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THE EFFECTS ON THE WEIGHTING COEFFICIENTS

OF ERRORS OF MEASUREMENT IN THE

BY

Robert Alan Carr

The random predictor quantal response model is examined in

r{§%%eirch. Quantal response models are qualitative data analysis

The general situation addressed by quantal response models

Irisearch concern the relationship between a single qualitative

ii'iiquantal response) and one or more quantitative random pre-

rlNiiiables. This relationship is expressed in a series of

‘swc$efficients. For each category of the criterion there is a

gheifihting coefficients with one Weighting coefficient asso-

fiith“each predictor variable.

fifbblem is to describe a procedure for producing estimates

h;5tinq'coefficients which would be produced if there were

- igisurement in the random predictors.

ifléocedure used describes: a quantal response model and

efilents based on the assumed existence of error-free

iia'éqmm' eesp’onse model and weighting
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Robert Alan Carr

énts based on the observed predictor counterparts, which con-

Térrors of measurement, of these latent predictors; and two

‘dfi"Ement models which provide two possible relationships between

it§o quantal response models. Then the value of a weighting co-

1%E§fcient based on the use of latent predictors is compared to the

,fie of the corresponding weighting coefficient based on the use of

,9“3Q:Iicab1e across the universe of situations which define the quantal

o

.05

e£::-onse models.

Then a set of estimation procedures called analysis of co-

-_£flgafiid'be used to derive estimates of the weighting coefficients which

._ i ‘

No generally applicable algebraic results of the effects of

‘fis of measurement were discovered which apply to all possible ran-

«predictor quantal response models. Therefore, the two simplest

‘fiore examined in detail. For one predictor quantal response
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Robert Alan Carr

‘fland latent predictors. The derivation of these categories,

Y with their descriptions and examples of situations, are

”vi in this research.

SSE 0rfr'he analysis of covariance structures procedures as applied

Vigwi.maximum-likelihood estimates of the weighting coefficients

:gg the use of latent predictors are described. Since these pro-

1 “go POt lead to explicitly solvable estimates, a numerical

‘_;;tion procedure is needed to produce the estimates. This re-
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CHAPTER 1

      

  

    
           

   

 

  

   

,i'Section A: Introduction

.:'-L" In the social sciences one of the major problems concerns the

' 'k.. ‘.

'q‘LQTIeIiability of various measures used in analytical procedures. The

n '-

2y pmnblem arises since the measures of interest in many situations are

{C

‘

‘jieee than perfectly reliable. This problem with the reliability of

a

v

~3measures also occurs in the physical sciences but in general it is

[
\
‘
V

ginot nearly as severe a problem as in the social sciences. When errors

I
)
!

. f measurement are present only to a very minimal extent, that is the

reliabilities of all measures are near one, logic suggests that few

-i§dblems are likely to be encountered if these minimal errors of

's‘fjfiéasurement are ignored in using various analytical procedures. How-

ac.“

~, §§§§§§mw when more than very minimal errors of measurement are present

'j'» Determining the effects of the use of such fallible measures

«us analytical procedures has been the focus of previous re-

,data analysis models. Porter (1971) provides a review of
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is! errors of measurement on four common quantitative statis—

Ii.te§hniques. Wiley and Hornik (1973) provide a data example

gi‘ustrates the effects on interpretation of regression co-

in 7 '

”Slants when fallible measures are used with no adjustment for

. “.rrfr

‘sz‘r measurement. Brass (1954), Mote and Anderson (1965) and

VCIF‘SD, ‘

}_g33«4 and Proctor (1967) provide discussions of the effect of
. r ; .

5f_ in classification for three qualitative data analysis models.

’1‘ This research extends the investigation of the effects of
(I‘. ‘

,,°£ measurement to include another qualitative data analysis
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Section B: Errors of measurement in quantitative data analysis models

Cochran (1968, pp. 656, 657) has shown some of the problems

which can arise in the interpretation of regression coefficients

when errors of measurement in the predictor variables are present but

not considered. In this example the presence of errors of measurement

in the predictors is indicated by a reliability coefficient of less

than one associated with each predictor. Specifically, he discusses

a situation with one dependent variable assumed to be error-free and

two fallible predictor variables, i.e., each of the predictor vari-

ables have reliabilities less than one. In Cochran's example, the

size relationship between estimated regression coefficients based on

observed scores with no consideration of errors of measurement is the

opposite of the size relationship between estimated regression co-

efficients based on latent scores. In this example the regression

coefficients based on the latent scores, 8 and 82, have the rela-

1

tionship 81 > 8 while the corresponding regression coefficients
2

based on observed scores, 8'1 and 85, have the relationship

Bi < 8%.

Although Cochran's example is based on a specific set of para-

meter values it does illustrate the potential problem which can arise

When the effects of errors of measurement are not considered.

Wiley and Hornik (1973) provide a data example which illus-

trates the potential for misinterpretation which exists when fallible

measures are used in a regression analysis. The data came from a

Study of communication processes conducted in Central America. Suf-

ficient information was collected to provide estimates of the true
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regression coefficients. Each of two dependent variables were

individually regressed on two fallible predictor variables. The two

predictor variables were positively related to each other. One

predictor was highly reliable while the other was considerably less

reliable.

Considering the estimated true relationship, for one dependent

variable the more reliable predictor had the stronger relationship

(i.e., a larger estimated true regression coefficient) and the less

reliable predictor had virtually no relationship. In this situation

the regression coefficients estimated solely from the observed scores

with no consideration of errors of measurement did not differ greatly

from the estimated true regression coefficients.

For the second dependent variable the more reliable predictor

had virtually no relationship (i.e., a true regression coefficient

near zero) while the less reliable predictor had a very large rela—

tionship. In this situation, however, the regression coefficients

estimated solely from the observed scores with no consideration of

errors of measurement differed markedly from the estimated true

regression coefficients. Because of the positive relationship be-

tween the predictors, not only did the errors of measurement attenuate

the estimated relationship of the less reliable predictor (with the

stronger true relationship) but also some of the relationship of this

Predictor to the dependent variable is spuriously attributed to the

more reliable predictor (with virtually no true relationship). That

i3, when errors of measurement were not considered the predictor

which had a high estimated true regression coefficient but low
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5

‘9. g , .1 : ~

”7 ability produced an observed regression coefficient which was

. \--

'mt half the size of the true regression coefficient. However,

: 'v'mgother predictor which had estimated true regression coefficient

.mu‘ zero but had high reliability and was positively correlated with

' [‘1 :the first predictor produced an observed regression coefficient which

I'-

Was relatively large .

-;-. Therefore in this example for the second dependent variable

. w ‘dhterpretations based on regression coefficients estimated solely

72:;er the use of observed scores with no consideration of errors of

3‘fleasurement in the predictors would lead to conclusions which are

_. censiderably different from the conclusions based on an examination

.~_~ (fifths estimated true regression coefficients.

’ gar . These two examples provide an indication of the adverse

ffects of errors of measurements in regression analysis. Other re-

“dredged the problems which can occur with other quantitative data
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Section C: Errors of measurement in qualitative data analysis models

The problems associated with errors of measurement are not

restricted solely to quantitative data analysis models. Bross (1954)

examines the effects of errors in classification 1310 e variable in a

2 x 2 table. In this case samples from each of two populations are

classified into one of two categories on a second dimension. The

association of any unit with a particular population is assumed to

be without error but the classification of that unit into one or the

other of the two categories on the second dimension is subject to

error. The interest in this case is in the proportion of units from

one population which are classified into one category on the second

dimension as compared to the proportion of units from the second

population classified into the same category on the second dimension.

In this case, if the proportions of false negatives from

each of the two populations are equal and the proportions of false

positives from each of the populations are also equal then the dif-

ference in the proportions of units assigned to one category of the

second dimension when using the observed proportions is an under—

estimate of the difference based on the true proportions. Here the

Type I errors of the test of significance will remain unchanged but

the power of the test will be decreased.

If, however, the assumptions of the equalitywaf false negatives

and false positives across populations is not appropriate, the Type

I errors of the test of significance are increased.

Mote and Anderson (1965) work with units from a single popu-

lation which are classified into one of several categories on some
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dimension. When errors of classification are present the estimates

of the population proportions in any one category based on a random

sample of units from the population are biased. And standard

statistical tests where the null hypotheses specify particular popu-

lation proportions or relationships among the population proportions

will have increased Type I errors. Mote and Anderson (1965) discuss

several special case situations where statistical tests can be con-

structed which will have correct Type I errors. Each of these situa-

tions requires some specialized information which may not be available

in all cases.

Assakul and Proctor (1967) examine the effects of misclassi-

fication in the r X c contingency table on the standard x2 test.

Here errors of classification in each of the two dimensions are con-

sidered. If and only if the errors of misclassification in one

dimension are independent of errors of misclassification in the second

dimension then the null hypothesis for the x2 test of independence

based on the true population proportions implies the null hypothesis

based on the observed population proportions and vice-versa. Under

this condition the Type I errors are unchanged but the power of the

test in large samplesi£;never increased and nearly always reduced by

misclassification.

When the errors of misclassification are not independent,

Assakul and Proctor show how to make an appropriate x2 test based

on observed proportions when some very specialized information is

available. In this case they follow the same procedure used by Mote

and Anderson (1965) for one of their special case situations.
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,Thase three references indicate that errors of measurement

'::Ee problems in quantitative data analysis models as well as

'jt1Vs data analysis models. A summary of the three references
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Section D: The data analysis model to be examined in this research

The research to be presented here extends the investigation

of the effects of errors of measurement to a quantal response tech-

nique for random predictor variables. Quantal responses models are

qualitative data analysis models.

The general situation which is addressed by quantal response

techniques concerns the relationship between a single qualitative

criterion (quantal response) and one or more quantitative predictor

variables. The relationship of interest is the relationship between

the values on the set of predictor variables and the probability of

occurrence of a particular quantal response. In a quantal response

model the relationship of interest is expressed in a series of

weighting coefficients. For each category of the criterion variable

I there is a set of weighting coefficients with one weighting coefficient

associated with each predictor variable. The sign and relative size

of the weighting coefficient give an indication of the type and

strength of the relationship.

These techniques can be employed as classification procedures.

That is, for a particular subject whose classification on the

criterion is not known but whose set of values on the predictor vari-

ables is known, these techniques provide information about which of

the categories of the criterion is most probable. For a general

discussion about the classification of observations see Anderson

(1958, chapter 6) and Tatsuoka (1974).

Another use of quantal response techniques is to determine

estimates of the relationship between the predictor variables and the
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probability of occurrence of a category of the criterion. Estimates

of the relationship, in the form of a weighting coefficient for each

predictor variable, can be produced. It is this use of quantal

response techniques that is of interest in this research.

Quantal response techniques fall into one of two general

types, each with a model and associated procedures for estimating the

parameters of the model.

The distinction between the two types of quantal response

techniques depends on the type of relationship that is postulated be-

tween the predictor variables and the probability of occurrence of

levels of the criterion.

Since McSweeney and Schmidt (1974) and Cornfield, Gordon and

Smith (1960) both provide discussion about the two types of quantal

response techniques, only a brief description will be given here.

The first type of quantal response model assumes that,

either by the sampling procedure and/or by the theoretical considera-

tion of the location ofthepredictor variables late in the causal

chain ending with the criterion and the indirect mediational rela-

tionship of the predictors between other links in the causal chain

and the criterion, a functional relationship between the predictors

and the probability of occurrence of levels of the criterion seems

reasonable. For this type of quantal response model the predictor

variables are treated as fixed mathematical variables regardless of

their method of selection.

The second type of quantal response model becomes appropriate

when a functional relationship between the predictors and the
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probability of occurrence of levels of the criterion does not seem

to be a reasonable assumption. Because of sampling techniques and/or

because the predictor variables "...can be thought of as intermediate

links [in the causal chain] or as outcomes themselves then it is

most likely true that the factors influencing the predictors will

have a direct effect on the probability of [the criterion] as well

as an indirect influence mediated through the predictors.“1 In this

case a statistical relationship is assumed andthepmedictor variables

are then treated as random variables rather than mathematical vari-

ables.

The first type of quantal response model has been employed

in the biological sciences, particularly in assessments of drug

potency. A simplistic prototypical experiment would involve the pre-

determination of a fixed number of drug dosage levels. A preset

number of experimental animals at each dosage level would be injected

with the drug and their response on some criterion would be noted.

The criterion might be dichotomous (e.g. alive or dead) or

polychotomous (e.g. alive, moribund or dead). The important thing

to note here is that the dosage level is experimentally controllable

and the drug dosage level is expected to have a direct effect on the

probability of survival or non-survival.

The second type of quantal response model whichwillbe the

focus of this research will generally be more appropriate for social

1McSweeney and Schmidt; "Quantal Response Techniques for Random

Predictor Variables," AERA presentation, 1974.
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science applications. McSweeney and Schmidt (1974, pp. 5, 6) pose

a hypothetical example of this second type of model. In the example,

mastery of a learning task (with two levels, mastery and non-mastery)

is the criterion of interest. Theprobability of mastery is to be

expressed as a function of entry level knowledge of the student. "In

this case, the data would be generated by classifying a random sample

of subjects on the basis of their entry knowledge and their mastery.

The choice of levels of entry knowledge of the subjects to be observed

is not under the control of the experimenter and as such the number

of subjects exhibiting xk units of entry knowledge is a random

variable (usually taking on only the values zero and one) rather than

an experimenter-imposed-constraint. Furthermore, it would be

plausible, logically, to postulate the existence of other variables

(e.g. motivation, need for achievenemt, interest in subject matter)

that affect both [entry level knowledge] and mastery. Consequently

the observed relationship between the predictor and the criterion

could be a result of the direct relationship of each to other vari-

ables."2 Thus in this case the predictor variables are expected to

have a statistical, as opposed to a functional, relationship with the

probability of occurrence of levels of the criterion. Therefore the

predictor variables are treated as random variables.

This second type of quantal response model which is the model

of interest for this research will be called the Random Predictor

Quantal Response Model to distinguish it from other uses of quantal

response techniques not involved in this research.

21bid, p. 6.
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Section E: Presentation of the problem for this research

In the presentation of the model it is clear that the Quantal

Response model contains both qualitative and quantitative variables.

The criterion is a qualitative variable with two or more categories

which have no necessary ordered relationship. The predictor vari-

ables are quantitative statistical variables which can conceivably

assume any real value, positive, negative or zero. For this research

the qualitative criterion variable will be assumed to be error-free.

That is for any given unit the classification of that unit into one

unique category of the criterion is accomplished without error.

However, one or more of the predictor variables may be measured with

error.

Therefore the impetus for this research is provided by a

situation such as the following. There is an interest in determining

the relationship between the occurrence of some category of a

qualitative criterion variable and the true values on one or more

quantitative predictor variables where the Random Predictor Quantal

Response Model is the model of choice.

Since the relationship of interest involves the true values

of the predictor variables, rather than the observed values, and

since it is known for other statistical models (e.g. Linear Regression)

that in the presence of errors of measurement the relationships

estimated on the basis of observed scores do not always approximate

well the relationships estimated on the basis of true scores, two

general questions arise.
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The first question is: How much variation is there in the

estimated relationship based on observed scores of the predictor

variables compared to the relationship based on the true scores of

the predictor variables? The response to this question may vary de-

pending on a variety of factors such as the extent to which errors

of measurement are present in the predictor variables and the correla-

tion between the predictor variables, among others.

Since some difference in estimated relationships can be ex-

pected based on research with other models and since true scores on

the predictor variables are typically not directly measurable, the

second question becomes: What estimation procedures can be developed

which will provide the estimated relationship of interest based on

true scores of the predictor variables?

These two questions provide the direction for this research.

The first question provides the direction for the first major area

of the research. Area one involves determining the effects of

various levels of errors of measurement on the weighting coefficients

in the Random Predictor Quantal Response Model. The second question

indicates the direction of the second major area of the research.

Area two involves developing techniques to estimate the weighting

coefficients which would result if the true score for each predictor

Variable were available for use in the model.

Chapter 2 will provide a detailed presentation of the Random

Predictor Quantal Response Model for observed predictors and for true

Predictors. In each case, the general model and two special cases

"111 be presented along with various simplifying derivations and
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other interesting algebraic results. The measurement model which

relates the true predictors with the associated observed predictors

will be defined in this chapter.

Chapters 3 and 4 will present the results of the research

for the two major areas identified above; chapter 3 for Area one and

chapter 4 for Area two.

For chapter 4 an expanded measurement model will relate the

observed predictors to the latent predictors. The task will then be

to estimate latent parameters from the observed data. A set of pro-

cedures often used where errors of measurement are incorporated in

the model are termed Analysis of Covariance Structures (ANCOVST).

Joreskog (1970), Wiley, Schmidt and Bramble (1973) present dis—

cussions of ANCOVST procedures. Modifications of these procedures

will be used in chapter 4.

Chapter 5 will contain a brief description of a computer

program, using the methods described in Chapter 4, which can produce

estimates of the latent weighting coefficients. An illustration of

the use of the computer program will also be provided.

Chapter 6 will provide the summary of the results of both

major areas of this research along with recommendations for further

study.
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CHAPTER 2

Section A: The Random Predictor Quantal Response Model - An

Introduction

In this chapter the Random Predictor Quantal Response Model

will be presented along with various algebraic derivations and results

of interest. The weighting coefficients associated with each pre-

dictor which provide an indication of the conditional relationship

between a given predictor and the probability of classification into

a particular category of the criterion will be identified.

In fact, two Random Predictor Quantal Response Models will

be presented. The first model to be presented (Section B) is based

solely on the use of observed predictors with no consideration of

errors of measurement. This model will be called the Observed Random

Predictor Quantal Response Model. The weighting coefficients

identified from this model will be called the observed weighting co—

efficients. The second model to be presented (Section C) is based

on the use of latent predictors. This model will be called the

Latent Random Predictor Quantal Response Model. The weighting co-

efficients identified from this model will be called the true

weighting coefficients. Although the true weighting coefficients

represent the relationship of interest between the predictors and

the criterion, seldom if ever will there be available direct measure-

ments of the latent predictors. Thus, there will not be available

16
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3.57". 2. Since the measures that are available in practice are for
. ? ,

Wed predictors only, it will be necessary to develop a relation-

, ! .ghip between the observed predictors and the latent predictors,

: . - .

’. h‘epce between the observed weighting coefficients and the true
.

.' Zayeiyghting coefficients. The model which will relate the observed

|

v: predictors to the latent predictors is a measurement model based on

"gécthe classical true-score model. This model and its extensions as

."‘:4‘pseded for this research will be presented in Section D below.

.{4-..

' ,5 Section E will summarize the results of the work presented

e,

P‘._}in this chapter and its relationship to the work to be presented in

‘aai.
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Section B: The Observed Random Predictor Quantal Response Model

The most general case of the quantal response model using

observed predictors allows for a polychotomous criterion with J

number of categories (J.Z 2) and p multiple predictors (p 3_1).

The Random Predictor Quantal Response Model using observed predictors

has been presented for this most general case by McSweeney and

Schmidt (1974, pp. 10-13). The model presented below is identical

in structure to the model presented by McSweeney and Schmidt. Only

the notational form has been changed to accommodate adjustments

needed for this research.

Let Y be the criterion variable which takes on values

Y = j, (j = 1,2,...,J) where each category of the criterion is

assigned a unique value as an identifier chosen arbitrarily from the

numbers 1,9,...,J. The quantal response model does not require and

does not consider any ordering among the categories. Therefore,

the numbering of the categories of the criterion is merely for nota-

tional convenience and need imply no ordered relationship among the

categories. Let 5 be the p x 1 random vector of observed pre—

dictor variables where é' = (x1 X2 ... Xp).

One of the traditional interests in quantal response tech-

niques is to find the probability associated with membership in each

category of the criterion given values for each predictor variable,

i.e., Pr{Y = jlé} for j = 1,2,...,J. It is this interest which

provides the basis for the quantal response models.

Let f(§IY=j) for j=1,2,...,J represent the J con-

ditional distributions of the random vectors for predictor variables
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'tgices Z and mean vectors 3:3) (j = 1,2,...,J).

Therefore the conditional probability of occurrence of

’ ngqponse Y a k (k = 1,2,...,J) can be expressed as

J P. .

‘ 8 = s
__ _ (J) I -1 _ (j)

Pr{Y klx} Pk _ 1/[1 + jil 3: exp{ HE(§ Ex ) Z (5 Ex

574k

)

(x - 34k))'£'1(§ - gfik))]}]

pj = the unconditional probability of occurrence of category

j (j = 1,2,...,J),

:3) = the p X 1 mean vector of the distribution of observed

predictor variables for level j of the criterion

(j = 1,2,...,J), and

Z = the p X p covariance matrix of each of the J con-

ditional distributions of the observed predictor

variables.

A simplification of this expression (2.1) is possible. Con-

,gportion of the exponent, as follows.
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(Ex (j)
.-.-egag- j))'}:1(x-,¢x

.1 Y _ .

15- (5'2'1 -

n “‘

,.

B
OPE-1”§ _ Hz?)

a: 5.

‘3

~.'_4th - x'I:1x - gm' 2—1X - X'X

_ .-1 (kw-1
£2 £+J¢x Z 5

Since X'Z-lg(k)

.2-1H(k)'_

Note: is

R:tric then x (£2

'Z-1§ + 2E)(Kk)

(k)_

Bx ”PE—1%] + Rx

)- (25-),x )'

)-(§'z'1-

—1()
uxj

+ X'Z

'1 (k)

Bx

. .9".

(j)'

(k) {1% _ My)

(k)(k) '2—1) (I _ Ex
2,, )

( ' -1 ( )

—1 (k) (k), -1 (k)

Rx — Ex 2 Ex ‘

a 1 x 1 matrix and Z is

(k) '2-13.

)' x

-1 (j) (k) —1 (k)

Ex 2 Ex

(k)' -1 (k)
- E 2 E .

-1 (j)

2 Ex X X

@{m-:1+1imm-'12“) _ Hm'z-1E(j)]_ fik)_ HEM'E'lz}.

Let ék-d - {104m - It)?” and let ,

. -Ln(§:) - %[3;k)'2_lgék) - g£j) Z-lg(j)].

efore R - exp{ (ak.j+ Ek- j)9}.

 

(2.1) can also be expressed (for
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J

(2.2) Pr{Y = klg} = Pk = 1/[1 + z exP{-(ak.j + Eli-3'9”

i=1

17*

where

P. - .

_ _ _J_ _ 1 (k)' —l (k) _ (J)' -l (j)

ak-j - Ln(Pk) afgx 2 Ex EX 2 EX ]

and

_ -l (k) (j) . .
fik-j — 2 (Ex — Ex ) for j # k, j,k = 1,2,...,J.

In this formulation of the model (2.2) the p X l vectors

of observed weighting coefficients Ek-j (jaik, j,k = 1,2,...,J)

are indicated. The k-j subscript notation is used to indicate

that the value of the weighting coefficient is dependent upon para-

meters from two distinct categories j and k. The ordering of

the letters in the subscript indicates the order of the subtraction

in the definition of the weighting coefficient, i.e.,

= -1 (k) (j) _ -l (3) (7)

Ek-j 2 (Ex Ex ) or fi3.7 _ 2 (Ex Ex

tion for fik'j for some k,j (j # k, j,k = 1,2,...,J) associates

). An interpreta-

vector fik-j with category k. In this interpretation the components

of gk'j indicate the conditional weighting attached to each predictor

variable in differentiating between categories k and j. The sign

of a component indicates the direction of the weighting while the

magnitude of a component indicates the strength of the weighting.

For each category k (k = 1,2,...,J) expression (2.2) in—

dicates the existence of J - l vectors of weighting coefficients

of the form Ek-j (j # k, j.k = 1,2,...,J) associated with

category k. Therefore, for all J categories there will be
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J-(J-l) vectors of weighting coefficients to consider. The values

of these J -(J — 1) vectors of weighting coefficients are not

mutually independent. In fact, Appendix A.l demonstrates that only

a base set of J - l vectors of weighting coefficients associated

with some arbitrary category k of the criterion (k = 1,2,...,J)

need to be considered. Each of the other (J — l) vectors of

weighting coefficients associated with any other category k' # k

are shown to be linear combinations of vectors from the base set of

J - l vectors associated with category k.

The interest for the first area of this research is in the

relationship between the probability of occurrence of some category

of the criterion variable and the values of the predictor variables.

This relationship for observed predictors is given by the components

of the vector of observed weighting coefficients.

Since there is interest in the inidividual components of the

vector of weighting coefficients there will be some utility in

deriving an expression for the individual weighting coefficient

associated with some observed predictor Xq (q = 1,2,...,p).

Consider now some vector of observed weighting coefficients

associated with some arbitrary category k (k = 1,2,...,J), gk-j

. -l (k) (j) .
(j f k, j,k = 1,2,...,J), where gk-j = 2 (Ex - RX ). Con51der

also some observed predictor xq (q = 1,2,...,p) and the observed

weighting coefficient component of vector Ek-j associated with

. q . .
redictor x call it i.e. 8 = ( .) .P I Bq, q fik.3 q

The task now is to derive an expression for the single ob-

served weighting coefficient for observed predictor Xq, i.e. Sq I
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(j i k, j,k = 1,2,...,J) of the Observed Random

'v.ptor Quantal Response Model.

' Therefore

-1 (k) (j) -l (k)
.. ExI =

= _ "1 (j)

sq (fik,j>q (2 (Ex ))q (2 Ex )q (: Ex )q.

Hence no generality is lost, and considerable help in nota-

.. =13 gained, by considering Xq to be the first predictor in the

'. ‘of observed predictors, i.e. q = l.

1 (k) 1-1 (3')

Ex
Thus 31 = (2' Ex )1 - (z )1.

X_1 (k))
Consider ( Ex first .

1 -1 1 c' c' _ . . _

.C = the cofactor of element (2) . .. Thus

- . ij 13

-1 (k)) c' (k)) l c' (k)
Ex )1=(T—r2c Ex lbs-mm Ex )1.

(k) '
is a p x 1 vector, Ex = [110311029 1102‘) and]

X X X

(Z

1 c' (k) 1 P (k)

)1 Til"z Ex )1 Wtilcuuxz __,

p C
(10+: 2._l 11.00]

17'-

+1=2C—11ux1 1_.’
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_ . 1+

Note: C21 = (-1) 1[M2 I where Mil is the minor of

(2)11

Now consider the p predictors in cateogry k. Choose the

3'jarst predictor x1 as a dependent variable in a linear regression

'afid‘use the remaining p - l predictors as independent variables in
_;I

gihe regression. That is:

(k) (k) 3 (k)l (k)
x2 + b1+...+ b+ b12 X 1’P- p+

b1-o x e

(k) (R)

1'0 1m

egression coefficient associated with predictor Xm (m = 2,..-.P).

is the constant of the regression and b is the

(k)' _ (k) (k)
g — [b1.2 b ... b1

1'3

~ 222 E21

I

z ' “11 : 512 1

---T---

521 l 222 9'1

l p-l

(k)
Since the values of g involve only elements of the co— ‘ *
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‘ (k) _ _ -1
Therefore let 2 — g — 222 £21 with

1. 2 b1.3 ... b1.p].

Consider some component of g, call it b1.m (m = 2,...,p)

-1

b1-m ' (:22 E21 m ' (Ix:2|z22 ~21m

232 is the matrix of cofactors of elements of 222

= (to )
IZ:2| 22 221 m

: ‘27’ bl°m = |222| 1:1 C1(m-1)‘§21’1

3 where the subscript 1 here is associated with the renumbered com-

." 2a n . . . . .
;;; poments of £22 beginning With (222)11 which is actually 022 in

.7: the original numbering system. A dual notation system (element

jhuflbering system) for the elements of £2 and the other submatrices

In equation (2.7), Ciii-l) is the cofactor of the element

row '1 and column m - 1 of matrix 222, and (£21)i is the 1th

{‘of vector £21.

‘ii §g§g_l; b1.m is the regression coefficient associated with

km in equation (2.6).

2
note 2: Let M11 be the minor of the element in row one and

f 2. Then
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02 U 0

22 23 "' 2p

0 02 'a and In: | - I: I-
32 33 3p 11 22

0' O 0292 P3 0.. PP

M2 and 22 are nearly identical (p - 1) x (p - 1)   

  

£1 2

. except that row one (1) of “:1 does not occur in 222

' ' x
In! (t - 1) of 222 does not occur in M21.

1 2 . . . p-l

P -s

1 012 013 . . . 01p

2 02 a a '
22 23 ' ' ' 29 ,,///

2-1 °2-1,2 “24,3 ' ' ‘ 2,-1,p

°2+1.2 °1+1,3 ‘ ' ' °1+1,p
V

O O . O ;

Q U D . ‘f.

p-1 a a 02 55"2 . . . ‘

«.P 93 PP J I“

: l»

  



£ ‘
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oin'nor‘Om
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1 2 n c o P-l

r- 2 "V

1 022 023 . . . 02p

3 2 2

32 °33 ‘ ' ‘ 3p

) x (pwl) . . . .

”'2 °2-1,2 °1—1,3 ‘ ° ' OIL-LP

1—1 022 013 . . . czp

2

  -1 a ' a a

P L 92 93 pp

   

  

  

  

  

     

  

    

If row 1 were deleted from “:1 and row (2 — 1) were

'r11ted from 222 the resulting matrices would be identical. “

5 store the minor of any element in the first row of Mil will be

' cal to the minor associated with the element in row (2 - 1)

which has the same column subscript as the element in Mil,

Z

M 2
2.1

22
.

-, " M11
3 M(£-1)i

for J. = 1"°’IP-1-

ii, gfiflp‘z)“(P'2)
(p—2)x(p-2)

(LNote 4: For any symmetric matrix M = M' Therefore

1:) ji'

—' 11ml-

:; Thus in category k, for any predictor Km other than the

m - 2,...,p, the cofactor le of the element in row

_ m+l 2
1mm 1 of z is. cm1 - ( 1) leI and expanding

"factors of the first row of Mil

_ n 1 z .

P‘l . M ‘ .‘t

" -;-.,'E.<-1’m+lf 2 (4)1” - I “‘1 J . , :7:M . ~ 0
1.1 11 (1+1)1
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)‘i‘ f- 1,...,p — 1 represents the renumbered row subscripts for

is the element in row (i + 1) and column 1 of

this also the ith element of the vector £21

 

Therefore

p 1 ME

(-1)m+1- (-1) z (-1)1 - lul‘ifll - “(inn

(ml .. i=1

C 2 '

11 IM11I

From equation (2.7):

p-l Z

1 22

b '= 2 C. (E ).
2 I - 1 m I222I i=1 10:1 1) 21 1

P-1_ X

z [(-1>i+"‘1-|M22 J
222 1:1 i(m-1)I ' °(i+1)1

_ m—l p-1

= (:1) z (-1)

22 i=1

. 2

i 22

IMi(m-1)I ' °(i+1)1

matrix 222 and a(i+l)1 is the element in row (i + 1) and

. l‘of 2 which is also the 1th element of the vector £21.

' :‘equations (2.8) and (2.9).

HP” = (-1)2(-1)“"1 = (-1)"“1

Z

2 22%1
' m-1)I=IM(m-1)1I = Inn1| from Note 4 above and Note 3

  



...‘h 10 W

It‘.

A .

2 V. ’1‘“

r c(Ito.
O O

3:051

COCII‘O

.‘

110.... )t)

'I“.( ‘(

0

j 4.

r.org

'

I
D I)

t)

'
1

I "

r(f P)

(n



29

‘3

C11

   

     

Thus equation (2.5) becomes:

C

33.3: -1 (k) 11E (k)
(2 ) = u - g b u(k)]

15x 1 TH x1 z=21"‘8

,i‘

-1-“here b11 (2 = 2,...,p) is the regression coefficient associated

‘ {pith predictor x£ when predictor X2 and the other p - 2 pre-

tifféictors are regressed on the first predictor as in equation (2.6).

,Eé‘ In general for any predictor xq in category k, since any

r;

'ggredictor can be put first in the ordering of the set of predictors:

(2-12(k))(Tq?x[u(k _ Z 2 “(t)] .

2=1bq° x /«

lfq

(k) (k) (k) (k)
the: u = b . + b . u +...+ b . _ u _

-— xq <10 qlxl qqlqu

(k) u(k)
+b +...+b .

qq+1u xq++1 q9"x13

(k) _ u(k) 1; "(In

q-O xq =1 q.g xz

27k;

‘ r

“2 , b(k)

_ : q-O

sents the intercept of the regression hyperplane of xq for

is the constant in the regression equation above and

ry k data.

Therefore

(213(k)) q=_c|:_<I;:Tr-,(kz) .

a similar manner for category j (j f k, j,k = 1,2,...,J), ,';é".

(2.11):

" '2‘ ‘ Mi
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—1(j) (j)_ P
(2 [tax 22 b . u 1.

QTST -1 q 1 x1

lfq  

    

     

And similar to the work for equation (2.12), equation (2.13)

<2‘31‘3"($31.9) .

Using the results (2.12) and (2.14), equation (2.3)

) a (Ii-1(3):” '- 30(3))“ becomes
'j q

(k)_ b(j)
q=T9$(bq,o bq-o’ .

', .gearession hyperplanes, in the form of (2.6) , multiplied by a scale

fisher associated with the chosen predictor.
?.

£15? I - Additional formulations of Bq = (B ) can be produced.
9 k-j q

'Note: [XI = 2:1 “qchz for some q = 1,2,...,p

p C

= cqua:q + z cq£ Eggfl

i=1 qq

z$q

2 P

lzl - c [a - z b a J
qq qq £31 q‘fi q'l

z¥q

on (2.10) generalized. Therefore:
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b‘fé - b(?;

(2.17a) B = q, ‘1
q 2 p

o — 2 b .zo oz

qq £=1 q q

lfq

from equations (2.15) and (2.16) or

 

. P .

k(u( ) _ um) __ z b .2”? _ u(’31))

xq xq 2= q x x

(2.17b) 8 = 2#q
q 2 p

o = 2 b o 1

qq' 2:1 q'1 q

2%q

from equations (2.11), (2.13), (2.3), and (2.16).

Equation (2.17b) expresses Bq = (§k°j)q as the ratio of

two linear combinations each of the form

P

6 - E b 6 .

q 2:1 q'“ l

1an

Although there are other ways to express the general model

and to express the single weighting coefficients, those presented

above seem to have the greatest utility for the work which follows,

i.e., (2.2), for the general case of the Observed Random Predictor

Quantal Response Model and (2.15) and (2.17b) for the expressions

for single weighting coefficients.



.m4......)1
cl

7.‘l

U041.
_..sui

dw.‘I,"

_lIIn

.

u4m:)0n

ol(.o

w0)..

rand;

H
!

u

.
‘
9

i...

.3e... v

3...a...“

c
3.)

:ml;...
it“(.Il

H

n
.

'
1

3

3
:
!

c)b.I

J.“orb“
1.



32

Section C: The Latent Predictor Quantal Response Model

The development of this model depends on the assumed existence

of a general unobservable entity, a latent measurement for each pre-

dictor. Then the development of the most general case of the Latent

Random Predictor Quantal Response Model follows easily from the de-

velopment of the Observed Random Predictor Quantal Response Model.

This most general case model allows for a polychotomous criterion

with J categories (J Z_2) and p multiple predictors (p 3 1).

Let Y be the criterion variable which takes on values

Y = j (j = 1,2,...,J) where each category of the criterion is

arbitrarily assigned a unique value from the numbers 1,2,...,J.

Let T be the p x 1 random vector of latent predictor variables

where 2' = (T1 T2 ... Tp).

Assuming that for each category of the criterion the condi-

tional distribution of g is p-variate normal with identical p x p

covariance matrices, ¢, assumed homogeneous across all categories,

(3')
T (j = 1,2,...,J), the derivation of a modeland mean vectors H

for the latent predictors exactly parallels the derivation of the

model for observed predictors with T in place of z, ¢ in place

(3') (j)
of 2 and ET xin place of g (j = 1,2,...,J). One other

variation in notation will be made to differentiate between this

model and the observed predictor model. An asterisk (*) will be

used as a superscript for some parameters to indicate that the

parameter is associated with the latent predictor model.



We as S.

now u.

L
J

4
.
-

f
1

. .

.u ....m ...m

'n' O .
a” 1 o".

". O

pbifDr-

3’05!“

..(lhf'OHu.

.

.:_

...:

'
1
1

I

..nvo
.l:

D
.
)



33

Using the above replacements in the derivation of expression

(2.1) produces for some category k (k = 1,2,...,J) an expression

for the Latent Random Predictor Quantal Response Model.

*

(2.18) Pr{Y = klg} = Pk

_ J 31 (j)
— 1/[1 + 2 eXP{-%[(2 - ET

j=1 Pk

ja‘k

)'¢’l(g - 343))

- (g - 34k))'¢'1(z - 34k))]}]

where pj = the unconditional probability of occurrence of category

j (j=1I2I°°'IJ)I

(j)

RT = the p x 1 mean vector of the distribution of latent

predictor variables for level j of the criterion

(j = 1,2,...,J)

and O = the p x p covariance matrix of each of the J con-

ditional distributions of the latent predictor variables.

The argument which produced expression (2.2) from (2.1)

can be used to produce from expression (2.18) the following

simplification, by merely replacing E by T and adjusting other

notation to indicate that latent parameters are involved.

* J * *l

(2.19) Pr{Y = klg} = Pk = 1/[1 + jil exp -(ak.j + Bk-j 3)}3

j¢k

where

* P' 1 (k)' -1 (k) (')’-1(')_ - .1. _ _ J J
ak-j - ln(Pk) ngT ¢ HT ET ¢ RT 3
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and

* _ .
1 (k)‘E.I(-J))

gk-j = (p (2.1.

for j # k, j,k = 1,2,...,J.

In this formulation of the Latent Random Predictor Quantal

Response Model (2.19) the p x l vectors of latent weighting co-

efficients gk-j (j #k, j,k = 1,2,...,J) are indicated. The sub-

script notation carries a parallel interpretation to that of the

interpretation for the observed weighting coefficients given above

in Section B of this chapter.

As with the observed weighting coefficients it is necessary

to consider only a base set of J - l vectors of latent coeffi-

cients associated with some arbitrary category k (k = 1,2,...,J).

All other latent weighting coefficients are linear combinations of

vectors from the base set. See Appendix A.2 for proof.

Two other results of interest from the observed predictor

model have direct parallels in terms of latent predictors. Two

expressions for the individual weighting coefficient Bq, (2.15) and

(2.17b), become: for some category k (k = 1,2,...,J), some vector

of true weighting coefficients Ek-j (j # k, j,k = 1,2,...,J)

associated with category k and some individual latent predictor

Tq (q = 1,2,...,p), the single weighting coefficient associated

with predictor Tq, call it 8; where B; = (§;.j)q has the follow-

ing expressions.

*

* C (k)* (' 'k

_ _ :1)
(2.20) sq - fly (qu bq.o )
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and, P

k * k °( (q) “((31% 2 b .£(u(£) 11(2))

'1‘ T i=1 q '1' 'r

*

(2.21) B = 1251

q 2* p * *

O ‘ 2 b .20 9’

qq 2=1 q q

Mq

where the * as superscript indicates the parameter is a parameter

from the latent predictor model which corresponds to the non-super-

scripted parameter from the observed predictor model.

Expression (2.19) for the general case of the Latent Random

Predictor Quantal ReSponse Model and expressions (2.20) and (2.21)

for the single weighting coefficients appear to have the most

utility for the work which follows.
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Section D: The Measurement Model

In the two previous sections two quantal response models have

been developed. Although there is an obvious parallelism between

the models as evidenced by a comparison of (2.2) for observed pre-

dictors and (2.19) for latent predictors there is no link between

the parameters of the models. The purpose of this section is to

introduce a measurement model which will provide the link between the

models.

The basic measurement model to be used in this research is

the classical true score model. Following the notation introduced

above g is the p x 1 random vector of observed predictors and T

is the p x 1 random vector of true predictors. Using a multi-

variate extension of information presented in Lord and Novick (l974)2,

the p x 1 error random vector E is defined by the linear rela-

tion

where 5' = [x1 x2 xp]

3' = [T1 T2 ... TP]

and E' = [e1 e2 ep] .

The assumptions of this classical model again taken from Lord

enléi Novick (1974) with appropriate extensions to the multivariate

case are:

\_____

2

1‘3133, F.M. and Novick, M.R.; Statistical Theories of Mental Test

'EEESEElgg, Addison Wesley, Reading, 1974, p. 56.
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(2.23a) E

2
:
1
1

ll

2
0

that is, the expected value of the errors in the population of sub-

jects is zero.

(2.231») Var (g) = 22

2 . . . . . .

where W is a diagonal matrix of error variances. That is, in the

population of subjects the errors between any two predictors are un-

correlated (peleJ = O, i # j) and the error variances of any pre-

dictor i (i = 1,2,...,p) is given by 021. Therefore

e

2 2 2

T = diag{o a ... 02 }.
l 2 p

PXP e e e

(2.23c) Cov (§,T) = [O]

PXP

That is, in the population of subjects the covariance between error

scores and true predictor scores on the same predictor is zero

(cov (Ti, ei) = 0 for any i (i = 1,2,...,p) and the covariance

between error scores on some predictor i (i = 1,2,...,p) and the

‘trfiae predictor scores for any other predictor j, j ¢ i is also

Zero (cov (Tj, ei) = 0). Several important results come immediately

from expressions (2.22) through (2.23c) above.

(k) (k)

Ex ET
(2 - 24a)

1,2,...,J).for any category k (k

To demonstrate this, consider any category k (k = 1,2,...,J)

(k) _ _ _
Ex = Eng) - 6kg + g) - 6kg) + Ekgg) .
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Since Ek(§) = Q by (2.23a),

EX =Ek(g)+Q=E(T)EET .

(2.24b) X = (D + ‘P

for any category k (k = 1,2,...,J).

To demonstrate this result, consider any category k

(k = 1,2,...,J)

 

2 s Var(§) = Ek(§ 5') - Ek(§)Ek(§')

= Ek((g + §)(g + g)’) - Ek(g + §)Ek((g + g)‘)

= Ek(gg' + gg' + gg' + gg') - Ek(g)Ek(g')

= Ek(gg') - Ek(g)fk(gj') + Ek(§§') + Ek(§g') + Eng')

= Vaer) +Var(§) + [0] + [0]

pxp po

= Var(g) + Var(§)

Z = (b + 1112

E922} Ek(§TL) = Ek(gE;) = [0] where [O] is a p x p matrix

W:‘Lth each element a zero. This follows from (2.23c) .

Expressions (2.22) through (2.24b) provide the basic relation-

S3111p between the elements of the Observed Random Predictor Quantal

Response Model (2.2) and the Latent Random Predictor Quantal Response

Model (2.19).

