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ABSTRACT

A PRIORI TIME STEP ESTIMATE FOR SPHERICAL AND RADIAL FIELD

PROBLEMS

By

Munawar Hussain Chaudry

The objective of this study was to develop an a priori time step estimate for three

single step methods used to solve the system of ordinary differential equations associated

with radial and spherical field problems.

The hypothesis was that the a priori time step estimate has the general form

(AUX, = C for the unconditionally stable methods and (A011,... = C for

conditionally stable methods, where C is a constant to be determined by numerical

experimentation, and l] and km” are the lowest and highest eigenvalues in the system of

ordinary differential equations.

Numerical solutions of step change problems were used to determine the

coefficient C for each solution procedure in time and each type of physical problem. The

final a priori time step equations developed in this study were

Central Difference Method: (ADM = 0.050 for N 2 11

Backward Difference Method: (ADM = 0.025 for N 2 11

Forward Difference Method: (Ammax = 1 for N 2 11

where N is number of nodes in space. Each equation can be used for both the spherical

and the radial problem.

The time step equations were validated by using different problems involving a

different set of material properties and boundary conditions.
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CHAPTER ONE

INTRODUCTION

No other field of mathematics has shown a recent increase in importance to the

engineers comparable to that of numerical methods, nor has any other field developed as

rapidly. The main reason for this evolution is the developments in digital computers.

Indeed, each new generation of computers invites new tasks in numerical analysis; in this

connection even a small improvement in the algorithm may have great impact on time,

storage demand, accuracy and stability. This opens up a wide area of research with a

view toward improving accuracy of the software/techniques used for numerical solutions.

Mathematical modeling of physical problems is an important tool in engineering

analysis because it provides the opportunity to study a problem and obtain an

approximate solution without going into expensive and/or time consuming physical and

manufacturing processes. Most of the time-dependent problems in engineering and other

branches of science are modeled in the form of Partial Differential Equations (PDEs).

One group of these equations is referred to as Parabolic or Difiusion Equations, which

have the general form

8U

at

where c is the capacitance coefficient, k is the conductivity/stiffness coefficient and U is

 = kV . (V U) (1.1)

the unknown variable, that is, temperature, moisture contents, pressure head, and so on.

Equation (1.1) applies to transient heat conduction in solids, gas diffusion/drying

of granular materials, flow of fluids, and transport of solutes in a porous media. Many

engineering and mathematics books deal with the derivation of PDEs and their solution



of the above problems. Powers (1987), Ozisik (1980), Patankar (1980), and

Churchill (1987) are a few examples.

The analytical solution of a partial differential equation is very difficult to obtain

for complicated field problems. Partial differential equations are often converted into a

system of ODEs by applying numerical procedures like the finite element method (FEM)

or the finite difference method (FDM). This conversion of time and space-dependent

partial differential equations (PDEs) into a time-dependent system of ordinary differential

equations (ODEs) has been discussed in many books dealing with numerical solution of

PDEs; some of them are Segerlind (1984), Smith (1985), and Narasimhan (1978). A

system of ODEs has the general form

[C]{U'}+[K]{U}—{F}={0} (1.1)

where [C] is the capacitance matrix coming from the transient term in the PDEs, [K] is

the stiffness matrix coming from the second partial derivative with respect to space and

{F} is the forcing function. Since the forcing function, {F}, in the partial differential

equations is often zero, {F} is zero until the boundary conditions are incorporated.

Finite element or finite difference methods are used to solve (1.2) in the time

domain. The FEM shows clear advantages over the FDM in the space domain in solving

(1.1). This advantage, however, does not extend to the time domain, Segerlind (1984).

There are numerous finite difference schemes available in the literature for solving (1.2)

in the time domain. Different schemes require a different criterion to ensure numerical

stability and to minimize oscillations. Various authors have discussed the solution

procedures in detail but have always based the size of the time step on their art and

experience. The authors seldom discuss the entity of time steps with respect to accuracy.



There is no clearly defined technique, available to select the time step needed to reach an

accurate solution, particularly in two and three-dimensional problems.

Mohtar (1994) pioneered the development of empirical equations that can be used

to estimate the time step required to solve (1.2) accurately when using one of Euler’s

forward difference method, the central difference method or the backward difference

method. Mohtar deveIOped equations to compute optimal time steps using the lowest

eigenvalue of the system of ODEs as the basic parameter. He compared numerical results

with analytical solutions to establish the empirical equations. Time step prediction

equations were developed for one-dimensional problems and two-dimensional problems

where the grid consisted of square elements. Each prediction equation given by Mohtar

had the general form hAt = CNb where his the lowest eigenvalue for the system of

ODEs, N is number of nodes in the region, C and b are empirically determined

coefficients and At is the time step.

Tan (1995) extended the work done by Mohtar into radial coordinates, as a first

step towards solving axisymetric problems. Tan also developed empirical time step

estimate with a form similar to that of Mohtar (1994). Tan pioneered the technique of

using a numerical solution with a highly refined grid in space and very small time steps to

generate reference values. Tan used the central difference method to generate reference

values because it is second order accurate, Gear (1971). Since most complex field

problems either do not have an analytical solution or the analytical solution is also based

on a series solution with truncated terms, use of a numerical technique to generate a set of

reference values seems appropriate. Tan’s approach to generating the reference set

simplifies the research procedure.



The general objective of this study is to extend of the work done by Mohtar

(1994) to spherical shapes and to re-look at the radial field problems studied by Tan

(1995) in the light of recent redefinition of numerical methodology.

The study of transient heat transfer in spherical as well as radial coordinates is

applicable to numerous engineering problems including:

1. Development of instant heat and its study in the gun barrels, rocket tubes, and

missile launchers, during and after fire. It can also assist us in determining the

optimum rate of fire for a weapon.

The study of a gun shell, movement of projectile in the air and its terminal

ballistics can be facilitated.

Heat dissipation study in piston, cylinder, crankshaft and other components of

automotive engines exposed to combustion or frictional heat.

Cooling or heating of a large number of natural products and the cooling of

processed products in food containers.

Grain drying is governed by a diffusion equation. Accurate numerical schemes are

critical in the optimal design of grain dryers. Parameters such as the time needed

to dry the grain and the rate of drying are critical in determining the dryer

specification. The same can be said about the drying of other organic products.

The results of this study should make it easier to perform a numerical study of these

subject areas.



CHAPTER TWO

REVIEW OF LITRATURE

The solution of the time dependent field problems using the finite element method

was discussed only briefly in early finite element books. Heubner (1975) discusses the

derivation of the capacitance matrix [C], for transient heat transfer but never discusses the

solution of the resulting system of ODEs. Zienkiewicz (1971) and Segerlind (1976)

discussed the numerical solution of the system of ODEs but did not discuss any of the

problems that can arise during the solution process and they did not compare the different

types of elements.

Recent books cover the time dependent problem in more detail but may mislead

an inexperienced analyst. Allaire (1985), concentrates most of his discussion on Euler’s

single step explicit method with one-dimensional problems. This method is known to be

unstable and is not the most accurate of the single step methods. Allaire does not discuss

any solution in two or three dimensions and makes no comparison between linear and

quadratic elements in the one-dimensional case.

