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Abstract

Alexander K. White

In a non-probabilistic setting, with discrete time trading, Helmbold et. a1. (1998) in-

troduce the discrete exponentiated gradient (DEG) portfolio. They prove that under

specified conditions it achieves nearly the same wealth as the best constant rebal-

anced portfolio (bcrp) determined retrospectively from the actual market outcomes.

For continuous time trading and a stochastic model, we prove that the DEG portfolio

converges to the solution of a stochastic differential equation. Under specified condi-

tions this continuous EG portfolio achieves an exponential growth greater than the

bcrp, recovering a portion of the additional exponential growth from the best limit

of piecewise constant. rebalanced portfolios. These results do not require any prior

knowledge of market parameters.
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Introduction

A fundamental problem in finance is to choose an investment strategy which maxi-

mizes wealth. Strategies that require the investor to peer into the future are seemingly

unattainable. Cover (1991) proposes to target one such strategy namely the retro-

spectively best constant rebalanced portfolio (bcrp). A constant rebalanced portfolio

is an investment strategy which maintains a fixed proportion of total wealth in each

asset. The retrospectively best of these constant rebalanced portfolios is the one

which, for the actual market fluctuations experienced, would have earned the most

money. This target varies with time, outperforming the best asset and the value line

(geometric mean) index. In discrete time trading without transaction costs and with-

out any probabilistic assumptions Cover constructs a “universal portfolio” depending

only upon the past asset prices which, in the worst case, grows nearly as fast as this

target, losing at most order log(n) in the. exponent, where n is the number of trading

periods. Under specified regularity conditions, Jamshidian (1992) extends Cover’s

results to continuous time.

In the same discrete time context, Helmbold, Schapire, Singer and “’armuth

(1998) present a simpler, more market responsive, algorithm which likewise at least





achieves almost the same wealth as the best constant rebalanced portfolio, losing at

most order \/r_2 in the exponent. This algorithm, here termed the discrete exponen-

tiated gradient (DEG) portfolio, employs a multiplicative update derived using the

framework introduced by Kivinen and Warmuth (1994) for a problem of linear pre-

diction. A key feature is that the DEG portfolio depends only upon the current asset

price relatives and the portfolio in the previous trading period (by price relative we

mean the inter—period ratio of the price). The universal portfolio, by contrast, de-

pends upon the entire past history and is highly computationally intensive. For the

continuous time stochastic model usually employed in option pricing we prove that

the DEG portfolio does indeed converge to the solution of a stochastic differential

equation. This solution, which we call the EC portfolio, under specified conditions

achieves at least nearly the same wealth as the bcrp for continuous time. Prior knowl-

edge of market parameters is not required. Exploiting the time local nature of the EG

portfolio we then examine the class of better time varying targets which are limits of

piecewise constant rebalanced portfolios. Our formulas identify market conditions in

which the latter earn substantially more than what the best constant portfolio would

earn and the EC captures a portion of the exponent of this additional return. We

examine market conditions which resoundingly illustrate this point.

Chapter 1 develops the continuous time model for the market and the possible

portfolios as well as the target strategies whose wealth we would like to approximately

achieve. The DEG portfolio is defined and the key results from Helmbold et. al are

presented in section 2 of Chapter 1 . All of our main results are presented without

proof in Chapter 2. In section 1 of Chapter 3 we examine the universal portfolio and



compare its behavior to the EG portfolio. In section 2 of Chapter 3 the behavior

of targets and their corresponding wealths is investigated. Examples where the EG

portfolio outperforms the bcrp and the universal portfolio are given in Chapter 4.

Chapter 5 contains proofs of the main results. Finally, Chapter 6 summarizes these

results and discusses possible extensions.



  



Chapter 1

1 . 1 Setting

Consider a financial market in which one bond, with price process 5, and d 2 1

stocks with price processes S = (51,52, ..., 5",)“ are traded continuously in the time

interval 0 S t < 00, where * denotes matrix transpose. Unless otherwise specified, all

processes will be defined for 0 g t < 00. The underlying source of uncertainty in the

market is an m-dimensional standard Brownian Motion B 2 (81,82, ..., 8",)" defined

on a complete probability space ((2,.7, P). We assume this space is rich enough to

accommodate a random variable 5 independent of B. The term “adapted” will refer

to the filtration

{35 :0 g t < oo} 20({{§,B(s)} : 0 g s g t}UN)

where N = {4 E .7: : P(A) : 0}.
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The price processes of the assets evolve according to the equations

  

(1,3 : ,Brdt, J (O) : 1 (1.1)

and for 1 g i. g m

as, = 5,- mt + Zen-dB,- , s,- (0) = 1, (1.2)

1:1

where the real valued interest rate r, the Rm-valued drift a and the m x m matrix

valued volatility 0 are. all adapted processes. Let E : 0*0 be the covariance process.

In order that (1.1) and (1.2) have well defined solutions, we require that almost surely

for each T < 00 we have

dt < 00. (1.3)

T . m

/ (1m 23o: + 2..)
. 0

i=1

 

At each moment in time a trader is allowed to shift resources between the various

assets. An adapted process which defines the preportion of wealth in each stock is

called a portfolio and is formally defined by

Definition 1.1. An adapted portfolio is an adapted Rm-valaed process p which sat-

isfies the integrability constraint

T

/ (p‘Ep + |()a — rlm)*p| )(lt < 00 (1.4)

0

as. for each T > 0 where 1m = (1,...,1)* E R’". Let P (4) be the collection of all



 

li'

dl

 

 



adapted portfolios taking values in A g IR“.

Since for each portfolio p,- reprcsents the proportion of wealth in 8,, we define po =

1 — p"1m to be the proportion of wealth in the bond. Accordingly, when convenient,

we refer to the bond as the. “0 th” stock. The wealth process, ll”, generated by a

portfolio p evolves as

m l i

aw = W (pordt + 21),?) . (1.5)

1:1 i

By Ito’s formula

, dw 1(dW)2
(l log (ll ) I T — i ”,2

 

,—

1

: por + p’p — §p*Ep] alt + p*odB

b

p—

1m 1

= “+— izii——*zL, 2;}? 21) p dt + p’dZ

 

 

where Z = (Z1, ....,Z,,,) with Z,- = log(/3‘1S,~), i = 1, ...,m represents the vector of

discounted stocks. The assumptions (1.3) and (1.4) insure that [3(t) > 0 for t 2 0

and that the semi-martingale, LIV“) in (1.6) below is a well defined process.

Definition 1.2. The semi-martingale Ll'l'u’) given by

t t t m t
. 1 1

Lll(”)(t) 2/ rds+/ ])*dZ+ —/ E p,E,,d.9— —/ p‘Epds (1.6)

0 0 2 . 0 - 2 0
1:1

is the log wealth generated by the adapted portfolio p.

We sometimes use the notation Llfis‘t) = LlV(t) — Lil/'(s). We wish to investi-

6



gate the behavior of special portfolios, in particular their ability to generate wealth

in comparison to ideal (and impossible) investment strategies that may use future

information. We shall refer to these ideal strategies (or their corresponding wealths)

as targets.

Definition 1.3. A R’” valued process, a, which for all t > 0

t t 1 t m 1 I.

Lii"(“)(t): / ”1.5+ / ‘a*dZ+— / Zu,2,,-ds—— / a*2uds (1.7)

0 0 2 0 ,2, 2 0

is well defined andfinite as. is called a target. The process LlV(“) is called the target

log wealth. Let T(.4) be the set of all targets taking values in A Q Rm. Any constant

marimizing {LWM} is called a best constant rebalanced portfolio (bcrp).

Not every Rm valued process is a target. It is well known that Brownian motion

is not of bounded variation (and hence neither is Z) and the stochastic integral in

(1.7) need not be defined for non-anticipating a. An example is given in Chapter 3.

For targets of bounded variation, however, the stochastic integral on the rhs of (1.7)

can be defined by “integration by parts” (see Propostion 3.7). Also in Chapter 3, the

class of constant targets 70(4) 2 {a E T : at E a, for some a E A} and piecewise

constant targets are examined. Let D", = {1: E R’" :23,- 2 0,221,517,- S 1} be the

m dimensional simplex. we show for constant targets that argsupueDm {Lil/(“fl

always exists but may not be unique. It is important to realize that these targets

are continuously trading but are maintaining fixed proportions a,, 1 S i S m in the

stocks 5,, 1 g i g Hi.

Please note that since it is determined from the actual observed price process the



 

Figure 1.1: The relative entropy function: d(u||v), (u,v) E (0,1)2.

bcrp is not an adapted portfolio.

In the next chapter we shall restrict our targets and (adapted) portfolios to the

simplex Dm which prohibits borrowing and short—selling. By including the reciprocal

of each stock in the model as well as a “margin” component we can, however, allow

an investor to sell short and buy on margin in a limited sense. See Cover (1991).

1.2 Discrete Exponentiated Gradient

The discrete exponentiated gradient portfolio developed by Helmbold, et. a1. is a

modification of on-line learning strategies first used in regression. Given an initial

value q (k) E Rm which represents the value of the portfolio to be used at time tk,
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maximize:

F (p) : nLll'Tp) ) — (1(1), (7%)) (1.8)
Uk‘tk+1

where d is a penalty term for straying too far from the initial value and r] > 0 is a

constant, which can be thought. to control the rate of response of the algorithm to

changing market. fluctuations. They consider various choices for d but focus on the

relative entropy defined for a, v E (0,1)m by d (a, v) : 2:011,- log (3). This corre-

sponds to the Kullback-Leibler distance between two m + l-dimensional probability

vectors. For m : 1 the graph of the relative entropy is presented in Figure (1.1).

This graph reveals that d is relatively flat except at the boundaries. This observation

trip)

will prove useful for bounding terms involving d. Replacing Ll tan-+1 in (1.8) by a

first order approximation Helmbold et. al. find a simple closed form solution to a

modified version of (1.8).

