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Abstract

AN ANALYTICAL METHOD FOR PREDICTION OF CHATTER STABILITY IN A

BORING OPERATION

By

Mukund Rajamony Iyer

An analytical method for the prediction of chatter stability in boring is developed.
The dynamics of the boring process is obtained by combining a mechanistic cutting force
model with the structural dynamics of the boring bar. Chip regeneration in the axial
direction has been given importance in the dynamics of the process. Friction is not taken
into account and the system is assumed to be linear. The chatter stability analysis is based
on a delay-differential equation model. The solution of the first order characteristic
system of this equation is used to compute the chatter stability lobes of the machining
process. This model can be used to quickly compute the chatter stability of a multi-insert
boring operation. The results obtained from this method are compared with time domain

simulations and experiments.
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direction

Axial Cutting force coefficient
Radial Cutting force coefficient
Tangential Cutting force coefficient
Number of inserts

Time period at a point between successive inserts
Depth of cut

Dynamic feed

Static feed

Revolutions per minute of the cutter
Chip regeneration in axial direction
Chip regeneration in radial direction
Insert angle with respect to y-axis
Angle between successive inserts
Lead angle of the insert

Chatter frequency
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Chapter 1: Introduction

Section 1.1: Machining of Metals

Machining of metals has been studied extensively over the last hundred years, the
focus primarily being on reduction of machining costs and a pragmatic approach to the
manufacture of parts of acceptable dimensional accuracy and surface quality. Metal
cutting phenomena were visualised and published as early as 1945 by Merchant [1].
Three important reasons define the necessity to develop a predictive theory for the metal
cutting process [2]:

e A predictive metal cutting theory would be beneficial to process planners by
providing sufficient knowledge of process efficiency.
e A predictive metal cutting theory would be beneficial to the tool designers, producers,

and users, as it constitutes a proper basis for making right decisions.



e A predictive metal cutting theory would benefit designers and users of machine tools
by providing them with real process parameters such as cutting forces, heat

generation rate and energy consumption.

Boring, drilling, facing, milling, reaming and turning constitute the machine tool
operations widely used in industry. Boring, drilling and reaming are generally the
processes for producing internal cylindrical surfaces, i.e., holes of moderate accuracy in
terms of position, roundness and straightness. These processes are typically done on
engine lathes or milling machines, in addition to specialized tools on a transfer line.
Drilled holes are often used for mechanical fasteners like bolts or rivets. Drilling a hole is
a preliminary step for processes like tapping, boring or reaming. Internal cylinders of
moderate accuracy are produced by drilling and high accuracy internal cylinders are
produced by boring, in both cases the feed motion is axial. Turning and facing are lathe
processes which involve using a single cutting edge with specified geometry in constant
contact with workpiece to remove material. Relative motion is achieved by rotating the
workpiece. Due to this relative motion, the tool either moves parallel or normal to the
axis of rotation making lathes the best at producing surfaces of revolution. The sides of
an external cylinder are produced by turning when the feed motion is parallel to the axis
of rotation. The ends of a cylinder are generated by facing, where the feed motion is
radial and normal to the axis of rotation. Milling machines are extremely productive as
they employ multiple cutting edges as opposed to single cutting edges.The cutting speed
is generated by rotating the cutter and moving the workpiece in a plane normal to the axis

of spindle rotation. Milling processes are used to produce contour and planar surfaces.



Common types of milling are face and end milling [3].

Section 1.2: Machine Tool Vibrations

Due to inherent stiffness and damping properties of a tool and workpiece,
vibrations during the cutting process are a common occurrence. Machine tool vibrations
have been widely studied and a lot of progress has been made in order to suppress
unwanted vibrations occurring during the operation. Machine tool vibrations are a very
important problem in the manufacturing industry. Undesired vibration may lead to
problems, viz., poor surface finish, tool wear and noise on the shop floor resulting in a
loss of productivity. An operation displaying any or all of the symptoms above is said to

chatter.

Chatter is a nuisance to metal cutting and its effects are adverse. Chatter effects
surface finish, dimensional accuracy, tool wear and machine life. Surface finish
undulations are generally defined as chatter marks. Velocity variations on the tools due
to imbalance in the drive system, servo instability or stick slip friction, can result in

periodical variations in the surface finish.

However, forced vibrations and self-excited vibrations are the major sources of

chatter. Forced vibrations can be attenuated by reducing the driving force and/or the

dynamic compliance to permissible values.



Many theories have been propounded to analyze self-excited chatter.
Advancements in machining speed and machining of thermal alloys have resulted in the

want of a better understanding of self-excited chatter [4].

Section 1.3: High Speed Machining

The speed range of a machining process is measured by the DN number. DN is
defined as the product of the diameter in mm and the spindle speed in rpm. DN is closely
related to the surface cutting speed which is of the form

v=7DN, M
where

D= is the cutter diameter, (m)

N= is the rotational speed of the spindle, (revs/sec)

Smith and Tlusty [5] showed that for a tool of diameter 25mm and dominant
natural frequency 1000Hz, low range machining speed extends upto 2300 rpm, mid range
between 2300 and 7500 rpm and high range extends beyond 7500 rpm. The upper limit of

mid range machining is where the tooth passing frequency is 1/4™ of the natural
frequency.

There have been many instances in machine tool operations where large quantities

of material had to be removed, especially in milling. Advances in tool materials have

made it possible to reduce time by high-speed milling. Generally, high-speed machining



ranges between spindle speeds of 7,500 and 50,000 rpm for the same tool described
above. High speed machining leads to the employment of large axial and radial depths of

cut paving the way for dramatic improvements in metal removal rates [6].

Mid range machining varies from speeds of 2300 rpm to 7500 rpm. It was shown
that mid range machining did not have any process damping effects as in low speed
machining [5]. Process damping will be discussed later. A stability chart shows the
maximum depth of cut or feed a machining operation can undergo without chatter for a
given spindle rpm. A typical stability chart is shown in Fig.1. The stability lobes shown
here mark the boundary between stable and unstable cuts of operation, the area below the
lobes representing stable operation zones and the area above, unstable operating zones. It
can be seen from the figure that there are many stability lobes in the given range of speed
and, given sufficient power, the operation can be suitably tuned to machine larger depths
of cut or feed, thereby making the process more and more efficient. Tlusty and Zaton [7]
showed that the mid-range asymptotic stability limit was fairly constant and the machine
operation could be improved by spindle speed variation and non-proportional tooth

spacing. Our focus, in this work, lies on mid range and high speed machining.

In high speed machining, the stable depth of cut depends very strongly on the
spindle speed. It also displays a constant stability limit as in mid-range machining. It has
been observed that increases in metal removal rates can be obtained if the tooth passing

frequency is a fraction of the most dominant natural frequency.
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Fig. 1 A stability chart for a boring operation.

The goal of the work done here is to develop an analysis tool to generate stability
lobes for a boring operation quickly and reliably. A detailed statement of the problem is

given in the following chapter.