Segerlind (1984) discusses some practical aspects of the numerical methods

related to oscillations and physical realities. He warns the reader to avoid using the

quadratic elements because of physical reality problems but does not describe the exact

significance of the errors.

Until recently, most application oriented books in heat transfer and ground water

flow focused their discussion on numerical solutions using finite difference methods and

did not go into detail on the finite element method. Jaluria and Torrence (1986) discuss



the three node triangular element for solving heat transfer problems but do not make any

comparisons with a two-dimensional finite difference solution. These authors do not

discuss any of the other types of two—dimensional elements. Their discussion could lead

one into thinking that the three node triangular element is the most appropriate for a

numerical scheme. Segerlind (1984) indicated that the four node quadrilateral element is

superior to the three-node triangle. The presentation in Jaluria and Torrence (1986) can

be contrasted with Patankar (1980) who limits the discussion of the finite element method

to two pages and does not give any equations for the method. Patankar recommends the

use of the backward difference scheme in time due to its "friendliness" for all values of

time and grid size and advocates a control volume approach for the space dimensions.

Patankar (1991) presented a heat transfer “computer program” called CONDUCT. This

program uses the backward difference scheme to solve a heat transfer problem in time,

but Patankar never discusses selecting a time step when solving transient problem.

Shih (1984) has a chapter on accuracy and error bounds. Most of his discussion

analyzes the error bounds for different orders of the finite element method. Shih does not

discuss any estimate for At when solving time dependent problems. He does, however,

have a chapter on the comparison between finite difference and finite element methods.

He covers smoothness of the basic function, numerical instabilities, higher order accurate

discretization schemes and the incorporation of mixed boundary conditions. Shih does

not give any numerical results and concludes with the statement, "Much work remains in

comparing these two powerful methods in a rigorous and conclusive manner".

Shih (1984), Jaluria and Torrence (1986) and Segerlind (1984) avoid explicit

numerical evaluation of the time step. They discuss stability and numerical oscillation



problems but none of the authors gives a procedure for estimating the time step as it

relates to the accuracy of the computation. The typical scenario is to present a numerical

solution procedure and compare it with an analytical solution of the PDE using one or

more time step values. The authors, however, never said how they determined what

numerical value of the time step to use. Dhat and Touzot (1984) comment that the time

step value that eliminates stability and numerical oscillations may not produce accurate

calculations. They also do not give any suggestions on how to select the time step value.

Gear (1971) and Stoer and Bulirsch (1980) discuss the mathematical approaches

to determine a time step value. They define an error as being the difference between two

solutions with time steps of At and At/2 and use this error to determine an appropriate

step size. This approach however, does not give much information on how to select a

starting value for At and requires two or more solutions before a time step is defined.

Myers (1977) discusses the critical time step, applicable to two—dimensional heat

conduction transient problems. His discussion, however, centers on estimating the

maximum eigenvalue for use in the Euler stability criterion or the Crank-Nickolson

oscillation criterion of ammo S 2 where 7cm, is the maximum eigenvalue. Myers does

not discuss the determination of At as it relates to the accuracy of the integration.

Another approach for selecting At is to limit the maximum change in any nodal

value to a certain percent of its previous value. This approach is used in some commercial

finite element software when solving nonlinear problems. This method suffers from the

need to repeat the calculations if the time step is too large and also does not give any

information on how to select a starting value for At.



Reddy (1984) has a section on time dependent problem, that is consistent with

much of the mathematical literature. Reddy describes the stability in terms of the roots of

the characteristic equations and the eigenvalues of the global system. Roots of that

equation should be bounded by one to avoid numerical oscillations. Reddy gives a time

step estimate for structural dynamics problems. He states that At = Tmin/rt, where Tmin is

the smallest period of natural vibration associated with the approximate problem gives an

accurate solution. According to Reddy, another estimate to At can be obtained from the

condition that the smallest eigenvalue of the characteristic equation be less than one.

Smith (1985) discusses the explicit Euler’s method for solving the non-

dimensional form of (1.1). Smith rearranged the difference equation and defined a term

r=8tl(5x)2. During the discussion of stability, Smith stated that the explicit method is

stable for r with values less than 0.5. The implicit Crank-Nickolson has the advantage of

being stable for all values of r. Smith recommends r = l for an accurate solution for the

Crank-Nickolson method. Smith also discussed convergence and stability for some time

stepping schemes and gave a time step expression that satisfies both criteria. No criterion

for selecting a time step based on accuracy was given. The term r defined by Smith does

not include material properties since the thermal diffusivity coefficient, cp/k, was defined

as one.

Allaire (1985) called Smith’s r term the Courant Number. Allaire’s variable

included the material properties. In addition to illustrating stable and non-stable schemes,

Allaire defined an oscillatory stable scheme as having spatial oscillation that eventually

dies out with the solution converging to the correct steady state values. Allaire showed

the following criteria to be true for the single step methods:



0 < r S 0.25 No oscillation

0.25 < r $0.5 Oscillatory and stable

0.5 < r Unstable (Euler’s method only)

The solutions given by Allaire have no indication of instability for values of r < 0.5.

Allaire discussed a “weighted explicit-implicit scheme”. His scheme reduces to the

explicit method and has stability criterion of r < 0. 5 when his parameter 0 equals zero.

Allaire showed that the Crank-Nickolson method and the fully implicit methods are

accurate for values of r up to 1.335.

Jaluria and Torrance (1986) defined Allaire's (1985) Courant number as the

Froude number, F0. These authors suggested using values of F0 less than 0.5 for the

implicit method although lower values gave better accuracy. They never give any

example of what the lower values should be.

Wood and Lewis (1975) studied seven different finite difference time marching

schemes. They comparedimethods based on an accuracy criterion. The authors related

accuracy to oscillations and stability. They determined the critical non-oscillatory time

step for the Crank-Nickolson (C-N) based on the maximum eigenvalue. They showed

numerically that when increasing the time step beyond a critical time step, oscillations

occurred. Wood and Lewis observed inaccurate values in backward difference scheme for

some time step values. They did not state that accuracy is a separate consideration in the

numerical solution of parabolic equations that needed to be addressed and adjusted

accordingly.

Wood (1990) gives an extensive list of time stepping schemes. His list included

most of the known schemes and some new ones. He studied stability, consistency, and



oscillations where the term "time step" was mentioned at several places. For many of

these schemes, numerical results were tabulated using various time steps and the

corresponding error was presented. The author showed that these methods were

consistent with the analytical solution. Wood also refers to the use of time step

adjustment where the size of the time step changes after every set of calculations but

never give any formula for determining a time step value.

Ortega (1990) defined and discussed three types of errors that are all associated

with the time step. The discretization (global) error, convergence error, and rounding

error. He did not indicate how to define the numerical value for the time step that will

minimize these errors.

Rushton and Tomlinson (1971) used the alternating direction approach as a

numerical scheme. They studied stability and found that for different boundary conditions

the Courant number, C, that generates accurate time steps changes. For a sudden change

of pressure head on the boundary, C should be less than 1.0. For a draw down at a well, C

should be less than 0.05. For a sudden change in discharge at a well, C should be less

than 0.5. The authors suggest that a trial and error procedure is still required for selecting

the optimal At value.