For a bounded stopping time S and a positive constant T > 0 let

Part (S,T,A) : {tk,0 3 k S N}

be a partition with non-random increments such that S = to 3 t1 3 < tN = 7'

and mesh size A : sup {lk+1 — t,C : 0 g k g N — 1}.

Definition 1.4. Let f E Dm be .75,- measarable and 7} > 0. The price relatives for

the stocks are denoted X,- k : M13}; 2 1, ...,n andi : 1, ...m. and or the bond
‘SI(tA'—l)

' .. __ dlik) . . ,, .,../ , v , - , :. ,.. ,. , .,' .' '
.\0(A) — m. The (..rprrssion DEGM, E), Z.(:.. discrete (.J.])()7L(:.7Lll(ll£‘(l gradient, will



 

  

dl

 
 



denote the portfolio with

(lilo) ’—‘ €~

(1.9)

TIXz' (If)

(1 (tk_1)‘ X (A?) + (10 (’k—1)X0(k)

 
(hit) 2 (12(fk-1)(‘XP{ }l’;la tk S t < tk+1

where

 

’ m
71X, ([1)

}

l" : i t CK *
r

k gr] (k) p {q(tk_1) X (k) + (10 (tk—l)1\0ikl

71X0 ([9) }

(I (tic—1y X (k) + Goitk—1)X0(k)

 

+(10 (tit) 9X1) {

is a normalizer which ensures that q E D,,,.

Although suppressed in the notation, the DEG portfolio depends on the choice of 77

and the trading times (1.0. the partition).

To see how the DEG portfolio works notice that q (tk_1)* X (k) + (10 (tk_1) X0(k)

is the wealth growth obtained over the interval [tk_1,tk) by managing the assets

according to q (tk_1) at tk_1 and holding them until tk. The portfolio is then updated

at time tk according to the ratio of the price relative X,(tk) to this wealth growth.

If holding the ith stock would have made a lot money relative to what we just. made

previously using q (tk_1) we increase the amount of money invested in the stock. The

greediness parameter r} determines how sensitive our algorithm is to shifts in the price

relatives.

A key result from Helmbold et.al. is restated below. Let i = (X0,X*)* and

10



A»

q 2 (q0,q*)*. By (1.3) the price relatives are positive. If we only trade at the time

points tk the log wealth generated by the DEG is El log (q*(tk).X (t0).

Theorem 1.1. (Helmbold, Schapire, Singer and Warmath, 1998) Let u. E Dm+1 be

mink‘, .\',(t),.)

constant and ,
mardeJUk)

2c>0. Forn>0,

7]

Zlog (6*(tk))3I((tk )—) Zlog (C‘u .X(t(k)2) —W — 37):]; (1.10)

k

 

Furthermore, if q(t0) 2 (m + 1)—11m+1 and we set 7) 2 2c\/2log (m + l) /n then we

have

 

 Zlog (crak) .\((tk)—) Zlog(u*X (13)) 2 ——‘/27110g(m+ 1) (1.11)
20

k

The left hand sides of (1.10) and (1.11) represent the difference in log wealth

between the DEG and an arbitrary it constant target a through n trading periods.

Therefore they have found a lower bound on the performance versus the non-adapted

best constant rebalanced portfolio determined retrospectively from the observed price

processes. We note for future reference that their bound, due to its dependence on the

square root of the number of trading periods, must be modified if we are to extend this

result, through rapid trading, to continuous trading. It is important to mention that

in their work Helmbold, et. al. do not assume any probablistic model and prove that

(1.10) and (1.11) hold generally for any sequence of positive price relatives satisfying

the boundedness constraint. In a market with exponential growth and A 2 1, then

it 2 T — S and by (1.11) the ratio of wealth generated by the DEG to the wealth

11



generated by the bcrp is of the order (W (7—5). Hence the DEG is capturing at least

the first order exponential growth of the bcrp. From (1.11) we can see that a good

choice of I] is of the. order 7) 2 (r — S) i. In Theorem 1.1 it. is assumed that the ratio

of the maximum price relative to the minimum price relative is bounded. In their

paper they are able to remove this assumption for a modified version of the DEG and

an expression similar to (1.11) but weakening the bound to order (T — S)?

These lower bounds for the DEG vs. the bcrp are weaker than Cover obtains

for the universal portfolio vs. bcrp. We shall see, however, that the DEG, perhaps

because it responds more readily to market fluctuations, can under specified condi-

tions outperform the universal portfolio and even the bcrp, whereas a result from

Jamshidian proves that the universal portfolio exhibits the same exponential growth

rate as the bcrp. Helmbold et. al. performed experiments with the few specific ex-

amples of actual data from the New York Stock Exchange accumulated over a 22 year

periodwhich first appeared in Cover (1991). In these experiments the DEG portfo-

lio outperformed the buy and hold strategy for the best stock and Cover’s universal

portfolio and achieved only slightly less wealth than that achieved by the bcrp. See

Figure (1.2) which is reproduced from their paper.
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Figure 1.2: Comparison of wealths achieved by the best constant rebalanced portfolio,

the DEG portfolio, and the universal portfolio. The market consists of Commercial

Metals and Kin Ark. The wealth achieved by the EG portfolio is close to the wealth

of the bcrp and exceeds that achieved by the universal portfolio.
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Chapter 2

Exponentiated Gradient

For clarity of exposition no proofs of the results are presented in this chapter. Proofs

of all results may be found in Chapter five.

It is not a-priori clear that the DEG portfolio has a continuous limit or that the

limit will exhibit the same good properties as the discrete portfolio. In particular one

looming difficulty, which we must overcome, is the presence of \fli in the right hand

side of (1.10) which makes it appear that the bound blows up. In this chapter we

manage to extend the DEG portfolio to continuous time trading and present results

describing the wealth achieved in comparison with constant targets and limits of

piecewise constant targets. We now establish the continuous version of the DEG by

letting the mesh size A —> 0.

Before we can find the continuous limit of the DEG we need the following:

Theorem 2.1. Suppose [Ar and E are 7-] adapted processes which satisfy (1.3), S

is a bounded stopping time and{ E R’" is .75 measurable. Let 7) be an adapted 1R+

14



valued process such that for each t > 0

t m.

/ [Mrl + Z (In/1.2:] + 022,0] (13 < 00 (2.1)

. 0
i21

almost surely. There crisis a unique strong solution {a'(S,t),t 2 S} E R’" to the

following stochastic differential equation

1

do, I UdZi + T] E23,,- _ Elf-((14 dt (2.2)

with initial 0' (S, 0) 2 E and where f : Rm ——> Dm is given by

m —1

f,(a) 2 ea (14—23(20)) , i21,...,m. (2.3)

j=l

Using the process a we define an adapted portfolio which continuously updates.

Definition 2.1. Let oz(S, t) be the solution to the stochastic diflerential equation (2.2)

with initial condition a(S, S) 2 E 6 7:5 and 77 > O as in Theorem 2.1. The Dm valued

process 7r(t), t > S, defined by

m —1

7r,- 2 8‘” 1+ E ea] , i 2 1, ...,m

1:1

is called an ezponentiated gradient with learning parameter process 77 with starting

time S (or EG(7).S)) portfolio.

The corres )ondin amount invested in the bond is 7T 2 1 + I": 801' —1. Since

log 5 2 a,- we see that the EG portfolio places more money in the ith stock where
770

15



the discounted stock value, Z,- increases.

Theorem 2.2. Suppose that r is a positive constant, S, T are bounded stopping times

with O < T — S g T and I] > 0 is constant. Under the conditions of Theorem 2.1 the

DEG(I)) portfolio q converges uniformly in probability to the EG(n) portfolio 7t and

the Lil“) converges uniformly in probability to LIV”) on the interval [5, T].

Although in Theorem 2.2 we see that the 7T is the limit of q, we cannot use

Theorem 1.1 to evaluate the performance of it since the bound in (1.10) increases

with the number of trades n. which tends to 00 as the mesh size is decreased. The

following continuous time counterpart of Theorem 1.1 resolves this question. In effect

trading rapidly (i.e. over small increments) involves price relatives close to one and

produces an identity, rather than lower bound, in the limit when we keep track of all

terms. Stochastic calculus facilitates the bookkeeping.

Theorem 2.3. Let 7) > 0 be constant. For any bounded stopping times S and T with

0 < T — S g T and any non short-selling constant target it 6 7-0 (Dm) the EG(77,S}

portfolio 7r satisfies

.. 1 'T . T
Lil/[grin—LI-i’[(s.l1.) : — / (rt—u.) E(7r—u)dt+fl / n‘Eirdt

’ 2 S 2 S

(2.4)

 
77 T m d(UHTFCTD-a’r('U«l|7T(S))

l Zr
2,,dt +

i=1 77

Comparing (2.4) to (1.10) we see some similarities and many differences. First. of

all (2.4) is an identity which retains and gives meaning to terms discarded in (1.10).

16



d(u||7r(S)

The two negative terms of( 2. 4))are ——ngTZl_"17r,-E,~,dt and ),only the second

of which appears in (1.10). Using the fact that 7r 6 D", we can see that the term

—1 [3271173Endt is the counterpart of——;"2 in (1.10) . The intuition here is that

both terms measure the total variation in stock prices over time. The positive terms

515W — 2(7r —— u) dt and —"H—;(—)—) of (2.4) are large if u is distant from 7r. This

may seem paradoxical but, as we shall learn, the EC can do well against non-constant

 targets where the bcrp does poorlv. B37 noting that (l(u|| m) g log(m + 1) we
(1+1)

get

Corollary 2.4. Let S = 0, M > 0 and TM 2 inf{t > O : maxifot 2,,- ds = A1}.

