represent themselves spatially due to the nature of human settlement to organize itself in homogenous neighborhoods within a larger segregated urban area. Furthermore, if equity, regardless of type, is studied spatially, more information is revealed about the tax structure. Spatial equity not only assures both horizontal and vertical equity, it generally assures that a property tax is not regressive, which, as is described in the next section, is most inequitable in a property tax structure.

Regressive Taxation

Vertical inequity may be *regressive* or *progressive*. Generally, regressive vertical inequity is defined as a situation in which lower valued properties are taxed at a higher rate or larger proportion of market value than higher valued properties. Conversely, a progressive vertical inequity exists when higher valued properties are taxed at a higher rate or larger proportion of market value than lower valued properties. Because lower valued properties tend to cluster together in a taxing jurisdiction and higher valued properties tend to cluster

together, vertical inequity can most often be visualized spatially, revealing a spatial pattern to the over and under assessed areas.

The same spatial distribution might also be true of horizontal inequity. Consider the example of horizontal inequity detected by Beveridge in his research for the *New York Times* (Schemo, 1994). Beveridge found that in forty-four percent of the sixty-one major United States cities and suburbs that he studied, properties of the same value were taxed differentially depending on the race of the property owner. Property owners who are black were taxed significantly more than property owners who are white for similarly valued properties in the same taxing jurisdictions. This is an example of a horizontal inequity, but it also has a spatial pattern due to the strong degree of racial segregation in his study areas. For the purposes of this paper, the inequity described above will also be considered regressive. That is, the definition of a regressive tax will be expanded to include not only regressive vertical inequities but also horizontal inequities like this one discovered by Beveridge.

Thus, the definition of a regressive property tax will be expanded to one in which properties that are of low value, owned by a poor person or person of a marginalized group, or living in an area occupied by poor and or marginalized populations are taxed at a higher proportion of market value than properties of high value, owned by a wealthy person or someone living in an area occupied by wealthy and or politically powerful mainstream populations. In other words, a regressive tax is one that benefits the politically powerful and puts at a

disadvantage the poor and marginalized. Conversely, a progressive tax benefits the opposite populations.

Researchers such as Massey recognize this kind of regressive spatial inequity. In his discussion of property tax inequity as one of the problems inherent to segregation by race and/or class, he warns of a "rising inequality and its geographic expression." He sites data that show increasing segregation of both poor and minority populations, as well as affluent populations. Because of this increased geographic segregation, Massey concludes that property tax inequity may become increasingly unequal as well (Massey, 1996).

A regressive tax structure is politically unpopular and exists in contrast to the *ability to pay theory*, one of the historical underpinnings on which the property tax is based. It is an extremely undesirable form of inequity to society (McCluskey et. al, 1998). Therefore, the purpose of this paper is to test for and examine any inequity with an emphasis on any regressive inequity that may exist in the property tax structure.

Assessment Process

Throughout the United States and much of the world, property tax is determined by some assessment of the property's market worth. It follows, then, that the status of equity is dependent on the quality of the assessment process. This paper will utilize empirical assessment data from Lansing, Michigan.

Lansing will serve as an interesting case study that in some ways typifies the American property tax structure and, in other ways, does not.

The taxing process employed in Lansing, Michigan is representative of that present elsewhere in the United States. Each parcel of land is taxed according to its assessed value multiplied by the municipality's millage rate, which is constant for each property type. A millage rate is defined as the amount of taxation in mills (one tenth of a cent) per dollar of valuation and the assessed value of the property is the property tax assessor's best guess of the market value. The market value can be defined as:

"the most probable price expressed in terms of money that a property would bring if exposed for sale in the open market, in an arm's length transaction between a willing seller and a willing buyer, both of whom are knowledgeable concerning the uses of the property" (Miles and Wurtzbach, 1987, p. 751).

Clearly, market value is impossible to measure if a property isn't "exposed for open sale" and one could never even say with certainty that a particular transaction was an "arm's length transaction." That is why assessors can only estimate or guess the market value and the result of this estimation is their assessment. Equation 1.1 shows how the property tax for parcel i is calculated.

Equation 1.1: Property $tax_i = AV_i$ * millage rate

There are also some ways in which the taxing process in Lansing is different from other taxing bodies. For example, in most tax jurisdictions, the assessor estimates market value and sets their assessment equal to the estimate. In other words the assessment has a theoretical one – to – one relationship with market value. This is not the case in Michigan. Although assessed value is still directly proportional to market value it is not a one – to – one relationship. Instead, state statute dictates that property in Michigan is

assessed at half of market value. Therefore, by state law, assessors in Michigan are required to estimate market value of each property and divide their estimate in half to arrive at the assessed value of each property. This does not mean that property taxes are lower in Michigan than in most other places. Michigan simply has higher millage rates to make up for the lower assessments. One could question why this is done. Perhaps the assessment system has something to gain from the smaller assessments. If assessments are half of market value they make the magnitude of the property tax base seem less unpalatable for taxpayers who are then less likely to challenge or dispute the assessments. This could potentially save the assessor's office from having to defend their assessments against questioning taxpayers.

In evaluating the quality of assessments, it is often helpful to express assessed value (AV) as a proportion of market value (MV), or some measure of, and is called the assessment ratio (AR).

Equation 1.2: $AV/MV_i = AR_i$

Due to the legal reasons stated above, assessment ratios should be 0.50 for all properties in Lansing. Assessment Ratios reveal the accuracy of the assessments. If they are more than 0.50, the assessment is too high. If they are less than 0.50 then the assessment is too low. Because MV is an immeasurable variable (see above definitions of market value), ARs are often constructed with a surrogate for MV – usually the sale amount (S) of the property transaction.

Equation 1.3: $AV_i/S_i = AR_i$

Equation 1.3 can be solved for AV to get Equation 1.4.

Equation 1.4: $AV_i = AR_i * S_i$

in equation 1.1 to arrive at equation 1.5 as follows:

Equation 1.5: Property $tax_i = AR_i * S_i * millage rate$

Equation 1.5 shows the dependency of the property tax on the assessment ratio. If the assessment ratio is too high, the property tax will be more than it should and if the assessment ratio is too low, the property tax will be less than it should. For example, if the millage rate for a jurisdiction were imposed at 0.075, a properly assessed \$100,000 property would be taxed (0.50)*\$100,000*(0.075) or \$3,750.00. However, the same \$100,000 property that is incorrectly under-assessed at 0.45 of market value would only be taxed, (0.45)*\$100,000*(0.075) or \$3,375.00. The under-assessed property would pay \$375.00 less than the correctly assessed property. On the other hand, the same \$100,000 property that is incorrectly over-assessed at 0.55 of market value would be taxed, (0.55)*\$100,000*(0.075) rate or \$4,125.00. The over-assessed property pays \$375.00 more than it would if the property were assessed correctly. Worse still, the over-assessed property is charged \$750 more than if it were under-assessed at 0.45 of market value.

Ideal Property Tax Structure

In a perfect property tax system, all properties in the system would be taxed at the same rate according to their market values. That is, the assessment ratio, AR (commonly calculated by dividing an assessed value, AV, by its measured market price, S) would be uniform across all properties. While deviations from uniformity in the assessment ratio are inevitable and to be

expected, these deviations would occur randomly if the system were equitable.

Assuming equity, there would be no spatial pattern to the assessment ratio distribution. However, in most cities in the United States, spatial uniformity does not exist in property assessment ratios. Indeed, there is often a geographic distribution, or pattern, in the under and over assessment of residential properties. These patterns that are pervasive in the property tax structure are indicative of inequity.

Taxing administrations do generally evaluate their assessments for equity themselves. The Lansing City Assessor's Office does this by dividing the jurisdiction into neighborhoods. Every year before issuing new assessments, each neighborhood's average assessment ratio, based on sale transaction data, is compared to the mean for the city. If the average neighborhood assessment is too low, each assessment in the neighborhood is adjusted up by some multiplied amount. In the same way, if the average assessment is too high, each assessment in the neighborhood is adjusted down by some multiplied amount. While this method may indeed correct some inequities, individual assessments may become even more skewed. For example, some parcels that are over assessed in a neighborhood that on average is assessed too low will become even more over assessed. However, individual parcel assessment adjustments are too costly for most assessors' offices and can be biased if judged by a non-market sale transaction.

One way some taxing administrations assure greater compliance to standards of equity is by managing and evaluating their assessments using a

geographic information system (GIS). A GIS is a database management system that can deal effectively with large amounts of spatially referenced data. The property tax assessment process is an ideal use of GIS because it is inherently geographic. Because of this, several taxing bodies and even entire states have implemented geographic information systems to aid in the administration of the property tax (Castly 1993, Hensley 1993, Rodda 1992 and Wills 1998). Here lies another difference between the Lansing City Assessor's Office and other places in the United States. The city of Lansing has not appropriated the funds necessary to implement a GIS. Therefore, one intent of this thesis is to demonstrate how a detailed computerized spatial evaluation of property tax equity would be important for local assessor's offices like Lansing's.

Purpose

The purpose of this research is to test for, describe and explain patterns in the property tax structure by implementing a variety of methodologies and using assessment and sales data for the city of Lansing, Michigan. Several hypotheses will be tested with the end goal of addressing the following research question: What is the extent, nature and future of property tax inequity? The many hypotheses to be tested in this paper fall into three distinct categories.

Thus, the thesis research can be divided into three main parts. First, in Chapter 3, the status of equity in the property tax structure will be ascertained and measured by employing several tests for vertical inequity. Second, in Chapter 4, the assessment ratio pattern will be graphically described and evaluated. Finally, in Chapter 5, the geographic patterns in the assessment ratio will be

mathematically accounted for or explained. The research questions and hypotheses specific to each chapter's topic will be detailed in their respective chapters. Prior to this, however, Chapter 2 will introduce the data used throughout the thesis and will explain the methods used to prepare it for answering the research questions.

Chapter 2

DATA AND PREPARATION

The data for this research came from two sources: the Lansing City
Assessor's Office and the U.S. Bureau of the Census.

Data from the Lansing City Assessor's Office:

Parcel sale transaction data were obtained from the city assessor for all 8,660 transactions occurring from January 1994 to August 1998. The data, in spreadsheet format, include assessed value at the time of sale (AV), sale amount (S), parcel address, month and year of sale.

Census Data

1990 Census Bureau Tiger files containing the street index of Lansing, Michigan were obtained from Environmental Research Institute (ESRI) on its Internet web site (www.esri.com). In addition, census tract boundaries and census tract block group boundaries were obtained from the same web site in shape file format. Finally, several census tract and block group variables were extracted from the 1990 Census of Population and Housing for Lansing, MI. The census variables include measures of race, income and age of housing. They will be used in conjunction with the property sale transaction data later in the paper.

Data Preparation

The 1990 Tiger street index of Lansing, MI was imported by Transcad as were the parcel sale transaction data. The parcel sale transaction data were

then geo-coded, by the address matching function in Transcad, to the 1990 Tiger Street Index. This was done to obtain decimal degree latitude and longitude geographic coordinates for each sale transaction observation. The address matching was ninety-five percent successful, or about ninety-five percent of the transactions were geocoded. The process leaves 8,227 geocoded sales observations in the sample. The five percent that could not be matched were probably not successful due to errors in the Tiger street index or errors in the street names, zip codes or street numbers of the parcel sale transaction. They have been discarded and will not be used in the following analyses. An assumption is made at this point, for the purposes of this research, that these unmatched addresses are randomly distributed throughout the city of Lansing. Although this assumption is not proven, it is known that the unmatched five-percent of sale transaction observations represented all Lansing zip codes.

Next, assessment ratios (ARs) were calculated for each observation. This was accomplished by dividing each assessed value by its corresponding sale amount. As noted above, Michigan state statute dictates that each assessed value should be half of market value — not sale amount. However, market value is an immeasurable variable so sale amount is measured and will be used in its place in this study as it has in many others (DeCesare, 1998; I.A.A.O, 1990). Market Value may be immeasurable but it is assumed to be a nonstochastic fixed variable while sale amount, S, is viewed as a random variant around the fixed market value (Clapp, 1990).

Unfortunately, sale amount, S, is not always a good indicator of market value. Sometimes S is not representative of an "arm's length market transaction." Occasionally, properties sell for a small nominal value simply to transfer official ownership. For example, an elderly landowner may decide to "sell" a property to a younger relative for a dollar. In this case, the name on the deed may be changed to represent a change in ownership but not a transfer of the property's market worth. This would create an extremely high AR regardless of the quality of the assessment. Another example of a sale that doesn't represent market value, which would result in a false high AR, is that of a land contract sale.

Sometimes a parcel is sold by contract at the market value of the day. However, the sale is not finalized and made official until the contract is paid off, in most cases, years later. The official sale amount used to calculate the AR then is the amount on the contract. Inflation and market value increases render the official sale amount very low and the calculated assessment ratio much too high.

There are also instances when an especially low AR is not indicative of a bad assessment but rather an unusual circumstance as well. Perhaps the assessment is done correctly but the property buyer is someone unfamiliar with the local market conditions. For example, someone from California, used to the high cost of housing and living there, suddenly gets transferred to Lansing, Michigan and must buy a house in a short amount of time, might purchase the house at an inflated amount, mistaking it for a bargain. This would result in an especially low assessment ratio not representative of an arm's length market transaction. According to the International Association of Assessing Officers

(I.A.A.O.), sale transaction observations are considered "outliers" if they have very high or low "sales ratios" which are calculated identically to the ARs in this study. The I.A.A.O. believes the outliers may result from 1) "poor or outdated appraisals," 2) "non-arm's-length" sales, or 3) a mismatch between the property sold and the property appraised (I.A.A.O 1990, p. 137).

So it seems, the sale amount (S) is not always a very good surrogate for market value. Because of this, the data are trimmed, using the variable AR, to get rid of data observations that are not representative of market transactions. Such trimming is done in most assessment ratio studies that utilize empirical sale transaction data (Denne 1993).

One such assessment ratio study was done by Gaston, who trimmed any transactions with "market error" which he defined as "discrepancy between sale price and actual market value" (Gaston 1984, p. 182). Although Gaston does not explicitly detail what percent of transactions he eliminated, he does list causes of market error that led him to eliminate as he did. He eliminated transactions with possible departures from market value caused by "inflation/deflation relative to lien date, associated personal property, title transfer instruments, interest rates, and other relevant and estimable transaction factors" (Gaston 1984, p. 182).

The I.A.A.O recommends the following trimming procedures: 1) select "cut-off" points and trim above and below them, or 2) trim the observations that fall more than two standard deviations from the mean ratio, which is usually about five percent of the observations (I.A.A.O. 1990, p. 137). However, the organization suggests that "most sales are usable," and the goal of the

researcher should be "not to find reasons to exclude sales." In fact, "in large samples, the accidental inclusion of a few invalid sales will have little effect on ratio studies" (I.A.A.O. 1990, p.138)

For this study the observations were trimmed to get rid of extreme assessment ratios. Each tail of the assessment ratio distribution was trimmed by 1.25 percent. The total trim resulted in the removal of 2.5% of the geocoded sale transaction observations. The trim resulted in a sample population of 8069 observations with a mean of 0.46 and range of (0.236 - 0.846). The following map, Figure 1, shows the locations of the sample observations.

The sample is now prepared for the analysis of Chapter 3 and Chapter 4. However, some of the research in Chapter 5, involves analysis at three geographic scales: census tract scale, census block group scale and parcel scale. The property sale transaction data were prepared in three different ways accordingly. These are described in the next section.

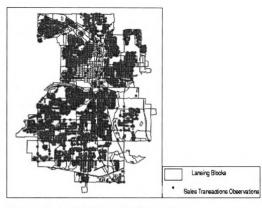


Figure 1 - Parcel Sale transaction Observations

Three Scales of Analysis

To prepare the data for analysis at the census tract scale, the 8069 geocoded observations in the trimmed sample were each assigned to a census tract
using ARC/INFO. This was accomplished by first making the geo-coded
observations into a point file and importing their corresponding data into
ARC/INFO and creating a data coverage. Next, ARC/INFO coverages were
made of the census tract boundary shape file. Then the points were assigned to
tracts using the Identity function of ARC/INFO. Finally, the census tract variables
from the census of population and housing were imported by ARC/INFO and
joined to the geographic census tract boundaries. The resulting database
contained the 8069 parcels with their associated assessed values, assessment
ratios, sale amount and their census tract information. The observations were

then aggregated to the census tract level. Aggregation was done in an Excel pivot table by averaging the parcel data variables.

The boundary of the city of Lansing contains and cuts through a total of forty-four census tracts. The sale transaction observations are fairly well distributed throughout the city (See Figure 1). However, there are very few observations in the central business district (CBD) located in the middle of the city. This is due to the large amount of government and corporately owned properties that do not turn over very quickly. In addition, the Grand River cuts through this downtown section, and there is a large public park on both sides of the river containing very few privately owned properties. So while forty-one of the tracts in Lansing each have at least one-hundred observations which is convenient statistically, three tracts have only two, three and six observations each. These are the tracts that cover the CBD area of Lansing. They were therefore eliminated from the analysis, as their sample sizes would not lead to unbiased means in statistical analyses. Thus, after the aggregation process, forty-one observations are left in the sample at the census tract scale. Figure 2 shows the Census tract observational unit boundaries and the Census tracts that will not be included in the analysis for lack of data.

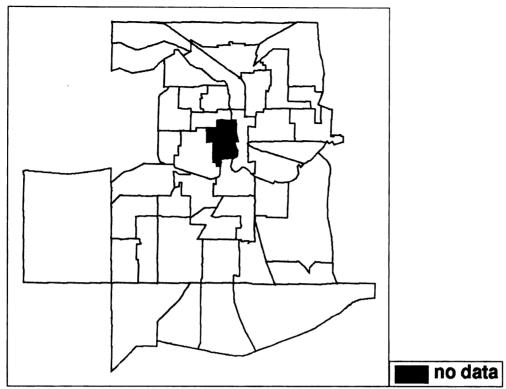


Figure 2 - Census Tract Boundaries in Lansing, MI

Preparation of the data for analysis at the census block group scale was done in much the same way. The observations in the trimmed sample of parcel sale transactions were each assigned a block group and then all of the data were aggregated to that scale. All of the block groups within the three tracks that were eliminated due to small sample size at the tract scale were also eliminated at this scale. In addition, some of the remaining block groups had less than twenty parcel sale observations. If so, they were combined to create a group of block groups with at least twenty observations. This was done for statistical purposes. Otherwise the means could be biased. In all, there are 117 block group observations or group of block groups observations in the sample at this scale of analysis.

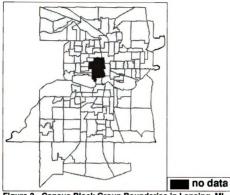


Figure 3 - Census Block Group Boundaries in Lansing, MI

No aggregation was necessary to prepare the data for analysis at the parcel scale. However, since census variables could not be collected at the parcel scale, each parcel took on the characteristics of its block group, so, all that had to be done was to assign each parcel to a block group. At this scale all parcels in the same block group will take on the same values for the variables collected at the block group scale. For instance, all of the parcels in block group one will have the same percentage black population and the same median household income. However, the month and year of the transaction will vary within the observations of the block group. The observations that were eliminated for statistical purposes at the other scales will also not be included in the analysis done at the parcel scale. Hence, the sample size decreased from 8069 to 8056.

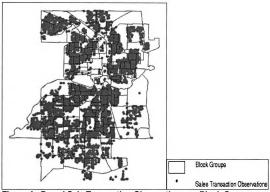


Figure 4 - Parcel Sale Transaction Observations on Block Groups

Although the data are further manipulated and subjected to various and many methods, these will be noted and discussed in the bodies of the next three chapters where appropriate.

Chapter 3

VERTICAL EQUITY TESTING

According to the International Association of Assessing Officers (I.A.A.O.), "Vertical inequities are differences in appraisal levels for groups of properties defined by value." (I.A.A.O 1990, p.516)

As was stated in Chapter 1, vertical inequity exists if properties are taxed differentially depending on their values. Recall that a regressive (progressive) vertical inequity exists if the assessment ratio decreases (increases) with an increase in property value or increases (decreases) with a decrease in property value. There are many different models in the tax and business literature that serve to test for vertical equity in property taxes. The purpose of this chapter is to employ some of these models to test for vertical inequity in the property tax structure using the assessment data for Lansing, Michigan. There are two general research questions that are addressed in this chapter. First, is the property tax structure of Lansing, Michigan vertically inequitable? The null hypothesis of this question is that no vertical inequity exists. The primary test hypothesis is that the property tax structure has regressive vertical inequity. The other alternative hypothesis is that progressive vertical inequity exists. This question will be addressed by employing four vertical equity tests.

The second research question asks, does the status of equity vary from year to year? The null hypothesis is that there is no variation in the status of equity from year to year. A rejection of this null will lead to the conclusion that in

some years the assessment process leads to a more equitable situation than in others. This question will be addressed by modifying the models to control for year of sale and assessment. This issue involving dynamics in the property tax structure will also be addressed in Chapter 4.

In 1972, Paglin and Fogarty developed the first econometric model to test for vertical property tax inequity. It consists of a simple linear regression of assessed value on sale amount (Paglin and Fogarty 1972). Other researchers such as Edelstein (1979) tested this model with empirical data for various study areas. In these studies a regressive property tax structure was concluded most often. Soon after its development, a variation of the vertical equity test was developed by Cheng in 1974. Cheng assumed a different functional form. He thought the relationship between Assessed Value and Sale amount should be exponential, or log-linear. Other researchers added their own slight changes to the vertical equity test model, but they left assessed value as the dependent variable and sale amount as the independent variable.

The literature changed direction when the hypothesized relationship between assessed value and sale amount was reversed by Kochin and Parks in 1972. They believed that sale amount should be the dependent variable and assessed value the independent variable. Kochin and Parks assert that if market values were fixed and nonstochastic and assessed values were perfectly proportional to market values (their were no misassessments), then assessment ratios would appear regressive if sale amounts were distributed randomly around market value. So, they argued, if a property sold above market value the

assessment ratio would appear lower and if a property sold below market value, the assessment ratio would appear higher, incorrectly detecting regressivity. For example, assume that all market values are \$100,000 and assessed values are \$50,000. If one parcel sells for \$110,000 its calculated AR would be 0.45. If another parcel sells for \$90,000 its calculated AR is 0.55. Any of the traditional tests for vertical inequity would label this example one of regressive vertical inequity because the parcel that sold for more has a lower AR and the parcel that sold for less, has a higher AR. Kochin and Parks would argue that in this example, there is no inequity because only the sale prices have errors, not the assessments. Indeed, empirical results of their test largely revealed progressive property tax structures and they declared previous results from the old models were biased toward finding regressivity.

However, the assumptions made by Kochin and Parks have been challenged. After the Kochin and Parks paper was published, the literature was inundated with arguments for and against their model. Several papers were written that showed statistical evidence against the Kochin and Parks model and successfully defended the traditional models. These included work by Kennedy (1984), Gaston (1984), and Clapp (1990). It is now generally accepted that market value is a fixed non-stochastic variable and both assessed value and sale amount are subject to error.

Clapp not only showed that Kochin and Parks model was plagued by bias, he developed his own model that would incorporate the benefits of Kochin and

Parks and those of the traditional model. In doing so he removed the biases of the former models (Clapp 1990).

In this chapter, four models, the Pagin and Fogarty, the Cheng, the I.A.A.O, and the Clapp model will be employed to show whether there are patterns of vertical inequity in the property tax structure in Lansing. In all four models, the null hypothesis is that the property tax structure is vertically equitable. The test hypothesis is that the property tax structure is regressive and vertical inequity is present. An alternative situation, that the property tax structure is progressive, might also be concluded from the test results.

Paglin and Fogarty Model

The first model, by Paglin and Fogarty was developed in 1972. It is a simple linear regression of sale amount on assessed value. The model is estimated by the Ordinary Least Squares method. A t-test will be used to determine the significance of the difference between hypothesized and actual coefficients. The model is formally stated in the following equation:

AV =
$$\beta_0 + \beta_1 S + \epsilon$$
.

If the property tax structure behaved equitably, as it theoretically should, the mean assessment ratio would be 0.5 and accordingly the slope of the line should also be 0.5 with an intercept of zero. Therefore under the null hypothesis, that no vertical inequity exists, the slope of the line is 0.5 and the intercept is zero:

$$H_0$$
: $\beta_0 = 0$ and $\beta_1 = 0.5$.

However, if the line goes through the origin, there is no vertical inequity regardless of slope. If this is the situation, it doesn't matter what the sale price is because the corresponding estimated assessed value will be half of sale price and all parcels will be taxed at the same rate. Hence, the test for regressivity hinges on the intercept. If the intercept is zero, equity exists. If the intercept is more than zero, regressive vertical inequity exists and if the intercept is less than zero, progressive vertical inequity exists. Figure 5 graphically shows the Paglin and Fogarty regression under the null hypotheses of equity. It is the line:

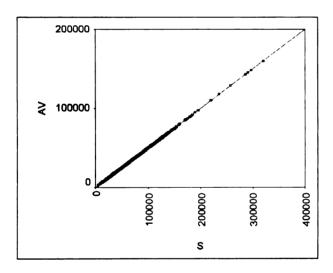


Figure 5 - Paglin and Fogarty Model (under the null)

There are two test hypotheses. First, that the property tax structure is regressive. In this case the intercept will be more than zero. In addition, since the mean of all assessment ratios in the sample is known to be 0.46, the slope is expected to be less than 0.5 under conditions of regressivity.

 H_1 : $\beta_0 > 0$ and $\beta_1 < 0.5$.

The second hypothesis is that the property tax structure is progressive. In this case the intercept will less than zero and the slope is expected to be more than 0.5.

 H_1 : $β_0 < 0$ and $β_1 > 0.5$.

Results

The estimated Paglin and Fogarty equation is displayed in Table 1. The estimated equation is also shown graphically in Figure 6a. The t-test on the intercept coefficient shows it is significantly greater than zero and the t-test on the slope shows the estimated β_1 is significantly less than 0.5. Therefore, the null hypothesis is rejected at the 99% confidence level. The result of the Paglin and Fogarty test for vertical inequity is consistent with the first test hypothesis of a regressive property tax structure. For comparison, the estimated or actual relationship between AV and S is shown in Figure 6b on the same graph as the theoretical line under equity (slope, 0.5, and intercept, 0,) and another hypothetical linear relationship between AV and S that is also indicative of equity. This line has a slope equal to the sample mean of 0.46 and intercept of zero.

Table 1 – Estimated Paglin and Fogarty Equation

AV	=	β ₀	+	β ₁ *S
Estimated	=	2217.79	+	0.412 S
AV				
s.e.	=	118.272		0.002
t-stat for	=	18.752		-46.809
hypothesis				
test				
R Squared =	0.926			

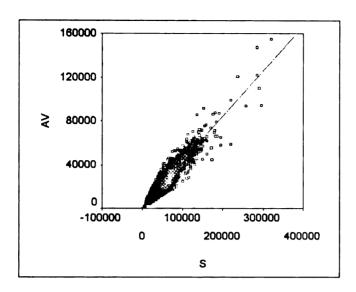


Figure 6 - Estimated Paglin and Fogarty Model

As can be seen by the estimated Paglin and Fogarty model and Figure 6, lower valued properties are taxed at a higher rate than higher valued properties. For example, given the results of the test, a property that sold for \$75,000 has an estimated assessed value of \$33,117.79 and therefore an estimated assessment ratio of 0.442. A higher valued property, one that sold for \$175,000, has an estimated assessed value of \$74,317.79 and therefore an estimated assessed value of 0.425. This example shows that the higher valued property pays a lower estimated rate of taxes and the lower valued property pays a higher estimated rate of taxes.

Cheng Model

The Cheng model was developed in 1974 as an improved alternative to the Paglin and Fogarty model. The Cheng model allows a non-linear relationship to exist between assessed value, the dependent variable, and sale amount, the independent variable:

$$AV = \beta_0 S^{\beta_1} \star \epsilon.$$

It is log transformed to a linear form for ease of estimation:

$$lnAV = ln \beta_0 + \beta_1 lnS + ln\epsilon$$

The log - log form is then estimated by ordinary least squares. Again, a t–test will be employed to test the estimated coefficients for significance. Like the Paglin and Fogarty test, the null hypothesis is no inequity. Under the null, the untransformed slope is 0.5 or H_0 : $\beta_0 = 0.5$. However, when the equation is log transformed the log is taken of β_0 and the null hypothesis is modified so that the transformed intercept is the log of 0.5 or

$$H_0$$
: $In\beta_0 = In0.5 = -0.693$

Also under the null, the power of S, or the coefficient of InS, is one:

$$H_0$$
: $\beta_1 = 1$

Unlike the Paglin and Fogarty model, regressivity in this test hinges on the elasticity, β_1 , or the power of S in the untransformed exponential model. If β_1 proves to be more than one, progressive inequity exists, or higher valued properties are taxed higher rates. If β_1 proves to be less than one, then regressive inequity exists and lower valued properties are taxed at higher rates. Figure 7 shows the Cheng equation graphically under the null of equity.

