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ABSTRACT -

THE EFFECTS ON THE WEIGHTING COEFFICIENTS

= OF ERRORS OF MEASUREMENT IN THE

~ RANDOM PREDICTORS OF A QUANTAL RESPONSE TECHNIQUE
By

Robert Alan Carr

The random predictor quantal response model is examined in

research. Quantal response models are qualitative data analysis
: els. The general situation addressed by quantal respc;mse models
bﬂ"l" research concern the relationship between a single qualitative
' (quantal response) and one or more quantitative random pre-
or variables. This relationship is expressed in a series of

g coefficients. For each category of the criterion there is a

Wiﬁa’ each predictor variable.

"""‘m‘. first problem of this research is to determine the

that various levels of errors of measurement in the random pre-
'ihlblel will have on the values of the weighting coefficients.
problem is to describe a procedure for producing estimates
ighting coefficients which would be produced if there were

g of measurement in the random predictors.

“Bﬁo:adute used describes: a quantal response model and
‘ficients based on the assumed existence of error-free

ors; a quantal response model and weighting
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coefficients based on the observed predictor counterparts, which con-
tain errors of measurement, of these latent predictors; and two
measurement models which provide two possible relationships between
the two quantal response models. Then the value of a weighting co-
efficient based on the use of latent predictors is compared to the
value of the corresponding weighting coefficient based on the use of
observed predictors with a known level of error of measurement. Gen-
eral algebraic results of the comparison were sought which would be
applicable across the universe of situations which define the quantal
response models.

Then a set of estimation procedures called analysis of co-
variance structures procedures were examined to determine if they
could be used to derive estimates of the weighting coefficients which
would result if latent predictors were available for use in the quantal
response model.

No generally applicable algebraic results of the effects of
errors of measurement were discovered which apply to all possible ran-
dom predictor quantal response models. Therefore, the two simplest
cases were examined in detail. For one predictor quantal response
models, the weighting coefficient based on the single observed pre-
dictor underestimates the weighting coefficient based on the latent
predictor by a factor equal to the reliability of the observed pre-
dictor. For the two predictor quantal response model no simple re-
sults were found. However, the results for the universe of possible
situations for two predictor quantal response models can be separated

into four general categories and three special case categories of
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1s, where all situations within a category will have the same
c pattern of comparison between weighting coefficients based on
‘lnd latent predictors. The derivation of these categories,
with their descriptions and examples of situations, are

nted in this research.

on the use of latent predictors are described. Since these pro-
J do not lead to explicitly solvable estimates, a numerical
gion procedure is needed to produce the estimates. This re-
also briefly describes a computer program, using numerical
gxocedutes, which can produce the desired estimates of the

ng coefficients. Two simulated, non-randomly selected situa-
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CHAPTER 1

Section A: Introduction

In the social sciences one of the major problems concerns the
reliability of various measures used in analytical procedures. The
problem arises since the measures of interest in many situations are
less than perfectly reliable. This problem with the reliability of
measures also occurs in the physical sciences but in general it is
not nearly as severe a problem as in the social sciences. When errors
of measurement are present only to a very minimal extent, that is the
reliabilities of all measures are near one, logic suggests that few
problems are likely to be encountered if these minimal errors of
measurement are ignored in using various analytical procedures. How-
ever, when more than very minimal errors of measurement are present
in one or more measures of interest, the interpretation of results
of analytical procedures based on the fallible measures becomes
questionable.

Determining the effects of the use of such fallible measures
in various analytical procedures has been the focus of previous re-
search. In two presentations Cochran (1968, 1970) presents a review
of work done on the effects of errors of measurement on a wide range
of standard techniques of analysis including both quantitative and

qualitative data analysis models. Porter (1971) provides a review of
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effects of errors of measurement on four common quantitative statis-
tical techniques. Wiley and Hornik (1973) provide a data example
which illustrates the effects on interpretation of regression co-
efficients when fallible measures are used with no adjustment for
errors of measurement. Bross (1954), Mote and Anderson (1965) and
Assakul and Proctor (1967) provide discussions of the effect of
errors in classification for three qualitative data analysis models.
This research extends the investigation of the effects of
errors of measurement to include another qualitative data analysis
model, a quantal response technique. The sections below will briefly
review some of the research cited above, describe the quantal
response model of interest for this research and present the problem

for this research.
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Section B: Errors of measurement in quantitative data analysis models

Cochran (1968, pp. 656, 657) has shown some of the problems
which can arise in the interpretation of regression coefficients
when errors of measurement in the predictor variables are present but
not considered. In this example the presence of errors of measurement
in the predictors is indicated by a reliability coefficient of less
than one associated with each predictor. Specifically, he discusses

a situation with one variable d to be error-free and

two fallible predictor variables, i.e., each of the predictor vari-
ables have reliabilities less than one. 1In Cochran's example, the
size relationship between estimated regression coefficients based on
observed scores with no consideration of errors of measurement is the
opposite of the size relationship between estimated regression co-
efficients based on latent scores. In this example the regression

coefficients based on the latent scores, 8 and 82, have the rela-

o

tionship Bl > B while the corresponding regression coefficients

2

based on observed scores, Bi and Bé, have the relationship
B} < B3

Although Cochran's example is based on a specific set of para-
meter values it does illustrate the potential problem which can arise
when the effects of errors of measurement are not considered.

Wiley and Hornik (1973) provide a data example which illus-
trates the potential for misinterpretation which exists when fallible
measures are used in a regression analysis. The data came from a

sStudy of communication processes conducted in Central America. Suf-

ficient information was collected to provide estimates of the true
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regression coefficients. Each of two dependent variables were
individually regressed on two fallible predictor variables. The two
predictor variables were positively related to each other. One
predictor was highly reliable while the other was considerably less
reliable.

Considering the estimated true relationship, for one dependent
variable the more reliable predictor had the stronger relationship
(i.e., a larger estimated true regression coefficient) and the less
reliable predictor had virtually no relationship. In this situation
the regression coefficients estimated solely from the observed scores

with no consideration of errors of measurement did not differ greatly

from the estimated true regression coefficients.

For the second dependent variable the more reliable predictor
had virtually no relationship (i.e., a true regression coefficient
near zero) while the less reliable predictor had a very large rela-
tionship. In this situation, however, the regression coefficients
estimated solely from the observed scores with no consideration of
errors of measurement differed markedly from the estimated true
regression coefficients. Because of the positive relationship be-
tween the predictors, not only did the errors of measurement attenuate
the estimated relationship of the less reliable predictor (with the
stronger true relationship) but also some of the relationship of this
predictor to the dependent variable is spuriously attributed to the
more reliable predictor (with virtually no true relationship). That
is, when errors of measurement were not considered the predictor

which had a high estimated true regression coefficient but low
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reliability produced an observed regression coefficient which was

almost half the size of the true r ion coefficient G

the other predictor which had estimated true regression coefficient
near zero but had high reliability and was positively correlated with
the first predictor produced an observed regression coefficient which
was relatively large.

Therefore in this example for the second dependent variable

interpretations based on regression coefficients estimated solely

from the use of observed scores with no consideration of errors of
measurement in the predictors would lead to conclusions which are
considerably different from the conclusions based on an examination
of the estimated true regression coefficients.

These two examples provide an indication of the adverse
effects of errors of measurements in regression analysis. Other re-
search, as reviewed by Cochran (1968, 1970) and Porter (1971) has
cited the problems which can occur with other quantitative data

analysis models.
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Section C: . Errors of measurement in qualitative data analysis models

The problems associated with errors of measurement are not
restricted solely to quantitative data analysis models. Bross (1954)
examines the effects of errors in classification inone variable in a
2 x 2 table. 1In this case samples from each of two populations are
classified into one of two categories on a second dimension. The
association of any unit with a particular population is assumed to
be without error but the classification of that unit into one or the
other of the two categories on the second dimension is subject to
error. The interest in this case is in the proportion of units from
one population which are classified into one category on the second
dimension as compared to the proportion of units from the second
population classified into the same category on the second dimension.

In this case, if the proportions of false negatives from
each of the two populations are equal and the proportions of false
positives from each of the populations are also equal then the dif-
ference in the proportions of units assigned to one category of the
second dimension when using the observed proportions is an under-
estimate of the difference based on the true proportions. Here the
Type I errors of the test of significance will remain unchanged but
the power of the test will be decreased.

1f, however, the assumptions of the equalityof false negatives
and false positives across populations is not appropriate, the Type
I errors of the test of significance are increased.

Mote and Anderson (1965) work with units from a single popu-

lation which are classified into one of several categories on some
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dimension. When errors of classification are present the estimates
of the population proportions in any one category based on a random
sample of units from the population are biased. And standard
statistical tests where the null hypotheses specify particular popu-
lation proportions or relationships among the population proportions
will have increased Type I errors. Mote and Anderson (1965) discuss
several special case situations where statistical tests can be con-
structed which will have correct Type I errors. Each of these situa-
tions requires some specialized information which may not be available
in all cases.

Assakul and Proctor (1967) examine the effects of misclassi-
fication in the r x ¢ contingency table on the standard xz test.
Here errors of classification in each of the two dimensions are con-
sidered. If and only if the errors of misclassification in one
dimension are independent of errors of misclassification in the second
dimension then the null hypothesis for the xz test of independence
based on the true population proportions implies the null hypothesis
based on the observed population proportions and vice-versa. Under
this condition the Type I errors are unchanged but the power of the
test in large samples is never increased and nearly always reduced by
misclassification.

When the errors of misclassification are not independent,
Assakul and Proctor show how to make an appropriate x2 test based
on observed proportions when some very specialized information is
available. In this case they follow the same procedure used by Mote

and Anderson (1965) for one of their special case situations.




8

These three references indicate that errors of measurement
can produce problems in quantitative data analysis models as well as
qualitative data analysis models. A summary of the three references
above with more detail, including algebraic formulations and major

conclusions is found in Cochran (1968).
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Section D: The data analysis model to be examined in this research

The research to be presented here extends the investigation
of the effects of errors of measurement to a quantal response tech-
nique for random predictor variables. Quantal responses models are
qualitative data analysis models.

The general situation which is addressed by quantal response
techniques concerns the relationship between a single qualitative
criterion (quantal response) and one or more quantitative predictor
variables. The relationship of interest is the relationship between
the values on the set of predictor variables and the probability of
occurrence of a particular gquantal response. In a quantal response
model the relationship of interest is expressed in a series of
weighting coefficients. For each category of the criterion variable
there is a set of weighting coefficients with one weighting coefficient
associated with each predictor variable. The sign and relative size
of the weighting coefficient give an indication of the type and
strength of the relationship.

These techniques can be employed as classification procedures.
That is, for a particular subject whose classification on the
criterion is not known but whose set of values on the predictor vari-
ables is known, these techniques provide information about which of
the categories of the criterion is most probable. For a general
discussion about the classification of observations see Anderson
(1958, chapter 6) and Tatsuoka (1974).

Another use of quantal response techniques is to determine

estimates of the relationship between the predictor variables and the
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probability of occurrence of a category of the criterion. Estimates
of the relationship, in the form of a weighting coefficient for each
predictor variable, can be produced. It is this use of quantal
response techniques that is of interest in this research.

Quantal response techniques fall into one of two general
types, each with a model and associated procedures for estimating the
parameters of the model.

The distinction between the two types of quantal response
techniques depends on the type of relationship that is postulated be-
tween the predictor variables and the probability of occurrence of
levels of the criterion.

Since McSweeney and Schmidt (1974) and Cornfield, Gordon and
Smith (1960) both provide discussion about the two types of quantal
response techniques, only a brief description will be given here.

The first type of quantal response model assumes that,
either by the sampling procedure and/or by the theoretical considera-
tion of the location of the predictor variables late in the causal
chain ending with the criterion and the indirect mediational rela-
tionship of the predictors between other links in the causal chain

and the criterion, a func

nal relationship between the predictors
and the probability of occurrence of levels of the criterion seems
reasonable. For this type of quantal response model the predictor
variables are treated as fixed mathematical variables regardless of

their method of selection.

The second type of quantal model iate

when a functional relationship between the predictors and the
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probability of occurrence of levels of the criterion does not seem

to be a r ble ption. of sampling techniques and/or
because the predictor variables "...can be thought of as intermediate
links [in the causal chain] or as outcomes themselves then it is
most likely true that the factors influencing the predictors will
have a direct effect on the probability of [the criterion] as well

as an indirect influence mediated through the predictors."l In this
case a statistical relationship is assumed and the predictor variables
are then treated as random variables rather than mathematical vari-
ables.

The first type of quantal response model has been employed
in the biological sciences, particularly in assessments of drug
potency. A simplistic prototypical experiment would involve the pre-
determination of a fixed number of drug dosage levels. A preset
number of experimental animals at each dosage level would be injected
with the drug and their response on some criterion would be noted.
The criterion might be dichotomous (e.g. alive or dead) or
polychotomous (e.g. alive, moribund or dead). The important thing
to note here is that the dosage level is experimentally controllable
and the drug dosage level is expected to have a direct effect on the
probability of survival or non-survival.

The second type of quantal response model whichwill be the

focus of this research will generally be more appropriate for social

l‘llcsvaeney and Schmidt; "Quantal Response Techniques for Random
Predictor Variables," AERA presentation, 1974.
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science applications. McSweeney and Schmidt (1974, pp. 5, 6) pose
a hypothetical example of this second type of model. In the example,
mastery of a learning task (with two levels, mastery and non-mastery)
is the criterion of interest. The probability of mastery is to be
expressed as a function of entry level knowledge of the student. "In
this case, the data would be generated by classifying a random sample
of subjects on the basis of their entry knowledge and their mastery.
The choice of levels of entry icnawledge of the subjects to be observed
is not under the control of the experimenter and as such the number
of subjects exhibiting xk units of entry knowledge is a random
variable (usually taking on only the values zero and one) rather than
an experimenter-imposed-constraint. Furthermore, it would be
plausible, logically, to postulate the existence of other variables
(e.g. motivation, need for achievenemt, interest in subject matter)
that affect both [entry level knowledge] and mastery. Consequently
the observed relationship between the predictor and the criterion
could be a result of the direct relationship of each to other vari-
ables."2 Thus in this case the predictor variables are expected to
have a statistical, as opposed to a functional, relationship with the
probability of occurrence of levels of the criterion. Therefore the
predictor variables are treated as random variables.

This second type of quantal response model which is the model
of interest for this research will be called the Random Predictor
Quantal Response Model to distinguish it from other uses of quantal

response techniques not involved in this research.

1bid, p. 6.
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Section E: Presentation of the problem for this research

In the presentation of the model it is clear that the Quantal
Response model contains both qualitative and quantitative variables.
The criterion is a qualitative variable with two or more categories
which have no necessary ordered relationship. The predictor vari-
ables are quantitative statistical variables which can conceivably
assume any real value, positive, negative or zero. For this research

the qualitative criterion variable will be assumed to be error-free.

| That is for any given unit the classification of that unit into one
unique category of the criterion is accomplished without error.
However, one or more of the predictor variables may be measured with
error.

Therefore the impetus for this research is provided by a
situation such as the following. There is an interest in determining
the relationship between the occurrence of some category of a
qualitative criterion variable and the true values on one or more
quantitative predictor variables where the Random Predictor Quantal
Response Model is the model of choice.

Since the relationship of interest involves the true values
of the predictor variables, rather than the observed values, and
since it is known for other statistical models (e.g. Linear Regression)
that in the presence of errors of measurement the relationships
estimated on the basis of observed scores do not always approximate
well the relationships estimated on the basis of true scores, two

general questions arise.
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The first question is: How much variation is there in the
estimated relationship based on observed scores of the predictor
variables compared to the relationship based on the true scores of
the predictor variables? The response to this question may vary de-
pending on a variety of factors such as the extent to which errors
of measurement are present in the predictor variables and the correla-
tion between the predictor variables, among others.

Since some difference in estimated relationships can be ex-
pected based on research with other models and since true scores on
the predictor variables are typically not directly measurable, the
second question becomes: What estimation procedures can be developed
which will provide the estimated relationship of interest based on
true scores of the predictor variables?

These two questions provide the direction for this research.
The first question provides the direction for the first major area
of the research. Area one involves determining the effects of
various levels of errors of measurement on the weighting coefficients
in the Random Predictor Quantal Response Model. The second question
indicates the direction of the second major area of the research.
Area two involves developing techniques to estimate the weighting
coefficients which would result if the true score for each predictor
variable were available for use in the model.

Chapter 2 will provide a detailed presentation of the Random
Predictor Quantal Response Model for observed predictors and for true
Predictors. In each case, the general model and two special cases

Will pe presented along with various simplifying derivations and
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other interesting algebraic results. The measurement model which
relates the true predictors with the associated observed predictors
will be defined in this chapter.

Chapters 3 and 4 will present the results of the research
for the two major areas identified above; chapter 3 for Area one and
chapter 4 for Area two.

For chapter 4 an expanded measurement model will relate the
observed predictors to the latent predictors. The task will then be
to estimate latent parameters from the observed data. A set of pro-
cedures often used where errors of measurement are incorporated in
the model are termed Analysis of Covariance Structures (ANCOVST).
Joreskog (1970), Wiley, Schmidt and Bramble (1973) present dis-
cussions of ANCOVST procedures. Modifications of these procedures
will be used in chapter 4.

Chapter 5 will contain a brief description of a computer
program, using the methods described in Chapter 4, which can produce
estimates of the latent weighting coefficients. An illustration of
the use of the computer program will also be provided.

Chapter 6 will provide the summary of the results of both
major areas of this research along with recommendations for further

study.
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CHAPTER 2
Section A: The Random Predictor Quantal Response Model - An
Introduction

In this chapter the Random Predictor Quantal Response Model

will be presented along with various algebraic derivations and results

of interest. The weighting coefficients associated with each pre-
dictor which provide an indication of the conditional relationship
between a given predictor and the probability of classification into
a particular category of the criterion will be identified.

In fact, two Random Predictor Quantal Response Models will
be presented. The first model to be presented (Section B) is based
solely on the use of observed predictors with no consideration of
errors of measurement. This model will be called the Observed Random
Predictor Quantal Response Model. The weighting coefficients
identified from this model will be called the observed weighting co-
efficients. The second model to be presented (Section C) is based
on the use of latent predictors. This model will be called the
Latent Random Predictor Quantal Response Model. The weighting co-
efficients identified from this model will be called the true
weighting coefficients. Although the true weighting coefficients
represent the relationship of interest between the predictors and
the criterion, seldom if ever will there be available direct measure-
ments of the latent predictors. Thus, there will not be available

16
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estimates of the true weighting coefficients based on direct measure-
ments of the latent predictors.

Since the measures that are available in practice are for
observed predictors only, it will be necessary to develop a relation-
ship between the observed predictors and the latent predictors,
hence between the observed weighting coefficients and the true
weighting coefficients. The model which will relate the observed
predictors to the latent predictors is a measurement model based on
the classical true-score model. This model and its extensions as
needed for this research will be presented in Section D below.

Section E will summarize the results of the work presented
in this chapter and its relationship to the work to be presented in

subsequent chapters.
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Section B: The Observed Random Predictor Quantal Response Model

The most general case of the quantal response model using
observed predictors allows for a polychotomous criterion with J
number of categories (J > 2) and p multiple predictors (p > 1).
The Random Predictor Quantal Response Model using observed predictors
has been presented for this most general case by McSweeney and
Schmidt (1974, pp. 10-13). The model presented below is identical
in structure to the model presented by McSweeney and Schmidt. Only
the notational form has been changed to accommodate adjustments
needed for this research.

Let Y be the criterion variable which takes on values
Y=3j, (j =1,2,...,J3) where each category of the criterion is
assigned a unique value as an identifier chosen arbitrarily from the
numbers 1,2,...,J. The quantal response model does not require and
does not consider any ordering among the categories. Therefore,
the numbering of the categories of the criterion is merely for nota-
tional convenience and need imply no ordered relationship among the
categories. Let X be the p x 1 random vector of observed pre-
dictor variables where X' = (X1 X2 XP).

One of the traditional interests in quantal response tech-
niques is to find the probability associated with membership in each
category of the criterion given values for each predictor variable,
i.e., Pr{Y = j|x} for j =1,2,...,J. It is this interest which
provides the basis for the quantal response models.

Let f(g]Y =3j) for j=1,2,...,J represent the J con-

ditional distributions of the random vectors for predictor variables
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for the J categories of the criterion. Traditionally the condi-
tional distributions of the predictor variables for the J categories
are assumed to be p-variate normal with identical p x p covariance
matrices I and mean vectors g}((j) (G =1,2,...,3).

Therefore the conditional probability of occurrence of
response Y =k (k =1,2,...,J) can be expressed as

(

3)
By

J
I Z-148 .
T VAZEAR =g

P,
(2.1) pr{y =k|x} =P =1/[1+ —L exp{-4[ (x -
b % B X

3=1
Ik

()= 1o A ()

e RO OIS Sl D

where pj = the unconditional probability of occurrence of category
3 (3.=91,2,:..,T),
g;j) = the p X 1 mean vector of the distribution of observed
predictor variables for level j of the criterion
(3 =1,2,...,3), and
I = the p X p covariance matrix of each of the J con-

ditional distributions of the observed predictor

variables.

A simplification of this expression (2.1) is possible. Con-

sider a portion of the exponent, as follows.
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BN =L (3) (k)| =L (k)
Q-(g-gx )'z (§—gx)-(§-gx A S i
=1 (3)*5-1 3) =1 (k) ' <=1 (k)
oL 0 T z)(g—gx)-(g'z G )(5-Ex)
o Sl =i (i)Y -1l L =1(1) (IS T )
BRI X — pov. I X - X'D u b oy
el (k) ' -1 Grr b d0.9) (k) , -1 (k)
- X' §+Ex I X+X'I By " Ky ng .
ol (k) : ;
Note: Since X'I Ky is a 1 x 1 matrix and I is
symmetric then X't lg(k) = (XE-lg(k) = E)((k)'):-lg‘(.
Then
€3).* <1,

0= - 5y 22;1() "l 4 E;J)'E—IE)((J) 3 E)((k)x-lg)((k)

(k) G v L () ==1 () ()t <=1 (lc)
A, - py e Xl s Dy eed — iy Z oy

X X

Let

o
"

P P.
I expl-h0} = expl+ n(=D) - %o}
Py Py

P, ; ’ "
B (k) )T o1 () ey i) ST
exp{Ln 5, * STLE Ty e BYSE R Ol SRR

) o (k) (3)
Let Ek-j'z (By - ¥y ) and let

P. . 4
S 3 1 (k)' -1 (k) (o SRS G
.y Ln(pk) = 5_[EX LS R s ™™ e

- 2 B
Therefore R = exp{ (uk_. By, J}_()}

Therefore the general model (2.1) can also be expressed (for

k=1,2,...,3) as:
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J
(2.2) Px{Y =k|x} =P _=1/[1+ jz expl=(ay 4 + By 0]
j#k
where
P, A :
IR By veclon O il 00y () e=1i(d)
ey = 1o Sty Ty Cx Pk L
and

=1 =(k)

(3) \ ;
Byog = & iy -ao) for 3# K, Jk=1,2,....3.

In this formulation of the model (2.2) the p X 1 vectors
of observed weighting coefficients Ek-j (I# K, Jk =125 00,00
are indicated. The k+j subscript notation is used to indicate
that the value of the weighting coefficient is dependent upon para-
meters from two distinct categories j and k. The ordering of
the letters in the subscript indicates the order of the subtraction
in the definition of the weighting coefficient, i.e.,
By - 2-1%(();) * E)((j)) or fy.,= 2-1%;3) 3 Ef)"

tion for E’k-j for some k,j (j # k, 3,k =1,2,...,J) associates

An interpreta-

vector E‘k-j with category k. In this interpretation the components
of E‘k'j indicate the conditional weighting attached to each predictor
variable in differentiating between categories k and Jj. The sign
of a component indicates the direction of the weighting while the
magnitude of a component indicates the strength of the weighting.