Chapter 2: Literature Survey and

Problem Description

Section 2.1: General Machining Operations

Early attempts were made to examine the effect of flexible supports on the modes
of vibration of a machine tool [8]. The goal of the analyses was to determine whether
these supports would isolate a vibration without causing the machine tool to chatter. The
force due the action of the tool on the workpiece was found to be a function of the
vibration amplitude and tool speed among other factors. When chatter occurs, this force
was such that the inherent damping of one of the modes was overcome and an oscillation
was sustained at a frequency not far from the resonance frequency of the modes. The
machine tool structure was assumed to be a collection of spring-mass systems, each
having a specific resonance frequency. Findings showed that the chatter frequency was

one of the frequencies whose peak was least damped. It was also shown that the tool wear



primarily depended on the chatter velocity. From their studies, it was concluded that
direct use of isolators would not help in vibration isolation and chatter simultaneously if

the frequencies causing chatter were low.

Following this, a theory was developed to compute the stability lobes of a
machine tool system [4]. However, this theory excluded the dynamics of the cutting
process. Chatter was reasoned out to be caused primarily by the dynamic stiffness of the
system. Merritt also claimed that chatter would be a minor problem if the damping ratios
of the most affecting modes was of the order of £=0.5. Merritt also suggested that this
theory, developed for the turning process, could easily be extended towards other

processes.

A model [9] was proposed for metal cutting analysis on a milling machine. The
model comprised of simple linear differential coefficients with perodic coefficients. The
model also took into consideration the rotation of induced forces. The equations were of
first order and were very convenient for stability analysis. A regeneration factor, p, was
introduced. The instantaneous chip thickness was now the sum of the nominal feed and
the total deviation in the chip thickness. The deviation is computed from the vibration of
the workpiece and the surface generated at that point due to the passage of the previous
tooth. From the model, it was concluded that chatter analysis was associated with the
stability characteristics of linear differential equations with periodic coefficients. Sridhar
also concluded that stability methods, based on frequency analysis, could not be used to

study chatter in milling operations.



Sridhar et al. [10] followed up with their previous theory and came up with a
stability algorithm for the general milling process. The algorithm involved the solution of
a transcendental equation by employing existing graphical solution methods. Sridhar used
a linear theory, which, in the past, was found to sufficiently accurate. The algorithm

presented an elegant technique for solving for more realistic models.

Tlusty and Zaton [7] used a time domain simulation approach to develop a better
understanding of milling stability. Many previous assumptions, such as uniform
orientation of all the cutter teeth, were abolished. The theory showed that the gains in
stability were actually smaller than they were previously thought to be. However, time

domain simulations are very tedious and take a long time to predict a stability chart.

Smith and Tlusty [6] showed that the optimum speed of operating a milling
operation would be in the region of its natural frequency since the regeneration of
waviness on the surface, which causes chatter stability, inhibited the development of
forced vibrations. Subsequent work by Smith and Tlusty [11] resulted in the development
of a control system to adjust the spindle speed and the feed rate automatically to achieve
stable milling. Other algorithms employed to study stability were Peak to Peak Diagrams

of forces, deflections or surface finishes [12].

A new method for the prediction of chatter in milling was propounded by Minis

and Yanushevsky [13]. The dynamics of the milling process were described by a set of



differential equations with time varying periodic coefficients and time delays. The
resulting characteristic equation was of infinite order and its truncated version was used
to determine the limit of stability by employing standard techniques of control theory.
Excellent agreement with previous experimental results was the validity of the proposed

stability method.

Based on transfer functions of the structure of the cutter workpiece contact zone,
and the static force coefficients, a new analytic method was presented to predict the
stability lobes in the milling operation by Altintas and Budak [14]. This analysis showed
that frequency domain simulations could be performed on the milling operations. The
method was shown to yield the stability diagram much faster, and of the same accuracy
or better, compared to conventional time domain methods, used in the past. The method
was based on the formulation of dynamic milling with regeneration in the chip thickness.
The theory was robust and was able to incorporate time varying modal parameters into its

algorithm.

Tlusty [15] suggested that in the case of high speed machining operations, tool
dynamics could be effectively manipulated to get the best out of the spindle. Chatter was

also found due to the varying flexibility of the workpiece during machining.

High speed machining became a very economically significant process. Smith and

Tlusty [5] discussed how attempts to make practical use of high speed machining led to

developments in tool materials, spindle and machine design, chatter avoidance and

10



structural dynamics of machine tools to name a few.

Chen, Ulsoy and Koren [16] presented a computational stability analysis for
turning. The solution scheme was simple since the characteristic equation simplified to
the solution of a single variable. It was also suggested that this method could be
employed for other machining processes, as long as the system equations were expressed

as a set of linear time-invariant difference differential equations.

Rao and Shin [17] presented a model of the dynamic cutting force process for the
three-dimensional or oblique turning operation. The methodology involved linking the
mechanistic force model to the tool-workpiece vibration model. Cross coupling between
radial and axial states was paid particular attention to as this inclusion was believed to be

important in predicting the unstable-stable chatter phenomenon occurring due to non-

linearity in the process.

More recently, Bayly, Halley and Young [18] came up with a quasi-static model
for reaming. This model neglected inertial and damping forces, but included regeneration
and rubbing effects. The eigenvalue solution was found to closely resemble the tool
behavior seen in practice. The same authors also came up with another simulation of

radial chatter in drilling and reaming [19].

11



Section 2.2: Boring

Boring bars are metal cutting tools that are used to bore deep precise holes in a
variety of manufacturing operations. These cutting holes are used after a hole has already
been made from a drilling operation. The boring bar is characterized by a large length-to-
diameter (L/D) ratio. The boring bar is clamped at one end by a tool holder, and has a
cutting insert at the free end. The cutting insert at the free end is used to cut the metal in
the bore of the workpiece to a close tolerance. The cutting operation is achieved either by
keeping the boring bar stationary and moving the workpiece or vice versa.

A boring bar is characterized by a low transverse dynamic stiffness. Hence, it is
susceptible to excessive mechanical vibrations in the transverse direction. Merritt [4] had
earlier shown metal cutting processes, including boring, as a closed loop feedback
system. This system can be explained from the fact that the motion of the tool in the

previous tool pass affects the force acting on the cutting tool in its current pass.

Until recently, most of the machine tool operations were developed for milling
and turning, as discussed before, and suitably modified for boring. Few theories were
built specifically for the boring process.

One early study by Anshoff [20] was in the field of chatter suppression. Anshoff

concluded that there were two ways to suppress chatter. One was to fit an absorber on the

12



boring head. The second method was to utilize certain bar materials of high damping

capacity such as manganese copper.

Chatter free machining was reported if the longitudinal flats were machined on
the bar and a suitable position was selected for the cutting tool in the boring head. The
depth of the cut was analyzed to be sensitive to changes in the angle of the tool with

respect to the plane of the flats (lead angle) [21].