Henrici (1977) had an extensive discussion about the error propagation for the

difference methods in solving the PDE. His theoretical treatment did not include

discussion of the time step size needed for accurate results.

10



Williams (1980) and Fried (1979) both studied the numerical solutions of PDE

and used the time step criteria that satisfied stability requirements. Williams used a term

equivalent to the Courant number and stated that it should be less than 0.5. Fried used the

stability criteria (Amman...)

Haghighi and Segerlind (1988) solved the coupled heat and mass transfer

equations using the finite element method. They used Maadooliat’s (1983) non-oscillation

criteria as well as the physical reality conditions that Segerlind (1984) discussed in his

book.

Nripendra and Kunze (1991) presented a finite element solution for temperature

distribution in storage bin. They used the Crank-Nickolson scheme for the time domain.

They presented comparisons between numerical and exact solutions. There was no

mention of time step in their paper.

Irudayaraj (1991) and Irudayaraj et. a1. (1990) applied the finite element method

to the solution of a coupled heat and mass transfer problem. Both papers used the stability

criteria for selecting the time step. There was no check whether this time step ensured

accurate results. The author’s calculated results did not agree with experimental data in

the literature. The same stability criterion was followed by Liu et. a1. (1984). These

authors used a modified Runga—Kutta method to solve the parabolic system. Their work

did not discuss solution accuracy.

Peraire et. a1. (1988) studied the finite element solution of fluid flow. They used

the Courant stability criteria of (AtSK*hJu+c), where c is local speed of sound, he is the

average element length, u is the velocity, and K is a constant.

11



Alagusundaram, et a1. (1991) applied the finite element method to model the

diffusion of carbon dioxide in grain bins. Their calculated results did not compare well

with the measured values. They listed several reasons for this discrepancy. They did not

mention how they determined the time step. They did not state what time step value they

used and did not state whether the size of the time step might be one reason for the

inaccuracy of their calculation.

Cleland and Earle (1984) studied the freezing time of food material using six

finite difference methods. They ensured accuracy by reducing the time step until the

numerical results converged to a consistent value. They encountered a stability problem

and a physical reality violation that they called "jumping" and said it was related to the

latent heat. Although there is evidence of accuracy in their solutions, there is no

evaluation of a time step expression that could be translated to other problems.

Abdalla and Singh (1985) simulated the thawing of food using the finite element

method. They presented comparisons between analytical and predicted values but they

did not state what time step value they used.

Segerlind and Scott (1988) were among the first to deal with the time step

estimates from the accuracy perspective. They presented a time step estimate for one and

two-dimensional problems that produced accurate results. They did not give any

derivation for their estimate and stated that much of it was based on their experience.

They did not show any evidence that their time step estimates really work. However, they

have stated an important observation that a time step based on the oscillation criterion is

conservative. The time step could exceed this criteria by a factor of two before

oscillations were observed.

12



Ne-Zheng Sun (1989) studied numerical solutions for the coupled ground water

flow and advection-dispersion equation. He applied a variation of the linear finite

element method and compared his solution with analytical ones. No indication was given

as to what time step was used in his analysis.

Scientists reporting new time stepping schemes seem to discuss stability and

oscillations only. Yu and Heinrich (1987), Sega] and Praagman (1986), Fong and Mulkey

(1990), Riga] (1990). Schreyer (1981) used the stability time step requirement (At < C

h2/2), where C is the thermal capacitance when performing a numerical solution for the

heat conduction equation. None of these authors discussed the accuracy of the solutions.

Shu-Tung Chu and Hustrulid (1968), and De Baerdemaeker, et al. (1977) did not

define a time step estimate when they discussed the numerical solution of the diffusion

equation. Scott (1987) uses the following arbitrary accuracy criteria At=(time to steady

state)/100. In other words Scott assumes that running the problem for 100 time steps

should be sufficient to ensure an accurate solution. Although this estimate might be a

good starting point for some problems, no justification for its use was given.

Maadoliat (1983) studied stability and physical reality oscillations of the finite

element numerical solution. He concluded with a set of conditions that must be satisfied

in order to avoid both numerical problems and recommends a time step estimate

accordingly. He did not consider the accuracy criteria.

Mohtar (1994) was among the first researchers to define the time step value based

on an experimental accuracy criterion. He investigated the one-dimensional problem and

two-dimensional problems consisting of square elements. The general procedure

developed by Mohtar was to:



1. Define a measure of the error,

2. Convert the PDE to a system of ODE using the finite element method in space.

3. Solve a problem using several different values of the time step and several

subdivisions of the problem in space,

4. Plot the error value against the number of nodes and select the time step value, At,

that produced a specified error,

5. Empirically fit an equation to the time step data using lowest eigenvalue as the

basic parameter, and

6. Checked the equations by solving a different set of problems.

In one-dimensional problems, Mohtar (1994), defined the accuracy ratio as

= 2;. 2:.INODE. -APDE..I

23:1 ELI/AODE.) —APDEU|

 e (2.1)

where NODE is the numerical solution for the system of ODEs, APDE is the analytical

solution for the PDEs, AODE is the analytical solution for the system of ODEs, and n and

m are the number of sampling points in the space and time domain respectively. The

dynamic time step equation developed by Mohtar for the three single step methods

applied to one-dimensional problems are:

Forward difference in time

 

—1.6

At = 0.27 N (2.2)

Central difference in time

—l.18

At=1.13N (2.3)
 



Backward difference in time

-3.91

At = 30.6 N (2.4)

In each equation, At is the time step value, N is the number of nodes in space and

M is the lowest eigenvalue for the system. The time step estimates were validated using

four different problems with analytical solutions: A sine wave variation and a linear

variation in the initial conditions with boundary temperatures known and two problems

with uniform initial conditions and derivative boundary conditions. The problems were

solved using fractions or multiples of the calculated time steps. Time step values of one-

half, two and three-times At were used along with the error ratio

.”' NODE,

e = :1 (2.5)

ZHAPDE,

 

The accuracy ratio for At/2 and At were equivalent. The results for multiples of two and

greater were less accurate than the results for At.

In two-dimensional problems, Mohtar (1994), defined the accuracy ratio as

.. 2m1 lNODEU - APDE,

-- ._ NODE.
e: j-I 1—1 I]

(26)

mn

 

 

where NODE is numerical solution for the system of ODEs, APDE is the analytical

solution for PDE, m is the number of sampling points in the space domain, and n is the

number of sampling points in the time domain. The sampling points in the time domain

were at 9.5, 19, 28.6, 38.1, 47.6, 57.1, 66.7, 76.2, 85.7 and 95.2 percent of the time to

steady state defined by tss=(4/lowest eigenvalue).

15



The accuracy ratio, (2.1), used with one-dimensional problems became too

difficult to evaluate for larger two-dimensional problems. Mohtar (1994) restricted the

two-dimensional grid to square elements to allow a comparison of the finite element and

finite difference formulations in space. Using the error estimate (2.5) and a five-percent

error in the calculated values when compared to the analytical solution of the PDE,

Mohtar developed the empirical time step estimates for two-dimensional square grid

given below. Equation (2.7) through (2.9) are for the finite difference formulation in

space while next three are for the finite element formulation in space.

