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Abstract
Alexander K. White

In a non-probabilistic setting, with discrete time trading, Helmbold et. al. (1998) in-
troduce the discrete exponentiated gradient (DEG) portfolio. They prove that under
specified conditions it achieves nearly the same wealth as the best constant rebal-
anced portfolio (berp) determined retrospectively from the actual market outcomes.
For continuous time trading and a stochastic model, we prove that the DEG portfolio
converges to the solution of a stochastic differential equation. Under specified condi-
tions this continuous EG portfolio achieves an exponential growth greater than the
berp, recovering a portion of the additional exponential growth from the best limit
of piecewise constant rebalanced portfolios. These results do not require any prior

knowledge of market parameters.
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Introduction

A fundamental problem in finance is to choose an investment strategy which maxi-
mizes wealth. Strategies that require the investor to peer into the future are seemingly
unattainable. Cover (1991) proposes to target one such strategy namely the retro-
spectively best constant rebalanced portfolio (berp). A constant rebalanced portfolio
is an investment strategy which maintains a fixed proportion of total wealth in each
asset. The retrospectively best of these constant rebalanced portfolios is the one
which, for the actual market fluctuations experienced, would have earned the most
money. This target varies with time, outperforming the best asset and the value line
(geometric mean) index. In discrete time trading without transaction costs and with-
out any probabilistic assumptions Cover constructs a “universal portfolio” depending
only upon the past asset prices which, in the worst case, grows nearly as fast as this
target, losing at most order log(n) in the exponent, where n is the number of trading
periods. Under specified regularity conditions, Jamshidian (1992) extends Cover’s
results to continuous time.

In the same discrete time context, Helmbold, Schapire, Singer and Warmuth

(1998) present a simpler, more market responsive, algorithm which likewise at least






achieves almost the same wealth as the best constant rebalanced portfolio, losing at
most order \/n in the exponent. This algorithm, here termed the discrete exponen-
tiated gradient (DEG) portfolio, employs a multiplicative update derived using the
framework introduced by Kivinen and Warmuth (1994) for a problem of linear pre-
diction. A key feature is that the DEG portfolio depends only upon the current asset
price relatives and the portfolio in the previous trading period (by price relative we
mean the inter-period ratio of the price). The universal portfolio, by contrast, de-
pends upon the entire past history and is highly computationally intensive. For the
continuous time stochastic model usually employed in option pricing we prove that
the DEG portfolio does indeed converge to the solution of a stochastic differential
equation. This solution, which we call the EG portfolio, under specified conditions
achieves at least nearly the same wealth as the berp for continuous time. Prior knowl-
edge of market parameters is not required. Exploiting the time local nature of the EG
portfolio we then examine the class of better time varying targets which are limits of
piecewise constant rebalanced portfolios. Our formulas identify market conditions in
which the latter earn substantially more than what the best constant portfolio would
earn and the EG captures a portion of the exponent of this additional return. We
examine market conditions which resoundingly illustrate this point.

Chapter 1 develops the continuous time model for the market and the possible
portfolios as well as the target strategies whose wealth we would like to approximately
achieve. The DEG portfolio is defined and the key results from Helmbold et. al are
presented in section 2 of Chapter 1 . All of our main results are presented without

proof in Chapter 2. In section 1 of Chapter 3 we examine the universal portfolio and



compare its behavior to the EG portfolio. In section 2 of Chapter 3 the behavior
of targets and their corresponding wealths is investigated. Examples where the EG
portfolio outperforms the berp and the universal portfolio are given in Chapter 4.
Chapter 5 contains proofs of the main results. Finally, Chapter 6 summarizes these

results and discusses possible extensions.






Chapter 1

1.1 Setting

Consider a financial market in which one bond, with price process 3, and d > 1
stocks with price processes S = (51, S,,...,S»)" are traded continuously in the time
interval 0 <t < oo, where * denotes matrix transpose. Unless otherwise specified, all
processes will be defined for 0 < ¢ < co. The underlying source of uncertainty in the
market is an m-dimensional standard Brownian Motion B = (By, B, ..., B,)" defined
on a complete probability space (2, F, P). We assume this space is rich enough to
accommodate a random variable £ independent of B. The term “adapted” will refer

to the filtration
{(Fi:0<t<oc}=0({{&B(s)}:0<s<t}UN)

where N = {4 € F: P(4) =0}.






The price processes of the assets evolve according to the equations

d3 = frdt, 3(0)=1 (1.1)
and for 1 <i<m
dS; = S, |mdt + Y o0ydB;|,  Si(0) =1, (1.2)
j=1

where the real valued interest rate r, the R™-valued drift 4 and the m x m matrix
valued volatility o are all adapted processes. Let ¥ = "0 be the covariance process.
In order that (1.1) and (1.2) have well defined solutions, we require that almost surely

for each T < oo we have

Pl + > (sl + i) | dt < oo, (1.3)

=1

[

At each moment in time a trader is allowed to shift resources between the various

assets. An adapted process which defines the proportion of wealth in each stock is

called a portfolio and is formally defined by

Definition 1.1. An adapted portfolio is an adapted R™ -valued process p which sat-

1sfies the integrability constraint

-
/ (p"Ep+|(p—rlm) pl)dt < oo (1.4)
0

a.s. for each T > 0 where 1, = (1,...,1)" € R". Let P (A) be the collection of all
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adapted portfolios taking values in A C RY .

Since for each portfolio p; represents the proportion of wealth in S;, we define py =

1 — p*1,, to be the proportion of wealth in the bond. Accordingly, when convenient,
P im gLy,

we refer to the bond as the “0 th” stock. The wealth process, W, gencrated by a

portfolio p evolves as

", dS,
diV =1V rdt + i— | .
(o 3o
By Ito’s formula

AV 1(diW)?
w2 w2

dlog(W) =

1
= [por +p'u— 51)'21)] dt + p*odB

1 & 1, .
[r + 5;1)1')::& 5P ZP} dt +p'dZ

where Z = (Zi,...., Zy) with Z; = log(37'S,), © = 1,...,m represents the vector of

discounted stocks. The assumptions (1.3) and (1.4) insure that 3(¢) > 0 for t > 0

and that the semi-martingale, LIW® in (1.6) below is a well defined process.

Definition 1.2. The semi-martingale LW® given by

t t 1 t m 1 t
LW®(t) = / rds +/ pdZ + - / piXds — —/ p Epds
0 0 2 Jo ; 2Jo

s the log wealth generated by the adapted portfolio p.

We sometimes use the notation LW, = LW (t) — LW (s). We wish to investi-

6



gate the behavior of special portfolios, in particular their ability to generate wealth
in comparison to ideal (and impossible) investment strategies that may use future
information. We shall refer to these ideal strategics (or their corresponding wealths)

as targelts.

Definition 1.3. A R™ valued process, u, which for all t > 0

t t 1 t m 1 t
LW (¢) = / rds + / wdZ + = / 0 Sids — / wSuds (1.7
W=, : 1), 2 2 J, (7

is well defined and finite a.s. is called a target. The process LW ™ is called the target
log wealth. Let T (A) be the set of all targets taking values in A C R™. Any constant

mazimizing { LW ™} is called a best constant rebalanced portfolio (berp).

Not every R™ valued process is a target. It is well known that Brownian motion
is not of bounded variation (and hence neither is Z) and the stochastic integral in
(1.7) need not be defined for non-anticipating u. An example is given in Chapter 3.
For targets of bounded variation, however, the stochastic integral on the rhs of (1.7)
can be defined by “integration by parts” (see Propostion 3.7). Also in Chapter 3, the
class of constant targets 7°(A4) = {u € T : u, = a, for some a € A} and piecewise
constant targets are examined. Let D,, = {r € R™ :z; > 0,)_", z; <1} be the
m dimensional simplex. We show for constant targets that argsup,.p, {LW(")}
always exists but may not be unique. It is important to realize that these targets
are continuously trading but are maintaining fixed proportions a;, 1 < 7 < m in the
stocks S;, 1 <i<m.

Please note that since it is determined from the actual observed price process the



Figure 1.1: The relative entropy function: d(u|lv), (u,v) € (0,1)%
berp is not an adapted portfolio.
In the next chapter we shall restrict our targets and (adapted) portfolios to the
simplex D, which prohibits borrowing and short-selling. By including the reciprocal
of each stock in the model as well as a “margin” component we can, however, allow

an investor to sell short and buy on margin in a limited sense. See Cover (1991).

1.2 Discrete Exponentiated Gradient

The discrete exponentiated gradient portfolio developed by Helmbold, et. al. is a
modification of on-line learning strategies first used in regression. Given an initial

value ¢ (k) € R™ which represents the value of the portfolio to be used at time #;,
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maximize:

F(p)=nLW, = d(p (m)) (1.8)

(thoths

where d is a penalty term for straving too far from the initial value and n > 0 is a
constant, which can be thought to control the rate of response of the algorithm to
changing market fluctuations. They consider various choices for d but focus on the
relative entropy defined for u,v € (0,1)™ by d (u.v) = Y10 u, log (%l) This corre-
sponds to the Kullback-Leibler distance between two m + 1-dimensional probability
vectors. For m = 1 the graph of the relative entropy is presented in Figure (1.1).
This graph reveals that d is relatively flat except at the boundaries. This observation
will prove useful for bounding terms involving d. Replacing L"Vz(:)tk,,, in (1.8) by a
first order approximation Helmbold et. al. find a simple closed form solution to a
modified version of (1.8).