Parker [22] showed that boring could be well modeled if the penetration rate
effect (or the dependence of the forces on the velocity of the tool) was considered. The
force due to this effect was proportional to the process damping constant. However,
recent research has revealed that process damping, talked about previously, assumes an
important role only in low speed machining and has very little or no effect in mid-range
and high speed machining. Parker concluded that tangential vibrations were an important
consideration at certain head angles as their exclusion caused serious problems to the

simulation.
Rivin [23] suggested a structural optimization approach to improve the dynamic
stability of the boring bars with long overhangs. Little effort was made to simulate

stability charts of boring operations.

Kapoor et al. [24] developed an elegant mathematical model based on dynamic

equations in which chip regeneration was an important parameter. The model involved

13



development of a transfer function, which made it not only possible for predicting boring
bar chatter but also predicting the generation of irregularities on the surface. The
formulation eliminated chip regeneration from the feedback path in the closed loop
system, thereby greatly simplifying the simulation. Zhang and Kapoor [25] followed this
method with particular attention to tangential vibrations. The simulations yielded good

results with some discrepancies in the stability lobes.

Tewani et al. [26] suggested the boring bar to be extremely susceptible to chatter
owing to its cantilever type structure which reduced its dynamic stiffness in the
transverse directions. He suggested that chatter free boring bars are typically of the

overhang ratio 4.5 and less.

Recently, Li, Ulsoy and Endres [27] showed that there exist differences between
stationary and rotating bores. The work was primarily focussed on regenerative chatter
due to tool rotation. Stability lobes varied for stationary and rotating bores. Qualitative
explanations were given without mathematical proof to show the discrepancies between

exact and approximate solutions, especially at low spindle speeds.

The regeneration term (the increment or decrement in material removal rate due to
the difference between the current and previous insert depths) affects the stability limit.
The proposed analysis is for high speed and mid range machining. Since the feed rate is
much slower than the speed range of the boring process, full chip regeneration in the

axial direction of the boring bar is assumed, i.e, p=1.

14



Several analytical methods have been used in the past to compute the stability
limits [4, 13, 28]. It is possible to linearize the non-linear cutting force model and use the
linear model to compute the chatter stability limits. However, these linear models are
only accurate close to the region of linearization and will introduce errors if extrapolated
over wide ranges [27, 29]. The assumption of no nose radius implies that the analytical
results can be applied to tools where the depth of cut is significantly larger than the nose
radius. Analytical models which include the effect of nose radius and depth of cut
variations have been overcome in recent work by Ozdoganlar et al. [28]. These methods
can be incorporated into the present analytical method to make the model more
comprehensive. The analytical model proposed in this work provides a quick means to
estimate the stability limits. Emphasis is laid on vibrations in the feed or the axial
direction. If a detailed analysis is required, then the more accurate time domain

simulation can be performed.

Section 2.3: Problem Description

This work aims to develop a simple analytic method for the prediction of chatter
limits in a boring operation. The eigen-value method developed by Altintas [14] for
milling has been extended towards the boring operation. The boring bar is assumed to be
stationary while the workpiece rotates. Certain assumptions have been made in view of

previous experiences in analysing similar machine tool operations.

15



e Properties in the X, Y and Z directions have been considered and incorporated into the
equations. Though the tool is considered stiffer in the axial directions, properties have
been included as they have an effect on the analysis. Torsion effects have been
neglected.

e The cutting forces are assumed to be linearly dependent on the depth of cut and the
feed, thereby linearly proportional to the chip area.

e Cutting coefficients are treated to be constant for the range of spindle speed
considered. The spindle speed we are concerned with is between 3,000 and 15,000
rpm. Hence, coefficients related to penetration rate and velocity variation have been
removed to make the analysis simple.

o The structure is assumed to be linearly and proportionally damped.

e The tool lead angle has been taken into account, but no nose radius has been used.
However the theory can be easily extended to incorporate nose radius changes.

o The inserts are spaced at equal angles and the inserts are equally distant from the
center of the boring bar.

e Extreme cases of boring resulting in no contact between tool and workpiece have

been neglected in the simulation.

The work is organized as follows: The Theory section describes the method of
analysis. Following the theory are the results obtained using the formulation developed in
this work. The formulation is compared with a time domain simulation. Models are also

verified with experimental results. Application of the theory is discussed in the

16



Discussion part. A brief summary follows the discussion. Scope for possible future work

is also discussed at the end.

17



Chapter 3: Theory

Section 3.1: Introduction

A boring bar as described previously, is a tool with a large length-to-diameter
(L/D) ratio. L/D ratios vary typically from 2 to 9. A simple diagram of a boring bar is

shown in Fig. 2.

Boring Bar z
Fig. 2 Schematic of a boring operation

18



The above figure is a model of a 2 insert boring bar. The boring bar is assumed to
be irrotational and feeding in the negative Z direction. For the insert shown, f; and f; are
the radial and tangential forces experienced by the tool during the cutting process. In
addition to this, the tool also experiences an axial force f,, in the positive Z-direction. The
radial and tangential forces, shown in fig. 2, are on the X-Y plane. The workpiece is

assumed to rotate in the problem of our concern.

If the bar is assumed as a perfectly uniform beam free at the loaded end and

clamped at the other, the static stiffness for the bending motion is given by
K, =—, M)

where,
E= modulus of elasticity, N/m’
I= transverse moment of inertia in the x direction, m*, and

L= length of the beam, m

Clearly from Eq.1, it is evident that the longer the boring bar, the more weaker it
is in the transverse directions. This weakness in transverse stiffness is a primary cause for

chatter.

19



_— P Workpiece
Static depth of cut, d,
by >
Direction of feed, f;
Y
Z

Fig. 3 Single insert workpiece interaction

The movement of the boring bar in the negative Z-direction is called the feed as
shown in Fig. 3. A detailed diagram of a Y-Z section of a single insert boring operation is
shown in the Appendix A. Feed is typically expressed in mm/rev or mm/sec. The
instantaneous feed rate is obtained as the sum of the static feed rate, the projection of the
current vibration in the direction of the feed, and the projection of the previous vibration
(imprinted on the workpiece surface) in the direction of the feed. The static feed rate, f; is
defined as the feed rate with which the operation begins. Hence, the instantaneous feed

for the i**-cutting insert can be represented by the following equation:

fi = f. + Bz + Artan(g), (2

where,

20




Ar = xsin(¢,) + y cos(8,) - x, sin(¢, - 4,,.) — ¥, sin($, = @,,.), 3

po=z-12, @

x, y, and z are the deflections of the cutter at time ¢ and xy, yo, and zy are the deflections of
the cutter at time ¢-7,, i.e., one revolution before. T defines the period of revolution of the
workpiece, the inverse of which multiplied by 60, gives the workpiece rpm. At the time #-
T, the workpiece was at an angle ¢-@,. to the Y-axis. It must be noted that the angle, ¢, is
the angle of the current insert with respect to the Y-axis and the angle, @ - @, is that of
the previous cutting insert. This is different from the turning and milling operations

where the angle, ¢, is used for both [14].