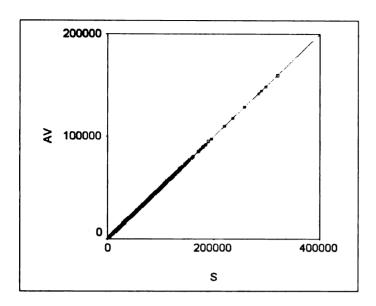


Figure 7 – The Cheng Model (under the null)

The test hypotheses are verbally the same here as they were for the Paglin and Fogarty model. The first test hypothesis is that the property tax structure is regressive. In this case, taxes are regressive if the power of S, β_1 , is less than one. In the transformed model, the power becomes the coefficient of the log of S and if the taxes are regressive it will be less than one. H_1 : $\beta_1 < 1$. The other alternative is progressivity. H_1 : $\beta_1 > 1$. There is no test hypothesis about the intercept term and it will not be interpreted because to interpret the intercept is to interpret beyond the data set.

Results

The estimated Cheng equation is displayed in Table 2 and it is shown graphically in Figure 8. As can be seen from Figure 8, the data fit the estimated Cheng model better than they do the estimated Paglin and Fogarty model shown in Figure 6a. The t – test shows the estimated β_1 is significantly less than one and the null hypothesis is rejected at the 99% confidence level. The results are consistent with the first test hypothesis of a regressive property tax structure.

The estimated model can be transformed to solve for AV by taking the antilog of both sides of the equation:

Estimated AV = 1.586 \, \text{S}^{0.884}

As an example, to see how the estimated Cheng model shows a regressive vertically inequitable property tax structure, let S equal \$50,000 and \$100,000 respectively. When S equals \$50,000, AV is expected to be \$22,604.38 and therefore the expected AR is 0.452. When S equals \$100,000, AV is expected to be \$41716.05 and therefore the expected AR is 0.417. As can be seen, as S increases, AR decreases. Clearly, the estimated Cheng model reveals a regressive vertical inequity. Table 2 and Figure 8 show the estimated Cheng model.

Table 2 - Estimated Cheng Model

InAV	=	lnβo	+	β ₁ InS
Estimated	=	0.461	+	0.884 InS
InAV				
s.e.	=	0.048		0.004
t-stat for	=	24.042		-26.304
hypothesis				
test				
R Squared =	0.833			

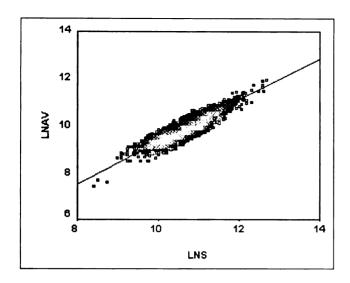


Figure 8 - Estimated Cheng Model

The International Association of Assessing Officers Model

The third model is endorsed by the International Association of Assessing Officers (I.A.A.O). Its dependent variable is the assessment ratio instead of the assessed value. It too is estimated by the Ordinary Least Squares Method. The equation is as follows:

$$AR = \beta_0 + \beta_1 S + \epsilon$$

Under the null of no regressivity, the assessment ratio (AR) should be 0.5 for all properties. Thus, under the null, the slope of the line, (the coefficient of S,) is zero. **H₀:** β_1 =**0**. In addition, if the property taxes are assessed as they should be, the intercept is 0.50 **H₀:** β_0 =**0.5**. Figure 9 shows the I.A.A.O model graphically under the null of equity.

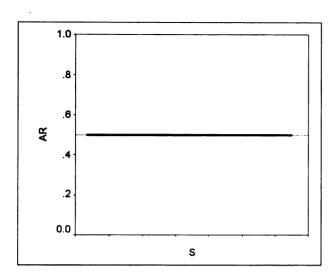


Figure 9 - The I.A.A.O. model (under the null)

Again, in this model the test hypotheses are, first, that the property tax structure is regressive: H_1 : $\beta_1 < 0$, and second, that the property tax structure is progressive, H_1 : $\beta_1 > 0$.

Results

The estimated I.A.A.O. equation is shown in Table 3. It is graphically depicted in Figure 10. The t-test shows the intercept is significantly more than 0.5 and the slope is significantly different from zero. This means that the lowest valued properties are being assessed above the legally mandated proportion of market value and as value increase assessment ratio decreases. However, as can be seen from Figure 10, the intercept is outside the data range and therefore not consequential. Regardless, the null hypothesis of equity is rejected at the 99% confidence level. The results are consistent with the first test hypothesis of regressivity. Note that even though the null hypothesis is rejected, the low R squared and Figure 10 show that the model does not fit the data well.

Table 3 - Estimated I.A.A.O Model

AR	=	βο	+	β ₁ S	
estimated AR	=	0.511	-	-8.75E-07 S	
s.e.	=	0.002		3.71E-08	
t-stat for	=	5.5		-23.607	
hypothesis test					
R Squared = 0.254					

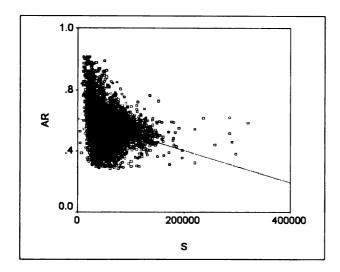


Figure 10 - Estimated I.A.A.O model

Clapp Two – Stage Least Squares Simultaneous Equations Model

The first three models used so far, have been criticized, most notably by Kochin and Parks, to be biased toward finding regressivity. The fourth model was created with the goal of eliminating the bias of the previous models. It is the Clapp Two-Stage Least Squares Simultaneous Equations Model. It acknowledges that sale amount is not a perfect predictor of market value and assumes that assessed value and market value are interdependent. Included in the model is an instrumental variable, Z, that is highly correlated to both market value and assessed value. Z, a binary variable, is equal to one if the observation

is in both the top third of all sale values and in the top third of all assessed values. Z is set equal to negative one if the observation is in both the bottom third of all sales values and in the bottom third of all assessed values. Z is set equal to zero otherwise. Unlike an ordinary regression model that may be estimated using ordinary least squares, this model does not assume a one-way causal relationship. In this model, assessed value is both an independent and a dependent variable. Because AV is mutually dependent, not independent, it is an endogenous variable.

The model is a set of two simultaneous equations. It must be estimated using the Two-Stage-Least-Squares method. In this method, the parameters of one of the equations are estimated taking into account the information given in both equations. Ordinary Least Squares (OLS) can not be used in this case because not all of the information known about AV would be taken into account. For this reason, the coefficients, if estimated using OLS, would be inconsistent or biased even in large samples. OLS coefficients would not converge to their true population values and would be inefficient resulting in very large variances (Gujarati 1995, part 4). This model was developed in 1990.

Ln S =
$$\beta_0 + \beta_1 \ln AV + \epsilon_1$$

Ln AV =
$$\alpha_0 + \alpha_1 Z + \epsilon_2$$

Under the null hypothesis of no inequity, β_1 is statistically equal to one, H_0 : $\beta_1 = 1$. The test hypotheses are as follows: 1)The property tax structure is regressive, H_1 : $\beta_1 > 1$, and 2) The property tax structure is progressive, H_1 : $\beta_1 < 1$.

Results

The estimated coefficients of the Clapp equation are in Table 4. T-test results lead to a rejection of the null hypothesis at the 99% confidence level.

Results are consistent with the first test hypothesis, a regressive property tax structure.

Table 4 - Estimated Clapp 2SLS Simultaneous Equation Model

LnS	=	β ₀	+	β₁InAV
Estimated InS	=	0.556039	+	1.023555 InAV
S.e.	II	0.062991		0.006252
t-stat for hypothesis test	=	8.827		3.77

R Squared = 0.76892

Controlling for Year

The above models were estimated with the entire sample of property transactions that occurred over five different years. Because properties are given a new assessment every year, it seems logical to question whether the amount of inequity varies from year to year. To test this question, the year of the sale and assessment must be controlled. To this end, dummy variables representing years, are inserted in the Cheng Model. The following dummy variables were created from the data:

D1994 equals one if the observation was collected in 1994, zero otherwise.

D1995 equals one if the observation was collected in 1995, zero otherwise.

D1996 equals one if the observation was collected in 1996, zero otherwise.

D1997 is set equal to one if the observation was collected in 1997, zero otherwise.

Note that there is not a dummy variable for every year as that would cause perfect colinearity making Ordinary Least Squares estimation impossible. As can be seen, there is a dummy variable for 1994, 1995, 1996 and 1997 but there is no D1998 for 1998. Nevertheless, observations from 1998 are accounted for. If an observation occurred in 1998, all other dummies are set to zero and it can be assumed that the remaining model coefficients are valid for 1998. The dummy variables are entered into the Cheng model as intercept dummies. They are also used in multiplicative dummies or slope dummies by multiplying each by S.

The Cheng model with the intercept and slope dummies is stated as, $InAV = \beta_0 + \beta_1 InS + \beta_2 D1997 + \beta_3 InSD1997 + \beta_4 D1996 + \beta_5 InSD1996 + \beta_6 D1995 + \beta_7 InSD1995 + \beta_8 D1994 + \beta_9 InSD1994 + \epsilon.$

The estimated Cheng model with dummies is as follows:

InAV = .113 + .913 InS + .289 D1997 + .028 InSD1997 + .370 D1996 -.031 InSD1996 + .239 D1995 - .018 InSD1995 + .287 D1994 - .017 InSD1994 Assuming all coefficients are significantly different from zero, the year specific relationship between InAV and InS can be calculated by adding the coefficient on InS, β_1 , to the specific year's slope dummy. To calculate the year specific intercept, the intercept, β_0 , is added to the specific year's intercept dummy. For example, in 1997, all variables except the intercept, InS and the 1997 dummies are set equal to zero and the estimated relationship between InAV and InS is InAV = $(\beta_0 + \beta_2 D1997) + (\beta_1 InS + \beta_3 InSD1997)$. The year specific Cheng model results are in Table 5.

Table 5 - Year Specific Cheng Model Results

LnAV ₁₉₉₄	=	0.397	+	0.896 InS ₁₉₉₄
LnAV ₁₉₉₅	=	0.352	+	0.895 InS ₁₉₉₅
LnAV ₁₉₉₆	=	0.483	+	0.882 InS ₁₉₉₆
LnAV ₁₉₉₇	=	0.402	+	0.885 InS ₁₉₉₇
LnAV ₁₉₉₈	=	0.113	+	0.913 InS ₁₉₉₈

Results

Results show that equity does vary from year to year. 1996 has the smallest slope indicating the most regressive inequity. 1998 has the slope closet to one and the least inequity.

Conclusion

All four models, Paglin and Fogarty, Cheng, I.A.A.O., and Clapp, show vertical inequity that is statistically significant. The results in each case lead to a rejection of the null of equity. All results are consistent with a regressive property tax structure. Each test assumes a different functional relationship between AV and S. Some of these functional forms fit the data better than others. As can be seen by Figures 2.4 through 2.6, the estimated Cheng model (Figure 2.5) fits the data quite well. The I.A.A.O model (Figure 2.6) on the other hand, clearly doesn't fit the data well at all, and the residuals have heteroskedasticity problems.

When dummy variables are included in the Cheng model to control for year variations in equity, it is clear that although the level of equity changes slightly from year to year, inequity is pervasive throughout. The yearly variations in assessment equity will be further examined in the next chapter. This chapter's results have great significance, demonstrating inequitable and undesirable non-uniform assessments across properties. In Lansing, MI, higher priced properties

pay property taxes at a lower rate than lower priced properties. The finding that property taxes are regressive with respect to sale values justifies the following examination of the nature and spatial distribution of the assessment ratio. This examination could reveal more information about the groups of people that are most negatively affected by the regressive nature of the property tax structure.

Chapter 4

SPATIAL AUTOCORRELATION AND SURFACES OF INEQUITY

It has now been asserted that regressive vertical inequity is present in the property tax structure of Lansing, Michigan. The test results of the previous chapter show that higher valued properties are taxed at a smaller proportion of market value than lower valued properties and than is legally permitted.

Because cities are made up of neighborhoods of like characteristics of which housing value is one, it seems likely that the vertical inequity previously detected only econometrically, manifests itself spatially as well. In addition, as was discussed in Chapter 1, the assessor's office divides Lansing into neighborhood units to deal with assessments and assessment adjustments. If the average assessment ratio of an assessor-designated neighborhood is too low or two high the whole neighborhood is adjusted up or down accordingly. Because of this, it is likely that residual or boundary effects of this process can be seen in the spatial patterns of assessment. Are some areas of the city taxed more than other areas? The subsequent chapters deal with this question of spatial inequity.

There has not been very much literature on the description of spatial patterns in property taxation. Perhaps this is due to the absence of geographers participating in the body of literature surrounding social equity and the property tax. Most researchers in this field have come from real estate disciplines and econometrics. Many of the geographers who have studied spatial inequity have done so statistically and econometrically using cross sectional data with little

spatial referencing. If maps were created, they were usually based on data that had been aggregated to relatively large areas. They did not tend to examine spatial patterns visually in attempt to create hypotheses with sophisticated surface maps. This is likely because when most of the geography literature in this subject was created, computer GIS was just being developed and was in an inaccessible, time-consuming stage. There is one notable exception. Thrall, a geographer who has worked on this topic, has looked at map patterns in two studies. The first was in done in 1978 (Thrall 1978). He had to manually locate the addresses of the sale transactions on a map and then write code to create a crude trend surface map of the assessment ratio. In 1993, Thrall did a similar study to see if "geographic equity" was present in the tax structure of St. Lucie County (Thrall 1993). This time he had use of the best GIS equipment made for personal computers. However, Thrall did not create surface maps or even analyze spatial autocorrelation. Instead, he simply mapped the locations of the over assessed properties (properties with assessment ratios at least one standard deviation over the mean) and under assessed properties (properties with assessment ratios at least one standard deviation under the mean) and then compared their patterns visually (Thrall 1993).

The purpose of this chapter is to display and describe any spatial patterns that may exist in the property tax structure of Lansing, Michigan. To accomplish this, the data will be subjected to several procedures. First the property tax structure will be formally modeled and tested for spatial inequity by using semivariance analysis and *Moran's I* tests respectively. Next, spatial patterns of

tax inequity will be displayed in *kriged* surface maps. The process of kriging is explained in detail later in this chapter. Finally, those maps will be graphically compared and tested for correlation to identify any dynamic patterns that occur in the data. The contents of the chapter will be organized around the four research questions in Table 6 and each will be addressed in a section of this chapter. The methodologies used to test each of the research questions will be explained in the beginnings of these chapter sections.

Table 6 – Chapter 4 Research Questions

	Research Questions	Null Hypotheses	Test Hypotheses
1	Is the assessment ratio (AR) spatially autocorrelated?	There is no spatial autocorrelation in AR.	AR is spatially autocorrelated.
2	What do the spatial patterns in the data look like?	There are concentric ring patterns.	There are other patterns.
3	Do the patterns vary or shift from year to year?	The patterns do not change.	The patterns are dynamic.
4	Is an assessment correction process apparent in the data?	No assessment correction process is apparent.	A correction process is apparent.

Research Question 1: Is the Assessment Ratio Spatially Autocorrelated?

This is the first research question partly because, if the null hypothesis is accepted, there is really no need to discuss spatial inequity and the rest of the chapter, and partly because the methodology used to answer this question is also needed to answer the subsequent research questions. There will be two methods used to address this question; semivariance analysis and *Moran's I*. However, it is first important to establish just what the first research question is asking.

As was defined in previous chapters, the assessment ratio, AR, for a particular parcel, is the proportion of market value at which that parcel is assessed. All assessment ratios are supposed to be 0.50. Therefore, there shouldn't be any pattern to the assessment ratio surface. However, since vertical regressive inequity was detected in Chapter 3, it is already known that the assessment ratio does not behave as it theoretically should and it is likely that the vertical regressive inequity manifests itself spatially as well. If the vertical regressive inequity does have spatial implications, then the variable AR will have a spatial pattern and its high and low values will be spatially autocorrelated. Spatial autocorrelation is the dependence of a value of a variable at any point on the values of the variable at near by points. Spatial autocorrelation is present. "when similar values cluster together on a map" (Odland 1988, p. 7). Spatial autocorrelation will result in some areas in the city averaging lower ARs and some areas averaging higher ARs. Spatial autocorrelation may be positive or negative. If positive spatial autocorrelation exists between two points, then their values will be similar. If negative spatial autocorrelation exists between two points, their values will be dissimilar. Both kinds of spatial autocorrelation will result in distinct spatial patterns. If there is no spatial inequity, then AR will not be spatially autocorrelated and there will be no spatial pattern to the assessment ratio. The first step taken in testing for spatial patterns is a graphical approach that models any spatial autocorrelation that exists in the variable AR. The method employed in this paper to model the spatial autocorrelation of AR is semivariance analysis.

Semivariance Analysis

One way to examine spatial patterns and spatial autocorrelation is by semivariance analysis. Semivariance is mathematically defined as:

$$\gamma$$
 (h) = [N(h)/2] * $_{i}^{n}\sum[z_{i}-z_{i+h}]^{2}$

Where:

 γ (h) is the average semivariance of a pair separated by a lag distance of h h = the lag distance

N(h) = the number of pairs separated by h

 z_i = the value of the variable (in this study z is AR) at location i.

 Z_{i+h} = the value of the variable at the location a lag away from i.

Essentially, semivariance is the average difference between the values of a pair of points that are separated by a given distance or lag. So, in this study, $\gamma(h)$ is the difference in the values of AR for a pair of locations that are separated by a lag of specified distance.

If positive spatial autocorrelation exists, the difference between values of pairs that are closer together will be smaller than the difference between values of pairs that are farther apart. Put differently, under classic spatial autocorrelation circumstances, the semivariance will be less at smaller lag values and increase until there is no spatial autocorrelation (dependence) between pairs of points or until negative spatial autocorrelation is present.

The software *GS+* will calculate the average semivariance for all pairs (of points) in a lag class for all lags up to a specified *active lag distance*. The active lag distance is specified by the researcher and is the longest distance by which a

pair will be separated in the analysis. Its greatest value may be as much as the distance between the pair of points that are the farthest away from each other in the study area, or it may be any distance shorter. Often, a researcher will not be interested in the difference between values of pairs that are extremely far apart (spatially) because it is hypothesized that they will have little effect on each other (pairs are not spatially autocorrelated after a certain distance).

In addition, GS+ lets the researcher specify the lag distances. The lag distances may be at equal intervals or uneven intervals. That is, the active lag distance may be divided evenly into lags, or the lags may vary in distance. Specifying the appropriate lag interval – or the number of lags, is something of an art form because spatial structure may become apparent at different lags for different kinds of data. Usually the researcher undergoes a trial and error process in choosing a lag that best represents the spatial dependence of the data. At the beginning of the process it is beneficial to study the dependence of the variable in question at the maximum active lag distance and with very short lag intervals. Therefore, in this thesis, semivariance analysis will first be conducted at the maximum active lag distance which is the length of the distances between the pairs of points that are the farthest apart. The maximum active lag distance for the Lansing study area is approximately 13,600 map units, which is about 13.6 kilometers, or 8.5 miles. The actual maximum active lag distance varies slightly between years of data because the locations of sample points vary from year to year. In addition, the semivariance analysis will

first be done with very small lag classes. The active lag distance will be broken into approximately 136 lags creating lag classes of 100 map units or 110 yards. This will show information at the neighborhood scale.

A semivariance analysis is done for each year of data separately and the results are found in tabular form in Appendices A through E. The data are examined year by year because of the dynamic nature of the research questions listed in Table 6.

The results in the appendices are shown in four columns. The first column identifies the lag class. As was stated above, the lag classes are 100 map units, and since the maximum lag distance is about 13,600 map units, there are approximately 136 lags in the tables. The next column is "average distance," which is the average length of separation of points in the lag. For example, in the first lag not all of the pairs are separated by exactly 100 map units. Instead, each pair is separated by some distance up to 100 map units. The "average distance" is the average of the distances between pairs in the first lag class. For example, in Appendix A (1994 data), the average distance in the first lag is 56.47 map units (approximately 62 yards). The third column in the tables is the "average semivariance," or the difference between the assessment ratios in each pair, and the last column indicates the number of pairs in each lag class.

Semivariance Results

Recall from Table 6, that the null hypothesis of the first research question is no spatial autocorrelation, and the test or alternative hypothesis is that spatial

¹ The map units are in UTM, Universal Transverse Mercator meters, units. The latitude and longitude units derived from geocoding in Transcad were reprojected to UTM coordinates in a

autocorrelation does exist. The results of this first semivariance analysis shown in the tables in Appendices A through E reveal a pattern of autocorrelation, which is consistent with the test hypothesis. The first few lag classes have smaller average semivariances indicating that values closest together are more similar. The semivariances increase with lags until they begin to decrease again at about 50 lags. Actually, the values in the tables reveal that pairs of points that are about 1000 map units apart are the most autocorrelated. Their semivariances are even smaller than the pairs that are the closest together in the first couple of lags. The significance of these patterns will be further examined and tested in the next section, *Moran's I* Tests. Semivariance analysis will also be revisited later in this chapter in a section called Semivariograms.

The results of this first semivariance analysis indicate that within small areas or neighborhoods the assessment ratios are similar. In addition, these results suggest that neighborhoods separated by great distances also have similar assessment ratios. This analysis gives reason to reject the null hypothesis of the first research question and conclude that the semivariance analysis is so far consistent with spatial autocorrelation in the assessment ratio. However, a more formal test for spatial autocorrelation, *Moran's I*, has also been performed and will be described in the next section to confirm the hypothesis test for the first research question.

Moran's I Tests

Moran's I is an autocorrelation statistic that is constructed to test for spatial autocorrelation. It is a "product moment" statistic that is similar in nature

and purpose to the Pearson's Correlation statistic. *Moran's I* varies from negative one to positive one. Positive values of *Moran's I* represent the presence of positive spatial autocorrelation. A variable is said to have positive spatial autocorrelation when similar values are clumped together. If *Moran's I* is zero, no spatial autocorrelation exists and the variable exihibits randomness. It follows logically then, that negative values of *Moran's I* represent the presence of negative spatial autocorrelation. Negative spatial autocorrelation exists when disimilar values are consistently located in close proximity to one another.

The process of calculating *Moran's I* involves applying a spatial weighting function to the map of values of the variable in question. According to Odland, a spatial weighting function is a set of rules for assigning values to pairs of places in a way that represents their arrangement in space (Odland 1988, p. 9). When the function is applied to the map, a set of weights in matrix form can be calculated. The weights are the relative locations of the places on the map. Generally, if places are closer together they have more effect on each other's variable values than places that are further apart. Weights can be simply binary and are in this thesis. For instance, if an adjacency rule were applied, the weight for a pair of locations that are adjacent to each other would be one while the weight for a pair of locations that are not adjacent to each other would be zero. In this paper, the weights will be binary based on distance lags. So if a pair is separated by the lag for which the statistic is being calculated, the weight is one. Otherwise, the weight of the pair will be zero.

The Moran's I test statistic is mathematically defined as follows:

 $\mathbf{I} = \mathbf{n}/\Sigma \Sigma \mathbf{w_{ij}} * [\Sigma \Sigma \mathbf{w_{ij}}(\mathbf{z_i} - \mathbf{z})(\mathbf{z_j} - \mathbf{z}) / {}_{i}{}^{n} \Sigma (\mathbf{z_i} - \mathbf{z})^{2}]$ (Odland 1988, p. 10) $Z_i = \text{the value of the variable in question (AR for the purposes of this study) at location i. The double summation indicates summation over all pairs and lag distances.}$

The null hypothesis of a *Moran's I* test is always that no spatial autocorrelation exists and that the variable in question is distributed either normally or randomly. In this thesis, it is assumed that the assessment ratio under the null is distributed normally. This is because it is known that the assessment ratio should have a mean of 0.50 and any deviations from the mean should not result in spatial patterns. Therefore, it is assumed that under the null, there is no spatial autocorrelation in the variable assessment ratio at any lag, and it is distributed throughout the study area in a normal way.

The value of *Moran's I* under the null approaches zero for large samples and is asymptotically normal. Spatial autocorrelation can affect pairs of locations at different lags or distances apart. Because of this, a separate *Moran's I* statistic is calculated for every lag that is tested for spatial autocorrelation. For example, if it is desirable to test for spatial autocorrelation at three lags: between locations that are less than one mile apart, less than two miles apart and less than three miles apart, then *Moran's I* must be calculated and tested three times. The program, *GS+*, will be used to calculate the *Moran's I* statistic. *GS+* calculates the statistic for every lag of specified length in the *active lag distance* described above in the section on semivariance analysis. The lags used in this test will be 100 map units and the active lag distance will be set to the maximum

possible for the study area, approximately 13,600 map units. The calculated Moran's I statistics are listed in Appendices F through J.

The null hypotheses of no spatial autocorrelation are tested using a z test of significance. A separate significance test is done for each lag. The sample sizes are relatively large in this analysis and are equal to the number of pairs in each lag class. Because of this and the asymptotically normal characteristic of *Moran's I*, significance will be decided by comparing a z statistic (1.645) to z scores. Many steps are taken to calculate the z scores. First, the expected *Moran's I* under the null is calculated using the following formula:

$$E(I) = -1/(n-1)$$

Where: E(I) is the expected Moran's I under the null and approaches zero when the sample size gets very large. Then, the expected *Moran's I* standard deviation is calculated. It approaches one when the sample size gets very large. The standard deviation is calculated as follows:

$$SD = SQRT ((n^2-n+9)/(n^2-1))$$

Next, the standard error for the calculated Moran's I is estimated as follows:

Finally, z scores are calculated for each lag as follows:

$$Z$$
 score = $(I - E(I))/s.e.$

The null hypotheses were rejected at the 95% confidence level if the absolute values of the z scores were greater than 1.645.

Moran's I Results

The hypothesis test results, standard error, z score and the expected Moran's I under the null for each lag of each year are listed in the Appendices F through J along side the calculated Moran's I for the lag class and the number of pairs in the lag class.

Table 7- Null Hypothesis Rejections by Year

Year	Number of Lags with Spatial Autocorrelation (Rejections of null hypothesis)	Lags with Positive Spatial Autocorrelation (number of lags with significant negative <i>l</i> s)	Lags with Negative Spatial Autocorrelation (number of lags with significant positive <i>l</i> s)	
1994	22 of 135	10	12	
1995	14 of 135	9	5	
1996	51 of 134	29	22	
1997	30 of 135	13	17	
1998	15 of 130	7	8	

It is interesting to note that at the smallest lags there are many instances of positive spatial autocorrelation. This indicates that within small areas or within neighborhoods, the assessment ratios are similar. This is expected, because it is known that assessors adjust the ratios of entire neighborhoods up or down at once. It is also interesting to note that there are almost as many negative spatially autocorrelated lags as there are positive. This too, is not unexpected. The fact that both kinds of spatial autocorrelation exist simply means that some areas in the city are alike and some are different. If all of the lags had positive spatial autocorrelation, the assessment ratio wouldn't differ from neighborhood to neighborhood or from area to area.

The results of the Moran's I analysis leads to a formal rejection of the null hypothesis of the first research question. The results are consistent with the existence of spatial autocorrelation in the assessment ratio.

Research Question 2: What do the spatial patterns in the data look like?

It is apparent from rejecting the first research question hypothesis that the data are spatially autocorrelated and that there are spatial patterns in the data. To address research question two, the spatial patterns shall be viewed in surface maps. The process used in this thesis to create the surfaces is kriging, which is described in detail later on in this chapter. In order to create the kriged surfaces however, the spatial autocorrelation must be modeled and described with parameters. The semivariance analysis that has been done will be used to create semivariograms that are in turn used in the kriging process to create surface maps.

Semivariograms

A semivariogram is a graph of the autocorrelation present in the data structure; that is, a semivariogram shows the semivariance of the data. The software package, *GS+*, is used as a research tool in this paper to construct semivariograms. A semivariogram plots the difference between values (in this case the difference between AR in a pair of points) versus the distance between points (pairs of values.) Typically the difference between values increases with distance. This is as expected according to distance decay.

However, the semivariance analysis described above reveals that the difference between values of AR does increase with distance until they begin to

decrease again. Semivariograms have been constructed from the data in Appendices A through E and they appear in Figures 11-15.