Finite difference method in space

Forward difference in time:

 

 

 

-1.01

At = 1.19 N (2.7)

Central difference in time:

—0.55

At = 1.6 N (2.8)

211

Backward difference in time:

-0.1

At = 0.05—N— (2.9)

11

Finite element method in space

Forward difference in time:

——l.04

At = 1.8N (2.10)

A
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Central difference in time:

 

—0.55

At=1.6N (2.11)

Backward difference in time:

—0.1

At = ODS—NA.— (2.12)

The above equations are valid when the number of nodes used with the finite

difference formulation in space is equal to or greater than nine. The equations for the

finite element method in space are valid when the number of nodes is equal to or greater

than twenty-five.

Tan (1995) carried forward the work of Mohtar (1994) and developed empirical

equations for calculating the time step required to numerically solve the system of ODEs

related to time dependent radial field problem. The specific objectives of his study were

to develop an empirical time step estimate for the three single step integration methods

that satisfy an accuracy criterion and validate the time step equations by solving different

set of problems.

Tan (1995) used the central difference solution scheme with a very small time

step size and a highly refined grid in space to generate a set of reference values instead of

using an analytical solution. The analytical solution of radial problems involves

numerical evaluation of the series that define Bessel functions. Tan thought it was more

appropriate to simply use a numerical solution to generate the reference values.

Tan’s study used the linear radial element and the three single step integration

methods in time. He used FEM in space and the lumped formulation for the capacitance

17



matrix. The time step equations were presented using the same format as used by Mohtar

(1994). The equations are as follows:

Forward difference method in time:

-2.13

At: 3.91 N
 

Central difference method in time:

N—l.81

A

 At=.12

Backward difference method in time:

—1.66

At = 5.28 N 

18

(2.13)

(2.14)

(2.15)
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CHAPTER THREE

OBJECTIVES

After studying a large amount of literature on the solution of time dependent field

problems, the need for a priori time step estimate seems obvious. An a priori time step

estimate would eliminate the present trial-and-error procedure. A very good time step

estimate would allow the user to generate an accurate solution while satisfying numerical

stability and oscillations criteria. The specific objective of this study was to develop an a

priori time step estimate for three single-step methods used to solve the system of

ordinary differential equations associated with the radial and spherical field problems.

This study uses the finite element method in the space domain and lumped formulation in

time.

The general hypothesis was that the a priori time step estimate has the general

form

(ADA = C

for the unconditionally stable methods and

(ADAM = C

for conditionally stable methods. These equations presented are similar to those

developed by Mohtar (1994) and Tan (1995). The number of nodes in the space

dimension, N, has been deleted as a basic parameter. It is well known that increasing the

number of nodes in space increases the solution accuracy. It is also well known but often

forgotten that the physical parameters that occur in PDEs are generally accurate to two

significant digits and occasionally to three. (of. tables in Perry et a1. 1984). A large

number of nodes in the space dimension significantly increases the solution time and
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generates accuracy beyond that justified by the number of significant digits in the basic

parameters.

Some of the limits on this study included:

1. Radial and spherical field problems were investigated.

2. Finite element solution was adopted in space domain by using linear one-

dimensional elements.

3. In the time domain single-step solution procedure was adopted. The numerical

schemes used were: The forward difference, central difference and backward

difference methods.

4. The capacitance matrix was formulated by using lumped (diagonal) formulation.
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CHAPTER FOUR

THEORETICAL CONSIDERATIONS

Galerkin’s finite element formulation was used to obtain the element matrices for

both the space and time domains. The finite element technique is preferred over the finite

difference method because both of the resulting matrices, [C] and [K], are positive

definite, symmetric, and their eigenvalues are real and positive. The stiffness matrix [K]

is singular before boundary conditions are imposed. The finite difference method in space

produces an unsymmetrical stiffness matrix. The global matrices, [C] and [K], are built

from element contributions using the direct stiffness method, Segerlind (1984). The

coefficients in the element matrices depend on the type of interpolation function used to

solve the problem. There are two types of formulation for the capacitance matrix [C]:

consistent and lumped. There are some disadvantages associated with the consistent

formulation (Visser, 1965, Wilson and Nickel], 1966, Brocci, 1969, Zienkiewicz, 1977

and Segerlind, 1984, therefore, a lumped formulation was used for the capacitance

matrix.The primary objective in this chapter is to briefly discuss the derivation of

element matrices for spherical and radial field problems.

4.1 The Spherical Field Problems

Misra and Young (1978) have derived the element matrices for transient heat

transfer in a sphere and have presented adequate details. To maintain continuity for the

reader, especially for the reader who does not have direct access to the reference, a

summary of the derivation is given here.
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4.1.1 Governing equation

The differential equation for heat conduction in spherical coordinates, with heat

generation within the solid, is given by Carslaw and Jaeger (1959) as

  

2 2

Daquzaau+ Drp a[. at!)+ D, 3U 8U
=D— 4.1

rdrz r 3r rzsintpago rzsin2g03¢2+Q 'dt ( )

where D,, D}, D4,, and D. are the physical parameters and Q = Q(r,t) is the rate of heat

generation. The initial and surface conditions and physical properties of a sphere are such

that the isothermal surfaces are concentric spheres, therefore, the temperature is only a

function of the radius, r, and time, t. The problem can now be studied by rotating a one-

dimensional pin in three dimensions and can be integrated over the entire volume. The

radial distance can be divided into a finite number of elements. The three dimensional

equation, (4.1), reduces to

2

D,a(21+20’aU=D,§—t—j— forOSrSRandt>0 (4.2)

Er r Br 3:

 

where Dr is the radial thermal conductivity, U is the temperature and D, is the thermal

capacitance term which is the product of the density and the specific heat. The variables r

and t are the space and time variables respectively. According to Carslaw and Jaeger

(1959) the boundary conditions for (4.2) could be

U=U(r)atr=R;t>O

or a prescribed convection term at the surface

iDr—aaE+h(U —Um):0 at r=R, t>O

r

where h is the surface heat coefficient and U... is the temperature of the surrounding fluid.

The initial condition given by Calslaw and Jager is U = U(r) in 0 S r S R; t = O
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4.1.2 Variational statement

The finite elements technique requires developing the element equations from

governing differential equations either by obtaining the variational or functional

statement of the physical problem or by directly transforming the governing equation

using Galerkin’s method when the functional statement is not readily available. Misra

and Young (1978) derived the element contributions by minimizing the functional

statement of a physical problem.

The method for obtaining a variational statement from the governing equation is

to rewrite the governing equation in the form of Euler-Lagrange equation, which for

several independent variables has been given by Schecter (1967). The equation Schecter

gives for spherical coordinates is

er a an 2 D aF , av
—————— —— on—-2 U 4.4
an Br Br) +rzsin2¢(d¢)+ ‘ at Q ( )

where F is the function to be determined. In a transient heat transfer problem, the

function F can be split into

F = F, + F3 (45)

where F1 is the function for internal heat conduction and F3 is the function for boundary

conditions.