The measurement model as given by (2.22) will be sufficient

:ftDIT use with the research for Area one in determining the effects of
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unreliability of the predictors on the weighting coefficients. In

this work to be presented in Chapter 3, the direct one-to-one

parallelism between an unobserved true predictor and the correspond-

ing observed predictor with the connection provided by (2.22) will

be sufficient. However, for the Area two work which involves de-

veloping estimation procedures for the latent weighting coefficients,

the basic measurement model represented by (2.22) will not be suf-

ficient. An expansion of the basic model will be necessary. The

Area two work will be presented in Chapter 4.

The expansion of the basic model which will be needed pro-

vides for the use of replicate observed measurements for each of the

(predictor variables. A more detailed discussion of the need for

replicate measures and their use in the estimation process will be

;presented in Chapter 4.

The expanded model assumes the existence of a single true pre-

ciictor for each construct to be considered as a predictor but allows

ftnr multiple observed measurements to be recorded for each predictor,

(3151 of which provide information about the predictor. Since the

Various observed measurements for a given predictor may not be

recorded using the same scale of measurement a scale factor is in-

ClLIded in the model.

The model relating some latent predictor T3 (j = 1,2,...,p)

with 111 number of replicate observed measures becomes

le le mxl

where A] is an m x 1 vector of scale factors which relates the
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latent predictor Tj to the non-error portion of £3, and gj is

an m x 1 vector of errors for predictor j.

For a given latent predictor each observed replication is

assumed to provide a measure of this latent predictor including

allowance for error and for the scale of measurement of that partic-

ular observed replication. Before a value can be assigned to a

scaling factor it is necessary to assume the presence of some master

reference scale of measurement for each predictor. For most variables

to be considered, this assumption is not typically operationally or

theoretically feasible. It is thus necessary to resort to a pro-

cedure commonly used in analysis of covariance structures (ANCOVST)

procedures. In this procedure one of the observed replications is

chosen to provide the reference scale and the value of the scaling

factor of that replication is arbitrarily set to 1. By doing this

the scales of all the other replications can be referenced to the

scale of the chosen replication rather than to some absolute scale.

For this technique the choice of the reference replication is

theoretically immaterial and is typically chosen to be either the

first or last observed replication for convenience. Thus the form of

. ' U

A] from (2.24a) becomes A] = [1 A ... 1m] where A the

2 1'

scale factor associated with the first observed replication is

arbitrarily set to l, i.e., 11 = 1.

To produce the general model in matrix terms, which is the

3
extension of (2.22) let any true predictor T (j = 1,2,...,p)

have Kj observed replications where Kj 3_l. That is, there are

Kj observed predictors associated with true predictor T3.
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P

Let V = 2 K. that is, V is the total number of observed

i=1

measurements associated with the p true predictors.

The model for a single observed measurement can be written

(2.25b) x3 = A? T3 + e?
i i

with j=l,2,...,p and i=l,2,...,K.

J

j .th . . . j
where X1 is the i replication of true predictor T ,

T3 is the jth true predictor,

j . .th . . . .
e1 15 the error for the i replication of predictor j,

and A: is the scaling factor which relates the true predictor

T3 to the ith observed replication of T3. (Note:

A: = l for every j).

In matrix terms the general model for the p predictors can

be written as

(2.26) g = A T + E

where

1 ' I
x. = [x x . . . x : X2 x2 . . . x : . o e : xp XP 0 o 0 XP J I

~ 1 2 g 1 2 k . . 1 2 k
lXV 1 I 2 l I p



7
.

e
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f. 1 f‘ 1 “

A = l 0 O . . . 0 and g = e1

VXp 1 VXI 1

12 0 O . . . 0 e2

1: 0 O . . . 0 e:

1 l
- ................ _ _.__2_...

O l O . . . 0 e1

2 2

0 12 0 . . . 0 e2

0 A: 0 . . . 0 e:

2 2
——-—---——————-——4b —(————(p—

up ———————. ——————— )— ~—.B--

0 O O . . . 1

e1

0 o o . . . AP ep
2

o o o . . . 1P ep
kp kp

L .J L .1 
The assumptions about elements of the basic model (2.23a),

(2.23b) and (2.23c) all apply to the extended model with the appro-

priate adjustments in notation to accommodate the increased number

of observed and error parameters.

Therefore, results comparable to (2.24a) and (2.24b) can

be produced.

(2.27a) g £k) = A (k)

Vxl V;P leT

for any category k (k = 1,2,...,J).
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To demonstrate this, consider any category k (k = 1,2,...,J)

(k) _ _ _
Ex = Ek(§) - Ek(Ag + g) - Ek(Ag) + Ek(§)

_ _ _ (k)
— Ek(A2) — AEk(g) — ART .

(2.27b) z = A ¢ A' + w2

va VxP pxP pXV VXV

for any cateogry k (k = 1,2,...,J).

To demonstrate this, consider any category k (k = 1,2,...,J)

X E Var(§) = Var(AT + E)

= Ek(AE + §)(Ag + E)‘ - Ek(AE + §)Ek(AI + §)'

= Ek(Agg'A' + gg'A' + Agg' + gg') - Ek(Ag)Ek(Ag)'

= AEEk(gg')JA' - A[6k(g)Ek(g')]A' + Ek(§§')

+ [Ek(§3')JA' + AtEk(g§')J

= AEE (33') - E (3)6 (3')3A' + E (gg') + [0] + [0]
k k k k va va

= A[Var(g)]A' + Var(§)

Z = ATA' + W2

where

u I '

W2 = diag{021 02 1 ... 021 : 022 022 . . 022 {...E 02p ... 029 .

VXV e1 e2 ek . e1 e2 ek | . e1 ek

1: 2: : P
For both of these derivations A is a matrix of constants

with respect to the expectation across the subjects in the popula-

tion of category k (k = 1,2,...,J).
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Since some similar notation is used for matrices from each

of the two measurement models which have different definitions it is

important to clearly specify the measurement model being used. This

redundancy of notation will pose no problem since each measurement

model will be used in distinct and different situations. The basic

measurement model, given by (2.22), will be used in Chapter 3 and

only the early exploratory stages of Chapter 4, while the extended

measurement model, given by (2.26) will be used for the majority of

the work in Chapter 4 once the basic model has been shown to be in-

sufficient for use in the estimation of latent weighting coefficients.
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Section E: Summary

In this chapter the models which are needed for the research

to be presented in the following chapters have been defined and de-

veloped.

The Observed Random Predictor Quantal Response Model which

indicates the existence and the form of the observed weighting co-

efficients is given by (2.2).

The Latent Random Predictor Quantal Response Model which in-

dicates the existence and the form of the latent weighting coeffi-

cients is given by (2.19).

The basic measurement model which relates the components of

the two quantal response models is given by (2.22). Through this

relationship the Area one research to be presented in Chapter 3,

will examine the relative values of the individual observed and

latent weighting coefficients associated with a predictor for the

whole range of possible situations.

The Area two research, to be presented in Chapter 4, will

demonstrate that the basic measurement model given by (2.22) is not

sufficient to allow the estimation of the latent weighting coeffi-

cients. The research will demonstrate that a model in the form of

the extended measurement model, given by (2.26), is needed.

In chapter 4 the measurement model will be used to give two

reformulations of the Observed Random Predictor Quantal Response

Model (2.2) in terms of parameters from the Latent Random Predictor

Quantal Response Model (2.19) and parameters describing errors of

measurement. Each of these reformulations will be examined to
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determine whether estimates exist for the latent weighting coeffi-

cients. If estimates do exist then the estimation procedure

associated with the reformulation will be described.



CHAPTER 3

Section A: Introduction and Approach to the Problem

For an analysis which involves the use of random predictor

variables in a quantal response model to determine the relationship

of interest between the predictor variables and the probability of

occurrence of the categories of a qualitative criterion variable, the

relationships of interest are given by the latent weighting coeffi-

cients. The vector of latent weighting coefficients identified in

expression (2.19) from Chapter 2, provides the relationships between

error-free predictors and the criterion. However, in practice, the

measurements of the predictors contain errors of measurement. Thus

information will be available for observed predictors and not the

true predictors. Therefore, for a given situation the relationship

which can be found using available data and available quantal re-

sponse techniques is that provided by the observed weighting coeffi-

cients, identified in expression (2.2) from Chapter 2, although the

relationship of interest is provided by the latent weighting coeffi-

cients (2.19).

The work to be presented in this chapter examines the effects

of errors of measurement in the random predictors of a quantal response

technique by examining the relationship between the observed weighting

coefficients (from (2.2)) and the latent weighting coefficients (from

47
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(2.19)) for the universe of situations. The precise information

needed to identify a "situation" will be provided in Section C below.

For situations where the observed weighting coefficients have nearly

identical values to the latent weighting coefficients the effects of

errors of measurement are considered to be small. In these situa-

tions the observed weighting coefficeints are acceptable estimators

of the latent weighting coefficients. For other situations, however,

the observed weighting coefficients may provide values which suf-

ficiently overestimate or underestimate the values of the latent

weighting coefficients so as to make the observed weighting coeffi-

cients poor estimators of the latent weighting coefficients.

The concern for this chapter then becomes how accurate an

estimate of the latent weighting coefficient is Provided by the ob-

served weighting coefficient. To research this question, the ratio

of the observed weighting coefficient to the latent weighting co-

efficient for a single predictor will be formed. Using the notation

introduced in Chapter 2 for the single weighting coefficients this

* t *

ratio becomes 8 B where B = ( .) and = ( .) re resent

q/ q' q fik’) Bq ék-J q pq

the observed and latent weighting coefficients respectively for some

predictor q (q = 1,2,...,p) from the observed and latent vectors of

weighting coefficients associated with category k of the criterion

(k = 1,2,...,J). The use of this ratio requires that B; # O.

Situations where B; = 0 will be examined separately.

The value of this ratio Bq/B; will be examined for each pre-

dictor for generally applicable results as well as situation specific

results. One of three categories of results are possible for a given



h
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situation and a given predictor:

the observed weighting coefficient has the samet
o

‘
K
\
u
)

.
0

II

H E” 5"

value as the latent weighting coefficient.

o
n

\ o
n

.
.
Q

a
-

A

H H m the observed weighting coefficient has a value

less than the latent weighting coefficient (an

underestimate of the latent coefficient).

V (
.
.
a

P
.

(
D

Oand Bq/B; the observed weighting coefficient has a value

greater than the latent weighting coefficient

(an overestimate of the latent coefficeint).

The results which follow will consider Bq/B; for each pre-

dictor q (q = 1,2,...,p) in each of the J - 1 vectors of weighting

coefficients which comprise the base set.

In all cases the prime interest will be to identify those

situations which correspond to each of the three categories of results

identified above, with the prime interest on those situations where

the observed weighting coefficient is equal to the latent weighting

coefficient, i.e. B /B* = l.

q q

The degree of error of measurement for an observed predictor

is given by the reliability coefficient associated with that predictor.

The reliability coefficient is the ratio of the true score variance of

a predictor to the observed score variance, i.e. pii = 0:1/0:i’

Since the search for generally applicable effects of errors of

measurement for the most general case of the quantal response model

with J categories (J :_2) and p predictor (p :_1) has proven fruit-

less, and since the algebraic manipulation required for the above

approach has proven nearly intractable for more than two predictors
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(p > 2), the research to be presented in this chapter is based on two

special cases of the general quantal response models. The two special

cases of the general quantal response models to be examined are one

predictor models (i.e., p = l) in Section B and two predictor models

(i.e., p = 2) in Section C. Most of the work on two predictor models

will be done for models with a dichotomous criterion (J = 2). The

two-predictor, polychotomous criterion model will be shown to repre-

sent a simple extension of the two-predictor, dichotomous criterion

model.
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Section B: One Predictor Models (p = l)

The first case to be examined is that with a polychotomous

criterion (J 3 2) and one predictor (p = 1). For this case the Observed

Random Predictor Quantal Response Model (2.2) becomes for some category

k (k = 1,2,...,J)

 

 

l

(3.1) Pr{Y — klx} — Pk - J

- +1 + .2 exp{ (atk.j Bk-jX)}

J=1

jfk

where (k) 2 (j) 2

P. 1(u)-(u)
_ _1. X X

a - -Ln( ) -

k-j pk 2 02

X

and

_ (k) (j) 2

Bk-j ("x 11x )/°x

. (i) 2 . .

with “X and ox, the mean and the variance, respectively, of the

distribution of the single observed predictor X for category i.

For this special case the general latent predictor model (2.19)

becomes for that same category k identified above:

 

 

* l
(3.2) Pr{Y — le} — Pk — J * *

l + .2 exp{-(0Lk.j + Bk_jT)}

J=1

375k

where

k 2 ' 2

* P. (u; )) -(ué3))

a ‘ -Ln(—J) - —
k-j pk 2 02

T

and

* (k) (j) 2

8k°j - ( T “T )/°T



for

sinc

Where

5e rvel

the l.
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with uél) and 0:, the mean and the variance, respectively, for the

distribution of the single latent predictor T for category i.

 

Using the expression for Bk'j from (3.1) and the expression

*

for Bk- from (3.2) for some j # k, j,k = 1,2,...,J

(k) 11(j) 2

Bk.. = (ux )/0: =32-

* (k) u(j) 2
Bk-j (“T )/0: OX

. (k) _ (k) (j) _ (3')
Since ux - “T and “X — “T from (2.24a).

Thus for any category k and any weighting coefficients

*

Bk'j and Bk-j

2

Bk.. GT

(3.3) 1—1=—3=p (jaék. j.k=1.2.....J)

B 0 xx
koj X

where pxx = oi/o: is the reliability of the observed predictor X.

Therefore for all one predictor models the value of the ob-

served weighting coefficient will be an underestimate of the value of

the latent (true) weighting coefficient by a factor equal to the

reliability of the predictor. The more reliable the predictor the

closer the values of the observed weighting coefficient will be to the

corresponding latent weighting coefficient. However, the values of the

observed weighting coefficient will be identical to the values of the

corresponding latent weighting coefficient only for a perfectly

reliable predictor, i.e. pxx = l.

*

If Bk-j = O for some j # k, j,k = 1,2,...,J, this implies

(k) (j) (k) (j) (k) (j) .
t t - = - = -ha uT “T 0 but then “T “T “X ux requires

(k) (j) _ -
that “X - ”X - 0 and thus Bk-j — 0 and conversely.
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Therefore in any one predictor model if Bk-j = 0 for any

i

j # k, j,k = 1,2,...,J then Bk-j = 0 and the observed weighting

coefficient provides an exact estimate of the latent weighting co-

efficient.
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Section C: Two Predictor Models (p = 2)

The polychotomous criterion (J 3_2) two-predictor (p = 2)

models for both observed and latent predictors have the same appear-

ance as the general case models given by (2.2) and (2.19). The

specialization to two predictors is obvious only when the precise form

of the veCtors and matrices of the models are examined. The parallel

structure of the two models (2.2) and (2.19) allows the identifica-

tion of the two predictor case to proceed for each model simultaneously.

The identification of the vectors and matrices from the Observed

Random Predictor Quantal Response Model (2.2) will be presented below

on the left with the corresponding vectors and matrices from the Latent

Random Predictor Quantal Response Model (2.19) on the right.

The vectors of predictors become:

    

r‘ o F- -1

x1 Tl

é = 2 and T = 2 .

LX T

.4 e. .4

The vectors of predictor means for some category i

(i = 1,2,...,J) become:

    

1 '- 1
F' (i) (i)

uX1 lJTl

(i) _ . (i) _ .
Ex .. 11(3) and ET - p(g) -

X

L. .J L.T .J

The matrices of predictor variances and covariances, assumed

homogeneous across all categories become:



SS

    

. 7 :2 . i
X1 X1X2 T1 TlT;Z

Z = 2 and ¢ =

O' O' 0‘ O’

2 1 2 2 l 2

And the vectors of weighting coefficeints for some category

k are:

Bk°j(xl) 8k-j(T1)

ékoj = j and Eko '

3

Bk°j(X2) Bk-j(T2)

where j # k, j,k = 1,2,...,J.

The approach to this speical case (p 2) will proceed by

first examining the simplest two predictor model. This simplest model

involves two categories of the criterion (J = 2) and the two pre-

dictors. Results for more complex models involving more than two

categories of the criterion (J > 2) and two predictors will be shown

to be simple extensions of the results for the simplest two predictor

model.

Two Category, Two Predictor Models (J = 2, p = 2)

I. Simplify the notation
 

In order to simplify the appearance of the algebra below

several notational adjustments to the general models will be made.

The two observed predictors will be denoted as x and y, i.e.

‘g' = [x y]. The two latent predictors will be denoted as g and n,

i.e. ‘3' = [g n] where x = g + ex and y = n + ey, i.e. g = g + E.

The two categories of the criterion will be identified by the numerals
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O and 1, rather than 1 and 2, so that the category identification is

consistent with the notation used for the dichotomous criterion model

in both McSweeney and Schmidt (1974) and Cornfield, Gordon and Smith

(1960). Also let p and po the unconditional probabilities of

1

occurrence of category 1 and 0 respectively be p1 = p and

P0 = 1 ‘ P1 = Q-

Since for the dichotomous case Pr{Y = llg} + Pr{Y = DIX} = l

and Pr{Y = llg} + Pr{Y = GIT} = 1, it will be sufficient to work with

the expressions of the observed and latent predictor models associated

with Pr{Y = lIX} and Pr{Y = llg} respectively. Associated with

each of these model expressions is a single weighting coefficient,

él-o and 51-0 each with two components. Since the proofs in

Appendices A.l and A.2 indicated $1.0 = -§o-l and El-o = -§;.1,

that is for each model there is only one distinct weighting coeffi-

. * *

Cient, let g = él-o and g = gl-o'

Therefore the dichotomous criterion (J = 2), two predictor

(p = 2) observed predictor model can be expressed as:

 

1

(3.4) Pr{Y = 1 X} = P =
'

IN 1 1 + exp{-(al.o + g §)}

where X = [x]

y

=_ g _1 (1)'-1(1)_ (ow-1(0)

a... MP) 3% 2 Ex 2,. 2 RX 3

and

B

_ X _ '1 (l) _ (o)

E“ B ‘2 (Ex Ex ).

Y

and the latent predictor model can be expressed as:
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* 1

(3.5) Pr{Y = 1|g} = P1 = 
* *0

1 + exp{-(a1. + g 3)}
0

where E = [E]

n

= _ g, _ l (1)' -l (1) _ (O)' -l (0)

01:0 Ln(p) 2£ET ¢ ET RT ¢ RT 3

and

8*

* -

£3, = E =¢l(}g,l(.l)-y,1(.°)).

BY)

* *

II. Derive Expressions for Bx/Bg and B /8 in terms of latent

and error parameters y n

 

 

In order to study the effects of errors of measurement on the

weighting coefficients the ratios Bx/B; and By/B; will be

examined. The formulas presented previously for single predictor

weighting coefficients will prove of limited usefulness for this

task, therefore the first necessity will be to derive expressions

and conditions for existence for Bx, By, B; and 8;. From these

expressions the desired ratios can be formed.

Consider first

 

  

*

B

* _ E _ -l (l) (o)
g * ¢ (ET RT )

8T)

2 r— -p '7

05 0E -1 1 l. 1:3
o = n and ¢ = 2 O 0

o 02 l-p2 05 g n

n5 n in _p

..Jfll ll.

0 0 2

L_ E n 0 .4
T]

where pan is the correlation between the latent predictors E and

n. Note: ¢-l exist only if 1 - pgn # 0 which implies pEn # :_l.
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a (l) _ ”(0)

Let a g 5 = (1) _ (o) = 5 5

~T a RT ET “(1). _ r1(0)

n t. n n ...J

Therefore

r- N r- _ '1 r- o
* 1 pg

* Ba -1 1 "3' o o a:
E = = ¢ ~T = 2 05 E n

* l _ D

8n En _p

L. .1 53 l__ a

Logcn (,2 J L. U.)

T)

:5 _ an 0&1

2 o o
* 1 O n

E = 2 a 5

1 - on a a 0
_fl._ _§L_£fll

C2 Gian

L. n .4

and

a a p

(3.6a) 3* = ___-L_ _§. __ n an

5 1 - 02 02 Oion
En E

a a o p

= l £[l-J-ggnjfora540

1 - 92 02 Onag
E

in 5

Thus

13* a 11(1) _ “(0)

(3.6b) 8* = —-——§-—- 1 - d p where b* = —§-= 5 n

C 1 _ 02 E in E 02 02

in E 5

a /o (u(1) - u(0))/0
- n n _ n (1 n

and dg ‘ a /0 ‘ (1) (o)
E E (“g - “g )/06

- . * (1) (o) 2
In this formulation bg = (uE - pg )/05 has the form of a

latent weighting coefficient for g from a single predictor model

(see (3.2) for an example). In this formulation dg represents the
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ratio of category mean differences for the two latent predictors,

where each mean difference is in standard units (i.e. divided by the

standard deviation of the distribution of the latent predictors).

Therefore, a large positive dg value indicates a larger standard

unit mean difference between category 1 and category 0 for latent pre-

dictor n than for latent predictor 5. Other values of d5 would

carry appropriate corresponding interpretations in terms of ratios of

standard unit mean differences between categories.

 

 

And

* a a D
_ __1___ .1 E én

(3.7a) 8 — _

n l - 02 02 Gian

in n

a a o p

= 1 "—fl 1 - g n in for a # 0.

1 - 02 02 Cg a n

En n

*

(3 7b) * br‘ 1 a

in

(1) (0)
a _ a /O

a» U

Where b = “3': n n and d =-—§——§ . Since

n 02 2 n a /0

n 0n 7'1 T1

an/o * l

d = n as defined above for B , d =-—- for d # O.

E ag/og E n dg 6

Consider now the expressions for 8x and BY from the

observed predictor model.

B
x

_ -l (l) (o)

B - B — 2 ()1x uX )

Y
f" "D ‘-‘

I_L__ XX

2 -1 1 2 o 0

Z = o and 2 — 2 o x y

x xy 1 _ p x

2 “Y

yx O Y .jESL .l.

o o 02

L. x y y .4  



where p

XY

y.

Note: 2-1

Let 3x =

Thus 3 =

E, =

is the correlation between the observed predictors

2

exists onl if 1 - O which im liesy oxy 7‘ p pxy

u

__ (l) (o)

" Ex Ex
u

‘1 l
= Z a =

X l _ 2

XY

r-a a p _

.3£_._JL_3§L

2 0x0

02 Ox y

xy a a p

_X.- _§;_§X.

O2 oxoy

L. Y .4
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(l)

X

I

'
D

X
Q Q

    

x and

#11.

Before proceeding further with finding expressions for 8x

and 8y from the observed predictor model consider some of the im-

portant relationships between expressions involving observed pre-

dictor model parameters and the corresponding expressions involving

latent predictor model parameters.

(3.8) X

(3.9a) pxx

(3.9b) pyy

O

(1)

Ex

2

E
/o

(o)

’ E

2

x

2 2

G O

n/ Y

= (1)

x HT

therefore

therefore

~T

a =

Y

2 2

0x - Og/pxx

2 2

o = 0

Y n/pyy

(o)
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O O 0

xx. in gn r"""
(3.10) p = = = =

XY 2 2 2 2 l 2 pxxpyy 05” pxxpyy
O O O O O O’

x Y 5 . _n__ 5 n

Vpxx pyy

l-e- p = 0 V0
xy En xprY '

*

E

sions of interest for the research which is to follow, expressions

*

Since the ratios Bx/B and By/Bn are the ultimate expres-

(3.8) - (3.10) above will be used to express Bx and By in terms

of parameters from the latent predictor model.

The expression for Bx using parameters from the observed

predictor model is:

 
 

l .5. _x;_rx.
B = '
x 1 _ 02 02 0x0

xY X y

(3.11a)

l a a Ox 0

8 = - -5L 1 - -X--—§X- for a # O .

x l _ D2 02 o ax x

xy x y

And using expressions (3.8) - (3.10) Bx becomes:

a a - 0 V ° V

B = l . g . 1 _ n 5/ pxx pgn pxxpyy

x 2 2

l - p p o 0 V - a

pan xx yy a/pxx n/ 0yy 5

 

*

b o
_ 5 xx _
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(l) (o)

d = an/On = (un "n )/on

E a /o (1) _ u(o) °

E E (ug “E )/°g

*

Therefore using the ratio of (3.llb) and (3.6b), Bx/Bg will

*

exist if 85 f O, and

(3.12)

 

* 'k

B B - 1 ‘ d D /L—_-———' l - d p
2X/ E 1 _ 02 p p E Enpw 1 _ pg” E En

En xx YY

p2
Bx/8* = (1- pEn )pxx(1 dgpgnpyy)

g (l — pgnp xxpyy)(1 - dEpEn)

 

*

This expression for Bx/BE (3.12) will exist if:

1.) pg“ # :.l (Needed for Qfil to exist.)

Note: = therefore < there-oxy oganxxpyy lpxyl -lp£nl

. -l . .

if + 1 then + 1 and X will eXlSt.pEn # __ oxy ¢._

2.) a 0g f

. (1) p(0) (l) (o) . .

That is, a = - O‘=u . This 15

a “a “a f “a f “a

needed only to guarantee the existence of the specific

'k

formulation for BX/BE being used. A variation of the

*

expression Bx/Bg for a5 = 0 will be examined below.

3.) l - d 0 ==d 1

£°£n * apan *
*

This is needed to guarantee that 85 ¢ 0. The second

* *

requirement, ag # O, guarantees that b # 0 thus

E

* *

Bg # 0. When BE = O, Bx will be examined briefly

below.
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Expressions for By can also be produced using arguments

similar to those for Bx above:

The expression for By using parameters from the observed

predictor model is:

l a axo p

(3.13a) B =———-—1- 1-—Y—XX fora#0.
y 2 2 o a Y

1 - p o x y

xy y

And using expressions (3.8) - (3.10) BY becomes:

*

 

 

b p
n YY

3.13b = l-d( ) By 1-020 0 [ nognoxx]

En xx YY

(l) (1)
* a u - a /o

where b =—"= TL ” and d =—i——§ with d =1—
n 2 2 n a /o n d

on 0n n n E

for d f O.

E

*

Therefore, using the ratio of (3.13b) and (3.7b), By/Bn

*

will exist if Bn # O, and

2

 

(1'0 )0 (l-dpp)
*

(3.14) By/Bn = in Y! n gn xx

(1 ' pinpxxpyy)(l - dnpgn)

*

This expression for By/Bn (3.14) will exist if:

1.) pan # :_l (Needed for ¢_1 to exist. Also, see Note

*

with condition 1 for existence of BX/BE above.)

2.) a On #

That is, a = u(l) — “(0) # O = u(l) # u(0). This is

n T) T) Tl 1')

needed only to guarantee the existence of the specific

*

formulation for By/Bn being used. A variation of the

*

expression of By/Bn will be examined for an = 0.



r21

r..m

up,

‘14-).
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3.) l - d O = d 1

no n f ann 7‘E

This along with the second requirement above is needed

*

to guarantee that Bn # 0.

Note since 02 > 0 then p > O, and 02 > 0 then p > 0. There-

E XX n YY

fore the effective ran es for p and are:
9 XX, pyy pan

—1 < p < +l (with one possible exception for

one of the ratios depending upon

the value of (15 or dn).

* *

Ex ressions (3.12) for and (3.14) for will beP Bx/BE By/Bn

the primary expressions of interest for the work below. However, a

close examination of expressions (3.12) and (3.14) shows an identical

structure for each expression. Because of this identical structure,

*

the expression for By/Bn (3.14) can be found from the expression for

*

Bx/Bg (3.12) by merely interchanging the x's and y's as well as

*

the 5's and n's in the notation for Bx/B .

E

‘k *

result derived for Bx/Bg will have a corresponding result for By/Bn

Therefore any algebraic

which can be simply stated, rather than derived, using this property

of interchangeability of x and y (and g and n as well). It

is important to note that the values of p and dE whichan: Dxx: pyy

* *

produce a given value of Bx/Bg say R (i.e., Bx/Bg = R for the

given p and d ) will not in general also produce aEn, pXX' pYY

*

value of R for By/Bn. That is, in general, for a given situation

(i.e., a specific set of values for p , p , p and d ) the

En xx W E
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* *

values of Bx/Bg and By/Bn will not be identical. However, by the

use of the property of interchangeability of x and y it is

possible to identify a different situation (i.e., different values for

*

and dg) where By/Bn = R. If we let p p

En' DXX' YY
*

and d5 represent the situation where Bx/Bg = R and p

pg”! pxxr pyy

I ! I

En' DXX' pYY
*

and dé represent the generally different situation where B /Bn = R

then Appendix B.l demonstrates that the two situations have the follow-

ing relationship:

(3.15a) ' = p

pEn En

3.151) ' =

( ) pxx pyy

3. 5 ' =
( 1 C) pyy pxx

(3.15a) a: = a
n E

*

Therefore, it will be necessary to examine only Bx/B in

E

detail across the universe of situations (i.e., values of pEn' pxx'

*

pyy and dg)' Corresponding results for By/Bn can be obtained

through the use of expressions (3.15a) - (3.15d). The prime in the

notation will rarely be used unless the interchanging of x's and

y's becomes ambiguous without its use.

*

Since only values of Bx/B need be examined in detail and

E

since d = l/dn let d = d = l/dn be used where no ambiguity will

E E

result. Appendix B.l also demonstrates that only values of d 3_O

*

5'

*

Bx/Bg with d < O is the reflection through the line pEn = 0 of

*

the expression for Bx/Bg with Idl > 0. That is, for d < 0, there

need be considered in the examination of Bx/B The expression for
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will exist values d" (d" > O) and pg“ which produce the same value

*

of Bx/Bg as d and pg”. These values d" and pg” have the

following relationship to d and OED. (See Appendix B.l for details.)

(3.16a) d" = -d (since d < 0, d" > O), and

3.16b " = -

( ) pEn 0 En

*

g 'k

be examined since results for other situations for Bx/B and all

E
*

situations for BY/Bn can then be derived using expressions (3.15a) -

Thus in the work which follows only Bx/B for d :_0 .will

(3.15d) or (3.16a) and (3.16b). Results for special case situations,

i.e., d = O (i.e. d = d undefined), d = d = O, = O,

n ' E E pEn

xx = pyy = l, pxx = 1 and pyy < 1, and pxx < 1 and pyy = 1, are

presented in Appendix B.2.

*

III. Presentation of the Approach to the Examination of Bx/Bg

As indicated in section A of this chapter the interest for

this area of the research is to determine for what situations Bx is

*

an overestimate, an exact estimate or an underestimate of B . To

E
*

pursue this question comparison of the ratio Bx/Bg to l is to be

examined. There is an algebraic expression which will aid in this

examination. Let

(3.17) Q = 02Enpxx(l - p ) - do (1 - oxxpyy) + (l - oxx)

YY En

for O < < l O < < l, -l < < +1 and an d such that

d l.pEn #

To see how Q can aid in the search for relationships between

*

Bx/Bg and one consider:



b)

 

 

2

l - l - d

E§._ E§._ ( pEn)pxx( pEnpyy) _ 1

’"ln *_(1 2 )(1 d)
Ba 8: panpxxpyy ”an

1 - l - d - l - l - de ( p )p ( pE pyy) ( pgnpxxpyy)( pEn)

_ 2 _ 3

e pxx pgnpxx panoxxpyy panoxxoyy

-l- -d +d3

pEnpxprY pEn pEnpxprY

o - - - d + d + 1 -a ognpxx pgnoxxpyy pg" panoxxpyy oxx

eo=2p (1- )-d (1- )+(1- )
pEn XX pyy pEn pxxpyy pxx '

Therefore

8
X

—.=1=0=Q.

Be

8 e (1-p2)p (l-dpp)

l - l - d8g 8g ( pgnpxxoyy)( pEn)

. 2
1) if 1 - d > 0‘9 d < l and sin e O < 1 - < 1

0En pEn C pEnpxprY'—

then

x 2

—<1©1- l-d8* ( pan)pxx( pEanY)

E

<(1-2 )(l-d)
pEnpxxpyy pEn °

Using algebra from a) above with appropriate attention for

the inequality yields:

m

l<le<Q.

*

E

2) if 1 — d < 0c: a > 1 then

pEn pEn

m
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‘
0
3

I
»

m
a
»
)
:

< 1 a (1 - 92 )- dgn)pxx(l p
Enpyy

2

3 (l - pinpxxpyy)(l - dog“).

Using algebra from a) above with appropriate attention for

the inequality yields:

 

B

_%;< 1 e o > Q .

8g 2

B B (l ‘ pg )0 (1 - do P )

—f>l¢=-—§= 2“ xx Enfl>l

1 - l - d85 8g ( pgnpxxpyy)( pin)

1) If 1 - dp > 0 “ dpEn < l and since

En

O < l - 92 p p < 1

En xx YY"

8x 2

-;-> 1 e (1 - pan)oxx(l - dpgnpyy)

B

E

2

> 1 - l - d .

( pEnpxxpyy)( pEn)

Using algebra from a) above with appropriate attention

for the inequality yields:

8

-—§ > l¢= O > Q.

8

E

2) 1f 1 - dpEn < o.e doEn > 1

B
x 2

Bi.) 1'“ (1 - pEnmxxu - dpEnpyy)

E

<(1-o2 p )(l-dp ).0

En xx YY En

Using algebra from a) above with appropriate attention

for inequality yields:
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B

-§-> l a O < Q.

B

E

Therefore, combining results from a), b) and c) above pro-

duces:

If dpgn > 1 then

* . . *
(3.18a) Q < O a Bx/Bg < l i.e., Bx underestimates Bg'

* . . *

(3.18b) Q - O a Bx/Bg — l i.e., Bx exactly estimates 85'

* . . *

(3.18c) Q > 0 a Bx/Bg > 1 i.e., Bx overestimates BE .

If d < 1 then

pEn

* . . *

(3.19a) Q < 0 a Bx/Bg > 1 i.e., Bx overestimates BE,

* *

(3.19b) Q = O a Bx/Bg = l i.e., Bx exactly estimates Bg,

(3.19c) Q > O a Bx/B; < l i.e., B underestimates 8;.

* *

= 1, then Bx/B is undefined since B = O.

E E

Note: It is also possible to consider dpEn as the ratio of

If dpEn

two slopes. The numerator of the ratio represents the slope of the

pooled within categories regression line of g on n. The denominator

of the ratio represents the slope of the line joining the midpoints

of the joint distributions of g and n between the two categories.

For more information about this interpretation see Appendix B.9.

Thus the examination for relationships between Bx/8; and one

can be pursued by examining the relationship between Q and zero. The

questions now are, for what values of p pyy and d will Q
an, pxx'

be less than zero, equal to zero, and greater than zero. The approach
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to answering these questions will be to consider three of the four

variables ( , and d) as fixed thus can be consideredpg“ pxx' pyy I Q

solely as a function of the fourth non—fixed variable for the given

combination of the three fixed variables.

Although any one of the four variables could be selected as

the non-fixed variable, the most interesting and useful information

has come from fixing pxx' pyy and d and examining Q (and hence

 

 

*

Bx/Bg as well) as pEn .varies from -l to +1 for various combinations

of pxx' pyy and d. Following this approach Q is clearly a

quadratic function in DEN.

*

IV. The Search for Categories of Distribution of Bx/Bg as a Function

of

- pEn

Consider expression (3.17) for Q as a function of p for

En

fixed values of p , p and d;

XX YY

2

.20 = - - d l - .(3 ) Q 0 (l D ) p€n( pxxp )) + (1 ‘

pEn xx W W pxx

2

= + + = -Let Q axpEn bxpEn cx where ax pxx(l pyy),

bx = -d(l - p pyy) and cx = (1 - p ).

Expression (3.20) clearly illustrates that Q is a quadratic

function of p. . As a quadratic function of p n' Q will possess

 

 

 

 

En E

two roots call them pQQX) and pEQX) which are defined as:

2 2

-(x) d(l - pxxpyy) -‘Jd (l - pxxpyy) - 4pxx(l - pyy)(1 - pxx)

(3.21a) pEn = 2 (1 _ )

pxx pyy

d(l- )+\ld2(l- )2-4 (1- )(1- )

(3 21b) +(x) = pxxpxy DXXEYY pXX pyY pxx

En 2pxx(l - pyy)
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'(X) +(X) . . . -(x) '+(x)
Both roots and will eXist Wlth <

' pEn pEn pEn - En

4p (1 - p )(1 - p )

if Id] 1 xx yy 2 xx . (See Appendix B.4 for details.)

(1 - o o )

xx YY -(x) +(x)
Since the existence of the roots pan and pEn as real numbers

is important, the quantity on the right of the existence expression

will be used frequently. As an abbreviation in notation, let

 

 

_ 4oxx(l - o y)(l - pxx)

(3.22) : ~JL .

x (1 - p p )2

xx yy

Here the square root sign indicates that the quantity involved is a

square root and the x indicates that the expression is related to

8/85.

.. + .

Since DEQX) and pgéx) represent pOSSible values for the

correlation between the two true predictors, pEn where

- +

-l < pEn < +1, the existence of pgéx) or OEQX) in the interval

from -1 to +1 is as important as their existence as real numbers.

Therefore, from Appendix B.4: pgéx) will exist with

"(X) (-1, +1), for o < p < 1,
0En e yy

1 .

(3.23a) for 0 < p < -——-—- if 1 < d

xx —-2 - p

YY

(3.23b) for -—-l;-—-< p < 1 if < d

2 - pyy xx -' X‘—

+

or if —1 < d < — J", and p (X) will

—' x En

+

(X) (-1, +1) for o < p < I,exist with

pEn e yy

(3.24a) for 0 < p < -—-————- if d < -l
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(3.24b) for ___2;__.< p < 1 if Ix §_d < 1

or if d 5_- J;‘.

*

E En'

equality only when pxx = 1 too. (See Appendix 8.2 for

Note 1: When pyy = l, 0 < Bx/B :_l for all p pxx, d Wlth

proof.)

Note 2: When p = 1,

xx

. -(x) +(x)
if 0 < d < 1 then = 0, = d

. -(X) +(x)

f d > l then = 0 -1 +1 .

Note 3- I < l with e ual't if and onl if = -——l-—-

° x - q 1 y y pxx 2 - pyy °

(See Appendix B.3 for proof.)

*-

Prior to identifying general categories of Bx/B it will be

E

worthwhile to examine the relationship of Q to 0 for various com-

binations of situations since as noted above in subsection III the

relationship of Q to 0 provides some direct information about the

*

relationship between Bx/BE and 1. Much of the derivation for the

results which follow has been developed in Appendix B.4.

If ldl > J— then
—- x

(3.25a) Q < 0 for max(-l, p-(X)) < p < min(+1, p+(x)

En En En

[By B.4.3a]

)

-(X) . -(X)
(3.25b) = 0 for = rov1ded that -1 +1Q can pEn p pEn e ( . )

[By B.4.3.b]

+

or for pEn = pgéX) provided that pE£X) (—l,+l),

[By B.4.3b]
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(3.25c) Q > 0 for -l < p < max(-l, p-(X)) [By B.4.3c]

En En

or for min(+l, p+(X)) < p < +1. FBy B.4.3c]

En En “

(3.25d) If |a| < (X then Q > o for all pEn 6 (-1,+l).

[By B.4.4]

Now combine results (3.23a-b) or (3.24a-b), (3.25a-d) and

(3.18a-c) or (3.19a-c) to derive general categories of distributions

Examination of these expressions will pro-of Bx/B; versus pan.

duce three general categories of distributions.

For exploration for the first general category, let d > 1

-(x)
and 0 < p < 1. Therefore p e (-1. +1) by (3.23a) but (3.24a)

En En

+

and (3.24b) indicate that DEQX) ( (-1, +1). Using results (3.25a-d)

and considering all possible values of pan, pan 5 (-1, +1) produces:

(3.26a) for —l < p < p—(X) then Q > 0

En En

(3.26b) for p = p-(X) then Q = 0

En En

(3.26c) and for p-(X) < p < 1 then Q < 0.

En En

(3.27) Note: For d > 1, pg;X) < %-. (See Appendix B.5 for proof.)

Therefore since d > 1 (hence %-< I) combine the results

from above and from (3.18a—c) and (3.19a-c) to produce information

*

about B /B for values of (-1, +1).

x E pEn E

The following information will be presented for values of

which cover the whole interval from minus one to plus one.

pEn

a) Consider d > 1 and D such that l/d < pEn < +1.

En

Therefore dpEn > 1.
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By (3.27) pgéx) < l/d. Hence pgéx) < l/d < pEn < +1.

- (x)

En ' Q < 0'

By (3.26c) for values of p > 9

En

*

By (3.18a) when dp > 1 and Q < 0, Bx/Bg < 1,

En

*

(3.28a) Therefore, when d > 1 and l/d < p5n < +1 then Bx/Bg < l.

b) Consider d > 1 and DEN such that pEn = l/d. Therefore

d = 1. When d = l, B = 0.

“an pEn a

*

(3.28b) Therefore, when d > 1 and p = l/d, Bx/Bg is not defined.

En

*

In this case IBxl is an overestimate of B6 unless Bx is also zero.

c) Consider d > 1 and p such that -l < pEn < l/d (where

En

l/d < 1). Therefore dpEn < 1.

By (3.27) pgéx) < l/d. Therefore there are three subintervals of

values for pgn here which must be examined.

I) For pgéX) < p < l/d, then Q < 0 by (3.26c). By

En

*

(3.19a) when dp < l and Q < 0, Bx/BE < 1, that is

En

*

[Bxl is an overestimate of IBEI for correlations in

. -(x)
the interval (pEn , l/d).

(3.28c) Therefore, when d > 1 and pg;X) < pan < l/d, then

*

Bx/BE > 1-

II) For Dan = pggx), then Q = 0 by (3.26b). Thus by

(3.19b), B /B* = 1, that is when p = p-(X), B = 8*.

x E En En X E

(3.28d) Therefore, when d > 1 and p = p-(x) (where p-(x) < l/d)

En En En

then Bx/B; = 1.

III) For -1 < pan < pg(x), then Q > O by (3.26a). Thus

n

by (3.19c) Bx/B; < 1.

(3.28c) Therefore, when d > 1 and -l < pEn < pgéx) (Where
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p"(X) < l/d) then s /s* < 1.
En X E

*

To determine the relationship between Bx/Bg and.zero for

the range of values for p , apply results (B.6.4a-d) from Appendix

En

B.6 for d > 1. Since 0 < pyy < 1, then l/d < l/dpyy. Therefore,

the Appendix B.6 results produce:

(3.29a) for -l < pan < l/d then Bx/B; > 0 [from (B.6.4a)],

(3.29b) for l/d then Bx/B; is undefined [from (B.6.4c)],

*

(3.29a) for l d < < min(l l d ) then B B < 0/ p , / oyy x/ E
En

[from (3.6.413) J I

(3.29d) for ll 0

*

l/dpyy then Bx/Bg [from (B.6.4d)],

and

*

(3.29a) for min(l, l/dp < 1 then Bx/BE > 0

YY) < pEn

[from (B.6.4a)].

