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ABSTRACT

APPLE SORTING USING NEURAL NETWORKS, STATISTICAL

CLASSIFIERS AND SPECTRAL REFLECTANCE IMAGING

By

Ismail Kavdir

Apple sorting was performed using artificial backpropagation neural network

' classifiers (single and multiple) and statistical classifiers including k-nearest neighbor,

decision tree, and Bayesian. Pixel gray values and texture features obtained from the

entire apple images were used as input to artificial neural network classifiers; these

features were used either alone or in combination in neural network classifiers. Statistical

classifiers, on the other hand, were used only with texture features.

Two types of classification experiments were applied; 2-class classification which

included a defective apple group and a non-defective apple group, and 5-class

classification which included all the defective and good apple groups.

In general, backpropagation neural network classifiers provided superior

classifications using pixel intensity features in both categories of 2-class and S-class

classifications compared to statistical classifiers, which used texture features. Using the

combination of pixel gray values from images or the combination of pixel gray values

and texture features, the backpropagation neural network provided further improvements

in 5-class classification. Using wavelengths beyond 1000 nm improved the identification

success of the defects such as bruise, russet, and bitter pit on Golden Delicious apples and

leaf roller defect on Empire apples.
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Chapter 1. INTRODUCTION

This dissertation reports a study of apple sorting based on surface quality using

spectral imaging, machine vision and classifiers including backpropagation neural

networks, Bayesian, k-nearest neighbor and decision tree. Chapter one of the dissertation

presents the background of the study, specifies the problem, describes its significance,

and presents an overview of the methodology used. In Chapter 2, theoretical and

empirical backgrounds of the methodology applied are reviewed. Chapter 3 presents the

application details of the methodology used and establishes an introduction to the results.

Finally, Chapter 4 presents the results and discussion.

1.1 Background of the Study

Apples are susceptible to defects by the nature of their variety, growing

conditions and operations applied to them during growing, harvesting and post harvest

handling. Defects, which develop during the growing season, are caused by bacteria,

fungus, larvae, virus, insect sting, weather conditions (dry, cold, intense sun light, rain,

frost, hail etc) and competition between fruits and leaves for water and nutrients.

Harvesting and post harvest handling defects are usually caused by storage conditions

and the impacts to which apples are exposed during operations of loading, unloading,

washing, dewatering, waxing, drying and transporting on the inspection belts.

Consequently, in their final destination after harvest, apples may have different types of

defects caused by one or more of the mostly external effects. Having different defects

coming from different causes makes automated defect detection and classification



challenging. This is because the severity, depth and form of a defect may vary drastically

depending on the cause.

Defect detection was done manually in early fruit sorting applications by the help

of people trained on the standards of the quality grades of apples. Later, technical

advancements, especially in the areas of machine vision and spectral imaging, helped the

automation of the grading process of fruits according to shape, size, color and recently

blemishes.

Machine vision was widely applied in many sectors of industry, especially in

electronic and automotive, before being applied in agricultural areas. It is primarily used

for inspection and quality control. Application of machine vision has been increasing

rapidly in recent years. The following are primary steps followed in image processing;

image generation, product location, scrutiny, measurement of features and classification

(Yang, 1992).

Product location and scrutiny are two important steps in image processing. First,

the product, which is under investigation, is separated from the background and from

other objects, if there are any in the scene. Second, all pixels in the segmented parts are

examined to find features. If it is necessary, images are preprocessed to enhance contrast

between features, to remove noise or to eliminate problems caused by lighting.

Spectral reflectance imaging originated from the areas of chemistry and remote

sensing (Muir et al., 1989). Ability of light to detect the elements of a matter by

activating molecules of the related element at a specific wavelength has drawn attractions

from many areas including agriculture. Activation levels of the molecules depend on the

energy of the incoming light. For instance, while long wavelength radiations such as



radio and microwaves excite gases, shorter wavelengths affect liquids and solids.

Absorption of light takes place in the visible and ultraviolet as the electrons reach higher

energy levels. On the other hand, molecular absorption in the infrared region develops by

means of vibrations and rotations of molecules. Although rotational absorption bands are

mainly in the far infrared, vibrational absorption bands are in the near infrared and have

been used extensively in analysis of food and agricultural products.

After interacting with the absorbing molecules, light is re-emitted from the

surface of the material. This re-emitting happens in the form of transmission or reflection.

If the reflected light is measured, the information it carries about the structure of the

elements from which it was reflected can be obtained. At this point machine vision plays

an important role from acquiring the information coming from the sample examined, to

processing it.

Another development that led the studies of automatic sorting of agricultural

produce has been in artificial neural networks. Artificial neural networks have been

widely used in many areas, including agriculture, since they regained their popularity in

the early 19803. They provided a massive parallelism, learning and generalization ability,

representation and computation power and fault tolerance to the solution of automatic

sorting problems.

Detecting blemishes automatically relies on machine vision, the relation between

the light and the matter, and an artificial classifier that will be robust and fault tolerant

enough to interpret the linear or non-linear relation between the input data and targeted

output.

 



1.2 Associated Problems

Some challenging problems in automating the sorting process of fruits can be

expressed as follows:

In a two dimensional image, blemishes such as punctures and bruises can easily

be confused with natural features of apples such as calyx and stem, with natural color

variations over a product surface or with the pixels at the edges of the apple image, which

are usually darker in color compared to the central area of the image. This situation may

sometimes require additional feature extraction algorithms such as using structured

lighting (Yang, 1993 and Campins et al., 1997) to identify stem and calyx. This approach

requires using different algorithms and acquiring multiple images to differentiate the

calyx or stem from the blemishes.

Another problem in image processing for fruit sorting is that different types of

defects may exist on the surface of the object being classified and it is usually difficult to

predict their locations, orientations, sizes and shapes. Also, the contrast between a

defective tissue, such as a bruised area, and a good tissue is often very low making it

difficult to develop an algorithm to segment the defective area.

Consistent orientation of apples is a difficult task considering shape and size

variations within and between cultivars. It is reasonable to expect that the materials

handling operation of a sorting line would present the apple to the detection operation in

any orientation. Therefore, a robust image processing and classification algorithm is

required to discriminate stem or calyx from any other defect without being dependent on

the orientation.



1.3 The Significance of the Study

Quality classification of fruits is an important procedure in marketing and

processing. Efforts into more capable, efficient and accurate automated fruit classification

systems continue as industry priorities as manual fruit grading has the drawbacks such as

subjectivity, tediousness, cost, availability, and inconsistency.

However, applying automatic sorting or quality control in agriculture is not as

straightforward as applying them in other industries such as the electronic and

automotive. There are two main differences. First, the working agricultural environment

is highly variable (weather, soil, etc). Second, agricultural produce are highly variable

due to their inherent morphological diversity (Blackmore and Steinhouse, 1993).

Automatic sorting of some types of produce according to color, size and shape has

been commercially possible. More work is needed for sorting automatically according to

blemishes to improve the classification success and to develop a more generalized

algorithm that is capable of recognizing many types of defects and natural features on a

fruit surface. Automating defect detection is a key step to the full automation of the

sorting procedure.

Research to date has focused usually on using one type of feature in the

classification of agricultural commodities. They either used only texture, shape features

or pixel gray values in the spectral images. However, using all of the features available

such as, texture, shape features and pixel gray values in images at different wavelengths

together could help to increase the classification success, as was suggested by Campins et

a1. (1997).



Spectral reflectance has potential to bring out the specific information from a

defect on a fruit. The effective wavelength for highlighting a defect from its surroundings

may vary with the defect being investigated. Therefore, use of spectral reflectance for

defect detection can be very useful. Use of multiple wavelengths from different regions

of the spectrum in the existence of multiple defects on the fruit surface could bring

different and complementary information together benefiting the classification system

with improved accuracy.

Shapes of defects can be categorized as, for instance, round or long etc. although

they are not consistent. While most of the bruises tend to be round, cuts and punctures

tend to be long. On the other hand, russet (netting) does not have a consistent shape.

Shapes of calyx and stem areas are unique, although they may not preserve their

uniqueness in different orientations.

In conventional methods of automatic fruit grading, determining the shape of a

defective area would require segmentation of the defect, which may often be difficult due

to low contrast between the blemish and good tissue. In this situation where feature

extraction is applied in image processing and the blemishes are segmented, shape features

of defects or calyx-stem area would help in recognizing the objects on the apple surface

together with other features. However in this study, as the gray values in all of the pixels

of an image were input in a backpropagation neural network classifier, shape features

belonging to the defects or stem-calyx were expected to be seen and extracted by this

classifier, eliminating most of the feature extraction or preprocessing beforehand.

Texture may also be an important feature in discriminating different parts of an

apple surface. Throop and Aneshansley (1993) used texture features to recognize apple



characteristics. In texture calculations, distribution of the pixels in the defective area is

examined and the spatial relation between the pixels is extracted. There is no requirement

for defect segmentation to calculate the textural features, as the entire image, i.e. all

pixels is used in the calculations.

Nevertheless, extracting and using textural information requires extra time and

effort. Thus, if the classification success and error rate are within error limits by using

only the gray value information from the pixels at effective wavelengths, texture features

may be eliminated from the list of features. Classifying an apple image by means of an

artificial neural network using only pixel gray values is much faster than extracting the

texture features and then using them in classification.

1.4 Overview of the Methodology

Brief information on the methodology used in the experiment is given here.

Theoretical detail on methodology is given in Chapter 2, while the information on the

application of the methodology is presented in Chapter 3 of the dissertation.

Images were acquired using a black and white vidicon camera, a lighting system

connected to a monochrometer that adjusts the light according towavelength, a personal

computer and software.

Two types of features were used in the experiment, pixel gray-level values and

texture from the same image at the same or different wavelengths. Forty wavelength

bands from 540 nm to 1320 nm with increments of 20 nm were examined to find the

effective wavelength(s) for a specific defect. A backpropagation artificial neural network

classifier was used to select the effective wavelength(s) among all of the 40 wavelength



bands examined. Images of good apples and defective apples taken at the effective

wavelength(s) were used in two classification applications; 2-class classification where

only the good apple group and one defective apple group were used and 5-class

classification where the good group including stem and calyx, and each of the defective

groups were included in the classification. Pixel gray values and texture features of

angular second moment, correlation and contrast calculated from the image were input in

the classifier either alone or combined depending on the classifier used.

In this research, machine vision, spectral imaging and backpropagation neural

networks were used together to separate defective apples from good ones. In addition to

neural network classifier, statistical classifiers, such as Bayesian, k-nearest neighbor and

decision tree were also studied. In the case of 5~class classification, another artificial

neural network application was used in addition to the one mentioned above. This was a

combination of the individual backpropagation neural networks used in each good-defect

classification. Two types of information, pixel gray values and texture features, from all

pixels in the apple images were used as features in the classification applications.

1.5 Objectives and Hypothesis

The overall objective of this study was to develop a classification system for

automatic nondestructive apple sorting according to surface quality conditions using

machine vision, spectral imaging and artificial classifiers. To obtain this overall target,

the following sub-objectives were established;

1) Determine effective wavelength(s) and classifier for separating good tissue from

defective tissue.



2) Develop a classification system with backpropagation neural network classifier,

which will accept the pixels in an entire apple image as features eliminating feature

extraction tasks.

3) Evaluate the use of texture features that would enhance the classification success.

4) Evaluate image resolution in terms of classification speed and accuracy.

5) Minimize the image enhancement and processing operations.

6) Automatically recognize and differentiate the natural features of apples such as, calyx

and stem.

The hypothesis of this research was that multiple image-based features such as

surface gray level values and texture features embedded in an image could be measured

and used either separately or combined in one decision process using the techniques of

multiple spectral imaging, machine vision and classifiers such as neural networks and

statistical to have an enhanced classification success. The aim here is to eliminate defect

segmentation in apple sorting; the task of detecting the blemishes or stem-calyx is done

automatically by the artificial classifiers. In this sense, application of automated apple

sorting here would look like apple sorting performed by human sorters as the artificial

classifiers have the ability to tune themselves according to kind and severity of the

defects.



Chapter 2. LITERATURE REVIEW

Chapter 2 of the dissertation presents information on literature review. There are

two main sections; the first one explains the theoretical background of the methods used

throughout the research. The second part of the literature review includes information on

some practical applications of the methodology and their relation to current study.

2.1 Theoretical Background

In this section, theoretical information is given on the areas of machine vision,

spectral reflectance, artificial neural networks and statistical classifiers that were used in

this study. Methodology explained here is closely related with application details of the

experiment presented in Chapter 3.

2.1.1 Machine Vision

A machine vision system consists of a camera, a computer that has a plug-in

image processing card, a display monitor and a lighting system (Figure 3.1). The camera

generates the image in the form of analog signals. The analog signal is transferred to the

card where it is converted into digital form. Once it is digitized, an image can be stored,

processed, displayed and interpreted through computer programming (Yang, 1992).

Digital image processing is a very important part of machine vision. Digital image

processing refers to processing a two dimensional picture by a digital computer. A digital

image can be expressed as a function f (x, y) in two dimensions. The smallest unit of a
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digitized image is the picture element (pixel), which can have gray level between 0 and

255.

Following are the main interest areas for image processing tasks:

1) Image digitization and coding for the optimization of storage and transmission

capabilities,

2) Image enhancement and restoration for improving the quality of images,

3) Image analysis including feature extracting, segmentation and classification

operations on images for automated machine vision applications (Graf, 1982).

Noise and distortion may occur in images in the processes of image acquisition

and transmission. Thus, image enhancement operations are applied to images to remove

noise, to correct distortions, and to minimize the effects of errors such as motion blur or

similar errors during image acquisition (Jahne, 1995).

Many filtering methods have been used for image enhancement. Spatial averaging

is one of the important image filtering operations. In this filtering method, each pixel is

replaced by a weighted average of its neighborhood pixels (Jain, 1989). Similar to spatial

averaging, image resolution can be reduced by averaging the pixels in the input image

using the equation below:

. . 1 " " . .

x0,» = 322w, J) (2.1)
i j

where y(i, j) and x(i, j) are input and output images respectively and n is the size of the

window used for averaging (filtering). N is the number of pixels in the selected window.

In reducing resolution, gray values in the pixels of the reduced sized image are

replaced by the average of the gray values of the pixels in the selected window in the
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original image. The amount of reduction in the size of the image is determined by the size

of the window selected for averaging.

Image analysis maintains the tools to extract useful information from images. In

this process, objects are first located within an image. Then, features characterizing the

objects are calculated and finally the objects in the images are classified based on the

features extracted. Texture, explained below, is an important part of image analysis as it

can provide an image recognition system with the required information about the object

in the scene.

Texture Features

Texture has been used for the analysis of different types of images, such as

microscopic, aerial and satellite. Textural features represent the spatial distribution of

tonal variations in an image at various wavelengths such as the visible and infrared

portions of the spectrum. Texture and tone are two concepts that are closely related.

While tone is related with the varying shades of the gray, texture deals with the spatial

distribution of gray tones in the image (Haralick et al., 1973).

In processing images, the pictorial information is represented as a function of two

variables (x, y). An image is stored as a two-dimensional array in its digital form. If

K =(l, 2, ..... ,Nx) and Ky =(l, 2, ..... ,Ny) are the X and Y spatial domains, then
X

Kx x Ky is the set of resolution cells and the digital image I is a function which assigns

some gray-tone value G = {1,2, ...... , Ng} to each and every resolution cell (Haralick et

al., 1973):

I:KxxKy—+G. (2.2)
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Methodology of spatial gray-level dependence matrices was used by Haralick et

al. (1973) to classify aerial photographs and satellite images. In this method, the

reoccurrence probability of a pixel, which has a particular gray-level at a determined

distance and orientation from any given pixel that has the same gray level, is calculated.

Function F(i, j, d, 6) forms the spatial gray-level dependence matrices; where i

andj are the (x, y) coordinates of the matrix, (1 is the distance, and Bis the orientation

between two pixels that have the identical gray-level value (Figure 2.1-a). Distance d

may have any value (Figure 2.1-b). On the other hand, Bean have the values of 0°, 45°,

90°, 135° etc. (Tomita and Tsuji, 1990).

Spatial dependence matrices are used to calculate statistical texture features such

as Angular Second Moment (ASM), Contrast (C) and Correlation (CR) as follows:

ASM = Z 2{F(i, j)}2
(2.3)

NR—l N, N,

n=0 i=1 j=l

22(i,j>F(i.j>—u.u,

 
CR:

03.03

(2.5)

where

”8 ”g

u. = 2:2 F031) (2.6)
i=1 j=l

”1: N8

#,.= 1' Fa,» (2.7)
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(a) (b)

Figure 2.1 Comparison of the gray-levels in an image to form spatial dependence matrix

(Tomita and Tsuji, 1990)

Angular second moment is a measure of homogeneity in the image. For a homogeneous

image with minimal number of entries of large magnitude in the co-occurrence matrix,

the angular second moment will be large. The contrast measures the amount of local

variations in the image; an increase in the occurrences of similar intensities in the spatial

dependence matrix shows a low contrast, while the frequency of different intensities

occurring together is a sign of increased contrast. The correlation on the other hand

shows the existence of linearity in the image. The correlation of images with large areas

of similar gray values will be higher than the correlation of images with high variance in

gray values (Shearer and Holmes, 1990).
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Texture Features Good Apple Leaf Roller Bitter Pit 

(at 1320 nm)

 

Angular Second Moment 0.83 0.03 0.15

Contrast 0.00 1.00 0.37

Correlation 1.00 0.01 0.01
 

Figure 2.2 Sample images with different texture features (normalized)

Three sample images with their three texture features are presented in Figure 2.2.

Magnitudes of the features, which were normalized, are in agreement with the definition

of each feature. For instance, the good apple has the most homogeneous texture so it has

the highest angular second moment, while the apple with leaf roller has the minimum

homogeneity. The apple with bitter pit on the other hand is in between the other two

apples in each texture measurement.

2.1.2 Spectral Reflectance

Optical reflectance can be used to evaluate tissue characteristics near the surface

of a biological material. Some such characteristics are color, surface blemishes, and

separation of undesired materials (Chen, 1978). Examples of studies on blemish detection

using spectral reflectance can be seen in the empirical studies section later in this

Chapter.

Interaction Between Light and Biological Material

The interaction between light and biological material is a complex physical

phenomenon. To simplify the complexity of molecular absorption of light, it is assumed



 

that molecules vibrate only at fixed frequencies when interacting with light and thus,

absorb only light of that particular frequency or wavelength (Muir et al., 1989).

When a light beam is projected on an object, part of the incident beam is reflected

by the surface and the rest is transmitted into the object. There are three possible

pathways for the transmitted light into the object; it is absorbed, reflected back to the

surface, or transmitted through the object. Radiation absorbed during the interactions

between light and matter may be transformed into another form of radiation, such as

fluorescence and delayed-light emission (light emitted from the sample after removing

the light source). The amount of radiant energy in the forms of reflectance, transmittance,

absorption, or emission may vary depending on the properties of the biological material

or incoming radiation (Chen, 1978). Light entering such materials is scattered in various

directions as elements in most biological materials are optically non-homogeneous

 

    

 

 
 

(Figure 2.3).