The function F; in spherical coordinates is,

1 80 2D at] 2 D aU 2 av
F=—D — J— ——J’——— on——2 U 4.6

I 2[ '[ar] r2 (23¢) +rzsin2(p[d¢] + ' a: Q J ( )

which reduces to

F--l-D (>12 Ua—U- (47)
I 2 r pC at '
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when U¢ f(¢,(p). The variable t} is BTU in (4.7).
r

The function F3 is found from

86:0

8U

 

For the boundary conditions given by (4.3), F3 is

1 2
FB = —2—h(U —U,,)

Misra and Young (1978), define the element stiffness matrix [km] as

7‘

[km]: [[0 am] BIN] )dV (4.8) 

' Br Br

The element capacitance matrix [cm], is defined the same for all field problems and is

given in Segerlind (1984) as

[cm]: LD,[N]T[N] dV (4.9)

The incremental volume dV in (4.8) and (4.9) is dV=41trdr.

4.1.3 Element matrices

Figure (4.1) illustrates the node locations and elements for the axisymetric heat

transfer problems in a sphere. The interval between adjacent nodes is called an element

and a typical element ‘e’ is the interval between nodal points i and j. The temperature

within an element is assumed to vary linearly and is given by (Myers, 1971)

R. — r — .

U“) = cl") +c§"r = -——’)Uf‘) + __rR’ U‘." (4.10)

L / L ’
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The constants c1 and e; have a superscript ‘e’ because these are different for each element

and the superscript ‘e’ with U“) indicates the nodal value in an element. After the

necessary integration, the element stiffness matrix is given by

(e) 3_ 3 __

[K“’]=4D' (R’ R2")? 1] (4.11)
3(Rj-R,) -1 1

 

where R, is the radial distance to node i and RJ- the radial distance to node j.

Using the shape function matrix

Rj—r r—R'.

[N]-[ L L ]
 

in (4.9) and performing the matrix integration, the element capacitance matrix is given by

e (c)

60(Rj —R,.) c2, (‘22

where

cll = 2R3 —20R}R,.3 +301?ij 421:2,5

c,, = 3R3 — 5R3R, + 5R,R;‘ - 3R,5

c2, = c12

c22 =12Rf. —30R}R,. + 20RjR,2 - 2R,5

This capacitance matrix is for the consistent formulation. The lumped formulation is

obtained from the consistent formulation by placing the sum of each row on the diagonal

and placing zeros in the off diagonal positions. The lumped capacitance matrix is

e (e)

[C“’]=—fflo—c— d” O (4.13)
60(Rj—Ri) O d22

where d” = c] 1+ c1; and d22= c.2+ on. The final equations for d1 (and (122 are
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d“ = 5R3 -5R;‘R, + zokfkf’ + 35Rj R,“ —15R,.5

an =15Rj —35RjR,. + zorzj‘R,2 +51?ij —5R,:‘

The above mentioned element stiffness matrix, (4.11) and capacitance matrix,

(4.13) are used to build the global matrices [C] and [K] using the direct stiffness

procedure, Segerlind (1984).

4.2 Radial problem

The field equation in cylindrical coordinates (r,0, z) is

BZU D at] 0,32U azu aU
— '— —— D—— =D— 4.14
'ar2+r3r+r2862+ ZEizzdl-Q ( )

D i

at

 

where D,, De, Dz and D. are physical parameters, Q is the source term and U is the

unknown. If U is independent of 9 then (4.14) reduces to

BZU D Em BZU aU

'— D—— :1)

' 3r2 r 8r + 2 dz2 +Q

D ,—

a:

  (4.15)

If the body is long in z-direction as compared to radius, the end effects are negligible, and

(4.15) reduces to

BZU D 8U 8U
D __+ r __+ _— D __ 4.16

' 3r2 r 8r Q ' a: ( )

 

This equation governs radial heat flow. Assuming that Dr is constant, (4.16) can be

written in the compact form

1 3 3(1) 3U

rl: 'ar rar)]+Q D'a: ( )
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The boundary conditions associated with (4.17) are either U is constant or the convection

boundary condition

Baa—U: M—Ub +S (4.18)

r

4.2.1 Galerkin’s Finite Element Formulation

The weighted residual integral for left side of (4.17) is the volume integral given

by Segerlind (1984)

{R“’}=-L[NI g_a_ ra—¢ +Q]dV (4.19)
r Br Br /

The solution of field problems for cylindrical coordinates is discussed in several books.

The integral form of the element matrices for radial field problems can be obtained from

the cylindrical formulation by deleting all terms associated with the z coordinate. The

weighted residual integral associated with Galerkin’s finite element formulation for an

axisymmetric element is

{R“’}=[[[D,am 611v] +1) arm am] )dv)U“’}—[ QWW
 

Br 3r 1 Dz dz

—[[N][0,?—cossa+Da—Usin6)fl‘

Dz

The above is equation (13.21), Segerlind (1984). Deleting the terms associated with the z

(4.20)

coordinate direction and noting that the outside normal is always perpendicular to the

boundary, cos 0 = 1, the weighted residual integral for the radial element becomes

(e) _ BINIT 8[N] m} 3U

{R }—[L[D, Br Br )dV)U} —jQ[N]dV- L[N]T,[D 37]” (4.21)

The first integral in (4.21) multiplies the column vector of nodal values and defines the

 

element stiffness matrix [km]. The integral containing Q becomes {fm}, while the surface
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integral is the inter—element requirement for interior element boundaries and the

derivative conditions for the element with a node on an internal or external boundary.

4.2.2 Element Stiffness Matrix

The element stiffness and capacitance matrices for the radial field problems are

not readily available in the literature. Most authors have chosen to write about the

axisymmetric problem, which is solved using two-dimensional elements. The one—

dimensional radial element has the equation as the spherical element

R. — _ .
U‘“ = Cf“ + Cf’r = {—114r )1,“ +[—rLR' }/;" (4.22)

where R, is the radial distance to node i, Rj the radial distance to node j and L is the

element length. The row vector [N] is

 

 

 

R]. —r r—R.

' 4.2[N]:[L L :l ( 3)

and

3[N]=[‘_1 i] (4.24)
3r L L

while

T l

BIN] -2
425

8r 1 (. )

L

The element stiffness matrix [km] is defined by

[___k(e)] “Dre31”]alNIJdV (4.26)
3,.
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Substitution of (4.24) and (4.25), using dV=27trdr and integrating from Ri to RJ- produces

(c)_27r;Dr 1 —1
[k l- L [_1 1] (4.27)

after using the relationships

Rj+R,.

 L=Rj—R,. and 7:

and noting that

2 2

R]. —R,.

2

 =LF

4.2.3 Element Capacitance Matrix

The element capacitance matrix [cm], is defined the same for all field problems

[c“’]=[vD,[N]T[N] dV (4.28)

The matrix of shape functions, [N], for the radial problems is defined by (4.14). .

