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ABSTRACT 

SCIENCE IN THE DIGITAL AGE: OVERCOMING UNCERTAINTY AND THE ADOPTION OF VOLUNTEERED 
INFORMATION FOR SCIENCE 

 
By 

 
Shaun Arthur Langley 

 
With the advent of Web 2.0, the public is becoming increasingly interested in spatial data 

exploration. The potential for Volunteered Geographic Information (VGI) to be adopted for 

Science through collaborations between researchers and non-scientists is of special interest to 

me. In particular, mobile devices and wireless communication permit the public to be more 

involved in research to a greater degree. Furthermore, the accuracy of these devices is rapidly 

improving, allowing me to address questions of uncertainty and error in data collections. 

Cooperation between researchers and the public integrates themes common to VGI and PGIS 

(Participatory Geographic Information) to bring about a new paradigm in GIScience. This 

dissertation discusses VGI in the context of a new paradigm, eScience, and the broader 

framework of Neogeography.  I discuss current issues with data quality and uncertainty regarding 

VGI and detail one approach to quality credibility of the data.  Finally, the dissertation outlines 

the framework for utilizing VGI in the context of case study in disease ecology for the purpose of 

surveillance of tsetse flies, the primary vector of African Trypanosomiasis. My system allows for 

two-way communication between researchers and the public for data collection, analysis, and 

the ultimate dissemination of results. Enhancing the role of the public to participate in these 

types of projects can improve both the efficacy of disease surveillance as well as stimulating 

greater interest in science.
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CHAPTER 1  

INTRODUCTION 

Conceptual Framework 

What does it mean to be a scientist?  What does it mean to be a Geographer?  These questions 

have existed and been debated for as long as the discipline has existed. Geography is ripe with 

tradition, having evolved many times to suit the consciousness of the day (Livingstone, 1992). 

Early Geographers like Francis Bacon and John Locke were Empiricists, advocating the scientific 

method as the means to explain the world. Plato was a proponent of realism, the philosophy that 

states that truths are universal and have an objective or absolute existence. René Descartes, 

arguably a geographer in name only, was a proponent of subjectivism, perceiving knowledge as 

truly subjective. Under Descartes’ philosophy, there were no absolute, external, or objective 

truths; rather, reality existed uniquely for each individual in their own way. Thomas Kuhn 

transformed the discipline with a relativism paradigm, arguing that knowledge, truth, and 

morality exist in relation to culture, society, or in a historical context; however, truths were not 

absolute and thus conflicting theories weren’t necessarily the result of being right or wrong, 

rather having arrived at a conclusion from different perspectives. Finally Karl Popper proposed 

the critical rationalist philosophy, arguing that the falsifiability of science was paramount to the 

generation of knowledge, and that all scientific theories should be rationally criticized and 

subjected to tests of falsifiability.  

As researchers began to acknowledge the importance of context in describing the 

Geography of a place, citizens were engaged directly by researchers seeking to capture the “local 
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knowledge” that only a citizen can convey (Elwood, 2006a; Robbins, 2003). Participatory science 

emerged in the 1990s as a context within which we can incorporate quantitative, qualitative, and 

cartographic forms of data into a GIS environment (Elwood, 2006b; Warren, 1991). The term was 

first used by Warren (1991) and Pickles (1995) to define the method of engaging and empowering 

communities to address political, social, and environmental questions that directly concern and 

impact them (Robbins, 2003). Warren (1991) notes, “Local knowledge is increasingly 

acknowledged to be scientific in the sense that it evolves from experimental techniques of trial-

and-error conditions not entirely distinct from scientific practices”. He argues that this knowledge 

should not be too quickly dismissed as it can inform us of the social, political, and economic 

structure of communities. Furthermore, the use of cartographic and GIS tools can empower local 

communities to use their own knowledge and understanding of their environment to better 

manage their resources, even resolve standing disputes. The latter applications are commonly 

associated with Participatory GIS (PGIS) in the work of Sarah Elwood (e.g. 2006a, 2006b) and 

Michael McCall (2005). Turner and Hiernaux (2002) demonstrate the ability of cartographic 

methods, informed by local knowledge, to develop more effective local management strategies 

than can be achieved through a spatial modeling experiment alone. Finally, Robbins (2003) 

extends the application of PGIS by Turner and Hiernaux (2002) indirectly in his notion of 

“indigenous GIS”. It is the goal of PGIS to generate knowledge in collaboration with communities 

to enable them to independently critique spatial data for their own purposes and benefits 

(Elwood, 2006a). To quote Elwood (2006b),  

“the existing literature demonstrates that the nature of the participatory 
knowledge production in PPGIS (public participation GIS) is the result of 

complex interactions of technological and social factors, but there have been 



3 

relatively few attempts to detail how these intersecting factors play out in and 
are shaped by the daily choices and negotiations of PPGIS projects.”  

Universal throughout the evolution of Geography and perceptions of science was the 

distinction between citizens and scientists. There are those who can do science – experts in their 

field, educated and trained, often residing in academic institutions, and producers of knowledge; 

and there are those who cannot – citizens, laypeople, and consumers of knowledge. It is difficult 

to identify a specific shift in consciousness; rather there has been a subtle recognition of the role 

citizens can, and do, play in science. Beginning in the early 1900s, the Audubon Society began 

enlisting the help of citizen scientists and volunteers in their annual Christmas Bird Watch. Still 

today, these amateur ornithologists participate in the annual bird count; to-date they have 

amassed more than 31 million records since its inception (Haklay, 2012; Silvertown, 2009). The 

volunteers who participate do not do so at their own leisure though. They are specifically trained 

in data collection methods and their data are subjected to at least a minimal amount of quality 

control. 

Haklay (2011) identifies four types of citizen science, which he distinguishes based on an 

individual’s training and level of participation. The first type is “crowdsourcing”. Howe (2006) 

defines it as engagement in the collection of data with a minimum level of effort. At this stage, 

citizens are perceived as nothing more than data collection tools, or sensors, off which we can 

glean information about their environment.  

The second level is termed “Distributed intelligence”. Here, citizens are tasked with 

slightly more complex tasks. They are usually given some amount of training in data collection 

methods, and may be asked to perform simple interpretations of their environment. Citizens thus 
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become basic interpreters of the data they collect, rather than simply sensors of information 

(Haklay, 2011). 

The third level “participatory science” is marked by significant participation on the part of 

citizens who collaborate with scientists directly at each stage in the project from inception to 

execution and analysis (Haklay, 2011; Irwin, 1995). This mode of citizen science has dominated 

the Geography literature and has garnered a great deal of attention for its ability to grant 

empowerment to disenfranchised groups. 

Finally, the fourth level of citizen science is “extreme”. It is at this stage that science 

becomes truly collaborative as the citizen is fully integrated into the scientific process (Haklay, 

2011). This can potentially allow for citizens to be scientists without the presence of the 

professional or expert.  

The last decade has seen dramatic technological and communications advances. With the 

advent of Web 2.0 and the proliferation of new technologies and modes of communication, 

exposure to geographical knowledge is increasingly pervasive in our society (O'Reilly, 2006, 2007) 

(Goodchild, 2007a, 2007b). Utilizing web-based applications, citizens have developed an interest 

in becoming active participants in describing their environment by volunteering geographic 

information. 

Whereas citizen science defines the actions of the individual in participating in the 

scientific process, Neogeography reframes the context in which it occurs. Neogeography defines 

the erosion of traditional roles and the blurring of the distinction between citizens and scientists 

(Goodchild, 2009). Central to the idea is a reframing of the space in which knowledge generation 

occurs. The literature points to the emergence of the Geoweb, the online environment where 
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geographical information is mashed with abstract data (Haklay, 2011). However, the activities of 

individuals in the Geoweb have arisen organically, lacking the traditional oversight and training 

in methodology given by scientists. Today there are literally thousands of web applications in 

which individuals can actively volunteer information, often geographical in nature (Goodchild, 

2009). 

Volunteered geographic information (VGI) is a term that was coined by Michael Goodchild 

to describe the phenomenon of citizens contributing, volunteering, and consuming geographical 

information outside the purview of academia (Goodchild, 2007a). Perhaps the most commonly 

cited examples of this phenomenon are Wikimapia1 and OpenStreetMap2; in these examples, the 

citizens contribute or volunteer information and descriptions about the built environment 

around them (Goodchild, 2007a; Haklay & Weber, 2008). However, the past decade has seen a 

tremendous increase in the utilization of VGI (Elwood et al., 2011). 

In this dissertation, I use the term Volunteered GIS (VGIS) to refer to a conceptualization 

of GIS that emphasizes the interest of non-scientists to be active participants in the generation 

of spatial knowledge (Flanagin & Metzger, 2008; Goodchild, 2007c, 2010b). A tradition previously 

reserved for “professional” scientists, VGIS represents a shift from viewing science as having a 

single authority (the scientist) to a model where authority is relative and expressed contextually. 

Information abundance, repetition, and the information collective conveys credibility to itself 

(Craglia et al., 2007). However, the issue of data quality has been debated extensively in the 

literature, and represents a critical hurdle to the adoption of VGIS for Science. 

                                                      
1 http://wikimapia.org 
2 http://www.openstreetmap.org 
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Data Quality 

The quality of spatial data is the foundation for its utility in the scientific process. Quantifying 

error and related uncertainty is the most critical evaluation of data that can be made. The 

credibility of any information or data is directly related to an assessment of data quality. The 

issue of data quality has a long tradition in the literature, particularly as it pertains to spatial data. 

One of the most comprehensive lists of data quality metrics was outlined by van Oort (2005). In 

his dissertation, he identifies 11 components of data quality that pertain to spatial data (Table 

1.1). The assessment of data quality has objective and subjective components, which collectively 

convey the reliability we have as to the truthfulness of the information. Although there are a 

multitude of metrics, arguably the most important, and objective, components of spatial data 

quality are: positional accuracy, attribute accuracy, and completeness (Haklay, 2010). Within the 

context of traditional spatial data infrastructures (SDIs) these metrics facilitate an assessment of 

the variability of the data with respect to the population being measured and allow for an 

assessment of uncertainty. Assessing data quality using objective metrics allows for us to make 

statements with regard to confidence in our results. 

In the age of Neogeography, data are routinely volunteered without the corresponding 

information needed to make an objective assessment of data quality (e.g. positional error, spatial 

resolution, etc.). A subjective assessment of data quality, can serve as a means to determine a 

dataset’s credibility and as such make a determination of its fitness-for-use (Grira et al., 2009).  

As the determination of data quality is itself a subjective determination on the part of the 

consumer, the communication of the metrics is critical. To this extent, the communication of 

quality metrics is critical. Within metadata of a dataset, the user is provided with the information 
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needed to make a quality assessment. However, too often the communication to users (and 

sometimes scientists) is done without regard for whether or not the receiver is capable of 

understanding or perceiving it as is intended by the communicator (Grira et al., 2009). Reporting 

data quality through metadata is therefore an ineffective means of communication and can result 

in potential misuse of data (Comber et al., 2006; Grira et al., 2009). Subjective assessments are a 

matter of perception. With regard to citizens and non-experts, the perception of quality is less a 

matter of quality metrics, but rather relates to their perception of the communicator themselves 

(Metzger et al., 2003).  

The emergence of Citizen Science has generated volumes of data that are distinct from 

traditional datasets, primarily because of the manner in which they were collected. There has 

been a great deal of debate as to the best way to assess the credibility of volunteered data 

(Elwood, 2006b; Flanagin & Metzger, 2008; Metzger et al., 2003). Many illustrations of this 

assessment rely on a comparison of VGI against datasets of known quality (Koukoletsos et al., 

2012). But perhaps the most promising approach is to correlate the credibility of the 

communicator with the quality of the data (Corbett, 2012). 

The uncertainty concerning data quality for volunteered geographic information (VGI) 

and crowdsourced data has resulted in poor adoption of citizen science initiatives for science, 

whether experimental or analytical (Craglia et al., 2007; Elwood et al., 2013; Goodchild, 2009). A 

2009 survey conducted by Elwood et al. (2011) looked at a range of projects identified to be 

utilizing VGI in some form. Of the 99 studies they evaluated, only 3% were sponsored by an 

academic institution, 7% were sponsored by a Government program, and 7% were affiliated with 

an NGO. The majority of VGI initiatives are associated with for-profit institutions (63%). The 
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overwhelming element of for-profit companies utilizing VGI runs counter to the notion of VGI as 

an expression of citizen science (Goodchild, 2007a). However, there is significant academic 

interest in adopting VGI initiatives to enhance collaborations between researchers and the 

communities (in which they operate), and to develop framework data (Craglia et al., 2007; 

Elwood et al., 2011; Haklay, 2012). Framework data constitute the core of a spatial data 

infrastructure (SDI) as it aims to represent core phenomena; it contains data on geodetic control, 

orthoimagery, elevation, transportation, hydrography, governmental units, and cadaster (Craglia 

et al., 2007; Elwood et al., 2011).  

For VGI and crowdsourced data to be valuable for science in an academic context, we 

must address the lingering questions of credibility (of the data) and uncertainty regarding data 

quality (Craglia et al., 2007; Flanagin & Metzger, 2008; Haklay et al., 2010). 

Spatial data management 

The development of new communications and technology in the early 1990s created a need for 

new data management strategies, and a fundamentally different standard data model — a set of 

abstractions that define object, relation, and attribute types and their use (Devogele et al., 1998; 

R. Groot & McLaughlin, 2000). Such data models form the basis for a spatial data infrastructure 

(SDI) for the purpose of “facilitating coordination, production, access, and use of spatial data” 

(Budhathoki et al., 2008; R. Groot & McLaughlin, 2000; I Masser, 2005). In 1994, President Clinton 

signed an executive order establishing a national SDI (Coordinating geographic data acquisition 

and access: The national spatial data infrastructure 1994). For more than a decade, the standard 

SDI was sufficient for the data types available. However, with the emergence of the eScience 

paradigm (Gray & Szalay, 2006) and Web 2.0 (O'Reilly, 2006, 2007), the types of spatial 
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information no longer fit neatly within in the constructs of the traditional data model (Rouse et 

al., 2007). Thus, there were calls to modernize the standard SDI. 

Next generation SDIs have implemented web services and broadened the types of data 

supported; however the majority still perceive the user role as passive (Budhathoki et al., 2008), 

thus rendering them ineffective for citizen science initiatives. This is a large part of the reason 

that current SDIs are so vastly underutilized, resulting in widespread inconsistencies and a lack 

of interoperability among systems (Budhathoki et al., 2008; Ian Masser, 2005). 

It is not sufficient to simply define an alternate data model for use with VGI; such an 

approach reduces the status of the information to a second tier, perpetuating the inequality of 

roles and utility of the data. Users of SDIs tend to be expert organizations (Budhathoki et al., 

2008), while Neogeographers operate in a patchwork system of inconsistent authorities. Bringing 

forward a unified data model will not only elevate the authority of VGI, but will improve overall 

data quality by standardizing the communication of quality metrics. 

Concluding Thoughts 

The acquisition of data for science is arguably the single largest hurdle researchers face.  

Information must be obtained in a controlled manner so as to assure the interpretation under 

the prescribed theoretical model.  Any uncertainty surrounding the quality or integrity of the 

information obtained can have a crippling effect on the ability of the researcher assert 

significance for any observed patterns (in a traditional statistical framework).  Crowdsourced data 

or VGI can provide significant contributions to science if questions of quality and integrity can be 

addressed.  Some have suggested that these uncertainties render such sources of information 

useless; however I think we are approaching a new era in science that will dramatically change 
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our perception of such sources and bring about a new paradigm.  I think the technological 

advances of the past century and the advent of Web 2.0, combined with the proliferation of 

mobile technologies and the increasing incorporation of smart sensors into these devices will 

provide new opportunities for ordinary citizens to be active participants in science through the 

collection, dissemination, and even analysis of information.  Such opportunities are not only 

beneficial for researchers to access new kinds of information, but also present a unique 

opportunity for citizens to be more involved in science – reversing the disturbing trend of 

scientific illiteracy we are witnessing in society today.  In this regard, addressing the questions 

posed in this dissertation become critical for ushering in a new era of scientific discovery and 

opportunity for future generations. 

Specific Aims 

Objective 1: Address three recurring problems with spatial data management: scalability, 

reliability, and security by: 

1. Communicating a conceptual model for a comprehensive open-source computing 

environment that promotes the efficient organization, storage and retrieval of disparate 

data.  

2. Extending the discussion of spatial databases by presenting a model framework for a 

spatial DBMS that rigorously and consistently manages both spatial and nonspatial data.  

 

Objective 2: Demonstrate the utility of VGI by:  

1. Describing a prototype for the utilization of VGI to enhance disease surveillance 

programs.  
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2. Articulating an approach for integrating VGI into a traditional species distribution model.  

 

Objective 3: Address lingering concerns of credibility and data quality in VGI by:  

1. Illustrating how to dynamically assess the reliability of reporters of VGI.  

2. Assessing the impact of incorporating VGI of varying quality into a traditional species 

distribution model. 

Outline of the dissertation 

Chapter 2 of the dissertation addresses specific aim 1 — issues of spatial data management that 

are exacerbated by the volume of data generated through crowdsourcing and VGI. In this paper 

I outline the framework for a spatial database management system (sDBMS) that facilitates the 

efficient storage, query, and retrieval of spatially explicit data. The paper was published in 2011 

in the Journal of Map & Geography Libraries and appears in this dissertation in its published form. 

Chapter 3 of the dissertation answers specific aim 2 in illustrating the utility of VGI in 

science. I utilize a case study in disease ecology to demonstrate how VGI can be incorporated 

into a traditional species distribution model to enhance the output and relevance for managing 

disease vectors more effectively. This chapter was published in 2013 in the International Journal 

of Applied Geospatial Research, and appears in its published form. 

Chapter 4 addresses specific aim 3 in which I directly discuss issues of credibility and 

quality for VGI. I outline an approach in which the reliability of volunteers (or reporters) of VGI 

can be computed, and how this measure can serve as a surrogate metric of data quality. 
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Table 1.1: Components of data quality for spatial data 

Continued on next page 

Metric Definition Expression 

Attribute accuracy 
“an assessment of the accuracy of the identification 
of entities and assignment of attribute values in the 

data set.” 
Khat or Cohen’s Kappa 

Positional accuracy 
“… to the degree to which the digital representation 
of a real-world entity agrees with its true position on 

the earth’s surface” 
𝑅𝑀𝑆𝐸 =  √

1

𝑛
(∑ 𝛿𝑥𝑖

2 + ∑ 𝛿

𝑛

𝑖=1

𝑦𝑖
2

𝑛

𝑖=1

) 

Temporal accuracy 
“… the agreement between encoded and actual 

temporal coordinates.” 
Textual 

Semantic accuracy  
∑ 𝑤(𝜈) ∙ 𝑑(𝛾(𝜈), 𝛾′(𝜈))𝜈∈𝑉

∑ 𝑤(𝑣)𝜈∈𝑉
 

Completeness 
“measurable error of omission observed between the 

database and the specification.” 

Omission: % of data missing relative to the 
specification 
Commission: % of data present that is not in 
the current specification of dataset or extract 
Coverage ratio: occurrences of one variable 
per unit of another 

Logical consistency 
“refers to the absence of apparent contradictions in 

the database” 
textual 
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Table 1.1 (cont’d) 

Metric Definition Expression 

Spatial resolution “... the fineness of detail that can be observed.” Integer 

Temporal resolution “… the minimum duration of an event that is 
discernible.” 

Integer 

Thematic resolution Categorical data: “resolution is defined in terms of 
the fitness of category definitions.” 
Quantitative data: “resolution is determined by the 
precision of the measurement device.” 

Integer 

Fitness-for-use “ability to use the dataset for a particular purpose or 
situation.” 

textual 

Continued on next page 
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Table 1.1 (cont’d) 

Metric Definition Expression 

Lineage “[Lineage] refers to source materials, methods of 
derivation and transformations applied to the 
database. This includes temporal information (data 
that the information refers to on the ground), and is 
intended to be precise enough to identify the sources 
of individual objects (i.e. if the database was derived 
from different sources, lineage information is to be 
assigned as an additional action viewing objects in a 
spatial overlay).” 

textual 

Meta-quality “a measurement of the collective quality of the 
data.” 