For each category k (k =1,2,...,J) expression (2.2) in-
dicates the existence of J - 1 vectors of weighting coefficients
of the form gk-j (j #%, 3.k =1,2,...,3) associated with

category k. Therefore, for all J categories there will be
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J+ (J-1) vectors of weighting coefficients to consider. The values
of these J: (J - 1) vectors of weighting coefficients are not
mutually independent. In fact, Appendix A.l demonstrates that only
a base set of J - 1 vectors of weighting coefficients associated
with some arbitrary category k of the criterion (k =1,2,...,J)
need to be considered. Each of the other (J - 1) vectors of
weighting coefficients associated with any other category k' # k
are shown to be linear combinations of vectors from the base set of
J - 1 vectors associated with category k.

The interest for the first area of this research is in the
relationship between the probability of occurrence of some category
of the criterion variable and the values of the predictor variables.
This relationship for observed predictors is given by the components
of the vector of observed weighting coefficients.

Since there is interest in the inidividual components of the
vector of weighting coefficients there will be some utility in
deriving an expression for the individual weighting coefficient
associated with some observed predictor xq g=1,2,...,p)-

Consider now some vector of observed weighting coefficients

associated with some arbitrary category k (k =1,2,...,J), gk_j
(j #%, j,k =1,2,...,3), where Ek-j = E-l(g;k) - é))())' Consider

also some observed predictor )(q (@ =1,2,...,p) and the observed
weighting coefficient component of vector E’k-j associated with
redictor x%, call it i.e. = (. .
P ’ Bq. B q Ek-; q
The task now is to derive an expression for the single ob-

served weighting coefficient for observed predictor Xq, i.e. Bq,
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from the vector of observed weighting coefficients Ek-j associated
with category k (j #k, j,k = 1,2,...,J) of the Observed Random
Predictor Quantal Response Model.

Therefore

1 Eel(8.9) ( -1 (k)
X

7 3) -1
e = < = = = (z b3
(2.3) B (Ql o) [ (gx Ky )) (Z 7y

(3)
V=i ) .
q kx q

The particular order in which the predictors from the set of
observed predictors are considered is not important in the general
model. Hence no generality is lost, and considerable help in nota-
tion is gained, by considering x? to be the first predictor in the

set of observed predictors, i.e. q = 1.

(2.4) Thus By = (

-1 (k) =1%(5)
1 Iy )y - (T "ue™)

Consider (z

—12)?()) first.

e ' '
Not:e:l ST T%r ¢ where :° =[c,.] Ao e e D,

1]
where C.. = the cofactor of element (I),.. Thus
£ 5] ij
-1 (k) 5 e - 9) 1 et (k)
(T “py )1= (]?l-z By )1=‘|—T'Z (7 py )y
A et )" (k) (k) (k) (x)
Since is a px 1 vector, L. = [u u ese | ces ¥
X X x1 L x2 <P
-1 (k) 1-1 _c' (k) s ()
e TR P (s e o) IC.u
e e R Tt e,
[+ Prelc
2 )l:.l [u(];) ks Cll l‘(k) B
X =2 =11 )(V,

l'I)avis, Philip J.; The Mathematics of Matrices; Ginn and Co., Boston,
1965, p. 182.
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e L)t

L Zoieh :
21 M“] where My, is the minor of

element (I) 21"
Now consider the p predictors in cateogry k. Choose the
first predictor )(1 as a dependent variable in a linear regression

and use the remaining p - 1 predictors as independent variables in

the regression. That is:

1 (k) (k) o2 (x) 3 (k) _p
(2.6) X = h1~o + b1-2x + ):>1.3 > Gl B & bl'p X +ie

(k) q (k)
where bl'O is the constant of the regression and by.n is the

regression coefficient associated with predictor o m=2,...,p).

Let

(k) pK) (k)

B o by

x)' _
B = [b 1.p

Following a discussion from Bock (1975, pp. 136-138):

) _ -1
Bt ap Epy
where
2 |
B0y : 212 Z
JeNEe 0o to
gl Bpgt) ~ P
45 p-1
x)

Since the values of B involve only elements of the co-
variance matrix I which is common to the distribution of the ob-
served predictors in all categories, there is no need to continue the

use of the superscript (k) to denote the set of coefficients or to

distinguish individual regression coefficients.
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(e o o=l &
Therefore let B =B = 222 521 with

F R Y R

5
AR 1p

Consider some component of B, call it bl-m (m=2,..:,p)
= 2 c'
Pran = T2 Ea)n = o T P22 2a1'm

where Z;z is the matrix of cofactors of elements of Iy,

Lt c'
= (z L)
222 22 ~21'm

1o Pal 1ko)
0 Pt T T Ciwen Ba)s

where the subscript i here is associated with the renumbered com-
2 in
22

the original numbering system. A dual notation system (element

ponents of 222 beginning with (222)11 which is actually o
numbering system) for the elements of 222 and the other submatrices
of I will be used. In one system the element will be numbered in
accordance to its row and column location in the total matrix I.
All individual elements identified as U;j or ojk will be using

this system. In the second numbering system the element will be

numbered in accordance to its row and column location in the submatrix.
z
2

In equation (2.7), Ci(:—l) is the cofactor of the element
in row i and column m - 1 of matrix ):22, and (Ezl)i is the ith
element of vector 221.

Note 1: bl-m is the regression coefficient associated with

predictor ™ in equation (2.6).
Note 2: Let Mil be the minor of the element in row one and

column one of ZI. Then

S
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. SRS (P R L S P
32 33 e 3p 1L 22
g CF:
p2 p3 77 pp
Hf.l and :22 are nearly identical (p - 1) x (p - 1)

, except that row one (1) of H:l does not occur in :22

of I does not occur in nil.

22
1 2 N s e D=l
~ ~
1 %2 013 SR alp
2
2 %5 %23 Chr azp 4

bt 0 T T TR TR P
Ipiiia Sppfuigraie e iiOpgy o
p-1|0 ° o2
%2 T o
! o

] :-.:’.F-
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(-1) x (p-1) .

p-1

If row 1 were deleted from ME

27

1 2 e pet
- 2 =
95, 9,3 e °2p
2

32 33 teeflan
T T 5 e B 5
%2 %3 Al g
Ipt1;2 Jeara o Yeantp
o o 2
U2 p3 p

and row @ - 1) were

21

deleted from 222 the resulting matrices would be identical.

Therefore the minor

identical to the minor associated with the element in row

I
21

(=" 1)

of any element in the first row of M will be

of ):22 which has the same column subscript as the element in Mil,
I
M z
21 22 B 4
s, Mli H(ﬂ.-l)i for i=1,...,p-1.
(p-2)x(p-2) (p-2) x(p-2)
Note 4: For any symmetric matrix Mij = M:‘ii’ Therefore
Ity = Do -
Thus in category k, for any predictor x"' other than the
first, i.e. m = 2,...,p, the cofactor le of the element in row
. m+l) T 3
m and column 1 of I is: le = (-1) |Hm1| and expanding
z % I
|H-1] by cofactors of the first row of Mml
p-1 Mz
m+l Al ml
Enii-) Lz -1 |Mli | u(i+l)1]

i=1
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where i =1,...,p - 1 represents the renumbered row subscripts for

I 3 : :
Hml and q(i+l)1 is the element in row (i + 1) and column 1 of

I which is also the ith element of the vector 521

Therefore
1 o
m+l 5! 1
c =0 e T e i L B FP PO
2.8 - =L 3
11 [My, |
From equation (2.7):
bl
bl'm 79 .}: cl(m— )(521)1
22' i=1
i+m-1
| z L1y i IMl(m-l)l % (34117
m-1 p-1 i
(-1) it
B0 b - L (-7 |u Y T
1l'm 222 e 1(m 1) (1+1)1

where i =1,...,p - 1 represents the renumbered column subscripts

for matrix 222 and a(i+l)1 is the element in row (i + 1) and

column 1 of I which is also the ith element of the vector 221.

Compare equations (2.8) and (2.9).

o™ - 2 en™ - (™t
|M11| |z zzl from Note 2 above, and
z
| z(m—l)l | (m—l)il = |M1‘:1| from Note 4 above and Note 3

above respectively.

Therefore,
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(2.10) b i ==,
Thus equation (2.5) becomes:

(x)

-1 () ‘i 0
s Y )

P

]

where bl'l (2 =2,...,p) is the regression coefficient associated
with predictor x” when predictor XL and the other p - 2 pre-
dictors are regressed on the first predictor as in equation (2.6).
In general for any predictor x3 in category k, since any
predictor can be put first in the ordering of the set of predictors:

C P
-1 (k) (k) (x)
2.11 z = =L, b .
( )@ Ty )“1 Tq‘? IZuXq sEi B, uxl 1

L#q
(k) (k) (k) (k)
Note: =b.+b_u +.+b._u_
S %2 q-0 q-17,1 q-q-1"yq
) (k)
+ +...+ b

q-q+1¥ Lq+l a-p"yp

P

Thus buf()) = u(k) = &b _Lu(];)
s 2o gm T
2#q

where b:.;kc)J is the constant in the regression equation above and

represents the intercept of the regression hyperplane of }(cI for
category k data.

Therefore

(2.12) A

)q=

In a similar manner for category 3j (j # k, j,k =1,2,...,3),

from equation (2.11):

V .
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P

1 (:|) (J)
2.13 ==Y b
( ) (£ T"T [u = q-l“xl

2#q

3.

And similar to the work for equation (2.12), equation (2.13)

becomes

(2.14) EEyRed) ]ﬂ?b‘” :

Using the results (2.12) and (2.14), equation (2.3)

=1 .. (k) 3
= o = (¢ =
Bq (ﬁ’k'J)q ( (y Ky ))q becomes
(k) st ()
(2.15) Tﬂ? B gtaibai .

Thus, the observed weighting coefficient for any given pre-
dictor, in any vector of weighting coefficients associated with any
category of the criterion is the difference in intercepts between two
regression hyperplanes, in the form of (2.6), multiplied by a scale
factor associated with the chosen predictor.

Additional formulations of Bq =gy can be produced.

p k-j'q
Note: |!:|= b chCqL for some q =1,2,...,p
2=1
P c
=qu[c;q+ T OE_E_C 3]
1=1 ¥ Cgq
2#q
2 P
(2.16) le=c [o° - I b 0]
9 99 gy q°LqL
2#q

from equation (2.10) generalized. Therefore:
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b0 )
(2.17a) g =< a4
q 2 P
4] - I b ~£° .
Q@ ., L9

Lq

from equations (2.15) and (2.16) or

(k) (3) P (k) (3)
(u - U ) - I b (u -u )
x4 x2 g=1 T4yt x>
_ L#q
(2.17b) Bq = - 5
c =L b .0 g
Q@ g, It4q
L#q

from equations (2.11), (2.13), (2.3), and (2.16).
Equation (2.17b) expresses Bq = (Qk'j)q as the ratio of

two linear combinations each of the form
P
86 - I b 6
q gy a2
L#£q

Although there are other ways to express the general model
and to express the single weighting coefficients, those presented
above seem to have the greatest utility for the work which follows,
i.e., (2.2), for the general case of the Observed Random Predictor

Quantal Response Model and (2.15) and (2.17b) for the expressions

for single weighting coefficients.
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Section C: The Latent Predictor Quantal Response Model

The development of this model depends on the assumed existence
of a general unobservable entity, a latent measurement for each pre-
dictor. Then the development of the most general case of the Latent
Random Predictor Quantal Response Model follows easily from the de-
velopment of the Observed Random Predictor Quantal Response Model.
This most general case model allows for a polychotomous criterion
with J categories (J > 2) and p multiple predictors (p > 1).

Let Y be the criterion variable which takes on values
Y=3 (3=1,2,...,3) where each category of the criterion is
arbitrarily assigned a unique value from the numbers 1,2,...,J.

Let T be the p x 1 random vector of latent predictor variables
where T' = (T1 T2 . TP).

Assuming that for each category of the criterion the condi-
tional distribution of T is p-variate normal with identical p x p
covariance matrices, ¢, assumed homogeneous across all categories,
and mean vectors H;j) (3 =1,2,...,J3), the derivation of a model
for the latent predictors exactly parallels the derivation of the
model for observed predictors with T in place of X, ¢ in place

(3)
T

of I and in place of E;j) (3 =1,2,...,J3). One other
variation in notation will be made to differentiate between this
model and the observed predictor model. An asterisk (*) will be
used as a superscript for some parameters to indicate that the

parameter is associated with the latent predictor model.
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Using the above replacements in the derivation of expression
(2.1) produces for some category k (k =1,2,...,J) an expression

for the Latent Random Predictor Quantal Response Model.

*
(2.18) Pr{y = k|T} = P

(3) 1 E’1(‘3))

J p, )
=101+ I —Lexpl-a(T - . 00) 07 (T -

j=1 Px

i#k

- (T - gék))'¢-l(2 - gék))]}l

where pj = the unconditional probability of occurrence of category
j (j=1I2l"'lJ)l
(3)
o = the p x 1 mean vector of the distribution of latent
predictor variables for level 3j of the criterion
(j =1,2,...,3)
and $ = the p x p covariance matrix of each of the J con-

ditional distributions of the latent predictor variables.

The argument which produced expression (2.2) from (2.1)
can be used to produce from expression (2.18) the following
simplification, by merely replacing X by T and adjusting other

notation to indicate that latent parameters are involved.

J

* * * '
(2.19) Pr{y = k|T} = = 1/[1 + jil exp ~ (o) 5 + 8, 4 D]
i#k
where
* Py 1 (k' -1 (k) (3)',-1 (3
= —1n(—d) - _ 3y -1(3)
Oeey = ln(p ) = Slup T ® kg U A The

k
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and

* -1, (k (3
By =0 ety

j )

for j #%k, j,k=1,2,...,J.

In this formulation of the Latent Random Predictor Quantal
Response Model (2.19) the p x 1 vectors of latent weighting co-
efficients Q;-j (j #k, 3,k =1,2,...,3) are indicated. The sub-
script notation carries a parallel interpretation to that of the
interpretation for the observed weighting coefficients given above
in Section B of this chapter.

As with the observed weighting coefficients it is necessary
to consider only a base set of J - 1 vectors of latent coeffi-
cients associated with some arbitrary category k (k =1,2,...,J3).
All other latent weighting coefficients are linear combinations of
vectors from the base set. See Appendix A.2 for proof.

Two other results of interest from the observed predictor
model have direct parallels in terms of latent predictors. Two
expressions for the individual weighting coefficient Bq, (2.15) and
(2.17b), become: for some category k (k =1,2,...,J), some vector
of true weighting coefficients Q;'j (3 # k, 3,k =1,2,...,3)
associated with category k and some individual latent predictor
4 (q=1,2,...,p), the single weighting coefficient associated

. . q . * * *
with predictor T?, call it Bq where Bq = (gk-j)q has the follow-
ing expressions.

*
+ € )* ()
)
. = b -b
(2.20) 8 = Tol ®qro - Pgio
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and, p
. . .
(uu;) ) u(é)) 2 .l(uu;) D,
T T g=1 "% ¢ T
(2.21) 8 = 7
q 2% P * *

where the * as superscript indicates the parameter is a parameter
from the latent predictor model which corresponds to the non-super-
scripted parameter from the observed predictor model.

Expression (2.19) for the general case of the Latent Random
Predictor Quantal Response Model and expressions (2.20) and (2.21)
for the single weighting coefficients appear to have the most

utility for the work which follows.
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Section D: The Measurement Model

In the two previous sections two quantal response models have
been developed. Although there is an obvious parallelism between
the models as evidenced by a comparison of (2.2) for observed pre-
dictors and (2.19) for latent predictors there is no link between
the parameters of the models. The purpose of this section is to
introduce a measurement model which will provide the link between the
models.

The basic measurement model to be used in this research is
the classical true score model. Following the notation introduced
above X is the p x 1 random vector of observed predictors and T
is the p x 1 random vector of true predictors. Using a multi-
variate extension of information presented in Lord and Novick (1974)2,

the p x 1 error random vector E 1is defined by the linear rela-

tion

(2.22) X=T+E

where X' = [Xl x2 X'p]
T =1t % ... 1)

and E' = [e1 e2 ... 1.

The assumptions of this classical model again taken from Lord
and Novick (1974) with appropriate extensions to the multivariate

Case are:

\-—

2
I‘Dlni, F.M. and Novick, M.R.; Statistical Theories of Mental Test

§5§£2£!§§, Addison Wesley, Reading, 1974, p. 56.




ey

:’-3’, 15 '

N 7ad3 is

LR S

[CI

leedc

<l



37

(2.23a) E

o]
]
0

that is, the expected value of the errors in the population of sub-

jects is zero.

(2.23b) Var (E) = ‘i’z

where \Pz is a diagonal matrix of error variances. That is, in the
population of subjects the errors between any two predictors are un-
correlated (peleJ =0, i # j) and the error variances of any pre-

dictor i (i =1,2,...,p) is given by ozi. Therefore

e
2
v - diag{cx2 o2 ... % ).
1 2 P
pXp e e e
(2.23c) Cov (E,T) = [0]
pxp

That is, in the population of subjects the covariance between error
scores and true predictor scores on the same predictor is zero

(cov (Ti, ei) =0 forany i (i=1,2,...,p) and the covariance
between error scores on some predictor i (i =1,2,...,p) and the

true predictor scores for any other predictor j, j # i is also

Zexo (cov (Tj, el) = 0). Several important results come immediately

from expressions (2.22) through (2.23c) above.

(k) (x)
R

(2. 24a) X T

for any category k (k =1,2,...,J).

To demonstrate this, consider any category k (k =1,2,...

(k) _ _ -
pe TE@ =E (@+E) =E (D +EE .

/J)



...
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Since Ek(E) =0 by (2.23a),

(2.24b) L=¢+ VY

for any category k (k =1,2,...,J).
To demonstrate this result, consider any category k

k =1,2,...,3)

L =var(X) = E (X X') - E (OE (X"

k

E L +E(T+E" -E(T+EE(T+E"

E (IT' + ET' + IE' + EE') - E (DE (T")

E (IT') - E, (DE (T') + E (EE") + E, (ET') + E, (IE")

k
- ~ J
= Var (T) + Var(E) + [0] + [0]
p*p pxp

Var (T) + Var(E)

I =3¢+ Vv .

Note: E, (ET!) = E, (TE!) = [0] where [0] is a p x p matrix
wWith each element a zero. This follows from (2.23c).

Expressions (2.22) through (2.24b) provide the basic relation-
Ship petween the elements of the Observed Random Predictor Quantal
Response Model (2.2) and the Latent Random Predictor Quantal Response
Moge1 (2.19).

The measurement model as given by (2.22) will be sufficient

for use with the research for Area one in determining the effects of
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unreliability of the predictors on the weighting coefficients. 1In
this work to be presented in Chapter 3, the direct one-to-one
parallelism between an unobserved true predictor and the correspond-
ing observed predictor with the connection provided by (2.22) will
be sufficient. However, for the Area two work which involves de-
veloping estimation procedures for the latent weighting coefficients,
the basic measurement model represented by (2.22) will not be suf-
ficient. An expansion of the basic model will be necessary. The
Area two work will be presented in Chapter 4.

The expansion of the basic model which will be needed pro-
vides for the use of replicate observed measurements for each of the
predictor variables. A more detailed discussion of the need for
replicate measures and their use in the estimation process will be
presented in Chapter 4.

The expanded model assumes the existence of a single true pre-
dictor for each construct to be considered as a predictor but allows
for multiple observed measurements to be recorded for each predictor,

all of which provide information about the predictor. Since the
Various observed measurements for a given predictor may not be
recorded using the same scale of measurement a scale factor is in-
©luded in the model.

The model relating some latent predictor Tj (j =1,2,...,p)
With m number of replicate observed measures becomes
(2. 255 W= p3 o3, g

mX1 mX1 mx1

where ’1\\,3 is an m x 1 vector of scale factors which relates the
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latent predictor Tj to the non-error portion of 53, and §j is
an m x 1 vector of errors for predictor j.

For a given latent predictor each observed replication is
assumed to provide a measure of this latent predictor including
allowance for error and for the scale of measurement of that partic-
ular observed replication. Before a value can be assigned to a
scaling factor it is necessary to assume the presence of some master
reference scale of measurement for each predictor. For most variables
to be considered, this assumption is not typically operationally or
theoretically feasible. It is thus necessary to resort to a pro-
cedure commonly used in analysis of covariance structures (ANCOVST)
procedures. In this procedure one of the observed replications is
chosen to provide the reference scale and the value of the scaling
factor of that replication is arbitrarily set to 1. By doing this
the scales of all the other replications can be referenced to the
scale of the chosen replication rather than to some absolute scale.
For this technique the choice of the reference replication is
theoretically immaterial and is typically chosen to be either the
first or last observed replication for convenience. Thus the form of
Qj from (2.24a) becomes Qj' =[1 Az ‘e Am] where Al, the
scale factor associated with the first observed replication is
arbitrarily set to 1, i.e., Al = 1.

To produce the general model in matrix terms, which is the

extension of (2.22) let any true predictor T3 (j =1,2,...,pP)

have Kj observed replications where Kj > 1. That is, there are

Kj observed predictors associated with true predictor TJ.
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P
Let V= I K. that is, V is the total number of observed
j=1
measurements associated with the p true predictors.

The model for a single observed measurement can be written

(2.25b) xJ =3 43
1 1 1

with j=1,2,...,p and i = 1,2,...,1(j

where xi is the ith replication of true predictor TJ,
73 is the jth true predictor,
o . th . . . .
e 1is the error for the i replication of predictor j,
i
and Az is the scaling factor which relates the true predictor

TJ to the ith observed replication of TJ. (Note:

Ai = 1 for every j).

In matrix terms the general model for the p predictors can

be written as

(2.26) X = AN T + E
vx1l Vxp px1l vx1

where

xP xP x2 7,

X' = [Xl X1 X1
2 - l 2 LA l 2 * o o k

1xv k)

eee X

N
NN
AN

=7t % ... ],

~

1xp



e




r
A ={1 o o ..
Vxp
1
\; 0 0 ..
A)];O o ..
I I S
o 1 o ..
2
o A2 o ..
oxio..
2

The assumptions

(2.23b) and (2.23c) all

42

= r‘lﬁ
. 0 and E = el
vx1l 1
. 0 e2
. O ei
1l
_____ - o s
. 0 el
2
. 0 e2
. 0 ei
2
_— =} 1-5-F
. 1 e1
p P
. Az e2
. AP ep
kP kP
- L. -

about elements of the basic model (2.23a),

apply to the extended model with the appro-

priate adjustments in notation to accommodate the increased number

of observed and error parameters.

Therefore, results comparable to (2.24a) and (2.24b) can

be produced.

(2.27a) K ;k) =

vx1l

for any category k (k

A
Vxp leT

(k)

= 1'2'..o'J)o



43

To demonstrate this, consider any category k (k =1,2,...,J)

(k) _ _ _
By = Ek(;g) = E (AT + E) = E, (AT) + E, (E)
_ _ _ . (k)
= Ek(AZ) = AE (D) = Ap, .
(2.27b) I = A o A+ ¥

vxv Vxp pxp pxV vxv
for any cateogry k (k =1,2,...,J).