For a bounded stopping time S and a positive constant 7 > 0 let
Part (S,7,A) = {t,,0 < k < N}
be a partition with non-random increments such that S =ty <t < --- <ty =7

and mesh size A = sup {1 —t:0< k< N -1}

Definition 1.4. Let £ € D,, be Fs measurable and n > 0. The price relatives for

the stocks are denoted X, (k) = %—1—) k=1,...,nand i =1,..m and for the bond

Xo(k) = ’:('i*_)) The expression DEG(n, €), i.e. discrete exponentiated gradient, unll



dl




denote the portfolio with

q(to) = &

(1.9)

n.X; (k)
q (tk=1)" X (k) + qo (tx-1) Xo(k)

q,(t) = (Il(fk—l)(‘xl){ }Vk_l, te <t <tgyr

where

m

Vi = ZQi (tx) exp
1=1

{ nX, (k) }
q (tk—l)‘ X (k) + qO (tk—l) 4\’0(k)

nXo (k) }
q (te=1)" X (k) + qo (tk—1) Xo(k)

40 (1) exp {

1$ @ normalizer which ensures that q € D,,.

Although suppressed in the notation, the DEG portfolio depends on the choice of n
and the trading times (i.e. the partition).

To see how the DEG portfolio works notice that g (tx—1)" X (k) + qo (tk=1) Xo(k)
is the wealth growth obtained over the interval [t,_;,#x) by managing the assets
according to ¢ (tx_,) at t,_, and holding them until t,. The portfolio is then updated
at time t; according to the ratio of the price relative X,(#x) to this wealth growth.
If holding the ith stock would have made a lot money relative to what we just made
previously using ¢ (tx_;) we increase the amount of money invested in the stock. The
greediness parameter n determines how sensitive our algorithm is to shifts in the price
relatives.

A kev result from Helmbold et.al. is restated below. Let X = (X, X*)* and

10



G = (¢,.¢")*. By (1.3) the price relatives are positive. If we only trade at the time

points t; the log wealth generated by the DEG is ), log ( *(tx) X (tk))

Theorem 1.1. (Helmbold, Schapire, Singer and Warmuth, 1998) Let u € D,,,, be

ming ; X, (fx)

constant and m

=c>0. Forn>0,

Zlog( ) Zlog (u X(t ) Mf]—(@)—l - —g(% (1.10)

Furthermore, if q(to) = (m + 1) '1my41 and we set n = 2¢\/2log (m + 1) /n then we

have

3 tog (7700 ¥00) - tos () > ~HERED

2c

The left hand sides of (1.10) and (1.11) represent the difference in log wealth
between the DEG and an arbitrary it constant target u through n trading periods.
Therefore they have found a lower bound on the performance versus the non-adapted
best constant rebalanced portfolio determined retrospectively from the observed price
processes. We note for future reference that their bound, due to its dependence on the
square root of the number of trading periods, must be modified if we are to extend this
result, through rapid trading, to continuous trading. It is important to mention that
in their work Helmbold, et. al. do not assume any probablistic model and prove that
(1.10) and (1.11) hold generally for any sequence of positive price relatives satisfying
the boundedness constraint. In a market with exponential growth and A = 1, then

n =7 — S and by (1.11) the ratio of wealth generated by the DEG to the wealth

11



generated by the berp is of the order eV ("~%) Hence the DEG is capturing at least

the first order exponential growth of the berp. From (1.11) we can see that a good

N

choice of 7 is of the order n = (7 — §) 2. In Theorem 1.1 it is assumed that the ratio
of the maximum price relative to the minimum price relative is bounded. In their
paper they are able to remove this assumption for a modified version of the DEG and
an expression similar to (1.11) but weakening the bound to order (7 — S)%.

These lower bounds for the DEG vs. the berp are weaker than Cover obtains
for the universal portfolio vs. berp. We shall see, however, that the DEG, perhaps
because it responds more readily to market fluctuations, can under specified condi-
tions outperform the universal portfolio and even the berp, whereas a result from
Jamshidian proves that the universal portfolio exhibits the same exponential growth
rate as the berp. Helmbold et. al. performed experiments with the few specific ex-
amples of actual data from the New York Stock Exchange accumulated over a 22 year
periodwhich first appeared in Cover (1991). In these experiments the DEG portfo-
lio outperformed the buy and hold strategy for the best stock and Cover’s universal

portfolio and achieved only slightly less wealth than that achieved by the berp. See

Figure (1.2) which is reproduced from their paper.

12



200 | | |

Universal --------- ‘
150 Best stock —— ]

Figure 1.2: Comparison of wealths achieved by the best constant rebalanced portfolio,
the DEG portfolio, and the universal portfolio. The market consists of Commercial
Metals and Kin Ark. The wealth achieved by the EG portfolio is close to the wealth
of the berp and exceeds that achieved by the universal portfolio.
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Chapter 2

Exponentiated Gradient

For clarity of exposition no proofs of the results are presented in this chapter. Proofs
of all results may be found in Chapter five.

It is not a-priori clear that the DEG portfolio has a continuous limit or that the
limit will exhibit the same good properties as the discrete portfolio. In particular one
looming difficulty, which we must overcome, is the presence of \/n in the right hand
side of (1.10) which makes it appear that the bound blows up. In this chapter we
manage to extend the DEG portfolio to continuous time trading and present results
describing the wealth achieved in comparison with constant targets and limits of
piecewise constant targets. We now establish the continuous version of the DEG by
letting the mesh size A — 0.

Before we can find the continuous limit of the DEG we need the following:

Theorem 2.1. Suppose .7 and ¥ are Fy adapted processes which satisfy (1.3), S

s a bounded stopping time and £ € R™ is Fs measurable. Let 1 be an adapted RY

14



valued process such that for each t > 0

[

almost surely. There exists a unique strong solution {a (S,t),t > S} € R™ to the

m

|nr| + Z (|mpei] + 7)22,4-)} ds < 00 (2.1)
=1

following stochastic differential equation

do; = ndZ, + 7 BE” _%.f (a)] dt (2.2)

with initial o (S,0) = € and where f : R™ — D,, is given by

m -1
fi(a) =e™ (1 + Ze“’) , 1=1,..,m. (2.3)
1=1

Using the process a we define an adapted portfolio which continuously updates.

Definition 2.1. Let (S, t) be the solution to the stochastic differential equation (2.2)
with initial condition (S, S) = & € Fs and n > 0 as in Theorem 2.1. The D,, valued

process m(t), t > S, defined by

~1
m

T =e" <1+Ze°') , t=1,....m
j=1

1s called an exponentiated gradient with learning parameter process n with starting

time S (or EG(.S)) portfolio.

-1
The corresponding amount invested in the bond is 7y = (1 + 300 e")) . Since

log =+ = «; we see that the EG portfolio places more money in the ith stock where
o v

-

15



the discounted stock value, Z; increases.

Theorem 2.2. Suppose that T is a positive constant, S, T are bounded stopping times
with 0 < T — S <71 and n > 0 is constant. Under the conditions of Theorem 2.1 the
DEG(n) portfolio q converges uniformly in probability to the EG(n) portfolio m and

the LW (@) converges uniformly in probability to LW (™ on the interval [S, T).

Although in Theorem 2.2 we see that the 7 is the limit of ¢, we cannot use
Theorem 1.1 to evaluate the performance of 7 since the bound in (1.10) increases
with the number of trades n which tends to co as the mesh size is decreased. The
following continuous time counterpart of Theorem 1.1 resolves this question. In effect
trading rapidly (i.e. over small increments) involves price relatives close to one and
produces an identity, rather than lower bound, in the limit when we keep track of all

terms. Stochastic calculus facilitates the bookkeeping.

Theorem 2.3. Let 1 > 0 be constant. For any bounded stopping times S and T with
0 < T - S < 7 and any non short-selling constant target u € T°(D,,) the EG(1,S)
portfolio m satisfies

T T
LW - LW = L / (m—w)' S (r —u)dt + 2 / T Emdt
’ - 2 /s 2Js

(2.4)

"Nov d (ul|m (T)) — d (ul|7 (S)
—3[5 Z;ﬂ'iuudt'i' )77 I (5))

Comparing (2.4) to (1.10) we see some similarities and many differences. First of

all (2.4) is an identity which retains and gives meaning to terms discarded in (1.10).