 

Variability “… the difference between expected measures and 
actual values.” 

𝜖 = 𝑦 − 𝜇 
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CHAPTER 2  

EMBRACING THE OPEN-SOURCE MOVEMENT FOR THE MANAGEMENT OF SPATIAL DATA: A CASE 

STUDY OF AFRICAN TRYPANOSOMIASIS3 

Abstract 

The past decade has seen an explosion in the availability of spatial data not only for researchers, 

but the public alike. As the quantity of data increases, the ability to effectively navigate and 

understand the data becomes more challenging. Here we detail a conceptual model for a spatially 

explicit database management system that addresses the issues raised with the growing data 

management problem. We demonstrate utility with a case study in disease ecology: to develop 

a multi-scale predictive model of African Trypanosomiasis in Kenya. International collaborations 

and varying technical expertise necessitate a modular open-source software solution. Finally, we 

address three recurring problems with data management: scalability, reliability, and security. 

Introduction 

The trans-disciplinary nature of modern research in disease ecology often requires and generates 

vast quantities of data varying thematically and in structure. The data management challenge is 

considerable and often cost prohibitively so. Data arise from a multitude of sources and occur in 

                                                      
3 This chapter appears in its published form. Minor adjustments have been made to the text to 

address invalid references and/or grammatical errors.  I address more substantially changes to 

the code in Appendix C. 
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spatially explicit or aspatial forms with concomitant structures. Rarely are these data 

accompanied by the ontologically coherent metadata necessary to facilitate cooperation and 

collaboration. Recent discourse in the studies of infectious disease ecology have suggested a 

need to emphasize the role of space and land cover change dynamics in describing the 

interactions of diseases with environmental processes (Ostfeld et al., 2008). Therefore, effective 

engagement in disease ecology research requires the ability to access, correctly interpret and 

integrate these highly diverse data (Longley et al., 2005; Shekhar & Chawla, 2003; Watson et al., 

2004). 

In the early 1990’s there was a great deal of research concerning the expansion of 

traditional database management systems (DBMS) to incorporate functionality for handling 

spatially explicit data types (Shekhar & Chawla, 2003; Michael Stonebraker & Moore, 1995). 

Traditional DBMSs are self-describing in that the definitions of data are stored in a catalog, along 

with the raw data, without the need to store separate descriptive files. This is an extremely 

efficient means for managing and accessing large quantities of data. Databases improve our 

abilities to interact with data through the construction and querying of indices, which serve as a 

data roadmap stored on the physical media. Early database frameworks rarely interacted directly 

with spatial data (Egenhofer, 1994; Michael Stonebraker & Kemnitz, 1991). Yet with technological 

advances, particularly the development of satellite platforms for remote sensing, great quantities 

of data were being generated, necessitating the development of DBMS capabilities specifically to 

facilitate handling of spatial data. 

SQL (standard query language) was formally adopted in 1986 by the American National 

Standards Institute, as SQL-86, and is the most widely used database querying language (Lans, 
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2007). The SQL language framework provided a logical structure for querying information stored 

in DBMSs. The first versions of SQL however, could not explicitly handle spatial data structures. 

Several extensions of SQL were proposed including GEOQL, SAND, GEO-Kernel, and PSQL; 

however the extension that proved most influential, and eventually adopted was Egenhofer’s 

Spatial SQL (Adam & Gangopadhyay, 1997; Egenhofer, 1994). Spatial SQL extended the domain 

to include spatial operators and attributes. Egenhofer (1994) further defined the Graphical 

Presentation Language (GPL), a set of tools in which the results of a spatial query could be 

manipulated. The Open GIS consortium (OGIS) promoted spatial functionality by recommending 

a set of critical reforms in SQL, mainly the adoption of Egenhofer’s spatial abstraction model, 

which introduced GEOMETRY as a base-class for spatial objects (Egenhofer, 1994; OGIS, 1999; 

Shekhar & Chawla, 2003). These recommendations were fully adopted in 1999 with the release 

of SQL3 (Lans, 2007; OGIS, 1999). 

Data sharing is a critical consideration for our research group as we maintain 

collaborations with institutions and researchers throughout much of the United States and East 

Africa; yet the biggest problem we face as a group is the ability to share data and analysis. We 

require a new medium that facilitates this flow of information without the need to physically 

carry the data between institutions. Internet-based GIS and data servers are one solution we 

employ to allow for simultaneous interaction and analysis of the data. Internet-based GIS 

emerged with the release of two projects, GeoChange (Drew & Ying, 1996) and the Alexandria 

Digital Library (Smith & Frew, 1995). GeoChange in particular set the standard in terms of 

functionality and usability with an interface supporting batch processing, import/export, and 

automatic metadata generation (Adam & Gangopadhyay, 1997). The Alexandria Data Library, 
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though spare in relation to GeoChange, became widely adopted by the University of California 

system for in-house sharing of proprietary spatial data. Today, despite the improvements in 

functionality, most spatial databases still lack the ability to efficiently handle the raster data 

structure. Two ongoing projects promise to bring this functionality into spatial DBMSs (SDBMSs) 

in 2010. Of particular interest to us is the WKTRaster project, a community supported open-

source project by the Open Source Geospatial Foundation (OSGEO). WKTRaster extends the 

functionality of the PostGIS library to implement the RASTER type class in the same way 

GEOMETRY was done in order to support spatially explicit handling of vector data (Michael 

Stonebraker & Moore, 1995). WKTRaster, when fully implemented, will facilitate consistency in 

data handling of all spatial and non-spatial data types, similar to the manner in which spatial data 

are managed with the georaster loader included in the Oracle Spatial 11g package.  

While advances in scientific understanding and new technologies have helped to curb the 

spread of infectious disease in the developed world, the same cannot be said about the 

developing world. As the incidence of infectious diseases decreased in the developed world, 

fewer resources and attention were devoted to combating those diseases in the developing 

world, contributing to an increase in the prevalence of many illnesses there (Cohen, 2000). In 

order to develop better strategies for combating disease, we need to enhance our understanding 

of the underlying ecological conditions that contribute to the emergence of diseases and deliver 

solutions practicable in developing world contexts (Ostfeld et al., 2008). Disease ecology is 

generally not considered a discipline in itself but rather seeks to understand the relationship 

between disease epidemiology and the landscape (climate, physical, and human) (Johnson & 

Thieltges, 2010; Keesing et al., 2006; Sutherst, 2004; Tatem et al., 2006). The trans-disciplinary 
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nature of the field creates a unique set of problems, many of which pertain to the use of data 

while maintaining the rigorous standards mandated by Institutional Review Boards, HIPAA, and 

international research and privacy standards. Very little has been published that directly explores 

these types of management problems within the disease ecology literature. Routinely, issues of 

scalability, reliability, and security emerge that hinder the effective dissemination of federally 

funded data and models. Storage of large quantities of data must at a minimum facilitate the 

range of applications necessitated by the questions posed in disease ecology. Data scalability 

speaks to the ability of researchers to address questions at multiple scales of spatial or temporal 

resolution, depending upon the question being asked; the storage of such data must facilitate 

the rapid, concurrent access and integration of the data across varying resolutions (Shekhar & 

Chawla, 2003). Reliability requires mechanisms to ensure that data mismatches or inappropriate 

analytical methods are identified or prevented (Devillers & Jeansoulin, 2006; Shi et al., 2002). 

Furthermore, data reliability, particularly with concurrent usage and modification of the data, 

necessitates mechanisms for ensuring the integrity of the underlying data over time (Olson, 2003; 

Shi et al., 2002). Finally, security issues arise when interacting with individually identifiable 

human data or sensitive community data stored or generated within the DBMS (Olson, 2003). 

While institutional guidelines and privacy laws may restrict access of the data to pre-approved 

users, the limitations should not preclude non-privileged users from asking broader questions, 

which may interact with the underlying data when aggregated to remove identifiable data or 

other information that may be restricted by institutional guidelines or laws (e.g. ethnic identity 

at low densities in census block group data). Finally, privacy restrictions should be scalable, 

changing dynamically with the user and scale of resolution requested. 
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In collaboration with the International Livestock Research Institute in Kenya (ILRI), we 

have accumulated an extraordinary volume of data for Kenya. Irrespective of theme, 

international collaborations often present unique problems in terms of the management, 

sharing, and dissemination of data necessary to carry out analyses. Our framework for a data 

management system is a novel solution for spatial modeling in disease ecology, and the use of 

open-source software exclusively makes this a cost effective solution for sharing with 

international collaborators and organizations with limited budgets. The entire suite of data and 

models is designed to be packaged electronically or on a portable drive to facilitate electronic 

transfer or physical transportation. 

A framework for data management cognizant of these issues and flexible in the use of 

restrictions is an ideal solution for working with data types characteristic of research in disease 

ecology. As part of the National Institutes of Health “Roadmap” program and with the National 

Institutes of Health General Medical Sciences support, we are developing a multi-scale predictive 

model that defines the relationship between climate change, land use and land cover change, 

social systems, and the distribution of tsetse flies and sleeping sickness across Kenya (Makido et 

al., 2007). Here we present a case study for the implementation of a generalizable disease 

ecology DBMS framework that provides scalability, reliability, and security to optimize 

interactions between users and the data. 

Case Study: A Model for African Trypanosomiasis in Kenya 

African Trypanosomiasis (AT), or sleeping sickness, is a major threat to human health across 

Africa, particularly among impoverished peoples (Brun et al., 2010; Gyapong et al., 2010). 

Typically considered a disease of the past, its prevalence has increased in recent years, 
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particularly in East Africa, due to the declining emphasis on trapping and control, climate, and 

anthropogenic factors  (Batchelor et al., 2009; Bauer et al., 1992; WHO, 2005). Although 

monitoring has improved, the extent to which AT impacts East Africa is largely unknown. Recent 

contributions by foreign countries and aid organizations directed towards addressing AT have 

declined dramatically in contrast to the increased attention towards AIDS, malaria, and other 

diseases (Siringi, 2003; WHO, 2001). The WHO has responded by designating AT a neglected 

tropical disease (Brun et al., 2010; Kennedy, 2005; WHO, 2006). Not fully understanding the 

ecological processes that contribute to the spread of AT may result in the inefficient application 

of control regimes and misallocation of resources; thus retarding the efforts of the African Union 

to combat and control AT (Cox, 2004). As Trypanosomiasis has increased in prevalence, the 

impact on human and animal populations has been considerable, resulting in severe economic 

hardship for rural families throughout East Africa (Campbell et al., 2000; Campbell et al., 2004).  

Tsetse flies, Glossinidae family, are the primary vectors for the cyclical transmission of 

African Trypanosomiasis. The general distribution of tsetse has been demonstrated in terms of 

the biophysical extent and the presence of suitable hosts (Cecchi et al., 2008; KETRI, 1996). 

However, the precise limits, historical and contemporary, have not been formalized 

experimentally (Wint, 2001). Furthermore, the current distribution belts reflect outdated data 

and methodologies (Joint WHO Expert Committee and FAO Expert Consultation on the African 

Trypanosomiases (1976: Rome), 1979; Muriuki et al., 2005; Wint, 2001). Through prior studies 

our research group has been able to describe the inaccuracies of these distribution limits, 

particularly in terms of seasonal changes (DeVisser & Messina, 2009; Moore & Messina, 2010). 
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Furthermore, global climate change is shifting tsetse habitats, though the degree to which this is 

occurring is unknown (Sutherst, 2004). 

To adequately understand the mechanisms behind the increasing incidence of AT, it is 

important to consider a diverse range of inputs from social, physical, climatic, and even political 

dimensions. The range of scientific disciplines and methodologies required necessitates an 

extensive volume of data be created, collected, and maintained. The management of the volumes 

and types of data, physically and logistically, has proven to be a significant challenge and the one 

in which we address in this paper. Thus we present a conceptual model for a comprehensive 

open-source, computing environment that promotes efficient organization, storage, and 

retrieval of disparate data. Furthermore, we extend the discussion of spatial databases by 

presenting a model framework for a spatial DBMS that rigorously and consistently manages both 

spatial and non-spatial data. 

Data Holdings and Acquisitions 

We have collected all publicly available data and a significant portion of the known privately held 

relevant AT disease ecology spatial data for Kenya. The data fall into a classification scheme 

defined by topography, soils, vegetation, climate, ecological diversity, water resources, and 

anthropogenic factors known to control or influence the ecological processes driving tsetse 

distributions over time and space (see Error! Reference source not found. for a summary). Non-

spatial data consist primarily of governmental and intra-agency reports obtained through private 

libraries in Kenya. The reports collected focus on policies and governmental/community control 

and eradication programs. Currently, these reports are neither catalogued nor indexed, limiting 

efficient use of any information they may contain.  
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Table 2.1: A summary of our data library grouped by major theme 

 

Remotely sensed image data comprise the majority by physical file size of our data 

collection. We possess the majority of the known publicly available aerial imagery for Kenya from 

the Landsat, MODIS, PALSAR, and ASTER platforms, including a number of image products 

summarizing land use classification (MODIS types 1-5 for 2001 to 2005 and Landsat MSS derived 

1 km for 1980), land surface temperature (MODIS LST), precipitation (WorldClim 30yr average at 

1 km), and vegetation indices4 (NDVI for 2001 to 2008 every 16 days, 250 m resolution). 

Additional sources of land use and land cover information are provided with Africover as vector 

or raster data types, GLC2000, CLIP cover1, and UMD Global Land Cover. We possess elevation 

data from ASTER, SRTM, and digitized topographic maps (30 m, 90 m, and 250 m spatial 

resolutions, respectively). With regards to the distribution of tsetse, we possess vector and raster 

                                                      
4 Data are publicly available 

Biophysical Social Geographical 

Precipitation totals Population Density Land Use / Land Cover 
Monthly Temperatures Population Predictions Land Use Projections 

Evapotranspiration Historical Population Satellite imagery 
Temperature Scenarios Town Locations Lakes 
Precipitation Scenarios District Census Data Rivers 
Historical Climate Data Livestock River Basins 

Agro-Climatic Zones Wildlife Roads 
Agro-Ecological Zones Agricultural Production National Parks 

Lithology Poverty Railroads 
Soils Various Cadastral data National Boundaries 

Landforms Entomological Administrative Districts 
Forest Range Tsetse Distribution Elevation 

Wetlands Tsetse Habitat Suitability Topographic Maps 
(Countrywide) 
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digitized distributions of fly belts for Kenya for 1967, 1973, 1996, and 20005. Finally, there are 

rasterized estimates of livestock densities (# per 𝑘𝑚2) for 2007 (ILRI6). Utilizing these data, 

DeVisser et al. (2010) developed the TED model to predict the distribution of tsetse in Kenya. 

Figure 2.1 shows the predicted minimum range (the areas where tsetse persist all year) between 

2002 and 2009. To effectively and efficiently recover and maintain the value of the data, we 

require a solution that not only provides for efficient storage and retrieval of the data, but which 

also allows for automated metadata generation. 

We possess 103 spatial datasets of socio-economic and demographic assessments of 

Kenya between 1971 and 2008. A portion of these data were provided by the Integrated Public 

Use Microdata Series (IPUMS) International dataset for Kenya and originate from the Kenya 1989 

and 1999 census collected by the Kenya National Bureau of Statistics. The IPUMS data are a 

systematic sample of every twentieth household, which represented a sampling fraction of 5% 

and expansion factor equal to 20; a long form questionnaire was implemented surveying 

individuals within households. Location data for each individual is limited to respondent’s 

province and district, the first and second administrative levels respectively, of five possible levels 

each at an increasingly finer spatial scale of resolution. Data at finer spatial scales are not 

available as part of the Kenya Bureau of Statistics’ effort to maintain privacy. A further 

complication was a change in the number of districts in Kenya from 42 in 1989 to 69 districts in 

1999; however, this change was made by subdividing existing districts allowing rough 

comparisons between associated regions. The IPUMS sample provides 97 household and 

                                                      
5 Not all maps are publicly available 
6 International Livestock Research Institute (Nairobi, Kenya) 
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individual variables, most importantly geographic information (urban-rural status, province, 

district), utility (electricity, water supply, sewage type, and type of cooking fuel), and dwelling 

(number of rooms, toilet type, floor, wall, and roof material). Other relevant data include 

 

Figure 2.1: Maximum extent of tsetse distribution predicted by the TED Model between the 
beginning of 2002 and the end of 2009. As described by DeVisser et al. (2010), the TED Model 
uses five scenes of MODIS 1km annual land cover, 207 scenes of MODIS 250 m Normalized 
Difference Vegetation Index (NDVI), and 207 scenes of MODIS 1km day/night Land Surface 
Temperature (LST) products to predict the fundamental niche of tsetse in Kenya, and a fly 
movement model to predict tsetse distributions or realized niche of the tsetse species of interest. 
The TED Model is written in Python scripting language and is run within ArcGIS 9.2 (or later 
versions of ArcGIS). Other data sets used to construct the map include shapefiles of Kenyan 
major roads, highways, cities, rivers, Kenyan water bodies, lakes, and African country political 
boundaries. To construct the background topographic relief map, the Shuttle RADAR 
Topographic Mission (SRTM) 90 m Digital Elevation Model (DEM) was used to create a gridded 
hillshade product, and a dry season NDVI scene was combined with the SRTM DEM to create an 
elevation/vegetation color scheme. 
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individual variables describing household position, demographic characteristics, education, 

employment, migration, and disability (see Table 2.2 for a sample). There are a total of 1,074,048 

individual entries for the 1989 census and 1,407,597 for the 1999 census samples. 

  Decisions on data management often conflict during collaborative research, resulting in 

the lack of a cohesive strategy for data management and the inability to share such data 

effectively. While our colleagues in Kenya have the technological skills to work with spatial data, 

the telecommunication network is insufficient to provide the necessary bandwidth or reliability 

to acquire the data via direct transfer over FTP or other similar protocol. In order to overcome 

this problem in the short term, it is necessary for us to carry the data into the country on physical 

media, and to have it accompanied by a data management system that can facilitate interaction 

with the large quantity of data. Thus, efficiency and portability are significant concerns. 

Development of a Spatial Database System 

Our solution for a spatial DBMS involves bridging a variety of software packages following the 

basic framework as described by Câmara et al. (1996) for the development of the TerraLib GIS 

Library and the integration considerations posed for the MurMur project (Parent et al., 2006). 

First, we outline the conceptual framework, and second, the implementation of the design. Third, 

we describe the development of routines, batch or other preconfigured shell scripts that can be 

selected to run either from the command line or through an interactive GUI prompt, whereby a 

user can add and recall raw data files, or query the database to return a mash up of spatial data 

files or metadata. Finally, we develop a set of SQL triggers (code set to run when activated by a 

defined action), to enforce data integrity. 



27 

Conceptual Model 

Figure 2.2 demonstrates our conceptual model for a spatial DBMS. In contrast to previous 

implementations of MySQL, Postgres, and other common spatial databases, modern DMBS 

models facilitate raw data and metadata to be stored together, embedded in the database 

(Elmasri & Navathe, 2004; Watson et al., 2004). The proposed spatial computing environment 

uses open source, community supported software and standards, providing a solution to the data 

management problem that is temporally extensible. The database is portable in so much that we 

can copy the database and software binaries to a portable drive that can be carried to Kenya. Of 

critical concern to us in the selection of software components was the interoperability of the 

system, the ability of components to interface and work together. Our selected DBMS is 

PostgreSQL (Postgres), an advanced, readily available, open source, object-relational database 

management system. Utilizing standard SQL syntax, Postgres allows for complex query 

capabilities, including spatial queries, and facilities strict rule and primary key enforcement. 

Postgres is also extensible, allowing for the addition of new functionality (Michael Stonebraker & 

Kemnitz, 1991; M Stonebraker & Rowe, 1986).  
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Figure 2.2: A conceptual model framework for the spatial DBMS. 