Since there exists a possibility of the tool overlapping part of the surface
previously cut, a regeneration parameter, u is introduced in Eq.4. In the case of spiral
cutting as observed in a threading process, the previous tool position has no relation to
the present position. Hence p is assumed to be 0. The feed of the system is slow as
compared to the machining speed concerned in our analysis. Owing to this, a large
portion of the tool tip machines the same surface in the axial direction for a number of

revolutions of the workpiece. Therefore, the regeneration factor u is assumed as 1. The

21



regeneration direction of the boring bar is in the axial direction since the tool is moving in

the Z-direction.

The radial position of the tool tip with respect to the workpiece in the radial
direction is defined as the instantaneous depth of cut. For this analysis, the depth of cut is
a parameter to be found. When looking at linear stability, we consider either (a) purely
linear systems or, (b) small deviations from equilibrium, which would not involve the
machine tool leaving the cut. Hence, the extreme case where the tool insert exits cut, i.e.,
the tool does not touch the surface of the workpiece (a clear case of chatter) has been left
out. Time domain analysis can be used to predict exactly and speeds and the feed where
the tool inserts exits cut. This phenomenon is regarded as tool run out. The instantaneous
depth of the cut for the i insert is represented by di. A boring process typicaﬂy moves in
the feed direction, hence, the dynamics are assumed to be primarily in the feed direction.
Dynamics in the depth of cut direction have been omitted since our main focus of interest
lies in the axial direction, which is also the feed direction. Fig.3 shows a typical case of

tool dynamics indicating a static depth of cut, the direction of feed and the lead angle.

Eq. (2) also shows the effect of lead angle on the feed. The vibrations in the X and
Y directions affect the feed in the Z-axis [30]. The lead angle is defined as the angle made
by the tool as shown in Fig. 3. Lead angles are typically from —20 to +20 degrees for

boring bars [31]. The lead angle is shown in Fig.3.
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Section 3.2: Cutting Force Model

We assume that each insert i is oriented at angle ¢ to the Y axis. The inserts on

the tool are spaced equally apart. The forces on a single insert is given by

t, K,
Lot = K A ®)
fo), Ka

Eq. 5 takes into account only the dynamic chip area. The dynamic chip area is

defined as below:
A =1d - /.4 (6)

The dynamic chip area for the i™ insert is defined as the difference between the
instantaneous chip area and the static chip area. The static chip area does not influence
the dynamics of the system and therefore is removed from the analysis. The static chip

area does not result in tool chatter. The depth of cut is a parameter to be found.

K, K, and K, are cutting coefficients in the tangential, radial and axial directions
respectively. Cutting coefficients are found by running experiments in the static cutting
region and evaluating forces that occur in the tangential, radial and axial directions. The
forces are then divided by the chip area of the cutting process to obtain cutting

coefficients. Hence the involvement of the static feed occurs only the evaluation of the

23



cutting coefficients. This evaluation of the cutting coefficients is valid only in the stable
zone of operation, where vibrations to the tool are damped out and stabilized. Cutting
forces are approximated as linear functions of static feed and the static depth of cut only
for mid-range and high speed machining processes. For low speed machining processes,
the forces are not a true linear function of the feed and the depth of cut. Therefore,
prediction of cutting coefficients is difficult to make. This analysis assumes linearized

cutting coefficients. More on cutting coefficients is discussed in section 3.7.

Using Eqgs. 2, 3, 4 and 6 into Eq. 5, we obtain

f Kdtan(g) Kd
J. ¢ =1Kdtan(¢) K.d [ Az] @)
f) \K.dtan(g) K.df
< >
C

The matrix C contains the cutting coefficients. The forces experienced by each

tool insert can be conveniently transformed in the global X, Y and Z directions by the

following expression:
F, —cos(d) -sin(6) O |f f
F,} =| sin(4) -cos@) O f @®)
F,| 0 0 -1 /&),
<+ 4
Tr
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Tr, in the above equation is the transformation matrix. In order to compute the
chatter stability limits, it is assumed that the system is vibrating at the chatter frequency,
. The chatter frequency is simulated over a range of frequencies. Altintas [14] used a
frequency range of 'z the lowest modal frequency to 2 times the highest modal frequency
of the tool in his analysis. It was argued in his analysis that the chatter frequency is found
in the range of the modal frequencies of the tool of operation. Our analysis intends to do
the same. The system is also assumed to be harmonic, i.e., the deflections at the cutter at
time ¢-T are obtained by multiplying ¢’ to the deflections at the cutter at time ¢. T is
defined as the tooth passing period, the inverse of which is called the tooth passing
frequency. This frequency is also equal to the rps of the workpiece multiplied by the

number of inserts or teeth, N on the tool. Writing in matrix form we have,

X, x
Yor=1yte"” )]
V4 V4

This expression represents synchronous periodic motion. Later we will find
conditions that allow for periodic motion. This will represent the transition between
stable (exponentially decaying) and unstable (exponentially growing) regimes. Eq. 7,
along with Egs. 3 and 4, shows the dependence of the axial, radial and tangential forces
on an insert tip to be dependent on the X, Y and Z vibrations of the boring bar at time ¢
and the x,y,z vibrations of the insert at a previous time ¢-T. The x,y,z vibrations of the
insert are the same as the surface undulation on the workpiece. The term i@ is represented

also by the Laplace transform variable s.
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Eqgs. 3 and 4 can be rewritten into a single matrix equation using Eq. 10 as:

{Ar}= sin(6,) - e’ sin(6, —6,.) cos(8,)—e™ cos(6, -8,,.)
Az 0 0

0 X
l_e—inﬂ] y (10)
V4

< —>

Note the restriction of periodic motion is incorporated into P.

Section 3.3: Structural Dynamics Model

The vibrations in the X, Y and Z directions can be computed from the forces by
using the transfer function matrix. In the Laplace transfer frequency domain, the

expression governing this relation is given by:

x(s)) [Gu(s) G (s) G.()|(Fi(s)

W) =1G,(s) G, (s) G,.(s)[F,(s) 1n
z(s)] | Ga(s) G, (s) G.(s) || F:(s)
< |
G(s)

The forces Fi(s), F(s) and Fy(s) represent the Laplace transform of the forces

exerted on the cutting tool due to the interaction of all the inserts with the workpiece. In
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mathematical terms, the forces in the time domain are computed by summing up the

individual forces exerted on each insert as shown below in Eq. 12.

F) [F
F,1=X1F, (12)

Eq. 11 has a transfer function matrix G(s). Element G(s) is the transfer function
between the deflection in the i* direction due to the force in the j* direction. There could
be a possibility of more than one mode existing in a particular direction influenced by a
force in another direction. Merritt [4] showed the importance of using transfer functions

in machining operations. Element G,(5) can be written mathematically as

numberof mod es
= % ( m, } (13)

n=l| S2 + zénwn(s) + (03
The mass (m,), damping ratio (&) and frequency (a,) are the n” modal
parameters of the dominant modes in the i direction influenced by the force in the j*
direction. Elements Gy, G,, and G.. are known as the direct transfer functions. The rest

are known as cross transfer functions.