To demonstrate this, consider any category k (k =1,2,...,J)

I = var(X) = Var(AT + E)
= Ek(AZ + E)(AT + E)' - Ek(Ag + §)Ek(Ag + E)'
= E (AIT'A' + ET'A' + ATE' + EE') - E _(AD)E _(AT)'
= A[EK(EE')]A' - A[Ek(z)Ek(z')]A' + Ek(Eg')
+ [Ek(EE')]A' + A[Ek(zg')]
= ALE_(TT') - E, (T)E, (T')JA' + E_(EE') + [0] + [0]
k ko~ ke~ ko~ VXV Vxv
= Alvar(T)JA' + var(E)
L = AOA' + Wz
where
1 | !
v2 - diag{021 02 1 - 021 : 022 022 eee 022 :...i 02 . czp .
xv e, e2 e 1 & e, e | i€y ey
g 2l ®

For both of these derivations A is a matrix of constants
with respect to the expectation across the subjects in the popula-

tion of category k (k =1,2,...,J).
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Since some similar notation is used for matrices from each
of the two measurement models which have different definitions it is
important to clearly specify the measurement model being used. This
redundancy of notation will pose no problem since each measurement
model will be used in distinct and different situations. The basic
measurement model, given by (2.22), will be used in Chapter 3 and
only the early exploratory stages of Chapter 4, while the extended
measurement model, given by (2.26) will be used for the majority of
the work in Chapter 4 once the basic model has been shown to be in-

sufficient for use in the estimation of latent weighting coefficients.
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Section E: Summary

In this chapter the models which are needed for the research
to be presented in the following chapters have been defined and de-
veloped.

The Observed Random Predictor Quantal Response Model which
indicates the existence and the form of the observed weighting co-
efficients is given by (2.2).

The Latent Random Predictor Quantal Response Model which in-
dicates the existence and the form of the latent weighting coeffi-
cients is given by (2.19).

The basic measurement model which relates the components of
the two quantal response models is given by (2.22). Through this
relationship the Area one research to be presented in Chapter 3,
will examine the relative values of the individual observed and
latent weighting coefficients associated with a predictor for the
whole range of possible situations.

The Area two research, to be presented in Chapter 4, will
demonstrate that the basic measurement model given by (2.22) is not
sufficient to allow the estimation of the latent weighting coeffi-
cients. The research will demonstrate that a model in the form of
the extended measurement model, given by (2.26), is needed.

In chapter 4 the measurement model will be used to give two
reformulations of the Observed Random Predictor Quantal Response
Model (2.2) in terms of parameters from the Latent Random Predictor
Quantal Response Model (2.19) and parameters describing errors of

measurement. Each of these reformulations will be examined to
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determine whether estimates exist for the latent weighting coeffi-
cients. If estimates do exist then the estimation procedure

associated with the reformulation will be described.



CHAPTER 3

Section A: Introduction and Approach to the Problem

For an analysis which involves the use of random predictor
variables in a quantal response model to determine the relationship
of interest between the predictor variables and the probability of
occurrence of the categories of a qualitative criterion variable, the
relationships of interest are given by the latent weighting coeffi-
cients. The vector of latent weighting coefficients identified in
expression (2.19) from Chapter 2, provides the relationships between
error-free predictors and the criterion. However, in practice, the
measurements of the predictors contain errors of measurement. Thus
information will be available for observed predictors and not the
true predictors. Therefore, for a given situation the relationship
which can be found using available data and available gquantal re-
sponse techniques is that provided by the observed weighting coeffi-
cients, identified in expression (2.2) from Chapter 2, although the
relationship of interest is provided by the latent weighting coeffi-
cients (2.19).

The work to be presented in this chapter examines the effects
of errors of measurement in the random predictors of a quantal response
technique by examining the relationship between the observed weighting

coefficients (from (2.2)) and the latent weighting coefficients (from

47
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(2.19)) for the universe of situations. The precise information
needed to identify a "situation" will be provided in Section C below.
For situations where the observed weighting coefficients have nearly
identical values to the latent weighting coefficients the effects of
errors of measurement are considered to be small. In these situa-
tions the observed weighting coefficeints are acceptable estimators
of the latent weighting coefficients. For other situations, however,
the observed weighting coefficients may provide values which suf-
ficiently overestimate or underestimate the values of the latent
weighting coefficients so as to make the observed weighting coeffi-
cients poor estimators of the latent weighting coefficients.

The concern for this chapter then becomes how accurate an
estimate of the latent weighting coefficient is provided by the ob-
served weighting coefficient. To research this question, the ratio
of the observed weighting coefficient to the latent weighting co-
efficient for a single predictor will be formed. Using the notation
introduced in Chapter 2 for the single weighting coefficients this

* * *
ratio becomes where B = ( .) and = ( .) represent
Bq/Bq' q Ek’J By B3 q Teprese

q
the observed and latent weighting coefficients respectively for some
predictor 9 (g =1,2,...,p) from the observed and latent vectors of
weighting coefficients associated with category k of the criterion
(k =1,2,...,3). The use of this ratio requires that 8; # 0.
Situations where B; = 0 will be examined separately.

The value of this ratio Bq/B; will be examined for each pre-

dictor for generally applicable results as well as situation specific

results. One of three categories of results are possible for a given
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situation and a given predictor:

Bq/Bq =1 i.e. the observed weighting coefficient has the same
value as the latent weighting coefficient.

B /B; <1 i.e. the observed weighting coefficient has a value
less than the latent weighting coefficient (an
underestimate of the latent coefficient).

and Bq/B; > 1 i.e. the observed weighting coefficient has a value

greater than the latent weighting coefficient
(an overestimate of the latent coefficeint).

The results which follow will consider Bq/B; for each pre-
dictor ¢ (g =1,2,...,p) in each of the J - 1 vectors of weighting
coefficients which comprise the base set.

In all cases the prime interest will be to identify those
situations which correspond to each of the three categories of results
identified above, with the prime interest on those situations where
the observed weighting coefficient is equal to the latent weighting

*
coefficient, i.e. Bq/Bq = 1.

The degree of error of measurement for an observed predictor
is given by the reliability coefficient associated with that predictor.
The reliability coefficient is the ratio of the true score variance of
a predictor to the observed score variance, i.e. pii = ozi/oii.

Since the search for generally applicable effects of errors of
measurement for the most general case of the quantal response model
with J categories (J > 2) and p predictor (p > 1) has proven fruit-

less, and since the algebraic manipulation required for the above

approach has proven nearly intractable for more than two predictors
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(p > 2), the research to be presented in this chapter is based on two
special cases of the general quantal response models. The two special
cases of the general quantal response models to be examined are one
predictor models (i.e., p = 1) in Section B and two predictor models
(i.e., p = 2) in Section C. Most of the work on two predictor models
will be done for models with a dichotomous criterion (J = 2). The
two-predictor, polychotomous criterion model will be shown to repre-
sent a simple extension of the two-predictor, dichotomous criterion

model.
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Section B: One Predictor Models (p = 1)

The first case to be examined is that with a polychotomous
criterion (J > 2) and one predictor (p = 1). For this case the Observed

Random Predictor Quantal Response Model (2.2) becomes for some category

k (k=1,2,...,J)
(3.1)  Pr{y =k|x} =P = 1
° k J
- +
L+ = expl-(oy 4 Bk,jx)}
j=1
j#k
where (k) . 2 (3). 2
p. l(u ) = (uy)
= 1 X X
a, . = -Ln(—*) -
kej pk 2 02
X
and
_ (x) _ (3) 2
By = g Ty /oy
. (1) 2 . .
with My and OX' the mean and the variance, respectively, of the

distribution of the single observed predictor X for category i.
For this special case the general latent predictor model (2.19)

becomes for that same category k identified above:

* 1
(3.2) Pr{Y = k|T} = P, = 3 - -
1+ .Z exp{-(ak.j + Bk-jT)}
i=1
j#k
where
(k). 2 (i), 2
p, wy )7 = o 7)
o, . = -In(—d) - 3| T T
kej P 2 02
T
and
* (k) (i), , 2
By = Wp My /0



for

sinc

keJ

(3.3)

where
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with uél) and oi, the mean and the variance, respectively, for the
distribution of the single latent predictor T for category i.
Using the expression for Bk-j from (3.1) and the expression

*
for Bk-j from (3.2) for some j #k, j,k=1,2,...,J

(k) _ (J) 2
Bkoj ] by )/o ) O
* (x) _ (J) 2
Brey (M )/ %x
since u;k) = u;k) and uéj) = ;J) from (2.24a).

Thus for any category k and any weighting coefficients

Bk°3 and B
2
B o
k3 _ T _
(3.3) B* > = Pux (3 #%x, j.k=1,2,...,J)
kej 9%

where Pux = o;/oi is the reliability of the observed predictor X.
Therefore for all one predictor models the value of the ob-
served weighting coefficient will be an underestimate of the value of
the latent (true) weighting coefficient by a factor equal to the
reliability of the predictor. The more reliable the predictor the
closer the values of the observed weighting coefficient will be to the
corresponding latent weighting coefficient. However, the values of the
observed weighting coefficient will be identical to the values of the

corresponding latent weighting coefficient only for a perfectly

reliable predictor, i.e. pxx =1.
*
If B,y =0 for some j#k, jk=1,2,...,7, this implies
(k) 3) _ (k) (3) _ (k) (3) .
that Mo Mo = 0 but then Mo Mo = Uy My requires
that u;k) - u;J) = 0 and thus Bk'] = 0 and conversely.
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Therefore in any one predictor model if Bk~j = 0 for any

*
j #%, j,k=1,2,...,3 then Bk-j = 0 and the observed weighting
coefficient provides an exact estimate of the latent weighting co-

efficient.
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Section C: Two Predictor Models (p = 2)

The polychotomous criterion (J > 2) two-predictor (p = 2)
models for both observed and latent predictors have the same appear-
ance as the general case models given by (2.2) and (2.19). The
specialization to two predictors is obvious only when the precise form
of the vectors and matrices of the models are examined. The parallel
structure of the two models (2.2) and (2.19) allows the identifica-
tion of the two predictor case to proceed for each model simultaneously.
The identification of the vectors and matrices from the Observed
Random Predictor Quantal Response Model (2.2) will be presented below
on the left with the corresponding vectors and matrices from the Latent
Random Predictor Quantal Response Model (2.19) on the right.

The vectors of predictors become:

5 = and I = .

The vectors of predictor means for some category i

(i=1,2,...,J3) become:

— = — -
u(i) (i)
Xl Tl
(i) . (1) .
= d = .
Sl R
T
- - - -

The matrices of predictor variances and covariances, assumed

homogeneous across all categories become:
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2
g o o o
xl xlxz T1 T1T2
L = 2 and $ =
o o o} o
szl X2 T2T1 T2

And the vectors of weighting coefficeints for some category

k are:

B B

ke 3 (x5) k+5 (1)
k*j(X")

k-3 (T°)

where j #k, j,k=1,2,...,J.

The approach to this speical case (p 2) will proceed by
first examining the simplest two predictor model. This simplest model
involves two categories of the criterion (J = 2) and the two pre-
dictors. Results for more complex models involving more than two
categories of the criterion (J > 2) and two predictors will be shown

to be simple extensions of the results for the simplest two predictor

model.

Two Category, Two Predictor Models (J = 2, p = 2)

I. Simplify the notation

In order to simplify the appearance of the algebra below
several notational adjustments to the general models will be made.
The two observed predictors will be denoted as x and vy, i.e.
X' =[x yl. The two latent predictors will be denoted as £ and n,
i.e. T' =[¢g n] where x =¢£ + e, and y=n + ey, i.e. X=T+E.

The two categories of the criterion will be identified by the numerals
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0 and 1, rather than 1 and 2, so that the category identification is
consistent with the notation used for the dichotomous criterion model
in both McSweeney and Schmidt (1974) and Cornfield, Gordon and Smith
(1960). Also let pl and po the unconditional probabilities of
occurrence of category 1 and O respectively be p; = p and

p,=1-p =aq.
Since for the dichotomous case Pr{Y = 1|X} + Pr{y = 0|X} =1
and Pr{Y = 1|T} + Pr{Y = 0|T} = 1, it will be sufficient to work with
the expressions of the observed and latent predictor models associated
with Pr{Y = 1|X} and Pr{Y = 1|T} respectively. Associated with
each of these model expressions is a single weighting coefficient,
él-o and E;-o each with two components. Since the proofs in
Appendices A.l1 and A.2 indicated él-o = _Eo-l and EI.O = -g:_l,

that is for each model there is only one distinct weighting coeffi-
. * *
cient, let ﬁ = él°o and ﬁ = Eloo'
Therefore the dichotomous criterion (J = 2), two predictor

(p = 2) observed predictor model can be expressed as:

- 1
1 1+exp{-(a +8'X)}

(3.4) pr{y=1|x} =P

where X = [x]
y
ooy L (D) -1 Q) _ (o)' -1 (o)
LI Ln(p) 5£Ex z By By z By ]
and
B
| x| -1, (1) (o)
R i RN T
Y

and the latent predictor model can be expressed as:
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* 1
(3.5) Pr{y =1|T} =P =

* *® 0
1+ exp{-(a;, +8 D)}

o

where T = [E]
~ n

C gy 1o (D' -1 (1) _ (o) -1 (o)
T L B D T R R A I
and
B*
Bn

* *
II. Derive Expressions for Bx/Bg and B /B in terms of latent
and error parameters y n

In order to study the effects of errors of measurement on the
weighting coefficients the ratios Bx/B; and By/B: will be
examined. The formulas presented previously for single predictor
weighting coefficients will prove of limited usefulness for this

task, therefore the first necessity will be to derive expressions

*
€

expressions the desired ratios can be formed.

*
and conditions for existence for Bx' By' B and Bn. From these

Consider first

*
B8
* € |- 4~1, (1) _ (o)
B . = ¢ (ET Ky )
Bﬂ
2 -p
o o - 1 —E&n
o =| & &n anda ¢ 1= —1 2 g0
g 02 1—p2 cg &n
ng n €n -
_&n 1
0.0 2
o
En n
where p is the correlation between the latent predictors £ and

én
2

n. Note: ¢_l exist only if 1 - p&n # 0 which implies pEn #+ 1.
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a (1) (o)
£ e T ¥
Let a = -, @ _ (o) _
ST kp Ko (1) _ | (o)
n Mn n
Therefore
— - -~ =\
* 1 o}
«_| % -1 1 2 0.0 %
ﬁ = =9 ET = > OE g n
* 1 - p
B En _
" P L .
\_ogon 02 - - n_J
n
i& - an pEn
2 g,.ag
* 1l
L=Pen|l a a o
"1 %n_ % P
O2 OEOn
- N -J
and
a a o]
(3.6a) gt = —L | &£.__n &n
S R 02 o2 %%
En| €&
a a g, p
= 1 > ‘é'[} --n_¢t En:] for a, # O.
1 - Dg 02 onag £
n
Thus
* (1) (0)
b a u -
(3.6b) 3* -——2—|1-4 P where b* = 5.8 n
3 1 - pZ € &n £ 02 02
&n £ £
(1) (o)
a /o (u -y )/o
and d = n n = n n n

£~ al/o 1 _ (o)
&% Gy b )/,

In this formulation bg = (uél) - uéo))/oz

latent weighting coefficient for ¢ from a single predictor model

has the form of a

(see (3.2) for an example). In this formulation dg represents the
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ratio of category mean differences for the two latent predictors,
where each mean difference is in standard units (i.e. divided by the
standard deviation of the distribution of the latent predictors).
Therefore, a large positive dg value indicates a larger standard
unit mean difference between category 1 and category O for latent pre-
dictor n than for latent predictor ¢. Other values of dg would

carry appropriate corresponding interpretations in terms of ratios of

standard unit mean differences between categories.

And
* a a, p
(3.7a) P— _n__£& &n
"oa- 02 o? %%
En n
a a g p
= 1 - 2|1 - £ n ¢En for a_ # O.
1 - 92 02 cg an n
En n
*
bn
(3.7b) = —11-4d
Bn 1 - p'-’ n Pen
En
(1) (o)
a u - a,/o
n o2 2 n a /o
n on n n
a_/o . 1
@ =N .5 defined above for B _, d = — for d_ # O.
g ag/og £" n dE g

Consider now the expressions for Bx and By from the

observed predictor model.

g
x
_ =1 (1) (o)
g = g |° z (ux X )
Y
. R
1 Xy
2 -1 1 2 e3¢}
r=1]o and z = > o] Xy
X Xy 1-op X
2 Xy
yx %y Pxy L
cxo o2




where

Y.

Note:

Let

Thus

Pxy

Z_l

g

is the correlation between the observed predictors

2
exists only if 1 - 0 which implies
y Py # p Py

ra u(1) _
1w _ @ _|*
a Kx Rx (1 _
— ¥ uy
— ~—
Bx -1 1 L
=1 ~X = 2 02
B8 l-p x
_Y xy
-p
Xy
oo}
XYy
-
— -
a a p
X _ Y Xy
1 2 cxo
2 cx y
l-p
XY | 4 a_ o
Y _ X xy
02 oxoy
- Y -
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(o)

X

x and

£+ 1.

Before proceeding further with finding expressions for Bx

and By from the observed predictor model consider some of the im-

portant relationships between expressions involving observed pre-

dictor model parameters and the corresponding expressions involving

latent predictor model parameters.

(3.8)

(3.9a)

(3.9b)

Yy

(1)
K

X

/o

g

wmeoN

(o)
- K

®onN

2 2
(¢
n/cy

X

_ @ _ (o
Ky

therefore oi

2
therefore oy =

(o

2
r]/o

Zp

therefore ax

= a and

g



g g g
Xy En En
(3.10) p = = = = |
= . Jz PePyy = Pen Payy
g g g ag 0,0
J XYy & . _n_ En
VPxx  Pyy
i.e. p = Yo p .

Xy p&n XX yy
*

g

sions of interest for the research which is to follow, expressions

*
Since the ratios Bx/B and By/Bn are the ultimate expres-
(3.8) - (3.10) above will be used to express Bx and By in terms
of parameters from the latent predictor model.
The expression for Bx using parameters from the observed

predictor model is:

a a o
g = 1 X _ Y Xy
b4 1 - 2 02 g0
Py | x Xy
(3.11a)
1 a a ox o
B = . X 1 - X X Xy for a #0 .
X 1 - p2 o2 o ax X
Xy X y
And using expressions (3.8) - (3.10) Bx becomes:
a L] 0’ V L[] ’/
8 1 . 3 - an E/ P xx pEn pxxgzz
X 2 2
1l - p ag g /Y * a
®en xxpyy E/pxx n/ pyy 11
p
£ "xx
(3.11b) = 1 -4
"x 1. 2 [ e;"sn"yy]
En xx'yy
(1
ag Ug ) - UE(O)
where b = ;3‘- 02
13 13



62

(1) (o)
an/on _ (un uﬂ )/cﬂ

(1) (o) :
g "V )%

and dE = ag/o

£ (v
*
Therefore using the ratio of (3.1l1lb) and (3.6b), Bx/BE will

*
exist if BE # 0, and

* *
* bprx bE
Bx/Be = 1 - o2 1= dPenPyy /1 ~ 2 |17 %Py
PenPxxPyy Pen

(3.12)
1 -02)0 (1-ap )
g g = £n’Pxx £PenPyy
x/ 2 1 - p2 p..p.. ) -4d,p,)
En xx"yy £ &En

*
This expression for Bx/Bg (3.12) will exist if:

1.) n £+1 (Needed for ¢-1 to exist.)

Pe

Note: »p = Yp _p therefore |p

= there-
Xy pin XX Yy

<
xyl < logy
. -1 : .
if + 1 th +1 a I ill exist.
®en 7+ en oy £+ an w
2. a 0
) a #

. _ () _ (o) (1) (o)
That is, ag = ug ug #0= ug # u6 .

needed only to guarantee the existence of the specific

This is

*
formulation for Bx/Bg being used. A variation of the

*
expression Bx/B for a,_ = 0 will be examined below.

£ €

3.) 1 #0 = #£1

-d d
£%n £%en
*
This is needed to guarantee that f8_ # 0. The second

13

* *
requirement, aE # 0, guarantees that b_ # 0O thus

g

* %*
B_# 0. When B 0, Bx will be examined briefly

13 £

below.
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Expressions for By can also be produced using arguments
similar to those for Bx above:
The expression for By using parameters from the observed

predictor model is:

1 a a o p
(3.13a) B = ———+ L .|1 - 2XXX for a_ # 0.
y 2 2 g a Yy
l-p a
Xy b4
And using expressions (3.8) - (3.10) By becomes:
*
(3.13b) s=”pyy 1-dop, o
) Yy - p2 o o n En xx
En xXx'yy
(1) (1)
* a u -y a,_/o
where boo=—D-0 N 9 g =—F ith a4 =1
n 2 2 n a /o n d
g g n 13
n n
for d, # 0.
€
*
Therefore, using the ratio of (3.13b) and (3.7b), BY/Bn
*
will exist if Bn # 0, and
., @- pz o (L=do. o )
(3.14) B /8 = .
1l - l1-4d
( pgnoxxpyy) ( npgn)
*
This expression for By/Bn (3.14) will exist if:
1.) Pen F+1 (Needed for o1 to exist. Also, see Note
*
with condition 1 for existence of Bx/BE above.)
2.) a #0
n

X (1) (o) (1)
That , = - 0
at is an un un # = un

# u(o). This is
n
needed only to guarantee the existence of the specific

*
formulation for By/Bn being used. A variation of the

*
expression of By/Bn will be examined for an = 0.
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3.) 1-4d 0=4d 1
npn# npﬁn#

13

This along with the second requirement above is needed
*

to guarantee that Bn # 0.

Note since 02 > 0 then o > 0, and 02 > 0 then o > 0. There-
3 xx n Yy

fore the effective ranges for and are:
g pxx' pyy pEn

-1 <p < +1 (with one possible exception for
one of the ratios depending upon

the value of dE or dn).

* *
Expressions (3.12) for Bx/BE and (3.14) for BY/Bn will be

the primary expressions of interest for the work below. However, a
close examination of expressions (3.12) and (3.14) shows an identical
structure for each expression. Because of this identical structure,

*
the expression for By/Bn (3.14) can be found from the expression for

*

BX/BE (3.12) by merely interchanging the x's and y's as well as
*
£

* *
result derived for Bx/Bg will have a corresponding result for By/Bn

the £'s and n's 1in the notation for Bx/B Therefore any algebraic

which can be simply stated, rather than derived, using this property
of interchangeability of x and y (and £ and n as well). It

is important to note that the values of »p and dg which

en’ Pxx’ Pyy
* *
produce a given value of Bx/Bg say R (i.e., Bx/Bg = R for the

given o and d ) will not in general also produce a

en’ Pxx’ Pyy

*
value of R for By/Bn. That is, in general, for a given situation

) and d_) the

(i.e., a specific set of values for
’ pe Dgn' xX vy £
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values of Bx/B; and By/B: will not be identical. However, by the
use of the property of interchangeability of x and y it is
possible to identify a different situation (i.e., different values for
pgn, Prx’ pyy and dg) where By/B: = R. If we let pEn' P rexc’ pyy
and dg represent the situation where Bx/B; = R and pén, p;x’ p;y
and dé represent the generally different situation where By/B: = R
then Appendix B.l demonstrates that the two situations have the follow-

ing relationship:

(3.15a) Pen = ey
(3.15b) p;x = pyy
(3.15c) p;y = Px
(3.154) d% = dE .

*
Therefore, it will be necessary to examine only Bx/BE in

detail across the universe of situations (i.e., values of pEn' pxx'

*
pyy and dg)' Corresponding results for By/Bn can be obtained
through the use of expressions (3.15a) - (3.15d). The prime in the
notation will rarely be used unless the interchanging of x's and

y's becomes ambiguous without its use.

*
Since only values of Bx/B need be examined in detail and

g

since 4, = l/dn let d =4, = l/dn be used where no ambigquity will

€ €
result. Appendix B.l also demonstrates that only values of d > 0
*
need be considered in the examination of Bx/BE' The expression for

*
Bx/sg with d < 0 is the reflection through the line Pen = 0 of

*
the expression for Bx/Bg with |d| > 0. That is, for d < 0, there
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will exist values 4" (d" > 0) and p! which produce the same value

En

*
of Bx/BE as d and pEn' These values d" and pgn have the

following relationship to 4 and pgn. (See Appendix B.1l for details.)

