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ABSTRACT

Comparing patch- and surface-based metrics of patchiness and abruptness on

simulated ecotones

By

Mark Allen Bowersox

The use of landscape metrics to infer ecological process at alpine treeline

requires knowledge of metric sensitivity to specific ecotone characteristics. In

this study, a set of patch-based metrics was compared with a set of surface-

based metrics to assess their suitability as patchiness and/or abruptness

quantifiers of simulated ecotone landscapes. A simulation produced 25 groups

of ecotones that vary systematically in their degree of patchiness and

abruptness. Factorial ANOVA was used to evaluate metric sensitivity to the

known differences among the simulated groups. lndices of metric suitability

based on the ANOVA results were developed and used to rank the metrics in

order of their suitability. Metrics from each set were suitable as patchiness and

abruptness quantifiers, but the patch-based metrics were on average more

suitable for both characteristics than the surface-based metrics. Both sets of

metrics were more consistent as abruptness metrics than they were as

patchiness metrics. Specific recommendations of which metrics to use for

patchiness and abruptness were made. The results of this research are

meaningful to applications dealing with ecotones that rely on the interpretation of

patch- or surface-based metrics.
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INTRODUCTION

Ecotones are zones of transition between adjacent ecological systems.

They have a set of characteristics uniquely defined by space and time scales and

by the strength of the interactions between adjacent ecological systems (Holland,

1988). Conceptual consideration of ecotones began in the 1930’s. However, it

was not until the 1970’s that ecotones became recognized as dynamic landscape

entities that deserve separate attention (Risser, 1995). Ecotones under the

above definition include what are referred to as edges (Orloci and Orloci, 1990),

transitional areas (Kent et al., 1997) and boundaries (Wiens et al., 1985) but

unlike definitions of these three terms, the definition of an ecotone does not

specify that the transition must be distinct. An ecotone may be distinct or less

obvious and may be highly heterogeneous or less heterogeneous depending on

the ecological processes acting on it.

Alpine treeline ecotones

The alpine treeline ecotone occurs along an increasingly stressful

altitudinal gradient and forms the zone of transition between lower-elevation sub-

alpine forest and high-elevation alpine tundra. There is a threshold within this

ecotone above which the potential for tree species establishment and growth is

zero (Armand, 1985). As the threshold is approached, tree species’ growth form

and patterns of occurrence begin to change. Generally, the stature and

abundance of trees decreases as altitude and environmental stress increases.

At treeline, krummholz, shrub-like formations of tree species, become more



conspicuous and occupy the less environmentally stressful sites often creating a

patchy landscape. Other components of alpine treeline such as tundra species,

rock, and bare soil are found adjacent to krummholz patches in the matrix of the

alpine treeline landscape.

Variation in the spatial arrangement or pattern of the ecotone components

presumably occurs because of differences in ecological processes acting upon

them. In order to decipher which spatial patterns are representative of specific

ecological processes, reliable data on spatial pattern must first be collected.

This research focuses on the measurement of two characteristics of

spatial pattern thought to be representative of specific ecological processes at

treeline: patchiness and abruptness. The impetus for this investigation came

from the early stages of research conducted by Malanson and Brown (1997) at

alpine treeline in Glacier National Park, MT. They required a suitable

methodology to measure ecotone patchiness and abruptness in order to

establish a link between spatial pattern and ecological process. The goal here is

to investigate two methodologies and determine which is the most suitable for

quantifying ecotone patchiness and abruptness.

Ecotone patchiness is defined as spatial heterogeneity or unconformity; an

ecotone is patchy when neighboring areas are frequently dissimilar. Processes

that may be responsible for creating patchy patterns include natural and human

disturbance (Krummel et al., 1987) and differential species establishment due to

an uneven distribution of nutrient-rich sites (Stevens and Fox, 1991) or seed rain

(Malanson, 1997).



Abruptness is a measure of the rate at which one ecological system

changes to another across the ecotone; abrupt alpine treeline ecotones change

rapidly from trees to alpine tundra while gradual ecotones are characterized by

slower transitions. Abrupt ecotones that occur along a gradual environmental

gradient suggest the presence ecological processes such as species competition

(Armand, 1992; Malanson and Butler, 1994), and positive feedback mechanisms

(Wilson and Agnew 1992; Malanson, 1997). These processes prohibit the

species at treeline from exhibiting change consistent with the change in

environmental gradient.

Landscape ecology and the use of landscape metrics provides the

methods necessary to develop the link between pattern and process (Turner,

1989; Fomlan and Godron, 1986). The approaches to developing metrics that

describe landscape pattern have been divided into two categories; a categorical

or patch-based approach and a spatially continuous or surface-based approach

(Gustafson, 1998). This research evaluates each approach with the goal of

selecting the most suitable metrics for quantifying patchiness and abruptness.

Patch-based metrics

The patch-based approach typically involves classifying satellite imagery

or aerial photography to produce a map in which similar types of ecological

communities or vegetation types are grouped together. These groups, referred

to as classes, are represented within a raster map as contiguous clusters of cells

called patches. After classification, patches are considered internally



homogeneous and the boundary between patches of different classes is a

distinct one. Patches from similar and different classes agglomerate over an

area to form a landscape (Forman and Godron, 1986). The programs SPAN

(Turner, 1990), r. le (Baker and Cal, 1992) and FRAGSTATS (McGariagal and

Marks, 1993), which are compatible with geographic information systems,

generate a variety of patch-based metrics that mathematically define the spatial

pattern of a landscape. Patch-based metrics quantify patch density, size, shape

and variability, landscape edge, core area, landscape diversity, contagion and

interspersion (McGariagaI and Marks, 1993). Several of these metrics are

reviewed by Haines-Young and Chopping (1996) for application to forested

landscapes.

Baker and Weisberg (1995), in Rocky Mountain National Park, CO and

Allen and Walsh (1996), in Glacier National Park, MT applied the patch-based

approach to quantify landscape pattern at alpine treeline. Both were able to

discern 6 unique types of alpine treeline ecotone using cluster analysis of patch-

based metric data. Patch-based metrics measuring the number of patches,

patch interspersion, patch richness, and edge density were used by both studies.

Baker and Weisberg (1995) also included an evenness of patch types metric and

several variables describing relative amounts of different land cover types in

each ecotone. Unlike Baker and Weisberg (1995), Allen and Walsh (1996) used

mean landscape fractal dimension as a metric of landscape complexity. Fractal

dimension quantifies the departure of a shape from Euclidean geometry or, in

other words, how well a shape fills a plane (Haines-Young and Chopping, 1996).



Differences in the classification scheme used by each study make the

comparison of ecotone types between studies difficult. However, the studies did

find similar ecotone types. Of particular interest here is that each study found

ecotone types that were best described according to their patchiness and

abruptness characteristics. Baker and Weisberg (1995) found ecotones that

were “long” and “short” with variable amounts of patchiness, while Allen and

Walsh (1996) separated patchiness and abruptness into ecotone types that were

labeled “heterogeneous” or “highly heterogeneous” and “moderately zonal” or

“zonal”, respectively. Results from Allen and Walsh suggest that ecotones were

characterized by a certain degree of patchiness or a certain degree of

abruptness, but not both. On the other hand, Baker and Weisberg suggest that

patchiness and abruptness (length of ecotone) were not independent

characteristics of ecotone pattern. This difference between the two studies might

be attributed to regional differences in treeline at the two study areas; or it could

have been a result of misinterpretation due to a lack of information concerning

patch-based metric behavior in response to combinations of ecotone patchiness

and abruptness.

A patch-based approach may not be the most appropriate one when

attempting to quantify ecologically meaningful characteristics of ecotones. The

central problem lies with the classification process necessary to compute patch-

based metrics. Classification reduces the amount of information available by

transforming continuous, locally variable, data into discrete classes. The patch-

based approach represents an ecotone as the boundary line between adjacent

 



patches, which is a line of zero thickness. This is particularly troublesome

because even though most ecotones occur along a continuum they are

represented as discrete elements resulting from a method of classification that is

based on arbitrary ecological differences (Wood and Foody, 1989; Brown, 1998).

At best, only the length of ecotone and the classes that it separates can be

directly quantified. The patch-based approach does not allow ecotone width or

ecological contrast to be calculated because this information is lost to

classification (Johnston and Bonde, 1989). Also important, there is no way to

represent a gradual transition between neighboring patches; all transitions

between patches are represented as abrupt.

Surface-based metrics

The surface-based approach attempts to avoid the classification step and

instead calculates metrics directly on a variable derived from satellite imagery,

aerial photography, or other continuous field sampling approach. It is called a

surface-based approach because the metrics are calculated from the distribution

of a continuous variable over a two-dimensional area. Surfaces possess the

mathematical property of continuity and have only one value at any point.

Surfaces of ecologically relevant variables are frequently generated from satellite

imagery; examples include percent vegetative cover, the Normalized Difference

Vegetation Index (NDVI) and Leaf Area Index (LAI). The ecological surface is

represented as a regularized grid where each cell of the grid contains a unique



data value. In essence, the regularized grid is only an approximation of the real

ecological surface.

There are several surface-based methods available to extract information

on landscape pattern. Legendre and Fortin (1989) provide a thorough review of

methods employing spatial autocorrelation coefficients, correlograms,

variograms, spectral analysis, and the Mantel test to measure spatial pattern.

Kent et al. (1997) reviews similar methods with respect to ecotone analysis.

Among the several surface-based methods available, one group focuses

directly on transitional areas and relies on the concepts of edge detection. The

goal of edge detection is to locate discontinuities along transects (Ludwig and

Cornelius, 1987) or within two-dimensional maps (Johnston et al., 1992) using

algorithms that accentuate areas with high rates of change within a given

variable or set of variables mapped over the landscape. Once detected, spatially

contiguous locations with high rates of change are referred to as edges or

boundaries. The location, width, shape, or distribution of these edges can be

used to characterize the transition.

One method of boundary detection within two-dimensional ecological data

was proposed by Womble (1951) and has since been rejuvenated by Barbujani

et al. (1989), Fortin (1994), and Jacquez and Maruca (1998). The method is

commonly called either Wombling or lattice delineation. The method first

computes a rate of change value for every point on a regularized surface (lattice).

The t0p k percent of the rate of change locations are then selected from the rate

0f change surface, where k is an arbitrary threshold set by the researcher. The



top k percent of rate of change locations are called boundary elements.

Boundary elements are connected to one another based on an aspect threshold,

also set by the researcher, to form subgraphs. Subgraphs represent locations

where the rate of change is high and the direction of change is similar. The

number of subgraphs and singletons (singletons consist of only one boundary

element), as well as subgraph length and diameter statistics are calculated and

used to measure the cohesiveness of the detected boundary.

The use of the subgraph statistics as a surface-based approach has

typically focused on delineating contiguous boundaries that are statistically

significant. Lattice delineation will always find locations whose rate of change is

higher than others which make significance tests necessary to determine if the

boundaries would occur on the basis of chance alone (Fortin, 1994). Subgraph

statistics were developed specifically to determine whether the boundaries

detected in the collected data differed significantly from null models based on

spatial randomness (Oden et al., 1993). While the subgraph statistics have been

found to be effective in determining the significance of detected boundaries

(Fortin 1994; Fortin and Drapeau, 1995), less is known about how the subgraph

statistics can be used to quantify specific boundary or landscape pattern. For

instance, a small number of long subgraphs may indicate that an ecotone is

abrupt, while a large number of shorter subgraphs may indicate the ecotone is

more gradual. The subgraph statistics may also prove to be good indicators of

ecotone patchiness. For example, a large number of singletons would indicate

that the boundaries are not contiguous which may indicate ecotone patchiness.



One concern with the lattice delineation approach is the arbitrary nature of

the rate of change threshold. Researchers have commonly used a threshold of

the top 5 or 10% of the rate of change values; however this may not be optimal

for all applications. A method that uses the lattice delineation approach to obtain

subgraph statistics at multiple threshold levels may avoid the effects due to an

ad-hoc analysis at one threshold level. For example, information on how the

statistics change from one threshold level to another could constitute a unique

metric. One such metric, called cumulative boundary elements, is developed and

presented here. The cumulative boundary elements metric was conceived to

measure ecotone abruptness alone, but it may measure patchiness as well, in

which case it will not be a good abruptness quantifier because its value could

indicate “patchy”, “abrupt”, or both.

Objectives and Research Questions

Applications of both patch- and surface-based metrics measuring the

patchiness and abruptness of alpine treeline ecotones are affected by

uncertainties. The goal of this research is to evaluate the two approaches in an

experiment where patchiness and abruptness characteristics are controlled

through a simulation of alpine treeline ecotones. This approach allows for an

objective comparison between patch- and surface-based methodologies and

should provide evidence of the information content and behavior of the metrics

when applied to alpine treeline and ecotones in general. The experiment also



allows for an examination of the interacting effects of patchiness and abruptness

on each set of metrics.

A series of specific research questions was addressed involving the

capability of the metrics to measure and distinguish differences in ecotone

patchiness and abruptness:

Do patch-based metrics only measure patchiness or are they capable of

measuring abruptness? Which of the patch-based metrics are most

suitable as patchiness metrics and which are most suitable as abruptness

metrics?

Are the surface-based metrics able to measure patchiness? Do the

surface-based metrics measure abruptness? Which of the surface-based

metrics are most suitable as patchiness metrics and which are most

suitable as abruptness metrics?

How does the degree of one ecotone characteristic affect the

measurement of another? Is it possible to measure the degree of

patchiness at multiple degrees of abruptness and visa versa? Is metric

performance dependent on the level of patchiness or abruptness? For

instance, does a patchiness metric lose its ability to measure patchiness

as abruptness increases?

10



METHODOLOGY

The research was conducted in three phases. First, ecotone surfaces with

known patchiness and abruptness characteristics were simulated, classified, and

organized into a matrix structure that would later allow a factorial Analysis of

Variance (ANOVA) experimental design to be used. In the second phase, patch-

and surface-based pattern metrics were calculated on the simulated data. The

third phase included ANOVA and the interpretation of planned comparisons

between groups of simulated ecotones.

Simulation

The simulation was designed to produce values of a hypothetical

continuous variable for each cell in a square grid that mimicked a real world

study area containing an ecotone. Simulated data were used rather than real

world data to control the patchiness and abruptness characteristics of each

ecotone by systematically altering the parameters of the simulation. Real world

data were less advantageous because the relative degree of patchiness or

abruptness between samples would not be known prior to testing the metrics on

them.

The first goal of the simulation was to create ecotone data similar to what

would be obtained from a LANDSAT Thematic Mapper (TM) satellite image.

Inspection of alpine treeline ecotones captured in a TM scene of Glacier National

Park (GNP), MT provided a visual model for the simulations. A majority of the

treelines examined in the TM image had transition lengths less than

11



approximately 600m. Transition length was defined as the distance between

closed canopy forest and open alpine tundra as measured along the profile of

vegetation change. The extent of the areas used in the simulations was set at

630m2 to accommodate the maximum transition lengths observed in the image.

The simulated data set used a cell size of 30m, which corresponds to the TM cell

size. The area for each simulated ecotone was approximately 40 ha which was

comparable to some of the smaller two-dimensional transects used by Baker and

Weisberg (1995). The GNP TM scene was consistently referred to throughout

the development of the simulation to assure at the very least that the simulated

ecotones visually resembled real ecotones.

The second and foremost goal of the simulation was to provide control

over the degree of patchiness and abruptness assigned to each ecotone. For

simulation purposes, abruptness was defined as the rate at which the surface

variable changed from its maximum to its minimum across the zone of transition.

High variable values represented a strong presence of trees while low variable

values represented a strong presence of tundra, bare soil or rock. Abruptness

was controlled using a deterministic function in the form of an “s-shaped” curve

where the slope term of the function was changed to produce variable levels of

abruptness. The deterministic function used was:

y = sign(x) . |x| ("I . 0.5

Where:

y = surface variable value

x = position along transition

n = slope parameter
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This function was not chosen for any known ecological significance, but

rather for its ability to model a smooth transition from low values of a variable to

high. In a similar fashion, Churkina and Svirezhev (1995) and Timoney et al.