It has been observed that direct transfer functions are more influential in the
transfer function matrix and the cross transfer functions are smaller in magnitude

compared to the direct transfer functions. Hence, for simplicity, the cross transfer
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functions are eliminated. Eq. 11 is rewritten as

x(s) G_(s) 0 0 F_(s)

)= 0 G, (s) 0 [{F(s) (14)
z(s) 0 0  G.(5)|F.(9)
Section 3.4 Formulation

Egs. 7, 8, 10 and 12 are combined in Eq. 14 to give

X X
yi=[G13[rrIcIPk ¥ (15)
z =l z

The problem has two parameters, the depth of cut d and the tooth-passing period
T. The preceding formulation is restricted to synchronous harmonic motion. Matrix P
incorporates this restriction. Indeed, such a response representing the transition between
stable and unstable cutting can occur under specific circumstances, for which Eq. 15 has
a non-trivial solution. We can determine these circumstances by solving for d and T. The

non-trivial solution to Eq. 15 is possible if the determinant

II - [G]g[TrICIPi =0 (16)
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Eq. 16 is a characteristic equation used to solve for two variables, T and d. The

fact that d, the depth of cut, is a real number is made use of in finding the solution for 7,

by setting the imaginary parts of d to zero.
Section 3.4.1: Single Insert Boring: N=1

We assume the insert to be aligned along the Y-axis, i.e., 6,=0° Also since there
is only one insert, 8,~360°. Each element of Eq. 16, Tr, C, P and G can be determined

separately and put back into Eq.16 yielding the characteristic equation
1+ K, d(1-e"")G_ + K, dtan($)G,,(1-e"")=0 (17)

Eq. 17 does not involve G,(s), i.e., the transfer function in the X-direction related
to the Force in the X-directon. It was earlier assumed that the insert was located on the Y-

axis. G (5) plays a role in Eq. 17 if the insert is located on the X-axis. Substituting
A=1-¢" (18)
into Eq.17, the depth of cut can be solved as

1 1
2'Re(K,,G., + K, tan(4)G, )

(19)
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and T can be solved from the expression,

Cot(%r) = 2dIm(K,, G_ +K, tan(4,)G,,) (20)

The spindle speed is then obtained by using the expression
Q= ) (21)

N being equal to 1 in this case.
Section 3.4.2: Twin insert boring, N=2
In the case of twin insert boring, Eq. 16 involves a summation of the interaction

between both the inserts. The inserts are placed such that §,=0°, 6=180°and 6,,~180°.

Eq. 16 is simplified to obtain a determinant,

1 2Kdtan(4)G,(1+e") 0
142K dtan(¢)G,,(1+e™) 0 =0, (22)
0 0 1+2K,_dG_(1-e™")

Once again, Gi.(s) is absent because the inserts are aligned along the Y-axis. The

analysis therefore shows that transfer function in the X-direction do not have an effect on
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the solution of our system. However, it is also observed that the modal parameters in the
x and y directions are very similar and therefore, will affect the solution in a similar way.
Two solutions arise from the solution of the determinant shown in Eq. 22. The first
solution is solely dependent on the axial cutting coefficient and the axial modal
parameters. The second solution involves the lead angle ¢ and modal parameters in the y
direction. Each of these solutions for the depth of cut d have a corresponding spindle

speed (2. The lowest depth of cut corresponding to a speed is considered for the stability

plot.
Solution 1: Eqn. 22 is satisfied if
1+2K,dtan(¢)G,,(1+e")=0 (23)
Eq. 23 can be solved, bearing in mind that d can only be real. The solution for d
would then be

d= L ! , (24)
tan(g)| 4.Re(G))

and the solution of 7" can be obtained from,

tan(%T}zdlrn(—zK,dtanw,)Gw) (25)
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The spindle speed can be computed from the time T by employing Eq. 21.

Solution 2: Eqn. 22 is also satisfied if

142K _dG_(1-e")=0 (26)
from which, the solution for d is,
1
d=——+«——, 27
4K, .Re(G,)
and T can be obtained by solving,
oT
coz(—z—) =2dIm(2K_G_) (28)

Again, the spindle speed, €, is derived from T using Eq. 22. The data obtained
from Eqgs. 26 thru 29 are charted and the lowest positive depth of cut for a particular

spindle speed is selected as a stability limit.

Eqgs. 19 and 27 show the strong dependence of the axial parameters on the depth
of cut. The dependence of the stability boundaries on axial parameters is the main thrust

of this work
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Multi-insert solutions can also be obtained from the analytic method. However
experimental data for chatter stability of multi insert boring bars is yet to be found to

validate the theory.

Section 3.5: Time Domain Simulations

Simulation of machining operations for a certain number of revolutions at a given
range of speeds and depths of cut is known as time domain simulations. Time domain
simulations are very accurate. However, these simulations must be performed for each
value of depth of cut and speed. Hence, the time taken to plot a stability chart is large.
Analytic methods are preferred to time domain simulations when time is a constraint. The
time domain simulation algorithm is a general algorithm that can also be used for boring
processes. In operations such as milling, facing and turning, there are entry and exit
angles, i.e., angles where the insert enters and exits cut every time the tool bar rotates. In
the case of boring, the insert is always removing material and actually does not enter and
exit the cut at any time. Extreme cases of insert run-out due to excessive vibration have

been neglected, as these cases are a sure example of chatter.

The time step or the angular increment of the tool rotation depends on the speed
of operation. Jayaram, 1997 [32] showed that the angular increment should satisfy the
inequality n/(0,*10) > 60*0ins/(Q2*360). This means, Oinc < Q*6/(20*f,). The smallest
angular increment required for Q = 1000 rpm and £,=500 Hz is 0.6°. Hence, a value of

0.5° was used for these simulations.
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The algorithm was used to work on 10 passes or 10 revolutions of the workpiece

over the tool. Therefore, for example, an operation for 5000 rpm was simulated for 2 ms.

Forces in the X, Y and Z directions were plotted for the simulated time and the
system was said to chatter if the forces were observed to grow. This phenomenon of
growth in forces could be readily observed in a single insert boring bar. In a multi insert
boring bar, due to the symmetry of the forces in the simulation, the resultant forces acting
on the structure is minimal, causing no excitation of the structure. This phenomenon
could be observed in the force plot of a time domain simulation as shown in Figs. 4 and
5. An artificial spike is introduced which simulates a hard spot or a poor workpiece
material at a particular place. Then the force plot is observed after the introduction of the
spike. If this spike causes the vibrations to increase with time (become unstable) then this
condition is termed as chatter. The depth of cut was incremented in steps of 0.05 mm
until chatter was detected. The criterion for the detection of chatter is to determine if any
of the cutting forces, f;, f, or f;, or the dynamic feed rate increases with time after the first

few revolutions.