Combining results (3.28a-e) with corresponding results from

(3.29a-e) yields general category one (G.C.I.) of distributions for

Bx/Bg'

*

General category One (G.C.I) of distributions for Bx/B as

E

a function of pan has the following form as values of 0E0 vary

across the interval (-1, +1).

For d > 1, any pxx' pyy # l and

(3.30a) for -l < p < p-(X), 0 < B /B* < 1 [from (3.29a)

En En X E

and (3.28a)]

(3-30b) for p = p-(x) B /B* = 1 [from (3.28d)]

En En X

(3.30c) for p‘(X) < p < 13 3 /B* > 1 Ffrom (3.28c)]

En E d X E I



76

*

(3.30d) for OED = l/d, Bx/Bg is undefined since B = 0

[from (3.28b)

or (3.29b)]

(3.30e) and for l/d < DEN < l, Bx/B; < 1 [from (3.28a)].

Result (3.30e) can be further specialized as follows:

(3.30f) for l/d < p < min(+l, l/dpyy). Bx/B; < 0 [from (3.290)].

En

(3.309) for p = l/dp , Bx/B; = 0 [from (3.29d)],

En yy

*

(3.30h) for min(+l, l/dp ) < p < +1, 0 < 3 /s < 1

yY x EEn

[from (3.29e)

and (3.28a)].

*

Note that G.C.I for Bx/Bg could actually be considered as

*

having two subcategories depending on the behavior of Bx/Bg when

< < ,l/d pan 1

a) If d > 1 is also sufficiently large enough so that

do > 1 (l/dp < 1) then (3.30f) becomes

YY YY

(3.30j) for l/d < p < l/dpyy, Bx/B; < 0,

En

(3-309) becomes

(3.30k) for p = l/dp

*

1 =0!

En yY BX/BE

and (3 . 30h) becomes

b) However, if d > 1 but dpyy < 1 then l/dpyy > 1 and (3.30f)

becomes
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*

(3.30m) for l/d < p < +1, Bx/BE < 0,

En

and (3.309) and (3.30h) are not applicable.

*

Since the prime interest in examining Bx/B is in relationship to

E

one, and since when d > 1 for l/d < DEN < l, Bx/B; < 1, there is

only academic interest in differentiating between the two sub-

categories of G.C.I identified above. Therefore, G.C. I will be

considered as a single category of distributions with regard to the

relationship of Bx/B; to one.

G.C. I for Bx/B; as a function of DE“ covers all values

of p y f l and d > 1. Therefore other general categories willxx, Dy

involve values of d where 0 :_d :_1.

For exploration of the second general category, let

J—_ < d < l, 0 < p < l and -—-lL——-< p < 1. Therefore

x - yy 2 - p xx-—
.

VY

- +

053x) 6 (-1. +1) by (3.23b) and pEQX) e (-1, +1) by (3.24b).

Using results (3.25a-c) and considering all possible values of pEfl'

pEn e (-1, +1) produces:

(3.31a) for -l < pEn < pgéx) then Q > 0 [from (3.25c)],

(3.3lb) for p-(x) < p < p+(X) then Q < 0 [from (3.25a)],

En En En

+(X)
(3.310) for DEN < 0E” < 1 then Q > 0 [from (3.25c)],

-(X) +(X)
3.3ld) and for = or = then = 0

( pEn pEn pEn pEn Q

[from (3.25b)].

Note, since IX §_d < l and pEn < +1 then dOEn < 1. Therefore

by (B.6.4a). 83/8; > 0.
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Thus combining the results (3.3la-d) with (3.19a-c) to pro-

*

g for values of pEn e (-1, +1), yields

*

general category two (G.C. II) of distributions for Bx/B£°

duce information about Bx/B

When < d < l and 0 < p < l

X -' YY

(X)
.. *

(3.32a) for -l < 0E” < pan then 0 < Bx/BE < 1 [from (B.6.4a),

(3.31a) and

(3.19c)].

(3.32b) for p'(X) < p < n+(X) then 3 /s* > 1 [from (3.31b)
En En En x g

and (3.19a)].

(3.320) for pgéx) < pgn < +1 then 0 < Bx/B; < 1

[from (B.6.4a).

(3.31C) and

(3.19c)],

_ -(X) _ +(X) * =
(3.32d) and for pgn - pan or DEB — pan then Bx/BE 1

[from (3.31d)

and (3.19b)].

For exploration of the third general category, let 0 :.d < x

_ , . -(x) +(x)
0 < < d d . T hpyy 1 an conSi er any pxx hen neit er pEn nor pEn

will exist [see (3.4.2) from Appendix B.4]. By result (3.25d)

> o — + . ' < I I <Q for all DE” 6 ( l, 1) Since d x and x __l [by

(B.3.2) from Appendix B.3] then d < l and dpEn < 1 also.

Therefore, since dpEn < l and Q > 0 for pEn (-1, +1)

applying (B.6.4a) and (3.19c) produces the following result:

(3.33a) When 0 §_d < Ix , and 0 < pyy < l, for any pxx and any

0

*

5n 6 (’11 +1): then 0 < BX/Bg < 1.

This is general category three (G.C. III) of distributions of

Bx/Bg .
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One other set of distributions also fall into G.C. III. Let

r“ < < , < < - d O < < 1. Thx __d l 0 pxx _ 1/2 pyy' an pyy en

p-(x) (
r (-1, +1) and p+ x) t (-1. +1).

 

 

En En

If pgéx) > +1 or pgéx) < -1, then Q > 0 for

pan 6 ('1! +1)-

‘1 *3 an , f Fifi
1V1 9;?) 1 +4

If pEJX) < -l and pgéx) > +1 then Q < 0 for

p e (-1, +1).

En

 

 

. . . -(x)
I -l b ff t h th t f d > I > 0t W11 e su iCien to s ow a or __ x , pEn ‘_

and thus Q > 0 for pEn e (-1, +1).

Let d 3_ Ix therefore pg;X) will exist but may not exist

in the interval (-1, +1). Therefore the question is, for what values

- (X)

 

 

of , l ' > 0?on on 7‘ IS pEn _

d(l- ) - Jd2(l- )2 - 4 (l- )(1- )
p—(x) > O” pxxpfl pxxpyy pXX pyy DXX > 0

En " 2pxx(l - pyy) ~—

since 2pxx(l - pyy) > 0 for pyy # l,



8O

 

 

pan 1 0e d(l p p ,1) d (l p p ) 4p (1 pyyHl pxx) :0

ed(1-pp)>.jd2(l-pp)2-4p (l-p)(1-p)
xx yy - xx yy xx yy xx

2 2 2 2

w d (1 - pxxpyy) 3_d (l - p pyy) - 4p (1 - p )(l - pxx)

O' e d l - > for d > and l.Sinc ( pxxpyy) __ J;: pyy f

- (X)
>0“ 4pxx(l-p )(1-pxx) :0.

YY

But 0 < p < l and 0 < p < l by definition,

xx —' YY

(3.34) Therefore, pgéx) :_0 for all values of pxx and p

(pyysfil) when d__>_ 5.

Since pgéx) 3_0 when d 3_ Ix , then Q > O for

YY

-1, +1 . F r < d < l d < 1. Therefore sincecan 6 ( ) o ["x _ . pEn .

dp < l and Q > 0 for p e(-l, +1), applying (B.6.4a) and (3.19c)

En En

produces the following result:

2'0

(3.33b)When |_<a<1,o<p <1,ando<p <___l___.,

x —- yy xx —- yy

*

for any p e (-1, +1), then 0 < Bx/Bg < 1.

En

*

The three general categories of distributions of Bx/BE as

a function of p include all values of the parameters d, pxX' and

En

p except d = l and p = l. G.C. I includes values of d > 1,

YY YY

all values of p and all values of p except p = l. G.C. II

xx YY YY

includes values of d such that IX :_d < 1, values of pxx such

that l/2 - p < < l and all values of exce t = l.

YY pxx -' pYY p pYY

G.C. III includes values of d such that J;-.i_d < 1, values of

pxx such that 0 < pxx g 1/2 - pxx and all values of pyY except

pyy = l. G.C. III also includes all values of d such that
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0 < d < 'Ix for all values of pxx and all values of pyy # l.

*

When pyy = 1, Bx/Bg was examined in Appendix B.2. When

*

pyy = 1, then 0 < Bx/Bg < l for all values of p e (-1, +1) and

En

xx < l [by (B.2.8) from Appendix 8.2]. When pyy = pxx = 1,0 <

was examined in Appendix B.2. When p = p = 1, thenBx/B yy xx

Bx/Bg = l for all values of pan 5 (-1, +1) [by Appendix B.2,

Section D].

*
M
I
-
‘
D

The situation when d = 1 will be shown to represent a slight

variation of G.C. III for 0 < p < l/2 - p with p # l and to

xx- YY YY

represent a middle ground between G.C. I and G.C. II for

1/2 - pyy < pxx §_l with pyy # 1. To examine the situation where

-(x)
d = 1 first determine the conditions for existence of pan and

p+(X)

En °

Let d = 1, then p’(X) will exist and p'(X) e (-1, +1),
En En

for 0 < < l and for l 2 - < < l b 3.23b . Fpyy / pyy pxx _, y ( ) or

-(x) .
0 < < - - + . .pxx __l/2 pyy' pEn g ( l, l) by (3 23a) Referring to

+(X)
(3.24a) and (3.24b) (-1 +1) for an , ( l)., pEn ( , y pxx oyy pyy #

Consider d = l 0 < < l 2 - and 1. Since, oxx __ / oyy oyy #

-(X)
d = 1, then d 3_ IX (by (B.3.2) in Appendix B.3) and pEn

+(x . - x + x
and DEB ) eXist but pg; ) t (-1, +1) and pg; ) j (-1, +1). The

t t d f " rsame argume presen e or [X- §_d < 1 when 0 < pxx §_l/2 p

pyy # l in general category three is completely applicable here hence

*

(3.35a) O < Bx/Bg < l.

The variation of G.C. III which results when d = l is not obvious

yet. It will be identified below.
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Consider d = 1, 1/2 - < < l, # 1. Since d = l,oyy pxx __ oyy

-(X) (X)
...

and

En pEn

then d > and both p exist but

- J:x

9;;3)£; (-1, +1) by (3.23b) while pgéX) g (-1, +1) by (3.24b).

. -(x) _ +(X) _ I-(x) +(X)
Since pg” 6 ( 1, +1), DE” 2 ( 1, +1) and pEn fi'pEn then

+(X)
pan :_+l. Using results from (3.25a-c) and considering values of

pEn e (-1, +1) yields:

_ -(x)
(3.36a) for l < pan < pan then Q > o [from (3.25c)].

(3.36b) for pgn = pgéx) then Q = 0 [from (3.25b)]:

and

(3.36c) for pEQX) < pan < +l then Q < 0 [from (3.25a)].

When d = 1, then dpan < l for pan 5 (-1, +1). Therefore

applying results (B.6.4a) and (3.19a-c) to (3.36a-c) yields

-(X)
3.3Sb) for -l < <( p pEn

*

En then 0 < BX/BE < 1 [from (B.6.4a)

and (3.19c)]

_ -(X) * =
(3.35c) for pEn - pan then Bx/BE 1 [from (3.19b)],

'(X) *

(3.35a) for pgn < pan < 1 then sX/eE > 1 [from (3.19a)].

Some similarities to both G.C. I and G.C. II are obvious.

More direct comparisons and contrasts require additional work to be

presented below.

To continue to add information about the three general cate-

gories identified above as well as the situation when d = l. The

work which follows will examine the limiting case of Bx/B; as a

function of p asEn pen is allowed to approach various values of

interest.
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For all three general categories as well as the situation

i

where d = 1, the limiting case of Bx/Bg will be considered for

values of p in an arbitrarily small neighborhood of negative one

En

(-l). Since, by definition, p > -1 the only values of p which

En En

can be included in the arbitrarily small neighborhood of negative one

are values which are greater than negative one. The notation which

*

will be used here is: the value of Bx/B will be examined as

E
+ *

pEn + -l . The notation indicates that the value of Bx/Bg is to be

examined for values of p which are greater than negative one

En

(indicated by the + as a superscript) but which are arbitrarily close

to negative one (indicated by the +).

* .—

The value of Bx/B will also be examined as p + +1 for

E En

each subcategory of G.C. I, for G.C. II and G.C. III combined and for

d = l. [p + +1- indicates that the values of p which are to

En En

be considered are those values which are less than +1 (indicated by

the - as a superscript) but which are arbitrarily close to +1].

*

For case G.C. I only, the values of Bx/B will be examined

E

- +

as pEn + l/d and as pan + l/d . (Recall: for G.C. I, d > 1,

*

thus l/d < l, and Bx/Bg is not defined for pEn = l/d (i.e.

*

dp = 1) since B = 0).

En E

The approach to the work on limits will be to determine the

*

limits of 8x and B separately first and then consider the limit

E

*

of Bx/Bg based on the work for the separate limits.

Therefore consider

*

bgpxx(l — dpgnp )

B = .YXe [from (3.11b)
x l _ p2

 

5n pxxpyy with d = d5],



84

 

 

 

and *

b§(l - dpg )

8* = 2 n [from (3.6b)

5 l ‘ pgn with a = d5].

_ . t . n

For general notation let Bxlim — ll: Bx and Bglim - 11: qu.

pEn ‘q pEn

*

b p (l + dp )
+

As 0 + -1 . Bx + Bx = i fix 1yz_ .
En lim oxxoyy

*

Since d > 0, B > 0 if b > 0

- X . 5

lim

*

B < 0 if b < 0.

X E

lim

+ 2 +
As + -l l - d + l + d > 0 and l — + 0 .

pEn ' pEn pEn

* *

Therefore 85 + +w if bg > 0

* 'k

+ -w if b < 0 .

E E

Therefore for any d Z_0, pxx and pyy (i.e. any of the

three general categories as well as d = l), as

(3 37) —> -1+ 8 /s* + 0"
' pEn ’ X E °

Consider the subcategory of G.C. I with d > l/pyy i.e.

*

dpyy > 1. (See expressions (3.30j—l) for the behavior of Bx/BE when

l d < < d < ,/ pEn 1 an d l/pyy)

*

_ bprx(l - dp )

As pEn + +1 , B + BX 1 _ yy .

x lim pxxpyy

Since dp > 1 w l - dp < 0, then

YY YY

B > 0 'f b* < ol

X

lim g

*

BX < 0 if b5 > 0 .
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As pan + +1-, 1 - dpEn + l - d < 0 (since d > l/pyy > 1)

and l - pZn +'0+. Therefore

* *

Bg + +w if bE < 0

* 'k

E + -m if b5 > 0 .

Therefore, for G.C. I when dpyy > 1

- 'k +

(3.38) as QED + +1 , Bx/Bg + 0 .

Consider the subcategory of G.C. I with l < d < l/pyy i.e.

*

dpyy < 1. (See expression (3.30m) for the behavior of Bx/BE when

 

1 d < < l d d < l ./ pEn an /pyy)

b p (l - dp )

As pg + +1 , BX + BX = i _ yy .

n lim pxxpyy

Since dp < l.¢ l - do > 0, then

YY YY

B 0 'f b* 0> 1 >

xlim g

B 0 'f b* 0< i < .

xlim 5

As pEn + +1-, 1 - dpEn + l - d < 0 (since d > 1), and

l - p2 + 0+. Therefore

En

8* *+ +00 if b < O

E E

'k 'k 0

+ -w if b > .

E E

Therefore, for G.C. I when dpyy < l,

- t -

(3.39) as pEn + +1 , Bx/Bg + O.
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Consider either G.C. II or G.C. III. In each category d < l.

 

*

b p (l - dp )

As pg ++1,Bx+8x =53}: _YY.

n lim pxxpyy

Since d < l, dp < l e l - dp > 0, then

YY YY

B f * 0> O i b >

Xlim E

'k

3 < 0 if b < 0 .

X1im 5

As + +1‘, 1 - a + l - d > 0 since d < 1 a dpEn ptn ( ) n

2 +

l - + 0 .

pEn

Therefore,

Therefore, for either G.C. II or G.C. III (i.e., d < l),

(3.40) as pg” + +1”, Bx/e; + 0+.

Consider the situation where d = l.

 

 

As pEn + +1-, Bx + Bx = 1 _ p p Y¥+ .

lim xx yy

8 0 'f b* 0> 1 >

Xlim g

Bxlim < 0 if bg < O.

* *

b l - b

As + - * _ E( pEn) * _ ___ . . ,
p +1 , B — + B — by L Hopital s

5” 5 (l - 2 ) 511m 2
1 0En

Rule.

 

Thomas, Goerge B., Calculus and Analytic Geometry, Addison-Wesley

Publishing Co., Reading, 1968, pg. 651.
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Therefore, when d = 1

  

 

 

 

B
. 2p (1 - p )

_ *

(3.4la) as p ++1, 3/3 + *lm= "x W .
En X E B (1 — oxxp )

Elim yy

Note

2p (1 - p ) 1

(3.4lb) YY < 1 «:0 < p < —— [See (B.3.4a) and
l - oxxp -' XX *‘2 - p

yy yy (B.3.4b) from

Appendix B.3 for

proof].

20 (1 - p )

xx Xy > 1 ¢,___l;___< p < 1 [See (B.3.4c) from

1 - pxxp 2 - p xx-—

yy yy Appendix B.3 for

proof].

Consider G.C. I, where d > 1 and for pEn = l/d (i.e.

*

dpEn = l) Bx/BE is not defined. For the arguments below consider

d as some fixed value such that d > 1.

As 0 + 1/d‘, i.e. dp + 1’,

 

En En

b*p (l - p )

8X + 8X . = g x: p YY °

lim 1 XXZYY

d

d

8 >0 if b*>o

Xlim g

B < 0 if b* < O.

Xlim E

Since d > 1, l - A-2--> 0, thus as

d

+ld' ' d 1' * * o+ 'f *, , + + +pEn / 1 e pEn Bg Balim 1 bg

*

E

0 if b
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Therefore for G.C. I

_ *

(3.42) as + l/d , Bx/Bg + +w .

pEn

+ +
AS 0 + l/d i.e. dp + l ,

 

 

En En

b* (l )
._ EpXX pyy

BX + 8X -

O 0
11m 1 _ xx yy

2

d

1 - p o
+

Since d > 1, XX Xy»> 0, therefore as p + l/d ,

d2 En

0 'f b* 0B > i >

Xlim 5

B 0 'f b* O< 1 < .

Xlim g

Bg+8g1im+ 0' if b

Therefore for G.C. I

+ t

(3.43) as + 1/d , Bx/Bg + -m.

pEn

Now combining the results on limits (3.37) through (3.43) with

*

the results on the relationship of Bx/B as a function of p to

E En

zero and one for each of the three general categories as well as the

situation when d = l [(3.30a-e), (3.30j-l), (3.30m) for G.C. I;

(3.32a-d) for G.C. II; (3.33a-b) for G.C. III and (3.35a-d) for d = 1],

it is possible to describe more fully the characteristics of each

general category and to produce for each general category a generic
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graph which represents the general shape of all distributions in the

category. The information summarized below is presented as Dan

ranges from near -1, through 0 and finally to near +1.

G.C. I, i.e. d > 1, any p (p # l):

XX' pyy yy

Subcategory a) d > l/pyy i.e. dp > 1 and l/d < l/dpyy < l,

YY

(3.44a) as p + -l+ , B /B* + O+ [by (3.37)]:

En X E

(3.44b) for -1 < p < p-(x) , 0 < B /B* < l [by (3.30a)]:

En En X E “

*

(3.44c) for p = 0 , B /B = p [by section C

En x 5 xx Appendix B.3],

(3.44d) for p = p-(x) , B /B* = l rby (3.30h)]

En En X E “ '

(3.44e) for p-(X) < p < l/d, B /B* > 1 [by (3.30e)],

En En X E

(3.44:) as pan + l/d- , (ax/s; + .. [by (3.42)].

(3.449) for pan = l/d , ex/e; is undefined [by (3.30d)],

(3.44h) as pEn + l/d+ , Bx/B; + -m [by (3.43)],

*

(3.441) for l/d < pEn < l/dpyy, Bx/Bg < 0 [by (3.30])]r

*

(3.443) for pEn = l/dpyy , Bx/Bg = 0 [by (3.30k)],

*

(3.44k) for l/dpyy < pgn < 1 , o < Bx/Bg < l [by (3.301)).

and

(3 441) +1” * 0+ b 3 38. + , . .as pEn Bx/Bg + E y ( )1

Note for G.C.I: since d > 1, pQQX) :_0 [by (3.34)].

*

Thus the generic graph of Bx/Bg as a function of pEn for

G.C. I subcategory a) has the following general shape:
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Figure 3.1a

Subcategory b) l < d <
 

yy, i.e. dpyy < l and

l/d < l < l/dpyy' Since subcategory b) differs from subcategory a)

only when l/d < pEn < l, expressions (3.44a-h) for subcategory a)

also apply for subcategory b). Therefore all that is needed to

finish specifying subcategory b) is:

*

(3.44m) for l/d < p < 1, B /B < o [by (3.30m)],

En X E

and

- * -

3.44 as + +1 , + o [b (3.39)].( n) pEn Bx/Bg Y

*

Thus the generic graph of BX/BE as a function of pan for

G.C. I subcategory b) has the following general shape:



(3.45a)

(3.45h)

(3.45c)

(3.45d)

(3.45e)

(3.45f)

(3.459)

and

(3.45h)

G.C. II, i.e.
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+19

 

 
v
l
-
-
-
-
-
-

 
851 “1.0 h?

‘34:

Figure 3.lb

l (i e pyy # l):

as pEn + -1+

for -l < pan < pEQX)

for DEN = 0

for pEn EjX)

4:“ < < 4:“

for pEn = pEjX)

for p+(X) < p < 1

En En

as pEn + +1-

\lx i-d < 1' 1/2 - pyY < pxx -

* +

. Bx/Bg + 0

I BX/Bg = pxx

: BX/BE = l

*

r Bx/BE > 1

*

r BX/BE = 1

[by (3.37)],

[by (3.32a)].

[by section C

Appendix B.2],

[by (3.32d)]!

[by (3.32b)].

[by (3.32d)].

[by (3.32C)]r

[by (3.40)].
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*

Thus the generic graph of Bx/B as a function of p for

E En

G.C. II has the following general shape:

tLO

    
 

8“ '1.0 :g‘ y;{” *1‘0

 
Figure 3.2

G.C. III, i.e. 0 :_d < J::‘ , any pxx' pyy (pyy # l) or

l

< d < l O < < ————‘——v 0 < < ’. . :Ix __ , pxx __2 _ pyy l (i e pyy # l)

pYY

(3 46a) as + -1+ 8 /s* + o+ [b (3 37)]
° pEn ’ X E y ° '

*

(3.46b) for -l < pEn < +1 , 0 < Bx/B < l [by (3.33a) or

E (3.33b)]

( ) /* r3.46c for p = 0 , B 8 = p .by section C

an x 5 xx Appendix B.2],

and

(3 46d) 1‘ B 8* 0+ [b (3 40)]. a + + , + . .

8 DE” x/ E y

*

Thus the generic graph of Bx/BE as a function of pEn for

G.C. III has the following general shape:

I



(3.47a)

(3.47b)

(3.47c)

(3.47d)

(3.46a) through (3.46c) for G.C. III.

tion, occurs as

93

+5.0
db

 

931 4.0 14.0

W6;

Figure 3.3

 

When d = l and 0 < pxx §_l/ 2 - pyy with pyy # 1, then:

 

as Dan —> -1+ . (Bx/8; + 0+

for -l < pEn < +1 , 0 < Bx/B; < 1

for pan = 0 , BX/BE = Dxx

_ * 2p (1 " p

YY

as pin + +1 . [Bx/85+ 1 p 0

xx YY

[by (3.37)].

[by (3.35a)].

[by section C

Appendix 8.2],

[by (3.4la) and

(3.41b)]

Note that (3.47a) through (3.47c) above are identical to

pén

Thus the generic graph of Bx/B

*

E

The only difference, the varia-

approaches one, (3.47d) versus (3.46d).

as a function of p for

En

d = 1, O < pxx i 1/2 - p with pyy f l, which is somewhat similar

to the generic graph for G.C. III, has the following general shape:



(3.48a)

(3.48b)

(3.480)

(3.48d)

(3.48e)

and

(3.48f)

94

+3.0

Run-311). $1

 

 

 

5.- 31:35:

am -i~° +1.0

9

We:

Figure 3.4a

When d = 1 and 1/2 - pyy < pxx §_1 with pyy # 1, then:

as + -1“ B /B* + o+ [b (3 37)]
Dan I X E . Y ° r

for -l < p < p-(X) 0 < B /8* < l [by (3.35b)]:

an in ' X E

*

for p = O , B /B = p [by section C

En x 5 xx Appendix 8.2].

for = —(X) B /B* = 1 [by (3 35c)1

pan pan ' x e: ' "

for p-(X) < p < 1 , B /B* > 1 [by (3.35d)],

En En x E

_ 20 (1 - p )

asp ++1 .sx/e*+l’_°‘ yy>1
in E oxxpyy

[by (3.41a) and

(3.41b)]

Note that (3.48a) through (3.48d) above are identical to

(3.44a) through (3.44d) of G.C. I and to (3.45a) through (3.45d) of

G.C. II.

above with d = 1, when p

Like both G.C. I and G.C. II Bx/B

-(x)

n€n>p€

*

E

. But unlike G.C. II Bx/B

> 1, for the situation

*

E
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never gets infinitely large and never gets negative for

-(x) . *
En < pEn < 1, and unlike G.C. III Bx/BE does not approach zero

as pEn approaches +1.

*

Thus the generic graph of Bx/BE as a function of p for

En

d = l, l/2 — p < pxx :_l with p # 1 has the following general

YY

shape:

    

 

Ignatu'hfl ’ 1

.....- 9-th

A

Y“ -i.o K‘m +£O

 
Figure 3.4b

Examples of graphs in each of the three general categories for

fixed values of d, pxx and p will be presented below combined

*

with the work on general categories of distributions for By/Bn as a

function of p

Er)’

V. The Search for Categories of Distributions of B

of

— pin

A question which arises immediately relates to the need for

*

/B as a Function

Y n

this section based on the results demonstrated in Appendix 8.1 for the

property of interchangeability of x and y. In Appendix 3.1 it is

wn that iv it ti '. . ’ 3sho 9 en any 5 ua on (1 e , given value of pEfl' pxx' pyy
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* *

and d ) where the value of By/B is needed, that value of B /B

T] n Y n

*

is identical to the value of Bx/Bg for another situation with the

relationship between the two situations provided by (3.15a-d). Hence

*

E

The important thing to note about that result is that in gen-

it is necessary to derive detailed results for Bx/B only.

*

eral the two situations, the one of interest for By/Bn and the

*

adjusted one for Bx/Bg' will be different situations. That is the

i

values p p and dn used to get a value for BY/Bn will

En' pYY' xx

in general not be identical to the values pén, p§y, pkx and dé (as

related to pin' pyy, pxx and dn by (3.15a-d) used to get the same

*

g.

Therefore since one of the interests of this research is to

value for Bx/B

* *

examine the ratios 8 /B and By/Bn for the same situations, i.e.,

x E

gn, pyy' pxx and d = d5 = l/dn, it will be necessary to

state categories of distributions and important algebraic results for

values of p

* *

BY/Bn which are analogous to those derived for Bx/Bg'

The properties (3.15a-d), i.e., the property of interchange-

ability of x and y will simplify the work for By/B; considerably.

It will be necessary to consider the major results for Bx/B; and

apply the property of interchangeability to arrive at analogous con-

clusions for By/B;. In simple terms applying the property of inter-

changeability to a result for Bx/BE involves replacing every x with

a y, every y with an x, every 5 and an n and every n with a

5. Therefore 05“ is replaced by p but since there is no variable

n5

orderin in a correlation coefficient 0 = p is re laced b

9 n5 En, pXX P Y

p p is replaced by p and d = d is re laced b
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(1n = l/dE

Therefore for all applications of the property of interchangeability

= l/d (i.e., d is replaced by l/d provided d # 0).

consider d > 0. The situation when d = 0 will be examined

separately.

The guiding interest in this phase of the research is to com-

* *

are and now 8 to one. That is to see for what situa-p (ax/sg B/ n .

*

tions is BY an overestimate (By/Bn > 1), an underestimate

* i 'k

(B /B < l) or an exact estimate (8 /B = l) of B .

Y n ' Y n n

Combining results (3.18b) or (3.19b) with (B.4.2) produces:

*

there will exist a value of p e (-1, +1) such that Bx/Bg = l

 

 

6n

-40 (1-p )(1-p )

if |d| > xx YY xx 2 ‘I_- .

_' (1 - o p )2 x
xx yy

*

The corresponding result for By/Bn becomes by the property

of interchangeability:

*

there will exist a value of p e (-1, +1) such that By/B = 1

n

 

 

EU

40 (l - p )(l - p )

(3.49) if |§1 3_ YY xx 2 yy 2 l( ) for d g o.

(l - p p ) y
yyxx

Since it would be generally more useful to consider values of Idl

rather than Il/dl (3.49) becomes: there will exist a value of

 

 

*

e (-1, +1 su h th t = 1pin ) c a By/Bn

2
(l - p p )

(3.50) if la] 5_ 4 (le YY~)(1 _ ) s l for d y o,
pyy oxx pyy y

oxx f 1, pyy # l.
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Note that LY) and IY are used as abbreviations in

notation. Here the square root sign indicates that the quantity in-

volved is a square root and the y indicates that the expression is

*

related to work on By/Bn. l(y) is a temporary symbol to be used

only for the immediate results of the application of the property of

interchangeability to I x (defined by (3.22)). The permanent

statement of results will involve IY as will be seen below.

o <

:3Since Ix __l for all pxx' pyy (except pxxpyy 1)

with e ualit for D = l 2 - p . Thenq y xx / yy

< :-l(y) __l for all pyy' pxx (except pyypxx 1)

with equality for pyy = 1/2 - pxx' which is equivalent to

(3.51) > 1 for all p p (exce t p = l, p = l)

\ly -' xx’ yy p xx yy

20 - l l

with equality for pxx = ——X§-———u since -——--= IY (by defini-

YY ‘I(Y)

tion in (3.50)) and

1 2p - l

pyy = E—:-E--o pxx = -—§X-—- (by the second result in

yy yy (B.3.3b) from Appendix

B.3).

* . —(x) ...(X) *
For B B if = or = then = 1.

x/ E pEn pEn pEn pEn Bx/BE

—(x) -(y) +(x) +(y)
Let be re la d b d be re laced b

pEn P ce y pEn an pEn p y pEn

when the property of interchangeability is applied.

* . -(y) +(y)
Therefore for if = or = then

By/Bn pEn “an ”an pEn

By/B; = 1, and expression (3.21a) for pg(X) becomes
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1- o p (1-0 p )
__M - yyzxx __ 4p (l'p ) (1-0 )

YY XX YY
p-(y) ___ d

En Zoyy(1 - pxx)

for d # 0, pxx # 1.

Therefore

(1- ) — J(1- )2 - 4d2 (1- )(1- )' _(y) - pyypxx pyypxx Dyy pxx pYY

(3.21a ) pEn - 2d (1 _ )
Oyy pxx

for d # O, pxx # l.

+(X)
and (3.21b) for p becomes

En

 

 

2 2

1'
+ 1- . _ 4d _ _-

(3 21b') +(Y) ___ ( pyypxx) V( OXLQXX)
DYYCL DXX)(1 p )

' pi" 2do (l-p )
YY

YY xx

for d # O, p # 1.

xx

*

Note here that the expressions for By/Bn produced directly

*

from expressions for Bx/BE using the property of interchangeability

will not be assigned new expression numbers. The number assigned to

'k

the expression for By/Bn will be the same number as that of the

*

g.

*

pressions the expression number for BY/Bn will always be primed

original expression for Bx/B To differentiate between the two ex-

(i.e., given a ' as a superscript).

Consider now the conditions for existence of pg;X) e (-1, +1)

and hence for the existence of pgéy) e (-1, +1).

Result (3.23a) states: pg;X) exists and pEQX) e (-1, +1)

f 1 dor pyy f an
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for O < pxx §_3-:l;-- if d > 1.

YY

-(y), p-(y)

En ' En

-(y)

En

This becomes for p exists and p e (-1, +1)

for pxx # 1 and

l
< ———————- if l/d > 1.

yy 2 pxx

for O < p

Rearranging this result so that the interval of reliabilities is an

interval of pxx values rather than pyy values and so that the con-

dition is expressed in terms of d rather than l/d produces:

-(Y) exists and p-(y) e (~1, +1)

pEn En

2p - 1

(3.23a') for ‘—€?L———-f_pxx < 1 if 0 < d < 1.

yy

This rearrangement results from O < pyy f §—:—E——-w

2p - l

-x§-—-—-§_pxx < l by (B.3.3b) and (B.3.3a) from Appendix B.3 and

YY *

from the fact that d > 1 for Bx/BE also implies d > 0 and

l/d > l‘n d < 1.

-(x) -(x)
Result (3.23b) states: pan exists and pan 6 (-1, +1)

for +1 andpyy ¢

for l < < 1 if < d or if -1 < d < -

2 — pyy pxx - x - —- J °

-(y), -(y)
En pan exists and p-(Y) e (-1, +1)

En

This becomes for p

for pxx f +1 and

l I l l
-——————- < 'f < l d 'f - < -< - .for 2 _ pxx < pyy __1 i (y) __ / or i l d __ ( )
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- (y)

En

Rearranging this result as above produces: p exists and

pggy’ e (—1. +1)

2p - l

(3.23b') for 0<pxx<—X§— if O<di [Y or if

YY

- I < d < -1.
y—

1 2p - 1

This rearrangement results from -—-————'< p < l a'0 < p < -—ng——‘—

2pyy - l yy - xx pyy

by (B.3.3c) from Appendix B.3 and from the fact that J::<Id. for

*

Bx/BE also implies d > O, that -1 < 1/d :.- hy) for Bx/B

implies d < O, and that I(Y) = 1/ ly .

*

E

+ + .
Result (3.24a) for pgéx) states: pg;X) eXlStS and

+(X)
e (-1 +1) for l and

for O < pxx : 1/2 - pyy if d < -l.

+(y): +(y)

En En 6 (‘1’ +1)

. +

eXists and p (y)

En

This becomes for p

for O < p < 1 2 - 0 if 1 d < '1.

Rearranging this result produces: p+(y) exists and p+(y) e (-1, +1)

En En

2p - 1

(3.24a') for ——X%————- i-pxx < 1 if -1 < d < O.

YY

*

This rearrangement results from the fact that 1/d < -l for Bx/Bg

also implies that d < 0.

Result (3.24b) for p2£X) states: pgéx) exists and

+(X)
(-1, +1 for l andpEn ) pyy #
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for 1/2 - p < p < 1 if ‘lx 5_d < l or if

YY

d<" 1»

-" JX

+( -y) p (y). . +(y)
This becomes for : eXists and (-1 +1)

pEn En pEn e '

for pxx # 1 and

for -—-l—-—-< p < 1 if < 1/d < 1 or if

2 - o W — (y) -
xx

1 d < - o

/ — \I(y)

. . +(y) . +(y)
Rearranging this result produces: pEn exists and pEn 5 (—1, +1)

2p - 1

(3.24b') for O<pxx< —X¥——- if l<di Iy or if

pyy

y —

-(y)

pEn

Consolidating the above results produces: exists and

- (y)
-l, 1Dan 6 ( + )

2p - 1

(3.23b') for O < pxx < -—J%}———— if 0 < d < Iy or if

YY

- I < d < -1,
y—

2p - l

(3.23a') for +19” < 1 if 0 < d < 1,

YY

+ +

and pggy) exists and pgéy) e (-1, +1)

2p - l

(3.24b') for 0<pxx<—§1——— if l<d_<_ IY or if

YY

I < d < O,
y—

2p - 1

(3.24a') for -—%PL———-§_pxx < 1 if -1 < d < O.

YY
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(l - p2 )0

When p = l, B /B* = En xx for dp # 1

En xx

where 0 < Bx/B; < 1. (See Appendix 8.2).

2

(1 - o )p 0

Therefore, when p = l, 8 /B* = En Ayy, for —§fl-# 1

xx (1 _ D2 0 ) d

* En YY

h 0 .w ere < BY/Bn < l

2

(l - o )(1 - do 0 )

xx E (1 - 02 p )(1 - do )

En YY E”

-(x) _ +(X) _
and for 0 §_d < 1 then pEn — O, pEn - d

_ +7

for d > 1 then pgéX) = O, OEQX) g (-1, +1).

2 rpggpxx

* (1 - pg )(1 - d )

Therefore, when pyy = 1, By/Bn = n p for d # O

(1'02!) )(1-J1)
En xx d

, (l-p2)(d-D ox)

which becomes 8 /8 = in an x for d # O,

l - d -

( pEnpxx)( pEn)

and for d > 1 (i.e., 0 < l/d < 1) then p;(y) = O,

—' n

+(y)
= 1 dpEn /

f . -(y) _
or O < d < l (i.e., l/d > 1) then pEn - 0,

+(y)
-1, l .

pEn ( ( + )

When d = 0, expression (B.2.5) represents the appropriate

*

expression for By/Bn i.e.,

2

8 /B* = (1 _ pEn)pyypxx

y n (1 _ p2 p p ) for pEn

En yy xx
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Applying the property of interchangeability to the result

*

presented in Appendix 8.2 (for Bx/B when a = O, i.e. d is un-

E E

*

defined) yields: when d = O, O <BY/Bn < 1. Also note when d = O,

*

By/B is symmetric about the line 0E” = 0. And as pEn + 0,

By/B

n

*

+ O

n pYprx

*

Three general categories of distributions of BY/Bn as a

function of 9E” can be identified. Each of these categories is

derived from one of the general categories of distributions of

*

Bx/BE as a function of p using the property of interchangeability.

En

*

Thus the first general category of distributions of By/Bn as

*

a function of pEn (G.C. I (y)) is based on G.C. I for Bx/Bé’ Recall

*

G.C. I for Bx/Bg had two subcategories. Subcategory a) of G.C. I

consisted of situations where d > 1 and dpyy > 1 for any pxx'

pyy (pyy # 1). Subcategory b) of G.C. I consisted of situations where

d > 1 but d < 1 for an 1 . Therefore sub-pyy Y pxxr p (pyy 5‘ )

YY

category a') for G.C. I (y) consists of situations where 0 < d < 1

(i.e., l/d > 1) and 0 < d < pxx (i.e., pxx/d > 1) for any pyy'

pxx (pxx # 1) and subcategory b') of G.C. I (y) consists of situations

where 0 < d < l (i.e., l/d > 1) and pxx < d < l (i.e., pxx/d < l).

*

G.C. II for Bx/B consists of situations where Ix :_d < 1

E

for 1 2 - < < l with 1. Therefore G.C. II con-

/ pyy pxx - pyy ’1 (y)

sists of situations where 1 < d < ‘I (i.e., I < l/d < 1) for

Zp - 1 _- y (Y) —

0 < < -—3§L———— '. ., - < ' .pxx pyy (i e 1/2 pxx pyy :_1) With pxx # l

*

G.C. III for Bx/Bg consists of two sets of situations;

either 0 :.d < ‘Ix, for any pxx' pyy (pyy # 1) or I x :_d < l

for O < pxx :_1/2 - p with pyy # 1. Therefore G.C. III (y)

YY
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consists of two sets of situations; either d > IY (i.e.

O < l/d < l(Y)) for any pyy' pxx (pxx # 1) or 1 < d :_ lY

2p - 1

(i.e. < l/d < 1) for -—1§L-—- < p < 1.

(y) — pyy - xx

Detailed information about the characteristics of each gen-

eral category as well as information about the situation where d = 1

will be presented in the following tables (3.1a through 3.4b). In

*

E

will be presented on the left side of the table and the corresponding

each table the characteristics of each general category for Bx/B

information for By/B; will be presented on the right side of the

table. Following each table the generic graph of By/B; as a func—

tion of pan will be presented for the general category displayed in

the table.

Although the generic graphs for each category of By/B; are

identical to the generic graphs for corresponding categories of

*

Bx/Bg they will still be presented. When the joint categories for

* *

Bx/Bg and By/Bn are constructed and generic graphs are presented

*

there will be less chance of confusion if each category for Bx/Bg

*

and By/Bn is clearly identified along with their generic graphs.

*************

Insert Table 3.1a Here

*************

Based on results (3.44a') through (3.441') the generic graph

*

of By/Bn as a function of p for G.C. I (y) subcategory a') has

Er)

the following general shape:
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Figure 3.5a

*************

Insert Table 3.1b Here

*************

*

The generic graph of BY/Bn as a function of pEn for

G.C. I (y) subcategory b') has the following shape:
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Figure 3.5b
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*************

Insert Table 3.2 Here

*************

i

The generic graph of By/Bn as a function of pEn for

G.C. II (y) has the following shape:
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Figure 3.6

*************

Insert Table 3.3 Here

*************

*

The generic graph of By/Bn as a function of 0E0 for

G.C. III (y) has the following shape:
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Figure 3.7

*******************

Insert Tables 3.4a and 3.4b Here

*******************

2p - 1

When d = l and -X%-—--§_pxx < 1 the generic graph of

YY*

By/Bn as a function of p has the following shape:

En
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Figure 3.8a

2p - 1

When d = l and O < pxx < ——x§—-—— the generic graph of

* YY

By/Bn as a function of pEn has the following shape:
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Figure 3.8b

Examples of graphs in each of the general categories of x

and y for fixed values of d, pxx and pyy will be presented below

in section VII.

*

E

*

Prior to combining the general categories of Bx/Bg with the

VI. Additional Algebraic Results Involving Both Bx/B
 

*

dan BY/Bn

general categories for By/B; to form joint general categories some

additional algebriac derivations involving both Bx/B; and By/B:

are needed. In this section three algebraic derivations are to be

presented. The first two derivations will be used in subsequent work

but also represent interesting results by themselves. The third

derivation provides an algebraic justification for a result which can

be noted from the generic graphs for each general category of Bx/B;

and By/B;.

*

Derivation 1: Show that when Bx/BE
 

*

= 1, then B /B = and when

Y n pYY

* *

BY/Bn = 1, then Bx/BE = pxx.
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*

Proof: From either (3.18b) or (3.19b) Bx/BE = lflQ = O

2

Q = Dwhere p (l ' 0

En xx

Therefore consider By/B

- d
yy) pE

*

pyy’

*

for e /3 with l/d = d yields:

y n n

2
(1 - p )

an.”