Body Reflectance Abso tion Transmittance

zO.Ol—O.8I0 f" 2108—10310
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Figure 2.3 A simplified schematic figure of a fruit interacting with light (Reflectance

values given are for fruits in general, Chen, 1978).
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As an average over all fruit, about 4% of the incident radiation is reflected back (regular

reflectance) after the first contact between the light beam and a fruit. The rest of the light

entering the object encounters small particles inside the cellular structure and scatters in

all directions. Much of the light returns back to the surface where the light beam initially

enters the fruit and leaves the fruit from there. This type of reflection is termed body

reflectance. The remaining dispersed light continues its travel through the fruit; some of

the light may finally exit from the fruit at a distance from the point of incidence. On the

other hand, some light is absorbed by the molecules in various elements in the fruit. The

amount of absorption varies with the type of the element, wavelength, and the distance

 the light travels (Chen, 1978).

Body reflectance may contain information on the characteristics of the region near

the surface of the point of incidence. If the reflected light is measured, quality

information on the subject such as color and surface defects can be obtained. Also,

information on the internal quality of the fruit may be obtained (Chen, 1978).

Two factors affect the intensity of light coming from an object; its optical density

and the distance between the light source and the object. For most produce, intensity from

reflectance, which is 1-80% of the incident energy depending on the absorption, is much

higher than transmittance or emission. Therefore, reflectance is more commonly used in

quality evaluations.

Spectral reflectance is usually measured by comparing the reflectance from an

object with the reflection from a reference surface. Absorption in biological materials is

generally expressed using optical density, which is expressed as follows

Optical Density 2 log10 (El/E2) (2.10)
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where E] is the incident radiant energy and,

E2 is the radiant energy transmitted through the object.

Due to the complexity in the relations between light and biological material, it is

difficult to formulize the interactions such as absorption, transmittance, and emission.

However, transmittance (T) and absorption (A) can be roughly expressed as

T = —2 (2.11)

and absorbency as,

A = log10(1/T) = loglo (E1 /E2) (2.12)

which is the same with optical density. Absorbency includes the losses from absorption,

reflection and scatter of light (Chen, 1978).

Spectral reflectance properties of agricultural produce can be determined by

measuring the radiant energy from the samples over a range of wavelengths. Different

spectral reflectance responses are obtained from different biological materials as the

constituents of materials vary depending on the variety, kind and conditions. For

instance, color pigments and water absorb light in specific wavelength regions.

Depending on the variety, other elements of produce may affect light scattering

characteristics resulting in changes in the path length of the light and in the amount of

light absorbed.

In the measurement system of the optical properties of produce, three components

are critical; light source, light dispersing tool (monochrometer) and the detector of the

reflected radiant light. In measuring the targeted radiation, such as reflectance or

transmittance within a known wavelength band, the light source is assumed to be
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powerful enough to emit the adequate energy. Also, the sensitivity of the detector, for

example a camera in spectral reflectance imaging, must be compatible with the intensity

and the wavelength range of reflected radiation. Obtaining light within a desired

wavelength can be accomplished by using a prism or a grating to disperse a light beam

into a spectrum and over a narrow slit to pass only the desired wavelength band.

2.1.3 Classification

Classification accuracy obtained from a classification algorithm that is parametric

or non-parametric is usually dependent on the data. Parametric classifiers such as

Bayesian usually result in lower classification accuracy when the number of features

increases, as accuracies in estimating the parameters decreases with increasing number of

features (Raudys and Jain, 1991). In addition to the low estimation rates, non-linearity

between the input patterns and the output classes increases with high numbers of features.

However, statistical classifiers based on parameter estimation perform as well as the non-

parametric classifiers when the number of features is low.

In many pattern recognition problems, the pattern classes are multi-modal. So, it

is difficult to use conventional partitioning applications such as Bayesian Rule (in

Bayesian classifier) for classifier design. In these situations, the non-parametric

partitioning of the feature space is usually preferred (Sethi and Sarvarayudu, 1982).

Classifiers such as, backpropagation artificial neural network, k-nearest neighbor and

decision tree are nonparametric classifiers.
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2.1.3.1 Backpropagation Artificial Neural Network Classifier

Artificial neural networks, which were originally inspired by biological neural

networks, are parallel-distributed massive computing systems consisting of a large

number of simple highly interconnected processing units to process the information

through its travel from the input nodes to the output nodes.

Backpropagation learning rule is commonly used in multilayer neural networks.

In this learning rule, the network is presented with pairs of input and target patterns.

Weights between the simple processing units of neurons are adjusted by iterating input

patterns throughout the network until the error between the network output and the

targeted output is minimized. Details of the backpropagation learning rule are given

below.

Network Structure

The smallest processing unit of a backpropagation neural network is the neuron

that is shown in Figure 2.4. Two operations take place in these neurons during learning;

first, a set of inputs coming either from outside or a previous layer are multiplied with

their assigned weights and all the results are summed. The result from this calculation can

be named as SUM:

n

SUM = zxiwi (2.13)

l=l

where x,- is the ith input to the neuron and w,- is the weight associated with it. Calculation

of SUM is repeated for each neuron in the layer. Second, SUM calculated in the first step,

is entered in a modifying function to produce the final output OUT from the neuron

(Wasserman, 1989) as follows:
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OUT = , (2.14)

l+exp(-5UM)

 

 

  

   

x2 2 f(.) r OUT
      

  
 
 

" SUM

Figure 2.4 Artificial neuron with an activation function (Wasserman, 1989)

The most common function used in the neurons of a backpropagation network is

Sigmoidal activation given in Equation 2.14 and shown in Figure 2.5. Using this function

in backpropagation neural networks is advantageous as it has a simple derivative as given

in Equation 2.15:

BOUT
 

 

=0UT l—OUT . 2.15aSUM ( ) ( )

1 —“ OUT

0.5

Positive

SUM input

Negative 0 SUM r

SUM input  
Figure 2.5 Sigmoidal activation function (Wasserman, 1989)
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The Sigmoidal function is continuous and smooth. Thus, it is possible to differentiate the

sigmoid function in any step of the backpropagation-leaming algorithm. After calculating

the error rate at the end of a forward pass during learning, updating the weights by

propagating backward in the network requires using the differentiated form of the

sigmoid function as explained below. This function outputs between two boundaries (for

example; [0,1], [-l,1]) enabling normalization. Another advantage of using the sigmoid

function is that it increases the representation power of a multi-layer neural network by

introducing the nonlinearity into the system.

The Multi-Layer Neural Network

A typical multi-layer neural network that uses a backpropagation learning rule is

shown in Figure 2.6. The first layer that symbolizes the inputs coming from outside is

called the input layer. The number of the nodes in the input layer is equal to the number

of features that are available to use. No mathematical operation takes place in this layer.

Next, inputs from neurons in the input layer and the weights that connect the input nodes

and the hidden layer are multiplied and summed forming the SUM explained above.

Finally, OUT given in Equation 2.14 is calculated in each neuron in the hidden layer as

an output signal. Then, output (OUT) from each neuron in the hidden layer becomes an

input to the output layer after being multiplied by the weights assigned previously. The

number of layers is not limited in backpropagation neural networks. However, the more

layers used in the network, the more time is needed in learning and consequently in

testing. The flow of the information, i.e. calculations from one layer to the other, is the

same for any multi-layer network (Wasserman, 1989).
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Figure 2.6 Two—layer backpropagation artificial neural network (Wasserman, 1989)

Training

Training is aimed at adjusting the weights throughout the network by processing a

set of training data to obtain the desired set of outputs. This type of training is called

supervised learning, which means that there is a targeted output to approach for each

training sample to learn.

All weights in the network are randomly initialized to small numbers to prevent

the saturation of the network. Otherwise the network may not learn.

The following steps are taken in training the backpropagation network:

1) Input the selected training sample and its associated target, which in

supervised learning tells which class the particular training data belongs, in

the network and start the process, assuming the initial weights are already

selected and ready to use.
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2) Proceed with calculations throughout the network and determine the final

output from the network.

3) Calculate the error between the output from the network and the targeted

output.

4) Using the error calculated in the previous step as feedback, adjust the weights

in the network to minimize the error.

5) Repeat steps 1 through 4 until obtaining the desired error rate (Wasserman,

1989).

In Figure 2.6, outputs of the neurons in the hidden layer I are calculated first and

then these outputs are used as inputs to the output layer J. Outputs from the layer J are

the outputs of the entire network. These calculations refer to the steps 1 and 2 explained

above, which take place in the forwarding pass in the network. Next, error rate is

calculated and then weights are adjusted as mentioned in steps 3 and 4, which represent

the backward pass. When the targeted error rate is reached, training the network is ended

and the weights representing the memory of the network are stored. Later, this weight set

obtained from training is used in classification of the testing data. The training set should

represent the population well enough to develop an efficient classifier for maximum

classification performance.

Adjusting the Weights in the Output Layer

In Figure 2.6, if a training process for a single weight from neuron i in the hidden

layer I to neuron j in the output layer J is considered, the output of neuron j in the output
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layer J is subtracted from its assigned target value to find the error. Error signal at the j"'

neuron of the output layer for 11’” training pattern is defined by

e, (n) 2 Target, (n) — OUT, (n) (2.16)

where Target,- is the real target assigned to the training sample before the learning process

has started and OUT,- is the calculated output.

112

The energy function for the entire output layer for the 12 training pattern, on the

other hand, is obtained as follows:

1 J

E(n) = Ezra; (n) (2.17)

j=l

where j is the number of the nodes in the output layer. Energy function, E , of the

network, which is a function of error signals, is minimized over a training set to adjust the

weights in the network (Hassoun, 1995):

512 2._0‘E(n>= (/ 20,02»

6W, (sour/(SSUM

  5}, =
(2.18)

where, 6,, is the local gradient that minimizes the energy function over the

weights between output and hidden layers. The same expression can simply be written as

follows:

6,, = OUT, (1 — OUT, )(Target, — OUTj). (2.19)

Using Equation 2.19, weights of the network can be adjusted with the equations below;

AW, = 775,-, OUT, (2.20)

W, (n +1) = W, (n) + AW, (2.21)

25



where,

77 is a learning rate coefficient and its value is usually between 0 and 1,

W, (n) is the weight from neuron i in the hidden layer to the neuron j in the output

layer at nth iteration before any adjustment,

W, (n +1) is value of the weight at the next iteration (n+1), after adjustment,

OUT, is the output from neuron i in the hidden layer 1.

Adjusting the Weights in the Hidden Layer

Equations 2.20 and 2.21 are also used to adjust the weights for the hidden layer.

However, local gradient (5,1) needed for neuron i in the hidden layer is calculated by

summing all the products between weights and the local gradient (6),) values that belong

to the neurons in the output layer, as there is no target for the hidden layer and by

multiplying this sum with the derivative of the sigmoid function including the output

from neuron i in the hidden layer as given below:

5,, = OUT, (1 — OUT, {2 6,,W, J. (2.22)

1

After finding the O}, for neuron i in the hidden layer using the Equation 2.22, weights

coming to the hidden layer from the input layer can be adjusted using Equations 2.20 and

2.21 explained above. The two backward-pass procedures explained so far to adjust the

weights connecting hidden and output layers and input and hidden layers completes the

weight adjustments of a two-layer backpropagation neural network.
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Adding Bias to a Neuron

A bias with a trainable weight is added to each neuron in hidden and output layers

to speed the process of learning. A bias that is shown in Figure 2.6 as x0 = 1 for hidden

and output layer nodes adjusts the origin of the sigmoid function to speed the

convergence of training (Wasserman, 1989).

Learning Rate and Momentum

Two parameters, learning rate (77) and momentum (a) are used in the training

process to rapidly and efficiently adjust the weights. Learning rate regulates the amount

of change in weight adjustment. A high learning rate requires less number of epochs for

training. However, there is a possibility that using high learning rate may cause the

weights to oscillate between positive and negative values without reaching optimality. On

the other hand, momentum allows using a high learning rate with controlled oscillation in

the weights. Momentum coefficients determine the direction of the movement in the error

space maintaining a rapid convergence during training and a stable learning based on the

previous weight change. Addition of the momentum coefficient modifies the weight

adjustment equations for the network as follows (Orchard and Phillips, 1991):

AW, (n +1) = 27(5, OUT, ) + a[AW, (n)] (2.23)

W, (72 +1) = W, (n) + AW, (12 +1). (2.24)

Application of momentum in adjusting the weights throughout the network helps

the energy function, which is actually the mean square of the error signals, to reach the

globally optimum solution.
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Despite all the information about neural networks, there is not a general model of

them to use for any type of classification (Timmermans and Hulzebosch, 1995). So, to

find the right neural network for a specific sorting problem, one should try different

settings Such as the number of neurons in hidden layer(s), the number of hidden layers,

values of learning rate and momentum, or the type of transfer function in the neurons of

hidden and output layers.

Learning from input-output relationships is the most important feature of artificial

neural networks. However, when new patterns (features) are added to the training set,

artificial neural networks need to be retrained. A drawback of artificial neural networks is

that how it learns is not clearly understood. Sometimes long training periods can also be

considered as a drawback.

2.1.3.2 K-Nearest Neighbor Classifier

K-nearest neighbor is a nonparametric classifier that does not assume the form of

conditional density of a class. It directly assigns a test pattern to one of the classes. To be

able to classify a given test pattern, all the training data is used (Young and Calvert,

1974). Thus, the rules for k-nearest neighbor classifiers are data driven. For instance, to

apply l-nearest neighbor decision rule, all distances between the given test pattern and all

available training data must be measured (Figure 2.7). Then, the test pattern is assigned to

the class that has the member with minimum distance from the pattern being tested.

The only parameter that should be determined is “K”, the number of the nearest

neighbors to consider in calculations. The value of K depends on the number of training
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data (n); so, K is a function of n, K afln). With a larger number of samples, larger

numbers of K can be chosen.
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Figure 2.7 1-nearest neighbor classifier in the case of two-output classes

The best way to find the optimum value for K is to classify testing data using

different k-nearest neighbor classifiers and compare the results in terms of classification

success.

Two of the distance metrics that can be used in a k-nearest neighbor classifier are:

Euclidean Distance;

' l: T ]1/2

d(l,k) = (x, —xk) (x, —xk) (2.25)

and Mahalonobis Distance,

d(i,k) = (x, —x, )Ts“(x, —x,) (2.26)

where S is the covariance matrix of the features and, i and k are the two points distance

between which is measured.

Basically, there are two modules in this classifier; testing set and training set.

Distance measurement can be considered as a third module, and also when K > 1, finding
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the class that has the majority of members closest to the pattern being tested may be

considered as a fourth module (Figure 2.8). The test pattern is assigned the label of the

class most frequently represented in the k-nearest neighbor training samples when K > 1.
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Figure 2.8 Modules of decision—making procedure in a k—nearest neighbor classifier

No training is applied in a k—nearest neighbor classifier as the training set already

represents the features of the samples to be learned. In another words, the training set is

the memory of the training samples. Memory increases along with an increase in training

data.

K-nearest neighbor classifiers are easy to build as there is not a training process.

When a new set of training data or a new feature is added to the existing training data set,

there is no need for a new training process for this addition. However, there are some

disadvantages of using k-nearest neighbor classifiers; they occupy large memory and

require intensive computations.
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2.1.3.3 Decision Tree Classifier  
Decision trees are hierarchical and nonparametric classifiers. They are constructed

by repeated splitting of subsets of training data into two descendant subsets. If every

terminal has patterns that belong to only one class, then the error is zero. In designing a

tree classifier, a single feature or a subset of features can be used. Each terminal in the

decision tree has a class label. It is possible to use two or more terminal subsets with the

same class label.

The simplest decision tree is the binary tree. In a binary tree, each node is split

into two subsets. Secondly, a single feature should be used in each node. Two decisions

should be made:

1) Which feature should be used in each node? and,

2) What threshold should be used for each feature?

Not all of the available features measured are necessarily used in building the

decision tree. Selection of the features is done by a tree-partitioning algorithm. Terminal

nodes, which are also known as leaves, are determined by partitioning the decision tree.

At each node I of the classification tree, there is a probability distribution p, for the

classes. Each pattern in the training set is assigned to a terminal node. So at each terminal

node there is a random sample 71,, from a multinomial distribution of 1),, .

Based on the descriptions made above, the conditional likelihood is expressed as

follows,

HPlilx. = H [135* (2.27)
patterns ,1' leaves ,1 classes ,k

where [i] is the leaf to which the pattern 1' is assigned. Detailed information on tree

partitioning methodology can be found in Chapter 13 of Venables and Ripney (1994).
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The first module in a decision tree classifier is the training set (Figure 2.9) that

contains all the features. Designing the decision tree using the features (training set)

available is the next step. Nodes in the tree are split and the tree is formed with the target

of having one class in each terminal. Output of this step is a constructed decision tree

classifier. Later, a test pattern can be classified using this decision tree. The output class

for the test pattern is determined based on the features and their associated threshold
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Figure 2.9 Modules of decision-making procedure in a decision tree classifier

The memory of a decision tree classifier is the tree constructed using the training

data. Unlike the k—nearest neighbor classifier, when an addition is made to the existing

training data, a new training (constructing a new decision tree) must be performed.

2.1.3.4 Bayesian Classifier

In this type of classifier, a given test pattern is assigned to one of M

(wl , W2, ..... WM ) classes based on its feature vector x=(x1,X2, ....xN), It is assumed that
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feature vector x has a probability density function based on the pattern class (Jain, 1988).

In this study, conditional densities are assumed to be multivariate Gaussian (normal

distribution). Gaussian densities are unimodal and require only two parameters, data

mean and covariance.

If it is assumed that occurrences of a vector x and a class w,- are random, the

likelihood of x being in w,- is given as (Precetti et al., 1993):

P(x | w, )P(w,)

P(w, | x) = P(x) (Bayes Rule) (2.28) 

where P(w, | x) is posteriori probability of w, given x,

P(w,) is a priori probability for class i,

P(x) is the probability that x occurs,

P(x| w,) is the conditional density (exists for all classes), which is assumed

Gaussian distributed and given as below:

 

l

p<x I w.) = expl-Eflx — .u, >‘ 2: (x — u,- )1} (2.29)
(27,.)d/2lzill/2

where the expression exp{-—%[(x — ,u, )t Z: (x — ,u, )] } is the Mahalanobis distance

measurement that together with the exponential component in the Gaussian distribution

function makes the probability of a pattern small if it is far from the mean.

In this parametric approach, prior probabilities of the classes are determined using

training samples from each class. Unknown parameters of ,u and E, which are the mean

and covariance matrix of a class, are estimated from training samples using the technique

of Maximum Likelihood Estimation given as follows:
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Using these estimated parameters, discriminant functions for each class are

calculated and the same functions are later used to classify the testing patterns.