(3.16a) a" = -d (since 4 < 0, 4" > 0), and

3.16 "= - .
(3.16b) Pen = "Pen

*
£ for 4 > 0 will
*

be examined since results for other situations for Bx/s and all

g

*
situations for By/Bn can then be derived using expressions (3.15a) -

Thus in the work which follows only Bx/B

(3.15d) or (3.16a) and (3.16b). Results for special case situations,

i.e., d =0 (i.e., d=4d undefined), d =4_ =0 =0
’ n ’ £ ’ £ ’ pgn ’

x vy x - 1 and pyy < 1, and P x <1 and pyy =1, are

presented in Appendix B.2.

*
III. Presentation of the Approach to the Examination of BX/BE

As indicated in section A of this chapter the interest for
this area of the research is to determine for what situations Bx is

*
an overestimate, an exact estimate or an underestimate of B8_. To

g

*
pursue this question comparison of the ratio Bx/Bg to 1 is to be
examined. There is an algebraic expression which will aid in this

examination. Let

(3.17) Q= 92

1 - - a
snpxx( o) p

vy Eﬂ(l - pxxpyy) + (1 - pxx)

for O < <1, 0 < <1l, -1 < < +1 and an d such that
Pyy T 7 T T Pax = Pen Y

dpEn # 1.

To see how Q can aid in the search for relationships between

*
Bx/Bg and one consider:



’ 2
B B (L -p, )p_ (1 =-4dp,_p_)
B Xole X tn Psex iy’ g
1 - )(1 -4 )
BE BE PenPxdPyy en
(1-02)p..(1-4d ) = (- p2 (1 - dp. )
@ Pen’Pxx PenPyy PenPxxPyy Pen
- 02 -dp, p + d 3
© Pax T Penfxx T Penfrlyy T Penfrolyy
2 3
=1 - -d + 4
Penfxfyy T Pen T PenPrPyy
o 0=p2 - - 4 +d +1 -
pEnpxx pEnpxxpyy Pen pEnpxxpyy P xx
© 0=p2p (L-p ) =dp, (1- )+ (1 -p )
Penfxx Pyy Pen PxxPyy Pxx’ *
Therefore
BX
< =1le0=9
Be
8 B, (L -op2)p. . (1-4dp, o )
b) -—i‘-<1°—f—= gn 2 nyy .,
1 - 1-4d
Bg Bg ( pgnpxxoyy)( pEn)
. 2
1) if 1 -4 > 0e g <1l and since 0 < 1 - <1
p&n pEn p&npxxpyy -
then
B
X 2
— < 1e (1 - 1-4d )
B* ogn)oxx( pgnoyy
(3
< (1 -2 ) (1 - dp, )
Pen’xxPyy Pen’
Using algebra from a) above with appropriate attention for
the inequality yields:
B
—1"<1¢0<Q
Be
2)
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if 1 -4 < 0 q > 1 then
p&n Pen
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> ™
A B 21

<le (1L-p2 )

gn)pxx(l - dp

enPyy

> (1 - )(1 - dp, ).

2
p&npxxpyy En

Using algebra from a) above with appropriate attention for

the inequality yields:

B
_%.< 1©0>0.
B€ 5
B B (L -p, )p (L -dp_p )
—f)l@-%: gn xx €nﬂ>1
1 - 1-4d
BE B€ ( pgnpxxpyy)( pgn)
l) If 1 - dpEn > 0® dpEn < 1 and since
0<1 - 2 <1
pgnpxxpyy—
B
X 2
e* >le (1 pgn)oxx(l dpgnoyy)
13
2
1 - 1 -4 .
> p&npxxpyy)( p&n)

Using algebra from a) above with appropriate attention

for the inequality yields:

B

—§-> 1« 0> 0Q.

B
€

2) if 1 - dp n < 0e dp > 1

13 En
B
X 2
P B e ¢ 4
13
2
1 - 1 -4 .
< | ognoxxoyy)( pEn)

Using algebra from a) above with appropriate attention

for inequality yields:
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B
x
< >1«0<Q.
Be
Therefore, combining results from a), b) and c) above pro-

duces:

If 4 > 1 then
pEn

* . . *
(3.18a) Q< 0e Bx/Bg <1l i.e., Bx underestimates BE'

* *
(3.18b) Q=0e Bx/sg =1 i.e., Bx exactly estimates BE'

* *
(3.18c) Q>0 Bx/Bg >1 i.e., Bx overestimates 85 .

If 4 < 1 then
pEn

* *
(3.19a) Q< 0e BX/BE >1 i.e., Bx overestimates BE'

*
i.e., Bx exactly estimates B

(3.19b) Q £’

1
=

*
0 e Bx/sg

* %*
(3.19c¢) Q>0e BX/BE <1 1i.e., Bx underestimates BE.

If dp&n = 1, then Bx/B; is undefined since Bz = 0.

Note: It is also possible to consider dpEn as the ratio of
two slopes. The numerator of the ratio represents the slope of the
pooled within categories regression line of £ on n. The denominator
of the ratio represents the slope of the line joining the midpoints
of the joint distributions of & and n between the two categories.
For more information about this interpretation see Appendix B.9.

Thus the examination for relationships between Bx/sg and one
can be pursued by examining the relationship between Q and zero. The

questions now are, for what values of o pyy and 4 will @

En ’ pxxr

be less than zero, equal to zero, and greater than zero. The approach
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to answering these questions will be to consider three of the four

variables (p and d) as fixed, thus Q can be considered

En' pxxr pYY
solely as a function of the fourth non-fixed variable for the given
combination of the three fixed variables.

Although any one of the four variables could be selected as

the non-fixed variable, the most interesting and useful information

has come from fixing Px’ pyy and 4 and examining Q (and hence

*
Bx/BE as well) as pEﬂ varies from -1 to +1 for various combinations
of P rex’ pyy and d. Following this approach Q 1is clearly a

quadratic function in o

En”

*
IV. The Search for Categories of Distribution of Bx/B5 as a Function
of Pen

Consider expression (3.17) for Q as a function of o for

En

fixed values of p , p and d;
XX Yy
(3.20) Q = 2 (1 - ) - d (1 ) + (1 - )
. PEnPxx °yy Pen PxxPyy Pxx’

2
Let = a
Q xpgn

bx = -d(1 - pxxpyy) and c, = (1 - pxx)'

+ = -
+ bxpgn c, where a_ pxx(l pyy)'

Expression (3.20) clearly illustrates that Q 1is a quadratic

function of p_ . As a quadratic function of o n’ Q will possess

En £
two roots call them p;;x) and pEQX) which are defined as:
2 2
- (x) a(1 - oxxpyy) - Jd (1 - pxxpyy) - 4pxx(l - pyy)(l - pxx)
(3.21a) p, * = o,
Dxx Pyy
A - oo ) +\a2(L -p o )2 -4p (L=p )(L=-op )
(3.21b) oF ¥ - XX yy xxyy XX vy xx
En 2pxx(l - pyy)
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- (x) +(x) . . . -(x) +(x)
En and pEn will exist with pEn 5-°gn

49 (1L -p )1 -p_)
if |4 3_\J XX ¥y XX

2
(L -p_.p.)
xx Yy - (x) +(x)

. . X x
Since the existence of the roots p.‘;n and op as real numbers

En

is important, the quantity on the right of the existence expression

Both roots, p

. (See Appendix B.4 for details.)

will be used frequently. As an abbreviation in notation, let

4Dxx(l - EXY)(I - pxx)
X 2 :
1 - pxxpyy)

(3.22)

Here the square root sign indicates that the quantity involved is a

square root and the x indicates that the expression is related to

B8,/8 -

- + .
Since pEQX) and pgéx) represent possible values for the
correlation between the two true predictors, pEn where
. =-(x) +(x) . .
-1 < < +1, the existence of or in the interval
Pen ! en Pen

from -1 to +1 is as important as their existence as real numbers.

-(x)

Therefore, from Appendix B.4: p will exist with

En
-(x
Dgé ) e (-1, +1), for O < pyY <1,
1 .
(3.23a) for 0 <p < — if l1<d
XX — 2 -p
YY

(3.23b) for —L—<p <1 if < a

2 - pyy XX — X —

will

. +(x)
- < < -
or if 1 d l , and pgn

exist with pzsx) (=1, +1) for O < p <1,

YY

(3.24a) for 0 < p < —————  if d < -1
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(3.24b) for

or if d < - J::.

*
3 =1, 0 <1l £ 11 d ith
Note 1: When pyy , < Bx/Bg < or a pgn' Px’ wi

equality only when Pox = 1 too. (See Appendix B.2 for

proof.)

Note 2: When op =1,
XX

-(x) +(x)
if 0<d< 1l then =0, =d
- °en g3
. -(x) +(x
if 4>1 then pEﬂ = 0, pgé ) £ (-1, +1).
. . . . _ 1
Note 3: lx <1 with equality if and only if S 5—:—;;;-.

(See Appendix B.3 for proof.)
*
Prior to identifying general categories of Bx/B it will be

g

worthwhile to examine the relationship of Q to O for various com-
binations of situations since as noted above in subsection III the

relationship of Q to O provides some direct information about the

*

relationship between Bx/BE and 1. Much of the derivation for the

results which follow has been developed in Appendix B.4.

£ |a| > J“ then
et X

(3.25a) Q <0 for max(-1, p-(X)) <p *lx)

< min(+1l, p

)

En En gn
[By B.4.3al
- (x) . -(x)
3.25b = = -
( ) Q=0 for pEn pgn provided that pEn e (-1,+1)
[By B.4.3.b]
+(x) . +(x)
or for pEn = pEﬂ provided that pEn (-1,+1),

[By B.4.3b]
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-(x)

(3.25c) 0>0 for =1 < p“;n < max(-1, pEn ) [By B.4.3c]
or for min(+1, p+(X)) <p < +1. [By B.4.3c]
€n gn )

(3.25d) 1f |4| < Ix then © > 0 for all p, € (-1,+1).

13

[By B.4.4]

Now combine results (3.23a-b) or (3.24a-b), (3.25a-d) and
(3.18a-c) or (3.19a-c) to derive general categories of distributions

*
of Bx/Bg versus p Examination of these expressions will pro-

En”

duce three general categories of distributions.

For exploration for the first general category, let 4 > 1

-(x)
En
+(x)
gn

and 0 < p < 1. Therefore p e (-1, +1) by (3.23a) but (3.24a)

En

and (3.24b) indicate that »p £ (-1, +1). Using results (3.25a-d)

and considering all possible values of pEn' pEn € (-1, +1) produces:
(3.26a) for -1<op < p-(X) then Q@ >0
gn &n
(3.26b) for ., = p.¥ then Q =0
En En
(3.26¢) and for p-(x) <p <1 then Q < O.
én gn

-(x)

(3.27) Note: For 4 > 1, pEn

< % . (Ssee Appendix B.5 for proof.)

Therefore since d > 1 (hence %-< 1) combine the results

from above and from (3.18a-c) and (3.19a-c) to produce information
*
about B /B for values of -1, +1).
x E Dgne( ’

The following information will be presented for values of

which cover the whole interval from minus one to plus one.

Pen
a) Consider 4 > 1 and Pen such that 1/4 < Pen < +1.

Therefore dpEn > 1.
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-(x)

pEn < 1/d. Hence p-(X) <1/d < p < +1.

En En

-(x)
&n

By (3.27)

By (3.26c) for values of o > p

gn » Q< 0.

*
By (3.18a) when dp >1 and Q < O, Bx/Bg < 1.

gn
*
(3.28a) Therefore, when d > 1 and 1/4 < pEn < +1 then Bx/BE < 1.

b) Consider 4 > 1 and pgn such that p = 1/d. Therefore

En

d = 1. When d =1 = 0.
Pen en ! BE

*
(3.28b) Therefore, when d > 1 and p =1/4, Bx/BE is not defined.

En

*
In this case |Bx| is an overestimate of BE unless Bx is also zero.
c) Consider d > 1 and p&n such that -1 < pgn < 1/d (where

1/d < 1). Therefore dpEn < 1.
By (3.27) p;;x) < 1/d. Therefore there are three subintervals of
values for pgn here which must be examined.

I) For QE;X) <Py < 1/d4, then Q < 0 by (3.26c). By

*
(3.19a) when dp n <1l and Q < O, Bx/sE < 1, that is

13

[Bx| is an overestimate of IB*

|
-(x)' 1/4d).

En
(3.28¢c) Therefore, when d > 1 and p;:X) < p&n < 1/d, then

for correlations in

the interval (p

*
Bx/Bg > 1.
=-(x)
En En
*
(3.19b), Bx/BE = 1, that is when »p

II) For o , then Q = 0 by (3.26b). Thus by

-(x) _ *
’ BX—B .

gn g
(where D;;X) < 1/d)

=9
gn P

(3.284) Therefore, when d > 1 and o = D-(X)
En gn

then Bx/ez = 1.

III) For -1 < Pen < p;;X), then Q@ > 0 by (3.26a). Thus

by (3.19¢) ex/e; < 1.

-(x)

(3.28c) Therefore, when d > 1 and -1 < <
! Pen < Pen

(where
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-(x)

*
pgn < 1/4) then Bx/BE < 1.

*
To determine the relationship between Bx/BE and zero for

the range of values for o n’ apply results (B.6.4a-d) from Appendix

g
B.6 for 4 > 1. Since O < pyy <1, then 1/4 < l/dpyy. Therefore,

the Appendix B.6 results produce:

(3.29a) for -1 < pgn < 1/d then Bx/B; >0 [from (B.6.4a)],
%*

(3.29b) for pgn = 1/d then Bx/B£ is undefined [from (B.6.4c)],
(3.29¢) for 1/4 < pgn < min(1, l/dpyy) then Bx/B; <0

[from (B.6.4b)],

*

(3.294) for p&n = l/dpyy then Bx/sg =0 [from (B.6.44)],
and
(3.29e) for min(1l, l/dpyy) < pEn < 1 then Bx/Bz >0

[from (B.6.4a)].

Combining results (3.28a-e) with corresponding results from

(3.29a-e) yields general category one (G.C.I.) of distributions for

Bx/BE.
*
General category One (G.C.I) of distributions for Bx/s as

€
a function of p&n has the following form as values of p&n vary
across the interval (-1, +1).
For 4 > 1, any P x’ pyy #1 and
(3.30a) for -1 <p, < p-(X), 0<8 /B* <1 [ from (3.29a)
En gn X g

and (3.28e)]

(3.308)  for o = N [ from (3.28d)]

(3.30¢) for o_ ¥ « Pen <

B /B* > 1 [ from (3.28c)]
En 13
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*
(3.304) for pgn =1/4, BX/BE is undefined since B_= 0

[from (3.28b)
or (3.29b)]

(3.30e) and for 1/4 < p&n <1, Bx/Bz <1 [from (3.28a)].

Result (3.30e) can be further specialized as follows:

*
(3.30f) for 1l/d < p n < min(+1, l/dpyy), Bx/Bg < 0 [from (3.29c)],

3

(3.309g) for »p = l/dpyy, Bx/B; =0 [from (3.294)],

gn

*
3.30h for min(+1, 1/4 < < +1, 0 < <1
( ) o] in( / oyy) 0 ’ Bx/BE

gn
[from (3.29%e)

and (3.28a)].
%*
Note that G.C.I for Bx/BE could actually be considered as
*
having two subcategories depending on the behavior of Bx/Bg when
< < 1.
1/4 pEn 1

a) If 4 >1 is also sufficiently large enough so that

d > 1 (1/4 < 1) then (3.30f) becomes
pyy / pyy

*
(3.303) for 1/4 < Pen < l/dpyy, Bx/BE <o,
(3.30g) becomes

*
3.30k £ =1/dp _, =0,
( ) or Pen / Py BX/BE

b4

and (3.30h) becomes

*
3.301 for 1/d4 < <1l, 0 < < 1.
( ) o / Oyy ’ BX/BE

Pen
b) However, if 4 > 1 but dpyy < 1 then l/dpyy > 1 and (3.30f)

becomes
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*
(3.30m) for 1/d < p < +1, Bx/BE < 0,

En
and (3.30g) and (3.30h) are not applicable.

*

13
*

one, and since when d > 1 for 1/4 < p <1, 8./B, < 1, there is
gn €

Since the prime interest in examining Bx/B is in relationship to
only academic interest in differentiating between the two sub-
categories of G.C.I identified above. Therefore, G.C. I will be
considered as a single category of distributions with regard to the
"
relationship of Bx/Bg to one.
*
G.C. I for Bx/Bg as a function of p covers all values

En

of o v #1 and d > 1. Therefore other general categories will

xx’ Dy

involve values of d where O <d<1.

For exploration of the second general category, let

1
J;' £d<1,0<p <1 and 5———<p  <1. Therefore
. '
pEQX) € (-1, +1) by (3.23b) and pEéX) € (-1, +1) by (3.24b).
Using results (3.25a-c) and considering all possible values of pEn'
-1, + :
pgn € (-1, +1) produces
(3.31a) for -1 < pEﬂ < QEQX) then Q > 0 [ from (3.25¢)1],
(3.31b) for p-(X) <p < p+(X) then Q < 0 [from (3.25a)],
gn En gn
+(x)
(3.31c) for pEn < pEn <1 then Q > O [from (3.25c)],
-(x) +(x)
3.314 d for = = th =0
( ) and *o OEH pEn or pEn p&n en 9

[from (3.25b)1.

Note, since Ix <d< 1l and p\En < +1 then dp Therefore

. £En © 1.
by (B.6.4a), Bx/Bg > 0.
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Thus combining the results (3.3la-d) with (3.19a-c) to pro-
*
duce information about Bx/B for values of o € (-1, +1), yields

g En

*
general category two (G.C. II) of distributions for Bx/B .

g

Wh <d«<1 d 0« <1
en Ix < an pyy

-(x)

*
(3.32a) for -1 < pEn < pgn then 0 < Bx/BE <1 [from (B.6.4a),
(3.31a) and
(3.19¢)1,
- (x) +(x) *
(3.32b) for pEn < pgn < pgn then Bx/BE > 1 [from (3.31b)
and (3.19a)1].
(3.32c) for DE;X) < pgn < +1 then 0 < Bx/sz < 1
[from (B.6.4a),
(3.31c) and
(3.19¢) 1,
_ =(x) _ +(x) *_
(3.324) and for pgn = DEn or p€n = pEn then Bx/BE 1

[ from (3.31d)
and (3.19b)].

For exploration of the third general category, let 0 < 4 <

: - +
0 < pyy < 1 and consider any pxx' Then neither DEQX) nor pgéx)

will exist [see (B.4.2) from Appendix B.4]. By result (3.254d)

> - i < <
Q >0 for all Pen € (-1, +1). Since 4 I 5 and I x 31 [by

(B.3.2) from Appendix B.3] then 4 < 1 and dpgn < 1 also.

Therefore, since dpEn <1 and Q > 0 for pgn (-1, +1)

applying (B.6.4a) and (3.19c) produces the following result:
(3.33a) When 0 < 4 < lx , and O < pyy < 1, for any P x and any

P e (-1, +1), then O < Bx/Bg < 1.

En
This is general category three (G.C. III) of distributions of

Bx/Bg .
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One other set of distributions also fall into G.C. III. Let

J:: <d<1, 0« P x <1l/2 - pyy, and 0 < pyy < 1. Then

- (x) +(x)
-1, +1 d -1, +1).
pgn £ (-1, ) an Pen £ (-1, )
- (x) +(x)
If > +1 or < -1, then > 0 for
en Pen ¢
pgn e (-1, +1).
" $ia
- +
If p£;X) < -1 and pEéX) > +1 then Q < 0 for
-1, +1).
pgn e ( ’ )
. .. -(x)
It will be sufficient to show that for d > Ix , pgn >0
and thus Q > 0 for pEn e (-1, +1).
Let 4 > Ix therefore pgéx) will exist but may not exist

in the interval (-1, +1). Therefore the question is, for what values
-(x)

of Pyx’ Pyy #1 is pgn > 0?
aq- ) - Ja2a- )2 - 4p_ (1-p_ ) (1-p_)
) o, Py PrxPyy Pae " Pyy” " Pxx”
= 2 1- ) -
En Pexl = Pyy

since 2pxx(l - pyy) > 0 for Pyy #1,
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- (x) _ _\j 2, - 2 _ - -
p£n >0e d(l -p_p ) a1 -p p ) 49 (1 -p ) pxx) >0
ad(l-pp)>\ld2(l-pp)2—4p (L -p ) -=-p_)
xx"yy' = XX yy xx vy XX
2 2 2 2
®d (l=-p p ) >d(l- o:“oyy) -4 (1 -p )1 =-p )

i - >0 > d 1.
since d(1 pxxpyy) for d > J:: an Py #

-(x) Oe 4pxx(l -9

> 0.
pETl z -z

yy)(1 - pxx)

But 0 < p <1l and 0 < p < 1 by definition,
XX — vy

(3.34) Therefore, pEQX) > 0 for all values of P ex and op

(pyy#l) when 4 > {;
- (x)

Yy

i >0 h a> | th >0 £
Since pgn > when > x ! en Q or
- . <d<1, 4 < 1. i
pgn e (-1, +1) For Ix < , pgn 1 Therefore, since
dpEn <1l and Q > 0 for pEn e (-1, +1), applying (B.6.4a) and (3.19c)

produces the following result:

_z_p

. 1
(3.33b) When |x <&<1, 0cx< pyy <1, and O < P ex < —————;;,

*
for any p,_ € (-1, +1), then O < Bx/BE < 1.

En

*
The three general categories of distributions of Bx/BE as

a function of pEn include all values of the parameters 4, P x’ and

p except d =1 and op = 1. G.C. I includes values of 4 > 1,

YY YY

all values of o and all values of o except op =1. G.C. II
XX Yy YY

includes values of d such that |x <d < 1, values of P ex such

that 1/2 - p < < 1 and all values of except = 1.
YY Pxx = pYY P pYY

G.C. III includes values of d such that J;_ < d <1, values of

P x such that 0 < P x <1/2 - I and all values of pyy except

pyy = 1. G.C. III also includes all values of d such that
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0 <4< ,lx for all values of P x and all values of pyy # 1.

*
When pyy =1, BX/BE was examined in Appendix B.2. When

*
=1, th <1l £ 11 £ -1, +1 e
Py 1, then O < Bx/Bg or all values o pEn e (-1, ) an
0 < Prx < 1 [by (B.2.8) from Appendix B.2]. When Pyy =0 = 1,
*
Bx/Bg was examined in Appendix B.2. When pyy = Pex = 1, then
x

Bx/Bg =1 for all values of p&n e (-1, +1) [by Appendix B.2,
Section DJ].

The situation when d = 1 will be shown to represent a slight
variation of G.C. III for O < P x <1l/2 - pyy with pyy # 1 and to

represent a middle ground between G.C. I and G.C. II for

1/2 - pyy < P x < 1 with pyy # 1. To examine the situation where
-(x)

d =1 first determine the conditions for existence of pgn and
p+(x)
gn
Let d =1, then p—(x) will exist and p-(x) e (-1, +1),
gn gn
£ 0 < <1 d £ 1l/2 - < <1l Db 3.23b). F
or pyy an or 1/ pyy Prx < y ( ) or
-(x) .
0 < pxx < 1/2 pyy' pEn ¢ (-1, +1) by (3.23a). Referring to
+(x)
3.24 d (3.24b -1, +1 £ .
( a) and ( ), p&n ¢ (-1, ) or any P ex’ pyy (pyy # 1)

Consider d4d =1, 0 < P ox <1l/2 - pyy and pyy # 1. Since

-(x)

d =1, then d > Ix (by (B.3.2) in Appendix B.3) and pEn

+ -
and pEQX) exist but pgéx’ ¢ (-1, +1) and pZ;X) ¢ (-1, +1). The
same argumet presented for J:: <d <1l when O < P ex <1/2 - pyy'

pyy # 1 in general category three is completely applicable here hence
*
(3.35a) 0 < BX/BE < 1.