16



The two negative terms of (2.4) are — 2 fs - "omSudt and = , only the second

d(uf|7(S5))
n
of which appears in (1.10). Using the fact that 7 € D,, we can see that the term
-1 ['Z Yo, mEudt is the counterpart of —Z5 in (1.10) . The intuition here is that
both terms measure the total variation in stock prices over time. The positive terms
%f:( —u)" E (7 — u)dt and %’” of (2.4) are large if u is distant from 7. This
may seem paradoxical but, as we shall learn, the EG can do well against non-constant

targets where the berp does poorly. By noting that d(u 1n) < log(m+1) we

1
” (n+1)

get

Corollary 2.4. Let S = 0, M > 0 and Ty, = inf{t > 0 : max; fot Yids= M}.

Choose 1) = 4/ i"%;’f—” then the EG(n,0) portfolio m with w(0) = (ml—ﬂ)lm satisfies

T
LH[“) LH[(S"Z > ;/ (m — u)" S (7 — u)dt — \/2log (m + 1)mM
s

for each constant target u. And

t m
sup {g/o Zmzﬁ dt + w} < \/‘2 log (m + 1)mAf. (2.5)
i=1

The stopping T); is a measurable function of the paths of the stock price process
(see Lemma 5.2). Hence for a specified level of variation A/, and the above choice
of 1), the contribution of the negative terms to (2.4) up to stopping time Tj; is no
greater than square root of the variation.

In a reasonable market the wealth of the berp exhibits exponential growth on the

order of the variation (see Proposition 3.3 and the following discussion, for details).

17



As in the discrete case the EG portfolio is at least capturing the first order exponential
growth (if there is any) of the berp. This idea is made more precise in the following

corollary.

Corollary 2.5. Let S = 0, M > 0 and Ty = inf{t >0 : max; [} $2ds = M}.
Choose 11 = \/% then the EG(n,0) portfolio m with 7(0) = mlm satis-

fies

llt
o)

Lw) ! 1
B0 > 0 (m74) (2.6)

[SVTA\I )

L)

[STar)

ut
whenever LVV[(SJ)) = O(max; fot Y2 ds).

In Theorem 2.3 and 2.5 we employ a constant learning parameter and compare
with a constant target. In the following generalizations of Theorem 2.3 we allow both

to vary over time. First we define a very general class of targets.

Definition 2.2. A target u € T s called piecewise constant if there exist a finite
sequence u, € R™, k = 1,...,N and a (possibly adapted) partition S =ty < t; <

<o« <ty =T such that

N-1
uy = Zuk {te <t < trg)
k=0

Let TP (A) be the set of all precewise constant targets taking values in A C R™ and

let

TP (4) ={ue T(A): Ju, € TP (4) 3 up > w, LW —, LW}

18



where the convergence 1s uniform in probability.

To compare performance against piecewise constant targets we generalize Corol-
lary 2.5. Suppose u € TP is a piecewise target with one jump at stopping time
T > S. Fort > T, using Theorem 2.3 on the two subintervals [S,T) and [T,t) we

have almost surely

LH./'[(;Z) — LU'[(;‘Z) = %/; (m—u)"T(r —u)ds + g/st T Erds
RS  d(u (@) |lm (#) —d(u(T-) |I= (T))
—5/5 izz;ﬂ'iziidb + -
d(u(T—)||m (T)) — d (u(S) |7 (S))

n

Comparing with (2.4) we see an additional term involving the difference in the relative -
entropy at the jump point. Hence using the inequality d(u||v) < maxo<i<m {—log(v:)}
we can generalize Corollary (2.5) to the case where we allow the target to have a finite

number of jumps.

Corollary 2.6. Let u € TPC be a piecewise target with n jumps. Let S =0, M > 0
and T); = inf {t > 0 : max; fot Yuds = 1\/[}. Choose 1) = \/mLM then the EG(n,0)

portfolio m with 7(0) = (—ﬁlm satisfies

. e .
LW — LW > 5 / (1 —u)" 2 (7 —u)dt
0

mM;
- %1(1+71K+10g(m+1))

where K = max; supy<r,, {—log(mi(s))}.

19



From Corollary (2.6) we see that the EG can track the larger piecewise constant

targets as long as the market does not force m towards the boundary of D,,.

Theorem 2.7. Let u € TP (D,,). Suppose that 1, is a positive real valued process
satisfying (2.1). If ny is right continuous and bounded almost surely then for the EG

portfolio m we have

m ~(u ]' t 1 T
LWy - LW, = 5/ (7 — u) E(?r—u)df+2/ nm* Srdt
S

_.;./ 2777r,2,,df+/; dv, (2.7)

d(u]
where ¥, = ——((u:"'lm).

The expression fST dV¥, is understood to be the limit in probability of

Z d (u'k+1 ”mkﬂ) _ d (“‘ik”mk)

k Nty 41 Ui

(2.8)

which must exist since all other terms in (2.7) do. The proof is given in Chapter
5. We now the consider the form of (2.8) in the case where 1 is constant and u is

smooth.

Lemma 2.8. Let u be a continuous process of bounded variation taking values in the
interior of Dy, te. for allt > 0wy € A = {u€ Dp:Y " u; <1l,u;>0}. Then

u € T(D,,), i.e. up to time t the process u generates finite wealth. And for n > 0

20



constant and the EG(n) portfolio we have

T T w
/s dv, = n~! ((l(ll(T)”‘/T(T)) —d (u(S)||7(S)) - Z/s [log (Zli) - a,»] du) :

The final result of the chapter gives conditions under which the EG portfolio can
perform as well as smooth targets. As we have seen above the key restriction is that

the portfolio must stay away from the boundary.

Theorem 2.9. Let u be as in Theoremn 2.8 with fooo dlu| = K. Let S =0, M > 0,

c>0 and

T
log(—)
To

1

t
Tirrey = inf {t >0: max/ Y2ds = Mormax
1 0 ]

:C}

Choose 1) = 2y/ 2D 4pen the EG(n,0) portfolio m with 7(0) = ——1,, satisfies

mM (m+1)
1 (T T
y-(m) _ (u) > - a0\ _ E *
LH[O‘T(M.”) L”[o,’l'(”‘r,) > 2/0 (m—u)" X (n u)dt+2/0 m*Erdt
(2.9)
mM

—-2y/1 DmM —cKy{|——F———.
Vieg (m + 1)mM — cK Tog(m+1)

21



Chapter 3

3.1 Cover’s Universal Portfolio

Cover’s universal portfolio, introduced in 1991, uses an averaging method to pick
the portfolio. The portfolio vector used at time ¢ is the past performance weighted

average of all constant portfolios. Cover and Ordentlich (1996) introduce the notion

of side information and generalize Cover’s algorithm by using the Dirichlet(3, ..., 3)
and the Dirichlet(1,...,1) priors over the set of all portfolio vectors, i.e.
p;VV(p) t)d\
pi(t) = In. ( i=1,..m (3.1)

 fp, WP (NN

where A is one of the Dirichlet priors mentioned above. In discrete time trading,
Cover and Ordentlich prove that under no assumptions on the price relative vec-
tor (except non negativity) the Dirichlet(3, ..., 1) weighted universal portfolio, in the
worst possible case, grows nearly as fast as the berp losing at most % log(n) in the

exponent where n is the number of trading days and n is the number of stocks. Using

a recursion scheme they can compute the portfolio on-line with storage requirements
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growing like n™~!.

Emploving the model (1.1) and (1.2), Jamshidian (1992) extends Cover’s original

portfolio to continuous time. He assumes that the following limits exist

E | [, Sds] E [log(S
¥* = lim ————, v>® = lim [log(S0) (3.2)
t—00 t t—oo t
and sets pu>® = v> + %fo’. Under these conditions there exists an asymptotically

optimal constant portfolio p> which is determined by

1
poo = argmaxpepm {p*uoo — 51)*2001)} . (33)

Stock 7 is said to be asymptotically active if pi® > 0 and a market is asymptotically

active if all assets are. Jamshidian’s main result is

Theorem 3.1. (Jamshidian) If the market is asymptotically active then
(5) t 1 oy _ ™
LWW(t) — LW(t) ~ log(m!) + 3 log(]X*°]) — 5 log(t) + C

where LW P)(t) is the wealth generated by (3.1), LW is wealth generated by the
berp, || is the determinant of the asymptotic covariance, C > 0 is a constant
independent of t and £°° and the notation X(t) ~ Y (t) means X (t)/Y (t) converges

to 1 in probability.

Jamshidian proved a similar result in the case where the market is asymptotically

k-inactive ( p° = 0 for k of the m stocks) in which case the bound on the rhs is of the
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order ﬂf—k log(t). The bound achieved in Theorem 3.1 is superior to the one we obtain
in Theorem 2.3 for the EG portfolio. Just as in discrete time, in comparison with the
wealth generated by the berp, Cover's algorithm loses at most on the order 7 log(?)
in the exponent while the exponentiated gradient method loses at most on the order
of log(m)v/t. However, as seen in Corollary 2.6 and Theorem 2.9, the exponentiated
portfolio can perform well versus better non constant targets where Cover’s algorithm
tracks the berp. Furthermore the EG portfolio is far simpler computationally than
the universal portfolio!.