Discriminant functions under the assumptions made above can be developed as follows:

 
g.(x) = 1n P(W. IX)=1n[P(xl w"')P(W")], (2.32)

P(x)

810C) =10g.1P(xl w.)]+log.rP(w,-)] , (2.33)

8.- (x) = —-12-(X- M)! 2- 1 (x _ fl. ) —%ln|2,| + In P(w,). (2.34)

Equation 2.34 is calculated for each class and the decision rule given below is used to

assign a testing pattern to the class whose discrimination function gives the highest value.

The discriminant function g k (x), for class w, is given as:

Assign x to class w, , if gk(x) > g,(x) for all l at k . (2.35)

Stages of decision making in a Bayesian classifier are the training data used in

estimating the parameters of the discriminant functions, testing data from which the

testing pattern is selected, evaluation of the testing pattern through all the discriminant

functions, comparison of the outputs from the discriminant functions and decision (Figure

2.10).
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Figure 2.10 Modules of decision—making procedure in a Bayesian classifier

2.2 Empirical Studies

In this section, practical applications in the areas of machine vision, spectral

reflectance, artificial neural networks and statistical classifiers as related to this study are

reviewed.

2.2.1 Machine Vision Applications

Classification using machine vision and artificial classifiers has an expanding

application in agriculture; bell pepper sorting, plant classification, apple classification,

peach classification, and surface defect detection on fruit are some of the applications. In

the following applications of machine vision, object segmentation and feature extraction

in the images were applied.
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Eight different plant species were classified using shape features which were

obtained from binary images (Guyer et al., 1986). Four shape features of complexity,

elongatedness, central moment, and principal axis moment were extracted from the

overall image and singulated objects (leaves) in the image resulting in a total of eight

features. In the classification procedure, corn plants formed one class and the rest of the

plants belonging to the other seven species were accepted as the second class. Separation

of corn plants from other species was performed eight times using two features in the

beginning and each time increasing the number of features up to 9. The trial using 8

features performed the most successful classification resulting in an error rate of 9%.

In studying texture features of apple bruises, Throop and Aneshanesley (1993)

used fifteen texture features; ten of them were calculated from co—occurrence matrix and

five were calculated from gray level run length matrix. Bruises on apple varieties such as

Golden Delicious and Red Delicious were studied. Two sub-images with different

resolutions such as 50x50 pixels and 20x20 pixels were used in texture calculations. The

image of 50x50 pixels included the bruise area and some good tissue in it, while the

image of 20x20 pixels included only either the bruised tissue or the good tissue. In the

results, images of 50x50 pixels provided better discrimination of bruised tissue than the

images of 20x20 pixels. Bruises on Red Delicious apples were detected with higher

accuracies compared to the bruises on Golden Delicious apples.

However, using a selected region for texture calculations is a drawback for

automated classification algorithms. There is a requirement for the segmentation of the

related region when a sub-region is used to calculate the texture features. This would

increase the image processing. Moreover, as was mentioned, when there is a low contrast
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between the defective region and the good tissue, it would be difficult to locate the region

with the defect.

On the other hand, when an entire image is used for the calculation of texture

features, there would be no search for a target region that contains the defective sub-

regions. In this research, the entire image was used for texture calculations without any

segmentation of the defective areas.

2.2.2 Spectral Reflectance Applications

Spectral reflectance has been widely used for assessing the quality aspects of

agricultural commodities. Application of spectral reflectance varies depending on the

equipment being used. In some studies measurement of spectral reflectance has been

performed in sub-areas on a commodity using a spectrophotometer where regional

measurements are made from defective areas and from non-defective areas separately. As

another way of measuring the spectral reflectance, some researchers used spectral

reflectance imaging that takes into account a selected part of an image or the whole

image of the commodity to detect the flawed parts in an object.

In a study using the spectrophotometer a small portion of a whole apple was used

in measuring the reflectance values (Geoola et al., 1994). Three apple groups were used

in the experiment: Good apples; bruised apples that were kept at room temperature for 90

min; and bruised apples that were kept at room temperature for 24 h. Spectra of diffuse

reflectance in the wavelength range of 400-840 nm was studied. Sample slices of 15 mm

thickness were used, as the aperture of the spectrophotometer was not appropriate to use

the whole apple. Classification criterion of the average reflectance values at 11 selected
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wavelengths in the range of 750—800 nm was found as the most effective feature in

discriminating the bruised tissue on Golden Delicious apples. Classification results of

96.1% for unbruised apples, 88.4% for bruised apples left at room temperature for 90 min

and 93.7% for bruised apples left at room temperature for 24 h were obtained

respectively.

In a similar research, spectral reflectance measurements were performed using a

spectrophotometer from the bruised and unbruised sub-regions on Red Delicious apples

(Upchurch et al., 1990). Before the measurements bruised apples were kept at room

temperature for 20—25 h. Linear regression wavelength analysis was used to select the

most effective independent variable that included one, two or three wavelengths in the

range of 400-1000 nm. In the results, the lowest correlation was obtained by using single

wavelength (50% misclassification), while the ratio of normalized difference and the

derivative models, which included two and three wavelengths respectively, resulted in

better correlations (2.5% and 3.5% misclassifications).

Using the same equipment in the wavelength range of 350-1200 nm, spectral

analysis of peach defects, such as bruise, scar, scale, brown rot, and wormhole was

performed. The Mahalanobis distance method was used to measure the classification

accuracies of the defects. The criterion that used three wavelengths at 650, 720, and 815

nm had the highest Mahalanobis distance for most of the defect types on the peaches

(Miller and Delwiche, 1991).

In the second method of reflectance measurement, which applies spectral

reflectance imaging at different wavelengths, either all of the pixels in the image or some

extracted features are input into a classifier. One example to this method can be multi-
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spectral image analysis for inspection of poultry carcasses (Park et al., 1998). In this

study, pixel gray values and also extracted Fast Fourier Transform intensity values were

used as features to differentiate wholesome carcasses from unwholesome carcasses using

an artificial neural network classifier. While combined features of pixel gray values at

540 nm and 700 nm worked best for an efficient classification (93.3%), Fast Fourier

Transform intensity features at 700 nm worked better than other wavelengths (90%).

In analyzing a large number of defects on five different varieties of apples, such

as Red Delicious, Golden Delicious, Crispin, McIntosh and Empire, gray level intensities

of defective and non-defective regions were obtained by averaging the gray values in the

selected windows in the spectral reflectance images (Aneshansley et al., 1997). The

percentage of classification error was determined using Mahalanobis distance in the

wavelength range of 460-1030 nm. High classification error was found for defects such

as russet and sunburn at almost all of the wavelengths used. The greatest contrast

between the defective areas such as bitter pit, leaf roller, scab etc. and unblemished areas

was found at wavelength 750 nm. Defects such as bitter pit, leaf roller, stored bruises,

cork and some early season insect stings showed reflectance values higher than

undamaged tissue at wavelength 1030 nm. For defects such as scald and new bruise

reflectance values from the damaged tissue was lower than the undamaged tissue at

wavelength 970 nm.

Spectral reflectance information from a whole image was used in detecting

bruises on peaches and apricots (Zwiggelaar et al., 1996). In this research, a pre-study

was conducted to determine the effective wavelengths that would increase the contrast

between bruised and non—bruised areas. Reflectance values measured by means of a
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monochrometer were combined using Ratio, Derivative and Normalized difference

methods, which were also used in the works done by Upchurch et al. (1990) and Miller

and Delwiehe (1991). Results were evaluated using a maximum distance method. Images

of the fruits were acquired at selected effective wavelengths to be used for the bruise

detection procedure. A flooding algorithm, considering the whole image, was used to

detect bruised areas on the fruit surface (Yang, 1994). Classification success of 65% was

obtained using images from a single wavelength for apricots and the ratio of two images

for peaches.

Regardless of method used, either a spectrophotometer in a sub-region of an

object or spectral reflectance imaging of a whole image or a portion of an image, the

ultimate goal has always been the same, being able to detect the flawed regions on the

surface of a matter. However, not using a whole image presents a limitation in applying

automatic classification, as it is not practical or sometimes possible to select the sub-

regions for defect segmentation in automatic sorting applications.

2.2.3 Applications of Artificial Neural Networks

There are different types of neural networks based on their connection types and

architectures. Backpropagation neural network is one of them. In recent years, the

backpropagation learning rule has been used very commonly in artificial neural network

applications including multi-layer neural networks. According to Hassoun (1995),

development of backpropagation increased popularity of artificial neural networks. Some

of the problems backpropagation artificial neural networks have been used to solve are
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pattern classification, clustering, function approximation, prediction, optimization and

control (Jain et al., 1996).

Artificial neural networks are very robust in learning even non—linear relations

between input features and output categories, such as in sorting biological materials.

Thus, they have been effectively used in classification problems in many agricultural

areas. Multi-layer feed forward neural networks are the most commonly used artificial

neural network model in the classification of agricultural produce.

Apple surface features were classified using machine vision and neural networks

(Yang, 1993). In this study, two images of an apple, one under diffused lighting and the

other under structured lighting were used. In the primary investigation, selected sub-

regions in the images, which included the blemished area, with structured light were used

as input features to neural networks. All the pixels in the selected sub-images were used

as features to the neural network after applying minimum processing. However, a high

unacceptable classification error was obtained due to the complexity in the images with

inconsistent stripes in them. In the second approach, features such as average positive and

negative curvatures, average number of points with zero curvatures and average curve

length were extracted from the striped images used in the first approach. In addition to

these features, area, compactness, a slope feature, average gray level intensity and

variance of gray-level intensity were extracted from the image under the diffuse lighting.

A total of nine features were extracted from two different images of an apple. No

exclusive search was applied to find the effective number of nodes in the hidden layer or

effective number of hidden layers. The resulting number of nodes in the input layer and

the hidden layer were obtained based on the trial and error. Successful results were
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obtained with an average classification success of 96.6% in classifying images into three

blemish output categories.

Apples were classified according to their colors using back propagation neural

networks (Nakano, 1997). Nine color features including color gradients, variances and

chromatic coordinates were extracted from apple images. Two separate sets of

backpropagation neural networks were used. The first neural network was used to decide

whether the red color of an apple was normal or abnormal. Second neural network was

used to grade the apples into five output categories based on the quality of the color.

Satisfactory results were obtained except for one quality group that was confused either

with one upper class or one lower class.

Golden Delicious apples were graded using features extracted by machine vision

and classification algorithms based on rule-bases and neural network (Heinemann et al.,

1997). Four features including mean hue values for color, two dimensional moment for

shape, diameter for size, and percentage of average surface area affected by defects for

defect were used in the classification applications. In the results, 94% and 84%

agreements were obtained for color and shape classifications respectively between human

and machine classification applications. While 94% agreement was found for russet

identification, 75% agreement for identification of defects such as cuts and diseases was

obtained. The system could not classify fly—speck defect.

Another backpropagation neural network was used to separate broken corn

kernels from whole kernels (Liao et al., 1993). Eight morphological features, such as

local maximum curvatures, symmetry ratio, aspect ratio and tip cap variation ratio were

extracted for shape description of the corn kernel profile from the images under diffuse

42



reflected light. Images were taken basically at two positions; with the germ side up and

down. The backpropagation neural network used in discriminating the broken kernels

from the whole ones had eight nodes in the input layer, two hidden layers with thirty-two

nodes in the first layer and eight nodes in the second, and an output layer with two nodes.

The neural network classifier provided accuracy rates of 89% and 94% for the whole and

broken round kernels with the germ side up, and 94% and 96% for the whole and broken

flat kernels with the germ side down.

Cracks in eggs were detected with backpropagation neural networks using

histogram features from color images (Patel et al., 1995). Red, green and blue histograms

from the image of an egg were extracted and concatenated to form the features that were

input to a neural network. Concatenating gray values from three histograms of red, green

and blue resulted in total of 768 input features (3x256). Averaging two adjacent gray

values in the combined histogram with 768 units reduced the number of input features to

384. Twenty-four nodes that were found based on trial and error were used in the hidden

layer. The system provided an accuracy of 97.78%.

In almost all of the applications either using sub-images or the entire images

mentioned so far, both image enhancement and feature extraction procedures were

performed. These applications usually required a dense computation and significant

amount of time. For instance, in an apple sorting system, two different types of images

were acquired under different lighting conditions to extract two different sets of features,

which increased image processing time and complexity of the system (Yang, 1993). In

addition, calyx and stem were not included or evaluated, instead separate features and

algorithms were used to classify them. All of these limitations create a disadvantageous
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situation for automatic classification. However, a classification algorithm that minimizes

image enhancement and processing tasks and is capable of recognizing multiple defects

and calyx/stem ends on a fruit would be more acceptable in an automatic classification

system.

2.2.4 Comparison of Statistical and Neural Network Classifiers

Prior to artificial neural networks, and to date, statistical classifiers have been

commonly used in classification studies in agriculture. However, success of applying

statistical classifiers in classification problems has been dependent on the data used.

Problems with traditional statistical classifiers are declared as follows (Yang, 1992):

1) Some of the selected features can be statistically dependent,

2) The training set of samples is often not large enough to represent all the classes,

3) The class-conditional probability densities are not well known.

An artificial neural network classifier is usually not affected by the first and third

problems mentioned, as it does not make any assumption about the input data. The

second problem, however may still affect a neural network classifier.

A good comparison of statistical and artificial backpropagation neural network

classifiers was done in classifying cereal grains using machine vision (Luo et al., 1999).

A total of twenty-eight morphological and color features were used as input to the

artificial classifiers. These features were extracted from the images that contained twenty-

five kernels. Segmentation and enhancement were performed to improve the images.

Three types of classifiers were compared in two cases of classification problems. In the

first one, cereal grain kernels including two types of wheat varieties, barley, rye and oats
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were classified using a parametric statistical classifier, k-nearest neighbor classifier and a

multi-layer neural network classifier. The results demonstrated that neural network and k-

nearest neighbor classifiers gave similar results while the parametric statistical classifier

performed significantly lower than the other two. In the second study where healthy and

damaged kernels from the same groups were classified, similar classification

performances were obtained from the artificial classifiers. In summary, k-nearest

neighbor and multi-layer neural network classifiers were superior to the parametric

statistical classifier in each application. However, application simplicity and speed of

statistical classifiers were mentioned as possible advantages that made them attractive to

use.

A Bayesian classification method was used in segmenting the defects on a bi—

eolored apple such as Jonagold (Leemans et al., 1999). Pixel gray values from color

images were used as features. Probabilities of having a defective apple and a healthy

apple were assumed to be equal. Parameters such as the probability of a pixel belonging

to class healthy (or defect) and of having a specific color were estimated using gray

values from pixels. Then, the Bayesian classifier was tested using a test set of pixel gray

values. Although pixels in a transition area, between the ground color and blush, and in

some russet areas were misclassified or poorly classified, good results were obtained for

other defects such as bitter pit, fungi damage, scar, frost damage, bruise, insect damage

and scab.

In recognition of handwritten characters, Bayesian and neural network classifiers

were compared. Two types of input features, pixel gray value and texture, were used.

Gray value features from pixels were obtained from a binary and size normalized image
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of 16x16. Texture features were uniform length feature vectors of 636 binary components

obtained from the images. In evaluating the performances of the two classifiers using two

types of features, backpropagation neural network was found more successful than the

Bayesian classifier using the pixel features. This was explained as a result of the linear

discrimination function the Bayesian classifier had, contrary to the non-linear

discrimination function used in the backpropagation network. However, using texture

features, Bayesian classifier performed slightly better classification compared to the

backpropagation neural network. It was also mentioned that for high dimensional finite

training samples such as pixel gray values in an image, calculation of probability density

functions was a drawback for a statistical classifier so that lower performances would

result due to the assumptions made (Lee et al., 1991).

Deck et al. (1995) compared a backpropagation neural network classifier and a

statistical (Fisher Discriminant) classifier in sorting potatoes according to defects of

greening, shatter bruise and shape. Two images, one from top and the other from side,

were used in inspecting the defects of greening and bruise. In sorting according to

greening defect 6 hue histogram bin values corresponding to the color green from both

views were summed together and used as features in training and testing the classifiers.

In bruise detection, 20 manually selected hue values in bruised or non—bruised areas were

used as features to classifiers. Only the top view image was used in inspecting shape

"d one were useddefect. Features of 1‘" through 10’” radial Fourier harmonics except the 2

as features to the classifiers. Backpropagation neural network classifier had the highest

accuracy for greening (74%) and shape (73.3%) detections. On the other hand, Fisher

method had the highest accuracy for shatter bruise detection (76.7%).

 



 

Artificial neural networks are preferred in many research areas with their

robustness rooted from the massive parallelism and ability to learn even non—linear

relations between input data and output categories. However, despite the facts about the

advantages of artificial neural networks, traditional statistical classifiers still preserve

their popularity with their easy to use and clear structure. Depending on the data used,

they may result in better classification by being more efficient in terms of time spent in

training and testing.
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Chapter 3. MATERIALS AND NIETHODS

The following steps and experiments were taken in conducting the research:

Data collection

Image acquisition

Image processing

a. Reducing the resolution of images

b. Background segmentation

c. Elimination of specular reflectance from the images

Preparation of image data for artificial classifiers

a. Preparation of pixel gray values as features from an image

b. Extraction of texture features from an image

Designing the artificial classifiers based on the classification applications

a. Classification with two-output classes

1. Classification using pixel intensity values from images

1. Design of single backpropagation neural network

ii. Classification using texture features from images

1. Single backpropagation neural network classifier

2. K-nearest neighbor classifier

3. Decision tree classifier

4. Bayesian classifier
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iii. Classification using combined features from images using single

backpropagation neural network

1. Using pixel intensities from two images at different

wavelengths

2. Using pixel intensities and texture features together

3. Combining two images by averaging

b. Classification with five-output classes

Same steps were repeated here as in the case of using two-output

classes (a). The only difference was that five classes included all

defective and non—defective apple groups including (stem and

calyx view image groups). Also a second application of a

backpropagation neural network was used- a multiple

bckpropagation neural network that was a combination of single

neural networks developed for 2-class classification.

3.1 Data Collection

Two apple varieties Golden Delicious and Empire, one with light and the other

with dark skin colors respectively were included in this study. Two apple varieties of

different colors were selected to increase the variability of the experimental data and to

challenge the classification system. The contrast between the reflectance values from

defective and healthy tissues may be strong, for instance, for a variety with light ground

color, while it may be weak for a variety with dark ground color.
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Apples from the Empire data set belonged to the same strain and were all

harvested on the same day of 16th of September 1998. The Golden Delicious data set

contained several random strains and was harvested on two different dates, 21St of

September and 9th of October of 1998. All the apples were harvested manually in the

experimentation orchards of Michigan State University.

Selection of the specific two varieties was based on their availability in the

orchard and the availability of defects on these varieties. After harvest, apples were kept

in a cooler at 37° F until image acquisition. They were held at room temperature for an

hour before image acquisition.