The variation of G.C. III which results when d = 1 is not obvious

yet. It will be identified below.
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Consider 4 =1, 1/2 - p <p <1, pyy # 1. Since d =1,

YY XX =
-(x) +(x) .
d
then > J::' and both pEn and pEn exist but
p;;X)e (-1, +1) by (3.23b) while pz;x) £ (-1, +1) by (3.24b).
. = (x) - +(x) - = (x) +(x)

Since pEﬂ e (-1, +1), pgn £ (-1, +1) and pEn 5-p£n then
+(x)

pEn > +l. Using results from (3.25a-c) and considering values of

°£n e (-1, +1) vyields:

_ - (x)
(3.36a) for -1 < Pen < Pen then Q>0 [from (3.25c)],
(3.36b) for pEn = p;éx) then Q=0 [from (3.25b)1],
and
(3.36c)  for pEQX) < gy <+l then Q<0 [ from (3.25a)].

When d = 1, then dpEn <1 for p&n € (-1, +1). Therefore

applying results (B.6.4a) and (3.19%a-c) to (3.36a-c) yields

(3.35b) for -1 < pEn < DEJX) then 0 < BX/B; <1 [from (B.6.4a)
and (3.19¢c)]

_ .~ (x) *_
(3.35c) for pgn pEn then BX/BE 1 [from (3.19b)1],
-(x) *
(3.35d) for p&n < pEn <1 then Bx/BE > 1 [ from (3.19a)].

Some similarities to both G.C. I and G.C. II are obvious.
More direct comparisons and contrasts require additional work to be
presented below.

To continue to add information about the three general cate-
gories identified above as well as the situation when d = 1. The
work which follows will examine the limiting case of Bx/B; as a

function of pEn as psn is allowed to approach various values of

interest.



83

For all three general categories as well as the situation
*
where d =1, the limiting case of Bx/Bg will be considered for

values of »p in an arbitrarily small neighborhood of negative one

En

(-1). Since, by definition, p > -1 the only values of pgn which

En

can be included in the arbitrarily small neighborhood of negative one
are values which are greater than negative one. The notation which

*
will be used here is: the value of Bx/BE will be examined as

+ *
pEn -+ -1 . The notation indicates that the value .cf Bx/Bg is to be

examined for values of op which are greater than negative one

En

(indicated by the + as a superscript) but which are arbitrarily close

to negative one (indicated by the =).
* -
will also be examined as p > +1 for

£ En
each subcategory of G.C. I, for G.C. II and G.C. III combined and for

The value of Bx/B

£n » +1°  indicates that the values of pEﬂ which are to

be considered are those values which are less than +1 (indicated by

d=1. [p

the - as a superscript) but which are arbitrarily close to +1].
*
For case G.C. I only, the values of Bx/BE will be examined

- +
+ 1/d4 and as p + 1/d . (Recall: for G.C. I, 4> 1,

as Pen gn
*
thus 1/d < 1, and i t defined £ = 1/d4 i.e.
u / BX/BE is no efine or pEn / (i
*
dp = 1) since B_= 0).
&n 13

The approach to the work on limits will be to determine the
*
limits of Bx and Bg separately first and then consider the limit
*
of Bx/BE based on the work for the separate limits.

Therefore consider

*
- DePyx(l = dPpnPyy)

B

[from (3.11lb)
¥ o1- 02 PP
En

XX Yy with 4 = dg]'
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and *
bg(l - dpg )
2’ - " [£rom (3.6b)
£ 1= with d=a].
. 3 * 1' *
For general notation let Bxlim = 112 Bx and Bglim = , 12 qu.
Pen 1 En
*
b.p (1 +dp )
+
As P 7 -1, By > By = i fx L,
n lim pxxpyy
*
Since 4 > 0, B >0 if b_>0
- X . £
lim
*
] <0 if b_< O.
X g
lim
+ 2 +
As > -1 1 -4 +1+d4d>0 and 1 - -0 .
®en ! ®en °en
* *
Therefore BE + 4o if bg >0
* *
+> - if b. < 0.
£ £
Therefore for any d > O, pxx and pyy (i.e. any of the
three general categories as well as 4 = 1), as
(3.37) >-1*, 8 /8 » 0"
’ en "X )
Consider the subcategory of G.C. I with d > l/pyy i.e.

*
dpyy > 1. (See expressions (3.30j-1) for the behavior of Bx/B€ when
1 < < < .

/d Pen 1 and d l/pyy)

*
bp (1 -dp )
Yy

- £ xx
> + > =
As Dgn 1, Bx BX . 1-op 0

lim XX YY
Si d >1e1-~-4d < 0, then
inece pYY pYY !
8 0 if b <0
> 1
X
lim &
0 *
< i > .
Bx if b€ 0

lim
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As pgn > +1, 1 - dpEn +1-d<0 (since 4 > l/pyy > 1)
and 1 - pzn -+ 0+. Therefore
* *
Bg > 4o if bE <0
* *
£ + -0 if bE >0 .

Therefore, for G.C. I when dpyy > 1

(3.38) as o

- * +
gn'*""ll Bx/BE-*O .

Consider the subcategory of G.C. I with 1 < d < l/pyy i.e.
*
£

dp < 1. (See expression (3.30m) for the behavior of B _ /B when

YY x
1/4 < pEn <1 and A4 < l/pyy).

*
bgpxx(l -dp )

- Yy
As -+ +1 > = .
Dgn ' Bx Bxlim 1- pxxpyy
Since dpyy <le1l- dpyy > 0, then
B 0 if b* 0
> i >
xlim 2
8 0 if b <O
< i < .
X im &
As pgn++1', l-dp£n+1-d< 0 (since d > 1), and
1 - pzn g 0+. Therefore
g i
+> 4 if b, <0
E * £
* * 0
+> = if b_ > .
g 13

Therefore, for G.C. I when dpyy <1,

(3.39) as p

- * -
£n - +1 , BX/BE -+ 0.
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Consider either G.C. II or G.C. III. In each category d < 1.

*
b (1-do_ )
As p. ~+ +1, B. > 8 = b xx Yy |
&n X xlzi.m 1- pxxpyy

Since d <1, dp <le1l-4d > 0, then
YY Yy

As >+l ,1-d, +»1-da>0 (since d < 1) and

p&n En
2 +
l - - 0 .
pEn
Therefore,

Therefore, for either G.C. II or G.C. III (i.e., d < 1),

(3.40) as o > +17, sx/s; > ot.

Consider the situation where 4 = 1.

*
bp (1L -p )
As pg > +1 , BX > BX = i fx >4 .
n lim pxxpyy
B, >0 if bz >0
lim
Bx <0 |if b* < 0.
lim 2
* *
- Pel T ey its
As p, > +1 , B, = —""T—"32>—> 8 = — by L'Hopital's
&n ¢ (1 - 02 ) glitn 2
Rule.1 &n

lThomas, Goerge B., Calculus and Analytic Geometry, Addison-Wesley
Publishing Co., Reading, 1968, pg. 651.
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Therefore, when d =1

8
X.. 2 (1 -p )
- %*
(3.41a) as p, - +17, B_/B. » iR - XX vy
£n X"E g (- p P )
Elim Yy
Note
2p (1 -p )
(3.41b) XX Y <1 ®0 < p__ < —r [see (B.3.4a) and
1= 0P - Xxx —2 -p
Y Yy (B.3.4b) from
Appendix B.3 for
proof].
20 (L -p_ )
XX Y¥Y 53 c-——l;——'< o <1 [See (B.3.4c) from
1 - Dxxp 2 -p XX —
Yy Yy Appendix B.3 for
proof].
Consider G.C. I, where d > 1 and for pEn =1/d (i.e.
*
dpgn =1) Bx/BE is not defined. For the arguments below consider

d as some fixed value such that d4d > 1.

As Pen 1747, i.e. dpEn > 1,

*
bp (1-p_)
R
L “xfyy

2
d

p..P
Since 4 >1, 1 - —§§§XX-> 0, therefore as pEn + 1/4 ,

a
8 0 if b >0
> 1 >
¥)im £
8 0 if b <0
< 1 < .
X)im &
Since 4 >1, 1 - li > 0, thus as
a
174 i a 1”8 st ot if b >0
d i.e. > > . > i >
®en Pen £ “Elim £
- *
00 if b . <o0.
£
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Therefore for G.C. I

- *
(3.42) as +1l/4 , Bx/eg > 4o

p&n

+
As p, -+ 1/d i.e. dp

+
1,
En En*

l-p_p

+
Since 4 > 1, — XXy, 0, therefore as +1l/4 ,

pEn

Be > Beiim ™ |0~ if b

Therefore for G.C. I
3.43 * *
(3.43) as pgn > 1/4 , Bx/BE > -,

Now combining the results on limits (3.37) through (3.43) with

the results on the relationship of Bx/B; as a function of pEn to
zero and one for each of the three general categories as well as the
situation when 4 =1 [ (3.30a-e), (3.30j-1), (3.30m) for G.C. I;
(3.32a-d) for G.C. II; (3.33a-b) for G.C. III and (3.35a-d) for 4 = 11,

it is possible to describe more fully the characteristics of each

general category and to produce for each general category a generic
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graph which represents the general shape of all distributions in the

category.

ranges from near -1, through 0 and fimally to near +1.

(3.44a)

(3.44Db)

(3.44c)

(3.444)

(3.44e)

(3.44f)

(3.44q)

(3.44h)

(3.441)

(3.445)

(3.44k)

and

(3.441)

G.C. I, i.e.

Subcategory a) d > l/pyy i.e. dp

as

for

for

for

for

as

for

as

for

for

for

as

d >1, any o

x' pyy (D
>1 and 1/4 < 1/4
/ / DYY

#1):

Yy

+ * +
an + -1 ’ BX/BE + 0
-(x) *
1< pgn < pgn , 0 < BX/BE_, <1
*
Ogn =0 ’ Bx/BE = Dxx
_ ~(x) *
-(x) *
Pen < Pen < 1/4, Bx/Bg > 1
- *
pgn + 1/4 ' Bx/Bg +> +o
*
= 1/4 , i i
pEn / Bx/B€ is undefined
+ *
Dgn -+ 1/d ' BX/Bg > «o
*
174 < pEﬂ < l/dpyy: Bx/sg <0
*
pEn = 1/dpyy ’ Bx/sg =0
*
l/dpyy < Ppp < 1, 0« Bx/Bg <1
- * +
pET‘I > +1 ’ Bx/BE > 0
since 4 > 1, p-(X) > 0
En  —

Note for G.C.I:

G.C. I subcategory a) has the following general shape:

The information summarized below is presented as

[by

[by

Pen

(3.37)1,

(3.30a)],

[by section C
Appendix B.3],

[by

[by

[by

[by

[by

[by

[(by

[ by

*
Thus the generic graph of Bx/sg as a function of

(3.30b) 1,

(3.30(:)]'

(3.42)7],

(3.304)17,

(3.43)7,

(3.303)1,

(3.30k) 71,

(3.301)],

(3.38)].

(3.34)].

for
Dgn

<1,
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J--’-.—

!
!
b
RTa
Sy -io of Si{ [l *10
t

¥

Figure 3.1la

Subcategory b) 1 < d < —l—, i.e. dp <1 and
Oyy YY
1/d < 1 < l/dpyy' Since subcategory b) differs from subcategory a)
only when 1/4 < pEn < 1, expressions (3.44a-h) for subcategory a)
also apply for subcategory b). Therefore all that is needed to

finish specifying subcategory b) is:

*
3.44m £ 1/4 < <1, <0 b 3.30 '
( ) or 1/ Pen Bx/Bg [by ( m) ]
and
- * -
3.44 > +1 + 0 [b 3.39) 1.
( n) as Pen ' Bx/Bg y ( )]
*
Thus the generic graph of Bx/Bg as a function of pEn for

G.C. I subcategory b) has the following general shape:



(3.45a)

(3.45Db)

(3.45c)

(3.454)

(3.45e)

(3.45f)

(3.459g)
and

(3.45h)

+o

PR P gpep——

gyl ‘LD

e

vhpeomomo oo -

7]

Figure 3.1b

G.C. II, i.e.

as pgn - -l+
-(x)
for -1 < pEﬂ < pgn
for pEn =0
- (x)
for Pen T Pen
-(x)
for pEn < pEn < p&n
- *(x)
for p&n p&n
+(x)
for gy < Pgy <1
+1°
as piﬂ ->

\Ix £d<1,1/2 - pyy < Pxx <

* +
' Bx/Bg -0

, 0 < Bx/Bz <1

*
' Bx/BE = Pux
’ BX/BE =1
*
' Bx/BE >1
*
’ BX/BE =1

[by (3.37)3,
[by (3.32&)]1

[by section C
Appendix B.2],

[by (3-32d)]l
[by (3.32b)1],
[by (3.32d)]r

[by (3.32¢)],

[by (3.40)].
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*

g

G.C. II has the following general shape:

() E X
' )
i ]
' '
g [J
Si Lo v B Mo

40

< d < <
Jx - 1, 0 P xx

(3.46a)

(3.46b)

(3.46¢)

and

(3.464)

G
/@;
Figure 3.2

1
pYY

* +
v BX/BE + 0

*
for -1 < pEﬂ < +1 , 0« BX/BE <1

as

p

En

> +1

Thus the generic graph of BX/B

%*
[ BX/BE = pxx
* +
' Bx/Bg + 0

*

1

G.C. III has the following general shape:

+» 0 <p <1 (i.e.
YY

as a function of

as a function of »p for

En

G.C. III, i.e. 0 < 4 < an ( 1 or
’ < Ix ' Y pxxl Dyy pyY # 1)

1):
oyy#

[by (3.37)],

[by (3.33a) or
(3.33b)] '

[by section C
Appendix B.2],

[by (3.40)].

p&n for
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+i.0)

?“_ -4.0 +i.0

When 4 =1 and O < pxx-i 1/ 2 - p with pyy # 1, then:

Yy
(3.47a)  as > -1t 8 /8 » 0" (by (3.37)]
.47a a pgn v By/Pe )4 . '
*
(3.47p)  for -l <p, <4l , O < Bx/Bg <1 [by (3.35a)1,
*
(3.47¢c) for o =0 . B./B_=p [by section C
&n x ¢ xx Appendix B.2],
2p_ (L -p_ )
- *
(3.47)  as p, >+l P B /B ¥ T XX <1
n P ex®yy

[by (3.4la) and
(3.41b) ]

Note that (3.47a) through (3.47c) above are identical to
(3.46a) through (3.46¢c) for G.C. III. The only difference, the varia-

tion, occurs as approaches one, (3.47d) versus (3.46d).

p&n

*
Thus the generic graph of Bx/BE as a function of pgn for

d=1, 0« pxx <172 - pyy with pyy # 1, which is somewhat similar

to the generic graph for G.C. III, has the following general shape:



(3.48a)

(3.48b)

(3.48c)

(3.48d)

(3.48e)
and

(3.48f1)

When

as

for

for

for

for

+0

94

2ouu (L-9yy) <l

§§\ -i0

Ghﬂsg

Figure 3.4a

d=1 and 1/2 - p
Pen ™ -1
_ - (x)
1< Pgy < Pgy
Pen = 0
_ -(x)
Pen T Pen
-(x)
Peq < Pgn <1
pgn -> +l—

’

*
0 < B,/8, <1

L= Pue Puy
+.0
vy < Pox <1 with pyy # 1, then:
* +
’ Bx/Bg »+ 0 [by (3.37)],

[by (3.35b)1],

[by section C
Appendix B.2],

[by (3.35¢c)1],

[by (3.35d)],

xxpyy

[by (3.41la) and
(3.41b) ]

Note that (3.48a) through (3.48d) above are identical to

(3.44a) through (3.44d) of G.C. I and to (3.45a) through (3.45d) of

G.C. II.

above with d =1, when p

Like both G.C. I and G.C. II Bx/B

-(x)
En g pEn

*

g

> 1, for the situation

*
. But unlike G.C. II Bx/Bg
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never gets infinitely large and never gets negative for

- (x) . *
< < 1, and unlike G.C. III does not approach zero
en fen ' Bx/Bg pp

as approaches +1.

pEn

%*
Thus the generic graph of Bx/BE as a function of pgrl for

_ _ < . .
d 1, 1/2 pyy < pxx <1 with pyy # 1 has the following general

shape:

t:u (4-905¢d >4
+4.0

- ® onePe eos - eom t-“'!“

e e= e oo

e

P -0 M o
@"/(3;

Figure 3.4b

Examples of graphs in each of the three general categories for

fixed values of 4, oxx and op will be presented below combined

*
with the work on general categories of distributions for By/Bn as a

function of op

gEn’

V. The Search for Categories of Distributions of B8
of ®en

A question which arises immediately relates to the need for

*
/B8 as a Function
Yy n

this section based on the results demonstrated in Appendix B.l for the

property of interchangeability of x and y. In Appendix B.l it is

shown that given any situation (i.e., given values of pEn' P ex’ Dyy
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* *
and d ) where the value of By/B is needed, that value of By/B
n n n
*
is identical to the value of Bx/Bg for another situation with the

relationship between the two situations provided by (3.15a-d). Hence
*

g
The important thing to note about that result is that in gen-

it is necessary to derive detailed results for Bx/B only.

*
eral the two situations, the one of interest for By/Bn and the
*
adjusted one for BX/BE' will be different situations. That is the
*
values and d used to get a value for will
pEn' pyy' pxx n g BY/BI‘I
in general not be identical to the values ' ' ' and d4' (as
g pgnr Dyyr pxx 3

p and dn by (3.15a-d) used to get the same

XX

related to
Pen’ Pyy’

*
&‘

Therefore since one of the interests of this research is to

value for Bx/B

*

13

*
examine the ratios Bx/B and By/Bn for the same situations, i.e.,

values of o ' P and d =d,_ = l/dn' it will be necessary to

en’ Pyy’ Pxx g
state categories of distributions and important algebraic results for
By/B: which are analogous to those derived for Bx/B;'

The properties (3.15a-d), i.e., the property of interchange-
ability of x and y will simplify the work for By/s; considerably.
It will be necessary to consider the major results for Bx/B; and
apply the property of interchangeability to arrive at analogous con-
clusions for By/e:. In simple terms applying the property of inter-
changeability to a result for Bx/Bg involves replacing every x with
a y, every y with an x, every £ and an n and every n with a
£. Therefore pEn is replaced by pn& but since there is no variable

ordering in a correlation coefficient pn is replaced by

£ Pen’ Pxx

is replaced by and d =4 is replaced b
pyy' Dyy P pxx £ P Y
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dn = l/dE

Therefore for all applications of the property of interchangeability

=1/d (i.e., 4 is replaced by 1l/d provided 4 # 0).

consider d > 0. The situation when d = 0 will be examined
separately.
The guiding interest in this phase of the research is to com-
* *
are and now [{] to one. That is, to see for what situa-
pare 8 /8, B,/8, '
*
tions is By an overestimate (BY/BH > 1), an underestimate
* * *
(B < 1) or an exact estimate ( = 1) of .
y/Bn BY/Bn Bn
Combining results (3.18b) or (3.19b) with (B.4.2) produces:

*
there will exist a value of pgn e (-1, +1) such that BX/BE =1

[40._ 1 -p DX -p_)
if |a| > xx Yy X _ - I .
“d Q- 0 ? x
XX'yy
%*
The corresponding result for BY/Bn becomes by the property

of interchangeability:

*
there will exist a value of pEn e (-1, +1) such that By/Bn =1

49 (L -p )A =-p )
(3.49) if |3 > Yy - I(y) for d # 0.

(1 - pyypxx)

Since it would be generally more useful to consider values of |d|

rather than [1/d| (3.49) becomes: there will exist a value of

pEn € (-1, +1) such that By/B: =1
2
(L -p )
(3.50) if [a4] < |7 (1"’_“)1’1)(1 — = l for d # 0,
Pyy P ex Pyy Y
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Note that J:;; and J:: are used as abbreviations in
notation. Here the square root sign indicates that the quantity in-
volved is a square root and the y indicates that the expression is
related to work on By/B;. J?;y' is a temporary symbol to be used
only for the immediate results of the application of the property of
interchangeability to J::' (defined by (3.22)). The permanent
statement of results will involve J:;' as will be seen below.

Since J::' S 1 for all p_.., pyy (except P _p _ =1)

Yy
With e ualit for p =1/2 - P . Then

< R =1
|(y) <1 for all Poy’ Pxx (except P oy® xx )

with equality for pyy =1/2 - pxx' which is equivalent to

(3.51) > 1 for all o (except o =1, p = 1)
\|y - xx' Pyy PR Pax 94
2p -1 1
with equality for Pox = ——xg————, since —(—— = lY (by defini-
vy \l(y)
tion in (3.50)) and
1 2p -1
pyy = 7 <o © pxx = ——gx————- (by the second result in
Yy Yy (B.3.3b) from Appendix
B.3).
* - (x) +(x) *
F f = = th = 1.
or Bx/BE P pEn °r pEn psn en BX/BF,
- - +
Let pgéx) be replaced by pgéy) and EJX) be replaced by pgéy)
when the property of interchangeability is applied.
* -(y) +(y)
Therefore for if = r = then
BY/Bn p&n Pen O Pen T Pen
By/B; = 1, and expression (3.2l1a) for - (x) becomes

pEn
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1-p p (1-p__p_.)
_%;X_ﬁ - ___XY?XX_. - 4pyy(1_pxx) (l—pyy)
-(y) d
En 2pyy(l - pxx)
for 4 # 0, pxx # 1.
Therefore
(1- ) - Ju- 12 - ad%_ (1-p_ ) (1-p_)
(3.21a" -(y) i pyypxx pyypxx Dyy Dxx Oyy
-2at)y e, = 2dp (1 - p_)
DYY XX
for 4 # 0, pxx # 1.
and (3.21b) for pz;x) becomes
(1-p_ p_ ) + J(l-p P )2 - 4d20 (l-p_.) (1=p__)
\ +(y) _ Yy XX VY XX vy XX vy
(3.21b") o, ¥ = 360 (To- )
n vy P ex

for 4 # 0, p # 1.
xX

*
Note here that the expressions for By/Bn produced directly
*
from expressions for Bx/eE using the property of interchangeability
will not be assigned new expression numbers. The number assigned to
*
the expression for By/Bn will be the same number as that of the
*
£

*
pressions the expression number for BY/Bn will always be primed

original expression for Bx/B To differentiate between the two ex-

(i.e., given a ' as a superscript).

(x)

Consider now the conditions for existence of p;n (-1, +1)
and hence for the existence of pg;y) e (-1, +1).
Result (3.23a) states: - (x) exists and p-(x) e (-1, +1)

OEn En

f 4
or v # 1 an

Py
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for 0 <p < -1 if 4> 1.
XX —2 -p
YY
This becomes for pg;Y): pg:y) exists and p;;y) e (-1, +1)

for P x #1 and

1

for 0<p <77
YY =2 - p o

if 174 > 1.

Rearranging this result so that the interval of reliabilities is an
interval of pxx values rather than pyy values and so that the con-
dition is expressed in terms of d rather than 1/&@ produces:

- (y) exists and p-(y)

En gn € ("ll +1)

o]

2p -1
(3.23a") for ———cp <1 if 0<dc<1.
Yy

. 1
This rearrangement results from O < p < T/

YY =2 - o
2p -1
——X%F———-g_pxx <1l by (B.3.3b) and (B.3.3a) from Appendix B.3 and
Yy *
from the fact that 4 > 1 for Bx/Bg also implies d > O and

1/d > 1 e d < 1.

