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ABSTRACT

PRICING EFFICIENCY IN THE LONG-TERM INDEX OPTIONS MARKET:

AN EMPIRICAL INVESTIGATION

By

Anuradha Kandikuppa

This dissertation studies pricing efficiency in the S&P 500 index Long-

terrn Equity Anticipation Securities (LEAPS) market. This market exhibits several

several sources of market friction that make arbitrage difficult and costly, due to

which pricing inefficiencies may arise and persist. First, a large order imbalance

typically results, due to a disproportionately high number ofpublic LEAPS put

purchases, especially out-of-the-money puts, probably for portfolio insurance.

Given such an uneven distribution in public orders, market makers may face

persistent inventory imbalances. Second, dynamic arbitrage in the S&P 500

LEAPS market may be more difficult than in other options markets, due to the

complexity and cost of replicating the basket of 500 stocks. Third, LEAPS

maturities extend up to three years, making dynamic hedging strategies

potentially very costly if pricing errors persist for long periods.

Put-call parity and box spread arbitrage restrictions in S&P 500 LEAPS

option prices over 1994-96 are first tested. The tests reveal that puts are

overpriced with respect to calls 80% of the time, while box spread restrictions are



violated infrequently, with insignificant pricing errors. This suggests that LEAP

prices are internally consistent within the S&P 500 LEAPS market, but that LEAP

puts are overpriced relative to the spot index market.

Next, an intra-day analysis of bid-ask quotes and trades, employing a

methodology that separates information effects of trades from inventory effects,

reveals that LEAPS puts prices are revised upward upon a positive trade

imbalance and downwards upon a negative trade imbalance by more than is

explained by information effects of trading, suggesting that LEAPS puts prices

are subject to inventory effects.

Taken together with the features of the S&P 500 LEAPS market discussed

earlier, these results suggest that market fiictions can be important in the pricing

of options, at least when where arbitrage is particularly costly and public demand

leans toward one type of order. However, trading strategies based on these

observed anomalies are found to generate insignificant profits over holding

periods of one and five trading days. One implication of the latter result is that the

pricing deviations tend to be short-lived intra-day inventory effects.
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1 Introduction

The state of option pricing theory today owes a lot to the Black-Scholes

(1973) option pricing formula, which was derived under assumptions of a log-

norrnal stock price distribution, and frictionless markets. Subsequently, many

empirical option pricing studies, including MacBeth and Merville (1979, 1980)

and Rubinstein (1985) examined deviations between market prices of options and

Black-Scholes model predictions. The results of these studies showed that the

market prices away-from-the-money options higher than does the Black-Scholes

model, a phenomenon come to be known as the implied volatility smile or smirk.

Although the results ofmost of the studies agree that the smile exists, there is

some evidence that the direction of the pricing bias has changed over time

Research has progressed in two major directions in an effort to explain

these empirical anomalies. One branch ofthe literature, including Merton (1973,

1976), Hull and White (1987), Wiggins (1987), relaxes the distributional

assumptions ofthe BS model and incorporates stochastic interest rates, stochastic

volatility and jumps in the underlying stock price process.

Bakshi, Chen and Cao (1997, 1998) study the performance ofthese

generalized models in the S&P 500 index options market using three different

yardsticks ofperformance. They find that stochastic volatility models improve

hedging and out-of-sample pricing performance significantly over a BS model.

However, even a stochastic volatility model is still significantly mis-specified.

With a stochastic volatility model, BCC find that index option prices imply a

much higher correlation between volatility and returns than is present in the actual



index time series. Their results suggest that away-from-the-money options are

priced higher by the market than justified by the underlying asset’s return

distribution, even after accounting for higher moments in the distribution.

A parallel branch of the option pricing literature relaxes the frictionless

markets assumption, allowing for trading discreteness and transaction costs in

implementing a dynamic hedging strategy (Boyle and Emanuel (1980), Leland

(1985)). This literature suggests that in imperfect markets, no-arbitrage conditions

can only place bounds on option prices. Longstaff (1995) examines the impact of

market frictions on option prices by comparing the value ofthe S&P 100 index

implied by the prices of call options to the actual index market value, which

should be equal under no-arbitrage conditions. He finds that the implied index

value exceeds the actual index value more than 99% of the time in the sample,

indicating that call option prices exceed their frictionless-market replication cost.

The difference between the implied and actual index value is negatively related to

open interest, total trading volume, and to the average index/strike price ratio, and

positively related to the average option bid-ask spread and time to maturity,

among other influences. These results suggest a role for liquidity-related

variables in options pricing. As the cost of implementing a dynamic arbitrage

strategy increases, the difference between prices of listed call options and their

frictionless market also increases.

The aim of this dissertation is to study more closely the role of market

prices in the pricing of options, for which purpose the long-term index options

market provides an attractive setting. Relative to short-term options, little work



has been done exclusively on long-term options, excepting for a recent study by

Bakshi, Chen and Cao (1998) in the S&P 500 index LEAPS market. The work

done in this thesis fills this gap in the empirical option pricing literature.

The S&P 500 LEAPS market is an attractive focus for this study because

ofmarket imperfections that cause dynamic arbitrage in the S&P 500 LEAPS

market to be more difficult than in other options markets. First, dynamic trade in

the basket of 500 stocks is costly. Trading in Standard and Poor’s Depository

Receipts (SPDRs) on the AMEX or S&P 500 futures contracts are viable

alternatives, but strategies using either of these contracts involve basis risk. Most

importantly, LEAPS maturities extend up to three years, making dynamic hedging

strategies potentially very costly if pricing errors persist for long periods oftime.

Second, an inherent order imbalance typically exists in the market for

LEAPS due to a disproportionately high demand for LEAPS puts, probably for

portfolio insurance. Ofthe put trades that can be identified as either purchases or

sales fi'om January 1994 through December 1996, 81.7% are purchases. Trading

volume is concentrated in out-of-the-money rather than at- or in—the money puts.

Given this uneven distribution in public orders, market makers may face

persistent inventory imbalances, which makes hedging with put—call parity

conversion or other arbitrage rules more difficult. The imbalance is more severe

for options with remaining maturities exceeding 6 months, where orders are more

likely to be opening rather than closing trades. Market makers could hedge the put

trade imbalance with relative case if there was a corresponding public demand to

sell calls with the same strike, permitting static hedging using a put-call parity



conversion trade. But the total number of put purchases is more than 40 times the

number of call sales in the sample.

I employ several different methods to examine the efficiency of pricing in

the S&P 500 LEAPS market under these conditions. First, I empirically examine

two efficiency conditions in the S&P 500 LEAPS market, the put-call parity and

the box spread relations. The advantage of using this approach is that these

efficiency conditions do not depend on a specific option-pricing model or

assumption about the underlying asset’s return distribution. The box spread tests

have the additional advantage that they are not subject to a dividend-forecasting

problem, since they do not involve the underlying asset.

Following the convention in the literature, I use actual dividends as a

proxy for expected dividends in the put-call parity tests. In practice, the futures

contract is the instrument most likely to substitute for the index. Therefore, I

augment tests of the put-call parity condition using the underlying index with tests

using the S&P futures contract closest in maturity to the LEAP.

I find many incidences of violations ofput-call parity over the 1994-1996

sample period, when the underlying index value is used to test the relationship.

Most often, puts are overpriced relative to calls, consistent with the observed

pattern of public trade, even after accounting for bid-ask spreads. Since put-call

parity violations are calculated using actual future dividends, unknown at the time

the options are priced, they do not represent pure arbitrage opportunities. Yet, put

overpricing for maturities of less than 60 days is at least as large as for longer

maturities, implying that errors in dividend forecasting do not completely explain



the results. The results are somewhat different when the put-call parity relation is

tested using prices of futures contracts on the underlying asset. These results show

no significant violations of futures put-call parity, but suggest instead that the

futures price violates its own arbitrage condition.

Violations ofthe box spread relation are much less frequent. Afier

accounting for option spreads, there are no consistent box spread arbitrage

opportunities in the market.

Second, I examine the impact of intra-day trade imbalances on the pricing

of long-term S&P 500 index options. In a sample of intra-day bid-ask quotes and

trades on S&P 500 index LEAPS fiom 1994-96, I find evidence of inventory

effects of trading on put prices, while such effects are not detectable in call prices.

These results indicate that quoted put prices are sensitive to order imbalances.

LEAPS put prices are revised upward after a buy order and downwards after a sell

order by more than explained by information effects of trading. However, price

effects appear to be related only to the trade direction and not to trade size. The

results of these tests contribute to the option market microstructure and empirical

options pricing literature by highlighting the role that market factors play in the

pricing of options.

Third, I employ methods similar to Longstaff (1995) and test the

martingale restriction in the sample of long-term index options. Ifthere are no

arbitrage opportunities in the price system, the value ofthe index implied from a

set of synchronous LEAPS prices should be equal to the actual value ofthe index

at that time. Evidence of the tests described earlier indicates that LEAPS puts are



overpriced, in which case the result should obtain that the implied index is less

than the actual index. I obtain mixed results with the martingale restriction tests.

For LEAP puts, there is a highly significant difference between the actual and the

implied index, but the implied index is most often higher than the actual, which

result has no obvious explanation. However, consistent with Longstaff’s (1995)

findings, the difference between the two increases with the bid-ask spread and

measures of trade imbalances, and decreases with the open interest in the options.

Fourth, I test the profitability of two trading strategies designed to exploit

temporary price pressure effects in LEAPS puts prices. The strategies essentially

involve buying an under-priced put, selling an overpriced put, and reversing the

position at a later date. Over- and under-priced puts are identified using four

different trading rules based on implied volatility of the options, trade imbalances,

bid-ask quotes, and open interest. If the strategies are significantly profitable on

average, it is an indication of inefficiency in the LEAPS market.

After adjusting for risk, the average profit from these strategies risk is not

significantly different from zero. The results of these tests thus do not reject a

hypothesis of market efficiency. The intra-day analysis showed the presence of

intra-day inventory effects due to trade imbalances. However, from the results of

the trading strategies, it appears that the effects either persist for intervals longer

than the holding intervals used in these tests, or that marketrnakers adjust prices

such that the anomalies reverse by the end of trading day.

In Chapter 2, I review important results in the theoretical and empirical

option pricing literature. In chapter 3, I describe the S&P 500 index LEAPS



market and the data used for this study. Chapters 4 through 7 describe the

individual empirical tests and the results. Chapter 8 concludes.

2 Literature Review

2.1 Option-pricing Theory

The Black-Scholes option-pricing model has had perhaps the greatest

impact of all theories in finance in the world of financial markets. The Black and

Scholes (1973) model is based on an arbitrage argument. Under its assrunptions,

an option can be combined with the underlying asset into a risk-less hedge

portfolio that must therefore earn a risk-free rate of return. The set of simplifying

assumptions that the authors make includes a log-normal stock price distribution,

constant interest rates, constant volatility, and frictionless markets, with

continuous trading and no transaction costs.

Subsequently, numerous studies have examined whether market prices of

options empirically support the Black-Scholes options pricing formula. Among

the first empirical studies were Black and Scholes (1973) and Galai (1977). These

studies indicated that the BS model priced options quite accurately. One ofthe

first to document BS pricing biases was MacBeth and Merville (1979, 1980),

which used CBOE daily closing prices over the year 1976. The main finding of

this study was that the BS model on average under (over) prices in-the-money

(out-of-the-money) calls, and that the extent of the bias was proportional to the

amount by which the call is in or out of the money. These pricing biases result in



the implied volatility ‘smile’ or skew, the existence ofwhich is one indication of

the inadequacies of the constant-volatility BS model.

More results about the nature of biases in the BS model were provided by

Rubinstein (1985), which study showed that the direction of the BS model pricing

biases appears to have varied through time. Rubinstein (1985) used non-

parametric tests and tick-by-tick transactions data from the CBOE’s MDR tape to

study BS pricing biases over the period August 1976 to August 1978. He finds

that the BS model under-priced in-the-money options during the 1976-1977

interval, but the direction of the bias reversed during the 1977-78 interval. The

reason for the change in direction is still not understood.

Given these strong indications of systematic pricing biases, two branches

of research have developed in parallel since the introduction ofthe BS model,

each ofwhich attempts to explain the anomalies by relaxing the chief assumptions

of the model. The BS model assumes a log-normal underlying asset distribution.

It is widely known, however that stock returns do not always conform to a normal

distribution. Non-normal skewness and kurtosis coefficients in the actual asset

distribution can result in away-from-the-money options being underpriced by the

BS model. In turn non-zero skewness and kurtosis could be implied by the

presence ofjumps and/or stochastic volatility in the price process of the

underlying asset. Examples of option pricing models based on alternate stochastic

processes are the pure jump model of Cox and Ross (1976), the combinedjump-

diffusion model of Merton (1976), the stochastic volatility models of Hull and

White (1987) and Wiggins (1987).



Bakshi, Chen and Cao (1997) is a very comprehensive study ofthe

competing option pricing models and compares their performance with respect to

explaining market prices of options and hedging performance. The empirical part

of their study is based on transactions data on S&P 500 index calls from 1988-

1991. Their theoretical model allows for stochastic volatility and interest rates,

andjumps in stock prices, and nests many other known option-pricing formulas as

special cases. The BCC model performs significantly better than the base BS

model in explaining market prices of options, but there still remain unexplained

pricing biases.

In particular, to explain the volatility ‘smile’ present during their sample

period across options with different strike prices and a common expiration date

(in-the-money calls (puts) have higher (lower) implied volatilities than at-the-

money and out-of-the-money calls (puts)), each model with stochastic volatility

that they study requires implausible levels of volatility-return correlation (-0.64)

when compared with the actual correlation between volatility and stock returns (-

0.28) displayed by the time series of S&P 500 index returns. An interpretation of

these findings is that other factors than the underlying asset’s distribution play a

role in determining prices of options.

The parallel branch ofthe option pricing literature relaxes the frictionless

markets assumption, allowing for trading discreteness and transaction costs in

implementing a dynamic hedging strategy. With non-zero transaction costs,

rebalancing a hedge continuously is infinitely expensive. However, rebalancing at

discrete intervals, while limiting transaction costs, leads to hedging errors. Leland



(1985) develops pricing bounds around the BS value in the presence of

transaction costs. The bounds create a range around the theoretical price within

which the market price may fall without giving rise to a profitable arbitrage

opportunity large enough to cover the cost of exploiting it. The pricing bounds are

a function of the level of transaction costs, the discrete portfolio revision period,

and the strike price and maturity ofthe option.

Figlewski (1989) observes that market imperfections such as indivisibility,

discreteness of trading and transaction costs are too complex to be incorporated

analytically into theoretical pricing models. His approach is to simulate market

imperfections to see the impact on option prices. He documents detailed results on

the impact of these market imperfections on option prices in a simulated trading

environment, and concludes that the impact, especially oftransactions costs, is

much larger than even suspected earlier by researchers. The bounds on the option

prices are found to increase as the time to maturity of the options increases,

consistent with Leland’s (1985) prediction.

In a recent study, Longstaff (1995) examines the impact of market

frictions on option prices by comparing the value ofthe S&P 100 index implied

by the prices of call options to the actual index market value. In the no-arbitrage

framework pioneered by Black and Scholes, the return of the underlying asset

plays no part in the value of the option. In essence, the option can be valued as if

the world was risk-neutral, and the underlying asset’s distribution can be replaced

by an equivalent risk-neutral distribution. In a formal exposition, Harrison and

10



Kreps (1979) show that in the absence of arbitrage opportunities, at least one such

equivalent risk-neutral distribution must exist.

Longstaff (1995) uses these insights to derive a martingale restriction on

the underlying asset. When no-arbitrage conditions are satisfied, the underlying

asset price process should be a martingale, i.e., its actual value should be equal to

the implied price in the options market, which is given by the mean ofthe

equivalent risk neutral distribution. However, in markets with transaction costs,

no-arbitrage conditions only place bounds on the difference between the two

values. Longstaff finds that the implied index value exceeds the actual index

value more than 99% of the time in his sample of S&P100 index calls, indicating

that call option prices exceed their frictionless-market replication cost. The

difference between the implied and actual index value is negatively related to

open interest, total trading volume, and to the average index/strike price ratio, and

positively related to the average option bid-ask spread and time to maturity,

among other influences.

The Longstaff (1995) results suggest a role for liquidity-related variables

in options pricing. One explanation for the results could be that there was greater

investor demand to purchase than to sell S&P 100 call options in the sample,

driving the prices of call options above their BS replication values. As the cost of

implementing a dynamic arbitrage strategy increases, whether from higher option

spreads or a longer time to maturity, the difference between prices of listed call

options and their fiictionless market also increases.



Some more supporting evidence ofthe importance ofmarket frictions is

presented by Long and Officer (1997) who study the relationship between the

deviations from the Black-Scholes option pricing model and volume in the equity

options market. Their results indicate that heavily traded call options are priced

more efficiently (have lower mis-pricing errors) than thinly traded options.

However, on high volume days, Black-Scholes nus-pricing errors are larger than

on normal volume days. The authors suggest that new and changing information

may cause the rapid increase in volume. If the information is differently reflected

in the equity and option markets, Black-Scholes mis-pricing errors may result.

2.2 Put-call Parity Tests

The earlier section described some ofthe empirical evidence of biases in

the Black-Scholes pricing models and the possible reasons for them. Several

papers study the efficiency of options markets by testing for violations of

arbitrage relationships, such as lower bounds, put-call parity and the box-spread

arbitrage restriction. The advantage of studying deviations from arbitrage

relationships is that the approach is independent of the underlying asset’s

distribution, and any specific option-pricing model. The put-call parity

relationship for instance, arises because any two ofthree securities, the underlying

asset and a put-call pair on the underlying asset with the same strike and maturity,

may be combined to yield the payoffpattern of the third in a frictionless market.

If the price of a put or a call deviates from its no-arbitrage value, an arbitrage

opportunity is created where investors can step in to construct a position that

12



earns more than the risk-free rate of return. Market fiictions such as non-zero

transaction costs may cause such deviations to arise and persist.

Klemkosky and Resnick (1979) was one ofthe first studies of put-call

parity in the exchange-traded equity options markets and uses data on fifteen

equity option series over the period 1977-1978. They report results that are

consistent with a put-call parity relation after adjusting for the early exercise

feature. They use transactions data and an algorithm to make sure that the time of

the put, call and the underlying asset are within a minute of each other.