3.1.1 Apple Defects Used in the Study

Although more defects were selected and collected for each variety, leaf roller

was included in this study for Empire variety, as the number of apples for other defects

was low. Similarly, russet (netting) and bitter pit were chosen for Golden Delicious

variety. Other defects such as bruise and puncture, which usually occur during post

harvest operations due to external impacts, were created by applying force to the apples

as explained below.

Apple samples were kept at room temperature for an hour before bruising and

puncturing. After applying forces to them, apples were held at room temperature for

another 24 h before image acquisition.
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3.1.1.1 Bruise

Apples were released for a free fall from a height of 20 cm onto a concrete floor.

Selection of the 20 cm drop height was based on the commonly used drop height range of

5-30 cm in similar applications in the literature when studying the reflectance of the

bruise such as by Brown et al. (1974), Upchurch et al. (1990, 1991 and 1994), Crowe and

Delwiche (1996), and Miller and Delwiche (1991). It was declared that bruises on Golden

Delicious apples that resulted from falls of less than 10 cm height could not be detected

after 90 min (Geoola et al., 1994).

In the bruising procedure, apples were held in such a way that their stem and

calyx axis would be parallel to the floor expecting a bruise formation on the check. It is

believed that using a fixed drop height with varying sizes of apples created somewhat

variable bruises on apple samples. Geometric location of the bruise created affected

severity of damage on the apple surface. It is likely that more severe bruises would form

on the peaked areas of apples than the areas on the flat surfaces. This situation may

explain the differences in the appearances of the bruises in different locations of apple

fruit. All of the variations in the structure of the bruises made it more challenging to

detect them in automatic classification applications.

Skin color of the bruised area is often normal or slightly discolored. Tissue under

the skin in the bruised area is brown and filled with the fluid from broken cells. After

prolonged storage this fluid evaporates and the tissue in the bruised area becomes dry and

spongy (Aneshansley et al., 1997).
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3.1.1.2 Puncture

Apples were impacted with various objects to create punctures. In most of the

punctured areas the skin was broken. The amount of force applied to each apple was

different to provide puncture severity and appearance variability.

3.1.1.3 Leaf Roller

This is a defect caused by an insect called Leaf Roller. Adult moths lay eggs on

the upper branches of apple trees in early spring. Later generations lay eggs on the leaves.

As the larvae feed on the leaves, they roll and web the leaves together. Damage usually

occurs in the areas of skin and outer flesh of apples that touch the infested leaves or hang

in clusters. Russet scars develop in the following maturing period in the damaged areas

(Anonymous, 1998).

3.1.1.4 Russet (Netting)

Russetting affects some apple cultivars including Golden Delicious. Some early

sprays to prevent the scab fungus and the infection of Powdery Mildew may cause

russetting. Russet can also occur due to frost just after bloom or cool spring weather

between the drop of the blossom and formation of apples (Manhart, 1995).

There are 5 morphological classes of russet that are effective on apples: stem-

bowl, calyx-end, netted, lenticular, and solid (USDA-ARS, 1999). There are separate and

multiple reasons behind each of the russet types mentioned. It is believed that russet is

initiated during the rapid period of cell enlargement. Due to the first heat, stressed cell

expansion beneath the epidermis exceeds the stretching capability of epidermal and
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cuticle layers and therefore, the surface cracks and cells become separated and exposed.

Later, exposed cells begin producing brown, corky cells to protect against further injury

or dehydration. Thus, the degree of injury and ability of the epidermal layer to recover

determine the amount of russeting that will form. Russet is usually skin deep and the

flesh is not affected.

3.1.1.5 Bitter Pit

A primary reason for bitter pit formation is shortage of calcium in the apple, not

necessarily in the tree or in the soil. Larger apples are more susceptible than small-sized

apples. Excessive growth in tree branches causes the calcium to be consumed primarily

by the tree or the leaves. Insufficient water during summer causes the tree to take some

water, and consequently calcium, from the apple fruit. Low pH of the soil may also cause

the formation of bitter pit (Manhart, 1995).

Small brown lesions of bitter pit defects that develop in the flesh of the fruit are,

depending on the cultivar, 2-10 mm in diameter. The tissue below the skin is dark and

corky. Depressed spots on the surface develop at or near harvest or after a period of cold

storage. These spots usually become darker and get more sunken compared to the healthy

surrounding skin. After one to two months in storage, they reach their full development

(Andris et al., 1999).

Golden Delicious is one of the cultivars that are susceptible to bitter pit. After the

tissues are affected, higher rates of respiration and ethylene are produced and more

protein and pectin are synthesized with increased migration of organic ions into the

affected areas. More starch gain is seen in the affected areas than in the healthy tissue.
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Moreover, a mineral imbalance in the apple flesh occurs with low levels of calcium and

relatively high concentrations of potassium and magnesium. Due to the low levels of

calcium, selective permeability of cell membranes decreases causing a cell injury and

necrosis (Andris et al., 1999).

3.2 Image Acquisition

As previously noted, the main objective of the study was to separate defective

apples from good apples by using the reflected appearance features obtained through

spectral reflectance imaging and artificial classifiers.

A laboratory machine vision system was used to obtain images of apples

illuminated at desired bands of light energy by a monochrometer controlled halogen light

source (Oriel Instruments model 77250) having a slit opening of 40 nm. A black and

white vidicon camera (Hamamatsu C2741-03) with an enhanced NIR range and a

sensitivity range of 400-2000 nm, a Pentium 200 MHz personal computer and QuantIm

(Zedec Inc.) software were used for image acquisition. Problems with background drift

and lag that are common with vidicon cameras were decreased by turning on the camera

at least 2—4 h beforehand for it to warm and stabilize. A special cut—off filter was used to

prevent visible range harmonics from illuminating the apple in the NIR range. A white

pad standard was used to calibrate the system. Images were acquired and saved in TIFF

format. A schematic diagram of the image acquisition system can be seen in Figure 3.1.
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Figure 3.1 A schematic diagram of imaging configuration

Images were taken in a dark room with only the light source, coming through a

liquid light guide from the monochrometer, cast on the apple. The wavelength of the light

emitted changed automatically with desired increments and within the desired range.

Distance between the lens of the camera and the background level where the apple to be

imaged stood was 40 cm. Distance between the light source and the background level, on

the other hand, was about 10 cm.

Presentation of the apples to the camera was done by hand for this developmental

study. Once an apple was positioned in its desired orientation on a black matte

background, forty images in the resolution of 480x640 pixels were acquired from

wavelengths 540 to 1320 nm with a step size of 20 nm. By extending the wavelength to

1320 nm from around 1000 nm, which has not been commonly used in fruit assessing

studies, it was expected to get clearer distinctive reflectance from defective and non-

defective areas on the apple surface. Selection of the wavelength range of 540-1320 nm

was based on the visual inspection of the images between wavelengths from 400 to 2000

nm. Above 1320 nm and below 540 nm no valuable information (which might enhance

defect discrimination) was seen in the images.
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The purpose of taking forty images was to determine the effective wavelength(s)

for detecting a defect. Artificial classifiers would use images at the most effective

wavelength to separate the defective apples from good ones. When there is more than one

effective wavelength for a defect, possible combinations of them would be used for

improved classification success.

3.3 Image Processing

A goal and potential uniqueness of this study was that minimal computationally

intensive image enhancement or processing operations be applied. Three major image-

processing operations applied were reduction of image resolution, background

segmentation, and specular area deletion. For comparison purposes, images with

background were also used in classification of some defects. The three major image-

processing operations applied in this study are explained below.

3.3.1 Reducing the Resolution of Images

Decrease in the resolution of the images was performed as the original image

resolution of 480x640 pixels (307,200 pixels) was not feasible in terms of time to train

the artificial neural networks used in selecting the effective wavelengths and in

classification. By averaging the pixel gray values in a selected window, resolution of an

image was reduced into 60x80 pixels. Equation 2.1 was used for this operation. All

classification applications were performed using images at resolution of 60x80 pixels.

However, for comparison purposes additional classification applications were

performed using four different resolutions of images such as 480x640 (original image
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size), 240x320, 120x160, and 60x80 pixels. These image resolutions were tested on

classifications of three different groups of apple images: bruised area view apple images

against good tissue view apple images (Empire), calyx view apple images against good

tissue view apple images (Empire), and bitter pit view apple images against good tissue

view apple images (Golden Delicious). Classification accuracies obtained from using

images at different resolutions were compared and the results are presented in the

following Chapter.

3.3.2 Background Segmentation

Background segmentation in the images was applied to minimize the confusion of

the classification process with background pixels. With no background in the images, it

was expected that the artificial classifiers would be more sensitive to the reflectance

difference between defective and non-defective areas. The following procedure was

applied to segment the apple from its background.

The image of an apple at wavelength 760 nm was selected among forty images

taken at forty different wavelength bands based on the visual assessment of the maximum

contrast between the apple and the background. A threshold pixel gray value, which was

determined manually from the images, was used to segment the background pixels from

the apple pixels. A few of the pixels in the edges of the apples were lost in this operation.

After this operation, a binary master image was obtained for each apple. Then, the binary

image and the forty original images with background of the same apple were used in an

AND operation separately. In the end, an apple image with no background was obtained

for each wavelength band from 540 to 1320 nm for all the apples in each group.
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However, images with background were also used in the classification of some

defective apple groups against good apple group in the Empire data set in a pre—study.

This application was performed only to compare the classification accuracies obtained

from using images with and without background.

3.3.3 Elimination of Specular Reflectance from Images

A just harvested apple has a thin layer of wax that has a naturally rough surface.

Therefore, regular reflectance from the apple surface is diffuse and the body reflectance,

which is the reflectance of the incident light after being reflected from internal parts of

the apple, transmits the characteristic color of the apple to the detector. However, in

automatic sorting operations apples are washed, dried, and usually waxed to clean and to

improve their appearance. During these operations natural wax of apples is either lost or

smoothed. A smooth surface, on the other hand does not reflect an incoming light

diffusely. Instead, regular reflectance produces a glared area, which is also referred as the

specular component of the reflectance (Birth and Zachariah, 1976).

To simulate the cleaning operation of apples in sorting lines and also to get rid of

dirt, apples were cleaned with a piece of dry cloth before collecting the images. As a

result of this action, images of apples used in the experiment did have the specular areas

that had very high and abnormal gray values. Sizes of these specular regions were

generally quite small compared to surface of the apple in the images; however, they

varied with the apple geometry.
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As the shapes of these specular regions might have been correlated with the types

of defects on surfaces of apples, it was decided to eliminate them from the images to

prevent a biased classification.

Despite efforts to eliminate the unwanted small regions of specular reflectance

during the image acquisition process using filters etc., limited success was obtained as

extra filters would decrease the amount of light that reaches the camera.

Some image processing efforts were also made to clear the images of the specular

reflectance regions. One attempt was to average the pixels of a selected window just

outside of the glared region and to replace the pixel gray values inside the glared region

with the calculated average. However, after processing the images with this approach,

tracks of the specular reflectance regions in the images still seemed to exist. Therefore,

specular reflectance regions were automatically deleted in the images using a fixed sized

window centered on the pixel that had the maximum gray level in the image. The pixel

with maximum gray value was always in the central area of the specular reflectance

region. The final processed image used in the wavelength and classification studies

contained only the gray values from apple pixels after extracting the background and the

specular regions.

It should be noted here that images of apples were taken in a period of two-three

weeks, due to the time to acquire forty images per apple. During this period of time there

was a slight possibility that adjustments of the image acquisition system, such as time (2-

4 h) between turning on the camera and starting the image acquisition, might have been

changed from time to time. However, in classification procedures apples were divided in

training and testing groups according to their numbers as odds and evens, which
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eventually would solve any biasing in images and yet challenge the classification systems

further requiring a more robust classifier.

3.4 Preparation of Image Data for Artificial Classifiers

Two types of features were used from images; one feature group was the

complete set of pixel gray values from the entire image and the second group was the

texture features extracted from the same image. Extraction and preparation of these

features are explained below.

3.4.1 Pixel Gray Values as Features from an Image

Following the three image-processing operations explained above, pixel gray

values of images were written into text files as long vectors. Later, this vector of gray

values was input to the artificial neural network. The artificial neural network was the

only classifier used with this type of feature set.

A preliminary study on finding an efficient way of using pixel gray values in the

classification process was performed. Two types of gray values were tested in this

approach. In the first one, original gray values from 0 to 255 were used. In the second

approach, normalized pixel gray values were used. Normalization enabled standardizing

the input data eliminating the disadvantage of using different ranges of gray values with

large gaps between them. At the end of the normalization, data is represented in the

intervals such as [0, 1] and [-1, 1]. Linear normalization, which is described below, was

used in this research:

(ku ‘ xk,min)

xkl norm :: ’ (31)

(xk,max _ xk.min )

 

60



where, xk, is a real value,

xkl’norm [S a normalized value,

xk m," and xk max are the minimum and the maximum values for the variable xk

respectively (Kasabov, 1996).

In this pre-study, improved classification results were obtained by using the

normalized features, thus, during all of the wavelength selection and classification

applications normalized pixel gray values were used.

3.4.2 Extraction of Texture Features from an Image

The same images used for the artificial neural network classifier study described

in the previous section were used in the calculation of texture features. First, a spatial

dependence matrix and then three texture features of angular second moment, contrast

and correlation were calculated as explained in section 2.1. Three texture features were

calculated at 0 degree (6’) and considering 1 unit (d) distance between the pixels (Figure

2.1) in the image.

Similar to the case using pixel gray values, a preliminary study was performed to

compare the normalized and non-normalized texture features, as the magnitudes of three

non-normalized texture features were quite different from one another. Linear

normalization described in the previous section was applied to calculated texture features.

In normalization procedure, the same texture features for different classes were

normalized in one group. This was applied to all three-texture feature groups to eliminate

the differences between their ranges (Ebert and Dobbins, 1990).
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Results obtained from using texture features with and without normalization

showed that using normalized features improved the classification success. Thus,

normalized texture features were used in all of the classification studies using texture

features. Texture features were used either alone or together with the pixel gray values in

the classifiers as explained in the following sections.

In this study, instead of using a selected window on a defective area, the entire

image was used for the calculation of the texture features. However, pixels with zero gray

value from the background and the deleted specular regions of the image were excluded

from the calculations, as they did not have a direct effect on the texture.

 

3.5 Designing the Artificial Classifiers Based on the Feature Types and the Number

of Output Classes

Five different classifiers were used in classifying the images into desired output

groups. These were nonparametric Single and Multiple Backpropagation Neural

Networks, K-Nearest Neighbor and Decision Tree classifiers and a parametric Bayesian

classifier. Two types of features and their combinations as explained below were used in

the classifications. Two classifications were performed with two different numbers, 2 and

5 of output classes (Table 3.1).

Before explaining the application and design procedures of the classifiers, types

of the features and the classification applications with different number of output classes

are explained. Later, classifiers are explained first based on the number of output classes

and second based on the feature type. Each apple variety was considered separately in

each classification study.
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Table 3.1 Classifiers, types of input features and the number of classes used
 

 

 

 

 

Classifiers

Input Features SBNN]L MBNNTT K—NNi; Decision Tree Bayesian

Pixel Intensity X X

Texture X X X X

Combined X

Number of Classes

2 X X X X

5 X X X X X
 

T Single backpropagation neural network, it Multiple backpropagation neural network,

: K-Nearest Neighbor

Feature Types

1) Intensity values in the pixels of an image: this feature was used only in the (single

and multiple) backpropagation neural network classifiers, as this type of classifier has a

unique ability to learn nonlinear relations between large numbers of input features and

output categories. However, this feature was not used in the Bayesian classifier as the

expected classification error of a Bayesian classifier using a finite training sample can

increase as the number of features increases due to the inaccuracies in estimating the

parameters of the classifier (Raudys and Jain, 1991). Similarly, using pixel gray values as

features in the classifiers of k-nearest neighbor and decision tree was not practical as it

would take a long time to test an apple image with so many input features. For instance,

in testing an image in a k-nearest neighbor classifier, distance measurements between all

of the pixel gray values in the testing image and in the training images would require

excessive computations.

2) Textural features calculated from the intensity values of an image: these features

were used in every classifier to compare performances of the classifiers. Contrary to the

situation with pixel gray values, there were only three features used in this application.

Thus, parameter estimation for the Bayesian classifier was expected to be reliable. Also,
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distance measurement in the k-nearest neighbor classifier and tree splitting operations in

the decision tree classifier were expected to be fast.

Considering the number of output classes, there were two situations; the first was

the case with two-output classes and the second one was the case with five-output

classes. Explanation of the classification applications and the descriptions of the classifier

designs were done based on these two classification applications.

3.5.1 Classification with Two-Output Classes

In this application, groups of defective area view apple images were separately

classified against the non-defective View apple images as shown in Table 3.2.

Determining the effective wavelengths in discriminating a specific defect from good

tissue was the aim of this application. Classifiers and the features used in this category

are explained below.

Table 3.2 Groups of defective and good apples included in the study for each variety
 

 

Apple Variety Apple Tissue Characteristics

Empire Good Bruise Stem Calyx Leaf Roller Puncture

Golden Delicious Good Bruise Stem Calyx Russet Bitter Pit

  

3.5.1.1 Design of Single Backpropagation Neural Network Classifier for

Classification and Wavelength Selection Using Pixel Intensity Values

This type of classifier is actually the backpropagation neural network explained in

section 2.3. The number of input nodes is equal to the number of pixels in an image

(60x80 pixels). Pixel gray values were concatenated in a vector form (4800x1) as can be

seen in Figure 3.2 below for a two-class classification problem. Although there are
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suggested methods of choosing the number of neurons in hidden layer, such as finding

the number of clusters available in the training data set (Kasabov, 1996), ten neurons

were found to be efficient based on trial and error. Similar previous studies by Yang

(1993), Nakano et al. (1995), and Patel et al. (1995) used this rationale of choosing the

number of neurons in hidden layer in classification of agricultural commodities. Using

two or more hidden layers was avoided, as it would increase the training time. The

number of output nodes was two or five based on the number of desired classification
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Figure 3.2 Schematic of the backpropagation neural network in classifying an apple

image

As described in section 2.3, a sigmoid function was used in the nodes of hidden

and output layers. Selection of values for the coefficients of learning rate (77) and

momentum (a) were again found based on trial and error. The maximum number of

iterations in training was set to 4000. However, convergence was established generally
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around 400-2000. Error rate convergence criterion for the neural network to stop learning

was 0.002. Output targets that were used in the training procedure (supervised learning)

were coded as shown in Table 3.3.

Table 3.3 Codes for the output targets for each class used in training for Empire variety
 

 

 

Number of Target Codes in Training Name of the Target Class

Classes Classl Class2 Class3 Class4 Class5

2 1.0 0.0 Good Apple

0.0 1.0 Defective Apple

5 1.0 0.0 0.0 0.0 0.0 Good Apple

0.0 1.0 0.0 0.0 0.0 Bruised Apple

0.0 0.0 1.0 0.0 0.0 Stem + Calyx

0.0 0.0 0.0 1.0 0.0 Leaf Roller

0.0 0.0 0.0 0.0 1.0 Puncture
 

 

An alternative training method that basically feeds the training samples from each

class respectively to the neural network was used in this study. By using this alternative

training method the drawback of feeding the network with all the samples from one class

first and with the samples from another class later was prevented as this type of training

causes a phenomenon called catastrophic forgetting (Kasabov, 1996).