Choose 7] = (lg—13i- then the EGM, (l) portfolio 7r with 7r(0)—— T—nilflm satisfies

 1 T ,
Ll"(1[52) — LIVE”; 2 5/ (7r - u) 2(7r — u))—dt \/2log(m+1)m1l1

s

for each constant target u. And

 

sup”g{ fol2’": 7r2,, dt + (“HUN“))————-—)} S \/2 log (m +1)ml\/I. (2.5)

77

The stopping TM is a measurable function of the paths of the stock price process

(see Lemma 5.2.) Hence for a specified level of variation M, and the above choice

of n, the contribution of the negative terms to (2.4) up to stopping time TM is no

greater than square root of the variation.

In a reasonable market the wealth of the bcrp exhibits exponential growth on the

order of the variation (see Proposition 3.3 and the following discussion, for details).

17



As in the discrete case the EC portfolio is at least capturing the first order exponential

growth (if there is any) of the bcrp. This idea is made more precise in the following

corollary.

Corollary 2.5. Let s = 0, M > 0 and TM _—. inf{t > 0 max,- 1;; EMS: M}.

Choose 1] = ”W then the EG/I], 0) portfolio 7r with 7r(()) : (fl—1:171," satis-

fies

(u) [97111) >0

LlfllllST-u)

 

LW"r Ln("l

[W (Art) (2.6)

Ill

whenever Ll'l'[(s.i)) : 0(maxi I; 2?,- (1.9).

In Theorem 2.3 and 2.5 we employ a constant learning parameter and compare

with a constant target. In the following generalizations of Theorem 2.3 we allow both

to vary over time. First we define a very general class of targets.

Definition 2.2. A target u E T is called piecewise constant if there exist a finite

sequence uk 6 R'", k : 1,...,N and a (possibly adapted) partition S = to 3 t1 g

- S tN : r such that

N—l

Ht 2 2 uk {lk S t S tk+1}.

[(20

Let 7”" (A) be the set of all piecewise constant targets taking values in A g R’" and

let

TWA {—116 7'((4) 311,6 7'”"(.4) 3a,, —>u._LIrl"l”") —>,, Lit-111)}

18



where the convergence is uniform in probability.

To compare performance against piecewise constant targets we generalize Corol—

lary 2.5. Suppose u E 77’“ is a piecewise target with one jump at stopping time

T > S. For t > T, using Theorem 2.3 on the two subintervals (S, T) and [T,t) we

have almost surely

it 1 t 1. t
HITS?) — Ll’lfsi) : —/ (7r— v) Z(7r—u)ds+ 2/ n‘erds

" " 2 s 2 s

T m

> d A t t —d T— T_2/ 2mm, <u< )HM >) (u( )ll7r( ))

2 3 i-l 7)

 

+d (u. <T—> Hr (2o) -— d (u (5) Hit (5))

77

Comparing with (2.4) we see an additional term involving the difference in the relative '

entropy at. the jump point. Hence using the inequality (1(qu) g maxosigm {— log(v,)}

we can generalize Corollary (2.5) to the case where we allow the target to have a finite

number of jumps.

Corollary 2.6. Let u E 77’“ be a piecewise target with n jumps. Let S = 0, AI > 0

and TM = inf {t > 0 : max,- [52,,(13 = 111}. Choose 7) = m—QAT then the EC{7},0)

1

I m1m SGLZSfiCbportfolio it with 7r(0)

. ... 1 T .
LI/Iv’fiotg) — Llr’lflojl) 2 2 / (7r — u) 2 (7r — u) dt

‘ 0

' I!

— Té—(l+nI\”+log(m+1))

where K = max,- SUPo<ngM {— log(7r,(s))}.

19



From Corollary (2.6) we see that the EC can track the larger piecewise constant

targets as long as the market does not force 7r towards the boundary of D,,,.

Theorem 2.7. Let u E 7”)” (D,,,). Suppose that m is a positive real valued process

satisfying {2.1). If m is right continuous and bounded almost surely then for the EC

portfolio it we have

T U. 1 T it 1 T

Lll"('.,) — LIV(..). : — 7r — u S 7r — u) dt + — nrr'E'irdt
[s r) [s I)

i ‘ ‘6‘ 2 S 2 ' A9

1 T m T

_5/9 anz,,dt+/S d‘I’t (2.7)

‘ i=1

(1(mH7n).

where \I't : n:

The expression fST d\I’, is understood to be the limit in probability of

 

Z d(utk+1ll7rtk+1) _ (1(7-1'fkll7rii-l

(2.8)
k 7l¢k+1 (Illi-

which must exist since all other terms in (2.7) do. The proof is given in Chapter

5. We now the consider the form of (2.8) in the case where n is constant and u is

smooth.

Lemma 2.8. Let u be a continuous process of bounded variation taking values in the

' " ‘ D ' ‘ ll > ' 4 — ' D ' m ' Tl ,interior of m i.e. for a t _ 0 at E 1 — {u E m . 2,2111,- < 1,11,- > 0}. zen

u E T(D,,,), i.e. up to time t the process a generates finite wealth. And for I} > O
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constant and the EG/n) portfolio we have

'1‘ r _l V 3 l m T ui

A (1‘11; — Tl ((l((l(TlllH (Tl) _ ( (11(S)H7T(S)) _ 215 [10g (2;) — (1,] (In) .

The final result of the chapter gives conditions under which the EC portfolio can

perform as well as smooth targets. As we have seen above the key restriction is that

the portfolio must. stay away from the boundary.

Theorem 2.9. Let u be as in Theorem 2.8 with [000 d|u| : K. Let S = 0, ll! > 0,

C > 0 and

log(fl)
7T0

t

Tm”) : inf {t > 0 : max/ Eli-d3 = Mormax
I 0 l

  

=6}

Choose 7) = 2 W then the EC(I},0) portfolio 7r with 7r(0) 2 ml,“ satisfies

1
T ,7 T

—/ (7r — u)" 2 (7r — u) dt + —/ 7r‘27rdt

0 2 0

3,1477) _ ”4“)

L L [0,71 Mn) 2[0‘77 Mel)

I
V

(2.9)

 

 

 

mlW

—2 l ' 1 .111 — K .\/og (m + )m c \/4log(m +1)
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Chapter 3

3.1 Cover’s Universal Portfolio

Cover’s universal portfolio, introduced in 1991, uses an averaging method to pick

the portfolio. The portfolio vector used at time t is the past performance weighted

average of all constant portfolios. Cover and Ordentlich (1996) introduce the notion

of side information and generalize Cover’s algorithm by using the Dirichlet(%, ..., %)

and the Dirichlet(1,...,1) priors over the set of all portfolio vectors, i.e.

f0... pil/Vipl (t) (M

Ai f aI) ( ) f0," w/(p) (t) (M

 i=1,...,m (3.1)

where /\ is one of the Dirichlet priors mentioned above. In discrete time trading,

Cover and Ordentlich prove that under no assumptions on the price relative vec—

tor (except non negativity) the Dirichlet(%, ..., %) weighted universal portfolio, in the

worst possible case, grows nearly as fast as the bcrp losing at most 525’ log(n) in the

exponent where n is the number of trading days and m is the number of stocks. Using

a recursion scheme they can compute the portfolio on-line with storage requirements
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growing like n’"‘1.

Employing the model (1.1) and (1.2), Jamshidian (1992) extends Cover’s original

portfolio to continuous time. He assumes that the following limits exist

E [[5 Eds]

V00 2 lim2 ————-, 1/ : 11m

t—mo , t—+oo

(3.2)

and sets poo = V°° + %Zf,-°. Under these conditions there exists an asymptotically

optimal constant portfolio p°° which is determined by

1
poo : argmaxpEDm {If‘MOO _ Epmzjoop} , (3.3)

Stock i is said to be asymptotically active if pi” > 0 and a market is asymptotically

active if all assets are. Jamshidian’s main result is

Theorem 3.1. (Jamshidian) If the market is asymptotically active then

m

2 log(t) + C

. 1
Lit/(ma) — LWW) ~ log(m!) + i log([ZOOD

where Lllr’(’3)(t) is the wealth generated by (3.1), Ll’l”l is wealth generated by the

bcrp, |E°°| is the determinant of the asymptotic covariance, C > 0 is a constant

independent oft and 230° and the notation X(t) ~ Y(t) means X(t)/Y(t) converges

to 1 in probability.

Jamshidian proved a similar result in the case where the market is asymptotically

k—inactive ( pr : O for k of the m stocks) in which case the bound on the rhs is of the
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order flf—k— log(t). The bound achieved in Theorem 3.1 is superior to the one we obtain

in Theorem 2.3 for the EC portfolio. Just as in discrete time, in comparison with the

wealth generated by the bcrp, Cover’s algorithm loses at most. on the order 1271 log(t)

in the exponent while the exponentiated gradient method loses at most on the order

of log(m)\/t. However, as seen in Corollary 2.6 and Theorem 2.9, the exponentiated

portfolio can perform well versus better non constant targets where Cover’s algorithm

tracks the bcrp. Furthermore the EC portfolio is far simpler computationally than

the universal portfolio].

The following proposition gives conditions under which the EC portfolio will out-

perform the universal portfolio. From (2.4) we see that EG portfolio will exhibit

especially good growth whenever 7r differs from the bcrp sufficiently so that the term

%f (7r — vul)* )3 (7r — ul) dt is large, e.g. on the order of max, f2,,;dt. One expects

this to occur in cases where the drift coefficients oscillate. See the example presented

in Chapter 4.