 

PostGIS ("PostGIS," 2008) is an extension to the Postgres language that adds functionality 

for the storage and retrieval of spatial data files. PostGIS is, at its core, a suite of tools that serve 

as the backend for spatial functionality in Postgres. Of particular interest is the WKTRaster (Beta 

0.1.6) project, which extends the ability of a Postgres database to store and index raster data, a 

first of its kind. The project mirrors the inherent vector-based functions (of GEOMETRY type) for 

raster data. The result is a single set of SQL functions that handle both spatial data types. This 

extension has the potential to greatly enhance and facilitate the utilization of raster data by end 

users. Figure 2.3 presents the conceptual model for the user interface to the Postgres DBMS. We 

incorporate a variety of software packages, explained later, each of which provides the user with 
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statistical, visual, or geoprocessing capabilities; the user can interact with these packages through 

a GUI or through a command line interface.  

 

Figure 2.3: Flow of data through the model implementation as users interact with the system. It 
should be noted that flows are one-directional, meaning that although users can interact with the 
data to generate analysis, the results must be stored as a separate entity in the database. This 
ensures that the underlying data cannot be changed. 

GRASS (Geographic Resources Analysis Support System) is one of the few open source 

options for the handling of raster GIS data. Developed by the Open Source Geospatial 

Foundation, GRASS is an increasingly popular solution for the use and analysis of spatial data in 
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academic research. Like the many other components selected for the system presented here, 

GRASS is interoperable with Python and Postgres and is extensible, allowing users to create and 

add new functionality. 

Although there are a plethora of statistical packages available, R is our preferred statistical 

package in large part because it interfaces easily with GRASS and Postgres. We can do so without 

needing to install any additional software components. R is an open-source solution, developed 

by an international community of users, to create an alternative to the often expensive and 

restrictive programs offered by statistical companies. Although R lacks a graphical interface, it 

uses far less computer memory than most other comparable statistical packages. This allows us 

to perform complex analyses with fewer hardware demands, an important consideration for 

maintaining portability of the project. 

Finally, Python ("Python," 2010) is an object-oriented programming language developed 

by Guido van Rossum in 1991 and maintained, in large part, by the open source community. 

Python is an efficient scripting language that facilitates interoperability between our database 

(Postgres), statistical analysis software (R), and GIS (Grass) (Neteler et al., 2008). Python is a 

highly intuitive, object-oriented programming language, easy enough to learn and use that it 

makes for a good solution to bridge our project components. Furthermore, the open-source 

nature of the language fits well with the other components, enabling us to incorporate additional 

extensions written by the community. 

The most critical consideration for long-term data storage is persistence and security 

(Elmasri & Navathe, 2004; Watson et al., 2004). Digital data are inherently ephemeral in that over 

time physical storage media will fail or degrade, thus requiring continuous rewriting on digital 
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media to ensure persistence. Though drive technology has progressed significantly in the past 

decade, drive failure is not uncommon; the volume of data and frequency with which the data 

are accessed puts immense stress on the physical mechanisms. Therefore, it is necessary to 

employ a strategy that ensures the long-term viability of the data. To this extent, we employ a 

RAID array (Redundant Array of Independent Disks) as our secondary storage medium, mirroring 

data between groups of drives. This enables corrupted data resulting from disk failure to be 

recovered in real-time, without the need to create tertiary backup regimes. Furthermore, we 

enforce constraints to access of the data in making the data read-only, reducing the chance a 

write error will occur or values inadvertently be changed. Finally, all files will have MD5 

checksums (a cryptographic hash code generated from a file’s binary data) included as an 

attribute of the file allowing us to verify the integrity of any data file (Rivest, 1992). The strategies 

employed here will also enable us to protect against accidental user error, which may result in 

inadvertent modification or deletion of data. Security restrictions, though a good first line of 

defense, are frequently circumventable. The ability to rollback changes within Postgres, as well 

as being able to restore data from the RAID, will ensure the long-term integrity of the data library. 

Database Standards 

Generic frameworks for database development, such as the one we outline here, should use 

established ontologies in their component descriptions, which we satisfy by conforming to the 

formal ontology described by the Open Geospatial Consortium (OGC). The OGC is an independent 

group tasked with the purpose of developing and maintaining a set of standards for the 

management of spatial data to promote both consistency and interoperability across GIS 

platforms. GDAL (the Geographic Data Abstraction Library) stands as a single standard for 
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interoperability of raster data within the GIS community. As a library it facilitates the conversion 

between data products. However, as is the case when working with proprietary data, conversion 

between formats requires a commonly understood intermediate. The GDAL standards and 

abstraction libraries utilized in our project facilitate this conversion between data formats by 

providing a commonly understood intermediate. Custom GDAL libraries are largely used in our 

implementation of GRASS as a mechanism to add support for a range of occasionally unsupported 

data formats. 

There are an inordinate number of disparate standards for metadata generation and 

inclusion, none of which are remotely universal. Regardless, it is necessary for our own data 

management that we accept and enforce a single standard for metadata management. Since our 

DBMS facilitates the storage of raw data within the DBMS, it precludes the need to store 

metadata separately as this information is included within the database as discrete variables (the 

raw data are technically also included as an attribute value). However, it is foreseeable that we 

may need, on occasion, to transfer data outside the realm of the database. Under this scenario, 

it is necessary to have a mechanism to recreate the metadata files discarded earlier. Thus, we 

incorporate custom scripts that can be called to assemble the necessary metadata precursor 

information from the data table. The resulting metadata report meets the formatting and 

content criteria specified by the OGC and ISO19115 specifications. 

SQL-Rule-Based Interactions and Scripting 

In an effort to ensure the integrity of the raw data and prevent accidental deletion or 

modification, all users are restricted in the ways they can interact with the DBMS. In the majority 

of cases, raw data are restricted to read-only access by users at the database level. One way we 
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achieve this is by restricting UPDATE and DELETE privileges to the database administrator account 

only. This ensures that raw data cannot be changed or deleted through unverified scripting. It 

further facilitates the simultaneous access and use of raw data by multiple processes. Figure 2.3 

symbolizes the flow of data from the DBMS to the user. While the raw data are read-only, it is 

useful to permit users to save the output of models to the database with the option to link to the 

source data. Indexing these data sets together is useful when new users explore the data. We 

will discuss this functionality further in the later section “A User Perspective: Interfacing with the 

DBMS”. Metadata for these model outputs will vary, but will at a minimum include the user 

identity and model code, as well as a summary of the model objective. A set of predefined rules 

or triggers is loaded into the DBMS and provides enforcement of the desired constraints (e.g. 

spatial/temporal mismatch encountered during scripted analysis). These rules serve to provide a 

minimal standard of validity and consistency for model output and statistical analysis (Devillers 

& Jeansoulin, 2006; Shi et al., 2002). 

The storage of raw data within the DBMS precludes the need to regularly interact with 

different data formats. Nevertheless, it may be useful to incorporate a mechanism whereby we 

can convert data among data formats or export data into a range of formats. While the majority 

of these tasks can be accomplished within the GRASS interface, we include in our library a set of 

python scripts to extend our ability to move among data formats (particularly useful for the range 

of raster imagery available). For example, our “data bank” includes raster imagery (*.img, .tif, 

.hdf, among others), vector data (*.shp and others), text documents (*.doc, .docx, .txt, .pdf, and 

others), metadata files corresponding to acquired imagery (*.xml, .pdf, .txt, and others), as well 

as an assortment of other types not specifically mentioned here. 
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DBMS Interface – A Manager Perspective 

Implicit in the design of our database are SQL rules (and triggers) that constrain the ways that 

users can work with data in an effort to prevent common mistakes. Since the database holds data 

at varying resolutions and extents, we constructed rules to check for common errors committed 

by users in selecting data layers. In the event that data layers are deemed incompatible, the user 

is alerted to the mismatch and encouraged, though not required, to restate their request. These 

rule sets operate at the point of data retrieval and storage. When importing data, we check and 

request the user define the relationship between spatial data and metadata. If metadata are not 

available, the user is prompted to input known characteristics of the data file in an attempt to 

force this paired relation. Common examples of information prompted include the timestamp of 

data acquisition or generation, solar or view angle (for satellite derived imagery), or a definition 

of codes that may occur within the data table (often the case with census data). Some of these 

data can be retrieved from the raw data, such as extent, summary statistics, file type, and others. 

Enforcing these relations at the time of storage will greatly reduce the number of unpaired spatial 

data files and corresponding descriptors.  

These rules sets also operate on a variety of demographic or other similar data types 

stored in our database. In our specific implementation of the database, we have sample volumes 

of census data collected by the Kenyan Government and acquired from IPUMS. As data is input 

into the database, users are prompted as to the type of data being input and plain English 

definitions of the variables (a long form description of the purpose of the data) included in the 

dataset. We developed a means to query the data file for variables and return this list in memory 
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to the rule set. In the event the data file does not return the correct list of variables, the user is 

prompted to specify the range of variables or create them. 

DBMS Interface – A User Perspective 

While many incantations of interfaces are possible, one means by which users can interact with 

data is through a web browser, which connects to the database via an application developed for 

Mac OS. Through the application, users have access to all the tools needed to query, utilize, and 

analyze data from the DBMS. From a set of menus, the user is prompted to select a subset of 

data. Next, they are given the opportunity of either selecting from a set of precompiled models 

or statistical scripts that can analyze the data, or the data can be brought forward and 

immediately visualized in the browser window. Finally, the user is provided with command line 

tools that can augment their interaction with the data. This approach to data interaction lowers 

the learning curve for new users and gets them instantly connected with the data. 

Statistical and Analytical Analysis 

We extend the functionality of our DBMS to assist users in browsing the library of data by using 

the R package to automatically calculate descriptive statistics. These summaries are potentially 

most valuable to users not involved with the production of the data, or who may not be familiar 

with a region of interest. Furthermore, providing a means to compute descriptive statistics 

automatically enforces consistency between files that is often a symptom of user error when files 

are independently managed. 

Perhaps the most common challenge users face in interacting with databases is retrieving 

data both correctly formatted and appropriate for use in a particular analysis (Longley et al., 
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2005). The scripted analysis tools help to bridge the gap in understanding for users not familiar 

with the R statistical package. With a simple menu prompt, the user is able to specify which data 

files and statistical methods are to be employed by the program. Though not a comprehensive 

selection, it provides a means to conduct a range of simple statistical comparisons. Further 

analyses can be performed though the R package directly linked to the database. 

Implementation 

To enable the reader to implement our DBMS model, we provide a general outline of the steps 

needed to install and configure the software packages. We make no assumptions as to the 

hardware on which the model is implemented. Our solution requires a number of software 

components, including PostgreSQL, PostGIS (with GDAL and WKT Raster extensions), Python, 

GRASS, and the R statistical package. In this section we will detail the required steps for the 

implementation of each component within open source Debian distributions of Linux. 

Software Packages 

Debian distributions of Linux take advantage of the aptitude system for software distribution, 

and therefore you can install all packages from the terminal. To install: 

sudo apt-get install python postgresql  

sudo apt-get install gdal-bin postgresql-8.4-postgis postgis grass r-

base 

You may also be interested in installing the Quantum GIS (QGIS) program, another convenient 

GUI that interfaces with GRASS, which can also be installed with aptitude: 

sudo apt-get install qgis 



37 

In order to allow interaction between GRASS and the GDAL libraries, you need to build and 

configure the GRASS plugin for GDAL. Download and follow the installation instructions provided 

by: 

http://trac.osgeo.org/gdal/wiki/GRASS 

Finally, you need to install optional extensions to the R package. Start R from a terminal by typing 

R; then install packages with: 

install.packages(“ctv”) 

library(ctv) 

install.views(“Spatial”) 

Initializing Postgres 

You will need to login to Postgres for the first time using the default “postgres” login. From the 

terminal window you will then be able to create user accounts, set access restrictions, and the 

database for the project data. First start Postgres from a terminal by typing: 

psql -U postgres 

You can now create your user accounts. In our implementation of the project, all users are 

granted limited permissions by default. Additional rights can be given later depending on the 

needs of the user. 

CREATE USER <username>; 

CREATEDB <dbname>; 

GRANT ALL to <username> ON <dbname>; 

It is necessary to configure the database to enable spatial functionality with PostGIS. The 

instructions given are also available from the PostGIS documentation at: 

http://postgis.refractions.net/documentation/ 

http://trac.osgeo.org/gdal/wiki/GRASS
http://postgis.refractions.net/documentation/
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First, type: 

CREATELANG plpgsql <dbname> 

Now, copy the PostGIS spatial definition files into your new database and navigate to the PostGIS 

installation directory specified during installation and type: 

psql -d <dbname> -f postgis.sql 

\q  #Quits the Postgres session 

For additional security options that are available, you may refer to the Postgres documentation7. 

You may now login to your new database from a terminal window by typing: 

psql -U <username> <dbname> 

Use caution when performing upgrades to PostGIS as you will likely have to rebuild support for 

your database. 

WKT Raster extension for PostGIS 

WKT Raster is not yet included in the PostGIS pre-compiled binary as it is (as of 09/15/2010) still 

in beta testing. Therefore, you will need to download and compile the extension. The following 

instructions are available from the WKT Raster project documentation8.  Depending on your 

specific system configuration, it may be necessary to build the PostGIS libraries from source as 

well as the required dependencies.  Download the source code from: 

http://www.postgis.org/download/ 

Unpack the tar file and navigate to the WKTRaster directory. Generate a configuration profile by 

typing: 

./autogen.sh 

                                                      
7 http://www.postgresql.org/docs 
8 http://trac.osgeo.org/postgis/wiki/WKTRaster/Documentation01 

http://www.postgis.org/download/
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Now run a configuration script. You will need to locate the installation directory for PostGIS: 

./configure --with-postgis-sources=/thesrc/postgis-version 

If no errors were generated, you can install WKTRaster. Since you are already in the installation 

directory, simply type: 

make & make install 

Configuring GRASS 

The first time you start GRASS, you will have to specify a location and path for your data. Choose 

the data path that you setup earlier (it should already be the default entry). In order to create a 

new location, it is easiest to have a georeferenced data file that spans the region of interest. 

Although not necessarily required by the software, it greatly simplifies the process of adding a 

spatial reference system to the data library to specify it right away.  Start GRASS by navigating to 

the icon or from a terminal: 

grass64 –gui 

Click on the Location wizard icon on the right hand side of the window. Follow the on-screen 

instructions, selecting your georeferenced data file when prompted. Alternatively, you can create 

a new location by entering grass with the default example “spearfish60”. From the GRASS 

terminal navigate to the directory where your data is stored and type: 

r.in.gdal i=<yourimage> -o <mapname> location=<newlocation> 

The function r.in.gdal will parse the image file and automatically define the region based on 

the extent of the selected image. 
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Loading Data and interfacing GRASS with Postgres 

There are a great many possibilities for importing data and interfacing with GRASS. Here we 

demonstrate several examples for importing data into Postgres and accessing those data within 

GRASS. Landsat 7 data are downloadable from the USGS as georeferenced TIFF for individual 

bands. To import them into a sample database “KENYA” utilize a python loader script9: 

gdal2wktraster.py -r *.tif -t Landsat -s 4326 -k 100x100 -I > 

Landsatloader.sql 

The script does not directly load the data into the database; rather it creates the necessary SQL 

script to do so. In this example, the -r option enables multiple files (selected with the asterisk) to 

be imported simultaneously into a single table. The -t option specifies the table name the data 

will be imported to. With the -s option, we specify the spatial reference system using SRID 

numbers (Spatial Reference Identifier, OGC specifications), WGS84 in this example (Herring 

2006). The -k option splits each raster into tiles that are 100x100 pixels.  Finally, the -I option 

requests that a spatial index file be created for each raster tile. Next pass the SQL loader for 

processing with: 

psql -U <username> -f Landsatloader.sql <yourdatabase> 

If you do not want to create a spatial index or forgot to do so in the first step, you can easily 

create one at the Postgres prompt by: 

CREATE INDEX Landsat_SI ON Landsat USING GIST (ST_ConvexHull (rast)); 

In this example, the GIST (Generalized Search Trees) index is used, which has a balanced tree 

index structure similar to a B-tree (Hellerstein, 1999; Kornacker, 1999). An example of a common 

                                                      
9 The loader is now called “raster2postgresql” and is installed by default with PostGIS. 
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format vector data type is the ESRI shapefile and an example is a digitized map of fly belt regions 

FLY.shp. Postgres facilitates the importing of vector data from the terminal with: 

shp2pgsql -s 4326 -I -D FLY.shp <yourdatabase>.flybelts > flybelts.sql 

Here the -s flag specifies the spatial reference system using SRID codes. The -I option requests 

the script initialize a GIST spatial index on the geometry column of the data. Finally, the -D option 

creates a dump file (SQL loader) that can be imported into Postgres from the terminal, a faster 

means of adding data to the database. Now pass the SQL loader to Postgres with: 

psql -U <username> -f flybelts.sql <yourdatabase> 

Alternatively, import vector data using a graphical interface by loading: 

shp2pgsql –gui 

To load the data into GRASS, initialize the Postgres driver from within the GRASS terminal. Start 

GRASS specifying a work location (see previous instructions for the generation of LOCATION). 

Now, load the driver defining the connection between Postgres and GRASS: 

db.connect driver=pg database=“host=localhost, dbname=<yourdatabase>“ 

db.login user=<username> 

db.connect -p 

db.tables –p 

After initializing the connection, it is now possible to query the database; for example, retrieving 

the flybelts data described earlier: 

v.in.ogr dsn=“PG:host=localhost dbname=<yourdatabase> user=<username>“ 

layer=????? output=flybelts type=boundary,centroid 

v.db.select flybelts 

v.info -t flybelts 

d.vect flybelts 
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Data in the HDF formats can only be read with additional GDAL libraries, which are not included 

with the standard distribution. However, the version of GDAL made available through the Ubuntu 

repositories appears to support some limited functionality. If further interaction with HDF is 

required, you will need to compile GDAL manually, inputting development files downloadable 

from the HDF Group10. HDF formats are containers, and thus may hold multiple data sets. Header 

data are accessed with: 

gdalinfo sample.hdf 

Sub dataset names are formatted as: 

HDF4_SDS:subdataset_type:file_name:subdataset_index 

A portion of the output reads: 

SUBDATASET_8_NAME=HDF4_SDS:MODIS_L1B:GSUB1.A2001124.0855.003.200219309

451.hdf:7   SUBDATASET_8_DESC=[408x271] Range (16-bit unsigned 

integer) 

Detailed headers for this sub dataset can be viewed with: 

gdalinfo 

SUBDATASET_8_NAME=HDF4_SDS:MODIS_L1B:GSUB1.A2001124.0855.003.2002

19309451.hdf:7 

Since the GRASS plugin was compiled with HDF support, image data, by individual band, are 

directly imported into GRASS with r.in.gdal. 

r.in.gdal 

HDF4_SDS:MODIS_L1B:GSUB1.A2001124.0855.003.200219309451.hdf:7 

out=hdfexample 

                                                      
10 http://www.hdfgroup.org 
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Once the data are loaded into the GRASS interface, they can be imported into Postgres either 

directly with db.connect or by exporting the image as .TIF and importing with the 

gdal2wktraster.py script. 

Limitations and Future Expansion 

The initial phase of our project is limited to the objectives addressing the misuse, 

misrepresentation, and effective archiving of our data library. As advances and improvements 

are made to the telecommunications infrastructure in Kenya, we will be able to share a common 

easily accessible repository for data with our colleagues outside the United States. The DBMS 

framework, including necessary software packages and data, can be packaged together and 

distributed via portable hard drive. Future updates to our software model will include a web-

based interface that will allow users to interact with the DBMS, including the suite of analysis and 

visualization tools (R and GRASS), without the need to install and configure these programs 

locally. This reduces the hardware requirements for working with the data, potentially allowing 

a broader base of users to share in data access. This approach has been extensively applied in 

many of the institutional projects referenced commonly in the literature (Câmara et al., 1996; 

Parent et al., 2006). 