(1993) used sigmoid functions to mathematically model ecotones; however, their

work was done at the biome scale and not a local scale, as is the case here.

Other sigmoid functions were explored for use in this study but none of them

were able to model transitions of varying degrees over a constant x range while

holding the y range constant. The function used here is capable of modeling

transitions of variable abruptness without a change in the minimum and

maximum y values.

Four deterministic functions with slope parameters of 1, 0.5, 0.25 and

0.0625 were extended into two—dimensional maps resulting in four deterministic

surfaces varying in their degree of abruptness. This was accomplished by

mapping the value of the function over the interval x = -1 to x = 1 at 0.1 unit

increments to consecutive cells in each column of the two-dimensional map.

Each of the four deterministic surfaces had a surface value range of -0.5 to 0.5.

Lower magnitude slope terms produced surfaces where the transition from high

to low variable values was less abrupt. In fact, using a slope term of 1 produces

a planar transition. A fifth deterministic surface was created manually, so that the

transition between -0.5 and 0.5 occurred between two cells, which created the

most abrupt surface possible. In effect, it was the deterministic function with the

slope parameter set to zero. All of the surfaces lacked plan curvature while
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profile curvature was dictated by the parameters of the deterministic function

used. Perspective views of the five deterministic surfaces are shown in Figure 1.

 

‘1 "fist-n.

 

low high

Abruptness

Figure 1. Five deterministic surfaces used to simulate abruptness. Control over

the abruptness of each surface was accomplished by altering the slope

parameter of the function the surfaces were modeled after. The brightness of the

surface shading represents the strength of tree presence.

Patchiness was introduced to the simulation by creating perturbation

surfaces that were later added to the five deterministic surfaces. First, a surface

containing normally distributed spatially random cell values was generated. The

spatial randomness of the cell values produced a surface that lacked spatial

autocorrelation. Positive spatial autocorrelation was then added by passing a

square averaging filter over the random surface. Changing the neighborhood

size of the filter effectively changed the amount of spatial autocorrelation added

to the perturbations. Larger neighborhoods had a larger smoothing effect, which

contributed more spatial autocorrelation. Perturbations with a high degree of

spatial autocorrelation were considered less patchy. The perturbation surface

without smoothing and the surfaces smoothed by neighborhoods of 2x2, 3x3, 4x4
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and 5x5 cells represented five different levels of patchiness. To assure that

patchiness was the only variant, the perturbation surface means and standard

deviations were adjusted prior to smoothing so that they were approximately

equal for all levels of patchiness after smoothing. The normally distributed

spatially random surfaces were also adjusted so that cell values would range

from —O.5 to 0.5 after smoothing. Examples of the perturbation surfaces for each

of the five levels of patchiness are shown in Figure 2.

 

    

Patchiness
 

Figure 2. Five perturbation surfaces used to simulate patchiness. Patchiness

was controlled by altering the degree of smoothing to which each perturbation

surface was subjected. The brightness of the surface shading represents the

strength of tree presence.

The final surface representation of a simulated ecotone was produced

using simple map algebra. Each of the five perturbation surfaces was combined

with each of the five deterministic surfaces by adding the value of each cell in the

perturbation surface to the corresponding cell of the deterministic surface. In

doing so, 25 unique simulated ecotone surfaces were created. Since both the
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perturbation and deterministic surfaces ranged from -0.5 to 0.5 the final

simulated ecotone surfaces ranged from approximately -1 to 1.

All of the simulated ecotone surfaces were then transformed into binary

representations of tree presence and absence to create the classified maps of

alpine treeline ecotone. The classification was accomplished by mapping all

surface variable values above the median surface value into a class of tree

presence and all values below the median into a class of tree absence. This

method assured that for each map approximately 50% of the ecotone was

classified as trees and 50% as not trees.

The simulation produced 2 sets of maps, a surface set and a classified

set, each representing 25 types, tap, of alpine treeline ecotones. The 25 types

resulted from unique combinations of 5 levels of patchiness and 5 levels of

abruptness. The simulated ecotone types are summarized in Table 1.

Table 1. Matrix of simulation groups.

 

 

 

 

 

 

 

Abruptness

A1 A2 A3 A4 A5

P1 111 I12 113 114 115

P2 121 122 I23 I24 I25

Patchiness P3 t3, t32 t33 t34 t35

P4 141 I42 I43 I44 145

P5 151 152 Isa 154 155          
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The subscript p denotes patchiness levels where increasing p corresponds to

increasing patchiness and subscript a denotes increasing abruptness levels. For

example, ecotones in tn were the least patchy and least abrupt while ecotones in

t55 were the most patchy and most abrupt. The simulation was repeated 50 times

for each type (tap) in order to obtain replicates for statistical analysis.

Accordingly, the 50 simulations produced 1250 randomized maps. For the

remainder of this text, the 50 ecotones that were simulated to be of the same

patchiness and abruptness level are said to belong to the same “group”.

Figure 3 contains one example of a simulated ecotone surface from each

of the 25 groups simulated. Figure 4 contains the classified maps derived from

the same surfaces. Although each ecotone is just one example of the patterns

created by the simulations, there are observable differences between types.

Changes in the degree of abruptness are most noticeable among the lower levels

of abruptness; abruptness levels 4 and 5 are not as separable. It appears that

differences in the degree of patchiness are easier to distinguish at lower levels

abruptness.

Table 2 contains descriptive statistics and Moran’s l spatial autocorrelation

coefficients for the simulated ecotones, summarized by ecotone group. As

planned, the mean range and surface mean values were similar between groups

and the group surface means were very close to zero. The group mean surface

standard deviation was similar within abruptness groups and variable between

abruptness groups. It was variable within patchiness groups. Adjusting the
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Note: The ecotone transition was simulated in the north-south direction.

 

Figure 3. An example of the simulated ecotone surfaces from each of the 25

groups. Each surface is the result of adding a perturbation surface of a given

patchiness level to a deterministic surface of a given abruptness level. The

brightness of the surface shading represents the strength of tree presence.
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Note: The ecotone transition was simulated in the north-south direction.

 

Figure 4. An example of the simulated ecotone surfaces that have been

classified into tree presence/absence from each of the 25 groups. Black

represents tree presence, white represents tree absence (i.e., tundra species,

rock, and bare soil).
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Table 2. Descriptive statistics and Moran’s l spatial autocorrelation coefficient for

the simulated ecotones, summarized by ecotone group

 

 

 

 

 

 

      

Range Mean Stdv Moran’s I

P1 1.828 0.009 0.369 0.916

P2 1.777 0.001 0.369 0.916

A1 P; 1.859 0.003 0.373 0.892

P4 1.816 0.000 0.365 0.877

P; 1.687 -0.001 0.361 0.811

P1 1.848 0.002 0.419 0.942

P2 1 .746 -0.004 0.408 0.938

A; P; 1.838 0.000 0.414 0.922

P4 1.774 0.001 0.406 0.907

P; 1 .678 0.000 0.403 0.858

P1 1.797 0.003 0.457 0.953

P; 1.787 0.000 0.449 0.949

A3 P3 1.862 0.000 0.456 0.934

P4 1.781 -0.001 0.447 0.923

P; 1.713 0.001 0.444 0.881

P1 1 .886 -0.006 0.496 0.953

P; 1.827 -0.009 0.496 0.953

A4 P3 1.929 -0.001 0.499 0.941

P. 1.848 0.000 0.493 0.933

P; 1.759 -0.003 0.490 0.898

P1 1.851 0.004 0.518 0.956

P; 1.840 -0.002 0.516 0.955

A; P; 1.935 0.003 0.519 0.942

P4 1.878 0.003 0.511 0.935

P; 1.779 0.001 0.508 0.902
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standard deviations of the perturbation surfaces during the simulation effectively

minimized the difference in surface standard deviation between patchiness levels

in the same abruptness group. However, the difference in surface standard

deviation between abruptness groups was unavoidable. In order to create

different degrees of abruptness for the same value range, the deterministic

surfaces had to have variable standard deviations. As a result, the combination

of deterministic surfaces with variable surface standard deviations with the

perturbation surface with similar surface standard deviations produced ecotones

whose surface standard deviation increases slightly with abruptness level. The

simulation produced surfaces that were sufficiently similar in terms of the

numerical distribution of surface values that any observable differences among

surfaces from different groups should be attributable solely to the spatial pattern

of surface values.

The Moran’s l spatial autocorrelation coefficient was used as a preliminary

measure of spatial pattern to make sure the groups displayed differences in

spatial pattern before testing the metrics on them. Moran’s I was first thought of

as a baseline index of surface patchiness but it also seemed to be affected by

differences in abruptness. Figure 5 graphically illustrates the relationship of

Moran’s l with patchiness and abruptness. As was expected, Moran’s l

decreased with increasing patchiness. Moran’s I also decreased with increasing

abruptness. At each level of abruptness, differences in Moran’s l between

patchiness levels 1 and 2 were small as were differences between abruptness

levels 4 and 5 at each level of patchiness. The variability in Moran’s l reveals that
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Figure 5. Mean Moran’s I spatial autocorrelation coefficient for each group of

simulated ecotone surfaces. The variation in spatial autocorrelation between

groups was used as evidence that the simulation produced ecotone surfaces that

were different with regard to spatial pattern.

there were differences in the spatial pattern among groups. However, the

differences did not appear to be linear across all levels of patchiness or across all

levels of abruptness (i.e., differences between level 1 and 2 were not the same

as differences between levels 4 and 5). In fact, differences between patchiness

levels increased with patchiness level while differences between abruptness

levels decreased with abruptness level. This phenomenon is also apparent in

the examples shown in Figures 3 and 4. Non-linearity in the simulated

differences between patchiness and abruptness levels requires a careful

interpretation of metric sensitivity. Since the differences between abruptness

levels 4 and 5 are small, metrics capable of detecting the differences might be
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considered more sensitive to abruptness than metrics that could only distinguish

differences between levels 3 and 4. The same applies to metric sensitivity to

patchiness since the differences between patchiness levels 1 and 2 appear to be

minute. The non-linearity in the simulation provides an additional test for the

metrics. Metrics truly measuring patchiness or abruptness should produce

difference magnitudes that are smallest between patchiness levels 1 and 2 and

abruptness levels 4 and 5.

Calculating patch-based metrics

FRAGSTATS (McGariagal and Marks, 1993) was used to calculate the

patch-based metrics used in the analysis. The program calculates metrics at the

landscape, class, and patch levels of aggregation. Landscape level metrics

quantify characteristics of the entire area of interest, class level metrics quantify

characteristics of each class in the landscape, and patch metrics are generated

for every patch of each class. Each of the classified ecotone maps was

submitted to FRAGSTATS and all possible landscape, class, and patch metrics

were calculated. Later, the patch and class level metrics were excluded and

metrics for final analysis were chosen from the landscape level only.

Table 3 contains a list and brief description of the patch-based metrics evaluated.

This particular set of metrics was selected because each was thought to have

some utility for measuring either patchiness or abruptness. As a patch-based

approach, all metrics calculated by FRAGSTATS relate to some degree to the

patchiness or, as the name implies, fragmentation of the landscape. It might
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Table 3. Patch-based metrics and hypothesized function. Adapted from

McGariagal and Marks (1993).

 

 

 

 

 

 

 

 

    

Metric Description Hypothesized function

Area- Average fractal dimension over Patchiness and

weighted all patches weighted by area. abruptness metric

mean patch Fractal dimension is a measure

fractal of the degree of complexity of

dimension planar shapes. A shape with a

(AWMPFD) high fractal dimension is more

plane filling than a shape with a

low fractal dimension.

Area- Average perimeter to area ratio Patchiness and

weighted for all patches weighted by area. abruptness metric

mean shape

index

(AWMSI)

Contagion Measures both patch Patchiness and

(CONTAG) interspersion (the interrnixing of Abruptness metric

different patch types) and patch

dispersion (the spatial distribution

of a patch type). Low values of

CONTAG are equated with a

high degree of patch

interspersion and/or dispersion.

Largest patch Percentage of landscape area Patchiness metric

index (LPI) comprised by the largest patch.

Patch size Measures the relative variability Patchiness metric

coefficient of of patch size about the mean

variation patch size; variability as a

(PSC\Q percentage of the mean.

Mean patch Average area of all patches in Patchiness metric

size (MPS) the ecotone.

Number of A count of all patches in the Patchiness metric

atches @P) ecotone.

Total Edge Absolute measure of total edge Patchiness and

(TE) between allpatches. Abruptness metric
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be difficult to find patch-based metrics that exclusively measure patchiness or

abruptness. Unfortunately, the suite of available patch-based metrics lacks a

metric specifically designed to measure abruptness but surrogates may exist.

Four of the metrics chosen for use, LPI, MPS, NP and PSCV, were designated

as the primary patchiness metrics and were thought to have little utility for

measuring abruptness. These metrics were suspected to be the best indicators

of patchiness because they rely on the relationship between the number of

patches determined by classification and the fixed size of the ecotone landscape.

As patchiness increases, the number of patches (NP) should increase and mean

patch size (MPS) along with the largest patch index (LPI) should decrease.

PSCV should increase with patchiness as the chance for patches of a variety of

sizes should also increase with the number of patches.

The remaining patch-based metrics, the area weighted shape metrics

(AWMPFD and AWMSI), contagion (CONTAG) and total edge (TE), were

expected to be equally useful for measuring patchiness and abruptness. Values

of AWMPFD and AWMSI should decrease with abruptness. Patches in gradual

ecotones should form more complex shapes because they are not confined by a

steep gradient and are able to spread out on the landscape. As abruptness

increases the complexity of patch shape should decrease as patches are

confined to smaller areas of transition. As ecotone patchiness increases, the

potential for patches to form convoluted shapes increases. Therefore, values of

AWMPFD and AWMSI were expected to increase with increasing patchiness.

Since CONTAG is supposed to measure the degree to which patches of different
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classes are intermixed, or patch interspersion, it should be sensitive to

patchiness. Patch interspersion increases as patchiness increases especially

when only two classes are present. CONTAG also measures patch dispersion,

in other words, the degree to which patches of the same class are separated.

Patch dispersion would be low for an abrupt ecotone because the zone of

transition is short causing patches to be clumped together. Low values of

CONTAG were expected as patchiness increased, while high values were

expected as abruptness increased. Total Edge (TE) measures the length of the

boundaries between all patches of different classes. TE was expected to

increase with increasing patchiness and decrease with increasing abruptness.

As patchiness increases, the number of patches increases and patch size will

decrease leading to an increase in the amount of edge between patches. This is

akin to the surface area of fine grain material being greater than that of a coarse

grain material. TE was expected to decrease with increases in abruptness. An

abrupt transition should form patches without complex shapes and therefore

generally less edge.

Calculating surface-based metrics

Lattice delineation and the collection of subgraph statistics were

performed using the capabilities of ARC/INFO geographic information system

and two supplemental programs written in C. The work of Fortin (1994) and the

alpha version of the program GEM: Geographic Boundary Analysis Software

(Jacquez and Maruca, 1998), were used as a template for the ARC/INFO and C
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routines in this study. Although GEM is fully functional and adaptable to the file

structure of the simulated ecotones, it was not used due to the lack of an efficient

method for batch processing. To accommodate processing in ARC/INFO the

methods used here differ slightly from those used in GEM and by others

(Barbujani et al., 1989; Fortin, 1994).

Lattice delineation of each ecotone required that a rate-of—change surface

be computed for all variables under investigation. Only one variable was

investigated so only one rate-of-change surface was generated for each ecotone.