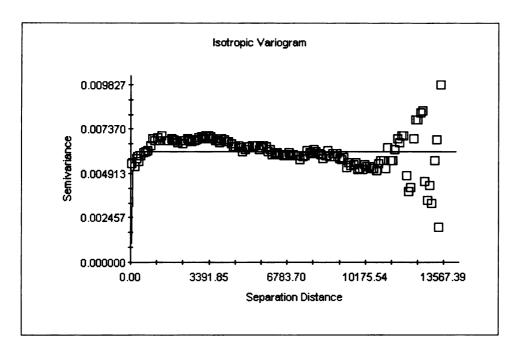


Figure 11 – 1994 Semivariogram with Maximum Active Lag Distance

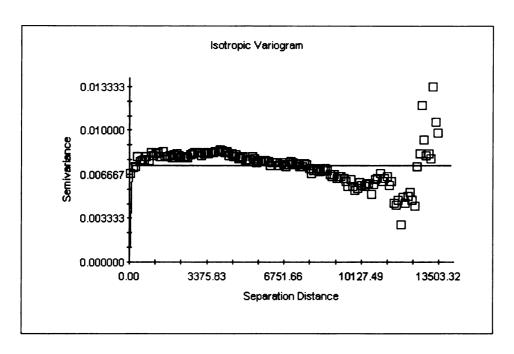


Figure 12 – 1995 Semivariogram with Maximum Active Lag Distance

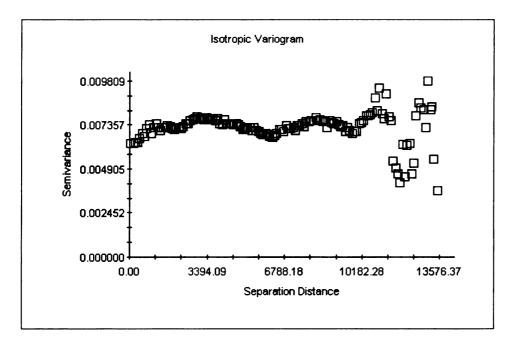


Figure 13 – 1996 Semivariogram with Maximum Active Lag Distance

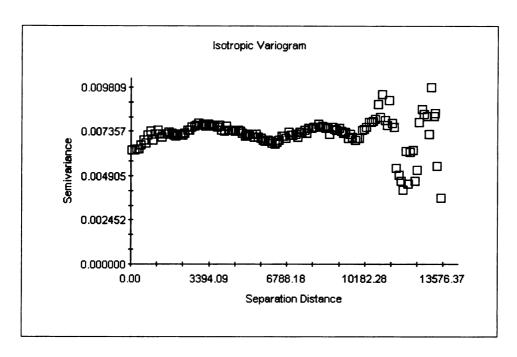


Figure 14 – 1997 Semivariogram with Maximum Active Lag Distance

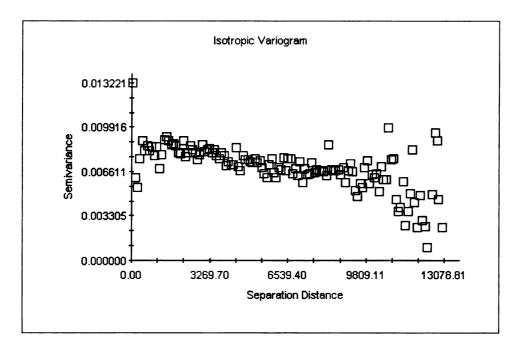


Figure 15 – 1998 Semivariogram with Maximum Active Lag Distance

Figure 11 is a graph of the data in Appendix A. The semivariogram clearly shows that pairs closest together, in the very first lags have more similar values than those do in the middle lags, but that those pairs farthest apart are the most alike in terms of AR value.

After the semivariogram is plotted, it is modeled by a known distribution such as a gausian, spherical, linear or exponential. Obviously, none of these known distributions resemble any of the maximum active lag distance semivariograms seen plotted in Figures 11 through 15. Because of this, a smaller active lag distance is chosen. For example, if the semivariogram only displays semivariances for pairs separated by up to one quarter of the total extent of the map unit distance, or about 43,000 map units, the known distributions will fit the pattern better.

Therefore, the active lag distance is truncated before the semivariances decrease, and new semivariograms showing just a portion of the maximum active lag distance are created. The known distributions are then fit to the semivariogram plots, and the errors are calculated between the actual plot and the known distributions. The distribution with the lowest mean square error is then chosen to model the semivariogram plot. Figures 17 through 21, are the truncated semivariograms with the best-fit distributions modeling the semivariances.

Three parameters, the nugget, sill, and range are used to summarize the modeled semivariogram plot. The nugget is the y-intercept of the model. The sill is the y-value or semivariance value at which the model levels off and the range

is the distance over which spatial dependence is apparent in the modeled semivariogram. Figure 16 is an idealized semivariogram with nugget, sill and range shown.

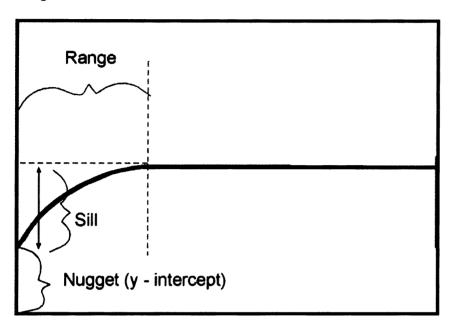


Figure 16 – Idealized Semivariogram with Parameters

Figures 17 through 21 are the truncated semivariograms with active lag distance of approximately 4,300 map units or about one third of the maximum active lag distance. The most appropriate lag intervals for these semivariograms are found by iteratively examining how well semivariograms fit the established models. The following semivariograms have larger lags, like 500 map units instead of only 100 map units. This allows the exponential distribution, the best-fit model for these semivariograms, to better model the spatial dependence of the assessment ratio.

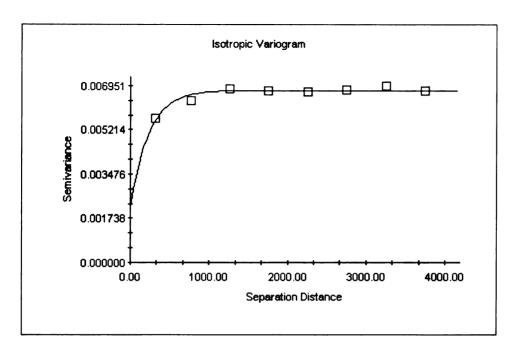


Figure 17 – 1994 Truncated Semivariogram with Exponential Model

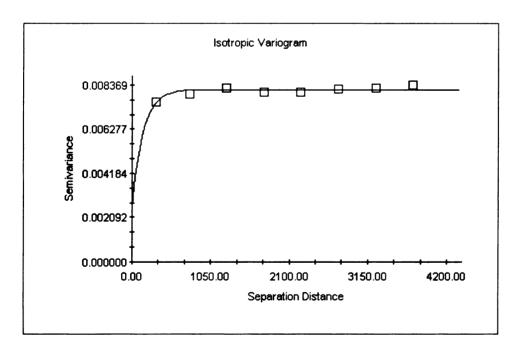


Figure 18 – 1995 Truncated Semivariogram with Exponential Model

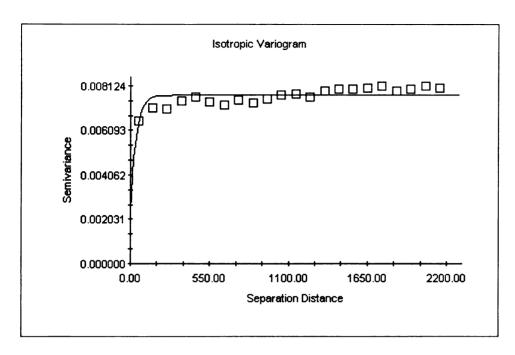


Figure 19 - 1996 Truncated Semivariogram with Exponential Model

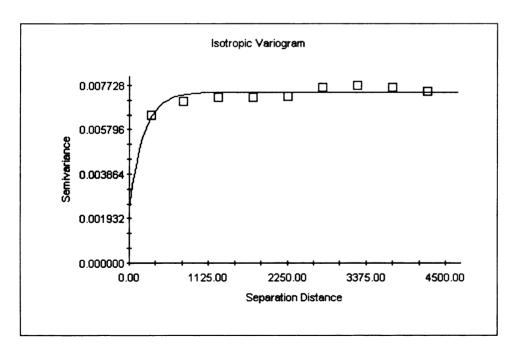


Figure 20 – 1997 Truncated Semivariogram with Exponential Model

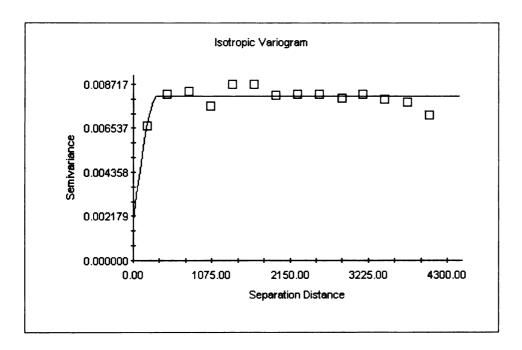


Figure 21 – 1998 Truncated Semivariogram with Spherical Model

Now, the known models fit the data much better, and parameters (nugget, sill, and range) describing the model will more accurately describe the data. The nugget is how much difference between AR is observed at zero distance between points. The sill is how much difference between AR is observed when the semivariogram levels off and the range is the distance between pairs of values when the difference between the values is at its highest – or when the semivariogram levels off. At distances less than the range, there exists positive spatial autocorrelation between points, and at distances greater than the range, there is assumed no dependence between the values of points. Autocorrelation is assumed to be the same between pairs of the same lag regardless of where the pairs are located. These semivariograms are a necessary step in the

creation of the kriged surfaces that will be used to examine and describe the spatial patterns in the assessment ratio.

The model parameters and fit of the semivariograms that will be entered into the kriging process are listed in Table 8.

Table 8 - Semivariogram Results

Semivariogram	Model Type	Nugget	Sill	Range	R	RSS
					Squared	
1994	Exponential	0.0022	0.0068	700 map units	0.92	1.01E-07
1995	Exponential	0.0026	0.0082	441 map units	0.73	1.26E-07
1996	Exponential	0.0024	0.0077	111 map units	0.41	1.78E-06
1997	Exponential	0.0023	0.0074	606 map units	0.7	3.09E-03
1998	Spherical	0.0019	0.0081	326 map units	0.49	2.01E-06

Kriged Surfaces

Kriged surfaces are constructed to describe the spatial assessment ratio distribution. Kriged surfaces are superior to other surfaces such as trend surfaces because they can measure the error associated with each estimated value on the surface. The most likely value at each point is known as well as how likely that value is to occur there. Kriging is a distance weighting method that calculates estimated values of the variable – in this case the assessment ratio – at all points in the study area, sampled and unsampled. The parameters for the method are determined by interpreting the semivariograms shown in Figures 17 through 21.

The parameters, nugget, sill, and range, from the semivariograms derived in the previous section and listed in Table 8, are entered into the kriging model to estimate the weights that should be applied to each point to estimate the value of the assessment ratio at any unknown location. So kriging calculates the weighted average of neighboring known values and assigns it as the value at any given point in the study area. *GS+* will once again be employed, this time to create the kriged surfaces. The kriged surfaces are then brought into *ARC/INFO* and converted to raster grids.

The raster grids are helpful for two reasons. First, in raster format, the patterns in the maps are clear and discernable, and second, the patterns can be compared more readily from year to year. These raster grids of the kriged surfaces are shown in Figures 22 through 26. In all of the maps, darker colors represent higher assessment ratios, and lighter colors represent lower assessment ratios.

Expected Map Patterns

Recall from Table 7 that the null hypothesis of the second research question, "What do the spatial patterns in the data look like?" is that concentric patterns will appear radially out from the center of the city. This is an expected pattern that comes from the literature. It is widely acknowledged that the oldest parts of cities tend to be over assessed due to the depreciation of the housing stock and the amount of rented property. It is also accepted that lower assessment ratios tend to congregate in the newer parts of the city near the edges of the city or closer to the suburbs. One reason is because assessments

usually err toward the mean, and newly developed properties that tend to be worth more are therefore underassessed (Paglin and Fogarty 1972). The actual patterns in the data will be described in the next section. Figures 22 through 26 show the raster grids of the kriged surfaces for each year from 1994 to 1998.

Figure 22 - Grid of Kriged Surface of AR from 1994 Sale transaction Data

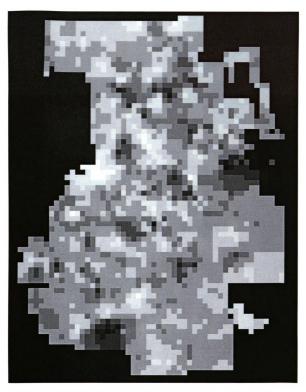


Figure 23 - Grid of Kriged AR surface from 1995 Sale transaction Data

Figure 24 - Grid of Kriged AR surface from 1996 Sale transaction Data

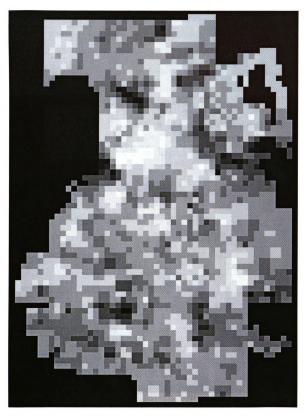


Figure 25 - Grid of Kriged AR surface from 1997 Sale transaction data

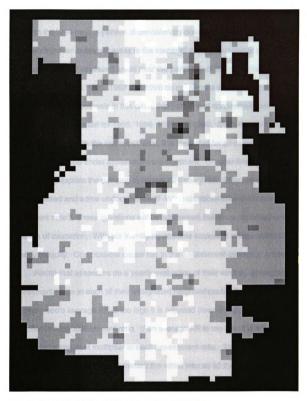


Figure 26 - Grid of Kriged AR surface from 1998 data

Description of Map Patterns

In the 1994 map, a pattern of concentricity does appear with darker colors representing over assessed areas in the center of the city and lighter colors representing under assessed areas near the periphery of the city. However, the other maps for 1995, 1996, 1997 and 1998 do not show a pattern of concentricity clearly. The null hypothesis in this case, that patterns of concentricity are present, may be rejected for 1995, 1996, 1997 and 1998. Even though the 1994 map is consistent with the null hypothesis, it is clear that for all of the maps, other patterns of over and under assessment are dominant. Chapter five will attempt to statistically explain the patterns in figures 22 through 26. Why are some areas over assessed and some underassessed? What characteristics determine assessment ratio? These questions will be addressed, but more important is the question of causation. With out identifying possible causes, it is impossible to remedy inequity. One possible cause lies in the assessment correction process.

Recall that assessors do a yearly evaluation of their work by averaging assessment ratios in each of their designated neighborhoods. If a neighborhood's average AR is too high it is adjusted down by applying a constant multiplier to each assessment ratio. If an average AR is too low, it is adjusted up by applying a constant multiplier to each assessment ratio. Therefore, each parcel within a neighborhood is treated the same way as all the others in the neighborhood regardless of its actual individual value. Thus, if the average AR in a neighborhood happens to be too low, even the assessments that are too high in that neighborhood are adjusted still higher and if the average AR in a

neighborhood is too high, even the assessments that are too low are adjusted still lower. It can be shown that this process would lead to a boundary effect, that is, properties on the edges of neighborhoods would be most likely to have extreme values of assessment ratios. This process may actually cause more spatial inequity and indeed the patterns of over and underassessment seen in the maps.

Research Question 3: Do the patterns vary or shift from year to year?

This next research question will be addressed by graphically comparing each year's raster grid to the previous year's grid. The comparison is done in *ARC/INFO* by subtracting the value of each cell in the later year by the corresponding cell in the earlier year. The resulting grid maps are shown in Figures 27 through 32. The null hypothesis for this research question is that the patterns do not change. Under the null then, areas that are over and under assessed in 1994 will remain so in ensuing years. The test hypothesis is that the map patterns from Figures 27- 32 are dynamic – areas that are under and over assessed do change from year to year.

Map Interpretation and Results

In these maps, the darkest colors are areas where the later year's assessment ratio was much higher than the earlier year, so darker areas represent areas where the assessment ratio has increased. The lightest colors are areas where the later year's assessment ratio was much lower than the earlier year, so the lighter areas represent places where the assessment ratio

has decreased. The medium gray colors represent places where the assessment ratio has changed little from the earlier year to the later year.

So under the null hypothesis of no change in the patterns of over and under assessed areas, the map patterns will be boring, mostly gray maps with out areas of great change. Conversely, if the null hypothesis is rejected, the map patterns will be distinct with areas of great change represented by dark and light colors.

This research question will not be tested by means of statistics, only by a subjective viewing of the maps. Because the maps do show distinct areas of dark and light colors, the null hypothesis – that the patterns do not change – is rejected, and it will be concluded that the assessment ratio is dynamic.

Figure 27 - 1995 Surface Subtracted by 1994 Surface

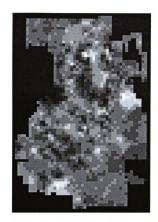


Figure 28 - 1996 Surface Subtracted by 1995 Surface

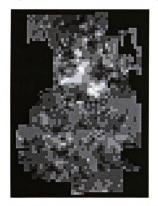


Figure 29 - 1997 Surface Subtracted by 1996 Surface

Figure 30 - 1998 Surface subtracted by 1997 Surface

Figure 31 - 1998 Surface subtracted by 1994 Surface

Figure 32 – 1997 Surface subtracted by 1994 Surface

Research Question 4: Is an Assessment Correction Process Present?

The results of the previous section indicate that the patterns of over and under assessment are not static but do change from year to year. This research question asks whether or not these dynamics in the property tax structure are the products of correction processes or other forces. There are two kinds of correction processes that could be present. The first comes from the assessor's office. The assessment process does attempt to target neighborhoods that are under or over assessed and adjust them with the goal of achieving more equity. The other kind of correction could come from the market. In this case, the assessments are assumed to be correct, and it is the sale prices that are assumed to be too high or too low. If there were a market correction at work, the sale prices would be adjusting back to true market values, thereby correcting

assessment ratios. This question will test to see if the dynamics result from an assessment correction or a market correction.

To answer this question, a correlation statistic will be generated by correlating the grids in Figures 22 through 26 in ARC/INFO. A separate correlation statistic will be calculated for each year and its subsequent year. In addition a correlation statistic will be calculated for 1994, the earliest year of the data, and 1998, the latest year of the data. The null hypothesis is that no assessment correction process is apparent. Under the null, spatial inequities are getting worse or staying the same. Thus, under the null, the property tax structure is not becoming more equitable. Under the null, the correlation statistic r will be zero or positive. If the correlation statistic is zero there is no correlation between the values of cells in the grids from year to year. If the correlation statistic is positive, then cells with high values correspond to high values and cells with low values correspond to low values indicating the spatial inequities are worsening. The test hypothesis is that the property tax structure is becoming more equitable. If this is the case, then the correlation statistics will be negative. If the correlation statistic is negative, then cells with high values correspond to low values and vice versa.

Correlation Results

The correlation statistics are listed in Table 9. Because the statistic is calculated by means of a cell to cell comparison, the sample size of each correlation is 3283, the number of cells the grids have in common. With such a large sample size, the standard error of the statistic will be very low and the

statistics are likely to be significant. However, this test is biased because the correlations (like the grids) are based on interpolated data, and there are only a few thousand actual measured observations in each year's data. Regardless, five of the six correlations are positive and thus consistent with the null hypothesis. However, the correlation between 1994 and 1998, the first and last years of the analysis, is negative. Although this correlation is the smallest in magnitude, it does indicate that perhaps inequities correct themselves over a lag of a few years. Nonetheless, it is clear that over all, the results are consistent with the null hypothesis – that there is no apparent corrective process in the data and in fact, patterns of inequity are getting worse.

Table 9 – Correlation Statistics

	1994	1995	1996	1997	1998
1994		0.24648		0.05492	-0.00383
1995			0.14745		_
1996				0.15218	
1997					0.09061

Conclusion

The goal of this chapter was to see if the vertical regressive inequities detected in Chapter 3 manifest themselves spatially, and if so, do patterns of under and over assessment change from year to year and is this change the result of an assessment correction? The results of the hypothesis testing are as follows; the assessment ratio is spatially autocorrelated because over and under assessments are clustered together. The spatial patterns are dynamic, changing from year to year. However, there is apparently no correction of the inequity. Unfortunately, it seems that inequity is either becoming more concentrated or at

best, it is not getting any less concentrated. The next chapter, Chapter 5, will attempt to explain the spatial inequities and patterns in the assessment process that have been shown in this chapter as well as identify other biases that may exist in the property tax structure.

Chapter 5

EXPLANATION OF THE ASSESSMENT RATIO VARIATION

The purpose of this chapter is to attempt to explain the property tax inequities identified in Chapters 3 and 4, as well as to identify further inequities and possible biases in the property tax structure. Already known is that the property tax structure is regressive with respect to sale amounts (sale amount, S, is inversely linearly related to AR). Are there any other regressive biases of the property tax structure? Why are some geographic areas over assessed and some under assessed? Are there different forces influencing the assessment process at different scales? These questions will be addressed in this chapter. The hypotheses for this chapter, discussed in the next section, are addressed by testing the significance of cross sectional, geographic variables in explaining the assessment ratio. These hypothetical explanatory variables are derived from the literature on this topic, which is reviewed in the following pages. First the hypotheses will be tested with bivariate Pearson's Correlation tests. However, the primary method used to test hypotheses for explanatory power in this thesis is multiple regression analysis. Throughout Chapter 5, the hypothetical variables will be referred to by their short code names. A description of each can be found in the codebook under "List of Abbreviations" on page xi.

Framing the Hypotheses

Property tax literature has long recognized a geographic discrepancy in property tax assessment. For example, an article appearing in the National Tax

Journal in 1965 concludes, "the tax burden on real estate and personal property in lowa varies substantially depending on the location of the property being taxed." (Meyer 1965) Although Meyer was studying the variation in the effective tax rate between counties and did not test determinants of assessment ratio variation, he does speculate that income and the extent that a population uses public services can affect the rate of taxation. Essentially, Meyer implies that the tax structure is regressive with respect to economic group and biased against those on public income. Meyer's speculations will be represented and tested in this chapter by the variables INC and PUBLIC.

In 1972, Black published an article that aimed to identify and test the determinants of the variation in the assessment ratio (Black 1972). He used regression analysis on data aggregated to census tracts. His dependent variable was equivalent to the AR in this thesis, and his study area was the city of Boston. The results of Black's study reveal that systematic variation in the assessment ratio is positively correlated to the percentage of properties with multiple housing units, inversely related to the median family income of a census tract, and positively related to percent nonwhite. That is, areas with more multiple unit housing, lower median incomes and higher percentages of nonwhite populations were taxed higher. Conversely, areas with more single family housing units, higher median incomes, and higher percent whites were taxed lower. In addition, areas with built environments of poorer quality were also found to be taxed at a higher rate. Black does not offer explanation as to why the above determinants explain the assessment ratio, but he suggests that increased

federal or centralized control over the assessment process would alleviate some of the inequity. Some of Black's results will be retested here at three scales with the variables INC, WHITE and RENTOCC.

Black's study prompted similar studies including a comprehensive appraisal of the nature of regressive inequities in the property tax by Edelstein. Although the main purpose of his paper is *measurement* of property tax regressivity, Edelstein also empirically finds "regressivity of the property tax is principally caused by its poor and de facto discriminatory administration" (Edelstein 1979). Several possible explanations for the observed regressivity are discussed in the article. First, Edelstein postulates that miss-assessment could be the result of the user-benefits principle which theorizes that households consuming more public goods and/or services should be taxed more to cover their share of the local public expenditures.

Another explanation or cause of regressivity laid out in the Edelstein article is pure discrimination. That is, the assessment process may discriminate against marginalized households in order to "avoid confrontations" caused by advantaged home-owners who are more likely to "protest assessment changes." Both of these possible causes assume that individual assessors are biased against poor, minority and politically unpowerful groups. This explanation is highly unlikely because individual assessors rarely readjust a single parcel's assessment and it would be difficult for them to ascertain what kind of person owns any given parcel.

Finally, Edelstein describes a *market phenomena* explanation of tax inequity. This theory is based on the differential market behavior of geographic sub-areas: that there is an inertial quality to assessed values which cause them to have a delayed reaction to market values. Thus, geographic sub-areas with increasing market values usually have smaller assessment ratios, and geographic subareas with decreasing market values usually have larger assessment ratios (Edelstein 1979). This "market phenomena" will be directly tested in this chapter with the variable SEASON.

Another article, written by Thrall and also published in 1979, dealt with spatial inequities in tax assessment in Hamilton, Ontario. Thrall's findings were consistent with the prior research described above, but his methodological design varied slightly. Instead of using assessment ratios as the dependent variable, he borrows from Paglin and Fogarty's vertical inequity test and postulates that, "the quality of assessment depends upon the relative behavior of AV with respect to MV" (Thrall 1979). He asserts that the ideal assessment system should be characterized by²

AV = a + bMV.

Where a = 0.00 and b = 1.00 (although for Michigan this coefficient is 0.50). Thrall then states that,

"The manner in which the actual assessment system deviates from the ideal may be identified by establishing how the constant and the slope in the equation behave over a set of characteristics: by determining what social, economic, geographic, institutional, and other characteristics lead to variation in the intercept a and slope b (Thrall 1979)."

-

² Thrall uses this linear functional form but stipulates that any two-parameter (intercept and slope) functional forms would be appropriate (Thrall 1979).

However, Thrall did not measure such "characteristics" directly. Instead, he partitioned his study area of Hamilton, Ontario into 16 subareas. He uses dummy variables to represent the 16 area partitions and inserts them into his regression design. If any of the dummy variables have significant coefficients that diverge from the ideal intercept and slope coefficients he concludes that the assessment process is geographically biased. So, Thrall does not test any demographic variables like racial or income variables, directly. However, he does imply that he is testing social, economic, geographic, institutional and other characteristics indirectly because he claims he divided his study area into partitions with similar characteristics. The manner in which he did this is unclear but he asserts that each area is relatively homogenous. He also partitioned the sale prices into three categories: low, medium and high, and created dummy variables to represent the categories inorder to test for vertical regressive inequity.

In this thesis, geographic inequity will not be studied like Thrall does by dividing the study area into dummy variables. Instead, all of the variables are geographically referenced and in the event that they are significant, they represent geographic bias with respect to the characteristic they stand for. In doing so, the geographical bias discussed by Thrall is being implicitly studied.

Thrall found that indeed the assessment process in Hamilton, Ontario was geographically biased. Some of the 16 areas were over taxed and some were under taxed. He concluded that areas near the central business district and

industrial areas were over taxed and areas with new subdivisions were under taxed. Thrall's results were also consistent with regressive vertical inequity.

Properties with higher sale prices were found to be under taxed, and properties with lower sale prices were found to be over taxed.

Correlation

Recall that the data was prepared for analysis at three scales: census tract, block-group and parcel from largest to smallest scales respectively. This was done so that hypotheses can be tested at three distinct scales. If relationships between scales are found to be the same regardless of scale, perhaps the assessment process, which is scale specific, isn't the source of the bias, but rather market interactions are causing assessment discrepancies. In this section, many of the hypotheses and determinants found in the literature will be tested at all three scales with simple Pearson's Correlations. The nature and direction of the determinant relationships are hypothesized in Table 10. Please refer to the "List of Abbreviations" on page xi where descriptions of each variable used in Table 10 and throughout this thesis are located. All of the verbal hypotheses found in Table 10 postulate that areas dominated by marginalized populations are correlated with the highest assessment ratios.