Summary 

Disease ecology is a trans-disciplinary field, exploring the complex interactions between diseases 

and the environment. Computational and collaborative barriers inhibit meaningful advances in 

the field. Major problems include data management schemas to facilitate the scalability (data are 

re-sampled dynamically to avoid redundant storage), reliability (concurrent access to data 
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permitted while ensuring the raw data cannot be changed), and data security (the database 

allows for a dynamic security access policy while meeting the HIPAA and IRB requirements). As 

data become aggregated with decreasing spatial resolution, many of the privacy concerns 

disappear but tracking and management problems proliferate. The DBMS must dynamically alter 

the restriction rule-set to account for the aggregation and application challenges. Previous 

implementations of data management systems required that multiple instances of the data be 

stored, creating a problem of exponentially increasing data storage demands. Currently, no 

framework for data management that addresses this set of integrated concerns exists. 

Over the course of our research on African Trypanosomiasis, we have accumulated a large 

library of data. Our database model utilizes open-source software so as to allow for flexibility and 

extendibility to the model implementation. We take advantage of the new PostGIS extension, 

WKTRaster, to allow for the storage of raster imagery within the database. This allows us to 

enforce a single standard in the way all data formats, irrespective of the contents, are managed. 

With this development, we are finally able to store the entirety of our data library, spatial and 

non-spatial, explicitly within a single database implementation, and the restrictions and rule-sets 

coded into the DMBS should ensure the long-term integrity and security of the data.   

 

The overarching goal of this project is to create a multi-scale predictive model for the 

tsetse and African Trypanosomiasis to provide a means whereby governments, communities, and 

NGOs can make informed decisions for disease control or suppression that are spatially and 

temporally aware.  Given the variable background and technical expertise of the different groups, 

our solution should be simple enough for the most basic user, yet powerful enough to be useful 
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for complex analyses by the most skilled. To maximize the utility of this system, we will utilize a 

participatory design framework to develop Mac, iPhone, and Web applications for interfacing 

with the models and data.  

Open-source software is uniquely capable of rapid adoption of new technologies and 

functionality due to the base of developers working on modular extensions to the software base. 

Spatial databases are increasingly common. Mobile data applications are becoming increasingly 

location-aware (e.g. Facebook, Twitter, Loopt, Turn-by-turn Navigation (Waze), among others), 

with the purpose of providing users with context-specific information and opportunities. These 

GIS technologies increasingly promote web-based interfaces to a spatial database. Perhaps the 

most exciting vision for GIS is the adoption of mobile technologies, now incorporating GPS 

technology, to provide for context-aware interaction with spatial database systems. The next 

step in our project is to implement an efficient, two-way web-portal for the spatial DBMS that 

will allow us to interact with data and model results from mobile devices in the field. Combined 

with automated scripting and model execution, this would have the potential to dramatically 

increase the amount of information shareable with local communities. While not yet possible 

due to barriers in Kenya, we work towards the vision of achieving synchronicity between science 

and practice. 
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Table 2.2: A sample of the subset of Kenya census data we hold from the 1990 National Census 

 cntry year sample serial persons wthh subsamp gq unrel urban provke distke ownrshpd electrc 

1 404 1989 4041 1000 4 20 26 10 0 2 1 1010 216 2 
2 404 1989 4041 1000 4 20 26 10 0 2 1 1010 216 2 
3 404 1989 4041 1000 4 20 26 10 0 2 1 1010 216 2 
4 404 1989 4041 1000 4 20 26 10 0 2 1 1010 216 2 
5 404 1989 4041 2000 1 20 76 10 0 2 1 1010 216 1 
6 404 1989 4041 3000 4 20 2 10 0 2 1 1010 216 1 
7 404 1989 4041 3000 4 20 2 10 0 2 1 1010 216 1 
8 404 1989 4041 3000 4 20 2 10 0 2 1 1010 216 1 
9 404 1989 4041 3000 4 20 2 10 0 2 1 1010 216 1 

10 404 1989 4041 4000 1 20 92 10 0 2 1 1010 140 2 
11 404 1989 4041 5000 1 20 81 10 0 2 1 1010 216 1 
12 404 1989 4041 6000 12 20 5 10 0 2 1 1010 216 1 
13 404 1989 4041 6000 12 20 5 10 0 2 1 1010 216 1 
14 404 1989 4041 6000 12 20 5 10 0 2 1 1010 216 1 
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CHAPTER 3  

UTILIZING VOLUNTEERED INFORMATION FOR INFECTIOUS DISEASE SURVEILLANCE 

Abstract 

With the advent of Web 2.0, the public is becoming increasingly interested in spatial data 

exploration. The potential for Volunteered Geographic Information (VGI) to be adopted for 

passive disease surveillance and mediated through an enhanced relationship between 

researchers and non-scientists is of special interest to the authors. In particular, mobile devices 

and wireless communication permit the public to be more involved in research to a greater 

degree. Furthermore, the accuracy of these devices is rapidly improving, allowing the authors to 

address questions of uncertainty and error in data collections. Cooperation between researchers 

and the public integrates themes common to VGI and PGIS (Participatory Geographic 

Information), to bring about a new paradigm in GIScience. This paper outlines the prototype for 

a VGI system that incorporates the traditional role of researchers in spatial data analysis and 

exploration and the willingness of the public, through traditional PGIS, to be engaged in data 

collection for the purpose of surveillance of tsetse flies, the primary vector of African 

Trypanosomiasis. This system allows for two-way communication between researchers and the 

public for data collection, analysis, and the ultimate dissemination of results. Enhancing the role 

of the public to participate in these types of projects can improve both the efficacy of disease 

surveillance as well as stimulating greater interest in science. 
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Introduction 

Recent publications surrounding Volunteered Geographic Information (VGI) broadly represent 

the belief among some in the academic community that non-scientists can be engaged in and 

benefit from spatial data analysis (Connors et al., 2012; Flanagin & Metzger, 2008; Goodchild, 

2007a, 2010a), a field previously reserved exclusively for academics. Focus on VGI represents a 

paradigm shift from viewing science as having a single authority (the scientist) to a model where 

authority is relative and expressed contextually. Abundance, repetition, and the collective 

assessment of data (as well as the ability to correct) convey credibility to information that would 

not necessarily exist otherwise (Connors et al., 2012). In this sense, a non-scientist plays a role in 

validating data collected by others, and collectively assessing data quality (Connors et al., 2012; 

Craglia, 2007). 

The concept of Web 2.0 incorporates bi-directional collaborations in which users 

collectively collate spatial data, stored in a central cloud repository and accessible by anyone for 

whatever purpose deemed worthy. The Web 2.0 paradigm is represented widely through web 

projects such as Wikimapia, OpenStreetMap, and even Google Earth. Within the context of these 

volunteered GISystems (VGIS), users contribute information to develop a collective knowledge 

base. Recent advances in mobile technology have furthered the applicability of Web 2.0 projects, 

enabling easier access to the information, and even allowing for novel uses of crowd-sourced 

information (Rosenberg, 2011). Sui (2008) extends the paradigm to include “the wikification of 

GIS”, a notion which he defines as being the shift in perception that only people who are 

specifically trained to “do GIS” should interact with spatial data and perform analysis. It is upon 
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this notion, specifically, that VGIS endeavors to enhance the role of the user in the collection and 

analysis of spatial data. 

The use of volunteered information for disease surveillance draws upon themes in the 

participatory GIS (PGIS) literature in suggesting that GIS technologies can operate in concert with 

volunteered information and local knowledge (S Boroushaki & Jacek Malczewski, 2010; Connors 

et al., 2012; Elwood, 2010; Flanagin & Metzger, 2008). The key distinction between classical PGIS 

methods and VGIS involves the role of the scientist. We refer here to McCall’s (2005) discussion 

of good governance through improving dialogue, legitimizing and using local knowledge, the 

redistribution of resources, access rights, and new skills training in geospatial methods. These 

concepts support the idea that a PGIS or VGIS approach can contribute to the adoption of new 

technologies for disease surveillance. 

Background 

Traditional Paradigm 

The traditional paradigm in GIScience partitions individuals into experts versus non-experts. In 

an academic context, this treats scientists as the experts and citizens as non-experts. Under this 

traditional paradigm, public participation in the research process is hindered by a number of 

factors. Most importantly, the traditional roles of experts (scientists) versus the public leaves 

little room to consider alternative knowledge bases (i.e., local knowledge). Furthermore, there is 

limited opportunity for citizens to become informed, equal participants, thereby limiting the 

potential applicability of any results/understanding gleaned from the research process (Soheil 

Boroushaki & Jacek Malczewski, 2010). 
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Under the traditional GIS model, technology and software are not readily accessible, 

requiring either a specific skill set or simply being priced beyond the consumer market. Therefore, 

citizens are relegated to operating as consumers of information exclusively, or as indirect 

producers, mediated by communication to researchers in small group projects. Their interaction 

with the data in this regard is strictly as a provider of information, not as producers of spatial 

data products. Finally, the traditional GIS model treats data validation as achieved largely through 

reputation (Flanagin & Metzger, 2008). Scientists and researchers are perceived as producers of 

reliable data due to past training in data collection and analysis. Furthermore, the peer review 

process adds credibility by requiring outside researchers to assess quality. Broadly though, data 

collected by researchers is assumed to be reputable because it is collected within the context of 

academic endeavors, and done by trained individuals. Information of this sort is generally 

accepted to be true until shown to be otherwise. With few exceptions, the vast majority of GIS 

data products are produced under the traditional GIS model. Citizens are largely excluded from 

the process of data collection and analysis (Connors et al., 2012). We do not, however, suggest 

that the traditional model must be replaced. Instead, we propose the standard model be 

extended to facilitate collaboration between citizens and researchers. 

VGIS Paradigm 

Volunteered GIS represents a paradigm shift from viewing science as having a single authority 

(the scientist) to a model where authority is relative and can be expressed contextually. 

Information abundance, repetition, and the collective assessment of data convey plausibility to 

data that would not otherwise necessarily exist. In this sense, a non-scientist plays a role in 

validating data collected by others; collectively assessing data quality (Oreskes et al., 1994). This 
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concept is explored further by Craglia (2007) in his assessment of individuals as geosensors, 

empowering them to validate global models using their own perceptions or impressions of the 

data. Volunteered GIS therefore represents the broad interest by non-scientists to be engaged in 

and to benefit from spatial data analysis. 

Although Goodchild coined the term “volunteered GIS”, the movement towards a new 

paradigm really began a decade earlier with the desire, on the part of scientists, to engage 

citizens directly in the research process. Sara Elwood, through her work with PGIS, exemplifies 

this desire and her work has been instrumental in the evolution of the VGIS paradigm (Elwood, 

2006b). Other contributions have included work by Elmes et al. (2005) with their description of a 

“community integrated GIS”, Turner’s “Neogeography” (2006), Balram and Dragicevic’s  

“collaborative GIS” (2006), and Sieber’s “public- participation GIS” (2006). Collectively the work 

of these individuals demonstrates the broader goal of direct community engagement in the 

research process. 

However, researchers have also made significant strides towards integrating components 

of a VGIS into their own projects, including studies in environmental sensing, decision-making, 

resource management, and community risk assessment. Project GLOBE, OakMapper, and 

Audubon’s Christmas Bird Count (Connors et al., 2012; Goodchild, 2007a; House et al., 2001; 

Yaukey, 2010) are long running projects for the purpose of monitoring spatial and temporal 

distributions of resources and phenomena. By employing citizens to collect data, researchers are 

able to more effectually analyze spatial processes by generating much larger quantities of data. 

While data quality remains a concern, the large quantity of data collected diminishes the 

influence of inaccurate data (Flanagin & Metzger, 2008). 
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The use of VGIS to answer questions of decision making draw upon the PGIS literature in 

suggesting that GIS technologies and implementations can assist in conflict resolution and 

multiple-criteria decision making (Soheil Boroushaki & Jacek Malczewski, 2010). Flanagin and 

Metzger (2008) make reference to these types of questions in using GIS for collective community 

efforts. The key distinction between classical PGIS methods and VGIS involves the role of the 

scientist. PGIS seeks to improve dialogue between actors for the purpose of legitimizing and using 

local knowledge, the redistribution of resources access and rights, and new skills training in 

geospatial methods (McCall & Minang, 2005). However, the researcher plays a limited role as 

teacher. VGIS builds on this by leveling the authority between actors; scientists and non-scientists 

are viewed as having [almost] equal authority, allowing both actors to communicate more freely 

with each other and to share expertise. Our prototype supports the idea that a PGIS or VGIS can 

contribute to addressing questions of decision-making, and later resource management and 

conflict resolution. 

Volunteered GIS alters the standard GIS paradigm by substituting a producer-user model 

instead of the traditional expert-user archetype. Under this framework, researchers and citizens 

can act as either producers or consumers of spatial data, depending on the context within which 

they are interacting with the data. Producers in this case need not necessarily be experts in all 

areas of GIS or the broader research context. Rather the producer’s role is given to any individual 

with information to contribute to the aggregate knowledge base (Soheil Boroushaki & Jacek 

Malczewski, 2010; Flanagin & Metzger, 2008). User roles are given to individuals who consume a 

spatial data product for any purpose. Under the new paradigm, roles are not fixed and not 

exclusive. 
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Finally, under the traditional GIS model, data were perceived to be trustworthy because 

of the perceived authority of the scientist. However, with changing roles, we need a new model 

for data error assessment (Flanagin & Metzger, 2008; Goodchild, 2007a, 2007c). Possibly the 

single largest barrier to the utilization of volunteered information is the uncertainty surrounding 

its credibility (Connors et al., 2012; Flanagin & Metzger, 2008; McKnight et al., 2011). Under the 

VGIS model, the credibility of volunteered information is achieved through volume. Intuitively, 

we understand that if multiple individuals report similar information, the reports are likely 

credible representations of the truth. The larger volume of data collected through a VGIS, albeit 

repetitive, can achieve the same threshold for credibility as data collected under the traditional 

model (Flanagin & Metzger, 2008). 

Related, there’s a significant degree of uncertainty as to the nature of volunteered 

information with respect to the types of error. McKnight et al. (2011) explore the relation of 

volunteered information to assess spatial distribution of West Nile virus in Michigan. In their 

analysis, they raised the issue of uncertainty with regards to types of error that influence the 

data. For example, users may reliably report positive observations (i.e. in this case, observations 

made of dead birds), but reports are likely to indicate the absence of data. Therefore, 

volunteered information is heavily biased towards the observation of an outcome, and should 

not be interpreted as a metric of prevalence. Utilization of volunteer information must be 

cognizant of the nature of uncertainty. 

The prevalence of mobile devices that have GPS capabilities, including cell phones, tablets 

and laptop computers, has increased the accessibility of spatial data. Hardware is no longer 

priced outside the realm of ownership for many people in the world, meaning that users can now 
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directly engage with spatial data in ways that they simply could not do before. The interaction of 

the public with spatial data is now so prevalent that most users have developed sufficient 

technological skills and spatial cognition (through interaction with online mapping tools) to 

enable them to interact with spatial data in an intelligent manner, precluding the need for 

training prior to participation in GIScience research. Paradoxically, it would appear that spatial 

cognition is unrelated to global geographic awareness. Although people are able to position 

themselves abstractly on the landscape, they remain illiterate as to the broader geographic 

context in which they live. 

Software interfaces fall into two broad classes: traditional desktop products and web- 

based applications. For the purposes of inter-acting with a VGIS, citizens are most likely to use a 

web application since this does not require a specific platform or license to run. Desktop 

applications, on the other hand, can be distributed to certain groups, allowing for a more 

targeted interaction with the spatial data. The open-source software movement is most directly 

credited with making GIS software accessible to the public, removing financial and hardware 

restrictions for many GIS products. Most notable among these are GRASS and Quantum GIS, free 

GIS packages modestly equivalent to ESRI’s ArcGIS®. Interfaces for spatial data analysis have been 

developed with R and Python, interacting directly with Grass and Quantum GIS. Increasing 

familiarity on behalf of the public in spatial tools, geospatial technologies, and mapping increases 

the likelihood that they will be able to act as producers of high quality information. While the 

increasing availability of mobile technologies has spurred public interested in GIS, the cost of 

adopting new technologies remains a principle challenge, particularly in developing countries. 
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Disease Surveillance 

Disease surveillance systems are established for the purpose of collation, analysis, and 

dissemination of information so as to facilitate the allocation of resources in handling disease 

outbreaks (Thacker et al., 1983). Broadly, surveillance programs are categorized as either passive 

or active. Passive disease surveillance programs rely on reporting by healthcare providers to 

public health authorities when specific signs and symptoms are observed, a diagnosis is made 

and/or a diagnostic test is confirmed. Public health authorities collate these reports and assess 

the need for a coordinated response. Upon making a determination, the authorities 

communicate back to the local health care providers, and the necessary recommendations are 

set forth to address the disease outbreak. An example of passive surveillance in the United States 

involves the reporting of certain communicable diseases by health care workers after a diagnosis 

is made. These reports are received by public health officials who are tasked with ensuring the 

disease does not pose a threat to the welfare of the public. 

Passive disease surveillance systems are hierarchical in nature with space and time 

important factors. Knowledge of highly infectious diseases may be reported up and information 

on the control of those diseases may be reported down the hierarchy very rapidly, whereas more 

common diseases may be reported and intervened on slower schedules such as monthly or 

semiannually. The management and coordination of communication within a passive surveillance 

system therefore, needs to be agreed upon by all parties (i.e., levels within the hierarchy in order 

to ensure the protection of population health). However, passive surveillance systems are widely 

criticized for underreporting diseases (Thacker et al., 1983). 
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When passive surveillance systems break down and mandated reportable disease(s) are 

not communicated from the local to central levels, there is a need to respond by implementing 

an active surveillance program. 

Active surveillance programs directly address the underreporting of disease by utilizing 

teams to assess local conditions. Such programs begin with the recognition at the central level 

that the expected communication in space and/or time has not been received and in response 

actively reach out to that location for the information. During these visits, retrospective data are 

collected and the management of the passive surveillance system is revived (e.g., manpower, 

technology). The operations of disease surveillance systems are therefore highly dependent upon 

the cooperation of all participants at level of the hierarchy. One well-cited example of active 

surveillance is Snyder and Merson’s (1982) meta-analysis of diarrheal disease prevalence and 

mortality throughout the developing world. Here they review 24 studies where data was actively 

collected (either through home visits or other means) by trained personnel. In contrast to a 

passive surveillance program, workers were employed for the sole purpose of collecting disease 

prevalence data. 

Case Study 

Purpose 

African Trypanosomiasis (AT) is a zoonotic disease transmitted by the tsetse fly. In Kenya, the two 

most common forms of AT are Trypanosoma brucei (Nagana), the form of the disease that affects 

cattle, and Trypanosoma rhodesiense (Sleeping Sickness) that affects humans. While sleeping 

sickness is relatively rare in Kenya, Nagana is widespread and represents a major threat to the 

livelihood of pastoralists (Baird et al., 2009; Tarimo-Nesbitt et al., 1999; Waller, 1990). The 



57 

prevalence of Nagana has increased in recent decades due to a decline in control regimes, climate 

change, and anthropogenic factors (Batchelor et al., 2009; Bauer et al., 1992; WHO, 2005). Our 

case study describes the prototyping of a VGIS for the purpose of surveillance of an infectious 

disease vector. 

 

Figure 3.1: Study Area 

 

Site Description 

Nguruman (Figure 3.1) is located at the base of the Rift Valley in southern Kenya, just east of the 

Nguruman Escarpment. Formally, Nguruman is the local Maasai name for the settlement, which 
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occupies the area west of the Ewuaso-Nyiro River and the Kongo Forest to the Oloibortoto water 

intake; it is bounded to the south by the Ol’Kirmatian Conservation Area and to the north by the 

Oloibortoto River. Nguruman is also referred to locally as Oloibortoto. North of the Oloibortoto 

River, and broadly included in our study area, is Entasopia, the largest settlement in the area. The 

political “capital” of the Nguruman area is Ol’Kirmatian, a settlement 6.5km west of the Ewuaso-

Nyiro River, and home to the District office for the Kenya government as well as the office of the 

local governor for the Ol’Kirmatian group ranch, the political arm of the Maasai in this area. 