A rate-of-change (ROC) or slope surface is a vector surface (as opposed to a

scalar surface) consisting of two components: gradient and aspect (Chrisman,

1997). Gradient defines the magnitude of change while aspect equals the

direction of change. Each of these components was used in the lattice

delineation. All locations on the ROC surface with gradient values greater than a

given threshold were selected (discussed in detail below). These locations,

termed boundary elements, became candidates to form subgraphs, contiguous

areas of high ROC. Subgraphs are formed through the application of a threshold

on the aspect component of the boundary elements. The boundary elements

whose aspects differed less than the threshold were connected to form

subgraphs. This rule was imposed in order to prevent areas of rapid, unrelated

variation from being classified as boundaries (Jacquez et al., 1999).
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Choosing threshold values

When performing lattice delineation, threshold value selection is

subjective. However, conventional values have been used. The rules most

commonly used in lattice delineation result in the selection of the top 5 or 10% of

gradient values as boundary elements (Barbujani et al., 1989; Fortin 1994; Fortin

and Drapeau, 1995) and use 30 degrees as the aspect threshold for boundary

element connection (Barbujani et al., 1989; Jacquez et al., 1998). Under these

rules, the number of boundary elements selected is roughly equal to the

threshold percentage (i.e., 5%) of the total number of ROC locations. The 30-

degree aspect threshold was used here but a different approach to selecting

boundary elements was chosen. Instead of selecting locations of high rate-of-

change until an area threshold is met, each ROC surface was divided into 20

equal intervals based on the range of ROC values. Each interval could contain a

different number of ROC locations, but the value of each ROC location was

within the same range of ROC values. After forming the intervals, the ROC

locations in each interval were combined to form “slices”. A slice was produced

by selecting all ROC locations whose value is greater than or equal to the lower

limit of a specific interval. For example, the first slice would contain all locations

whose ROC values were greater than or equal to the maximum ROC minus the

range of ROC values divided by 20 (e.g., gradient thresholdsnoe number = ROCmax —

[slice number * (ROCrange * .05)]). Subgraphs were formed for each of the 20

slices. This approach was taken in order to develop the cumulative boundary
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elements metric (discussed below) and to explore a less arbitrary approach to

selecting a gradient threshold at which to calculate subgraph statistics.

Avoiding the use of an arbitrary gradient threshold level was accomplished

by selecting the ROC slice that provided the most information content among all

of the subgraph statistics. Information content was judged by the variation

present within the subgraph statistics at each of the slice levels; a large variation

indicated a potentially large amount of information. Here it was assumed that

variability was the result of the unique response of each subgraph statistic to the

simulated differences among ecotone types and not experimental error. The

coefficient of variation (CV = standard deviation * 100 I mean ) was used as

relative measure of variation within the subgraph statistics. The CV of each

subgraph statistic was calculated over the 1250 realizations that make up each

ROC slice. Then the mean CV of the 8 subgraph statistics was computed for

each ROC slice. The ROC slice that produced the maximum mean CV was

chosen for use in the calculation of subgraph statistics.

Subgraph statistics and hypothesized function

Statistics were generated for each subgraph formed during lattice

delineation. The number of subgraphs and singletons, descriptive statistics on

subgraph length and a subgraph dispersion metric were calculated for each

ecotone. The length of a subgraph is equal to the number of boundary elements

it contains. The dispersion metric summarized the mean distance of each
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boundary element from the geographic center of all boundary elements. A list

and description of the subgraph statistics is provided in Table 4.

The surface-based metrics were generally thought to be more capable of

measuring abruptness than patchiness. However, certain surface-based metrics

were expected to be at least somewhat sensitive to ecotone patchiness. The

extent to which these surface-based metrics are capable of measuring ecotone

patchiness depends in part on how many boundary elements were included in

the calculation of the subgraph statistics. Subgraph statistics calculated on too

few boundary elements may not adequately represent the patchiness

characteristics of the entire ecotone landscape but rather just the patchiness of

the local edges the boundary elements represent. The number of singletons

(NS) and the standard deviation of subgraph length (Lstdv) were hypothesized as

patchiness metrics among the surface-based set. NS was expected to increase

as patchiness increased because patchiness would tend to promote locations of

rapid, unrelated change that would not be connected during lattice delineation.

Lstdv was expected to decrease as patchiness increased. As patchiness

increases, the probability of forming long subgraphs decreases and short

subgraphs of similar lengths should form.

The number of boundary elements (BEs), the number of subgraphs (N)

and the boundary element dispersion metric were hypothesized primarily as

abruptness metrics. As an ecotone becomes more abrupt, the area of transition

decreases, which means the number of high ROC locations also decreases. For

this reason, the number of boundary elements (BEs) along with the number of
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Table 4. Subgraph statistics and hypothesized function.

 

Submph statistic Description Hypothesized function
 

Number of

Boundary Elements

(BEs)

Count of boundary elements

(ROC locations) selected

duringlattice delineation

Abruptness metric

 

 

boundary elements

Number of Count of subgraphs, two or Abruptness metric

subgraphs (N) more connected boundary

elements

Number of Count of boundary elements Patchiness metric

singletons (NS) not connected to any other

 

Minimum length

(Lmln)

Minimum number of

boundary elements in any

one subgraph

Patchiness and

abruptness metric

 

Maximum length

(Lmax)

Maximum number of

boundary elements in any

one subgraph

Patchiness and

abruptness metric

 

Mean length (Lmean) Average number of

boundary elements per

subgraph

Patchiness and

abruptness metric

 

Standard deviation

of length (Lstdv)

Standard deviation of

sugqraph length

Patchiness metric

 

Subgraph

dispersion (Disp)

  
The average distance of

each BE from the centroid

of all BEs combined. The

distance used is the y

distance from the centroid

of all BEs to the centroid of

each BE.  
Abruptness metric
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subgraphs (N) was expected to decrease as abruptness increased. Subgraphs

form by connecting boundary elements of similar aspects. Abrupt ecotones

should have distinct transition areas that result in boundary elements with similar

aspects. Therefore, boundary elements of abrupt ecotones should have a higher

connectivity, which translates into fewer subgraphs (N) per ecotone. The

boundary element dispersion metric (Disp) was developed to measure the

degree of boundary element clumping in the direction of the ecotone transition.

The more contiguous boundaries produced by abrupt ecotones were expected to

form boundary element patterns that were clumped together resulting in a low

Disp value. Gradual ecotones were hypothesized to have higher values of Disp

since boundary elements would tend to be more dispersed throughout the

ecotone.

The remaining subgraph statistics, Lmax, Lmean and Lmin were proposed to

be useful for measuring both patchiness and abruptness. As patchiness

increases, Lmax, Lmean and Lmin are expected to decrease because of the negative

effect patchiness has on the connection of boundary elements into long

subgraphs. Lmax, Lmean and Lmin are expected to increase as abruptness

increases because abrupt transitions should have similar aspect values and thus

be more connectable.

Cumulative boundary elements

Cumulative boundary elements, an alternative surface-based metric, was

developed and calculated for each ecotone surface. Cumulative boundary

32



elements uses data from each of the 20 slice levels avoiding the need to choose

one specific gradient threshold at which to conduct the analysis. This metric was

called cumulative boundary elements (CBE) because it was calculated as the

total sum of boundary elements over all threshold levels. CBE roughly

approximates the integral of the response curve produced by plotting the number

of BEs verses ROC slice level. It was thought that ecotones with different

abruptness characteristics would produce noticeably different response curves

and that the integral of these curves would provide a numerical means to

differentiate them.

It is easier to conceptualize the differences in response curves for

progressively more abrupt ecotones than for progressively patchy ecotones. The

area under the response curve for an abrupt ecotone should be less than the

area under the curve depicting a more gradual ecotone. When the transition is

confined to a small geographic range, as is the case with an abrupt ecotone, the

rate-of-change values are very high within the area of transition. When the rate-

of-change surface for an abrupt ecotone is sliced into equal intervals, each

successive slice will contain a few more boundary elements until all of the area of

transition is sliced through. The transition of a more gradual ecotone occurs over

a broader geographic range and produces a rate-of-change surface with a lower,

more equally distributed, range of values. When a gradual rate-of-change

surface is sliced into equal intervals, each successive slice contains

proportionately more boundary elements than would each successive slice of an

abrupt rate-of-change surface. It is in this way that the response curves for
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gradual and abrupt ecotones differ. CBE was the metric used to quantify the

differences in response curves and was hypothesized to be a prime metric of

abruptness.

Figure 6 shows the boundary elements of a gradual (i.e., less abrupt) and

an abrupt ecotone for each of 20 ROC slice levels. Also shown is the boundary

element response curve for both ecotones. Notice that the area under the abrupt

ecotone’s response curve is noticeably smaller than the area under the less

abrupt ecotone’s response curve. The less abrupt ecotone had a CBE value of

3049 verses a CBE of 1835 for the abrupt ecotone.

Data summary

The calculation of the patch- and surface-based metrics produced a

substantial amount of data. The entire set of data can be summarized using the

idea of a data cube. The dimensions of the patch-based data cube were: 8

patch-based metrics x 25 ecotone groups x 50 replicates per group. The data for

the surface-based metrics includes those for the 8 subgraph statistics calculated

at a particular ROC slice and those for the cumulative boundary elements metric

The subgraph statistics form a cube with the dimensions: 8 surface-based

metrics x 25 ecotone groups x 50 replicates per group. The CBE data were

collected for each of the 50 replicates of the 25 ecotone groups.
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Analysis of Variance

The metric data were organized to facilitate a pair of two-way factorial

ANOVA experiments (see Bhattacharyya and Johnson, 1977); one for the patch-

based approach and another for the surface-based approach. The two-way

ANOVA design was chosen because it simultaneously considers the effects of

two factors (independent variables), including the effects due to their interaction,

on a dependent variable. The ecotone characteristics, patchiness and

abruptness, were considered as factors, while each of the patch- and surface-

based metrics were treated as dependent variables.

Since a simulation was used to produce definite differences between the

ecotone groups, the ANOVA results reflect the degree to which each metric was

capable of detecting the simulated differences. In other words, the ANOVA

statistically determined whether the metrics were sensitive to differences

resulting from simulated combinations of unique patchiness and abruptness

levels. The unique combinations of patchiness and abruptness are called

treatments and the quantitative differences in patchiness and abruptness

themselves are known as treatment effects. Since all of the metrics were

subjected to the same simulated differences in patchiness and abruptness, those

that produced the largest treatment effects were said to be the most sensitive.

The ANOVA determines the presence and magnitude of treatment effects

through the comparison of two independent estimates of population variance.

One estimate is obtained from the variance between subjects given the same

treatments; it is called the within group variance. The other estimate, known as
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the between group variance, is obtained from the variance measured among

subjects that were treated differently. Since it is calculated on subjects that were

treated alike, the within groups variance is attributed to unsystematic errors

beyond the control of the experimenter. The variation between groups on the

other hand, is the result of unsystematic error along with an added component

due to treatment effects (Sokal and Rohlf, 1995). The ratio of the two estimates

(between group variance / within group variance), referred to as the F-ratio, is

used to test whether the treatment effects are larger than what would be

expected by chance alone.

Keppel (1991) summarizes the three important pieces of information that

can be gleaned from a factorial ANOVA regarding treatment effects:

First, we have the simple effects, which refer to the results of the

component single-factor experiments making up the factorial design.

These effects reflect treatment effects associated with one of the

independent variables, with the other one held constant. Second, we

have interaction effects, which reflect a comparison of the simple effects.

Interaction is present when the component single-factor experiments

produce different results; interaction is absent when the results are the

same. Finally, we have the main effects, which essentially transform the

factorial design into two single-factor experiments. Main effects are of

primary interest in the absence of interaction, when it is safe to combine

the data from the component experiments. (p. 191-192)
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Main effects

The main effects of the factorial design were examined first to determine

whether the metrics were sensitive to one or both of the factors. The main

effects tested the null hypothesis that the mean metric values observed at each

level of one factor are equal when the effects of the second factor are

disregarded. Rejection of the null hypothesis based on the F-ratio provided by

the ANOVA indicated that the mean metric value under study was significantly

different for at least two of the factor levels. For each metric being tested there

was a null hypothesis for each main effect:

Ho: there are no differences between the mean values of the metric at

each level of patchiness.

Ho: there are no differences between the mean values of the metric at

each level of abruptness.

Failure to reject the null hypothesis indicated that the metric being analyzed was

not sensitive to the treatments effects produced by that factor. When the null

hypothesis was rejected, the metric was determined capable of detecting

differences in either patchiness or abruptness.

Interaction Effects

Interaction occurs when the affect of one factor on the dependent variable

changes at different levels of the other independent variable (Keppel, 1991). The
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factorial ANOVA provided an F-ratio to test for significance of interaction. The

null hypothesis is:

Ho: interaction is not present; the mean value observed at each level of

one factor does not depend on the level of the other factor

Rejection of the null indicated significant interaction. The presence of interaction

did not allow for an easy interpretation of the main effects. Significant interaction

meant that the metric being tested did not perform consistently across all levels

of one or both of the independent variables. For example, a metric may have

been more sensitive to abruptness at lower levels of patchiness than at higher

patchiness levels. lnforrnation elucidating such patterns was not available in the

main effects. However, examination of the simple effects (discussed below)

provided a means to uncover the patterns of interaction.

In the two-way factorial ANOVAs used here there were four component

sources of variance contributing to the experiment. They were: the variance due

to patchiness treatments (02p), abruptness treatments (0%), the interaction of

patchiness and abruptness (02,, x a) and experimental error (026%,). Estimates of

the four component variances were calculated using the average variance

estimates from the ANOVA and were used to compute a relative index of

treatment magnitude for each component. The index used is called Omega

Squared and was chosen because it provided a way to standardize the

measures of treatment effects so they could be compared within and between
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experiments (Keppel, 1991 ). For example, the treatment effect observed for a

patch-based metric could be compared with the treatment effect observed for a

surface-based metric. Omega squared was calculated as the ratio of the

treatnent effect variance estimate to the combined variance estimates of all

sources. For example, the Omega squared calculation for the patchiness main

effects was:

2

00 p = czp/(ozp + 02
2 2

a+ 0' pxa T 0' error)

Omega squared ranges from 0 to 1 with higher values representing larger

treatment effects (Keppel, 1991). Metrics that produced high Omega squared

values were interpreted as being more sensitive to differences produced by the

simulation than those with lower Omega squared values.

Simple effects

If one of the metrics produced significant interaction effects in the factorial

ANOVA, the simple effects of the metric were analyzed. This was accomplished

by decomposing the factorial ANOVA into 10 single-factor ANOVA experiments.

Each single-factor ANOVA was equivalent to holding the level of one factor

constant while studying the effects of the other factor. The simple effects of

patchiness were evaluated at each level of abruptness as well as the simple

effects of abruptness at each level of patchiness. In the single factor ANOVAs

there were only two variance components, variance due to the independent
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variable (i.e., either patchiness or abruptness) and variance due to experimental

error. Therefore, the Omega squared for the single factor ANOVAs is equal to

the treatment effect variance estimate divided by the treatment effect variance

estimate plus the error variance estimate (Keppel, 1991). For an ANOVA set up

to examine patchiness simple effects the Omega squared calculation was:

2 _. 2 2 2

wp-Gp/(Up+Oerror)

Again, metrics exhibiting higher Omega squared values were considered more

sensitive to the differences in the factor being examined.

For each of the single factor ANOVAs, pain/vise multiple comparisons

between factor levels were conducted using the Bonferroni method. The

Bonferroni comparisons determine when the mean metric value between two

levels of the same factor is significantly different. There were 10 pairwise

comparisons for each of the simple effects, equal to the number of unique pairs

that can be taken from 5 levels of one factor. The calculation of pairwise

comparisons provided the magnitude and sign of the mean difference between

each pair of factor levels. The sign of the difference provided evidence of

whether the metric was performing the way it was suspected to perform. For

example, the number of patches metric (NP) was expected to increase with

patchiness level which means the subtraction of NP at patchiness level 5 from

NP at patchiness level 4, P4 — P5, would be negative. A magnitude difference

between a comparison made at one factor level and the same comparison made
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at a different factor level also indicates the presence of interaction. The

magnitude differences were interpreted to determine at which levels of one factor

was the metric most capable of detecting differences in the other factor. This

information was examined at each level of patchiness and abruptness to resolve

the patterns of interaction.