Proposition 3.1. If ant) > 0 for alli = 1, ...,m then

‘ 1 t :t t

Lw,<;3, — Luff?” = — / (7r —u*) >3 (r—ul)dt+ 3 / 7r*27rdt
.. ,. . , 2 S 2 S

_g [tire-Zac
h + d (UTHF (T)) _ d (“in7r (5))

5 i=1
77

t

/ Eds

0

where Ct : log(ffh exp {— “I”? } d1?) 3 1’23 log(7) with A, = Zi(Dm — til).
2

 

1

— log(m!) + Elog( ) — Ct

  

 

 

1Although it is adapted, given the computational requirements for discrete time especially for

large m. a continuous implementation of (3.1) may not be feasible.
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For n and TM are as in Corollary (2.4) and (l < c < I suppose that

,
r

‘l/ (7,— — ul)‘ 2 (7r — ul) ds — \/max/ Earls = 0ft")
2 0 ' 0

as t —> 00 and the market is active for all time t > S. Then for AI sufficiently large

 

'(N) , .r( ‘) - c.

S, '1in

Proof. In the proof of (3.1) Jamshidian compares the log wealth obtained by (3.1)

and a)f as

. '(m ,r(u*) _ , 1
Lll (t) — LII (t) — log(m!) — §10g(

t

/ Eds

0

The first result follows by combining the above with Theorem 2.3. The second result

) + Ct. (3.4)

  

is a direct consequence of Corollary 2.4. D

The relation (3.4) demonstrates that under rather general market conditions the

universal portfolio obtains the same asymptotic exponential growth rate of the bcrp

but never better, even in cases where the bcrp does not perform so well. In fact in

an active market where the variation tends to infinity, the wealth generated by bcrp

is asymptotically infinitely greater than that of the universal portfolio. In Chapter

4 we present an example of a market with oscillatory drifts where the EC portfolio

decidedly outperforms both the. bcrp and the universal portfolio.



3.2 Targets

In chapter 2 Theorems (2.3) and (2.7) relate the wealth acheived by the EC portfolio

to that of the bcrp and limits of piecewise bcrp respectively. In this chapter we

examine the wealth generated by such targets. We exhibit examples of reasonable

markets where the wealth achieved is quite large.

A simple example of rebalancing

To appreciate the power of constant rebalancing consider a simple two asset model

presented in Helmbold, Schapire, Singer and Warmuth (1998). There is one risky

asset or Stock whose value is halved on “down” days and doubled on “up” days. And

one risk-free asset with zero growth rate. Suppose the relative returns of the stock

2, %, 2, ..., %, 2 and the relative returns ofare a random permutation of the sequence 5,

the bond are 1, l, ..., 1. If given a dollar, an investor buys the stock and holds on to

it. the wealth for entire period can at best double. However, if the investor constantly

rebalances to one-half of the total wealth each day in each asset, then on the “down”

3 c n

= 5' On the ‘updays the relative wealth decreases by a factor of % X 1 + % x %

1

days the. relative wealth grows by 5 x 1 + % x 2 = %. Thus pairing an “up” day and

a “down” day the investor’s wealth grows by a factor of 43 x g :: g. Hence without

any prior knowledge of the ordering of the {s and 2’s (or even which asset is the

n .

bond) the wealth after 2n days grows by a factor of (g) . Therefore, even 111 a flat or

oscillatory market, constant. rebalancing can be used to achieve exponential growth.
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The BCRP

Let 9,-(t) = Z,(t) + [0’ Suds for i = 1,771 and t 2 0. By (1.6) the log wealth growth1

2

obtained by constant :)ortfolio vector u E R’" over the interval s r is ( uadratic in
. 3

T 1 T

LII-'63) : / rdt + u‘d — 2M (/ Zdt) u (3.5)

and is maximized by any a satisfying

T -1

n = (/ Edt) 0

where (f3T Zdt)~1 is a. generalized inverse of j: Edt. The log wealth growth produced

by such a u is

r T -1

Ll’lv'(“i) (T) = / rdt + éf)’ (/ Zdt) 9.

If the covariance matrix f; Zdt is non-singular we denote the (unrestricted) retro-

spective best constant target by val. We now restrict to the simplex Dm. The bcrp is

for the interval [5 r]

1 m T 1 T
v1 : argsupueom u‘Z + ~2- 2:114" / Ziidt — in“ (/ Zdt) u (3.6)

i=1 ' s S

The wealth achieved by "ait clearly exceeds the arithmetic mean, the geometric. mean

and the maximum of the assets in the market. For the following definition we use the
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interpretation that the bond is stock 0 and consider bcrp over the interval [0, t).

Definition 3.1. Let (1.1(t) be the bcrp.

A stock i is active at time t if of(t) > 0.

A stock is asymptotically active if lim inf, of(t) > 0.

A market is (asymptotically) active if all stocks are (asymptotically) active.

A market is (asymptotically) k-inactive if exactly k stocks are (asymptotically)

inactive.

The following proposition from Jamshidian describes aI in terms of market activity.

Proposition 3.2. (Jamshidian,1992) Assume fot Eds is invertible. At time t Z 0

o A market is active if and only if of(t) > 0 for each i. In which case a1 : al.

0 Define the m — k vector it“) to be the solution of

"l t

Z 211(k) [/ 211(13] =0}, k+1§j§m.

0
l=k+1

The market is k-inactive if and if afk) > O for k + 1 g j S m and then

In particular in the m = 1 case vi = 0 V ul /\ 1.

Using Proposition 3.2 we can find a. lower bound for the wealth generated by the

bcrp.
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Proposition 3.3. Suppose the market is k-inactive for k < 772.. Let

/\ : (A1, A2, ..., A771)!“

. . -t .

be the eigenvector process of the covariance )0 Eds with /\1 2 A2 - -- 2 Am. The log

wealth generated by at is bounded below by

t t 1

LII/"(n ) (t) Z / rds + 5A,nu.i*ui.

0

Proof. Suppose Am : 0 then the result trivially holds since it1 beats the bond. Assume

"l

t . . .

/\,,., > 0. Let A 2 (f0 Eijds) be the covariance submatrlx corresponding to

iJ:k+1

stocks k+1, ..., m and define the m—k vector u = (uch, ..., ufn)*. Then by Proposition

3.2 the log wealth is the quadratic form

-t 1

Ll/l7("I)(t) = /rdt+§u*Au

0

t t
1 1

2 / rdt + /\,,,—u*u = / rdt + Am—ufmf

0 2 0 2

where the inequality follows from the basic result about quadratic forms and the last

equality follows from the fact that the market is k-inactive. El

From Proposition 3.3 we see that if the interest. rate r is non-negative, and limt Am //\1 >

e for some 6 > 0 then LII/’0”) (t) will grow exponentially on the order of A1.
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Targets in Two Asset Market

In this section we further examine the nature of targets restricting ourselves to the

m = 1 case. To avoid issues of degeneracy, we assume throughout that o > 0

00 " . .

for almost. all t and that f0 ozdt = 00 almost surely. Define the stopping tlme

. T ‘ . . .

T(s) :: inf {r > 0 : f0 ozdt > s}. By our assumptions on o, T 1s 1-1 and onto With

T 2~ _ ‘ T(s) _ . . .

s(T) 2 f0 0 dt, hence B, 2 f0 (NIB, 0 g s < 00 IS a Brownlan motion (see

Karatzas and Shreve pg 174).

Proposition 3.4. Let [000 ogdt : 00 almost surely. The stock is asymptotically active

if and only if

I.

lim inf I” (H — T) (18
.t ,

HOG )0 aids

 

almost surely.

Proof. In this case the bcrp is

t —1 -t t

of = 0V (/ ogdt) (/ (u — r)ds +/ odB) /\ 1.

.0 0 0

By the law of the iterated logarithm

t

lim (/ o2dt)

t—>0 0

So lim infui > 0 if and only if lim inf, 11);} > 0. 1:1
0 0 8

-—l t

/ odB = lim s‘lBs —~> 0.

.0
8—900
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The next proposition shows that if ,u < r the bcrp wealth is essentially equal to the

bond.

Proposition 3.5. If almost surely p, < r, fox 02dt = 00 and [J rds = 00 then uI —> 0

and

Luv/'(“ho
—_,———— —; 1

f0 rds

almost surely as t —> 00.

Proof. By proposition 3.4 uI —> 0. Since u1 must be in [0,1] the corresponding log

wealth is bounded above and below by

-t t. t t

/ rds S Ll’l*'(”i)(t) g / rds + (2/ 02ds) (/ odB)

0 0 0 . 0

I I —1 2 I g o o o — ~r

But. for s : 10TH) ozdr, (for aids) (f; odB) 18 equal in distrlbutlon to (s) 1B:

—-1 2

. -1 2

which follows a X2 distribution. Hence (ft; 02ds) (f0! odB) is finite almost surely

and its distribution does not depend on t. Therefore

(2 fo'a2ats)_1 (fo‘ odB)2

[Qt rds

 
—~>0

almost. surely as t ——> 00. E]

The following proposition shows that. piecewise constant targets can generate very

large wealth. In the proof we exhibit. a sequence of piecewise constant targets whose

wealth tends to infinity. The argument takes advantage of the unbounded variation
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of Brownian motion.

Proposition 3.6. Firt > 0. if)! 2 r 2 0 then sup {Ll'l"”(t) : u E 7"” (D,,,)} 2 00.

‘f 2t S . . .

Proof. Let .«V > 0 and A : 1"}?!— and conslder the random part1t10n

{tk = T(k_\) : k = 0, 1, N}

where T is the time change given above. The bcrp over the. interval [tk_1, tk] is

if. . ‘1 tk tk

a; z: 0 V / ozdt / (,Li — r) dt +/ odB /\1

tic—1 tk—l tk_1

and hence on the event uI : 1 the log wealth generated is

(“3) [k 1 fl: . tk

Lil’mfm) : / ,udt— 2/ ozdt+/ odB

tk—l tk—i lk—i

1 tk hr

2 —"—/ U2dt +/ OdB

2 tic—1 tk—i

1 ~

where 33,. : BM — B(k_1)._\ are Brownian motion differences and the inequality

follows from the assumptions on ,a. On the event uI < l the log wealth is

(at) ‘k 1 2 ‘k .