Evnine and Rudd (1985) provide early evidence on the efficiency of index

options markets. They study put-call parity in the S&P 100 index and MMI

(Major Market Index) options markets, soon after the introduction of these

options. Using intra-day data and restricting their sample to options with a term to

maturity ofone month, they find evidence of a large number of violations of put-

call parity. Their evidence is one ofthe first indications that index Options markets

may be subject to greater numbers of arbitrage condition violations than the

equity options markets. Evnine and Rudd note that the difficulty of arbitraging in

this market may be one reason for the large number ofviolations.

An alternative test of violations ofthe law of one price in options markets

is the box spread test, first used by Billingsley and Chance (1985). A box spread

is a combination of a put spread and call spread with the same strike and maturity

dates, and should earn a risk free rate of return. Because a box spread does not

require the underlying asset to be traded, two advantages arise: (1) Synchronicity

between the recorded index prices and the option prices is not an issue, and

13



(2) Difliculty and cost of trying to replicate the index, which often leads to

violations of put-call parity in index options markets, is not an issue.

Billingsley and Chance (1985) study the efficiency of S&P 100 index

options, and find a large incidence of put-call parity violations, but fewer

violations ofthe box-spread arbitrage restriction. Ronn and Ronn (1989) study

box spread arbitrage restrictions in a sample ofCBOE option prices over specific

days in 1977-1984. Their results indicate that arbitrage opportunities exist only

for agents with low transaction costs such as market makers, and even then only

by a small amount.

More recently, Ackert and Tian (1998) study put-call parity and box

spread violations in the market for Toronto 35 index options, before and after the

introduction of the Toronto Index Participation Units (TIPS) in 1990.1 They do

not find conclusive evidence that option market efficiency improves when the

linkage between stock and options market is thus strengthened. They find a

significant number of violations both before and after the introduction of the

TIPS.

The introduction of the SPDRS (S&P 500 Depository Receipts) in 1993 is

a parallel to the introduction ofthe TIPS. Some very recent papers have studied

the effects the introduction of SPDRS on the pricing efficiency ofthe S&P 500

index options markets. For instance, Perrakis, Switzer and Zghidi (1999) and

Ackert and Tian (1999) both find that pricing efficiency within option markets

 

‘ Toronto Index Participation UnitS track the performance ofthe Toronto 35 index, and allow

market participants a way ofreplicating the index easily and at low cost.
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improves after introduction of these securities implying that a stock basket

enhances the connection between markets.

Several other papers also study put-call parity in index options, although

the focus of these papers is not always to test the efficiency of markets. Finucane

(1991) finds a large frequency of violations in his sample of S&P 100 index

options. Dubofsky, Ellis and Wagner (1996) examine the determinants of put-call

parity violations in S&P 100 index options, and find a smaller fraction than

Finucane (1991). The violations are found to increase significantly as dividends

increase, and as the time to expiration decreases.

2.3 Trading and Prices in Options Markets

Evidence presented earlier on violations of arbitrage conditions and the

relationship between deviations of market prices from arbitrage-based option-

pricing model prices supports a conclusion that market imperfections that impede

arbitrageurs activities play a role in pricing options. Imperfections such as

asymmetric information, and risk-aversion of market makers manifest themselves

as a relationship between trade imbalances and prices in financial markets. In this

context, it is relevant to review here the large body of theoretical and empirical

research on market microstructure issues such as the relationship between trade

direction and size and prices.

Several theories have been proposed to explain the effects of trading on

prices, notably the inventory control and asymmetric information models.

According to the inventory control model (Amihud and Mendelson (1980,1982),
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Garman (1976), Ho and Stoll (1981)), market makers set quotes in order to induce

buy or sell orders to achieve a certain optimal level of inventory. However, the

extent to which inventory considerations influence prices varies with the prevalent

market structure. In a single dealer structure such as the NYSE, the specialist may

use the bid-ask midpoint as an inventory control mechanism. For example, if

sustained buying results in a negative inventory in a security, the specialist may

increase the bid and ask quotes to induce selling and discourage buying. In

contrast, competition among market makers in a multiple dealer market such as

the Chicago Board Options Exchange (CBOE) may prevent any one dealer from

setting quotes to balance inventory. Collectively, a multiple dealer market may be

better able to absorb inventory imbalances. However, the extent to which this is

true may be market specific.

Models of information effects on trading (Bagehot (1971), Copeland and

Galai (1983), Glosten and Milgrom (1985), Easley and O’Hara (1987)) suggest

that security prices are affected by asymmetric information among the diverse

players in a market. In these models, the market maker is faced with a positive

probability that a particular trade originates from an informed trader. The outcome

of these models is a role for bid-ask spreads as compensation for the market

maker for losses to informed traders. The size of the spread reflects the proportion

of informed trading in the market. Further, market makers will revise their bid-ask

quotes to reflect the information conveyed in trading. For example, a buyer-

initiated trade in a stock conveys positive information about the stock, prompting

the market maker to increase his quotes, and so the bid-ask midpoint. In the index -
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options market, an informed purchase of a call may convey information about a

future increase in the index level or volatility, triggering an upward quote

revision.

Empirical studies ofthe relation between trading and prices generally

agree that trades affect stock prices, the direction and persistence of impact being

determined by the nature of the trade. Holthausen and Leftwich (1987) find

temporary price effects for seller-initiated transactions and permanent price

effects for buyer-initiated transactions in their study ofthe impact of large block

trades on NYSE common stock prices. Blume, Mackinlay and Terker (1989)

study order imbalances during Black Monday in 1987 and conclude that there is a

strong relation between stock price movements and order imbalances. Hasbrouck

(1988) finds mixed evidence of inventory effects but strong evidence of

information effects of trading on stocks. He finds that large trades appear to

convey more information.

Previous empirical research on trading in options markets has largely

focused on whether option volumes lead the underlying asset. Vijh (1990) studies

the liquidity ofCBOE regular equity options, specifically market depth and

spreads. He finds no evidence of inventory-related price effects of large trades

indicating great market depth for these options, but detects information effects of

trade direction on options prices, although trade size is unimportant. He also finds

that option spreads are disproportionately large compared to those of stocks. He

concludes that the multiple market dealer structure is a factor responsible for the

greater depth ofthe CBOE, though at higher costs. Chan, Chung and Johnson
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(1995) study bid-ask spreads ofCBOE equity options and find that options

display an intra-day pattern of spreads that is very different from the U-shape

spread pattern exhibited in the NYSE. This pattern appears to be related to the

intra-day variations of volume and volatility, which also follow a U-shaped

pattern and due to information uncertainty. Chan et a1 (1995) find that option

spreads decline sharply after the day’s open and then level off. They suggest that

high uncertainty may cause the higher spreads at the open, while the different

CBOE market making structure may account for spreads declining through the

day.

Easley, O’Hara and Srinivas (1998) investigate the informational role of

trading volume in equity options markets. They separate options volume into

positive and negative volume: positive volume is the total of call buy trades and

put sell trades, and negative volume is the total of call sell trades and put buy

trades. They find that negative and positive option volumes are better predictors

ofthe underlying stock prices than are volumes not separated according to their

definition of volumes.

3 The S&P 500 Index LEAPS Market

The Chicago Board Options Exchange (CBOE) introduced long-term

Equity Anticipation Securities (LEAPS) on indexes in 1991. Index LEAPS differ

from their short-term counterparts chiefly by the length oftime to maturity, which

can be up to three years from the date of issue, and their contract size, which is

based on one-tenth of the index level. Index LEAPS provide investors with the
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ability to create a long-term position in an option with the same investment

horizon as their market opinion. S&P 500 LEAPS are European style, cash-settled

and expire on the third Friday ofDecember of each year. Since the underlying

asset for these options is a fraction ofthe index, they provide the investor with the

ability to control market exposure in finer increments than full-size, shorter-term

index options. Like short-term index options, index LEAPS have potential uses

for hedging against adverse moves in the market.2 The volume in this contract has

doubled from about 280,000 contracts in 1994 to about 510,000 contracts in 1996,

showing its growing popularity.

The source of the data used in this dissertation is the Chicago Board

Options Exchange (CBOE) Market Data Retrieval (MDR) tape over the years

1994-1996, which has a time-stamped record of bid-ask quotes and trade prices of

all options traded on the exchange. I study LEAPS during the period 1994-96 to

avoid the first few possibly inactive years after introduction of these options.

Each trade record includes the transaction price and volume ofthe trade

while each quote record includes the bid and the ask prices. Each record also

includes the value of the underlying SPX to the nearest 15 seconds, helping to

minimize errors due to asynchronous measurement ofthe index. A separate

database called the Expanded Options Summary of the CBOE includes the total

daily volume and open interest for each contract, which I match with the records

in the transactions database.3

 

2 Some ofthe information on LEAPS contracts is obtained from the CBOE’s web site,

www.cboe.com

3 Published open interest is the level of open interest at the close ofthe previous trading day.
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3.1 Sample Selection Criteria

From the raw sample I exclude quotes and trades that (a) have <= 6 days

to expiration and bid price <= 3/8 (or transaction price <=3/8 for trades), to avoid

expiration day effects and errors due to price discreteness 0)) occur before 8:30

am. or after 3 pm. CST and (c) have obvious recording errors for prices or

index values. This screening procedure results in 25407 trades and 595167 quotes

in all. I use the mean of an option’s bid and ask prices to proxy for its market

value in my analyses, since using bid-ask quote midpoints minimizes problems of

negative serial correlation due to bid-ask bounce. All the empirical work in this

dissertation is done on sub-samples of this reduced data set.

Table 1 shows summary statistics for bid-ask quotes and trades of S&P

500 index LEAPS from 1994-1996 by moneyness categories, where moneyness

ofthe option is defined as the ratio of its strike price, X, to the corresponding

index value, 1. Daily volume, trade frequency, and open interest are much higher

for puts than for calls, and OTM puts are more fi'equently traded than ITM puts.

Average daily volume consists of 1404.27 put contracts but only 45.71 call

contracts. Over 1994-96, there were a total of 24,350 put trades but only 1,057

call trades. There were 9,767 trades in deep OTM puts, equal to 38% ofthe total

number of trades. Average daily open interest in puts is more than 22 times the

open interest in calls. Reflecting the rise in stock prices over the sample period,

open interest in deep OTM puts on the last day of 1996 is 215,176 contracts,

comprising 85% of the total LEAPS open interest.
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Table 2 shows daily changes in open interest categorized according to an

increase or decrease, for those contracts with non-zero daily volume. Ofthe total

number of contract-days in which there was positive daily volume (533 for calls

and 5,953 for puts), daily volume is exactly equal to the increase in open interest

on 230 contract-days for calls and 2,377 for puts (40% of total contract-days in

puts). Since speculators or day traders do not typically keep their positions open

overnight these data suggest that hedging activity is responsible for much of S&P

500 LEAPS trading. On 4,698 contract-days for puts and 305 for calls, there is a

net increase in open interest.4

Percentage bid-ask spreads decrease as the ratio of X/S increases. It is

interesting to note that there are considerably more bid-ask quotes for deep ITM

calls than deep OTM puts, indicating that call quotes are revised more frequently

despite their lower trading volume. The frequency of quote revision for low-

priced, deep OTM puts is probably limited by price discreteness. The tick size for

options with prices above and below $3 are 1/8 and 1/16 respectively.

To view these statistics in perspective, I look at similar statistics for S&P

500 index short-term options, for which also I have daily closing price data. A

similar pattern of heavier volumes and open interest in puts than in calls emerges,

but to a much smaller extent. Average daily volume for S&PSOO short-term puts

is 59,470 contracts while that for calls is 42,430 contracts. Average daily put open

 

’ A trade of size one in a contract will increase, decrease or have no effect on open interest in the

contract depending on the positions ofthe two participants. If both parties are opening positions,

the trade will increase open interest by one. If one party is closing a position, then there is no

change in open interest. If both parties are closing positions, the trade results in a decrease in open

interest by one contract.
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interest is almost a million contracts, while average daily call open interest is

650,000 contracts. A comparison with corresponding statistics for LEAPS shows

that a greater imbalance exists in LEAPS than in shorter-term index options.

3.2 Interest Rate Data

Daily risk-free interest rates are required to find the present value of the

daily cash dividend series on the index, and as an input for the Black-Scholes

option-pricing formula. Data on daily US Treasury Strip ask rates are collected

from the Wall Street Journal for all strips maturing during the sample period from

1994-1996. Linear interpolation between the two treasury strip rates straddling a

dividend payment date yields an approximate risk-fi'ee rate for discounting the

dividend. Linear interpolation between the two strip rates straddling the

December maturity dates of each LEAPS calendar series gives the approximate

risk-free rate corresponding to each option. This procedure is repeated every day

of the sample period for every dividend payment date and option maturity.

3.3 Adjusting the Index for Dividends

Since S&P 500 LEAPS are European style, the analysis in this thesis is not

complicated by the need to value early exercise features. But adjusting the index

for cash dividends is necessary and a challenge for LEAPS because of their long

life. It is a common practice in the empirical options literature to use the present

value of actual dividends over the option’s life as a proxy for the expected

dividends. However, over a long period such as the life of LEAPS, actual

dividends may differ significantly from forecasted dividends. Using actual
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dividends thus leads to numerous lower bound violations for put and call options.

In a sample of 23248 daily closing quotes ofthe LEAPS in the sample, I find

5011 (22%) violations ofthe lower bound when I use the present value of actual

dividends to adjust the index.

One way to make a more accurate dividend adjustment is to use the

implied present value of dividends from the market price of options.5 A

comparison shows that actual dividends are typically lower than the dividend

forecasts impounded in option prices. So I use the implied dividends found from

near-the-money put-call pairs constructed each day of the sample as a closer

approximation ofthe dividend forecasts implicit in the price ofthe options,

wherever an adjustment for dividends has to be made to the index. Using the

implied dividends results in 1031 (4.4%) lower bound violations. I describe both

methods in more detail below. Henceforth, a reference to the index means the spot

index value adjusted for dividends.

3.3.1 Present Value of Actual Dividends

I obtain the S&P 500 daily cash dividend series from 1994-97 from

Standard and Poor’s. 6. The latest expiration date of the option series in the

sample is in December 1998 (for the series introduced in January 1996). Since at

the time of writing this thesis, I cannot obtain actual cash dividends for all of

 

5 For example, Sarig (1984) studies dividend expectations implied by option prices.

6 In a sample of S&P 100 index options, Harvey and Whaley (1992) show that it is inaccurate to

assume a continuous dividend yield for the S&P 100 index, because the actual daily cash dividend

series is discrete and distinctly seasonal. I find similar seasonality in S&P 500 index daily cash

dividends.
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1998, I forecast quarterly dividends for 1998 using 1997 dividend payout ratio

and earnings forecasts, imposing the seasonal pattern in the 1994-1997 daily

dividend series. Appendix A describes the methodology used for forecasting 1998

dividends. The present value of the daily dividends between day t and maturity

date of each calendar series T, PV(D)LT, is then found by discounting each day’s

dividends by the appropriate risk-free interest rate and adding them up.

3.3.2 Present Value of Implied Dividends

European put-call parity is used to derive the implied present value of

dividends between each day t and the maturity date of each calendar series.

Define P. as the bid-ask quote midpoint for a put on day t with strike X expiring in

T days, C. as the corresponding call quote, It as the closing value of the index on

day t, and PV(D)LT as the present value of dividends on the index paid fiom day t

until maturity ofthe option T days later. By put-call parity, the following

arbitrage condition holds:

1>V(D)LT = Pt + 1t — Ct - xretT (1)

Several empirical studies of option pricing have found that at-the-money

options exhibit the smallest stock price distribution-related biases relative to

options with other strikes. So I use a simple average of the implied dividends for

the two nearest the money put-call pairs of a calendar series on a day as an

approximation of the present value of dividends for that series on that day. I

repeat this for every day and maturity and find the adjusted value of the index

each day.
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3.4 Classification of Trades

The MDR tape does not classify trades as buy or sell trades, while

an important part of this dissertation requires data on trade classifications. It is

therefore necessary to infer trade direction by comparing the trade price with the

quote effective at the time of the trade. Identifying the current quote at the time of

trade poses some problems. Lee and Ready (1991) compare some methods used

to classify trades in studies dealing with transactions data, and discuss potential

problems with the methods. They find that quote revisions due to a trade are

likely to be recorded before the trade itself for NYSE stocks, causing erroneous

classification of the trade. To overcome this problem, they suggest comparing the

trade to the quote in effect five seconds before the trade. However, using such an

interval does not appear to be necessary for the CBOE, because quote revisions

caused by trades appear to be recorded most frequently at the same instant as the

trade.7 So I use the quote immediately before the trade to make the buyer- or

seller-initiated classification.

The following rule is used to classify trades. A trade is classified as buyer-

initiated if the transaction price is equal to the ask price and as seller-initiated if it

is equal to the bid price ofthe quote in effect. To deal with trades that occur inside

the spread, I use the rule followed in Harris (1989). A trade inside the bid-ask

spread is classified as a buy trade if it is closer to the ask price and as a sell trade

if it is closer to the bid price. Trades occurring at exactly the bid-ask midpoint

cannot be classified by this rule. Lee and Ready (1991) discuss a tick test by

which midpoint trades may be classified. However, trading in index LEAPS is too
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infrequent to use tick tests with an acceptable degree of accuracy. I therefore

discard trades occurring at the midpoint. This should not affect the results of the

study materially, as midpoint trades should not be biased towards any particular

trade direction.

The number of trades at the bid-ask midpoint is 3346, equal to 13.2% of

the total number oftrades. These trades cannot be classified by the rule above.

The incidence ofthese trades is more than in Easley, O’Hara and Srinivas’s

(1998) sample ofCBOE equity options, but less than for NYSE stocks. Trades at

the midpoint may occur due to limit or standing orders. A small number (228) of

trades occurs at prices above the ask or below the bid ofthe matched quote, and

cannot be classified. These unclassified trades are discarded from the analysis.