The Bonferroni comparisons were also used to evaluate whether the

metrics were behaving consistently with the known differences in patchiness and

abruptness. Two different aspects of consistency were considered. The first,

termed external consistency, summarized the degree to which the hypothesized

response (sign of the mean difference) of the metric changed as factor level

changed. The hypothesized response of a metric with a high external

consistency changed little with factor level. A low external consistency indicated

that the interaction was such that the response (sign) of the metric changed as

factor level varied. External consistency was calculated as the ratio of the

number of significant comparisons that produced the hypothesized sign (which

indicated the metric was responding as expected) to the total number of

significant comparisons. This ratio was referred to as the external consistency

index.

The second aspect of consistency, termed internal consistency,

summarized the degree to which significant comparisons were observed in a

logical sequence. For example, a metric is said to be highly sensitive to

patchiness if one observes high Omega squared values for the patchiness simple

effects. Assume that further examination determines that the metric is capable of

42



detecting the difference between patchiness levels 1 and 2 but not between

patchiness levels 1 and 5. If a metric is internally consistent and it detected a

small difference in patchiness, it should also detect a larger difference in

patchiness. Of course, the fact that a metric detects large differences in an

ecotone characteristic does not guarantee it will detect small ones. Internal

consistency was calculated as the ratio between the number of significant

comparisons and the number of significant comparisons that would have been

detected if the metric was responding in a 100 percent logical manner. This ratio

was referred to as the internal consistency index.

Metric suitability ranking

Four properties were used to rank the patch- and surface-based metrics

according to their ability to quantify patchiness and abruptness. The properties

were: 1.) main effect sensitivity (SME); 2.) simple effect sensitivity (SSE); 3.)

external consistency (CE); and 4.) internal consistency (0.). Each metric received

a standardized score for each property and the sum of the four scores was used

for the final ranking. The score for main effect sensitivity was calculated as:

_ 2 2

SME-O) Immax

where (02...... was the Omega squared value of the metric with the highest main

effect sensitivity and (02 was the Omega squared value for the metric for which
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the score was being calculated. The score for simple effect sensitivity was

calculated as:

SSE: Z (032i /(02i max)

.lfl

I'I

 

where n equals the number of simple effects (5) and (02. and (02. max were the

Omega squared value for a particular metric and the maximum Omega squared

value for each simple effect, respectively. The external consistency score was

calculated as:

CE = external consistency / maximum external consistency

and the internal consistency score was calculated as:

C. = internal consistency / maximum internal consistency

The scores for each property ranged from 0 to 1 with 1 representing the highest

performance for a property. Accordingly, the metrics’ total scores ranged from 0

to 4 with 4 representing the best overall suitability. This method was used to

produce a ranking for each set of metrics as well as a ranking for the two sets

combined.
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RESULTS

Patch-based metric ANOVA results

The factorial ANOVAs for the patch-based metrics are summarized in

Table 5. The F-ratios, Omega squared values, and p-values at the 0.01

significance level are given for each metric for the patchiness and abruptness

main effects and the interaction effect. It is immediately apparent that each

patch-based metric was at least somewhat sensitive to the simulated differences

in patchiness and abruptness. Also, as expected, certain metrics were more

sensitive to the simulated differences than others. However, significant main

effects in Table 5 are not entirely conclusive of metric behavior because

interaction effects were significant for each metric. The simple effects of each

metric were evaluated to provide a better description of metric sensitivity at

different factor levels. The Omega squared values for each of the component

single-factor ANOVAs (i.e., simple effects) are summarized in Table 6. The

Bonferroni comparisons for each of the single factor ANOVAs are provided in

Appendix P.

AWMPFD and AWMSI

Not surprisingly, the two patch shape metrics produced very similar

results. Both AWMPFD and AWMSI were proposed as useful metrics for

patchiness or abruptness but each performed better as an abruptness metric. In

fact, they were the top two metrics most sensitive to abruptness (Table 5). Their

sensitivity to patchiness was among the worst of all the patch-based metrics.
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Table 5. Main and interaction effects for factorial ANOVA on patch-based

 

 

 

 

metrics.

Source Metric F (o2 P

Patchiness LPI 84.023 0.170 0.000

NP 378.237 0.128 0.000

PSCV 114.323 0.067 0.000

TE 202.863 0.063 0.000

CONTAG 197.974 0.061 0.000

AWMPFD 112.687 0.046 0.000

AWMSI 114.468 0.045 0.000

MPS 47.757 0.037 0.000

Abruptness AWMPFD 1983.536 0.815 0.000

AWMSI 2023.419 0.806 0.000

CONTAG 2537.143 0.790 0.000

TE 2427.515 0.758 0.000

MPS 846.495 0.671 0.000

PSCV 1099.728 0.647 0.000

NP 1443.752 0.490 0.000

LPI 9.504 0.017 0.000

Interaction NP 203.467 0.275 0.000

LPI 22.047 0.172 0.000

PSCV 44.151 0.102 0.000

TE 65.916 0.081 0.000

CONTAG 41.778 0.051 0.000

MPS 14.684 0.043 0.000

AWMSI 16.505 0.025 0.000

AWMPFD 7.604 0.011 0.000      
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The interaction effects for AWMPFD and AWMSI were the weakest.

AWMPFD and AWMSI also exhibited the same interaction patterns. Table 6

indicates that the patchiness sensitivity of AWMPFD and AWMSI was highest at

abruptness level 1, reached a low at abruptness level 2 then increased with

subsequent patchiness levels. The abruptness sensitivity of AWMPFD and

AWMSI steadily increased with patchiness.

The relationships of AWMPFD and AWMSI to patchiness and abruptness

were externally consistent with hypotheses. Each was directly related to

patchiness and inversely related to abruptness. Also, AWMPFD and AWMSI

appear to be internally consistent. The Bonferroni comparisons (Appendix P)

indicate AWMPFD and AWMSI were not significantly different when patchiness

was one level apart. At intermediate abruptness levels, AWMPFD and AWMSI

did not differentiate high levels of patchiness. AWMPFD and AWMSI were not

sensitive to differences between intermediate and high levels of abruptness at

low levels of patchiness but this problem improved at higher levels of patchiness.

CONTAG and TE

CONTAG and TE also produced comparable results. Like AWMPFD and

AWMSI, CONTAG and TE were proposed as potential patchiness and

abruptness metrics and each was sensitive to changes in both characteristics.

CONTAG performed better as an abruptness metric while TE performed equally

well as a metric of both characteristics. CONTAG ranked third and TE ranked

fourth among the patch-based metrics in terms of abruptness main effects
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sensitivity. TE was the fourth most sensitive metric to patchiness main effects

and CONTAG the fifth.

The interaction effects for CONTAG and TE were moderate and both

exhibited the same pattern of changing patchiness and abruptness sensitivity

over factor levels. Their patchiness sensitivity decreased as abruptness level

increased while abruptness sensitivity increased as patchiness increased.

As hypothesized, CONTAG was inversely related to patchiness and

directly related to abruptness. TE’s response was also consistent with

hypotheses as it was directly related to patchiness and inversely related to

abruptness. CONTAG and TE were internally consistent as patchiness metrics

except at abruptness level 3. CONTAG was not internally consistent because it

was unable to detect differences between patchiness levels 2 and 4, and

between patchiness levels 3 and 5, when it successfully found differences

between levels 2 and 3 or 3 and 4. TE failed to detect patchiness differences 2

levels apart when it was successful at detecting patchiness levels 1 level apart.

The response of both metrics to abruptness was internally consistent at all levels

of patchiness. CONTAG and TE did not distinguish small and intermediate

differences In patchiness as abruptness increased. CONTAG did not detect

differences between intermediate and high levels of abruptness at low levels of

patchiness but did improve at higher levels of patchiness. TE did not detect

differences among intermediate and high level abruptness at all patchiness levels

except for patchiness level 3.
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LPI, NP and PSCV

LPI, NP, and PSCV were hypothesized to perform best as patchiness

metrics. They were the top three metrics in regard to patchiness main effects

sensitivity but were also the patch-based metrics with the strongest interaction

effects.

The effects of interaction on LPI, NP and PSCV were very obvious; they

were highly sensitive to patchiness at low abruptness levels but sensitivity

decreased as abruptness increased. In fact, patchiness sensitivity decreases so

dramatically that LPI, NP and PSCV were not significantly related to patchiness

levels at abruptness level 4 and were nearly so at abruptness level 5 (Table 6).

These metrics perform very well as patchiness metrics but only on ecotones with

a low degree of abruptness.

LPI, NP and PSCV responded as hypothesized to changes in patchiness.

LPI decreased as patchiness increased while NP and PSCV increased as

patchiness increased. LPI responded internally consistently to differences in

patchiness at all levels of abruptness. LPI failed to detect one and two level

patchiness differences at both low and high levels of abruptness. NP behaved

internally consistently to patchiness at abruptness levels 1, 2 and 5 but not at

level 3. PSCV behaved internally consistently to patchiness at abruptness levels

1 and 2 but not at level 3. At abruptness level 3, both NP and PSCV were not

internally consistent because they were not sensitive to differences between

patchiness levels 1 and 4, 2 and 4 or 4 and 5. However, they were sensitive to

differences between patchiness levels 1 and 3, 2 and 3 and 3 and 4. PSCV and
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NP were capable of detecting 1, 2, 3 and 4 level patchiness differences at low

levels of abruptness but failed to do so as abruptness increased.

MPS

MPS, although similar in many respects to LPI, NP, and PSCV, performed

poorly as a patchiness metric but had weaker interaction effects than LPI, NP

and PSCV. MPS was sensitive to differences in both patchiness and abruptness.

It was the least sensitive to the patchiness main effects and was moderately

sensitive to the abruptness main effects (Table 5). The poor performance of

MPS as a patchiness metric was surprising, especially since the other patch size

metrics (LPI and PSCV) performed well (at least at low abruptness levels). The

poor performance of MPS as a patchiness metric could be attributed to the

vagueness of information provided by a mean. The mean patch size is a good

representative of ecotone characteristics only if patch sizes are normally

distributed. Othenrvise, outliers, extremely large or small patch sizes, may bias

the value of MPS. A bias of this type may prevent MPS from distinguishing

patchiness differences.

MPS had the third weakest interaction effect. AWMSI and AWMPFD were

the only patch-based metrics with weaker interaction effects. The interaction was

such that the patchiness sensitivity of MPS decreased as abruptness increased

(Table 6). At abruptness level 4, MPS did not detect patchiness differences.

This is the same pattern exhibited by LPI, NP and PSCV but the difference in

patchiness sensitivities between abruptness levels is smaller for MPS.
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As hypothesized, MPS decreased as patchiness increased. MPS

responded sensibly to patchiness differences at abruptness levels 1, 2 and 5 but

not at abruptness level 3. Just like NP and PSCV, MPS failed to find differences

between patchiness levels 1 and 4, 2 and 4 and 3 and 5 when differences

between 1 and 3, 2 and 3 and 3 and 4 were significantly different. MPS was able

to differentiate patchiness 1, 2, 3 and 4 levels apart at low abruptness levels but

failed to do so as abruptness increased.

Patch-based metrics ranked by simple effects

Table 7 shows the patch-based metrics ranked by Omega squared for

each of the patchiness and abruptness simple effects. The ranking clearly

indicates that relative metric performance was highly dependent on factor level.

For example, NP was the superior patchiness metric at low levels of abruptness

but it was outperformed at intermediate and high levels of abruptness. The same

is true for PSCV. Oppositely, performance of AWMPFD and AWMSI as

patchiness metrics improved as abruptness level increased. CONTAG, AWMSI,

AWMPFD, and TE are the superior abruptness metrics across all levels of

patchiness. MPS and LPI consistently perform as poor abruptness metrics

regardless of patchiness level.

There were larger differences in the metric rank order for the patchiness

simple effects than for the abruptness simple effects. This suggests that the
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decision to use a particular metric to measure patchiness at a given abruptness

level is more consequential than the decision to use a particular metric for

abruptness at a given patchiness level.

Patch-based metric suitability ranking

Table 8 contains the scores used to calculate the metric suitability ranking

for the patch-based metrics. Standardized scores for main effects sensitivity,

simple effects sensitivity, external and internal consistency were totaled and

provided the basis to judge the metrics” overall suitability as patchiness and/or

abruptness metrics. The size of a score is relative to the highest score recorded

for the property that was measured. A metric that performed the best for each of

the properties would receive a score of 4. A score of less than 4 indicated that at

least one property of the metric was inferior to the others.

The patch-based metrics in order of their suitability as patchiness metrics

were: LPI, NP, AWMSI, CONTAG, TE, AWMPFD, PSCV and MPS. Of the

metrics that were predicted to be most useful as patchiness metrics, only LPI and

TE were in the top half of the suitability ranking. PSCV and MPS received scores

that placed them in the bottom half of the ranking. MPS had the lowest score for

each of the four properties contributing to the final score. PSCV, while not the

least sensitive to patchiness, ranked low because of its low consistency scores.

The suitability scores of CONTAG, TE and AWMPFD were very close and they

ranked as mediocre patchiness metrics. It should be noted that only three of the
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Table 8. Patch-based metrics ranked by patchiness and abruptness suitability

 

 

 

 

     
 

 

 

scores.

Patchiness suitability scores

Metric Main effects Simple effects External Internal Total

sensltivity sensitivity Consistency Consistency

LPI 1.00 0.29 1.00 1.00 3.29

NP 0.75 0.51 0.91 0.85 3.01

AWMSI 0.27 0.68 1.00 1.00 2.94

CONTAG 0.36 0.63 0.97 0.94 2.90

TE 0.37 0.61 0.97 0.94 2.89

AWMPFD 0.27 0.61 1.00 1.00 2.88

PSCV 0.39 0.39 0.95 0.84 2.58

MPS 0.22 0.26 0.90 0.84 2.23

Abruptness suitability scores

Metric Main effects Simple effects External Internal Total

sensitivity sensitivity Consistency Consistency

CONTAG 0.97 0.99 1.00 1.00 3.96

AWMPFD 1.00 0.94 1.00 1.00 3.94

AWMSI 0.99 0.93 1.00 0.98 3.90

TE 0.93 0.96 1.00 1.00 3.89

PSCV 0.79 0.62 1.00 1.00 3.42

MPS 0.82 0.58 1.00 1.00 3.40

NP 0.60 0.65 1.00 1.00 3.25

LPI 0.02 0.15 0.43 0.95 1.55     
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patch-based metrics, LPI, AWMSI, and AWMPFD had perfect external and

internal consistency scores.

The patch-based metrics in order of their suitability as abruptness metrics

were: CONTAG, AWMPFD, AWMSI, TE, PSCV, MPS, NP and LPI. This order

was convincing because the metrics that were hypothesized as poor abruptness

metrics (LPI, MPS, NP and PSCV) ranked lower in terms of their abruptness

metric suitability. The patch-based metrics were far more consistent as

abruptness metrics than as patchiness metrics. LPI was an exception due to its

very low external consistency.

Surface-based metrics ANOVA results

Subgraph statistics

The results from two ANOVA experiments, one that used the subgraph

statistics produced at slice level 1 and another that used subgraph statistics from

slice level 9, were evaluated. The decision to use slice level 1 came from the

interpretation of the mean metric coefficient of variation at each of the 20 slice

levels (Figure 7). Slice 1 had the highest mean metric coefficient of variation and

was chosen because it was thought have produced the most information to

distinguish differences among ecotone groups. The decision to use slice 9 was

based on the traditional method of selecting boundary elements discussed

previously. Slice level 9 was chosen because the mean number of boundary

elements (43.5) for the 1250 ecotones was the closest of all the slices to 10
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Figure 7. Mean coefficient of variation of the 8 subgraph statistics by ROC slice

level. The coefficient of variation summarized the potential amount of information

available that could be used to distinguish differences among the 1250 ecotones.

percent of the total ecotone area. The 10 percent value is a typical value used

during lattice delineation.