The same coding used in training in Table 3.3 was used for the testing data set.

However, for testing the code for one pattern was repeated for all patterns in a quality

group in a sequence, as there was no catastrophic forgetting problem in testing. Next, the

codes for the second quality group were repeated and so on.

Initial weights for each neural network application were randomly selected

between —0.3 and 0.3 based on the number of nodes in the input, hidden and output layers

of the network. Numbers of apples used in classification studies are given in Table 3.4.
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Table 3.4 Numbers of apples in training and in testing sets used in classifications
 

 

 

 

 

Apple Classification Number of apples in Number of apples in

Variety training (T) testing (T)

Empire Good vs Bruised 52 (26g + 26°) 52 (26 + 26°)

Good vs Stern 46 (268 + 205) 36 (26 + 105)

Good vs Calyx 46 (26g + 20°) 36 (26 + 10°)

Good vs Leaf Roller 46 (26g + 20‘) 36 (26 + 10‘)

Good vs Puncture 41 (26g + 15") 31 (26 + 05")

All 5 groups (Stern and 117 (26g+2€"+ 97 (263+26°+

calyx as one group) 303°+20‘+r5P) 303°+10'+05P)

Golden D. Good vs Bruised 50 (24g + 26°) 50 (24g + 26°)

Good vs Stem 39 (24g + 155) 39 (24g + 155)

Good vs Calyx 44 (24g + 20°) 34 (248 + 106)

Good vs Russet 48 (24g + 24') 37 (24g + 13’)

Good vs Bitter Pit 44 (243 + 20”?) 38 (24g + 14"!)

All 5 groups (Stern and 134 (24g+26b+ 97 (24g+26"+

calyx as one group) 40°+24r+20bp) 205°+r3'+14bp)
 

T Number of apples for each group of apples: (3) Good, (b) Bruise, (5) Stem, (c) Calyx, (1)

Leaf Roller, (P) Puncture, (’) Russet, (bP) Bitter Pit, (SC) Stem-Calyx

Performance Evaluation

In practice, a classifier is first designed using training samples; then, test samples

are fed into the classifier one at a time. Finally, the percentage of rnisclassified samples is

taken as the estimate of probability of misclassification. To get accurate error estimation,

training and testing samples should be statistically independent, and the number of

samples used to estimate the error rate should be large.

After converging at the end of training period, the neural network classifier was

validated by using the training data set. Later, the neural network was evaluated by

classifying the testing data. In each application, performance of the neural network

classifier was measured by calculating error rate and classification accuracy. Calculation

of error rate in the neural network classifier was given in Equations 2.16 and 2.17.
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Error Rate to find the classification accuracy was calculated using

E = — 3.2N ( )

where, E is estimate of the true error rate, and e is the number of misclassified

patterns in N samples (James, 1985).

In this research, output obtained after testing a pattern in the neural network was

compared with the target output of the related pattern. If there was no match between a

calculated output and its targeted output, the related test pattern was declared as a

misclassification.

Error estimation is needed to learn the probability of making a mistaken

classification for a future randomly chosen sample. Error rate predicts the performance of

a recognition system. More detailed evaluation of a classification system can be obtained

through confusion matrices; a confusion matrix is a way of displaying a full breakdown

of error rates among the groups in the classification. In another words, confusion matrix

is an n x n contingency table of actual group to classified group. For a two-class

classification a confusion matrix shown in Figure 3.3 can be established:

Actual

 

 

Classified 2 E12 E22 N2C

 

   
Figure 3.3 A confusion matrix for two classes (James, 1985)
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Where E,- is the number from group i classified as group j, N), is the number actually in

group i and, M, is the group classified to group i (James, 1985). Confusion matrices

formed for each classification application in this study are given in Appendix B. C-

programming language in Microsoft C++ was used in coding the algorithm for the neural

networks.

Wavelength Selection

Reflectance values from defective and non-defective tissues of an apple are

expected to be different. Therefore, every 20 nm increment within the range of 540 -

1320 nm was investigated for an improvement in defective versus good tissue

discrimination. Forty separate runs were performed using the single backpropagation

neural network classifier for each classification application shown in Table 3.4. Effective

wavelengths that would enhance the classification between the defective and non-

defective apples were selected using the criterion of classification accuracy and error rate.

3.5.1.2 Classification Using Texture Features from Images

Three textural features calculated from the images at effective wavelengths were

used. Information on how these features were obtained is given in sections 2.1 and 3.4.2.

Four artificial classifiers were included in the textural feature study. Single

backpropagation artificial neural network is one classifier. Information on its design

procedure is given in section 3.5.1.1. Other classifiers, which may also be called as

statistical classifiers, such as k-nearest neighbor, decision tree, and Bayesian are

69

 



 



explained below. Coding of the algorithms for statistical classifiers were done in Matlab

programming language.

3.5.1.2.] Single Backpropagation Neural Network Classifier

The same methodology used to construct the backpropagation neural network

with the pixel intensities in section 3.5.1.1 was used here. However, as the number of

textural features was three, only three input nodes were used in the input layer of the

network. The number of nodes for the hidden layer was selected by experimenting with

different numbers of nodes from one to ten. Five neurons in the hidden layer resulted in

 

the maximum classification accuracy and minimum error rate. A neural network with no

hidden layer was also used, but no convergence was obtained. Final settings of the

network were 3-5-2 as the number of nodes in input layer, hidden layer and output layer

respectively. Similar to the previous neural network model, learning rate and momentum

coefficients were both selected as 0.25 based on the trial and error method. All other

design parameters were the same as with the previously explained neural network.

3.5.1.2.2 Statistical Classifiers

The same three texture features described for the neural network classifier in

previous section were used in the following statistical classifiers. Classification error was

estimated by calculating the probability of misclassification, as it was described in the

section for neural network above.
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K-Nearest Neighbor Classifier

Detailed information on this classifier is given in section 2.3.3. The only

parameter that had to be chosen for this classifier was the value of K, which was the

number of the neighbor members included in the distance measurements. Values of K

were chosen as one and three in this study. Test pattern in the 1-nearest neighbor

classifier was assigned to the closest class based on the Mahalanobis distance (section

2.3.3). However, in the 3-nearest neighbor classifier, the output class was chosen if it had

the two closest members to the test pattern.

Decision Tree Classifier

Some theoretical background on construction of decision trees is given in section

2.3.4 in the previous Chapter. The probability model was used in partitioning the nodes in

the decision tree.

Selection of the features to be used in classification and the thresholds required to

split the nodes were done using S-plus software (Venables and Ripney, 1994). S-plus

software constructs the decision tree by processing the training data based on the tree-

partitioning algorithm used. The outputs from this process are the features selected for

nodes and their thresholds. In another explanation, three texture features are further

evaluated to find whether there is an effective subset of features to split the tree. If all the

features are found effective, then only the threshold values are determined in this process.

Later, knowing the effective features and the associated threshold values with them, a

decision tree is constructed for classification of testing data by means of the “if then”

rules.
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Bayesian Classifier

In this parametric approach, which was explained in detail in section 2.1.3.4, data

was assumed to have a multivariate Gaussian distribution that was given in Equations

2.28 through 2.35.

Prior probabilities of P(w,) in Equation 2.28, where i=1, 2 for a two-class

classification problem and i=1,..., 5 for a five-class classification problem, were assumed

to be equal for each class. Unknown parameters of ,u and E, which are mean and

covariance matrix for each class, were estimated from training samples using Equations

2.30 and 2.31. Using these parameters, discriminant functions for each class were

calculated and later used to separate the testing patterns.

 

3.5.1.3 Classification Using Combined Features from Images

In this experiment, to attempt to improve classification accuracy, features of pixel

intensities and texture from one or more images were combined in different ways. Only

single backpropagation neural network classifier was used in each classification

application with combined features because other classifiers cannot efficiently handle the

high number of inputs which occur when all pixels are used.

Coefficients of learning rate and momentum used in the neural network were both

0.25. In constructing and using the backpropagation neural network for this application,

sometimes the number of nodes in both input and hidden layers and sometimes only in

the input layer were changed based on the experiment. All other operations were the

same as with the applications of previous single neural network classifier.
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3.5.1.3.1 Using Pixel Intensities From Two Images at Different Wavelengths

The two most effective wavelengths in identifying a defect were determined

based on the highest classification success and lowest error rate obtained in the

classification application with single backpropagation neural network. Later, pixel gray

values from the two selected images were concatenated resulting in a total of 2x4800

features. This application doubled the number of input features to the neural network

increasing the time for training. The increase in the time for training depended on the

application. Nodes in the hidden layer were doubled (twenty nodes). Using twenty nodes

in the hidden layer enabled the network to learn better and to test more accurately

compared to using ten nodes as in the case of using pixel intensities from only one image.

 

3.5.1.3.2 Using Pixel Intensity and Texture Features

Pixel gray values and texture features were combined as one feature set although

the source of features used was the same image (not necessarily the same wavelength).

The total number of features was 4803, 4800 belonging to pixel gray values and 3 being

the textural features.

Similar to the previous application of combining the features, the number of

nodes in the input layer was changed to 4803. However, the number of nodes (ten) in the

hidden layer was not changed as increase in the number of input nodes was only three.

3.5.1.3.3 Combining Two Images by Averaging

In this experiment, two images at different effective wavelengths were combined

in one image by averaging them. By this operation it was expected to include information
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from different wavebands into one image. Similar approach was used by Geoola et al.

(1994) for bruise detection using a spectrophotometer method. Selection of the two

images at two different wavelengths for averaging was based on the best effective

wavelengths found for the defective group of apples at hand. Different combinations of

the wavelength pairs among the best wavelength group for a specific defect were tried for

possible further improvement in the classification success.

3.5.2 Classification with Five Output Classes

In this classification category all defects were considered together in the

classification problem. A total of five output classes were used for each variety; these

five classes for Empire variety included apple images with good tissue, bruise, leaf roller,

puncture, and as the fifth group, the combination of stem and calyx in the view. For the

Golden Delicious variety they were similarly apple images with good tissue, bruise,

russet, bitter pit and as the last group the combination of stem and calyx in the view.

Although stem and calyx were considered separately in the two-class (good-stem, or

good-calyx) classification, for efficiency, they were combined into one group in five-

class classification as they were similar to each other in nature and had very close

effective wavelengths in both varieties. Wavelength 740 nm was chosen as the effective

wavelength for this combined class.

Similar tasks that were performed for the two-class classification category

in section 3.5.1 were repeated for the five-class classification category. No major change

took place in the structures of the classifiers except the portions related with the output

classes. While the number of the nodes in the input layer and hidden layer of the single
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backpropagation neural network did not change, the number of nodes in the output layer

was increased to five. Other settings were the same as with the previous application of the

neural network.

A Logistic Regression in SAS software was used in statistical analysis of the

classification results from 5-class classification. Outputs from classifiers were assumed to

have a binomial distribution. On the other hand, Miller and Delwiche (1991) did not

suggest to use a F-test analysis of variance associated with Mahalanobis distance to test

for a significant difference in class means considering the number of degrees of freedom.

This conclusion was drawn, as the significance levels would only be valid when the

groups are multivariate normal with equal covariance matrices.

Statistical classifiers required same modifications in their structures to use them in

five-class classification. In the k-nearest neighbor classifier, the number of distance

measurements between the testing pattern and all the available training patterns increased

with an increased number of classes. A similar modification was made in the Bayesian

classifier. In the decision tree classifier, the number of final nodes increased with an

increased number of classes. In short, more computations were needed in each classifier

with increased number of classes.

A different classifier, which is the multiple backpropagation neural networks, was

used in 5-class classification in addition to the other classifiers. Information on the

application of this classifier is given below.
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Design of the Multiple Backpropagation Neural Network Classifier

Single backpropagation neural network classifiers developed earlier for detection

of individual defects were combined in a special way to form the multiple

backpropagation neural network classifier. In this classifier, more than one single neural

network classified a test pattern at the same time. Then, decision for the output class of

the test pattern was made based on the maximum output obtained from the single

classifiers.

The single backpropagation neural networks used in this classifier are the

classifiers that were constructed for the classification of the specific defects against the

non-defective apples at the best effective wavelengths. For instance for Empire, four

single neural network classifiers were used in the multiple backpropagation neural

network classifier. Each of these classifiers was obtained from the training operations

between the good apple image group and the apple image groups with leaf roller,

puncture, stem and calyx, and bruise sides in the view respectively (Figure 3.4). Each

individual classifier in the multiple neural network classifier was trained using one

specific defect against the good apple group. Therefore, all the classifiers have a memory

of good apples although there is no separate classifier for good apples.

The test pattern at the four effective wavelengths of the four single neural network

classifiers (four images of the same testing apple) is input into the multiple neural

networks and classified by each single classifier separately. A total of sixteen outputs are

obtained from the multiple neural network classifier, four outputs per single classifier. In

the next step, the first task is to find whether the test image is a defective or a non-

defective apple based on the majority of decisions made as defective or good by

76

 



individual neural network classifiers. If the majority of the decisions are for good apple

then it is decided as a good apple. However, if the majority of decisions are for defective

apples then, another stage of decision-making starts to assign the testing image into a

sgecific defect group. In this category, the decision and consequently the classifier with

maximum output (weight) is determined to find the defect type.

This approach is depicted in Figure 3.4: Four images of the same testing image at

four different wavelengths are represented as I1, 12, I3, and I4. Sixteen outputs obtained by

processing the four inputs are represented as 01, 02,. . . "016. For simplicity, only one

image (11) and its regarding outputs are used in explaining the classification procedure.

 

First, image 11 is input into the multiple neural networks. It is classified by each

single neural network classifier in the multiple neural networks. A total of four outputs

are obtained; one from each single neural network as O1, O5, 09, and 013. First, these four

decisions are checked to find if they are for good apple group or a defective apple group

by comparing the weights they were assigned.

For instance, if the weight set assigned to 01 is (0.00078 0.98870) then, this

decision is for a leaf roller defect; or if the weight set is (0.99784 0.00541) then, the

output 0, is a decision for a good apple. In the result, if the numbers of decisions for

good apple group and the defective apple group are equal or the number of decisions for

defective group is more, image I1 is classified as a defective apple. Otherwise it is

classified as a good apple. However, if it is desired to find the specific defect type then,

one more step is applied comparing the weight pairs for the defect decisions.
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Chapter 4. RESULTS AND DISCUSSION

This study used neural networks and statistical classifiers to classify multispectral

image information of apples with defective, healthy, or stem-calyx sides in the view.

Uniqueness of the study was to use the pixel intensity and texture information either

alone or combined from all the pixels in an image as features, minimizing image

processing tasks.

4.1 Image Processing

 

Image processing tasks of reducing resolution, background segmentation, and

deletion of the specular reflectance areas were used to increase the efficiency of the

classification system, to enhance the images and to remove any biased information

(specular reflectance) from the images.

4.1.1 Reducing the Resolution of Images

Four different image resolutions were tested as shown in Table 4.1. Decreasing

the resolution did not decrease classification success or increase error rate. Classifications

of images of defective apples against images of healthy apples were done using the single

backpropagation neural network classifier. Successful results with images at reduced

resolutions imply that spectral and textural information in the images were preserved

even if the image resolution was reduced. Moreover, better classification accuracy was

obtained using the resolution of 60x80 pixels for bitter pit defect on Golden Delicious

apples compared to using the original image resolution. This may be interpreted as a
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result of an improvement in the images introduced by averaging (filtering) during the

image resizing operations. Based on this result, for all further applications in this study,

images at the resolution of 60x80 pixels were used.

Table 4.1 Classification results obtained from using images at different resolutions
 

 

 

 

 

 

Surface Wavelength Resolution Classification Accuracy Rate

Characteristics (nm) (Pixels) * Success (%) (%)T

Bruise 880 480x640 98.1 98.7

(Empire) 240x320 96.2 97.2

120x160 96.2 97.3

60x80 98.1 97.5

Calyx 700 480x640 88.9 92.4

(Empire) 240x320 91.7 92.8

120x160 88.9 92.0

60x80 88.9 93.3

Bitter Pit 1320 480x640 98.0 97.4

(Golden D.) 240x320 100.0 99.7

120x160 100.0 99.4

60x80 100.0 99.7

Russet 1200 480x640TT 81.1TT 85.5TT

(Golden D.) 240x320 86.5 89.0

120x160 89.2 89.8

60x80 89.2 92.5
 

T Calculated using the operation of (100-(100*Error Rate)), TT Results were obtained at

higher error rate than the targeted one (0.002): iteration was stopped at 6800 as the

convergence was too slow, Number of apples used in this experiment are given in Table 3.4.

Times spent in training and testing the single neural network classifier at different

resolutions for the selected defects on Golden Delicious and Empire apples are presented

in Table 4.2. As it can be seen from the table time spent, especially in training, decreases

significantly as the resolution decreases. It should be noted that high similarity between

defective and non-defective tissues increases the time period in training and also in

testing, as can be seen in classification of apples with russet defect against apples with

good tissue. Despite the variations in time periods for training, time spent in testing an
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apple image did not vary much among the defect types (between 0.02 and 0.05 at 60x80

pixels resolution)

Table 4.2 Training and testing times for two—class classification with neural network
 

 

 

Surface Characteristic Resolution Training Time Testing Time

(Wavelength) (Pixels) per Apple (5) per Apple (8)

Bitter Pit, (Golden D., 1320 nm) 480x640 490.41 4.09

240x320 81.82 0.78

120x160 9.55 0.11

60x80 2. 18 0.02

Russet, (Golden D., 1200 nm) 480x640 -T -T

240x320 543.75 0.51

120x160 26.25 0.16

60x80 5.00 0.05

Bruise, (Empire, 880 nm) 60x80 2.31 0.04

Calyx, (Empire, 700 nm) 60x80 3.57 0.03

Leaf Roller, (Empire, 600 nm) 60x80 3.48 0.03

Puncture, (Empire, 680 nm) 60x80 3.46 0.03
 

T Iteration was stopped at 6800 due to very slow convergence.

4.1.2 Background Segmentation

Background subtraction was applied to improve the images by eliminating any

possible confusion between the apple in the scene and the background. However,

classification operations using the original images that included background also resulted

in successful classification accuracies. In Table 4.3 classification results at the most

effective wavelengths for bruise and calyx on Empire and for russet on Golden Delicious

are given as examples. Classification results at other wavelengths obtained from using

images with and without background can be seen in Figures 4.1, 4.2 and 4.3 for the

defects in Table 4.3.