From the base of the Rift to Oloibortoto, the predominant land use is smallholder 

agriculture. Streams dissect the region and are maintained by the community as means to irrigate 

their farms. Dominant agricultural crops throughout the region include tomatoes, vegetables 

destined for South Asian markets, and fruit trees (e.g., bananas, mangos) (Langley, 2010). 

Southeast along the road from Oloibortoto to the Kongo forest, vegetation density rapidly 

increases. The area is extremely rocky and dominated by herbaceous and woody shrub 

vegetation, most abundant of which are Acacia tortillis, Salvandora persca (toothbrush tree), 

Grewia tembensis, and Cordia sinensis (Maitima; Morris et al., 2009). Dominant grasses 

throughout the region include Sporobolus spp., Setaria spp., and Cynodon dactylon (Morris et al., 

2009). The Kongo forest is the area of densely vegetated land between Oloibortoto and the 

Ewuaso-Nyiro River. It is within this zone that we find abundant tsetse; unfortunately this zone 

is often the only option available to the community for grazing their animals during the dry 

season. Moving east from the Ewuaso-Nyiro River, the landscape dries quickly, resulting in a rapid 

decrease in vegetation density. During the dry season, the area is devoid of most vegetation; 

however after a short period of rains, the grasses in the area of Ol’Kirmatian re-emerge with 
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vigor. Across the entire region, these eco-zones are highly dynamic and respond rapidly to local 

climatic shifts and the occurrence of precipitation. 

Global climate change is dramatically influencing the local environment within our study 

area (Moore et al., 2012). In past decades, annual precipitation in southern Kenya has remained 

relatively constant despite significant increases in annual mean temperatures, however the 

variance of the magnitude of precipitation events have increased and the seasonality of total 

precipitation has become less predictable (Altmann et al., 2002; Messina et al., 2012; Moore & 

Messina, 2010). The observed climate change and uncertainty in precipitation will undoubtedly 

threaten the livelihood of farmers and pastoralists (Fischer et al., 2005). Indeed, these concerns 

were conveyed to us in the course of our work; many farmers have already found it difficult to 

determine the right time for planting due to changes in local weather and precipitation events 

(Langley, 2010). 

Trypanosomiasis (Nagana) in cattle is a major threat to the livelihood of Maasai 

pastoralists in Nguruman. The risk of infection is chief among their concerns to the health and 

well-being of their cattle herds. An important consideration for the community is the 

management of grazing for cattle herds among the members of the group ranch. A committee of 

elders, whose chief aim is to maximize utilization of the limited resources (while advocating 

sustainability) for the benefit of the community, manages the patchwork of grazing areas. Of 

particular interest to the grazing committee (as expressed through interviews) is the ability to 

work with our research lab to incorporate predictions of the spatial and temporal trends in tsetse 

populations and models of risk aversion. 
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DeVisser et al. (2010) developed a species distribution model for tsetse (TED) that predicts 

tsetse presence/absence every 16 days based on the habitat requirements and movement rates 

of the fly. The precision of the model predictions is limited spatially by the resolution of the inputs 

(250m), and temporally by the availability of MODIS LST and NDVI data products (8 and 16 days 

respectively). It is well established that tsetse are highly responsive to microclimatic conditions 

supported by local variations in vegetation (Terblanche et al., 2008). The spatial resolution of the 

TED model predictions limits consideration of such local configurations, thereby increasing the 

likelihood of errors of omission. The TED model was designed to identify endemic tsetse and does 

not model transient tsetse populations. By incorporating volunteered information from citizen 

reporters, TED could better illustrate the distribution of the flies over space and time by reducing 

errors of omission and reporting transient populations. Volunteered information may also be 

used (to an extent) to confirm (Oreskes et al., 1994) the TED model predictions by giving us a 

means to estimate model uncertainty. 

Conceptual Model 

Here we elaborate on the previously published framework for a VGIS (Langley & Messina, 2011) 

by illustrating the construction and deployment of a working prototype. Furthermore, we discuss 

potential challenges and limitations of our implementation and propose strategies to address 

these issues. Figure 3.2 outlines the basic implementation of the proposed VGI and the methods 

by which users will be able to interact with the spatial database (sDBMS), specifically through 

mobile devices. The core of the proposed implementation is a Postgres database server that 

stores both the spatial data as well as scripts to compute predictions of tsetse distributions, 

process volunteered data (submitted first to a reliability assessment), and automatically retrieve 
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and process remotely sensed imagery as it becomes available. Users interact with the database 

through an Apache server and an HTML interface. A MapServer implementation provides 

functionality for visualization of spatial data. All components are open-source and platform 

independent so as to convey maximum portability. 

Our implementation of a VGIS seeks to achieve three goals: 1) facilitate user interaction 

with the VGIS and model results so as to allow for the reporting of information that may correct 

otherwise inaccurate data (defined as those predictions that contradict ground-level reports); 2) 

assess the reliability of volunteered information; and 3) incorporate volunteered information to 

calibrate a model of tsetse distribution and reduce errors of omission. To assess the functionality 

of the VGIS to achieve these goals, we have developed a working prototype of the system to 

illustrate our approach. 
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Figure 3.2: This deployment diagram illustrates the interaction of the separate components of the 
VGIS and the flow of information between each component 

 

We incorporate a variety of software packages, including GRASS and QGIS (for visual GIS 

support), Python and R (for statistical and modeling tasks), each of which provides the user with 

statistical, visual, and geoprocessing capabilities; the user can interact with these packages 

through a GUI or through a command line interface. Our selected DBMS is PostgreSQL 9.1 

(Postgres), an advanced, readily available, open-source, object-relational database management 

system. Using standard SQL syntax, Postgres allows for complex query capabilities, including 

spatial queries, and facilitates strict rule and primary key enforcement. Postgres is also 
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extensible, allowing for the addition of new functionality (Michael Stonebraker & Kemnitz, 1991; 

M Stonebraker & Rowe, 1986). In contrast to previous implementations of MySQL, Postgres, and 

other common spatial databases, modern DMBS models facilitate the combined storage of 

spatially explicit data and corresponding metadata together in the database (Elmasri & Navathe, 

2004; Watson et al., 2004). The proposed spatial computing environment uses open-source, 

community-supported software and standards, providing a solution to the data-management 

problem that is temporally extensible. Of critical importance to us is the improved functionality 

available in PostGIS 2.0, which adds support for raster data types. PostGIS is an extension to the 

Postgres language that adds functionality for the storage and retrieval of spatial data. PostGIS is, 

at its core, a suite of tools that serves as the back end for spatial functionality in Postgres. 

 

Figure 3.3: We propose an iOS application (for iPhone or iPad) that 
allows for users to interact with the VGIS, explore model predictions, 
volunteer data, or to contribute 
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Data Collection and Interface 

Users and producers alike are able to interact with the VGIS in many ways, each according to 

their own skills, interests, and available hardware. In our case study, we outline the mechanisms 

whereby participants (either researchers or community members) can interact with the VGIS. 

Figure 3.3 illustrates the broad deployment strategy for mobile device interaction. 

Related to the deployment of a mobile interface, the web interface sports a comprehensive suite 

of tools available to all participants from any web browser, with functionality dependent upon 

the credentials supplied to the system. 

Most participants will find themselves interacting with the VGIS primarily through their 

mobile devices. For this purpose, we propose an iOS application that, for the most part, simply 

employs an HTML wrapper allowing the user to interact with a MapServer application. Users are 

able to query the database for specific, albeit limited, types of data, even define a specific range 

of times over which to aggregate the data; the application is geographically aware, so it is able to 

return information for a user’s specific coordinates by passing the current longitude and latitude 

to the server. Most importantly, a user is able to volunteer information, with regards to the 

distribution of tsetse, through the application. Simply, a user can use this function to report that 

tsetse flies are present at their current location. A user’s unique device ID is logged with the 

report and serves as a surrogate measure to distinguish between users. 

Users are able to interact with the system in different environments, including a web 

browser, a desktop application, and on a mobile device (Figure 3.3). Users ultimately will be able 

to conduct a range of operations, such as obtaining spatially contextual information and model 

predictions, defining new model runs, exporting data, and submitting volunteered information 



65 

or reporting map/model errors; however for the purpose of our prototype, functionality is limited 

to the data querying, visualization, and reporting of tsetse occurrences. 

Information Reliability 

The traditional model of data reliability emphasizes the authority of the researcher and our belief 

that trained individuals will generate reliable, trustworthy data (Craglia, 2007). Within the 

context of a VGIS, we relax this assumption, instead qualifying reliability through data volume, 

the idea being that credible information will tend to be generated independently by more than 

one user (Flanagin & Metzger, 2008). 

There are two fundamental approaches to assessing the reliability of crowd-sourced 

information. In the simplest case, information is assumed either credible or not until confirmed 

or rejected by a subsequent report. Under this model, all participants are treated equally with 

respect to their prior knowledge/skills; reliability is assessed by their peers through the creation 

of informal social networks [of trust] (M Bishr & Kuhn, 2007; Mohamed Bishr & Mantelas, 2008; 

Flanagin & Metzger, 2008; Metcalf & Paich, 2005). 

The second model takes a more nuanced perspective of the user, taking into account the 

skill set of the person filing a report and their prior credibility. This approach is best approximated 

as a Bayesian model of data quality where the reliability of a report is dependent on the prior 

assessment of the user and previous reports made to the system (Crosetto & Rodriguez, 2001). 

If a number of prior reports are rejected, the individual is given a low reliability score that may 

lead to automatically rejecting any subsequent reports made (unless of course those reports are 

later confirmed independently). However, if the user has a history of high quality submissions 

that are routinely confirmed, they may be given a high credibility score, leading to automatic 
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accepting of the report into the database. Prior experience with the user is the crux of this model 

approach to data quality. Conati (2004) demonstrated this approach in evaluation of models of 

user affect; their study required that they be able to assess the reliability of self-reporting of 

emotional states. 

 

 𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 = 𝛼 + ∆ (3-1) 

α = prior score 

Δ = change in score output from Figure 3.4 

 

In our case study, we employ a simple decision model (Figure 3.4), that integrates social 

trust networks (e.g. Mohamed Bishr & Mantelas, 2008; Metcalf & Paich, 2005) and Bayesian 

methods (e.g. Conati, 2004; Crosetto & Rodriguez, 2001) to assess the accuracy of data and the 

reputability of volunteers who report on the presence of tsetse flies. To demonstrate our 

approach, we evaluate the reliability of volunteered information under two scenarios. In the first, 

a single reporter volunteers on multiple occasions. In this scenario, the reliability of the 

information is determined and the rating (Equation 3-1) can be associated with the reporter’s ID. 

Subsequent reports are evaluated on the merits of the information as well as the reliability score 

of the reporter. In short, a reliable reporter is likely to submit reliable information. A record can 

also be approved if a user is deemed trustworthy under the model. This value is calculated over 

time as a measure of the number of reports that are confirmed versus contradicted. 
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In the second scenario, several reporters each volunteer information only once. In this 

case, a reliability score cannot be computed or used to evaluate the reliability of the information; 

a report made under this scenario must be evaluated solely on the merits of the content. There 

are two components in the report (in addition to the information itself) that are used to assess 

reliability, context and authorship. In this scenario, authorship is of limited value since each 

reporter submits only once; we cannot conceptualize an author profile. However, we can 

evaluate the content of the information in the context of current predictions (of tsetse 

distribution) as well as prior years’ predictions for the same period. A reliability score (Equation 

3-2) is computed as a cumulative product of a user’s rating, the number of times a cell is occupied 

in the previous time step in the current year, the number of times the cell is occupied on the 

same date in previous years, and the number of neighbors occupied in the previous time step. A 

Figure 3.4: To assess the reliability of volunteered information, a 
report is evaluated in the context of a set of conditions. This figure 
presents a logical thought diagram for the application of the 
computation of reliability (3-2) 
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report is deemed credible if the score exceeds a certain threshold. This threshold is initially set 

to 5, but should be re-evaluated periodically to ensure data quality is maintained. 

 

 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜃 + 𝜌 +
𝜅

4
+ 𝛾 (3-2) 

θ = user score 

ρ = the number of times the cell was occupied previously, including the previous time step in the 

same year and the same time step in the previous year (max = 2) 

κ = number of neighboring cells that are occupied (max = 8) 

γ = number of supporting reports 

 

Volunteered information under both scenarios can also be evaluated in the context of 

TED model predictions. Model predictions that take into account volunteered reports are 

compared to predictions made 16 days prior as well as to the distribution of tsetse at the same 

time in the previous year. We can reasonably assume that pockets of tsetse should maintain 

connectivity. If a report is made of tsetse occurrence in an isolated area (as measured by number 

of neighbors, κ) where no tsetse are predicted to occur, the probability of this report being 

accurate is low. If we were to incorporate these data into the model, the resulting predictions 

might dramatically impact the local reliability of the model outputs. By incorporating volunteered 

information into our prediction of tsetse distribution, we can better represent fine scale 

variability, particularly with regards to our ability to represent real-time distributions. 
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Utilizing Volunteered Information to Reduce Model Error and Uncertainty 

Previously, we detailed our approach to assessing the reliability of volunteered information in 

the context of our case study. To illustrate the performance of the VGIS in making this 

determination, we simulate the reporting of tsetse occurrences across the study area. The 

simulated reports are generated for each iteration of TED model prediction. Additionally, we can 

illustrate reliability assessment under each of the two scenarios we detailed earlier; multiple 

reports from a single user or single reports made from multiple users. 

The TED model outputs a binary raster at 250 m pixels which represents the minimum 

mapping unit for the predicted distribution of tsetse on the date the latest MODIS data product 

was captured; the predictions are not real-time estimates (always 30-45 days past) of tsetse 

distribution and are designed to underestimate the maximum distribution. Incorporating 

volunteered data allows us to fill in the gap, providing more up-to-date predictions (Figure 3.5). 

If the data reports are deemed reliable and differ from TED predictions, the cell represented in 

the binary raster for the previous time step is updated to reflect tsetse presence. The next 

iteration of TED will build on the ‘corrected’ raster. 

Tsetse distributions expand and contract with seasonal climate. They achieve a minimum 

distribution at the peak of the dry season; these regions of minimum tsetse distribution are 

termed ‘reservoirs’ (DeVisser et al., 2010). Of relevance to our case study, we can use these 

minimum distributions as opportunities to ‘reset’ the model predictions so as to reduce any 

errors of omission that may have resulted over the previous season from incorporating 

volunteered information. In doing so, we can ensure that TED model predictions are reliable 

estimates of the minimum distribution of tsetse. 
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To test the functionality of the VGIS, we will simulate the implementation of the system 

to test the evaluation of volunteered information and the integration of this information with the 

DeVisser’s tsetse distribution model. These simulations will primarily explore the assessment of 

volunteered reports of tsetse presence, under three scenarios. The first illustrates the case a 

report fills in a gap in the predicted distribution of tsetse (Figure 3.5a). Presumably, this is a 

product of error in the estimation of safety distribution. As stated previously, the TED model is 

designed to minimize errors of commission at the expense of added errors of omission. The 

assumption here is that the gap observed in the distribution is a product of this process. When a 

report is made, occurring within the bounds of this, the probability of that report being accurate 

is reasonably high. Therefore, our model should assign a high reliability score to that report. 

The second case involves a report that connects two clusters of tsetse. In this case, we 

assume that patches of tsetse distribution should, for the most part, maintain connectivity in 

some way. If a report is made that establishes connectivity between patches (Figure 3.5b), there’s 

a high likelihood that this report is reliable. Therefore, our model should assign a score that 

reflects this likelihood. 

Finally, we simulate the case in which a report is made which places tsetse in a region that 

is isolated from predicted patches of tsetse distribution (Figure 3.5c). Since we have no prior 

reason to believe tsetse occur in this region based on model projections, there is a low likelihood 

that this report is true. Therefore, our model should assign a reliability score that emphasizes the 

extreme nature of this report. Through these simulations, we can identify the effective threshold 

for reliability. 
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Figure 3.5: Users may volunteer reports of tsetse presence under a range of scenarios. (A) 
Illustrates the case where a report fills in a gap in a patch of tsetse, likely correcting an error in 
TED model predictions. (B) Illustrates the case where a report establishes connectivity between 
two isolated patches of tsetse. (C) Illustrates the case where a report of tsetse presence is spatially 
isolated from the predicted distribution of tsetse. In each case, a user is presented with a 
prediction of tsetse distribution from the TED model (Column 1). Users identify an error in the 
model, observing tsetse in an area where they are not predicted to occur, and submit a report 
(Column 2 - black box). The report is submitted for reliability assessment; if deemed reliable, TED 
model predictions are updated to reflect the new information (Column 3 – black box). 
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Conclusion and Limitations 

Communication barriers present one of the most prominent barriers to disease surveillance 

programs. When communications between health care providers and regional health authorities 

break down under passive surveillance systems, there is a need to make attempts to directly 

collect disease incidence data directly. Yet, there are significant hurdles to implementing active 

surveillance programs (e.g., costs and logistics). By adopting concepts of crowdsourcing, public 

participation, and volunteered GIS, we can open the door for an intermediate solution for disease 

surveillance. Such an intermediate solution employs citizens to collect surveillance information, 

increasing the manpower available to collate the information. It may not then be necessary to 

dispatch health professionals to procure the data directly. Targeted campaigns can also be 

utilized to solicit participation on behalf of the public to assist in collecting surveillance data. 

Finally, our approach to assessing the credibility of volunteered information increases the utility 

and reliability of data obtained from these campaigns. 

However, there are significant limitations to a full implementation of the VGI in our case 

study. The region in Kenya in which we are working is remote; there are significant challenges in 

terms of communication connectivity, reliable electricity, and necessary hardware; AMREF 

(American Medical and Research Foundation) and the African Conservation Centre (AAC) have 

made significant improvements to local infrastructure, but much more is required. Cost remains 

the most substantial hurdle for regional implementation. Our utilization of open source solutions 

mitigates, but does not eliminate this challenge. Absent assistance from international partners, 
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the likelihood of full implementation of the disease surveillance system will certainly remain in 

the domain of our scientific and development collaborators. 

Connors et al. (2012) draw attention to the potential value of incorporating additional 

sources of information (e.g., Twitter, Flickr), aside from direct volunteering through a VGIS, to 

allow for increased participation; however, in doing so we would be introducing new types of 

uncertainty to the models. Our current design attempts to limit error exclusively to those of 

omission (i.e., we have tried to ensure that TED model predictions are estimations of the 

minimum area tsetse are distributed). In this way, we have greater confidence over the areas 

TED predicts tsetse to occur. When users volunteer reports of tsetse occurrence, they do so by 

providing GPS coordinates of their location (this is done in the background through the iOS 

application). Incorporating Twitter feeds, geo-tagged Flickr photos, among others, would on the 

one hand provide us with more information; however the cone of location uncertainty of that 

information is much greater and far less tractable. These sources of volunteered information 

represent important avenues for future development, particularly in the broader field of VGI, but 

at this time are beyond the scope of what we believe to be possible to include in our project. 

Critical to the success of VGIS for disease surveillance is adequate public participation. 

Too few reporters can make it difficult to assess credibility and limits the conclusions that can be 

drawn from the information collected; however if incentives for participation are carefully 

considered, there can be a drive for individuals to accurately and reliably contribute to the 

system. Integration of volunteered information for disease surveillance, especially in low-income 

countries, can be used as an alternative to the high costs of active surveillance programs, which 

are often implemented in rural areas to learn more about disease prevalence. The prototype for 
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a VGIS outlined in this study demonstrates how technology and participatory science can advance 

passive disease programs to improve public health in needed parts of the world. 
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CHAPTER 4  

USING META-QUALITY TO ASSESS THE UTILITY OF VOLUNTEERED GEOGRAPHIC INFORMATION FOR 

SCIENCE 

Introduction 

The scientific paradigm has evolved many times over the last millennium --- empirical, 

theoretical, and computational paradigms have dominated our identity as scientists.  However, 

we are standing on the apex of another transition as technological and communications barriers 

are toppled (Elwood et al., 2013; Gray & Szalay, 2006), and the distinction between amateur and 

professional scientist is eroded.  Neogeography characterizes the “blurring of the distinctions 

between producer, communicator, and consumer of geographic information”; the separation of 

scientist and layperson, expert and novice, is obscured as citizens engage in the generation of 

new knowledge (Goodchild, 2009).  As citizens engage in Science, we need to reconsider our 

traditional notions of authority, expertise, and purpose. 