Figure 8 shows a subgraph map from each of the 25 simulated ecotone

groups when slice level 1 was used for lattice delineation. Figure 9 shows a

subgraph map from each of the 25 simulated ecotone groups when slice level 9

was used for lattice delineation.

SLICE LEVEL 1

The main effects of the slice level 1 subgraph statistics are summarized in

Table 9. The most noticeable property of the subgraph statistics produced by
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Sllce 1 Subgraph maps

Abruptness level (A)
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Note: The ecotone transition was simulated in the north-south direction.

 

Figure 8. An example from each of the 25 groups of the subgraph maps created

from the lattice delineation that used slice level 1 as the gradient threshold.

Areas of homogeneous color represent individual subgraphs or singletons.
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Slice 9 Subgraph Maps
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Figure 9. An example from each of the 25 groups of the subgraph maps created

from the lattice delineation that used slice level 9 as the gradient threshold.

Areas of homogeneous color represent individual subgraphs or singletons.
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Table 9. Main and interaction effects results for ANOVA on level 1 subgraph

statistics. Significance is for a = 0.01. A “ns” indicates that the variation in the

source was not significant different.

 

 

 

 

  

Source Metric F m2 P

Patchiness Lmean 12.242 0.067 0.000

Lmax 1 1.837 0.065 0.000

Lmin 1 1.291 0.062 0.000

NS 23.704 0.062 0.000

N 20.832 0.051 0.000

BEs 17.107 0.046 0.000

Disp 0.522 -0.001 0.719 ns

L5,“,V 0.794 -0.001 0.530 ns

Abruptness N 66.582 0.165 0.000

Disp 62.110 0.164 0.000

NS 40.766 0.106 0.000

BEs 32.382 0.087 0.000

Lmax 2.876 0.011 0.022 ns

L"...an 2.224 0.007 0.065 ns

Lstdv 1.531 0.003 0.191 ns

Lmjin 1.438 0.003 0.220 ns

Interaction Disp 1.129 0.001 0.322 ns

BEs 1.112 0.001 0.338 ns

NS 0.988 0.000 0.467 ns

N 0.971 0.000 0.487 ns

Lmin 0.944 -0.001 0.518 ns

Lstdv 0.934 -0.002 0.530 ns

L"...n 0.810 -0.004 0.675 ns

Lmax 0.698 -0.007 0.797 ns   
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slice level 1 is the lack of significant interaction effects. The response of each

slice 1 metric in regard to one factor was not dependent on the level of the other

factor. This is important because it means that the metric response to ecotone

characteristics, patchiness or abruptness, was consistent over all degrees of

each characteristic. The lack of interaction also allows for a less extensive

investigation of the metrics; the simple effects do not have to be evaluated to

uncover patterns of interaction. Instead, the main effects are wholly

representative of the component ANOVAs that make up the simple effects.

available for detecting differences between the 1250 simulated ecotone surfaces

in each slice level.

Disp and Ls...V did not produce significantly different values among

patchiness groups while Lmax, Lmean, Lstdv, and Lmin were not significantly different

among abruptness groups. Insignificant differences in the Disp metric within the

patchiness main effects was consistent with hypotheses because it was not

designed to measure patchiness, however insignificance in Lam was surprising.

The insignificance of Lmin within the abruptness main effects was predictable

because every set of subgraphs produced by slice 1 had a minimum subgraph

length (Lmin) of 2. Therefore the mean differences between the ecotone groups

would be zero and insignificant. Lmax and Lmean, were not hypothesized to be

insignificant within the abruptness main effects. It is possible that the surprising

insignificance of L3,... in the patchiness main effects and I-max and Lmean in the

abruptness main effects was tied to the fact that slice level 1 produced metric

values that were based on a very small proportion of the ecotone area. The
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average number of BEs for slice level 1 was 2.32 or 0.5% of the total ecotone

area. The small area used by slice level 1 did not allow the metrics to differ

enough to produce significant differences in the ANOVA when in fact the

ecotones were different in terms of their characteristics. It was for this reason

that metrics from slice level 9 were chosen and further evaluation of slice level 1

was abandoned.

SLICE LEVEL 9

There are four notable differences between the subgraph statistics

produced using slice 1 and those produced using slice 9. First, the average

percentage of ecotone area selected as boundary elements is much greater for

slice 9: 9.9 vs. 0.5 for slice 1. Second, all of the slice 9 metrics showed

significant differences in the patchiness and abruptness main effects (Table 10).

Third, the slice 9 metrics were much more sensitive (higher omega squared

values) to abruptness differences than were the metrics from slice 1. Note

however that patchiness sensitivity of the two slices was quite similar. The fourth

difference is that each slice 9 metric had significant interaction effects whereas

the slice 1 metrics did not. The first three differences were advantages of using

slice 9; using a larger area should make the metrics more accountable for the

simulated differences and finding the metrics with a high sensitivity was a primary

goal. Unfortunately, the significant interaction effects with slice 9 are a

disadvantage since another goal was to find patchiness and abruptness metrics

that operate consistently across factor levels. Despite the presence of
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interaction, the slice 9 metrics were chosen over the metrics calculated at slice

level 1 for comparison against the patch-based metrics.

The factorial ANOVAs for the slice 9 subgraph statistics indicate that all of

the metrics were at least somewhat sensitive to both patchiness and abruptness.

Table 10 shows the F-ratios, Omega squared values, and p-values of the

factorial ANOVA for each metric and each factor. While the sensitivity of the

metrics was variable among patchiness and abruptness main effects, sensitivity

to patchiness was more variable than sensitivity to abruptness. Interaction of

factors was significant for each of the subgraph statistics, requiring interpretation

of the simple effects to reveal specific patterns of metric behavior at different

factor levels. Table 11 contains the results of the surface-based simple effects.

NS exhibited the strongest interaction, the interaction effects of L9,...V and Lmam

were the next strongest while Lmin, Lmean, Disp, BEs, and N exhibited weaker

interaction. Appendix S contains the results of the Bonferroni comparisons that

were used to further examine the interaction effects.

NS and L9,...V

NS and Lstdv were introduced as patchiness metrics. NS was the

metric most sensitive among the surface-based metrics to the patchiness main

effects, Lstdv was the fourth most sensitive (Table 10). Both metrics were also

sensitive to abruptness but ranked among the lower half of the metrics in that

regard. Lstdv was the least sensitive of all the surface-based metrics to

abruptness. The interaction effects for NS and L9,“,v were very strong and the
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Table 10. Main and interaction effects results for ANOVA on level 9 subgraph

statistics. Significance is for or = 0.01. A “ns” indicates that the variation in the

source was not significant different.

 

 

 

 

 

Source Metric F m2 P

Patchiness NS 166.576 0.103 0.000

Lmax 70.049 0.101 0.000

Lmean 37.256 0.035 0.000

Lstdv 1 1.159 0.024 0.000

Lmin 19.344 0.022 0.000 W

N 15.503 0.013 0.000 t

BEs 7.867 0.010 0.000

Disp 28.801 0.009 0.000

Abruptness Disp 2772.977 0.880 0.000

N 826.595 0.710 0.000 _

Lmean 708.935 0.661 0.000

Lmin 522.168 0.602 0.000 J

NS 891.857 0.544 0.000

BEs 380.321 0.538 0.000

Lmax 293.554 0.420 0.000

Lstdv 73.251 0.170 0.000

Interaction NS 66.955 0.161 0.000

Lstdv 8.644 0.072 0.000

Lmax 6.069 0.029 0.000

Lmin 4.216 0.015 0.000

Lmean 4.239 0.012 0.000

Disp 10.096 0.012 0.000

BEs 2.712 0.010 0.000

N 3.642 0.009 0.000     
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interaction effects of NS were twice as strong as the interaction effects of Lstdv-

As abruptness increased, the patchiness sensitivity of NS and Lstdv

decreased (I'able 11). Interaction was so strong that NS failed to detect

differences in patchiness at abruptness level 5 even though it was the most

sensitive to patchiness at abruptness levels 1, 2 and 3 and the second most

sensitive at abruptness level 4. Lstdv found significant differences in patchiness at

all levels of abruptness.

NS was hypothesized to increase as patchiness increased. This

relationship was confirmed by examining the Bonferroni comparisons for NS

(Appendix B). The difference was negative when the mean NS of a higher

patchiness level was subtracted from the mean NS of a lower patchiness level.

There were three comparisons where this did not occur. The comparisons

between patchiness levels 3 and 5 and 4 and 5 at abruptness level 3 were

positive when 5 was subtracted from 3 and 4 respectively. This indicates that NS

was lower at patchiness level 5 when it was expected to be higher. Since this did

not occur at every level of abruptness, it must be attributed either to an

interaction effect or an unusual error. Also, other comparisons between

patchiness level 5 and lower patchiness levels were not significant at higher

levels of abruptness. In other words, this metric cannot make distinctions at

higher levels of abruptness. NS was externally consistent with regard to

patchiness differences at abruptness levels 1 and 2 but not at abruptness levels

3, 4 and 5. NS detected differences between patchiness levels 1, 2, 3 and 4

levels apart at abruptness levels 1 and 2 but not at 4 and 5. At abruptness level
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3, NS differentiated patchiness differences of 1, 2 and 3 levels but did not

differentiate a 4 level difference in patchiness.

The response of Lstdv exhibited interaction. Lstdv was hypothesized to

decrease as patchiness increased. I-stdv met hypotheses at low levels of

abruptness but at high levels of abruptness Lsmv increased with patchiness. Also,

Lg...v responded internally consistently to patchiness at low levels of abruptness

but not at high abruptness levels. L3...v detected 1, 2, 3 and 4 level differences in

patchiness at abruptness levels 1 and 2 but not at abruptness levels 3, 4 and 5.

BEs, Disp and N

BEs, Disp and N were hypothesized to be most useful as abruptness

metrics. Each was sensitive to abruptness as well as patchiness, but they

excelled as abruptness metrics. Disp and N ranked as the top two subgraph

statistics in terms of sensitivity to the abruptness main effects while BEs ranked

sixth (Table 10). N, BEs and Disp were the worst of the subgraph statistics in

terms of patchiness sensitivity. The interaction effects for BEs, N and Disp were

the weakest.

For BEs and N, the presence of interaction produced similar patterns of

abruptness sensitivity within the abruptness simple effects (Table 11).

Abruptness sensitivity for both BEs and N was fairly constant at patchiness levels

1, 2 and 3, dropped to a minimum at patchiness level 4, then increased slightly at

patchiness level 5. Abruptness sensitivity of Disp was the opposite, exhibiting a
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trend of increasing abruptness sensitivity as patchiness increased. Disp had

maximum abruptness sensitivity at patchiness level 5.

BEs, N and Disp each responded to abruptness differences in a

predictable and internally consistent manner (Appendix B). As hypothesized,

BEs, N and Disp decreased as abruptness increased. Disp was significantly

different for comparisons between all abruptness levels except the comparisons

between abruptness levels 4 and 5. Similarly, BEs and N did not detect a

difference between abruptness levels 4 and 5. N and BEs did not distinguish the

difference between intermediate and high levels of abruptness at certain

patchiness levels. In addition, both N and BEs failed to detect a difference

between abruptness levels 1 and 2 at patchiness level 3. The difference

between 1 and 2 should have been easily distinguished since the surface with

abruptness level 1 was planar while the surface with abruptness level 2 was

curvilinear. The fact that N and BEs did not detect this difference was curious.

Lmax. Lmean and Lmin

Lmax, Lmean and Lmin were hypothesized as functional patchiness and

abruptness metrics. Each metric had significant patchiness and abruptness main

effects as well as significant interaction effects (Table 10). With regard to the

patchiness main effects, Ln...x ranked second, Ln“...n ranked third and Lmin ranked

fifth. As abruptness metrics, Ln..." ranked third, Lm... fourth and Lmax seventh.

Lmean had the weakest interaction effects of the three followed by Lmin then Lmax.
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The interaction effects on Lmax were nearly twice as strong as the interaction

effects on Lmean and Lmin.

For Lmax and Lmean, the presence of interaction resulted in a decrease in

patchiness sensitivity as abruptness increased (Table 11). In fact, Lmax did not

distinguish any difference in patchiness at abruptness level 5. Lmean found

significant differences at all levels of abruptness. Lmin was unable to detect

patchiness differences at abruptness levels 1 and 2 but its patchiness sensitivity

increased as abruptness increased.

The interaction effect for Lmam was such that abruptness sensitivity

increased steadily as patchiness increased (Table 11). L"...an and Lmin exhibited

patterns of interaction more similar to N and L9,...V than Lmax. Maximum

abruptness sensitivity for Lmean and me occurred at patchiness level 2 while the

minimum occurred at patchiness level 4 and it fluctuated at the remaining

patchiness levels.

Lmax, Lmean and Lmin were less predictable and responded with less internal

consistency as patchiness metrics than they did as abruptness metrics (Appendix

B). Lmax was the only metric to respond as hypothesized for every patchiness

comparison; L...ax decreased as patchiness increased. Lmean and Lmin also had

this relationship with patchiness except in comparisons involving patchiness level

5. The same pattern was observed for NS and Lady; both deviated from expected

responses in comparisons involving patchiness level 5. Lmax did not respond to

patchiness in an internally consistent manner at abruptness levels 3 and 4. For

example, Lmax found the comparison between patchiness levels 2 and 4
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significantly different but not the comparison between level 2 and 5. Lmean and

Lmin had similar problems at abruptness levels 3, 4 and 5.

As abruptness metrics, Lmax, Lmean and Lmin performed as hypothesized for

every abruptness comparison made (Appendix B). Values of Lmax, Lmean and me

increased as abruptness increased. Lmean and Lmin responded internally

consistently to abruptness differences at each patchiness level while Lmax had an

internally inconsistent comparison at patchiness level 1 and 2. None of the three

metrics distinguished a difference between abruptness levels 4 and 5 and 1 and

2 but did distinguish large and small degree differences in abruptness.

Cumulative boundary elements

The factorial ANOVA results for CBE are found in Table 12. CBE was

sensitive to both the patchiness and abruptness main effects. Its Omega

squared value for the patchiness main effects (0.018) ranked CBE as the sixth

most sensitive metric of all the surface-based metrics. With an Omega squared

value of 0.806, CBE ranked as the second most sensitive metric to abruptness.

Although it was hoped the response of CBE would avoid significant interaction

effects, interaction was significant but very low ((02 = 0.006).

The single factor ANOVA results for CBE are found in Table 13. CBE

detected significant differences in patchiness at every level of abruptness except

abruptness level 1. CBE also detected significant differences in abruptness at

every level of patchiness. CBE interaction effects exhibited a pattern of

increased CBE patchiness sensitivity as abruptness increased. Abruptness
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sensitivity decreased with successive patchiness level until patchiness level 5

where it greatly increased.

Table 12. Main and interaction effects for ANOVA on the cumulative boundary

elements metric. An “ns” indicates that the variation in the source was not

significant different.

 

 

    

Source F (1)2 P

Patchiness 33.260 0.018 0.000

Abruptness 1478.364 0.806 0.000

Interaction 3.880 0.006 0.000
 

Table 13. Simple effects results for ANOVA on the cumulative boundary

elements metric. The maximum Omega squared value is in hold; the minimum is

underlined. An “ns” indicates an ANOVA that was not significant.

 

 

Patchiness simple effects Abruptness simple effects

CBE CBE

A1 0.003 I'IS P1 0.501

A2 0.018 P2 0.479

A; 0.036 P3 0.458

A 0.070 P4 - 0.424

A; 0.122 P», 0.571     
 

The Bonferroni comparisons of each single factor ANOVA computed for

CBE are included in Appendix C. The comparisons among the patchiness

simple effects are not externally consistent, the sign of the mean differences

between patchiness levels changes depending on the comparison being made.