Table 3 shows summary statistics of trade classifications. There are 3,919

trades at the bid-ask midpoint, representing 15.4% ofthe total number oftrades. A

small number (228) of trades occur at prices above the ask or below the bid of the

matched quote. These trades are discarded from the analysis. Ofthe remaining

trades that can be classified, buyer-initiated trading in puts predominates during

the sample period. Out of a total 25,407 trades, 17,032 trades or 67% are buy

trades in puts. Of classifiable put trades, 81.7% are buys. In contrast, 53.5% of

trades in LEAPS calls can be classified as buyer-initiated while 39.8% are seller-

initiated, corresponding closely to previous findings for equity options. Easley,

O’Hara and Srinivas (1998) classify trades in CBOE equity options from October-

November 1990 in a similar fashion. Their results show that equity options

 

7 Appendix B describes the procedure used to reach this conclusion.
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trading is primarily buyer—initiated, with the percentage ofbuy and sell trades

equal to 53.4% and 38.8% respectively.

3.5 Characteristics of Implied Volatility

Previous empirical research on index options, including BCC (1997,

1998), document systematic biases in the BS formula. To complete the

description of the data, I compute daily BS implied volatilities for calls and puts,

using the bid-ask midpoints of the last option quotes and corresponding index

value on each. To aid in comparing results with previous studies (for example

Bakshi, Cao and Chen (1998)), I define moneyness in a like manner as the ratio of

strike price to closing index value. I divide the options into six moneyness classes,

and 4 maturity groups based on the time remaining to expiration —— (1) Very short

term: <= 60 days, (2) Short term: >60 and <=l80 days, (3) Medium term: > 180

and < 365 days, and (4) Long-term >=365 days.

Table 4 shows the mean implied volatility for options in different

moneyness and maturity categories for calls and puts, and figure 1 plots the

implied volatility for very short, medium and long term puts. I focus on puts in

the discussion here. For very short term puts, the BS implied volatility displays

the familiar U-shape known as the smile. As the put goes from being out-of-the-

money to in-the-money, the implied volatility first decreases from 18.6% to about

14.5% for at—the-money options and then increases to about 22%. However, the

shape of the volatility curve is dependent on the term to maturity. For short,

medium and long-term puts, mean implied volatility decreases monotonically as
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the put goes from being out-of-the-money to in the money. For example, for

longer-term options (time to expiration > 365 days) implied volatility decreases

fi'om 18.3 % for deep OTM puts to 14.1% for deep ITM puts.

These differences in shape could arise due to the property of the stock

price distribution that causes the bias. Near term options may be more affected by

jumps in the index which have a positive effect on the prices of both OTM and

ITM options, causing a U-shaped volatility smile. Longer term options may be

more prone to the effect of negative correlation between volatility and the index,

causing OTM puts to be over-priced and ITM puts to be under-priced relative to

ATM puts. Similar patterns are observed in call implied volatilities, except that

there is some evidence of a smile in short term calls.

The term structure of implied volatility is also U-shaped for all moneyness

classes. Within a moneyness class, implied volatility is higher for short and

longer-term options than for the medium term options. However, the amount of

variation in implied volatility with moneyness decreases as time to expiration

increases. The implied volatility patterns I find are qualitatively similar to the

results of Bakshi, Cao and Chen (1998) in their sample of S&P 500 index LEAPS

puts from September 1, 1993 to August 31, 1994. The chief differences are a

higher implied volatility in the sample for most moneyness-maturity categories,

and a greater variation across moneyness categories.

These results confirm the biases in BS prices that numerous studies have

documented. The results have relevance to the present study, since I analyze

movements in implied volatility due to information and inventory effects of
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trades. It is evident that implied volatility will change as the option’s moneyness

changes with daily or intra-day fluctuations in the index, which must be

controlled for in the study.

4 Tests of Put-call Parity and Box Spread Restrictions

In this section I first test for violations of put-call parity in a sample of

S&P 500 index LEAPS put-call pairs using the spot index in the arbitrage

condition. The results show a significant number of put-call parity violations in a

direction that indicates that the put is overpriced. However, since the spot index is

costly and difficult to trade in practice, instruments like the S&P 500 futures

contracts are very likely used in practice to arbitrage pricing anomalies in index

options. Therefore, I repeat the put-call parity tests using S&P 500 index futures

contracts in place of the spot index. Finally, the box-spread arbitrage restriction,

which does not require the underlying asset to be traded, is tested.

4.1 Put-call Parity Tests

4.1.1 Measures of Deviation from Put-call Parity

Define P and C as the bid-ask quote midpoints of a European put-call pair

with strike price X and time to expiration T, I as the index value corresponding to

the later ofthe two option quotes, and DT as the present value of dividends. The

put-call parity equation is:

1>+I—1)T=C+Xe'rT (2)
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Define E as the amount by which the put is overpriced versus the call:

E=P+I-C -Xe"T—DT (3)

Even if E¢0, market frictions including bid-ask spreads and brokerage

commissions limit arbitrage activity. But if the put is significantly overpriced

with respect to the call, arbitrageurs can sell the put, buy the call, short the index

and lend an amount ofmoney equal to the present value of the strike plus the

present value ofthe dividends. After accounting for option bid-ask spreads on the

initial trade, but not for commissions, costs of closing out initial option positions,

or costs of trading the cash index, the profit from this strategy will be:

E1=Pb+I-C’-Xe"T—DT, (4)

‘a’ and ‘b’ denote ask and bid prices respectively. If thewhere superscripts

call is significantly overpriced with respect to the put, the above strategy can be

reversed producing a profit of:

132=cb -P"-I+Xe"T+DT (5)

4.1.2 Sample Construction for Put-call Parity Tests

Each day, put-call pairs are formed by pairing the last quotes ofthe day of

puts and calls with the same strike and maturity. Using quotes avoids bid-ask

bounce problems that can occur with transaction prices. The pairs are then

matched with the index value corresponding to the latest of the two quotes. On

average, the last of the two quotes occurs at about 12:30 PM Central Time, so

issues related to potentially "artificial" quotes at the close of trading do not appear

to be relevant here.
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The final sample contains 10462 put-call pairs. The put quote occurs later

in the day than the call quote in 6991 ofthese pairs, by an average of 1 hour 53

minutes. Since puts are traded more often than calls, their quotes are revised

more frequently.

It is a common practice in the literature to use the present value of actual

dividends over the option’s life as a proxy for the market’s dividend expectation.

I follow that convention here, but recognize that expected dividends when the

options are priced may differ significantly from the present value of actual

dividends. The present value of actual dividends is obtained as described in

Section 2. Daily risk-free interest rates required to find the present value ofthe

cash dividend series on the index are collected from the Wall Street Journal for

each day over 1994-1996, as described also in Section 2.

4.1.3 Put-call Parity Results

Table 5 presents summary statistics for the sample. As a result of the

general rise in stock prices over the sample period, the index typically exceeds the

present value of the strike price for the matched put-call pair. With an average

maturity of 1.44 years, the mean present value of dividends is a substantial 3.5%

ofthe mean index value. The dollar bid-ask spread tends to be higher for calls

than puts, reflecting the generally higher price for calls in the pair, but the

percentage spread is higher for puts.

The put-call parity test results are illustrated in Table 6 Panel A. The put

option is overpriced relative to the call more than 96% ofthe time, and the mean
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value ofE is $1.16. Accounting for option bid-ask spreads, the put is overpriced

versus the call almost 80% ofthe time. For those 8349 observations with E1>0,

the mean and median for E are $1.19 and $1.07 respectively. B; is positive in

only 39 of 10,462 cases, with a mean and median of $0.19 and $0.10 for those 39

cases.8

One explanation for put overpricing is that investors systematically

overestimated future dividends on the index over the period. All else equal, from

Equation (2), the higher the present value of dividends as perceived by investors,

the higher is the value ofthe put relative to the call. This explanation becomes

more convincing if actual dividends over the life of the options fell short ofwhat

could be reasonably expected based on recent experience. Over the 1989-93 and

1985-93 periods, dividends on the S&P 500 index grew at 3.3% and 6%

geometric annual rates respectively, while dividends over 1993-97 grew at 5.3%

annually. So, as an approximation, actual dividend growth was in line with

historical experience.

Furthermore, if overestimation of future dividends were the primary cause

of put overpricing, one would expect to see the size of the violation increase with

option maturity. Since companies typically change their dividends only once a

year, forecasting index dividends over only a few months can be performed with

great accuracy, but longer term forecasting is more difficult. The second panel of

Table 6 Panel B examines put-call parity violations by maturity. For measure E1,

the proportion of puts overpriced is about the same for options with less than 60

 

8 The results are very similar after excluding options maturing in December 1998, where I needed

to use estimated rather than actual dividends.
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days to maturity as for longer maturity options. For those observations with E1 >

0, average overpricing for very short-term options is $1.23, about the same as for

longer-terrn options. This $1.23 mean violation is more than six times larger than

the mean present value of actual dividends, suggesting that dividend forecasting

errors cannot account for much ofthe pricing error for shorter maturities.

Put-call parity pricing errors exhibit considerable persistence from day to

day. There are 8011 observations with all data available for the same option pair

on the next trading day. For the 7759 of these 8011 with E>0 on day t, 7522 or

97% are again positive on day t+1. Accounting for option spreads with measure

E1, of the 6375 that are positive on day t, 5159 or 81% are again positive on day

t+1.

I next estimate a regression to identify sources of deviations from put-call

parity. The dependent variable is E, the overpricing of the put relative to the call

using bid-ask midpoint quotes. The explanatory variables are the index/strike

price ratio, the time to expiration, the time difference between put and call quotes

in the pair, and both put and call open interest. The dollar change in the index

between put and call quotes is also included as a control variable. A change in the

index between the times of the two option quotes induces put-call parity

violations, because the first of the two quotes does not reflect the subsequent

index change. Regression results are presented in Table 7.

Put overpricing is positively and significantly related to the index/strike

ratio. This means that out-of-the-money puts tend to be more overpriced than at-

the-money or in-the-money puts. Since out-of-the-money put trading
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predorrrinates in S&P 500 LEAPS market, there could be particularly severe

inventory imbalances and price pressure for these options. The results support

this price pressure hypothesis.

The negative coefficient on time to expiration indicates that long-term

options are more efficiently priced than short-term options, consistent with results

in Dubofsky, Ellis and Wagner (1996). There is no obvious explanation for this

relationship. As discussed earlier, this result is particularly puzzling if inaccurate

dividend forecasting is the cause of the violations. There is no significant relation

between put overpricing and the time difference between put and call quotes,

suggesting quote staleness per se is not driving the results.

Open interest has been used in some studies (Longstaff (1995)) as a proxy

for liquidity or market depth. The more liquid the market, the easier arbitrage

trading becomes, so one would expect negative coefficients on both put and call

open interest. Results are mixed, with the coefficient on put open interest

negative and significant but the coefficient on call open interest insignificantly

different from zero.9

4.2 Box Spread Tests

4.2.1 Measures of Deviation from the Box Spread Arbitrage Restriction

The box spread is a position involving two pairs of puts and calls with

different strike prices but a common expiration date. Let (C1, P1) be the bid-ask

midpoints of a put and a call with strike price X1 and (C2, P2) be the bid-ask

34



midpoints of a put and a call with strike price X2. All options expire in T years.

The box spread relation is:

P1+ C2 = P2 + C1 - (X2- Xr)* 6“ (6)

Define V as the amount by which the put P2 is overpriced relative to the

other options:

v = 15+ C. -P. -C2-(X2-X1)* e"T (7)

V is thus a measure ofthe arbitrage profit that can be realized due to

overpricing of P2 with respect to the other options.

After accounting for bid-ask spreads, a measure ofthe arbitrage profit

available if P2 is overpriced is:

VI = sz - Pla + Crb — C23 + (X1- X2)‘ 9.“ (8)

‘3’ and "” denote ask and bid prices TCSPGCtively- A
where superscripts

positive V1 implies that P2 is overpriced by enough to cover costs due to bid-ask

spreads. I have not included brokerage costs, which would decrease any possible

profits.

4.2.2 Sample Construction for Box Spread Tests

Testing all possible box spread combinations in the data is a Herculean

task, so to keep the data manageable I always choose the first option pair (P1, C1)

to be closest to at-the-money for that maturity. Thus, the tests evaluate the pricing

of in-the-money and out-of-the-money put-call pairs (P2, C2) relative to the

 

9 In a regression with put and call trading volumes as additional explanatory variables, the open

interest coefficients were little changed and the coefficients on the volume variables were
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at-the-money pair (P1, C1). Starting with the set of 10462 put-call pairs, I match

the put-call pair that is closest to at-the-money with every other pair in the same

calendar series, resulting in 8570 box spreads.

4.2.3 Results of Box Spread Tests

Table 8 illustrates the results. The mean absolute value ofV is only about

$0.32, far less than the mean absolute violation of put-call parity of $1 .21 in Table

6. V is greater than zero about 50% of the time with a median value of -$0.003,

or less than one cent.

Once bid-ask spreads are incorporated, there are few profitable box

spread arbitrage opportunities, even before accounting for commissions. Column

2 of Table 8 shows that V; is positive in only 434 (5%) cases. The mean and

median violations in these 434 cases are only thirteen and eleven cents

respectively. In all but one of these 434 cases, V1 is less than 30 cents. While the

put-call parity results indicate puts are generally overpriced relative to the

replicating strategy of shorting the index, lending, and buying a call, the box

spread results indicate options are efficiently priced relative to one another when

index trading is not part of the replicating strategy.

In Table 9, I run a regression to identify sources of deviations from the

box spread relation. The dependent variable is V, the overpricing of P2 relative to

the at-the-money put-call pair using quote midpoints. The explanatory variables

are the index/strike ratio of the put-call pair (P2, C2), time to expiration, and open

interest for each ofthe four options.

 

insignificantly different from zero.
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In the regression, the index/strike ratio for the (P2, C2) pair is positive and

significant. This means that the more out-of-the-money the put is, the more

overpriced it is relative to the other options, consistent with the put-call parity

results in Table 7. The time to expiration variable is negative, implying that the

longer the time remaining to maturity, the lower is the price of option P2 relative

to the other options.

The open interest variables are all statistically significant, with positive

coefficients on P1 and C2 and negative coefficients on P2 and C1. From Equation

6, this means that the higher the open interest for an option, the lower its price

relative to the others in the box spread.

4.3 Testing Put-call Parity Against S&P 500 Futures Data

The foregoing put-call parity test results raise serious questions about the

joint efficiency of the S&P 500 LEAPS and stock markets. In practice, trading

strategies that are in use in the real world may determine option prices more

nearly than theoretical arbitrage relationships (Figlewski 1980). Since arbitrage

with the underlying S&P 500 index futures contract is less expensive and easier

than trading the basket of stocks, it is important to extend the study to test LEAPS

put-call parity using S&P 500 index futures prices instead of the spot index.10

This analysis is the subject of this section.

 

'0 I thank Professor Mark Schroder for this suggestion.
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4.3.1 S&P 500 Futures Contracts Data

I obtain transactions data on S&P 500 futures contract over the sample

period of 1994-1996 from the Futures Industry Institute. These contracts expire on

the third Friday of the contract month in a quarterly cycle (March, June,

September and December). This is the same expiration date for LEAPS on the

S&P 500, implying that no adjustment is required for a difference in time to

expiration. The firtures contracts may be traded until 8:30 A.M on the expiration

date. The quarterly settlement is based on a Special Opening Quotation of the

relevant underlying index, which is calculated using the opening price of each

component stock in that index on that day.

For testing violations of put-call parity by S&P 500 LEAPS against S&P

500 futures contracts, it is required that each put-call pair in the sample be

matched with the futures contracts with the same maturity month. This condition

restricts the sample to put-call pairs that expire in December each year - about a

third of the entire sample. For each pair and each day, the bid quote ofthe

corresponding December futures contract is selected that is closest in time to the

later ofthe two options in the pair. Matching futures contract records are found

for a total of 2981 records, which forms the sample for this these tests. The

average time difference between the futures contract quote and the latest option

quote in a pair is about 9 minutes and 40 seconds.
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4.3.2 Put-call Parity using S&P 500 Futures Prices

The theoretical price of a futures contract on the index at any time t, Ft is

given by F. = (I. — DT) *emT"). Here, It is the spot index at time t, T is the

expiration date of the futures contract, DT as before is the present value of

dividends on the index over the remaining life of the contract, and r is the rate of

return on the risk free security issued at time t and expiring at time T.

The measures of put-call parity violations E, E1 and E2 are redefined under

the assumption that the futures contract is used for the spot index in equations 3, 4

and 5. Substituting for the spot index I from the firtures price relationship above

gives (for equation 3):

E..- = P +(1="=e"‘T + D.) - C - Xe'rT — DT

P+(F-X)* e'"T -C (9)

F in this equation is the price of the futures contract at the time that the

hedge is constructed.

Equation (9) says that when the LEAP put is significantly overpriced with

respect to the call, arbitrageurs can sell the put, buy the call, short the futures

contract ofthe same maturity as the put-call pair, and lend an amount ofmoney

equal to the present value of the strike. The profit from this strategy is denoted as

Ep. After accounting for spreads, the profit is Ely,

E... = P" + (Fb— X) we“T — Ca (10)

Similarly,

E2; = Cl) — Pa— (Fa -X)*e"’T (1 1)
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4.3.3 Results

Table 10 shows the results for put-call parity violations using S&P 500

futures contracts. The put-option is overpriced with respect to the call option

about 80% ofthe time before accounting for spreads, while after accounting for

spreads it is overpriced about 47% ofthe time. For the 1403 observations with

E”: >0, the mean and median ofEp are $0.26 and $0.25 respectively. In contrast,

the corresponding numbers from Table 6 for put-call parity violations using the

spot index are that E1 is positive 80% ofthe time with a mean violation for those

observations of $1.19.

These results support a hypothesis that the ease and low cost oftrading

with futures contracts leads to LEAPS being priced offthe futures rather than the

spot index, for options where futures contracts are available with a corresponding

maturity date. Taken together with the finding in the section using the spot index,

the results also suggest that the futures price violates its own arbitrage condition.

Panel B shows the violations by maturity. Comparing the results in this

table with Panel B ofTable 6 shows that the mean E”: for observations where E”:

>0 is $ 0.27, while mean E1 is $1.23 for short maturity options. This contrast is

surprising because it implies that near maturity firtures contract are also very

much overpriced with respect to the spot index.

Put-call parity violations were found to be quite large for the long maturity

LEAPS as well, for which an exactly matching maturity futures contract is not

available. That anomaly remains unexplained by this analysis.
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4.4 Summary

In this section I test put-call parity and box spread arbitrage conditions in

the sample of S&P 500 LEAPS. Testing for these efficiency conditions is

interesting in the LEAPS environment, where market makers may face persistent

inventory pressures.