Result (3.23b) states: p;QX) exists and p;éx) e (=1, +1)
for +1 and
pyy#
for —— < <1 if <d or if -1<d<-|
2 -p Pex = x — - x

-(y), ~(y)

En pEn exists and p-(y) e (-1, +1)

gn

This becomes for »p

for pxx # +1 and

1 I 1 I
_— i d if - =< - .
for 5= o <p <1 if (y) < 1/ or i 1 < a < (y)
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=(y)

exists and
pEn

Rearranging this result as above produces:

=(y) -
pEn € (-1, +1)

2p -1
(3.23b") for 0<p < —LL— 3if 0<dcx lY or if

pYY
- I <d«< -1.
y—
1 2p -1
This rearrangement results from —— < p <le 0<p « Y
2pYY -1 - XX pyy

by (B.3.3c) from Appendix B.3 and from the fact that J::< d for
*

*
Bx/Bg also implies 4 > 0, that -1 < 1/d < - hy) for Bx/BE

implies d < 0, and that |(y) =1/ Iy .

Result (3.24a) for pgéx) states: DE;X) exists and
+(x)
€ (-1, +1) for 1l and
Pen ' Py #
for 0 < P x <1l/2 - pyy if d < -1.

+(y), _+(y) . +(y) _
£n ° pEﬂ exists and pEn e (-1, +1)

This becomes for p

for 0] # 1 and
for 0 < < 1l/2 - if 1l/d < -1.
p y / p X /

Rearranging this result produces: p+(y) exists and p+(y) € (-1, +1)

En En
2p -1
(3.24a') for —l’—;’——— <p <1 if -l<da<o.
Yy
*
This rearrangement results from the fact that 1/4 < -1 for Bx/BE

also implies that 4 < O.

Result (3.24b) for pEQX) states: pEQX) exists and

+
(x) (-1, +1) for pyy # 1 and

En
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for 1/2 - p <p <1 if ‘Ix <d <1l orif

vY XX —
d < - .
— Jx

*ly) p-(y) exists and p;;y) e (-1, +1)

This becomes for p :

En gn
for P yx # 1 and

for ———l———-< o <1 if <1l/d <1 or if
2 -0 vy — (y) —
xX
1l/d < - .
/4 < \l(y)
+ +
Rearranging this result produces: p (y) exists and o (Y)e (-1, +1)

En En

2p -1
(3.24p") for 0<p ¢ —H— if 1<dc Iy or if

Pyy
- d < 0.
Jv=

Consolidating the above results produces: p-;y) exists and

=(y)
En

2p -1
(3.23b') for O < Pyx < ——XE————- if 0< d«< |y or if

YY
- <d«< -1,
,|y <

20 -1
(3.23a') for —ﬂp-——ipxx< 1 if 0<d< 1,
Yy

p € (-ll +l)

+
exists and »p (y) e (-1, +1)

and p+(y) £n

En

2p -1
(3.24b") for 0<p < —LL—— if l<dg J: or if

o}
- <d<oO,
‘IY <

Yy
2p -1
(3.24a') for __gx—___'i-pxx <1 if -1<dc«< 0.
YY
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(1 - p2 )P
When »p =1, B /B* = £n_ xx for dp # 1
En xx

*
where 0 < Bx/BE < 1. (See Appendix B.2).

2
1 -p_)p P
Therefore, when »p =1, B8 /B* = En__ vy for -&n #1
XX Yy (1 - p2 o ) d
* En' yy
0 .
where < By/Bn <1
1-02)-ap, p )
*
Whenp =1'B’/8= En EUYL
xx 5 oa-edto va-a,
En yy En
and for 0 <d <1 then Q;QX) =0, p;éx’ =d
=(x) _ +(x) _
for d>1 then pE" = 0, pgn £ (-1, +1).
2 'pggpxx
* (1 - pg )(1 - a )
Therefore, when o =1, 8 /8 = Lt for d # 0
YY n p
(1-02p )@ - 50
En xx d
* (1 - 02 )(d -p,_p <
which becomes 8 /Bn = gn &n x for 4 # 0,
1l - d -
( pEnpxx)( pEn)
and for d > 1 (i.e., 0 < 1/d < 1) then p;;Y) - o,
+(y)
= 1/4
Pen /
. -(y)
for 0<d<1 (i.e., 1/d > 1) then DEU =0,
+(y)
-1, +1).
ogn ¢ (-1 )

When d = 0, expression (B.2.5) represents the appropriate

*
expression for By/Bn i.e.,

2
6 /8" = 1 - pen)PyyPx
Y Fn

for o
2 En

1—

(1= 0rnPyyP s
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Applying the property of interchangeability to the result

%*

presented in Appendix B.2 (for Bx/BE when aE =0, i.e. 4 is un-
*
defined) yields: when 4 =0, O <By/sn < 1. Also note when 4 = O,
*
is s etric about the line = 0. And as +> 0
By/Bn is symm Pen Pen '
*
> .
BY/Bn PyyPxx

*
Three general categories of distributions of B /Bn as a
function of pEﬂ can be identified. Each of these categories is
derived from one of the general categories of distributions of

*
Bx/Bg as a function of p using the property of interchangeability.

En
*
Thus the first general category of distributions of By/Bn as

gn
*
G.C. I for Bx/Bg had two subcategories. Subcategory a) of G.C. I

*
a function of »p (G.C. I (y)) is based on G.C. I for Bx/Bé' Recall

consisted of situations where 4 > 1 and dpyy > 1 for any P ex’

pyY (pyy # 1). Subcategory b) of G.C. I consisted of situations where

d > 1 but dpyy < 1 for any Pyex’ P (cayy # 1). Therefore sub-

Yy
category a') for G.C. I (y) consists of situations where 0 < d <1
(i.e., 1/d > 1) and 0 < 4 < P x (i.e., pxx/d > 1) for any pyy'
pxx (pxx # 1) and subcategory b') of G.C. I (y) consists of situations
where 0<d<1 (i.e., 1/d > 1) and P ex <d<1l (i.e., pxx/d < 1).

*
G.C. II for Bx/B consists of situations where J-:i d<1

13
for 1/2 - pyy < pxx < 1 with pyy # 1. Therefore G.C. II (y) con-
sists of situations where 1 < 4 < ,I (i.e., | < 1/d < 1) for
2p -1 - Y (v) =
XY - i
0 < pxx < pyy (i.e., 1/2 pxx < pyy < 1) with pxx # 1.
*

G.C. III for Bx/Bg consists of two sets of situations;

either 0 < d < ‘|x' for any I pyy (pyy # 1) or 1 x <d<1

for 0 < P e <12 -p with pyy # 1. Therefore G.C. III (y)

YY
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consists of two sets of situations; either 4 > |y (i.e.

0 <1/4 < |(y)) for any pyy' P x (pxx #1) or 1<adc< IY

2p -1
(i.e. <1/d < 1) for —XL— <[ <1,
(y) — pyy — Txx

Detailed information about the characteristics of each gen-
eral category as well as information about the situation where 4 =1

will be presented in the following tables (3.la through 3.4b). 1In

*

13
will be presented on the left side of the table and the corresponding

each table the characteristics of each general category for Bx/B

information for 8y/B; will be presented on the right side of the
table. Following each table the generic graph of By/B; as a func-
tion of p€n will be presented for the general category displayed in
the table.

Although the generic graphs for each category of By/B: are
identical to the generic graphs for corresponding categories of

*

Bx/BE they will still be presented. When the joint categories for
* *

Bx/BE and By/Bn are constructed and generic graphs are presented

*

13
*
and BY/Bn is clearly identified along with their generic graphs.

there will be less chance of confusion if each category for Bx/B

* k% * k% * k& % %k k * * *x *

Insert Table 3.la Here

* % % * * *k k * k k¥ Xk k *x

Based on results (3.44a') through (3.441') the generic graph

*
of BY/Bn as a function of op for G.C. I (y) subcategory a') has

En

the following general shape:
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Figure 3.5a

* % k% * * kX k& k¥ k k * * *

Insert Table 3.1b Here

* % ® * * * * * * * *x * *

*
The generic graph of By/Bn as a function of pgn for

G.C. I (y) subcategory b') has the following shape:
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0
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Figure 3.5b
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* k k * * *k k *k x * k * %

Insert Table 3.2 Here

* * k% * %k k& * * * k& * *x *

*
The generic graph of By/Bn as a function of pgn for

G.C. II (y) has the following shape:

3 :

' '

' ‘

‘ .

1 2

. Ny
<4
é&db‘

Figure 3.6

* * X * k * % k * * k * %

Insert Table 3.3 Here

* k Kk k k * *k k *k k k &k *x

*
The generic graph of By/Bn as a function of pgn for

G.C. III (y) has the following shape:
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* k *x %k & k k * k *k k * *k k * * * k *

Insert Tables 3.4a and 3.4b Here
* k% % * % % * %k * kX * * * k * %k k *x *

20 -1
When d =1 and -—)%%———-f_pxx < 1 the generic graph of
Yy

*
By/Bn as a function of op has the following shape:

gn

rr‘ -4.0 +1.0
@3/(31

Figure 3.8a

2p -1
When d =1 and 0 < 0 x < XX the generic graph of

Yy

*
as a function of has the following shape:
By/Bn ogn g \g
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Figure 3.8b

Examples of graphs in each of the general categories of x
and y for fixed values of d, pxx and pyy will be presented below

in section VII.

VI. Additional Algebraic Results Involving Both Bx/B; and Sy/B:
Prior to combining the general categories of Bx/B; with the
general categories for By/B: to form joint general categories some
additional algebriac derivations involving both Bx/B; and By/B:
are needed. In this section three algebraic derivations are to be
presented. The first two derivations will be used in subsequent work
but also represent interesting results by themselves. The third
derivation provides an algebraic justification for a result which can
be noted from the generic graphs for each general category of Bx/sg
*
and By/Bn. .

*
Derivation 1l: Show that when B /B, = 1, then = and when
B ’ By/Bn Py

*

*
By/Bn = 1, then Bx/Bg Pox
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*
Proof: From either (3.18b) or (3.19b) B"/BE =160 =0
where Q = Dzn Dxx(l - pyy) - dpgn(l - pxxpyy) + (1 - pxx) from (3.17).

*
Therefore consider By/sn = pyy' Modifying expression (3.14)

*
for By/Bn with 1/4 = dn yields:
., -p2)p (@a-p o
BY/B - En _YY £n xx
"oa- 02 P P
En xx

)

4 -
yy)( pEn)

and

* (1 2 )
= <« -
By/en P ]

d_
YY En)pyy( 0

gnpxx

= (1-p2 Y - o, )

vy en’ xxPyy Pen

2 3
® (d-4d - +
pyy pEn p€npxx psnpxx)

02 PP, —p, + 3 p__p
En XX YY En p&n XX Yy
3 3 2

- + 4 - dp_ +p,_ - ) =

Penfxx T PenPrdPyy T PenfrPyy T PenPenPen’xx

=p (@-4d
s !

® (
DYY

2
( 1 - -d 1 -
e p P p..p__( oyy) p, | )

vy en PenPxx £n ) + (l-oxx)) =0

XXOYY

YY &n
£ * £ 0
Therefore = i =0 or = 0 since > 0.
By/en pyy pEn . Q pyy
*
But if B /B_ =1, then = 0 and thus /B = .
X g ! Q By/Bn T Pyy

* *
3.52 Therefore if =1, then = .
( ) Bx/Bg B/Bn pyy

And by the property of interchangeability of x and vy:
XX

* *
3.53 if =1, th = .
( ) i By/Bn en Bx/Bg P

Note that the converses of (3.52) and (3.53) are in general

%* *
not true, since if p&n =0, Bx/Bg = pxx and By/Bn = pyy' For
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*

*
n # 0, then By/Bn =p £

* *
Pe vy © B./B 1 and Bx/Bg = Pyx & BY/Bn = 1.

* *
Derivation 2: Show that Bx/BE and BY/Bn cannot both be greater
than one for any situation, i.e., there exist no values of 4, pEn'
* *
and such that >1 and > 1. For an iven
P e pyy Bx/Bg ey/en Yy g
situation at most one of the observed weighting coefficients will be
an overestimate of the corresponding latent weighting coefficient.
* *
The procedure will first locate for Bx/B and B /B
€ Yy 'n
separately the general categories and then the regions within the
general categories (from Tables 3.la through 3.4b) where each ratio
is greater than one. Then the regions will be compared to see if
there are any regions where both are greater than one. If such regions

exist then more detailed algebraic work will be performed to examine

the situations in each region.
*
Bx/gE > 1

(3.54a) 1. From Table 3.la for G.C. I, when 4 > 1 for any P ex’

0 and p-(x) <

*
vy £n pEn < 1/d then BX/BE > 1.

(3.54b) 2. From Table 3.2 for G.C. II, when |x <d«<1,
- (x) +(x)

1/2 - < <1 d h
/27 Pyy < Pxx L1 and 0 T < ppy < pg,  then
%*
Bx/Bg > 1.
(3.54c) 3. From Table 3.4b when d =1, 1/2 - p <p < 1 and
YY XX —
=) <1, then g /8 > 1
Pen Pgn = % g 7 0

l
B >
8/

(3.55a) 1. From Table 3.la for G.C. I (y) when 0 < 4 < 1, any

Pex’ Pyy and o-(y) <

*
xx gn Pen © d then By/Bn > 1
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(3.55b) 2. From Table 3.2 for G.C. II (y) when 1 < 4 < I'—,
- Yy
2p -1
- (y) +(y)
<« XX ana < < th
xx P pﬁn Pen = Pen en

. YY
B}(/Bn > 1.

20 -1
(3.55¢) 3. From Table 3.4b when d =1, 0 < G < —mp-— and

0 <p

04
and o) <, <1 then 8 /8 > 1.
En En Yy 'n
2p -1
Note 1: 1/2 -p > —— forall p ,0<p <1
YY= o Yy Yy —

Yy
with equality only when pyy = 1. (See Appendix

B.7 for proof.)

N :
ote 2 Ei 1 for all Poexc’ pyy such that P xxPyy #1
with equality for p = _1—. (See Appendix
XX 2 -p
YY
B.3.)
Note 3: > 1 for all ’ such that #1
J:;__ Dxx pyy pxxpyy
2p -1
with equality for pxx = —Xg—— . (By expression
Yy

(3.51).)
*
Therefore the only regions where both Bx/Bg > 1 and

*
B /Bn > 1 occur within the region are:

(3.56) when J:id<1 and 1/2 - p__ <p__ < 1:

Yy XX —
* . - (x) +(x)
s,/sg > 1 if Pen < Pen < Pen [ from (3.54b)]
* . -(y)
and B /B >1 if »p <p < d [ from (3.55a)].

Y n En En



2p -1
(3.57) and, when 1 < d < \l-_and 0<p <X ___ .
- o
YY
s/s* >1 if o™ <o <174 [from (3.54a)]
g En En
* . -(y) (y)
and By/Bn >1 if p&n < pEn < £n [from (3.55b)1].

Note however, that this second region can be found from the first
region by use of the property of interchangeability. Therefore it is
necessary to examine in detail only the situations in the first region,
since all results for situations in the first region can be extended

to corresponding situations in the second region.

< 1.

For
XX — or any

< d < 2 - <
Thus let J::__ 1 and 1/ pyy P

values of pyy' Pox and 4 in this region the question of interest
is whether there exists a value pén, -1 < pén < +1 such that
0 <ogy < e P <oy <
In this region ( J::f_d <1 and 1/2 - pyy < Py € 1),
;;x) < d. (From expression (B.8.4b) in Appendix B.8). Therefore,
if pén exists, that is if p;;x) < pén < pE;X) < d and
pgéy) < pén < d, then p;;y) < p;;X) or else the two intervals
(DE:X), QEQX)) and (p;éy), d) will have no common values.
Note: for pEn < d, By/B: < 1 occurs only when
p€n < pgéy) [ from Table 3.la for G.C. I (y)].
Let op = p+(X), then B /B* =1 (from (3.45f)) and thus
En En x'"E
BY/B: = pYy <1 (from (3.52)). Therefore since By/B: <1 for
pEn = pgéx), pgéx) i_pg;y), hence p;;y) X pgéx) Thus there does
not exist a pén such that pén € (p;:X), pz:x) and
Dén € (p;;y), d).
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Therefore there do not exist any combinations of values of
pEn' pyy' P x and 4, with J::f_d <1 and 1/2 - pyy < pxx <1
[region (3.56)] such that Bx/B; > 1 and By/B: > 1 simultaneously.

By- the property of interchangeability of x and y this
result for the region identified as (3.56) also holds for the region
(3.57).

Therefore it is not possible to find a set of values of

* *
P, 2 P__» P and 4 so that B /B. > 1 and By/Bn > 1

En YY XX x' g
simultaneously. That is in the two category, two predictor case it
is not possible for both of the observed weighting coefficients to be

overestimates of the latent weighting coefficients for the same com-

bination of values of »p

Eﬂ' Dyyr Dxx and d.
* %*
Derivation 3: Show that both Bx/Bg <1 and By/Bn < 1 when

dp < 0. It is important to note here that this result represents

En

a sufficient condition only.
*
Consider Bx/Bg from (3.12), i.e.,

2
1l - l1-4d )
8./8. = 7 Pen)Pux = %pnPyy

g
l-d

2
1_
( pEn xx” Yy

*
Note that Bx/Bg can be considered as the product of two ratios R

1
(1 - p2 )p (1 -dp_p )
and R where R, = En__ xx and R, = £n yy . Thus
2 1 (1 - p2 ) 2 (1 - dp&n)
* En xx Yy
BX/BE = R1 . Rz. The examination of B8 /BE for this derivation will

proceed by examining Rl and R2 separately and then combining the

results.
Work with R1 first. There are three situations to examine.

For what values of »p o} and o will R, (1) be greater than

gEn’ Txx vy 1
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one (Rl > 1 ?), (2) be equal to one (Rl =1 ?) and (3) be less than
one (R1 <12?2)?
1.) R1 >17?
2
L =-p,)p
R1 > 1e £n Xx > 1
1-
Dgnp p
2 2
© (1 - > 1 - since
ogn)oxx P enPxx’yy
2
1_
Pen’ xxPyy
= - 2 > 1 - 2
Dxx Dgnpxx Dgnpxx vy
2 2
©0>p_p 1-p )

2
0 > 1 - ) + (1 -
pEn ( P ( p..)
but note p2 > 0, p >0, 1-9p >0, 1-p > 0
En—' %X ’ yy_r xx_-
Therefore O (1L - ) + (1 - )
bd pE XX pyy .
(3.58a) and R_ /1
1
(1 - pz )o
2.) R, <1? R <1 En__xx 1
1= 1 (1 - 2 p )
PenfxxPyy

using algebra from 1) above

(3.58b) Rl <1e®0 pEn xx(1 - p ) + (1 - pxx)
true for all values of R , and .
Ogn Dyy Dxx

2
: R = ® 0 = - + - .
Note 1 1 Eﬂ xx(1 p ) (1 pxx)
. T = = i =

(3.58c) hus R1 1 only if P exc 1 and either pyy 1 or
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Pen = 0-
Note: if 4 = 0,
2
(1L -
8_/8, = Pen P _
e P
p&n XX vy
Work now with R2. Consi
*
Th = R, * < .
en Bx/BE 1 R2 1 by (3
*
R2 > 1, Bx/BE,' > 1 and for other

of this derivation is to produce
and not reproduce the exhaustive

*
subsection IV for Bx/Bg and in

The situation to be examined then is for what values of p_ ,

and 4 will R

2 be less th

2

= R_.

1

<

5 1.

der only situations where R

58b). Note,

*
< 1.

3

a sufficient condition for Bx/B

situations Bx/B The purpose

%*

<
13
study which has been done above in

*
subsection V for By/en.

En

an one (R2 <1?)?

1 -4
P nD

R, <1?
2 1 -4
pEn

1.) if 1 - dp 0 dp

En

then R2 <1

(]

1l - dp

d -
pEn

dp, (1
0 n

13

d <
pEn

R

<

1 <

En

Since if dp

(3.59a) R

2 <1

or 2.)

if dp

if 1-4dp, <0 %dp

R2<1Q—_Lﬂ <1

<

En 1

<1-4dp

Enpyy En

<0

d
°£n°yy

<0

" Pyy)

0 for # 1.
pYY

1

<

gn 0.

and dp Then

<

&n 0.

>

En 1

for some situations where

1
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then R2<l@1'dp >1-4dp

Enpyy &n

®dp, (1-p ) >0

13

o dpEn > 0 for pyy #1 .

Since R_< 1 if d >1 and g > 0. Then
2 Pen Pen

3.5% R, <1 if 4 > 1.
( ) 5 i pEn

Therefore, if dp&n <0 or dpgn > 1 then R2 < 1. Since

by (3.58b) Rl <1 for all values of »p

* *
Bx/Bg = Rl . R2 then Bx/BE < 1.

En’ pxx and pyy and since

*
(3.60) If dpEﬂ < 0 or dpEn > 1 then Bx/BE < 1. For doEn to

be less than zero, 4 and pgn must have opposite signs.
By the property of interchangeability of x and y (3.60)

becomes for d # O:

*
.60' I d <0 > < 1.
(3.60") f pgn/ or n/d 1 then By/Bn

e

For pg

signs, i.e., dp < 0.

gn
Therefore if 4 and »p

n/d to be less than zero, 4 and pEn must have opposite

£n have opposite signs (dpEn < 0)
then both Bx/B; and By/B: will be less than one. Note that this
is a sufficient condition only.

As noted above dpEn can also be interpreted as the ratio of
the slope of the pooled within categories regression line of £ on
n over the slope of the between categories line joining the mid-
points of the distributions in each category of & and n. This

interpretation is presented in Appendix B.9 along with a presentation

of results which corroborates the results in (3.60).
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Using the ratio of slopes interpretation of dp in a

En
situation where dp < 0 indicates that the slope of the pooled

En
within categories regression line has the opposite sign as the slope
of the between categories line, i.e., the direction of the relation-
ship between £ and n as expressed by the pooled within categories
regression line is the opposite of the direction of the relationship
between category means as expressed by the slope of the between
categories line.

Using this interpretation for dp < 0 there may be some

En

question about whether dp can be less than zero in practice. The

En
concern at issue here is very similar to the concern involved in the
study of ecological correlation where the interest is on using a
correlation between group means (similar to the between categories
situation here) to estimate either a total group or pooled within
groups correlation (similar to the pooled within categories situation
here). The study of ecological correlation produced some results which
are applicable here as well.

If the groups (in this case two groups [categories]) are in-
dependent samples from the same population then the correlation in
the population of individuals and the correlation in the population
formed by the sampling distribution of the group means for a given
sample size are identical. In this case the between groups correla-
tion and the pooled within groups correlations are less likely to have
different signs than the same sign. For the quantal response situa-

tion, if the individuals are arbitrarily assigned to each category of

the criterion on the basis of a random sampling from a single



125

population of individuals then the relationship between § and n
as measured by the slope of the pooled within categories regression
line will be more likely to have the same sign as the slope of the
between categories line joining the category midpoints than to have

a different sign. That is, dp is more likely to be greater than

gn
zero rather than less than zero.

For most quantal response situations it would seem unlikely
and even contrary to the intents of quantal response procedures to
arbitrarily define categories of a criterion as multiple random
samples from some population. For most quantal response situations
assignment of a subject to a category of the criterion is based on
distinct and non-overlapping membership criteria, e.g., health status
of an experimental animal (e.g., a rat) following an administration
of an experimental drug (i.e., alive or dead) or group affiliation
(Democrat, Republican, Independent, etc.).

For these types of situations it is not reasonable to assume
generally that the between groups relationship will have the same
sign as the within groups situation. That is, for a given situation

there is no a priori basis to assume that dp > 0 with any more

gn

likelihood than dpEn < 0.

Although in many situations the ratio of slopes (dpin) will
be positive there will exist situations where the ratio is negative.
A hypothetical example can be constructed to illustrate thatthe ratio
of slopes can be negative.