Section 3.6: Delay Differential Equations

Let us examine a simple case of a single insert boring. The insert is at angle 6=0°

with respect to the Y-axis. The forces then acting on the insert are
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£ b={Kkdtang) kd Y77

j; ths tan(¢l) ths :|
, (29)
fu) |Kud,tan(g) K.d )57

1 I\ 1 '\
[ 0.02 0.04 0.08 008 0.1 012
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Fig. 4 Cutting Forces for Twin Insert Boring Bar at 4500 rpm and 0.75 mm Depth of Cut.

Forces (N)
o

A1 1 l 'l 1
[] 0.02 0.04 0.08 0.08 01 0.12
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Fig. 5§ Cutting Forces for Twin Insert Boring Bar at 4500 rpm and 0.85 mm Depth of Cut.
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The forces in the radial, tangential and axial directins can be transformed to the
global XY and Z coordinates. With the aid of the modal parameters of the tool obtained
from impact hammer tests, the forces in the X,Y and Z directions can be used to compute

the dynamics of the tool. Therefore,

F. m_x+c, x+k.x -f
Fr=im y+c, y+ky,=1-1, (30)
F, S

m,z+c,z+k,z

Egs. 29 and 30 indicate that the forces are delay differential equations. These
equations contain delay in two parameters, y and z, and a single time delay of 7. A delay
differential equation is one in which the derivative of a parameter x at a time ¢ can be
expressed as a function of x (and its lower order derivatives) at time ¢ and at earlier
instants [33]. Delay differential equations appear in many fields such as physics &

engineering, biology, medicine and economics.

Let us consider a problem of the type

Y () +ay() +by(t - w) = f(1),t € [0,%0)

@31
y(0)=9(1),t € [-0,0]
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The first observation in trying to solve the above set of equations is to reduce it to

a sequence of ode’s.

y(O)+ay(t)= f(1)-bo(t - w),t € [0, 0]
y(0)=¢(0)

(32)

This method is then continued onto [®, 20], [2w, 3] and so on. In this way, an
approximate solution is achieved on a finite set {t;, ..., tn} with 0<t;<...<t,<o (together
with values for the derivatives from eq. 33). Using these values, an approximate solution

on the whole interval [0,0] is created by Hermite Interpolation with piecewise

polynomials [34].

Section 3.7: Estimation of Cutting Coefficients

Shaw [35] has worked on methods to estimate the cutting forces, thereby evaluate
the cutting coeffients. The forces are established in terms of the specific energy (u) since
this remain the same for a given work material. The cutting force in the direction of the
feed is assumed to approximately be equal to one half of the tangential force. The radial

force is typically neglected in the evaluation presented by Shaw.

The specific energy varies approximately with the undeformed feed as

(33)



The value of the cutting coefficient is approximately the value of the specific
energy of the system. Shaw has discussed elaborately showing the variation of the cutting

forces with complex chip formation and variations in cutting speeds.
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Chapter 4: Results and Discussion

Section 4.1: Measurements and Simulation

A single-insert and a twin-insert boring bar are used to validate the chatter
stability limits. A solid-carbide boring bar is used to remove stock from a hardened steel
material (AISIS1200 with Rc=57). The feed rate used for the cutting tests was 0.2032
mm/tooth and the lead angle on the tool was 2°. The linearized cutting coefficients in the
radial, tangential and axial directions were experimentally determined to be K,=5.5915e5
N/m?, K=5.4745e5 N/m?, and K,= 2.4382e5 N/m’ from static cutting tests. The boring
bar modal parameters were experimentally obtained using impact hammer tests. The
measured frequency response functions (FRF’s) are shown in Figure 6 and the estimated

dominant modal parameters are shown in Tablel.
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Table 1: Structural Dynamics of the cutter

on (Hz) | K(N'm) | &

X | 494.1 2.94¢8 |0.055

Y [472.6 |[2.64e8 |0.056

Z 14959 |3.06e9 |(0.049

Fig. 6 Experimentally measured Frequency response figures for the boring bar

Section 4.1.1: Single Insert Boring

The comparison of the analytical method and time domain solutions are shown in
Figure 7. From this figure, it can be seen that the difference between the asymptotic depth

of cut obtained using the time domain and the analytical method is less than 5%. The
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time domain solution is computed using a numerical Runge-Kutta solution technique.

It has been observed that cutting coefficients are fairly similar for mid-range
machining. Low speed machining involves cutting coefficients that are functions of speed
and depth. This analytic prediction is useful for machining processes where the speed
reduces changes in cutting coefficients. Hence, certain discrepancies in the time domain

and analytic predictions were observed.

1.1 * " \ v »
Analytic
1.05¢+ X %X X X X %X x X X %X X X x x X x Time Domain [{
1 XX X OX X X X X X X x X X X X X X x x x
E 0.95+ X x x %X x x x X % {
E
5
O 0.9t x X x x x x X x 1
K<}
£
g’ 0.85¢ x x| x x x x x g
0.8+ x x X x\ x
N
0.75+ X x x X x X x
0.7 : ' : s '
2400 2600 2800 3000 3200 3400 3600

Speed (pm)

Fig. 7 Stability chart for a single-insert boring operation.

Section 4.1.2: Two Insert Boring Operation

The same modal parameters were taken for a two insert bore and the stability
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tables calculated analytically was compared with the numerical time domain simulations
in Fig. 8. It was observed that the analytic simulation was able to capture the limits very

well.

Both figures 7 and 8 show a comparison between the results obtained from
analytical and time domain methods. With these stability lobes, a boring operation could
be altered suitably in terms of speed and depth of cut to move from an unstable region to
a stable region. Depths such as 0.7 mm in Fig.6 which is unstable at speeds close to 4100
rpm, could be increased to as high as 1.5 mm at 5000 rpm to achieve a stable depth of cut
and therefore increase the productivity. For e.g. if a boring operation required 3 passes at
0.7 mm depth of cut and 4500 rpm, it would require 2 passes if the speed were slightly
increased to 5000 rpm. However, this assumes that the machine operating the boring bar

has sufficient power to provide a speed range where the stability lobes play a crucial role.

1.1 » . .

Analytic
x Time Domain | |

xxxxxxxx

Depth of cut (mm)

.6 + - . !
2400 2600 2800 3000 3200 3400 3600
Speed (rpm)

Fig. 8 Stability chart for a two-insert boring operation.
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The modal parameters and cutting coefficients were used to predict the
consistency of time domain simulations with the frequency domain analytic technique
used here. Ideally, there should be no deviation between the time domain simulation
performed and the analytic method used. One source of error could be the time
integration step in the time domain simulation. Another source of possible error could
also lie in the anlaytic method which is based on the assumption that synchronous
harmonic motion occurs at the transition between stable and unstable cuts of operation.

No experimental tests were performed for the single and two insert boring bars.