Table 10 – Hypothesized Correlation with AR

Explanatory Variable	Hypothesized Direction	Verbal Hypothesis
WHITE	-	As white percent increases, AR decreases
BLACK	+	As black percent increases, AR increases
HISPANIC	+	As Hispanic percent increases, AR increases
INC	•	As median household income increases, AR decreases
RENTOCC	+	As renter occupancy percent increases, AR increases
PUBLIC	+	As public assistance percent increases, AR increases
YEAR	-	As median year built increases, AR decreases
SEASON (binary variable: summer = 1, winter = 0)	-	AR decreases in the summer
VACANT	+	As vacant percent increases, AR increases

Correlation Results

Table 11 - Bivariate Pearson's Correlation Results at Three Scales

Explanatory Variable	Census Tract	Census Block- Group	Parcel
WHITE	r = 0.382**	r = 0.341**	r = .063**
BLACK	r = -0.273*	r = -0.252*	r = -0.045**
HISPANIC	r = 0.480**	r = 0.380**	R = 0.077**
INC	r = 0.531**	r = -0.42**	R = 0.087**
RENTOCC	r = 0.334*	r = 0.292**	R = 0.057**
PUBLIC	r = 0.555**	r = 0.421**	R = 0.087**
YEAR	r = -0.027	r = -0.033	r = 0.003
SEASON (binary	not applicable	not	r = -0.033**
variable: summer		applicable	
= 1, winter = 0)			
VACANT	$r = 0.425^{**}$	r = 0.400**	R = 0.067**

^{**} r is significant at .01 level

* r is significant at .05 level

As can be seen in Table 11, the results are consistent with all of the hypotheses except that with YEAR. There is no significant correlation between the age of housing and the assessment ratio. All other correlations are statistically significant at least at the 95 percent confidence level. The meaning of the results is this; the regressive nature of the property tax structure in Lansing, Michigan goes much farther than just regressive vertical inequity alone. Higher AR values are correlated to areas with larger minority populations. The tax structure is regressive and biased against black and Hispanic populations. AR values are also positively correlated to areas that have larger poor populations so the tax structure is regressive and biased against poor populations. AR values are also positively correlated to politically unpowerful groups like those renting property instead of owning property and those groups on public assistance. Thus, the tax structure is regressive and biased against renters and people on government assistance. The regressive nature of the property tax appears to go much further than being biased against lower valued properties alone.

OLS Modeling

Next, the significant variables, identified in the correlation table above, will be used in linear regression models to explain variation in the assessment ratio. In addition, a form of S, sale amount, will be used, because as the I.A.A.O. model in Chapter 3 demonstrated, S is not only correlated to, it also helps to explain the variation in AR. For that reason, the natural log of S will be used as an

explanatory variable in some of the following models.³ Again, linear models will be built at each of the three scales of analysis. However, because many of the hypothesized determinants listed in Table 10 are correlated with each other, and not independent, they can not all be used in the same linear regression models. For this reason, two models are created and displayed for each scale of analysis. Full tables of correlations, which show the linear bivariate relationships between all pairs of variables are located in Appendices K, L and M.

This thesis is concerned with the variation from the expected 0.50 in the assessment ratio. Recall that if the property tax structure were equitable, any variation from the expected 0.50 in the assessment ratio would be randomly distributed. Under equity, the random errors would be both spatially neutral and uncorrelated to other variables with spatial reference. However, it is already known from tests done in Chapter 3 and Chapter 4 that the assessment errors are not completely neutral. In Chapter 3 vertical inequity testing showed that the assessment ratio is biased with respect to sale amount and Chapter 4 showed that instances of deviation from 0.5 in the assessment ratio are not spatially random. Nonetheless, much of the error in the assessment process, which causes AR to deviate from 0.5, is most likely randomly distributed. AR will therefore be used as the dependent variable in the following regression analyses to try to find out what explains the variation in the assessment ratio. Thus, R-Squares are not expected to be very large, and thus, the focus of the

-

³ The natural log transformed version of S, LNS, has a better linear relationship with AR than S and LNS will therefore be used in the following linear regression models.

investigation will be on the statistical significance of the hypothesized explanatory variables.

The residuals from one model at each scale will be examined for spatial autocorrelation and possible sources of additional AR explanation. If there appears to be geographic patterns in the residuals, then some explanatory variables related to assessment bias are probably still missing from the models. If the residuals appear to be randomly distributed, (this could be confirmed by formal tests for spatial autocorrelation), then the models can be considered complete, and there are no more spatial variables causing assessment bias.

Alternatively, like Thrall's regression models, assessed value, AV, or its natural log, could also be used as a dependent variable when coupled with sale amount, S, as an independent variable. In this case, R-Squares should be high and S should explain most of the variation in AV; any other variables found to be significant would represent property tax bias. From a model of this nature, the variation of AR is only implicitly examined. The Paglin and Fogarty model as well as the Cheng model, which were discussed in Chapter 3, already demonstrated how regressive vertical inequity could be explained by such a model.

Census Tract Scale

Each of the explanatory variables that were found to be significantly correlated to AR are entered as an explanatory variable in a simple, single independent variable, regression model. The results are displayed in Table 12. For organizational purposes, the explanatory variables and their regression models have been divided into three categories: those having to do with racial

characteristics of the population, those having to do with income and sale amount of property and those having to do with housing stock.

Table 12 – Simple Regressions, Dependent Variable = AR, df = 40

	Explanatory Variable	Estimated Intercept	Estimated Slope	Beta	t-stat	R Square
Race Variables	WHITE	0.487	-3.33E-04	-0.382	-2.584	0.146
	BLACK	0.457	2.53E-04	0.273	1.771	0.074
	HISPANIC	0.451	1.40E-03	0.480	3.416	0.230
Wealth Variables	LNS	0.757	-2.71E-02	-0.622	-4.957	0.371
	INC	0.486	-8.54E-07	-0.531	-3.914	0.264
	PUBLIC	0.450	2.39E-03	0.555	4.166	0.308
Housing Variables	VACANT	0.451	1.81E-03	0.425	2.934	0.181
	RENTOCC	0.453	2.51E-04	0.334	2.212	0.111

Each of the simple regression models at the tract scale, displayed in Table 12, has significant explanatory power. All of the explanatory variables have significant slope coefficients at the 95% one—tail confidence level. This shows that neighborhood and geographic characteristics do play a role in determining assessment ratios and therefore property taxes of individual taxpayers.

The slope coefficients represent the expected change in AR for a one-unit increase in the explanatory variable. For instance, a one-unit (one percent) increase in HISPANIC will bring about an expected 0.00140 increase in the assessment ratio. In the same way, a one-unit (one percent) increase in population on public assistance (PUBLIC) will bring about an expected 0.00239 increase in the assessment ratio.

The R-Squares in the models vary from 0.07 to 0.37. It is important to recognize the meaning of the magnitude of the explanatory power of these

individual variables alone. When regression designs are used to create predictive or forecasting models, it is important that they have large R-Squares and explain a large amount of the variation in the dependent variable. However, the regression models in this chapter are not intended for predictive purposes. They are only used for diagnostic purposes, to test explanatory variables for significance and thus test the property tax structure for geographic bias. In addition, none of the hypothesized determinants should theoretically, under equity, explain any of the variation in AR. For these reasons, low R-Squares are expected and have been realized. Nonetheless, the R-Squares for the models in Table 12 at the tract scale do show explanation of up to 37 percent. In fact, each of the race variables alone explains between nearly 7.5 percent and 23 percent of the variation in AR. A single wealth variable explains between 26 percent and 37 percent of the variation in AR and individual housing variables explain between 11 and 18 percent of the variation in the dependent variable.

To account for even more of the variation in AR, explanatory variables will be used together in multiple regression models. However, they can not all be used in the same model since they are not all independent from each other thereby violating an assumption of linear regression. The variables within each category (race, wealth and housing) are highly interdependent. When variables within each category are used in the same multiple regression model there is likely to be multicolinearity. For this reason, the use of more than one variable from any category will be avoided. However, there is also dependency between the categories making it difficult to include more than any two of the variables in

the regression designs especially at the tract scale that has fewest degrees of freedom. Check the full correlation tables in Appendices K-M for information on what the correlation is between variables. The following multiple regression models are an attempt to combine relatively independent explanatory variables in models that explain what is determining the variation in AR. The tolerance of the explanatory variables will be included in the tables that display the multiple regression models. The tolerance is the percent of the explanatory variable that is not explained by the other variables. It ranges between zero and one. Low tolerances represent the presence of multicolinearity, under the presence of which can cause coefficient bias and unefficiency. The variables included in the models were chosen by first entering a wealth variable, and then a race variable and then a housing variable. If the variables were not significant, they were removed from the design.

Another reason for creating multiple regression models is to test for bias holding other variables constant. The bivarite correlations and simple regressions already revealed the explanatory power of the individual independent variables. The multiple regression models will show the effect of individual variables holding other variables constant. For example, the racial variables have shown to significantly explain AR. When combined with a wealth variable in a multiple regression model, the impact of the racial variables will be known holding income or sale amount constant. In addition, since it is known that the property tax structure is biased against racial minority groups, the models will

able to distinguish between expected AR values for rich racial minority populations and poor racial minority populations.

Table 13 – Tract Multiple Regression 1.

AR	=	b ₀ +	B ₁ INC +	B ₂ WHITE
Estimated AR	=	0.494	-1.68E-04 INC	-7.23E-07 WHITE
Beta			-0.450	-0.193
t-stat		53.62	-3.033	-1.299
sig.		0.000	0.004	0.202
tolerance			0.822	0.822
R - Square =	0.313			
F-stat =	8.64			
df =	40			

Each independent variable coefficient should be interpreted as the marginal expected change in AR, the dependent variable, for a one-unit change in the independent variable holding all other explanatory variables constant. Therefore, as the amount of white population increases by one percent holding median household income constant, the assessment ratio can be expected to decrease by 0.000000723. Likewise, as median household income increases by one dollar, the expected assessment ratio decreases by 0.000168 holding WHITE constant. What impact does this inequity have on the average taxpayer? For example, holding race constant, a \$100,000.00 property that is subjected to a \$100.00 dollar decrease in median household income would increase its estimated AR from 0.494 to 0.510. This could increase the effective property taxes by more than \$50 dollars if the millage rate is 0.033. The results of Tract Multiple Regression 1 in Table 13 show a bias in the property tax structure that financially disadvantages neighborhoods as INC and WHITE decrease. The standardized beta coefficients of the independent variables can be compared to

show the relative effects of the independent variables on AR. In this case, the betas show that INC has more than two times the effect on AR than does WHITE. Tract multiple regression 1 shows that not only is the property tax structure biased with respect to income and race, expected AR values are lower for rich white populations than for poor white populations.

Table 14 - Tract Multiple Regression 2.

AR	=	b ₀ +	b₁LNS +	b₂BLACK
Estimated AR	=	0.740	-2.580E-02 LNS	1.091E-04 BLACK
Beta			-0.591	0.118
t-stat		11.857	-4.534	0.902
sig.		0.000	0.000	0.373
Tolerance			0.931	0.931
R - Square =	0.398			
F-stat =	12.572			
df =	40			

The results of the second multiple regression model in Table 14 show similar biases. Holding sale amounts constant, as the black population increases by one-unit (percent), the assessment ratio will increase by 0.0001091. While this discrepancy doesn't seem large at first glance, a fifty percent increase in population that is black, can mean more than \$24 in effective property tax dollars for a parcel that sold for 100,000 dollars. In addition, results also show that holding other explanatory variables constant, a one- percent increase in sale amount, decreases the assessment ratio by an expected 0.0258.⁴ This time the betas show the wealth variable has five times more effect on AR than the race variable.

⁴ Notice that the interpretation for the coefficient on LNS is slightly different than for the linear variables. In this situation, the coefficient gives the marginal expected change in the dependent variable for a one percent change in the log linear variable, S, holding all other variables constant.

Residual Examination – Census Tract Scale

The multiple regression model with the largest R square, shown in Table 14, has been chosen to be tested for completeness by examining its residuals. Residual analysis is very important in model building because the residuals show what the model fails to explain. If the residuals appear spatially autocorrelated, it is likely that there is another geographic factor that explains variation in the assessment ratio. If the residuals appear randomly distributed, it can be assumed that random forces cause the variation that remains unexplained by the multiple regression design. The residuals, the difference between the expected ARs given the model and the actual ARs, are standardized, or made into Z–scores, and mapped in Figure 33. The darker colors represent tracts with large positive residuals where the ARs are higher than the model predicts. The lighter colors represent areas with large negative residuals where the ARs are lower than the model predicts.

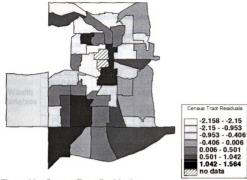


Figure 33 - Census Tract Residuals

It appears that large positive residuals are located in the center city tracts and in the southwestern tracts of Lansing, while large negative residuals are located in the north and northwestern tracts of the city. However, the residuals closest to zero, tracts the model explains well, seem to be distributed evenly throughout Lansing. A formal test for spatial autocorrelation is needed to conclude with statistical confidence that the residuals are either clustered or independently distributed. However, it is beyond the scope of this thesis to gather new data and form new explanatory hypotheses and variables. Future research efforts should use residual analysis in an interactive iterative process to examine map patterns, develop new hypotheses from residuals, collect variables to represent the hypotheses, and finally, to create better models that explain

Block Group Scale

Table 15 – Simple Regressions, Dependent Variable = AR, df = 116

	Explanatory Variable	Estimated Intercept	Estimated Slope	Beta	t-stat	R Square
Race Variables	WHITE	0.497	-4.49E-04	-0.341	-3.894	0.117
	BLACK	0.457	3.68E-04	0.252	2.798	0.064
	HISPANIC	0.451	1.46E-03	0.380	4.402	0.137
Wealth Variables	LNS	0.821	-3.31E-02	-0.503	-6.237	0.253
	INC	0.491	-9.92E-07	-0.420	-4.961	0.176
1	PUBLIC	0.450	2.44E-03	0.421	4.974	0.117
Housing Variables	VACANT	0.450	2.35E-03	0.400	4.682	0.160
	RENTOCC	0.451	3.39E-04	0.292	3.273	0.085

The results of simple regression models at the block group scale are very similar to those at the census tract scale. The t-statistics show that each model has significant explanatory power and each of the explanatory variables' coefficients are significantly different from zero at the 99 percent confidence level. Again, this indicates that geographic, social and economic variables do play a role in determining assessment ratios, and the assessment process is biased and inequitable. The move to a smaller scale with more smaller observational units appears not to affect the conclusion of bias in the assessment process.

Differences in the regression models at this scale lie in the R squares.

The R squares at the block group level are lower than those at the census tract level. At this scale, each variable only explains between six percent and 25 percent of the variation in the assessment ratio. Again, multiple regression designs are formulated with a combination of the explanatory variables above.

Two of these are displayed at this scale in Tables 16 and 17. The variables were picked arbitrarily, one from each category, and inserted in the design if they proved significant.

Table 16 - Block Group Multiple Regression 1

AR	=	b ₀ +	b ₁ INC +	b ₂ WHITE
Estimated	=	0.507	-8.010E-07	-2.780E-04
AR			INC	WHITE
Beta			-0.339	-0.212
t-stat		57.165	-3.771	-2.355
sig.		0.000	0.000	0.020
Tolerance			0.853	0.853
R - Square	0.214			
=				
F-stat =	15.564			
Df =	116			

The model shown in Table 16 is slightly different from its census tract scale counter part in the relative proportions of the betas. In this model at the block group scale INC's beta is only 1.6 times greater than WHITE's beta.

Table 17 – Block Group Multiple Regression 2

AR	=	b ₀ +	B ₁ LNS +	B ₂ BLACK +	B ₃ VACANT
Estimated	=	0.731	-2.55E-02	1.70E-04	9.47E-04
AR			LNS	BLACK	VACANT
Beta			-0.388	0.116	0.162
t-stat		10.533	-4.091	1.404	1.696
sig.		0.000	0.000	0.163	0.093
Tolerance			0.700	0.917	0.693
R - Square	0.289				
=					
F-stat =	15.308				
df =	116				

Table 17 shows a significant regression design that includes three of the explanatory variables. The results at this scale are consistent with those at the census tract scale, except the R-Square is lower. The three explanatory

variables together explain just less than thirty percent of the variation in AR. The standardized residuals from this model will be mapped and the resulting map patterns will be examined. This model was chosen because it explains more of the variation in AR than the other block group model in Table 16.

Residual Examination - Block Group Scale

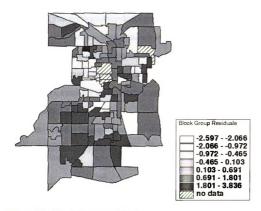


Figure 34 - Block Group Residuals

It seems as if there are more positive residuals in the southern half of Lansing, tracts with larger calculated ARs than the model would predict, and more negative residuals in the northern half of Lansing, tracts with smaller calculated ARs than the model would predict. This means there is probably another bias of the assessment ratio that is not represented in the regression model. An example of an appropriate hypothesis for this missing element is as

follows; perhaps there is a characteristic of the real estate market, affecting property supply and demand. This hypothetical variable would affect differentially the northern and southern parts of Lansing. If, for example, the real-estate characteristic is correlated with lower demand in the southern block groups, (thus, decreasing sale prices there), and higher demand in the northern block groups, (thus, raising sale prices there), then calculated assessment ratios would be higher in the southern block groups than the model in Table 17 predicts and lower in the northern block groups than the model predicts. This hypothesis is consistent with the pattern seen in the residuals. Unfortunately, it is beyond the scope of this thesis to measure a variable that could explain this phenomenon, instead it is offered here as a suggestion for further research.

Parcel Scale

Table 18 – Simple Regressions, Dependent Variable = AR, df = 8055

	Explanatory Variable	Estim ated Interc ept	Estimated Slope	Beta	t-stat	R Square
Race Variables	WHITE	0.488	-3.55E-04	-0.063	-5.633	0.004
	BLACK	0.456	2.89E-04	0.045	4.082	0.002
	HISPANIC	0.451	1.36E-03	0.077	6.934	0.006
Wealth Variables	LNS	1.133	-6.19E-02	-0.322	-30.519	0.104
	INC	0.486	-8.37E-07	-0.087	-7.803	0.008
	PUBLIC	0.451	8.17E-04	0.087	7.795	0.007
Housing Variables	VACANT	0.452	1.73E-03	0.067	6.032	0.004
	RENTOCC	0.452	2.83E-04	0.057	5.164	0.003
Season Variable	SEASON	0.464	-5.76E-03	-0.033	-2.934	0.001

Again, at the parcel scale, all of the simple regressions have significant explanatory power, and all explanatory variables are statistically different from

zero at the 99 percent confidence level. The R-Squares are remarkably smaller at this scale. This is because the dependent variable was collected at the parcel scale and the independent variables were collected at the block group scale and then disaggregated to the parcel scale. The models at this scale are called "fixed x" models. Because there is more variation in the dependent variable than in the independent variables, less can be explained by them. However, the concern in this chapter is not how much of the variation in AR is explained, but which variables do explain variation.

Notice at this scale, the explanatory variable SEASON, is included in the analysis. This dummy variable, which denotes the season that the sale transaction took place, can only be used at the parcel scale because dummy variables collected at a smaller scale can not be aggregated to a larger scale. The results of the simple regression show that when SEASON equals one, or in the summer time, AR decreases. This is as expected because more parcels sell in summer, which represents more demand for parcels. More demand drives sale prices up and since sale price is the denominator of AR, the assessment ratio will appear smaller in the summer. Thus, there is an inverse relationship between SEASON and AR.

The following multiple regressions have several significant independent variables. More explanatory variables can be used at the parcel scale because the number of degrees of freedom is high and significance is more easily achieved.

Table 19 – Parcel Multiple Regression 1

AR	=	b ₀ +	b ₁ WHITE +	b₂HISPANIC +	b₃INC +	b ₄ SEASON
Estimated AR	=	0.488	-1.602E-04	5.469E-04	-5.544E-07	-4.641E-03
			WHITE	HISPANIC	INC	SEASON
Beta	=		-0.028	0.031	-0.057	-0.026
t-stat	=	64.742	-2.288	2.209	-4.198	-2.370
Sig.	=	0.000	0.022	0.027	0.000	0.018
Tolerance	=		0.805	0.621	0.659	0.995
R Square =	0.010					
df =	8055					

The results of this multiple regression model are consistent with those at the other scales of analysis. Because of the large number of degrees of freedom, this model contains two race variables. So the effect of one, holding the other constant may be ascertained. It is apparent that as the percentage of Hispanic people increase, AR increases, even holding the percent of white people, median household income, and season of sale transaction constant.

Again, INC is the variable with the largest Beta and the most relative impact on the assessment ratio. The standardized residuals from this model will be kriged and mapped to examine the residual map patterns.

Residual Examination - Parcel Scale

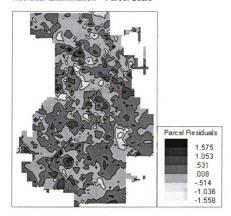


Figure 35 - Parcel Residuals

Figure 35 is a kriged surface map of the residuals from the model in Table 19. Recall from Chapter 4 that the process of kriging involves interpolation of the surface based on the parameters of a semivariogram. The semivariance analysis reveals that dependence in the residuals exists only within a very small lag distance. In fact, Moran's I statistics show the residuals are spatially autocorrelated only at lag distances of less than 350 UTM meters (less than .35 kilometers). This means that the model from which the residuals came does not treat large areas of Lansing differentially. In other words, there are not large scale patterns in the residuals from which hypotheses could easily by developed. Because the spatial autocorrelation only exists at very small scales it is very

difficult to conjecture what variables, if any, are missing from the model. Another way to see that large and small residuals are fairly well distributed on the map, is to look at a three dimensional representation of the residuals. Figure 36, shows the same surface map in three dimensions. The map is shown as if Lansing is being looked at from west to east. As is shown in this map, it is easy to see that the large positive residuals, shown by dark colored peaks, are often accompanied by large negative residuals, shown by light colored holes. This is further indication that there aren't easily measured variables missing from the model. It is more likely that if there is an element missing, it is a subtle market affect that is highly geographically variable.

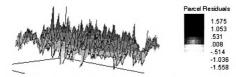


Figure 36 - Three Dimensional Residual Surface

Conclusion

Under an equitable property tax structure, the variation in the assessment ratio would be unexplainable and randomly distributed. The results of this chapter find nine geographic variables that explain significant variation in the assessment ratio. Eight of these are significant at all three scales. Each significant variable represents a bias in the assessment process. Much of the bias is of a regressive nature. Results of the research in this chapter show that areas dominated by marginalized, low income, minority populations, rented

housing or vacant housing are also those areas that are explaining higher assessment ratios. It was also determined that members of poor racial minority groups are the most discriminated against in terms of expected assessment ratios. In addition, a seasonal bias was detected at the parcel scale. Parcels that sell in summer have significantly higher assessment ratios. In general, geographic, economic and demographic variables all play a role in determining assessment ratios.

Sources of Inequity

There are three possible sources of the inequity that has been identified throughout this thesis. First, the literature notes that individual assessors are the source of inequity (Edelstein 1979). Second, it could be the assessment process or the fault of the assessment readjustment process. Third, the workings of the real estate market dynamics could be the source of inequity.

The first of these causes can be ruled out due to the three-scaled methodology, which gives some clue as to the cause of the bias. At the small, parcel scale, the neighborhood characteristics have a very small influence on the assessment ratio (as evidenced by the small R square). This indicates that neighborhood characteristics do not play a big role in determining an individual parcel's assessment, giving evidence against the argument that individual assessors are causing inequity. However, at the larger scales, (census tract and block group scales), the parcel data is aggregated to a smaller number of observational units and more variation in the assessment ratio is explained. This indicates that much of the random assessment error tends to be averaged out,

and that at these scales neighborhood characteristics do play a big role in determining average assessment ratios. These observations are evidence against the argument that it is individual assessors causing inequity.

It is much more plausible that it is the assessment process and market dynamics causing inequity. Because the biases are most apparent at the neighborhood scale (tract and block group scales) they are most likely caused by processes that are inherently based on neighborhood units and their characteristics. The assessment process and the real-estate market are both such processes.

As has already been discussed, the assessment process involves reassessing entire neighborhoods up or down if the average AR is too low or to high. This process produces a boundary effect that creates areas of extremely high or low AR values. Since geographic areas tend to be demographically homogenous at small scales, the boundary effect could cause certain demographic groups to be differentially affected by the assessment process.

Another likely source of inequity is various real estate market dynamics. The significance of the variable SEASON is already proof that the cyclic market dynamic causes inequity. There are many other dynamics causing supply and demand differentials that could also determine AR values. Part of the reason for this is the extreme segregation of real estate markets. In the United States, real estate markets are as diverse as there are niches of population. Each real estate market caters to a different kind of household. Each market likely has its own ups and downs and supply and demand patterns. It is out of the realm of this

thesis to try to correct segregation in the settlement patterns in the United States. However, it can safely be postulated that correcting the market dynamics that cause inequity would be a difficult job indeed. Nonetheless, it is legally incumbent upon the assessment process to correct any inequity, regardless of source. Therefore, bias and inequity in the property tax structure can and should be the responsibility of the property tax assessment process. The next chapter will present an outline for correcting the biases and inequities identified in this chapter.

Chapter 6

CONCLUSION

This chapter will begin with a short review of important findings from the research of this thesis. A discussion of the possible causes for the inequity and bias will follow. Next, the limitations of this thesis and ideas for future research are laid out. Ultimately, the purpose of this chapter is to outline related policy implications as well as recommendations for the city of Lansing Assessor's Office.

Findings

The property tax structure of Lansing, Michigan was first found to be inequitable with respect to sale amounts. Four models tested in Chapter 3; Paglin and Fogarty, Cheng, I.A.A.O. and Clapp all show significant, regressive, vertical inequity. This is a clear demonstration that higher priced parcels are taxed at a lower rate than lower priced parcels.

Inequities with respect to geographic location or distinct neighborhoods in Lansing were also found. This finding comes out of the analyses described in Chapter 4 which show that positive spatial autocorrelation exists between parcels separated by small distance lags and that both positive and negative spatial autocorrelation exist between parcels separated by medium and large distance lags. These results show that some neighborhoods are taxed higher than other neighborhoods. This represents a geographic bias because it shows that

taxpayers, on average, pay taxes on different proportions of market value based on where they live.

Results from the linear model testing in Chapter 5 show that the property tax structure in Lansing, Michigan is also inequitable with respect to many demographic, social-economic, and market variables. These biases exist even when sale amounts are held constant. If the property structure were equitable, no measurable variables would explain variation in the assessment ratio because the variation would only consist of random error. Instead, the property tax structure is inequitable. Three racial variables: percentages of black, white, and Hispanic populations, all prove to be property tax biases as they significantly explain variation in the assessment ratio. Also, income variables like median household income and percentage of population on public income are significant variables, revealing bias based on wealth. All of these results were found at three geographic scales. Furthermore, a seasonal dummy variable also shows significant bias of the property tax with respect to the real estate market's seasonal dynamics.

Causes of Bias

This thesis sought to identify and examine property tax inequities and biases. However, the question this thesis does not answer directly is what causes the property tax inequities that are persisting. No scientific hypothesis testing will be done to answer that question. Instead, only logical speculation is made here. It seems there are two possible sources or causes of the inequity. First, the assessment process itself could be biased, causing inequity. Second,

the dynamics of the real estate market could be such that assessments are unavoidably error prone. It is likely that it is some combination of the two sources causing the identified inequities. Another possibility, one that should be ruled out, is that malicious individuals, who are actively seeking to over assess some parcels while underassessing others, cause the inequities. This supposition, which is mentioned in the literature, is highly unlikely as the assessment process, (see Conclusion section in Chapter 5), would seem to prevent the manifestation of this kind of intent (Edelstein 1979).

The work in this thesis provides evidence for both of the other possible sources of bias. Evidence that the assessment process is causing inequity lies in the work done in Chapter 4. Because the assessors' office has carved Lansing into discrete neighborhoods and uses them as units to adjust up or down, it seems likely that some of the spatial patterns identified in the maps in Figures 22 through 26 are boundary effects produced by this neighborhood assessment technique.

There is also evidence obtained in this study that indicates inequity is caused by real estate market dynamics. The best example of this is the variable SEASON. SEASON equals one if the parcel sold in the summer and zero if the parcel sold in the winter this dummy variable is inversely linearly correlated to AR⁵. The result reflects a supply and demand effect that raises sale amounts in the summer making the assessment ratio appear lower for those parcels.

Certainly, it is not the assessment process assessing parcels sold in the summer

-

⁵ This variable is measured at the parcel scale and therefore is only tested at that scale in the linear models.

lower than those sold in the winter. This is the only variable in the study that is necessarily independent of the assessment process so that it only describes a market dynamic. Nonetheless, its' significance indicates that market dynamics do, to some degree, determine assessment ratios.

Future Research

Future research should concentrate on further isolating the root(s) of the inequities. One of the limitations of this thesis is the short time frame over which the observations were collected. A longer time frame could perhaps reveal dynamic spatial patterns in the property tax structure that would indicate market characteristics causing bias. In addition, a longer time study could reveal if the assessment correction process already being used by Lansing assessors was actually correcting inequity.