The following proposition gives conditions under which the EG portfolio will out-
perform the universal portfolio. From (2.4) we see that EG portfolio will exhibit
especially good growth whenever 7 differs from the berp sufficiently so that the term
(7 - ut)" T (7 — u') dt is large, e.g. on the order of max, [ T,dt. One expects
this to occur in cases where the drift coefficients oscillate. See the example presented

in Chapter 4.

Proposition 3.1. Ifu!(t) > 0 for alli =1,...,m then

; 1 [ . ‘
LwiD —Lw® = - / (r—u')" S (r—ul)dt+2 / m*Trdt
[S.t) [S.t) 2 /s 2 /s

[ s D))
/t Yds

where Cy = log([, exp{ =LV 4r) < mlog(7) with 4, = £3(D,, — u').
J Ay 2 2

) - C

— log(m!) + % log(

'Although it is adapted, given the computational requirements for discrete time especially for
large m, a continuous implementation of (3.1) may not be feasible.
g p )
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For n and Ty are as in Corollary (2.4) and 0 < ¢ < 1 suppose that

t '
‘1 / (7 —u!) S (7 —ut) ds - max/ Y2ds = O(t)
2 0 0

1

as t — oo and the market is active for all time t > S. Then for M sufficiently large

Lw'm —Lw®

(S,T_.\] ) (Svl‘.\f

) 2 ()( ;{)‘

Proof. In the proof of (3.1) Jamshidian compares the log wealth obtained by (3.1)

and u' as

LWWM—LW@W0=bgmU—;%( )+ C,. (3.4)

t
/ Yds
0

The first result follows by combining the above with Theorem 2.3. The second result

is a direct consequence of Corollary 2.4. O

The relation (3.4) demonstrates that under rather general market conditions the
universal portfolio obtains the same asymptotic exponential growth rate of the berp
but never better, even in cases where the berp does not perform so well. In fact in
an active market where the variation tends to infinity, the wealth generated by berp
is asymptotically infinitely greater than that of the universal portfolio. In Chapter
4 we present an example of a market with oscillatory drifts where the EG portfolio

decidedly outperforms both the berp and the universal portfolio.



3.2 Targets

In chapter 2 Theorems (2.3) and (2.7) relate the wealth acheived by the EG portfolio
to that of the berp and limits of piecewise berp respectively. In this chapter we
examine the wealth generated by such targets. We exhibit examples of reasonable

markets where the wealth achieved is quite large.

A simple example of rebalancing

To appreciate the power of constant rebalancing consider a simple two asset model
presented in Helmbold, Schapire, Singer and Warmuth (1998). There is one risky
asset or Stock whose value is halved on “down” days and doubled on “up” days. And
one risk-free asset with zero growth rate. Suppose the relative returns of the stock

are a random permutation of the sequence 3, 2, %, 2, ..., %, 2 and the relative returns of

1
2
the bond are 1,1,...,1. If given a dollar, an investor buys the stock and holds on to
it the wealth for entire period can at best double. However, if the investor constantly
rebalances to one-half of the total wealth each day in each asset, then on the “down”

days the relative wealth decreases by a factor of 1 x 14+ 1 x 1 = 3. On the “up”

1
2
days the relative wealth grows by 3 x 1+ 1 x 2 = 3. Thus pairing an “up” day and
a “down” day the investor’s wealth grows by a factor of 33 X % = g. Hence without
any prior knowledge of the ordering of the %s and 2’s (or even which asset is the

bond) the wealth after 2n days grows by a factor of (;—’)n. Therefore, even in a flat or

oscillatory market, constant rebalancing can be used to achieve exponential growth.
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The BCRP

Let 6,(t) = Z,(t) + 3 [0' Cadsfori=1,...mandt > 0. By (1.6) the log wealth growth

obtained by constant portfolio vector u € R™ over the interval [s,7) is quadratic in

T 1 T
L‘yi’[il.‘r)) = / rdt + u*f — -2-11.‘ (/ Zdt) U (3.5)

and is maximized by any u satisfving

T -1
u = (/ Zdt) 0

where ([T Edt) ' is a generalized inverse of [ dt. The log wealth growth produced
s s g

by such a u is

T T -1
Lw(u*)(r)z/ rdt+%9‘ (/ Zdt) 6.

If the covariance matrix f: Ydt is non-singular we denote the (unrestricted) retro-
spective best constant target by uf. We now restrict to the simplex D,,. The berp is

for the interval [s, 7]

1 & T 1 T
ut = argsup,ep {u‘Z + 3 Zm / Yudt — §u‘ (/ Zdt) u} (3.6)
1=1 vs §

The wealth achieved by u} clearly exceeds the arithmetic mean, the geometric mean

and the maximum of the assets in the market. For the following definition we use the
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interpretation that the bond is stock 0 and consider berp over the interval [0, t).
Definition 3.1. Let u*(t) be the berp.

o A stock i s active at time t of uf(f) > (0.

o A stock is asymptotically active if liminf, uli(f) > 0.

e A market is (asymptotically) active if all stocks are (asymptotically) active.

o A market is (asymptotically) k-inactive if exactly k stocks are (asymptotically)

mactive.
The following proposition from Jamshidian describes u! in terms of market activity.
Proposition 3.2. (Jamshidian,1992) Assume f(; Yds is invertible. At timet > 0
e A market is active if and only if ‘uf(t) > 0 for each i. In which case u! = ut.
e Define the m — k vector u'® to be the solution of

m

t
Z 'vak) |:/ EﬂdSJ =0J', k+1§]§m
0

I=k+1

The market is k-inactive if and if ufk) >0 fork+1<j7<mand then

In particular in the m =1 case u* =0V uf A 1.
Using Proposition 3.2 we can find a lower bound for the wealth generated by the
berp.
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Proposition 3.3. Suppose the market is k-inactive for k < m. Let
/\ - (/\l, )\2, ceey )\m)ak

be the eigenvector process of the covariance f(; Yds unth Ay > Ag--+- > An. The log

wealth generated by ut is bounded below by

t
1
Lw () (t) > / rds + 5/\mui‘u1.
0

Proof. Suppose A, = 0 then the result trivially holds since u* beats the bond. Assume

m

Am > 0. Let A = (fot E,»jds)_ " be the covariance submatrix corresponding to
1,)=

stocks k+1, ..., m and define the m—k vector u = (uiH, ...,u})*. Then by Proposition

3.2 the log wealth is the quadratic form

-t
LIrl"(“x)(t) = /rdt+%u‘.f\u
0

t 1 ‘ 1
> / rdt + Ap—u'u = / rdt + Ay —ut*ut
0 2 0 2

where the inequality follows from the basic result about quadratic forms and the last

equality follows from the fact that the market is k-inactive. O

From Proposition 3.3 we see that if the interest rate r is non-negative, and lim; A,,/A; >

¢ for some € > 0 then LW (") (t) will grow exponentially on the order of A,.
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Targets in Two Asset Market

In this section we further examine the nature of targets restricting ourselves to the
m = 1 case. To avoid issues of degeneracy, we assume throughout that ¢ > 0
for almost all t and that [ o2dt = oo almost surely. Define the stopping time

T(s):=inf {7 > 0: [J o%dt > s}. By our assumptions on o, T is 1-1 and onto with

T(s)
0

s(T) = f7'02(it, hence BS =

o odB, 0 < s < oo is a Brownian motion (see

Karatzas and Shreve pg 174).

Proposition 3.4. Let fooo o%dt = 0o almost surely. The stock is asymptotically active

of and only of

t
- Md
limir‘lf—fo—(',u——z—)——f >0

t .
t—oc jo o2ds

almost surely.

Proof. In this case the berp is

t
ul=0v (/ a"’dt)
0

By the law of the iterated logarithmn

t
lim (/ 02(1t>
t—0 0
ds

So liminf u* > 0 if and only if lim inf, ioff(,"g% > 0. O

-1

(/Ot(;t—r)ds—i-/ot(de)/\l.

-1

$—00

t
/ odB = lim s™'B, — 0.
JO
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The next proposition shows that if < r the berp wealth is essentially equal to the

bond.

Proposition 3.5. If almost surely p < r, fooc oidt = oo and [01 rds = oo then ut = 0

and

Ln_"(“ )(1) o
J, rds

almost surely as t — oc.

Proof. By proposition 3.4 u* — 0. Since u* must be in [0, 1] the corresponding log

wealth is bounded above and below by

3 t t -1 t 2
/ rds < LW(“z)(t) < / rds + (2/ a2ds> (/ adB) :
0 0 0 0

-1 2 -

But for s = fOTU) o’dr, (f(; azds) (fot adB) is equal in distribution to (s)~' B?
-1 2

which follows a x? distribution. Hence (fot 02(13) (f(; odB) is finite almost surely

and its distribution does not depend on t. Therefore

(2 fot 02(1.5) - (fot adB)2

fot rds

— 0

almost surely as t — oo. O

The following proposition shows that piecewise constant targets can generate very
large wealth. In the proof we exhibit a sequence of pieccewise constant targets whose
wealth tends to infinity. The argument takes advantage of the unbounded variation
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of Brownian motion.
Proposition 3.6. Fizt > 0. if y > r > 0 then sup {LW"(t) : u € TP (D,,)} = <.