Section 4.2: Measurements Done at NIST

An experiment was conducted at NIST to measure the depth of cut and the chatter
frequency of operation. Fig. 9 shows the experimental setup. The experimental setup
shows the operation of machining material from the outside of the circular workpiece
rather than the inside of the workpiece, which is a typical boring operation. The time
domain and frequency domain analyses can be used for this kind of operation. The
workpiece material was mild steel of the type AISI 10-45. Two single insert boring bars
were analysed. One was a short boring bar with an overhang of 110 mm from the face
holder and the other was a long bar with an overhang of 127 mm from the face holder.
An impact hammer test was performed for each of the tools to obtain the frequency
response functions. Based on the impact hammer tests, the acceleration transfer functions

were recorded. The hammer and accelerometer signals were amplified through a PCB
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model 482A17 4-channel amplifier and recorded using a Hewlett-Packard 35670A
dynamic signal analyser. A Kemo dual Variable Filter 10 m anti-aliasing filter of 2.5kHz
was used to prevent aliasing of higher frequencies. The calibration chart is provided in

Table 2. The Impact Hammer was a PCB 086C04.

The acceleration transfer functions were measured for a bandwidth of 6.4 kHz
with a frequency resolution of 4 Hz. From the transfer functions recorded, a matlab script
frf plot.m (Courtesy: Tony Schmitz, NIST) was used to plot the transfer function

magnitudes of the tool in the X, Y and Z directions.

Table 2: Calibration Constants

INSTRUMENT CALIBRATION | UNITS
Accelerometer SN 21208 9.684¢-4 V/m/s”
Impact Hammer SN 9775 1.240e-3 V/N

In order to prevent the chip from interfering with the accelerometers and causing

damage to them, the accelerometers were placed as close to the edge as possible.

Cutting tests were performed and acceleration time responses of the cutting action
of the tools were recorded on an oscilloscope. Time domain samples of the responses in
the three directions were recorded using a sampling time interval of 50 ps. The number of

samples was as large as 115,000 so as to collect time responses for as long as 6.75 s.



Fig. 9 Experimental setup

Section 4.2.1: Short boring Bar (110 mm overhang from the face holder)

In the first case, a single insert boring operation with a short boring bar of
overhang 110 mm from the face holder was taken. The insert was a CCMT 3252-F2 TP
30 type carbide insert with a TiN coating to improve wear resistance and tool life. The
accelerometer was placed on the boring bar as close as possible to the insert. Assuming

the boring bar to behave like a cantilever beam with an overhang, the accelerations in the

X, Y and Z directions were ii d by 10% to for the postitioning of the
accelerometers as shown in fig. 9. To reduce the effect of the nose radius, the cutting tests
were conducted with a depth of cut more than the nose radius. From the analysis of the
transfer functions, it was seen that the cross transfer functions have a very low magnitude

as compared with the direct transfer functions. The magnitudes of the direct transfer
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functions are shown in Figs. 10 through 12.

Using the magnitude and the phase plots, the modal parameters of the tool are
evaluated. For all practical purposes, a single peak frequency and its corresponding
modal properties are observed for a frequency. The modal properties in the X, Y and Z

directions are charted as shown in Table 3.
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Fig. 10 Magnitude of transfer function Ggy(s)
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Table 3: Modal parameters of the Short bar

oy (Hz) | K(N/m) 13

973.78 | 1.682¢6 | 0.0769

832.83 | 5.853e6 | 0.0760

844.0 1.603e8 | 0.0688

N[ N} =< X

1264.5 | 5.596¢e8 | 0.0199

Two frequencies in the Z-direction were observed. Both the frequencies have been
tabulated. The highest peak in the plot of transfer function Gx(s) has only been tabulated.
The appearance of the other peaks is due to misalignment of the accelerometer in the X-

direction which has therefore partially taken the responses of the Y and Z directions also.

Cutting tests were performed between the speed range of 900 and 4000 rpm.
Stable cutting depths were used to compute the cutting coefficients. A plot of the axial
accelerations recorded during a stable depth of cut operation of the short boring bar is
shown in fig. 13. Fig. 14 shows the axial accelerations for an unstable depth of cut. The
speed of revolution is 1980 rpm and the feed was 0.0141 mm/rev. Both the force plots
were observed for a time scale of 5.7 seconds using a sampling interval of 50 ps.
Acceleration data recorded in the X and Y directions show a similar trend. However, their

amplitudes were much different and lower than the amplitudes in the Z direction.
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Fig.14 Axial accelerations for unstable depth of cut 1.016 mm

An FFT analysis was done for each second of the acceleration plots. The analysis

showed a single frequency peak for the stable depth of cut. The peak frequency was 978
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Hz, which is closest to the modal frequency in the x-direction. The frequency remained
the same throughout the cutting operation. However, for the unstable case as shown by
Fig. 14, the frequency builds up harmonics as the operation enters unstable depth of cut.
The frequency also shifts from the stable frequency of 973 Hz to a frequency of 1297 Hz.

Harmonics of 1297 Hz were also found in the acceleration plots. FFT analysis plots are

shown in figs. 15 thru 18.
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Fig. 15 FFT analysis for the 1* second of stable cut operation
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The properties given in Table 3 along with empirical cutting coefficients obtained
from cutting processes between the tool and the workpiece (material AISI 10-45) were
considered. Linearized cutting coefficients were used between speed ranges of 900 and
4050 rpm. Fig. 19 shows the stability lobes for the short boring bar between 2800 and
3600 rpm. The lobes were cross verified with experimental data obtained by performing

cutting tests.

Table 4. Table of Cutting Coefficients

CUTTING COEFFICIENTS | N/MMA2

Radial (K,) 8.29¢8
Tangential (K,) 1.9029¢10
Axial (Kqx) 9.5¢9
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Fig. 19 Stability Lobes for the short boring bar

Experimental data was run in speed steps of 180 rpm. Around 3060 rpm, the
speed steps were reduced to 90 rpm. Further, the operation was done at speeds of 3015
and 3105 rpm, a change of 45 rpm from the spindle speed of 3060 rpm. Depths of cut
were run in steps of 0.005 inches starting from 0.03 inches. It can be observed from fig.
19 that the points observed through experiment were consistent with the analytic

prediction. The experiment shows the existence of stable regions between the depths of

cut of 0.75 and 1 mm.

Fig. 20 shows the chatter frequency simulated from the frequency domain
analysis. The figure is obtained from the frequency doman analysis. Every point on the
frequency domain stability lobe is attached to a chatter frequency @ Fig. 20 is a plot of

the chatter frequency versus the spindle speed, again obtained from the time domain
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analysis. Comparision of peak frequencies of the unstable region of cut shown by Fig. 18
shows that the chatter frequency plot in Fig. 20 is consistent with the experiment. Also,
the chatter frequency was observed to be around 1300 Hz. The nearest modal frequency
of the tool is the Z-axis frequency. It can be inferred that the presence of this high
frequency in the tool results in the tool chattering near the range of 1300 Hz. Hence

modal parameters in the Z-directions are important in a boring operation.

g

2

Chatter Frequency (Hz)

3398836868

1500 2000 2500 3000 3500 4000 4500
Speed (rpm)

Fig. 20 Chatter signature of the short boring bar.