Consider two elementary schools. Each school represents a

category. The mathematics curriculum of school 1 heavily emphasizes
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work on the basics of computation through rote memory and repeated
drill under the assumption that students must have a sound basis of
computational skills prior to tackling more advanced mathematics
topics. The mathematics curriculum of school 2 emphasizes training
in approaches to problem solving and the conceptualization of mathe-
matical problems under the assumption that it is important to be able
to identify approaches to the solution of problems and that specific
computational skills can be more efficiently learned when the student
is confronted with the need to compute as part of the solution of a
problem.

The predictor variables in this situation are the mathematics
computation subscale and the mathematics application subscale of
some standardized test. It is reasonable to expect that there is a
similar positive relationship between subscale scores on mathematics
computation and application within each school, since factors such as
general mathematics ability and motivation are likely to be under-
lying factors related to performance on both subscales within each
school. Therefore, there is a positive within categories relation-
ship between the predictor variables.

However, it is also reasonable to expect that students in
school 1 will do better on the mathematics computation subscale than
students in school 2. While, students from school 2 can be expected
to do better on the mathematics application subscale than students in
school 1. Therefore, the slope of the line which joins the midpoints
of the distributions of the two schools on the computation and applica-

tion subscale can be expected to be negative. That is, there is a
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negative between groups relationship. Therefore, the ratio of the
pooled within categories slope to the between categories slope is
negative.

If this or a similar situation were to be analyzed using a

quantal response procedure then dp < 0 and Bx and By will

gn
* *
underestimate B8 and Bn respectively. Note if the ratio of slopes

3

based solely on the observed predictor is negative then the ratio of

slopes for the latent predictors (dp n) will also be negative. This

£
follows since the errors of measurement will not affect the value of
the slope of the line between the midpoints of the categories but will
attenuate the value of the pooled within categories slope based on
latent predictors (see Appendix B.9 for details). Thus the magnitude
of the ratio based on observed predictors will be smaller than the

magnitude of the ratio based on latent predictors but the signs of the

two ratios will be identical.

*
VII. Joint General Categories of Distributions for BX/BE and
*

By/Bn Together

In this section the results from section IV (for categories
*

of Bx/BE versus Pen for fixed values of d, P ox and pyy), sec-
*
tion V (for categories of BY/Bn versus pgn for fixed values of
*
4, pxx and pyy) and section VI (Algebriac results for BX/BE and

By/B; together) are combined to derive joint general categories of
*
€

For each joint general category, the generic graphs of Bx/B* and

€
*
By/Bn will be displayed to provide a visual indication of the generic

*
distributions for Bx/B and By/Bn together for the same situations.

shape of the distributions within the category. 1In addition actual
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graphs for specific situations (i.e., values of 4, pxx and p )
within each cateqgory will be referenced. For a more detailed in-
dication of the shape of either Bx/Bz or By/B: within any joint
general category see the information from the tables in section IV or
section V which applies.

An example of the notation for the joint general categories
is: G.C. I (x,y). The x and the y in the parenthesis indicate

*

that it is a joint general category involving both Bx/Bg and

*
By/Bn.

G.C. I (x,y). When O < 4d < |x (Recall, 'Ix is defined by (3.22)),

XX yy xx yy
* *
0 < pxx <1l/2 - pyy' G.C. III for Bx/BE and G.C. I (y) for By/Bn

for any p _, p () # 1) or when Ix <d<1l for

apply. Ignoring the two subcategories of G.C. I (y), the generic graphs

for this category of situations are:

Figure 3.9



r
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*
The exact shape of By/Bn when d < p < 1 depends on

gn

whether 0 < d < p or o <d < 1. See section V for G.C. I (y)
XX XX

above for details.

Figure 3.1la through 3.11d provide examples for 4 specific

situations in G.C. I (x,y).

G.C. II (x,y). When Ix <d<1 for 1/2 - pyy < P yx <1l, G.C. II

* *
for Bx/Bg, G.C. I (y) for By/Bn and section VI results apply. Again
*
ignoring the two subcategories of By/Bn, the generic graphs for this

category of situations are:

Figure 3.10

*
The exact shape of By/Bn when d < p n < 1 depends on whether

€

0<d«<op or p < d< 1l. See section V for G.C. I (y) above the
XX XX

details.

Figures 3.12a through 3.12c provide examples for 3 specific

situations in G.C. II (X,y).
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Figure 3.lla. G.C. I (x.y).
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Figure 3.11b. G.C. I (x,y).
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Figure 3.12a. G.C. II (x,y).
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Figure 3.12c. G.C. II (x,y).
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2p -1

G.C. III (x,y). When 1 < 4 < IY for O < pxx < ——JE$———— then
* * Yy
G.C. I for Bx/BE' G.C. II (y) for By/Bﬂ and section VI results
apply. Note, this general category is identical to G.C. II (x,y) but
with the roles of x and y reversed. Therefore Figure 3.10 with
the property of interchangeability of x and y applied provides
the generic graphs for this category.

Figures 3.12a through 3.12c with the property of interchange-

ability of x and y applied provide examples for specific situa-

tions in G.C. III (x,y).

G.C. IV (x,y). When |y < d for any P exc” pyy (pxx' pyy # 1) or

*

13
*
and G.C. III (y) for By/Bn apply. Note, this general category is

when 1 < 4d < for 2 -1 < <1, G.C. I for B /B
J-; pyy /pyy < pxx ’ x/

identical to G.C. I (x,y) but with the roles of x and y reversed.
Therefore Figure 3.9 with the property of interchangeability of x
and y applied provides the generic graphs for this category.

Figures 3.1la through 3.11d with the property of interchange-
ability of x and y applied provide examples for specific situa-
tions in G.C. IV (x,y).

2p -1
When d4d =1 for 0 < pxx <« XX with pyy # 1 Figure

p
* YYa
3.4a for BX/BE and Figure 3.8b for By/Bn apply, since
2 -1
°yy < 1
p -2 -
Yy °yvy

graphs for these situations are:

(see proof in Appendix B.7). Therefore the generic
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Z:“ (t‘gu\ > i
(L QuePuyd

2 pan (L-9yy) 4
(1 = Pae Suy)

Figure 3.13a

2p -1
When d =1 for —X¥ <, <«—L  Gith p #1
p - XX — 2 -9 YY
. o w vy
Figure 3.4a for Bx/BE and Figure 3.8a for By/B apply. Therefore
n

the generic graphs for these situations are:

+i0 _
N / ______l g‘\(\'gn§ <4
/\ 4= $uefuy
A
OI/G:
gn -1.0 +1.0

Figure 3.13b

20 (1 =-p_) 2p (1 -p )
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Proof:

2p (1 -p ) 20 (L -p )
XX XX ¥ o) (l-oxx) >pxx(1-oyy)

1l - pxxpyy 1- oxxpyy Yy

20 (L -p ) 2p (L -p )
(3.61a) lyy XX, XX X oo >p

= PuPyy 1= PexPyy yy o xx

In a similar manner it can be shown that

20 (1 - pxx) 2pxx(l - pyy)

YY
(3.61Db) LT ®p <p .
1= PPyy 1= 0exPyy Yy xx
When d =1 for N <p <1 with p # 1 Figure
2 -p XX YY

*

13
perty of interchangeability of x and y to Figure 3.13a will pro-

*
3.4b for Bx/B and Figure 3.8a for By/Bn apply. Applying the pro-
vide the generic graphs for these situations.
Figures 3.14a and 3.14b provide examples for the first two
sets of specific situations noted above when d = 1. Applying the
property of interchangeability of x and y to Figure 3.14a pro-

vides an example for the third set of situations noted above.

J Category, Two Predictor Models (J > 2, p = 2)

The preceeding work has considered the case of 2 categories
(J = 2) and 2 predictors (p = 2). To complete the examination of the
two predictor special case, it is necessary to consider the most
general two predictor model, that with J categories (J > 2). It is
reasonably straightforward to show that results for the 2 category, 2
predictor model extend with only slight modification to the J category,

2 predictor model.
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Figure 3.14a.
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Figure 3.14b.
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Consider any category k (k =1,2,...,J), any vector of ob-
served weighting coefficients from category k, ﬁk-j (3 # k,
j=1,2,...,3) and the corresponding vector of latent weighting co-

*
efficients ék-j' Since the model under consideration here is a 2

predictor model,

B3 (x) 8

S B3
Bk'j(y) Bk-j(n)

Result (2.21) modified for the two predictor case (p = 2)

becomes
* w® - u(J)) -b (u(k) - u(j))
) k*3 () 2 -b o '
o £ E*n &n
_£
where b£°n = pgn on .
3 _, (k) (3) k*j (k) (3)
Let aE ug ug and n = M, un
Note
02-b o] =02-( 0_5)( oo)=02(1-2)
£ g*n &n 3 Pen o Penen g Pgn’ -
Thus (3.62a) becomes
k+3
. a /
. . kej n n
kej _ _k°j S; a Q=-—==0
. T A TG P 6 ag Yo, O
Brese) = 2 2 2 = 2 2 :
og(l - p&n) 05(1 - pEn)
g ak-J/0 (u(k) _ U(J))/O
1. keJ _n__n__'n n n
*t AT Tk, T (3 '
ag o Cug m gt /o

Therefore
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ak.j(l - dk.j )

* P
(3.62b) B, ... = —= i ¢&n
k*j (&) 02(1 _ p2 )
13 En
Result (2.17b) modified for the two predictor case (p = 2)
becomes
(k j k j
(“x ) _ u(J)) - b (u( ) _ u(]))
X Xy Y Y
(3.63a) Bk-'(x) = 3
3 o -b o
>3 XY Xy
I
where b =p —_— .
X'y Xy O
Y
Let ak.J = u(k) - u(J) and ak.J = u(k) - u(J), where
x x X Yy Yy Yy
2.3 = agk'J and a- J =a""d by a result comparable to (3.8).
o vp
Note: 1) b =p o /o = (p. Vo p ) (——) (—L)
Xy Xy X y En XX VY Jo )
P n
XX
o
='£'D p .
g Enyy
n
By (3.10), (3.9a) and (3.9b).
o
2 2
2) o - 0=0-(p—xpoc)=o(l-p)
x Xy Xy X Xy oy Xy X Yy Xy
2
%e 2
= (1 - pgnpxxp ).
xX YY

By (3.9a) and (3.10).

Therefore (3.63a) becomes



£ n on Enpyy
Bregix) = 2
£ 1 -
oxx(1 ognpxxpyy)
k*j
X 2 7o
- : P, p._)
xx £ ak'J/0 En' yy
_ g 3
o2(1 - p2 )
£ Pen s yy
kej k*j
p (L -4 p_p )
(3.63b) B, . xx & & &
keJ(x) 02(1 -p. PP
13 En xx yy
kej
s a /
where dk J L - I .
2 ak.J/o
g 13
*
The ratio of interest Bk-j(x)/8k°j(€) becomes
9 P ko' ko'
/8* P ex ag J(1 - dg Jpgnpyy) , ag J(1 - dE Jpgn)
B, . . =
kej(x)" "ke3F(E) 2. _ 2 25,2
Ol = PPy Ol = pgy)
2 ke*j
(3.6 ; /6 ) (1 pgn)oxx(l dg °€n)
’ ReIOTTRTE) g a2y o - ar T )
En xx yy £ "&n
Ko s ak'j/o (u(k) - u(j))/o
where d J .2 n - n n*.
2 LRV N O RN LR
a £ Mg He £

13

Note the close similarity between expression (3.64) for the

J category, 2 predictor model and expression (3.12) for the 2 cate-
k*j
€

in (3.64) and dg in (3.12). But note that dg in (3.12) is based

gory, 2 predictor model. The only difference is in the use of d
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on a comparison between predictor means in the only two categories

in the model whereas dk.J in (3.64) is based on a comparison between

3

predictor means from some two of the J categories.
Thus in the J category, 2 predictor model any ratio of the

form B /B

K+ 3 (x) for j,k=1,2,...,3 and j # k, will have a

*
k*j ()
distribution which corresponds to one of the General Categories for

. k*j
d d the values of d d h th
x depending on the values o £ P s’ pyy an p&n' where the

dz.J value can be treated as a value of dE from (3.12), since
Z.J will take on values -= < dE‘J

d < 4o just as d does.

3

A generalized property of interchangeability applied to (3.64)
*
. . j = 2,... i
k-J(y)/Bk'J(n) for 3,k 1,2, ,J with

j # k which is an extension of (3.14).

produces the ratio B8

. - gk°3
= @ pgn)pyy(l dn p&npxx)
(3.65) B, .., /B, .. = :
k=3 {y)" k-3 () (1 - 02 PoPoy) (1 - dk.Jp )
En" xx"yy n é&n
s (uék’ - u(j))/o§
where a = L .
" (u(k) - u(J))/O
n v n

Therefore all results which apply to (3.14) can be easily extended to
apply to (3.65) with d}r:.j in (3.65) taking the place of d  in
(3.14).

Therefore all results noted earlier for the 2 category, 2 pre-

dictor model extend simply to apply to corresponding cases in the J

category (J > 2), 2 predictor model.
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Section D: Summary

The purpose of this chapter was to examine the effects of
errors of measurement on the weighting coefficients of a Latent Random
Predictor Quantal Response Model, given by (2.19) for the most gen-
eral case. The approach to the problem involved selecting an
arbitrary vector of weighting coefficients associated with some
arbitrary category of the criterion variable and examining the in-
dividual weighting coefficients associated with each predictor.

From an arbitrary vector of latent weighting coefficients
associated with some category of the criterion from the model given
by (2.19), an individual latent weighting coefficient associated with

d

*
same latent predictor T® was selected, call it Bq. From the

corresponding vector of observed weighting coefficients associated

with the same category of the criterion, the individual observed

weighting coefficient associated with observed predictor xq was

d d

selected, call it Bq. Note that X and T are related through

q d

the measurement model (2.22) such that x¥ = 13 + E? where E is
the error portion of the observed predictor. Then the ratio Bq/B;
was examined. When Bq/B; > 1, then the observed weighting coeffi-
cient (Bq) is an overestimate of the latent weighting coefficient
(6;). When Bq/B; = 1, then Bq is an exact estimate of B;. When
Bq/B; < 1, then Bq is an underestimate of B;.

The research of this chapter included one and two predictor
models only. No general results applicable to all models were dis-

covered and the approach used in this chapter proved extremely dif-

ficulty for use with models involving more than two predictors.
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For the one predictor models (p = 1) there is only one com-
ponent in each vector of weighting coefficients. Result (2.28)
indicated that for all one predictor models the value of the observed
weighting coefficient will be an underestimate of the value of the
latent weighting coefficient by a factor equal to the reliability of
the single predictor variable. This result holds true for every pair
of related observed and latent weighting coefficients associated with
any category of the criterion. The only exception to this result
occurs when the latent weighting coefficient is zero. 1In that case
the observed weighting coefficient was also shown to be zero.

For the two predictor models (p = 2) no universally applicable
result was found, such as that produced for one predictor models. The
approach for the two predictor models involved a change to simplify
the notation and make it consistent with the notation used by
McSweeney and Schmidt (1974). Under this simplification the observed
predictors are noted as x and y with the corresponding latent pre-
dictors being § and n, where x = § + e, and y=n+ e in an
adaptation of the basic measurement model (2.22). The major work for
the two predictor model was done for the two category (J = 2) case.
All results for this simplest case of the two predictor model were
then shown to extend easily to the general case (J > 2) of the two pre-
dictor model. In the 2 category, 2 predictor model the observed

weighting coefficients were denoted Bx and By while the
*

£

Therefore, the ratios which were examined as they relate to one were

* *
Bx/Bg and By/Bn. Each of these ratios were shown to be functions

*
corresponding latent weighting coefficients were denoted B and Bn.
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of 4, p P and p . d 1is a ratio of the differences between

En’ "Txx YY
category means for the two predictors where the differences are in
standardized latent units. See expression (3.6b) and the ensuing

narrative for the definition and explanation of d =4_. is

£" Pen
the correlation between the latent predictors. P ex and pyy are

the predictor reliabilities for observed predictors x and vy
respectively, and indicate the presence of errors or measurement when
either, or both, Pex ©OF pYY are less than one.

In Appendix B.l, part B, it was shown that Bx/B; and
By/s: need to be examined only for d > 0. Results for 4 < 0 can
be derived simply for comparable results when 4 > 0 by the use of
expressions (3.16a) and (3.16b).

Since there were no universally applicable results discovered,
the work in thi; chapter identified four general categories of situa-
tions associated with Bx/B; and ey/e:, where Bx/B; and By/s:
were considered as functions of pEn for fixed values of 4 (4 > 0),
I and pyy. Within each of these four joint general categories,
defined in Section C under sub-heading VII above, the behavior of the
ratios Bx/B; and By/B: follow the same general pattern for all
situations (i.e., values of 4, P ex and pyy) included in the category.
In addition to the four joint general categories three categories re-
lated to the special case when 4 = 1 are also identified in Section
C, sub-heading VII.

Three results do apply across all 4 joint general categories

and the three special case categories. First, when there is no

correlation between the latent predictors, i.e., pgn = 0, then each
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ratio is equal to the reliability of the predictor. That is, when
* *
=0 = and = . This result applies to all
Pen ’ Bx/Bg P ex By/Bn Pyy PP

* *
situations when B and Bn are not equal to zero.

€

Second, when the correlation between the predictors, p, ,

En

and the ratio of standardized category mean differences, d, have
opposite signs then the observed weighting coefficient will under-
estimate the latent weighting coefficient for both predictors, i.e.,

* *
<1 d < 1. In thi se, i.e., d < 0, for fixed
Bx/BE an By/Bn n this case, pgn ’

d, o and o the amount of the underestimate increases as the
xx Yy

magnitude of the correlation increases. That is, if 4 > 0 then as

* %*
p takes on values nearer to -1 the ratios Bx/sg and BY/Bn will

En

become smaller, approaching zero as p approaches one.

En

In Appendix B.9 the interpretation of dp is given as a

gn
ratio of the slope of the pooled within category regression line of

£ on n over the slope of the line joining the midpoints of each
category distribution of £ and n. The potential for occurrence of
a negative ratio of slopes is discussed under Derivation 3 in Section
C, subheading VI above. Although in many situations the ratio of

slopes will be positive (therefore dp n > 0) it is possible for the

13
ratio of slopes to be negative (i.e., dpEn < 0).

Third, Derivation 2 in Section C, sub-heading VI above
demonstrates that it is impossible for both observed weighting co-
efficients to simultaneously overestimate the latent weighting co-
efficients for the same set of values for 4, p, , p and p . At

En  xx YY

most one observed weighting coefficient will be an overestimate of the

latent weighting coefficient in any given situation. In addition
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Derivation 1 in Section C, sub-heading VI above indicates that for the
two predictor model if the observed weighting coefficient for one pre-
dictor is equal to the latent weighting coefficient for that pre-
dictor then the observed weighting coefficient for the other predictor
is an underestimate of its corresponding latent weighting coefficient
by a factor equal to the reliability of this second predictor. That
is, if Bx/B; =1 then By/B; = pyy or if By/B; = 1 then
Bx/Bz = P The converses of these statements are true only when
®en # 0.

An interesting result which occurs only for joint general
categories one and two [G.C. I (x,y) and G.C. II (x,y)] occurs for

values of »p in an arbitrarily small neighborhood of 4 (in these

En

categories d is positive and less than one). For values of Pen
* *
arbitrarily near d the magnitude of BY/Bn' i.e., IBY/BnI is un-

*
boundedly large. When pEn = d the ratio By/en is not defined since

* *
B = 0. A similar situation occurs for Bx/BE

n
G.C. IV (x,y) for values of »p near 1/d (in these categories

in G.C. III (X,y) and

En

d exceeds one hence 1/d is less than one). In this case when

* *
= 1/d the ratio B /B is not defined since B8_ = 0.
Pen X" £
The importance of this result occurs in interpreting the
*
effects of errors of measurement using Bx/BE when pEﬂ is near 1l/4
*

or using By/Bn when pEn is near d. Consider some situation from

G.C. I (x,y) where 4, p and pyy are fixed. Here d will have

XX
some positive value which is less than one. For values of pgn which
*
are arbitrarily close to d, IBy/Bgl will be arbitrarily large. How-

ever, depending on the specific value of the difference between the



151

category means for predictor y, the magnitude of the latent weight-

*
ing coefficient will be extremely small, i.e., IBnI will be near zero.
In this situation the magnitude of the observed weighting coefficient,

IB |, may also be quite small even though the ratio IBy/B:I may be

Y
relatively large. For example, for some pEn near d,B: might have
a value of .005 while By might be .05. In this case By/B; = 10
which represents a rather large factor. Even though By is an over-
estimate of 8: by a factor equal to 10, the magnitude of the over-
estimate, By - B; = .045, is relatively small and in most interpreta-
tions a difference of this size for weighting coefficients of this
magnitude is meaningfully insignificant. For values of pEn near

4, B: must be near zero. However, there is no necessary reason why
By need be near zero also. In fact the difference 8 - B: may be
significantly large for some situations.

Therefore, the value of By/B: for values of pEn near d
and the value of Bx/B; for values of pgn near 1l/d need to be
interpreted with great care. A relatively large ratio may mask two
rather small weighting coefficients which may have a neglible practical
difference in magnitude. Or a large ratio may represent a significant
discrepancy between By and B .

n

Note however that when o = 1/d then the value of Bx con-

gn
sists totally of effects of errors of measurement since in this case
B; = 0 indicating no relationship between the latent predictor and
the probability of classification into category one of the criterion.
See Appendix B.9 for an interpretation of this result in terms of the

ratio of within group to between group slopes. The same conclusion

*
applies for BY as an estimate of Bn when p&n = d.
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Cochran (1968) reported results for the effect of errors of
measurement on regression coefficients in linear regression models.
Although the distributional assumptions included in linear regression
models are different than the distributional assumptions included in
random predictor quantal response models, the expression for a vector
of regression coefficients has a structural similarity to the ex-
pression for a vector of quantal response weighting coefficients.
Because of this structural similarity between vectors of regression
coefficients and vectors of quantal response weighting coefficients
it is not surprising that some of the results reported from this
research for quantal response weighting coefficients have a similarity
to results reported by Cochran (1968) for regression coefficients.

For the one predictor case Cochran (1968; p. 652) demonstrated
that the observed regression coefficient is an underestimate of the
latent regression coefficient by a factor equal to the reliability
of the predictor. An identical result for the relationship between
the observed quantal response weighting coefficient and the latent
weighting coefficient is reported from this research.

In the two predictor situation where only one predictor is
subject to error Cochran (1968, p. 656) provides an expression for the
observed regression coefficient as a function of the latent regression
coefficients and other parameters describing the two predictors. An
identical expression also exists for the observed quantal response

weighting coefficient as a function of the latent weighting
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coefficients and other parameters describing the two predictors.

Although the structures of the expressions for the vectors of
regression coefficients and the vectors of quantal response weighting
coefficients are similar, the derivations of the coefficients, which
are based on the distributional assumptions of each model, are dif-
ferent. Thus it is also not surprising to discover that some results
reported by Cochran (1968) for regression coefficients do not have
exact counterparts among quantal response weighting coefficients. For
example, in the two predictor situation where the reliabilities of the
two predictors are equal, Cochran (1968, p. 656) reported that the
ratio of the observed regression coefficient to the latent regression
coefficient for either predictor will be somewhat greater than the
reliability of the predictor when the correlation between predictors
is positive. This conclusion is not true, in general, for ratios of
quantal response coefficients. One quantal response counter-example
occurs for pxx = pyy = .8, 4= dE = .2 and pgn = .,3. In this case
Bx/B; = ,782 and By/B: = .310 and both ratios are less than the
common predictor reliability even though the correlation between pre-
dictor is positive.

Cochran (1968, p. 655ff) also reports that the observed
regression coefficient, in a multiple linear regression, associated
with some one predictor can be expressed as a linear function of the
latent regression coefficient associated with that one predictor and
the latent regression coefficients associated with any other predictors
that are correlated with that one predictor. For the multiple pre-
dictor quantal response model no general result comparable to this

result was found.
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Thus, although there are similarities in the results reported
by Cochran (1968) for the effects of errors of measurement on the
regression coefficients of a linear regression model and the results
reported from this research for quantal response models, the con-
clusions for the two models are not identical.