Lulttfhtk) : / rdt + 5 (at) / ozdt Z 0.

t 1 tIc—l

Since ,a is non-negative ABk > A implies that u: > 1. So if we knit together the

bcrp‘s. define a. piecewise constant. portfolio by u : vi on [tk_1,tk), k = 1. N we
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obtain a log wealth of at least

N

- 1 -

LII-'(“l(t) 2 Z [213,c — 33[ (5.8,. > A}

k:1 “

A7

2 2A3. (413,. > A} — t/2.

k:1

Finally ABk {313k > A} are. iid with expected value:

E [Age {Age > A}[ = /00 fix“ (~33)drr
A ,

:1:

 

where the inequality follows from Taylor’s formula. Hence by the law of large numbers

 

. . 1 ~ A8,. 1
llman—l— AB >1 >——.

1 VA: k{ A }T \/27r

But N‘lfi : i; —+ 0 almost surely hence ZABk {93% > 1} ——> 00 as A ——> 0.

Therefore limAaO Ll'l"(“l(t) = 00 almost. surely. [:1

From the previous proposition we see that there exist limits of piecewise constant

targets which produce infinite wealth in finite time and hence are not targets. The

problem is that if we view the bcrp as a function oft it is not continuous at I). For

example if we assume ,a = r and o = 1 then the bcrp is u[ = O V t—lBt /\ 1 and by
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the law of the iterated higarithm we get

lim sup u} = 1 and lim infu,—— 0.

t——>0 ” tat)

In the following proposition we prove that smooth processes are targets (i.e. do not

produce infinite wealth in finite time).

Proposition 3.7. Any process with the paths of bounded variation is a target.

Proof. We must show that it generates at most finite wealth at each time 0 g t < 00.

Fix t > 0, let {tkm : 0 g k g n} be a sequence of partitions of [0, t] with mesh size

converging to 0. Define the 1.)iecewise constant target un : u(tk,,,) on [tk_1;n, tkm) for

0 g k S n. From (1.7) the log wealth

kzn

LL‘,’(Un) : f0 rds—l—kth(”utk." )/

t(k— l):n

+211(tk.,,))[tlm odB

ttk— l):n

1 tkm ‘

(p, — r) dt — —u2(tk,n)/ ozdt

2 (k l) n

By (1.3) the first term on the right hand side is finite. From (1.3) we have that the

. . t t . . .

time integrals f0 (u — r) dt and f0 02dt are continuous and have bounded variatlon and

we have assumed that u is bounded. Hence the second term above converges almost

surely to the difference of finite integrals fot u (p. — r))dt — —ifo u2o2dt as n ——> 0. By
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summation by parts we obtain

n .(km 72—] tkzn
t

ulfkm.) / (NIB : Z (NIB (u,(tk;,,) — u(fk_1:,l)) +21.(t_)/ odB

kZl ' "(k—l):n
k:l - 0

0

11-71

—u(1‘—)/ (NIB

0

I s it

——> //odBda+u(t—)/ (NIB

.0 0 0

where the convergence follows since u is of bounded variation and the stochastic

integral is continuous. El



Chapter 4

Example

We consider markets where with probability arbitrarily close to 1 the EC portfolio

outperforms the bcrp and Cover’s universal portfolio by order of t in the exponent,

and where each earns order t in the exponent. The idea of the example is simple.

Take a drift value so that the best piecewise constant target. for one half of the interval

is very near one and for the other half is very near zero. So the best constant for

the entire interval is near In this oscillatory market we expect 7r to track the
l2.

piecewise constant target and so the f (7r — %)202dt term in (2.4) is large. On the

other hand the universal portfolio will perform approximately as well as the bcrp,

which is earning less in this market.

Definition 4.1. For m = 1, we call the qnadruplet (r,,u.,o2,T) Model 1 if r = 0,

o > 0 is deterministic constant and

o2 forOSt<g

Ht:

0 forggth
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Proposition 4.1. Let 0 < f < 3; and 7r be the EC portfolio with learning parameter

I] : T‘i and initial value 7r(()) 2 % and uI be the bcrp. Then

 

  

 

'(n) ,<ui) . 21—8((+(2) , L

LH [03,.) — Lu [05,.) 3 To 16 - 1th

Iii/zero A, z: (3;: + 31o§(2)) (II/Ill

. 77 . ‘ - 1 — 8 + 2 , 1 T 2

LH 50;.) — Lu [lib 3 T02 )2 6 l — Ixri + 510g(7")

on an event A with P(A) > 1 — 3(1) (—CE\/T) with c = o /\ g and where (I) is the

(r'zmiulative distribution function for the standard normal distribution.

Proof. The piecewise constant target which takes the best constant value over each

of the interval [0, T] is given by

 

0V1+2—§—./2]/\1 for0§t<§
L U

u: _

23—3,... .

0V_(_7‘(TT_’/_-l]/\1f0r%£t$T

()n the other hand. the best. constant target over the entire interval [0, T] is

/\1.

1 3.
120V _ _L

n [2+0T

 

So for large T we see that u is nearly one on the first. half of the interval and zero on

the second half while u1 is essentially i'
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From Tl‘ieorem 2.3 with 7] : T“i and 7r((‘)) 2 % we get.

4-.) '(u) 1 {IV/2 2 2 -11 t 2
Lil [Of/2) — Lll [or/2) : §/ (7r — u) (7 dt — T '2—2— / 7r(1— 7r)o

0 .0

+Ti (d(u(o)||7r(T/‘2)) — (l(u(())||1/2))

1 T/2 . l

5/ (7r — u)202dt — KT? (4-1)

0

I
V

where K = (% + lot/(2)). Applying the general expression for log wealth (1.6) to our

special model we get

(2!) (7r) 1 2 W2 2 772 ”2 2
Ll’l'wjfl) — LulUKI‘fl) :2 5a (0)]O 0 dt +/0 (E— -— 7r) 0 dt

T/2

— / nodB

0

1 T/2 ' . T/2

: —/ (7r — u)zozdt —/ 7r (1 — u.) 02dt

0 0‘2

T/‘2

— / nodB

0

Hence on the event A’ = {Br/2 > —T60 and [OT/2 nodB < g}

T/2 T

, '(u) r(7r) , 2 2 2
Lil [Of/.2) — LH [0,T/2) 2 5/ (7r — u.) 0 dt — —2—eo .

0

Hence by (4.1) on A' we have

"7‘2 . . T . 1
/ (7r — u)202dt < 3602 + KT?

0

Now we compare with 7.11. Let A" = {Br 3 \floT} then on the event. A : .4' D A"
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we have.

T” .. . 1 "”2 1 . . 1 '17? 1 ,_ .
/ (7r — '11:)“0 (It 2 — / (1 — —)202dt — —/ (— — nifazdt

0 0 9 2 0 2(
Q
M
-
-
A

 

‘2, ..

1 .7/2 ‘ . 1 772 . 4

_§ / (u — 1)202(1t — 5/ (7r — u)202dt

. o
0

1— 8 (f + (2) .2 K 1
> T — —T5. 4.2

- 16 a 2 ( )

Using Theorem 2.3 once more but with the best constant target on the interval [0, T]

‘2

+T% <d<u<o>nw<r>> — d<u<0>||1/2)>

T021—8(€+62)

16

1.11"”) —LII'("I) — l/T(n—ui)202dt— ”ll/Tn(1—7r)02dt,. or) _ O . , 2 0 , ,

— Kgri (4.3) 

I
V

, _' ' 3| 2 . . . . .
on A’fl A" and where 112 = (% + —0—§(-l). Slnce the market 18 active by Proposmon

(3.1) we have

 

' 7T .' i . 7r . ‘ 1

Law.) — Lu [(3) 2 LHT‘0}) — L11 [‘O’j’fl + 5 log(ToQ) — C7.

1 — 8 ,+ 2 1 :r '2
_ f; ‘ )Toz—KgTi +§log(—:—).

It remains to show the bound on the probalnlity of A. Clearly

P(BT/2 > —eoT) : ohm/27)

P(BT<\/F.0T) : @(ox/ET)
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and by a time change argument

T/2 2

P ( / mdB < 1T)

. 0 4

I
V

'I"/‘2 e .T/z ‘ (

P / 7r0dB<—/ fizazdt

.0 2 0

T

: (I) -— .

[:1

Hence for T sufficiently large with probability close to 1, the EC portfolio is outper-

forming the bcrp and the universal portfolio by on the order of T in the exponent.
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Chapter 5

Proofs of Ch. 2 Results

We now present the proofs of the results contained in Chapter 2. For the reader’s

convenience the theorems are restated and previously displayed expressions retain

their original numbering.

Theorem (2.1). Suppose u, r and Z are .7} adapted processes which satisfy (1.3), S

is a bounded stopping time and E E R’" is 7:5 measurable. Let 7} be an adapted R+

valued process such that for each t > 0

t m

/ [Inrl + Z (MHz-l + 02221)] ds < 00 (2.1)

0
i:l

almost surely. There exists a unique strong solution {a (S,t),t 2 S} E R’" to the

following stochastic differential equation

1

do,- = lel + 7] b2” — Elf (0)] (it (2.2)
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with initial (1 (S, 0) : 5 and where f : R’” —+ Dm is given by

. t t . .
_ V ‘ 7 i ' " § 3 ‘ ‘ ‘ 7) \ V‘ ' . '

Proof. By our assumptions (2.1) the piousscs f0 ndZ and f0 naiuds are semi-martlngales.