The put-call parity results raise questions about the joint efficiency of the

S&P 500 LEAPS and stock markets. Using the present value of actual dividends

in the parity equation, I find that put options are consistently overpriced relative to

calls. After accounting for option bid-ask spreads, puts are overpriced about 80%

ofthe time, with an average overpricing of $1.19 in those cases.

One possible explanation for this result is that investors overestimated

future dividends when the options were priced. However, actual dividend growth

over 1993-97 was in line with historical experience. Moreover, pricing errors for

very short-term options, where dividend forecasting is relatively easy, are

comparable to pricing errors for longer-temr options.

I also test the efficiency of the LEAPS market with reference to the S&P

500 index futures market. Since these contracts have a maximum maturity of

about a year, futures contracts maturing on the same day as the options in a put-

call pair are available for 2981 ofthe total 10462 put-call pairs. Puts appear to be

much less overpriced with respect to the futures price. Alter accounting for option

bid-ask spreads, puts are overpriced only about 47% ofthe time, with an average

overpricing of $0.27 in those cases. The low cost and ease of transacting in
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futures contracts are presumably the reason that the LEAPS markets are better

aligned with the futures market than with the spot index. Thus, trading strategies

followed by investors in the real world may determine the LEAPS prices better

than theoretical arbitrage relationships. However, the large number and size of

violations of put-call parity for longer-term options remain a puzzle - caused

either by an overestimation of present value of dividends on the index, or

overpricing ofthe puts due to the trade imbalances.

The results for box spreads are much more consistent with market

efficiency than the results for put-call parity. After accounting for bid-ask

spreads, there are very few violations in the data, and those that appear are very

small.

To summarize, the evidence suggests that option prices in the S&P 500

LEAPS market are internally consistent, but that put options are overpriced

relative to the replicating strategy of shorting the index, lending the proceeds, and

buying a call. However, put option prices are more consistent relative to the S&P

500 futures market, whenever contracts are available with a maturity

corresponding to that ofthe LEAPS. Put overpricing for the longer-term LEAPS

could result from public demand to purchase long-term put options for portfolio

insurance. Given the transaction costs involved in shorting index futures, or

shorting SPDRS and lending the short sale proceeds, even large premiums on S&P

500 LEAPS puts may be difficult to arbitrage away.
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5 Intra-day Analysis of Trading and Prices

In this section, I test for a relationship between trade imbalances and

prices in the S&P 500 index LEAPS quotes and trades in an intra-day analysis of

quotes and trades. First, I examine a sub-sarnple of pairs of quote revisions with a

single trade between the quotes. I test whether bid-ask quotes for specific LEAP

option tend to be revised upward in response to a public purchase ofthat option

versus a public sale of the option. Next, I analyze a sample of pairs of quote

revisions of an option with multiple trades between quotes. I use the difference

between public buy orders and public sell orders that occur between the quotes as

a measure oftrade imbalance in that option. I construct samples in two different

ways to check for robustness ofmy results. Third, I study the relationship

between order imbalances over the course of the day and price changes between

the first and last quotes of the day. This is to test whether intra-day inventory

effects are temporary or persist into the next day.

5.1 Methodology

The objective of this part ofmy dissertation is to test whether order

imbalances have inventory effects on S&P 500 index LEAPS prices. It is critical

to separate inventory effects from information effects to make any inference about

price pressure effects on options prices. An options trade can convey information

about the future value ofthe index or the expected volatility of the index over the

option’s life. If a trade in a particular option conveys information about the future

value or volatility of the index, the market maker should update quotes of all
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options on the index to incorporate the information. However, if a trade does not

convey information, but creates inventory imbalances in a specific option series,

quote revisions will be related only to trade in that option and not to trade in other

options.11 More generally, if inventory effects are present, quote revisions should

be more sensitive to trade in the option of interest than to trade in other options.

This insight is the basis of the methodology followed in this section.

Despite its empirical biases, the BS formula serves a useful purpose for

the tests in this section. I test for a relation between changes in BS implied

volatility with order direction and volume in both the traded option and other

options with the same maturity. Since each option’s implied volatility is

unconstrained, the results are not dependent on the validity of the BS model,

especially as changes in the BS implied volatility due to change in index are

controlled for in the tests.

5.2 Single Trade between Quotes

I focus on quote revisions due to a single trade in this section and study

the influence of multiple trades on prices in the next section. The change in

implied volatility can be attributed to the trade with greater confidence when there

is a single trade between quotes.

First, I study the relationship between changes in implied volatility and the

direction and size of the trade. Evidence of a relationship will suggest the

presence of inventory and/or information effects of trades. For instance, a put

purchase can mean a future decrease in the index or an increase in the index

 



implied volatility. Second, in an attempt to separate the two effects, I compare the

implied volatility changes of traded options caused by a trade with that of a non-

traded option due to the same trade. If implied volatility has changed because the

market maker has revised the volatility estimate due to information in the trade,

the implied volatility of other options should reflect the change. Significant

differences in magnitudes and direction ofmovements in implied volatility of

traded and non-traded options point to inventory effects for the traded option.

5.2.1 Sample Construction and Variable Definition

Let (qifm, qupOSt) be a pair of bid-ask midpoint quotes in option i with

exactly one intervening trade, TU. I refer to i as the traded option and X, is the

strike price oftraded option i. Let the BS implied volatility of option i before and

after the trade, IVin" and IViJPOSt and the change in the implied volatility as

IViJPOSt' IVj‘jpre = AIViJ. Also, let AIiJ = Imp"St - Imp" be the change in index

between pre- and post-trade quotes.

Let (qhbjp'c, QkinOSt ) be a pair of bid-ask midpoint quotes in any other

option k with the same maturity as i but a different strike, with exactly one

intervening trade, Tu. I refer to such options k as non-traded options with

reference to trade TiJ. Again, I find the BS implied volatility of each non-traded

option k before and after the trade, IVUJP” and Naomi, and the change in the

implied volatility, IVm'm- Weir”= AIVW. Note that some trades may not

trigger quote revisions in any option including the traded option. In that sense,

this is a restricted sample —- only those trades will be selected which cause quote
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revisions in the traded option. I define the following trade variables:

SIGNEDNOiJ = +1 ifTU is buyer-initiated and = -1 if it is seller-initiated, and

SIGNEDVOLU is equal to volume oftrade multiplied by SIGNEDNOU.

This sample selection procedure isolates the cause of the change in

implied volatility of option i and option(s) k. The change in implied volatility,

AIViJ, is most likely to be due to the trade TiJ- since only one trade occurs between

quotes. The interval between pre-trade and post-trade quotes is about 5 nrinutes

on average, which strengthens this argument. The same argument holds for the

implied volatility change in the non-traded option AIijJ. For options that trade,

quotes and hence implied volatility may change as a result of both information

and inventory effects of the trade, while non-traded option quotes should only be

subject to information effects. The magnitude and direction of implied volatility

change of non-traded option pairs in response to a trade is therefore used as a

measure of information conveyed by the trade.

The sample consists of 793 pairs of quotes (766 puts and 27 calls) on

traded options with a single buy trade in the same option between the two quotes,

and 238 pairs of quotes (219 puts and 19 calls) on traded options with a single sell

trade in the same option between the quotes. Ofthe put traded option pairs (985 in

all), 415 trades have at least one corresponding non-traded put option pair with

which implied volatility changes ofthe traded option can be compared. Ofthe call

traded option pairs (46 in all), 36 have at least one non-traded call option pair.

The average time difference between pre- and post-trade quotes is 9 minutes for

puts and 6 minutes for calls, while the average time interval between the trade and
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post-trade quote is 5 minutes for puts and 4 minutes for calls. These short

intervals strengthen the argument that unobserved influences on implied volatility

are likely to be minimized by the sample selection procedure. The interval

between quote revisions is smaller for calls most likely because there are many

more bid-ask quotes for calls than puts, even though there are far more trades in

puts, probably because of the index is increasing over the sample period.

5.2.2 Relationship between Implied Volatility Changes and Trades

The relevant sample for this test is the set of traded option pairs (985 puts

and 46 calls). Changes in implied volatility may be due to changes in moneyness

of the option, or inventory and information effects of trading. Although it is not

the aim of the analysis to completely explain the variation in implied volatility,

omitting significant variables may cause a bias on other coefficients in the

regression model.

It is well known that the Black-Scholes’s model log-normality assumption

is a simplification of the actual distribution. Excess kurtosis and/or skewness in

the true distribution may cause ITM and/or OTM options to be under- or over-

priced by the BS formula with reference to market prices. Table 4 shows that S&P

500 LEAPS puts and calls display a ‘skew’: implied volatility is the highest for

deep OTM puts and decreases monotonically as the put becomes more ITM. A

similar relationship obtains for LEAPS calls.

For this study, the implication is that a change in the index level between

pre- and post-trade quotes will effect the price of an option differently depending
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on its moneyness. I control for this nonlinear impact of an index change in the

empirical specification with an interaction variable between index change and

moneyness of the option.

The empirical specification I test is as follows:

AIVU = a + bfi‘AIU + b2*AI.J*X,/Iif" + b3*SIGNEDNOiJ +

b4*SIGNEDVOLiJ (12)

Here Xi/Iinre is the moneyness oftraded option i. Xj/Iijrc and AIL;

together control for movements in implied volatility due to skewness and kurtosis.

The shape of the volatility skew in the sample implies that b; should be negative

(as the index increases, moneyness decreases leading to a decrease in implied

volatility). However, implied volatility decreases at a lower rate for higher

moneyness implying that b2 should be positive. Information and inventory effects

of trading on prices will be reflected in positive and significant coefficients for

SIGNEDNOm and SIGNEDVOLiJ.

Equation (12) is estimated separately for puts and calls and the

results reported in Table 11. Durbin-Watson tests do not reveal significant serial

correlation. However, White’s test shows some evidence of heteroskedasticity,

probably due to large differences in the independent variables AIL; and Xi/Iij'm

among observations. So, I report heteroskedasticity corrected t-statistics in Table

11 to enable accurate statistical inference.

In Model I, I find a positive and significant coefficient on the trade sign

variable, SIGNEDNOU. The coefficients indicate that a single buy trade causes an

increase of 0.16% in the implied volatility of puts, while a single sell trade causes
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a decrease by the same amount. This can cause quite a large change in the

option’s price. The size ofthe trade does not seem to be related to the change in

volatility however. The result that trade volume is unrelated to price changes in an

option is consistent with Vijh (1990), but in contrast to prior results for stocks and

predictions of models such as Easley and O’Hara (1987). The changes in the

index and interaction variables are not significant, possibly because the interval

between quotes is short, and the index change small. Because SIGNEDVOLU is

insignificant in model I, I estimate model II without it and obtain similar results.

Both models have a high R2 of 69%. This suggests that a large proportion ofthe

change in implied volatility is explained by the trade direction. In contrast, the

results for calls do not show an indication of effects of trading on the implied

volatility.

The results indicate that a buyer-initiated trade in LEAPS puts increases

implied volatility and prices, and a seller-initiated trade decreases implied

volatility. However, this test cannot distinguish between influences due to the

inventory imbalances and due to information conveyed by the trade. One way to

distinguish this is to compare the change in implied volatility of a traded option

with the change in implied volatility of a non-traded put due to the same trade.

The following section describes these tests.

5.2.3 Change in Implied Volatility of Non-traded vs. Traded Options

In this section I examine LEAPS puts alone and not the calls, since the

earlier tests did not reveal effects of trading on call prices. Ofthe traded puts in
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the sample used in the previous section, 415 trades (339 buy and 76 sell) have at

least one corresponding (same calendar series-different strike) non-traded put

option with which implied volatility changes of the traded option can be

compared. Each traded put i is matched with the non-traded put, k, that has the

closest strike price to that ofput i. The aim of constructing pairs in this way is to

study the relative implied volatility change of traded options i with respect to

paired non-traded options k. Selecting k to be close in strike to i helps to abstract

from different effects of skewness and kurtosis on the two. If the two paired puts

are close together in moneyness, changes in implied volatility due to moneyness

changes should be very similar. I argue that the implied volatility change ofthe

non-traded put, AIVKJJ, is a measure of information about volatility conveyed in

the trade, T5,, that triggered the quote revision. With this assumption, inventory

effects on traded option i’s price are suggested if AIViJ is more than AIVW for a

buy trade, and is less for a sell trade.

Table 12 reports the change in implied volatility of traded and non-traded

puts, and the difference between them categorized by type of trade, buy or sell.

The table shows mean values of AIVi’j, AIVkJJ and (AIViJ- - AlkaJ) for all buy

and sell trades.

For buy trades, implied volatility of the traded put, AIVLJ, changes by

0.077% on average, while it changes by —0.094% on average for the paired non-

traded put. The mean difference in the implied volatility change is 0.17% which is

significant by t-test and by a non-parametric sign test. These results suggest that a

single buy trade causes the implied volatility of the traded put to increase 0.17%
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more on average than that of the non-traded put. If AIVMJ- is an effective proxy

for the information effect of the trade on implied volatility, inventory effects of

buy trades are indicated.

For sell trades, the implied volatility of the traded put changes by —0.065%

on average, while that ofthe non-traded put changes by —0.039%. The mean

difference in the implied volatility change is -0.026%, which is not statistically

significant. Such a result is consistent with the presence of large positive order

imbalances, which may cause asymmetrical price effects: market makers may

revise quotes to encourage selling but not buying of puts.

In summary, I find that LEAPS put prices increase after a buy trade and

decrease after a sell trade. Implied volatility changes for traded puts appear to be

higher than for a corresponding non-traded put, indicating some inventory effects.

Although these results are indicative of price pressure effects of trading on

LEAPS puts, it should be noted that the results of a comparison oftraded with

non-traded options may be subject to the matching algorithm used. The small

sample size also reduces the power of these tests. The time interval between pre-

and post-trade quotes is short, which has the advantage that the implied volatility

change can be isolated to a single trade. However, it may also have the

disadvantage that information effects of the trades are not uniformly impounded

into all options prices. Also, the applicability of the results is restricted to the set

of trades that trigger quote revisions in the traded options. More frequently than

not, the market maker does not revise quotes immediately after a trade. In the next
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section, I conduct a more general analysis of the relation between trade

imbalances and prices.

5.3 Multiple Trades between Quotes

To test for evidence of inventory and information effects, I examine intra-

day pairs of consecutive quotes and aggregate trading between them. For every

calendar series, there are several different put and call options contracts traded in

a day which differ only in strike price. If a trade conveys some information about

volatility, the market maker must update the prices of all other options ofthe

same type in the next quote revision to efficiently incorporate this information.

The change in implied volatility between consecutive quotes ofevery option due

to information effects of trading should then be related to aggregate trading in

options of the same type. However if the market maker alters a quote to manage

his inventory position in a specific option, the implied volatility change so caused

will be related only to trade in that option and not trade in other options. I refer to

this as ‘own’ trading. 1 use this insight to separate inventory effects of trading

from information effects.

An issue that must be addressed in designing tests is the following. Quote

revisions are made continually in all options in a series during the day. More

frequently than not, there will be a time overlap among pairs ofconsecutive

quotes in different options during the day. Since every trade can affect all option

quotes to some extent, a statistical problem may result of cross-sectional

correlation of an indeterminate form among implied volatility changes of different
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options. To eliminate this potential source of cross-correlation, I restrict the

attention to the most active option each day.

5.3.1 Sample Construction and Variable Definitions

The sample consists of all pairs of consecutive quotes of the most active

option each day matched with measures of aggregate and own trade direction and

size between the quotes. Let qt.” and qu be two consecutive bid-ask quote

midpoints at times t-l and t for option i. IVin.-. and IV3,. are the corresponding BS

implied volatilities of the option. Let AIL. = In — 1”.) = be the corresponding

change in index value from time t-l to time t. I use the trade classification

exercise described earlier to derive measures of signed trading between quotes.

Let the total number ofbuyer initiated trades in option i from time t-l to time t be

NBUYLt and the total number of seller initiated trades be NSELLi,t. Similarly, the

total number of buyer- and seller-initiated trades in all other options ofthe same

type (puts or calls) from times t-l to t is denoted as NBUYomm and NSELLomm. I

can then compute the total volume ofthe buy and sell trades, VBUYLt, VSELLm,

VBUYomm and VSELLomc,”1 from times t-l to time t. Signed volume and number

quantities are calculated as follows:

NDIFm = NBUYLI — NSELLm

NDIFomm = NBUYmhm — NSELLom¢,,t

VDIFM = VBUYLt — VSELLLt

VDIFothem = VBUYother,t ‘ VSELL other,t
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The ‘DIF’ variables refer to the signed number and volume of ‘own’

trades, and signed number and volume of ‘other’ trades between quotes qt and qH

for option i. In aggregating trades, unclassified trades are ignored. Table 3 shows

that about 13% of all trades are unclassified. Since there is no reason to believe

that these trades are biased in one specific direction, discarding them should not

affect the analysis.

The sample consists of 3732 pairs of consecutive put quotes and 697 pairs

of call quotes. The mean time difference between quotes in each observation is 59

minutes for puts and 2 hours 10 rrrinutes for calls. These time intervals contrast

with corresponding figures for the restricted sample in the previous section — 6

minutes for calls and 9 for puts. LEAPS quotes are evidently not revised very

frequently, even for the most active series. Mean number of trades (all) between

quote revisions is 5 trades for puts and about 2 trades for calls, while the average

volume is 130 contracts for puts and 23 contracts for calls. The mean time

difference between the second quote in the pair and the last preceding trade is

about 19 minutes for puts and 51 minutes for calls.'2

The aim is to identify whether trading causes inventory effects on prices of

options. Since prices and hence implied volatility also change with the index and

with information, the model must control for these effects

The empirical specification is as follows:

AIVLI = a + b1*AIi,t+ b2*AIi,t*Xi/Ii,t-1 + b3*NDIFi,t + b4*NDIFother,t

+ b5*VD1Fi,r + b4 * VDIFother,t (13)

 

'2 This statistic indicates that there is typically plenty oftime for stock prices to adjust to any

information about the true index value that might be conveyed by LEAPS trading.
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Variables are as defined earlier. As in the previous section, Ala, and the

interaction term, Xi/Iw, capture the effects of skewness and kurtosis on implied

volatility. I expect a negative coefficient on Ala and a positive coefficient on the

interaction variable.