Proof. Let N >0 and A = Jil\—‘—’l and consider the random partition
{tk =T(kA): k=0,1,...,N}

where T is the time change given above. The berp over the interval [tx_, t4] is

[ -1 tr Ly
ui =0V / oldt / (p—r)dt+ / odB | A1
tk—1 te_1 th-1

and hence on the event u! = 1 the log wealth generated is

(u:) tk 1 te th
LH*'[lk"l W = / pdt — —/ o?dt +/ odB
o Ltk 2 te—1 th—1
1 ty ti
> ——/ 02dt+/ odB
2 te—1 te—1

1 -
== ——2‘A+AB[¢

where ABy = DBy — B-1)a are Brownian motion differences and the inequality

follows from the assumptions on g. On the event u! < 1 the log wealth is

(“x) tk 1 2 e
Lu'[tkfl tx) = / rdt + — (U,t) / az(lt > 0.
‘ b1 2 th-1

Since yu is non-negative ABx > A implies that 'ui, > 1. So if we knit together the

berp's. define a piecewise constant portfolio by u = 'ui on [th-1.tk), k =1....,.NV we
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obtain a log wealth of at least

LWty >

L
&

[
B —
L
——

L

&

V

L
——

2l

E[AB {28 > _\}] = /: LA.T ' (%)da:

where the inequality follows from Tavlor’s formula. Hence by the law of large numbers

-

. 1 - [ AB;
1 fN'— AB, >13 > .
it S s {301}

But N“ﬁ = ‘/T—g — 0 almost surely hence Y ABy {A—fﬁ > 1} — oo as A — 0.
Therefore limy_o LW (t) = oo almost surely. a

From the previous proposition we see that there exist limits of piecewise constant
targets which produce infinite wealth in finite time and hence are not targets. The
problem is that if we view the berp as a function of ¢ it is not continuous at . For

example if we assume g = r and o = 1 then the berp is uf =0Vt 'B,Aland by
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the law of the iterated logarithm we get

limsupu! =1 and liminfu! = 0.
t t
t—0 t—0

In the following proposition we prove that smooth processes are targets (i.e. do not

produce infinite wealth in finite time).
Proposition 3.7. Any process with the paths of bounded variation is a target.

Proof. We must show that u generates at most finite wealth at each time 0 < ¢t < oo.
Fix t > 0, let {{r., : 0 < k < n} be a sequence of partitions of [0,¢] with mesh size
converging to 0. Define the piecewise constant target u, = u(tx.,) on [tk_lz,,, tr.n) for

0 < k < n. From (1.7) the log wealth

‘n 1 tk:n .
LW ) — / rds—i—Z[ (tkn) / (p—r)dt — —u2(tk:n)/ ozdt]
t 2 L),
(k=1):n (k=1):n
tk:n
+Z (ten) / odB
tk-1):n

By (1.3) the first term on the right hand side is finite. From (1.3) we have that the
time integrals fol (¢ — r)dt and fot odt are continuous and have bounded variation and
we have assumed that u is bounded. Hence the second term above converges almost

surely to the difference of finite integrals fot u(p—r)dt — %fot u?0%dt as n = 0. By
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summation by parts we obtain

-1

lhn tin t
u(te.n) / ocdB| = Z / odB (u(tk,) — u(ti_yn)) + u(t—)/ odB
Jti—ivm 0 0

k=

tin
—u(t—)/ odB
0
t s ot
— //mleu+u(f—)/ odB
o Jo 0

where the convergence follows since u is of bounded variation and the stochastic

~
I
—_

integral is continuous. O



Chapter 4

Example

We consider markets where with probability arbitrarily close to 1 the EG portfolio
outperforms the berp and Cover’s universal portfolio by order of ¢ in the exponent,
and where each earns order t in the exponent. The idea of the example is simple.
Take a drift value so that the best piecewise constant target for one half of the interval
is very near one and for the other half is very near zero. So the best constant for

the entire interval is near % In this oscillatory market we expect 7 to track the
piecewise constant target and so the [ (m — 3)%0?dt term in (2.4) is large. On the
other hand the universal portfolio will perform approximately as well as the berp,

which is earning less in this market.

Definition 4.1. For m = 1, we call the quadruplet (r,u,0%,T) Model 1 if 1 = 0,

o > 0 is deterministic constant and

o for0<t<?Z
He =
0 forZ<t<T

36



Proposition 4.1. Let 0 < € < % and 7 be the EG portfolio with learning parameter

N = T~ and initial value 7(0) = % and ut be the berp. Then

(u ) ,1—38 (e + ¢ ) Y
LW}, = LW'y) 2 To* —— - — KT
where K = (L + ‘”“‘( )) and
1-8 2 1 T
LWt~ LW > To ?+6) ~ KT# + 5 log( ;’ )

on an event A with P(4) > 1 — 3® (—ce\/T) with ¢ = o A § and where ® is the

cumulative distribution function for the standard normal distribution.

Proof. The piecewise constant target which takes the best constant value over each

of the interval [0, T] is given by

ov[1+22| A1 foro<t<]

OV[ﬂB—T;TﬂV-Zl]/\I for T<t<T

On the other hand, the best constant target over the entire interval [0, T] is

1 B,
t=0v —=
U 0 [ + oT

So for large T we see that u is nearly one on the first half of the interval and zero on

the second half while «! is essentially %
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From Theorem 2.3 with n = T2 and w(0) = % we get

(m) (u) 1 (17 2 2 1! 2
Lw. ™ LW = = T — gldt =T 2= (1 = mo
[0,1/2) [0.r/2) 2/0 ( U) a 22'/; ( )

+T2 (d(u(o)||m(T/2)) — d(u(0)[]1/2))

I ‘ 1
- / (r —u)?o’dt — KT?. (4.1)
0

v

2

where A" = (% +log(2)). Applying the general expression for log wealth (1.6) to our

special model we get

-(u) -(7) 1, e 2 T (n? 2
LW 'pyay = LWogyny = U (0)/0 o°dt +/0 (—2— - 7r) odt

T/2
- / rtodB
0

1 (T2 - T/2
= 7/ (m — u)’o?dt — / 7 (1 — u) o?dt
2 Jo 0

T/2
— / rodB
0

Hence on the event A’ = {BT/2 > —Teo and f0T/2 nodB < Iﬁl"—’}
1 [T/ ) T
(u) (7 )
LW gy — L1 [0,')r/2) 2 5/ (1 —u)?o’dt - 5602-
0
Hence by (4.1) on A’ we have
2 ) T . 1
/ (r — u)?o?dt < 560'2 + KTz,
0

Now we compare with ut. Let A” = {Byp < \/eaT} then on the event A = A'N A"
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we have

1 T/2 , 1 T/2 1. . 1 T/2 1 o
3 / (r — ut)?o?dt > 3 / (1- 5)202(# - 5/0 (5 —ut)o?dt
JO J0
T/2 . 1 172 .
—% / (u —1)*c?dt — 5/ (m — u)’o?dt
Jo 0
_ 2 '
> 128l Koy (4.2)
16 2

Using Theorem 2.3 once more but with the best constant target on the interval [0, T

2 AT SR B (U MERICHE G S L U [y
0.1 o = 3 ), (m — u?) odt 2 ), (1 — 7)o dt

+T7 (d(u(o)||7(T)) — d(u(0)||1/2))

1—8(€+€2) 1

To*——¢ — K,T? (4.3)

v

on A'N A" and where Ky = (% + ””—5(21> Since the market is active by Proposition

(3.1) we have

g -(p H(m -(p 1
LWy = LWy, = LW — LW + 5 log(To®) = Cr
1—8(e+e 1, To?
> ——l%if—lira? ~ K,T% + 51og(—_f'—).
{

It remains to show the bound on the probability of A. Clearly

P(Byj; > —€oT) = & ((0\/2_T)

P (Br < VeoT) = @ (oVeT)
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and by a time change argument

T/2 co? T/2 e (T2
P / modB < —T > P / 7odB < —/ lotdt
0 4 Jo 2 Jo
T
= ¢ — 1.

a

Hence for T sufliciently large with probability close to 1, the EG portfolio is outper-

forming the berp and the universal portfolio by on the order of T in the exponent.
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Chapter 5

Proofs of Ch. 2 Results

We now present the proofs of the results contained in Chapter 2. For the reader’s
convenience the theorems are restated and previously displayed expressions retain

their original numbering.