From [heorem \".3.7 on page 197 of Protter (1990), to show existence and uniqueness

it is enough that f is Lipschitz. For a E Rm, the partial derivatives are given by

312(0) 62‘“ (1+ 2k?“ eak)

 
 

 
 

. Z: . 2 :3 i a 1 —' i a

(901 (1+ercn:1eak)
f( )( f( ))

and

(5.1)

an) _ weakly» __ - ..
aaj (1+Zzz:leak)2

f1( )f3( l

for i 75 j. The derivatives are continuous and bounded in absolute value by 1. Hence

f is Lipschitz. In fact ||f(a) — f(b)|| S mHa — b“ for a, b E Rm. Cl

Before we prove Theorem 2.2 we require the following lemma which gives condi-

tions on the integrand for convergence of a stochastic integral.

Lemma 5.1. Let 0 satisfy (1.3) and g”) be a sequence of IR” valued processes such

that gfnl(t) are bounded and continuous and converge uniformly to 0 in probability.

Then 't. ("lodB conver es uniformly on compacts to zero in probability, i.e. for each
. 0 (I g

t>0

811p

Ofsgt   

/ g(")UdBl| —> 0

. 0
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in probability.

Proof. Let TM :— inf{t : maxi-jot Eil-dt Z .11}. By (1.3) TM —> 00 almost surely

as M —> 00. If we can establish the result for the stepped process fOMT‘" gl”)odB

then we obtain the desired result upon letting M —> 00. Therefore we assume that

maxi f0DO Eiidt g M. First assume gfn) converges uniformly almost surely. By Doob’s

inequality

2t 00 m 2

E [sup/ gfnlgdB] S E / :9Emziidt]

0 0 .t

   

- 2

S E mM sup (1201)]

_ m

which converges to O by the Bounded Convergence Theorem. So supt fat g(")odB con-

verges to O in probability. Now suppose gm) only converges in probability uniformly.

Then for every subsequence nk. glnklconverges to zero in probability uniformly. For

each of these subsequences there is another subsequence nk, for which the convergence

is almost sure. From what we have shown supt jot 9("kllodB converges to 0 almost

surely. Hence supt fot g(")odB converges to O in probability. D

Theorem (2.2). Suppose that r is a positive constant, S,T are bounded stopping

times with 0 < T — S _<_ r and 77 > 0 is constant. Under the conditions of Theorem

2.1 the DEan) portfolio q converges in probability uniformly to the EG(7}) portfolio

7r and the Ll’l’m) converges in probability uniformly to Lil/”(Fl on the interval [5, T].

Proof: Let a be the solution to the SDE (2.2). f be as in Theorem 2.1, and S < T

be be stopping times bounded above by the constant T > 0. Recall that the DEG
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portfolio is given by

(Ilia) : £3

77X,- (A)

(1 (lit—1)]. X (k) + (10 (tk_1)X0(A*)

 me) = q.(t,._1>oxp{ }l"):latkSt<tk+i

where X is the price relative process and W, is a normalizer. Also the EC portfolio

7r : f(ov). The idea of the proof is to consider a,(A".) : (li(k,€,7]) : log (37):?» (so

that q : f(a)) and show that a converges uniformly to a on the interval [5, T]. Once

this is estalflished it follows from the continuity of f that q and its corresponding log

wealth converge to 7r and LH'”) respectively. We first decompose a. For each i

7) (Xi (k) — X0 (M)

q (tk~1)* X (k) + qo (tk_1)X0(A-)

n(x,(k)xo(k)"1 — 1)

2;:1qj(tk—l) (‘Yj(k)‘\,0(k)_l — 1) +1.

 (1,-(Ac) = ak_1+

 

- ak—l +

Note that X, (k) X0 (A')_1 = exp {Z,(t,,.) — Z,(tk_1)}. So at each step the process a is

updated according to

(Mk) :ak—l +92‘(Z(tk) _Z(tk—1)aq(tk—1)) (5-2)

71(03’1-1)

2:51;, 15(ch —1)+1‘

 where g,- is defined for 1 S i g m, y E Rm and v E D’” by g,(y; v) :2

It is impmtant to note that since the DEG portfolio remains constant on the interval

[tk_1, tk), the update in (5.2) depends only on the initial value of the portfolio q(t,,._1)
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and the change in the discounted stock price process Z. To determine the asymptotic

behavior as the mesh size tends to zero, we consider the differential of this update

with respect. to Z. By Ito’s formula

.t‘ .

(1,-(lg) : (1k_1 +2] A g]l)(Zk,q) dZi

i tIc-i

t. ..

“LiZZ/k -9l1])(Zka‘1)3ijdt
"‘ 1' j tk—l

with Zl-k(t) : Z,(t) — Z,(tk_l).1 g i g m and where g(i)(y, v) = figfiy, v) and
i

gfij) : afgy g,(y, c). In Remark 5.1 which follows this proof the derivatives are
11 J

 

presented explicitly. For our purposes it sufficient to note that each of the derivatives

is continuous in first. argument, bounded in absolute value by maxj 63'le and that for

j,j’ # i we have (131)“). v) : 95“,)(0. v) z 0 , 91(1)“), v) = r), gfiil(0, v) : 7)(1— 2v,-) and

gfij)(0, v) = —7)vJ-. Using the values of the partial derivatives at y = 0 we find that

it .77 0:

(1,-(At) : ak_1 + n/ (12, + 5/ 2,,— dt

31:. tk—l

m 1k

—nZ / (1.2., dt + am) — lick-» (5.3)
j—l tk—l

with 1 S A' g n and where the remainder is given by

t t

.,: 1 .1”
no) : 2 A g])dZ,-+ 52 :E [S ng>2,~, ds.

1 " i j



- r - 2* . . .

and g] ) and g]- J) are defined piecewise by

.(i) i) . (i

.q. (r) = gf (Z‘<t>,q)—gfl<0.o

time) = .99" (mm — of”) (mg)

for tk_1 < t S tk, 1 g A‘ g n, and 1 g i,j,§ m. Notice, the resemblance of the

expression above for a, and (2.2). “'0 now show that in probability:

lim sup {|(i(t) — a(t)| : S g t g T} = 0 (5.4)

A—>0

Proof of (5.4) The result follows in two steps. In the first step we prove that the

remainder term R converges to O. For this step we employ a second moment argument

involving Ito’s isometry. In (1.3) we have not assumed the existence of any moments

of the stochastic integrals, however, we circumvent this obstacle with a localization

argument. In the second step we use the method of successive approximations to

prove that the integrals on the rhs of (5.3) converge to 0.

Define the stopping time

t m

TM : inf t > 0:111ax|Z,(t)|: Al or / Ir] + Z (le‘l + 2,2,) ds : AI

' 0
i=1

By (1.3) lim TM 2 00 almost surely as M ——> 00. Thus if we can establish the result

for the stopped process o'(t /\ Tu) —- a(t /\ TM) (i.e. under a boundedness assumption)

then we obtain the desired result. upon letting A] —> 00. We may assume therefore
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that max,- IZ(t()I and IOIIIIII + 2::,(,I/1 I + S,,~)] (1.9 are bounded by 11/ > 0. First we

show that SUPsgrgT IIR(t )II —> 0 111 p1obabilitv. In terms of the Brownian integral we

l1 ave,

22/9]U,(lB+i/,J,((f1,—r)—%Z,,(s)t.

132‘; /. 95'1’22'2‘ 1
i j '1

By the triangle inequality and using (a. + b)2 S 2((12 + b2)

 

  
  

     

        

 

      

       
 

2

E sup IR,(t)II

53th

< 2E ft, — '7') if”) Izijl (18

m t 2

+2E sup / 0 dB

b<th , 5

2

1 T Aer) y

where the last inequality follows from Doob’s inequality, Ito’s isometry and the fact

that T g r. Under our assumptions Z is a bounded continuous semi-martingale and

(2')
hence each of the derivatives g-

l

(Zk,q) and gfij)(Zk,q) are uniformly continuous as

funttions oft E [0, r] and [0 IIII+ 2:, (I;1,I +V2.” )]ds < )1 as .Thus the expres-

sions under the expectation, e.g. f: (()Ii))22,,(l.s, converge to zero almost surely. Also

the Zk are uniformly bounded by 2.)], hence the derivatives are uniformly bounded by
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V . So by the bounded convergence theorem E Isupsgg. IR,—(t)I]2 converges to zero.

Repeating the argument for each i = 1.111. we obtain 2:, E ISUPsgigT IR,-(t)|]2 —>

0. Hence111 probabilitv S‘1l)sgrnglR((1)Il2 —+ 0.

We now use the method of successive approximations to prove that the integrals

on the rhs of (5.3) converge to (1. Since f is Lipschitz there exists K > 0 such that

||f(y) - f(1')|| S Klly - Ill, :1, y 6 Rm.

Define a sequence of stopping times To = S and T, = inf{t > T,_1 : f7; IIZII ds} =

(2Ix'\/ih)_1 where IIEII : #215]. 2,2]. is the matrix norm. By the Cauchy-Schwartz

inequality

1 1

/||E||d8 S m/ m.‘<.1X|Ez-jld8

O 0 3]

‘ 1 1

S m/ 535,213,.(13

0

t t

m\// 2,,ds/ ijds.

0 0

Hence by (1.3) then T, —> 00 as l —> 00 and there exists an L random but finite such

 

I
/
\

that TL > T. Define a sequence of R1" valued processes by

, t 1 t

I';(J)(t—':) €+7}/(121+U2/Ziid.9+/Stzif(y(] 1))(15, SStST (5.5)

S' S

48



for 27 = 1. m , j = 1, 2, and with Y”) = (1.. Define

110-”:511,{Hrmm—1"U“”(1)||:1",_1gig T1}.