If trade direction does not impact prices in any way, then coefficients on

both NDIFLt and NDIFothcm should not be significantly different from zero. If

trade direction affects prices due to information effects alone, coefficients on both

should be positive but not significantly different from each other. This prediction

results fi'om the arguments presented earlier, since in this case ‘own’ trade and

‘other’ trade both convey information only. If there are both inventory and

information effects, coefficients on both NDIFLt and NDIthmt should be

positive and significant and b3 should be significantly larger than b4.

Similar predictions are expected for the volume variables VDIFL. and

VDIFomc,,1 that measure the impact oftrade size imbalance on prices.

5.3.2 Empirical Results

Equation (13) is estimated using OLS separately for puts and calls, and the

results reported in Table 13. The Durbin-Watson test statistic does not reveal

significant serial correlation. However, as in the previous section the White test

reveals some evidence of heteroskedasticity, so I present consistent OLS

estimates and heteroskedasticity corrected standard errors and t-statistics.

In Model I for puts, the coefficient ofNDIFu is 0.0002 (t-statistic = 3.1)

meaning that implied volatility changes by about 1% if 500 more contracts are
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bought than sold between quotes. A change in implied volatility of 1% will lead

to significant increases in prices. I find that variables for both signed trade size

and direction in other options, NDIFOmm , VDIFomcr, t, are not statistically

significant. Further, an F-test of the hypothesis that coefficients ofNDIFm and

NDIFother,t are equal is rejected at the 1% level (test statistic=6.88). These results

suggest that prices of put options are more sensitive to ‘own’ trade direction than

to trade in other puts on the same underlying. This suggests inventory effects of

trading: market makers increase put prices upon significant buy imbalances in the

option and decrease prices if there are significant sell imbalances. Own trade size,

VDIFm t, is not a significant determinant of change in implied volatility. This

result is consistent with prior research on trading and prices (Vijh 1990). I also

estimate Model 11 without the volume variables and obtain similar results.

The coefficients of AI“ and AILJXi/ILH have signs consistent with the

implied volatility bias exhibited by the options in the sample, and are significant

at the 1% level. For example, model I for puts shows a coefficient of—0.031 on

A1,; and +0.05] for AILJXi/Im. This implies that the implied volatility for ATM

puts will increase by 2% for a unit increase in the index (put becoming out-of-the-

money). Note that a unit increase in index means a 10 point increase in the S&P

500 index. The slope is different depending on the moneyness ofthe option. For

options with Xi/Ii,t-1>0.61, the negative slope obtains with this specification.

The results for calls are in contrast to those for puts. For calls, coefficients

ofNDIFm , and NDIFoum, ,t are significantly greater than zero but not significantly

different fi'om each other. This suggests that implied volatility changes equally
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with one unit of trade imbalance in ‘other’ options as one unit of ‘own’ trade. In

other words, trade imbalances convey information about volatility, while

inventory effects are not detectable. The results for calls suggest that the results of

inventory effects for puts are caused by the considerable buying pressure for these

options.

Several robustness tests are conducted to verify the results. Instead of

using the change in implied volatility as the dependent variable, I use the option

quote change adjusted for the delta times the change in the index, as in Vijh

(1990), with similar results. Sample selection biases may result because I study

only the most active options each day, which may also be more subject to

inventory effects. I conduct the same test in a sample less prone to biases while

ensuring that the statistical problem of overlap does not occur. I do not restrict to

all pairs of consecutive quotes for the most active options. Instead, from the entire

set of intra-day quotes and trades for all LEAPS on the underlying, I select those

pairs that satisfy the criterion that the pre-trade quote of every pair of quotes

occurs after the post-trade quote of the previous one. This ensures that no

observations overlap in time, eliminating a source of cross-correlation among

observations. OLS estimates ofequation (1 3) (not reported) for this sample are

very similar to those in table 13, confirming the results obtained earlier.

5.4 End-of-day Analysis

While the intra-day analysis in the previous sections suggests that buy-

trades cause an increase in prices ofput LEAPS not explained by change in
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implied volatility due to information, such effects may be quite temporary and

may not persist even over the same day. The procedure in this section, I test the

persistence ofthe inventory effects by studying the daily change in implied

volatility.

I choose the most active option every day and match its last quote of the

day with the day’s opening quote. Then, I find the change in implied volatility

over the day for each such pair. These traded options are each paired with an

option on the same day with the same expiration date but a different strike price

that is not traded. Similar to the intra—day analysis in section 1 above, the non-

traded option is chosen such that it is very close in strike price to the traded

option. This is to ensure that skewness and kurtosis in the index returns

distribution affect the two options in the pair in a like manner. Using for

comparison an option that is very close in strike mitigates the need to control for

skewness and kurtosis using the change in index and moneyness interaction

variable as was required in section 2 earlier.

398 traded-untraded put option pairs and 171 traded-untraded call option

pairs are formed. Any information about future volatility must be reflected in the

prices of all the options on the index by the end ofthe day, including the options

that are not traded. I use this insight in controlling for the information effect of

trades. In the sample of pairs, I use the change in implied volatility of the non-

traded option as the control variable for the information effect of trades on

implied volatility. The model is:

AIViJ = a + b1*APIVi,t + b2*NDIFi,r + 135* VDIFi,t (14)
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where the definitions are similar to those in the section 1. The difference is that the

time interval is over the whole day t rather than between consecutive quote

revisions.

The empirical work in this section is based on equation (14). I run an OLS

regression separately on traded-untraded option pairs of puts and calls formed as

described above. If changes in implied volatility are caused by information

effects, then I expect that the variables NDIFm and VDIFM will be insignificant in

the regression, since information effects are controlled for by change in implied

volatility of the paired untraded option. Since the paired option is chosen to be

very close in moneyness to the traded option, the coefficient of APIVLt should be

close to 1.

Table 14 shows the OLS estimates of equation (14) for the sample of

paired options. Model 1 includes only the trade imbalance variables while model

11 includes the control variable for information. I find that the trade imbalance

variables are insignificant in these regressions, suggesting that any inventory

effects caused by trading during the day are temporary and are adjusted by the

day’s end”. The variable APIVLt is highly significant and its coefficient is 0.70

for puts and 0.91 for calls — this suggests that the implied volatility change in

LEAPS puts options is quite similar across options whether they are traded or not.

The hypothesis that the coefficient of APIVLt is equal to 1 is not rejected in both

puts and calls.
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5.5 Summary of the Results

This section analyzes intra-day quotes and trades in S&P 500 LEAPS for

evidence of trade-related information and inventory effects on prices. The

approach is to relate changes in BS implied volatilities of traded options with

measures of trade imbalance. I find that implied volatilities of S&P 500 LEAPS

puts increase (decrease) in response to a buy (sell) trade imbalance in the same

put, but are not affected by trade imbalances in other put options. This finding

suggests inventory effects in the quoted prices ofLEAPS puts. The results ofthis

section suggest that the preponderance of demand for any one type of option may

cause a collective inventory imbalance in the market.

The results are robust to alternative specifications and in different

samples. I also study the relation between daily price changes and daily trade

imbalances to test the prediction of inventory control theories that inventory

effects are only temporary, and find evidence that inventory effects may not

persist over the day.

 

‘3 In model I, one would expect the trade imbalance variables to be significant. Possibly the model

is misspecified because skewness and kurtosis is not controlled for, hence they turn out

insignificant.
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6 Trading Profitability of Hedging Strategies

The results of put-call parity tests using the spot index value in chapter 3

showed that LEAPS puts are significantly overpriced with respect to calls, after

accounting for bid-ask spreads. It was found that the amount of violation

increases as the LEAP put goes more out-of-the-money. This result appears to

support the hypothesis that large trade imbalances such as those in out-of-the-

money LEAPS puts may lead to price pressure effects in options.

Chapter 5 directly analyzes effects of trade imbalances on the prices of puts. The

tests in that chapter control for effects of non-normal skewness and kurtosis in the

underlying asset distribution on put prices and information effects of trading on

prices, so that the increase in price due to buy trades can be more clearly

attributed to an inventory or price pressure effect. It was found that LEAPS put

prices increase in response to a buy trade by more than is explained by

information effects of trading.

It is interesting to examine whether an alert arbitrageur can profit from

these systematic pricing anomalies in LEAPS puts. If put prices are increased

temporarily in response to trade imbalances, then it may be possible to profit by

taking a short position in the overpriced put and a long position in the under-

priced put, and reversing the positions when the price pressure effects reverse

themselves. On the other hand, if the overpricing persists over longer time

intervals, then such trading strategies may not generate superior profits after

adjusting for risk due to longer holding intervals.

61



In this chapter, I test the profitability oftwo trading strategies designed to

exploit temporary price pressure effects in LEAPS puts prices. Mis-priced puts

are identified using four trading rules: (1) Black-Scholes implied volatilities

inferred from the market prices ofthe options (2) Strike prices ofthe options (3)

Buy/sell volume imbalance (4) Buy/sell number of trades imbalance. If the

trading strategies generate significant profits on average, inefficient pricing on the

S&P 500 LEAPS market is indicated.

6.1 Using Trading Strategies to test for Efficiency in Options Markets

Many authors study the pricing efficiency of options markets by

examining the profitability of trading schemes designed to exploit pricing

anomalies. Ait-Sahalia, Wang and Yared (1998) find that the underlying asset

state price density implied by a sample of S&P 500 index options displays

excessive skewness and kurtosis compared to index-implied state price

densities(SPDs). They use a market risk-adjusted Sharpe ratio to measure

profitability of trading schemes designed to exploit the differences in the SPDs,

and find evidence that these strategies are significantly profitable after accounting

for risk. Smith, Gronewaller and Rose (1998) study the efficiency of the New

Zealand Futures and Options Exchange (NZFOE) by testing the profitability of

delta neutral spreads constructed with NZFOE equity options. They do not find

evidence that such strategies are profitable in the presence of transactions costs,

and conclude that the lack of instantaneous and synchronous trading in the equity
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and options markets, a characteristic of the market that they study, does not

obstruct efficient option pricing.

Identifying mis-priced options is a step that precedes the construction of

trading strategies. The strategies used in this chapter, the trading rules and the

rationale for adopting them are described below, as well as the results. As in most

ofthis thesis, the focus is on LEAPS puts. Four trading rules are used in this study

to classify puts as overpriced or under-priced. Broadly, the strategy is to purchase

the under-priced put, sell the overpriced put, and reverse the position when the

prices correct themselves.

6.2 Identification of Mia-priced Options

Under the assumptions of the Black-Scholes model, all options on an

underlying asset with the same expiration date should be priced using the same

volatility. Black-Scholes volatilities implied by market prices of options are

usually not constant across strike prices, and can be used to develop trading

strategies to test pricing efficiency in option markets.

The differences in implied volatility across strike prices can be due to non-

normal skewness and kurtosis in the underlying asset’s distribution, which is not

considered by the BS model. If cross-sectional differences in implied volatility are

due only to skewness and kurtosis, a strategy based on BS implied volatilities

should not be profitable on average. But if puts are overpriced due to temporary

price pressures leading to a higher Black-Scholes implied volatility, which

corrects in the short term, profits may be possible by buying the low IV, selling
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the high IV put and reversing the position after the mis-pricing is estimated to

have corrected itself.

The first trading rule used in this study identifies overpriced and

underpriced puts based on the Black-Scholes implied volatility. The put with the

highest implied volatility each day is assumed to be overpriced, and the put with

the lowest implied volatility each day is assumed to be underpriced.

Table 3 suggests that trade imbalances are highest in OTM puts. They

should also display the most inventory effects on prices as a result. This result is

supported by the put-call parity regressions. For the second criterion by which to

identify mis-priced options, I classify the expensive put to be the OTM put

(lowest strike) and the cheap put to be the ITM (highest strike) put each day.. The

results of this trading rule should be consistent with those ofthe earlier one,

because the implied volatility smile in the sample shows that BS implied volatility

on average decreases with the strike price to index ratio.

Puts are also classified as expensive or cheap using the information

available about buy/sell volume and number oftrades during the day, which are

the third and fourth trading rules used in this study. The put with the highest buy —

sell imbalance (volume and number oftrades), which may display the highest

inventory effects, is classified the expensive put, and the one with the lowest buy-

sell imbalance the cheap put.



6.3 Types of Strategies

6.3.1 Delta Neutral Put Spreads

The first strategy developed is the Black-Scholes delta neutral put spread.

In this strategy, over (under) priced puts, identified using the trading rules

described above, are sold (bought) in quantities such that the overall position is

delta neutral. Then, risk free bonds are bought or sold in an amount to make the

portfolio a zero-investment portfolio. The position is then instantaneously

immune to changes in the underlying asset. The spread is created based on mid-

points of closing bid-ask quotes, and held for one or five trading days.

Let P1 be the underpriced put and P2 be the overpriced put based on the

trading rules defined above. The hedge is formed on day t, with n1 contracts of P1

and n2 contracts of P2. Let hm and h2,1be the deltas of puts 1 and 2 respectively on

day t. Denoting the portfolio by PF, the delta of the portfolio is then

Delta (portfolio) = In * h + n2 * h2 (15)

For a delta-neutral portfolio, one contract of P1 is purchased and (bl/h2)

contracts of P2 are sold (written). The cost of this portfolio is P; — (h1/h2) * P2. To

make this a zero investment portfolio, risk free bonds maturing on the same date

as the options must be bought in the quantity

Br = (hr/h2)*P2 - Pr- (16)

The portfolio can then be represented as

PF = P1 — (hl/h2)*P2 + B. (17)

Since the cost of this portfolio is zero, it is not possible to use a portfolio

return to measure arbitrage profits over the period it is held. Dollar payoffs are
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measured and used to represent the profits instead. The dollar payoff for entering

into this strategy for a holding period of n trading days is

Dollar payoff = P12»... — (h1,t/h2,i)"'P2,t+fl + Bier”, (18)

Spreads are held for intervals of one day and 5 trading days. Although the

portfolio is instantaneously free of risk due to movements in index, this does not

continue to be true throughout the holding period. This is because the assumptions

under which the hedging strategy works perfectly are not likely to be satisfied.

The BS delta of each put is derived assuming a log-normal stock price

distribution, and constant volatility, which are not true in practice. Non-normal

skewness and kurtosis of the underlying asset’s distribution need a hedge ratio

different than that calculated above. Also, since the delta itself varies with the

underlying index level, the hedge needs to be rebalanced continuously to maintain

delta-neutrality.

Since the measure ofprofit used (dollar payoff) for this strategy is not risk

adjusted, the risk ofthe portfolio becomes important to reach a conclusion about

arbitrage opportunities in the market. Holding the portfolio for a shorter interval

has the benefit that portfolio risk due to changes in the underlying index is

minimized, while market risk can become considerable over a longer period.

However, the portfolio is also subject to vega risk, which is not explicitly

controlled for in this analysis.
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6.3.2 Vertical Put Spread + Stock:

When the delta neutral put spreads constructed above are not rebalanced

continuously, the portfolio becomes risky over time. One risk-adjusted measure of

portfolio return is the Sharpe ratio. The Sharpe ratio of a portfolio is defined as

the mean excess return of the portfolio divided by the standard deviation of the

return. Since the investment in the strategy described above is zero (frequently

negative before the bond is purchased) it is not possible to calculate a return for

all portfolios so constructed. The strategy described in this section is a long

position in a put spread combined with a long position in the index, which reflects

a bullish attitude on the market. The investment in this portfolio is positive,

therefore a portfolio return and hence a Sharpe ratio can be calculated.

Let ije the underpriced put and P2 be the overpriced put. Let I denote the

index. Every day, a portfolio is formed by buying P1, selling P2 and buying one

unit of the index. If PF denotes the portfolio, then PF = P1 — P2 + I. The portfolio

is held for one or 5 trading days as before and profit is measured using a simple

rettu'n. The investment in the position on day t is:

Investment = P1,, — P21 + It,

The inflow on the day the position is reversed, t+n, is :

Inflow = P1,...“ — P21." + 11+“ + X D.

D. is the cash dividend on the index on day t, and the summation nms over

the holding period ofthe portfolio. The return on the portfolio is then measured

as:

PF return, R|D = (Inflow/Investment) —1.
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The Sharpe ratio of the portfolios formed each day is calculated as

Sharpe ratio: (Mean (RP) - Rf)/ SDp

where SD], is the standard deviation of the portfolio returns, and Rf is the risk free

rate over the same holding period as the portfolio.

6.4 Holding Intervals

Delta neutrality is only instantaneous, and to maintain it the portfolio has

to be rebalanced continuously, which would lead to infinite transaction costs. The

holding interval must therefore achieve a balance between the two opposing

factors. Methods have been developed in the literature for choosing an optimum

holding interval. In this study, I do not attempt to find an optimum holding

interval, but instead conduct the tests for holding intervals of one and five trading

days.

The measure of arbitrage profit for the vertical put spread strategy, the

Sharpe ratio, accounts for risk due to movements in the underlying index. Over

the five-day interval for the delta neutral put spread some residual market risk, as

well as volatility risk, may exist, implying that the gains measured may not be risk

free and hence not true arbitrage profits.

6.5 Portfolio Construction

The portfolios are constructed and unwound at the end ofthe trading day.

Therefore the last quote of the day is used in the calculation of the arbitrage

profits. The following procedure is followed to select the puts to transact in each
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day. The puts are ordered according to each ofthe trading rules described in the

earlier section, and one under-priced and one overpriced put in each calendar

series is selected each day. For example, for the BS implied volatility trading rule,

the implied volatility of each put is backed out of its last quote of the day. The

puts are ordered according to the implied volatility within each calendar series,

and the put with the highest and the lowest implied volatility are chosen to

construct the delta neutral put spread or the vertical puts spread described above.

To calculate the BS hedge ratio of each put, the average implied volatility

of the two nearest-the-money puts on the same day that the portfolios are formed

is used. This is more consistent than using the put’s own implied volatility,

because the BS model assumes a constant volatility, and the closest to that

constant volatility is the ATM puts implied volatility.

For the delta-neutral put spread strategy, the risk free security bought and

sold is the US treasury strip whose expiration date is closest to the day the

position is unwound (one or five trading days later). The rate of return on this

security is used wherever a risk free rate is required in the calculations.