Implementing Geographic Process and Methodology

Regardless of what is at fault concerning the inequity of the property tax structure, there are some clear policy implications that come from the research in this thesis. The policy implications involve changing the assessment process rather than the real-estate market, for two reasons. First, and obviously, the workings of the real-estate market can not be changed, and ultimately, it is incumbent on the assessment process to overcome market forces that cause bias and inequity anyway. Second, the policy implications are aimed at improving the assessment process so that it can correct its *own* errors and alleviate its biases more efficiently. In general, the policy implication is this: to incorporate geographic evaluation at all stages in the assessment process. The

best and most efficient way to deal with large amounts of geographic data and analyses is to create and use a GIS database management system. Please note that an introductory GIS textbook should be consulted for in depth discussion of what a GIS is and how specific spatial operations could be performed. With that said, GIS is a powerful tool that could probably eliminate inequity in the property tax structure of Lansing, Michigan. The next paragraphs will outline a step-by-step procedure that could be used by the city of Lansing to implement a GIS and a more precise spatial evaluation of the property tax structure.

GIS should be used at the very beginning of the cyclic assessment process in the data storage stage. GIS is a powerful tool for managing large quantities of geographically referenced data and Assessment data are just that. The assessor's office already stores its data in databases. But these non-spatial databases do not allow assessors to perform spatial analyses, spatial queries, or view assessments spatially. This is a huge limitation of the current assessment process since anything related to real-estate markets is inherently spatial. This limitation is even more severe, in light of the findings of this thesis that the property tax structure is inequitable with respect to geographically distinct areas. If the assessment data were transferred to a GIS database management system, then the data could be used for assessment purposes more efficiently. There are many different ways GIS should be used in the assessment process. The first, and most elementary of these, is for *organization* and *display* data purposes.

A GIS platform could help the assessor organize the multitudes of data that are collected for the purposes of assessment. Usually, the first step to

implementing a GIS for municipal and assessment purposes is to enter the city's plat maps in digital format. Next, aerial photos of the city should be taken and made digital. Plat maps and digital air photos would together make up the base map for the GIS. Together they would have the parcel boundaries, street network, sidewalk delineation, hydrology, electrical and sewer lines, parks and public lines etc. Next, each parcel will be geographically referenced, not only with address and zip code as is done now, but also by latitude and longitude. As was done for the purposes of this research and discussed in Chapter 2, each parcel can then be assigned to other geographic scales to allow for multiple scale analysis. For instance, an assessor could easily bring up all parcels located within a two-block radius from the capital or any other point. The main advantage of this is the elimination of the assessor neighborhood.

After the data has been stored, geo-reference and organized, GIS can be used for display and queries. GIS would aid in the assessment of new parcels or recently altered parcels through spatial analyses and queries. Existing databases in the assessment process can do aspatial queries, but GIS is intended for doing spatial queries. For example, if an assessor wanted information on how a certain kind of property was assessed in the past, he/she could query to find all similar parcels with respect to designated characteristics and perhaps within certain geographic boundaries and then use statistics on the query to guide the assessment. Other layers of data could also be geographically referenced and assigned / attached to each parcel. So, for example, parcels could be selected based on the census characteristics

surrounding them. Of course, GIS can also be used for easy mapping and viewing of assessments, parcels and related data. There are many ways GIS would make the actual assessing more efficient and accurate. However, as this thesis has demonstrated, perhaps the most important role for GIS in the assessment process comes at the evaluation stages of the assessment cycle. GIS is most powerful when used as a mode for analysis rather than just data collection and storage.

The assessors do evaluate the assessments on a yearly basis. However, they do so completely aspatially. The techniques used in this thesis that identified many inequities could be easily implemented by the assessor's office for evaluation. Once the evaluation was over, precise adjustments could be made to the property tax structure that would alleviate inequity.

Currently, all assessment analyses and adjustments are done based on static neighborhood designations. Each parcel was manually assigned to a neighborhood and then, the neighborhood designations were entered into the database. A GIS would give the analyses much more flexibility. Instead of using discrete boundaries for readjustment, a *moving window* sometimes called a "neighborhood smoothing" techniques, could be passed over Lansing and each of an infinite number of windows (areas of a designated size) could be readjusted (Chrisman 1997, p.179).⁶ This technique would rid the assessment structure of

-

⁶ A moving window, or a moving average, can be thought of as a box or circle that is layed over each part of the study area, the average assessment ratio could be taken for each moving window and adjusted. Moving windows do away with discrete boundaries, moving window boundaries are also changing.

the boundary affects, seen to cause geographic inequity, caused by the assessor neighborhood boundaries.

Another way GIS could be used to readjust assessments to get rid of inequity is through surface analysis and functions. The assessment ratio surfaces could be smoothed by some function that would eliminate all major peaks and valleys. Then, the surface could be ungenerated to arrive at new assessments for each parcel. This process is only theoretical and would have to be adjusted for the particular software and resources of the implemented GIS. But, in doing these more detailed adjustments and analyses, GIS would be used to correct the inequities caused by the real estate market in addition to correct any remaining inequities overlooked by the assessment process.

Naturally, the implementation of any municipal GIS takes a lot of capital in the form of time, hardware, software and human resources. This would require an overhaul of the current assessment office structure and a large financial commitment from the city.

In addition, the implementation of a GIS and the methods used to assess and correct assessments that are described above, would require a paradigm shift on the part of the assessor's office, but more importantly, a paradigm shift for tax payers. Currently, taxpayers compare their assessments to other assessments on their block, or in their neighborhood. If the systems described above were implemented, taxpayers could do some querying of their own and compare their assessments to those of parcels with similar characteristics and circumstance as well as to the sale amounts of similar parcels.

The city of Lansing, must decide if the costs and changes involved with the implementation of a GIS are worth the increased precision and equity it would bring to the property tax structure.

APPENDICE

APPENDIX A

SEMIVARIANCE VALUES FOR 1994 DATA

Lag	Average	Average	Pairs
	Distance	Semi- variance	
1	56 A7		1220
	56.47		
2	152.05		
3		0.005716	4950
4	351.83		6279
5	450.51	0.005903	7426 8343
6 7		0.006078	
	650.21	0.006128	
8	750.15		
9	850.06		
10	951.16		
11	1050.21	0.006719	
12	1150.01	0.006902	
13		0.006721	12759
14			
15	1450.59	0.006741	
16			
17		0.006756	
18			
19	1849.82		
20	1949.71		
21	2050.45		
22	2150.45		
23			
24			18922
25			
26		0.006808	
27			
28			
29			21084
30			21719
31			22169
32			22479
33	3249.84	0.007023	22653

34	3349.92	0.007019	22658
35	3449.90	0.006952	23058
36	3549.86	0.006828	23510
37	3649.97	0.006729	23381
38	3750.26	0.006755	23545
39	3850.68	0.006629	23927
40	3949.70	0.006816	23522
41	4049.68	0.006762	23812
42	4150.37	0.006651	24122
43	4250.08	0.006669	23815
44	4349.81	0.006570	23462
45	4449.26	0.006376	23604
46	4550.05	0.006404	22558
47	4649.78	0.006480	22489
48	4749.68	0.006364	22140
49	4850.37	0.006141	21806
50	4949.98	0.006231	21408
51	5049.82	0.006407	20840
52	5149.93	0.006398	20367
53	5249.45	0.006463	19980
54	5349.83	0.006468	19619
55	5449.31	0.006434	19309
56	5549.85	0.006236	19060
57	5650.04	0.006328	19295
58	5750.02	0.006431	18795
59	5849.47	0.006386	18791
60	5950.35	0.006151	18149
61	6050.31	0.006220	17709
62	6149.53	0.005960	17478
63	6249.52	0.006034	17175
64	6349.89	0.006043	16854
65	6449.30	0.005967	16622
66	6549.89	0.005961	16113
67	6650.11	0.005882	15833
68	6750.25	0.005940	15664
69	6849.60	0.006079	15201

70	6949.47	0.005920	14641
71	7049.99	0.005932	13754
72	7149.96	0.005904	13416
73	7249.39	0.005922	12770
74	7349.83	0.005702	12161
75	7449.15	0.005841	11691
76	7549.35	0.005895	11185
77	7649.20	0.006158	10667
78	7748.91	0.006078	10380
79	7850.35	0.005989	9982
80	7949.46	0.006249	9903
81	8049.78	0.006131	9097
82	8149.97	0.006023	8754
83	8250.01	0.005945	8585
84	8349.09	0.005756	8151
85	8449.60	0.005879	7868
86	8549.78	0.006169	7739
87	8649.88	0.005875	7418
88	8749.21	0.006000	7234
89	8849.79	0.005861	7049
90	8949.76	0.006032	6739
91	9049.60	0.005734	6335
92	9149.38	0.005702	5699
93	9248.95	0.005798	5761
94	9349.63	0.005216	5121
95	9449.11	0.005492	4981
96	9550.18	0.005329	4796
97	9648.77	0.005414	4534
98	9749.55	0.005538	4320
99	9848.94	0.005110	4256
100	9950.26	0.005194	3996
101	10048.34	0.005116	3797
102	10150.61	0.005384	3422
103	10249.93	0.005288	3164
104	10350.27	0.005324	3008
105	10448.91	0.005183	2704
106	10547.90	0.005173	2548
107	10649.06	0.005049	2223
108	10748.07	0.005459	2047
109	10850.27	0.005654	1810
110	10948.05	0.005651	1589
111	11049.32	0.005207	1464
112	11149.84	0.006329	1257
113	11250.55	0.005646	1112
114	11348.42	0.005636	1020
		3.333330	

115 11448.23 0.006215 82 116 11548.29 0.006859 68 117 11648.98 0.006615 62 118 11745.48 0.007018 49 119 11849.32 0.006991 44 120 11947.85 0.004777 35 121 12045.70 0.003925 33 122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.005605 1 133 13242.74 0.006771
117 11648.98 0.006615 62 118 11745.48 0.007018 49 119 11849.32 0.006991 44 120 11947.85 0.004777 35 121 12045.70 0.003925 33 122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 73 127 12647.90 0.008361 50 128 12741.99 0.004452 30 129 12846.82 0.003445 30 130 12951.89 0.004222 20 131 13050.27 0.003254 13 132 13155.17 0.005605 13 133 13242.74 0.006771
118 11745.48 0.007018 49 119 11849.32 0.006991 44 120 11947.85 0.004777 35 121 12045.70 0.003925 33 122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
119 11849.32 0.006991 44 120 11947.85 0.004777 35 121 12045.70 0.003925 33 122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
120 11947.85 0.004777 35 121 12045.70 0.003925 33 122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
121 12045.70 0.003925 33 122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
122 12147.93 0.004127 32 123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
123 12245.27 0.006859 22 124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
124 12346.91 0.007897 16 125 12446.56 0.007906 12 126 12553.91 0.008281 73 127 12647.90 0.008361 50 128 12741.99 0.004452 30 129 12846.82 0.003445 30 130 12951.89 0.004222 20 131 13050.27 0.003254 10 132 13155.17 0.005605 10 133 13242.74 0.006771 10
125 12446.56 0.007906 12 126 12553.91 0.008281 7 127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
126 12553.91 0.008281 73 127 12647.90 0.008361 50 128 12741.99 0.004452 30 129 12846.82 0.003445 30 130 12951.89 0.004222 20 131 13050.27 0.003254 10 132 13155.17 0.005605 10 133 13242.74 0.006771 10
127 12647.90 0.008361 5 128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771 0
128 12741.99 0.004452 3 129 12846.82 0.003445 3 130 12951.89 0.004222 2 131 13050.27 0.003254 1 132 13155.17 0.005605 1 133 13242.74 0.006771
129 12846.82 0.003445 33 130 12951.89 0.004222 24 131 13050.27 0.003254 13 132 13155.17 0.005605 13 133 13242.74 0.006771 13
130 12951.89 0.004222 20 131 13050.27 0.003254 13 132 13155.17 0.005605 13 133 13242.74 0.006771
131 13050.27 0.003254 13 132 13155.17 0.005605 13 133 13242.74 0.006771
132 13155.17 0.005605 1 133 13242.74 0.006771
133 13242.74 0.006771
134 13337.97 0.001918
135 13442.00 0.009827

APPENDIX B

SEMIVARIANCE VALUES FOR 1995 DATA

Lag	Average		Pairs
	Distance		
		variance	
1	54.53	0.006720	1448
2	152.82	0.007180	3937
3		0.007225	5352
4	352.09	0.008031	6969
5		0.007672	8558
6		0.007734	9523
7	650.91	0.007810	
8		0.008037	11693
9		0.007709	12450
10	951.06	0.008318	13657
11	1049.98	0.008070	14307
12	1150.35	0.008202	15163
13		0.008321	15671
14	1350.54	0.008047	16215
15	1450.27	0.008350	17687
16	1550.28	0.007980	17875
17	1649.72	0.008020	19019
18	1750.09	0.008088	18967
19	1849.87	0.007961	19747
20	1950.38	0.008127	20461
21	2050.28	0.008213	20957
22	2150.81	0.008104	21343
23	2250.16	0.007950	21944
24	2349.97	0.008018	22695
25	2450.39	0.007996	24060
26	2549.95	0.007945	24643
27	2650.17	0.008173	25039
28	2750.58	0.008222	25815
29	2849.83	0.008279	26215
30	2950.07	0.008285	26792
31	3050.23	0.008308	26984
32		0.008084	27215
33		0.008226	27386
34		0.008295	27957
35		0.008208	28119
36		0.008289	27969

37	3650.14	0.008281	28251
38	3750.01	0.008361	28234
39	3850.04	0.008400	28335
40	3950.50	0.008513	28096
41	4049.81	0.008423	28208
42	4150.07	0.008277	27847
43	4249.94	0.008373	26700
44	4349.49	0.008049	26349
45	4449.57	0.008260	25695
46	4549.93	0.007974	25349
47	4649.49	0.008167	24849
48	4749.91	0.007834	24828
49	4850.22	0.007955	24262
50	4950.00	0.007994	23673
51	5049.80	0.007713	22775
52	5149.47	0.007813	22479
53	5249.60	0.007769	21925
54	5349.92	0.007981	21494
55	5449.54	0.007874	21325
56	5549.38	0.007551	21131
57	5649.75	0.007700	20987
58	5750.07	0.007660	20545
59	5850.05	0.007663	20628
60	5950.08	0.007686	19846
61	6049.87	0.007630	19285
62	6149.13	0.007317	19042
63	6249.25	0.007579	18513
64	6349.64	0.007542	18340
65	6449.73	0.007553	17526
66	6549.92	0.007368	16966
67	6650.17	0.007533	16300
68	6749.94	0.007377	15765
69	6849.47	0.007268	15454
70	6949.92	0.007408	14891
71	7049.20	0.007634	14501
72	7149.39	0.007554	13290
73	7249.85	0.007488	13313
74	7349.41	0.007378	12707
75	7450.28	0.007286	12100

76	7549.77	0.007254	11420
77	7649.61	0.007511	10892
78	7749.70	0.007399	10681
79	7849.61	0.007130	10261
80	7950.47	0.006738	10088
81	8049.44	0.006989	9477
82	8149.58	0.006963	9119
83	8249.68	0.007144	8922
84	8349.58	0.006889	8413
85	8449.93	0.006939	7906
86	8550.22	0.007101	7551
87	8649.81	0.006989	7341
88	8749.03	0.006678	7087
89	8848.19	0.006538	6512
90	8949.28	0.006659	6106
91	9049.68	0.006359	5739
92	9149.11	0.006512	5180
93	9248.78	0.006486	4842
94	9349.78	0.006346	4448
95	9448.76	0.006144	4239
96	9549.31	0.005799	3907
97	9648.32	0.006253	3649
98	9749.75	0.005754	3377
99	9848.91	0.005462	3195
100	9950.00	0.005631	2955
101		0.006035	2615
102	10150.56	0.005838	2441
103	10248.82	0.005736	2320
104	10349.07	0.005905	2107
105	10449.22	0.006020	1855
	10548.53		1769
	10649.00		1421
	10748.35		1176
	10847.76	0.006379	916
	10949.76	0.006747	842
	11049.79	0.006156	745
	11148.14	0.006394	611
	11248.08	0.006537	546
	11350.26	0.005803	523
	11449.17	0.006147	548
	11550.17	0.004476	445
	11646.84	0.004377	421
	11747.94	0.004723	406
	11847.75	0.002825	323
	11946.19	0.004965	229
	·		

121	12050.44	0.004517	201
122	12149.97	0.004981	170
123	12247.08	0.005347	122
124	12350.22	0.004692	144
125	12440.03	0.004298	97
126	12542.02	0.007232	58
127	12653.95	0.008262	24
128	12749.86	0.011914	24
129	12844.64	0.009285	22
130	12950.21	0.008062	11
131	13063.09	0.008229	11
132	13154.26	0.007866	11
133	13237.50	0.013333	1
134	13350.33	0.010594	9
135	13435.40	0.009782	2

APPENDIX C

SEMIVARIANCE VALUES FOR 1996 DATA

Lag	Average	Average	Pairs
	Distance	Semi-	
	F4 44	variance	1054
1	54.44	0.006535	
2	152.94		4922
3	252.45		7022
4	351.08		8773
5	451.18		
6		0.007407	11630
7	650.95		13097
8	750.92		
9	851.43	0.007352	
10	951.03	0.007521	15723
11	1050.07		
12	1150.63	0.007740	17841
13	1250.54	0.007638	18732
14	1350.51	0.007881	19235
15	1450.45	0.007971	20334
16	1550.13	0.007992	21418
17	1650.17	0.008019	22408
18	1750.27	0.008120	23069
19	1850.15	0.007894	23738
20	1950.58	0.008001	24824
21	2050.37	0.008124	25087
22	2150.61	0.008011	26295
23	2250.50	0.008245	26639
24	2350.11	0.008261	27115
25	2449.91	0.008076	28065
26	2550.64	0.008018	28608
27	2650.31	0.007946	29526
28			
29		0.008075	
30			
31	3049.96		32673
32			32618
33			
34			
35			
36		0.008177	33877

37	3649.85	0.008122	33713
38	3750.00	0.007990	33472
39	3849.77	0.007935	33785
40	3950.16	0.007780	33581
41	4050.03	0.007864	33972
42	4150.24	0.007921	33758
43	4250.25	0.007820	33762
44	4349.85	0.007868	33712
45	4449.65	0.007673	33266
46	4550.20	0.007792	33247
47	4649.86	0.007889	32836
48	4749.71	0.007918	31596
49	4849.80	0.007762	30982
50	4949.97	0.007945	30001
51	5049.40	0.007815	29319
52	5150.07	0.007731	28262
53	5250.09	0.007499	27984
54	5349.35	0.007564	27379
55	5449.55	0.007278	27094
56	5550.10	0.007420	27207
57	5649.98	0.007302	26516
58	5749.98	0.007434	25926
59	5850.15	0.007273	25443
60	5950.02	0.007281	25116
61	6049.57	0.007217	24434
62	6149.61	0.007171	23872
63	6249.81	0.007188	23266
64	6349.88	0.007286	22762
65	6449.88	0.007166	21785
66	6549.87	0.007106	21305
67	6650.18	0.006885	
68	6750.23	0.007182	20960
69	6850.15	0.007115	
70	6949.91	0.007216	19760
71	7049.66	0.007364	19073
72	7149.78	0.007328	18365
73	7249.61	0.007287	17827
74	7349.94	0.007283	16776
75	7449.76	0.007330	16169

76	7549.88	0.007391	15634
77	7650.20	0.007237	14941
78	7749.76	0.007242	15090
79	7849.84	0.007294	14316
80	7949.79	0.007282	13940
81	8049.62	0.007257	13579
82	8150.20	0.007579	12874
83	8249.65	0.007401	12626
84	8349.75	0.007477	12043
85	8449.01	0.007547	12086
86	8549.57	0.007447	11621
87	8649.59	0.007389	10953
88	8749.30	0.007322	10627
89	8849.29	0.007213	9673
90	8949.58	0.007324	9295
91	9049.32	0.006980	8685
92	9149.97	0.006961	7858
93	9249.02	0.006897	7517
94	9349.26	0.006789	7066
95	9449.67	0.006758	6407
96	9549.79	0.006454	6186
97	9649.65	0.006053	5851
98	9749.31	0.005862	5492
99	9849.00	0.005982	5142
100	9949.65	0.005823	4996
101	10049.58	0.005699	4727
102	10149.65	0.005981	4479
103	10249.45	0.005573	4181
104	10349.46	0.005422	3917
105	10448.77	0.005553	3616

106 10549.49 0.005368 32 107 10649.36 0.005480 28 108 10748.95 0.005423 25 109 10850.39 0.005581 22 110 10950.16 0.005678 18 111 11047.09 0.005246 16 112 11149.61 0.004583 16 113 11251.17 0.004306 13	51 59 01 62 82 00 79 39
108 10748.95 0.005423 25 109 10850.39 0.005581 22 110 10950.16 0.005678 18 111 11047.09 0.005246 16 112 11149.61 0.004583 16 113 11251.17 0.004306 13	59 01 62 82 00 79 39
109 10850.39 0.005581 226 110 10950.16 0.005678 186 111 11047.09 0.005246 166 112 11149.61 0.004583 166 113 11251.17 0.004306 13	01 62 82 00 79 39
110 10950.16 0.005678 186 111 11047.09 0.005246 166 112 11149.61 0.004583 166 113 11251.17 0.004306 133	52 32 79 39 60
111 11047.09 0.005246 16 112 11149.61 0.004583 16 113 11251.17 0.004306 13	32 79 39 60
112 11149.61 0.004583 16 113 11251.17 0.004306 13	00 79 39 60
113 11251.17 0.004306 13	79 39 60
	39 60
	60
114 11348.99 0.004245 12	
115 11448.14 0.004342 10	71
116 11547.46 0.004312 8	<u> </u>
117 11647.29 0.004207 8	<u> 37</u>
118 11747.94 0.003836 7	28
119 11848.96 0.004065 7	14
120 11949.03 0.003476 5	<u>54</u>
121 12050.33 0.004099 5)2
122 12149.52 0.003981 3	34
123 12247.75 0.004659 3	25
124 12351.49 0.003746 2	<u>30</u>
125 12445.10 0.004936 2	26
126 12547.81 0.004397 13	39
127 12646.64 0.006301	99
128 12748.35 0.004511	<u> 35</u>
129 12848.13 0.006767	29
	21
131 13048.78 0.002397	22
132 13134.73 0.004838	5
133 13248.78 0.001558	11
134 13354.52 0.000542	5

APPENDIX D

SEMIVARIANCE VALUES FOR 1997 DATA

Lag	Average	Average	Pairs
	Distance	Semi-	
1	FG 70	variance	1610
1	56.78	0.006328	1618
2	153.66	0.006311	4037
3	252.69	0.006400	5958
4	351.89	0.006377	7436
5	450.71	0.006604	
6	551.17	0.006858	10112
7	651.21	0.006717	11253
8	750.45	0.007156	12300
9	850.55	0.007403	
10		0.006912	14006
11	1050.23		14839
12	1150.15	0.007418	
13			15745
14		0.007062	16698
15			17343
16	1550.40	0.007240	18019
17	1650.73	0.007348	19048
18	1750.69	0.007252	19251
19	1850.23	0.007167	20168
20	1950.19	0.007102	20998
21	2050.54	0.007235	21168
22	2150.23	0.007184	21744
23	2250.20	0.007153	22338
24	2350.11	0.007261	23036
25	2449.94	0.007446	23782
26	2550.50	0.007418	24641
27		0.007608	25623
28	2750.03	0.007646	26177
29	2850.01	0.007727	26566
30	2950.07	0.007838	27529
31	3050.41	0.007725	27380
32		0.007765	27941
33			28701
34			28922
35			29258
36			29546

37 3649.85 0.007674 29495 38 3749.68 0.007618 29737 39 3849.83 0.007712 29441 40 3950.26 0.007459 29704 41 4050.11 0.007658 29197 43 4249.67 0.007454 29513 44 4349.56 0.007454 29513 44 4349.56 0.007456 28186 46 4550.05 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007040 21869 57 5649.97 0.006898 20415				
39 3849.83 0.007712 29441 40 3950.26 0.007459 29704 41 4050.11 0.007388 29713 42 4150.15 0.007658 29197 43 4249.67 0.007454 29513 44 4349.56 0.007456 28186 45 4449.96 0.007456 28186 46 4550.05 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007071 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	37	3649.85	0.007674	29495
40 3950.26 0.007459 29704 41 4050.11 0.007388 29713 42 4150.15 0.007658 29197 43 4249.67 0.007454 29513 44 4349.56 0.007456 28186 45 4449.96 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006841 19288	38	3749.68	0.007618	29737
41 4050.11 0.007388 29713 42 4150.15 0.007658 29197 43 4249.67 0.007454 29513 44 4349.56 0.007441 28845 45 4449.96 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006841 19500	39	3849.83	0.007712	29441
42 4150.15 0.007658 29197 43 4249.67 0.007454 29513 44 4349.56 0.007441 28845 45 4449.96 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007182 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006844 18949 62 61	40	3950.26	0.007459	29704
43 4249.67 0.007454 29513 44 4349.56 0.007441 28845 45 4449.96 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006824 19500 62 6149.33 0.006718 19288	41	4050.11	0.007388	29713
44 4349.56 0.007441 28845 45 4449.96 0.007456 28186 46 4550.05 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288	42	4150.15	0.007658	29197
45 4449.96 0.007456 28186 46 4550.05 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006790 18743 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	43	4249.67	0.007454	29513
46 4550.05 0.007376 27737 47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006898 20415 59 5850.07 0.006898 20415 59 5850.07 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743	44	4349.56	0.007441	28845
47 4649.71 0.007450 26796 48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006898 20415 59 5850.07 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006876 17837 66 6549.97 0.007079 17552 67 66	45	4449.96	0.007456	28186
48 4749.82 0.007359 26535 49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006848 20379 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 67	46	4550.05	0.007376	27737
49 4849.86 0.007287 26091 50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006841 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 67	47	4649.71	0.007450	26796
50 4949.52 0.007128 25121 51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006848 20379 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286	48	4749.82	0.007359	26535
51 5049.87 0.007182 24064 52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006824 19500 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007304 16257	49	4849.86	0.007287	26091
52 5149.60 0.007200 23623 53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006848 20379 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007304 16257 70 6949.51 0.007153 14933	50	4949.52	0.007128	25121
53 5249.36 0.007199 22939 54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007153 14933	51	5049.87	0.007182	24064
54 5349.73 0.007061 22530 55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007153 14933 72 7149.89 0.007208 14247	52	5149.60	0.007200	23623
55 5449.86 0.007233 22223 56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007074 13994	53	5249.36	0.007199	22939
56 5549.62 0.007040 21869 57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007309 13340	54	5349.73	0.007061	22530
57 5649.97 0.006997 21363 58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	55	5449.86	0.007233	22223
58 5749.95 0.006898 20415 59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	56	5549.62	0.007040	21869
59 5850.07 0.006848 20379 60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	57	5649.97	0.006997	21363
60 5950.00 0.006881 20039 61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	58	5749.95	0.006898	20415
61 6049.81 0.006824 19500 62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	59	5850.07	0.006848	20379
62 6149.33 0.006718 19288 63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	60	5950.00	0.006881	20039
63 6249.44 0.006644 18949 64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	61	6049.81	0.006824	19500
64 6349.67 0.006790 18743 65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	62	6149.33	0.006718	19288
65 6449.75 0.006876 17837 66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	63	6249.44	0.006644	18949
66 6549.97 0.007079 17552 67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	64	6349.67	0.006790	18743
67 6650.36 0.007115 17286 68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	65	6449.75	0.006876	17837
68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340				17552
68 6750.00 0.007021 16435 69 6849.52 0.007304 16257 70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	67	6650.36	0.007115	17286
70 6949.51 0.007172 15472 71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340		6750.00	0.007021	
71 7049.88 0.007153 14933 72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	69	6849.52	0.007304	16257
72 7149.89 0.007208 14247 73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	70	6949.51	0.007172	15472
73 7250.37 0.007074 13994 74 7349.67 0.007309 13340	-	7049.88	0.007153	14933
74 7349.67 0.007309 13340		7149.89	0.007208	14247
	73	7250.37	0.007074	
75 7449.46 0.007334 12929				
	75	7449.46	0.007334	12929