In general better results were obtained using images with background compared

to using images without background. However excluding the background was still
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Table 4.3 Comparisons of classification results obtained using images with and without

background at most effective wavelengths
 

 

 

 

 

Surface Tissue With Background Without Background

(Empire) Wavelength Classification Accuracy Classification Accuracy

(nrn) Success (%) Rate (%)T Success (%) Rate (%)T

Bruise 880 98.1 97.8 98.1 97.5

Calyx 700 94.4 94.7 88.9 93.3

(Golden D.)

Russet 1200 91.9 91.9 89.2 92.5   
T Calculated using the operation of (100—(100*Error Rate))

important in this research to make sure the classifiers see only the radiance from the

apple as there might be some variations in the reflectance from the background in the

wavelength range used.

Adding noise to the training data was suggested as a method of improving

learning ability of the backpropagation neural network (Kasabov, 1996). Local minima,

which is a very common problem in backpropagation learning, can be overcome by

adding noise to the input data. Images may have contained some noise coming from the

light source or camera etc. With the existence of background this noise would be more

than that of the images with no background as the noise would exist in the pixels in

background too. This may be an explanation for slightly better classification results

obtained using the images with background.

In conclusion, finding the same most effective wavelengths for the defects given

in Table 4.3 using images either with background or without background suggests that

background subtraction is not necessary for defect detection. Thus, background

segmentation can be eliminated from future image processing tasks.
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4.1.3 Elimination of Specular Reflectance from Images

Specular reflectance regions were removed from the images as they were shown

to bring a biased feature to the images with their specific shapes and reflectance values,

which appeared to depend on the defect type (section 3.3.2). Examples of images with

specular areas can be seen in Figure 4.4 where, for instance, the shapes of specular

reflectance regions in calyx or stem view images tend to be long while appearing rounder

in a non-calyx view (good tissue) images.

 

Stem Good Calyx l Calyx 2 Good

(Golden D.)T* (Golden D.) (Empire) (Empire) (Empire)T              

 

T Images in the first row are with background and no deletion. Images in the second row

are with background and deletion and in the third row with deletion and no background

* Images were slightly processed using stretching to improve their display quality

Figure 4.4 Examples of apple images with calyx and good tissue views in Figure A.4

Results of the classifications of calyx view images against the non-calyx (good

tissue) images with deleted specular regions are shown in Figure A4 in Appendix A.

Classification accuracies obtained using the original images with background and no

deletion of the areas with specular reflectance were 100% at and after the wavelength 620

nm. For instance, in calyx identification at the most effective wavelength of 700 nm
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classification success using the images with background and no deletion was 100% while

results from other classification applications that used the images with deleted specular

reflectance areas were lower, 94.4% for the images with background and deletion and

88.9% for images with no background and with deletion.

Having a high classification success using images with the specular reflectance

areas in classification of calyx view images against the non—calyx images shows that the

existence of the specular regions biases the classification. By deleting the specular

reflectance regions, images were cleared of the biased features.

It was shown that images with background could be used in classification

applications using pixel gray value features. If the image acquisition system is carefully

designed, image—processing tasks of reducing the resolution and deletion of the specular

points could be eliminated in the classification procedure; for instance, images can be

taken directly at desired smaller resolutions. Formation of the specular reflectance areas

may be prevented with improvements in lighting and camera configurations.

4.2 Classification with Two-Output Classes

Each defect or calyx/stem view image was studied individually against apple

images with healthy tissue view under lighting from visible and NIR regions to determine

the effective wavelengths in recognizing the defective (or stem/calyx) apple images.

4.2.1 Classification and Wavelength Selection Using Single Backpropagation Neural

Network Classifier and Pixel Intensity Values

It should be noted here that classification and wavelength selection were conducted

simultaneously as part of the single backpropagation neural network experiment.
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Classification results at effective wavelengths are reported for specific defects as a result

of classification procedure.

Effective wavelengths selected for identification of defects can be categorized in

two groups based on classification accuracies obtained for classification of the selected

defect (stem/calyx). Effective wavelengths in the first group are the most efficient ones as

they enabled the system to classify a defect (stem/calyx) with minimum error rate and the

highest classification accuracy. It should be noted here that when the same classification

success was obtained using the images at two different wavelengths, the wavelength that

is associated with the lower error rate is selected as the most effective wavelength.

Effective wavelengths in the second group provide the next highest classification success

 

after the wavelengths in the first group. Based on these definitions the selected effective

wavelengths are given in Table 4.4 for each defect and stem-calyx on the two apple

varieties.

Wavelength 680 nm was the most effective for discrimination of puncture on

Empire apples. Wavelengths 660 and 700 nm having the same classification success with

wavelength 680 nm were in the first wavelength group although they had slightly higher

error rates compared to wavelength 680 nm. Wavelengths 1020 and 1100 nm on the other

hand were the most effective wavelengths in the second group of wavelengths that

resulted in lower classification successes and higher error rates compared to the effective

wavelengths in the first group mentioned above. These observations can also be seen in

Figure A.2 of Appendix A. It should be noted that reflectance for puncture does not

change much as wavelength changes. This may be due to the loss of water, which was
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released from the damaged tissue through the broken skin leaving the punctured area dry

(Figures 4.5 and A.2).

Table 4.4 Three effective wavelengths for individual surface characteristics
 

 

 

 

Surface Characteristic Wavelengths in the First Wavelengths in the Second

(Empire) Group (nm) T Group (nm) TT

Bruise 880, 900, 920 1060, 940, 1080

Calyx 700, 660, 740 640, 720, 760

Stem 740 760, 780

Puncture 680, 700, 660 1020, 1100, 880

Leaf Roller 600, 580, 1320 1000, 940, 1020

(Golden D.)

Bruise 1260, 1300, 1280 1240, 1220, 1180

Calyx 660, 680, 620 640, 700, 560

Stem 760 900, 920, 720

Bitter Pit 1320, 1300, 1280 1240, 1200, 1180

Russet 1200, 1260, 1240 1320, 1300, 1280
 

T Wavelengths that provided the highest classification success. TT Wavelengths that

provided the second highest classification success. Wavelengths in two groups are in the

order from the lower to the higher error rate. Maximum three wavelengths are shown.

Leaf Roller defect on Empire apples had the most effective wavelengths both in

the visible and NIR regions. The best three wavelength bands were 600, 580, and 1320

nm in the order from the lower to higher error rate. At these wavelengths all apples were

classified correctly. Variation in the classification accuracy depending on the wavelength

of this defect is shown in Figure A3 of Appendix A.

The most effective wavelength for bitter pit defect on Golden Delicious apples

was 1320 nm. Two other effective wavelengths that were in the same group with

wavelength 1320 nm with slightly higher error rates were 1300 and 1280 nm. The change

in the appearance of an apple with bitter pit at different wavelengths in parallel with the

change in classification results from the single neural network classifier may suggest the

following interesting conclusion; although the bitter pit defects on the apple at
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wavelength 660 nm in Figure 4.5 looked much clearer than those at wavelength 1260 nm,

better classification results were obtained using the images at wavelength 1260 nm.

Difference in the appearances of the defects at two wavelengths was mainly in their gray

values. While the gray values of the defective areas were quite low (dark) at 660 nm, they

turned into much higher almost opposite gray values (light) at 1260 nm.

 

 

Defects on Golden Delicious Defects on Empire

Wavelength Bruise Bitter Pit Leaf Roller Puncture

660 nm

880 nm

1260 nm

 

T Images were slightly processed using stretching to improve their display quality

Figure 4.5 Appearances of defects at different wavelengths

The same relation can be seen for the apple with leaf roller in Figure 4.5.

However, for leaf roller the higher gray values were obtained in the beginning of the

spectral range (540—1320 nm) contrary to the bitter pit. In short, for both defects

improved classification results were obtained at wavelengths where the defective areas

had higher gray values (light color) than the surrounding healthy regions. Having the

similar results from using the images with undeleted specular regions that had extremely
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high gray values, it may be suggested that the backpropagation neural network gives

more value to the pixels with high gray values.

Dark reflection from the bitter pit defects at 660 nm may be due to absorption of

the light by some elements in the defective region. On the other hand, high reflectance

from the same blemished areas at wavelength 1260 nm can be a sign of some existing

constituents that have less absorbing ability than the normal tissue. Another possibility

may be that light reflected from the blemished area may contain transmitted light, body

reflectance and the regular reflectance together making the region lighter in color

compared to the surrounding healthy region.

The most effective wavelength for another important defect, russet on Golden

Delicious apples, was 1200 nm. Two other effective wavelengths in the order from lower

error rate to the higher were 1260 and 1240 nm. Overall classification success of this

defect was low compared to other defects. This may be due to the special formation of

russeting areas on the apple surface. There did not seem to be a clear distinction between

the russeting areas and the healthy tissue on the apple surface. Three of the four

misclassified apples were good ones, which were falsely rejected as russet at wavelength

1200 nm. This may suggest that any slight russet patches on the good apples, which

might have been ignored in selecting the apples for training and testing before image

acquisition, might have caused the good apples mentioned above to be falsely rejected.

This shows that separation of good apples from apples with the russet defects was a

challenge for the neural network. Similar findings were reported in classifying Golden

Delicious apples with russet defect by Aneshansley et al. (1997). High classification error
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was reported for classifying apples with russet against good apples using Mahalonobis

Distance classification method.

Successive wavelengths from 840 to 920 nm were the most effective wavelengths

for discrimination of bruised apples from good apples in the Empire variety. The

wavelength having the lowest error rate among them was 880 nm. Having the effective

wavelengths around the 900 nm region of the NIR can be explained by the interaction

between the released water from the corrupted cells and light (Wcisskopf, 1968). At this

wavelength water absorbs light more than the surrounding good tissue, causing the

bruised area to look darker depending on the severity of the bruise.

The most effective wavelength to differentiate bruise on Golden Delicious apples

was found to be wavelength 1260 nm as it gave the highest classification accuracy and

yet the lowest error rate. As can be seen in Figure 4.6, bruise was classified more

accurately at the wavelengths beyond 1000 nm, especially beyond 1200 nm. This

suggests an increase in the absorption of the light at longer wavelengths by the

constituents in the defective area and, thus, greater reflectance differences between good

and defective tissue. Furthermore, depending on the location of the bruise, a texture that

formed inside the bruise area created another feature for the classifiers. The change in the

reflectance from one wavelength to another in the bruised and other defect areas can also

be seen in the images in Figure 4.5 as a change in the contrast between defective and

good tissues. Changes in contrast in the defective areas matches the changes in the

classification successes and error rates in the respective graphs given for each defect as

follows: Figures A.2 and A3 in Appendix A for puncture and leaf roller respectively on
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Empire apples; Figures 4.6 and A.7 for bruise and bitter pit respectively on Golden

Delicious apples.

Although the best wavelengths for detecting the bruised regions on Golden

Delicious apples were longer than 1000 nm, wavelength 880 nm was efficient for

discriminating bruise on Golden Delicious apples. Thus, wavelength 880 nm was

demonstrated to be a common wavelength for bruise detection on both Golden Delicious

and Empire varieties.

For both varieties the effective wavelengths for calyx and stem were in the visible

range between 660 and 740 nm as was expected. Unlike the defects mentioned above,

there was no corruption in the apple cells that would affect the reflection of light, thus,

the clearest appearance of the calyx and stem were obtained in the visible range of the

spectra (Figures A4 and A5 for Empire and Figures A8 and A9 for Golden Delicious in

Appendix A).

4.2.2 Classification Using Texture Features

After determining the effective wavelength(s) for each specific defect for both

varieties in the previous section, three texture features of angular second moment,

contrast and correlation explained in sections 2.1.1 and 3.4.2 were extracted from the

images at the selected wavelengths. These texture features were used in the classifiers of

single backpropagation neural network, k-nearest neighbor, decision tree and Bayesian.

The best two classification results for each variety and defect using the classifiers

mentioned are shown in Table 4.5. Detailed information on the same results is shown in

Tables A3 and A4 in Appendix A.
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Table 4.5 The best two classifiers in two-class classification
 

Surface Characteristic Classifier Classification Accuracy Number of M18

 

 

 

 

and Wavelength (nm) Success (%) Rate (%)T classified Apples

(Empire)

Bruise, 880 SBPNN-Texb 100.0 99.9 0

1.NNc 100.0 100.0 0

Leaf R., 600 SBPNN-Pixela 100.0 99.6 0

Decision Treed 100.0 100.0 0

Stem, 740 SBPNN-Pixela 100.0 99.3 0

SBPNN—Texb 91.7 92.6 3

Calyx, 700 SBPNN-Texb 100.0 99.1 0

SBPNN-Pixela 88.9 93.3 4

Puncture, 680 SBPNN-Pixelal 96.7 97.5 1

Decision Treed 93.6 93.6 2

(Golden D.)

Stem, 760 SBPNN-Pixela 100.0 98.5 0

SBPNN-Texb 100.0 99.8 0

Calyx, 660 3—NNc 100.0 100.0 0

SBPNN—Texb 97.1 98.7 1

Bitter Pit, 1320 SBPNN-Pixel“ 100.0 99.7 0

SBPNN—Texb 94.7 95.1 2

Bruise, 1260 SBPNN-Pixela 98.0 96.9 1

Bayesiand 98.0 98.0 1

Russet, 1200 Bayesian‘1 91.9 91.9 3

SBPNN—Pixela 89.2 92.5 4
 

T 100-(100*Error Rate), (a) Single Backpropagation Neural Network Classifier using

Pixel features, (b) Single Backpropagation Neural Network Classifier using Texture

Features, (C) Nearest Neighbor Classifier using texture features, (d) Using texture features

For bruise defect on Empire there was no significant difference between the

classification results obtained from different classifiers or input features. However, the

best classification results were obtained using texture features with the classifiers of

single backpropagation neural network and l-nearest neighbor (SBPNN-Tex and l-NN in

Table 4.5). Both classifiers classified all the apples correctly. On the other hand, for

bruise defect on Golden Delicious, which had the most effective wavelength at 1260 nm,

improved classification results were obtained using pixel intensity features with single

backpropagation neural network classifier (SBPNN-Pixel in Table 4.5) and using texture
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features with Bayesian classifier (98%, classification success). Classification results

obtained from any classifier with either pixel or texture features was 90% or higher for

this defect on both varieties.

For identification of the apple stem end images, single backpropagation neural

network classification either using pixel gray values or texture features produced better

results compared to other applications (Tables 4.5) for both varieties. This classifier

recognized all the stem images successfully for both varieties. For Golden Delicious

apples using only texture features with the same neural network classifier produced the

same results recognizing all the images successfully. Results of stem recognition from

other classifiers for Golden Delicious were also successful, with the classification success

rates of 94.9% and above.

Similar results were obtained in calyx recognition on Empire apples. The neural

network strategy performed better classification, (recognizing all the images

successfully), especially using texture features. Identification of images of Golden

Delicious apples with calyx in view was as successful as it was with stem identification

for most of the classifiers and features used except decision tree classifier. The 3-nearest

neighbor classifier recognized all the testing images successfully. Neural network

classifiers and the Bayesian classifier followed this classifier in performance.

All classifiers identified the leaf roller defect on Empire with classification

successes ranging from 97.2% to 100%. The neural network using pixel intensity values

and the decision tree classifier using texture features recognized all the apple images with

leaf roller successfully.
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For the puncture defect on Empire, the best classification result of 96.7% was

obtained using the single neural network classifier that used the pixel gray values as

features. The second best results were obtained using the texture features with single

neural network and decision tree classifiers.

Russet on Golden Delicious apples was best classified by the Bayesian classifier

with a classification success rate of 91.9% while the classification successes from other

classifiers ranged between 78.4% and 89.2%. Severity of russet defect was variable

causing confusion between apple images with russet defect and good tissue in the view.

Bitter pit defect on Golden Delicious apples was classified at success rates from

92.1% to 100%, having the best result from the single neural network classifier using

pixel gray values as features.

4.2.3 Classification Using Combined Features

Different sets of features were used together in the single backpropagation neural

network classifier to attempt further improvement in the classification performance.

4.2.3.1 Using Pixel Intensities From Two Images at Different Wavelengths

In the wavelength selection procedure for individual defects in the two-class

classification category, it was seen that most of the defects had effective wavelength(s)

from close regions of the spectra. Therefore, combining two images using the pixel gray

values at two neighbor effective wavelengths did not improve the classification accuracy

further compared to using pixel gray values from a single image at the best effective

wavelength. This was probably because there was not any additional information
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introduced to the classifiers by using an extra image which was very similar to the first

one.

However, for bruise and leaf roller (Figures A.1 and A3 in Appendix A) defects

on Empire apples and for stem on Golden Delicious apples (Figure A9 in Appendix A)

combining two images improved the classifications resulting in slightly lower error rates,

although the classification success was the same. Contrary to other defects, bruise and

leaf roller defects on Empire and stem on Golden Delicious had effective wavelengths

from two regions which were to some extent apart from each other in the spectra. For the

rest of the defects on the two varieties, combining images negatively affected the

classifications causing a decrease in the classification success in general. Examples of the

results of combining pixel gray values from two images using the backpropagation neural

network are given in Table A.1 in Appendix A.

4.2.3.2 Using Pixel Intensities and Texture Features

Combining pixel gray values and texture features together produced similar

results as were obtained by using pixel gray values from two images (Table A.2

Appendix A). Similar to using pixel gray values from two images some slight decreases

in the error rates in the classifications of leaf roller on Empire and stem on Golden

Delicious were seen while no improvement in classification success was obtained.

4.2.3.3 Combining Two Images by Averaging

Using the feature combination method of averaging two images at different

wavelengths into one image helped to reduce the error rates in classifying bruise, stem

98



and russet on Golden Delicious apples although no improvement was obtained in the

classification success.

Despite drops in the error rates, classification success did not improve in any of

the feature combination methods used in two-class classification. However, decrease in

the error rate of a classification is still an improvement as error rate is the only criterion

used in weight adjustment during training process of the neural network. Thus, having a

lower error rate at the end of the classification is a sign of having a more robust classifier.

4.3 Classification With Five-Output Classes

In addition to the classifiers described in section 3.5.2 for two-class classification,

 

a multiple backpropagation neural network classifier was used to classify all tissue types

(5) in a single classifier. The only change applied to the neural network was to increase

the number of nodes from 2 to 5 in the output layer. Also the classification tasks applied

in the statistical classifiers were repeated five times instead of two.

4.3.1 Classification and Wavelength Selection Using Single Backpropagation Neural

Network Classifier and Pixel Intensity Values

It should be noted that classification and wavelength selection are the same

applications. Classification accuracy and error rate at the effective wavelengths are

reported as the Optimum classification results obtained for 5 apple groups considered.

Similar to the two-class classification, 40 apple images collected in the range of

540-1320 nm were used in a single backpropagation neural network classifier. Forty

classification results, obtained one at each bandpass increments, were compared to find

the effective wavelength(s) for the classification of a group of apples containing five
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subgroups in it. Results from this experiment are presented in Figure A6 in Appendix A

for Empire variety and in Figure A. 11 for Golden Delicious. Also some selected results,

which include the most optimum classification results, from this application can be seen

in Tables A5 and A6 in the same Appendix.