2

(1 - pgnpxxpyy

YY

n

By/B

and

2

1 - d( pEn)pyy(C9 )8 /8n - ognpxx

2

(1 -

pEnpxxpyy0yy

2 _ 3
+

En p

D (d - d

yy 0 pEnpxx

2

pEnpxxpyy -

3

Enpxxpyy

(d - dDyy 0

En

23

d

pEr)

e ( -Dyy pgnpxx O

2

(Ognpxx(1
- d0

0 ) Enp YYyypEn

a p Q = O

yypEn

pyy En -

t
g = 1, then Q = O and thus 8

*

Therefore 8 /B = if p

Y n

But if B /B

x

(3.52) Therefore if Bx/%:= 1, then By/B:

And by the property of interchangeability of x

XX

* *

3.53 'f 1, th =( ) 1 By/Bn en Bx/Bg o

(1 -
n pxxpyy

Enpxx

0xx

0 or

/ F

Y 8n

) + (l - pxx) from (3.17).

Modifying expression (3.14)

)(d - OED)

)

3
+

pEnpxxpyy

- d 2 + -o o )

yy Dan Dan an xx
0

(l - pxxpyy) + (l-pxx)) = 0

O > 0.sinceQ o

YY

p .

YY

pyy'

and y:

Note that the converses of (3.52) and (3.53) are in general

*

= 0, Bx/Bg = pxxnot true, since if p

En

*

dan By/Bn = p . For

YY
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* *

“an x 0. then By/B; = pyy a (ax/Bg = 1 and sx/sg “xx.” BY/B; = 1.

Derivation 2: Show that Bx/B; and By/B; cannot both be greater

than one for any situation, i.e., there exist no values of d, pEn'

pxx and pyy such that Bx/B; > 1 and By/B; > 1. For any given

situation at most one of the observed weighting coefficients will be

an overestimate of the corresponding latent weighting coefficient.

The procedure will first locate for Bx/B; and By/B:

separately the general categories and then the regions within the

general categories (from Tables 3.1a through 3.4b) where each ratio

is greater than one. Then the regions will be compared to see if

there are any regions where both are greater than one. If such regions

exist then more detailed algebraic work will be performed to examine

the situations in each region.

*

Bx/Bg > 1

(3.54a) 1. From Table 3.1a for G.C. I, when d > 1 for any pxx'

p and p-(x) <
*

yy En pgn < l/d then Bx/Bg > 1.

(3.54b) 2. From Table 3.2 for G.C. II, when Ix :_d < l,

- +

1/2 - p < p :_1 and p (x) < p < p (X) then

YY Xx En En En

*

> 1.Bx/Bg

(3.54c) 3. From Table 3.4b when d = 1, 1/2 - p < p < l and

yy xx —-

-(X) < < 1 then B /B* > 1

“an “an ' x a '

>

8/

(3.55a) 1. From Table 3.1a for G.C. I (y) when 0 < d < 1, any

-(y)

En < pEn

pxx' pyy and p

*

<d then By/Bn>l.



(3.55b)

(3.55c)

*

>By/Bn

(3.56)
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2. From Table 3.2 for G.C. II (y) when l < d 5_ Iy,

2" '1 -() +()
0 < p < -—j§L———— and p Y < p < p Y then

xx 0 En En En

yy
*

B B > 1.

Y/n

29 - l

3. FromTable 3.4bwhen d=1,0<pxx<—flp—— and

yy

and p-(y) < p < 1 then B /8* > 1.

En En y n

2p - 1

Notel: l/2-p >—11— forall p ,0<p <1
yy— 0 yy yy—

YY

with equality only when pyy = 1.

B.7 for proof.)

Note 2: II: 1 for all

with equality for

B.3.)

Note 3: > 1 for all
‘IY'—

with equality for

(3.51).)

(See Appendix

such that pxxpyy # l

p = ————;-—3 (See Appendix

YY

1such that pxxp #

. (By expression

*

Therefore the only regions where both Bx/Bg > 1 and

1 occur within the region are:

when \I:f_d< l and 1/2-pyy<pxx:l:

* . -(x) +(x)
Bx/Bg > 1 if pEn pEn < pEn [from (3.54b)]

and 8 /B* > 1 if p-(y) p < d [from (3.55a)).

y n En En ’
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2p - 1

..JQL___..(3.57) and, when 1 < d _<_ I; and o < pxx < p .

YY

Bx/B* > 1 if p-(X) < p < l/d [from (3.54a)]

E En En ‘

* . -(y) +(y)
and By/Bn > 1 if pEn < pEn < pan [from (3.55b)].

Note however, that this second region can be found from the first

region by use of the property of interchangeability. Therefore it is

necessary to examine in detail only the situations in the first region,

since all results for situations in the first region can be extended

to corresponding situations in the second region.

T <d< 2- < <.Fhus let J::__ l and l/ pyy pxx __1 or any

values of pyy' pxx and d in this region the question of interest

is whether there exists a value p'

En

-(x) +(X) -(y)
< ' < d < '

pan pan pan a“ ”an ”an

In this region ( 51d < 1 and 1/2 - pyy < pxx < 1),

+(X) < d. (From expression (B.8.4b) in Appendix 8.8). Therefore,

En

. . . . -(x) +(X)
if ' eXists, that is if < ' < < d and

0En pEn pEr) pEr)

- (y) +(X)
< p or else the two intervals

En En

d) will have no common values.

, -1 < pén < +1 such that

< d.

*

Note: for < d, B < 1 occurs onl whenpEn 8/ n _ y

En fi_p€n [from Table 3.1a for G.C. (y)].

=p+(x) *=

En En E

* *

By/Bn = pyy §_1 (from (3.52)). Therefore Since By/Bn :_1 for

_ +(X) +(x) -(y) -(y) +(X)
o p (3 En Kean .

pEn - En ' En : En

. - (x) +(X)
t ' th ' ,no eXist a pan such at pEn 5 (pin pEn ) and

d).

0

Let p , then Bx/B 1 (from (3.45f)) and thus

, hence p Thus there does

- (y)

En ’DEn 6 (p
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Therefore there do not exist any combinations of values of

pgn'pyy'pxx and d, with Eid<l and l/2-pyy<pxx<l

[region (3.56)] such that Bx/Bg > 1 and By/B; > 1 simultaneously.

By‘the property of interchangeability of x and y this

result for the region identified as (3.56) also holds for the region

(3.57).

Therefore it is not possible to find a set of values of

I p p p and d so that Bx/8*

En yy XX E

simultaneously. That is in the two category, two predictor case it

*

> 1 and B /8 > 1

Y n

is not possible for both of the observed weighting coefficients to be

overestimates of the latent weighting coefficients for the same com-

bination of values of p , p , p and d.

yy xx

*

E

dp < 0. It is important to note here that this result represents

En

a sufficient condition only.

En

*

Derivation 3: Show that both Bx/B < l and BY/Bn < 1 when
 

*

Consider Bx/BE from (3.12), i.e.,

 

2

- - dB /B* = (1 pgfl)oxx(l ogno )

X (1 - 2 )(1 - d )
pEnpxxpyy pEn

*

Note that BX/Bg can be considered as the product of two ratios R

2

l

  

(1 - p )p (1 - do 0 )

and R where R = En xx and R = ED—YY . Thus

2 1 (1 _ 02 p p ) 2 (l - dog”)

* ET) XXYY *

B /8 = R ° R . The examination of B /B for this derivation will
x g l 2 x 5

proceed by examining R1 and R2 separately and then combining the

results.

Work with R1 first. There are three situations to examine.

For what values of , and will R (1) be reater thanDan pxx Dyy 1 9
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one (R1 > 1 ?), (2) be equal to one (R = l ?) and (3) be less than
1

one (Rl < l ?)?

 

 

1

2

(l - p )p

R > 1 9’ g“ > 1

1 l - 92 p 9
En xx yy

2 2

e (l - ) > 1 - sincepEn o pgnpxxo

1 - > 0

pEnpxxpyy

2 > 1
a _ _
onx panoxx panoxxoyy

a 0 > o o - 2 p + (1 - )

Enxx pEnxxpyy pxx

O>pzp (l- )+(1- )
Enxx pyy pxx

but note p2 > O p > 0 l - p > O l — p > 0.En_ I XX I YY_ I 20(—

2

Therefore 0 (l - + 1 -7 ognoxx oyy) ( oxx)

(3.58a) and R 7 1

l

(1 - 02 )p

2.) R < 1? R < 1 a 5” xx < 1
l - l - (l _ 2 p )'-

pEn xxpyy

using algebra from 1) above

2

. < C: O < 1 — + _(3 58b) R1 __ 1 _ among pyy) (1 pxx)

true for all values of , , and .

pan pyy 0xx

2

N t : R = l W 0 = 1 - + l - .o e 1 pgnpxx( pyy) ( pxx)

. T = ' = ' =(3 58¢) hus R1 1 only if pxx l and either pyy 1 or
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Note: if d = O,

 

2

(1 - p )p

B /B* = 5" xx = R .
x g l _ 2 p p l

pEn xx yy

Work now with R2. Consider only situations where R2 < l.

*

Then Bx/BE = R1 ° R2 < 1 by (3.58b). Note, for some situations where

* *

> 1 and for other situations Bx/B < l. The purpose

E E

of this derivation is to produce a sufficient condition for Bx/B

R2>IIB£$

*

E <

and not reproduce the exhaustive study which has been done above in

1

'k *

subsection IV for Bx/Bg and in subsection V for By/Bn.

The situation to be examined then is for what values of p ,

 

En

‘ a 9pyy and d W111 R2 be less than one (R2 < l .).

l - d0 0

R <:1? R < 1 a 5” YY < 1
2 2 1 - dpan

1.) if 1 - dpEn > 0 dog“ < 1

then R < l a l - d < 1 — d

2 panpyy pEn

ado <0- d

En pEnpyy

e do (1 - o ) < 0

En yy

a do n < O for pyy # l.

E

Since R < 1 if do2 n < l and do < 0. Then

E in

3.59 R < 1 'f d < o.
( a) 2 1 “an

or 2.) if 1 - dpEn < O ¢°dp€n > 1
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then R2 < l a 1 - dp > 1 - dp

Enpyy En

: dp n(l - pyy) > 0

E

a dpEn > 0 for pyy # l .

Since R < 1 if d > 1 and d > 0. Then

2 pEn pEn

3.59b R < 1 if d > 1.

( ) 2 pEn

Therefore, if dp < 0 or dpEn > 1 then R < 1. Since

5” 2

b 3.58b R < f 11 l f d 'y ( ) l __l or a va ues o OED, pxx an pyy and Since

* *

Bx/Bg = R1 0 R2 then Bx/BE < 1,

*

(3.60) If dpEn < 0 or dpEn > 1 then Bx/BE < 1. For dpEn to

be less than zero, d and pEn must have opposite signs.

By the property of interchangeability of x and y (3.60)

becomes for d # 0:

*

3.60' If d < 0 r d > 1 then < 1.( ) pEn/ o n/ By/Bn

”5

For n/d to be less than zero, d and pEn must have opposite

“5

signs, i.e., dp < 0.

En

Therefore if d and p n have opposite signs (dpEn < 0)

E

then both BX/BE and By/B; will be less than one. Note that this

is a sufficient condition only.

As noted above dpEn can also be interpreted as the ratio of

the slope of the pooled within categories regression line of E on

n over the slope of the between categories line joining the mid-

points of the distributions in each category of E and n. This

interpretation is presented in Appendix B.9 along with a presentation

of results which corroborates the results in (3.60).
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Using the ratio of slopes interpretation of do in a

En

situation where dp < 0 indicates that the slope of the pooled

En

within categories regression line has the opposite sign as the slope

of the between categories line, i.e., the direction of the relation-

ship between E and n as expressed by the pooled within categories

regression line is the opposite of the direction of the relationship

between category means as expressed by the slope of the between

categories line.

Using this interpretation for dp < 0 there may be some

En

question about whether dpEn can be less than zero in practice. The

concern at issue here is very similar to the concern involved in the

study of ecological correlation where the interest is on using a

correlation between group means (similar to the between categories

situation here) to estimate either a total group or pooled within

groups correlation (similar to the pooled within categories situation

here). The study of ecological correlation produced some results which

are applicable here as well.

If the groups (in this case two groups [categories]) are in-

dependent samples from the same population then the correlation in

the population of individuals and the correlation in the population

formed by the sampling distribution of the group means for a given

sample size are identical. In this case the between groups correla-

tion and the pooled within groups correlations are less likely to have

different signs than the same sign. For the quantal response situa-

tion, if the individuals are arbitrarily assigned to each category of

the criterion on the basis of a random sampling from a single
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population of individuals then the relationship between 5 and n

as measured by the slope of the pooled within categories regression

line will be more likely to have the same sign as the slope of the

between categories line joining the category midpoints than to have

a different sign. That is, do is more likely to be greater than

En

zero rather than less than zero.

For most quantal response situations it would seem unlikely

and even contrary to the intents of quantal response procedures to

arbitrarily define categories of a criterion as multiple random

samples from some population. For most quantal response situations

assignment of a subject to a category of the criterion is based on

distinct and non-overlapping membership criteria, e.g., health status

of an experimental animal (e.g., a rat) following an administration

of an experimental drug (i.e., alive or dead) or group affiliation

(Democrat, Republican, Independent, etc.).

For these types of situations it is not reasonable to assume

generally that the between groups relationship will have the same

sign as the within groups situation. That is, for a given situation

there is no a priori basis to assume that dp > 0 with any more

En

likelihood than doEn < 0.

Although in many situations the ratio of slopes (dpin) will

be positive there will exist situations where the ratio is negative.

A hypothetical example can be constructed to illustrate thatthe ratio

of slopes can be negative.

Consider two elementary schools. Each school represents a

category. The mathematics curriculum of school 1 heavily emphasizes
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work on the basics of computation through rote memory and repeated

drill under the assumption that students must have a sound basis of

computational skills prior to tackling more advanced mathematics

topics. The mathematics curriculum of school 2 emphasizes training

in approaches to problem solving and the conceptualization of mathe-

matical problems under the assumption that it is important to be able

to identify approachestx>the solution of problems and that specific

computational skills can be more efficiently learned when the student

is confronted with the need to compute as part of the solution of a

problem.

The predictor variables in this situation are the mathematics

computation subscale and the mathematics application subscale of

some standardized test. It is reasonable to expect that there is a

similar positive relationship between subscale scores on mathematics

computation and application within each school, since factors such as

general mathematics ability and motivation are likely to be under-

lying factors related to performance on both subscales within each

school. Therefore, there is a positive within categories relation-

ship between the predictor variables.

However, it is also reasonable to expect that students in

school 1 will do better on the mathematics computation subscale than

students in school 2. While, students from school 2 can be expected

to do better on the mathematics application subscale than students in

school 1. Therefore, the slope of the line which joins the midpoints

of the distributions of the two schools on the computation and applica-

tion subscale can be expected to be negative. That is, there is a
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negative between groups relationship. Therefore, the ratio of the

pooled within categories slope to the between categories slope is

negative.

If this or a similar situation were to be analyzed using a

quantal response procedure then dp < 0 and Bx and BY will

En

* *

underestimate BE and 8n respectively. Note if the ratio of slopes

based solely on the observed predictor is negative then the ratio of

slopes for the latent predictors (dpgn) will also be negative. This

follows since the errors of measurement will not affect the value of

the slope of the line between the midpoints of the categories but will

attenuate the value of the pooled within categories slope based on

latent predictors (see Appendix B.9 for details). Thus the magnitude

of the ratio based on observed predictors will be smaller than the

magnitude of the ratio based on latent predictors but the signs of the

two ratios will be identical.

*

VII. Joint General Categories of Distributions for Bx/Bg and

*

By/Bn Together

In this section the results from section IV (for categories

'k

of var us for fi ed values of d, and ) sec-Bx/Bg s pEn x oxx pyy .

*

tion V (for categories of BY/Bn versus 0E” for fixed values of

*

d, pxx and pyy) and section VI (Algebriac results for Bx/Bg and

*

BY/Bn together) are combined to derive joint general categories of

*

E

*

For each joint general category, the generic graphs of Bx/B and

E

*

By/Bn will be displayed to provide a visual indication of the generic

*

distributions for Bx/B and By/Bn together for the same situations.

shape of the distributions within the category. In addition actual
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graphs for specific situations (i.e., values of d, pxx and pyy)

within each category will be referenced. For a more detailed in-

* *

dication of the shape of either Bx/Bg or By/Bn within any joint

general category see the information from the tables in section IV or

section V which applies.

An example of the notation for the joint general categories

is: G.C. I (x,y). The x and the y in the parenthesis indicate

*

that it is a joint general category involving both Bx/Bg and

B /B*
y n'

G.C. I (x,y). When 0 < d < Ix (Recall, ‘lx is defined by (3.22)),

XX YY XX YY

* *

0 < < l 2 - G.C. III f r nd G.C. I foroxx __ / pyy. o Bx/Bg a (y) By/Bn

for any p , p (p , p f l) or when IX :_d < l for

apply. Ignoring the two subcategories of G.C. I (y), the generic graphs

for this category of situations are:

 

  
Figure 3.9



 
 

I
n
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*

The exact shape of By/Bn when d < 0E“ < 1 depends on

whether 0 < d < p or p < d < 1. See section V for G.C. I (y)

xx xx

above for details.

Figure 3.lla through 3.11d provide examples for 4 specific

situations in G.C. I (x,y).

G.C. II (x,y). When Ix :_d < l for 1/2 - pyy < pxx < l, G.C. II

t 'k

for Bx/Bg' G.C. I (y) for BY/Bn and section VI results apply. Again

*

ignoring the two subcategories of By/Bn, the generic graphs for this

category of situations are:

 

  
Figure 3.10

*

The exact shape of By/Bn when d < p n < 1 depends on whether

E

0 < d < pxx or pxx < d < 1. See section V for G.C. I (y) above the

details.

Figures 3.12a through 3.12c provide examples for 3 specific

situations in G.C. II (x,y).
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2p - 1

G.C. III (x,y). When 1 < d < I for 0 < p < -—jDL———- then

Y XX 0

* * YY

G.C. I for Bx/BE' G.C. II (y) for By/Bn and section VI results

apply. Note, this general category is identical to G.C. II (x,y) but

with the roles of x and y reversed. Therefore Figure 3.10 with

the property of interchangeability of x and y applied provides

the generic graphs for this category.

Figures 3.12a through 3.12c with the property of interchange-

ability of x and y applied provide examples for specific situa-

tions in G.C. III (x,y).

G.C. IV x, . When < d f , l or( 4y) J:: or any pxx pyy (pxx' pyy # )

r *

E

and G.C. III (y) for By/B; apply. Note, this general category is

identical to G.C. I (x,y) but with the roles of x and y reversed.

Therefore Figure 3.9 with the property of interchangeability of x

and y applied provides the generic graphs for this category.

Figures 3.lla through 3.11d with the property of interchange-

ability of x and y applied provide examples for specific situa-

tions in G.C. IV (x,y).

2p - 1

When d = l for 0 < p < -—}QL———- with p # 1 Figure

xx 0 YY

* yy*

3.4a for Bx/B and Figure 3.8b for By/Bn apply, since

E

(see proof in Appendix B.7). Therefore the generic

yy pyy

graphs for these situations are:
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Figure 3.13a

2p -1

When d=l for —-Yy———<p <—-1——withp 7‘1

(3 -xx—2-p yy

. W Y2:
Figure 3.4a for Bx/Bg and Figure 3.8a for By/B apply. Therefore

n

the generic graphs for these situations are:

I

+1.0

1'3"?“

 

 

 

 

“Wt?“

+1.0

Figure 3.13b

2p(1-p) 2'(l-p)

Note: yy xx > xx 11’ so >p  

l-I P l-Ixxryy W ’0"
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.. > _
0y (1 pxx) o x(1 oyy)

2p (1 - pxx) prx(1 - pyy)

lyy
(3.6la) > a D > p

1 Dxxpyy 1 "' pimp”, YY xx

  

2p (1 - oxx) 20xx(1 - p )

(3.6lb) 1i” 1 1 _ H a p 1 an -
pxxpyy pxxpyy yy

  

l

= f -—-— < < ‘ -
When d l or 2 _ p p 1 Wlth p f 1 Figure

*

E

perty of interchangeability of x and y to Figure 3.13a will pro-

*

3.4b for Bx/B and Figure 3.8a for By/Bn apply. Applying the pro-

vide the generic graphs for these situations.

Figures 3.14a and 3.14b provide examples for the first two

sets of specific situations noted above when d = 1. Applying the

property of interchangeability of x and y to Figure 3.14a pro-

vides an example for the third set of situations noted above.

J Category, Two Predictor Models (J :_2, p = 2)

The preceeding work has considered the case of 2 categories

(J = 2) and 2 predictors (p = 2). To complete the examination of the

two predictor special case, it is necessary to consider the most

general two predictor model, that with J categories (J :_2). It is

reasonably straightforward to show that results for the 2 category, 2

predictor model extend with only slight modification to the J category,

2 predictor model.
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Consider any category k (k = 1,2,...,J), any vector of ob-

served weighting coefficients from category k, gk-j (j # k,

j = 1,2,...,J) and the corresponding vector of latent weighting co-

efficients g;°j° Since the model under consideration here is a 2

predictor model,

r- a

    

8 . P “W

k' .3(x) * 8k,3<g)

tFk'j(YXo _?k°j(nld

Result (2.21) modified for the two predictor case (p = 2)

 

  

 

becomes

* (“(k) _ u(3)) _ b (“(k) _ “(j))

' k-j(g) 2 ’

o - b o

O E E'n En

_E.
where bE'n - pan 0 .

n

'J _ (k) (j) k‘j _ (k) _ (3)

Let a: a “a and n ’ n n

Note:

2 2 35_ 2 2

°€ ' bE°nO€n = “a ' (“an 0n)(pEn°€On) = “5‘1 ' p€n)'

Thus (3.62a) becomes

k-j

. a /o

. . k'j n n

k'j _ k’] Eg_ a (l - -jfi——"D )

* a: an 0' pén g a: 3/0 En

Bk '(g) = 2 2 n = 2 2 g.3 - -

05(1 pin) 05(1 pin)

.. ak-j/O (u(k) _ “(3))/O

Let dk J _ n n = n n n

g ‘ k-j/CI ( (k) _ (j))/o ’

a: a “a “a 5

Therefore
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k. k. '

* 3: j‘l ‘ 6: Jpgn’
(3.62b) B . = .

k 3(5) 02(1 - 2 )
E pEn

Result (2.17b) modified for the two predictor case (p = 2)

 

becomes

(k ' k '

(u ) - u(3)) - b (u( ) - u(3))
x x x-yy y ,y

(3°63a) Bk-‘(x) = 2
3 o — b o

X X'Y KY

0x

where b = p -—- .

X°y xy 0

Y

Let ak.3 = u(k) - u(3) and ab:I = u(k) — u(j), where

x x x y y Y

a:.3 ag .3 and a .3 = a:.3 by a result comparable to (3.8).

0 '0

Note: 1) b = p o /0 = (p /p p )(—5——)(——X¥)
-———' X'Y XY X y in xx YY /——— 0

D n
xx

0

= “5'0 0 .

0 En YY
n

By (3.10), (3.9a) and (3.9b).

o

2 2

2) 0 - o = o - (p -§) 0 o o ) = o (l - p )

x x-y xy x xy 0 xy x y XY

2

3§_. 2
- (l - panoxxo )

pxx YY

By (3.9a) and (3.10).

Therefore (3.63a) becomes



 

 

 

 
 

 

 

k'J k'j .5
a5 n on pgnpyy

Bk-j(x) = 2

0g 2

3;;(1 " pgnpxxpyy)

k-j

R.) an /o

p a (1 - "___—1. 0
xx 5 ak°3/O En yy

= E E

2 2

o€(1 - pgnpxxpyy)

k-j k°j
1 d

(3 63b) 8 = pxx g ( g pgn9XX1'
° k'j(X) 02(1 - 02 o o ) t

5 En xx YY

k-j
.' a /o

where dk J n - n '

5 akOJ/o

E E

*

The ratio of interest Bk-j(x)/Bk°j(€) becomes

k-j k-j k'J' k'j* pa(1-d00)a(1'dp)
B ' /8 . = xx <5 5 an YL/ E E En

k°j(x) k'J(€) 02(1 _ 02 p p ) 02(1 - p2 )
5 En xx yy 5 5”

2 k°j
1 - 1 - d

(3 64) B /B = ( pgn’pxx‘ 5 Dan)

En xx yy 5 En

k-j (k) _ (j)

where dk°j = an /On _ (“n u” )/OD

E ak'j/c (u(k) - u(j))/°
E E E E 5

Note the close similarity between expression (3.64) for the

J category, 2 predictor model and expression (3.12) for the 2 cate—

gory. 2 predictor model. The only difference is in the use of dk.3

in (3.64) and dg in (3.12). But note that dg in (3.12) is based
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on a comparison between predictor means in the only two categories

k-j

E

predictor means from some two of the J categories.

in the model whereas d in (3.64) is based on a comparison between

Thus in the J category, 2 predictor model any ratio of the

*

k°j(x)/Bk-j(g) for j'k = 1:2,...,J and j # k, will have a

distribution which corresponds to one of the General Categories for

form 8

. k'j

de din o the val es f d d h thx pen 9 n u o E , pxx' pyy an pEn’ w ere e

d2.) value can be treated as a value of di from (3.12), since

dk.3 will take on values -m < dk.3 < +m just as d does.

5 E E

A generalized property of interchangeability applied to (3.64)

*

. . f ',k = 1,2,...,J .thk-J(y)/Bk°j(n) or 3 w1

j # k which is an extension of (3.14).

produces the ratio 8

 

 

_ 2 _ k'J’
_ (1 pgn)pyy(l an agnoxx>

(3.65) B . /B . -
'k'j(Y) k°j(n) (1 - 02 p p )(1 - dk.Jp )

En xx YY n 5”

. (u(k) - u(j)>/O

where dk.3 = g n g

n U 71

Therefore all results which apply to (3.14) can be easily extended to

apply to (3.65) with d:.j in (3.65) taking the place of dn in

(3.14).

Therefore all results noted earlier for the 2 category, 2 pre-

dictor model extend simply to apply to corresponding cases in the J

category (J 3 2), 2 predictor model.
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Section D: Summary

The purpose of this chapter was to examine the effects of

errors of measurement on the weighting coefficients of a Latent Random

Predictor Quantal Response Model, given by (2.19) for the most gen-

eral case. The approach to the problem involved selecting an

arbitrary vector of weighting coefficients associated with some

arbitrary category of the criterion variable and examining the in-

dividual weighting coefficients associated with each predictor.

From an arbitrary vector of latent weighting coefficients

associated with some category of the criterion from the model given

by (2.19), an individual latent weighting coefficient associated with

some latent predictor Tq was selected, call it 8;. From the

corresponding vector of observed weighting coefficients associated

with the same category of the criterion, the individual observed

weighting coefficient associated with observed predictor Xq was

q q
selected, call it Bq. Note that X and T are related through

the measurement model (2.22) such that Xq = Tq + Eq where Eq is

*

the error portion of the observed predictor. Then the ratio Bq/Bq

*

was examined. When Bq/Bq > 1, then the observed weighting coeffi-

cient (Bq) is an overestimate of the latent weighting coefficient

* * *

( ). When = 1 then is an exact estimate of . WhenBq Bq/Bq . Bq Bq

* *

Bq/B < 1, then B is an underestimate of 8 .

q q q

The research of this chapter included one and two predictor

models only. No general results applicable to all models were dis-

covered and the approach used in this chapter proved extremely dif-

ficulty for use with models involving more than two predictors.
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For the one predictor models (p = 1) there is only one com-

ponent in each vector of weighting coefficients. Result (2.28)

indicated that for all one predictor models the value of the observed

weighting coefficient will be an underestimate of the value of the

latent weighting coefficient by a factor equal to the reliability of

the single predictor variable. This result holds true for every pair

of related observed and latent weighting coefficients associated with

any category of the criterion. The only exception to this result

occurs when the latent weighting coefficient is zero. In that case

the observed weighting coefficient was also shown to be zero.

For the two predictor models (p = 2) no universally applicable

result was found, such as that produced for one predictor models. The

approach for the two predictor models involved a change to simplify

the notation and make it consistent with the notation used by

McSweeney and Schmidt (1974). Under this simplification the observed

predictors are noted as x and y with the corresponding latent pre-

dictors being 5 and n, where x = g + ex and y = n + ey in an

adaptation of the basic measurement model (2.22). The major work for

the two predictor model was done for the two category (J = 2) case.

All results for this simplest case of the two predictor model were

then shown to extend easily to the general case (J 3_2) of the two pre-

dictor model. In the 2 category, 2 predictor model the observed

weighting coefficients were denoted 8x and 8y while the

*

5

Therefore, the ratios which were examined as they relate to one were

*

corresponding latent weighting coefficients were denoted B and B”.

* *

Bx/Bg and By/Bn. Each of these ratios were shown to be functions
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of d, pen, pxx and pyy. d is a ratio of the differences between

category means for the two predictors where the differences are in

standardized latent units. See expression (3.6b) and the ensuing

narrative for the definition and explanation of d = d . is

5 ”an

the correlation between the latent predictors. pxx and pyy are

the predictor reliabilities for observed predictors x and y

respectively, and indicate the presence of errors or measurement when

either, or both, p or. p are less than one.

xx yy

*

In Appendix B.l, part B, it was shown that Bx/Bg and

*

By/Bn need to be examined only for d 3_O. Results for d < 0 can

be derived simply for comparable results when d > 0 by the use of

expressions (3.16a) and (3.16b).

Since there were no universally applicable results discovered,

the work in this chapter identified four general categories of situa-

*

6

were considered as functions of 05” for fixed values of d (d > 0),

tions associated with Bx/B; and By/B;, where Bx/B and BY/B;

pxx and pyy. Within each of these four joint general categories,

defined in Section C under sub-heading VII above, the behavior of the

*

E

situations (i.e., values of d, pxx and pyy) included in the category.

ratios Bx/B and By/B; follow the same general pattern for all

In addition to the four joint general categories three categories re-

lated to the special case when d = l are also identified in Section

C, sub-heading VII.

Three results do apply across all 4 joint general categories

and the three special case categories. First, when there is no

correlation between the latent predictors, i.e., p = 0, then each

in
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ratio is equal to the reliability of the predictor. That is, when

* i

= O = and = . This result a lies to allDan , Bx/Bg pxx By/Bn Dyy PP

* *

situations when 8 and En are not equal to zero.

5

Second, when the correlation between the predictors, p

En'

and the ratio of standardized category mean differences, d, have

Opposite signs then the observed weighting coefficient will under-

estimate the latent weighting coefficient for both predictors, i.e.,

* *

< l and < 1. In this case i.e., d < 0, for fixedBx/Bg By/Bn : 05"

d, p and p the amount of the underestimate increases as the

xx YY

magnitude of the correlation increases. That is, if d > 0 then as

* 1'

takes on values nearer to -1 the ratios and willDan Bx/Bg BY/Bn

become smaller, approaching zero as pEn approaches one.

In Appendix B.9 the interpretation of dp is given as a

En

ratio of the slope of the pooled within category regression line of

E on n over the slope of the line joining the midpoints of each

category distribution of E and n. The potential for occurrence of

a negative ratio of slopes is discussed under Derivation 3 in Section

C, subheading VI above. Although in many situations the ratio of

slopes will be positive (therefore do > 0) it is possible for the

En

ratio of slopes to be negative (i.e., dpEn < 0).

Third, Derivation 2 in Section C, sub-heading VI above

demonstrates that it is impossible for both observed weighting co-

efficients to simultaneously overestimate the latent weighting co-

efficients for the same set of values for d, p , p and p . At

En xx YY

most one observed weighting coefficient will be an overestimate of the

latent weighting coefficient in any given situation. In addition
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Derivation l in Section C, sub—heading VI above indicates that for the

two predictor model if the observed weighting coefficient for one pre—

dictor is equal to the latent weighting coefficient for that pre-

dictor then the observed weighting coefficient for the other predictor

is an underestimate of its corresponding latent weighting coefficient

by a factor equal to the reliability of this second predictor. That

f / * th / * * lis i B = 1 en = or if = thenI x BE BY 8n pYY BY/Bn

*

Bx/Bg = pxx' The conversescnfthese statements are true only when

0.can 7‘

An interesting result which occurs only for joint general

categories one and two [G.C. I (x,y) and G.C. II (x,y)] occurs for

values of p in an arbitrarily small neighborhood of d (in these

in

categories d is positive and less than one). For values of pan

* *

arbitrarily near d the magnitude of By/Bn, i.e., [By/8n] is un-

boundedly large. When pEn = d the ratio By/B; is not defined since

8; = 0. A similar situation occurs for Bx/B; in G.C. III (x,y) and

G.C. IV (x,y) for values of 95“ near l/d (in these categories

d exceeds one hence l/d is less than one). In this case when

pEn = l/d the ratio Bx/B; is not defined since 8; = O.

The importance of this result occurs in interpreting the

effects of errors of measurement using Bx/B; when pEn is near l/d

or using By/B; when pg” is near d. Consider some situation from

G.C. I (x,y) where d, pxx and pyy are fixed. Here d will have

some positive value which is less than one. For values of 05” which

*

are arbitrarily close to d, 'By/Bgl will be arbitrarily large. How-

ever, depending on the specific value of the difference between the
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category means for predictor y, the magnitude of the latent weight-

*

ing coefficient will be extremely small, i.e., IBnI will be near zero.

In this situation the magnitude of the observed weighting coefficient,

*

[B may also be quite small even though the ratio [By/8n] may be

y"

relatively large. For example, for some pEn near d,B; might have

a value of .005 while By might be .05. In this case By/B; = 10

which represents a rather large factor. Even though By is an over-

estimate of B; by a factor equal to 10, the magnitude of the over-

*

estimate, BY - Bn = .045, is relatively small and in most interpreta-

tions a difference of this size for weighting coefficients of this

magnitude is meaningfully insignificant. For values of p near

in

d, 8; must be near zero. However, there is no necessary reason why

By need be near zero also. In fact the difference 8y - B: may be

significantly large for some situations.

Therefore, the value of By/B: for values of DE” near d

*

and the value of Bx/Bg for values of p near l/d need to be

En

interpreted with great care. A relatively large ratio may mask two

rather small weighting coefficients which may have a neglible practical

difference in magnitude. Or a large ratio may represent a significant

*

discrepancy between By and 8”.

Note however that when p = l/d then the value of Bx con-

En

sists totally of effects of errors of measurement since in this case

*

B = 0 indicating no relationship between the latent predictor and

E

the probability of classification into category one of the criterion.

See Appendix B.9 for an interpretation of this result in terms of the

ratio of within group to between group slopes. The same conclusion

*

applies for By as an estimate of Bn when p = d.

En



152

Cochran (1968) reported results for the effect of errors of

measurement on regression coefficients in linear regression models.

Although the distributional assumptions included in linear regression

models are different than the distributional assumptions included in

random predictor quantal response models, the expression for a vector

of regression coefficients has a structural similarity to the ex-

pression for a vector of quantal response weighting coefficients.

Because of this structural similarity between vectors of regression

coefficients and vectors of quantal response weighting coefficients

it is not surprising that some of the results reported from this

research for quantal response weighting coefficients have a similarity

to results reported by Cochran (1968) for regression coefficients.

For the one predictor case Cochran (1968, p. 652) demonstrated

that the observed regression coefficient is an underestimate of the

latent regression coefficient by a factor equal to the reliability

of the predictor. An identical result for the relationship between

the observed quantal response weighting coefficient and the latent

weighting coefficient is reported from this research.

In the two predictor situation where only one predictor is

subject to error Cochran (1968, p. 656) provides an expression for the

observed regression coefficient as a function of the latent regression

coefficients and other parameters describing the two predictors. An

identical expression also exists for the observed quantal response

weighting coefficient as a function of the latent weighting
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coefficients and other parameters describing the two predictors.

Although the structures of the expressions for the vectors of

regression coefficients and the vectors of quantal response weighting

coefficients are similar, the derivations of the coefficients, which

are based on the distributional assumptions of each model, are dif-

ferent. Thus it is also not surprising to discover that some results

reported by Cochran (1968) for regression coefficients do not have

exact counterparts among quantal response weighting coefficients. For

example, in the two predictor situation where the reliabilities of the

two predictors are equal, Cochran (1968, p. 656) reported that the

ratio of the observed regression coefficient to the latent regression

coefficient for either predictor will be somewhat greater than the

reliability of the predictor when the correlation between predictors

is positive. This conclusion is not true, in general, for ratios of

quantal response coefficients. One quantal response counter-example

occurs for pxx = pyy = .8, d = d: = .2 and pan = .3. In this case

Bx/B; = .782 and By/B; = .310 and both ratios are less than the

common predictor reliability even though the correlation between pre-

dictor is positive.

Cochran (1968, p. 655ff) also reports that the observed

regression coefficient, in a multiple linear regression, associated

with some one predictor can be expressed as a linear function of the

latent regression coefficient associated with that one predictor and

the latent regression coefficients associated with any other predictors

that are correlated with that one predictor. For the multiple pre-

dictor quantal response model no general result comparable to this

result was found.
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Thus, although there are similarities in the results reported

by Cochran (1968) for the effects of errors of measurement on the

regression coefficients of a linear regression model and the results

reported from this research for quantal response models, the con-

clusions for the two models are not identical.

For the two predictor models (p = 2), reviewing the generic

graphs and the tables of results which define each of the four joint

general categories and the three categories of the special case d = 1,

clearly indicates that for every situation where at least one predictor

is less than perfectly reliable, i.e., either pxx or p is less

than one, the observed weighting coefficient represents either an over-

estimate or an underestimate of the latent weighting coefficient for

at least one of the predictors.

For the one predictor models (p = 1), the observed weighting

coefficient is always an underestimate of the latent weighting coeffi-

cient by a factor of the reliability.

Therefore, for both one and two predictor models the presence

of errors of measurement in the predictor variables does have an

effect on the determination of the true relationship between a pre-

dictor and the probability of classification in a given category of a

criterion. In all cases where errors of measurement are present in

the predictors, use of the observed weighting coefficient as an

estimate of the latent weighting coefficient will result in an in-

correct estimate. This applies for at least one if not both pre-

dictors in a two predictor model and for the single predictor in a one

predictor model. Determination of whether the discrepancy between the



155

observed weighting coefficient and the latent weighting coefficient

is large enough to be of practical significance for situations which

typically occur in quantal response applications is beyond the scope

of this research.

Since the use of observed weighting coefficients as estimates

for latent weighting coefficients does not provide exact estimates,

the work presented in chapter 4 will give a reformulation of the

Observed Random Predictor Quantal Response Model (2.2) in terms of

parameters from the Latent Random Predictor Quantal Response Model

and parameters describing errors of measurement. The associated

maximum likelihood estimation procedures which allow the estimation

of the latent weighting coefficients from the observed data will also

be presented.



CHAPTER 4

Section A: Introduction

The work in chapter 3 consisted of a theoretical, analytical

comparison of the weighting coefficients from two quantal response

models. In the Observed Random Predictor Quantal Response Model (2.2)

the vectors of weighting coefficients are defined in terms of the

variances of the observed predictors which include the error variances.

In the Latent Random Predictor Quantal Response Model (2.19) the

vectors of weighting coefficients are defined in terms of the

variances of the latent predictors which include no error variance.

The relationship between the two models is provided by the classical

measurement model (2.22).

The relationships of interest between the predictors and the

criterion are given by the vectors of latent weighting coefficients

from (2.19). However, most variables encountered in practice which

are reasonable candidates for use as predictor variables contain some

errors of measurement. Thus the model (2.19) based on the avail-

ability of predictors with no errors of measurement will not typically

be applicable. Hence the estimation of the latent weighting coeffi-

cients must come from the model (2.2) for observed predictors.

For the work to be presented below the Observed Random Pre-

dictor Quantal Response Model (2.2) will be reformulated in terms of

156
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parameters from the Latent Random Predictor Quantal Response Model

(2.19), and parameters describing errors of measurement. Then the

maximum likelihood procedures associated with the reformulated model

for estimating the latent parameters will be described. The estimates

of the parameters of the Latent Random Predictor Quantal Response

Model can then be used to produce estimates of the vectors of latent

weighting coefficients.
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Section B: Reformulation of the Observed Random Predictor Quantal

Response Model

The most general case of the Observed Random Predictor Quantal

Response Model for J categories of the criterion (J :_2) and p

observed predictors (p 3_1) is given by (2.2) and repeated here for

convenience.

For some category k (k = 1,2,...,J)

J

Pr{Y = klg} = pk = 1/[1 + jil exp{-(ak.j + fikoj 5)}3

j#k

where

P. . .

__ __1 _1 (k)'-1(k)_ (3)'-1 (3)

ak-j — ln(pk) 2{ x 2 Ex Ex 2 Ex 1

and

Ek-j = 2-1(Efik) ’ E;J)) for 3 f k, j,k = 1,2,...,J.

Applying the classical measurement model (2.22) together with

some of the properties of the classical measurement model (2.24a) and

(2.24b), to (2.2) produces a reformulation of the Observed Random

Predictor Quantal Response Model in terms of parameters from the

Latent Random Predictor Quantal Response Model (2.19) and parameters

describing errors of measurement.

For some category k (k = 1,2,...,J)

J

(4.1) Pr{Y = klg} = Pk = 1/[1 + 3:1 exp{-(ak.j + $le 95)}]

j#k

where

P. . .
= _ _J_ _ 1 (k)' 2 -1 (k) _ (j)' 2 -l (J)

ak-j 1n(pk) 2£HT (0 + W ) ET ET (0 + V ) HT 1
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and

B . = (4 + wz)'1(gék) - 243’
k0]

) for j # kl jlk = 1'2'ooo'Jo

Applying the expanded measurement model (2.26) together with

some of the properties of this model, i.e., (2.27a) and (2.27b) to

(2.2) produces another reformulation of the Observed Random Predictor

Quantal Response Model in terms of parameters of the Latent Random

Predictor Quantal Response Model (2.19), parameters describing errors

of measurement and parameters allowing for different scales of measure-

ment among the observed predictors. This reformulation incorporates

the use of replicate observed measurements for each predictor.

For some category k (k = 1,2,...,J)

J

(4.2) Pr{Y = klx} = Pk = 1/[1 + jil exp{-(ak j + §£.j 5)}3

j#k

where

p.
= _ _1_ l (k) , , 2 -l (k)

ak-j ln(pk) - §[(AET ) (AQA + W ) (ART )

(Agéj))'(A¢A' + 42)'1(Ag;j))]

and

_ , 2 -1 (k) _ (j)
fix.) — (A¢A + w ) (ART ART )

for j ¢ k, j,k = 1,2,...,J.