Theorem (2.1). Suppose u,r and £ are F, adapted processes which satisfy (1.3), S
is a bounded stopping time and & € R™ is Fs measurable. Let 1) be an adapted R*

valued process such that for each t > 0

=1

t m
/ [|71r| + Z (Inse] + 7]22,-,-)] ds < oo (2.1)
0

almost surely. There exists a unique strong solution {a (S,t),t > S} € R™ to the

following stochastic differential equation

1
do; = ndZ, + 7 [§Ei,~ -Y.f (a)] dt (2.2)
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with wmitial o (S,0) = & and where f : R™ — D,, is given by
m -1
fila) =€ (1 + Ze“l) .o =1,..m. (2.3)
1=1

Proof. By our assumptions (2.1) the processes f(; ndZ and fol nY;;ds are semi-martingales.
From Theorem V.3.7 on page 197 of Protter (1990), to show existence and uniqueness

it is enough that f is Lipschitz. For a« € R™, the partial derivatives are given by

of (1t Teue)

da, I+ yrp e} fila) (1 = fi(@))

and (5.1)
ost _ (L Teae)
Oaj (1+ Y5 e)® el

for i # j. The derivatives are continuous and bounded in absolute value by 1. Hence

f is Lipschitz. In fact || f(a) — f(b)]| < m|la — b for a,b € R™. O

Before we prove Theorem 2.2 we require the following lemma which gives condi-

tions on the integrand for convergence of a stochastic integral.

Lemma 5.1. Let o satisfy (1.8) and g™ be a sequence of R™ valued processes such
that gf")(t) are bounded and continuous and converge uniformly to 0 in probability.
Then ]0' g™adB converges uniformly on compacts to zero in probability, i.e. for each

t>0

sup
0<s<t

/ g(")odB“ -0
Jo
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in probability.

Proof. Let Ty, = inf{t : max; jot ¥dt > .\[}. By (1.3) Ty; — oo almost surely

YAY

as M — oo. If we can establish the result for the stopped process fO' g"odB
then we obtain the desired result upon letting A/ — oo. Therefore we assume that

max;, f0°° idt < M. First assume g™ converges uniformly almost surely. By Doob’s

inequality

2

¢ 0o ™ 2
E [Sup/ g(n)gdB} < E {/ ngn)zﬁdt]
tJo 0 =i
2
,(],(")"l

which converges to 0 by the Bounded Convergence Theorem. So sup, fot g™aodB con-

< E [mM sup
t

verges to 0 in probability. Now suppose g™ only converges in probability uniformly.
Then for every subsequence ny, g("*)converges to zero in probability uniformly. For
each of these subsequences there is another subsequence ny, for which the convergence
is almost sure. From what we have shown sup, f(; g(""l)odB converges to 0 almost

surely. Hence sup, f(; g™ odB converges to 0 in probability. g

Theorem (2.2). Suppose that T is a positive constant, S,T are bounded stopping
times with 0 < T — S < 7 and n > 0 is constant. Under the conditions of Theorem
2.1 the DEG(n) portfolio q converges in probability uniformly to the EG(n) portfolio

7 and the LW @ converges in probability uniformly to LW™ on the interval [S, T).

Proof: Let « be the solution to the SDE (2.2), f be as in Theorem 2.1, and S < T
be be stopping times bounded above by the constant 7 > 0. Recall that the DEG
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portfolio is given by

q(f()) = E?

n.\X; (k)
q (ti=1)” X (k) 4+ qo (tk—1) Xo(k)

q.(t) = q,(fk—l)v.‘cp{ }V,;l, te <t < trs

where X' is the price relative process and Vi is a normalizer. Also the EG portfolio

m = f(a). The idea of the proof is to consider a;(k) = a;(k,€,n) = log (%:—%) (so

that ¢ = f(a)) and show that a converges uniformly to a on the interval [S, T]. Once
this is established it follows from the continuity of f that ¢ and its corresponding log

wealth converge to m and LW (™ respectively. We first decompose a. For each i

n (X (k) = Xo (k))
q (tk-1)" X (k) + qo (tk—1) Xo(k)
n (Xi (k) Xo (k)™' = 1)
S g (b)) (X5 (R) Xo (k)™ = 1) + 1

a;(k) = ap_1 +

= Q-1+

Note that X; (k) Xo (k)~' = exp {Z.(tx) — Zi(ts—1)}. So at each step the process a is

updated according to

a,(k) = ak1 + 9: (Z(t) = Z(te-1), q(tx-1)) (5.2)

where g; is defined for 1 <i < m, y € R and v € D™ by ¢,(y:v) = 2=V )
: (e -1)+1
It is important to note that since the DEG portfolio remains constant on the interval

[tk_1, tx), the update in (5.2) depends only on the initial value of the portfolio g(tx_1)
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and the change in the discounted stock price process Z. To determine the asvmptotic
behavior as the mesh size tends to zero, we consider the differential of this update

with respect to Z. By Ito’s formula

ty .
a,(k) = ak—]+Z/tk_lglm (2*,q) dz,
1 tx .
PN R CRORNT
< j tk—1

with Z¥(t) = Z,(t) — Zi(tx-1).1 < i < m and where g(i)(y, v) = %g,(y. v) and

)

.‘L(ij) - i)yf’(:z)y g.(y,v). In Remark 5.1 which follows this proof the derivatives are
Y )

presented explicitly. For our purposes it sufficient to note that each of the derivatives
is continuous in first argument, bounded in absolute value by max; e3¥! and that for
J,J' # i we have gf")((), v) = gl(“l)((). 0) =0, ¢"(0,v) =1, g,(ii)(O, v) = n(l - 2v;) and

gfij)(O, v) = —nv,. Using the values of the partial derivatives at y = 0 we find that

ti n tx
a,(k) = ap_+ 1)/ dZ; + 5/ Y dt
ey tk—1

m te
-y / ¢, i, dt + Ri(ty) — Ri(te_1) (5.3)
j=1 Ytk

with 1 < k < n and where the remainder is given by

t Ny 1 t (i
i £ i



and ¢! and ¢! are defined piccewise by

) = g (Z5(1).q) = ¢ (0.q)

ay = ¢"(Z51).q) = ¢ (0,9)

for tpoy <t < tpe. 1 <k < n,and 1 < 1,3, < m. Notice the resemblance of the

expression above for a, and (2.2). We now show that in probability:
lim sup {|a(t) —a(t)| : S<t<T}=0 (5.4)
A—0

Proof of (5.4) The result follows in two steps. In the first step we prove that the
remainder term R converges to (. For this step we employ a second moment argument
involving Ito’s isometry. In (1.3) we have not assumed the existence of any moments
of the stochastic integrals, however, we circumvent this obstacle with a localization
argument. In the second step we use the method of successive approximations to
prove that the integrals on the rhs of (5.3) converge to a.

Define the stopping timne

t m
To = inf {t > 0:max|Z,(t)] = M or / T+ D (el + Z,»,-)] ds = M}.
1 0 1=1

By (1.3) limT); = oo almost surely as M — oc. Thus if we can establish the result
for the stopped process a(t ATy) —a(t ATyy) (i.e. under a boundedness assumption)

then we obtain the desired result upon letting A/ — oo. We may assume therefore
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that max; |Z;(t)] and Jo (r]+ 30, (il + £4)] ds are bounded by M > 0. First we
show that supg,<r [|R(f)[| = 0 in probability. In terms of the Brownian integral we

have

Z/ Jl o, dB+i":/ Jﬁ(/t,—?“)—%&,) ds
+5 ZZ/ JlU)vU ds

By the triangle inequality and using (a + b)? < 2(a? + b?)

2
E | sup |R,-(t)s]
S<t<T
1 1 T 2
< (1, — 1) — 52“- ds + 522/ \gf'”llzmds}
1 j=1 S
+2E | su / O,dB

B

- T 1 1 T 2
< 2E lA(i)| =) — =Xulds + = / ) 151 d
< [;/Sg, (i =1) =5 62212:;59, S| ds

+8E [Z / )2, ds} 2

where the last incequality follows from Doob’s inequality, Ito's isometry and the fact
that T < 7. Under our assumptions Z is a bounded continuous semi-martingale and
hence each of the derivatives gf”(Z",q) and gfij)(Zk,q) are uniformly continuous as
functions of t € [0,7] and [ [|r] + 31", (Il + E4)]ds < M as.. Thus the expres-

. . )
sions under the expectation, e.g. [ (5))2,:ds, converge to zero almost surely. Also

the ZF are uniformly bounded by 23/, hence the derivatives are uniformly bounded by
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‘ 2
€S So by the bounded convergence theorem E [sup5<t<7‘ |R1(z‘.)|] converges to zero.

. N . . K . . . . m . 2
Repeating the argument for cach i = 1....,m we obtain ) " | E [supgS,ST |Ri(t)|] —
0. Hence in probability supge,«r ||R(1)]]? — 0.