Substitution of (4.28), using dV=21trdr and again integrating from Ri to Rj produces the

consistent capacitance matrix. Add all of the coefficients in a single row and placing the

value on the main diagonal gives the lumped version of capacitance matrix which is

R. + 2’ 0

[C“’]= —2mD'L ‘ r — (4.29)

6 0 RJ. + 2r

4.3 Closure

The element stiffness and element capacitance for the spherical and radial field

problems were developed in this chapter. There are several other details related to the

computer implementation that have not been discussed/included. The direct stiffness
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procedure for constructing the global matrices and the incorporation of known and/or

derivative boundary conditions. These items are in most finite element books and

duplicating the information seemed unnecessary.
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CHAPTER FIVE

METHODOLOGY

The research in this study is directed at developing an a priori time step estimate

that meets a required accuracy criteria. Stability and oscillations were given secondary

consideration. It is worthwhile to mention that no numerical algorithm can produce

valuable results unless it is stable and free of oscillations. This chapter discusses with the

methodology adopted to develop an a priori time step estimate.

5.1 Methodology

The methodology in this study is a refinement of the techniques used by Mohtar

(1994), Tan (1995) and Kwon (1998). The basic steps in this procedure are:

1. Define the Physical Problem

This study was limited to the radial and spherical parabolic diffusion equations.

Each problem was converted to a system of ordinary differential equations by

using the finite element method in space and lumped formulation in time. The

investigation was limited to a cooling problem, which goes to equilibrium.

Define an Error Norm

An average error norm, L1 was defined

 
Ural — U

«i
— , refu-

e_22| (Um-U... (5.1)
  

and used in this study. The numerator is the difference between a set of calculated

values in space and time and a set of reference values for the same set of points in

space and time. The denominator contains the total number of sampling points, N,

and the largest difference between the initial condition and a final value. The
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reference values were calculated using a 21-node grid in space and a time step

smaller than the time step values used to investigate other solutions.

The maximum error in each solution was also determined and retained as useful

data in developing the time step estimate. Mohtar (1994) investigated the use of

other error norms including L2 and L... norms. These norms provided less accurate

estimation of the desired time step.

Select a Defining Problem

The time step estimate is established using a physical problem that is considered

very difficult to solve numerically; a body with a constant temperature (or some

other variable) and the boundary temperature is changed instantaneously to

another value. This problem was selected because the analytical solution of this

problem has all of the frequency components and it has shortest time to steady

state. The initial and boundary conditions for both the radial and spherical

problems were

U(r,0) = 1, 0 S r S 1 (5.2)

with the boundary condition

U(1,t) =0, t>0 (5.3)

Both problems were solved using a radius of one and the physical parameters Dr

and D were also assigned a value of one.
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Define the Sampling Points in Space

The sampling points in space have to be defined such that the grid being studied

has nodes at the same location as the reference grid. The sequence that satisfies

these requirements consists of 6, 11 or 21 nodes. The reference grid also has 21

nodes but smaller time steps. This set of grids is illustrated in Figure 5.1. The

calculated value at each internal node in the 6, 11 and 21 node grids was used in

the calculation of the error norm.

Define the Sampling Points in Time

The sampling points in time were defined at or very near 1/ 14, 2/14, 3/14,4/14,

5/14, 6/14, 7/14, 8/14, 9/14, 10/14, 12/14 and 14/14 of the 60 percent of the time

to steady state, tss, which was calculated using

I = —— (5.3)

where A. is the lowest eigenvalue of the system of ordinary differential equations

associated with the transient solution. The definition of tSS comes from, e4" , the

first term in the analytical solution of a parabolic diffusion equation. This

particular term lasts the longest. The value of 4 is used in (5.3) because when Mt

= 4, e'4 = 0.018 and over 98% of the transient has been completed.

Select the Solution Procedure in Time

There are several methods available for solving a system of ordinary differential

equations in time. Three single step methods were investigated in this study; the

forward difference, central difference and backward difference methods.

33



SAMPLING POINTS IN SPACE

 

      

1 2 3 4 5 6

C G C Q C O 6 Node Grid

11 ll Node Grrd

21 Node Grid

21

Figure 5.1
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7. Define the Accuracy Level

A priori time step estimate must be defined relative to a level of accuracy. The

equations in this research were defined for an average error of one-percent and a

maximum error of approximately five-percent.

5.2 Computer Software

A finite element program, Segerlind (1987), was modified for use in the

numerical experimentation. Some of the results obtained from the Quickbasic®l program

were also verified using the commercially available mathematical program, MATLAB®2.

The Quickbasic programs solved the PDEs in space generating the ODEs and then

calculated the lowest and highest eigenvalues for the system of equations. The program is

capable of evaluating four different capacitance matrices including the lumped and

distributed (consistent) matrices. Only the lumped formulation was used during this

research. The computer programs were enhanced to minimize the amount of time

required for file management and graphing of the calculated values.

 

I Registered Trademark of Microsoft Corporation.

2 Registered Trademark of The Math Works, Inc.
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CHAPTER SIX

RESULTS: UNIFORM GRID

A large number of experiments was conducted to determine the desired At and its

relationship with the lowest or largest eigenvalue of the system of ODEs associated with

the spherical and radial field problems. Each subdivision of this chapter covers the

experiments related to one of the field problems and the solution procedure in time; the

central difference, backward difference and forward difference single step numerical

schemes. Each time scheme was investigated using grids of 6, 11 and 21 nodes. Sectors

6.4 and 6.5 deal with deriving equations for the a priori time step.

6.1 Reference Values

Reference values were generated by solving a twenty one-node grid using the

central difference single-step numerical scheme. The time step (At) was kept equal to

0.6tss/112 for the unconditionally stable methods and At = 0.6tsJ8960 was used for

conditionally stable method. Numerical solutions with 31 and 41 nodes were abandoned

because there was minimal improvement in accuracy with a considerable increase in the

computational effort.

6.2 Spherical Shapes

For the unconditionally stable schemes, central difference and backward

difference, the 6, 11 and 21 node grids were solved in time using a At that varied from

0.064 (0.6tssll4) to 0.008 (0.6tsJ112). To maintain compatibility of the sampling points in

time domain, sampling points for At =0.6tss/14 were 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 and 14;
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similarly for At=0.6ts,/56 the points were 4, 8, 12, 16, 20, 24, 32, 36, 40, 48, 56. The

multiples of 14 used in the experiments were 28, 56, 70, 84, 98 and 112.

For the conditionally stable forward difference scheme 6, 11 and 21 node grids

were solved in time using a At that varied from (0.6tssl896) to (0.6tssl8960). All At were

kept in the multiples of 896 (896 is also a multiple of 14) to maintain compatibility of the

sampling points. For example, sampling points with At =0.6t,S/896 were 64, 128, 192,

256, 320, 384, 448, 512, 576, 640, 766 and 896, and so on. The multiples of 896 used in

the experiments were 896, 1792, 3584, 5376, 7168 and 8960. A larger number of time

steps was required for the forward difference scheme because of the stability criterion.

Every solution was compared with the reference in space as well as time domain

by calculating a L1 norm, the average error and deterrrrining the maximum error.

Summary of all the data used in experiments and the values obtained are attached as

Appendix A.