The work presented below will describe the maximum likelihood

procedures associated with the Observed Random Predictor Quantal

Response Model for estimating the latent parameters. The term "latent

parameters" as used here and in the work which follows includes the

parameters from the Latent Random Predictor Quantal Response Model,
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the parameters describing the errors of measurement and for (4.2) the

parameters which indicate a scale factor for each observed measure-

ment. The term "observed parameters" includes the elements of 2

and 2:1) (i = l,...,J) as found in expression (2.2) of the Observed

Random Predictor Quantal Response Model without application of any

measurement model. That is, observed parameters, from Z and 3:1)

(1 = 1,2,...,J), represent population variances, covariances and means

of the observed predictors with no consideration of latent predictors

or errors of measurement.

The initial work will determine the conditions for the existence

of estimates of the latent parameters and thus will demonstrate the

need for (4.2) instead of (4.1) as the reformulation of the model

(section C). Then the estimation procedure associated with reformula-

tion (4.2) of the model will be described (section D).
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Section C: Identifiability of the Models for the Covariance Matrix

and Vectors of Category Means of the Reformulated Observed

Random Predictor Quantal Response Model

Before estimation procedures associated with either (4.1) or

(4.2) can be described, it is first necessary to determine the con-

ditions under which estimates will exist.

Consider some model y = f(9) where y and 6 represent

matrices of parameters and the elements of y are known to be

estimable.

Definition
 

(4.3) The parameters of 6 are said to be identifiable if each
 

parameter in 6 can be uniquely defined as a function of

parameters of 7.

When the parameters of some model are identifiable then the parameters

can be estimated. Thus in order to describe estimation procedures for

the parameters of the model for Z and Efil) (i = 1,2,...,J) as

. . 2 (i) (i) .
given in (4.1), X = 0 + W and Ex = ET , or in (4.2),

E = AQA' + W2 and 3:1) = A341), it is necessary to show that the

latent parameters are identifiable. That is, it is necessary to

show that each latent parameter can be expressed uniquely as a func-

tion of observed parameters.

(i)

u

NX

If the latent parameters for models for Z and

(i = 1,2,...,J), whether given as in (4.1) or (4.2), are to be

identifiable, definition (4.3) clearly implies that there must be at

least as many observed parameters in 2 or g;i) as there are dis-

tinct latent parameters in the expression of the model.
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Thus the approach to determining the identifiability of any

model can begin by checking a simple counting condition. If there

are at least as many observed parameters in 2 as there are latent

parameters in the model for 2 then it is possible, but not guaranteed,

that the model may be identified. However, if there are more dis-

tinct latent parameters in the expression of the model than there are

observed parameters, the model is not identified and thus unique

estimates of the latent parameters do not exist.

Before proceeding with the detailed examination of identifi-

ability for the full models of (4.1) and (4.2) consider two examples.

Example 1. Let 2 be a covariance matrix where

  

C‘ “T

o o

2 = X1 XIX2

2X2

0 o

2

X X1 X2

t. _J

and let the structural model for 2 be 2 = 0 + W2 where

2X2 ZXZ 2x2

F' '1 " T

02 o 02 0

2

T1 TlT 2 E1

0 = 2 and W = 2

a o 0 c

l 2 2 2

T T T E .

L J t J    

There are 3 distinct observed parameters in 2, i.e.,

2 2 .

o , o and 0 Since a = o . There are 5 distinct
l -2 2 2

X X XIX X X1 XIX2

latent parameters in the model for 2, i.e., 02 02 o . 02

1' 2' 1 2

T T T T E1

2 . . .

and o 2. Thus, Since there are more distinct latent parameters than

B

observed parameters, this model is not identified and unique estimates

of the latent parameters do not exist.
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Example 2. Let 2 be a covariance matrix where

  

  

F' “l

o o

l 2

Z = X XlX

ZXZ o 02

XZX1 X2

e. .4

and let the structural model for X be 2 = 0 + W2 where

2x2 sz 2x2

.7 r- a

r02 0 02 0

l . l 2 E

T T T 2

¢ = 2 and W = 2

2X2 0 1 2 to 1 2x2 0 GE

L'T T T _j e. .4 °

  
. . . . 2

There are 3 distinct observed parameters in Z, i.e., 0
1'

X

022 and o 1 2. There are also 3 distinct latent parameters in the

X X X

, 2 2 . . .

model for Z, i.e., o 1, o l 2 and 0E. Thus the preliminary counting

T T T

requirement is satisfied. Now consider whether the latent parameters

can be uniquely defined as functions of the observed parameters.

    

r- - r- '1

o o o + o o

X1 XlX2 T1 E1 Tsz

=<x>+w

z = o 02 = o 502 + 02
x2x1 x2 T1T2 T1

L. L. .4

2 2 2

i.e. c 1 = o 1 + o

X T

o 2 = 8021 + o

X T

and O = o = O .

X1X2 XZXl TlT2

Therefore,
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o = o
2 2

TIT XIX

2

o = 2(0 - o )

T1 X1 X2

2 2 2 2

and CE = c 1 - 2(0 1 - o 2) = 20 2 — o l .

X X X X X

The definition for identifiability (4.3) is satisfied for each

latent parameter in the expression of the model for 2. Since the

model for Z is identified, estimates of the latent parameters will

exist. The two examples above pose two potential models for the same

2, the second of which is identified while the first is not. A more

detailed discussion of identifiability of the models for the general

covariance matrix of this research will now be presented.

Consider a quantal response model with V observed predictors.

Then 2, the covariance matrix of observed predictors, assumed homo-

geneous across all categories, is a V x V matrix. Since 2 is

symmetric, only the lower triangular portion of 2 (including the

diagonal) will contain distinct observed parameters. There will be

= V(V + 1)

l + 2 + 3 +...+ V 2 distinct observed parameters in 2. For

some model for 2, let r be the number of distinct latent parameters

V(V + 1)

in the model. If r > 2 then there are more distinct latent

parameters in the model for 2 than there are observed parameters

V(V + 1)
in Z and the model is not identified. If, however, r 5_ 2

the counting condition is satisfied. That is, there are fewer distinct

latent predictors in the model for 2 than there are observed para-

meters in 2. Thus if each latent parameter can be expressed
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uniquely as a function of the observed parameters then the model

is identified.

The question now arises about whether or not the model for

X which results from applying the classical measurement model (2.24b),

as in (4.1) above, is identified.

Recall, if there are p predictors, then 2 is a p x p

symmetric matrix. The model for E (2.24b) is:

2

Z = ¢ + W

PXP PXP PXP

where 4 is the covariance matrix of the latent predictors, and W2

is a diagonal matrix of error variances for the p predictors.

From example 1 above it was shown that when p = 2, this model

for 2 is not identified. The general model for 2 with p pre-

dictors is also not identified for any value of p. There are

p(p + 1)+

212___ll. observed parameters in 2. There are 22 distinct

latent parameters in 4 and p distinct latent parameters in W2

for a total of r = EiE§i_ll.+ p distinct latent parameters in the

model for 2. Thus there are more distinct latent parameters than

observed parameters so the counting condition is not satisfied. Hence

the model for 2 based on the classical measurement model (2.24b) and

given in (4.1) is not identified.

Consider now the model for 2 based on the expanded measure-

ment model (2.27b) and given in (4.2). This model for Z, 2 = A¢A' + W2,

allows for the use of replicate measures, i.e., for multiple observed

replications for a single latent predictor. This type of replicate

measures is what Lord and Novick (1974) call nominally parallel measures.
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2

In the model for Z, 2 = A 0 A' + W , there are p

VXV VxP po pXV VXV

latent predictors and V observed replications associated with the p

V(V + 1)

2

. + 1 . . .
meters in 2. There are 2£2§--l- distinct latent parameters in 4,

latent predictors by (2.26). Thus there are observed para-

V - p distinct latent parameters in A, and V distinct latent para-

meters in W2 for a total of r = V - p + 2123:411-+ V distinct

latent predictors in the model for Z.

Note 1: There are V - p latent predictors in A since

each of the V observed replications is assigned

a scale factor but at least one observed replication

associated with each of the p latent predictors

is assigned a scale factor of l which defines the

metric of the true score.

Note 2: The counting condition will be satisfied when

V(V2+ 1) Z.V _ p + p(pz+ 1) + v.

Consider the single predictor (p = 1) models. Here assume that

there are V observed replications related to the single latent pre-

dictor by (2.26). Thus the model for 2 becomes 2 = A a: A' + W2.

VxV VXI lxv va

V(V + l) .

There are —-—3-———- observed parameters in 2. There are V - l

. . . . . 2

distinct latent parameters in A, l latent parameter in 4, i.e. OT,

and V latent parameters in W2 for a total of r = (V - l) + l + V = 2V

distinct latent parameters in the model for Z. The counting condi-

V(V + 1)

tion will be satisfied if 2 3_2V, that is if V 3_3. Therefore

there must be at least 3 observed replications of the single latent

parameter to satisfy the counting condition.
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Assume there are a total of K (where K :_3) observed

replications for the single latent predictor, i.e., X' = (X1 X2 ... Xx).

The model for X is

(4.4) 2: = A 4 gy+ ((2

KXK le 1X1 lxK KXK

where

A' = [l A ... A ]

lXK 2 k

4 = 0:

1X1

and

W2 = diagEo2 02 ... o ] .
l 2 K

KXK E E E

. . , K(K + 1)

For this case V = K 3_3. ExpreSSion (4.4) contains -——E;-——-

observed parameters in Z and 2K latent parameters in the model for

2 where E-(--I-<--§:'--l‘-)--_>_.2K. since K :_3. Expression (4.4) produces

51531111. simultaneous equations of the form

2 2

for i,j = 1,2,...,K. Solving each of these expressions for latent

parameters as functions of the observed parameters produces: (See

Appendix C.l for details)

 

 

OXKxi

A. = for i = 2,3,...,K-l

i 0 K 1

X X

0

xxx2

)‘K=o
2 l
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2 l K

02 = X X X X1

T 0K2

X X

o o

o _ o _ szl XKX1

1‘ 1 o
E X XKXZ

o . o

i i 1

021 = 021 - X:x X X for i = 2,3,...,K—l

E X xle

and

0 0

K

0 =0 _ XKX2 XXl

K K 0 °

2E X X Xl

Thus a one predictor model is identified if there are at least

three observed replications for the single latent predictor. Thus

there will exist estimates of the latent parameters.

In this model there are K(K + l)/2 observed parameters in

Z and r = 2K distinct latent parameters in the model for 2. When

K = 3, there are 6 observed parameters and 6 latent parameters and

since the model is identified it is said to be "just identified".

When K = 4, there are 10 observed parameters and 8 latent parameters

and the model is said to be "over-identified". When K > 4 the model

will be over—identified. When K = 2, there are 3 observed para-

meters and 4 latent parameters and the model is not identified. The

model with K = 2 is also said to be "under-identified".

Now consider the general model with p predictors (p > 1).

It will be shown that in order for the general model with p pre-

dictors to be identified gagh_predictor must have at least two

observed replications.
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Suppose there are p predictors. Appendix C.2 demonstrates

that there must be at least p + 2 observed replications, i.e.,

V 3_p + 2, in order for the counting condition to be satisfied.

Therefore some one predictor must have at least three observed replica-

tions or at least two predictors must have two observed replications.

Consider a model with p predictors. Let some predictor

i (i = 1,2,...,p) have exactly one observed measurement, i.e.,

K. = 1. Let each of the other p - l predictors have Kj observed

1

replications where Kj 3_l for j = 1,2,...,p with j # i, such that

P

V = Z K.m 3_p + 2.

“F1 1 l I I i I I
If 5' = [x1 ... XK (... .Xl :... :Xi ... Xi ] represents

W 1 i i l l p

the observed replications of the p predictors then the model for

Z is

(4.5) X = A 4 A' + W2 .

VxV pr pxp pr VxV

For this model there are V(V + l)/2 observed parameters in 2. There

are r = (V — p) + 21231—11-+ V = 2V + EiE§:_ll.‘ distinct latent para-

meters in the model. Since V :_p + 2 then V(V + l)/2 3_2V + 21232—11

and the counting condition for identifiability is satisfied.

Expression (4.5) produces V(V + l)/2 simultaneous equations

of the form Zij = f(A, 4, W2) for i,j = 1,2,...,V. For the pre-

dictor with only one observed replication, X1l' the equation for
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2 .

The parameters Uzi and o i occur together and only in the equa-

E

T 1
2 2 2

tion for o i (4.6). Therefore a solution for o i apart from o 1

E

x1 T 1

as a function of observed parameters will not exist.

Thus the definition of identifiability is not satisfied for

the model for X as given by (4.5) if even one predictor has only

one observed measurement. A more detailed algebraic exploration of

this situation is contained in Appendix C.3.

Consider now a model with p predictors where each predictor

has at least two observed replications, i.e., Ki 3.2 for i = 1,2,...,p.

For p > 1, V = 'gl Ki Z_p + 2 and thus the counting condition for

1:

identifiability will be satisfied. The model for 2 here has the

same appearance as (4.5) only the internal structure differs.

(4.7) X=A 4 A'+I¥2.

VXV VXp po va VXV

Expression (4.7) produces V(V + l)/2 simultaneous equations

of the form Zij = f(A, 4, W2) for i,j = 1,2,...,V. There are

+ ..

r = V - p + p( 2 1) + V = 2V + 2123__ll. latent parameters in the

model for 2. Each of these latent parameters can be expressed as

a function of the observed parameters of 2. See Appendix C.3 for

the details. The results are presented below.

The V - p parameters of A are:

0'

21 x141.
A.=—-—l for j=2,...,K
j 0 2 1 1

xlx1

(K1 - 1 number of parameters)
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A. = for i = 2,...,p, j = 2'°°°'Ki

P P

( 2 (K - l) = 2 K - (p-l) number of parameters)

where K - l + Z Ki - (p-l)

II

n
r
a
w

7
< I

'
0 ll

<

I

'
U

The p( + 1) parameters of 4 are:

0 = o . for i 1,2,...,p with i # j

- 1,2,...,p

(
_
J
.

I

(21232.11. number of distinct off-diagonal elements of 4)

1

x2

(1 diagonal element of 4)

0 0'

i i i l

O = x2xl xlxl f . _ 2
i O ' 0r 1- ,ooo’p

X

 

1

X1

(p - 1 number of diagonal elements of 4)

where 2125:-ll-+ 1 + p - 1 = 2123:-—l-.

2

The V parameters of W are:

 

2

O = O - c (1 element of $2)

X
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N N .
.
.
:

 = _ ____l . ' =
o o 1 o for j 2,...,K1

P
‘
F
‘

X

P
'
H
-

 

for i = 2,...,p

P P

-1)+z(1<.-1)=p+ zx-p=
. l .
1:2 1:

where 1 + (p - l) + (K

Thus if eagh_of the p predictors has at least two observed

replications then each latent parameter in the model for 2 (4.7) can

be expressed as a function of observed parameters of 2. Thus the

model (4.7) for X is identified, therefore estimates of the latent

parameters will exist.

Consider now the model for the mean vector of observed

replications for some category i (i = 1,2,...,J), i.e., 3:1).

Applying the expanded measurement model (2.26) produces the following

(1).
model for EX .
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E;l) = A £41) for some i = 1,2,...,J.

X

VXl V p le

(4.8)

. i

There are V observed parameters in E; ). There are V - p latent

. . i

parameters in A and p latent parameters in E; ) for a total of

r = V - p + p = V distinct latent parameters in the model. Thus the

counting condition for identifiability is satisfied.

Because of the special nature of A (2.26), it is clear that

A'A will be a diagonal matrix of full rank i.e.

  

F" K j

1 1.2
(4.9) A' A = 1+ 2 (A1) 0 . . . 0

pXV VXp i=2 K

2 2‘2
0 1 + Z (A.) . . . 0

. 1
i=2

. . . . KP

L o o ... 1+ 2 QEPJ .

i=2

K.
i jl

Note: A' A will be less than full rank if and only if 2 (A.)=-l,

pXV VXp i=1

j
for some predictor T (j = 1,2,...,p). This is impossible.

Therefore A'A will be of full rank p and thus will possess an

inverse, (A'A)-l.

Thus it is possible to express 341) as a function of pél)

(i = 1,2,...,J) and A, i.e.,

(4.10) 341) = (A'A)-1A'Eii) for i = 1,2,...,J.

Since the latent parameters of A can be expressed as a

function of observed parameters in 2 based on the work for

2 above, result (4.10) indicates that the latent parameters in the
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mean vector for any category can be expressed as functions of ob-

served parameters from that same category involving parameters from

the covariance matrix and the mean vector for the observed replications.

Thus the definition for identifiability is satisfied for E41)

(i = 1,2,...,J).

(i)
Therefore since the models for Z Xand B (i = 1,2,...,J)

as used in reformulation (4.2) are both identified, it will then be

possible to produce estimates for all the latent parameters in the

reformulation (4.2). And using appropriate estimates it will be

possible to construct an estimate for the latent weighting coeffi—

cients. This will be discussed in greater detail in Section D below

as part of the description of the maximum likelihood estimation pro-

cedures associated with the reformulated model (4.2).

Before beginning the discussion on estimation procedures one

additional topic relative to identifiability needs to be discussed

briefly. Consider some non-identified model which expresses the co-

variance matrix 2 in terms of latent predictors, e.g., the model

of example 1 above where 2 = 4 + 42 with

r-

02 o W ('02 o T (.02

X1. XlX2 T1 TlT2 E

E = and

c 02 o 02

l 2

L XZX X J L TlT2 T2 J L O      
It was shown above that this model for X is not identified.

A question which arises relative to non-identified models such

as those in example 1 is whether it is possible to modify or extend

the model in some fashion so that the modified or extended model is

identified.
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Two general approaches to the modification of non-identified

models to produce an identified model are possible. For convenience,

these two approaches will be presented in reference to models for the

covariance matrix 2 as considered in this research.

The first approach attacks the problem of the non-identified

model for Z by attempting to increase the number of observed para-

meters in 2 without producing an equivalent increase in the number

of latent parameters in the model. This is done by the use of multiple

observed replications for each latent predictor.

The model for 2 based on the expanded measurement model

(2.27b) is an example of the use of this approach. The model for

2 based on the classical measurement model (2.24b) was not identified.

By the appropriate inclusion of replicate measures an identified model

(2.27b) for X was produced. As noted above, it is not sufficient

to indiscriminately include enough replicate measures to satisfy only

the counting condition for identifiability. The pattern of replicate

measures to be included in order to achieve identifiability of the

model is crucial.

Since this approach was discussed in detail above for models

for X it will not be pursued further here.

The second approach attacks the problem of the non-identified

model for Z by attempting to reduce the number of distinct latent

parameters in the model for 2. This is done by introducing con-

straints on the latent parameters. The process for introducing con-

straints on the latent parameters is to require that one or more of

the latent parameters be given as unique functions of other latent
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parameters, thus reducing the number of distinct parameters in the

model. Typically the constraints involve requiring two or more latent

parameters to have the same value.

Example 2 above is an example of the use of constraints on the

latent parameters to achieve identifiability. The model for example

2 can be produced from the model for example 1 by introducing the

following constraints on some of the latent parameters of the model

for example 1:

   

2 2 2 2 2

let 0 2 = 1/2 c l and CE = o 1 = c 2 .

T T E E

i.e.,

r r' ‘o

1 2
o 2 o 1 2 GE 0

T TT 2

4 = 2 and W = 2 .

o l 2 50 1 0 CE

LTT TJ L.

-J 
By introducing these constraints on the latent parameters a non-

identified model is modified into a model which is identified.

A word of caution is necessary here. The constraints to be

imposed on the latent parameters of a model for 2 should be reason-

able in terms of the situation to be analyzed. To introduce con-

straints which have no support in the situation merely to produce

an algebraically identified model will provoke problems in the

interpretation of results.

Since the number of possible combinations and types of con-

straints can be myriad even in a relatively simple model for 2,

further discussion for this approach will center on a few specific
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forms of constraints which may be reasonable in some situations under

analysis.

Consider the single predictor situation (p = 1). With only

one observed measurement of the single predictor, the only type of

constraint which will produce an identified model is if the error

variance can be considered to be a known function of the true score

variance. This is rather unlikely for most situations and will not

be pursued further.

Consider the multiple predictor situation (p > 1). Sometimes

an identified model can be produced from a non-identified model by

introducing constraints among the parameters of W2, i.e., among the

parameters describing the errors of measurement. The simplest of this

type of constraint assumes that some error variance is equal to some

other error variance.

An example of a non-identified model for X where this

simplest type of constraint among the error variances produces an

identified model is a model for 2 similar to that given by (4.5).

Recall, for this model there is one predictor i (i = 1,2,...,p)

which has exactly one observed measurement (Ki = 1). If each of the

other predictors has at least two observed replications (Kj :_2 for

j = 1,2,...,0 with j # i) then identifiability can be achieved by

. . . 2 2 ,

impoSing a constraint of the form 0 i = o m for some m # 1,

E1 E1

m = 1,2,...,p and some 1 = 1,2,...,Km. This constraint requires

that the error variance associated with the single predictor i

(i = 1,2,...,p) is equal to the error variance for some replication

1 (l = 1,2,...,Km) of some other predictor variable m (m = 1,2,...,p

with m # l).
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It is possible to express all latent parameters of this model,

2

except Uzi and Uzi (where a i = 021 + 02.) as functions of ob-

T E1 X1 T El

served parameters using techniques similar to those used to show

that the model (4.7) for 2 was identifiable. This is possible with-

out the use of the constraint as long as Kj :_2 for j = 1,2,...,p

and j # i. Under the imposition of the constraint the expression

for 02m as a function of observed parameters will also provide the

E

2

expression for Uzi as a function of observed parameters of 2 since

E

l
2 2 2 2

i = o m = f(A, @, W2). Thus 0 i = Uzi - 0 i where 021 can be

El E2 T X1 El E1

expressed as a function of observed parameters of 2. Therefore with

this one simple constraint imposed upon the error variances a non-

identified model has been modified into an identified model.

A more extreme extension of the imposition of constraints on

parameters of W2 occurs when all error variances are constrained to

be equal across all V observed replications of the p predictors.

This constraint can be expressed as W2 = 0:1 where a: is the

common value of all the error variances and I is the identity

matrix of rank V.

An example of a non-identified model which can be modified

into an identified model through the use of the constraint W2 = 0:1

will be presented.

Consider a model with p predictors (p > 1). Let some one

of the predictors have two observed replications, i.e., Ki = 2 for

some i = 1,2,...,p, while each of the other predictors has precisely

one observed measurement, i.e., K. = l for j = 1,2,...,p with
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P

j # i. In this case V = 2 K = p + 1. As given without any con-

m=l

straints, the model is clearly not identified since it does not

satisfy the counting condition that V 3.9 + 2 (see Appendix C.2 for

details). To reduce the number of distinct latent parameters in the

model for 2 let W2 = 021 where I is the identity matrix of rank

1

V. The two observed replications for predictor i are noted as x1

1

and X2. The single observed measurement for the other j pre-

dictors is noted as Xi ,(j # 1).

Thus the model for Z is:

2

(4.11) X = A ¢ A' + W

VXV VXp po pXV VXV

  

where

(‘2 '1

Viv = °x1
1

2 t .
Oxle OX2 symme r1c

1 1 1

—';------g-------------g2------------------------q—

i 1 1 2 ° ' i
Xlxl Xlxl X1

0 . 0 . o o C . . U

1 l 1 2 1 1 i

L xle xle x2x1 X2

.. ...............................................J—

° 2
UXP l Oxp 2 . . . O p i O p i O C O O p

1x1 1x1 x1x1 Xlxz x1

C. .J
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r.
2 ‘fi

0 1
T

¢ = o 02 symmetric

pxp T2T1 T2

OTlTl oTiT2 . . . 0T1

. . . . 2

o l U 2 . . o i . . o

b TPT 'rpT TPT Tp

r- -\

02

E

2

W2 = OE symmetric

VXV

- -L---.._--__-L-_-_-_§..................-

0 O . . . GE

1 ....................................._

2

O 0 . . . O . OE
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In this model for Q, (4.11), there are V(V + l)/2 =

(p + l)(p + 2)/2 = p(p + 1)/2 + p + 1 observed parameters in .2

since V = p + 1. There are p(p + l)/2 latent parameters in ¢,

one latent parameter in A (i.e., 1:) and one latent parameter in

W2 (i.e., 0:). Thus there is a total of r = p(p + 1)/2 + 2 latent

parameters in the model for 2. Since p > 1, then p(p + 1)/2 +

p + l > p(p + l)/2 + 2 and the counting condition for identifi-

ability is satisfied since there are more observed parameters in 2

than there are distinct latent parameters in the model for 2.

Expression (4.11) produces p(p + l)/2 + p + 1 simultaneous

equations of the form Zij = f(A, ¢, W2). Each of the p(p + l)/2 + 2

distinct latent parameters in the model for 2 can be expressed as

functions of observed parameters. See Appendix C.4 for additional de-

tails. The results are presented below.

The one latent parameter of A is:

 

for some Specified 1 (i = 1,2,...,p).

The p(p + l)/2 latent parameters of ¢ are:

a k j = o k j for k f j with k,j = 1,2,...,p

T T xlxl

(p(p — l)/2 number of off-diagonal elements of ¢).

0' O

 

2 xgx: xix:
o i = o for some specified 1 (i = 1,2,...,p)

T xixl

2 1

(one diagonal element of ¢)



 

for j = 1,2,...,p with j # i

(p - 1 number of diagonal elements of ¢).

 

The single latent parameter of W2 is:

o . . o .

xlxl xlxl
2 2 2 l l l . . . .

CE = o i - o for some spec1f1ed 1 (1 = 1,2,...,p).

X1 Xin

2 1

Where r = l + p(p - l)/2 + l + p - l + l = p(p + l)/2 + 2 number of

latent parameters in the model (4.11) for 2. Thus the model (4.11)

for Z is identified, since each latent parameter in the model for

2 can be expressed as a function of observed parameters in Z.

In the work above the only constraints which were considered

involved the parameters of W2, that is, the error variances. These

are not the only constraints which are possible for use. It is

possible to impose constraints on elements of A or ¢ as well as on

elements of W2. It is even possible to impose constraints which in-

volve elements of any of the three latent parameter matrices in the

model for 2 simultaneously, e.g., A: = 025 = 024 . The major ques-

E

T 2

tion to be answered though, concerns not what constraints are possible

but what constraints are reasonable for the given situation. This
 

criterion of reasonableness should be the first priority in any con-

sideration of constraints for a proposed model.

The brief work above does not even begin to exhaust the

possibilities for the use of constraints to modify models to achieve

identifiability. The few examples given were merely to illustrate

some of the potential of this approach.
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Summary for Section C

This section has included an examination of the identifiability

of models for 2 and 3:1) (1 = 1,2,...,J). The model for 2 based

on the classical measurement model (2.24b) as included in (4.1) was

shown to be not identified. Thus unique estimates for the latent

parameters of the model will not exist. However, by the inclusion of

multiple observed replications for each predictor (with at least two

observed replications for each predictor) the model for 2 based on

the expanded measurement model (2.27b) and the model for Efii)

(i = 1,2,...,J) based on (2.27a) were shown to be identified.

Two approaches to the modification of non-identified models

in an attempt to produce identified models were presented. One

approach involved the inclusion of replicate observed measurements

for the predictors. The other approach involved imposing constraints

on the latent parameters of the model. In many situations the most

appropriate procedure to modify a non-identified model to produce an

identified model will involve a combination of both approaches. That

is, include observed replicate measurements and impose constraints

on latent parameters of the model.

Any model for 2 in terms of latent parameters which is to

be used in an estimation procedure should first be examined carefully

to ensure that the model is identified. This examination for

identifiability should be conducted whether or not observed replica-

tions of the predictors are included or whether or not constraints

are imposed on the latent parameters.
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For the remainder of this research, unless otherwise in-

dicated, the assumption will be made that all models which involve a

structure for 2 have been checked and found to be identified.
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Section D: Maximum Likelihood Estimation Procedures Associated with

the Reformulated Observed Random Predictor Quantal

Response Model

For this section maximum likelihood estimation procedures

associated with the Observed Random Predictor Quantal Response Model

(2.2) will be described. In this model the vectors of category means,

(i)
x (i = 1,2,...,J), and the covariance matrix, 2, have structures

given by (2.27a) and (2.27b) based on the application of the expanded

measurement model (2.26). Expression (4.2) results from (2.2) when

the structures of the parameter matrices are displayed. The models

of interest here will be assumed to be identified and thus estimates

of the latent parameters in (4.2) will exist.

The structure imposed on the parameter matrices by the applica-

tion of the expanded measurement model (2.26) is not apparent in the

expression of the model given by (2.2). Thus the model (2.2) has the

same appearance as the general case model examined by McSweeney and

Schmidt (1974). Therefore the derivation of the likelihood function

and the logarithm of the likelihood function produced by McSweeney

and Schmidt (1974) is appropriate for presentation here.

Recall first that in (2.2) g is the V x 1 vector of

observed replications for the p predictors which has the structure

5 = A2 + g, from (2.26). For each category of the criterion g is

normally distributed with V x 1 mean vector Eéi), where Egi) = géi)

(i = 1,2,...,J) from (2.27a), and V x V covariance matrix X which

is assumed homogeneous across all categories, where Z = A¢A' + W2

from (2.27b).
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In order to apply the maximum likelihood estimation procedures

associated with reformulation (4.2) of model (2.2) it is necessary to

have a random sample of subjects from each category of the criterion

with nj subjects from category j (j = 1,2,...,J) of the criterion.

Thus there is a total of n subjects from all categories, i.e.,

J -—<')
n = Z n.. Let § 3

i=1 +

for the observed replications in category j and Sj represent the

represent the V x 1 vector of sample means

V x V matrix of sums of squares and cross-product deviations about

the respective means for the observed replications in categoty j

(j = 1,2,...,J).

Based on the presentation in McSweeney and Schmidt (1974, p.

13) the effective part of the logarithm of the likelihood function

can be written as:

J-l J-l J-l

(4.12) lnL' = X n.1np. + (n — Z n )1n(l - E p.)

j=1 J J j=l J j=1 J

J

-21n|2[ -l 2 tr(X-lS)
2 2 .

F1

1 J —«j) (j) -1-(j) (j)
- E-jil “j(§ - Ex ) z (x - Bx ) .

( )
The maximum likelihood estimators for pj and Ex] are then

indicated:

:
1
4
?

for j = 1,2,...,J

(4.13) and Qéj) = £13) for j = 1,2,...,J.
~

The procedures presented by McSweeney and Schmidt (1974) for

the estimation of 2 will be of little help in determining estimates
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of the latent parameter matrices (A, ¢ and W2) in the structure

for 2.

Thus consider the effective part of the logarithm of the

likelihood (4.12) for estimating components of Z, i.e.,

J

(4.14a) lnL" = - 52‘- 1n|z| - i 2 tr(Z-IST)
- J
J=l

1 J -(j) (j) -1 —(j> (3')
-3321an -gx )'Z ()5 '5x ).

Consider the last term in (4.14a). Let

C = - %-.gl nj(:*j) - géj))'Z-l(g%j) - g;j)). McSweeney and Schmidt

(1974) have shown that Q;j) = 3(j) will maximize ln L" and L, the

likelihood function. Thus Efij) = 2(j) is the maximum likelihood

estimate for Hfij)' Therefore there is no need to continue to include

C in the expression for In L", since its contribution to maximizing

.(j) = g1j)
1n L" occurs for EX , i.e., C = 0.

+

Note: 8. = anj where Sj is the sample covariance matrix

3

of the V observed replications in category j.

J J
- + -

Note also: 2 tr(£ 1S.) = 2 tr(Z 1n.S.)

j=1 J j=l J J

J -1
= tr{ 2 (2 n.S )}

i=1 3

-1 J

= tr{ 2 ( Z n.s.)}

j=l J J

-1
= tr 2 n S{ p}

= n tr{X-ls }

P

J

where n = Z n.

j=1 J
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and S = 2———————- i.e., Sp is the pooled sample

covariance matrix of the observed

replications.

Therefore (4.14a) can be rewritten as:

(4.14b) 1n L" = - E-1n|2| - 2-tr{2'ls }.
2 2 p

Or when the structure for Z is indicated (4.14b) can be reformulated

as:

2 1

(4.14c) ln L" = - g-ln|A¢A' + w - g-tr{(A¢A' + 12)“ sp}.

The problem now is to find values of A, O and W2 which

will maximize ln L". Let F = -ln L", thus maximizing In L" is

equivalent to minimizing F where F can be written as:

(4.15) F = g-ln|A¢A' + wzl + g-tr{(A¢A' + 12)'1sp}.

The values of the elements of A, 4 and W2 which minimize

F and thus maximize In L", for the given pooled sample covariance

matrix Sp, will be the maximum likelihood estimates of the latent

parameter elements of A, ¢ and W2.

The problem of minimizing an expression F such as (4.15),

which is a function of a covariance matrix X with a given structure,

is a common problem encountered in the set of procedures termed

Analysis of Covariance Structures (ANCOVST). Wiley, Schmidt, and

Bramble (1973) indicate that "Covariance structure analysis is a

term used to describe 5 recently developed series of procedures and
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models which are used for the structural analysis of covariance

matrices" (p. 317). Both Jbreskog (1970) and Wiley, Schmidt and

Bramble (1973) indicate that the minimization of F as a function of

the elements of A, ¢ and W2 in the structure for E can be

carried out by an application of the numerical method of Fletcher and

Powell (1963).

The application of this numerical method requires expressions

for the derivatives of F with respect to the elements of each of the

latent parameter matrices, A, ¢ and W2. These derivatives are pre-

sented by JBreskog (1970) for a more general model of the structure

of 2 than that employed in this research. The results presented by

J6reskog (1970) for the derivatives of F have been verified by

derivations contained in Appendix C.S and are:

 

 

 

(4.16a) ii = 0 1f Aij = constant

13 2(2-l[£ - S JZ-1A¢).. if A.. = parameter

P 1] 13

for i = 1,2,...,V

j = llzro-orp

ap 2(A'z'ltz - s Jz‘lA) for i g j

(4.16b) a¢ = p ij

13 (A'z'ltz - s Jz'lA).. for i = j
P l]

for i,j = 1,2,...,p

(4.16c) 3F = 2(z'ltz - 3 12'11).. for i = 1,2,...,v
BWii p 11

where W2 = W - T and vii is the ith diagonal element

of W.
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A numerical approximation procedure is typically needed to

produce values of the estimates of the latent parameters in X when

ANCOVST procedures are being employed. When a structure is hypo-

thesized for 2 such as (2.27b) the standard maximum likelihood

estimation procedures will typically not be applicable, since the

set of simultaneous equations gained by setting equal to zero the

derivatives of F with respect to the elements of the parameter

matrices in the structure for X will not, in general, be explicitly

solvable.

Since the structure being hypothesized for Z for this area

of this research, that is, Z = A¢A' + Y2 (2.27b) is completely con-

sistent with a special case of the general model presented by

J6reskog (1970) and with model (8) presented by Wiley, Schmidt and

Bramble (1973), the estimation procedures described in either re-

ference (which differ only in minor details) will apply for the model

for Z for this research.

Thus numerical values for the estimates of each latent para-

meter can be produced. That is, the maximum likelihood estimates

A, 8 and @2 will exist. As noted above the values of these

estimates will be the values which minimize F.

The original interest of this chapter was to develop estimates

for the latent weighting coefficients, g;.j (j # k, j,k = 1,2,...,J)

of the Latent Random Predictor Quantal Response Model (2.19) using

estimates of latent parameters from the reformulated Observed Random

Predictor Quantal Response Model (4.2). Recall that by a result

derived in Appendix A.2 only a base set of J - l vectors of
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weighting coefficients associated with some arbitrarily selected

category need be derived. All other vectors of weighting coeffi-

cients can then be produced from linear combinations of vectors of

weighting coefficients in the base set. Since any category can be

selected to provide the reference for the base set of vectors, select

the first category for convenience, that is, the category associated

with Y = 1. Therefore, the J - l vectors of weighting coeffi-

cients in the base set will have the form:

* _ -l (l) _ (j) . _
(4.17) fil'fi - ¢ (ET ET ) for j — 2,3,...,J.

*

In order to estimate the elements of gl.j, estimates of ¢

(hence ¢-l) and £41) for i = 1,2,...,J are needed. The ANCOVST

estimation procedures, applied to ¢, described by Joreskog (1970) or

Wiley, Schmidt and Bramble (1973) will produce an estimate for ¢,

call it 5. In order to estimate the vectors of latent predictor

(1)
means, ET for i = 1,2,...,J, recall that (4.10) provides a formula-

(i)
tion for 341) as a function of A and EX , i.e.,

341) = (A'A)-1A'E;J) (i = l,...,J). An estimate of A, call it A,

will be available from the ANCOVST estimation procedures applied to

E. An estimate of 3&1) (i = l,...,J) was derived by McSweeney and

.(i) *1i)
Schmidt (.1974), that :15, Ex = X (4.13) where 35(1)

is the sample

mean of the observed replications in category i (i = l,...,J).

(i) .(i)
Therefore an estimate of ET , call it HT , can be written as:

.(i) _ , -1 .(1)
(4.18) ET - (A A) AEX

or

(i = 1,2,...,J).| > E
?

>

l
e
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Thus the estimates of the vectors of weighting coefficients

for the base set will have the following formulation:

8‘1 (K'fi)’l 1’

A —

- (1.x)‘11 g(j)
25* K _(

él.j z

or

alum-1mg”) - g‘j’) (j = 2......»
A*

(4.19) g1.)

where the estimates 5 and A will be produced from the

application of ANCOVST numerical approximation procedures

to the structure for Z.
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Section E: Summary

The purpose of this chapter was to describe models with their

associated estimation procedures which would produce estimates of the

latent weighting coefficients from the Latent Random Predictor Quantal

Response Model (2.19). Since the variables which are available for

use as predictors typically contain errors of measurement, direct

application of the Latent Random Predictor Quantal Response Model is

not appropriate.

In section B two major reformulations of the Observed Random

Predictor Quantal Response Model were provided. The reformulation

(4.1) is based on the application of the classical measurement model

(2.22) while the reformulation (4.2) is based on the expanded measure-

ment model (2.26) which allows for multiple observed replications of

the predictors.

To determine whether or not estimates will exist, the

identifiability of various models for Z and 3:1) (i = 1,2,...,J),

as contained in the two formulations, was examined in section C.

Since the model for 2 contained in reformulation (4.1) was not

identified, no unique estimates of the latent parameters in the model

for X can be found. However, the models for Z and 2&1)

(i = 1,2,...,J) contained in reformulation (4.2) were shown to be

identified under several combinations of inclusion of replicate measures

and imposition of constraints. Thus the estimation procedures pre-

sented in section D were those associated with reformulation (4.2) of

the Observed Random Predictor Quantal Response Model.
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In section D, the estimation procedures described by McSweeney

and Schmidt (1974) were shown to provide estimates of the uncondi-

tional probability of occurrence of each category, i.e., p.

3

(j = 1,2,...,J), and the vectors of means for the observed replica-

tions, i.e., fléj) (j = 1,2,...,J). In order to provide estimates

for the elements of the latent parameter matrices, A, 4 and W2, in

the structure for Z, the ANCOVST procedures described by J6reskog

(1970) and Wiley, Schmidt and Bramble (1973) are needed. The approach

involved in these procedures was outlined in section D. Since pro-

duction of the desired estimates of the vectors of weighting coeffi-

cients requires the use of components estimated through the applica-

tion of ANCOVST procedures and since ANCOVST procedures typically re-

quire the use of numerical iteration in the calculation of the maximum

likelihood estimates, the use of a computer program is a necessity if

values of the estimates are to be produced.

Chapter 5 will briefly describe a computer program applying

ANCOVST procedures described in chapter 4, which can provide the

estimates of a base set of vectors of latent weighting coefficients

in the form (4.19). The base set of latent weighting coefficients

will be the set associated with category Y = 1. Also, included in

chapter 5 will be an illustration of the application of the program.



CHAPTER 5

Section A: Introduction

The conclusion from chapter 3 indicated that when errors of

measurement are present in the predictors, the observed weighting

coefficient will not provide an exact estimate of the latent weighting

coefficient for a great variety of situations. The relationship of

interest for the quantal response analysis being considered in this

research is given by the latent weighting coefficient, but the only

observable data typically available for use as predictors contains

errors of measurement. Therefore chapter 4 described a reformulated

model (4.2) and its associated maximum likelihood estimation pro-

cedures which would allow for the estimation of the latent weighting

coefficients based on observed data. However these maximum likeli-

hood estimation procedures for elements of the model for 2 belong

to a set of procedures (ANCOVST = Analysis of Covariance Structures)

which typically require the use of a computer program to provide the

numerical iteration procedures needed to produce the estimates of the

elements of the model.

The purpose of this chapter is to describe, briefly, a computer

program which can provide estimates of the elements of the structural

model for X and using these estimates then provide estimates for

the latent weighting coefficients.

195
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In addition to the program description two examples will be

presented to illustrate various estimates of the latent weighting co-

efficients, in particular, the maximum likelihood estimates produced

by the computer program.
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Section B: The Computer Program (TQUANER)

The major task in producing estimates of the latent weighting

coefficients from an identified model is to produce estimates of the

covariance matrix of the latent predictors, ¢, and of the scaling

parameters, A. The production of estimates for elements of O and

A involves the structural analysis of the model for 2, that is

ANCOVST. As there are several computer programs already available

which allow for a structural analysis of a covariance matrix there

was little utility in developing a totally new program. Thus the

approach here was to produce a program (TQUANER) for estimating latent

weighting coefficients by extensively modifying, specializing and ex-

tending one of the existing programs.

The program modified to produce TQUANER is ACOVSM: A General
 

Computer Program for Analysis of Covariance Structures Including

Generalized Manova by Karl G. Jbreskog, Marielle van Thillo and Gunnar
 

T. Gruvaeus from the Education Testing Service, Princeton, New Jersey.

The version of ACOVSM which was modified was the CDC 6500 conversion

by Judy Pfaff dated January 1975. Both this version of ACOVSM and

TQUANER are Fortran IV programs suitable for use on the CDC 6500

computer at Michigan State University.

ACOVSM provides estimation procedures associated with a gen-

eral model for 2 described by Jbreskog (1970). It is a more general

program with a more complex model for the covariance matrix, 2, than

is needed for the quantal response estimation task. And, of course,

ACOVSM does not contain the appropriate algebraic manipulations needed
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to produce the estimated latent weighting coefficients from the

appropriate estimated parameters from the structure for 2.