If the confusions among the defective groups and among the good apple groups

such as good apple, stem and calyx are not considered, there is no misclassification

among the 5 subgroups at wavelengths 740, 1000, 1080 and 1100 nm for Empire (Table

A5). The classification and accuracy rates were 100% and 96.2% respectively using the

images at the most effective wavelength (740 nm):

Where the Accuracy Rate (%) = 100 — (100 * Error Rate) (4.1)

If the consideration is not to tolerate any confusion between any output classes, no

matter if it is between the good apples (stem, calyx and good tissue view apple images) or

between the defective apples, then the classification success is 86.6% at the same

wavelength (740 nm). If the misclassification between stem and calyx, and good apples is

not considered, but misclassification is considered between defects then the classification

success is 91.8% at wavelength 740 nm.

For Golden Delicious apples, the most effective wavelength was found to be 1260

nm at which the classification success and accuracy rate disregarding any

misclassification among the defective groups and among the good apple groups were

90.7% and 93.8% respectively (Table A6 in Appendix A). On the other hand,

classification success was 84.5% while still considering the confusions between the

defective groups but disregarding the confusion between the good apple groups. Lower
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classification success rates were obtained for Golden Delicious apples, which may be due

to the randomly selected multiple strains and two different harvest dates for this variety.

Not having the same effective wavelengths for Empire and Golden Delicious

varieties might be because of different defect types used for each variety with the

exception of bruise. Also the slightly different number of samples that were used either in

training or in testing might have influenced effective wavelengths. Difference in skin

color might also have had an effect on the resulted different wavelengths, as it could

affect the appearances of defects.

Time periods spent in training and testing the single backprOpagation neural

network classifier in 5-class classification application are given in Table 4.6 for two

varieties at the selected effective wavelengths. Although the testing time did not change

compared to 2-class classification, training time increased significantly in 5-class

classification as 5 different groups were used.

Table 4.6 Training and testing times for five-class classification with neural networks
 

 

Variety and Wavelength Resolution Training Time Testing Time

(Pixels) per Apple (s) per Apple (8)

Empire (740 nm) 60x80 369.23 0.03

Golden Delicious (1260 nm) 60x80 591.04 0.03
 

4.3.2 Classification Using Multiple Backpropagation Neural Network Classifier

Multiple backpropagation neural networks, as described earlier in section

3.5.1.1.2, are simply a combination of single backpropagation neural network classifiers

that were established and selected for each defect (two-class classification) at the most

effective wavelength using one defective (or stem/calyx) group of apples and the group

of good apples.
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For Empire variety, four single backpropagation neural network classifiers were

selected from the training operations between good apple group and the defect groups of

leaf roller at wavelength 680 nm, puncture at 680 nm, stem-calyx group at 700 nm, and

bruise at 880 nm. Wavelength 680 nm was chosen as the common wavelength for leaf

roller and puncture classifiers to decrease the number of input images from four to three.

The concept for the classification here was to classify apples in each group at

three different wavelengths using four classifiers explained above. For example, an apple

with its images at wavelengths 680, 700 and 880 nm is input into 4 different classifiers

(leaf roller classifier @ 680 nm, puncture classifier @ 680 nm, stem-calyx classifier @

700 nm and bruise classifier @ 880 nm) and it is classified into the class whose classifier

 

outputs the lowest error rate.

In classification of a testing apple through each defect classifier, the classifier

checks the input defect for its similarity to the defect on which the classifier was

originally trained; if there is a similarity then it is highly possible that the testing apple

will be classified as the defect the classifier knows. If there is no similarity, the defective

apple being tested is classified as good apple as it is the only other choice available in a

two-class classification.

Table 4.7 Classification results of an Empire apple with leaf roller at 3 different

wavelengths through 4 different classifiers
 

 

 

Wavelength Bruise CT Stem-Calyx C. Leaf Roller C. Puncture C.

(nm) T @ 880 nm @ 700 nm @ 680 nm @ 680 nm

Good Defect Good Defect Good Defect Good Defect

680 0.105 0.898 0.986 0.015 0.068 0.936 0.079 0.924

700 0.081 0.921 0.987 0.014 0.056 0.948 0.064 0.939

880 0.094 0.909 0.988 0.013 0.064 0.938 0.035 0.967     
TClassifier, T An apple image at 3 different wavelengths (680, 700, 880 nm) was inputted

into 4 different classifiers; 12 results in the columns of “Defect” were evaluated.
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Weights assigned by each defect classifier in the classification of an Empire apple

with leaf roller defect are presented in “Defect” columns in Table 4.7 as an example of

the multiple neural networks approach. A testing Empire apple image with leaf roller at

three different wavelengths was classified by 4 defect classifiers of bruise, stem-calyx,

leaf roller and puncture. Total of 12 outputs (weights) are evaluated for the strongest

decision. In this example the test apple with leaf roller was classified as a puncture by the

puncture classifier and by the combination criteria as the weight assigned by this

classifier was the strongest among all (0.967 for image at 880 nm).

It can also be seen in the same table that the stem-calyx classifier classified the

same testing apple as a good apple as the leaf roller does not look like a stem or a calyx in

nature. Also, the weights assigned by the bruise classifier for the same apple are not as

strong as the ones assigned by the puncture classifier or leaf roller classifier as the

sirrrilarity between bruise and leaf roller defects is weak.

Although the answer to the question of why the testing apple was not classified as

leaf roller is not clear, it may be that the puncture classifier trained on the puncture

defects, which had in general lower gray values than that of the leaf roller defect,

weighted the testing image with leaf roller more than did the leaf roller classifier. The

leaf roller classifier was already trained on the leaf roller apples and so the testing pattern

with leaf roller would not be too different from the training data.

However, for the puncture classifier a testing pattern that is already similar to the

patterns the classifier was trained on and with higher gray values in the defective areas

may boost the decision weight produced by the classifier. One reason for this action of

the puncture classifier may be that neural networks tend to be driven more by the spectral
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features with higher gray values, as was discussed earlier. Or, the reason for a leaf roller

defect to be detected better by a puncture classifier instead of a leaf roller classifier may

also be due to the specific wavelength selected.

The advantage of a multiple neural network classifier is that it may provide a

more robust defect detection system when the misclassification among the defects is not

Table 4.8 Selected classification results from using all of the classifiers and features used

for Empire and Golden Delicious varieties (5-Class Classification)

ClassifiersTT Bad—Good (%) Bad-Good MC: Separate (%)T Separate MC
 

 

 

 

(Empire)

SBPNN-Pixela 100.0 0 91.8 8

NBPNN—Pixelb 99.0 1 84.5 15

SBPNN-zPixeld 99.0 1 88.7 r 1

SBPNN-Px+Tx° 99.0 1 93.8 6

SBPNN—Texc 93.8 6 88.7 11

:3-NNf 87.6 12 81.4 18

1 -NNf 86.6 13 79.4 20

Decision Treeg 84.5 15 72.3 24

IBayesiang 76.3 23 63.9 35

(Golden Delicious)

sr3PNN—2Pixeld 94.9 5 89.7 10

lVIBPNN-Pixelb 92.8 7 82.5 17

SBPNN-Pixela 90.7 9 84.5 15

SBPNN-Px+Tx° 89.7 10 85.6 14

Bayesiang 89.7 10 83.5 16

SBPNN-Texc 89.7 10 82.5 17

1 ~NNf 89.7 10 79.4 20

Decision Treeg 86.6 13 81.4 18

\Q’LNNf 85.6 14 76.3 23
 

11' At the most effective wavelengths; 740 nm for Empire, 1260 nm for Golden

Delicious, T Number of rnisclassified apples, T When all defects are considered

Separately although stem, calyx and good are assumed as one good group, (a) Single

ackpropagation Neural Network Classifier with Pixel features from one image, (b)

Multiple Backpropagation Neural Network Classifier with Pixel features from one image,

(c) Using Texture features only, (d) Using Pixel features from two images at two most

effective wavelengths; 740 and 760 nm for Empire, 620 and 1260 nm for Golden

Delicious, (C) Using Pixel features from one image and Texture features from another (at

effective wavelengths)— 740 and 620 nm for Empire, and 1260 and 760 nm for Golden

Delicious, (f) Nearest Neighbor Classifier using texture features, (3) Using texture

features
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considered as can be seen in the classification of Golden Delicious apple group

containing 5-output groups in this study (Table 4.8). The possibility of missing a

defective apple by a classification system may be reduced by using the multiple neural

network classifier.

Classification results of an apple group including 5 different classes obtained

using the multiple neural network classifier are given in Table A.7 in Appendix A (also in

Table 4.8). Table A.7 shows the classification results obtained from different grouping of

wavelengths used in the multiple neural network classifier. In some applications, fewer

effective wavelengths were used in an attempt to reduce the number of input images to

the classifier for more efficient classification. For instance, using three wavelengths (680,

700, and 800 nm) for Empire variety resulted in the same or better classification results

Compared to using four effective wavelengths. On the other hand for Golden Delicious

apples, using wavelengths of 660 nm (calyx/stem classifier), 1200 nm (russet), 1260 nm

(bruise), and 1320 nm (bitter pit) resulted in a better classification compared to using

i nput images only at two effective wavelengths (660 and 1200 nm). Confusion matrices

of the classifications using the multiple neural networks (Table B.2 for Empire and BM

fOI‘ Golden Delicious) and other classifiers are given in Appendix B.

Classification success (99%) obtained by using a multiple neural network

0 1 assifier for Empire variety was close to the classification success (100%) obtained using

the Single neural network classifier when no discrimination was considered among the

Clefect groups. Classification successes obtained from single and multiple neural networks

were 91.8% and 84.5% respectively when the confusion between defect groups is

Considered.
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However, for Golden Delicious better results were obtained with the multiple

neural network classifier (92.8%) compared to using the single neural network classifier

(90.7%) in classifying the apples as bad and good in general without considering the

defect types separately. On the other hand, classification success (84.5%) of the single

neural network was slightly higher than that (82.5%) of the multiple neural networks

when no misclassification among the defects was allowed. The classification success in

the second case was calculated by considering the misclassifications between the

defective groups but not within the good groups, i.e. misclassification between stem-

calyx and good apples was accepted. The disadvantage of the multiple neural network

classifier is that it requires longer testing time as it evaluates multiple inputs and outputs.

4.3.3 Classification Using Texture Features

Similar to the classification application with two outputs, only three texture

features such as angular second moment, contrast and correlation were used in the

classifiers. Images at selected effective wavelengths determined in the previous sections

were used in each five-class classification for both varieties.

The highest classification success in classifying Empire apples using texture

features only was obtained using single neural network classifier (93.8%) when defects

were considered as one group and 88.7% classification success was obtained when each

defect was considered separately (Table 4.8). Following the neural network classifier the

best results were obtained using 3-nearest neighbor, l-nearest neighbor, decision tree and

Bayesian classifiers respectively.
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In classifying Golden Delicious apples using texture features only, single

backpropagation neural network, Bayesian and 1-nearest neighbor classifiers produced

the highest classification success of 89.7% when considering all the defects as one group.

If the defects are considered separately, classification success for Bayesian classifier

becomes 83.5%, for single neural network classifier, 82.5% and for l-nearest neighbor

classifier, 79.4%.

For either variety, using texture features alone did not provide a better

classification compared to using pixel gray values in the back propagation neural network

classifier. Also, using texture features is associated with increased time requirements for

both training and testing. Extraction of texture features is a computationally intensive

task that takes a certain amount of time for each image. On the other hand, the testing

procedure using pixel intensity features in the application of a neural network is quite fast

compared to testing using texture features. However, time spent in training using either

texture features or pixel intensity features are similar.

4.3.4 Classification Using Combined Features

Only the single neural network classifier was used in the classification

applications that used combined features. In this stage, three feature combination

methods were studied to further improve the classification accuracy.

4.3.4.1 Using Pixel Intensities From Two Images at Different Wavelengths

Combining pixel gray values from two images at different wavelengths was one

method. The application of combining images worked well for Golden Delicious variety
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increasing the classification accuracy and decreasing the error rate significantly in

classifying five different classes at the same time. Not every two pair of wavelengths

worked the same way. To find the most effective pair of wavelengths, images at single

most effective wavelengths that resulted in the highest classification successes were

combined and tested to find the optimum result.

For Golden Delicious, images at wavelengths 1260 and 620 nm, which were the

best two wavelengths respectively in classification of five classes using a single image

(single wavelength), were used together. This combination gave the highest classification

success of 94.9% among all of the classification applications when no discrimination

between the defects was considered. Likewise in the case when defects were evaluated

separately the highest classification success of 89.7% was obtained using the combined

images explained above (Table 4.8). Apparently combining two images helped to

improve the classification accuracy, as the complementary spectral information from two

images at effective wavelengths from separate regions of the spectra was brought

together (effective wavelength range for individual defects on Golden Delicious apples is

660-1320 nm, Table 4.4).

However, combining images did not result in the same improvement for the

Empire variety as can be seen in Table 4.8 (effective wavelength range for individual

defects on Empire apples is 600-880 nm). This was probably because the effective

wavelengths for this variety were closer to each other compared to effective wavelengths

for Golden Delicious apples. So, adding a new image from a second wavelength, which

was close to the first one, did not bring any new information to the neural network.
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4.3.4.2 Using Pixel Intensities and Texture Features

In the second method of combining features, pixel gray values and texture

features from images were used together. For both varieties, positive improvements in the

classification accuracies were obtained compared to using only pixel information from

one image when defects were considered as one class.

Using pixel gray values at 740 nm and texture features at 620 nm for Empire

apples provided the best classification accuracy (93.8%) of all classification methods in

the case when each defect was evaluated separately (Table 4.8). Also, combining pixel

intensity values and texture features for Empire variety brought the classification

accuracies for the majority of defect groups close to or above 90% except for the

puncture (Table A5 in Appendix A). Using the texture features from wavelength 620 nm

especially improved the results of punctured and leaf roller defects, which might not be

visible enough at wavelength 740 nm.

Slight improvement was obtained by combining pixel gray values and texture

features for Golden Delicious apples when no misclassification was allowed between the

defect groups. Classification success for this case was improved from 84.5% to 85.6% by

adding texture features to the pixel intensity values. Addition of texture features to pixel

gray value features increased the identification success of the individual surface

characteristics for both varieties.

4.3.4.3 Combining Two Images by Averaging

In the third feature combination method, two images of an apple at two different

Wavelengths were combined by averaging. However, effects of this method were not as
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well as those of the two combinations explained above. In the case of classifying 2

classes, averaging 2 images resulted in almost the same classification success and error

rate with other applications such as using only the pixel gray values or using two images

together. However in the case of classifying 5 classes together, averaging images

decreased the classification success and increased the error rate compared to the case

using pixel gray values only. This was due probably to the loss of information on defects

resulted from the averaging.

4.3.5 Statistical Tests of the Results from 5-Class Classification

There seemed to be more variations among the classification results from 5-class

classification compared to 2-class classification. Thus, statistical analysis was performed

among the 5-class classification results to see if there was any significant difference

between the classifiers. In statistical tests of the classification methods, Logistic

Regression in SAS software was used assuming the classification outputs from the

classifiers had a binomial distribution.

Among the classification results for Empire, when the defects are considered as

one class, there were significant differences between statistical and neural network

classifiers at the 95% confidence level. There was no significant difference between the

statistical classifiers except between 1-NN (86.6%) and Bayesian (76.3%), and between

3-NN (87.6%) and Bayesian (76.3%) classifiers (Table 4.9).

Similarly, at the 95% confidence level in the case when each defect is considered

as one class, there were significant differences between the statistical classifiers and
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Table 4.9 Significant test results when all the defect groups are considered as one class

(Empire, P<0.05)*
 

l-NN 3-NN Bayesian D.Tree MBNN-P SBNN-2P SBNN-PT SBNN-T
 

1-NNl 0.739 0.017 0.593 0.011 0.011 0.011 0.036

3—NN2 0.007 0.467 0.014 0.014 0.014 0.059

Bayesian 0.087 0.001 0.001 0.001 0.001

D.Tree3 0.001 0.007 0.007 0.022

MBNN-P“ 1 1 0.094

SBNN-2P5 1 0.094

SBNN-PT6 0.094

SBNN-T7
 

(1) l-nearest neighbor, (2) 3—nearest neighbor, (3) D.Tree: decision tree, (4) MBNN-P:

multiple backpropagation neural network using pixel gray values, (5) SBNN-ZP: single

backpropagation neural network using pixel gray values from two images, (6) SBNN-PT:

single backpropagation neural network using pixel gray values and texture features, (7)

SBNN-T: single backpropagation neural network using texture features only, SBNN-P

single backpropagation neural network using pixel gray values, which classified all the

testing apples correctly, was excluded from the analysis as a drawback result of the

software used.

especially the single neural network classifier using pixel gray values from one image,

using combined features of pixel gray values and texture features, and using texture

features only (Table 10). Among the statistical classifiers, there were significant

differences between l-NN (79.4%) and Bayesian (63.9%) classifiers, and between 3-NN

(81.4%) and Bayesian (63.9%) classifiers. Also, among neural network classifiers, there

were significant differences between the multiple neural networks classifier and single

neural network classifier using combined features of pixel gray values and texture (Table

10).

Among the classification results for Golden Delicious, when the defects are

considered as one class, only significant differences were between 3-nearest neighbor

Classifier (85.6%) and single neural network classifier (94.9%) using pixel gray values

from two images as features and between decision tree classifier (86.6%) and single
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Table 4.10 Significant test results when each defect group is considered separately

(Empire, P<0.05)
 

l-NN 3-NN Bayesian D.TreeMBNN-P SBNN-2P SBNN-P SBNN-PT SBNN-T
 

l-NN‘ 0.527 0.001 0.414 0.336 0.073 0.016 0.008 0.028

3-NN2 <0.001 0.200 0.590 0.163 0.035 0.018 0.051

Bayesian 0.054 0.002 <0.001 <0.001 <0.001 <0.001

D.Tree3 0.106 0.009 0.001 <0.001 0.007

MBNN—P4 0.285 0.111 0.022 0.415

SBNN-ZPS 0.256 0.059 1

SBNN-P6 0.415 0.440

SBNN-PT7 0.201

SBNN—T8
 

( ) 1 -nearest neighbor, (2) 3-nearest neighbor, (3) D.Tree. decision tree, (4) MBNN-P:

multiple backpropagation neural network using pixel gray values, (5) SBNN-2P: single

backpropagation neural network using pixel gray values from two images, (6) SBNN-P.

single backpropagation neural network using pixel gray values from one images, (7)

SBNN-PT: single backpropagation neural network using pixel gray values and texture

features, (8) SBNN-T: single backpropagation neural network using texture features only

Table 4.11 Significant test results when all the defect groups are considered as one class

(Golden Delicious, P<0.05)

l-NN 3-NN Bayesian D.TreeMBNN—P SBNN-2P SBNN-P SBNN-PT SBNN-T
 

1-NNl 0.099 1 0.317 0.440 0.171 0.819 1 1

3er12 0.285 0.705 0.073 0.007 0.277 0.347 0.156

Bayesian 0.317 0.440 0.136 0.808 1 1

D.Tree3 0.137 0.023 0.373 0.467 0.255

MBNN-P4 0.481 0.564 0.407 0.440

SBNN-2P5 0.253 0.099 0.171

SBNN-P6 7 0.705 0.808

SBNN-PT 1

SBNN-T8
 

() l -nearest neighbor, (2) 3-nearest neighbor, () D.Tree: decision tree, (4) MBNN-P:

multiple backpropagation neural network using pixel gray values, (5) SBNN-2P. single

backpropagation neural network using pixel gray values from two images, (6) SBNN-P:

single backpropagation neural network using pixel gray values from one images, (7)

SBNN-PT: single backpropagation neural network using pixel gray values and texture

features, (8) SBNN-T: single backpropagation neural network using texture features only
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neural network classifier using pixel gray values from two images as features at 95%

confidence level (Table 4.11).