Section 4.2.2: Long Boring Bar (127 mm Overhang from the face

holder)

In a second experiment a long boring bar of 127 mm overhang from the tool face

holder was taken. The cutting setup was the same as the short boring bar. The insert used
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was a Kennametal TNMA332 Carbide uncoated Insert. The workpiece used in the
operation was steel of the quality AISI 10-45. The cutting coefficients were the same as
used in the short boring operation before. The nose radius was eliminated by grinding the
insert. The lead angle in the insert was 0°. Impact hammer tests revealed the following

direct transfer functions and their respective modal parameters.
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Fig. 21 Magnitude of Transfer function Gx(s)
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Table 5: Modal parameters of the Long bar

o, (Hz) | K(N/m) E
X | 666.768 | 3.8462¢6 | 0.0402
Y | 777.155 | 5.5556e6 | 0.0227
Z | 677.84 | 1.25e8 0.0589
Z | 1066.5 |4.375e8 0.0159
0.44 -
- Analytic
X Expt. Unstable
0.42r Ex:: Stable
0.4
__ 038}
€
£
3 0.36
S o}
20.32-
0.3+
0.28+ . . . . . .

0.28 ‘ ' : : : . :
1800 2000 2200 2400 2600 2800 3000 3200 3400
Speed (rpm)

Fig. 24 Stability Lobes for the Long Boring Bar
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Fig. 25 Chatter Signature of the Long boring bar.

Fig. 22 shows the stability lobes for the long boring bar. The analytical simulation
matched the experimental results well. Further resolution could not be achieved since the
machine had a least depth of cut of 0.0254 mm. Observation of the chatter frequency in
Fig. 25 showed the frequency to average around 1085 Hz, just above the second Z-axis
modal frequency of the tool. FFT’s of stable and unstable cuts are shown in Figs. 26 and

27.
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Fig. 26 FFT analysis for the 3™ second of a stable cut operation.
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Fig. 27 FFT analysis for the 3™ second of an unstable cut operation

There exists a difference between the chatter frequency predicted and the FFT

plot obtained for an unstable cut operaton. It can be observed from figure 27 that there
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are more than one frequency that are active and important contrary to the prediction of a
single chatter frequency for the long boring bar shown in figure 25. The discrepancy is
possibily due to other non linear effects occuring during chatter on the long boring bar.
The reasons for this discrepancy are under investigation. Detailed analysis for long

boring bars has been left for future work.

Section 4.3: Discussion

The results from the experimental analysis show that the theory is well suited to
deal with mid-speed range boring problems. The analytic prediction for a single insert
operation as shown in Figs. 7 and 8 took 15 seconds to predict, whereas each point from
the time domain simulation in the same figures took 15 seconds to generate. The
complete time domain prediction therefore depends strongly upon the number of cases

that were run and the number of revolutions simulated, which is very time consuming.

In Eq. 7, to calculate the chip area, the static chip area has been removed because
it doesn’t cause any regeneration. The dynamic chip area has a first order approximation
that is used for frequency analysis. The analytic prediction as seen from the Figs. 7 and 8

show that the approximation made is valid.

Another approximation made in this theory is that the cutting coefficients are

constant. In actual practice, cutting coefficients are functions of speed and depth of cut

[27]. However, cutting forces vary a lot in the low speed range machining processes.

60



Cutting forces are fairly constant in the mid range and higher range speed machining

forces.

The lead angle is observed to play a crucial role in the analysis. Typically boring
bars have lead angles varying from —20° to +20° [31]. Lead angles away from 0° result in
more influence of the transverse tranfer functions, Gxx and Gyy in the solution. The
primary influence on the solution is from the axial direction. Hence the modal parameters
in the axial direction, though stiffer than the transverse direction, are important in the
analysis. This is shown by the experimental observation of chatter frequency from Fig.
18. The frequency at which the system shown instability is close to 1300 Hz, which is

near the modal frequency in the Z-direction of the boring bar.

The nose radius of a tool is another parameter which has not been considered
here. Nose radius typically exists for curved tools. This analysis has been performed for
tools without a nose radius. The formulation can be easily changed to accommodate the
influence of nose radius. Experiments performed with the short boring bar showed
unstable cutting at very low depths of cut. This is attributed to the fact that in the
presence of the nose radius, cutting at very low depths of cut changes the angle of contact
between the insert and the workpiece, thereby changing the cutting force angles. This was
most probably the case of observation of chatter at very low depths of cut. The nose
radius was practically eliminated in the long boring bar insert. In practice, it is not
advisable to work without a nose radius because it tends to cause excessive stress

concentrations at the tip. However, it is possible to work at depths of cut much higher
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than the nose radius, as was shown by the experiments with the short boring bar.

The regeneration factor has also been taken as 1, similar to earlier approximations
done before for mid range and high speed range boring process [27]. For very low speed
processes, this will not be valid as the ratio of feed rate to the speed of operation becomes

large.

Cutting coeflicients earlier used were radial velocity, radial displacement, axial
displacement and tangential displacement coefficients [25]. These coefficients have been
done with and simpler coefficients, i.e., tangential, radial and axial have been

incorporated, all dependant on the dynamic chip area.

Aspects such as friction have been disregarded. Friction forces gain importance
only at very low low speed range of machining, where it is possible that the machine tool
just rubs the surface of the workpiece without actually cutting it. Industry demands
processes to be high speed so that material removal rates are high, therefore increasing

productivity.
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Chapter 5: Conclusions

1. A new analytical theory has been developed to predict the stability limits for boring in
mid speed and high speed range operations. The theory assumes regeneration to occur
in the axial direction of the boring bar.

2. Results of the theory agree with those of the time domain simulation.

3. The time taken for generation of stability lobes is very small as compared to the time
for generating the lobes using a classical time domain simulation. Hence, the analytic
method is a quick tool to generate stability lobes for a boring operation.

4. The regenerative forces are assumed proportional to the dynamic chip area, thereby
making the analysis simpler.

5. The observed and predicted chatter frequencies for a short boring bar agree with each
other.

6. Friction and tool rubbing aspects have been excluded since the range of operation is
mid speed and high speed.

7. This theory is presently employed at the industry.

63



Chapter 6: Suggestions for future work

The cutting coefficients used in this work are linearized, much like those in
earlier work [14, 18, 19]. An indepth study of the coefficients for the range of speeds of
the operation has been left for future work. The cutting coefficients may exhibit non-
linear behaviour at low speeds, and so the analysis has to be modified including the non-
linear effects of the cutting coefficients at lower speeds. Cutting coefficients could
possibly be obtained by non-linear techniques such as parameter estimation and harmonic

balancing.

Existence of friction and tool rubbing without cutting have been observed. This
analytic model assumes that the machine tool cuts the workpiece everytime it is in
contact with it. Friction and tool rubbing normally occur at low speeds of machining,

where the surface speed becomes very low. New models could be developed

incorporating these aspects.



As seen from the results, the chatter frequencies matched well for the short boring
bar and not for the long one. Current work at Boeing investigates the possible existence
of chatter frequencies below the modal frequencies of the tool for a drilling process. It is
quite possible that the analysis presented in this work could be extended in that direction,

to suitably predict the chatter frequencies.
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