The results were plotted for every reading obtained during experiments. The time

step was kept on the horizontal axis and the average or maximum error was kept on

vertical axis. Details of data including variation of temperature at each sampling point in

space and time are lengthy and not attached with this document; however, a summary of

results, graphs and analysis for each experiment is presented.

6.2.1 Central Difference Method in Time

6.2.1.1 Six Node Grid

Figure 6.1 graphically represents the average error for a six-node grid. The six-

node grid did not produce accurate results. The average error remained above two-

percent even for smaller time steps. A more refined grid in space is recommended.
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6.2.1.1 Eleven Node Grid

The average error for an eleven-node grid is presented in Figure 6.2. The eleven-

node grid produced very accurate results with the average error remaining below one

percent for all time steps. The error increased sharply for time steps larger than 0.6tssl28

or At>0.0032.

6.2.1.2 Twenty-one Node Grid

Figure 6.3 represents the average error for the twenty-one node grid. The results

were very accurate, with the average error remaining below 0.2 percent for several time

steps. The error has a sudden increase at time steps larger than 0.6t,,/28 or At>0.0032 and

exceeds the error in the eleven-node grid.

6.2.1.3 Backward Difference Method in Time

6.2.1.4 Six Node Grid

The average error is presented in Figure 6.4. The six node grid did not produce

accurate results. Average error remained above two- percent even for the smallest of time

steps.

6.2.1.5 Eleven Node Grid

Figure 6.5 graphically represents the average error. The eleven-node grid

produced accurate results below At=0.016 where the average error remained below 1

percent. The error increased with the time steps larger than 0.6t,,/28 or At>0.0032.

6.2.2.3 Twenty-one Node Grid

The average error for the twenty-one node grid is presented in Figure 6.6. The

average error was below one percent when more than 56 time steps were used. The error

increased for the time steps larger than 0.6t55/28 or At>0.0032.
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6.2.3 Forward Difference Method in Time

The forward difference is a conditionally stable method in which stability and

oscillation limits depend upon the maximum eigenvalue, 714m, of the system of equations,

Segerlind (1984). The reference values were obtained by using a very small time step,

At=0.6tss/8960.

6.2.3.1 Six Node Grid

Figure 6.7 graphically represents the six node grid. Once again, it did not prove to

be accurate and average error remained above one-percent even for small time steps.

6.2.3.2 Eleven Node Grid

The average errors for the eleven node grid are plotted in Figure 6.8. The results

were accurate and the average error remained below one percent for smaller time steps

but suddenly increased for the time steps larger than 0.6tss/3584.

6.2.3.3 » Twenty-one Node Grid

The average error for the twenty-one node grid is presented in Figure 6.9. The

results were very accurate. Average error remained below 1 percent but suddenly

increased for time steps larger than 0.6tssl3584.

6.3 Radial Shapes

The procedure and schemes used for radial shapes are similar to those used for the

spherical shapes. Results of eleven and twenty-one node grids have reasonable similarity;

therefore, they have been combined for the purpose of clarity and brevity.
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6.3.1 Central Difference Method in Time

6.3.1 Six Node Grid

Figure 6.10 exhibits the average error for the six-node grid. The results were

inaccurate; average error remained above two-percent.

6.3.1.1 Eleven and Twenty-one Node Grid

Figure 6.11 displays the plot of average error for the eleven and twenty one-node

grids. The results for the time steps up to 0.6tsJ56 are accurate with the average error

remaining below 0.5 percent. There is, however, a sharp rise in the error for the time

steps larger than 0.6t,,/28.

6.3.2 Backward Difference Method in Time

6.3.2.1 Six node Grid

Figure 6.12 graphically displays the average error for the six node grid. The

results are inaccurate and suggest need for more refined grid in space.

6.3.2.2 Eleven and Twenty-one Node Grid

Figure 6.13 represents the average error for the eleven and twenty-one node grids.

The results were accurate with the average error remaining below 0.5 percent for several

time steps. The error increases suddenly at time steps larger than 0.6t35/56.

6.3.3 Forward Difference Method in Time

6.3.3.1 Six Node Grid

Figure 6.14 displays the average error for the six node grid. The results remain

inaccurate and further strengthen the idea of needing a more refined grid in space.
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6.3.3.2 Eleven and Twenty-one Node Grid

Figure 6.15 represents the plot of the average results for the eleven and twenty

one node grids. Average error remained below 0.5 percent for the smaller time steps but

showed a sharp increase for the time steps larger than 0.6t55/3584.

6.3 Analysis

After considering the individual details of each experiment, I summarized the

results and developed the time step equations. The salient observations on the results are

as follows:

1. The most common feature among all the calculated results is the fact that the error

ratio decreases with decrease in the size of the time step, At. In other words, the

accuracy of a numerical solution improves with the decrease in At. There is a At

for some problems, however, where the error starts to increase.

2. In every scheme, there is a time step below which the improvement in accuracy is

not significant and the reduction in the step size becomes counterproductive due

to extra computational effort and possible round off errors.

3. There is definitely a region for At, where the solutions are within the desired

accuracy range and show little shift with the variation of the step size. This region

is between At>0.6ts,/84 and At<0.6ts,/28. This region was used to develop the a

priori time step estimates.

6.4 Derivation of the A Priori Time Step Equations

The a priori time step estimate equations were developed using the numerical

experiments conducted and analyzed in this chapter. Since the equations have been
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derived from step change problems, the hypothesis is that they can be used for problems

with derivative boundary conditions.

Keeping in view the intricacies of the numerical schemes used, a separate

equation has been developed for each scheme.

6.4.1 Central Difference

A large number of numerical experiments were conducted and analyzed. The

analysis shows that accuracy level of less than one-percent has been obtained for all

analysis up to a time step as larger as 0.6t55/28. It has already been elaborated that tSS has

been obtained from the lowest eigenvalue it]. Based on the relationship and results

obtained during the numerical experiments the empirical equation deduced for the central

difference time scheme is as follows:

AM, = 0.025 (6.1)

6.4.2 Backward Difference

The analysis indicates a lot of similarity between the backward difference and the

central difference methods. However, it was observed that the average error remains

within the limit of less than one—percent in the range of a time step around 0.6tss/56.

Therefore the empirical equation obtained for the backward difference time scheme is

slightly different than the central difference:

At/l1 = 0.05 (6.2)

6.4.3 Forward Difference

Very small time steps were used in the forward difference scheme due to the

problem of stability and oscillations associated with this scheme. Therefore, the results of

forward difference method remain within the limit of desired accuracy. After deliberate

57



analysis it is has been found that the oscillation criteria for the forward difference method

is also the accuracy criteria. The empirical equation is as follows:

Ar=— .2 (63)

These a priori time step estimation equations should provide a reasonable start

point in numerical solution of the parabolic diffusion equations that approach to

equilibrium. They should save considerable time by eliminating the present trial and error

forecasting of At and eliminating the computationally expensive trials with very small

time steps.
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CHAPTER SEVEN

RESULTS: EQUAL VOLUME-GRID

This chapter discuses the solution of the spherical and the radial problems using

an equal volume grid instead of a uniform grid. Details about the reference values, the

error norm, and the solution procedures were identical to those discussed in Chapters

Five and Six. Therefore, only the results of this study are presented in this chapter. A

summary of the eigenvalues, time steps, average errors, maximum errors and other useful

data is presented in Appendix B.