Then from the definition of R

DUJ) : sup IIYU) (t) _ GUIII
71—13677

= sup “mu—MRI)“
TI—iS‘STl

3 max sup IIR(t)-R(Tt—1)II

T1493?)

which is independent of( and converges to zero in probability as A —-) 0 since L is

finite and we have shown IIR(t)II converges uniformly to 0. By the definition of D,

the Lipschitz property and the vector inequality IIrII S 1/m. maxi I;r,-I, :2: E R’" we have

    

t

D(j,l) ___ sup / EU (Yo-11) _f()»(j—2)))ds

TI—iStSTI - TI—l

t

S fiD‘j‘L’IK sun / llzllds

Tl—lS‘STI '1‘1—1

1 ('_1[ 1 11
<: .—l)] ’)‘< —fl)(’).
_ 2 — 2]

The final inequalities follow from the definition of the random partition formed by

the stopping times T, and by induction. Knitting together over the partition yields:

sgt<T

I. L
. , .- 1

sup {Hym (t) _ 120—1) (21) II} 52 :DUJ) S 272 :DUJ).

1:1 [:1
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Since the bound is the general term of a convergent sum, IIl'U) (t) — Y0”) (t) H

converges to 0 geometrically fast as j —> :10. By taking limits in (5. 5) it follows that

the sequence of processes 3}”) converge uniformly to (it with probability one. Thus

sup {Ho (1) — o")((II {S_< t < T}} 2 11111 SUP {II} (J)( UNI}
t J S<t<T

Z sup {IIY(”(f)- ’ 1)(()ll}
5:1 sgt<T

L

[:1

l
/
\

which we have shown converges to 0 in probability as A —+ 0.

End of Proof of (5.4)

“"0 now show that

811p{Iqt(t)—7ri(t)I:S<t<T1<z<m}—10 (5.6)

in probability and

s1111{ILll(Q)((t)—LIW()I :S g t g T} —1 0 (5.7)

in probability.

Proof of (5.6) and (5.7): Since q : f(a) and 71 : f((1) and f is uniformly continuous

by (5.-1) q converges uniformly to 7r. The log wealth generated by q is

. t m .

Lil""’(f) =/ 111+] (1(12+[Sewis—- / (1*Squ'
. 5' S .

5O



Decomposing the stochastic integral we have

-t t m t

/ (fr/Z :/ (1*(1— 7))ds + / 2012M” +/ q‘odB.

s s . s 5

Using (1.3) it is easy to see that the each of the time integrals converge uniformly in

probability to their 77 counterparts. For example

I

[Shh—mam.“ sup |q() —7Tz(t()I/S Ends—10

b<t<T

in probabilitv. B1 Le1nn1a5 .1 the integrals with respect to Brownian Motion converge

uniformly to 0 in probability as well.

End of proof of Theorem 2.2 C]

Remark 5.1.

Let g be defined for y E Rm and v E D’” by g(y§v) = m 17(PE;;1)1)+1. The first

1:1”) _

 

order partial derivatives are:

(99 (31W) — ney" (1+ 25.55511“ch — 1))

 

 

gmtuw) = m 2

J” (1+Z,-"i__v.((e12 —11)

(k) . ,, _ 3901;“) _ ~77vkeyk (ey‘ — 1)

g (y. 1,) — 7—— — 2

yk (1+2121UJ(6y’ — 1))



and the second order deri1-'ativ(~1s are

 

 

0-29 (y; I‘) ”()I/1+!lk (1k (1+ 21¢: '15:]- (of/J _ 1) _ 131(ny _ 1))

. : — 3

0.1/101/11 (1+ 2:3”: 1‘“(ff/J — 1))

02y (.11; U) : _qm (u. 1,.) 21.16""

()ykdyl (1+ 2771:1251“)J _1))

(1+ 25-56519] (eyl — 1) — '11,- (ey' + 1))

(1+ 2;":(633/1 —1))2

(1+ Zfik v] (eyi — 1) — pk (eyk + 1))

(1+Z]_ ll/‘j(((91—1))3 °

029 (.17: '1') ,-
—('T~’y_ = 9()(.l/§’U)
 

0'29 ('11: v) .
0.2—“ = 9‘” (17:21) 

where i, 117,1 are all distinct. Each of the derivatives above is continuous as a function

—1

of y. Also it is easy to check that (1 + 23.71:] q]- (e-‘U — 1)) S maxj elyll. Using this

bound implies that the derivatives are all bounded in absolute value by maxj (23'3’1'.

Theorem (2.3). Let 7] > 0 be constant. For any bounded stopping times S and T

with 0 < T — S S 7 and any non short-selling constant target 11 E 7'0 (Dm) the

EG(7},S) portfolio 77 satisfies

1 T 5 . T

Lli'gzr) —~LW(s')r) =—/ (71' — u) 2(71 — u.) dt + 7—2/ n’Zert

[”7 I 2 s 2 S

 

—§[25221WW))-d(u||7r(S)).
7]

Proof. The proof follows by applying Ito’s formula to the relative entropy function (1.



First we use the definition of (1. since u is constant we have

d (up (711 — (1(un (511

"I

_ y. “(1 _ _ “_i _ (1 771(7)

— log (7101“) —Zm [log (“0) lg(W0(T))i

110 m 5 ul- 5 71.- (S)

"10g (10(5)) + Z; [log (70) -10.; (Wash

_ . 770 (S) .. 1 , _ .
log (750 (T)) — u. ((1 (T) (1 (S))

: l1((1' (T)) — h ((1 (S)) — 11* (a (T) — (1(5))

  

  

 

where h : Rm —1 IR is given by Ma) 2 log(l + 2216‘“). Relating to f used in the

definition of 71 and using (5.1) we. calculate the partial derivatives as:

(7h ((1) ea"
 
 

 

hi ((1) 2 Ba,- : 1 + 2:1 e01- : f‘(a‘)’

_ 32/1((1) _

hij (a) -— 0050a.) - —fl(a')fj(a‘)9

02/1 ((1)

 

(111(0) 2 02a" -—- f1(a)(1- 13(0))-

Coniparing with the definition of the EC (7), S) portfolio we recognize that h,- (a) = 71,-,

h.”- (71) = —71nrj and hi,- ((1) = 7n (1 — 71,). So by Ito’s formula

'1' 752 '1‘ "2 T m

h ((.1(T)) : 11((1(S)) +/ 717111 — —/ 71‘271dt+ —/ Z min-(it.



Recalling the differential for (1: (10,-: ndZ, + I] IS — 2,71] (It, we get
11‘

2

(1(11II71(T)) — (1(11II71 (S))

.7 '1‘ 771

: (71 — 11))(111— —/ST 71 271(lt + —/s 71Eadt

1.. 7 . Z?
.. 5 7] *

: 11/1 (71 — '11.) (12 + —/ST 71 — u), Emit — 77/T (71 — a) 271(1t

5 2 Z( - S

[)2 T
__2_ 5 71*271111 + —/ST 271,211,111

: 7]~’(LH[5"))__L11.7[(;:Zl,)) — 51/511“ — 11) Z (71 — '11.)(1t

2 T 2 T m

7} 77
—— 71*271111 + — 71,Z,,dt.

2 . 2 . E}

where the final equality follows from the general expression for the log wealth (1.6).

With rearrangement of the terms and division by 77 we obtain the result. Cl

Lemma 5.2. TM = inf {t 2 0 : max,- fot 2,,- = 1V} is a stopping time with respect to

Q; =0{S(s) :0 g s S t}.

Proof. We show that max,- fot 2,,ds is 9, adapted. For each partition of the interval

[0. t] the following sum is clearly g, measurable

k

‘tk 1 2 ti: 1 £1:

: Z / (11,-— —Z,,) (It + 2: / (11, — —Z,~,) (It/ 0,-dB

k 171—1 2 k tk-l 2 11—1

2

£7:

+ Z / 0,111;

k tk—l

Z Il"8(sz‘(fk)) " log(S,(tk_1))I2 : Z I]: (Hi -‘;’Ziz (it +/ 101113

k t1.—

   

Since the time integral has bounded variation and the Brownian integral is continuous



the first two terms converge to 0 almost surely as the mesh size of the partition

converges to 0. By Theorem 1.5.8 011 page 32 of Karatzas and Shreve, the third

'tA 2 t
)‘ ‘ . ' '.)‘ \‘ v.. ' . ‘ ' '. . .' ' '."

term 2k Um.” o,(lB] couxcrg<s to f0 ands 1n I)l()l)dl)lllt.). Hence there exists a

subsemienee which converges almost surely Thus, as the almost sure limit of Q,

. t . . .

measurable random var1ables, f0 Ends 18 g measurable, as 18 the maxmium over

i. 1:]

Corollary (2.6). Let 11.. E 77’“ be (1 piecewise target with n jumps. Let S = 0, h! > O

and TM : inf {t > 0 : maxifol Ends : .M}. Choose 7) = $7 then the EG(7),0)

portfolio 71 with 71(0) : (71—:11,“ satisfies

( 1 ( > 1 T
LNW) —L111;[O.’.t) 2 5 f0 (”-1”) 2(71-11)dt

 2 (1+ 71K + log(m +1))

where K = maxis111j10<sgnl {—- log(71,~(s))}.