Also, at abruptness levels 3 and 4, the significant comparisons of CBE did not
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form an internally consistent pattern. No hypotheses were made as to how CBE

would respond to patchiness differences, but the sign changes and inconsistent

behavior suggest CBE is not a very good patchiness metric. On the other hand,

the comparisons among the abruptness simple effects were externally and

internally consistent. CBE, hypothesized to be inversely related to abruptness,

did decrease as abruptness increased at every comparison made. CBE did not

detect a difference between abruptness levels 4 and 5 at any patchiness level

nor between abruptness level 1 and 2 at patchiness levels 3 and 4. CBE found

significant differences for all other comparisons. CBE's pattern of significantly

different comparisons among abruptness is nearly identical to the pattern

exhibited by N.

Surface-based metrics ranked by simple effects

The surface-based metrics ranked in order of simple effects patchiness

and abruptness sensitivity are found in Table 14. Across the 5 abruptness levels,

NS and Lmean consistently ranked as high patchiness detectors, while BEs and

Ln...x consistently ranked low. The CBE, N and Lmin metrics improved in rank as

abruptness increased. Lstdv ranked low as a patchiness metric at abruptness

levels 3 and 4 but was among the best at abruptness levels 1, 2, and 5. At

abruptness level 3, Disp was the second ranked patchiness metric but was less

impressive at all other abruptness levels. Disp, CBE and N consistently ranked

as superior abruptness metrics, while Lstdv, Lmax, and BEs repeatedly ranked

among the lower half. At lower levels of patchiness, Lmin and NS were mediocre
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abruptness metrics. Lm... decreased in rank as patchiness increased but NS

improved to be the second ranked abruptness metric at patchiness levels 4 and

5. LN...n was an average abruptness metric at all patchiness levels.
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Surface-based suitability ranking

The suitability scores for each of the eight subgraph statistics and CBE

are presented in Table 15. In descending order, the most suitable surface-based

metrics for quantifying patchiness were: NS, Lmax, Lmean, Lmin, N, Disp, CBE and

BEs. The two surface-based metrics thought to be exclusively patchiness

metrics, NS and Lstdv, did rank among the best. Not surprisingly, the

hypothesized abruptness metrics, BE, CBE, Disp and N, performed poorly as

patchiness metrics. Lmax was a better patchiness metric than an abruptness

metric while Lm... did not perform particularly well as either. Lmam was the only

surface-based metric that was completely externally consistent with regard to

patchiness. BEs was the only surface-based metric that was completely

internally consistent with regard to patchiness.

In descending order, the most suitable surface-based metrics for

quantifying abruptness were: Disp, CBE, N, Lmean, NS, Lmin, BEs, Lmax, Lstdv. This

order conforms to the expected function of the metrics. CBE and Disp were

designed specifically to measure abruptness and ranked as the most suitable

abruptness metrics. Lmean was the only metric to rank in the top half as both a

patchiness metric and abruptness metric. All of the surface-based metrics,

except for Lmax and Lstdv, were completely externally and internally consistent with

regard to abruptness.
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Table 15. Surface-based metrics ranked by patchiness and abruptness

suitability scores.

Patchiness suitability scores

 

 

       
 

 

      

Metric Main effects Simple effects External Internal Total

sensitivity sensitivity Consistency Consistency

NS 1.00 0.68 0.88 0.86 3.41

Lmam 0.98 0.42 1.00 0.87 3.27

Lmean 0.33 0.51 0.86 0.81 2.52

Lady 0.24 0.35 0.95 0.87 2.41

I-min 0.21 0.14 0.75 0.62 1.71

N 0.12 0.26 0.69 0.59 1.67

Disp 0.09 0.24 0.42 0.86 1.60

CBE 0.17 0.50 0.00 0.75 1.43

BEs 0.10 0.04 0.00 1.00 1.14

Abruptness suitability scores

Metric Main effects Simple effects External Internal Total

sensitivity sensitivity Consistency Consistency

Disp 1.00 1.00 1.00 1.00 4.00

CBE 0.92 0.75 1.00 1.00 3.67

N 0.81 0.55 1.00 1.00 3.36

Lmean 0.75 0.49 1.00 1.00 3.24

NS 0.62 0.56 1.00 1.00 3.18

Lmin 0.68 0.40 1.00 1.00 3.08

BEs 0.61 0.31 1.00 1.00 2.92

Lmax 0.48 0.27 1.00 0.95 2.69

B9, 0.19 0.09 0.58 0.68 1.54
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Patch-based suitability vs. Surface-based suitability

The primary goal of this research has been to determine which approach,

the patch- or surface-based, would be most suitable for quantifying ecotone

patchiness and abruptness. Both approaches were sensitive to patchiness and

abruptness, but the patch-based metrics were on average more sensitive to both

characteristics than the surface-based metrics. On average, the surface-based

metrics had weaker interaction effects. Both sets of metrics were more externally

and internally consistent as abruptness metrics than as patchiness metrics. In

order to determine which metrics performed the best relative to one another, they

were ranked according to their patchiness and abruptness suitability. The

patchiness suitability ranking is shown in Table 16 while the abruptness suitability

ranking is shown in Table 17. Mean suitability scores for each set of metrics are

also provided.

According to the patchiness suitability ranking of all the metrics (Table 16),

the patch-based set performed better as patchiness metrics than the surface-

based set. The patch-based mean patchiness suitability score (2.81) was

greater than the surface-based mean patchiness suitability score (1.92). On

average, the patch-based metrics received higher scores for main effects

sensitivity, simple effects sensitivity, external and internal consistency than the

surface-based metrics. Patch-based metrics occupied the 5 highest ranks for

patchiness detection.
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Table 16. Patch- and surface-based metrics ranked according to patchiness

suitability scores. Patch-based metrics are underlined.

Patchiness suitability scores

 

 

 

 

 

       

Metric Main effects Simple effects External Internal Total

sensitivity sensitivity Consistency Consistency

Lfl 1.00 0.27 1.00 1.00 3.27

NP 0.75 0.49 0.91 0.85 3.00

AWMSI 0.27 0.66 1.00 1.00 2.92

CONTAG 0.36 0.59 0.97 0.94 2.86

ll; 0.37 0.57 0.97 0.94 2.86

NS 0.61 0.52 0.88 0.86 2.86

AWMPFD 0.27 0.55 1.00 1.00 2.82

Lmax 0.60 0.31 1.00 0.87 2.77

PSCV 0.39 0.38 0.95 0.84 2.56

Lmean 0.20 0.38 0.86 0.81 2.26

Lstdv 0.14 0.25 0.95 0.87 2.22

.fl 0.22 0.25 0.90 0.84 2.21

Lmin 0.13 0.12 0.75 0.62 1.61

N 0.07 0.24 0.69 0.59 1.59

Disp 0.05 0.21 0.42 0.86 1.53

CBE 0.11 0.46 0.00 0.75 1.31

BEs 0.06 0.03 0.00 1.00 1.09

Patch-based

mean 0.45 0.47 0.96 0.93 2.81

Surface-

based mean 0.22 0.28 0.62 0.80 1.92
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Table 17. Patch- and surface-based metrics ranked according to abruptness

suitability scores. Patch-based metrics are underlined.

Abruptness suitability scores

 

 

 

       

Metric Main effects Simple effects External Internal Total

sensitivity sensitivity Consistency Consistency

Disp 1.00 0.98 1.00 1.00 3.98

CONTAG 0.90 0.89 1.00 1.00 3.79

AWMPFD 0.93 0.84 1.00 1.00 3.77

AWMSI 0.92 0.83 1.00 0.98 3.73

IE 0.86 0.86 1.00 1.00 3.72

CBE 0.92 0.74 1.00 1.00 3.65

N 0.81 0.54 1.00 1.00 3.35

PSCV 0.74 0.57 1.00 1.00 3.30

m 0.76 0.53 1.00 1.00 3.29

me 0.75 0.48 1.00 1.00 3.23

NS 0.62 0.54 1.00 1.00 3.16

LLB 0.56 0.59 1.00 1.00 3.15

I-min 0.68 0.39 1.00 1.00 3.08

BEs 0.61 0.30 1.00 1.00 2.91

me 0.48 0.26 1.00 0.95 2.68

El 0.02 0.14 0.43 0.95 1.55

LN, 0.19 0.09 0.58 0.68 1.54

Patch-based

mean 0.71 0.66 0.93 0.99 3.29

Surface-

based mean 0.67 0.48 0.95 0.96 3.07
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The abruptness suitability ranking (Table 17) indicated that the patch-

based set also performed better than the surface-based set as abruptness

metrics. The patch-based set had a mean suitability score of 3.29 verses a

mean suitability score of 3.07 for the surface-based set. The patch-based

metrics had, on average, higher main effects sensitivity, simple effects sensitivity,

and internal consistency scores. The surface-based metrics had, on average,

slightly better external consistency. Disp, the most suitable surface-based

abruptness metric, outperformed the most suitable patch-based abruptness

metric CONTAG. Disp had a nearly perfect suitability score (3.98) that was much

higher than the second ranked CONTAG (3.79).

It was surprising for the patch-based metrics to outperform most of the

surface-based metrics as both patchiness and abruptness metrics. The surface-

based approach was hypothesized as the superior approach for quantifying

abruptness but the suitability scores suggest otherwise. However, when applying

one approach or another to quantify patchiness or abruptness an entire set of

metrics need not be used. Only the metrics that were the most suitable for

quantifying the characteristic should be selected. In that case the patch-based

approach remains the superior approach for quantifying patchiness, and since

Disp ranked as the most suitable abruptness metric, the surface-based approach

might be the more attractive method for quantifying abruptness.
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DISCUSSION AND CONCLUSIONS

Eight patch-based metrics and nine surface-based metrics were evaluated

to determine which were the most suitable for quantifying ecotone patchiness

and abruptness. Suitability was based on a ranking of scores totaled from 4

categories. The score for each category was based on the metrics’ response to

simulated patchiness and abruptness differences captured in a factorial analysis

of variance. As a whole, the patch-based set of metrics was more suitable than

the surface-based set as both patchiness and abruptness metrics. However,

individual surface-based metrics were modestly suitable as patchiness metrics

and highly suitable as abruptness metrics.

Research Questions Revisited

Do patch-based metrics only measure patchiness or are they capable of

measuring abruptness? Which of the patch-based metrics are most suitable as

patchiness metrics and which are most suitable as abruptness metrics?

All of patch-based metrics measured differences in both patchiness and

abruptness. LPI, NP, and AWMSI ranked as the most suitable patchiness

metrics while CONTAG, AWMPFD, and AWMSI ranked as the most suitable

abruptness metrics.

The fact that AWMSI excelled at measuring both characteristics could be

problematic. When AWMSI is applied to an ecotone of unknown patchiness and

abruptness characteristics it would be difficult to determine whether the metric is
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measuring patchiness or abruptness. For instance, consider two ecotones A and

B; ecotone A has an AWMSI of 1.0 and ecotone B has an AWMSI of 1.5. Based

on the results of this study, the smaller AWMSI of ecotone A suggests that it is

more abrupt than ecotone B. However, the smaller AWMSI also suggests that it

is less patchy than ecotone B. If it is assumed that patchiness and abruptness

are independent of one another, AWMSI is difficult to interpret; its value could

either represent a degree of patchiness or a degree of abruptness. This

interpretation problem is avoided by using a metric that was only effective at

measuring one characteristic; in other words, one that had a high polarity

between patchiness suitability and abruptness suitability. Under this criterion,

LPI and NP stand out as a superior patchiness metrics. However, none of the

patch-based metrics that were highly suitable abruptness metrics were

particularly poor patchiness quantifiers. AWMPFD ranked low as a patchiness

metric but its perfect consistency scores suggest it was a fairly good patchiness

metric. CONTAG, although it showed high sensitivity to patchiness was not as

consistent as the other patch-based metrics. For this reason, CONTAG was

considered a poor patchiness metric and was considered most useful as an

abruptness metric.
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Are the surface-based metrics able to measure patchiness? Do the surface-

based metrics measure abruptness? Which of the surface-based metrics are

most suitable as patchiness metrics and which are most suitable as abruptness

metrics?

The surface-based metrics also measured both patchiness and

abruptness. NS, L...ax and Lmean ranked as the most suitable surface-based

patchiness metrics and Disp, CBE, and N ranked as the most suitable surface-

based abruptness metrics. However, none of the surface-based metrics were

completely consistent with regard to patchiness. This is a big concern if they are

to be applied as patchiness metrics.

Of the most suitable surface-based patchiness metrics only Lmax had a

high polarity between patchiness suitability and abruptness suitability. Lmax was

the only surface-based patchiness metric unlikely to confuse patchiness and

abruptness. NS and L"...am both showed relatively high suitability as abruptness

metrics which could lead to interpretation problems. On the other hand, the most

suitable surface-based abruptness metrics (Disp, CBE, and N) had a very high

polarity between their abruptness suitability and patchiness suitability. The risk

of interpretation problems between patchiness and abruptness when using Disp,

CBE, and N as abruptness quantifiers should be minimal.

The CBE metric was a very impressive abruptness metric. Several

properties make this metric the superior choice for quantifying abruptness. First,

the metric ranked as a highly suitable abruptness quantifier with a high polarity to

patchiness suitability. Second, the response of CBE exhibited a very weak
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interaction effect. It had a completely consistent response, both externally and

internally, to abruptness. Lastly, unlike the subgraph statistics, the method by

which CBE is calculated avoids the use of an arbitrary ROC threshold.

Future research should be directed at improving the CBE metric. The

weak interaction effects it displayed might be further minimized or eliminated by

investigating the effect of the kernel size of the moving window used to compute

the ROC surface. CBE’s already weak interaction effects may prove to be

reduced further if a larger kernel size is used. A larger kernel size may continue

to capture the variation in the ecotone surface due to the transition present

without being as affected by the finer-grain variation due to patchiness.

How does the degree of one ecotone characteristic affect the measurement of

anothefl? Is it possible to measure the degree ofpatchiness at multiple degrees

of abruptness and visa versa. Is metric performance dependent on the level of

patchiness or abruptness? For instance, does a patchiness metric lose its ability

to measure patchiness as abruptness increases.

Each metric exhibited at least a weak interaction effect. Significant

interaction effects indicated that the metrics’ ability to measure one ecotone

characteristic was dependent on the strength of the other characteristic. In some

cases the interaction effect was so strong that the metric failed to detect

characteristic differences at one level when it was successful at detecting

differences at another. In some cases, interaction was such that metric response
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was inconsistent. In other cases, the presence of interaction did not always

result in an inconsistent response.

The interaction effects of the patch-based metrics were stronger than the

interaction effects of surface—based metrics. On average the patch-based set

exhibited an interaction effect that was more than twice as strong as the

interaction effect of the surface-based set. The mean Omega squared for the

interaction effects on the patch-based metrics was 0.095 as compared to 0.036

for the surface-based metrics. The patch-based metric with the weakest

interaction effect, AWMPFD (co2 = 0.109), had an interaction effect that was much

stronger (18x) than the interaction effect of the surface-based metric with the

weakest interaction effect, CBE (0)2 = 0.006). Despite the large difference in

interaction effects, the two sets of metrics were comparable in terms of external

and internal consistency, especially with regard to consistency as abruptness

metrics. This indicates that the presence of interaction did not always translate

into adverse consistency effects. Even so, interaction should still be considered

a poor property of these metrics.