In the case when each defect is considered as one class for Golden Delicious at

95% confidence level, the only significant difference was between 3-nearest neighbor

classifier (76.3%) and single neural network classifier (89.7%) using pixel gray values

from two images as features (Table 4.12).

Table 4.12 Significant test results when each defect group is considered separately

(Golden Delicious, P<0.05)

l-NN 3-NN Bayesian D.TreeMBNN—P SBNN-ZP SBNN-P SBNN-PT SBNN-T

 

 

1.NNl 0.404 0.371 0.637 0.564 0.052 0.370 0.240 0.491

3-NN2 0.125 0.224 0.257 0.007 0.158 0.071 0.156

Bayesian 0.593 0.827 0.203 0.835 0.670 0.819

D.Tree3 0.842 0.089 0.590 0.433 0.796

MBNN-P“ 0.070 0.655 0.491 1

SBNN-2P5 0.226 0.205 0.146

SBNN-P6 7 0.763 0.695

SBNN-PT 0.532

SBNN—T8
 

(I) 1-nearest neighbor, (2) 3-nearest neighbor, (3) D.Tree: decision tree, (4) MBNN-P:

multiple backpropagation neural network using pixel gray values, (5) SBNN-2P: single

backpropagation neural network using pixel gray values from two images, (6) SBNN-P:

single backpropagation neural network using pixel gray values from one images, (7)

SBNN-PT: single backpropagation neural network using pixel gray values and texture

features, (8) SBNN-T: single backpropagation neural network using texture features only

In general, there were significant differences between almost all of the statistical

and neural network classifiers when considering defects as one class or as separate

classes for Empire variety. However, for Golden Delicious apples, the only significant

differences were between statistical classifiers of 3-nearest neighbor and decision tree,

compared against the single neural network classifier using pixel gray value features from

two images.
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4.4 Classification of Stern and Calyx

As it can be seen from Tables A5 and A6 in Appendix A, stem and calyx were

classified 85-100% correctly in five-class classification studies depending on the

wavelength used. Misclassification occurred usually between good class and stem or

calyx, which was an acceptable error as can be seen in most of the confusion matrices in

Appendix B.

In this study, no extra algorithm or procedure was applied to discriminate the stem

and calyx from normal or defective parts. The backpropagation neural network was able

to recognize these natural parts of apples to the extent of not classifying them as defects

without performing any further processing.

4.5 Summary and Conclusions

The following conclusions can be drawn from the results obtained in this study:

Image Processing;

- Reducing original image resolution from 480x640 pixels into 60x80 pixels did

not change the classification accuracy. Thus, the resolution of 60x80 pixels was used in

all the classification applications throughout the research. Using reduced resolution

provided significant decrease in time to train and test the artificial classifiers.

- In all of the classification applications, background in the apple images was

subtracted to make sure that the classifiers sense the reflectance from defective areas

more efficiently. However, in a pre-study to find the effect of existence of background on

classification success, it was found that existence of background did not affect the
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classification success of the classifiers. Moreover, better classification performance was

obtained in general with the existence of background.

- In a pre-study to test the effect of small specular regions in the images on

classification success, it was found that specular regions highly biased the classifiers as

they provided biased features to classifiers with their specific shapes dependent on the

apple surface characteristics such as defects, calyx, stem, and healthy tissue. Therefore,

specular regions were removed from images by automatically deleting the pixels in the

specular region with a fixed sized window. Images with deleted specular regions were

used in all of the classification applications.

- It was concluded that in the future applications, all three image processing

applications used in the this study could be eliminated by acquiring images directly at

reduced resolution, eliminating specular regions from images with adjustments in image

acquisition system and using images with backgrounds.

Classification with two-classes:

- Using the single backpropagation neural network classifier and pixel gray value

features, the most effective wavelengths for optimum identifications of apple surface

characteristics such as bruise, leaf roller, puncture, bitter pit, russet, calyx and stem

separately against healthy (good) apple tissue (two-class classification) were determined.

- For Empire variety, the single backpropagation neural network classifier using

pixel gray values as features provided the most optimum classification results for the

following surface characteristics against good apple tissue; stem (100%), calyx (88.9%),
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leaf roller (100%), and puncture (96.7%). Bruise defect on this variety was classified

most effectively by the same classifier using the texture features (100%).

- For Golden Delicious, the single backpropagation neural network classifier

using pixel gray values resulted in following optimum classification success results for

surface characteristics of; bruise (98%), stem (100%), russet (89.2%) and bitter pit

(100%). Calyx was best classified by 3-nearest neighbor classifier using texture features

(100%).

- The single backpropagation neural network classifier using pixel gray values

provided better classification performance compared to the statistical classifiers that used

texture features.

- Combining features such as pixel gray values from two images at different

wavelengths, pixel gray values from one image and texture features from another, and

averaging two images at two different wavelengths into one image did not provide

improved classification compared to using one type of feature. This was probably due to

the effective wavelengths that were close to each other.

- It was observed that the backpropagation neural network gives more value to

high gray values in the images assuming that high gray values are important features.

This conclusion was based on the classification of defects such as bitter pit and leaf roller

and also classification of images with specular regions (no deletion).

Classification with Five-Classes:

- Similar to the two-class classification category, effective wavelengths for an

apple group containing three defect types, a combined stem and calyx group and a good
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(healthy) apple group were found using single backpropagation neural network and

intensity values from image pixels.

- Wavelengths 740 and 1260 nm were found as the most effective for Empire and

Golden Delicious apple groups respectively.

— For Empire variety, the most successful classifications were obtained by the

classifiers of single backpropagation neural network using pixel gray values from one

image (100%), using combined pixel gray values from two images (99%), using

combined pixel and texture features from two images (99%), and multiple

backpropagation neural networks (99%) using pixel gray values from one image as

features when confusions between two defect groups and two good apple groups (healthy

tissue, stem and calyx) were ignored. However, when no confusion between the defect

groups is accepted, the highest classification success (93.8%) was obtained by single

backpropagation neural network using combined features of pixel gray values and texture

features. In this case, when no confusion was allowed between the two defect groups, the

second best classification result (91.8%) was obtained by using single backpropagation

neural network classifier with pixel gray value features.

- For Golden Delicious, in the case when defect groups are considered as one

class, the most successful classification was obtained by using the single backpropagation

neural network classifier with combined pixel gray values from two images (94.9%). The

second best classification in this category was obtained from multiple backpropagation

neural network classifier using pixel gray values from one image (92.8%). In the case

when no confusion is allowed between two defect groups, the best classification (89.7%)

was again obtained by using the single back propagation neural network using combined
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pixel gray values from two images at the two most effective wavelengths. Second best

result (85.6%) in this category was obtained from the single backpropagation neural

network classifier using the combined features of pixel gray values and texture features.

- Combining pixel gray value features from two images at most effective

wavelengths (Golden D.) and combining pixel gray values from one image and texture

features from another image at effective wavelengths increased the classification success

for both varieties of apples using the single backpropagation neural network classifier.

Successful classification results with combined features are believed to be due to the

availability of effective wavelengths in different regions of the spectra, contrary to the

two-class classification category where the effective wavelengths were usually from the

same region of the spectra. Also, having different surface characteristics with different

effective wavelengths together in this classification category may be another reason for

improved classification results with combined features from different wavelengths.

- A different application of a backpropagation neural network was introduced by

the multiple backpropagation neural network classifier that provided improved

classification results for Golden Delicious apples when all the defects are assumed to be

one class.

— In classification of Empire apples, neural network classifiers performed

significantly higher classification results compared to statistical classifiers. Although the

neural network classifiers performed better for classification of Golden Delicious apples

compared to statistical classifiers, the only significant differences were between statistical

classifiers of 3-nearest neighbor and decision tree, compared against the single neural

network classifier using pixel gray value features from two images.
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Overall Conclusions:

— Backpropagation neural network classifiers were superior to statistical classifiers

in most of the classification applications studied. In general neural network classifiers

performed better using intensity features compared to using texture features.

- Superiority of neural network classifiers especially in five-class classification

can be explained with the ability of this type of classifier to learn the non-linear relation

between the input features and output classes.

- Using wavelengths beyond 1000 nm improved the identification success of the

defects such as bruise, russet, and bitter pit on Golden Delicious apples, and leaf roller on

Empire apples. This broad range of wavelengths also provided improved classification

success especially for Golden Delicious in five—class classification allowing the

combination of images at the wavelengths from different regions of the spectra.

- In conclusion, the backpropagation neural networks provided robust and

effective classifications using pixel gray values in both categories of two-class and five-

class classifications. Using the combination of pixel gray values from images or the

combination of pixel gray values and texture features, the backpropagation neural

network provided further improvement in five—class classification.
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Table A.3 Classification results from two-class classification using pixel intensity and

texture features at effective wavelengths (Empire)
 

 

 

 

 

 

Surface Classifier Classification Accuracy Number of

Characteristics Success, (%) RateT (%) Misclassified Apples

Bruise, 880 nm SBPNN-Texb 100.0 99.9 0

1-NN° 100.0 100.0 0

SBPNN-Pixel" 98.1 97.5 1

Bayesiand 98.1 98.1 1

3-NN° 98.1 98.1 1

Decision Tree(1 98.1 98.1 1

Stem, 740 nm SBPNN-Pixela 100.0 99.3 0

SBPNN-Texb 91.7 92.6 3

3-NN° 88.9 88.9 4

l-NNd 86.1 86.1 5

Bayesiand 75.0 75.0 9

Decision Treed 72.2 72.2 10

Calyx, 700 nm SBPNN-Texb 100.0 99.1 0

SBPNN-Pixela 88.9 93.3 4

Decision Treed 83.3 83.3 6

Bayesiand 77.8 77.8 8

1-NNc 75.0 75.0 9

3-NN° 72.2 72.2 10

Leaf R., 600 nm SBPNN-Pixel“ 100.0 99.6 0

Decision Treed 100.0 100.0 0

SBPNN-Texb 97.2 97.8 1

Bayesiand 97.2 97.2 1

1.NNc 97.2 97.2 1

3-NN° 97.2 97.2 1

Puncture, 680 nm SBPNN-Pixela 96.8 97.5 1

SBPNN-Texb 93.6 93.6 2

Decision Treed 93.6 93.6 2

1—NNc 90.3 90.3 3

3-NN° 90.3 90.3 3

Bayesiand 83.9 83.9 5
 

T 100-(100*Error Rate), (a) Single Backpropagation Neural Network Classifier using

pixel features, (b) Single Backpropagation Neural Network Classifier using texture

features, (c) Nearest Neighbor Classifier using texture features, (d) Using texture features
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Table A.4 Classification results from two-class classification using pixel intensity and

texture features at effective wavelengths (Golden Delicious)
 

 

 

 

 

 

 

Surface Classifier Classification Accuracy Number of

Characteristics Success (%) Rate (%)T Misclassified Agles

Bruise, 1260 nm SBPNN-Pixela 98.0 96.9 1

Bayesian“ 98.0 98.0 1

Decision Treed 94.0 94.0 3

1-NNC 92.0 92.0 4

3-NNc 92.0 92.0 4

SBPNN-Texb 90.0 90.7 5

Stem, 760 nm SBPNN-Pixela 100.0 98.5 0

SBPNN-Texb 100.0 99.8 0

Bayesiand 97.4 97.4 1

3-NNC 97.4 97.4 1

l-NNc 94.9 94.9 2

Decision Treed 94.9 94.9 2

Calyx, 660 nm 3-NNC 100.0 100.0 0

SBPNN-Pixela 97.1 96.9 1

SBPNN-Texb 97.1 98.9 1

Bayesian“ 97.1 97.1 1

1-NNc 91.2 91.2 3

Decision Treed 76.5 76.5 8

Russet, 1200 nm Bayesian‘I 91.9 91.9 3

SBPNN-Pixela 89.2 92.5 4

3-NN° 89.2 89.2 4

Decision Treed 89.2 89.2 4

l-NNc 86.5 86.5 5

SBPNN-Texb 78.4 81.2 7

Bitter Pit, 1320 nm SBPNN-Pixela 100.0 99.7 0

SBPNN-Texb 94.7 95.1 2

Bayesiand 94.7 94.7 2

1-NNC 92.1 92.1 3

3-NNC 92.1 92.1 3

Decision Tree“ 92.1 92.1 3
 

I’ 100-(100*Error Rate), (a) Single Backpropagation Neural Network Classifier using

pixel features, (b) Single Backpropagation Neural Network Classifier using texture

features, (c) Nearest Neighbor Classifier using texture features, (d) Using texture features
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APPENDIX B

Confusion Matrices for the Varieties and Classification Methods Used in S-Class

Classification

Table B.1 Using pixel intensities in single neural network (Empire)

 

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 23 0 3 0 O

Bruise 0 24 0 0 2

Stem-Calyx 2 0 28 0 0

Leaf Roller 0 O 0 9 1

Puncture 0 2 0 3 0 

Table B.2 Using pixel intensities in multiple neural networks (Empire)

 

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 24 O 1 0 l

Bruise 0 21 0 0 5

Stem—Calyx O 0 30 0 0

Leaf Roller O 2 0 1 7

Puncture 0 O 0 0 5

 

 

Table B.3 Using pixel intensities from two images in single neural network (Empire)

 

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 23 0 2 0 1

Bruise 0 25 0 0 1

Stem-Calyx 1 0 29 0 0

Leaf Roller 0 2 0 5 3

Puncture 0 1 0 3 l 

Table B.4 Using pixel intensity and texture features in single neural network (Empire)

 

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 25 0 O 0 1

Bruise 0 25 O O 1

Stem-Calyx l 0 29 0 0

Leaf Roller 0 l 0 8 1

Puncture 0 1 0 1 3 

Table B.5 Using texture features in single neural network (Empire)

 

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 21 1 2 1 1

Bruise 0 22 2 2 0

Stem—Calyx 3 0 26 0 1

Leaf Roller 0 O 0 9 1

Puncture 0 2 0 0 3 
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Table B.6 Using texture features in l—nearest neighbor classifier (Empire)

 

 

 

 

 

 

 

 

 

Good Bruise Stem—Calyx Leaf Roller Puncture

Good 15 2 2 2 5

Bruise 1 2 1 0 2 2

Stem-Calyx 3 0 26 0 1

Leaf Roller 1 0 1 7 1

Puncture O 2 0 0 3

Table B.7 Using texture features in 3-nearest neighbor classifier (Empire)

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 16 1 2 3 4

Bruise 1 2 l 1 3 0

Stem-Calyx 4 0 24 O 2

Leaf Roller 0 0 0 9 1

Puncture 0 2 0 0 3

Table B.8 Using texture features in decision tree classifier (Empire)

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 17 3 l 1 4

Bruise 1 23 1 O 1

Stem-Calyx 1 1 0 15 O 5

Leaf Roller 3 0 0 6 l

Puncture 1 2 l 0 1

Table B.9 Using texture features in Bayesian classifier (Empire)

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 7 2 1 2 l4

Bruise 2 1 5 0 5 4

Stem-Calyx l3 0 l4 1 2

Leaf Roller 0 0 0 9 1

Puncture 0 2 0 0 3

Table B.10 Using pixel intensities in single neural network (Golden D.)

Good Bruise Stem-Calyx Russet Bitter Pit

Good 20 0 2 2 0

Bruise 1 l9 4 2 0

Stem-Calyx 2 0 17 1 0

Russet 1 4 0 8 0

Bitter Pit 0 0 O O 14 
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Table B.1] Using pixel intensities in multiple neural networks (Golden D.)

 

Good Bruise Stem-Calyx Russet Bitter Pit

Good 23 0 0 1 O

Bruise 0 22 2 1 1

Stem-Calyx 0 1 l6 3 0

Russet O 4 0 9 0

Bitter Pit 0 4 O 0 10 

Table B.12 Using pixel intensities from two images in single neural network (Golden D.)

 

Good Bruise Stem-Calyx Russet Bitter Pit

Good 19 1 1 3 0

Bruise 0 26 0 0 0

Stem-Calyx O 0 l9 1 O

Russet O 3 0 8 2

Bitter Pit 0 0 0 0 14 

Table B.13 Using pixel intensity and texture features in single neural network (Golden D.)

 

 

Good Bruise Stem-Calyx Russet Bitter Pit

Good 19 0 1 4 0

Bruise 2 21 3 0 0

Stem-Calyx 1 0 19 0 0

Russet 1 4 O 8 0

Bitter Pit 0 0 0 0 14 

Table B.14 Using texture features in single neural network (Golden D.)

 

Good Bruise Stem-Calyx Russet Bitter Pit

Good 16 0 1 7 0

Bruise O 20 0 6 0

Stem-Calyx 0 0 20 0 0

Russet l l 0 1 1 0

Bitter Pit O 0 2 0 12 

Table B.15 Using texture features in 1-nearest neighbor classifier (Golden D.)

 

Good Bruise Stem-Calyx Russet Bitter Pit

Good 20 2 0 2 0

Bruise 0 1 8 0 8 O

Stem-Calyx 0 l 17 0 2

Russet 1 2 0 10 0

Bitter Pit 0 0 2 0 12 
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Table B.16 Using texture features in 3-nearest neighbor classifier (Golden D.)

 

 

 

 

 

Good Bruise Stem-Calyx Russet Bitter Pit

Good 16 3 0 3 2

Bruise 0 20 0 6 0

Stem-Calyx 0 1 l6 0 3

Russet 0 3 0 10 0

Bitter Pit 0 0 2 0 12

Table B.17 Using texture features in decision tree classifier (Golden D.)

Good Bruise Stem-Calyx Russet Bitter Pit

Good 13 5 3 2 l

Bruise 0 23 0 3 O

Stem-Calyx 2 1 17 0 0

Russet 0 2 0 1 1 0

Bitter Pit 0 0 4 0 10

Table B.18 Using texture features in Bayesian classifier (Golden D.)

Good Bruise Stem-Calyx Leaf Roller Puncture

Good 9 O 12 3 O

Bruise 0 1 8 2 6 0

Stem-Calyx 0 0 20 0 0

Russet 0 0 0 1 3 O

Bitter Pit l 0 4 0 9 
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