Neogeography, a type of citizen science, has garnered a great deal of attention in the 

literature as we struggle to conceptualize the nature of “geographic expertise”; however, the 

involvement of citizens in science has long been established (Goodchild, 2009; A. Turner, 2006). 

Participatory science has sought to involve citizens directly in academic research and related 

exploits (Elwood, 2006b; Haklay et al., 2008; Tulloch, 2008) on the premise that citizens are more 

informed actors with respect to their local environment than researchers operating externally. 

Citizens are perceived to hold authority through experience and status, and are acknowledged 
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for their capacity to convey unique understanding, or indigenous knowledge (Elwood, 2006b; 

Elwood et al., 2013).  

With the advent of Web 2.0 (O'Reilly, 2005, 2006) and the widespread availability of new 

technologies (Corbett, 2012; Haklay et al., 2008), citizens are increasingly exposed to 

geographical information. Citizens also increasingly volunteer spatially explicit (geographical) 

information that is of relevance or interest to them, often integrating this information with 

existing datasets, or mashups, utilizing it for their own gain (Miller, 2006; A. Turner, 2006). 

Goodchild coined the term “volunteered geographic information” (VGI) to refer to spatial data 

that is contributed by ordinary citizens, irrespective of their training in scientific methods 

(Goodchild, 2007a).  The notion of VGI grew out of recognition of the limitations of traditional 

methodologies for adequately mapping and assembling spatial information around the world 

that provided both good coverage and fine temporal resolution (Elwood, 2008b; Elwood et al., 

2011; Goodchild, 2008b). Goodchild further articulated the issue, drawing from the broader 

social science literature, postulating that the problem of data coverage can be mitigated were 

we to harness the “six billion sensors” on the earth (Goodchild, 2007a).  He is of course referring 

to the earth’s population of citizens, whom he notes begin to acquire spatial knowledge at a 

young age.  Combined with Web 2.0 technologies, he asserts citizens can use the tools available 

to them to “volunteer” spatial knowledge of the world around them. While traditional spatial 

data infrastructures (SDIs) represent one-way communication models (where users only receive 

information from experts), VGI represents a model where communication flows in both 

directions without consideration of the role of the individual (Goodchild, 2009). As a framework, 

VGI encompasses citizen participation from a range of social classes and computing practices with 
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the express purpose of harnessing the collective intelligence (Connors et al., 2012; Elwood, 

2006b); it builds on the notion that data can be shaped by social and political processes and an 

individual’s expertise, context, and spatial awareness (Elwood, 2008a, 2008b; Elwood & Leitner, 

2012; Harvey, 2012). Local knowledge is crucial to an accurate geographic description of 

communities and social groups, involving the citizen in the process of data collection; this 

understanding enables science to more accurately explain geographic phenomenon.  

VGI in practice is now commonplace.  Arguably one of the most successful, if not the most 

widely cited, outlet for VGI has been Wikimapia (Elwood et al., 2011; Goodchild, 2007a).  Here 

individuals contribute knowledge of the physical, built environment around them in order to 

create as accurate a representation as possible. Other prominent examples include 

OpenStreetMap and Google Maps (utilizing the Google’s API or Maps Maker) (Haklay et al., 2008).  

Recent events have also demonstrated the potential for VGI to assist in disaster response 

(Goodchild, 2010a).    

However, the utility of VGI remains limited.  In the context of the broader GIS literature, 

data quality has always been a concern (Elwood et al., 2011; Flanagin & Metzger, 2008). In the 

case of VGI, this concern is exacerbated due to the lack of expertise, or credibility, of the 

individual (Flanagin & Metzger, 2008). Given that VGI is user-generated information by non-

experts, there is no quality assurance of the data (Craglia, 2007).  It is viewed as non-authoritative 

data; as such, some have argued it should be informative, but not relied upon (Corbett, 2012). 

Others have raised concerns over the motivations of the individual, whether data is volunteered 

with an intent to inform or mislead, an act of digital vandalism (Tulloch, 2007). 
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Many approaches have been taken to assess the quality and reliability of VGI (e.g. Corbett, 

2012; Elwood & Leitner, 2012; Flanagin & Metzger, 2008; Langley & Messina, 2013). The majority 

of these approaches thus far have been conceptual in nature, with few implementations of 

reliability assessments for VGI. The most common of these methods involves social trust 

networks and reputation models (Corbett, 2012; Maué, 2007). Under this approach, data quality 

is checked by other project participants for errors and inconsistencies. In this model, no single 

expert is tasked with reviewing each volunteered report. Another approach recommended has 

been to use existing data sets (collected using more authoritative methods) to check for 

inconsistencies in data. However, quality is not absolute; a datasets fitness-for-use is contextual 

and may have varying degrees of suitability for different users (Goodchild, 2008a). No single 

metric can be used to determine whether a data set is suitable across all ranges of potential uses. 

Thus, the context of a user's participation and interaction with VGI must be taken into account 

when considering accuracy/quality of VGI. 

Given the concerns raised over the uncertainty of data quality in VGI, there is significant 

debate as to the utility of VGI for science.  There are surprisingly few examples of academic 

initiatives utilizing VGI.  (2011) inventoried 99 projects utilizing VGI and found only 3% to have 

academic affiliations. Perhaps one of the most prominent examples of VGI in science is the 

Audubon Society’s Christmas Bird Count.  This project has amassed a significant volume of 

volunteered data; however despite attempts to train volunteers in data collection, lingering 

questions of data quality, of reliability, have limited any analytical value and integration potential 

with authoritative datasets (Wiersma, 2010).   
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 Flanagin and Metzger (2008) frame the issue of data quality of VGI in terms of credibility, 

and the primary components of trustworthiness and expertise (of the data source).  The 

credibility (or believability) of VGI can be described objectively by traditional measures of data 

quality – the degree to which the information can be considered accurate, or as the subjective 

perception on the part of the consumer (Flanagin & Metzger, 2008). Credibility is related to 

notions of trust, reliability, accuracy, reputation, authority, and competence.  However, for VGI 

to be useful for science, it is the traditional, objective “credibility-as-accuracy” measure 

demanded (Flanagin & Metzger, 2008). To fully quantify error in data, it is necessary to have a 

measure or to make assumptions as to the nature of the population being measured, to compare 

the distribution of data against the population as a whole.  It is in this way we measure attribute 

accuracy, completeness, thematic resolution, and variability, to name only a few.  Other 

measurements rely on feedback from measurement equipment, such as positional accuracy, 

temporal accuracy, spatial and temporal resolution, among others.  As is often the case with VGI, 

the individual either operates without measurement equipment, or does not volunteer the 

additional metadata with their report. Participatory science and VGI Science (VGIS) often involve 

datasets for which the nature of the population is not immediately known.  Therefore, a direct 

quantification of the error of VGI is only possible in a post-hoc analysis.  However, it is the 

immediate benefit VGI can provide us that is of interest here and so we must develop a 

mechanism to evaluate the merits of VGI in real time (as it is contributed).   In the absence of an 

ability to directly measure error and uncertainty parameters of volunteered data, we can use a 

surrogate measure, meta-quality, a measurement of the collective quality of the data (van Oort, 

2005).   
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The objective of our work here is to improve the perceived value of VGI for science by 

demonstrating a methodology for VGI data quality assessment. We accomplish this through a 

mechanism to explicitly assess the reliability of reporters based upon their respective VGI 

contributions.   

To better illustrate our approach, we apply the methodology to a case study in disease 

ecology where we model the distribution of the tsetse fly, the principle vector of African 

Trypanosomiasis in sub-Saharan Africa. The “tsetse ecological distribution model” or TED, is 

based on an assessment of environmental characteristics critical for the persistence of the fly 

(DeVisser et al., 2010). The model simulates a 16 day cycle of the expansion and contraction of 

the fly population as response to the changing fundamental niche given the movement potential 

of the fly population (DeVisser et al., 2010). The model is a conservative estimation of the 

population distribution specifically minimizing errors of commission; therefore, the TED model is 

an estimation of the minimum extent of tsetse at each point in time. However, the model is 

reliant on a static land cover classification and makes no adjustment for error intrinsic to the 

model (DeVisser et al., 2010). The TED model produces estimates of the spatial distribution as 

binary outputs indicating presence/absence of the fly for each time period.   

Potentially the most important contribution to incorporating VGI into a species 

distribution model of the kind here is the fact that we can explicitly address one component of 

model error (omission) without contributing additional error.  TED was developed as a 

conservative model of the minimum expected distribution of tsetse. By incorporating VGI into 

the model results, we can effectively facilitate the population expanding over gaps of unsuitable 

habitat, either due to actual conditions or poor input data.  It is known that microclimates provide 
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refuge for tsetse in areas where the habitat would be otherwise unsuitable (Ford, 1971; Moore 

& Messina, 2010).  The spatial resolution of the underlying MODIS data miss these microsites and 

therefore omit these cells in the estimated distribution.  Allowing the distribution to be updated 

based on the VGI, would allow us to more accurately reflect conditions as they exist reflecting 

sub-pixel dynamic that otherwise would not be possible. Incorporating VGI into the model results 

to expand the distribution can therefore reduce errors of omission without contributing 

additionally to errors of commission, thereby reducing total error, and thus improving data 

quality. Incorporating VGI into TED requires two distinct steps: 1) determine the reliability of the 

reporter to assess whether the VGI meets the threshold for acceptance, and 2) update the tsetse 

distributions by changing the binary tsetse presence/absence value for the cell (in which the 

datum is located) to 1 – indicating presence of the fly.  In cases where VGI reflects the predicted 

distribution, no change is made.   

Methodology 

Here we undertake a series of experiments to illustrate the integration of VGI into a traditional 

analytical model. First, we explore the characteristics of VGI and its impact on model results. 

Second, we evaluate the sensitivity of the model to three types of error common to 

crowdsourced data.  Finally, we explore the importance of reliability, as measured by a reputation 

score (Frew, 2007; Langley & Messina, 2013; Maué, 2007), in determining the threshold for 

accepting the data for inclusion in the model, under both static (a pre-defined score) or dynamic 

(a varying score) conditions. 

To simulate the generation of VGI, we first consider the different kinds of reporters and 

the characteristics of the data they might contribute (Table 4.1).  We identify four basic types of 
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reporters: 1) “always right”, 2) “always, intentionally wrong”, 3) “random”, and 4) “normal”.  The 

“always right” reporter represents individuals who are judged, post hoc, to be highly reliable and 

the data they contribute are of high quality, often promoted to the role of moderator in online 

forums (Maué, 2007); there is no (or minimal) spatial or temporal error component to the data 

they contribute.  The “always, intentionally wrong” reporter represents individuals who 

consistently, and/or intentionally provide erroneous data (M Bishr & Kuhn, 2007; van den Berg 

et al., 2011); these reporters are unreliable and the data they contribute should always be 

rejected.  The “random” reporter represents individuals who generate data, falling on a random 

distribution, reporting tsetse, for example, at apparently random locations across the landscape 

(whether or not they are actually present) ignorant of underlying habitat conditions (Chow, 2012; 

D. Coleman & Sabone, 2010); due to the random nature of the reports, the data are therefore 

unreliable. Finally, the “normal” reporter represents the typical individual who volunteers 

information; the individuals have a high degree of credibility and the data are usually high quality 

(Flanagin & Metzger, 2008), but there is a spatial and temporal error component to the data they 

contribute.  It is this type of reporter that we are most interested in evaluating reliability.   

In the context of our case study, the simulated data for each reporter are based on habitat 

suitability criteria.  In a real scenario, it is not possible to assess the accuracy of any report by 

itself; rather we can only assess the fitness-for-use of the data by placing it in application context 

and asking whether it is plausible (Grira et al., 2009; R. T. A. d. Groot, 2012). We simulate this by 

evaluating the data based on the likelihood of the data being correct given the underlying habitat 

conditions.  To simulate the data, we identify a set of conditions that would be consistent with 

reports made for each reporter type, and use these conditions to identify points that can be used 
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in our sample data set.  Table 4.1 fully describes the types of reporters and the set of conditions 

used to simulate data.  For completeness, we explore the impact on the predicted occurrence of 

tsetse by simulating data, not only from the four reporter types but also from data generated 

from all combinations of habitat suitability criteria.  It is based, in part, on these simulations that 

we identified the specific combination of criteria that would be used to render simulated VGI. 

The simulated data are based on the underlying conditions present at each time step in 

the model, but not necessarily on the predicted occurrence for that simulation.  For each set of 

criteria and combination thereof, we ran 100 simulations, identifying 100 points in each time step 

to serve as mock reports.  Pooling these data points together results in 10,000 potential locations 

(some locations are represented more than once in the pool due to random selection in the 

simulations) for reports for each time step from which we randomly draw from when simulating 

reporters.  This allows us to incorporate a minimum amount of stochasticity that would exist with 

reporters in a real-world scenario. 

The basic TED model was implemented in GRASS based on the methods outlined by 

DeVisser et al. (2010) (see Appendix A for code).  Building on our implementation of the TED 

model, we model the predicted distribution of tsetse, incorporating VGI, and evaluate the 

magnitude of the difference. Appendix B presents sample code for one simulation run (simulation 

11).   Each model was written in BASH, a UNIX shell-scripting language.  The models were run on 

the HPCC cluster at Michigan State University for a total of 9,321 simulations representing an 

estimated 13,981 hours of computing time. 

The normal reporter is defined as an individual who usually provides credible data, but 

has the potential to submit erroneous data.  Incorporating these inaccuracies into the data 
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stream produces some degree of error in the model output.  In reality, it is not possible determine 

the truthfulness of the data; therefore we must be able to determine the influence of error on 

the model output.  The standard “normal” reporter is assigned an error rate of 10% (an arbitrary 

assignment); we measure the effects of this error by evaluating the impact on the resulting 

distribution when the “normal” reporter is assigned an error rate of 50%.  As the data are 

constructed based on the combination of habitat suitability criteria, we evaluate introducing 

error into the model in different ways. Erroneous data are simulated by selecting points in areas 

of unsuitable habitat by shifting the location of the point (simulating positional error), or by 

holding the data until the following time step (simulating temporal error).  A z-score is computed 

comparing each set of criteria against a simulation where points are selected at random, as well 

as a test of significance against the output from the TED model alone (no VGI data incorporated).  

An assessment of the reliability of the VGI requires us to first generate a dynamic history 

for each reporter that reflects the plausibility of the data as determined by habitat suitability 

criteria.  Each reporter is assigned a score, a measurement of their reputation, which is a product 

of these criteria (slightly modified from Langley and Messina 2013 to allow for negative changes 

in reputation). The index returns an ordinal measurement of reliability; it is not constraint to a 

particular range, rather is structured such that positive scores convey reliability. It is computed 

as: 

 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜃 + 𝜌 +
𝜅

4
+ 𝛾 (4-1) 

θ = reporter’s score 

ρ = the number of times a cell was previously occupied (-1 if 0) 

κ = the number of occupied cells in 4-cell neighborhood (-1 if 0) 
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γ = the number of supporting reports (-1 if 0) 

We arbitrarily selected threshold scores of 5 and 8 for incorporation of the VGI into the 

TED model results. A paired t-test is used to measure the significance of adjusting the threshold 

and the potential importance the specific selection has on the resulting predicted occurrence. An 

alternative approach to the arbitrary assignment of scores is to determine the threshold at which 

reporter types can be distinguished from each other.  We subject the history of reporter scores 

to a k-means test; this analysis tries to iteratively place each reporter into one of two clusters 

(we define these clusters to mean reporters of “plausible” or “erroneous” data). Cluster centers 

were defined at random from the set of scores for each test.  As reporter scores increase over 

time, we expect it will take a certain number of model time steps before they will group properly.  

The average reporter score (for the plausible group) from 100 iterations can be interpreted as a 

reasonable threshold score under a static model. 

Over time, the scores for reporters quickly exceed the small thresholds we set (reaching 

values > 100 at the end of the simulation), which results in unqualified acceptance of the VGI into 

the model.  As such, we cannot detect or respond (within a reasonable time) to changing behavior 

among reporters, reflecting the inability of arbitrary, static thresholds to capture potential 

declining reliability and reputation of reporters over time. In the final set of simulations, we 

explore the possibility of using a dynamic score model, where the threshold for acceptance is 

drawn from the distribution of all reporter scores at each time step.  For each simulation, we set 

a threshold equal to the 1st quartile score, mean, or 3rd quartile score from the distribution of 

all reporters’ scores at that time.  This allows us to include only the most reliable reporters from 

our total pool of participants, and the longer the model operates over time, the more reliable 
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our output becomes.  The net benefit to the model should thus improve over time.  Sets of paired 

t-tests are used to measure the significance of the difference in predictions from the three 

threshold models. 

Results 

In our case, the likelihood that tsetse are present in an area, the subject of the VGI in question, 

is correlated with the habitat suitability as measured by land cover, land-surface temperature, 

and NDVI.  A reporter’s score is a measurement of their reputation, akin to eBay’s ratings system, 

which quantifies the history of the individual to perform in a manner that is perceived positively 

by their peers (Maué, 2007). We assume that if a reliable reporter contributes information that 

confirms another’s data, the likelihood that datum being accurate is improved.  However, this 

method of confirmation by peers necessitates a set of reporters who have attained a data history.  

Until a reporter attains a certain reputation, we do not have enough information to assess data 

quality; however, we have seen that different reporters themselves quickly separate from each 

other, allowing us to partition out individuals who are either reporting randomly (and thus 

frequently inaccurately) or are simply providing erroneous data intentionally.  Partitioning out 

these two types of reporters alone immediately improves the quality of the contributed data.  

Varying the criteria for spatially locating VGI greatly influences the overall impact on the 

predicted occurrence of tsetse, however the impact varies markedly from year to year due to 

environmental conditions and shifts in the habitat suitability (Table 4.2). Randomly locating 

points results in an overall 9.81% (4.23% − 13.66% for individual model years) increase in the 

number of cells in which tsetse are predicted to occupy over the time period in the model (recall 

that incorporating VGI into the TED model can only increase the prevalence of tsetse). However 
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targeting specific locations where habitat is suitable and at least one neighbor is predicted to be 

occupied (the criteria we assign to our normal reporter), yields an overall 0.03% (0.02% − 0.05%) 

increase in occupied cells.  Notably, selecting suitable habitat alone as our criteria influenced the 

results the most, with an overall 14.06% (7.22% − 17.94%) increase in predicted occurrence.  

Likely this speaks to the design goal of the TED model to minimize errors of commission.  

Predictably, constraining report locations to only those cells in which tsetse are predicted to 

occur (the condition for our “always right” reporter) yields no increase in the predicted 

occurrence of tsetse over the base model.  Selecting locations in which tsetse are not predicted 

to occur or where habitat is unsuitable (conditions for the “wrong” reporter or a component of 

error in the normal reporter, respectively) yields an overall 10.59% and 8.23% increase in the 

predicted occurrence.  All criteria tested yielded significantly different results over the random 

model (p < 0.001 in each case). 