Thus the task of producing TQUANER from ACOVSM was two-fold:

first, to extensively modify ACOVSM to reduce the complexity of the

model being considered by eliminating or bypassing unneeded components

and to delete entirely the considerable portion of the program dealing

with the generalized MANOVA; and second, to add the programming needed

for the input of the sample category means for each observed replica-

tion, for the estimation of the latent predictor means and for the

production of the estimated weighting coefficients from the appropriate

estimates of elements of the models for Z and Eéi) (i = 1,2,...,J).

These adjustments not only specialize the program for quantal response

analysis but also realize an economy in both operational cost and

amount of space occupied by the program in the computer.

Since TQUANER is based on ACOVSM, many of the input and output

characteristics of ACOVSM were carried over to TQUANER. The only

changes made were to facilitate special requirements related to quantal

response analysis. Therefore a user who is familiar with ACOVSM should

have little difficulty using TQUANER.

The information that TQUANER will accept as input consists of

descriptions of the component matrices (A, ¢ and W2) of the model

for Z, the vectors of sample means for each observed replication in

each category of the criterion and the sample covariance matrix.

TQUANER provides four options for the input of the sample covariance

matrix. The sample covariance matrix for each category can be entered

separately or a pooled sample covariance matrix can be entered once.
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For either of these choices the individual matrix can be entered in

rectangular form by rows or in packed form (i.e., as a vector con-

sisting only of elements, taken by rows, in the lower triangular

portion, including the diagonal).

TQUANER will produce and print out the estimates of the para-

meters in the model for 2, the estimated vector of latent predictor

means for each category and the base set of vectors of weighting

coefficients associated with the category identified as the first

category by the user.

Various options, most of them also common to ACOVSM, allow the

user to request additional printed or punched output. Among these

options are included the technical output which describes the behavior

of the iterative procedure in the covariance structures analysis, the

matrix of residuals for E and an option which allows punch card

output of the final solution for the estimates of the elements of the

parameter matrices in the model for Z, i.e., A, 5, and @.
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Section C: Two Examples

The purpose of this section is to illustrate the use of the

computer program, TQUANER, in the productionxxfestimates of the para-

meters in the model for Z and of the latent weighting coefficients.

Estimates of the latent weighting coefficients from two other sources

will also be identified and derived.

It is important to note at the outset the limitations of the

interpretations which can be drawn from this presentation. Only two

specific and similar situations were selected. For each of these two

situations two random samples were generated for each category. One

sample included fifty (50) subjects per category and the second sample

included three hundred (300) subjects per category. Thus the range of

situations and samples is far too narrow to generalize the results pre-

sented below beyond the situations involved in the examples. These

examples are provided solely as illustrations of the use of TQUANER

and two other procedures for producing estimates for the latent para-

meters in the model for 2 and for the latent weighting coefficients.

It is well beyond the scope of this research to provide a definitive

study of the properties of these estimates across even a representative

sample of situations. The results from these examples may, however,

suggest directions for further study.

Before presenting the two examples a general description of the

procedure used to develop each of the examples will be presented. Each

example is a special case of the simplest multiple predictor quantal

response model, i.e., the criterion has two categories and there are
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two latent predictors each with two observed replications for a total

of four observed variables. The latent predictors are denoted as T1

and T2 where xi and x: are the observed replications associated

. 1 2 2 . . 2 . .
w1th T and, X1 and X2 are assoc1ated w1th T . This 18 a

special case of model (4.7) from chapter 4 and thus is identified.

The situation for each example was selected first. This

* *

involved selecting values for b 1 = b6 (defined by (3.6b)), d = dg

T

(3.6b), the value of correlation between latent predictors, pg“, and

the reliability coefficients for each predictor. The reliability

coefficients are noted as pxx and pyy where the selected values

are used solely to identify the ratio between the true variance and

observed variance for the first observed replication associated with

. . 1 2 . .

each latent predictor, i.e., X and X . The rat1os of true variance

1 l

to observed variance for the second observed replications, x: and x:

are selected to be nearly the same, but not identical, to the ratios

for the corresponding first observed replication. It is also

necessary to select values for the latent predictor variances, the

vector of latent predictor means for one of the categories and the

scaling factors (elements of A). All other parameter values can then

be calculated to provide values of the population latent parameters

(1)
for each element in the models for 2 and R (i = 1,2) as well

x

as population values for the parameters of Z and 3:1) (1 = 1,2).

Using the population values of the parameters of Z and

(i)
x (i = 1,2) two random samples of size 50 and 300 were generated

for each category from a multivariate normal distribution with mean

(1)
vector Ex (i = 1,2) and covariance matrix 2. A data generation
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program, GENDATA, developed and checked by Verda Scheifley for use

with her doctoral research was used to generate the samples. The

sample vectors of category means gfi) (i = 1,2) and covariance

matrices Si (i = 1,2) were then entered into TQUANER as data.

TQUANER produced estimates for the elements of A, o and y (where

W - W = W2) as well as estimates for the latent weighting coefficients.

The population values of the elements of A, o and w2 will

be displayed along with the values of two estimates for each element.

The values of the maximum likelihood estimates from TQUANER for each

sample will be displayed as well as the values of the heuristic

estimates. The values of the heuristic estimates are derived directly

from the expressions for the latent parameters as a function of

observed parameters produced to show that the model (4.7) was identified.

To produce the estimate of the latent parameter the observed para-

meters in the function will be estimated by their sampled counter-

parts.

. . 2 .

For instance, the expre551on for o as a function of

 

  

Tl

observed parameters is:

0' 0'

l 1 2 l

2 X2x1 x1x1
o l = o .

T X2X1

l 2

. . . 2 .2 .

Therefore, the heuristic estimate of o l' o l' is:

T T

6 6 S S

l l 2 l l l 2 l

X X X

a = 2x1 1 1 _ szl xlxl

l “ -

T oxle szx1

1 2 l 2
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where S . is some element of the sample covariance matrix Sp

19*:1

which corresponds to the element 0 of the population covariance

xix1m

matrix 2: . 1 k

These heuristic estimates will, in general, not be the values

which maximize the likelihood function (or minimize F (4.15)), that

is, the heuristic estimates will typically not be equivalent to the

maximum likelihood estimates. If the model is just identified, i.e.,

there are an equal number of latent parameters in the model to be

estimated as there are observed parameters, then the maximum likeli-

hood estimates will be equivalent to the heuristic estimates. But

when the model is over-identified, i.e., more latent parameters than

observed parameters, the maximum likelihood estimates will not equal

the heuristic estimates. In this case, the maximum likelihood

estimates will generally be more accurate since they incorporate all

the observed data simultaneously where the heuristic estimates do not.

The advantage of the heuristic estimates is their relative

ease of computation. The basic algebraic manipulation to express each

latent parameter as a function of observed parameters should be done

as part of the determination of identifiability and thus should be

available for use in producing the heuristic estimates. Therefore

computation of heuristic estimates can be done without the use of a

computer program.

A question which needs to be pursued is how well the heuristic

estimates approximate the parameters they estimate over the total

range of situations which typically occur in quantal response analysis.

In fact, the more important question may be to determine whether there
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are recognizable situations where the heuristic estimates will perform

nearly as well as the maximum likelihood estimates and thus because

Of their relative ease of calculation be a reasonable alternative to

the maximum likelihood procedure. Determining the responses to these

questions involves work beyond the scope of this research and thus

these questions will not be pursued further here.

For the weighting coefficients, the population latent weight-

ing coefficients for each predictor will be displayed along with the

population observed weighting coefficient based on the first observed

replication of each predictor only.

From each sample the values of three estimates of each latent

weighting coefficient will also be displayed. The estimates of the

latent weighting coefficients are produced (1) from the maximum

likelihood estimates from the computer program, TQUANER, (2) from the

heuristic estimates of the latent parameters described above and

(3) from the estimated observed weighting coefficients based on the

first observed replication of each predictor as derived by McSweeney

and Schmidt (1974).

As argued above the estimates of the latent weighting

coefficients based on the maximum likelihood estimates of the latent

parameters can be expected to be the most accurate estimates over

the population of all possible samples. Since the estimates of the

latent weighting coefficients based on the heuristic estimates of

the latent parameters do involve attempts to include errors of

measurement it is reasonable to expect that these estimates would be

generally more accurate than estimates using the observed weighting
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coefficients to estimate the latent weighting coefficients especially

in situations where the observed predictor variance can be expected

to contain a relatively large proportion of error variance (i.e.,

when one or more predictors have a relatively low reliability).

For each of the two examples the situation (i.e., values of

* 2 2 (l) (l) l 2 .

b , d, p , p , p , o , o , u , u , A and A ) will be

2T1 xx yy an Tl T T1 T2 2 2

stated. The population parameter values for A, ¢, W2, 2, (1) and

p(l) (i = 1,2) will also be given. The values of the vectors of

sample means, 2‘1) (1 = 1,2), for each category and the pooled sample

covariance matrix, Sp, will be given for each sample, as generated.

And finally, the various population parameter values and estimates of

the latent parameters and latent weighting coefficients will be tabled.

Exam le 1

For this example the situation is:

b = 1, d = 2, = 8, = .7, = +.3

Tl pxx pYY pin

2 2 ' ' 1 2
o 1 = 16, o 2 9, u(:) — 82, (g) = 54, 12 = .7 and 12 = 1.4.

T T T T

Using these values the remaining population parameter values can be

calculated. Thus the values of the population latent parameters are:

F‘ -\

A = l 0

4X2 16 3.6

0.7 0 ¢ =

2X2 3.6 9 ,

0 l

‘_o 1.44 ,  
2

w = diag{4.0 2.16 3.857 5.36},

4X4
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(1) - 82 and (2) 3 97

ET ‘ 54 RT 78 °

2x1 2x1

(1)
Under the models Bx =

from (2.27a) and (2.27b), the values of the population observed para-

meters are:

From each category of this population one random sample of

size 50 and one random sample of size 300 were generated with the

following pooled covariance matrix and vectors of observed means:

N

(i)
uA1~T (i =

2

1,2) and Z = A¢A' + W

(1) _
u

 

  

50/category

r' ‘~

19.15

symmetric

= 9.715 8.495

3.435 1.69 10.44

6.105 3.355 9.77 20.905
L. _J 

r- '5

20.0

symmetric

11.2 10.0

3.6 2.52 12.857

5.04 3.528 12.60 23.0
t. _J

r- -

82.01 r.97.o

57.4 and :2) = 67.9

54.0 78.0

75.6 109.2
L- _J \- ._J
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r- '1 f” '5

' 82.0 97.33

3"“ = 57.45 and gm = 68.07

53.71 77.60

L_74.51_J x_108.85_J .    

N = BOO/category

  

P a

20.635

symmetric

S = 11.485 10.225

P

4.47 3.29 12.97

L__5.305 4.06 12.325 22.98_J

r- -1 r- a

81.64 97.58

g”) — 57.56 and gm = 68.10

54.16 77.97

75.68 108.89 .

\— _J \— _J
    

Table 5.1 presents the population parameter values and for

each sample, the heuristic and the maximum likelihood (from TQUANER)

estimates.

************

Insert Table 5.1 here

************

Table 5.2 presents, for each latent predictor, the population

latent weighting coefficient value and the population observed weight-

ing coefficient value based solely on the first observed replication

of each predictor. These results for the observed weighting coefficient

are those that would be derived if the classical measurement model
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(2.22) were applied to relate each latent predictor to the first

observed replication associated with that latent predictor. Under

that interpretation the situation for this example falls into joint

general category four (G.C. IV (x,y)) from chapter 3. The information

from the generic graphs and tables in chapter 3 for G.C. IV (x,y)

suggest that the observed weighting coefficient for the observed

predictor associated with T1 (observed predictor x in chapter 3

notation) may be a reasonably good estimator of the latent weighting

coefficient for T1 for moderately sized positive values of the

correlation between predictors, p < l/d but 0 is

En' En En

not "too close" to l/d here). The same information suggests that

(since 0

the observed weighting coefficient for the observed predictor

associated with T2 (observed predictor y in chapter 3 notation)

will be an underestimate of the latent weighting coefficient for T2.

Table 5.2 also contains, for each sample, the three estimates

of the latent weighting coefficient described above. To help judge

the accuracy of each estimate for the given sample the value in the

parenthesis below each estimate is the ratio of the estimate over the

population latent weighting coefficient value. As in chapter 3 ratios

greater than one represent overestimates, ratios less than one

represent underestimates and ratios equal to one represent exact

estimates.

fi***********

Insert Table 5.2 here

************
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For this example and the given sample of 50 subjects per

category the estimated observed weighting coefficient based solely on

the first observed replication provides the most accurate estimate

of both population latent weighting coefficients, with considerably

less accuracy shown by both the heuristic and maximum likelihood

estimates of the latent weighting coefficients.

For the sample of 300 per category, the estimated observed

coefficients only slightly overestimate the corresponding latent

coefficient for T1 but provide a rather substantial underestimate

of the corresponding latent coefficient for T2. For each latent

coefficient, the heuristic estimate is nearly identical to the maximum

likelihood estimate. For T1 they both provide slightly less

accurate estimates than the estimated observed coefficient. However

for T2 they both provide considerably more accurate estimates than

the estimated observed coefficient. Considering both latent co-

efficients the maximum likelihood and heuristic estimates seem to

perform equally well and better than the estimated observed coefficient.

One reason for the relatively strong performance of the

estimated observed coefficient as an estimate of the latent coeffi-

cient here is due to the relationship between the population observed

coefficient and the population latent weighting coefficient.

Derivation 1 from chapter 3, section C, subsection VI, indicates that

when the population observed coefficient is equal to the population

latent coefficient for one predictor the population observed coeffi-

cient for the other predictor will underestimate the population latent

coefficient for that predictor by a factor equal to the reliability
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of the observed predictor. In this case, the population observed

coefficient is nearly identical to the population latent coefficient

for T1 and the estimated observed coefficient is also nearly

identical to the population latent coefficient. Since the relie

ability of the second observed predictor Xi (associated with T2)

is not particularly low (pyy = .7) the estimated observed coefficient

would not be expected to be too inaccurate in this case. Example 2

involves a similar application of Derivation l, but since the pre-

dictor reliabilities are much lower than in this example, the

estimated observed coefficient proves to be a poor estimator of the

latent coefficient for predictor T2.

Example 2

Example 2 involves a situation somewhat similar to the

situation examined in example 1 but with lower predictor reliabilities.

Thus since a greater proportion of observed variance consists of

error variance for this situation than for the situation in example

1 it does not seem likely that the estimates of observed weighting

coefficients should provide as accurate estimates of both latent

weighting coefficients as in example 1.

For this example the situation is:

= = = . = . - +.le 4r d 2: pXX 4! pYY SI pgn 4

O 1 = 100, O 2 - 64, “(1) = 80, U(:) = 60, A: = .8 and A: = 1.3.

T T T T

Using these values the remaining population parameter values can be

calculated. Thus the values of the population latent parameters are:
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r- '5

1 o

100 32

A = 0.8 0 0 =

4x2 32 64 ,

o 1

0.0 1.3J ,

12 = diag{150.0 101.0 64.0 111.84},

4x4

3(1) = 80 and 342) = 480

T 60 700 .
2Xl ~ 2Xl

(1)
Under the models Ex (1) 2= A RT (i = 1,2) and X = AOA' + W

(from (2.27a) and (2.27b)), the values of the population observed

parameters are:

250.0

symmetric

2 = 80.0 165.0

32.0 25.6 128.0

  46.8 37.4 83.2 220’0_, ,

\—

r- H r- m

80 480

(i) _ (2) _
Ex _ 64 and Ex _ 384

60 700 l

78 910 .

L. ..J g. .4    

From each category of this population one random sample of

size 50 and one random sample of size 300 were generated with the

following pooled covariance matrix and vectors of observed means:
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N = 50/category

  

r- '3

267.455

symmetric

S = 92.495 149.47

P

49.61 50.25 153.425

59.805 57.98 96.945 210.075

L _J

r' - r- ‘~

81.43 479.72

gm = 64.50 and gm = 382.48

60.42 700.63

78.13 908.95 .
K— ..J L. _J
    

N = 300/category

  

    

r- H

257.595

symmetric

S = 77.275 153.64

P

31.27 36.785 133.995

48.32 51.65 91.455 231.585 ,

L _J

r- - r- 1

79.05 480.32

gm ___. 63.08 and gm = 385.18

59.40 700.36

77.99 911.64

L. _J L. .4

Table 5.3 presents the population parameter values and, for

each sample, the heuristic and the maximum likelihood (from TQUANER)

estimates.

************

Insert Table 5.3 here

************
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Table 5.4 presents information for example 2 which is compar-

able to the information presented in Table 5.2 for example 1.

************

Insert Table 5.4 here

************

It is interesting to note that the population observed weight-

ing coefficient for the single observed replication associated with

latent predictor T1 is nearly identical to the population latent

weighting coefficient for T1 and that the estimated observed weight-

ing coefficient is the most accurate estimate of the latent weighting

coefficient for T1 across both samples. But also note that the

population weighting coefficient for the single observed replication

associated with latent predictor T2 is about half the size of the

latent weighting coefficient for T2. The estimated observed weighting

coefficients are also less than half of the latent weighting coeffi-

cients across both samples. This illustrates result (3.52) from

chapter 3, that if Bx/B; = 1 'then BY/8; = pyy' Here

BX/B; : 1 thus sy/s; : pyy = .5.

For the sample of size 50/category, both the heuristic and

maximum likelihood estimates associated with T1 have the wrong sign.

The heuristic estimate for T2 is the most accurate but only slightly

more accurate than the maximum likelihood estimate.

For the sample of size BOO/category, the maximum likelihood

estimate for T1 is slightly more accurate than the heuristic estimate

but for T2 the maximum likelihood estimate is slightly less accurate

than the heuristic estimate.
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The result which is reinforced by this example is that the

use of estimated observed weighting coefficients as estimates of the

latent weighting coefficients in a two predictor model can provide pre-

cise estimates for at most one latent weighting coefficient. The

other latent weighting coefficient will be underestimated by the

estimated observed weighting coefficient by a factor approximately

equal to the reliability of the observed predictor, which in this

example is rather low (p.yy = .5). In the first example, where the

reliability of the second predictor was higher, (pyy = .7), the

observed weighting coefficient provided a slightly more accurate

estimate across both samples.
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Section D: Summary

This chapter has presented a brief description of a computer

program, TQUANER, which can provide estimates of the latent parameters

in identified models for Z and E;i) (i = 1,2,...,J) and estimates

of the vectors of latent weighting coefficients using the procedures

described in chapter 4.

Two similar examples were presented in section C of this

chapter to illustrate the use of the computer program, TQUANER, to

produce estimates from actual data examples. The two examples are

insufficient to allow generalization of results and conclusions across

a broad category of situations to which quantal response analysis may

be applied.

Further research is needed to determine and describe the dis-

tribution of the maximum likelihood estimates of the latent weighting

coefficients for samples of various sizes. Part of this research

could include an examination of the relative accuracy and utility of

the heuristic estimates since they are relatively easy to calculate,

not requiring the use of a computer. Another part of this examination

might also focus on the relative accuracy and utility of the estimated

observed weighting coefficient, for the most reliable observed

replication of each predictor, as an estimate of the latent weighting

coefficient. This examination might be restricted to those situations

where each of the predictors has a reasonably high reliability since

it is clear that problems can exist when even one predictor has a low

reliability. But this restriction may not be a major drawback since
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many situations where quantal response analysis is to be employed may

use predictors with reasonably high reliabilities.



CHAPTER 6

Section A: Summary and Conclusions

In chapter 1, a general discussion of research on various

quantitative and qualitative data analysis models indicated that the

presence of errors of measurement in the variables under analysis can

cause problems in interpretation of data analysis results. The

purpose of the research reported here was then identified as expand-

ing this previous research to include investigation of the effects

of errors of measurement on a quantal response analysis technique.

The particular quantal response technique to be examined involves a

qualitative criterion with two or more categories and one or more

quantitative predictor variables, where the predictor variables are

assumed to be random variables possessing a normal distribution (a

multivariate normal distribution for two or more predictors). For

this particular quantal response technique, the interest is focused

on the weighting coefficients associated with each predictor. The

weighting coefficient associated with each predictor provides a

measure of the relationship between that predictor and the proba-

bility of classification into one category of the criterion versus

classification into some other category of the criterion. Classifica-

tion into categories of the criterion is assumed to be without error.

However, the predictors are assumed to be measured with error, where

221
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the presence of errors of measurement in any predictor is indicated

by a reliability coefficient less than one for that predictor.

The weighting coefficients of interest for this approach to

quantal response analysis are the weighting coefficients derived from

the use of the latent (error-free) predictors and given by the Latent

Random Predictor Quantal Response Model (2.19) of chapter 2. However,

the variables which are available for use as predictors typically

contain errors of measurement. Therefore direct application of°a

model (2.19) based solely on error-free predictors is not generally

appropriate. The Observed Random Predictor Quantal Response Model

(2.2) based on predictors which contain errors of measurement, called

observed predictors, is also presented in chapter 2. It is this model

which is generally appropriate for use. To relate the model (2.2)

based on observed predictors (i.e., with errors of measurement) to

the model (2.19) based on latent predictors (i.e., with no errors of

measurement), two measurement models, (2.2) and (2.26), are presented

in chapter 2. Properties of each of the measurement models which

are useful in relating the two quantal response models are also pre—

sented.

In chapter 3, the classical measurement model (2.2) is used

to relate the two quantal response models (2.2) and (2.19). The

classical measurement model associates one observed predictor with

each latent predictor. Thus the weighting coefficient associated

with each latent predictor called the latent weighting coefficient

for a given category of the criterion has related to it a single

weighting coefficient associated with the corresponding observed
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predictor (called the observed weighting coefficient). The relation-

ship between corresponding observed and latent weighting coefficients

was examined in chapter 3.

Since no generally applicable results of the effects of errors

of measurement were found for the most general case of the quantal

response model, i.e., for a polychotomous criterion and multiple pre-

dictors, the research in chapter 3 focused on one and two predictor

models with a polychotomous criterion.

For one predictor model, the observed weighting coefficient

was shown (3.3) to be an underestimate of the latent weighting co-

efficient by a factor equal to the reliability of the single pre-

dictor. Thus, the use of a single predictor with low reliability in

a quantal response analysis can lead to misinterpretations if the

observed weighting coefficient (from (2.2)) is used as an estimate of

the latent weighting coefficient (from (2.19)).

For two predictor models, no universally applicable result as

found for one predictor models was discovered. Since no universally

applicable results was found for two predictor models, the approach

used in chapter 3 involved the search for general categories of

situations where the relationship between the observed and latent

weighting coefficients would have a similar pattern for all situa-

tions within a general category. As used in chapter 3 a "situation"

is completely defined when values sufficient to specify the relation-

ship between the observed and latent weighting coefficient are given.

For the approach used in chapter 3 then a situation is completely

defined for values of the relationship between standardized category
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mean differences on each of the predictors, and for values of the

reliabilities of each predictor. For given situations, values of the

relationship between the observed and latent weighting coefficients

for each predictor are considered as functions of the correlation be-

tween predictors.

In chapter 3 four general categories of situations were des-

cribed. In addition to the four general categories three special

case sets of situations were also described. Although there are some

similarities among results for the various categories only a few re-

sults are found which apply across all four general categories and

the three special case situations.

First, when there is no correlation between the two latent

predictors then each of the observed weighting coefficients is an

underestimate of the corresponding latent weighting coefficient by a

factor equal to the reliability of the given observed predictor.

This result applies in all cases where the latent weighting coeffi-

cient has a non-zero value. This result is comparable to the result

for one predictor models, which is not surprising since if there is

no relationship between the two latent predictors the value of one

latent predictor cannot be expected to influence the value of the

latent weighting coefficient of the other latent predictor. The lack

of correlation between latent predictors then results in the value

of the latent weighting coefficient for each predictor being pro-

duced as if that predictor were the only predictor in the model,

i.e., almost as if each predictor was included in a one predictor

model. See Appendix B.2, section C, for details.
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Second, when the ratio of the slope of the pooled within

categories regression line of one predictor on the second predictor

over the slope of the between categories line joining the midpoints

of the joint distributions of predictors within each category is

negative, then both of the observed weighting coefficients are under-

estimates of the latent weighting coefficients. See Appendix B.9

for further details on this interpretation and Derivation 3 under

subheading VI of section C in chapter 3 for the proof and an

illustrative example.

Third, it is not possible for both of the observed weighting

coefficients to be overestimates of the corresponding latent weight—

ing coefficients for the same situation. That is, at most one ob-

served weighting coefficient, in a two predictor model, can over-

estimate the corresponding latent weighting coefficient. In addition,

Derivation 1 under subheading VI of section C in chapter 3 proves

that if the observed weighting coefficient is equal in value to the

corresponding latent weighting coefficient for some one predictor

then for the other predictor the observed weighting coefficient will

be an underestimate of the latent weighting coefficient by a factor

equal to the reliability of that observed predictor.

The only nearly universal conclusion for the two—predictor

model is that for only a few special case situations will the value

of either observed predictor precisely equal the value of the

corresponding latent predictor.

Since the observed weighting coefficient typically does not

precisely estimate the corresponding latent weighting coefficient
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(at least for one and two predictors models), there is some utility

in describing procedures for estimating the latent weighting coeffi-

cients from observed data.

Chapter 4 presents two reformulations of the Observed Random

Predictor Quantal Response Model (2.2) in terms of latent parameters,

i.e., parameters from the Latent Random Predictor Quantal Response

Model (2.19), parameters describing errors of measurement, parameters

indicating a relative scale of measure for the observed predictors,

and the vectors of latent predictor means for each category of the

criterion. The first reformulation (4.1) is based on the applica-

tion of the classical measurement model (2.22) while the second re-

formulation (4.2) is based on the expanded measurement model (2.26)

which includes the use of multiple observed replications associated

with each latent predictor.

Much of the work in chapter 4 (section C) defines and examines

a sufficient condition for the existence of estimates of the latent

parameters, primarily from the model for the population covariance

matrix from (2.2). The sufficient condition for existence of

estimates of the latent parameters is that the elements of a model

be identifiable (see expression (4.3) for the definition). If a model

is not identified, two approaches were discussed for the modification

of the model to produce an identified model, (1) use of replicate

observed measurements for each predictor or (2) imposition of con-

straints upon the latent parameters of the model. By a careful use

of one or both approaches a non-identified model can usually be

modified into an identified model.
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The model for the covariance matrix based on the classical

measurement model (2.22) was shown to be non-identified. However,

under a variety of conditions involving either imposition of con-

straints or the use of replicate observations, or both, the models

for the covariance matrix and the vectors of observed predictor means

for each category, based on the expanded measurement model (2.26),

were shown to be identified. Thus for reformulation (4.2) unique

estimates of the latent parameters exist.

Maximum likelihood procedures associated with reformulation

(4.2) were described in section D of chapter 4. These procedures in-

volved the use of covariance structures analysis (ANCOVST). As with

most situations where ANCOVST procedures are employed the estimates

of the latent parameters in the model for the covariance matrix can-

not be expressed as specific functions of the observed data. There-

fore the derivation of the values of the maximum likelihood estimates

must be accomplished by application of a numerical iteration process.

Since ANCOVST procedures typically require the use of a computer pro-

gram to perform the necessary numerical iterations, chapter 5 des-

cribes a computer program (TQUANER) which was programmed to provide

the maximum likelihood estimates for the latent parameters and the

latent weighting coefficients. The computer program (TQUANER) is a

modification of ACOVSM: A General Computer Program for Analysis of
 

Covariance Structures Including Generalized Manova by Karl G.

Joreskog, Marielle van Thillo and Gunnar Gruvaeus.

In addition to describing the computer program (TQUANER),

chapter 5 provides two simulated data examples to illustrate the use
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of the program. However, no general conclusions about the distribu-

tion or accuracy of the maximum likelihood estimates of the latent

weighting coefficients can be drawn from the limited application of

TQUANER to the two simulated data examples.

This research has shown that errors of measurement in the

random predictor variables of a quantal response analySis technique

can cause problems in using the observed weighting coefficients as

estimates of the latent weighting coefficients which represent the

relationships of interest between the error-free predictors and the

criterion. A quantal response model based on observed data was pre-

sented with its associated estimation procedures with provide for

the estimation of the latent weighting coefficients from observed

data. And a computer program (TQUANER) which can produce estimates

of the latent weighting coefficients was described and its use was

illustrated on two simulated data examples.
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Section B: Recommendations for Further Study
I’

One obvious possibility for further study is to attempt to

extend the results of chapter 3 to models with more than two pre-

dictors. Such an extension is easy to identify but will be difficult

to do. Approaches to this extension which were tried with little

success involved a general matrix manipulation approach and an

algebraic derivation of each individual weighting coefficient in the

base set of weighting coefficients. No generally useful results

were discovered from the matrix approach. The algebriac derivation

approach proved an extremely tedious way to extend the results since

there is no guarantee that the patterns of results for three pre-

dictor models will extend to four or more predictor models, although

at the present, this seems to be the most promising approach to ex-

tending the results beyond two predictor models.

A second possibility for further study also based on chapter

3 results, is to restrict the examination of the effects of errors of

measurement to situations which are likely to occur in practical

applications of quantal response analysis. The question of interest

here is whether, within the set of typically occurring situations for

the application of quantal response analysis, the effects of errors

of measurement are sufficiently severe to prevent the use of the ob-

served weighting coefficient as an estimate of the latent weighting

coefficient.

A third possibility for further study is to examine the value

of the heuristic estimates of the latent parameters described in

chapter 5. The question here is whether the heuristic estimates are
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reasonable competitors of the maximum likelihood estimates especially

considering that the maximum likelihood estimates require the use of

a computer program on a reasonably sophisticated computer system

while the heuristic estimates can typically be produced using no more

than a simple calculation.

A fourth possibility to further study is to examine the

properties of the sampling distribution of the maximum likelihood

estimates of the latent parameters and the latent weighting coeffi-

cients. This will probably entail a Monte Carlo simulation study.

Four possibilities for further study have been given

above. No priority is implied by the given ordering. In fact, some

combination of the second and fourth possibilities may be the most

fruitful approach for further study.
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APPENDIX A.1

IDENTIFICATION AND JUSTIFICATION OF THE EXISTENCE OF A BASE

SET OF WEIGHTING COEFFICIENTS IN THE MULTIPLE OBSERVED PREDICTOR,

POLYCHOTOMOUS CRITERION MODEL

Consider any category of the criterion k (k = 1,2,...,J)

where

 

l
=P = =pk rob{Y klx} J

1+ - + ' x.2 exp{ (Gk-j Ek-j )}

J=1

j#k

P. , . , .

= _ _J_ _ l_ (k) -l (k) _ (j) -1 (j)
where ak-j 1n(pk) 2 [EX 2 Ex RX 2 EX 1

_ -1 (k) (j)
and ékoj - 2 (Ex EX ).

Associated with category k are J-l vectors of weighting

. . -l (k) (j) . . .
t = - . .coeffic1en s ék-j 2 (Ex EX ) w1th j # k, i e

g'k°l' ék-2'°"'~k-(k-1)' gk-(k+1)""'§k°J'

Consider any category k' where k' f k, and consider any

vector of weighting coefficients associated with category k', gk' 1

(2 f k', £,k' = 1,2,...,J).

Therefore gk'°£ = 2-1(pfik') - g;£)).
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-l. (k') (2)

If 1 f k: §k|.2 = 2 (Ex - 1x )

= 2-1(Rék') _ E)(k) + Egk) _ E5(2))

_ X-1(E;k') _ ng)) + z-l(R;k) _ E;£))

_ '2-1<1;k) _ ng')) + 2-1(Eék) + Egm)

= - + .
ékek' £k°2¢

Therefore fik'-£ = where Ek-l and gk°k' are
8k.g - fik°k'

vectors of weighting coefficients associated with category k.

_ _ _ -l (k') _ (k)
If 1 — k, £k'-£ - §k'-k - 2 (Ex Ex )

-l (k) (k')

Therefore gk'-k = -gk-k' where gk-k' is a vector of weight-

ing coefficients associated with category k.

The above proof shows that given the J-1 vectors of ob-

served weighting coefficients for some one category of the criterion

k (k = 1,2,...,J), then all vectors of weighting coefficients associated

with each of the remaining J-l categories of the criterion can be

expressed as combinations of the vectors of weighting coefficients

associated with category k.



APPENDIX A.2

IDENTIFICATION AND JUSTIFICATION OF THE EXISTENCE OF A BASE

SET OF WEIGHTING COEFFICIENTS IN THE MULTIPLE LATENT PREDICTOR,

POLYCHOTOMOUS CRITERION MODEL.

Consider any category k (k = 1,2,...,J) of the criterion,

where

 P* P b{Y le} l

k- r0 - ~ - J 'k *l

l + .2 exp{-(0(k.j + Ek-j 2)}

J=1

j#k

* p' | . ’ .

= _ _j_ _ l_ (k) -l (k) _ (j) -1 (j)

where ak-j 1n(pk) 2 [RT 4 RT RT 4 ET ]

* _ -l (k) _ (j)

and Ek-j — 0 (HT ET ).

Associated with category k are J-l vectors of weighting

. . * _ -l (k) (j) . . .
coeffic1ents fik-j - 4 (ET - ET ) With 3 # k, i.e.

* 4 * t *

ék.1’ ék-2"°°'ék-(k-l)' Ek.(k+1)""’§k.J'

Consider any category k' where k' # k, and consider any

*

vector of weighting coefficients associated with category k', Ek'ol

(l # k', 11k. = 1,2,...,J).

Therefore ék'ol = 4-1(pék') - pé£)).

* ... I

If 1 # k, Ek' z = T 1(pék ) - p;£))

_ -1 (k') (k) (k) (2)

7 ¢ (ET ' ET + ET ' ET )

_ ¢-1(H;k ) _ Bék)) + ¢-l(gék) _ R1(1))

_ s - g

= -4 1(Eék) - Eék )) + 4 1(pék) - E; ))

* *

' "~k-k' + Ek'l '
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'k * * * *

Therefore §k°£ = fik-l - Ek-k' where ékoz and Ek-k'

are vectors of weighting coefficients associated with category k.

2 * 'k

If 7 k' Ek'-2 gk'-k

-1. (k') (k)
=<b (ET

-1. (k) (k')

-u=-<I> (LIT ~T ).

'k * *

Therefore 8 = -B where B is a vector of

~k'-k ~k-k' ~k-k'

weighting coefficients associated with category k.

The above proof shows that given the J-1 vectors of latent

weighting coefficients associated with some one category of the

criterion k (k = 1,2,...,J), then all vectors of weighting coeffi-

cients associated with each of the remaining J-l categories of the

criterion can be expressed as combinations of the vectors of weight-

ing coefficients associated with category k.
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A. Development of the Property of Interchangeability of x and y

*

Consider expression (3.12) for Bx/Bg and expression (3.14)

*

for By/Bn. A close examination of these expressions shows an

identical structure for each expression. To demonstrate the rela-

tionship between these expressions, consider some given situation,

 

*

i.e. values of and d such that 0. For thispin' pxx, pyy 5 BE #

(1 - 02 )o (1 - d p p )
*

situation 8 /B = g” xx 54;” yy takes on some value

X (1 - pzp )(1 - do )
EnpxxpYY En

call it R. Consider now some second situation p' , p' , p' and

En xx YY

d' where:

5

8.1.1 ' =

( ) pin pan

' =(8.1.2) pxx pyy

(B.1.3) pyY = pxx

(B.1.4) d' = d .

n E

The two situations are not, in general, identical.

*

Consider now the value of By/Bn for the second situation.

(1 2)p' (1 - d' o' 0' )

 

 

BY/B; = pg; yy n in xx [from (3.14)]

1 _ I I I _ v u
( pgnpxxpyy)(l dnpfin)

2
(1 - D )0 (1 - d O p )

= M3” xx 5 5” YY = R [from (B.1.1)-(8.1.4)J.

1 - _

‘ ”Enyypxx>(1 dapan ’
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*

But Bx/Bg = R for p p , p and d , i.e. the first situa-

En’ xx yy 5

tion.

Therefore, for an iven situation , and dY 9 050 Dxx: Dyy E

t

which produces a given value for Bx/Bg there exists a second,

typically different, situation related to the first situation by

*

expressions (B.1.l)-(B.l.4) which produces the same value for By/Bn

*

E.

A careful consideration of expressions (B.1.l)-(B.l.4) in-

as the first situation produces for Bx/B

dicates that the right side of each expression can be produced by

replacing each x with a y, each y with an x, each 5 with an

n and each n with a g in the left side of each expression.

In fact if this same procedure of interchanging the x's

and y's as well as the 5's and n's were done on expression

* *

(3.12) for Bx/B , the result would be expression (3.14) for By/Bn.

5

*

Thus it is necessary to examine only Bx/Bg' All results

* t

for Bx/Bg can be translated into results for By/Bn by the use

of this property of interchangeability of x and y discussed above.

*

E

B. Justification of the Need to Examine BX/B Only for Values of

d > 0.

*

. Let d be some

5 E

< . . .

0) Therefore the Situation 050' pxx' pyy

Consider expression (3.12) for Bx/B

negative number (dg

and dE (dg < 0) produces some value for

2

, (1 - pgnmxx

B /B =

x E (1 - 02 p 9

En xx yy

(1 )

’ dapanpyy

)(1 - a

call it R.

Spin)
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Consider now some second situation 0" , p" , p" , and d"

 

 

En xx yy 5

where:

B.l.5 " = -( ) pin pan

(3'1'6) 0xx = 0xx

(B.1.7) " =

pYY pYY

B.l.8 d" = - d i.e. d" > 0 since d < 0 .( ) E g ( g , g )

t

The value of Bx/BE for this second situation is:

(1 _ pII2)pII (l - d" p" D" )

B /8* = in xx 5 En xx

x E 2
(1 _ II II II 1 _ a" II

pin pxxpyy)( E 060)

2

(1 _ p€n)pxx(l - dgpénpyy) . "2 2 2
= Since 0 = (-o ) = p

(l - 02 o p )(1 - d o ) En an En

En xx yy 5 En

a d d" " = -d - = dn Epfin ( )( pan) can

= R.

8* f fBut = R or , , and d d < 0 . Thus or anBx/ g can oxx pyy g ( g ) y

situation where dg < 0 there exists a comparable situation related

by (B.1.5)-(B.l.8) with dE < 0 which produces the same value for

*

Bx/Bg'

Note that expressions (B.1.5) and (B.1.8) represent the only

differences between the two situations. These changes can be ex-

*

pressed as: the expression for Bx/B with d < 0 is the re-

5 E

flection through the line 0&0 = 0 of the expression for Bx/B

*

E

with Id > o.g l
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C. Summary

*

Therefore, part A indicates that only Bx/B need be ex-

5

need be examined only for values

*

E

* t

f d = d > O. V 1 es of or val es of 'th d < Oo E __ a u BY/Bn u Bx/BE wi

can be simply stated from results for Bx/B with d :_O by the use

amined and part B indicates Bx/B

*

E

of expressions (B.1.l)-(B.1.4) or (B.1.5)-(B.1.8).



Examination of Bx/B

 

A) d = 0 (i.e. d = d =

n E

C) pgn = 0. D) pxx = pyy =

pXX < 1' pYY = l-

A.) d = O (i.e. d = d

n 5

a /0

Recall d = E E

an/On
(1) (0)

= - = ,tht

as “a “a O a

d = d = an/C”
E ag/og

not appropriate.

8; (3.6b) which were used

since their derivations involve a division of

 

In fact the expressions for Bx

APPENDIX B.2

*

for special case situations

5

l/dn is undefined), B) d = dg = 0,

l, and E) pxx = l, p < l or

YY

l/dn is undefined)

. Therefore dn

(1) __ (0) .
pg g . But if ag

0 requires that

is - = 0 then

*

is undefined and expression (3.12) for Bx/BE is

(3.11b) and

to produce (3.12) are not appropriate

a Thus it is5'

*

necessary to derive new expressions for Bx and 85 from (3.11a)

and (3.6a), respectively, for a5 = 0.

Consider (3.11a)

B = 1 fr.. 32352.
x 1 _ 2 02 0x0 °

ny x Y

With ai = ax = 0,

B = l -3235!

x 1 _ p2 oxoy °

XY
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Using expressions (3.8) - (3.10) and expressing 8x in terms

of latent parameters:

a o o 9

(3.2.1) B = 1 - g 5” xx XX
2 0 o

(l - ognoxxpyy) E n

Consider (3.6a)

8*: 1 _§-__fl_..§fl.

g 1 - 02 02 Gian
En > 6

With a = O

a 0

(3.2.2) 8* = __J;__ - _n_§_r]. .

g 1 - 02 0&0n
En

*

Consider now Bx/Bg formed from (8.2.1) and (8.2.2):

 (3.2.3) BX/B* = (1 - pg”)pxxpyy .

(l - panpxxpyy)

Expression (8.2.3) for Bx/B; when ag = 0 will exist if:

1. OED f i_l (Needed for o-1 to exist.)

Note: p VS——E_-, therefore lpxyl §_Ip€nl.

xY: pin XX

Hence, if # :_1 then pxy # i'l and 2‘1 will

”an

exist.

2. a # O

n

*

If a = O as well as a = 0, then = = O andn , 5 8x Bg

*

by (3.7a) and (3.13a), By =8n = 0. That is, if there is

no mean difference between categories on either of the

predictor variables then there will be no information

gained by the use of the predictor variables. In this
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case the unconditional probability of classification

(assuming no knowledge of the predictors) will be equal

to the conditional probability of classification

(assuming knowledge of the predictors).

pin # 0

*

If pan = 0 and a5 = 0, then Bx = 85 = 0. That is,

the observed predictor x contributes no weight to the

probability of classification. Any value to the use of

the conditional probability of classification over the

unconditional probability (i.e. in the use of the pre-

dictors) must come solely from predictor y.

*

g as given by (8.2.3) has theNote: When a5 = O, Bx/B

following property:

'k

 

 

O < Bx/BE :_l with equality only If pxx = pyy = l.

*

Proof: When ag = 0, expression (8.2.3) for Bx/Bg is:

2
l -

* _ ( pan)oxxpyy

B /8 - .
x g l _ 02 p

En xxpyy 2

* (1 — p )o o*

1.) Is Bx/Bg > 1? sX/Bg > 1 a 25” "x H > 1
1 -

pénpxxpyy

2
a - > 1 —

pxxpyy pfinpxxpyy pgnpxxpyy

 

a > 1 which is im ossible.
Oxxpyy P

*

Therefore 8 /8 f l.

x E

(1 - 02 )o o
* * En xx

=
= Q

=

2.) Is Bx/B€ l? Bx/Bg 1 .12, l.

l - 02 o p

in xx yy
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Using algebra from part 1) above provides:

 

*

Bx/BE = l a pxxpyy = 1 a pxx = pyy = l '

2
(1 -p )o p

* *

3.) Is Bx/Bg < 1? Bx/Bg < 1 c: 25” "x H < 1.