76	7550.02	0.007409	12353
77	7649.46	0.007248	11673
78	7749.41	0.007562	11333
79	7849.70	0.007557	10759
80	7949.40	0.007619	10228
81	8049.98	0.007603	10302
82	8149.97	0.007775	9649
83	8249.75	0.007606	9137
84	8348.72	0.007638	8655
85	8449.67	0.007535	8145
86	8549.54	0.007578	7883
87	8649.96	0.007228	7408
88	8750.27	0.007617	7099
89	8848.83	0.007502	6692
90	8949.23	0.007429	6569
91	9050.08	0.007520	6176
92	9149.84	0.007379	5831
93	9248.44	0.007278	5502
94	9349.64	0.007321	5384
95	9450.14	0.007018	4831
96	9549.08	0.007220	4570
97	9649.97	0.007074	4304
98	9748.78	0.006904	3926
99	9849.26	0.006979	3634
100	9949.57	0.006970	3513
101	10048.82	0.007417	3324
102	10150.38	0.007518	3009
103	10249.55	0.007625	2826
104	10348.36	0.007895	2562
105	10448.67	0.007867	2421

106	10549.97	0.007946	2114
107	10647.60	0.008052	1882
108	10748.00	0.008855	1641
109	10848.03	0.008174	1337
110	10949.46	0.009410	1150
111	11049.32	0.007976	1035
112	11146.86	0.007687	797
113	11247.30	0.009068	758
114	11350.77	0.007822	627
115	11450.52	0.007603	456
116	11549.25	0.005356	435
117	11647.69	0.004955	367
118	11747.92	0.004636	331
119	11849.54	0.004133	345
120	11949.63	0.006301	271
121	12045.86	0.004441	221
122	12150.83	0.006205	211
123	12251.67	0.006325	171
124	12345.10	0.004614	146
125	12444.26	0.005256	120
126	12545.93	0.007896	66
127	12652.70	0.008590	51
128	12739.81	0.008297	44
129	12855.38	0.008221	30
130	12943.35	0.007202	44
131	13056.74	0.009809	33
132	13161.80	0.008219	26
133	13224.42	0.008363	21
134	13325.71	0.005460	10
135	13463.19	0.003678	8

APPENDIX E

SEMIVARIANCE VALUES FOR 1998 DATA

Lag	Average		Pairs
	Distance		
		variance	
1	50.80	0.013221	43
2	152.47	0.006199	161
3	252.08	0.005455	172
4	349.56	0.007545	246
5	450.45	0.008892	
6	551.71	0.008131	292
7	650.74	0.008526	319
8	747.79	0.008144	361
9	851.83	0.008473	365
10	949.46	0.007761	383
11	1051.24	0.008459	436
12	1149.71	0.006826	504
13	1250.10	0.007885	506
14	1352.80	0.008997	511
15	1451.31	0.009171	555
16	1551.82	0.008871	591
17	1649.62	0.008586	617
18	1749.74	0.008700	657
19	1849.30	0.008571	650
20	1949.94	0.007994	699
21	2050.44	0.007979	648
22	2149.52	0.008910	681
23	2250.20	0.007721	658
24	2347.38	0.008048	700
25	2450.57	0.008523	699
26	2548.89	0.008242	748
27	2651.64	0.007990	810
28		0.007504	792
29	2850.32	0.007847	844
30	2949.90	0.008635	962
31	3049.95	0.008060	950
32		0.008230	934
33		0.008342	941
34		0.007991	935
35		0.008225	879
36	3548.23	0.007806	946

38 3749.54 0.008026 9 39 3850.00 0.007809 9 40 3949.91 0.007071 9	909 907 914 919 381 925
39 3850.00 0.007809 9 40 3949.91 0.007071 9	914 919 881
40 3949.91 0.007071 9	919 381
	381
41 4050.43 0.007348 8	
	つつに
	370
44 4348.86 0.008353 8	341
	806
46 4549.16 0.006663 9	901
47 4650.07 0.007812 8	399
48 4750.60 0.007527 8	320
49 4850.08 0.007500 7	708
50 4951.26 0.007326 7	737
51 5050.37 0.007310 7	700
52 5150.44 0.007563	397
53 5249.11 0.007275	390
54 5348.73 0.007434	346
55 5449.42 0.006877	329
56 5551.31 0.006450	84
57 5649.73 0.006135 7	702
58 5749.31 0.007159	667
59 5849.05 0.007596	357
60 5951.62 0.006549	316
61 6048.85 0.006125 5	572
62 6150.42 0.006905 5	587
63 6249.52 0.006740 5	588
64 6348.97 0.007625 5	581
65 6453.25 0.006649 5	517
66 6547.94 0.007600 5	574
	557
	525
	184
	179
	134
	111
	125
	351
	383

76	7550.21	0.007290	381
77	7648.32	0.006547	368
78	7749.53	0.006757	350
79	7848.86	0.006592	375
80	7949.50	0.006678	323
81	8050.90	0.006587	280
82	8148.48	0.006317	283
83	8247.92	0.008611	287
84	8347.80	0.006757	264
85	8445.55	0.006695	279
86	8546.27	0.006718	280
87	8648.73	0.006746	235
88	8749.81	0.006364	220
89	8846.47	0.006890	225
90	8949.99	0.005789	224
91	9051.14	0.006684	194
92	9149.06	0.007211	169
93	9244.44	0.006591	171
94	9344.17	0.005203	175
95	9452.39	0.004765	164
96	9551.44	0.005680	164
97	9652.24	0.005407	146
98	9744.00	0.006899	126
99	9848.24	0.007435	97
100	9945.92	0.005724	108
101	10052.65	0.006407	99
102	10150.69	0.006143	112
103	10255.53	0.006449	87
104	10352.05	0.005087	92
105	10443.64	0.006996	78
106	10543.66	0.006019	52
107	10648.42	0.006013	46
108	10748.07	0.009880	43
109	10840.73	0.007471	44
110	10950.47	0.007570	35
	11052.07	0.004531	32
112	11155.73	0.003609	24
	11251.51	0.003947	14
	11345.14	0.005832	22
	11458.77	0.002577	15
116	11551.40	0.003613	19
117	11646.84	0.005005	29
118	11736.57	0.008245	15
119	11835.58	0.004289	22
120	11953.33	0.002439	18

121	12050.47	0.004813	14
122	12150.82	0.002949	9
123	12259.14	0.002537	13
124	12349.18	0.000990	6
125			0
126	12550.86	0.004926	6
127	12683.99	0.009524	4
128	12784.15	0.008910	2
129	12838.04	0.004494	2
130	12964.58	0.002484	2

APPENDIX F

1994 MORAN'S I

Lag	Moran's I		E(I)	SD	s.e.	Z	Hypothesis
		(n)				score	Test
1	0.100755	1338	-7.5E-04	+	0.027328186		Reject Null
2	0.026976	3402	-2.9E-04	0.99985	0.017142304		No Reject
3	0.041947	4950	-2.0E-04	0.99990	0.014211948		Reject Null
4	0.050301	6279	-1.6E-04	0.99992	0.012618863		Reject Null
5	0.005232	7426	-1.3E-04	0.99993	0.011603615		No Reject
6	0.009738	8343	-1.2E-04	0.99994	0.010947448	0.9005	No Reject
7	0.012273	9044	-1.1E-04	0.99994	0.010514672	1.1777	No Reject
8	0.022854	9800	-1.0E-04	0.99995	0.010101011	2.2726	Reject Null
9	0.008704	10302	-9.7E-05	0.99995	0.009851859	0.8933	No Reject
10	-0.019313	11435	-8.7E-05	0.99996	0.009351105	-2.0560	Reject Null
11	0.002029	12036	-8.3E-05	0.99996	0.009114669	0.2317	No Reject
12	-0.013916	12317	-8.1E-05	0.99996	0.009010106	-1.5355	No Reject
13	0.000597	12759	-7.8E-05	0.99996	0.008852678	0.0763	No Reject
14	-0.038004	13070	-7.7E-05	0.99996	0.008746728	-4.3362	Reject Null
15	-0.01178	14159	-7.1E-05	0.99996	0.008403658	-1.3934	No Reject
16	-0.015119	14668	-6.8E-05	0.99997	0.008256572	-1.8229	Reject Null
17	-0.018865	15168	-6.6E-05	0.99997	0.008119355	-2.3153	Reject Null
18	0.005242	15732	-6.4E-05	0.99997	0.007972495	0.6655	No Reject
19	0.001576	16405	-6.1E-05	0.99997	0.00780726	0.2097	No Reject
20	0.0063	17100	-5.8E-05	0.99997	0.007646968	0.8315	No Reject
21	0.009782	17582	-5.7E-05	0.99997	0.007541427	1.3046	No Reject
22	0.006472	18084	-5.5E-05	0.99997	0.007436023	0.8778	No Reject
23	0.014225	18233	-5.5E-05	0.99997	0.007405579	1.9283	Reject Null
24	0.006411	18922	-5.3E-05	0.99997	0.007269508	0.8892	No Reject
25	-0.011295	19225	-5.2E-05	0.99997	0.007211997	-1.5589	No Reject
26	-0.004429	19827	-5.0E-05	0.99997	0.007101671	-0.6166	No Reject
27	0.007234	20429	-4.9E-05	0.99998	0.006996258	1.0410	No Reject
28	0.004306	20649	-4.8E-05	0.99998	0.00695889	0.6257	No Reject
29	-0.011919	21084	-4.7E-05	0.99998	0.006886732	-1.7238	Reject Null
30	0.001057	21719	-4.6E-05	0.99998	0.006785316	0.1626	No Reject
31	-0.001484	22169	-4.5E-05	0.99998	0.0067161	-0.2142	No Reject
	-0.009303	+	-4.4E-05	+	0.006669632	-1.3882	No Reject
33	-0.007449	22653	-4.4E-05	+	0.006643968		
34	-0.009463	22658	-4.4E-05		0.006643235		
35	-0.005407	23058	-4.3E-05	0.99998	0.006585364	-0.8145	No Reject
36	-0.003466	23510	-4.3E-05	0.99998	0.006521755	-0.5249	No Reject

37	-0.00793	23381	-4.3E-05	0.99998	0.00653972	-1 2060	No Reject
38		23545	-4.2E-05	0.99998			
	0.00208	23927	-4.2E-05	0.99998			
	-0.014816		-4.2E-05	0.99998			
	-0.001922	23522 23812	-4.2E-05	0.99998			
$\overline{}$	-0.001922		-4.1E-05	0.99998			
	-0.003394	24122 23815	-4.1E-05	0.99998	0.00647986		
43	0.006025	23462	-4.3E-05	0.99998			No Reject
45		23604	-4.2E-05	0.99998			No Reject
46	0.000332	22558	-4.4E-05	0.99998			No Reject
		22489	-4.4E-05		0.006668149		
48	0.009513	22140	-4.5E-05	+	0.006720497		No Reject
49	0.017861	21806	-4.6E-05		0.006771768		Reject Null
50	0.01097	21408	-4.7E-05	+	0.006834422		No Reject
	-0.000968	20840	-4.8E-05	+	0.006926929		
52	0.002387	20367	-4.9E-05		0.007006898		No Reject
53		19980	-5.0E-05	0.99997			No Reject
	-0.000254	19619	-5.1E-05	0.99997			
$\overline{}$	-0.010476	19309	-5.2E-05	0.99997			
——	-0.006111	19060	-5.2E-05	0.99997			
-	-0.009011	19295	-5.2E-05	0.99997	0.007198904		
58		18795	-5.3E-05	0.99997			
	-0.024516	18791	-5.3E-05	0.99997			
60		18149	-5.5E-05	0.99997	·		No Reject
	-0.006278	17709	-5.6E-05	0.99997	0.007514338	-0.8280	No Reject
62		17478	-5.7E-05	0.99997	0.007563829		No Reject
1 02	0.002552	11710			0.007 300023	0.0 100	
	-0.000045	17175	-5.8E-05	0.99997	0.007630254		No Reject
				 		0.0017	
63	-0.000045	17175	-5.8E-05	0.99997	0.007630254 0.00770257	0.0017 0.4341	No Reject
63 64 65	-0.000045 0.003284	17175 16854	-5.8E-05 -5.9E-05	0.99997 0.99997 0.99997	0.007630254 0.00770257 0.007756134	0.0017 0.4341 0.7259	No Reject No Reject No Reject
63 64 65 66	-0.000045 0.003284 0.00557	17175 16854 16622	-5.8E-05 -5.9E-05 -6.0E-05	0.99997 0.99997 0.99997	0.007630254 0.00770257 0.007756134 0.00787768	0.0017 0.4341 0.7259 1.1963	No Reject No Reject No Reject
63 64 65 66 67	-0.000045 0.003284 0.00557 0.009362	17175 16854 16622 16113	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05	0.99997 0.99997 0.99997 0.99997	0.007630254 0.00770257 0.007756134 0.00787768	0.0017 0.4341 0.7259 1.1963 3.5723	No Reject No Reject No Reject No Reject Reject Null
63 64 65 66 67 68	-0.000045 0.003284 0.00557 0.009362 0.028326	17175 16854 16622 16113 15833	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835	17175 16854 16622 16113 15833 15664	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject No Reject
63 64 65 66 67 68 69 70	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831	17175 16854 16622 16113 15833 15664 15201 14641 13754	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject No Reject No Reject
63 64 65 66 67 68 69 70 71	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject No Reject No Reject No Reject
63 64 65 66 67 68 69 70 71 72 73	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05 -7.8E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.008848865	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject No Reject No Reject No Reject No Reject
63 64 65 66 67 68 69 70 71 72 73	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05 -7.8E-05 -8.2E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.008848865 0.009067708	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69 70 71 72 73 74 75	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478 -0.011205	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161 11691	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05 -7.8E-05 -8.2E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.008848865 0.009067708 0.009248166	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745 -1.2023	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69 70 71 72 73 74 75	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478 -0.011205 -0.008081	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161 11691 11185	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05 -7.8E-05 -8.2E-05 -8.6E-05 -8.9E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.00863321 0.008848865 0.009067708 0.009248166 0.009455023	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745 -1.2023 -0.8452	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69 70 71 72 73 74 75 76	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478 -0.011205 -0.008081 -0.010528	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161 11691 11185 10667	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05 -7.8E-05 -8.2E-05 -8.9E-05 -9.4E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.008848865 0.009067708 0.009248166 0.009455023 0.009681854	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745 -1.2023 -0.8452 -1.0777	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478 -0.011205 -0.008081 -0.010528 -0.001537	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161 11691 11185 10667 10380	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.8E-05 -8.2E-05 -8.6E-05 -8.9E-05 -9.4E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.00863321 0.009067708 0.009248166 0.009455023 0.009681854 0.009814777	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745 -1.2023 -0.8452 -1.0777 -0.1468	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478 -0.011205 -0.008081 -0.010528 -0.001328	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161 11691 11185 10667 10380 9982	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.5E-05 -8.2E-05 -8.2E-05 -8.9E-05 -9.4E-05 -9.6E-05 -1.0E-04	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99995 0.99995	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.008848865 0.009067708 0.009248166 0.009455023 0.009681854 0.009814777 0.010008511	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745 -1.2023 -0.8452 -1.0777 -0.1468 0.1427	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	-0.000045 0.003284 0.00557 0.009362 0.028326 0.014835 -0.012028 0.006397 0.002831 -0.006685 -0.00431 -0.003478 -0.011205 -0.008081 -0.010528 -0.001537	17175 16854 16622 16113 15833 15664 15201 14641 13754 13416 12770 12161 11691 11185 10667 10380	-5.8E-05 -5.9E-05 -6.0E-05 -6.2E-05 -6.3E-05 -6.4E-05 -6.6E-05 -6.8E-05 -7.3E-05 -7.8E-05 -8.2E-05 -8.6E-05 -8.9E-05 -9.4E-05	0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99996 0.99996 0.99996 0.99996 0.99996 0.99995 0.99995 0.99995	0.007630254 0.00770257 0.007756134 0.00787768 0.007947027 0.00798978 0.008110538 0.008264181 0.008526479 0.00863321 0.00863321 0.009067708 0.009248166 0.009455023 0.009681854 0.009814777	0.0017 0.4341 0.7259 1.1963 3.5723 1.8647 -1.4749 0.7823 0.3406 -0.7657 -0.4782 -0.3745 -1.2023 -0.8452 -1.0777 -0.1468 0.1427 -1.3486	No Reject No Reject No Reject No Reject Reject Null Reject Null No Reject

82	0.003357	8754	-1.1E-04	0.99994	0.010687397	0.3248	No Reject
83	-0.000399	8585	-1.2E-04	0.99994	0.010792066	-0.0262	No Reject
84	0.017771	8151	-1.2E-04	0.99994	0.011075617	1.6156	No Reject
85	0.00427	7868	-1.3E-04	0.99994	0.01127302	0.3901	No Reject
86	0.004513	7739	-1.3E-04	0.99994	0.011366573	0.4084	No Reject
87	0.003986	7418	-1.3E-04	0.99993	0.01160987	0.3549	No Reject
88	0.011322	7234	-1.4E-04	0.99993	0.011756574	0.9748	No Reject
89	0.014655	7049	-1.4E-04	0.99993	0.011909828	1.2424	No Reject
90	0.006564	6739	-1.5E-04	0.99993	0.01218064	0.5511	No Reject
91	0.005793	6335	-1.6E-04	0.99992	0.012562974	0.4737	No Reject
92	0.008206	5699	-1.8E-04	0.99991	0.013245325	0.6328	No Reject
93	-0.008069	5761	-1.7E-04	0.99991	0.013173872	-0.5993	No Reject
94	0.027661	5121	-2.0E-04	0.99990	0.013972698	1.9936	Reject Null
95	0.007953	4981	-2.0E-04	0.99990	0.014167663	0.5755	No Reject
96	0.007189	4796	-2.1E-04	0.99990	0.014438272	0.5124	No Reject
97	-0.020655	4534	-2.2E-04	0.99989	0.014849487	-1.3761	No Reject
98	-0.019239	4320	-2.3E-04	0.99988	0.015212759	-1.2494	No Reject
99	0.008908	4256	-2.4E-04	0.99988	0.015326687	0.5965	No Reject
100	0.015055	3996	-2.5E-04	0.99988	0.015817325	0.9676	No Reject
101	0.003635	3797	-2.6E-04	0.99987	0.016226418	0.2403	No Reject
102	-0.020801	3422	-2.9E-04	0.99985	0.017092151	-1.1999	No Reject
103	-0.009434	3164	-3.2E-04	0.99984	0.017775153	-0.5130	No Reject
104	-0.022557	3008	-3.3E-04	0.99983	0.018230103	-1.2191	No Reject
105	-0.004237	2704	-3.7E-04	0.99982	0.019227226	-0.2011	No Reject
106	0.003536	2548	-3.9E-04	0.99980	0.019806849	0.1983	No Reject
107	0.018668	2223	-4.5E-04	0.99978	0.021204743	0.9016	No Reject
108	-0.007999	2047	-4.9E-04	0.99976	0.022097111	-0.3399	No Reject
109	-0.011169	1810	-5.5E-04	0.99973	0.023498567	-0.4518	No Reject
110	-0.012357	1589	-6.3E-04	0.99969	0.025078538	-0.4676	No Reject
111	0.00247	1464	-6.8E-04		0.026126552		
112	-0.064208	1257	-8.0E-04	0.99961	0.028194274	-2.2491	Reject Null
113	0.019601	1112	-9.0E-04	0.99955	0.029974642	0.6839	No Reject
114	0.032819	1020	-9.8E-04	0.99951	0.031296013	1.0800	No Reject
115	-0.012843	820	-1.2E-03		0.034900474		
116	-0.074235	686	-1.5E-03	0.99928	0.038152745	-1.9075	Reject Null
117	-0.012073	621	-1.6E-03	0.99921	0.040096816	-0.2609	No Reject
118	-0.003	492	-2.0E-03	0.99900	0.045038574	-0.0214	No Reject
119	-0.142692	445	-2.3E-03	0.99890	0.047352451	-2.9658	Reject Null
120	-0.025001	351	-2.9E-03	0.99862	0.053302131	-0.4154	No Reject
121	0.104749	336	-3.0E-03	0.99856	0.054475649	1.9777	Reject Null
122	0.080309	323	-3.1E-03	0.99850	0.055557959	1.5014	No Reject
123	-0.183431	227	-4.4E-03	0.99789	0.066232427	-2.7027	Reject Null
124	-0.121673	160	-6.3E-03	0.99707	0.07882498	-1.4638	No Reject
125	0.07798	121	-8.3E-03	0.99620	0.0905638	0.9531	No Reject
126	-0.093424	73	-1.4E-02	0.99407	0.116347123	-0.6836	No Reject

127	0.122192	50	-2.0E-02	0.99196	0.140284967	1.0165 No	o Reject
128	-0.017457	36	-2.9E-02	0.98991	0.164985082	0.0674 No	o Reject
129	0.084539	32	-3.2E-02	0.98919	0.17486554	0.6679 No	Reject
130	-0.115275	26	-4.0E-02	0.98808	0.193777856	-0.3885 No	Reject
131	0.106116	18	-5.9E-02	0.98754	0.232765046	0.7086 No	o Reject
132	-0.000362	15	-7.1E-02	0.98878	0.255300943	0.2784 No	Reject
133	-0.067886	6	-2.0E-01	1.05560	0.430945804	0.3066 No	o Reject
134	0.326682	3	-5.0E-01	1.36931	0.790569415	1.0457 No	Reject
135	-0.277577	2	-1.0E+00	1.91485	1.354006401	0.5335 No	Reject

APPENDIX G

Lag	Moran's	pairs (n)	E(I)	SD	s.e.	Z score	Hypothesis Test
1	0.065807	1448	-6.9E-04	0.9997	0.02627	2.531	Reject Null
2	0.041966	3937	-2.5E-04	0.9999	0.015935		Reject Null
3	0.046781	5352	-1.9E-04	0.9999	0.013668	3.436	Reject Null
	-0.00632		-1.4E-04	0.9999	0.011978		No Reject
5	0.003711				0.010809		No Reject
6	0.007416	9523	-1.1E-04	0.9999	0.010247	0.734	No Reject
7	-0.00472				0.009719		No Reject
8		11693	-8.6E-05	1.0000	0.009247		No Reject
9	0.00226	12450	-8.0E-05	1.0000	0.008962		No Reject
10	-0.01156	13657	-7.3E-05	1.0000	0.008557		No Reject
11	-0.01187	14307	-7.0E-05	1.0000	0.00836	-1.411	No Reject
12					0.008121		No Reject
13	-0.01746	15671	-6.4E-05	1.0000	0.007988		Reject Null
14	-0.00505	16215	-6.2E-05	1.0000	0.007853		No Reject
	-0.01051						No Reject
	0.011078						No Reject
17	0.010225						No Reject
18	-0.0031	18967	-5.3E-05	1.0000	0.007261	-0.420	No Reject
19	0.001367	19747	-5.1E-05	1.0000	0.007116		No Reject
20	0.011271				0.006991		No Reject
21	-0.00211	20957	-4.8E-05	1.0000	0.006908	-0.298	No Reject
22	0.000956	21343	-4.7E-05	1.0000	0.006845		No Reject
23			-4.6E-05	1.0000	0.00675		No Reject
24	-0.00213	22695	-4.4E-05	1.0000	0.006638		No Reject
25	0.00421	24060	-4.2E-05	1.0000	0.006447		No Reject
26					0.00637		No Reject
27	-0.00711	25039	-4.0E-05	1.0000	0.00632		No Reject
28					0.006224		No Reject
29					0.006176		No Reject
	0.002041						No Reject
	-0.00551						No Reject
	0.003483						No Reject
	0.00045						No Reject
	0.004205						No Reject
	-0.00434						No Reject
36	-0.01186	27969	-3.6E-05	1.0000	0.005979	-1.977	Reject Null

37	0.00882	28251 -3.5E-05	1.0000	0.005949	1.488	No Reject
38						No Reject
		28335 -3.5E-05				Reject Null
		28096 -3.6E-05				No Reject
41	-0.00151	28208 -3.5E-05				No Reject
42	0.005184					No Reject
43	-0.0073	26700 -3.7E-05	1.0000	0.00612		No Reject
44	-0.00508	26349 -3.8E-05	1.0000	0.00616	-0.818	No Reject
45	-0.00245	25695 -3.9E-05	1.0000	0.006238	-0.386	No Reject
46	0.004651	25349 -3.9E-05	1.0000	0.006281	0.747	No Reject
47	-0.01347	24849 -4.0E-05	1.0000	0.006344	-2.117	Reject Null
48	0.002747	24828 -4.0E-05	1.0000	0.006346	0.439	No Reject
49	0.00037	24262 -4.1E-05	1.0000	0.00642		No Reject
50	0.014049	23673 -4.2E-05				Reject Null
	0.013965		1.0000	0.006626		Reject Null
52	0.002025	22479 -4.4E-05	1.0000	0.00667		No Reject
53	0.005229	21925 -4.6E-05	1.0000	0.006753		No Reject
54		21494 -4.7E-05				No Reject
55	 	21325 -4.7E-05				No Reject
56						No Reject
57	-0.00044					No Reject
58	h					Reject Null
59		20628 -4.8E-05				No Reject
		19846 -5.0E-05				No Reject
61	-0.00386	19285 -5.2E-05				No Reject
62		19042 -5.3E-05				No Reject
63						No Reject
64	0.00341					No Reject
65		17526 -5.7E-05				No Reject
	0.000761	16966 -5.9E-05				No Reject
		16300 -6.1E-05				No Reject
	+	15765 -6.3E-05				Reject Null
		15454 -6.5E-05				No Reject
		14891 -6.7E-05				Reject Null
71		14501 -6.9E-05				No Reject
		13290 -7.5E-05				No Reject
	 	13313 -7.5E-05				No Reject
	-0.00961					No Reject
	-0.00114					No Reject
	-0.00283					No Reject
	-0.00559					No Reject
	-0.00225					No Reject No Reject
	0.000754					No Reject
$\overline{}$	0.008261	9477 -1.1E-04				No Reject
<u>81</u>	-0.00369	94// -1.1E-U4	0.3339	0.010272	-0.349	INO DEJECT

92	0.012732	9119 -1.1E-04	0000	0.010471	1 226	No Reject
	-0.01212					No Reject
	-0.00459					No Reject
	0.002212					No Reject
	-0.00414					No Reject
87						
						No Reject
——	-0.01398					No Reject
	-0.00172					No Reject
90		6106 -1.6E-04				No Reject
91		5739 -1.7E-04				No Reject
	-0.01822					No Reject
	-0.02537					Reject Null
	-0.00518					No Reject
	0.000583					No Reject
	0.006334	3907 -2.6E-04				No Reject
	-0.01572					No Reject
	0.005103					No Reject
	0.029529					Reject Null
	0.000247					No Reject
	-0.01231	2615 -3.8E-04				No Reject
	-0.00117					No Reject
	-0.00188					No Reject
	-0.00106					No Reject
	-0.01923					No Reject
	0.028018					No Reject
	-0.00173					No Reject
	0.006468					No Reject
	-0.02159					No Reject
	0.021869					No Reject
111						No Reject
	-0.00765					No Reject
	-0.03677					No Reject
	-0.02401					No Reject
	-0.06356					No Reject
	-0.00715					No Reject
	0.017908					No Reject
	0.045792					No Reject
	0.063189	323 -3.1E-03				No Reject
	-0.00833					No Reject
	-0.00243					No Reject
	0.027186					No Reject
123						No Reject
	0.053125					No Reject
	0.031776					No Reject
126	-0.01406	58 -1.8E-02	0.9928	0.130366	0.027	No Reject

127	0.031879	24	-4.3E-02	0.9878	0.201624	0.374	No Reject
128	-0.13606	24	-4.3E-02	0.9878	0.201624	-0.459	No Reject
129	0.243041	22	-4.8E-02	0.9875	0.210536	1.381	No Reject
130	0.072382	11	-1.0E-01	0.9958	0.300252	0.574	No Reject
131	0.176853	11	-1.0E-01	0.9958	0.300252	0.922	No Reject
132	0.224948	11	-1.0E-01	0.9958	0.300252	1.082	No Reject
133	-0.71575	1	#DIV/0!	#DIV/0	#DIV/0!	#DIV/0!	No Reject
134	0.0483	9	-1.3E-01	1.0062	0.33541	0.517	No Reject
135	-0.13056	2	-	1.9149	1.354006	0.642	No Reject
			1.0E+00				