Each day, portfolios are constructed using the selected puts and the strategies

described, and held for one or five trading days. Those portfolios for which quotes

are not available on the day of unwinding positions (one day or 5 trading days

later) are discarded. When calculating returns for one trading day intervals,

weekends are accounted for as a three-day period. Arbitrage profit measures are

then calculated for each portfolio as described above.
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6.6 Results

6.6.1 Delta-neutral Spreads

The results for the set of delta-neutral spreads constructed are in Table 15.

The table shows the number of portfolios constructed, the number with positive

dollar payoffs, the mean dollar payoff, median dollar payoff, standard deviation,

and other variables for each trading rule and holding interval combination. The

number of portfolios constructed differs in the tables, because quotes are not

always available on the day the position is unwound.

The number of spreads constructed using trading rule 1 (based on implied

volatility) and held for a day is 1611, ofwhich 948 are profitable (before bid-ask

spreads and commissions). The mean dollar payoff of the portfolios is $0.0654 (=

$6.54 for one contract), which is significant at the 1% level.

For the portfolios constructed on the basis of the strike price (trading rule

2) the mean dollar payoff, $0.0162 is not significantly different from zero. For

trading rules based on trade imbalances (trading rules 3 and 4), the mean dollar

payoff is -$0.008 and -$0.005 respectively, neither ofwhich is significant. These

results on the mean dollar payoff do not indicate that abnormal profits can be

made from this strategy on average.

6.6.2 Vertical Put Spreads

The results for this strategy are reported in Table 16. The table shows the

number ofportfolios constructed, the number with a positive return, the mean and

median ofthe portfolio returns, the Sharpe ratio for the portfolio, and other
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variables. The table also reports the index retum and Sharpe ratio for comparison

with the portfolio retmns. These quantities are reported for every combination of

trading rules and holding period.

For example, for trading rule 1, based on BS implied volatility, and

holding period one day, 1609 spreads are constructed ofwhich 846 are have a

positive portfolio return before accounting for bid ask spreads and commissions.

The mean portfolio return is 0.075 %, which is significant at the 10% level, while

the Sharpe ratio is 0.036 showing a very small excess return per unit risk. The

index Sharpe ratio over the same holding period is 0.034 and the index return is

0.076%. Since the strategy includes holding one unit of the index, it appears that

the portfolio gain or loss is largely due to the change in the index. There is no

significant additional gain from transacting in the put spread, even when it is

based on the trading rules that are hypothesized to generate higher returns than a

naive strategy.

The results are very similar for all other combinations oftrading rules and

holding periods. Furthermore, the Sharpe ratio measure is not adjusted for

volatility risk ofthe portfolio. The portfolio vegas, which are shown in the table,

are quite large, with the first one being about 300.8, implying a considerable

volatility risk.

The premise tested in this chapter is whether two simple strategies that

arbitrageurs may use to benefit from pricing anomalies in the LEAPS market are

in fact profitable. Overall, the results of the tests in this chapter do not indicate no

significant arbitrage profits fiom the strategies I describe and after accounting for
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market risk but not volatility risk. The results in tables 15 and 16 do not account

for commissions and trading costs, which would further detract from the profits.

The tests assume the validity of the Black-Scholes model in creating the delta

neutral portfolios. Market prices of options may deviate from the BS model prices

if index returns display skewness and kurtosis, and if price pressures affect puts.

If price pressure effects exist, they either persist for longer periods than the

holding intervals tested in this chapter, or reverse by end-of-day.

7 Other tests of Impact of Market Frictions on S&P 5001ndex LEAPS

7.1 Implied Index Analysis

The concept of a risk neutral probability was first suggested by Cox and

Ross (1976), and later formally developed by Harrison and Kreps (1979). The risk

neutral probability is also sometimes called the equivalent martingale measure.l4

This term is used in describing a risk neutral probability because, as shown in

Harrison and Kreps (1979), and discussed in detail Huang and Litzenberger

(1988), the martingale property is one ofthe necessary and sufficient conditions

for financial markets not to admit arbitrage opportunities.

The martingale property of the equivalent martingale measure requires

that all discounted asset prices should be a martingale under the measure.

Symbolically, if Q is the risk neutral probability distribution, IT is the underlying

asset at time T, and 10 is the underlying asset value today, then the martingale

 

" A stochastic process is said to be a martingale if the expected change in the value of the process

is always zero.
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property requires that:

Io=exp<-r*T) *anT), (19)

where r is the risk free rate, the only relevant discount rate in a risk neutral world.

Essentially, this restriction requires that the mean ofthe risk neutral

distribution implied by option prices must equal the actual underlying asset value

at every point in time. This condition is necessary and sufficient for no-arbitrage

conditions to exist in the securities markets.

Longstaff (1995) tests this restriction in a sample of S&P 100 index

options. He notes that variables that proxy for market friction such as bid-ask

spreads and open interest should be related to the magnitude of martingale

restriction violations, if these market fiictions cause its violation. In his sample of

S&P 100 index calls, he finds that the implied index value is nearly always higher

than the actual index value on average. The percentage differences between the

two are related to a number of variables that proxy for option market fiictions

such as open interest, trading volume and bid-ask spreads. These results may

imply that market frictions have a significant effect on the prices of options.

Longstaff notes however that the actual risk neutral probability distribution that

determines option prices may differ from the one he assumes.

In this section, I test for the impact ofmarket frictions in the S&P 500

index LEAPS put prices by testing the martingale restriction. Similarly to

Longstaff (1995), I find that the implied index value is significantly different from

the actual index value. The results are difficult to reconcile with earlier findings

that put prices are overpriced, however. Overpriced puts should lead to a result
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that the implied index that is lower than the actual index value. On average,

however, the implied index is much higher than the actual index value. However,

in put sub-samples by moneyness and maturity, it is found that for short maturity

and out-of-the-money options, the implied index is lower than the actual index

value. The difference between implied index and actual index is related to

variables that proxy for market fi'ictions.

7.1.1 Methodology and Sample Construction

As in Longstaff (1995), I assume that the Black-Scholes assumption of

log-normal underlying asset distribution is accurate. Since the log-normal

distribution is completely described by two moments, testing the martingale

restriction requires backing out both moments of the implicit distribution used to

price S&P 500 index LEAPS, for which exercise a minimum oftwo option prices

is required. This methodology used for inferring the moments is the minimization

of sums of squared deviations procedure. The equation minimized is the

following:

MN 23:, (0,, — Bruno-.2«rs-1m»2

Here, N is the total number of options (puts or calls) maturing in time T

available to estimate the distribution at time t, On is the market price ofoption i at

time t, BS denotes the Black-Scholes price of the option. X is the strike prices of

option i, T is the time to amount oftime to expiration, rt; denotes the ask rate at

time t of the US treasury strip expiring at time T. 6LT denotes the implied
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volatility at time t of options with time to expiration T, and It denotes the implied

index value.

The objective of obtaining the actual index value is to compare it with the

implied index value. Since the index changes throughout the day, it may not be

valid to use market prices of options throughout the day to imply an index value.

The N options that are used to estimate the moments ofthe distribution for a

particular calendar series should be close to one another in time.

Each day in the sample period, all ofthe put and call bid-ask quotes that

occur between 2:30 pm. and 3:00 pm. are collected. This time interval is chosen

as being the most likely to be insulated fi'om abnormal trading activity at the open

or the close. For every calendar series each day, the implied index and implied

volatility are backed out of the Black-Scholes formula using the equation above,

whenever more than two option quotes are available each day. Quote midpoints

are used in the equation.

Each quote includes the actual S&P 500 index value within 15 seconds of

recording the quote. These actual index values are recorded for each set of options

used to estimate a density and an average actual index value is computed for

comparison with the implied index value. A last index value is also used which

corresponds to the index value corresponding to the last recorded option quote of

the set. The index is dividend-adjusted using the present value of actual cash

dividends over the life of the options.
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7.1.2 Results

Table 17 shows summary statistics on the differences between actual and

implied index and volatility. A total of488 densities are estimated from call

options and a total of 590 from put options. On average about 4 put option quotes

are used in the estimation ofthe put densities, while about 10 call quotes are used

for the call densities. There are many more call quotes in the sample than put

quotes, hence this difference.

The table shows that the implied index value is higher than the last

recorded index value in 514 ofthe 590 densities estimated from puts. On average

the difference is 6.56, which is almost 10% of the actual index value. This

contrasts greatly with Longstafi’s result of about 0.5% difference in the sample of

calls he uses. For the calls, the average difference is -—0.80 (1.2%), which is less

than that for puts although still significant. The large difference between the

implied index and the actual index indicates a violation ofthe martingale

restriction. However, if puts are overpriced, the direction of the difference

predicted is that the implied index should be less than the actual. The result in the

sample is hence in a direction not consistent with overpricing of puts. ‘5

The implied volatility is also a free parameter in the estimation ofthe

densities, and an examination ofthe results on the implied volatility may throw

some light on this inconsistency. Table 18 reports the differences in the implied

volatility when estimated jointly with the index, versus when estimated as the

 

'5 It has been noted in the chapter on put-call parity tests that the present value of expected

dividends is higher than the present value of actual dividends. If this contributes to the difference

between the implied and the actual index values, then for both calls and puts, the implied index
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only free parameter. For the puts, the average implied volatility is 23.5% when

estimated individually. The volatility implied jointly with the index is on average

higher than that estimated separately, and the percentage difference is 27%. A

similar result obtains for the calls. Computationally, it appears that the implied

index is higher than the actual for the puts to compensate for the higher jointly

estimated implied volatility, while for calls the implied index is lower than the

actual to compensate for the same directional difference in volatilities.

Table 18 breaks up the sample of put densities by moneyness and maturity

categories. It can be observed that for shorter maturity puts the implied index is

usually lower than the actual, while for longer maturity options the implied index

is usually higher. An economic reason for this observation is not obvious from the

current analysis.

Table 19 presents regressions of the difference between implied and actual

index, and of the absolute difference on explanatory variables that proxy for

market frictions in the puts sub-sample. The direction of the coefficients is very

similar in the two sets of regressions, because the observations for which implied

index is greater than the actual dominate. For puts with a longer term to

expiration, the difference between implied and actual index values is higher, and

puts that are more out-of-the-money also display more of a difference than in the

money and at-the-money puts. This last result supports the results in the other

parts of this thesis about the greater effect ofmarket frictions on OTM puts

because ofthe greater trade imbalances they are subject to.

 

value should appear to be higher than the actual. The differences are in opposite directions

implying that this cannot be the only cause of the deviation.
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In addition, the difference between implied and actual indexes increases as

the average bid-ask spread increases, and decreases as the trading volume

increases. These results are consistent with Longstaft’s (1995) results, and imply

that market frictions affect the extent of violation of the martingale restriction.

However, unlike in Longstaff (1995), the number of options used to estimate the

density is important: as this number increases, the implied index value becomes

closer to the actual index value.

7.2 Introduction of New Option Series

In the sample period studied in this dissertation, three new calendar series

were introduced in S&P 500 index LEAPS: the series expiring in December of

1996, 1997 and 1998. A total of 26 new strike prices were introduced in these

new calendar series at the time oftheir introduction, and a total of 66 strike prices

in all were introduced.

In chapter 5, it was suggested that as trade imbalances builds up in and

option series, market makers may increase the prices to offset risk due to

inventory imbalances. Such a hypothesis suggests that the prices ofnewly

introduced options should conform better to model prices, and that pricing

anomalies should increase as trade starts increasing in the newly introduced

options.

In this section, I examine option series that are introduced during the

sample period for such indications. One way to study this is by examining the

implied volatility skews of the newly introduced options on the day they are
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introduced. Table 20 shows the skews for the options introduced on January 24,

1994, January 23, 1995 and January 22, 1996.

Consider the skew for the options introduced on January 24, 1994. The

implied volatility for each option in the new calendar series expiring in December

1996 is calculated, and the average in each category of moneyness is reported in

the table. Then, the average implied volatility of all other options is calculated and

reported for reference in the table. New calls have an average implied volatility of

14.2% decreasing to 13.6% as the call goes more out ofthe money. This is a

percentage decrease of about 4%. The existing calls have an average implied

volatility of 16.4% reducing to 11.9% as the call goes out ofthe money, which is

a percentage decrease of about 27%. The skew appears to be much larger for

existing calls.

For new puts, the corresponding values are 16.1% decreasing to 15.1%,

and for old puts it is 16.4% decreasing to 10.7%. Once again the skews appear

much deeper for existing options than for new options: 6.2% for new options

versus 35% for existing options. The implied volatility level for new OTM puts,

although slightly lower than for existing puts, is not very much different (16.1%

to 16.4%).

For the other introduced options presented in Table 20 a similar result

obtains regarding the skew: it is usually markedly less for newly introduced

options than for the existing options. These results show some evidence that when

newly introduced, the assumption ofa single volatility across strikes is employed

by market makers to price options. This assumption is modified as market makers
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receive information about demand for options with different strike as trading in

the options commences, resulting in a higher variance of implied volatility across

strikes.

8 Conclusions and Further Research

This dissertation studies the efficiency of pricing in the S&P 500 index

Long-terrn Equity Anticipation Securities (LEAPS) market. The main goal is to

study the effect of market frictions and trade imbalances in the pricing of options,

specifically LEAPS. I employ tests of arbitrage restrictions such as put-call parity

and box spread arbitrage restrictions, using both the S&P 500 spot and futures

values, an intra-day analysis of the relationship between trade imbalances and

quote revisions, and tests of the profitability oftrading strategies designed to

exploit pricing anomalies.

The results of put-call parity and arbitrage restriction tests provide some

initial support for the hypothesis that market factors affect pricing ofLEAPS

options. Using the put bid price and call ask price in the equation to account for

spreads, puts are overpriced 80% of the time, while the box spread restriction is

violated infrequently, with no consistent or economically significant pricing errors

in the data. This suggests that put and call prices in the S&P 500 LEAPS market

are internally consistent, but that put options are overpriced relative to the

replicating strategy of shorting the index, lending the proceeds, and buying a call.

Put overpricing is higher for out-of-the-money puts and decreases with open

interest in these options.
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However, put option prices are more consistent relative to the S&P 500

futures market, whenever contracts are available with a maturity corresponding to

that of the LEAPS.

The intra-day analysis of quote revisions and trade imbalances probe

deeper into the potential causes of LEAPS put overpricing. The central result of

these tests showed that LEAPS puts prices are revised upward upon a positive

trade imbalance and downwards upon a negative trade imbalance by more than is

explained by information effects of trading, suggesting that LEAPS puts prices

are subject to inventory effects. This result is even more surprising since

inventory effects are not predicted for a competitive market making system such

as the CBOE.

Having obtained evidence in support of intra-day inventory effects, I

proceed to verify whether abnormal profits are possible fi'om the pricing

anomalies uncovered. I test this by constructing zero-investment delta-neutral

portfolios and measuring mean dollar payoffs to these portfolios over holding

periods ofone and five trading days. I find a mean dollar payoffthat is not

significantly different from zero. I also construct vertical put spreads with one

share ofthe index, and measure average returns and Sharpe ratios ofthese put

spreads over similar holding periods. After adjusting for market risk, I do not find

evidence that arbitrageurs can gain fiom pricing anomalies.

Taken together with the evidence of intra-day inventory effects in LEAPS

put prices, these findings suggest that pricing pressures either persist over a longer

interval or reverse within the day, before the arbitrage positions are unwound. It is
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difficult to test for arbitrage profits over a longer holding interval due to a

difficulty of distinguishing arbitrage profits from volatility or market risk

premiums, and hence that task is not undertaken in this dissertation. As in

Longstaff (1995), the implied index analysis in this dissertation also supports the

hypothesis that no-arbitrage conditions are not satisfied in the LEAPS market, and

provides evidence of open-interest and bid-ask spread biases.

Overall, the results of this dissertation suggest that market fiictions can be

important in the pricing of options, at least in settings where arbitrage is

particularly costly and public demand is biased towards one type of order. It is

important to note, however, that the intra-day analysis and the trading strategy

tests use the Black-Scholes model as a reference. Although the intra-day analysis

results are robust to alternative specifications and in different samples, using BS

implied volatilities as the basis of comparison hinders unequivocal inferences

about inventory effects due to the impact of stock price distribution effects.

Further research considers an option pricing model that assumes a more

general stock price distribution as a basis for price comparison oftraded and non-

traded options. If the inventory effects found in this dissertation exist even in an

expanded study of this nature, the conclusion that market factors are important in

pricing options would be strengthened.

Reference has been made in this thesis to the S&P 500 index units called

SPDRS. It would be interesting to study whether put-call parity is violated with

respect to the SPDRS market as well as with the spot index (as found in this

thesis). In practice, arbitrage is most likely to be done with the SPDRS or with the
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S&P futures contracts; there should not be an inconsistency between the SPDRS

market and the LEAPS options markets.

The findings of this thesis are for a particular market characterized by a

trade that is dominated by pubic put purchases versus other types oftrade. One

direction for further research is to study the short-term index options markets for

similar inventory effects. Though only a conjecture at this stage, the

disproportionately higher demand during periods of rapid market declines for puts

than for corresponding calls on other indexes as well may result in similar price

effects. Such inventory effects have an implication for the cost of portfolio

insurance when investors need it most. The answers to these questions can help to

check the results of this dissertation for robustness, and shed further light on the

effect of market factors on the pricing of options.
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Table 1

Summary Statistics of quotes and trades of S&P 500 index LEAPS over the period 1994-96

Table 1 shows summary statistics for all bid-ask quotes and trades of S&P 500 index LEAPS over the

period 1994-1996 that have time to expiration > 6 days, bid price >=3/8 (or transaction price >=3/8), occur

at or before 3 PM CST, and do not have any obvious recording errors. Observations are grouped by their

moneyness, defined as the ratio of strike price, X, to index value, I. Panel A shows summary statistics for

calls and Panel B for puts. Variables are defined as follows: quoted price is the midpoint of bid and ask

prices, spread is equal to ask price - bid price, spread percentage is spread as a percentage of quoted price.