1 -

pinpxxpyy

Using algebra from part 1) above provides:

88* 1 1 1 1< a < a < or < .

x/ g pxxpyy pxx pyy

*

Therefore Bx/BE :_1 for any pxx' pyy when a = 0 with

E

equality only for pxx = pyy = 1.

When aE = 0, both the numerator and denominator of expression

(8.2.3) for Bx/BZ are positive. Hence Bx/Bg > 0 for any pxx' pyy

when ag = 0.

Thus 0 < Bx/B; §_l with equality only if pxx = pyy = l.

*

To consider BY/Bn where dn = 0, the property of inter-

changeability of x and y can be applied to expression (3.12) for

*

Bx/Bg . Using expressions (3.15a) - (3.15d) and interchanging the

x's and y's and the 5's and n's produces an expression for

*

with d = O:

By/Bn n

 

2
(1 - p )p

*

(3.2.4) 8/8 = 5” YY .

y n (l - 02 o p )
En xx YY

This same result can be obtained directly from expression

(3.l4) with dn = 0. Therefore the conditions for existence of

expression (3.14) for By/B; also apply for expression (8.2.4).

Since expression (8.2.4) for By/B; represents a special

case of expression (3.14) no special considerations are needed for
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*

By/Bn when dn = O (i.e. a = 0). However, when dn = 0 (i.e.

E

a = 0) where d = d is undefined, then expression (8.2.3) must

E E

be used for Bx/B; instead of (3.12).

B. d = d = 0

’ a

 

 

a /0

Recall d = d = n n . Therefore d = 0 requires that

E ag/og E

- 3(1) - 3(0) = 0 that is, p(l) = u(0). Therefore, the general

n n n n n

*

expression (3.12) for Bx/BE is applicable, that is:

2 ,

(1 - p )p
'k

B /B = En xx hen d = d = O.

x g l - 92 o o g
in xx yy

*

To consider BY/Bn when d = d = O, the property of inter-

changeability of x and y cannot be applied to expression (3.12)

* *

for B /B to derive a comparable expression for By/B . When

x E a /o n

d = d = 0, then a = 0 thus d = -———§- is undefined. The

E n n an/on

derivation of expression (3.14) for By/B;' which also results from

applying the property of interchangeability of x and y to

expression (3.12) for Bx/Bg' requires an # 0.

However, the property of interchangeability of x and y

can be applied to expression (8.2.3), since this expression for

*

Bx/Bg depends on a5 = O (i.e. an = 0 when the property of

interchangeability is applied). Applying the property of inter-

*

changebability to expression (8.2.3) for Bx/Bg when a5 = 0 pro-

*

duces the following expression for By/Bn when an = O:

 

*

(3.2.5) By/sn = 5” YY xx .
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Existence conditions comparable to those for expression

*

(8.2.3) for Bx/Bg' with the property of interchangeability applied,

apply for (8.2.5).

Thus when d = d = O (i.e. 3n = 0), expression (3.12) is

E

*

appropriate for Bx/B . But expression (8.2.5) must be used instead

E

*

of (3.14) for By/Bn since dn is undefined.

 

C.) pEn = 0

*

When pin = 0, then expression (3.12) for Bx/Bg becomes

(1-2) (l-d )
* _ pEn pxx pinpyx _

Bx/BE _ (1 - 2 )(1 - d ) - pxx.
pinpxxpyy pan

This result is identical to the result from the one pre-

dictor case. That is, in the two category, two predictor case if

there is no correlation between the latent predictors (hence no

correlation between the observed predictors either since

pxy= pEn¢6;;—;;) then the observed weighting coefficient will be

attenuated by a factor equal to the reliability of the predictor,

*

i.e. Bx = pxng.

Using the property of interchangeability a similar result

*

and conclusion emerges for By/Bn-

* *

8y/Bn - pyy or By - pyan °

These results are not surprising, since if there is no

correlation between the predictors then the value and characteristics

of one predictor cannot be expected to influence the conditional

weighting coefficient of the other predictor.
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D°) pxx = pyy = 1

For any p e (-1, +1) and pxx = p = 1, that is both

En YY

predictors are perfectly reliable, then (3.12) becomes

*

Bx/Bg = 1 that 15 Bx H

m

m
*

0

And (3.14) becomes

/8* 1 h B *= t at is = .

BY n Y 8

Again this result is not surprising. Logic suggests that if

there are no errors of measurement in either predictor (i.e.

2 2 2 2

= = 1 or o = o o = 0 or x = = then the

observed predictor model (3.4) and the latent predictor model (3.5)

are, in fact, identical and thus the observed weighting coefficient

for each predictor will be equal to the corresponding latent weight-

ing coefficient.

E.) pxx = 1, pYY < l or pxx < l, pyy = 1

Section D) above examined the case where both predictors are

perfectly reliable (i.e. have no errors of measurement). This

section examines the case when one predictor is perfectly reliable and

the other predictor is fallible (i.e. has a reliability coefficient

of less than one) which means that errors of measurement are present

in only one of the two predictors.

If p = 1, but p < l and pxx yy En # O the expression

*

(3.12) for Bx/Bg does not simplify. That is, (3.12) becomes
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2

 

1 - 1 - dB /B* = ( p€n)( pgnoyx)

x g _ 2 _ °

(1 panoxxpyy)(1 dog")

This expression has no simple interpretation relative to one even

though it represents the ratio of conditional weighting coefficients

associated with an error-free predictor. This indicates that, based

on the work so far, the observed weighting coefficient is neither a

consistent underestimate or overestimate of the latent weighting co-

efficient. More work on this special case is included in Chapter 3

of this research.

*

If however, pyy = l and pxx < 1 the expression for Bx/Bg

simplifies to become:

 

* (1 - pgnmxx

B /B = for dp # l .

x 5 (1 - 2 p ) 5“
pEn xx

*

In this case Bx/B can be shown to have a ratio between

E

zero and one for all situations where dpan # 1 indicating that the

observed weighting coefficient will be an underestimate of the latent

weighting coefficient for the fallible predictor.

 

Proof: Let pxx < l, pyy = l, and dpgn # l.

*

> ?1. Is Bx/BE l

2

(1 - p )o
t

s /B > 1 3 5” xx > 1
x g l _ 2

pEnpxx

2 2

e (1 - pan)°xx > 1 - panoxx

Q - -

pxx pgnpxx > 1 pgnpxx

a pxx > 1 which is impossible.

Therefore Bx/B; 7 1.
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2. Is Bx/B; = l?

 

2

(l - p )o

B /s* = 1 3 5" xx = 1 .
x g 1 _ 2

pEnpxx

Using algebra from part 1 above produces:

*

= C3 =
Bx/Bg 1 pxx l.

3. Is Bx/B; < l?

 

2
(l - o )p

B /s* < 1 3 5" xx < 1 .
x g 1 _ 02 p

En xx

Using algebra from part 1 above produces;

*

Bx/Bg < l 9 pxx < 1-

 

(8.2.6) Therefore, when pyy = l, pxx < l, and dpgn # 1, then

*

Bx/Bg < l.

*

Consider now the relationship of BX/BE to zero. 2

= < =When pyy l, pxx l, and dpEn # 1, Bx/Bg 1 2

- O 0

25h xx

' - < + < < < <Since 1 < pEn l, and O pxx 1, then 0 pan 1

and O < p2 p < 1. Therefore both the numerator and denominator

En xx

*

of Bx/Bg are positive.

- , + dEU 6 ( l 1), such that pEn # 1,

“k

= > 'O < pxx < 1 and pyy l, Bx/Bg 0 [Note. even for

(8.2.7) Hence, for any p

*

pXX ‘ 1' BX/Bg = Dxx > 0.]

Combining results (8.2.6) and (8.2.7) produces:
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(8.2.8) For pyy = l, O < pxx < l and p n e (-1, +1) such that

E

*

dpgn # 1, then 0 < BX/BE < l.

Comparable results for By/B; could be stated using the

property of interchangeability for x and y.

Therefore in a two category two predictor model with one

error-free (pii = l) and one error-ful (pjj < l) predictor the

results above and the property of interchangeability of x and y

indicate that the ratio of conditional weighting coefficients

associated with the error-free predictor (pii = 1) has no simple

interpretation while the ratio of conditional weighting coefficients

associated with the error-ful predictor (pjj < 1) will be less than

one indicating that the observed weighting coefficient will always

be an underestimate of the latent weighting coefficient for the error-

ful predictor.



APPENDIX B.3

ALGEBRAIC EXAMINATIONS OF RELATIONSHIPS BETWEEN

EXPRESSIONS NEEDED FOR WORK IN APPENDIX B.4

Relationships among three expressions will be of interest for

the algebra to be produced in Appendix 8.4. The three expressions

are:

 

1 - 2 1 -J__= yy)( pxx) . f = pxx( pyy) . 1

x I I 0

2 1 -

(1 - o ) x pxxpyy

  

a) Consider ‘r; R 1 i.e. find the values of p and pyy such

 

 

 

XX

that:

1) J;'=

40 (1-0 )(1-0)
J;'= l u xx Ayy 2 xx = 1

(1 - pxxoyy)

4oxx(l - pyy)(l - pxx)

Q
2 = 1

(1 - )oxxoyy

a4 (1- )(1- )-(1- )2
pxx pyy pxx pxxpyy

2
- - +

a 4pxx 4pxxpyy 4pxx 4pyypxx

2 2

_ l - 20xxpyy pxx yy

2 2 2 2
= + - + - +

a O pxxpyy 4pXX 4pyypxx prxpyy 4pXX 1

0 u

2 2
Pxx(Pyy - 4ryy + 4) + 29&x(f&y - 2) + l

249
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2 2

a 0 - - 2 + 2 - +
oxx(pyy ) pxx(pyy 2) 1

2

a 0 - (oxx(p - 2) + 1)

9 = pxxmyy - 2) + 1

a (2 - pYY)pXX = a 2pxx - pYprx = 1

S 9 = 1 Q 29 - 1 - 0
xx 2 - p xx _ xx

yy YY

2pxx - l

c: =0

pxx YY

I 1 szx - 1
(8.3.1) Therefore x = 1 a pxx = §—:—S__.p p =.________

yy YY pxx

 

2) (I < l

x

4p (1 - D y)(1 - pxx)

l < 1 u xx y 2 < 1

X (1

 

 

- pxxpyy)

4p (1 - p )(1 - p )
“ xx YY 2 xx < 1 since 0 :_ IX

(1 - p p )

xx YY

a 4D (1 - p )(l - p ) < (1 - o o )2
xx yy xx xx yy

oxxoyy # l .

Using algebra from a) 1) above with appropriate attention

to the inequality here produces:

< l 9 O < [o (O - 2) + 132 which is true for all

J): xx yy

1

values of pxx’ pyy except for pxx - 2 _ p

2p _ 1 YY

(or p .=._321___9.

YY 0
xx
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3) £31

4p (1 - D )(1 - pxx)

> 1 a xx yy > 1

‘Jx 2

(1 - o p )

XX YY

 

Using algebra from parts a) l) and a) 2) above produces:

2 . O

I > 1 o 0 > [p (p 2) 1] 1mp0551ble

Therefore

 

4oxx(1 - pyy)(1 - pxx)

 

(8.3.2) 0 < 2 < l for all values of p , p

'_ (l — o p ) —. xx yy
xx yy

1 2‘)xx - l

with equality to one (1) when p = -——-——- (or p = -——-——-)

xx 2 - p yy 0
yy xx

and with equality to zero (0) when either pxx = l or pyy = l but

oxxpyy # l.

b) Consider I; R fx i.e. find pxx and pyy such that

1) ‘J;'= 5x

 

4p (1 - oyy)(1 - oxx) 20 (l - p )

 

 

 
 

= a xx = xx yy

J): x 2 <1-pp)
(1 pxxoyy) xx yy

4 (1- )(1- ) 42(1- )
a pxx pyy 0xx = 0xx 0yy

2 2

(1 - pxxpyy) (1 - pxxpyy)

since J; :_O and fx :_0

2 2

e 4oxx(1 - oyy)(l - pxx) — 4pxx(1 - pyy)

«no—42(1- )2-4 (1- )(1- )oxx pyy pxx oyy oxx

e O = 4oxx(l - oyy)[oxx(1 - pyy) - (1 - pxx)J

e 0 = 40 (1 - p )[o - p - l + oxxJ
xx yy xx xxpyy
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a 0 = 4oxx(l - Dyy)(20xx - pxxoyy - 1)

O = 4 - - — .Q oxx(l pyy)(pxx(2 pyy) 1)

(8.3.3a) Therefore .I = if 1 - p = O a p = l

X X YY YY

2p - l

or if pxx(2 - p ) - l = 0 a pxx = 3—:l—--¢ p =-—J%§—-—-.

YY pyy' YY xx

2) J;'< fx

 f

  

  

4 1 - 1 - 2 1 -
< f “ 0xx( oyy)( pxx) < pxx( 92y)

x x (l _ )2 l - pxxp

pxxpyy yy

4 (1- )(1- ) 42(1- )2
a pxx 0yy 2 pxx < pxx pyy2

(l - oxxoyy) (l - oxxoyy)

since ~IZZO and f :0

2

a 4oxx(1 - oyy)(l - pxx) < 4pxx(l - oyy)

Using algebra from b) 1) above with appropriate attention

to the inequality produces

< f a < - - _
‘IX X 0 4pxx(l oyy)(pxx(2 oyy) 1)

Therefore

(B.3.3b) J_< f if p 7‘ 1 and
x x yy

pxx(2-p)-l>0apxx>—-——¢p <

YY
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3) l > f

X x

4p x(1 -p
l -

[-'> f a x yy)( pxx) > xx yy

X X 2 .. °

( ) 1 p pyy

l - pxxpyy

  

Using algebra from b) l) and b) 2) above produces:

(Ix > fx ‘3 0 > 4Dxx(l - pyy) (pxx(2 - pyy) - 1).

Therefore

(8.3.3c) ,lx > fx @ pyy # l and

2 - l

oxx(2 - p ) - 1 < 0 e o x < §-—l--e p > pxx
. YY X pyy YY pxx

c) Consider f R l, i.e. find values of p and p such that:

x xx yy

 

l) f = 1

x

20 (1 - p )

fx=lc9 x}: 21:1

pxxpyy

2 -- = -

” pxx(l pyy) pxxpyy

@ 2C)xx - pxxpyy = - xxpyy

a 2pxx - pxxpyy - =

a pxx(2 - pyy) - l = 0.

Therefore

20 -1
1 xx

(B.3.4a) fX-lQpXX-Z-p @pyy_ p
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x l - pxxpyy

a 20xx(l - pyy) < l - o p for 9
xx yy xxpyy # 1'

Using algebra from c) l) with appropriate attention to the

inequality produces:

fx < l w pxx(2 - pyy) - l < 0.

Therefore

20 - 1

(3.3.43) fx < 1 a pxx < §—:l———-a p > ——§§———— .
pYY YY pxx

3) f > 1

X

 

x l - pxxpyy

Using algebra from c) l) and c) 2) above produces:

fx > 1 a pxx(2 - pyy) - l > 0.

Therefore

1 prx - l

. .4 f -——————- -———————-(B 3 c) x > 1 a pxx > a p <
2 -

Dyy YY pxx

Combining results from parts a), b) and c) above produces:
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(8.3.5)

255

1
—————-—— < < l <

0 < pxx j-2 - p ' O -fx - x -1

YY

with the rightmost two equalities occurring only if

=_.._l__

0xx 2 '

[Hence -1 i - < -f i 0.]

[Hence -f < -l < - < 0.]
x J x -



APPENDIX B . 4

2

Enpxx(l - pyy) - dog

(1 - pxx) as a function of p

Examination of Q = p n(l - p p ) +

xx YY

. Identification and determination

En

of existence conditions of the roots of Q as a function of p
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Expression (3.17) defines Q as:

= l - - d l - + 1 - .Q panoxx( pyy) p€n( pxxoyy) ( pxx)

Expression (3.20) for Q as a function of pEn is:

Q - a 2 + b + he e - (l )

xpgn xpgn Cx w r ax - pxx pyy

bx = -d(1 ‘ pxxpyy)

and cX = (l - pxx).

This clearly indicates that Q is a quadratic function of pin'

3 32

Note: —2—-= 2a p + b , Q = 2a .

Span x an x 302 x

En

2

Since a = p (l - p ) > O, é-2-= 2a > O.

x xx yy 302 x

En

Therefore, Q as a function of pEn is concave upward and

will possess a minimum value at the point where %§——-= 0 i.e.

-bx d(1 - pxxp Y) 5”

where pE = §;-= 2 (1 _ Y ) , provided that

n x 0xx pyy

d(1 - p p )

-1 < xx yy < +1.

Zf;x(1 - pyy)

256
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However, since the concern here is only with the relationship of Q

*

E

(3.18a) - (3.18c) or (3.19a) - (3.19c)) as

to zero (thus the relationship of Bx/B to one by expressions

pEn varies over its

domain, the existence and precise location of a minimum value for Q

is of little importance.

 

 

 

 

 

 

 

 

Since Q is a quadratic function of DEN for fixed values

of pxx' pyy and d, Q will possess two roots identified in Chapter

-(x) +(X) . .
3 as pEn and pEn defined by expre531ons (3.21a) and (3.21b)

respectively:

d(1- )-\Jd2(1- )2- 4 (1- )(1- )
p-(x) = pxxpyy pxxpyy pxx pyy pxx

En 2pxx(l - pyy)

d(l- )+\[d2(l- )2-4 (1- )(l- )

0+(X) _ pxxpyy pxxpyy pxx pyy pxx

En Zoxx(l - oyy)

- +

Using expression (3.20) for Q, p53X) and EQX) can be

expressed as:

-(X) -bx - bx - 4axcx
(8.4.la) p5n = zax where ax = pxx(l - pyy)

- + - =— ...

+(x) bx bx 4axcx bx d(1 pxxpyy)

(8.4.lb) p =

En 2a

x c = (1 - o )
x xx °

Therefore examining the relationship of Q to 0 will begin

-(x)

En

such that Q = 0, using expression (3.20) for Q.

+(x)

En

by determining the conditions for existence of p and p

= + -I- = .Q 0 e a bxp cx O

2

XpEn En
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p-(x) +(X)

En in

not necessarily in the interval (-1, +1), if b: - 4axcx 3_O.

Therefore and p will exist as real numbers but

2 2 2

bx - 4axcx :_0 w d (l - p O ) - 4pxx(1 - p > 0
xx yy -

yy)(1 - pxx)

2 > 4pxx(1 - pyy)(l - pxx)

 

 

 

a f - >d (1 - p p )2 or 1 pxxpyy 0

XX YY

pxxpyy < 1

o p f 1.

XX YY

4p (1 - o )(1 - p )

(3.4.2) 32 - 4a c > o e |d| > X“ W "x s
x x x - - (1 _ p p )2 x

xx YY

[definition by (3.22)]

-(x) = p+(X)

En En '

To translate this into information about the relationship be-

When b2 - 4a c = 0 then p

x x x

tween Q and 0, ignore temporarily the requirement that values of

correlations, pan, need to be in the interval (-1, +1). Thus if

Idl :_.J;- (that is, if b: - 4a cx :_0) then there exists p‘(x)

x E"

+(X) -(x) +(X)
and pEn where pg” §_p€n .

. _ 2 .

Since Q — axpgn + bXpEn + cx is concave upward then for

-(X) +(X)

p€n < pen < can . Q < 0

-(x)

f°r pan < pEn
Q > O

+(X)

”an > “an

-(x)
and for p = p

an in Q = O .

+(X)

pEn pin
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Now considering the requirement that p e (-1, +1), if

in

b2 - 4a c > 0, then p-(x) and p+(x) will exist and

x x x —- En En

-(x) . +(x)
8.4.3a < O for max -1 < < min +1( ) Q ( ’pgn ) pin ( .ogn )

(8.4.3b) Q = O for p = p-(X) provided that -l < p-(x) < +1

En En En

+(x) . +(x)

r = rov1ded that -l < +1

o 953 pin p can

(8.4.3c) Q > 0 for -1 < p < max(-l,p-(x))

En En

. +(x)
or min +1 < < +1.

- +

If, however, b2 - 4a c < 0 then neither p (x) nor p (x)

x x x En En

exist as real numbers, that is, there does not exist any pan such

that Q = 0. But since Q is concave upward for all pEn then

2
- .. C:(8.4.4) Q > O for all pin 6 ( 1, +1} when bx 4axcx < 0 Id] < ‘J;:

Now consider the conditions under which pgéx) e (-1, +1) or

that pzéx) e (-l,+l). The approach to this problem will be to first

examine pgéx) when |d| :_ ‘J;Z The first question to be determined

-(x)
En e (-1, +1)is: for what values of d, p and Q will p

xx yy

-(x)
[i.e. pEn e (-1, +1)?]. The second question will then be: for

what values of d and will +(x) e (-1 +1) [i eI pXX pYY Dan I . .

+(x)
e —1 +1 ? .pEn ( . ) 3

Both pgéx) and pgéx) will exist with pgéx) §_p2£X) if

and only if

 

|d| > 4DXX(1 - OYX)(1 - pxx)

_. 2 '

(l - pxxpyy)
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4pxx(1 - pyy)(l - pxx)

 

 

Let E and

J2: (1 - p o )2
xx yy

f = 29xx(l - pyx)

x 1 - pxxpyy

The task here is to find values of d, pxx and pyy such

that 1) DE:X) e {-1, +1) and 2) OEEX) e (-1, +1). Consider only

situations where pgéx) and 02:0 exist, that is, when |d| _>_ ‘1';

- x

1) pg: ) e (-1, +1)?

-(x)

En '

a) Consider -l < p

 

2 2

< d(1-oxxpyy) - Jd (l-pxxp ) -4pxx(1-p )(1-pxx)

2 1 -oxx( pyy)

-1 < pgrfix) C9 -1

 

e -2pxx(1 - pyy) < d(1 - oxxpyy) - /

since 2pxx(l - pyy)> O for pyy # l.

e o < J < d(l - p
_. xxpyy) + 2pxx(l - p ).

YY

Therefore

(1) O < d(1 - o ) + 20 (l - p )

xxpyy xx yy

 

-20xx(1 - p )

 

  
 

a d > 1 yy = -fx

pxxpyy

_ + _
and (2) / <d(1 oxxoyy) 2pxxu ow)

2 2 2 2

e d (l-oxxpyy) - 4oxx(1-pyy)(1-pxx) < d (1 pxxpyy)

22

+ 4pxx(l - pyy)

+ 4dpxx(l-pyy)(1-oxxoyy)
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a O < 4d
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+ 4 2 1 2) pxx( -p )pxx(1-o yy)(1-
YY pxprY

+ - -
4oxx(1 pyy)(1 oxx)

e o < 4oxx(1-pyy)[d(1-px o ) + p (l-Dyy) + (l-pxx)]x yy xx

3 0 < 4pxx(1-pyy)[d(l-pxxoyy) + (l-p o )]
XX YY

e 0 < 4pxx(1-pyy)(l-pxxpyy)(d + l)

e o < d + 1 for D f 1

YY

~_.

-(x) -(x)

 

 

 

Th f '11 ' t d -l <ere ore pan wi eXis an pEn for pyy # 1

40 (1-0 )(1-0 )

if Id! > xx *yy XX 3' l a d > I or d < - l

—- (1 _ p p )2 x —- x - x

xx yy

~20 (1 - o )

and d 3_ 1 Exp YY = -fx

xxpyy

and d > -1 .

Using the results (8.3.5) from Appendix 8.3 produces:

-(x)

pin

-(x) for p f 1exists and -l < pan yy

1

xx 3’2 - p

YY

if

(p <1 if

d :_ d“;'

d.: J';'

or if -1 < d < -

J:x
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1) (cont'd.)

-(x)

 

 

 

 

 

   

 

 

  
 

b) Con31der pEn < +1

d(1- )-\Jd2(1- )2—4 (1- )(1— )p-(X) < +1 a pxxpyy oxxpyy pxx pyy pxx < +1

En 20xx(l - pyy)

e d(1 - oxxpyy) - / < 20xx(l - oyy)

e d(1 - pxxpyy) - Zoxx(l ~ Dyy)

(I) p-(x) < +1 if d(1 - p p ) - 20 (1 - p ) < o
in XX YY XX YY

[since V 3_OJ

2p (1 - )

a d < XX pYX = f

1-

oxxoyy

-(x) .
+ - .. _.or (II) p n < 1 1f 0 §_d(l pxxpyy) 2pxx(l pyy) < J

l O < d l- - 2 l-( ) __ ( oxxoyy) oxx( oyy)

2oxxfl - p y)

a d Z-(l - ) = fx

pxprY

and (2) d(1 - pxxpyy) - 2pxx(l - pyy) ( J

adzu-p p )2+4o (l-p ) -4do (1-0 )(1-0 p
xx yy xx xx yy xx yy

< d2(1- )2 - 4 (1- )(1- )
pxxpyy pxx pyy 0xx

2

e 0 < -4pxx(l-pyy)(l-pxx) - 4pxx(l-pyy)

+ 4d (1- )(l- )

pxx p pYY pYY

p O < 401mm”—0 )[pxx-l-pxx(l-pyy) + d(l-pxxpyy)J
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a o < 4pxx(1-pyy)[—(l-pxxoyy) + d(1-pxxoyy)]

a O < 4pxx(l-pyy)(l-Dxxpyy)(d - 1)

a O < d - 1 for p # 1

   

YY

w d > 1 for l.oyy #

Therefore p-(x) will exist and p-(X) < +1

En

if |d|.: J2:

and either

En

d < f

X

or d > 1 and d Z-fx'

Using the results (8.3.5) from Appendix B.3

-(X) -(x)
(B.4.5b) exists and < +1 for 1

Dan Dan ' pyy #

1 .

for 0 < p < -———-——- if d > +1

xx -2 - p

YY

or if d < -

- ‘Jx

for -——l———-< < 1 'f d <

2 - p pxx —- l - J){

YY

or if d :_+ r;'

Combining results (B.4.5a) and (B.4.5b) produces:

-(x) exists and p-(X) e (-1, +1), for 9 ¢ 1,B.4.

( 5C) pan En yy

for O < p < -—-l¥——- if d > +1

XX -2 - p

YY
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2) 0;;X) (-1. +1)?

a) Consider -l < DZéX).

d(l- )+-Jd?(l- )2-4 (1- )(1- )
_1 < p+(x) a _1 < oxxpyy oxxoyy oxx 93y oxx

En 20xx(l - pyy)

) + Ja — _ _
20xx(l oyy) < d(1 Dxxpyy

Q— _ — —2pxx(l pyy) d(1 pxxpyy) < /

+(x)
(I) -l < pin if -2pxx(1-pyy) - d(l-p ) < O

xxpyy

[Since V > 0]

 

-2p (1 - p )

g d > xx yy = _f

l - pxxpyy

+(x) . 7-""“
or (II) -1 < 0&0 1f 0 5_-2pxx(l-pyy)-d(l-pxxpyy) <,

 

X

  
 

 

 

(l) O j_-20xx(l - pyy) - d(1 - pxxoyy)

-20 (l - p )

Q d i. 1 XX Y1, = -f

pxxpyy X

 
 

and (2) -2pxx(l-pyy) - d(1-p p )< V
XX yy

2 2 2 2
- + - + - _

e 4oxx(l oyy) d (1 pxxoyy) 4dpxx(l oyy)(l oxxoyy)

2 2

< d (l-pxxpyy) - 4pxx(l-pyy)(l-oxx)

2 2

“ 4oxx(l-oyy) + 4doxx(l-pyy)(1-o

xxpyy)

+ 4oxx(l-pyy)(l-oxx) < 0

e 4oxx(l-pyy)[pxx(l-pyy) + d(1-oxxpyy) + l-oxx] < O
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e 4pxx(1-pyy)[ d(1-oxxoyy) + (l-oxxpyy)] < 0

e llama-ow) (l-pxxpyy) (d + 1) < O

h d + 1 < O for p # l

  

YY

(___—__1

e d < -1' for p # l.

‘—--- YY

Therefore p+(x) will exist and -l < p+(x) if p # l and

En En YY

if Idli \l—x-

and either d > -fx

or d < -l and d_: -fx.

Using results (B.35) from Appendix B.3 produces:

 

 

+(x) . +(x)
(B.4.6a) ex1sts and -l < for l

pEn pin pyy #

for O < < -——l——— if d >

0XX -2 - p - 4::

YY

or if d < -1

for --lF--< < 1 if d >

2 - p pxx — — \Jx

YY

or if d §_- IX

+

b) Consider p (x) < +1

En

d(1- ) +\ld2(l )2-4 (1- )(l- )
p+(x) < +1 Q pxxpyy pxxpyy pxx pyy pxx < +1

En 20xx(l - pyy)

.. + -
e d(1 pxxoyy) V < Zoxx(l oyy)

e V < Zoxx(1 - oyy) - d(1 - oxxoyy).
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2) b) (cont'd.)

(1) 0 < 20xx(1 - o ) - d(1 - pxxp )

YY YY

 

2p (1 - p )

a d < xx YY = f

1 - pxxpyy x

 

   

and (2) / < prx(l - pyy) - d(1 - o )
XXpyy

< 2 — _ -
f" oxxu pyy) d(1 pxxoyy)

2 2 2 2

e d (l-pxxpyy) -4oxx(l-pyy)(l-pxx) < 4pxx(l-pyy)

2 2
+ - - - -

d (l oxxo ) 4dpxx(l pyy)(l p )

YY XXOYY

2 2

a 0 < 4oxx(l-pyy)(l-pxx) + 4pxx(l-pyy)

- 4doxx(l-pyy)(l-pxxpyy)

a 0 < 4p (l-pyy)[1-oxx + p (1-0 )-d(l-p )3
xx xx yy xxpyy

a O < 4pxx(1-pyy)[l-pxxp - d(1-pxxoyy)]

YY

e 0 < 4oxx(l - pyy)(1 - p p )(1 - d)

 

   

XX YY

e O < 1 - d for pyy # l

a d < 1 for pyy # 1.

Therefore p+(X) will exist and p+(x) < +1 for p

in in YY

if |d| 1 J1:

and if d < f

x

and if d < 1.

Using the results (8.3.5) from Appendix B.3 produces:



+ +

(B.4.6b) p (x) exists and p (K) < +1 for p # 1

En En

for 0 < p < -——l;——- if d < - l

xx—Z-pyy — X

or if d < - .

—- \Jx

Combining results (B.4.6a) and (B.4.6b) produces:

+(x) . +(x)

(B.4.6c) eXists and G (414 +1) for l

pEn pEn pYY #

l .

for O < p < if d < -l

xx—Z-p

YY

 

 

Summarx

4D (l - D )(l - p ) _

If Idl < IX E xx YXI.2 xx then neither OE;X)

(l - pxxpyy)

+(x) .
nor pEn ex1st but Q > O for all pEn 5 (-1, +1). [By (B.4.4).]

If ldl > then

—' J x

p-(x) will exist with p-(x) e (-1, +1), for p g 1

in in YY

l .

for O < p < -——————- 1f d > +1

XX‘Z-p

YY

l

for < p < 1 1f d > J_-

2 - 0 xx —- —. x

YY

or if -1 < d < - J x [By (B.4.SC)].

and
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+(X) . . . +(x)
11 t th -1 +1 for 1051') W]. eszs W1 pg“ 6 ( , ), pyy 7e

1 .

for O < p < ------ 1f (1 < -1

xx — 2 - p

YY

1 .

for ___<p <1 1f ‘| <d<l

2 - 9 xx — x '-

or if d i - IX [By (B.4.6c)].



APPENDIX 3.5

(x)

 

 

 

 

 

RELATIONSHIP OF pg“ T0 1/d WHEN d > 1.

d(1- ) -\Jd2(l- )2 - 4 (l- )(1- )_(x) = oxxpyy Lumpyy on on, pxx

«En 2pxx(1 - pyy)

l. pEQX) 3_l/d when d > 1? That is, do there exist values of

p , p and d > 1 such that p-(x) > 1/d?

XX YY En '—

Let d > 1 and f l.

pYY

d'l- ) -\[d2(1- )2 - 4 (1- )(l- )

-(x) k pxxpyy pxxpyy pxx pyy pxx

pa 11“” 2 (1- ) 31“n pxx pyy

« d2(1 - p o ) - d/ > 2o (1 - p )
XX YY -' XX YY

since 2 l - > O for 1oxx( oyy) oyy #

and d > O by definition.

2

e d (1 - pxxpyy) - prx(1 - pyy) 3_d/

p‘(X) > l/d for p y 1 if
En - yy

I.) d2(l - p ) - 2p (1 - p )

xxpyy xx yy

|
v

O

 

2pxx(1 - p )

 

  
 

e d2 > 1 yy = f

pxxpyy x

and II ) d2(1 - ) - 2 (1 - ) > d/

' pxxpyy pxx pyy '—

4 2 2 2 2

e d 1- ) + 4 1 - ) - 4d 1- ) 1- )( pxxpyy oxx( pyy pxx( oyy ( pxxoyy

4 2 2
< - - - -

—-d (1 pxxpyy) 4d Dxx(l pyyHl pxx)

269



270

1. II.) continued

)>0

2 2 2 2

e 4oxx(1-pyy) -4d pxx(l-pyy)(l-pxxoyy)+4d pxx(1-pyy)(l-pxx _

2 2 .
“ 4oxx(1-oyy)[pxx(1-pyy)-d (l-oxxpyy) + d (l-pxx)J.: o

2 2 2 2

e 4oxx(l-pyy)[pxx(1-pyy) - d + d pxxpyy + d - d oxx] :_0

2
)[pxx(1-p ) - d p (l-p )] > oa 4 (1—0

pxx yy xx yy '-YY

2 2 2

a 4pxx(l-pyy) [l-d J 3_O

2 2 2

e l-d > 0 since 4 (l- > O for 1_, pxx pyy) pyy #

a 1 > d2.

-(x)2

But d > 1 therefore d £_l. Therefore pgn Z_l/d.

-(x)

En

Since (B.4.5a) indicates that for d > 1, p

-(x)

in

from 1) p

2) Thus p < l/d for d > 1 for any px , p (p # l).

X YY YY

-(x)

6n

5 (-1, +1) for any pxx, p (pyy # l), the algebra results

YY

-(X) -(X)
in I l/d guarantee that p an

1 when d > 1.(pyy # )

will exist and

p

< dl/ for any pxx, pyy



APPENDIX B.6

* *

Examination of the arithmetic sign of Bx/Bg and By/Bn.

*

Consider expression (3.12) for Bx/Bg

*

sx/sg -

where

 

2

(l - (l - d )ognmxx pénpyy

2

(l - )(1 - d )

pinpxxpyy pEn

2

O < 1 - < 1, since -1 < < +1

0 < l - 2 p p < 1 since -1 < < +1

”an xx yy —' ' pan '

+
O < pxx :_ l

0 < < +1.

pYY —'

*

Thus the arithmetic sign of Bx/BE depends solely on the arithmetic

sign

(B.6.

That

(B.6.

(B.6.

(B.6.

When

of

l)

is,

2a)

2b)

2c)

 

 

 

 

1 - dognoyy .

1 - dpfin

- do o

5" YY > o a 3 /B* > o
l - dogn X E

- do o

g” YY~= o a s /8* = o
l-

dpén x g

1 - do o

§n yy *
1 _ dpgn < O a Bx/Bg < 0.

Consider the denominator of expression (B.6.l) i.e. l - do

1 - do
En

> O (dpin < 1), consider the numerator of (B.6.l).

271
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If 1 - dp p > 0, (8.6.1) is positive and by (8.6.2a),

En yy

*

Bx/BE > o.

If 1 - d = 0, 8.6.1 is zero and b 8.6.2bognoyy ( ) y ( ).

I
D

"
x
I
D

m

I

C

If 1 - dp 0, (8.6.1) is negative and by (8.6.2c),

anpyy

m

"
x
c
o

m

A .
0

When 1 - dpan < O (dpgn > 1), consider the numerator of (8.6.1).

 

If 1 - dp p > 0, (8.6.1) is negative and by (B.6.2c),

in YY

*

B£$€( m

If 1 - d = 0, (8.6.1) is zero and b (8.6.2b),pgnflyy Y

*

Bx/Bg = 0.

If 1 - dpgnpyy < 0, (8.6.1) is positive and by (8.6.2a),

*

>Bx/Bg O.

*

When 1 - d = 0 (d = 1), neither (8.6.1) nor / are de-

pfin pin BX BE

fined.

Note 1:

(B63a) 1 dpp >0 dp <1a. " C) —

En yY in p

YY

(8 6 3b) 1 - do p - 0.; do _ _l_.

En yy En oyy

(B63C) l-dpp <Oadp >—l—

' ' En YY in

YY

where 3.1 since 0 < p < 1.
Y—

YY Y

Note 2: For an interpretation of expressions (8.6.3a) through

(8.6.3c) in terms of ratios of slopes of lines see Appendix 8.9.

Note 3: When the numerator of (8.6.1) is zero, then Bx is

zero. That is, l - dp = 0:: 8 = O.

Enpyy x
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Combining results from above produces:

 

 

* 1

8.6.4 > 0 'f d < l d >( a) Bx/Bg 1 oan or pan 0

YY

* l

(B.6.4b) B /B < 0 if 1 < dp <

x 5 En o
YY

*

8.6.4c) is undefined if d = l( Bx/Bg oEn

( 6 4d) / * O f d 1 f O l8. . = i = —-- or < < .

Bx BE , pin oyy pYY

* *

In order to compare the distributions of Bx/Bg and By/Bn

for common situations, it will be useful to have the properties of

*

By/Bn expressed in the same parameters as the properties of Bx/B§°

*

Thus instead of using dn in the expression of properties of By/Bn,

l/d (where d = d5) will be used. Note that d = dg in expressions

*

for Bx/Bg will be replaced by dn when the property of inter-

changeability is applied. But since dn = %—-= éy d in expressions

6
*

for Bx/Bg will be replaced by l/d in comparable expressions for

*

By/Bn‘

Using the property of interchangeability expressions (8.6.4a) -

* *

(8.6.4d) for Bx/Bg become expressions for By/Bn as follows:

From (8.6.4a)

* p D

8 /B > 0 if -§D-< l or -§fl-> 1 .

Y n d d o

 

Therefore



*

(B.6.5a) By/Bn > O for d > 0 if p

From (8.6.

Therefore

4b)

for

*

BY/Bn < 0

[Note: d E_ d , here.]

pxx

d < 0 if > d or <

”an “in 0

[Note: d 3_ , here.)

pxx

pg“

1f 1 < d < l/pxx .

274

Sn

 

 

*

(B.6.5b) By/Bn < O for d > 0 if d < pEn < d/pxx

From (8.6.4c)

'Therefore

(8.6.5c)

IProm (8.6.

Therefore

(B - 6.5d)

4d)

8*

BY/ n

*

B /B
Y n

BY/Bn

*

BY/Bn

for d < 0 if d/p <

xx

is undefined if p

in

is undefined if p

if

if

p

in

in

/d

in

= l/pxx for

d/pXX

/d

p < d.

in
II

P

< <

O pXX

for O < p < 1.

xx

 



APPENDIX B . 7

COMPARE 1 2 - TO 2 - 1/ oyy oyy /oY

 

Y

1 2p - l

1.) _ __XX____ ?

2 - o o

YY YY

1 2p - l

————=—XY-—¢p =(2p -l)(2-p ) Note: 2-p >0
2-

Dyy pyy YY YY YY YY

and p > O.

YY

2

a D = 4o - 2 - 2 +

YY pYY pYY

2

a 2p - 4p + 2 = 0

YY

fi 2(p2 - 2p + l) = O

YY YY

2

8 2(o - 1) = 0

YY

e = 1.

pYY

Therefore:

2p - 1

1

(8.7.1) 2 _ p = y: when p = l .

YY YY yy

1 2p - l

2.) )L?

2 - o o

YY YY

1 2p - l

—--—>-—XY———<=p >(2p -1)(2-p ) since 2-p >0

2 - oyy oyy yy yy yy yy

and p > O.

YY

Using algebra results from 1) above produces

1 2pxx ' 1 2
_) p C:2(pyy-l) )Océp <1.
2 _

pyy yy YY

275



 

 

2p - 1 .

(8.7.2) Therefore ——l—-—)—XZ—— for p < l.

2 - p D YY

YY YY

2p - l

3.) 2 1 < p 9

pyy yy

2p - 1

1 yy
< cap <(2p -l)(2-p ).

2 _

pyy pyy YY YY YY

Using algebra results from 1) above produces:

2p - 1

l <. oyy

2-o o

a 2(py - l) < 0 which is never true for

YY YY

Y

an values of .Y pyy

(8.7.3) Therefore -—l———-< -—)QL-- is never true for any p .

2 - pyy pyy yy

Therefore

(B.7-4) ‘——l—-—-> -)QL-- for all p , O < p

2 - o -' o yy yy

e ualit onl ifg Y Y pyy

l with

[
A

ll

H O



APPENDIX B . 8

 

 

Comparison of pgéx) to d

d(1-o o )+\Jd2(1-o o )2-4o (l-o )(1-o )
+(x) = xxyy xxyy xx yy xx

”an szxu - pyy) '

(x)
For the purposes of this appendix p2” will not be re-

stricted to the range (-1, +1) for the initial algebraic work.

Let d :_ Ix, pyy # l.

 

 

+(x)_
1) pin — d?

+(x)
=d

0&1

2 2

d(l-pxxpyy) +\ld (l-pxxgyy) -4pxx(l-pyy)(l-pxx) =

2pxx(l-pyy)

cd(1-oo)+v’ =2do (l-o)

XX YY XX YY

for pyy # l

e/ =2dp (1-p)-d(1-pp)

XX YY XX YY

+(x)
= d

pin

if a) 2dpxx(l - pyy) - d(1 - pxxpyy) :_O

WdEZpXXfl-p )- (l-pxxpyy)]>o

YY -’

W dEZpr - 2pxxpyy - 1 + pxxpyy] _ O

Q dEZoxx - oxxoyy - 11> 0
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l) a) (cont'd.)

 

l .
a 2_-—p__ : pxx Since d _>_ 0.