7.1 Constant Volume Spherical Grid

7.1.1 Central Difference Method in Time

Figure 7.1 graphically represents the average error for the central difference

method and a six-node grid. The results were similar to the uniform grid. The average

error remained above 1.4 percent for smaller time steps and showed a sharp increase for

the step size larger than 0.6tsJ28. The average error for eleven and twenty-one node grids

is presented in Figure 7.2. The average error remained below one percent for the time

steps smaller than 0.6tss/56, and increased rapidly after that.

7.1.2 Backward Difference Method in Time

The average error for the backward difference method and the six node grid is

presented in Figure 7.3. The average error remains above 1.4 percent even for the

smallest of the time step value. The average error for the eleven and twenty-one node

grids is presented in Figure 7.4. Accurate results occur for At less than 0.6tsJ56 where the

average error remained below 1 percent.
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7.1.3 Forward Difference Method in Time

The time steps had to be kept very small due to an increase in Km”, for the system

of differential equations. The stability and oscillation criteria depend upon the Am“.

The average error for the six node grid is presented in Figure 7.5. The average

error remained above one-percent even for all time steps. The average errors for the

eleven and twenty one node grid are displayed in Figure 7.6. The results were accurate

and the average error remained below one percent for smaller time steps but increased

rapidly for time steps larger than 0.6tsJ3584.

7.3 Radial Shapes

7.3.1 Central Difference Method in Time

Figure 7.7 exhibits the average error for central difference method six node grid,

the error remained beyond two-percent. Figure 7.8 displays the plot of average error for

eleven and twenty one-node grids. The results for the time steps up to 0.6tss/56 are

accurate with the average error remaining below 0.5 percent. However, the error

suddenly went to 3 percent for the time steps larger than 0.6tsJ28.

7.3.2 Backward Difference Method in Time

Figure 7.9 graphically displays the average error for six node grid and. Figure

7.10 represents the average error for the eleven and twenty-one node grid. The results

were accurate with the average error remaining below 0.5 percent for several time steps.

The error had a sudden increase at time steps larger than 0.6t55/56.
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7.3.3 Forward Difference Method in Time

Figure 7.11 displays the average error for forward difference method in six node

grid. The results remain inaccurate. Figure 7.12 represents the plot of the average results

for eleven and twenty one node grids. Average error remained below 0.5 percent for the

smaller time steps but shows a sharp increase for the time steps larger than 0.6tsJ3584.

7.4 Analysis

A large number of experiments were carried out on the problems already solved

by using the equal volume grid instead of the uniform grid. Radial length of the elements

was varied in such a manner that the volume of each element was kept equal. Review of

the analysis of these experiments is as follows:

1.

2.

There are no perceptible advantages associated with the equal volume grid.

However, the major disadvantage noticed during the study was a noteworthy

increase in the maximum eigenvalues of the system of equations generated by

using the equal volume grid. This phenomenon was observed in both, the

spherical as well as the radial problems.

Figure 7.13 presents a graphical comparison of the maximum eigenvalues of the

equal volume grids with uniform grid for spherical problems. Similarly, Figure

7.14 gives the comparison of maximum eigenvalues associated with radial

problems.

The variance in the minimum eigenvalues of the system of equations using equal

volume grid as compared to uniform grid was not significant.

Figure 7.15 displays the comparison of the lowest eigenvalues of the equal

volume grid with the uniform grid for spherical problems. Figure 7.16 gives a

similar comparison for the lower eigenvalues associated with radial problems.
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CHAPTER EIGHT

EVALUATION OF THE TIME STEP ESTIMATES

This chapter recommends a procedure to apply the empirical time step equations

for the solution of spherical and radial field problems. This chapter also deals with the

verification of the time step estimates by applying them to the numerical solution of

problems different than what were used during the numerical experimentation.

8.1 A Priori Procedure

The recommended procedure for handling the numerical solution in the light of

the prepriorri time step equations is as follows:

1. Calculate M and km,“ for the system of ordinary differential equations developed

using the finite element method or finite difference method in space.

2. Calculate At for the intended numerical scheme using equations 6.1, 6.2 or 6.3.

3. Round At to a convenient value. Round the value down for step change boundary

conditions. The value can be rounded up for convection boundary conditions.

4. Solve the problem using the numerical scheme selected, printing the calculated

values as desired.

8.2 Evaluation

The time step estimates presented in Chapter Six were developed using the step

change problem on a solid sphere and solid cylinder of radius one and assuming

Dr=Dt=l. The ability of these equations to predict the time step for real problems was

evaluated using different materials and other boundary conditions.

The comparison problems were chosen with real values of the material

properties and realistic dimensions with the convection boundary conditions. The results
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proved that the empirical a priori time step estimate equations produce reasonable results

and maintain the desired level of accuracy. A number of experiments were conducted to

verify the developed a priori equations. However, for the purpose of clarity results of a

radial problem with convection boundary conditions and actual physical properties are

displayed in the form of graphs and analyzed.

The Figure 8.1 presents the average error for eleven and twenty-one node central

difference method. It is clearly evident that the desired accuracy level of less than one

percent is available for the value of At lesser than 0.6tssl28. Similarly Figure 8.2 displays

the average error for eleven and twenty-one node grid using backward difference scheme

and verifies our a priori time step estimate equation.

Figures 8.3 and 8.4 present the plot of maximum error for central difference and

forward difference methods. It is indicated by the graphs that the maximum error remains

with in the specified range for both the schemes.
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CHAPTER NINE

DISCUSSION AND CONCLUSION

The empirical equations for calculating the prepriorri time step estimate to solve

the system of ordinary differential equations for spherical and radial field problems have

been successfully accomplished and verified. The prepriorri time step estimates, meet all

accuracy criteria or the stability requirements (equations 6.1, 6.2 and 6.3).

The forward difference method is conditionally stable; therefore, both 21 and Am,

must be evaluated, 71.1 is utilized to acquire the tSS and AM. is used for estimating the

prepriorri time step. Time step value calculated for forward difference method should be

rounded down because of the stability and oscillation criteria. The time step values for

the central and backward difference schemes can be rounded up or down, to a suitable

value for easy division by integers and displaying the results.

The prepriorri time step estimate equations define a time step that will give

overall accurate results and not at any particular time. It has been observed that the error

distribution is not linear through out the time domain. The error is highest at small time

values and dies out as time increases. The distribution also changes with the integration

scheme. Some schemes are more accurate than others at the same point in the time

domain. The fact that the error is highest at small time values might explain why in the

central difference scheme increasing the time step did not reduce the accuracy. In the

later scheme, the inaccuracies present at small time values will not be included for large

values of the time step. On the other hand smaller time steps capture the numerical error

present at small time values.
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10.1 Future Study

It is recommended that two and three-dimensional problems be studied in details

and validity of the existing empirical equations should be observed on them and

prospect of evolving new empirical equations may also be carefully thought

about.

Application of the empirical prepriorri time step equations to composite materials

and materials with multiple layers of insulation should also be studied.
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