Panel A: S&P 500 Index LEAPS Calls

 

 

 

 

 

 

 

 

 

        
 

 

 

 

 

 

 

 

 

 

Variable \ All Calls X/S<=0.94 0.94<X/S 0.97<X/S 1.03<=X/S 1.06<=X/S

Moneyness <=0.97 <1 .03 <1 .06

Mean quoted price 15.14 17.73 6.83 5.54 4.52 4.17

Mean Spread 0.72 0.79 0.49 0.42 0.38 0.40

Mean Spread % 5.9 % 4.9 % 8.3 % 9.8 % 11.1 % 13.2 %

Number of Bid-Ask 440412 346010 27477 45688 14222 7015

Quotes

Number of Trades 1057 507 120 282 102 46

Average Daily 45.71 23.70 4.52 13.51 1.99 1.99

Volume

Average Daily Open 8950 6784 643 1307 128 90

Interest

Total Open Interest on 7778 7125 162 320 0 171

12/30/96

Panel B: S&P 500 Index LEAPS Puts

Variable \ All Puts X/S<=0.94 0.94<X/S 0.97<X/S 1.03<=X/S 1.06<=X/S

Moneyness <=0.97 <1 .03 <1 .06

Mean quoted price 2.60 1.54 2.29 3.15 4.68 5.75

Mean Spread 0.25 0.21 0.23 0.28 0.34 0.39

Mean Spread % 12.8 % 16.4 % 12.1 % 10.2 % 7.3 % 6.9 %

Number of Bid-Ask 154755 71307 19149 41 158 13301 9840

Quotes

Number of Trades 24350 9767 4050 7261 1850 1422

Average Daily 1404.27 681.66 183.14 358.27 91.80 89.39

Volume

Total Open Interest on 244560 215180 6720 18420 0 4240

12/30/96

Average Daily Open 203410 150500 16280 28430 4140 4050

Interest        
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Table 2

Classification of daily open interest changes

This table summarizes the relationship between daily volume and open interest changes in the sample of

S&P 500 index LEAPS trades from 1994-1996. Each day the contracts in which there was positive volume

during the day are selected. For each ofthese contracts, the change in open interest over day t is calculated

by subtracting the open interest on day t-l from the open interest on day t. The change in open interest is

compared with the volume in that contract over the day and classified according to the categories below.

Columns numbered 1-5 show the number ofday-contracts in that category and the percentage oftotal day-

contracts with positive volume in parentheses.

 

 

 

 

Put/Call Total day- Open interest Open interest Net Net increase No change

contracts for decrease is equal increase is decrease in open in open

which to daily volume equal to daily in open interest interest

volume>0 volume interest

Calls 533 54 (10%) 23044304) 91 (17%) 305 (57%) 137 (26%)

Puts 5953 189 (3.2%) 2377 (40%) 876 (15%) 4698 (79 %) 379 (6%)      
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Table 3

Trade Classifications

This table shows results of classification of S&P 500 index LEAPS trades from 1994-1996 using the

following rule. Trades occurring at or below the ask price and above the bid-ask midpoint of the quote in

effect at time of trade are classified as buyer-initiated trades. Trades occurring at or above the bid price and

below the bid-ask midpoint ofthe quote in effect at time oftrade are classified as seller-initiated trades. The

total number of trades dming this period which satisfy the following criteria: transaction price > 3/8, trade

time before 3:00 pm. C.S.T and no obvious recording errors in price or index values is 25407, including

1057 call trades and 24350 put trades. The table shows the number of trades in each class, and its

percentage ofthe total number oftrades.

 

 

 

 

 

    

Trade occurs All Trades Trades in Calls Trades in Puts

At or below ask price and above bid-ask 17597 (69.3 %) 565 (2.2 %) 17032 (67.0 %)

midpoint

(Buyer-initiated)

At midpoint 3919 (15.4 %) 636 (2.5 %) 3283 (12.9 %)

(Unclassified)

At or above bid price and below bid-ask 4236 (16.7 %) 420 (1.7 %) 3816 (15 %)

midpoint

(Seller-initiated)

Above ask or below bid 228 (0.9 %) 9 (0.04 %) 219 (0.9 %)

(Indeterminate or errors)
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Table 4

Implied volatility corresponding to the last quote of each day of S&P 500 Index LEAPS

This table shows mean Black-Scholes implied volatilities corresponding to the bid-ask midpoint of the last

quote of each day for a sample of S&P 500 index LEAPS from 1994-1996. The sample for which mean

implied volatility is found consists of 23248 last quotes for options over the sample period (12680 calls and

10568 puts)The options are grouped according to moneyness where moneyness is defined as the ratio of

strike price to closing index value, and their time to expiration. The table shows mean implied volatility as

a decimal for the options in each moneyness-maturity class.

 

 

 

 

 

 

  

Calls Calls Calls Calls Puts Puts Puts Puts

Moneyness Very Short-term Medium- Long-term Very Short-term Medium- Long-term

Strike! short- term Expiration short-term Expiration term Expiration

Closing term Expiration >=365 Expiratio from 60 - Expiration >=365

value of Expiratio Expiration from 180 - days n<=60 180 days from 180 - days

Index n<=60 from 60 — 365 days days 365 days

days 180 days

<0.94 0.184 0.258 0.191 0.185 0.186 0.180 0.175 0.183

0.94-0.97 0.158 0.150 0.146 0.160 0.164 0.145 0.146 0.159

0.97-1 .00 0.152 0.140 0.139 0.156 0.145 0.138 0.140 0.156

1.00-1.03 0.120 0.133 0.131 0.151 0.154 0.138 0.132 0.153

l.03-l.06 0.140 0.132 0.147 0.193 0.129 0.122 0.144

>l.06 0.143 0.138 0.148 0.220 0.112 0.114 0.141         
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Figure 1

Implied Volatility of S&P 500 index LEAPS puts

Figure 1 plots the implied volatility of very short-term, medium-term and long-term LEAPS puts by

moneyness categories. The diamond legend is for very short-term, square is for medium-term and triangle

denotes long-term.
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Table 5

Summary Statistics of the sample of S&P 500 index LEAPS put-call pairs

Table 4 presents summary statistics for the sample of 10462 S&P 500 LEAPS put-call pairs from 1994-96.

The pairs are formed from the last quotes ofthe day of LEAPS puts and calls with the same strike price and

expiration date. The LEAPS S&P 500 index is equal to one-tenth ofthe S&P 500 index. The quoted price

is the midpoint ofthe bid and ask prices, the dollar spread is equal to the ask price minus the bid price, and

the percentage spread is the dollar spread as a percent of quoted price.

 

 

 

 

 

 

 

 

 

 

   

Variable Mean Median

Quoted call price $8.05 $7.00

Quoted putprice $2.15 $1.88

LEAPS S&P 500 index 59.75 63.41

Present value of strike price 50.57 49.89

Present value of dividends 2.07 1.99

Call dollar spread 0.48 0.50

Put dollar spread 0.23 0.25

Call percentage spread 7.83 % 6.45 %

Put percentage spread 13.88 % 11.32%

Time to maturity in years 1.44 1.39   
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Table 6

Put-call Parity Violations

Panel A presents data for put-call parity violations in the sample of 10462 S&P500 index LEAPS put-call

pairs. E, E. and E2 refer to three different measures of parity deviations from equations (3)-(5):

E = P+I-C-X"e"T—DT (3)

Br = P’H- C‘- X‘e'T— DT (4)

E = c" P‘ I+X*e'T+DT (5)

where P (C)rs the midpoint ofthe bid-ask spread of the put (call)in the put-call pair, and Pb (C'), P' (C')

are the bid price and the ask price of the put (call) respectively, 1rs the index value corresponding to the

later quote in the pair, and DT is the present value ofthe actual cash dividends on the index. E1 measures

overpricing ofthe put accounting for option spreads, and E2 measures overpricing ofthe call accounting for

spreads. Panel B illustrates data for E. by maturity groups, along with the mean present value of dividends

over the option'5 life. indicates statistical significance at the 1% levelm a two-tailed test.

 

 

 

 

 

 

      

 

 

 

 

 

 

Panel A:

Absolute value of E E E1 E2

Number > 0 10462 10124 8349 39

(% of total observations) (100 %) (96.77%) (79.80%) (0.37%)

Mean Dollar Value $1.18 $1.16

t-statistic) (176.0).

Median $1.15 $1.15

Mean for Observations > 0 $1.19 $0.19

Median for Observations > 0 $1.07 $0.10

Panel B:

Very short-term Short-term Medium-term Long-term

Expiring in Expiring in Expiring in Expiring in

<=60 days 60 — 180 days 180 - 365 days >=365 days

Number of observations 131 822 2025 7484

Number (%) of observations for 112 (85.50 %) 740 (90.02 %) 1664 (82.17 %) 5833 (77.94 %)

which E1 is positive

Mean E1 for observations > 0 $ 1.23 $ 1.13 $ 1.26 $ 1.16

Mean present value of dividends $ 0.19 $ 0.52 $ 1.08 $ 2.54     
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Table 7

Determinants of Put-call Parity Violations

This table illustrates regression results for the S&P 500 LEAPS put-call parity sample. The dependent

variables is E, the overpricing of the put relative to the call using bid-ask spread midpoint prices. Each cell

contains the coefficient estimates, followed by the t-statistic in parenthesis, with ' indicating statistical

significance at the 1% level in a two-tailed test.

 

 

 

 

 

 

 

 

    

Variable Coefficient

Intercept 0.37

(6.24)‘

Index/Strike price ratio 0.94

(18.04)‘

Time to expiration -0.00033

-14. 10)‘

Difference between index values corresponding to the two 0.47

quotes (49.55)‘

Time difference between quotes 000000049

(-0.65)

Put open interest -0.000010

(-1337)‘

Call open interest 0.000027

(3.84)‘

Number of observations 10433

Adjusted R2 23.96 %
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Table 8

Box Spread Violations

This table presents data for the sample of 8570 S&P 500 LEAPS box spreads. V and V. refer to violations

of the box spread relation defined in equations (7) and (8):

v = P2 +c1-P.-c2—(x2-xl)* e"T (7)

VI = sz - Pr. '*‘ Crb - C2' + (X, - xz)‘I e” (8)

The measure V does not account for bid-ask spreads, while V. measures the box-spread violation after

accounting for spreads. (Pb C1) is the at-the-money put-call pair chosen as the reference, and (P2, C2) refer

to the other pair in the spread. ' indicates statistical significance at the 1% level in a two-tailed test.

 

 

 

 

 

  

Absolute value ofV V V1

Number positive 8570 4256 434

(% of total observationsL (100%) (49.66%) (5.06%)

Mean dollar value $0.32 -$0.016

t-statistic) (-3.83)‘

Median $0.34 -$0.003

Mean dollar value when V1 > 0 $0.13

Median dollar value when V1 > 0 - $0.11   
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Table 9

Determinants of Box Spread Violations

This table illustrates regression results for the S&P 500 LEAPS box spread sample. The dependent

variable is V = P2 + C1 —- P. — C2 - (X2 - X1)* e”, the overpricing ofthe put P2 relative to the other options

using spread midpoint prices. (P1, C1) is an at-the-money pair and (P2, C2) is an in- or out-of-the-money

pair. Each cell contains the coefficient estimates, followed by the t-statistic in parenthesis, with ° indicating

statistical significance at the 1% level in a two-tailed test.

 

 

 

 

 

 

 

 

    

Variable Coefficient

Intercept -0.78 .

(-20.84)

Index/Strike price ratio of (P2,C2) pair 0.78 .

(24.09)

Time to Expiration -0.0017 .

(-10.86)

Open interest of P2 as of the close of the day -0.000016

(-33.58)‘

Open interest of C2 as ofthe close of the day 0.000068

(16.01)

Open interest of P. as ofthe close of the day 0.000026

(30.40)

Open interest of C. as of the close of the day 000014

(-13.06)

Number of observations 8544

Adjusted R2 22.4 %
 

93



Table 10

Put-call Parity Violations using S&P 500 futures contracts

Panel A presents data for put-call parity violations in the sub-sample of 2981 S&P500 index LEAPS put-

call pairs for which S&P 500 futures contracts exist with the same maturity. E, E": and E2; refer to three

different measures of parity deviations from equations (9)-(11):

Er

Err

Ezr

P+ (F— X) we“r - c
Pb+ (Fb— x) *e-I‘T __ Cl

C" — P‘— (F‘ -X)r=e"‘T

(9)

(10)

(11)

where P (C) is the midpoint ofthe bid-ask spread ofthe put (call) in the put-call pair, and Pb (ch), P‘ (c')

are the bid price and the ask price of the put (call) respectively, P is the midpoint ofthe same maturity

firtures bid-ask spread for the futures quote closest to the later option in the pair, Fb (F‘) is the futures bid

(ask) price. E”: measures overpricing of the put accounting for option spreads, and E2; measures

overpricing ofthe call accounting for spreads. Panel B illustrates data for E“: by maturity groups.

° indicates statistical significance at the 1% level in a two-tailed test.

 

 

 

 

 

 

      

 

 

 

 

 

Panel A:

Absolute value of E E E, E2

Number > 0 2981 2373 1403 73

(% of total observations) (100 %) (79.6 %) (47.1%) (2.45 %)

Mean Dollar Value $0.32 $0.27

(t-statistic) (49.09)‘

Median $0.27 $0.24

Mean for Observations > 0 $0.26 $0.16

Median for Observations > 0 $0.25 $0.08

Panel B:

Very short-term Short-term Medium-term Long-term

Expiring in Expiring in Expiring in Expiring in

<=60 days 60 - 180 days 180 - 365 days >=365 days

Number of observations 131 819 2003 28

Number (%) of observations for 50 (38.2%) 405 (49.5%) 940 (46.9%) 8 (28.6%)

which E”: is positive

Mean E”: for observations > 0 0.274 0.250 0.260 0.186     
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Relationship between quote revisions due to a single trade in option i and trade characteristics

This table shows OLS estimates of equation ( 12) (reproduced below) in a sample of quote revisions

triggered by trades in S&P 500 index LEAPS. The sample consists of pairs of quotes (013m, 913”“) for

option i where qif" is the current quote before trade Tid and qi‘j'm‘ is the quote after the trade. AIV-U- is the

change in implied volatility of option i due to trade TU, Alid- is the change in index before and after the

trade. X, is the strike of option i, In” is the value of index corresponding to the quote immediately before

the trade qif" , SIGNEDNOU is equal to 1 if trade T0 is buyer-initiated and equal to -1 if it is seller-

initiated, SIGNEDVOLU is equal to SIGNEDNOU multiplied by volume oftrade Tid- Model I includes both

sign and volume variables while Model 11 includes only the sign variable. The table shows coefficient

Table 11

estimates and heteroskedasticity corrected t-statistics.

 

 

 

 

 

 

 

 

AIVU = a + bl'AIU + bfAIfX/IJ‘ + ba‘SIGNEDNOu + br‘SIGNEDVOLu + em

Variable Puts Puts Calls Calls

Model 1 Model 11 Model I Model 11

Intercept -0.00042 -0.00044 0.0023 0.0021

1.73""I 4.79" 0.90 0.81

AIL, -0.0069 -0.0067 -0.222 -0.205

-0.31 -0.30 -0.85 -0.79

Alifxi/Ii‘j 0.0305 0.0303 0.181 0.165

1.29 1.27 0.69 0.63

SIGNEDNOL, 0.0016 0.0016 0.0042 0.0038

6.16" 6.51" 162*" 1.49””

SIGNEDVOI.“ 0.0000014 00000015

1.39 -0.85

Number of observations 985 985 46 46

R2 67.8 % 67.8 % 12.7 % 13.2 %     
*,",*" indicate significance ofthe coefficient at the 1%, 5% and 10% levels.
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Table 12

Changes in implied volatility of traded vs. non-traded S&P 500 LEAPS puts in response to buyer-

and seller-initiated trades

This table compares trade-related movements in implied volatility of traded S&P 500 index LEAPS puts

with those of paired non-traded puts with the same maturity as the traded put and closest in strike to it. The

notation is as follows: AIVU is the change in implied volatility of traded put i due to the j‘h trade in the 1“

put TU, AIVLU is the change in implied volatility due to trade TU in the non-traded put k with the closest

strike to i with the same maturity and (AIVU - AIVW) is the difference in the implied volatility impact of

trade Tid- on the two options. There are 339 buyer-initiated trades and 76 seller-initiated trades for which

pairs of non-traded and trades puts are formed. Various summary statistics are shown in the table for these

three quantities, in categories by buyer- or seller-initiated trades. N refers to number of observations, N+

refers to number positive.

 

 

 

 

   

Buyer-initiated Trades Seller-Initiated Trades

Change in implied volatility of traded put, AIVU

N 339 76

N" 191 29

Mean(AlV,J-) 0.00077 -0.00039

t-stat(p-value) 1.52 (0.13) -0.41 (0.68)

Median(AIVm) 0.00079 -0.00083

Change in implied volatility of non-traded put, AIVW

N 339 76

N 157 25

Mean(AIV,J-) -0.00094 -0.00065

t-stat(p-value) -1.98 (0.05) -0.7 8(0.44)

Median(AIV,-J,) -0.00022 -0.0013

Differential impact of trade TU- on implied volatility of

traded p011, (AIViJ - AIVUJ)

N 339 76

N" 189 29

Mean(AlVU-) 0.001706 0.00026

t-stat(p-value) 3.54(0.00) 0.22 (0.82)

Median(AIV,,) 0.000726 0.00078

fin (p-value) 2.12 (0.003) 1.84 (0.08)
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Table 13

Intra-day inventory and information effects of trading in S&P 500 index LEAPS

This table shows OLS estimates of equation (13) (reproduced below) in a sample of pairs of consecutive

intra-day quotes (qm, qu ) for the most active S&P 500 index LEAPS from 1994-1996. The sample

consists of 3732 pairs of quotes for puts and 697 for calls. Variable definitions are as follows: AIVLt = IVL.

-— IV-W is the change in IV of option i fi'om time t-1 to time t, AILt = 1;. - IL... = change in corresponding

index value from time t-l to time t, NDIFLt is the number of buy trades less sell trades in option 1 from time

t-1 to time t, VDIFL . is the buy volume less sell volume in option 1 from time t-l to time t, NDIFm, , is

number of buy trades less number of less trades in all other options of the same type (puts or calls) fi'om

time t-l to time t, VDIme‘t is buy volume less sell volume for all other options ofthe same type from time

t-l to time t. The table show coefficient estimates and heteroskedasticity corrected t-statistics.