The presence of interaction could lead to misinterpretation of metric

values. Interaction indicated that the response of a metric to a difference in one

factor changes with the degree of another factor. For example, the mean

difference between NP of patchiness level 1 and NP of patchiness level 5 was

16.680, 5.240 and 0.860 at abruptness levels 1, 2 and 3 respectively. At

abruptness levels 4 and 5 the difference was not significant. Although the way in

which the difference between patchiness levels 1 and 5 was simulated did not
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change over abruptness levels, the value of the NP metric did. The difference in

NP between abruptness levels was attributed to the interaction of patchiness and

abruptness. Therefore, when interaction was present, an NP difference of a

particular magnitude at a low level of abruptness did not represent the same

difference in patchiness as the same magnitude difference in NP at a higher

abruptness level. Interpretation of a metric in the presence of interaction must

take into account the way in which the combination of factors contributes to the

metric’s response. Without a priori knowledge of the patchiness and abruptness

characteristics of the ecotones being quantified (i.e., using real world data)

interpretation of the metric interaction effects would be difficult, if not impossible.

When the use of the metric suitability ranking was first considered, a score

based on the interaction Omega squared was included in the total score used for

the ranking. After further consideration, it was decided that the inclusion of this

score would overly weight interaction effects in the suitability total since the

simple effect sensitivity and the external and internal consistency scores

provided evidence of the effects of interaction. Inclusion of the interaction score

to the suitability rankings did change the results of ranking. With the interaction

score included, AWMPFD and AWMSI rank as both the best patch-based

patchiness and abruptness metrics. Lmax, NS, and Lmean are the top ranked

surface-based patchiness metrics and CBE, Disp, and N remain the top ranked

surface-based abruptness metrics when the interaction score is included. When

interaction is included in the suitability ranking of both sets combined, AWMPFD,
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LPI, and AWMSI rank as the top patchiness metrics and CBE, Disp, and

AWMPFD rank as the top abruptness metrics.

Considerations

The simulated ecotones used to evaluate the metrics were oriented so

that the transition of the ecotone was parallel to the vertical dimensions of the

surface cells. When these methods are used on real world data, the transition

will most likely not be oriented in that manner (i.e., the transition as viewed by the

satellite image will not always be aligned with the grid). This orientation might

affect how the subgraphs are calculated and how the surface-based statistics are

interpreted. Calculation of the Disp metric is the most affected by the orientation

of the transition. Disp was designed to calculate the dispersion of subgraphs in

the direction perpendicular to the transition. This calculation is easily made when

the transition is parallel to the surface cells. When the transition is oriented

otherwise, the way in which Disp is calculated would have to account for the

difference between the orientation of the transition and the orientation of the

surface cells.

The surface data can be transformed so that the transition is parallel to the

vertical dimensions of the surface cells through a process called resampling.

However, resampling could result in two problems. First, how do you determine

the orientation of the transition? For alpine treeline ecotones, the orientation of

the transition is typically similar to the slope aspect of the terrain the ecotone is

situated on, but not always. Where terrain, disturbance regime or ecological
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processes are especially complex, the transition may not be aligned with the

slope aspect. In that case, the orientation would have to be determined another

way. One way would be to compute an aspect surface for the ecological variable

surface (i.e., LAI or NDVI) and then determine the majority aspect value (the

aspect value that occurs the most frequently). The majority aspect value of the

variable surface should provide an acceptable estimate of the transition

orientation. The transition orientation may end up being a compromise between

the terrain aspect and the ecological aspect.

The other problem is the effect the resampling might have on the raw data

values. If the method of resampling is weighted, like that of bilinear interpolation

or cubic convolution, the data values prior to resampling are changed. Bilinear

interpolation is an interpolation method where the value of a location is obtained

by linear interpolation on two axes using four neighbors (Chrisman, 1997). Cubic

convolution is an interpolation method where the value is obtained by fitting a

third-order equation to the 16 neighbors surrounding the desired location

(Chrisman, 1997). The changes resulting from the resampling may be large

enough so that the integrity of the original data is sacrificed. For this reason, it

would be wise to employ the nearest neighbor method of resampling if

resampling is necessary. The nearest neighbor method uses the value of the

location nearest to the desired location as the interpolated value.
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Summary

The goal of this research was to determine which approach was better

suited to measure the patchiness and abruptness patterns of alpine treeline

ecotones. The suitability scores indicated that the patch-based approach was

superior to the surface-based approach. However, the patch-based metrics as

abruptness quantifiers were thought to be easily misinterpreted as patchiness

quantifiers due to their low degree of polarity between patchiness and abruptness

suitability. Conversely, the surface-based metrics were considered good

abruptness quantifiers because they had a high patchiness/abruptness suitability

polarity. Therefore, this research suggests that the patch-based metrics were

optimal for quantifying patchiness while the surface-based metrics were optimal

for quantifying abruptness.

In application, it would be most efficient to use only one of the

approaches. It would be burdensome in terms of both time and effort to use one

approach for patchiness and one approach for abruptness. Each approach could

be used to quantify both patterns but the limitations of the approach being used

need to be recognized. Use of the patch-based approach runs the risk of

misinterpreting abruptness metrics for patchiness. Use of the surface-based

approach must consider that the surface-based metrics were not very consistent

patchiness quantifiers.
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APPENDIX A

Bonferroni Comparisons for patch-based metrics

The following tables contain the results of the Bonferroni pairwise multiple

comparisons that were calculated from the single-factor ANOVA for each metric.

The leftmost column indicates the factor level that was held constant in the

single-factor ANOVA. The second column from the left and the second row

index each of the comparisons made. The number in a cell in the table is the

mean difference in metric value for the comparison being made (column minus

row). Cells containing a . indicate that the comparison was not significantly

different at the 0.01 significance level.
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APPENDIX B

Bonferroni comparisons for surface-based metrics

The following tables contain the results of the Bonferroni pairwise multiple

comparisons that were calculated from the single-factor ANOVA for each metric.

The leftmost column indicates the factor level that was held constant in the

single-factor ANOVA. The second column from the left and the second row

index each of the comparisons made. The number in a cell in the table is the

mean difference in metric value for the comparison being made (column minus

row). Cells containing a indicate that the comparison was not significantly

different at the 0.01 significance level.
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APPENDIX C

Bonferroni Comparisons for the CBE metric

The following tables contain the results of the Bonferroni pairwise multiple

comparisons that were calculated from the single-factor ANOVA for the CBE

metric. The leftmost column indicates the factor level that was held constant in

the single-factor ANOVA. The second column from the left and the second row

index each of the comparisons made. The number in a cell in the table is the

mean difference in metric value for the comparison being made (column minus

row). Cells containing a indicate that the comparison was not significantly

different at the 0.01 significance level.
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APPENDIX D

Source Code

This appendix contains the AML and C programs used to for the

simulation and the calculation of the surface-based metrics. The first several

lines of each program provide a brief explanation of the program’s purpose.

Simdetenn. c

/*simdeterm.c was used to generate the five deterministic surfaces. The

deterministic surfaces where based on the equation y = sign(x)(abs(x"1/n)). The

(n) term controls the abruptness of the surface.*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

char ascii[20];

double x, y, lower, upper, increment, sum, mean;

double r = 1;

int i;

int n,a,q,c;

int nrows = 23;

int ncols = 23;

intcount

double column[50];

double grid[50][50];

long xllcorner = 307630;

long yllcorner = 5395930;

long xllcorner0 = 307630;

long yllcorner0 = 5395930;

int cellsize = 30;

FILE *fp;

FILE *fs;

int main()

if ((fs = fopen("simstats.txt", "a")) == NULL)

{

fprintf(stderr, " error opening stats file.\n\n");

exit(1);

}
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fprintf(fs, "surface r sum mean lower upper\n");

for(n=1; n < 101; 0H)

{

sum = 0;

mean = 0;

if(n < 10)

sprintf(ascii, "det0°/od.asc", n);

else

sprintf(ascii, "det°/od.asc", n);

if ((fp = fopen(ascii, "a")) == NULL)

fprintf(stderr, "error opening input file.\n\n");

exit(1);

}

fprintf(fp,"ncols %d\n", ncols);

fprintf(fp,"nrows %d\n", nrows);

fprintf(fp,"xllcorner °/old\n", xllcorner);

fprintf(fp,"yllcorner °/old\n”, yllcorner);

fprintf(fp,"cellsize %d\n", cellsize);

fprintf(fp,"NODATA_value -9999\n");

x = -1.1;

for(a=0; a < nrows; a++)

{

if(x < 0)

{

column[a] = (-1*(pow(fabs(x),1/r)) * .5);

}

else

column[a] = (pow(x,1/r) * .5);

}

x=x+J;

Ma==1)

lower = column[a];

if(a == 21)

' upper = column[a];
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if(3 <= a <= 23)

sum = sum + column[a];

}

mean = sum /21;

for(q = 0; q < nrows; q++)

for(c = 0; c < ncols; c++)

{

gridlqllcl = column[a];

fprintf(fp."%f gridIQIlcl);

}

}

fclose(fp);

fprintf(fs, "%s %f %f %f %f °/of\n", ascii, r, sum, mean, lower, upper);

xllcorner = xllcorner + 840;

if(n == 10)

yllcorner = yllcorner - 840;

xllcorner = xllcornerO;

}

if(n == 20)

yllcorner = yllcorner - 840;

xllcorner = xllcornerO;

}

if( == 30)

yllcorner = yllcorner - 840;

xllcorner = xllcorner0;

}

if(n == 40)

yllcorner = yllcorner - 840;

xllcorner = xllcorner0;

}

column[O] = '\0';

gridIOIIOI = ‘0';

r = r+.25;

}

fclose(fs);

}/*end of main*/
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Matrix.am!

/" matrix.aml was used to combine the deterministic surfaces created by

simdetermc with /*the perturbation surfaces to create the simulated ecotone

surfaces. The surfaces are Pperturbed according to their row and column in the

matrix. Patchiness increases with l*row number, abruptness increases with

column number. Matrix.aml performs the /*slmulation 50 times for each simulate

ecotone type (25), so 1250 surfaces are created.

I" open file to hold stats

&s fileunit := [open stats4matrlx.txt openstat -w]

&if %openstat% ne 0 &then

&return &inform Could not open stats ouput file.

83 writestat := [write %fileunit% 'group, filename, normal mean, normal std,

normSM l, normSM mean, normSM std, surface I, surface min, surface max,

surface mean, surface std']

&svi=1

&doi=1&t050

l" loop for rows in matrix

&sv row = 1

&do row = 1 &to 5

&if %row% eq 1 &then

&do

&sv smooth = 5

&sv stdev = .8

&end

&if %row% eq 2 &then

&do

&sv smooth = 4

&sv stdev = .6

&end

&if %row% eq 3 &then

&do

&sv smooth = 3

&sv stdev = .49

&end

&if %row% eq 4 &then

&do
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&sv smooth = 2

&sv stdev = .29

&end

&if %row% eq 5 &then

&do

&sv smooth = 1

&sv stdev = .14

&end

I'loop for columns in matrix

&sv col = 1

&do col = 1 &to 5

&if %col% eq 1 &then

&do

&sv r = 01

&sv base = aee

&end

&if %col% eq 2 &then

&do

&sv r = 05

&sv base = bee

&end

&if %col% eq 3 &then

&do

&sv r = 13

&sv base = cee

&end

&if %col% eq 4 &then

&do

&sv r = 61

&sv base = dee

&end

&if %col% eq 5 &then

&do

&sv r = l5

&sv base = eee

&end

I“ create zone grids for zonalstats

setcell det%r%
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setwindow det%r%

mask%r°/o = 1

/* describe deterministic function surface to collect stdv

describe det%r%

l*create perturb surface and smooth accordingly

norm%col%%row% = normal() * %stdev%

smooth%col%%row% = focalmean(norm°/ocol°/o°/orow%, rectangle, %smooth%,

%smooth%)

%base%%row%-%i% = smooth%col%%row% + det%r%

l'classify surface into trees not trees

junk = int(°/obase°/o°/orow°/o-°/oi°/o * 10000000)

junkstat = zonalstats(mask°/or°/o, junk, median)

kill junk all

cursor cur declare junkstat INFO ro

cursor our open

cursor our 1

&Iistvar :cur.median

&sv med = %zcur.median% / 10000000

cursor cur remove

q

tables

kill junkstat

q stop

grid

setcell det%r%

setwindow det%r%

if (%base%%row%-%i% > %med%)

if (%base%%row%-%i% > 0)

%base%%row°/ocI-%i°/o = 1

endfl

/* setup normal() surface for stat export

describe norm%col%%row%

&sv normalstd = %grd$stdv%

&sv nonnalm = %grd$mean%

/* setup smoothed normal for stat export

describe smooth%col%%row%

&sv normSMstd = %grdSstdv‘Vo

&sv normSMm = %grd$mean%

moran smooth%col%%row%

&sv normSMl = %.moran_out%
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/" setup final surface for stat export

describe %base%°/orow°/o-°/oi°/o

&sv quadstd = °/ogrd$stdv%

&sv quadmean = %grd$mean%

&sv quadmin = %grd$zmin%

&sv quadmax = %grd$zmax%

moran %base°/o%row°/o-%i%

&sv quadl = %.moran_out%

&sv filename = %base°/o°/orow°/o-°/oi%

&s writestat := [write %fileunit% [quote

%base%%row%,%filename%,°/ononnalm°/o,%normalstd%,%normSMl%,%normS

Mm%,%norrnSMstd°/o,%quadl%,%quadmin%,%quadmax%,%quadmean%,%qua

dstd°/o]]

1* write to stats file FT

kill norm%col%%row% all

kill smooth%col%%row% all --_,,

kill mask%r°/o all

I’kill %base%%row%-%i% all

l’kill °/ob8$6°/o°/ofOW°/oCI-%I°/o all

 

&end l*end of column loop

&end I* end of row loop

&end /* end of 50 times

85 closestat := [close %fileunit%]

&retum

Gemit.aml

I" gemit.aml was used to do the lattice delineation and calculate the surface-

l‘based metrics. Gemit.aml was modeled after the capabilities of the GEM

/*Boundary Analysis software from Biomedware. The #be's, subgraph,

l’singletons, minlength, maxlength, meanlength, stdvlength, and dispersion

I‘metrics are calculated. These metrics are calculated for a user specified

l‘number of ROC thresholds by using the slice command in GRID.

l‘ The C programs from connect2.c and dispersionc are called from this aml.

/* prompt user for parameters

&sv basename = [response 'Enter basename (i.e., aee* or bee*)' aee*]

&sv numintervals = [response 'Slice ROC surface into how many intervals' 20]

&sv aspectthreshold = [response 'Enter aspect threshold for BE connection' 30]

&s count := [filelist %basename% outfile -file]

&if %count% <= 0 &then
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&return Error generating outfile file

85 unit := [open outfile ok -read]

I’ open output file for statistics dump

&s fileunit := [open gemstatsa.txt openstat -a]

&if %openstat% ne 0 &then

&retum &error Error opening gemstatstxt file

&s writestat := [write %fileunit°/o

'group,filename,i,#be's,subgraph,singletons,minlength,maxlength,meanlength,std

vlength,disp1 ,disp2,disp3,disp4']

I* open temporary file

85 tempunit := [open temp.txt openstat -a]

&if %openstat% ne 0 &then

&retum &error Error opening tempory file

I* write aspect threshold value to temp file for connect2.c to read

&s writestat := [write %tempunit% [quote %aspectthreshold%]]

&s ok := [close %tempunit%]

/* Process each file in outfile list

&do] := 1 &to %count%

&s ezero := [read °/ounit% ok]

83 cover = [before %ezero% .]

I*import ezerozero file

import grid %ezero% %cover%

grid

l‘calculate slope and aspect

&ty Deriving slope and aspect for %cover%.

slope1 = slope(%cover%)

aspect1 = aspect(%cover%)

I*gridclip to study area, the surfaces were made with a one cell border to

l’eliminate edge effects when calculating the slope and aspect

&ty Removing outer edge of slope and aspect grids.

describe slope1

&sv imin = %grd$xmin% + %grd$dx%

&sv jmin = %grd$ymin% + %grd$dy%

&sv imax = %grd$xmax% - %grd$dx%

&sv jmax = %grd$ymax% - %grd$dy%

gridclip slope1 slope BOX %imin% %jmin% %imax% %jmax%

gridclip aspect1 aspect BOX %imin% %jmin% %imax% %jmax%

kill slope1 all
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kill aspect1 all

7" slice the slope grid into x number of intervals

&ty Slicing rate of change surface into °/onumintervals% intervals.

sliced = slice(slope, eqinterval, %numintervals°/o)

/* process interval by interval

&sv i = 1

&do &until °/onumintervals°/o It 1

&ty Processing interval %i% for o/ocover°/o.