YY 
 

2 2
d b d 1 - - - -an ) ( oxxo ) 4oxx(1 oyy)(l oxx)

YY

2 2 2

— 4d oxx(l - oyy)

2 2
+ d 1 -( oxxoyy)

- 4d2o (1 - o )(1 o o )

XX YY XX YY

2 2 2 2
e 0 = 4d - - - -

oxx(l oyy) 4d oxx(l oyy)(l oxxoyy

+ 4oxx(l - oyy)(1 - oxx)

r 2
a O - 4pxx(l - pyy)Ld pxx(l - Dyy)

2

- d (l - pxxpyy) + (l - pxx)]

2 2

o = 4 - -a p (l pyy)[d pxx d p

xx xxpyy

2 2 _

- d + d o o + (1 - o )1

xx yy xx

2
a 0 — 4pxx(l - pyy)[-d (1 - oxx) + (l - oxx)J

_ 2

e 0 - 4oxx(l - oyy)(l — oxx)(l - d )

a pXX = l or ldl = 1.

Therefore p+(x) = d (for d > J-—)
in - x

(8.8.la) if d = 1 and p > ———l

YY

 

(8.8.ab) or if p

xx

)
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2) pzéx) > d?

+(x)
> d

pEn
 

2 2

d(1 oxxoyy) d (l oxxo y) 4o

2 (1 - )oxx oyy

“ xx(l-oyyHl-oxx)

Using algebra from 1) above produces:

+(x)
> d a V > 2d 1 - - d 1 - .ogn oxx( oyy) ( oxxoyy)

+(x) .

> d if a 2d 1 - - d l - < 0.pg” ) oxx( oyy) ( oxxoyy)

Using algebra from 1) a) above produces:

e donx(2 - oyy) — 1] < O

 

a p <——— for d>0

   

or if b) V > 2dpxx(l - D )

 

   

YY

- d(1 - oxxoyy) 3 o

2 - - - >I) doxx(l pyy) d(1 oxxoyy) _ o

l

a p > for d > 0

xx -2 - p ‘-

.YY

and II) V > 2dp (l - p )
xx yy

Using algebra from 1) b) above produces:



(8.8.2a)

(8.8.2b)

280

2

e 0 > 4pxx(1 - oyy)(l - pxx)(1 - d )

e O > 1 - d2

a Idl > 1

Q d > 1 since d :_O by definition.

+(x)
Therefore > d for d >‘l 1

if 0 < p < 1

xx 2 - p

YY

. l

or If -——————-< p < l and d > 1.

2 - p —- xx:—

YY

+(x)
3 < d?

) pin

Using algebra from 1) and 2) above produces:

 

+

p(x)<d°V <2do(1-o)-d(1-oo)
50 xx yy xx yy

+(x) .

< d if a 2d 1 - - d l - > Oo5n ) oxx( oyy) ( oxxoyy) __

e dprx(2 - pyy) - 1] > O

l

a p > -——————- for d > 0

xx -2 - p

YY   

and b) V < 2dp (l - p ) - d(1 - p p ).

xx yy xx yy

Using algebra from 1) b) above produces:

2

e 0 < 4oxx(l - oyy) (1 - oXXHl - d)

2

9 O < 1 - d for pxx # l

 

a O < d < 1] for pxx # 1.
  

+(X)
Therefore < d for , l, d >o5n ( oxx oyy 7‘ _ Ix )



(8.8.

(8.8.

(8.8.

(8.8.

(8.8.

(8.8.
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. l
<3) if 2 _ p _pxx and O <

YY

Summary (for d :_ I x' pyy # l)

l +(x)
<4a) When 0 pxx < 2 _ , then pgn

YY

When 1 < p < 1

2 - p - xx

YY

4b) for o < d < 1, then pESX)

+(x)
4c) for d = l , then p

En

4d) for d >1 , then p+(X)
En

4e) When p = 1 then +(x)

xx ' En

. . +(x)
Restricting pan to the range (-1,

A
V

+1):

[from

[from

[from

[from

[from

(8.8.2a)]

(B.8.3)]

(8.8.la)]

(B.8.2b)]

(8.8.lb)J.

i.e. applying

results (8.4.60) from Appendix 8.4, produces adjustments in results

(8.8.

(8.8.

(8.8.

(8.8.

 

4a) - (8.8.4d) as follows:

When d > O and l__ oyy #

1 +(x)
- +5a) for O < pxx < 2 _ p y then DEN ¢ ( l, l)

y r'

O < d < J:: then

1

5b) for 2 _ p i-pxx < l and4 IX §_d < 1 then

YY

d.: 1 then

K.

F +(x)
0 << d I x pin ¢ (

+(x)
SC) for p = l and < d < 1 then p d

xx J)<- En

+(x)
d > 1 th

_. en oan ¢ ( 

+(x)

pan ¢(-ll+1)l

+(x)

pfin

+(x)

pin ¢( 1,+1)

-1, +1)

-1, +1).
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An Interpretation of dp as a Ratio of Two Slopes

En

Recall (from 3.6b)

  

 

(l) (0)
d = d = an/On - (on un )/on

E a /0 (l) (0) ’

5 6 (Ha ha )/°g

Therefore

a /o a o o /

(3,9,1, do =__2__n..p = ”.0 4:21:32,

6n ag/og En ag in o ag/an

Consider the regression of E on n within each category

i e E = b*(i) + b* n + c i = O l. . 5'0 €°n r I

* 05

(8.9.2) where b€°n = pan ‘3- is the regression coefficient,

T)

assumed identical in each category,

*(i) . .
and bE'O = the constant in the regreSSIOn for category

1 (i = 0,1).

Consider also the midpoint of the bivariate distribution of values

of g and n within each category i.e. (uél)' p(l)), i = 0,1.

5

For this two category case the line between the midpoints can be

portrayed as: to (n

9‘1 :l‘g)

( b‘ 10‘ )

J": »)‘I
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where the slope of the line between the two midpoints can be de-

noted as m and is defined:

 

5

“£1) ' “£0) a:
(8.9.3) mg = “(1) - (O) = a; .

n n

Therefore using (8.9.2) and (8.9.3) in (8.9.1) produces

*

= DEnOE/on = b€°n

5” aa/an ma

 

(8.9.4) dp

*

Thus dp n has been expressed as the ratio of two slopes. b€_n

is the slope of the pooled within categories regression line

*(i) * . . .
E = b€°0 + bg.nn + e (1 = 0,1) and mg is the slope of the line

between the midpoints of the distributions of n and 5 within the

 

 

categories.

*

Note also expression (2.20) for 85 becomes

C* 20 o

* _ 11 (l)* (O)* _ 5 En

Bg 'TST (bE-O bE-O ) where d — 2

o O

in n

2 2 2

o = o l -

l l 05 n( pan)

* 2

and C11 — on .

'k * *

(3.9.5) B = 1 (hm -b(0) ).

g 02(1 - o2 ) g-o 5'0
En

Similarly, expression (2.15) for px becomes

1 (1) (l) (i)
. . = - = + +(8 9 6) Bx 2 2 (bx.0 bx 0) where x bx-O bx-yy

0 (l - D )
x xy

is the regression of x on y for category

i (i = 0,1).
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2 2 2
0 = a

Note 1. 0g pxxox' g < o

___pr =I |>ll=1-2<1-02
pan p on pxy pin xY°

xxpyy

2 2 2 . .

(8.9.7a) Therefore o€(l - pin) < o (1 - pxy) i.e. the denominator

is less than the denominator

(
D
W
I
-
X
N

of expression (8.9.5) for B

. 2

of expreSSIOn (8.9.6) for Bx for all values of ca, pgn,

pxx and pyy'

Note 2: b = b

X'Y pyy €°n

*

(8.9.7b) Therefore, Ib I < lbg-nl i.e. the magnitude of the slope

x-y

of the regression line for the observed predictors will be

less than the magnitude of the slope of the regression line

for the latent predictors.

Note 3:

a a

(8.9.7c) mX = ;§-= ;§-= mg i.e. the slope of the line joining

the midpointsyof tge distributions of the observed predictors

between the two categories is equal to the slope of the line

joining the midpoints of the distributions of the latent pre-

dictors between the two categories.

Now examine Bx and 85 for various combinations of

situations of dpgn = b;.n/mg using a pictorial approach.

Let mg > 0. Comparable results for mg < 0 can be found

* *

easily by considering -b . in place of b€°n.

En
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*

b€°n

ma

 

< 0 =Idp < 0.

*

1 Let b < 0 =

) S-n in

Here the within groups slope is negative while the between

groups slope is positive.

(o\‘(0). .b

.o 36

 
 

 

 
(l) (0) (l) (O)*

(8.9.8a) Here 0 < bx-O bx-O < bg-O b€.0 , and thus

* *

Bx > 0 and B > 0. Thus the numerator of B is greater

5 E

*

than the numerator of Bx and the denominator of B is

g

less than the denominator of BX.

*

Hence combining (8.9.8a) and (8.9.7a) produces 85 > B > 0:

 

 

x

*

8 * bgon

(8.9. b) 0 < Bx/Bg < 1 when m — dpgn < 0.

5 *

* b€°n
2) Let b5.” - 0 = ogn — o =» m - o = dpan - o
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‘0‘ (d , _

XWJ‘X) __‘3-q‘° Since pEn - 0

*

‘ 0 both b = 0 and

mu hm. bus 5‘» ’0 t-g'9 5°11

bx... ‘e. . "O ‘I. b = 0.

X°y

5? ca

9‘ :20

(1)* (O)* _ (l) (0)

(8.9.9a) Here bE-O bg-o — bx-O bx-O > 0.

* *

Since the numerators of B6 and an are equal and positive

*

the ratio Bx/Bg formed from (8.9.5) and (8.9.6) when pEn = 0

produces

(8.9.9b)

  
(1)* (0)1"< (1) (0)

(8.9.10a) Here 0 < bg-O - b£°0 x00 - bx-O' and thus

*

85 > 0 and 8x > 0. Thus both the numerator and denominator

*

of Bg will be less than their counterparts in Bx'
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*

(8.9.10b) Hence, the relationship of BX/BE to one is not clear

*

when 0 < b < m (i.e. 0 < d < 1 .

5'71 5 “an ’
*

* b5.

4) Let b = m =1 = l e do - 1

° 5 mg in

 

bt~°.bt-o ’0 t-

c“

b"? 4?} ma 5““ f3 5

 

 

3' 3'

(l)* (O)* _ * _ .
(8.9.lla) Here b€°0 - b€°0 — 0 = Bg - 0, while Bx > 0.

* I I * o

(8.9.llb) Thus Bx/BE is not defined for bi'h - mg (i.e.

*

d = 1 since = 0.oan ) BE *

* ha.”

5) Let b > m = > 1 =»dp > 1.
 

€°n E mg in

*

First map out the situation for the latent parameters b€.n

and m . Then examine three subcases for b .

E x-y
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(l)* (O)* *
8.9.12a) Here b - b < 0 =' < 0.

( 5-0 a-0 BF,

*

Subcase a b > m as well as b > m

-—-—‘————- X’Y E €°n E

* *

b = b . Thus b > m = b > m

x-y pyy €°n x'y E pyy €°n E

*

b O

=9-5—fl-> (i.e. dp > l/p ). Here the slope of the

m p En YY

a yy.

line x = bgfé + bx ya + e for the observed predictors

. _ (i)* * - _
and the slope of the line E - bg-o + b€°nn + e (1 - 0,1)

for the latent predictors are both larger than the slope

of the between categories line (m ).

E

U3 (a)

bmo' ~o“°

 
 

 

u I!

b;:°(‘;‘°

(l)* (O)* (l) _ (O) * 0

(8.9.12b) Here bg-O - bg-O < bx-O bx-O < 0 and BE < ,

(l)* (O)* (l) (0) .

Bx < 0. But Ibg-O - b5.O I > be.0 - bx-Ol > 0. That is

* I

the numerator of 85 has a greater magnitude than the

numerator of Bx'
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*

Since the denominator of B has a smaller magnitude

E

than the denominator of 8x, (8.9.7a) together with (8.9.12b)

* *

produce 8 < Bx < 0 (and I85 gl > lsxl).

Therefore

* *

(8.9.12c) 0 < BX/Bg < l for b > b > m (i.e. dp > l/py ).

 

€°n X°y 5 5n Y

Subcase b b = m
___-___ xoy

b* h b b*b = . T us = m = = m

X°y pyy €°n X°y E pyy E'n a

*

1 bE°n 1

a dpgn = o = m = (_>— °

W E W

That is, even though the slope of the regression line for

the latent predictors exceeds the between categories slope,

the slope of the regression line for the observed pre-

dictors equals the between groups slope.

 

 

 
(8 9 12d) Here b(l)* - b(0)* < 0 thus 8* < 0 and

° ° 5'0 €°0 ' E

b(l) - b(0) = 0, thus 8 = 0.

X'O X'O x
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*

 

 

(8.9.12e Hence = 0 for b = m i.e. d = l .) (ax/Bg x,y g ( “an /pyy)

*

Subcase c b < m while b > m

-————————' X'Y E €°n E *

* * o

b =p b . Thusb <m=p b <m=-€—n< 1

X°y yy E-n x-y E yy €°n I‘ m o

b* b* YY

* O 0

but since bg- > mE =' i n > 1, bx-y < m ="l < —§—fl'< pl

5 E YY

i.e. l < d < l .( oan /oyy)

(8.9.12f)

(3.9.129)

That is, the slope of the regression line for the ob-

served predictors is less than the slope of the between

categories line, while the slope of the regression line

for the latent predictors is greater than the between

categories slope.

 
 

 
Here b(l)* - b(0)* < 0 < b(l) - b(0)

g-o g-o x-O x-O ' thus

*

85 < 0 and Bx > 0.

* *

Hence < 0 for 0 < b < m < b

Bx/BE X'Y E €°n

(i.e. l < dp < l/Dy

an Y)'



APPENDIX C.1

The model with P = l predictor and V = K 3.3 observed

replications is

     

X = A ¢ A' + W2 ,

KxK KXI 1X1 1XK KXK

that is,

r- H r- fi ’-

2 , 2

o Symmetric l 0e

1 1

2 2

0x x 0x A2 2 Ce

2 = l ... +l 2 OT AZ AR 2 .

. 2

0x x 0x x 0x A

L—kl k2 k-J gka

C.

or

q

F02

x1 Symmetric

2

O x 0x

x21 2

2

0x x 0x x 0x =

3 l 3 2 3

° 2

0x x 0x x 0x x 0x

k l k 2 k 3 ° ° ° k

L... ..4  
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,- A

02 + 02

T el

2 2 2 2

A

2 0T A2 0T + 0e2

2 2 2 2 2
A

3 0T A2 A3 OT A3 0 + Ge

0 3 .

A 02 A A 02 2 2 2

k T 2 k T A3AkoT ... AkoT + 0e

C 1&1

This model for 2 results in K(K + l)/2 equations which re-

late the parameters in Z to the 2K parameters in the model for

2 2 2 2 ,

Z, e.g. o = o + o , o = A o , etc. These equations can be

x1 T el x2x1 2 T

found by equating the corresponding elements of the two matrices in

the equation just above.

 

  

O 2

x x3 A3AkoT

Therefore = -———3—-= A3. In a similar fashion it is

xkxl >‘korr

possible to see that

o 2 o 2

xkxi AiAkOT _ . xkxz Azxko'r
= -—-———-- A. for 1 = 2,...,k-l and = -—-——-= A .

o x A 02 l o x A 02 k

xk 1 k T x2 1 2 T

Thus expressions for the k-l parameters of A, in terms of para-

meters from Z, exist.

Consider:

 

This is one of several possible expressions for the single parameter

in 0.

Finally consider,
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0x x O x

2 2 1 xk 1 2 2 2 2
o - o = OT + o - o = 0e ;

l xkx2 l l

o o 2 2

2 kal xixl 2 2 AiAkOTAiOT
0 - = A o + o -

1 0x x l T 1 A 02

k l k T

2 2 2 2
=A + _

iGT ° . A1%
1

2 .

= 0 for 1 = 2,. .,k-l,

ei

and 0x x 0x x A A 02 - A 02

2 k 2 k 1 2 2 2 2 k T k T

o = A o + o -

xk 0x x k T 8k A o

2 1 2 T

2 2 2 2
= + —AkoT o AkoT

k

2

= 0e .

k

. 2 .

Thus expreSSIOns for the k parameters of Y , in terms of

parameters from Z, exist.

Since it is possible to express all 2k parameters of the

model for Z in terms of parameters in Z, the model (4.4) is identified.



APPENDIX C.2

The necessary condition for identifiability will be satisfied

when

V(V + l) + p(p + l)

> - +2 _V P 2 v,

where V is the total number of observed replications

and p is the number of predictors in the model.

2
+V(V 1) > V _ p + p(p + 1) + V = 2V _ p + P 2+ 2

2 —' 2

3 = 2V + 23-- E-
2 2

V2 + V :_4V + p2 - p

0

2 2

V - 3V :_p - p .

Since each predictor must have at least one observed repre-

sentative, then V = p + A where A is the number of observed

replications beyond the original representatives (A 3_0).

2 2

V - 3V 3_p - p

8

2 2

(p+A) -3(P+A):P 'P

2 2 8 2

p + 2pA + A - 3p - 3A :_p - p

2 8

2pA + A - 3p - 3A :_-p

8

A2 - 3A :_2p - 2pA = 2p(l - A).

294
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For A < l, l - A > 0.

. A(A-3)>

°° 2(1-A)-p’

=A(A - 3)
< : ___—__—But A l =’A 0 2(1 _ A)

__3_

2

M
I
L
»
)

But - :_p is impossible since by definition

therefore A # 0.

For A = l, A(A - 3) -2 and 2p(1 - A) = 0.

A(A - 3) _>_ 2p(1 - A)

n

-2 3_0. Impossible.

Therefore A # l.

. A(A- 3)

" 2(l-A) —p'

A(A 3) -2

For A = 2, 271—:—A)-= :§-= l :_p. This is possible.

For A = 2, SI? : A; = 0 :_p. This is possible.

For A > 3, A - 3 > 0 and l - A < 0, therefore

%%%—E—%I-< 0 < p. This is possible.

Thereforetflxecounting condition for identifiability is

satisfied when A :_2 ¢ V :_p + 2, since V = p + A. That is, the

counting condition for identifiability is satisfied if there are at

least two additional observed replications beyond the original set of

p observed measurements.



APPENDIX C.3

EXAMINATION OF IDENTIFIABILITY FOR TWO MODELS FOR 2: A) MODEL

(4.5) FROM CHAPTER 4, AND B) MODEL (4.7) FROM CHAPTER 4.

Although each model, (4.5) and (4.7), has (a similar external

appearance their differences will become apparent upon close examina-

tion.

Consider the model with p latent predictors (p > 1) where

each predictor, Ti, has Ki (1 = 1,2,...,p) observed replications,

and where V = .21 Ki with V being the total number of observed

1:

replications (including all predictors). The model for Z is:

Z = A o A' + 12

VXV VXp po pXV VXV

where

296
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r- ‘j

A = 1 0 . . . 0

pr

l

0 . . .A2 0

A: 0 . . . 0

1

0 l . . . O

2

0 A2 . . . 0

2

0 AK .. OJ

2

0 0 . . l

P
O O . . A2

0 0 AP ,

L. 3
r- -

2 .

¢ = 0 l Symmetric

PXP T 2

02102
T T T

o c 02

1 2 '

'I‘pT Tp'r TP

0 J
and

I I l

2 2 2 I 2 2 2 I I2 2 2
W = DIAG o lo 1 ... o 1 I o 2 o 2 . o 2 I .. oEp Opp ... 03p

x A I .

VV E1132 Ex‘ 1:31 E32 EKI , 1 2
1 I 2

Thus 2 expressed in terms of parameters of the model becomes:



 

Z

0
+

D
I
X
L
H
H
H
K
S

oh.

 

mmN
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V(V + 1)

2

+

There are V - p parameters in A, p( 2 1) parameters in ¢ and

In this model 2 contains observed parameters.

. 2 -

V parameters in W for a total of R = 2V + (pz 1) parameters

in the model for 2.

PART A:

For model (4.5) it is assumed that Ki = l for some predictor

i = l,...,p and Kj 3.1 for j # i, j = l,...,J such that

P

2 Km :_p + 2.

m=l

Note: If p

< ll

2 and K1 = 1, then the counting condition for

identifiability will not be satisfied unless K2 3_3.

If K2 = 2 there will be V = 3 total observed replications

which gives 6 observed parameters in 2. But there will be 1 para-

meter in A, 3 parameters in ¢ and 3 parameters in W2 to be

estimated. Since there are 7 latent parameters in the model for X

with only 6 observed parameters in Z, the model is not identified.

P

Since V = 2 K :_p + 2, the counting condition for iden-

m=l

tifiability is satisfied. To show that the definition of iden—

tifiability is not satisfied, it is sufficient to show that there

exists one latent parameter of the model which cannot be expressed

as a function of the observed parameters in Z.

By examination of the expression for Z in terms of the

2

2 T1

and o i will each occur in only one location and they will occur

E

1 2 2 2
together, i.e., o i = o i + o .. Since there is only one equation

Xl T El

2 2

relating the two unknown latent parameters 0 i and o i to observed

T El

latent parameters of the model it can be seen that if Ki = 1, O
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parameters in 2 there will exist no unique solution for either of

the latent parameters separately and therefore the model (4.5) with

Ki = l for some predictor (i = 1,2,...,p) is not identified.

Models which have several predictors with only one observed

measurement will have the same problem identified above with each ex-

pression for the predictor with a single observed measurement and

thus will not be identified.

PART B :

For model (4.2) it it assumed that Ki :_2 for all predictors

(i = 1,2,...,p). Since p > 1, the counting condition for iden-

tifiability is satisfied. To show that the definition for iden-

tifiability is satisfied, it is necessary to show that each latent

parameter can be expressed as a function of observed parameters in 2.

By observation of expression (C.3.1) for Z in terms of

latent parameters of the model (4.7), the following result is easily

obtained.

(C.3.2) o . . = o for i,j = 1,2,...,p with i # j.

1 J i j
T T X1X1

p(p - 1) Off_
These expressions (C.3.2) solve for the 2

diagonal parameters of ¢.

0 2 1
l XlX.

(c.3.3) A. = -———1- for j = 2,...,K
j C 2 l l

x1X1

O .

i X%Xi i = 2,...,p

(c.3.4) A. = 3e1——- for .

3 xixl j = 2,...,Ki

1 1



301

These expressions (C.3.3) and (c.3.4) solve for the V - p

 

 

P P

parameters in A (since K - l + X (K. - l) = 2 (K. - l) =

l . 1 . 1

i=2 l=l

v-p)o

o

2 xix: 1
(C.3.5) 0 l = 1 where A2 is given by (C.3.3).

T A

2

O i i

2 x2x1
(C.3.6) o . = . for i = 2,...,p

1 1

T A2

where A: is given by (c.3.4).

These expressions (C.3.5) and (C.3.6) solve for the p dia-

gonal elements of ¢.

for iII

0

I

Q

2

(C.3.7) o 1 1,2,...,p

2 . . .

where o i 15 given by either (C.3.5) or (C.3.6).

T

2 2 '

(C.3.8) o 1 = o i - (A5202i for i = l,...,p

E. x. 3 T

3 3 j = 2,...,Ki

where A; is given either by (C.3.3) or (c.3.4) and

2 . . .
o i is given either by (C.3.5) or (C.3.6).

T

These expressions (C.3.7) and (C.3.8) solve for the V para-

2 P

meters of W (since p + Z (Ki - l) = p + V - p = V).

i=1

Thus all R = 2123:_ll.+ v - p + p + v = 2v + 21333—31-

latent parameters in the model for 2 can be expressed as functions

of the observed parameters in 2.

Therefore, when there are at least two observed replications

for each predictor when p > 1 the model (4.7) for Z is identified.
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CONCLUSION
 

For models with more than one predictor the model for 2,

given by Z = A¢A' + W2, will be identified ifenuionly if there are

at least two observed replications associated with each latent pre-

dictor.



APPENDIX C.4

Consider the model for 2 with p predictors where Ki = 2

for some i = 1,2,...,p and Kj = l for each j = 1,2,...,p where

j # i. Here V = p + l.

The model for Z is

Z = A P A' + W2

VXV VXp po pXV VXV

As given the model is not identified. To reduce the number

. . 2 2 . .

of parameters to be estimated the constraint W = OEI 15 intro-

duced, where I is the identity matrix of rank V. Notice that

this constraint will not be reasonable for all situations.

Let g be the V X 1 vector of observed replications for

I

l 2 i-l

the p predictors. Therefore, g' = Xle ... 1 Ex X

I

i i

l 2

Thus

2

Z = A¢A' + OeI becomes

303

P + H

(
:
2
9
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r- ‘s

x1 2

1 0x1

1

x2 2 SYMMETRIC
1 Oxle OX2

1 1 l

1 2

2 = X1 °X1X1 Oxixz ' ' Oxi =

l l l l l

1 2

X2 ° 1 1 0 i 2 ° O i i O i
xle xle xle x2

Xp 0' C O O 0'2

l p l 2 ° ° ° 1 p i ' ° ' p

X1X1 XEXl Xixl x1X2 X1

L. .J
P

l 2

X o + o

1 T1 E

X2 o 02 + 02

2 2
l T T1 T

Xi 0 O 02 + 021 . .
l TlT T1T2 T1 E

x: A o 1 l A o i 2 . A302l (A2)202i + 02

T T T T T T

xi 0 l o 2 . . o i Ago i . . . 02 + A:

‘_ TpT TpT TpT TpT Tp

First check about the counting condition for identifiability.

(p+l)(p+2) = p(p+l)
There are 2 2 + p + 1 observed parameters in Z.

in A (all other elements are either zero

+ . 2 2

or one), El%_ll. parameters in ¢ and one parameter in W , 0E,

. i

There is one parameter, A2,

+

for a total of Ei§_ll.+ 2 parameters in the model for X. Since

p > 1, the counting condition for identifiability is satisfied.
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Now check the definition foridentifiability.

(C.4.l) O k j = o k j for k # j with k,j = 1,2,...,p.

T T Xle

This expression (C.4.l) solves for the p(z-l) off-

diagonal parameters of ¢.

0

X
h
a
r
d

X

u
n
w
-

i

(C.4.2) A2 — o

X

 

for some given i (i = 1,2,...,p) .

X

P
‘
H
'

H
H

This expression (C.4.2) solves for the single parameter in A.

0’

i

X X

lw
P
-

 

(C.4.3) A 1 i for some given i (i = 1,2,...,p)

2

I
-
B
N

>
2

where A: is given by (C.4.2).

This expression (C.4.3) solves for one of the diagonal para-

meters of ¢.

2

(C.4.4) o = o . - o i for some given i (i = 1,2,...,p)

2 . .

where o i is g1ven by (C.4.3).

T

This expression (C.4.4) solves for the single parameter in

(C.4.5) ozj = o . - CE for j # i with j = 1,2,...,p

where a: is given by (C.4.4).

This expression (C.4.5) solves for the remaining p-l dia-

gonal elements of @.
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Therefore all p(2+l) + 2 parameters in the model for 2 can

be expressed as functions of the observed parameters in Z.

2

Thus the model (4.11) with the constraint W2 = OBI is

identified.



APPENDIX C.5

Derivatives of F =£ml£| + tr{Z—lsp}, where Z = A®A' + W2 .

The expressions for vector and matrix derivatives employed

in this appendix are taken from Chapter 2, Section 5 of Multi-

variate Statistical Methods in Behavioral Research by R. Darrell Bock
 

(1975), and are referenced by the chapter, section and statement

number used by Bock.

A.) Derivatives of F with respect to elements of A(V x p)

Recall: A is a V x p matrix of scale factors, where

P

V = 2 Ki with Ki being the number of observed replications

i=1

for predictor i (i = 1,2,...,p) i.e.

r' -\

A = l O 0 . . . 0

pr Al 0 0 02 .

A: 0 O O

..--l..................

0 l 0 . . 0

2

0 AK 0 O

O O O . O

P
O O O . A2

P
O 0 0 AK

P

L. .J  
307
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The work on finding the derivative of F with respect to A

will first assume that A is a general V x p matrix with elements

Aij’ i = 1,2,...,V and j = l,...,p. The derivative desired for the

A of this research will then be a special case of the general deriva-

tive with the necessary adjustments in notation.

-1

11::30/"2 + 3 tr{2 59}

8A 3A 3A °

Consider a) é—l%%§L-= §§?L§L .

ii

For some element of A, Aij,

 

 

agnhfl __ -1' 82'

3A.. - tr 2 8A., (Bock 2.5 32)

13 13

2-1 32

8A..

13

tr
 

since 2 (hence 2-1) is symmetric.

32 _ 3(131' + W2) 3(131') 3(12) _ 3(131')

31.. ’ 31.. = 31.. 31.. “ 31.
1 1] ij 113 3 j

 

3¢A' 3A

31.. + 31..
13 13

 

A PA' (Bock 2.5-3)

31' 33 31

A ¢ 31.. + 31.. + 31..
13 13 13

  

A®l!. + l..¢A' where l.. is the V X p matrix which

1] 1] 13

has 1 as the ijth element and zero as

all other elements.

'. + 3. ' ' ' .A¢lij (A®llj) recall ¢ is symmetric
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+' QJELEL‘- tr{Z-1[A¢l!.

1]
'° 8A.

(131!.)']}
. ij

13

= tr{Z-1A¢13.} + tr{z'l(1¢1!.)'}

1] 13

-l

= tr{Z-1A®l!.} + tr{(A¢l!.Z )'}

l] 1]

l
= tr{Z- A¢lij} + tr{1¢1ijz-l} since tr{A} = tr{A'}

= tr{z’11¢1!.} + tr{z‘11¢1t.}

13 13

_ -l l
— 2 tr{£ A¢l..}

13

= 2(2'113)..
J. 3

' -31@L§L - 22'113..0 8A —

Now consider

3 tr-[X -15 } 3 tr {(TlsP-TTIM}

P _ _ _
b) 8A — 3A (Bock 2.5 22)
  

where the bar over 2.1 indicates that 2-1 is "to be

regarded as constant for the purposes of differentiation."

(Bock, 1975, p. 69)

1S :51 = C where C is considered constant with

P

respect to the differentiation.

Let E“

 

  

   

-1
3 z

. t“ Sfi=_aumm=_1egm1
°° 31 31 31

2 2
_ _ 3 tr{(A¢A' + w )c _ _ 3 tr{A¢A'C} _ 3 tr{w c}

‘ 31 ‘ 31 31

II

o

_ _ 3 tr{A¢A'C} = _ 3 tr{161'c} _ 3 tr{A¢A'C}

31 31 31

Let A$.= D1 and A'C = D2 with both D1 and D2 con-

stant with respect to the differentiation.
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. 3 tr{D11'c} 3 tr{A¢D2}

3A 3A

3 tr{CD1A'} 3 tr{A¢D2}

3A 3A

  

  

-1 I I

3 tr{z SP} 3 tr{ADlC } 3 tr{A¢D2}

3A 3A 3A

   

-(DiC')' - (¢D2)' (Bock 2.5-15)

= _ - I

CD1 D2¢

-l 1 1S 2-1A¢

P

-z s 2‘

p

13 - 2'

3 tr{z'ls }
. pL_= _ -

.. 3A 22
l

 
s 2'113

p

Combining results from part a) and part b):

  

-1

3 tr{Z S }

§§_= fiflpjzj + P

3A 3A 8A

= 22'113 - zz'lspz'113

= 22-l(1 - s z'l)A¢

P

. §§__ -1 -1
.. 3A — 22 (2 SP): A¢

This result for %%- is precisely appropriate only if all

elements of A are latent parameters. Since many of the parameters

in A of the model for Z of this research are fixed values, A

slight adjustment is needed on the above expression for g%- to make

it suitable to the A of this research. The adjustment is described

in Chapter 4.
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B.) Derivatives of F with respect to elements of ¢(p X p)

Typically ¢, as used in this research, will contain no fixed

values and thus a general expression for EE- will be appropriate.

8¢

If, however, in some applications ¢ does contain one or more fixed

. . . . 3F

values then modifications, suggested in Chapter 4, are needed for 33.

'1

22.- EBWIZI + 3 tr{2 SP}

 

 

 

3¢ 3P 3P

2 Zn
Consider a) L121: a__J_Zl

30 8¢..

1]

for some element of ¢, ¢ij

31n| I _ -l 32

8¢.. - tr{2 3¢..} (Bock 2.5 32)

13 13

U 2 U 2

32 = 8(A¢A + T ) = 3(A¢A ) + 3(W )

3¢.. 3¢.. 3¢.. 3¢..
13 1] l] 1]

u

0

BA' 3(A¢) 80 3A

= -——-+--————- ' = -———-+ ————- '

A¢ 33.. 33.. A A3¢.. 33.. ¢ A
ij ij ij 13

n n

O

.1 32 = Al?%A' where l?% is a p x p matrix where
a¢ij ij 13

elements (ij) and (ji) are equal to one

and all other elements are equal to zero.

 

= 1:; since ¢ is symmetric.)

.2 31hi§i-= tr{2'111?¥1'} = tr{1'z'11 1?? }
3¢.. ij ij

1] r-

. BBnIZI =< (A'Z-lA)ij for i = j, i,j = 1,2,...,p

 2(1'2'11) for i s j, i,j.. 1,2,...,p

\ 13



312

.2 39g$§i-= 21'2’11 - DIAG{1'2'11}

3 tr{z'ls }

<9

33

 

Now consider b)

Before proceeding with this section it is necessary to establish

a result which will be needed and is not given by Bock.

If X is an r X r symmetric matrix of variables and C is

an r X r matrix of constants then

3 tr{XC}
= ' + -3x c c DIAG{C}

and if C is also symmetric

E—EEiEEl-= 2c - DIAG{C}.
3X

Proof:

r th
By definition tr{Xc} = 2 [XC] where [XC] is the k

k=l kk kk

diagonal element of the matrix product XC.

r

[XCJkk = 1:1 xkficfik by definition of matrix multiplication

r r

I. tr{sc} = z z c
R

k=l i=1 xk gk

For i # j, i,j = 1,2,...,r

 

 

r r 3

3 tr{xC} 3 = (x..C.. + x..C..)
-—————-—-==-———- 2 Z X C 3X.. 1] 31 31 13

I C a I3X1] Xi3 k=1 £=1 k2 1k 1]

N t - 3 (x c ) - 0 1 k - ' d 2 - 'o e. axij k2 1k — un ess - 1 an - 3

or k = j and R = i

3(X..C..) 3(x..C..)

3xij axij '
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But since X is symmetric x.. = X...

1] ji

. 3 tr{XC} _ . . . . _
.. axi. - Cji + Cij for 1 ¢ 3, 1,3 — 1,2,...,r

J

and, for i = j, i,j = 1,2,...,r

 

3 tr{XC} = 3 E E X C = 3 (Xiicii) _ 3 (Xiicii

.. x.. 2 1 .. ’ ..
3xi] 3 ij k=l £=1 k k X13 X11

(X C )

Note: 5§2- kfi Rk = 0 unless k = i and 2 = i.

ii

. 3 tr{XC} . _ . . . _
.. 3X.. - Cii for i — j, i,j — 1,2,...,r.

1]

. 3 tr{xc} 3 tr{xc} ,
.. ————————— = -———————— = + - .3x axij c c DIAG{C}

If C is symmetric, then C' = C and

  

 

 

E—EELEEl-= 2c - DIAG{C}.
3x

3 tr{z‘lsp} 3 tr{(E“1spE‘l)z}

Now 8¢ = - 8¢ ‘ (Bock 2.5-32)

Let C = Ehlspfbl as in Section A) part b.) above.

3 tr{2-ls } -

p _ _ 3tr{CXl _ _ 3 tr{ZC}

33 ‘ 33 ‘ 33

= _ 3 tr{(131' + wz)c}

83

3 tr{131'c} 3 tr{W2C}

33 ' 33

I‘

o

 

_ 3 tr{31'c1}

33 ‘

 

)
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Since ¢ is a symmetric matrix of parameters and A'CA

is a symmetric matrix of constants (with respect to the differentia-

tion) the result proved above applies.

3 tr{Z-lS }

.2 33 *9 = -[2(1'c1) - DIAG{A'C1}] 

= -2A'z'lspz-11 + DIAG{A'Z-lSpX-1A} .

Therefore combining results from part a) and part b)

  

3_F = 317/N121 + 3tr{Z-lsp}'

33 33 33

= 21'2-11 - DIAG{A'Z-1A} - 21'2'lspz-11 + DIAG{A'Z-lSpZ-1A}

= 2(1'2‘11 - 1'z'lspz'11) - DIAG{1'2'11 - A'Z-lspz—IA}

= 2(A'z'l(1 - spz'l)1) - DIAG{A'Z—1(I - spz-l)1}

21'z’l(z - sp)z'11 - DIAG{1'2'1(£ - sp)z'11}.

C) Derivatives of F with respect to elements of 3(V X V).

Since 32, hence 3, will be a diagonal matrix for virtually

. . . . . 3

all applications of the model of this research, the derivations, 5%-,

will be found with respect to the diagonal elements alone.

 

-1
3 tr{2 S }

L=3932 + p for i=1,2,...,V.
33.. 33.. 33..

11 ll 11

2

Note the use of 3.. rather than 3.. here.

11 ii

 

Consider a) 2J21§l-= tr{2-l 3E }
33.. 33.,

ii 11

32 _ 3(131' + 32) _ 3(131') _ 3(32)

33.. 33.. 33.. 33..
ii 11 11 ii

a

0
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Note: 32 = 3 and since 32 is diagonal

2 2

(3 ) .. = E O3)..]
i1 11

2

32 _ 3(3) _

" 33.. ’ 33.. ’ 2Wiilii
11 ii

. 30n|2| __ -l _ -l _ -1

.. 33.. - tr{£ 2311111} — 23iitr{2 l } — 23ii ii

ii

-1 -l . .

= 22..3.. where 2.. and 3.. are the ith diagonal

ii 11 11 11

elements of 2-1 and 3 respectively.

And since 3 is diagonal

EJZJ§i-= 2[z'13].. i = 1,2,...,v
ii33..

11

where [2-131ii is the ith diagonal elements of

-1

of the matric product 2 ”3.

Consider now b)

  

  

 

3 tr{z'lsp} 3tr{(EhlsEE'l)z}

33.. = - 33.. (Bock 2.5-22 with respect

ii 11

to a single element of 3)

Again let C = Eblspffil.

3 tr{Z-lS } 2

p _ _ 3 tr{CZ} = _ 3 tr{zc} _ _ 3tr{(131' + 3 )c}

33.. 33.. 33.. " 33..
ii 11 11 ii

_ 3 tr{131'c} _ 3 tr{32C}

- 33.. 33..

11 11

n

O
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_ §_E£13393._ 3 tr{33c} 3 tr{33E} .

33,_ " 33.. awii (Bock 2.5 20 with

respect to a

__ ___ single element of 3)

3 tr{3c3} 3 tr{33c}

33.. 33..
11

By a result gained in the process of the proof in section B)

 

i.e. M: C."

x.. 11

ii

3 tr{3C33 _

33.. ‘ (CW)ii
ii

3 tr{33C}
d -————————-= .

an 33.. (3C)il

ii

3 tr{Z-ls }

.2 p = -(c3) . - (3C)
33.. i1 ii

11

O -1 -l I O I 0

But Since C = 2 SP2 is symmetric and 3 is diagonal,

C3 is symmetric and C3 = 3C.

-1

. atr{2 S }

P

33..
ii

_ _ -1 -l

- 2(C3)ii - 2(2 5px 3)
 

ii

Therefore combining part a) and b)

 

 

 

-1
3 tr{Z S }

a? -8113. P for i=1,2,...,v
33.. 33.. 33..

ll 11 11

= 2(2' 3).. - 2(z'ls 2’13)..
11 p 11

= 2(2-13 - z-ls 2-13)..
p 11

0 3F -1 -l n

.. =2 - .I = '2,...' O33. [Z (2 Sp): 3]11 for i l V



LIST OF REFERENCES



LIST OF REFERENCES

Anderson, T.W. (1958). An Introduction to Multivariate Statistical

Analysis, John Wiley and Sons.

Assakul, K. and Proctor, C.H. (1967). "Testing Independence in TWo-

Way Contingency Tables with Data Subject to Misclassification,"

Psychometrika, 32, 67-76.
 

Bock, R.D. (1975). Multivariate Statistical Methods in Behavioral

Research, McGraw Hill.

Bross, I.D.J. (1954). "Misclassification in 2 x 2 Tables," Biometrica,

10, 478—486.

 

Cochran, W.G. (1970). "Some Effects of Errors of Measurement on

Multiple Correlation," Journal of the American Statistical

Association, 65, No. 329, Applications Section, 22-34.

 

 

Cochran, W.G. (1968). "Errors of Measurement in Statistics,“

Technometrics, 10, No. 4, 637-666.
 

Cornfield, J., Gordon, T. and Smith, W.W. (1960). "Quantal Response

Curves for Experimentally Uncontrolled Variables," International

Statistical Institute - Bulletin, 38, Part 3, 97-115.

 

 

Davis, P.J. (1965). The Mathematics of Matrices, Ginn and Co.
 

Fletcher, R. and Powell, M.J.D. (1963). "A Rapidly Convergent

Descent Method for Minimization," Computer Journal, 6, 163-168.
 

J6reskog, K.G. (1970). "A General Method for Analysis of Covariance

Structures," Biometrika, 57, 239-251.
 

Joreskog, K.B., van Thillo, M. and Gruvaeus, G. (1975). ACOVSM: A

General Computer Program for Analyais of Covariance Structures

Including Generalized Manova - CDC 6500 Conversion by Judy Pfaff

at Michigan State University.

 

Lord, F.M. and Novick, M.R. (1974). Statistical Theories of Mental

Test Scores, Addison-Wesley.

 

 

McSweeney and Schmidt (1974). "Quantal Response Techniques for Random

Predictor Variables," Paper presented at AERA annual convention.

317



318

Mote, V.L. and Anderson, R.L. (1965). "An Investigation of the Effect

of Misclassification on the Properties of Xz-tests in the Analysis

of Categorical Data," Biometrika, 52, 95-109.
 

Porter, A.C. (1971). "How Errors of Measurement Affect ANOVA, Regres-

sion Analyses, ANCOVA and Factor Analyses," Occasional Paper No.

14; Office of Research Consultation, School for Advanced Studies,

College of Education, Michigan State University.

Scheifley, V. (1972). GENDATA.

Tatsuoka, M.M. (1974). Classification Procedures: Profile Similarity,

Institute for Personality and Ability Testing, Champaign, Illinois.

Wiley, D.E. and Hornik, R. (1973). "Measurement Error and the Analysis

of Panel Data," Mehr Licht! Studies of Educative Processes, Report

No. 5.

Wiley, D.E., Schmidt, W.H. and Bramble, W.J. (1973). "Studies of a

Class of Covariance Structure Models," Journal of the American

Statistical Association, 68, No. 342, 317-323.
 