We now use the method of successive approximations to prove that the integrals

on the rhs of (5.3) converge to a. Since f is Lipschitz there exists K > 0 such that

”f(y)_f(-'l)” S ]\'“y—‘]'”’ lL‘,yER’",

Define a sequence of stopping times Ty = S and T; = inf{t >T_: thl I1Z]| ds} =

2K /m)~" where |Z]| = %2 is the matrix norm. By the Cauchy-Schwartz
12%] 13}

inequality

t t
/||2||ds < m/ max |Z;;|ds
0 0o Y
¢

11
< m/ E;iZJ']ds

0
t t

< m /Ziids/ X;,ds.
0 0

Hence by (1.3) then T} — oo as | — oo and there exists an L random but finite such

that T; > T. Define a sequence of R™ valued processes by

‘ t 1t t _
}}m(t)=£+77/ czzi+n§/2uds+/ Ef(¥YUV)ds, S<t<T  (55)
S S S
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fori=1....m,j =12, .. and with Y(© = a. Define

DY = sup {IIYV (1) = YU (|| : Tro <t < T}

Then from the definition of R

DU = s O () - a0

Tio 1 <t<Ty

= sup ||R(t) — R(T;_))||

Tio) <t<Ti

< max sup |R(t) — R(Ti-)||

Ty <t<Ty

which is independent of | and converges to zero in probability as A — 0 since L is
finite and we have shown ||R(t)|| converges uniformly to 0. By the definition of D,

the Lipschitz property and the vector inequality ||.z|| < /m max; ||,z € R™ we have

t
DUy = sup / ) (f (YU_”) — f (Y(j"z))) ds
T <t<T |VT
t
< VmDU VWK sup / IIZ|lds
T <t<Ty JT1y_,4
| 1
< -pu-tH < _pd,
-2 -

The final inequalities follow from the definition of the random partition formed by

the stopping times T; and by induction. Knitting together over the partition yields:

L L
sup {10 () =y UD ()1} < 30DV < 3T DU,

S<t<T
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Since the bound is the general term of a convergent sum, [|Y @ (#) — YU=D (#)]|
converges to 0 geometrically fast as j — oo. By taking limits in (5.5) it follows that
the sequence of processes )',(j) converge uniformly to o, with probability one. Thus
sup {[|a () —a™ O)||{S <t <T}} = lim sup {|Y9 () =Y O (t) ||}
t

J s<tkT
o0

< S sup {IVO () - YU (1)1}

‘o S<i<T

L
< S
=1

which we have shown converges to 0 in probability as A — 0.
End of Proof of (5.4)

We now show that
sup {|q.(t) = m(t)]|: S<t<T,1<i<m} -0 (5.6)
in probability and
sup {|LWD(t) — LW(#)] : S<t<T} >0 (5.7)

in probability.
Proof of (5.6) and (5.7): Since ¢ = f(a) and 7 = f(a) and f is uniformly continuous

by (5.4) ¢ converges uniformly to 7. The log wealth generated by q is

. t m
L”.(q)(f) :/ rds +/ q'dZ + = / quu”({s - = / g Eqds
S S S -
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Decomposing the stochastic integral we have

t t m t
/ ¢ dZ = / g (pn—1)ds + / Z G Eidt + / q*odB.
s S S

Using (1.3) it is casy to see that the each of the time integrals converge uniformly in

probability to their 7 counterparts. For example

t T
/ lg: — mi| ids < sup |q(t) — Wi(t)|/ Yids = 0
s s

S<t<T

in probability. By Lemma 5.1 the integrals with respect to Brownian Motion converge
uniformly to 0 in probability as well.

End of proof of Theorem 2.2 O

Remark 5.1.

Let g be defined for y € R™ and v € D™ by g(y;v) = == "(()E;;jl)l)ﬂ. The first
j=1Yj -

order partial derivatives are:

_dg(yv) M (Hzm”i (c* _1))

Yi 2
é)yz (1 + ZT——-I vj (eyj — ]))
_Og(yiv) —nugedk (e¥ — 1)

I (1'*‘2, L vy (e¥ _1))

<



and the second order derivatives are

g (y: ) nev ey (1 +2 0 a0 (e = 1) — v (e - 1))
T S 3

Yy, Oy (1 +Y e (e~ 1))
g (yiv) _ —g® (g 0) 20e%

Dy Oy (1 + 3 (e - 1))

(1 3t (e = 1) = (e + 1))
(1 + Z;"Zl v; (e% — 1))2
(1 + 2 (e — 1) —ug (e + 1))
) . .
(1+ S5y v (v - 1)

g (y:v) ;
e = 9" (y:v)
l

Polyvr) _
0%y '

® (yiv

where 7, k, [ are all distinct. Each of the derivatives above is continuous as a function
-1

of y. Also it is easy to check that (1 + Z;.":l q; (e¥ — 1)) < max; el%!. Using this

bound implies that the derivatives are all bounded in absolute value by max; el

Theorem (2.3). Let n > 0 be constant. For any bounded stopping times S and T

with 0 < T — S < 1 and any non short-selling constant target u € T°(D,,) the

EG(n,S) portfolio m satisfies

1 [T ‘ n "
LV =W == [ (r=w)'S(r—wdt+3 [ «"Trdt
(S.T) [S.T) ‘
2 S 2 S

_2/ Z” Al (7)) = d (u]7 (5))
2 1 1 ] .

n

Proof. The proof follows by applyving Ito’s formula to the relative entropy function d.



First we use the definition of d. since u is constant we have

d (ullm (T)) = d (ul7 (5))

- (i) oo (2) ()]
() S (2) - (9

1=1

7 () . ‘
log (7T0 (T)) —u" (a(T) = a(S))

= h(a(T)) = h(a(S))—u" (a(T)—al(S9))

where h : R™ — R is given by h(a) = log (14 Y.~ ¢*). Relating to f used in the

definition of 7 and using (5.1) we calculate the partial derivatives as:

_ Oh(a) e

hi ((l) - a”x = 1+ ZZI P = fi(a)7
2h (a
b (o) = Goged = ~L(a)lfa)

27,(1
) = S = @) (- ).

Comparing with the definition of the EG (n, S) portfolio we recognize that h; (o) = m;,

h,; («) = —m;7j and hy; (o) = 7; (1 — m,). So by Ito’s formula

T m

h(a(T)) = h(a(S)) Drrda s a2 Y mTud
V(o (T)) = h(a +/ ﬂ"((l’——/ 7r‘~7r(.1‘+—/ ;2.5 t.
s 2 Js 2 Js =



Recalling the differential for o da; = ndZ; + [ — Z,ﬂ] dt, we get

ly
2<

4 (ull7 (7)) — d (ul]7 (5))
= 7 —u) do— — mrYndt + 7/ T, 2dt
Js 2 Js 2 Js o
T n [T T
= 1;/5 (m —u)" dZ + 5/ Z (m —u), Sydt — 7)/3 (7 —u)" Trdt
_% n‘SmIf + —/ Z medt

s

= (LH sy — LW [;'7)) 5/ (m —u)" T (r —u)dt

2
—% T Yndt + —[ Zw, dt.

S

where the final equality follows from the general expression for the log wealth (1.6).

With rearrangement of the terms and division by 1 we obtain the result. g

Lemma 5.2. T, = inf {t > 0 : max; fot Yi= M} s a stopping time with respect to

G=0{S(s):0< s <t}

Proof. We show that max; f(; Y.ids is G, adapted. For each partition of the interval

[0,¢] the following sum is clearly G, measurable

2
Z [l()g(sl(tk)) - l()g(Sz(tk—l))]2 = Z [[ <l‘1 - % dt + UidB

k k

[ G a o[ (o) e

2
Uk
+§:/ 0,dB
k te—1

Since the time integral has bounded variation and the Brownian integral is continuous
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the first two terms converge to 0 almost surely as the mesh size of the partition
converges to 0. By Theorem 1.5.8 on page 32 of Karatzas and Shreve, the third
: % dB| converges 'T.ds in probability. Hence there exis
term Zk j,k__l 0,0 converges to fo 2;;ds 1 probabllity. ence there exists a
subsequence which converges almost surely. Thus, as the almost sure limit of G,
. t . . .
measurable random variables, fo Y.ds is G, measurable, as is the maximum over

. O

Corollary (2.6). Let u € TP be a piecewise target with n jumps. Let S =0, M > 0

and Tyy = inf {t > 0 : max; fot Yads = A[}. Choose 1) = then the EG(n,0)

T
portfolio m with 7(0) = Fnh—l)lm satisfies
() 1 [t
LW [0", - LH[ > 5/0 (7 —u)" (7 — u)dt
- mQM (1 + nkK + log(m + 1))

where K = max, supys<r,, {—log(m(s))}.