Proof. Let t1, 1,, be the jump points of it. From (2.3) we have

u 1 t .1 ‘
Ll‘l"[))7rt)) — Lilli) 2) = — / (71 — u) E (71 — ‘21.) dt + Q / 71*271dt

’ ’ 2 0 2 0

_a ‘"’ 1. d(u(t—)H7(t))—d(u(0)||71(0))
2/0 2 .23an 7}

+17“ 5: [d(u(t1—)ll71(tk)) — d<u<tk>nw (11m.

tk<t

 

But. (l(11(tk—)||71(tk)) — (1(u(tk)|l71(tk)) S 111ax09§m{—log(71,;)}. The result follows

from the Choice. of I]. [:1



Theorem (2.7). Let u E 7""! (Dm). Suppose that 7h is a positive real valued process

satisfying (2.1,). If I), is right continuous and bounded almost surely then for the EC

portfolio 71 we have

.. .. 1 'T . 1 "T
Lit—(‘37.)—L11'[‘5.?,) : —/ (71—u) Z(71—u)dt+—/ 7771*271dt

“ 2 s 2 s

1 T m.
T

___/ Emu-2.111111] (1‘1’1
2 S i

S

(l(flfl|7ft)

’It '

where ‘1’; :2

Proof. Since 11 E 7'1“l there exists a sequence of piecewise constant targets whose log

wealths converge to that of 11. Hence there exists a sequence 11A 6 7"” defined on

partitions with mesh size A —> 0 almost surely satisfying the same property. For a

fixed A let S : to 3 t1 3 g tN = T be a partition such that uA is constant on

each subinterval [tk_1, tk). Create the corresponding step function approximation of

7] by 7);“ : 7111. for tk g t < tk+1. Let 71 be the EC portfolio using the varying learning

parameter process 7] and initial value 7110 = f (a(t0)) . Define 71A interatively such

that 713 = f((1(t0)), and over the interval [tk, tk+1) it is the EC portfolio with initial

value 71 (1k) and constant learning parameter ‘77tk- By Theorem 2.3

 

MOT) «1(“Al 1 T A A * A A 1-
Lll'wj.) - Ll’lmT) : i s (71 — u ) E (71 — u )(lt (0.8)

1 T A A * A 1 T m A A
— ’ i I Z i dt — — f I En It r.9+2/S I1 (71 l 71 2/3 121:7? ‘1. t (9 )

(1(“tk+ll|7rfi+l) dlu'tkllfltA.)

+ E - —‘ -
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Now let A —> 0. By definition uA —-> u and Lil/1”” —~> Lil/(“L

We now prove that 71A converges to 71. Let

t

TM = inf {t > 0 : max/ Ell-ids = 111}.

l 0

By (1.3) limTM : 00- almost surely as 111 —> 00. Thus if we can establish the result

for the stopped process 71A(t /\ TM) and 71(t /\ TM) then we obtain the desired result

upon letting M —+ 00. We may assume therefore that maxi fot Ends and the process

7) are bounded by the same AI > 0. Let (1(t; 7)A)i :2 log (g) then
0

77A — 7)) de' + /t (77A — 77) [1211‘ — 21f (0)] d3

5

GNU-01(1) = [S 2
(, ,

[S neg. (f (01A) _ f (1.1)) ds.

l: (7]A '_ 77) (122' + f; (7}A _ 77) B211 — 21f (01)] ds

 

Let b(t) = max. . By the right

 

continuity of 7] and Lemma 5.1, b(t) converges to 0 uniformly in probability. Let

K be the Lipschitz constant for f, since 7) and 212i are bounded we have

£012,111 (0A) — f ((1)) (ls 3 KM2 ls ||ae(s) _ a(s)llds.

  



For the norm of the difference then

‘
0

9
-
1

I

HM) — (1(1))? = 21-13(1) — (1'.-(1))?

g Elke) “1112/ “an s—)c1(s)||ds]2

i=1

3 2771.b2(t) + 211'21114777,(T — S)/ ”(13(3) — (1(s)||2ds
s

where the last inequality follows since (.1: + y)2 S 251:2 4— 2:112 and from Jensen’s in-

equality. Let 7 = 21171114 m(T —— S) then by Gronwall’s inequality

1

“(9(1) — (1(1))||2 < 27nb2(t)+ y/ 2771b2(ss)exp {'1((t— s)}ds.

0

Hence s11p0§tST ||(1A(t) — (1(1)”2 —-> O uniformly in probability. Since f is uniformly

continuous we also have 311903th ||71A(t) — 71(t)||2 —> O uniformly in probability. Us-

ing Lemma 5.1 as in the proof of Theorem 2.2 we can show that L1'V(“A) — LWl”)

converges to 0 as well. Hence the 1118 of (5.8) converges to the rhs of (2.7). Since uA

and 71A converge to u and 71 respectively we have that the first 3 terms on the rhs of

(5.8) converge to the corresponding integrals in (2.7). Hence

 
Z dlutkfiuillflf—EH) _ (“Uh-llflii)

k 771-1+1 mic

must converge in probabillty. We, formally denote thls 11m1t as fg (Nit. E]

Lemma (2.8). Let u be a continuous process of bounded variation taking values in

the interior of D", i 6. fm allt > 0 u) E 4-— {116 Dm: 2:: 111.,- < 1.11.,- > 0}. Then
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u. E T(D,,,), i.e. up to time t the process 11 generates finite wealth. And for 77 > 0

constant and the Ean) portfolio we have

31‘

m T u.

/S 1111,: 11—1 d(u.(T)ll71(T)) — d(i1(5)ll71(5)) -— 2/ [log (E) — 11,]1111

i:l 5

Proof. Consider the expression on the right hand side of (1.7). By the assumed

smoothness the time integrals are finite for each t. Since u has bounded variation we

can interpret the stochastic integral by “integration by parts” as

t t

/ u“dZ : UTZT — / Z*dlt

0 0

where the rhs is well defined since the semi-martingale Z is continuous. Hence u is a

target. Since 77 is constant the sum (2.8) can be decomposed as 77‘1 times

2 [d (”an ”TM-+1) 1 “Mullfiull = (“UT—H771) - d(u5||715)

k

_Zld ('ulk limit) _d(u’tk—1ll7rtk)l'

The partial derivatives of d(u)|v) are

,(ullv) : log (El—i) — log (3).

i “'0 ("0

The above partial derivatives are continuous functions of 11 away from the boundary of

   

Dm. Since 11 is continuous and restricted to the interior of D,,,, on [8, T] it is uniformly
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bounded away from the boundary of D,,,. Recall that. almost surely (1,- : log (it) is

uniformly continuous on [5, T]. So

2: [(l(u1,.ll711,,) -d(u.1,._,I|711,.)] : Z/tk [log (:42: )— (1,(tk)] du,

k 1,,_ 1 1 0
I:

almost surely as the mesh size A —> O by uniform continuity of (1,. [:1

Theorem (2.9). Let u be as in Theorem 2.8 with fooo d|u| = K. Let S = 0, A! > 0,

c > 0 and

log(T—i)
7T0

-1

T0111) : inf {t > 0 : max/ Bids 2 Mormax
0 2l

  

:0}

Choose 7]—— 2V log—mt]- then the EG(7},()) portfolio 71 with 71(0) 2 (771151“, satisfies

LW“r

[0’T(M.c)) _ 2

—Ll*V(") > 1/T (71 — u)* E (71 — u) dt + Q /T 71*271dt

[0T(1‘11)) 0 2 0

 

 

 

mM

——2 l ' . 1 ' 1M — ..K .\/og(m+ )m c \/4log(m+1)

P7oof. As before we use that d('(n—u|) m) _<_ log(m + 1) and note that
m+l)1

0 > /Z [log (20)]1111,— Zu, log (11,-) 2 —log(m+ 1).

i:O
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hence fOT 2:1 [log (770)](1114 Z — log(m + 1). By the definition of the stopping time

'1) M.c)
m

/ Z [0,. (flldul— g
M

- 0
i:1

and

1 T m

§/0 E71321] (it < 1"].

The result follows using the choice of 77 with Theorem 2.7 and Lemma 2.8. C]
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Chapter 6

Final Remarks

In Chapter 2 we were able to extend the DEG portfolio to continuous trading and

obtain a lower bound in performance versus the bcrp and larger targets with a finite

number of jumps and with bounded variation. These results give conditions under

which the EC portfolio can achieve nearly the same exponential growth as these larger

targets. At least in markets where it stays away from the boundary, the EC portfolio

can track targets which are not constant but do not vary too much. An important

feature of these results, as opposed to those obtained by Helmbold et.al. for the DEG

portfolio, is the development of an identity containing positive terms that are large if

the EC portfolio is distant from the bcrp. In Chapter 4 we have presented examples

of simple oscillatory drift markets where the EC portfolio outperforms the universal

portfolio and the bcrp with probability arbitrarily close to 1. A second important

feature of the EC portfolio is that since it can be straight-forwardly updated on-line

it is much easier to calculate than the universal portfolio.

Further examination of the behavior and properties of the solution to (2.2), the-
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oretically or via simulation, is necessary to further delineate the market conditions

under which the improved performance of the EG portfolio may hold.

The presence of learning parameter I] in the EC algorithm can viewed as a boon or

bane. On the one hand, the investor is allowed flexibility to control risk by choosing

7) large or small. We see that choosing a good 7) can be done by setting a level of

future variation out to which the investor wants protection. One can remove this

dependence by considering a doubling scheme where the portfolio is run over longer

and longer epochs reinitializing each time. With Theorem (2.7), we have laid the

groundwork to choose 7} adaptively and perhaps obtain better bounds.

Cover and Ordentlich (1996) and Helmbold et. al. working with discrete trading

introduce the concept of side information. In addition to the market stock prices the

investor is privy to extra information upon which to base the investment strategy.

For positive integer J they define an adapted random process Y, taking values on

{1,2, ..., J}. Then they partition according the value of Y and run J copies of the

algorithm. Through examples of stock data, Helmbold et. al. exhibit simple forms

of side information which can greatly increase the wealth obtained by the DEG and

universal portfolios. In the continuous case we can also run J copies, however, when

the process Y returns to state i there is no guarantee the stock price is the same as

when it last left state i. Hence, in order to extend the results for EG portfolio to side

information, we would need to modify the proofs to account for possible jumps in the

stock prices.

As (10 Cover and Helmbold et. al., we assume that there are no transaction costs.

For rebalanced portfolios in continuous time we must continuously buy and sell to
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maintain the desired pi'Oportion of wealth in each asset. One approach to solving this

difficult problem may be to modify (1.8) to include a penalty for over trading.
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