In the static threshold score model, there was no significant difference in the overall 

predicted occurrence of tsetse (p > 0.4).  However, utilizing a dynamic threshold score model 

resulted in significant differences between all three models (1st quartile, mean, and 3rd quartile) 

with p-values < 0.001 in each case.  The overall increase in predicted occurrence was 0.8%, 0.43%, 

and 0.12% respectively; however, the results varied widely from year to year for both static and 

dynamic threshold models (see Table 4.3). [Note: simulations 8 through 12 in the table consider 

the cases for only normal reporters]. 
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Figure 4.1: A frequency plot representing the time-step in which reporters cluster into two groups, 
for 100 replications of simulation 13 

 

The four types of reporters cluster into two groups — see simulations 13 and 14 (Table 

4.4) for the cases where all reporter types are considered.  The four reporters are not fully 

distinguishable from each other at any time in our models (k-means with four clusters). Figure 

4.1 presents the distribution curve (for all 100 replications) for the time step, at which point the 

reporters can be distinguished using a k-means clustering approach.  For simulation 13, where a 

threshold score of 5 is used, the reporters can be separated, on average, in the 5th time step 

(mean = 4.93, median = 5). The average reputation score in the 5th time step is 10.87 for the 

“plausible” group.  Reporters in simulation 14 (50% error rate) do not consistently cluster 

together into two groups.   
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Figure 4.2: A frequency plot representing the time-step in which reporters cluster into two groups, 
for 100 replications of simulation 10 

 

 

Figure 4.3: A frequency plot representing the time-step in which reporters cluster into two groups, 
for 100 replications of simulation 11. 



90 

Considering the dynamic score models, there were no significant differences in the time 

needed for reporters to group together.  For the 1st quartile threshold score (simulation 10), 

reporters clustered into two groups, on average, in the 5th time step (mean = 4.61, median = 5).  

The average score for the “correct” reporters in the 5th time step was 18.87 (Figure 4.2).  In the 

mean threshold score models (simulation 11), reporters clustered together in the 4th time step 

(mean = 4.32, median = 4).  The average reputation score for reporters in this time step was 15.06 

(Figure 4.3).  Finally, for the 3rd quartile threshold score model, reporters clustered together in 

the 4th time step (mean = 4.21, median = 4) with an average reputation of 15.14 (Figure 4.4). 

 

 

The nature of error (positional vs. temporal) introduced into our models through 

incorporating VGI did not appear to change the magnitude of the impact on predicted 

occurrence.  This was also true when varying the magnitude of the error, at least for the range 

tested (5 – 25%).  We did observe a significant increase in the predicted occurrence of tsetse 

Figure 4.4: A frequency plot representing the time-step in which reporters cluster into two 
groups, for 100 replications of simulation 12 
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when the magnitude of the error introduced was 50% (where each reporter had a 50% chance of 

contributing erroneous data); introducing error of any type, though, results in a significant 

increase in the predicted occurrence compared to the case where no error is considered 

(simulation 4).  Therefore, at least in our case study, the error introduced from VGI is not 

expected to a statistically significant effect on the prevalence of tsetse.  This suggests that our 

models are resilient to the introduction of some erroneous data. Adaptations of our model to 

different studies will nevertheless necessitate an exploration of the role of introduced error from 

VGI to assess the resiliency of scientific models. 

While the analysis reveals significant differences in the predicted tsetse occurrence from 

incorporating VGI into the TED model, global metrics are difficult to interpret given the 

importance of spatial structure in the dataset.  To this extent, visualizing the structure of tsetse 

distribution patterns can lead to novel interpretations of the influence of VGI.  Figure 4.5 - Figure 

4.7 present the predicted distribution of tsetse over our study area (for simulations 10, 11, and 

12 respectively); cell values indicate the proportion of time steps in the model (every 16 days 

between 2004-2006) where tsetse are predicted to occur, averaged across 100 replications. The 

distributions incorporating VGI closely mirror the base TED model with marked differences 

between core tsetse areas. These maps illustrate specific areas where VGI is particularly 

influential, likely due to the ability of tsetse populations to “jump” patches of unsuitable habitat. 
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Figure 4.5: The theoretical maximum and minimum extent (respectively) for the distribution of 
tsetse for simulation 10.  Values represent the proportion of time-steps in the model where tsetse 
were present; this is a rough approximation of the probability of tsetse occurrence. 
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Figure 4.6: The theoretical maximum and minimum extent (respectively) for the distribution of 
tsetse for simulation 11. Values represent the proportion of time-steps in the model where tsetse 
were present; this is a rough approximation of the probability of tsetse occurrence. 
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Figure 4.7: The theoretical maximum and minimum extent (respectively) for the distribution of 
tsetse for simulation 12. Values represent the proportion of time-steps in the model where tsetse 
were present; this is a rough approximation of the probability of tsetse occurrence. 
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Time is a significant factor to consider when evaluating the results of our models.  In 

describing the output of TED model predictions, DeVisser et al. (2010) noted that tsetse 

populations tended to reach their maximum extent at the end of the long rains (ending the 

beginning of June).  Populations tended to reach their minimum extent at the end of the cool dry 

season (mid- to late-October).  This interpretation of tsetse population distributions comports 

with what is observed in my simulations, and is grounded in an ecological understanding of tsetse 

population dynamics. 

Discussion 

Volunteered geographic information can make valuable contributions to science, enhancing 

datasets from more authoritative sources.  However, integrating VGI data necessitates assessing 

the error and uncertainty of those data.  Direct quantification of data quality in this context is 

difficult; the traditional components (e.g. accuracy, precision, and variance) typically cannot be 

ascertained for VGI.  It is critical for us to at least be able to qualify data quality, as it serves as 

the foundation from which we assess fitness-for-use.  We have proposed using reputation or 

reliability (of the reporter) as a surrogate measure of meta-quality. As an initial assessment, 

meta-quality allows us to begin to break through the cloud of uncertainty inherent with VGI. 



96 

 

We build on the power of the reliability/reputation assessment by considering a dynamic 

threshold scoring model.  While we considered three different criteria for establishing a threshold 

(defined as the 1st quartile, mean, and 3rd quartile values in the distribution of reporter scores 

in each time step), we did not find a significant difference between them – as measured by an 

overall increase in the prevalence of tsetse in our models.  In considering only those individuals 

whose reliability exceeds the mean score for all reporters, we only incorporate VGI from a subset 

of reporters we deem the most reliable. As scores improves for all individuals (regardless whether 

we have incorporated their data into our models), the threshold for acceptance/inclusion in our 

models also increases (approximately linearly in our models – Figure 4.8 shows the trend for one 

simulation).  Over time, the quality of VGI data that we incorporate will improve, and the impact 

Figure 4.8: This figure overlays the scores of 100 reporters for simulation 8 
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of any erroneous data we have included should decrease.  Most importantly, a dynamic threshold 

model facilitates detection of declining performance (of a reporter) and a rapid response to limit 

the acceptance of poor quality data.  

The potential value of a means to assess data quality of VGI is immense.  The strongest 

hurdle to fully utilizing VGI has been our inability to measure data quality and uncertainty. In 

demonstrating a valuation system for VGI (based on the reputation of reporters themselves), we 

have, in part, overcome this hurdle. To date, the utilization of VGI for science has been reserved 

for those cases only where the performance of reporters is controlled through training and 

guidance while closely monitoring the entire process from data collection to communication 

(Elwood & Leitner, 2012; Tulloch, 2008; Wiersma, 2010).  But this runs contrary to many of the 

perceived strengths of VGI, the dissolution of traditional roles (Elwood et al., 2013; Goodchild, 

2007c, 2009; Haklay et al.), and the establishment of a two-way communication model for 

geographical information (Goodchild, 2007a).  Projects that have tried to embrace VGI have done 

so under the old model of participatory science, and thus are subject to all the perceived and 

actual limitations (Elwood, 2006b; Miller, 2006). Many factors influencing quality remain difficult 

to measure, including rates of participation and motivation to participate; the value of VGI cannot 

be fully appreciated until we can reliably assess these factors and the role they play in 

determining data quality. 

It is our position that incorporating VGI into standard scientific models, particularly those 

where available data are sparse, can significantly improve the performance of the models and 

the predictive or explanatory power of the results.  Consider the case of “Digital Earth”; first 

conceived by then US Vice-President Al Gore, it represented a push to represent the planet in 
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high-resolution, multi-dimensional space for the primary purpose of improving our predictive 

capabilities of Earth’s ecosystems (Craglia, 2007; Craglia et al., 2012). Twelve years later, 

significant gaps still exist, particularly in terms of our capacity to collect certain types of data of 

sufficient quality and resolution (Craglia et al., 2012).  Harnessing the collective power of earth’s 

citizens, the aggregate power of “six billion sensors”, we can make significant strides to improving 

the predictive capacity of our models through incorporating new types of information 

(Goodchild, 2007a).  Therefore, it is critical we continue to explore ways to assess the credibility 

of VGI, to embrace the new geographical traditions, while respecting the scientific paradigms of 

the past. 
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Table 4.1: Reporter types and the criteria used to simulate their behavior 

Reporter Type Model Criteria 

1 Always right Tsetse predicted 

2 Always, intentionally wrong Tsetse not predicted, habitat unsuitable 

3 Random Spatially random 

4 Normal Suitable habitat + one occupied neighbor 
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Table 4.2: Simulation results for simulated conditions. Values represent percent increase over the base TED model 

  % Gain  Variance 

Sim Criteria Overall 2004 2005 2006  Overall 2004 2005 2005 

1 Random 9.81 4.23 13.66 11.85  144.02 76.83 105.73 106.62 

2 Suitable habitat 14.06 7.22 17.94 17.58  108.26 73.41 80.88 77.11 

3 One neighbor 0.29 0.17 0.39 0.32  93.37 27.62 66.28 65.48 

4 Suitable habitat + one neighbor 0.03 0.02 0.04 0.05  19.65 10.86 16.52 13.97 

5 Tsetse present 0 0 0 0  0.01 0.01 0.01 0.01 

6 Tsetse not present 10.59 4.78 14.57 12.71  128.16 75.51 97.03 91.45 

7 Habitat unsuitable 8.23 3.46 11.75 9.66  138.43 79.15 112.02 109.58 
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Table 4.3: The percentage increase in the prevalence of tsetse over the base TED model for simulations 8-12 

  % Gain  Variance 
Sim Score Overall 2004 2005 2006  Overall 2004 2005 2006 

8 5 1.28 0.27 1.94 1.68  139.56 46.8 113.56 100.52 

9 8 1.22 0.23 1.88 1.6  138.6 44.09 112.57 99.1 

10 1st quartile 0.8 0.13 1.15 1.2  120.62 37.76 92.9 95.07 

11 Mean 0.43 0.05 0.6 0.68  109.46 28.92 83.06 83.27 

12 3rd quartile 0.12 0 0.14 0.24  77.36 10.47 55.49 66.11 
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Table 4.4: The percentage increase in the prevalence of tsetse over the base TED model for simulations 13-20 

  % Gain  Variance 
Sim Error type Overall 2004 2005 2006  Overall 2004 2005 2006 

13 10% 1.38 0.39 2.07 1.74  139.44 48.86 116.26 95.18 

14 50% 5.23 1.88 7.94 5.95  144.9 70.59 124.32 99.84 

15 Spatial shift 5% 1.39 0.39 2.13 1.7  137.33 49.43 112.58 92.83 

16 Spatial shift 10% 1.39 0.44 2.22 1.52  142.05 54.59 118.36 97.97 

17 Spatial shift 25% 1.41 0.44 2.18 1.65  131.66 50.61 108.22 95.31 

18 Temporal shift 5% 1.46 0.43 2.21 1.79  135.71 50.68 112.63 97.89 

19 Temporal shift 10% 1.54 0.45 2.4 1.81  149.88 52.54 124.28 97.73 

20 Temporal shift 25% 1.61 0.5 2.47 1.9  148.95 55.65 119.68 97.55 
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CHAPTER 5  

SUMMARY AND CONCLUSION 

Introduction 

With the emergence of new technologies, the availability of new web based tools, and the 

prevalence of geographic information, the traditional distinctions between citizen and scientist, 

consumer and producer of knowledge are eroding and the line between them is blurred. In this 

era of eScience and Neogeography, citizens are embracing new freedoms to not only combine 

datasets through mashups, but to engage in the generation of new knowledge. These activities, 

traditionally the exclusive purview of the academy, necessitate new approaches for 

management.  The sheer volume of information being generated requires new approaches for 

storage and retrieval.  Furthermore, we need to devise new methods to assess the quality of 

these data, particularly as traditional objective measurements of error are no longer 

communicated through metadata, as has been the case with traditionally collected spatial 

information. Data quality metrics are necessary for us to qualify the credibility of the information 

before us to determine a dataset’s fitness-for-use in a particular analysis. 

Summary of Main Findings 

Objective 1: Address three recurring problems with spatial data management: scalability, 

reliability, and security by: 

1. Communicating a conceptual model for a comprehensive open-source computing 

environment that promotes the efficient organization, storage and retrieval of disparate 

data. 
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2. Extending the discussion of spatial databases by presenting a model framework for a 

spatial DBMS that rigorously and consistently manages both spatial and nonspatial data. 

Effective data management in the age of Neogeography is an emerging problem. Today’s data 

management strategies not only need to account for the volume of information, but also the 

modes by which it is acquired and disseminated.  The rigorous standards to which we have 

traditionally subjected data in terms of quality and completeness are often unfeasible.  As citizen 

science initiatives expand, volumes of spatial data are generated, much of which would 

traditionally be considered incomplete, either because it is not accompanied with comprehensive 

metadata or does not consistently report all attributes.  Traditional DBMS afford a great deal of 

flexibility, but they often do so through a lack of built-in checks for consistency and quality.  

Modern spatial data infrastructures (SDIs) must address this changing nature of data.  

Three recurring problems with data management are routinely cited in the literature. 

Scalability refers to the ability of SDIs to manage interaction with data at multiple spatial, 

temporal, and thematic resolutions (Shekhar & Chawla, 2003). Reliability speaks to the need for 

mechanisms to protect against loss of data either through inadvertent changes or malicious 

behavior; however, it must do so without impeding interaction with the data (Devillers & 

Jeansoulin, 2006; Shi et al., 2002). Finally, security refers to the need to strictly control the 

dissemination of various types of data (some of which may contain personally identifiable, 

private information) without impeding the ability to use the information.  Furthermore, it must 

facilitate management of ownership; in particular, ownership of VGI is still a commonly cited 

concern in the literature. Such safeguards are commonly required in academic or government 



105 

institutions. The implementation of the DBMS proposed directly addresses each of these 

problems.  

The aim of chapter 2 was twofold: first, outline the problem of spatial data management in 

the age of Neogeography and the volume of data generated by citizens as VGI; second, 

demonstrate an approach for the handling of spatial data of varying types in a manner that 

facilitates efficient querying, storage, and retrieval.  The ways in which we interact with spatial 

data have changed. Thus, the goal here was to develop a DBMS that afforded flexibility and 

extendibility to allow for the integration of future advances in technology.  

It was important to utilize only open-source software solutions so as to aid its adoption 

by communities and organizations seeking to incorporate VGI into their projects.  The open-

source software is also extendible, fulfilling one of the primary objectives. The DBMS facilitates 

efficiency in the storage of spatial data by incorporating the WKTRaster module to the PostGIS 

libraries11.  WKTRaster extends the functionality of PostGIS to allow for the raster-based imagery 

to be stored in the database just as has been possible for vector-based data.  This makes it 

possible to query imagery directly at multiple levels, and return it at the desired resolution and 

extent. The decision to utilize PostgreSQL as the core of our DBMS also addresses the second and 

third concerns raised: reliability and security (although the specific safeguards were not discussed 

in detail until Chapter 3).   

 

  

                                                      
11 Since publication (Langley & Messina, 2011), WKTRaster has been fully implemented in PostGIS 2.0.  It is now 
referred to in the documentation simply as PostGIS Raster. 
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Objective 2: Demonstrate the utility of VGI by: 

1. Describing a prototype for the utilization of VGI to enhance disease surveillance 

programs. 

2. Articulating an approach for integrating VGI into a traditional species distribution model. 

The last decade has seen a dramatic rise in the availability of spatially explicit geographical 

information and the frequency with which non-scientists are exposed to and utilize it.  This is in 

large part a result of new modes of communication and interaction via web based applications, 

a phenomenon often referred to as Web 2.0 (Corbett, 2012; Haklay et al., 2008; O'Reilly, 2006, 

2007).  In Chapter 3, I made reference to two prominent and often cited examples of GIS in a 

Web 2.0 environment; these include Wikimapia and OpenStreetMap (Goodchild, 2007a; Haklay 

& Weber, 2008). Both sites allow for users to volunteer information about their environment.  

These initiatives are distinctly spatial in nature and generate volumes of new geographical 

knowledge, yet operate entirely outside the purview of the academy.  I refer to these types of 

initiatives (those devoted to the volunteering of geographic information) as a type of volunteered 

GIS or VGIS.   

The potential for scientists to tap into the VGI data collective, and to make use of new 

tactics for data collection is attractive; Goodchild (2007c) makes reference to harnessing the 

power of earth’s billions of sensors as a means of knowledge production. However, there are 

significant concerns that have been raised with regards to the credibility of VGI (Flanagin & 

Metzger, 2008).  As such, there have been very few illustrations of VGI being utilized in scientific 

research (Elwood et al., 2011).   



107 

The aim of Chapter 3 was to elucidate the value of VGI when incorporated into a 

traditional species distribution model.  Building off Chapter 2 (which outline the framework for 

the SDI) we demonstrated the framework for incorporating the VGI.  Our primary objective in 

this chapter was to propose an approach to assessing the reliability of reporters of VGI which can 

serve as an indicator of the quality of the data itself (Maué, 2007).  We propose a quantitative 

metric, Reliability, that is computed as the product of underlying model conditions; it is based in 

part on the notion that VGI can be assessed by comparing it against datasets of known quality 

(Koukoletsos et al., 2012). This approach has been cited in the literature as a possible method, 

and implemented in part in several studies as a post-hoc analysis (D. J. Coleman & Georgiadou, 

2009; Corbett, 2012; Frew, 2007; Maué, 2007). We propose a threshold be established below 

which a reporter’s data are excluded/rejected. 

Finally, we outlined our approach to integrating VGI into a traditional species distribution 

model.  In our case study, we build on a model developed by DeVisser et al. (2010) that models 

the distribution of tsetse in Kenya on the basis of remotely sensed imagery as inputs.  The 

implementation in our study is such that the assessment of reliability is made at the moment 

data is submitted; therefore immediate decisions can be made as to incorporating or excluding 

the data from the communicated results. 

 

Objective 3: Address lingering concerns of credibility and data quality in VGI by: 

1. Proposing a method for dynamically assessing the reliability of reporters of VGI. 

2. Assessing the impact of incorporating VGI of varying quality into a traditional species 

distribution model. 
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In order to firmly establish the utility of VGI for science, it’s critical we be able to judge the 

credibility of the information.  The intent of Chapter 4 was to elucidate an approach for the 

measurement of data quality for VGI.  In reviewing the traditional metrics used to assess data 

quality, it is noted that objective assessments are typically not possible for VGI (Flanagin & 

Metzger, 2008); therefore we propose a subjective measure that uses the reliability of the 

reporter (to produce credible data) as a surrogate measure to communicate data quality (Maué, 

2007). This is drawn, in part, from the eBay model that references reputation as an indicator of 

the probability of a positive future transaction.  We reference meta-quality (an officially 

recognized metric) as the means by which we can communicate credibility of the VGI. 

In the second part of this paper, we illustrate the impact VGI can have on the output of a 

traditional species distribution model.  Since all data are prone to include error, and it is our 

assertion that credibility of the data communicates an estimation of error, we demonstrated the 

impact different types of error can have and at varying magnitudes.  Finally, we demonstrate that 

the model outlined in Chapter 3 for assessing the reliability of reporters does in fact allow us to 

partition out reporters perceived as credible and those who are not.  We introduced the notion 

of a threshold score model, which represents the point at which an individual is deemed reliable, 

and have their data incorporated.  We noted that the static model (one set threshold) did not 

allow us to effectively account for changes in reporter behavior, leaving the system vulnerable to 

“digital vandalism” (Tulloch, 2007).  However, a dynamic model that adjusts the threshold to 

include only the most reliable of reporters, allows the system to respond to changing behaviors, 

mitigating the impact of malice and the incorporation of erroneous data. 
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Theoretical Implications of this Dissertation 

As summarized in the main findings, this research has contributed to the discussion of 

uncertainty of data quality for VGI.  Numerous studies have articulated the issue, raising concerns 

for utilizing VGI in the absence of effective data quality assessments (Corbett, 2012; Flanagin & 

Metzger, 2008; Maué, 2007; Tulloch, 2007).  In this dissertation I have demonstrated one 

approach to evaluating VGI utilizing subjective measures of credibility.  Numerous theoretical 

studies have laid the framework for this approach, specifically correlating a reporter’s reputation 

- their reliability to contribute credible information - with the quality of VGI and crowdsourced 

data (D. J. Coleman & Georgiadou, 2009; Elwood et al., 2013; Maué, 2007). Other studies have 

suggested that the credibility of individual datum is irrelevant as the collective contributions of 

reporters, averaged together, can produce information that is highly credible (Elwood & Leitner, 

2012; Haklay et al., 2010).  An extension of Linus’ Law for Neogeography states that the number 

of participants can be correlated with the credibility of the resulting information set (Haklay et 

al., 2010).  A popular expression of this law by Raymond Raymond (1999) says, “Given enough 

eyeballs, all bugs are shallow”. The point here is that errors are less influential as the number of 

participants in a project increases. 