Proof. Let ty,....t, be the jump points of u. From (2.3) we have

t t
L”[oz)_L”[u = %/0 (7r—u)'2(7r—u)dt+g/0 T Endt
0 P d () () = d (u(0) ] (0)
2/0 gﬂ,_ﬂ,(t+ )
078 (d (u(te=) 7 (1)) = d (u(te)ll7 (1)),
t <t

But d (u(te=)||7 (1)) — d (u(ti)l|7 () < maxocicm {—log(m)}. The result follows

from the choice of 1. a



Theorem (2.7). Let u € TP (D,,). Suppose that 1, is a positive real valued process
satisfying (2.1). If ny is right continuous and bounded almost surely then for the EG

portfolio m we have

1 (T 1 /T
LWy, - LWy, = 5/ (yr—u)*z(n—u)dt+§/ et Srdt
S S

1/7’ m T
- T]7T,-2,-,—(1t+/ d¥
s 2 s

\I’t — d(ll(”ﬂ’g)

nt

where

Proof. Since u € TP there exists a sequence of piecewise constant targets whose log
wealths converge to that of u. Hence there exists a sequence u® € T?¢ defined on
partitions with mesh size A — 0 almost surely satisfying the same property. For a
fixed Alet S =ty <t <--- <ty =T be a partition such that u® is constant on
each subinterval [t,_;,t;). Create the corresponding step function approximation of
n by n2 =, forty <t < try). Let m be the EG portfolio using the varying learning
parameter process 7 and initial value m,, = f(a(to)) . Define 7 interatively such
that Wi = f(a(ty)), and over the interval [tx,tx4;) it is the EG portfolio with initial

value 7 (tx) and constant learning parameter 7, . By Theorem 2.3

S N O B PNV ,
LWieqy = LWisqy = 5 (7% =u?) T (77 —u?)dt (5.8)
s

.
+%/S > (r2) En-\dt——/ Zn 738, dt (5.9)
+z I: Ugy 4y |7rzk+1) _ '(“tk”ﬂ-tk)}.

Mty 41 Mt
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Now let A — 0. By definition u> — u and LW o L),

We now prove that 7= converges to 7. Let

t
Ty = inf {t >0: mjdx/ Yds = AI}.
! 0

By (1.3) lim Ty, = oc almost surely as M — oc. Thus if we can establish the result
for the stopped process m=(t A Tay) and (¢t A Ty;) then we obtain the desired result
upon letting M — oc. We may assume therefore that max; fot ¥;;ds and the process

7 are bounded by the same M > 0. Let a(t;n®); = log (g) then
0

Let b(t) = max, | [} (1> = n)dZ + [L (7> = n) [LZu — 5ef (@)] dsl. By the right

continuity of 7 and Lemma 5.1, b(t) converges to 0 uniformly in probability. Let

K be the Lipschitz constant for f, since n and ¥;; are bounded we have

< KM2/S la®(s) — a(s)]|ds.

/g 1~ (f (aA) — f(a))ds




For the norm of the difference then

la>(t) —a®IF = 3 (a(t) = au(t))”

E [b(f) + K A2 /St o™ (s) — “(S)Hdsr

=1

IN

IN

t
2mb*(t) + 2K*M*m(T - S) / la®(s) — a(s)||*ds
s

where the last inequality follows since (z + y)? < 22?2 + 2y? and from Jensen’s in-

equality. Let v = 2K2M*m(T — S) then by Gronwall’s inequality

la(8) — a(t)]]* < 2mb*(t) + 7/0 2mb*(s) exp {7 (t - s)}ds.

Hence supg la>(t) — a(t)||> = 0 uniformly in probability. Since f is uniformly
continuous we also have supyc,<r |72(t) — m(¢)||* — O uniformly in probability. Us-
ing Lemma 5.1 as in the proof of Theorem 2.2 we can show that w () — pwm
converges to 0 as well. Hence the lhs of (5.8) converges to the rhs of (2.7). Since u®

and 7= converge to u and 7 respectively we have that the first 3 terms on the rhs of

(5.8) converge to the corresponding integrals in (2.7). Hence

Z d(ltng”ﬂ'aH) _ d(ulkllﬂi)

k Mty 41 Tt

must converge in probability. We formally denote this limit as fg dvy,. O

Lemma (2.8). Let u be a continuous process of bounded variation taking values in

the interior of D,y t.e. for allt >0 uy € A ={u€ Dy = Y " u; < 1,u; >0}. Then



u € T(D,,), t.e. up to time t the process u generates finite wealth. And for n > 0

constant and the EG(n) portfolio we have

T y m .7 0
/ v, = (d(u(T)Hvr(T))—d(u(S)llw(S))~Z / [log(a)—ai]du).

Proof. Consider the expression on the right hand side of (1.7). By the assumed
smoothness the time integrals are finite for each ¢. Since u has bounded variation we

can interpret the stochastic integral by “integration by parts” as

t t
/ uw'dZ = updr — / Zdu
0 0

where the rhs is well defined since the semi-martingale Z is continuous. Hence u is a

target. Since 7 is constant the sum (2.8) can be decomposed as ™! times

Z [(l (UtHl ”WtHl) _ d(ltzkllﬂtk)] = d(ur_||7r) — d(us||7s)
k
_Z u,k lﬂ'“ d(ulk_.lllﬂlk)]'

The partial derivatives of d(u||v) are

,i(l(qu) = log (—u—l) —log (ﬁ> .
()‘lll’ Ug (&)

The above partial derivatives are continuous functions of u away from the boundary of

D,,. Since u is continuous and restricted to the interior of D,,, on [S, T it is uniformly
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bounded away from the boundary of D,,. Recall that almost surely «a; = log (%) is

uniformly continuous on [S,T]. So

5 i)~ lim)] = 3 [ 5 [og (22 - et
= Ju o 0

k ~la=
T m w
— lOg (—) — (f)} d'll,,'
[
almost surely as the mesh size A — 0 by uniform continuity of «;. O

Theorem (2.9). Let u be as in Theorem 2.8 with [[°dlu| = K. Let S =0, M >0,

¢ >0 and

log(~)

ot
Tiar,e) = Inf {t >0: max/ Y2ds = Mormax
0 ! To

)

-

Choose 1) = 24/ "ﬁ,—(;x,ﬁ then the EG(n,0) portfolio m with 7(0) = ml“‘ satisfies

T T
) @ 5 1 Y B n .
Li [0=T(M..»)) Lu [0,’1'(.\11)) = 9 /0 (m—u)"E(r —u)dt + ) /0 T Xmdt

mM
4log(m +1)

—2y/log (m + 1)mM — cK

Proof. As before we use that d(““(,T:T)lm) < log(m + 1) and note that

02> /Z [log (%)](lui = Zu‘ log (Ui) > —log(m +1).
=1 i=0
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hence fOT >r [log (l“l—('))](lui > —log(m + 1). By the definition of the stopping time

Tiarey M
/ Z [ (t)]du; < Ke
0

1=1

and
1 T
- ,'2,',‘ dt < M.
2/0 lz:]:ﬂ' i
The result follows using the choice of n with Theorem 2.7 and Lemma 2.8. O
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Chapter 6

Final Remarks

In Chapter 2 we were able to extend the DEG portfolio to continuous trading and
obtain a lower bound in performance versus the berp and larger targets with a finite
number of jumps and with bounded variation. These results give conditions under
which the EG portfolio can achieve nearly the same exponential growth as these larger
targets. At least in markets where it stays away from the boundary, the EG portfolio
can track targets which are not constant but do not vary too much. An important
feature of these results, as opposed to those obtained by Helmbold et.al. for the DEG
portfolio, is the development of an identity containing positive terms that are large if
the EG portfolio is distant from the berp. In Chapter 4 we have presented examples
of simple oscillatory drift markets where the EG portfolio outperforms the universal
portfolio and the berp with probability arbitrarily close to 1. A second important
feature of the EG portfolio is that since it can be straight-forwardly updated on-line
it is much easier to calculate than the universal portfolio.

Further examination of the behavior and properties of the solution to (2.2), the-
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oretically or via simulation, is necessary to further delineate the market conditions
under which the improved performance of the EG portfolio may hold.

The presence of learning parameter n in the EG algorithm can viewed as a boon or
bane. On the one hand, the investor is allowed flexibility to control risk by choosing
1 large or small. We see that choosing a good 1 can be done by setting a level of
future variation out to which the investor wants protection. One can remove this
dependence by considering a doubling scheme where the portfolio is run over longer
and longer epochs reinitializing each time. With Theorem (2.7), we have laid the
groundwork to choose 1 adaptively and perhaps obtain better bounds.

Cover and Ordentlich (1996) and Helmbold et. al. working with discrete trading
introduce the concept of side information. In addition to the market stock prices the
investor is privy to extra information upon which to base the investment strategy.
For positive integer J they define an adapted random process Y; taking values on
{1,2,...,J}. Then they partition according the value of Y and run J copies of the
algorithm. Through examples of stock data, Helmbold et. al. exhibit simple forms
of side information which can greatly increase the wealth obtained by the DEG and
universal portfolios. In the continuous case we can also run J copies, however, when
the process Y returns to state ¢ there is no guarantee the stock price is the same as
when it last left state . Hence, in order to extend the results for EG portfolio to side
information, we would need to modifv the proofs to account for possible jumps in the
stock prices.

As do Cover and Helmbold et. al., we assume that there are no transaction costs.
For rebalanced portfolios in continuous time we must continuously buy and sell to
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maintain the desired proportion of wealth in each asset. One approach to solving this

difficult problem may be to modify (1.8) to include a penalty for over trading.
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