APPENDIX H

Lag	Moran's I	Pairs (n)	E(I)	SD	s.e.	Z score	Hypothesis Test
1	0.092965	1954	-5.1E-04	0.9997	0.022617	4.133	Reject Null
2	0.061403	4922	-2.0E-04	0.9999	0.014252	4.323	Reject Null
3	0.03803	7022	-1.4E-04	0.9999	0.011933	3.199	Reject Null
4	0.005044	8773	-1.1E-04	0.9999	0.010676	0.483	No Reject
5	-0.00925			1.0000	0.009805		No Reject
6	0.031717	11630	-8.6E-05	1.0000	0.009272	3.430	Reject Null
7	0.02418			1.0000	0.008738		Reject Null
8	0.013048	13986	-7.2E-05	1.0000	0.008455	1.552	No Reject
9	0.009387	14790	-6.8E-05	1.0000	0.008222		No Reject
10	-0.00454	15723	-6.4E-05	1.0000	0.007975		No Reject
11	0.014652	16573	-6.0E-05	1.0000	0.007768		Reject Null
12	0.005036	17841	-5.6E-05	1.0000	0.007486		No Reject
13	0.014317		-5.3E-05	1.0000	0.007306		Reject Null
14	-0.00358		-5.2E-05	1.0000	0.00721		No Reject
15	-0.00163						No Reject
16	0.009959	21418	-4.7E-05				No Reject
17	-0.00601				0.00668		No Reject
18	-0.00467	23069	-4.3E-05	1.0000	0.006584		No Reject
19	-0.00634	23738	-4.2E-05	1.0000	0.00649		No Reject
20	0.002392	24824					No Reject
21	0.001356	25087	-4.0E-05	1.0000			No Reject
22	-0.00497	26295	-3.8E-05	1.0000	0.006167	-0.799	No Reject
23	-0.00072	26639	-3.8E-05	1.0000			No Reject
24	-0.01412	27115	-3.7E-05	1.0000	0.006073	-2.319	Reject Null
25			-3.6E-05	1.0000			No Reject
26	-0.01104			1.0000	0.005912		Reject Null
27	0.010427	29526			0.00582		Reject Null
28	0.000384						No Reject
29	0.000748	31189	-3.2E-05	1.0000			No Reject
30	-0.02257	31460	-3.2E-05				Reject Null
31	-0.00312						No Reject
32	-0.00763	32618	-3.1E-05		0.005537		No Reject
33			-3.0E-05				Reject Null
34	-0.00237	33596	-3.0E-05				No Reject
35			-2.9E-05				No Reject
36							No Reject
37	-0.00742	33713	-3.0E-05	1.0000	0.005446	-1.358	No Reject

	0.00005	00470	0.05.05	4 0000	0.005400	0.500	No Deigot
38	0.003065		-3.0E-05	1.0000	0.005466		No Reject
39	-0.0083		-3.0E-05	1.0000			No Reject
40			-3.0E-05	1.0000	0.005457		No Reject
41	-0.00939		-2.9E-05	1.0000			Reject Null
42	-0.00558		-3.0E-05	1.0000	0.005443		No Reject
43	-0.00659		-3.0E-05	1.0000			No Reject
44	-0.00868		-3.0E-05	1.0000			No Reject
45	0.013164		-3.0E-05	1.0000			Reject Null
46	-0.00429		-3.0E-05	1.0000			No Reject
47	-0.01049		-3.0E-05	1.0000			Reject Null
48	-0.01093		-3.2E-05	1.0000			Reject Null
49	0.008212		-3.2E-05	1.0000	0.005681		No Reject
50	-0.01107		-3.3E-05	1.0000			Reject Null
51	-0.01277		-3.4E-05	1.0000			Reject Null
52	-0.01896		-3.5E-05	1.0000	0.005948		Reject Null
53	-0.00213		-3.6E-05	1.0000	0.005978		No Reject
54	-0.00433		-3.7E-05	1.0000			No Reject
55	0.001988		-3.7E-05	1.0000	0.006075		No Reject
56	-0.00265		-3.7E-05	1.0000			No Reject
57	0.011625		-3.8E-05	1.0000	0.006141		Reject Null
58	+		-3.9E-05	1.0000	0.00621		No Reject
59	0.014226		-3.9E-05	1.0000	0.006269		Reject Null
60	0.016168		-4.0E-05	1.0000	0.00631		Reject Null
61	0.007464		-4.1E-05	1.0000	0.006397		No Reject
62	0.021142		-4.2E-05	1.0000	0.006472		Reject Null
63	0.010032		-4.3E-05	1.0000	0.006556		No Reject
64	0.017329		-4.4E-05	1.0000	0.006628		Reject Null
65	0.019716		-4.6E-05	1.0000	0.006775		Reject Null
66			-4.7E-05	1.0000	0.006851		No Reject
67	0.02376		-4.7E-05	1.0000	0.006861		Reject Null
			-4.8E-05	1.0000	0.006907		Reject Null
	0.011774		-4.9E-05	1.0000			Reject Null
	0.012056		-5.1E-05	1.0000	0.007114		Reject Null
71			-5.2E-05		0.007241		No Reject
72		+	-5.4E-05	1.0000			No Reject
	0.003498		-5.6E-05	1.0000	0.007489		No Reject
	0.007754		-6.0E-05	1.0000	0.00772		No Reject
75			-6.2E-05	1.0000	0.007864		No Reject
76			-6.4E-05	1.0000	0.007997		No Reject
77	-0.01015		-6.7E-05	1.0000	0.008181		No Reject
	0.002393		-6.6E-05	1.0000	0.00814		No Reject
79			-7.0E-05	1.0000			No Reject
80			-7.2E-05	1.0000			No Reject
81	0.001604		-7.4E-05		0.008581		No Reject
82	-0.01965	12874	-7.8E-05	1.0000	0.008813	-2.221	Reject Null

00	0.0074	10000	7.05.05	1 0000	0.00000	0.000	No Poinct
83	-0.0074		-7.9E-05	1.0000			No Reject No Reject
84	-0.00885		-8.3E-05	1.0000			
85	-0.0271	12086	-8.3E-05	1.0000			Reject Null Reject Null
86	-0.02466		-8.6E-05	1.0000			Reject Null
87	-0.02765	10953	-9.1E-05	1.0000	0.009555		
88	-0.04229		-9.4E-05	1.0000	0.0097		Reject Null
89	-0.02628 -0.04212	9673	-1.0E-04 -1.1E-04	0.9999			Reject Null Reject Null
90 91	-0.04212		-1.1E-04 -1.2E-04	0.9999			Reject Null
92	-0.0265	8685 7858	-1.3E-04	0.9999			Reject Null
93	-0.02118	7517	-1.3E-04	0.9999			Reject Null
94	-0.02129	7066	-1.4E-04	0.9999			Reject Null
95	-0.02346	6407	-1.6E-04	0.9999			Reject Null
96	-0.03303		-1.6E-04	0.9999			No Reject
97	-0.00486	5851	-1.7E-04	0.9999			No Reject
98	-0.00480	5492	-1.8E-04	0.9999	0.013493		No Reject
99	0.002477	5142	-1.9E-04	0.9999	0.013944		No Reject
100	0.001268	4996	-2.0E-04	0.9999	0.014146		No Reject
101	0.001200	4727	-2.1E-04	0.9999	0.014543		No Reject
102	0.001538	4479	-2.2E-04	0.9999	0.01494		No Reject
103	0.006406	4181	-2.4E-04	0.9999	0.015464		No Reject
104	0.011375	3917	-2.6E-04	0.9999	0.015976		No Reject
105	0.015433	3616	-2.8E-04	0.9999	0.016627		No Reject
106	0.023872	3212	-3.1E-04	0.9998	0.017642		No Reject
107	0.033281	2861	-3.5E-04	0.9998	0.018692		Reject Null
108	0.006826	2559	-3.9E-04	0.9998	0.019764		No Reject
109	0.025714	2201	-4.5E-04	0.9998	0.02131	1.228	No Reject
110	0.009923	1862	-5.4E-04	0.9997	0.023168	0.451	No Reject
111	0.042587	1682	-5.9E-04	0.9997	0.024376	1.772	Reject Null
112	0.054363	1600	-6.3E-04	0.9997	0.024992	2.200	Reject Null
113	0.050044	1379	-7.3E-04	0.9996	0.026919	1.886	Reject Null
114	0.070634	1239	-8.1E-04	0.9996	0.028398		Reject Null
115	0.066531	1060	-9.4E-04	0.9995	0.0307		Reject Null
116	0.092052	871	-1.1E-03	0.9994	0.033864		Reject Null
117	0.049087	837	-1.2E-03	0.9994	0.034545		No Reject
118	0.069078	728	-1.4E-03	0.9993	0.037037		Reject Null
119	0.048413	714	-1.4E-03	0.9993	0.037398		No Reject
120	0.065772	554	-1.8E-03	0.9991	0.042448		No Reject
121	0.044608	502	-2.0E-03	0.9990	0.044589		No Reject
122	0.086935	384	-2.6E-03	0.9987	0.050966		Reject Null
123	-0.00546	325	-3.1E-03	0.9985	0.055387		No Reject
124	0.096965	280	-3.6E-03	0.9983	0.059658		Reject Null
125	-0.04718	226	-4.4E-03	0.9979	0.066378		No Reject
126	0.124838	139	-7.2E-03	0.9967	0.084535		No Reject
127	-0.15894	99	-1.0E-02	0.9954	0.100046	-1.487	No Reject

128	-0.00694	65	-1.6E-02	0.9935	0.123225	0.070 No	Reject
129	-0.19716	29	-3.6E-02	0.9886	0.183583	-0.879 No	Reject
130	-0.08152	21	-5.0E-02	0.9874	0.215473	-0.146 No	Reject
131	-0.0121	22	-4.8E-02	0.9875	0.210536	0.169 No	Reject
132	-0.10838	5	-2.5E-01	1.0992	0.491596	0.288 No	Reject
133	0.153176	11	-1.0E-01	0.9958	0.300252	0.843 No	Reject
134	0.18821	5	-2.5E-01	1.0992	0.491596	0.891 No	Reject

APPENDIX I

Lag	Moran's I	Pairs	E(I)	SD	s.e.	Z	Hypothesis
		(n)				score	Test
1	0.069013	1618	-6.2E-04	0.9997	0.024853		Reject Null
2	0.076283		-2.5E-04	0.9999	0.015737		Reject Null
3	0.036198	5958	-1.7E-04	0.9999	0.012954	2.807	Reject Null
4	0.056766	7436	-1.3E-04	0.9999	0.011596	4.907	Reject Null
5		8738	-1.1E-04	0.9999	0.010697		No Reject
6	-0.0104	10112	-9.9E-05	1.0000	0.009944	-1.036	No Reject
7	0.033149	11253	-8.9E-05	1.0000	0.009426	3.526	Reject Null
8	-0.00692		-8.1E-05				No Reject
9	0.00463	13084	-7.6E-05	1.0000	0.008742	0.538	No Reject
10	0.016788	14006	-7.1E-05	1.0000	0.008449	1.995	Reject Null
11	-0.00171	14839	-6.7E-05	1.0000	0.008209	-0.200	No Reject
12	0.000413	15108	-6.6E-05	1.0000	0.008135		No Reject
13	0.0011	15745	-6.4E-05	1.0000	0.007969	0.146	No Reject
14	-0.00202	16698	-6.0E-05	1.0000	0.007738	-0.253	No Reject
15	-0.0003	17343	-5.8E-05	1.0000	0.007593	-0.031	No Reject
16	-0.00094	18019	-5.6E-05	1.0000	0.007449	-0.119	No Reject
17	-0.01893	19048	-5.3E-05	1.0000	0.007245		Reject Null
18	-0.00477	19251	-5.2E-05	1.0000	0.007207	-0.655	No Reject
19	0.004216	20168	-5.0E-05	1.0000	0.007041	0.606	No Reject
20	0.008372	20998	-4.8E-05	1.0000	0.006901	1.220	No Reject
21	-0.00678	21168	-4.7E-05	1.0000	0.006873	-0.979	No Reject
22	0.009283	21744	-4.6E-05	1.0000	0.006781	1.376	No Reject
23	0.004111	22338	-4.5E-05	1.0000	0.006691		No Reject
24	0.000992	23036	-4.3E-05	1.0000	0.006589	0.157	No Reject
25	-0.00207	23782	-4.2E-05	1.0000	0.006484	-0.312	No Reject
26	0.007415	24641	-4.1E-05	1.0000	0.00637	1.170	No Reject
27	-0.01078	25623	-3.9E-05	1.0000	0.006247	-1.719	Reject Null
28	-0.0099	26177	-3.8E-05	1.0000	0.006181	-1.595	No Reject
29	-0.01575	26566	-3.8E-05	1.0000	0.006135	-2.562	Reject Null
30	-0.01297	27529	-3.6E-05	1.0000	0.006027	-2.145	Reject Null
31	-0.01433	27380	-3.7E-05	1.0000	0.006043	-2.365	Reject Null
32	-0.01099	27941	-3.6E-05	1.0000	0.005982	-1.831	Reject Null
33	-0.00061	28701	-3.5E-05	1.0000	0.005903	-0.097	No Reject
34	0.002767	28922	-3.5E-05	1.0000	0.00588	0.476	No Reject
35	-0.00818	29258	-3.4E-05	1.0000	0.005846	-1.394	No Reject
36	-0.00854	29546	-3.4E-05	1.0000	0.005818	-1.462	No Reject
37	-0.01315	29495	-3.4E-05	1.0000	0.005823	-2.252	Reject Null

38	-0.00229	29737	-3.4E-05	1.0000	0.005799	-0.389	No Reject
39	-0.01503	29441	-3.4E-05	1.0000	0.005828	-2.572	Reject Null
40	0.004089	29704	-3.4E-05	1.0000	0.005802	0.711	No Reject
41	0.00434	29713	-3.4E-05	1.0000	0.005801	0.754	No Reject
42	-0.00331	29197	-3.4E-05	1.0000	0.005852	-0.559	No Reject
43	-0.00823	29513	-3.4E-05	1.0000	0.005821	-1.408	No Reject
44	-0.00565	28845	-3.5E-05	1.0000	0.005888		No Reject
45	0.00143	28186	-3.5E-05	1.0000	0.005956	0.246	No Reject
46	0.002473	27737	-3.6E-05	1.0000	0.006004	0.418	No Reject
47	0.003722	26796	-3.7E-05	1.0000	0.006109	0.615	No Reject
48	0.015114	26535	-3.8E-05	1.0000	0.006139	2.468	Reject Null
49	-0.00836	26091	-3.8E-05	1.0000	0.006191	-1.343	No Reject
50	0.001174	25121	-4.0E-05	1.0000	0.006309	0.192	No Reject
51	0.012661	24064	-4.2E-05	1.0000	0.006446	1.971	Reject Null
52	0.012		-4.2E-05				Reject Null
53	0.000485		-4.4E-05				No Reject
54	0.015464	22530	-4.4E-05	1.0000	0.006662		Reject Null
55	0.006635		-4.5E-05		0.006708		No Reject
56	0.006586	21869	-4.6E-05	1.0000			No Reject
57	0.0044		-4.7E-05				No Reject
58	0.00797	20415	-4.9E-05				No Reject
59	0.008482	20379	-4.9E-05	1.0000	+		No Reject
60	0.00917		-5.0E-05		0.007064		No Reject
61	0.016697		-5.1E-05				Reject Null
62	0.012555		-5.2E-05		0.0072		Reject Null
63	0.001576		-5.3E-05	1.0000			No Reject
64	-0.00964		-5.3E-05				No Reject
65	-0.01541		-5.6 E- 05				Reject Null
66	0.006569		-5.7E-05	1.0000	0.007548		No Reject
67	-0.00608		-5.8E-05		0.007606		No Reject
68	-0.00305		-6.1E-05		0.0078		No Reject
69	-0.01286		-6.2E-05		0.007843		No Reject
70	0.001922		-6.5E-05				No Reject
71	0.004932		-6.7E-05				No Reject
72	0.01145		-7.0E-05				No Reject
73	-0.00044		-7.1E-05				No Reject
74			-7.5E-05				Reject Null
75	0.001135		-7.7E-05				No Reject
76	-0.00549		-8.1E-05				No Reject
77	-0.01893		-8.6E-05				Reject Null
78	0.006715		-8.8E-05				No Reject
79	-0.02119		-9.3E-05		0.00964		Reject Null
80	0.002486		-9.8E-05				No Reject
81	0.00432		-9.7E-05		0.009852		No Reject
82	-0.01514	9649	-1.0E-04	0.9999	0.01018	-1.477	No Reject

83	0.010556	9137	-1.1E-04	0.9999	0.010461	1.020	No Reject
84	0.021661		-1.2E-04				Reject Null
85	0.013212		-1.2E-04		0.01108		No Reject
86	0.010267		-1.3E-04				No Reject
87	0.00597		-1.4E-04		0.011618		No Reject
88	-0.00254	7099	-1.4E-04		0.011868		No Reject
89	-0.03446	6692	-1.5E-04	0.9999	0.012223		Reject Null
90	-0.01272	6569	-1.5E-04	0.9999	0.012337	-1.019	No Reject
91	-0.01365	6176	-1.6E-04	0.9999	0.012724	-1.060	No Reject
92	-0.02012	5831	-1.7E-04	0.9999	0.013095	-1.523	No Reject
93	-0.00392	5502	-1.8E-04	0.9999	0.01348	-0.277	No Reject
94	-0.00398	5384	-1.9E-04	0.9999	0.013627	-0.279	No Reject
95	0.022597	4831	-2.1E-04	0.9999	0.014386	1.585	No Reject
96	-0.0161	4570	-2.2E-04	0.9999	0.014791	-1.074	No Reject
97	0.013369	4304	-2.3E-04	0.9999	0.015241	0.892	No Reject
98	-0.00548	3926	-2.5E-04	0.9999	0.015958		No Reject
99	-0.02408	3634	-2.8E-04	0.9999	0.016586	-1.435	No Reject
100	-0.00336		-2.8E-04				No Reject
101	-0.02516	3324	-3.0E-04	0.9999	0.017342	-1.433	No Reject
102	-0.02709	3009	-3.3E-04	0.9998			No Reject
103	-0.02065	2826	-3.5E-04	0.9998	0.018808		No Reject
104	-0.00469		-3.9E-04		0.019753		No Reject
105	-0.00935	2421	-4.1E-04	0.9998	0.02032	-0.440	No Reject
106	-0.01108		-4.7E-04	0.9998	0.021744	-0.488	No Reject
107	-0.01108 -0.04459	2114 1882	-4.7E-04 - 5.3E-04	0.9998 0.9997	0.021744 0.023045	-0.488 -1.912	No Reject Reject Null
107 108	-0.01108 -0.04459 -0.05373	2114 1882 1641	-4.7E-04 -5.3E-04 -6.1E-04	0.9998 0.9997 0.9997	0.021744 0.023045 0.024678	-0.488 -1.912 -2.152	No Reject Reject Null Reject Null
107 108 109	-0.01108 -0.04459 -0.05373 -0.04232	2114 1882 1641 1337	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04	0.9998 0.9997 0.9996	0.021744 0.023045 0.024678 0.027338	-0.488 -1.912 -2.152 -1.520	No Reject Reject Null Reject Null No Reject
107 108 109 110	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051	2114 1882 1641 1337 1150	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -8.7E-04	0.9998 0.9997 0.9996 0.9996	0.021744 0.023045 0.024678 0.027338 0.029476	-0.488 -1.912 -2.152 -1.520 -1.684	No Reject Reject Null Reject Null No Reject Reject Null
107 108 109 110 111	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939	2114 1882 1641 1337 1150 1035	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -8.7E-04	0.9998 0.9997 0.9997 0.9996 0.9995	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069	-0.488 -1.912 -2.152 -1.520 -1.684 0.126	No Reject Reject Null Reject Null No Reject Reject Null No Reject
107 108 109 110 111 112	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192	2114 1882 1641 1337 1150 1035 797	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -8.7E-04 -9.7E-04 -1.3E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject
107 108 109 110 111 112 113	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627	2114 1882 1641 1337 1150 1035 797 758	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -8.7E-04 -9.7E-04 -1.3E-03 -1.3E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null
107 108 109 110 111 112 113	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108	2114 1882 1641 1337 1150 1035 797 758 627	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.3E-03 -1.6E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993 0.9992	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146	2114 1882 1641 1337 1150 1035 797 758 627 456	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993 0.9992 0.9989	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819	2114 1882 1641 1337 1150 1035 797 758 627 456 435	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993 0.9992 0.9989 0.9989	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject Reject Null No Reject No Reject
107 108 109 110 111 112 113 114 115 116 117	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993 0.9992 0.9989 0.9989 0.9987	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject Reject Null No Reject No Reject No Reject No Reject
107 108 109 110 111 112 113 114 115 116 117	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331	-4.7E-04 -5.3E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03	0.9998 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993 0.9989 0.9989 0.9987 0.9985	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -2.9E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9987 0.9985 0.9986	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -2.9E-03 -3.7E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9987 0.9985 0.9986 0.9982	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762 0.060638	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject Ro Reject No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589 0.043118	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271	-4.7E-04 -5.3E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.3E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -2.9E-03 -3.7E-03 -4.5E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9985 0.9986 0.9982 0.9982	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762 0.060638 0.067122	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366 0.710	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589 0.043118 -0.04203	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271 221	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -2.9E-03 -3.7E-03 -4.5E-03 -4.8E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9987 0.9985 0.9986 0.9982 0.9978	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762 0.060638 0.067122 0.068687	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366 0.710 -0.543	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589 0.043118 -0.04203 -0.00919	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271 221 211	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -2.9E-03 -3.7E-03 -4.5E-03 -4.8E-03 -5.9E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9985 0.9985 0.9986 0.9982 0.9978 0.9977	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762 0.060638 0.067122 0.068687 0.076261	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366 0.710 -0.543 -0.043	No Reject Reject Null Reject Null No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589 0.043118 -0.04203 -0.00919 0.06923	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271 221 211 171	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -3.7E-03 -4.5E-03 -4.5E-03 -5.9E-03 -6.9E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9987 0.9986 0.9986 0.9987 0.9972 0.9972	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762 0.060638 0.067122 0.068687 0.076261 0.082496	-0.488 -1.912 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366 0.710 -0.543 -0.043 0.923	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589 0.043118 -0.04203 -0.00919 0.06923 0.031726	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271 221 211 171 146 120	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -2.9E-03 -4.5E-03 -4.5E-03 -4.5E-03 -5.9E-03 -6.9E-03 -8.4E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9985 0.9986 0.9986 0.9977 0.9972 0.9968 0.9962	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.054884 0.053762 0.060638 0.067122 0.068687 0.076261 0.082496 0.090938	-0.488 -1.912 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366 0.710 -0.543 -0.043 0.923 0.441	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	-0.01108 -0.04459 -0.05373 -0.04232 -0.05051 0.002939 -0.03192 -0.09627 0.012108 -0.07146 -0.01819 0.054 0.042165 0.017391 -0.02589 0.043118 -0.04203 -0.00919 0.06923 0.031726	2114 1882 1641 1337 1150 1035 797 758 627 456 435 367 331 345 271 221 211 171 146 120 66	-4.7E-04 -5.3E-04 -6.1E-04 -7.5E-04 -9.7E-04 -1.3E-03 -1.3E-03 -1.6E-03 -2.2E-03 -2.3E-03 -2.7E-03 -3.0E-03 -3.7E-03 -4.5E-03 -4.5E-03 -5.9E-03 -6.9E-03	0.9998 0.9997 0.9996 0.9996 0.9994 0.9993 0.9992 0.9989 0.9989 0.9985 0.9985 0.9986 0.9982 0.9977 0.9972 0.9968 0.9962 0.9935	0.021744 0.023045 0.024678 0.027338 0.029476 0.031069 0.0354 0.036298 0.039905 0.046779 0.047892 0.05213 0.05213 0.054884 0.053762 0.060638 0.067122 0.068687 0.076261 0.082496 0.090938 0.122298	-0.488 -1.912 -2.152 -1.520 -1.684 0.126 -0.866 -2.616 0.343 -1.481 -0.332 1.088 0.823 0.378 -0.366 0.710 -0.543 -0.043 0.923 0.441 -0.488	No Reject Reject Null Reject Null No Reject Reject Null No Reject No Reject Reject Null No Reject

128	0.091303	44	-2.3E-02	0.9912	0.149425	0.767	No Reject
129	-0.00868	30	-3.4E-02	0.9888	0.180532	0.143	No Reject
130	0.009625	44	-2.3E-02	0.9912	0.149425	0.220	No Reject
131	0.039202	33	-3.1E-02	0.9894	0.172228	0.409	No Reject
132	-0.09827	26	-4.0E-02	0.9881	0.193778	-0.301	No Reject
133	0.006994	21	-5.0E-02	0.9874	0.215473	0.265	No Reject
134	-0.02469	10	-1.1E-01	1.0000	0.316228	0.273	No Reject
135	-0.10592	8	-1.4E-01	1.0157	0.359122	0.103	No Reject

APPENDIX J

Lag	Moran's I	Pair	E(I)	SD	s.e.	Z	Hypothesis
	·	s (n)	·				Test
1	-0.30732		-2.4E-02	0.9910	0.151131		Reject Null
2	0.023046						No Reject
3	0.154391	172	-5.8E-03	0.9973	0.07604		Reject Null
4	0.083922	246	-4.1E-03	0.9980	0.063633	1.383	No Reject
5	0.014157						No Reject
6	-0.07067	292	-3.4E-03	0.9983			No Reject
7	-0.10698	319	-3.1E-03	0.9985	0.055904		Reject Null
8						-0.350	No Reject
9			-2.7E-03	0.9987			No Reject
10	-0.09171	383	-2.6E-03	0.9987	0.051033	-1.746	Reject Null
11	-0.0801	436	-2.3E-03	0.9989	0.047838		No Reject
12	0.031669	504	-2.0E-03	0.9990			No Reject
13	0.036761	506	-2.0E-03	0.9990	0.044412	0.872	No Reject
14	-0.08724						Reject Null
15	-0.04177	555	-1.8E-03	0.9991	0.04241	-0.942	No Reject
16	-4.9E-05	591	-1.7E-03	0.9992	0.0411	0.040	No Reject
17	0.006067	617	-1.6E-03	0.9992	0.040226	0.191	No Reject
18	0.055809	657	-1.5E-03	0.9993	0.038984	1.471	No Reject
19	0.000165	650	-1.5E-03	0.9992	0.039194	0.044	No Reject
20	0.027171	699	-1.4E-03	0.9993	0.037797		No Reject
21	0.060449	648	-1.5E-03	0.9992	0.039254	1.579	No Reject
22	0.008086	681	-1.5E-03	0.9993	0.038292	0.250	No Reject
23	-0.03045	658	-1.5E-03	0.9993	0.038955		No Reject
24	-0.06821	700	-1.4E-03	0.9993	0.03777	-1.768	Reject Null
25	0.027359	699	-1.4E-03	0.9993	0.037797	0.762	No Reject
26	-0.05681	748	-1.3E-03	0.9993	0.036539	-1.518	No Reject
27	-0.00218	810	-1.2E-03	0.9994	0.035115	-0.027	No Reject
28	0.018382	792	-1.3E-03	0.9994	0.035511	0.553	No Reject
29	0.006612	844	-1.2E-03	0.9994			No Reject
30	-0.06125	962	-1.0E-03	0.9995	0.032225	-1.868	Reject Null
31	0.006059	950	-1.1E-03	0.9995	0.032427	0.219	No Reject
32	0.005373	934	-1.1E-03	0.9995	0.032704	0.197	No Reject
33	-0.04708	941	-1.1E-03	0.9995	0.032582	-1.412	No Reject
34	0.053097	935	-1.1E-03	0.9995			Reject Null
35	-0.02796	879	-1.1E-03	0.9994	0.03371	-0.796	No Reject
36	0.025814	946	-1.1E-03	0.9995	0.032496	0.827	No Reject
37	r		-1.1E-03	0.9995	0.03315		No Reject
38	-0.03238	907	-1.1E-03	0.9995	0.033186	-0.943	No Reject