°/ocover°/om_°/oi°/o = select(sliced, "value >= °/onumintervals%")

if (%cover%m_%i% > 0) then

%cover°/om2_°/oi°/o = 0

endfi

%cover°/oasp%i°/o = °/ocover%m2_°/oi°/o + aspect

besasp.asc = gridascii(°/ocover°/oasp°/oi%)

kill °/ocover°/oasp°/oi°/o all

kill %cover%m_%i% all

/*run connect2.c to connect be's based on aspect threshold

&ty Calling C program "connectum".

&sys .lconnectum

°/ocover°/obes°/oi°/o = asciigrid(beconnect.asc)

&sys rm besasp.asc

/*quit to arc, additem to separate sings and subs for stats

q

additem %cover%bes%i%.vat %cover%bes%i%.vat subgraph 4 4 b

grid

/* calculate subgraph item

reselect %cover°/obes°/oi°/o.vat INFO count gt 1

calculate °Ascover%bes°/oi°/o.vat INFO subgraph = 1

I*collect #boundary elements, min, mean, and max length

&ty Collecting subboundary statistics.

I*first, subgraph records

statistics %cover%bes%i°/o.vat INFO

min count

max count

mean count

standarddeviation count

end
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&sv minlength = [show statistic 1 1]

&sv maxlength = [show statistic 2 1]

&sv meanlength = [show statistic 3 1]

&sv stdvlength = [show statistic 4 1]

f'select singleton records

aselect %cover°/obes%i%.vat INFO

reselect %cover%bes%i%.vat INFO subgraph eq 0

statistics %cover%bes°/oi%.vat INFO

sum count

end

&sv singleton = [show statistic 1 1]

I*select all

aselect %cover°/obes%i%.vat INFO

statistics °Aicover°/obes%i°/o.vat INFO

sum count

sum subgraph

end

&sv numbes = [show statistic 1 1]

&sv subgraph = [show statistic 2 1]

I* find centroids and call dispersionc to calc distances from "mean treeline"

&ty Calculating centroids

meancent = zonalcentroid(°/ocover%m2_°/oi°/o)

meancentasc = gridascii(meancent)

kill meancent all

becents.asc = gridascii(°/ocover°/om2_°/oi%)

kill %cover%m2_%i% all

cents = zonalcentroid(%cover%bes%i%)

cents.asc = gridascii(cents)

kill cents all

&sys .ldispersum

&sys rrn becents.asc

&sys rm cents.asc

&sys rm meancentasc

/* open output from dispersionc and read into variables

88 dispunit := [open dispersion.txt openstats -r]

&if %openstats% ne 0 &then

&return &error Error opening dispersion.txt file

&do d := 1 &to 4

&s disp%d% := [read %dispunit% ok]

&end

&s ok := [close %dispunit%]
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I' Prepare output, write output.

&ty Writing output to gemstatstxt.

&sv group = [substr %cover% 1 4]

&s writestat := [write °/ofileunit°/o [quote

%group%,%cover%,°/oi%,°/onumbes°/o,°/osubgraph°/o,%singleton%,%minlength%,

%maxlength%,°/omeanlength°/o,%stdvlength°/o,%disp1 %,%disp2%,%disp3%,%di

sp4°/oll

I* clean out grids and ascii files, increment counter

q

export grid °/ocover%bes%i°/o °/oCOV8I'°/obeS°/oi%.800

grid

&sys mv %cover%bes%i%.eOO subgraphs

kill %cover°/obes°/oi% all

&s ok := [delete beconnectasc -file]

&s ok := [delete dispersion.txt -file]

&sv i = °/oi°/o + 1

&sv numintervals = %numintervals0/o - 1

&end I*belongs to process interval by interval

kill %cover% all

kill slope all

kill aspect all

kill sliced all

q

&end l‘process next surface

&s closestat := [close %fileunit%]

&s ok :- [close %unit%]

85 ok : [delete outfile -file]

85 ok : [delete temp.txt -file]

&return

Connect2.c

/’ connect2.c was designed to be called from gemit.aml. connect2.c was used to

connect boundary elements that were within the aspect difference threshold.*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int ncols, nrows, rowextent, colextent, cellsize, i, j, x, y, beid, I, d, max, opal;

long xllcorner, yllcorner;

float grid[100][100]; I*holds aspect values read from gridascii*/

int connect[100][100];
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int where[100][100];

float n, ne, e, se, s, sw, w, nw;

float threshold = 30;

FILE *fp;

FILE *fpg;

FILE *ft;

int main()

Iarintf("\n Successful call to connect2.c\n");

I" open temp.txt to get the aspect threshold entered at start of gemit.aml */

if ((ft = {fopen("tempbtt", "r")) == NULL)

fprintf(stderr, "error opening temp.txt file.\n");

exit(1 );

 

}

fscanf(ft, "%f“, &threshold);

fclose(ft);

printf("\n Connecting all boundary elements within %f degree aspect threshold\n”,

threshold);

if ((fp = fopen("besasp.asc", "r")) == NULL)

{

fprintf(stderr, "error opening besasp.asc file.\n");

exit(1);

}

fscanf(fp, "%*s %d\n%*s %d\n%*s %ld\n%*s %ld\n%*s %d\n%*s °/o*s\n",

&ncols, &nrows, &xllcorner, &yllcorner, &cellsize);

rowextent = nrows + 5;

colextent = ncols + 5;

I*fill matrix full of values that are not within the thresh of each other*/

opal = -10000 - threshold;

for (j=0; j < rowextent; i++)

{

for (i=0; i < colextent; i++)

grid[i][j] = opal;
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opal = opal - threshold - 1;

}

for (j=1; j <= nrows; I“)

for (i=1; i <= ncols; i++)

{

fscanf(fp, "%f", &grid[i][j]);

if(grid[i][j] l= -9999)

{

/*convert to radians*/

grid[i][j] = grid[i][j] * .01745329252;

}

}

fclose(fp);

I*convert to radians*/

threshold = cos(threshold * .01745329252);

I*connect*/

for(j=1;j <= nrows; j++)

{

for(i=1; i <= ncols; i++)

{

I*first check to see if current cell is connected*/

if(connect[i][j] > 0)

I

held = connect[ilfll;

if(grid[i][i-1] l= -9999)

n = cos(grid[i][j] - grid[i][j-1j);

else

n = 0;

if(grid[i+1][j-1] I: -9999)

ne = cos(grid[i][j] - grid[i+1][j-1]);

else

ne = 0;

if(grid[i+1][j] I: -9999)

e = 008(9ridlillil - gridli+lllil);

else

e = 0;

if(grid[i+1][j+1] != -9999)
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se = cos(grid[i][j] - grid[i+1][j+1]);

else

se = 0;

if(grid[i][j+1] != 9999)

s = cos(grid[i][j] - gridlilli+1l);

else

3 = 0;

if(grid[i-1][j+1] != -9999)

sw = cos(grid[i][j] - grid[i-1][j+1]);

else

sw = 0;

if(grid[i-1][j] != 9999)

w = 008(9ridlillil - grid[i-illil);

else

w = 0;

if(grid[i-1][j-1] != -9999)

nw = cos(grid[i][j] - grid[i-1][j-1]);

else

nw = 0;

if(n > threshold)

{

connect[i][i-1] = beid;

connect[i][j] = beid;

}

if(ne > threshold)

{

connect[i+1][j-1] = beid;

connect[i][j] = beid;

}

if(e > threshold)

{

connect[i+1][i] = beid;

connect[i][j] = beid;

}

if(se > threshold)

{

connect[i+1][j+1] = beid;

connect[i][j] = beid;

}

if(s > threshold)

{
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connect[i][i+1] = beid;

connect[im] = beid;

}

if(sw > threshold)

{

connect[i-1][j+1] = beid;

connect[i][j] = beid;

}

if(w > threshold)

{

connect[i-1][j] = beid;

connect[i][j] = beid;

}

if(nw > threshold)

{

connect[i-1][j-1] = beid;

connect[i][j] = beid;

}

I*end of it"/ }

else /*else #1 if current cell is not connected*/

I

if(grid[i][j] == -9999) I*deal with nodata*/

{

connect[i][j] = -9999;

else /*if not connected and not nodata*/

{

/* calcuate the subgraph id by finding the highest value

in connect grid and add one *I

max = connect[1][1];

for (d=1; d <= nrows; d++)

{

for (I=1; l <= ncols; l++)

{

if(connect[l][d] > max)

max = connect[l][d];

}

}

beid = max +1;
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if(grid[i][j-1] 1: 9999)

n = cos(grid[i][j] - grid[illi-II);

else

n = 0;

if(grid[i+1][j-1] != -9999)

ne = cos(grid[i][j] - grid[i+1][i-1l);

else

ne = 0;

if(grid[i+1][j] != -9999)

e = cos(grid[i][j] - grid[i+1][j]);

else

6 = 0;

if(grid[i+1][j+1] != 9999)

se = cos(grid[i][j] - grid[i+1][j+1]);

else

se = 0;

if(grid[i][j+1] l= -9999)

s = 008(9ridlillil - gridlilli+11);

else

s = 0;

if(grid[i-1][j+1] != -9999)

sw = cos(grid[i][j] - grid[i-1][j+1]);

else

sw = 0;

if(grid[i-1][j] != 9999)

w = c08(9ridiil[il - grid[i-lllil);

else

w = 0;

if(grid[i-1][i-1] != -9999)

nw = cos(grid[i][j] - grid[i-1][j-1]);

else

nw = 0;

if(n > threshold)

{

connect[i][j-1] = beid;

connect[i][j] = beid;

}

if(ne > threshold)
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connect[i+1][j-1] = beid;

connect[i][j] = beid;

}

if(e > threshold)

{

connect[i+1][j] = beid;

connect[i][j] = beid;

 

}

if(se > threshold)

‘ ”Iconnect[i+1][j+1] = beid; .. _

connect[i][j] = beid;

}

if(s > threshold)

{ f"-

connect[i][j+1] = beid; 8

connect[i][j] = beid;

}

if(sw > threshold)

{

connect[i-1][j+1] = beid;

connect[i][j] = beid;

}

if(w > threshold)

{

connect[i-1][j] = beid;

connect[i][j] = beid;

}

if(nw > threshold)

{

connect[i-1][j-1] = beid;

connect[i][j] = beid;

}

/*deal with singletons, if no connections just assign

value to current connect cell*/

if(connect[i][j] == 0)

{

connect[i][j] = beid;

}/*end of inner else*/

]f‘end of else #1*/

)l‘end of i for*/
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)l‘end ofj for*/

I*open the output file *I

if ((fpg = fopen("beconnect.asc", "w")) == NULL)

{

fprintf(stderr, "error opening connectasc file.");

exit(1);

}

fprintf(fpg,"ncols %d\n", ncols);

fprintf(fpg,"nrows %d\n", nrows);

fprintf(fpg,"xllcorner %ld\n", xllcorner);

fprintf(fpg,"yllcomer %ld\n", yllcorner);

fprintf(fpg,"cellsize %d\n", cellsize);

fprintf(fpg,"NODATA_value -9999\n");

for (j=1;j <= nrows: i++)

for (i=1; i <= ncols; i++)

fprintf(fpg, "%d ", connect[i][ID;

fprintf(f}pg, "\n");

I

fclose(fpg); I*close sub grid output file*/

}/*end of main*/

Dispersionc

/* dispersionc was used to calculate the subgraph dispersion metric (Disp). Disp

was calculated as the mean distance from the centroid of all boundary elements

to each individual boundary element. Dispersionc was designed to be called

from gemit.aml and uses gridascii ouput created by gemit.aml. */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int ncols, nrows, cellsize, i, j, n, m;

long xllcorner, yllcorner;

float cents[100][100];

float meancent[100][100];

129

 



float becents[100][100];

float dist, meandist, dist2, meandist2, bedist, bedist2, bemeandist, bemeandist2

subscent, subscent2, x, y, xcent, ycent, xcent2, ycent2; ’

FILE *fm;

FILE *fcs;

FILE *fbcs;

FILE *fo;

int main()

I

printf("\n Successful call to dispersionc \n"); m

if ((fcs = fopen("cents.asc", "r")) == NULL)

 
fprintf(stderr, "error opening centroid file.\n");

exit(1);

}

fscanf(fcs, "%*s %d\n%*s %d\n%*s %ld\n%*s %ld\n%*s %d\n%*s %*d\n"

&ncols, &nrows, &xllcorner, &yllcorner, &cellsize); '

 H
- I.
..

_

for (j=0; j < nrows; j++)

for (i=0; i < ncols; i++)

fscanf(fcs, "%f", &cents]i][j]);

}

fclose(fcs);

if ((fm = fopen("meancent.asc", "r")) == NULL)

fprintf(stderr, ”error opening centroid file.\n");

exit(1 );

}

fscanf(fm, "%*s %d\n%*s %d\n%*s %ld\n%*s %ld\n%*s %d\n%*s %*d\n",

&ncols, &nrows, &xllcorner, &yllcorner, &cellsize);

for (i=0; j < nrows; j++)

for (i=0; i < ncols; i++)

fscanf(fm, "%f", &meancent[i][i]);
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}

fclose(fm);

if ((fbcs = fopen("becents.asc", "r")) == NULL)

fprintf(stderr, "error opening centroid file.\n");

exit(1 );

}

fscanf(fbcs, "%*s %d\n%*s %d\n%*s %ld\n%*s %ld\n%*s %d\n%*s

%*d\n", &ncols, &nrows, &xllcorner, &yllcorner, &cellsize);

for (j=0; j < nrows; j++)

for (i=0; i < ncols; i++)

fscanf(fbcs, "%f", &becentsli][j]);

}

fclose(fbcs);

/’find what row the centroid of all bes combined is*/

for (j=0; j < nrows; j++)

for (i=0; i < ncols; i++)

{

if(meancent[i][j] != -9999)

{

subscent = j;

xcent = i;

ycent = i;

}

l

}

I*find distance between centroid of each subgraph and the row of the centroid of

all subgraphs */

n=0;

dist=0;

dist2=0;

for (j=0; j < nrows; i++)
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for (i=0; i < ncols; i++)

{

if(cents[i][j] l= 9999)

{

x=i;

y=i;

dist = dist + abs(subscent - j);

dist2 = dist2 + pow(pow(x - xcent, 2) + pow(y - ycent,2). .5);

n++;

I

}

I*average distance in meters*/

meandist = (dist I n) * cellsize;

meandist2 = (dist2 / n) * cellsize;

m=0;

bedist=0;

bedist2=0;

for (j=0;j < nrows; i++)

for (i=0; i < ncols; i++)

bedist = bedist + abs(subscent - j);

bedist2 = bedist2 + pow(pow(x - xcent, 2) + pow(y - ycent,2),

{

if(becents[i][j] l= 9999)

{

x = i;

Y ‘1:

-5);

m++;

}

}

I

I*average distance in meters*/

bemeandist = (bedist / m) * cellsize;

bemeandist2 = (bedist2 / m) * cellsize;

I*write output*/
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if ((fo = fopen("dispersionbtt", "w")) == NULL)

{

fprintf(stderr, "error opening ouput file.\n");

exit(1);

}

fprintf(fo, "%f\n°/of\n°/of\n°/of\n", bemeandist, bemeandist2, meandist, meandist2);

fclose(fo);

printf("\n dispersionc finished. \n");

}/*end of main*/
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