This dissertation specifically addresses issues raised by Flanagin and Metzger (2008), 

Tulloch (2007), and Craglia (2007) regarding the lack of quality assurance available for VGI.  I 

further propose that as the reliability of VGI data quality metrics is recognized, Corbett’s (2012) 

critique of VGI as non-authoritative should no longer be a barrier to utilizing VGI for science. It is 

my assertion that the credibility of any information or data is directly related to an assessment 

of data quality. While the data quality of VGI is most commonly communicated subjectively, 
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evaluating quality using objective methods allows for us to more directly make statements with 

regard to confidence, particularly when evaluated in the context of more traditional data 

collection methodologies.   

Recommendations for Future Research 

Future research should focus on a number of specific objectives that have been conveyed in this 

dissertation.  We must further the development of web-based mapping capabilities to 

incorporate new tools for efficient querying of spatially explicit information.  National SDIs have, 

to a limited extend, implemented web-based technologies; however their purpose is tailored to 

the expert scientist for data analysis and visualization.  The same functionality has not been 

translated to the web-based GIS portals used by non-scientists (Craglia et al., 2012).  As citizen 

scientists engage in more advanced geospatial analyses, they demand the same functionality 

afforded to academics.  Craglia (2012) describes a vision in which farmers are able to use GIS 

tools to monitor crop status and yield, perform long-term risk analysis on market prices and 

trends, receive early warning of extreme weather and other environmental dangers, and overall 

improve the management of their resources.  However these capabilities require enhanced 

communication and technological improvements not currently available to the general public. 

The Digital Earth project is building off of the achievements in citizen mapping technologies to 

improve access of non-scientists to spatial data and their ability to engage in more advanced 

spatial tasks (Goodchild et al., 2012).   

There has been significant discussion in the literature surrounding the lack of credibility 

inherent in VGI (e.g. Elwood et al., 2013; Flanagin & Metzger, 2008; Goodchild & Li, 2012).  

Numerous approaches have been proposed for assessing data quality, but most are still in the 
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theoretical stage (Goodchild & Li, 2012).  Few studies have demonstrated the implementation of 

quality assessments for VGI, and to my knowledge, all are post-hoc assessments.  Linus’ Law is 

often cited as justification for leniency in credibility assessments of VGI based on the correlation 

observed between the number of participants in a project (or volunteers) and the aggregate 

quality of the information (Goodchild & Li, 2012; Haklay, 2010; Raymond, 1999).  However, this 

approach precludes individual assessments of quality; if integration of VGI (such as was observed 

in our case study) necessitates evaluating uncertainty of each datum, the approach is not 

applicable. 

Current approaches demonstrated in the literature assess VGI, not on its qualities, but 

rather in comparison against datasets of known quality or on the bases of tertiary qualities 

(Cipeluch et al., 2010; Girres & Touya, 2010; Koukoletsos et al., 2012). We need a methodology 

that expedites an assessment of VGI objectively on its own merits, and in real-time.  Despite its 

limitations, VGI has the potential to serve as a means of acquiring high quality data for little cost 

by harnessing the collective power of the crowdsourcing community.  Therefore, we must 

develop new approaches to objectively evaluate VGI on its own merits so we can quantify error 

and uncertainty in the data.   

The method proposed in this dissertation (Chapter 4) facilitates a credibility assessment 

using a surrogate metric, meta-quality, which correlates the reporter’s reputation with the 

credibility of the information they contribute.  However, the approach has only been 

demonstrated theoretically; it must now be subjected to experimentation in real-world 

applications to quantify the correlation between reporter reputation/reliability and the 
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credibility of the data they volunteer on an individual basis and not necessarily as a part of the 

collective.   

Finally, there is a need to explore the application of subjective valuations of VGI on 

existing crowdsourced datasets so that the data can be subjected to the same scientific analyses 

available to more authoritative data sets. This has been undertaken, to a limited extend, on the 

Wikimapia and OpenStreetMap datasets (Haklay, 2010), but we do not have established 

methodologies for post hoc valuations.  

There is significant interest in the literature for methodologies that will allow 

incorporating and utilizing VGI and other crowdsourced data for science (e.g. Craglia, 2007; 

Goodchild, 2009; Haklay, 2010).  In this dissertation, I broadly set out to advance the utility of VGI 

for science.  I articulated a data model for an SDI (Chapter 2) that is tailored to and supports the 

integration of VGI.  The model I have proposed takes steps to improve the communication of 

data quality metrics that are commonly missing with crowdsourced data.   In Chapter 3, I 

demonstrated how VGI could be integrated with a more traditionally authoritative dataset.  Here 

I expounded on the potential value this additional data stream can provide in the context of the 

limitations with the existing datasets.  Finally in Chapter 4, I responded to those who have raised 

concerns with a lack of quality assurance in VGI by proposing a method to assess the credibility 

of volunteered data.  I did this by evaluating the context of the information and related this back 

to the reliability of the reporter.  Subsequent contributions by this reporter are then assessed in 

a Bayesian model where the credibility of the data is a function of its context as well as the prior 

performance of the reporter. Aggregately, the methods introduced and the points made with 
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regard the specific advancements (both theoretical and practical), all advance the affirmed goals 

set out in this dissertation. 
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APPENDICES 
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BASE CODE SIMULATION 

# Base TED simulation model 

# Author: Shaun Langley 

# Last Modified 3/25/2013 

 

years="2003 2004 2005 2006" 

 

times="001  017  033  049  065  081  097  113  129  145  161  177  193  

209  225  241  257  273  289  305  321  337  353" 

 

# The model will loop through each year and time value noted here. 

 

g.mapset -c baseSim1 # create a seperate mapset for each simulation to 

isolate output from each other to prevent possible data overwrite 

g.mremove rast=* -f 

g.region Kenya 

r.mapcalc "distrib.tmp=initDistrib" 

 

for year in $years; do 

 for i in $times; do 

  NDVImap=`g.mlist type=rast pat="bin${year}_${i}_NDVI"` 

  LSTDaymap=`g.mlist type=rast 

pat="bin${year}_${i}_Day_LST_250m_Terra_16day"` 

  LSTNightmap=`g.mlist type=rast 

pat="bin${year}_${i}_Night_LST_250m_Aqua_16day"` 

  LULCmap=`g.mlist type=rast 

pat="bin${year}_LULC_Type_1_250m"` 

  r.mapcalc "suitable.$year.$i=($NDVImap * $LSTDaymap * 

$LSTNightmap * $LULCmap)" 

  r.neighbors input=distrib.tmp output=distrib.grown.tmp 

size=5 method=maximum --o  

  r.mapcalc "distrib.tmp=(distrib.grown.tmp * 

suitable.$year.$i)" 

  g.copy distrib.tmp,distrib.$year.$i 

 done 

done 

 

g.remove distrib.tmp 

g.remove distrib.grown.tmp 

 

g.region zoom=studyarea  

r.mask studyarea 

 

r.series input=`g.mlist pat=distrib.200[4-6].* sep=,` 

output=baseSim_average method=average 

r.series input=`g.mlist pat=distrib.200[4-6].* sep=,` 

output=baseSim_sum method=sum 
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r.series input=`g.mlist pat=distrib.2004.* sep=,` 

output=baseSim_2004_average method=average 

r.series input=`g.mlist pat=distrib.2004.* sep=,` 

output=baseSim_2004_sum method=sum 

r.series input=`g.mlist pat=distrib.2005.* sep=,` 

output=baseSim_2005_average method=average 

r.series input=`g.mlist pat=distrib.2005.* sep=,` 

output=baseSim_2005_sum method=sum 

r.series input=`g.mlist pat=distrib.2006.* sep=,` 

output=baseSim_2006_average method=average 

r.series input=`g.mlist pat=distrib.2006.* sep=,` 

output=baseSim_2006_sum method=sum 

 

r.mask -r 

 

curl https://prowlapp.com/publicapi/add -F 

apikey=2daeeaf780b2e94281d1089752c6698da81434a9 -F 

application="GRASS" -F description="TED base simulation complete" 
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SIMULATION 11 CODE 

########################## 

# simulation 37 - all reporters with score tracking -- threshold=mean 

# Author: Shaun Langley 

# Last Modified 3/25/2013 

 

g.mapset -c expSim37_$rep 

g.mapsets addmapset=baseSim1 

g.mremove rast=* -f 

g.mremove vect=* -f 

g.copy studyarea@PERMANENT,studyarea 

g.region Kenya  

r.mapcalc "distrib.tmp=initDistrib" 

 

years="2004 2005 2006" 

 

times=`seq -w 1 16 365` 

 

ptslasttime=2003_353 

lasttime=2003.353 

lastyear=2003 

 

for year in $years; do 

for i in $times; do 

 

r.neighbors input=distrib.tmp output=distrib.grown.tmp size=5 

method=maximum --o 

r.mapcalc "distrib.tmp=(distrib.grown.tmp * suitable.$year.$i)" 

 

# Collect the first point  

if [ `shuf -i 1-10 -n 1` -le 9 ]; then 

v.extract input=sim4_pts_${year}_${i}@results output=pts_selected 

random=1 --quiet --o 

else 

v.extract input=sim17_pts_${year}_${i}@results output=pts_selected 

random=1 --quiet --o 

fi 

 

# each reporter has a 10% chance of being wrong.  So pick points 

individually until there are 100 points with each reporter 

possibly geting it wrong. 

 

while [ `v.info pts_selected | grep -e "Number of points:" | awk '{ 

print $5 }'` -lt 25 ]; do  

 

if [ `shuf -i 1-10 -n 1` -le 9 ]; then 
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v.extract input=sim4_pts_${year}_${i}@results output=pts_selected_4 

random=1 --quiet --o 

v.patch input=pts_selected_4 output=pts_selected -ae --o 

else 

v.extract input=sim17_pts_${year}_${i}@results output=pts_selected_17 

random=1 --quiet --o 

v.patch input=pts_selected_17 output=pts_selected -ae --o 

fi 

 

done 

 

g.remove vect=pts_selected_4 

g.remove vect=pts_selected_17 

 

# random reporter 

v.extract input=sim1_pts_${year}_${i}@results output=pts_random 

random=25 --o 

 

# correct reporter 

v.extract input=sim15_pts_${year}_${i}@results output=pts_correct 

random=25 --o 

 

 

# wrong reporter 

v.extract input=sim17_pts_${year}_${i}@results output=pts_wrong 

random=25 --o 

 

v.patch input=pts_random,pts_correct,pts_wrong output=pts_selected -ae 

--o 

 

g.remove vect=pts_random 

g.remove vect=pts_correct 

g.remove vect=pts_wrong 

 

# Add columns  

 

v.db.addcol pts_selected columns="reporter integer, score double, 

neighbors double, suitable double, occ_ly double, occ_lt double, 

support double, delta double" 

 

# Add reporter IDs 

 

val=1 

for v in `v.category pts_selected option=print`; do  

v.db.update pts_selected column=reporter value=$val where="cat=$v" 

val=$val+1 

done 

 

# Initialize score 

 

if [ ${year}${i} -eq 2004001 ]; then 

echo "loop1" 
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v.db.update pts_selected column=score value=0 

else 

echo "loop2" 

for r in `seq 1 1 100`; do 

v.db.update pts_selected column=score value=`v.db.select 

pts_selected_$ptslasttime columns=score where="reporter=$r" -c` 

where="reporter=$r" 

done 

fi 

 

# Number of neighbors 

# The default is to sum all 9-cells in the neighborhood.  The 

weights.txt file specifically excludes the middle cell from being 

included.  This is the way it was published, but I might want to 

include this in the computation of scores 

 

r.neighbors input=distrib.tmp output=neighbors_count size=3 method=sum 

weight=weights.txt 

r.mapcalc "neighbors_count=neighbors_count/4" 

v.what.rast vector=pts_selected raster=neighbors_count 

column=neighbors 

v.db.update pts_selected column=neighbors value=-1 where="neighbors=0" 

v.db.update pts_selected column=neighbors value=0 where="neighbors is 

null" 

g.remove neighbors_count 

 

# Suitable Habitat -- not included initially in the published paper 

 

v.what.rast vector=pts_selected raster=suitable.$year.$i 

column=suitable 

v.db.update pts_selected column=suitable value=-1 where="suitable=0" 

v.db.update pts_selected column=suitable value=0 where="suitable is 

null" 

 

# Occupied in t-1 

 

v.what.rast vector=pts_selected raster=distrib.$lasttime column=occ_lt 

v.db.update pts_selected column=occ_lt value=-1 where="occ_lt = 0" 

v.db.update pts_selected column=occ_lt value=0 where="occ_lt is null" 

 

# Occupied in y-1 

 

v.what.rast vector=pts_selected raster=distrib.$lastyear.$i 

column=occ_ly 

v.db.update pts_selected column=occ_ly value=-1 where="occ_ly=0" 

v.db.update pts_selected column=occ_ly value=0 where="occ_ly is null" 

 

# Supporting reports 

 

v.distance from=pts_selected to=pts_selected upload=dist col=support 

dmax=250 dmin=1 
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v.db.update pts_selected column=support value=-1 where="support is 

null"  

v.db.update pts_selected column=support value=1 where="support > 0"  

 

# compute delta score 

 

v.db.update pts_selected column=delta value="neighbors + suitable + 

occ_lt + occ_ly" 

 

# update the overall score 

 

v.db.update pts_selected column=score value="score + delta" 

 

# discard points that don't meet minimum standards 

 

score=`v.univar pts_selected column=score type=point | grep -e "mean:" 

| awk '{ print $2 }'` 

echo "mean score is ${score}" 

v.db.update pts_selected column=value value=0 where="score <= 

${score}" 

 

# output to raster  

 

v.to.rast input=pts_selected type=point output=pts_selected use=attr 

column=value 

r.null pts_selected null=0 

 

# update distribution 

 

r.mapcalc "distrib.tmp=if(pts_selected == 1, 1, distrib.tmp)" 

 

g.copy distrib.tmp,distrib.$year.$i 

g.copy vect=pts_selected,pts_selected_${year}_${i} 

g.remove rast=pts_selected 

g.remove vect=pts_selected 

g.remove distrib.grown.tmp 

 

lasttime=$year.$i 

ptslasttime=${year}_${i} 

if [ $i -eq 353 ]; then 

lastyear=$year 

fi 

done 

done 

 

g.remove distrib.tmp 

 

g.region zoom=studyarea  

r.mask studyarea 

r.series input=`g.mlist pat=distrib.200[4-6]* sep=, 

mapset=expSim37_$rep` output=sim37_run$rep\_average 

method=average 
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r.series input=`g.mlist pat=distrib.200[4-6]* sep=, 

mapset=expSim37_$rep` output=sim37_run$rep\_sum method=sum 

r.series input=`g.mlist pat=distrib.2004.* sep=, mapset=expSim37_$rep` 

output=sim37_2004_run$rep\_average method=average 

r.series input=`g.mlist pat=distrib.2004.* sep=, mapset=expSim37_$rep` 

output=sim37_2004_run$rep\_sum method=sum 

r.series input=`g.mlist pat=distrib.2005.* sep=, mapset=expSim37_$rep` 

output=sim37_2005_run$rep\_average method=average 

r.series input=`g.mlist pat=distrib.2005.* sep=, mapset=expSim37_$rep` 

output=sim37_2005_run$rep\_sum method=sum 

r.series input=`g.mlist pat=distrib.2006.* sep=, mapset=expSim37_$rep` 

output=sim37_2006_run$rep\_average method=average 

r.series input=`g.mlist pat=distrib.2006.* sep=, mapset=expSim37_$rep` 

output=sim37_2006_run$rep\_sum method=sum 

 

r.mask -r 

 

 

curl https://prowlapp.com/publicapi/add -F 

apikey=2daeeaf780b2e94281d1089752c6698da81434a9 -F 

application="HPCC" -F description="TED simulation 37 , run $rep 

complete" 
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 ADDENDUM TO CHAPTER 2  
 

Since the publication of Chapter 2 (Langley & Messina, 2011), the process for standing up a 
postgres database with PostGIS Raster support has changed substantially.  This appendix serves 
to provide updated code and instructions for installing the database in Ubuntu 13.10. 
 
Overview of Requirements 
 
Package Versions Required (May 2014): 
Proj4 (4.8.0)  http://download.osgeo.org/proj/proj-4.8.0.tar.gz 
GEOS (3.4.2)  http://download.osgeo.org/geos/geos-3.4.2.tar.bz2  
GDAL (1.10.1)  http://download.osgeo.org/gdal/1.10.1/gdal1101.tar.gz 
GRASS (6.4.3)  http://grass.osgeo.org/grass64/source/grass-6.4.3.tar.gz 
 
Add postgres repository to the package manager (Ubuntu 13.10 Saucy) 
 
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ saucy-

pgdg main" >> /etc/apt/sources.list' 

wget --quiet -O - http://apt.postgresql.org/pub/repos/apt/ACCC4CF8.asc 

| sudo apt-key add - 

 
Install packages from repository 
 
sudo apt-get install <package>  

 

 
- build-essential 
- postgresql-9.3 
- postgresql-server-dev-9.3 
- pgadmin3 
- libxml2-dev 
- libjson0-dev 
- xsltproc 
- docbook-xsl 
- docbook-mathml 

 
Compile and Install GEOS 3.4.X 
 
PostGIS 2.1 is best used with GEOS >= 3.4 for several new features, however Ubuntu 13.10 only 
has GEOS 3.3.3 available in packages, so it needs to be built from source. If you don't need the 
new features, instead install the libgeos-dev package. 
 
wget http://download.osgeo.org/geos/geos-3.4.2.tar.bz2 

http://download.osgeo.org/proj/proj-4.8.0.tar.gz
http://download.osgeo.org/geos/geos-3.4.2.tar.bz2
http://download.osgeo.org/gdal/1.10.1/gdal1101.tar.gz
http://grass.osgeo.org/grass64/source/grass-6.4.3.tar.gz
http://download.osgeo.org/geos/geos-3.4.2.tar.bz2
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tar xfj geos-3.4.2.tar.bz2 

cd geos-3.4.2 

./configure 

make 

sudo make install 

cd .. 

 
Compile and Install PostGIS 
 
wget http://download.osgeo.org/postgis/source/postgis-2.1.1.tar.gz 

tar xfz postgis-2.1.1.tar.gz 

cd postgis-2.1.1  

 
Implement Basic configuration for PostGIS 2.1, with raster and topology support: 
 
./configure 

make 

sudo make install 

sudo ldconfig 

sudo make comments-install 

 
Lastly, enable the command line tools to work from shell: 
 
sudo ln -sf /usr/share/postgresql-common/pg_wrapper 

/usr/local/bin/shp2pgsql 

sudo ln -sf /usr/share/postgresql-common/pg_wrapper 

/usr/local/bin/pgsql2shp 

sudo ln -sf /usr/share/postgresql-common/pg_wrapper 

/usr/local/bin/raster2pgsql 

 
Spatially enabling the database 
 
Connect to the database.  To add raster support: 
 
CREATE EXTENSION postgis; 

 
To create topology support: 
 
CREATE EXTENSION postgis_topology; 

 

http://download.osgeo.org/postgis/source/postgis-2.1.1.tar.gz
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