			=1		2 222 2 2		<u> </u>
39	0.007373				0.033059		No Reject
40	0.036672	919	-1.1E-03	0.9995	0.032969		No Reject
41	0.022617	881	-1.1E-03	0.9994	0.033672		No Reject
42	-0.00014	925	-1.1E-03	0.9995	0.032862		No Reject
43	-0.00815	870	-1.2E-03	0.9994	0.033884		No Reject
44	-0.05502	841	-1.2E-03	0.9994	0.034462		No Reject
45	0.00319	908	-1.1E-03	0.9995	0.033168	0.129	No Reject
46	0.032541	901	-1.1E-03	0.9995	0.033297		No Reject
47	-0.01167	899	-1.1E-03	0.9994	0.033334	-0.317	No Reject
48	-0.04249	820	-1.2E-03	0.9994	0.0349	-1.182	No Reject
49	-0.03057	708	-1.4E-03	0.9993	0.037556	-0.776	No Reject
50	-0.01061	737	-1.4E-03	0.9993	0.036811	-0.251	No Reject
51	-0.05794	700	-1.4E-03	0.9993	0.03777	-1.496	No Reject
52	-0.01676	697	-1.4E-03	0.9993	0.037851	-0.405	No Reject
53	0.006491	690	-1.5E-03	0.9993	0.038042	0.209	No Reject
54	0.009332	646	-1.6E-03	0.9992	0.039314	0.277	No Reject
55	0.016761	629	-1.6E-03	0.9992	0.039841	0.461	No Reject
56	0.026188	684	-1.5E-03	0.9993	0.038208	0.724	No Reject
57	0.062292	702	-1.4E-03	0.9993	0.037716	1.689	Reject Null
58	-0.00771	667	-1.5E-03	0.9993	0.038692	-0.160	No Reject
59	-0.00795	657	-1.5E-03	0.9993	0.038984		No Reject
60	0.041778	616	-1.6E-03	0.9992	0.040259	1.078	No Reject
61	-0.02844	572	-1.8E-03	0.9991	0.041776	-0.639	No Reject
62	-0.01319	587	-1.7E-03	0.9992	0.04124	-0.279	No Reject
63	-0.00407	588	-1.7E-03	0.9992	0.041205	-0.057	No Reject
64	-0.05184	581	-1.7E-03	0.9992	0.041452	-1.209	No Reject
65	-0.04433	517	-1.9E-03	0.9991	0.043938	-0.965	No Reject
66	-0.01619	574	-1.7E-03	0.9991	0.041703	-0.346	No Reject
67	-0.05008	557	-1.8E-03	0.9991	0.042334	-1.141	No Reject
68	0.020336	525	-1.9E-03	0.9991	0.043603	0.510	No Reject
69	0.047994	484	-2.1E-03	0.9990	0.045409	1.103	No Reject
70	0.054733	479	-2.1E-03	0.9990	0.045644	1.245	No Reject
71	-0.01964	434	-2.3E-03	0.9989	0.047947	-0.361	No Reject
72	0.096656	411	-2.4E-03	0.9988	0.049268	2.011	Reject Null
73	0.013296	425	-2.4E-03	0.9989	0.048451	0.323	No Reject
74	-0.01862	351	-2.9E-03	0.9986	0.053302	-0.296	No Reject
75	0.102741	383	-2.6E-03	0.9987	0.051033	2.065	Reject Null
76	-0.05773	381	-2.6E-03	0.9987	0.051166	-1.077	No Reject
77	0.011362	368	-2.7E-03	0.9987	0.05206	0.271	No Reject
78	-0.00376	350		0.9986	0.053378	-0.017	No Reject
79	0.006808	375	-2.7E-03	0.9987	0.051573	0.184	No Reject
80	-0.07051	323	-3.1E-03	0.9985	0.055558	-1.213	No Reject
81	-0.03654	280	-3.6E-03	0.9983	0.059658	-0.552	No Reject
82	0.051508	283			0.059342	0.928	No Reject
83	-0.01786	287	-3.5E-03		0.058929		No Reject

84	0.043182	264	-3.8E-03	0.0002	0.061433	0.765	No Reject
85	0.043162	279	-3.6E-03		0.059765		No Reject
86	-0.00244	280	-3.6E-03		0.059658		No Reject
87	0.014153	235	-4.3E-03		0.059050		No Reject
88	0.0446	220	-4.6E-03		0.067274		No Reject
89	-0.12742	225	-4.5E-03		0.067274		Reject Null
90	-0.12742	224	-4.5E-03		0.066673		No Reject
91	-0.02736	194	-5.2E-03		0.000073		No Reject
92	-0.0036	169			0.076709		No Reject
93	-0.0723	171	-5.9E-03		0.076261		No Reject
94	0.033785	175	-5.7E-03		0.075389		No Reject
95	0.053765	164	-6.1E-03		0.073363		No Reject
96	0.020284	164	-6.1E-03		0.077863		No Reject
97	0.020284	146			0.077865		Reject Null
98	0.01185	126	-8.0E-03		0.082450		No Reject
99	-0.04232	97	-1.0E-02	0.9954	0.101064		No Reject
100	-0.04232	108	-9.3E-03		0.09582		No Reject
101	0.087114	99	-1.0E-02		0.100046		No Reject
102	-0.10381	112	-9.0E-03		0.094106		No Reject
103		87	-1.2E-02		0.106664		No Reject
103	0.034414	92	-1.1E-02	0.9951	0.103751		No Reject
105	-0.17875	78	-1.3E-02		0.112593		No Reject
106	-0.0328	52	-2.0E-02	0.9922			No Reject
107	0.06158	46	-2.2E-02	0.9915	0.146182		No Reject
108	-0.29661	43	-2.4E-02		0.151131		Reject Null
109	0.066982	44	-2.3E-02	0.9912	0.149425		No Reject
110	-0.2221	35	-2.9E-02	0.9897	0.167296		No Reject
111	-0.04213	32	-3.2E-02	0.9892			No Reject
112		24	-4.3E-02	0.9878	0.201624		No Reject
113		14	-7.7E-02	0.9897	0.264506		No Reject
114	-0.07501	22	-4.8E-02	0.9875			No Reject
115	0.16843	15	-7.1E-02		0.255301		No Reject
116	-0.00323	19	-5.6E-02		0.22653		No Reject
117	-0.11062	29	-3.6E-02		0.183583		No Reject
118	-0.26904	15	-7.1E-02		0.255301		No Reject
119	0.024517	22	-4.8E-02		0.210536		No Reject
120		18	-5.9E-02		0.232765		Reject Null
121	-0.1349	14	-7.7E-02				No Reject
122		9	-1.3E-01		0.33541		No Reject
123		13	-8.3E-02		0.274863		No Reject
124		6	-2.0E-01		0.430946		No Reject
125		0	1.0E+00		#NUM!		No Reject
126	0.209432	6	-2.0E-01		0.430946		No Reject
127	0.019853	4	-3.3E-01		0.591608		No Reject
128	-0.23952		-1.0E+00		1.354006		No Reject

129	-0.13529	2 -1.0E+00	1.9149	1.354006	0.639 No Reject
130	0.008527	2 -1.0E+00	1.9149	1.354006	0.745 No Reject

APPENDIX K

Pearson's Bivariate Correlations at the Census Tract Scale n = 41

		AV	LNAV	AR	S	LNS	WHITE	BLACK
AV	r	1.000	0.975	-0.537	0.996	0.975	0.433	-0.252
	Р		0.000	0.000	0.000	0.000	0.005	0.112
LNAV	r	0.975	1.000	-0.552	0.963	0.995	0.472	-0.278
	Р	0.000		0.000	0.000	0.000	0.002	0.079
AR	r	-0.537	-0.552	1.000	-0.588	-0.622	-0.382	0.273
	Р	0.000	0.000	•	0.000	0.000	0.014	0.084
S	r	0.996	0.963	-0.588	1.000	0.971	0.420	-0.241
	Р	0.000	0.000	0.000	•	0.000	0.006	0.129
LNS	r	0.975	0.995	-0.622	0.971	1.000	0.460	-0.263
	Р	0.000	0.000	0.000	0.000	•	0.002	0.097
WHITE	r	0.433	0.472	-0.382	0.420	0.460	1.000	-0.955
	Р	0.005	0.002	0.014	0.006	0.002	•	0.000
BLACK	r	-0.252	-0.278	0.273	-0.241	-0.263	-0.955	1.000
	Р	0.112	0.079	0.084	0.129	0.097	0.000	
HISPANIC	r	-0.680	-0.731	0.480	-0.680	-0.748	-0.287	0.022
	Р	0.000	0.000	0.001	0.000	0.000	0.069	0.892
VACANT		-0.575	-0.631	0.425	-0.553	-0.618	-0.441	0.265
	Р	0.000	0.000	0.006	0.000	0.000	0.004	0.094
RENTOCC	r	-0.546	-0.566	0.334	-0.527	-0.548	-0.345	0.219
	Р	0.000	0.000	0.033	0.000	0.000	0.027	0.169
LNINC	r	0.808	0.860	-0.528	0.793	0.851	0.461	-0.269
	Р	0.000	0.000	0.000	0.000	0.000	0.002	0.089
INC	r	0.889	0.899	-0.531	0.879	0.894	0.421	-0.225
	Р	0.000	0.000	0.000	0.000	0.000	0.006	0.156
PUBLIC	r	-0.724	-0.798	0.555	-0.710	-0.798	-0.640	0.453
	P	0.000	0.000	0.000	0.000	0.000	0.000	0.003
YEAR	r	0.378	0.375	-0.027	0.354	0.362	0.055	0.052
	Р	0.015	0.016	0.869	0.023	0.020	0.733	0.745

CensusTract Scale Pearson Bivariate Correlations contd.

		HISPANIC	VACANT	RENTOCC	LNINC	INC	PUBLIC	YEAR
AV	r	-0.680	-0.575	-0.546	0.808	0.889	-0.724	0.378
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.015
LNAV	r	-0.731	-0.631	-0.566	0.860	0.899	-0.798	0.375
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.016
AR	r	0.480	0.425	0.334	-0.528	-0.531	0.555	-0.027
	Р	0.001	0.006	0.033	0.000	0.000	0.000	0.869
S	r	-0.680	-0.553	-0.527	0.793	0.879	-0.710	0.354
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.023
LNS	r	-0.748	-0.618	-0.548	0.851	0.894	-0.798	0.362
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.020
WHITE	r	-0.287	-0.441	-0.345	0.461	0.421	-0.640	0.055
	Р	0.069	0.004	0.027	0.002	0.006	0.000	0.733
BLACK	r	0.022	0.265	0.219	-0.269	-0.225	0.453	0.052
	Р	0.892	0.094	0.169	0.089	0.156	0.003	0.745
HISPANIC	r	1.000	0.501	0.312	-0.599	-0.638	0.654	-0.433
	Р		0.001	0.047	0.000	0.000	0.000	0.005
VACANT	r	0.501	1.000	0.775	-0.815	-0.778	0.720	-0.219
	Р	0.001	•	0.000	0.000	0.000	0.000	0.169
RENTOCC	r	0.312	0.775	1.000	-0.774	-0.770	0.590	0.143
	Р	0.047	0.000	•	0.000	0.000	0.000	0.374
LNINC	r	-0.599	-0.815	-0.774	1.000	0.967	-0.888	0.187
	Р	0.000	0.000	0.000	•	0.000	0.000	0.241
INC	r	-0.638	-0.778	-0.770	0.967	1.000	-0.832	0.263
	Р	0.000	0.000	0.000	0.000	•	0.000	0.096
PUBLIC	r	0.654	0.720	0.590	-0.888	-0.832	1.000	-0.290
	Ρ	0.000	0.000	0.000	0.000	0.000		0.066
YEAR	r	-0.433	-0.219	0.143	0.187	0.263	-0.290	1.000
	Р	0.005	0.169	0.374	0.241	0.096	0.066	

APPENDIX L

Pearson Bivariate Correlations at the Block Group Scale n = 117

		AV	LNAV	AR	S	LNS	WHITE	BLACK
AV	r	1.000	0.976	-0.364	0.993	0.967	0.395	-0.220
	Р		0.000	0.000	0.000	0.000	0.000	0.017
LNAV	r	0.976	1.000	-0.395	0.966	0.991	0.437	-0.243
	Р	0.000		0.000	0.000	0.000	0.000	0.008
AR	r	-0.364	-0.395	1.000	-0.451	-0.503	-0.341	0.252
	Р	0.000	0.000	•	0.000	0.000	0.000	0.006
S	r	0.993	0.966	-0.451	1.000	0.972	0.391	-0.217
	Р	0.000	0.000	0.000	•	0.000	0.000	0.019
LNS	r	0.967	0.991	-0.503	0.972	1.000	0.438	-0.243
	P	0.000	0.000	0.000	0.000	•	0.000	0.008
WHITE	r	0.395	0.437	-0.341	0.391	0.438	1.000	-0.948
	Ρ	0.000	0.000	0.000	0.000	0.000	•	0.000
BLACK	r	-0.220	-0.243	0.252	-0.217	-0.243	-0.948	1.000
	Р	0.017	0.008	0.006	0.019	0.008	0.000	•
HISPANIC	r	-0.679	-0.746	0.380	-0.680	-0.754	-0.396	0.120
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.196
VACANT	r	-0.478	-0.533	0.400	-0.475	-0.537	-0.418	0.261
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.005
RENTOCC	r	-0.442	-0.469	0.292	-0.437	-0.465	-0.382	0.250
	Р	0.000	0.000	0.001	0.000	0.000	0.000	0.007
LNINC	r	0.702	0.736	-0.436	0.701	0.736	0.438	-0.271
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.003
INC	r	0.758	0.769	-0.420	0.758	0.769	0.383	-0.215
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.020
PUBLIC	r	-0.650	-0.710	0.421	-0.650	-0.715	-0.612	0.461
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
YEAR	r	0.463	0.462	-0.033	0.432	0.437	0.046	0.059
	Р	0.000	0.000	0.727	0.000	0.000	0.621	0.526

Block group scale Pearson Bivariate Correlation contd.

	Ī	HISPANIC	VACANT	RENTOCC	LNINC	INC	PUBLIC	YEAR
AV	r	-0.679	-0.478	-0.442	0.702	0.758	-0.650	0.463
	P	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LNAV	r	-0.746	-0.533	-0.469	0.736	0.769	-0.710	0.462
	P	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AR	r	0.380	0.400	0.292	-0.436	-0.420	0.421	-0.033
	Р	0.000	0.000	0.001	0.000	0.000	0.000	0.727
S	r	-0.680	-0.475	-0.437	0.701	0.758	-0.650	0.432
	P	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LNS	r	-0.754	-0.537	-0.465	0.736	0.769	-0.715	0.437
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WHITE	r	-0.396	-0.418	-0.382	0.438	0.383	-0.612	0.046
	Р	0.000	0.000	0.000	0.000	0.000	0.000	0.621
BLACK	r	0.120	0.261	0.250	-0.271	-0.215	0.461	0.059
	Ρ	0.196	0.005	0.007	0.003	0.020	0.000	0.526
HISPANIC	r	1.000	0.475	0.369	-0.555	-0.561	0.584	-0.364
	Р	•	0.000	0.000	0.000	0.000	0.000	0.000
VACANT	r	0.475	1.000	0.739	-0.742	-0.714	0.665	-0.222
	Р	0.000	•	0.000	0.000	0.000	0.000	0.016
RENTOCC	r	0.369	0.739	1.000	-0.753	-0.740	0.615	0.074
	Р	0.000	0.000	•	0.000	0.000	0.000	0.428
LNINC	r	-0.555	-0.742	-0.753	1.000	0.973	-0.804	0.241
	Р	0.000	0.000	0.000		0.000	0.000	0.009
INC	r	-0.561	-0.714	-0.740	0.973	1.000	-0.760	
	Ρ	0.000	0.000	0.000	0.000		0.000	
PUBLIC	r	0.584	0.665	0.615		-0.760		-0.235
	Р	0.000	0.000	0.000	0.000	0.000		0.011
YEAR	r	-0.364	-0.222	0.074	0.241	0.259	-0.235	1.000
	Р	0.000	0.016	0.428	0.009	0.005	0.011	

APPENDIX M

Pearson Bivariate Correlations – Parcel Scale n = 8056

		AV	LNAV	AR	S	LNS	WHITE	BLACK
AV	r	1.000	0.949	0.083	0.926	0.868	0.281	-0.158
	р		0.000	0.000	0.000	0.000	0.000	0.000
LNAV	r	0.949	1.000	0.088	0.876	0.913	0.309	-0.171
	р	0.000	•	0.000	0.000	0.000	0.000	0.000
AR	r	0.083	0.088	1.000	-0.254	-0.322	-0.063	0.045
	р	0.000	0.000		0.000	0.000	0.000	0.000
S	r	0.926	0.876	-0.254	1.000	0.940	0.282	-0.159
	р	0.000	0.000	0.000	•	0.000	0.000	0.000
LNS	r	0.868	0.913	-0.322	0.940	1.000	0.317	-0.180
	р	0.000	0.000	0.000	0.000	•	0.000	0.000
WHITE	r	0.281	0.309	-0.063	0.282	0.317	1.000	-0.952
	р	0.000	0.000	0.000	0.000	0.000		0.000
BLACK	r	-0.158	-0.171	0.045	-0.159	-0.180	-0.952	1.000
	р	0.000	0.000	0.000	0.000	0.000	0.000	
HISPANIC	r	-0.499	-0.548	0.077	-0.506	-0.552	-0.418	0.160
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
VACANT	r	-0.362	-0.405	0.067	-0.362	-0.407	-0.381	0.235
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
RENTOCC	r	-0.329	-0.355	0.057	-0.332	-0.357	-0.414	0.293
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LNINC	r	0.552	0.576	-0.093	0.561	0.582	0.396	-0.235
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
INC	r	0.597	0.603	-0.087	0.606	0.606	0.353	-0.196
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PUBLIC	r	-0.501	-0.546	0.087	-0.507	-0.553	-0.652	0.509
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
YEAR	r	0.395	0.400	0.003	0.372	0.376	-0.019	0.117
	р	0.000	0.000	0.810	0.000	0.000	0.082	0.000

Parcel Scale Pearson Bivariate Correlations contd.

		HISPANIC		RENTOCC	LNINC	INC	PUBLIC	YEAR
	L.		T					
AV	r	-0.499	-0.362	-0.329			-0.501	0.395
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LNAV	r	-0.548	-0.405	-0.355	0.576	0.603	-0.546	0.400
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AR	r	0.077	0.067	0.057	-0.093	-0.087	0.087	0.003
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.810
S	r	-0.506	-0.362	-0.332	0.561	0.606	-0.507	0.372
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LNS	r	-0.552	-0.407	-0.357	0.582	0.606	-0.553	0.376
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WHITE	r	-0.418	-0.381	-0.414	0.396	0.353	-0.652	-0.019
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.082
BLACK	r	0.160	0.235	0.293	-0.235	-0.196	0.509	0.117
	р	0.000	0.000	0.000	0.000	0.000	0.000	0.000
HISPANIC	r	1.000	0.491	0.389	-0.575	-0.570	0.631	-0.327
	р		0.000	0.000	0.000	0.000	0.000	0.000
VACANT	r	0.491	1.000	0.674	-0.701	-0.674	0.602	-0.271
	р	0.000	•	0.000	0.000	0.000	0.000	0.000
RENTOCC	r	0.389	0.674	1.000	-0.721	-0.711	0.566	0.056
	р	0.000	0.000		0.000	0.000	0.000	0.000
LNINC	r	-0.575	-0.701	-0.721	1.000	0.972	-0.744	0.333
	р	0.000	0.000	0.000		0.000	0.000	0.000
INC	r	-0.570	-0.674	-0.711	0.972	1.000	-0.714	0.336
	р	0.000	0.000	0.000	0.000		0.000	0.000
PUBLIC	r	0.631	0.602	0.566	-0.744	-0.714	1.000	-0.285
	р	0.000	0.000	0.000	0.000	0.000		0.000
YEAR	r	-0.327	-0.271	0.056	0.333	0.336	-0.285	1.000
	р	0.000	0.000	0.000	0.000	0.000	0.000	

BIBLIOGRAPHY

Bibliography

Beck, M. 1965 "Determinants of the Property Tax Level: a Case Study of Northeastern New Jersey. *National Tax Journal* 19:74-77.

Beck, R.A.D and D.E. Bruce. "Estimating Market Values and Area Price Indexes." ???? 195-209.

Bell, Earl J. 1984 "Administrative Inequity and Property Assessment: The Case for the Traditional Approach." 123-131.

Beveridge, Andrew A. and Jeannie D'mico. 1994 "Black and White Property Tax Rates and Other Homeownership Costs in 30 Metropolitan Areas – a Preliminary Report." Flushing: Queens College/CUNY, 1994.

Birch, John W, Mark A. Sunderman and Thomas W. Hamilton. 1992 "Adjusting for Vertical and Horizontal Inequity: Supplementing Mass Appraisal Systems." Property Tax Journal, 11, no.3, 1992. 257-276.

Black. D.E. 1972. "The Nature and Extent of Effective Property Tax Rate variation Within the City of Boston. *National Tax Journal* 25: 203-210.

Cannaday, Roger E., Eugene W. Stundard, and Mark A. Sunderman. 1987 "Property Tax Assessment: Measures and Tests of Uniformity Applied to Chicago Condominiums." *Illinois Business Review*. 44, no.2: 9-12.

Castle, Gilbert H. III. 1993 "A Status Report: Front-Line Uses of GIS in Public and Private Sector Real Estate Today." Property Tax Journal, 12, no. 1, 1993. 77-86.

Cheng, Pao Lun. 1974 "Property Taxation, Assessment Performance and its Measurement." *Public Finance*, no. 3-4. 268-284.

Chrisman, Nicholas. 1997 Exploring Geographic Information Systems. John Wiley and Sons, Inc. New York.

Clapp, John M., 1990 "A New Test for Equitable Real Estate Tax Assessment," *Journal of Real Estate Finance and Economics*, 3 : 233-249.

Clapp, John M, Mauricio Rodriquez and Grant Thrall. 1997 "How GIS Can Put Urban Economic Analysis on the Map." *Journal of Housing Economics* 6.

Davis, John C. ,1973, <u>Statistics and Data Analysis in Geology.</u> John Wiley and Sons, Inc. New York.

De Cesare, Claudia M. and Les Ruddock. 1998 "A New Approach to the Analysis of Assessment Equity." Assessment Journal, 5, no. 2, 57-69.

Denne, Robert C. and Reinald S. Nielsen. 1993 "The Mean, Weighted Mean, Median and other Robust Estimators of the Assessment Raito: An Independent Exploration of Issues Raised by Nielsen; Response." *Property Tax Journal*, 12, no. 3, 261.

Dornfest, Alan S. 1993 "Assessment Ratio Study Issues: 1992 Survey Results." *Property Tax Journal*, 12, no. 3, P. 275: Chicago.

Edelstein, Robert H. 1979 "An Appraisal of Residential Property Tax Regressivity." *Journal of Financial and Quantitative Analysis*, 14, no. 4, 753-768.

Eichenbaum, Jack and Fran Pearl. 1993 "Assessment Information: Raw Resource in the Municipal Jungle." *Property Tax Journal*, 12, no. 1, 89-?.

Gaston, Parke. 1984 "Redeeming the Assessment Ratio Equity Test." 181-198.

Anonymous 1996 "GIS Enhances Alabama's Tax Assessors' Office." *The American City and County*, 111, no.12, p. 58.

Gujarati, Damodar. 1995. <u>Basic Econometrics 3rd-ed</u>. McGraw-Hill Inc., New York.

Hamilton, Thomas W. 1998 "Real Estate Market Segmentation: Empirical Results." *Assessment Journal*: Chicago May/June.

Hardy, Rolland L. 1971 "Multiquadric Equations of Topography and Other Irregular Surfaces." Engineering Research Institute – Iowa State University. (This is a reprint that can not be cited without author's permission.)

Heavey, Jerome F. 1983 "Patterns of Property Tax Exploitation Produced by Infrequent Assessments." *The American Journal of Economics and Sociology*, 42, no. 4, p. 441-450.

Hensley, Tim. 1993. "Coupling GIS with CAMA Data in Johnson County, Kansas." Property Tax Journal, 12, no. 1, 1993. 19-?.

Kapplin, Steven D. 1990 "Non-Statistical Forecasting." *The Real Estate Appraiser and Analyst*, 56, no. 2, 1990. 25-35.

Kennedy, Peter. 1984 "On an Unfair Appraisal of Vertical Equity In Real Estate Assessment." *Economic Inquiry*, 22,1984. 287-290.

Kochin, Levis A., and Richard W. Parks. 1982 "Testing For Assessment Uniformity: A Reappraisal." Economic Inquiry. p.27-54.

Krantz, Diane P, Robert D. Weaver and Theodore Alter. 1982 "Residential Tax Capitalization: Consistent Estimates Using Micro-Level Data." *Land Economics*, 58, no. 4, p. 488-497.

Massey, Douglas S., 1996. "The Age of Extremes: Concentrated Affluence and Poverty in the Twenty-First Century." *Demography* 33,4,395-412.

McCluskey, Plimmer and Connellan. 1998 "Ad Valorem Property Tax: Issues of Fairness and Equity." *Assessment Journal*: Chicago May/June.

Meyer, C.W. 1965. "Geographic Inequalities in Property Taxes in Iowa, 1962. *National Tax Journal* 19:388-397.

Miles, Mike E. and Charles H. Wurtzbach. 1987. *Modern Real Estate, 3rd ed.* New York: John Wiley and Sons.

Mish, Frederick C. 1998. *Merriam-Webster's Collegiate Dictionary*, 10th ed. Springfield: Merriam-Webster, Incorporated.

Newsome, Bobby A. 1990 "Uniformity in Property Tax Assessments: A Tale of Two Counties." *Real Estate Appraiser*, 56, no. 2, p. 64-67.

Odland, John. 1988. "Spatial Autocorrelation." *Scientific Geography Series*. Vol. 9: Sage publications

Odland, J. and B.Balzer. 1979. "Localized Externalities, Contagious Processess and the Deterioration of Urban Housing: An Empirical Analysis. *Socio-Economic Planning* 13:87-93.

Oldman, O. and H. Aaron. 1965. "Assessment – Sales ratios Under the Boston Property Tax. *National Tax Journal* 18:36-49.

Paglin, M. and M. Fogarty. 1972. "Equity and the Property Tax: A New Conceptual Focus." *National Tax Journal* 25:557-565.

Pigozzi, Bruce W. "Assessment Ratios in Lansing, Michigan: Micro-Spatial Variations in Property Taxes" 1995.

Ramenofsky, Samuel D. 1990 "The Appropriate Confidence Interval for the Weighted Mean in Assessment Ratio Studies." *Property Tax Journal*, 9, no. 3, p. 173-178.

Rodda, William A., 1992. "Appraisal Uses of GIS." Assessment Digest 14, no. 3.

Rubin, Marilyn and Fran Joseph. 1988. "The New York City Property Tax: A Case Study in Structural Change and Administrative Response." *Property Tax Journal*, 7, no. 1, p. 85-101.

Ryan, John F. "Comments on Eichenbaum and Pearl, Assessment Information: Raw Resource in the Municipal Jungle."

Schemo, Diana Jean. 1994. "Suburban Taxes Are Higher For Blacks, Analysis Shows." The New York Times, 17 August.

Sirmans, G. Stacy, Barry A Diskin, and H. Swint Friday. 1995. "Vertical Inequity in the Taxation of Real Property." *National Tax Journal*, XLVIII, no. 1. p. 71-84.

Sunderman, Mark A., John W. Birch, and Thomas W. Hamilton. 1990. "Components to the Coefficient of Dispersion." ???? p. 127-139.

Sunderman, Mark A., John W. Birch, Roger E. Cannaday, and Thomas W. Hamilton. 1990. "Testing for Vertical Inequity in Property Tax Systems." *The Journal of Real Estate Research*, 5, no. 3.

Thrall. I. G. 1979a. "Public Goods and the Derivation of Land Value Assessment Schedules within a Spatial Equilibrium Setting." *Geographical Analysis* 11:23-35.

Thrall, I. G. 1979b. "Spatial Inequities in Tax Assessment: A Case Study of Hamilton, Ontario." *Economic Geography* 55: 123-134.

Thrall, I. G. 1981a. "Taxation and the Consumption Theory of Land Rent." *The Professional Geographer* 33:197-207.

Thrall, I. G. 1981b. "Dynamics in the Structural form of Property Taxes." *The Professional Geographer* 33: 450-456.

Thrall, I.G. 1993. "Using a GIS to Rate the Quality of Property Tax Appraisal." *Geo Info Systems* 3, no.3: 56-62.

Tirtiroglu D, and JM Clapp. 1996. "Spatial Barriers and Information Processing in Housing Markets: An Empirical Investigation of the Effects of the Connecticut River on Housing Returns." Journal of Regional Science, 36, no. 3.

Twark, Richard D. and Roger H. Downing. 1990. "Bias in Equalization or Market Value Estimation by Using the Inversion of the Mean Assessment-Sale Price Ratio." Property Tax Journal, 9, no.3, p. 187-198.

U.S. Bureau of the Census. TIGER File Street Index; City of Lansing, MI. Available http://ESRI.com, 1990.

Wills, David R. 1998. "Developing a Rural Cadastre GIS Model For Commercial and Residential Property Assessment in Marshall County, Kentucky." *Assessment Journal*, 5, no. 1, p. 65-72.

Wofford, C.E. and Grand Thrall. 1997. "Real estate Problem Solving and Geographic Information Systems: A Stage Model of Reasoning." Journal of Real Estate Literature, 5, no.2, p. 177-201.