 

 

 

 

 

 

 

 

 

  

AIVM= a +b1*AIL( +b2‘AILtTXi/Im.‘ +D3TNDIF“ +b4TNDIF°de +b5. VDIFL, + [34* VDIFoma’t +6”

(13)

Variable Puts Puts Calls Calls

Model I Model 11 Model I Model 11

Intercept 0.0001 1 0.0001 0.007 0.007

0.82 0.75 1.57"" 1.57""

Al," -0.031 -0.031 -0.313 -0.314

-7.05"' -7.08"‘ -2.79‘ -2.80"‘

(“LIX/11.1.1 0.05 l 0.05 1 0.292 0.293

10.2‘ 10.2“ 2.49‘ 2.49“

NDIFL, 0.0002 0.0002 0.0032 0.003

3.15“ 3.41“ 3.10* 3.00“

NDIFomm 0.0000006 0.00001 1 0.0028 0.003

0.02 0.02“ 3.63“ 4.51‘

VDIFL, 00000003 00000023

-0.94 -0.27

VDIFodm' , 0.0000005 0.0000069

0.91 1.45

Number of observations 3732 3732 697 697

R2 66 % 66 % 37 % 37 %

F-statistic for test of difference between 6.88"' 6.06‘ 0.02 0.04

coefficients ofNDIF,_t and NDIFMJ      
‘,","* indicate significance of the coefficient at the 1%, 5% and 10% levels.
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Table 14

Daily inventory and information effects of trading in S&P 500 index LEAPS

This table shows OLS estimates ofmodel 3 (reproduced below in a sample ofdaily traded-untraded option

pairs for the most active S&P 500 index LEAPS from 1994-1996. The sample consists of 399 put pairs and

171 call pairs. Notation is as follows: AIV,‘t is the change in implied volatility oftraded put 1 over day t,

APIV,‘t is the change in implied volatility over day t of the untraded put with the closest strike to i with the

same maturity, NDIFL. is the number ofbuy trades less sell trades in option 1 over day t, VDIFL. is the buy

volume less sell volume in option i over day t. The table shows coefficient estimates and heteroskedasticity

corrected t-statistics (p-values are indicated in parentheses when significant)

 

 

 

 

 

 

 

AIVL, = a + b1.APIVi.t '1' bthDIFLt + b5. VDIFL‘ + Cu (14)

Variable Puts Puts Calls Calls

Model I Model 11 Model 1 Model 11

Intercept -0.0022 -0.003 -0.0049 -0.0013

-1.46 -2.10(0.04)" -0.85(0.40)

APIV-u 0.70 0.91

8.699%" 24.2 (0.00)*

NDIF1.: 0.00024 0.00028 0.00035 0.0016

0.95 1.24 1.19

VDIFL, 0.0000016 0.0000013 -0.000014 0.0000028

0.47(0.64) 0.18

Number of observations 399 399 171

R2 0.5 % 15.8 % 0.12 %       
‘3" indicate significance ofthe coefficient at the 1% and 5% levels.
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Table 15

Profitability of delta neutral strategy using two put options

This table shows summary results on the profitability of zero-cost delta-neutral portfolios constructed

according to different trading rules described in the text. Portfolios are held for one and five trading days.

All calculations use the bid-ask midpoint ofthe last quote of each option every day. The dollar payoff is

calculated described in the text and repeated here:

Dollar payoff for n-day holding interval = PIN, - (h,,./h2,,)*P2m, + B36.“

where B! = (th/hl,t)*P12: - P1

Panel A: Trading rule 1 - Black-Scholes Implied Volatility

 

 

 

 

 

 

 

 
   

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Variable 1 day holdinginterval 5 day halting interval

N (N+) 1611 (948) 1495 (879)

Mean (T-stat) 0.0654 (3.47) -0.00256 (-0.08)

Median (Sign Rank testp-value) 0.016 (0.00) 0.063 (0.00)

Standard Deviation 0.757 1.258

Delta on day t+1 0.0142 0.0229

Gamma(Vegafirn day t 0.0028 ( 492.03) -0.0028 (492.61)

Panel B: Trading rule 2 - Option Strike Prices

Variable 1 day holdinginterval 7 day holdinflrterval

N (N’) 1709 (865) 1491 (809)

Mean (T-stat) 0.0162 (0.83) -0.0531 (-l.6)

Median (Sigflank test p-valuQ 0.000165 (0.51) 0.020 (0.08)

Standard Deviation 0.785 1.28

Delta on day t+l 0.0164 0.0245

Gamma (Vega) on day t -0.0032 (~521.40) -0.00308 (-530.69)

Panel C: Trading rule 3 — Trading Volumes

Variable 1 day holdiginterval 7 day holdipg interval

N (Ni) 1053 (£75) 1003 (475)

Mean (T-stat) -0.00805 (—1.68) -0.01162 (-1.53)

Median (Sign Rank test p-value) -0.00004 (0.01) -0.00206 (0.34)

Standard Deviation 0.155 0.241

Delta on day t+1 0.00256 0.00177

Gamma (Vega) on day t -0.00017 (-13. 14) -0.00015 (-8.38)

Panel D: Trading rule 4 — Number of trades

Variable 1 day holding interval 7 day holflng interval

N (N‘) 1079 (496) 1023 (491)

Mean (T-stat) -0.00523 (-1.35) -0.00392 (-0.77)

Median (Sign Rank test p-value) -0.00003 (0.16) -0.00033 (0.88)

Standard Deviation 0.127 0.1633

Delta on day t+l 0.0029 0.00068

Gamma (Ea) on day t -0.0007 (9.84) 000003 (15.69)  
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Table 16

Profitability of vertical put spread strategies using two put options — 1 day interval

This table shows summary results on the profitability of suategy 2 described in the text, constructed

according to different trading rules. Portfolios are held for one and five trading days. All calculations use

the bid-ask midpoint of the last quote ofeach option every day. Returns, Sharpe ratios, and portfolio

characteristics such as gamma and vega are reported for each holding period and trading rule. Index returns

and Sharpe ratios are also reported for comparison.

Panel A: Trading rule 1 - Black-Scholes Implied Volatility
 

 

 

 

 

 

 

 

  

Variable 1 day holdinLinterval 5 day holdipg interval

N (N) 1609 (846) 1296 (707)

Mean (T-stat) 0.00075(1 .98) 0.002104 (4.19)

Median LSingmk test p-value) 0.00089 (0.02) 0.0023 Q00)

Standard Deviation 0.0152 0.018

Sharpe Ratio 0.036 0.065

Index returnJSharpe ratio) 0.000757 (0.034) 0.00269 (0.0826)

Delta on day t -0.299 -0.299

Gamma (Vega)on day t 0.00159 (300.8) 0.00158 (301.93L   
Panel B: Trading rule 2 - Option Strike Prices
 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

  

Variable 1 day holdirg interval 7 day holdinflntewal

Nfl) 1607 (825) 1294 (694)

Mean (T-stat) 0.00038 (1.00) 0.00166 (3.35)

Median (Sigr Rank test p-value) 0.00065 (0.18) 0.001622 (0.00)

Standard Deviation 0.015 0.018

Sharpe Ratio 0.011 0.041

Index return (Sharpe ratio) 0.000733 (0.014) 0.00269Q08)

Delta on day t -0.32 -0.32

Gamma (Vega) on day t 0.00167 (312.71) 0.00167 (313.32)

Panel C: Trading rule 3 - TradingVolumes

Variable 1 day holding interval 7 day holding interval

N (N+) 1051 (529) 876 (470)

Mean (T-staQ 0.00261 (0.50) 0.0018 (2.34)

Median (Sign Rank test p-value) 0.000041 (0.33) 0.00196 (0.01)

Standard Deviation 0.017 0.023

Sharpe Ratio 0.0032 0.039

Index return (Sharpe ratio) 0.000394 (-0.01125) 0.0016 (0.030)

Delta on day t 0.075 0.075

Gamma (Vpga) on day t -0.00035 (-92.49) -0.00036 (-97.55)

Panel D: Tradirg rule 4 — Number of trades

Variable 1 day holding interval 7 day holdinflrterval

N (N+) 1077 (536) 893 (492)

Mean (T-stat) 0.000254 (0.49) 0.00235 (3.02)

Median (Sign Rank testy-value) -0.00017 (0.39) 0.0025 (0.00)

Standard Deviation 0.017 0.023

Sharpe Ratio 0.0026 0.062

Index return (Sharpe ratio) 0.000308 (-0.01125) 0.00173 (0.0379)

Deltaondayt 0.111 0.111

Gamma (Vega) on day t 000057 (-144.88) -0.00057 (-149.46)   
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Table 17

Implied Index Analysis

This table shows summary statistics on the differences between actual and implied index and volatility.

Each day in the sample period, all ofthe put and call bid-ask quotes that occur between 2:30 pm. and 3:00

pm. are collected. For every calendar series each day, the implied index and implied volatility are

estimated wherever more than two option quotes are available each day using a minimization of sums of

squares deviations procedure. The notation is as follows: LASTIND = Index value corresponding to the

latest option quote of the options used in the estimation, INDDIF = Implied index value — LASTIND,

MEANIV = Average implied volatility of all options used in the estimation, IVDIF = Implied volatility

estimated — MEANIV.

 

 

 

 

 

 

 

 

 

 

 

    

Calls Puts

Number of densities estimated 488 590

Number with INDDIF positive 70 514

Mean INDDIF -0.80 6.56

T—stat -23.50"' 24.75‘

Mean % INDDIF -1.2% 9.95%

T-stat -22.84* 2439‘

Median INDDIF -0.78 6.32

Mean Absolute INDDIF 0.90 7.19

T-stat 31.7" 3011"

Mean moneyness of options used in the estimation 0.84 0.94

Mean number of options used 9.6 4.1 1

Mean IVDIF 0.022 0.046

T-stat 12.48‘ 1618"

Mean % IVDIF 22.86% 27%

T-stat 14.95" 1900*

Mean Implied volatility estimated, MEANIV 15.45 0.235
 

* indicates significance of the coefficient at the 1% level.
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Table 18

Implied index and volatility by moneyness and maturity groups.

This table shows summary statistics by moneyness and maturity groups for the total of 2422 put quotes

used to estimate the densities described in table 17. The table shows (1) the total number of options in that

category (2) the implied volatility estimate with index free (unrestricted), (3) the implied volatility

estimated with index restricted to equal the actual index, (4) the implied index, (5) the actual index for

each moneyness and maturity group.

 

 

 

 

 

 

 

 

Moneyness Very short-term Short-term Medium-term Long-term

Strike/ Closing value Expiration<=60 Expiration from 60 — Expiration from Expiration

of Index days 180 days 180 -365 days >=365 days

<0.94 (1) 4 102 171 929

(2) 0.082 0.196 0.249 0.263

(3) 0.229 0.21 1 0.198 0.199

(4) 68.42 64.93 68.0 76.6

(5) 71.7 65.12 63.7 68.9

0.94-0.97 (1) 14 57 51 175

(2) 0.184 0.178 0.225 0.255

(3) 0.242 0.195 0.174 0.179

(4) 64.5 64.5 61.77 74.60

(5) 65.5 65.1 58.3 67.45

097-100 (1) 15 64 51 207

(2) 0.203 0.192 0.224 0.252

(3) 0.263 0.184 0.169 0.174

(4) 63.7 64.9 63.23 73.54

(5) 64.01 64.9 60.9 66.99

1.00-1.03 ( 1) 7 45 48 159

(2) 0.217 0.173 0.219 0.249

(3) 0.353 0.193 0.170 0.172

(4) 53.8 63.05 62.0 73.1

(5) 54.34 64.08 60.06 67.27

1.03-1.06 (1) 5 3O 26 129

(2) 0.140 0.215 0.218 0.250

(3) 0.39 0.186 0.153 0.167

(4) 53.9 64.17 63.88 72.35

(5) 55.6 63.64 61.7 66.96

>1 .06 (1) 7 22 20 84

(2) 0.21 1 0.204 0.21 1 0.244

(3) 0.393 0.195 0.158 0.163

(4) 47.5 59.54 56.1 69.6

(5) 48.12 59.73 54.8 64.8     
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Table 19

Implied Index Analysis Regression Analysis

The table shows regressions of the difference between implied and actual index (INDDIF), and of absolute

INDDIF on explanatory variables in the puts sub-sample. The number of observations is 585. Columns 1

and 2 show results for dependent variable absolute INDDIF, and columns 3 and 4 show results for

dependent variable INDDIF (defined above). Average moneyness is average strike/index ratio of the

options used in the estimation. Similarly, average spread. Total 01 is total open interest of the options used

in the estimation, similarly total daily volume.

 

 

 

 

 

 

 

 

       

Variable Coefficient T-stat Coefficient T-stat

1 2 3 4

Intercept 25.42 7.60" (0.00) 21.03 5.89" (0.00

Expiration Time 0.00633 9.66“ (0.00) 0.0073 10.45‘ (0.00)

Average Moneyness -27.4 -8.26* (0.00) -24.81 -7.01"' (0.00)

Average Spread 3.42 1.33 «1.18) 5.58 2.03" (0.04

Total 01 0.0000903 10.46" (0.00) 0.000107 11.66* (0.00)

Total daily Volume -0.0006 -3.l4* (0.00) 0000596 -3.12" (0.00)

Number of options -0.463 -6.50"' (0.00) -0.499 -6.16"' (0.00)

Adjusted R2 33.6% 37.5%
 

*, " indicate significance ofthe coefficient at the 1% and 5% levels.
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Table 20

Analysis of newly introduced options

This table shows results on the newly introduced option series. Panel A shows summary statistics on the

new S&P 500 index LEAPS series introduced in the sample period. Panel B shows the average implied

volatility ofthe newly introduced options for each moneyness category by date introduced compared with

the average implied volatility of all existing options on the same date. IV refers to implied volatility.

 

 

 

 

 

   

 

 

 

 

 

 

      

 

 

 

 

 

 

      

 

 

 

 

 

Panel A

Description Number

Number ofnew calendar series introduced in the sample period 3

Total number ofnew calendar series options introduced 26

Number of new strikes introduced in existinflalendar series‘ 66"

Number ofnew strikes which have lowest IV of all other strikes in same calendar series 53

‘All new strike prices are highest strikes of all, because index is going up in this time.

“ Ofthe 66, 55 have implied volatility lower than implied volatility ofthe closest existing strike price.

Panel B: IV skews of new maturity options:

24/1/94 Introduction of Dec 1996 expiration options

Moneyness Calls Calls Puts Puts

IV of old options IV ofnew options IV ofold options IV ofnew options

X/S <=0.94 0.164 0.142 0.164 0.161

0.94<X/S<=0.97 0.148 0.153 0.144 0.146

0.97<X/S<=1.03 0.125 0.136 0.146 0.151

1.03<X/S<1.06 0.119 0.107 0.151

X/S>=1.06

23/1/95 Introduction of Dec 1997 expiration options

Moneyness Calls Calls Puts Puts

IV of old grtions IV ofnew options IV of old options IV ofnew options

X/S <=0.94 0.164 0.185 0.167 0.175

0.94<X/S<=0.97

0.97<X/S<=1.03 0.139 0.159 0.149 0.169

1.03<X/S<1.06 0.138 0.168 0.128 0.159

X/S>= l .06

22/1/96 Introduction of Dec 1998 expiration options

Moneyness Calls Calls Puts Puts

IV of old options IV ofnew options IV of old options IV ofnew options

X/S <=0.94 0.155 0.155 0.166 0.157

0.94<X/S<=0.97

0.97<X/S<=1.03 0.131 0.146 0.140 0.152

l.03<X/S<1.06 0.122 0.142 0.124 0.139
 

 X/S>=l .06     
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Appendix A Dividend Forecasting Methodology

Dividend forecasting models such as Fama and Babiak’s (1968) model relate the

change in dividends to past lagged dividends, earnings and current earnings. After a

model has been fitted using historical dividends and earnings data, 1998 dividends may

be predicted using the fitted parameters. At the time of working on the thesis, only annual

earnings forecasts for 1998 were available, therefore an annual dividend forecasting

model was chosen (since quarterly earning forecasts for 1998 are more difficult to come

by.

The model I estimate is Fama and Babiak (1968):

AD, = ,6,D,_l + [35.1 + ,B3E, + a,

where AD. = D. — Dt.1= change in dividends from year t-l to year t and E1 is the earnings

at year t. Annual data on dividends and eanrings are used to estimate the model.

I estimate the model with data from 1970 to 1997, omitting available data from

1935-1970, as being too far in the past. The regression results are:

Table 21

Regression results for the dividend forecasting model

 

 

 

 

 

Variable Estimate t-stat (p-value)

DH -0.0507 -1.63 (0.11)

Et 0.0208 0.92 (0.36)

EH 0.028 1.48 (0.15)     

Annual 1998 dividends are then forecast using the estimates in the table, and the

last available earnings forecast from the S&P Outlook for E. This gave an annual

dividend of$16.99 for 199816.

 

'6 To check the accuracy ofthese results, 1997 annual dividends were forecast using this model and were

predicted to be 815.333, while actual 1997 annual dividends were $14.9. This implied a reasonably

accurate forecast (error of 3%) in that year.
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Seasonalization of the 1998 annual dividends so forecast was done using the

following procedure. Using the 1994-1997 daily cash dividend series, I find the average

dividend paid on each day, find what fraction the average daily dividend is to the average

annual dividend during this period. Then, I use these fiactions to distribute the 1998

dividend forecast in the same proportions.

Appendix B CBOE Quote Revision Frequencies

Similar to the procedure in Lee and Ready (1991), I select one trade per contract

per day: the frrst trade after 10 am. and before 3 pm. with no trade at least two nrinutes

before and after it. This results in 4509 trades in all. For each of these trades, I find the

timing of all quotes in an interval of five minutes around it. I then find the frequency of

quotes for every time distance in seconds away from the trade. The assumption is that the

trade triggers the quote. The data are plotted in a histogram showing the time distance

between the quote and the trade and the number of quotes at that distance away.

The pattern observed, reported in figure 2, is different from that obtained by Lee

and Ready (1991) for NYSE transactions data. Unlike in the NYSE, it appears that the

quote revision due to the trade is most often made in the same instant ( a frequency

ofl 1 1). This implies that the quote recorded five seconds prior to the trade need not be

taken as the reference bid-ask quote for trade classification, but that the earliest quote

before the trade can be chosen as the reference.
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1 Timing of quote revisions triggered by

a trade relative to the time of trade
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Figure 2: Timing ofCBOE traded options quote revisions triggered by a trade
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