For the two predictor models (p = 2), reviewing the generic
graphs and the tables of results which define each of the four joint
general categories and the three categories of the special case 4 =1,
clearly indicates that for every situation where at least one predictor
is less than perfectly reliable, i.e., either pxx or pyy is less
than one, the observed weighting coefficient represents either an over-
estimate or an underestimate of the latent weighting coefficient for
at least one of the predictors.

For the one predictor models (p = 1), the observed weighting
coefficient is always an underestimate of the latent weighting coeffi-
cient by a factor of the reliability.

Therefore, for both one and two predictor models the presence
of errors of measurement in the predictor variables does have an
effect on the determination of the true relationship between a pre-
dictor and the probability of classification in a given category of a
criterion. 1In all cases where errors of measurement are present in
the predictors, use of the observed weighting coefficient as an
estimate of the latent weighting coefficient will result in an in-
correct estimate. This applies for at least one if not both pre-
dictors in a two predictor model and for the single predictor in a one

predictor model. Determination of whether the discrepancy between the
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observed weighting coefficient and the latent weighting coefficient
is large enough to be of practical significance for situations which
typically occur in quantal response applications is beyond the scope
of this research.

Since the use of observed weighting coefficients as estimates
for latent weighting coefficients does not provide exact estimates,
the work presented in chapter 4 will give a reformulation of the
Observed Random Predictor Quantal Response Model (2.2) in terms of
parameters from the Latent Random Predictor Quantal Response Model
and parameters describing errors of measurement. The associated
maximum likelihood estimation procedures which allow the estimation
of the latent weighting coefficients from the observed data will also

be presented.



CHAPTER 4

Section A: Introduction

The work in chapter 3 consisted of a theoretical, analytical
comparison of the weighting coefficients from two gquantal response
models. In the ObservedbRandom Predictor Quantal Response Model (2.2)
the vectors of weighting coefficients are defined in terms of the
variances of the observed predictors which include the error variances.
In the Latent Random Predictor Quantal Response Model (2.19) the
vectors of weighting coefficients are defined in terms of the
variances of the latent predictors which include no error variance.
The relationship between the two models is provided by the classical
measurement model (2.22).

The relationships of interest between the predictors and the
criterion are given by the vectors of latent weighting coefficients
from (2.19). However, most variables encountered in practice which
are reasonable candidates for use as predictor variables contain some
errors of measurement. Thus the model (2.19) based on the avail-
ability of predictors with no errors of measurement will not typically
be applicable. Hence the estimation of the latent weighting coeffi-
cients must come from the model (2.2) for observed predictors.

For the work to be presented below the Observed Random Pre-

dictor Quantal Response Model (2.2) will be reformulated in terms of

156
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parameters from the Latent Random Predictor Quantal Response Model
(2.19), and parameters describing errors of measurement. Then the
maximum likelihood procedures associated with the reformulated model
for estimating the latent parameters will be described. The estimates
of the parameters of the Latent Random Predictor Quantal Response
Model can then be used to produce estimates of the vectors of latent

weighting coefficients.
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Section B: Reformulation of the Observed Random Predictor Quantal
Response Model

The most general case of the Observed Random Predictor Quantal
Response Model for J categories of the criterion (J > 2) and p
observed predictors (p > 1) is given by (2.2) and repeated here for

convenience.

For some category k (k =1,2,...,J)

J
Pr{y = k|x} =P, = 1/[1 + jil exp{-(o) ; + g 5 X)1]
j#k
where
P. . .
e gy - k)' -1 (k) (3)' -1 (F)
ey T TG TR B T T TRy
and
Z -1, (k) _ (3 . C v oo
ék-j L (Ex Ky ) for 3 #%k, j,k=1,2,...,J.

Applying the classical measurement model (2.22) together with
some of the properties of the classical measurement modél (2.24a) and
(2.24b), to (2.2) produces a reformulation of the Observed Random
Predictor Quantal Response Model in terms of parameters from the
Latent Random Predictor Quantal Response Model (2.19) and parameters

describing errors of measurement.

For some category k (k =1,2,...,J)

J
(4.1) Pr{Y = k|x} =P, = 1/[1 + jil exp{-(ay 4 + B,y X}
i#k
where
P. : .
o gy -1 (k)Y 2,-1 (k) _ (3)' 2.-1 (3)
% ln(pk) Fhp @+ ¥ T Bpo (@ +¥7) Ty
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and

B, .. = (o + wz)'l(gék) - géj)

ke ) for j#%k, j3,k=12,...,0.

Applying the expanded measurement model (2.26) together with
some of the properties of this model, i.e., (2.27a) and (2.27b) to
(2.2) produces another reformulation of the Observed Random Predictor
Quantal Response Model in terms of parameters of the Latent Random
Predictor Quantal Response Model (2.19), parameters describing errors
of measurement and paraméters allowing for different scales of measure-
ment among the observed predictors. This reformulation incorporates

the use of replicate observed measurements for each predictor.

For some category k (k =1,2,...,J)

J
(4.2) pPr{y = klg} =P = 1/[1 + jil exp{--(ak.j + gi-j X) 1]
j#k
where
p.
. NS PSR ¢ S I C2.-1, (k)
.3 ln(pk) - 5{(AHT ) (AGA + ¥°) (AgT )
- g ment + ¥ a3y
and
By.j = (hoA' + Wz)-l(Agék) - Agéj))

for j #%k, j,k=1,2,...,3.

The work presented below will describe the maximum likelihood
procedures associated with the Observed Random Predictor Quantal
Response Model for estimating the latent parameters. The term "latent
parameters" as used here and in the work which follows includes the

parameters from the Latent Random Predictor Quantal Response Model,
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the parameters describing the errors of measurement and for (4.2) the
parameters which indicate a scale factor for each observed measure-
ment. The term "observed parameters" includes the elements of I
and R;i) (i=1,...,3) as found in expression (2.2) of the Observed
Random Predictor Quantal Response Model without application of any
measurement model. That is, observed parameters, from I and E;i)
(i=1,2,...,J), represent population variances, covariances and means
of the observed predictors with no consideration of latent predictors
or errors of measurement.

The initial work will determine the conditions for the existence
of estimates of the latent parameters and thus will demonstrate the
need for (4.2) instead of (4.1) as the reformulation of the model

(section C). Then the estimation procedure associated with reformula-

tion (4.2) of the model will be described (section D).
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Section C: 1Identifiability of the Models for the Covariance Matrix
and Vectors of Category Means of the Reformulated Observed
Random Predictor Quantal Response Model

Before estimation procedures associated with either (4.1) or
(4.2) can be described, it is first necessary to determine the con-
ditions under which estimates will exist.

Consider some model vy = £(8) where y and 6 represent
matrices of parameters and the elements of Yy are known to be

estimable.

Definition

(4.3) The parameters of 0 are said to be identifiable if each

parameter in 6 can be uniquely defined as a function of

parameters of Y.

When the parameters of some model are identifiable then the parameters

can be estimated. Thus in order to describe estimation procedures for

the parameters of the model for I and E;l) (i=1,2,...,J3) as

given in (4.1), Z = ¢ + ?2 and R;i) = Eéi), or in (4.2),

L = AOA' + Wz and 2;1) = Agél), it is necessary to show that the

latent parameters are identifiable. That is, it is necessary to
show that each latent parameter can be expressed uniquely as a func-
tion of observed parameters.

If the latent parameters for models for I and Eii)
(i=1,2,...,3), whether given as in (4.1) or (4.2), are to be
identifiable, definition (4.3) clearly implies that there must be at

(i)
X

least as many observed parameters in I or as there are dis-

tinct latent parameters in the expression of the model.
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Thus the approach to determining the identifiability of any
model can begin by checking a simple counting condition. If there
are at least as many observed parameters in I as there are latent
parameters in the model for I then it is possible, but not guaranteed,
that the model may be identified. However, if there are more dis-
tinct latent parameters in the expression of the model than there are
observed parameters, the model is not identified and thus unique
estimates of the latent parameters do not exist.

Before proceeding with the detailed examination of identifi-

ability for the full models of (4.1) and (4.2) consider two examples.

Example 1. Let I be a covariance matrix where

— -
g o]
r =] x x'x?
2%2
g g
szl X2
— -/
and let the structural model for I be I = ¢ + Wz where
2x2 2x2 2x2
(— ) — N
o o] 02 0
2
T1 TlT 5 El
g (o] 0 (o]
L T1T2 T2 EZJ .
- —

There are 3 distinct observed parameters in [, i.e.,

2 .
g ,, O and o since o =g . There are 5 distinct
1 : 2
X X2 xlx X2Xl xlxz
2 02 5 o2
’ ’ ’
Tl T2 Tsz E

latent parameters in the model for I, i.e., o 1

2 . c s
and o© 2" Thus, since there are more distinct latent parameters than
E

observed parameters, this model is not identified and unique estimates

of the latent parameters do not exist.
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Example 2. Let I be a covariance matrix where

(— i
o g
1 2
I = xlx
2x2 5 02
X2X1 X2
— -
and let the structural model for I be I = ¢ + W2 where
2x2 2x2 2x2
-
r-.02 g 02 0
1 12 E
T TT 2
b = 5 and ¥y = 5
2%2 o 1.2 Lo 1 2x2 0 OE
TT T -
L 3

s . . 2
There are 3 distinct observed parameters in I, i.e., © 1’
X

022 and o 1 2° There are also 3 distinct latent parameters in the

X XX

2 2 . .
model for I, i.e., © 1’ © 1 2 and oE. Thus the preliminary counting
T TT

requirement is satisfied. Now consider whether the latent parameters

can be uniquely defined as functions of the observed parameters.

— - — -
o o o + 0 o
Xl xlxz T1 El TlT2 2
=0 + Y
L= o] 02 = g Ao + 02
x2xl x2 T1T2 Tl E
L - -
2 2 2
i.e. g 1 =0 1 + 0
X T
o = ko + 0
X2 T1
and g =0 =0 .
x1X2 x2xl Tsz

Therefore,
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o = 2(o -0 .)
Tl X1 x2
2 2
and o_ =0 - 2(o -0 ,) =20 -0 .
E xl xl x2 x2 xl

The definition for identifiability (4.3) is satisfied for each
latent parameter in the gxpression of the model for I. Since the
model for I is identified, estimates of the latent parameters will
exist. The two examples above pose two potential models for the same
Z, the second of which is identified while the first is not. A more
detailed discussion of identifiability of the models for the general
covariance matrix of this research will now be presented.

Consider a quantal response model with V observed predictors.
Then I, the covariance matrix of observed predictors, assumed homo-
geneous across all categories, is a V x V matrix. Since I is
symmetric, only the lower triangular portion of I (including the

diagonal) will contain distinct observed parameters. There will be

_V(V + 1)

1+2+3+...+V >

distinct observed parameters in I. For

some model for I, let r be the number of distinct latent parameters

vV(V + 1)

in the model. If r > >

then there are more distinct latent

parameters in the model for I than there are observed parameters

V(V + 1)
2

the counting condition is satisfied. That is, there are fewer distinct

in I and the model is not identified. If, however, r <

latent predictors in the model for I than there are observed para-

meters in I. Thus if each latent parameter can be expressed
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uniquely as a function of the observed parameters then the model
is identified.
The question now arises about whether or not the model for
L which results from applying the classical measurement model (2.24b),
as in (4.1) above, is identified.
Recall, if there are p predictors, then I is a p x p

symmetric matrix. The model for I (2.24b) is:

2
r = ¢ + Vv

pXp pPXpP  P*P
where ¢ is the covariance matrix of the latent predictors, and Wz
is a diagonal matrix of error variances for the p predictors.

From example 1 above it was shown that when p = 2, this model
for I 1is not identified. The general model for I with p pre-
dictors is also not identified for any value of p. There are
BiEai;ll. observed parameters in I. There are Eigii_ll distinct
latent parameters in ¢ and p distinct latent parameters in W2
for a total of r = EiBEi—ll-+ p distinct latent parameters in the
model for I. Thus there are more distinct latent parameters than
observed parameters so the counting condition is not satisfied. Hence
the model for I based on the classical measurement model (2.24b) and
given in (4.1) is not identified.

Consider now the model for I based on the expanded measure-
ment model (2.27b) and given in (4.2). This model for L, I = A¢A' + WZ,
allows for the use of replicate measures, i.e., for multiple observed
replications for a single latent predictor. This type of replicate

measures is what Lord and Novick (1974) call nominally parallel measures.
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2
In the model for I, I = A ] A' + V¥, there are p
vxv Vxp pxp pxV vxv

latent predictors and V observed replications associated with the p

V(V + 1)

latent predictors by (2.26). Thus there are 5

observed para-
meters in I. There are EiEEi;ll distinct latent parameters in ¢,
V - p distinct latent parameters in A, and V distinct latent para-
meters in WZ for a total of r=V - p + 21231—11-+ V distinct
latent predictors in the model for I.
Note 1: There are V - p latent predictors in A since

each of the V observed replications is assigned

a scale factor but at least one observed replication

associated with each of the p 1latent predictors

is assigned a scale factor of 1 which defines the

metric of the true score.

Note 2: The counting condition will be satisfied when

v(v2+ 1) >V -p+ E‘E; 1) + V.

Consider the single predictor (p = 1) models. Here assume that

there are V observed replications related to the single latent pre-

dictor by (2.26). Thus the model for ¥ becomes r = A oi A + Wz.
Vxv Vx1 1xv VxVv
V(V + 1) .
There are - observed parameters in I. There are V -1

c s . . . 2
distinct latent parameters in A, 1 latent parameter in ¢, i.e. O

and V latent parameters in Wz for a total of r = (V-1) + 1 +V =2V

distinct latent parameters in the model for I. The counting condi-

VIV + 1)

tion will be satisfied if >

> 2V, that is if V > 3. Therefore
there must be at least 3 observed replications of the single latent

parameter to satisfy the counting condition.
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Assume there are a total of K (where K > 3) observed

replications for the single latent predictor, i.e., X' = (X1 x2 . Xx).
The model for I is
2
(4.4) I = A ¢ A"+ ¥
KxK Kx1 1x1 1xK KxK
where
At =[1 A e AL]
1XK 2 k
¢ = oi
1x1
and
Wz = diag[o2 02 P S
1 2 K
KxK E E E
K +
For this case V = K > 3. Expression (4.4) contains —155——lL
observed parameters in £ and 2K latent parameters in the model for
L where Eigai—ll-z_ZK since K > 3. Expression (4.4) produces
EiEEi_lL simultaneous equations of the form
2 2
zij = f(A, O ¥)

for i,j =1,2,...,K. Solving each of these expressions for latent
parameters as functions of the observed parameters produces: (See
Appendix C.1 for details)
o] .
i
A, = X' for i=2,3,...,K-1

i o
K 1
XX

g
xx?

K o

X2X1
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K
52 = xt B
T o K 2
X X
g o
. n ) X2X1 xle
1 .1 o
E X XKX2
g e
2 2 et xixt )
o =0 T for i=2,3,...,K-1
E X xle
and
o o
K
. = 02 XKX2 X Xl
K K o :
2
E X X x1

Thus a one predictor model is identified if there are at least
three observed replications for the single latent predictor. Thus
there will exist estimates of the latent parameters.

In this model there are K(K + 1)/2 observed parameters in
I and r = 2K distinct latent parameters in the model for I. When
K = 3, there are 6 observed parameters and 6 latent parameters and
since the model is identified it is said to be "just identified".

When K = 4, there are 10 observed parameters and 8 latent parameters
and the model is said to be "over-identified". When K > 4 the model
will be over-identified. When K = 2, there are 3 observed para-
meters and 4 latent parameters and the model is not identified. The
model with K = 2 is also said to be "under-identified".

Now consider the general model with p predictors (p > 1).

It will be shown that in order for the general model with p pre-
dictors to be identified each predictor must have at least two

observed replications.
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Suppose there are p predictors. Appendix C.2 demonstrates
that there must be at least p + 2 observed replications, i.e.,
V > p + 2, in order for the counting condition to be satisfied.
Therefore some one predictor must have at least three observed replica-
tions or at least two predictors must have two observed replications.
Consider a model with p predictors. Let some predictor
i (i=1,2,...,p) have exactly one observed measurement, i.e.,
K, = 1. Let each of the other p - 1 predictors have Kj observed

1

replications where Kj >1 for j=1,2,...,p with j # i, such that

p
V=1 Km >p+ 2.
=l 1 10 i)
If X' = [xl cee X beeen Xpbe :xﬁ oo Xi ] represents
1xv 1] : | [ p

the observed replications of the p predictors then the model for
I is
(4.5) I = A o A"+ Wz .
VxV Vxp pxp pxV VxV

For this model there are V(V + 1)/2 observed parameters in I. There
are r = (V - p) + ELEEI_lL +V =2V + 2125:—11-' distinct latent para-
meters in the model. Since V > p + 2 then V(V + 1)/2 > 2V + EiEil_ll
and the counting condition for identifiability is satisfied.

Expression (4.5) produces V(V + 1)/2 simultaneous equations
of the form zij = £(A, 9, Wz) for i,j =1,2,...,V. For the pre-

dictor with only one observed replication, XT

1’ the equation for
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The parameters 02i and ozi occur together and only in the equa-

T El

2
tion for ozi (4.6). Therefore a solution for ozi apart from o i

E
xl T 1

as a function of observed parameters will not exist.

Thus the definition of identifiability is not satisfied for
the model for I as given by (4.5) if even one predictor has only
one observed measurement. A more detailed algebraic exploration of
this situation is contained in Appendix C.3.

Consider now a model with p predictors where each predictor
has at least two observed replications, i.e., Ki >2 for i=1,2,...,p.
For p>1, V= .g Ki >p + 2 and thus the counting condition for
identifiability ;Iil be satisfied. The model for I here has the
same appearance as (4.5) only the internal structure differs.

(4.7) T o= A & A+ v,
Vxv VXp pxp pxV Vxv

Expression (4.7) produces V(V + 1)/2 simultaneous equations
of the form zij = £(A, 0, Wz) for i,3 =1,2,...,V. There are
r=V-p+ ELEEi—lL + V=2V + 2£E§:—ll latent parameters in the
model for I. Each of these latent parameters can be expressed as
a function of the observed parameters of I. See Appendix C.3 for
the details. The results are presented below.

The V - p parameters of A are:

921

L XX
A, = —d for j =2,...,K
3 o 21 1

XX

(K1 - 1 number of parameters)
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A, = for i=2,...,p, j = 2,...,Ki

P P
(z (K, -1) = ¢ Ki - (p-1) number of parameters)
p
where K, -1+ LK, - (p-1) = I K, - p=V-p.
. i . i
i=2 i=1

The E( 2+ 1) parameters of ¢ are:

g . =0, . for i=1,2,...,p with 1 # j

=1,2,...,p

.
I

(2123:—ll number of distinct off-diagonal elements of ¢)

1
X2
(1 diagonal element of @)

931941
X% 2% .
¢¢, = ————= for i =2,...,p
1 U.l
X Xl
(p = 1 number of diagonal elements of ¢)

where EiEE:—ll-+ l+p-1-= EiEE:;—l-.

The V parameters of Tz are:

o o
Xle szl
2 2 271 171 2
g , =0 -—— (1 element of vy )
et % 921
1 1 xlxl
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for i=2,...,p

o o]
2.11\2 1.1 2.1
2 2 X1X' X2X1 xlxl .
o] =0 - |l for j=2,...,K
1 1 o] o 1l
E’, X x2x1 x2x1
J 1%1 172

2 fo ., . 0,

il
X%

for i 2,...4p

j = 2,...,Ki

P
(I (K, = 1) number of elements of Wz)

p P

-1)+ I (K, -1)=p+ LK -p=
. i .
i=2 i=

where 1 + (p - 1) + (K

Thus if each of the p predictors has at least two observed
replications then each latent parameter in the model for £ (4.7) can
be expressed as a function of observed parameters of I. Thus the
model (4.7) for I is identified, therefore estimates of the latent
parameters will exist.

Consider now the model for the mean vector of observed
replications for some category i (i =1,2,...,J3), i.e., géi).

Applying the expanded measurement model (2.26) produces the following

model for Rél):
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(4.8) E}(‘i) = vﬁ
p

for some 1i=1,2,...,J.

(1)
Ep
vx1l px1
There are V observed parameters in H;l). There are V - p latent

) for a total of

parameters in A and p latent parameters in Eél
r=V -p+ p=V distinct latent parameters in the model. Thus the
counting condition for identifiability is satisfied.

Because of the special nature of A (2.26), it is clear that

A'A will be a diagonal matrix of full rank i.e.

— X =
12
(4.9) A A =11+ ¢ (Ai) 0 e . . 0
pXV Vxp i=2 K
2 2a
0 1+ T (A)) . .. 0
. i
=2
. : - . Kp
L © 0 ...1+):(AEi’)a .
i=2 ~
K,
i sa
Note: A' A will be less than full rank if and only if I (A )Y=-1,
. i
pxV Vxp i=1

for some predictor ) (3 =1,2,...,p). This is impossible.

Therefore A'A will be of full rank p and thus will possess an

inverse, (A'A)-l.

Thus it is possible to express Eél) as a function of E;I)

(i=1,2,...,3) and A, i.e.,

@10 i = amTag® fer i=1,2,..,0

Since the latent parameters of A can be expressed as a
function of observed parameters in I based on the work for

I above, result (4.10) indicates that the latent parameters in the
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mean vector for any category can be expressed as functions of ob-
served parameters from that same category involving parameters from

the covariance matrix and the mean vector for the observed replications.
Thus the definition for identifiability is satisfied for géi)

(i=1,2,...,J3).

Therefore since the models for I and B(l)

X i=1,2,...,J)

as used in reformulation (4.2) are both identified, it will then be
possible to produce estimates for all the latent parameters in the
reformulation (4.2). And using appropriate estimates it will be
possible to construct an estimate for the latent weighting coeffi-
cients. This will be discussed in greater detail in Section D below
as part of the description of the maximum likelihood estimation pro-
cedures associated with the reformulated model (4.2).

Before beginning the discussion on estimation procedures one
additional topic relative to identifiability needs to be discussed
briefly. Consider some non-identified model which expresses the co-
variance matrix I in terms of latent predictors, e.g., the model

of example 1 above where I = ¢ + W2 with

(2 ) (> R (> 0”
o [e) g g (o)

1 1.2 1 1.2 1

T
g =| ¥ XX 5= TT and v2 =| E i

g 02 g 02 2

2t 2 12 o2 0 0.2
L_ J L J - -/

It was shown above that this model for I is not identified.

A question which arises relative to non-identified models such
as those in example 1 is whether it is possible to modify or extend
the model in some fashion so that the modified or extended model is

identified.
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Two general approaches to the modification of non-identified
models to produce an identified model are possible. For convenience,
these two approaches will be presented in reference to models for the
covariance matrix I as considered in this research.

The first approach attacks the problem of the non-identified
model for I by attempting to increase the number of observed para-
meters in I without producing an equivalent increase in the number
of latent parameters in the model. This is done by the use of multiple
observed replications for each latent predictor.

The model for I based on the expanded measurement model
(2.27b) is an example of the use of this approach. The model for
L based on the classical measurement model (2.24b) was not identified.
By the appropriate inclusion of replicate measures an identified model
(2.27b) for I was produced. As noted above, it is not sufficient
to indiscriminately include enough replicate measures to satisfy only
the counting condition for identifiability. The pattern of replicate
measures to be included in order to achieve identifiability of the
model is crucial.

Since this approach was discussed in detail above for models
for I it will not be pursued further here.

The second approach attacks the problem of the non-identified
model for I by attempting to reduce the number of distinct latent
parameters in the model for I. This is done by introducing con-
straints on the latent parameters. The process for introducing con-
straints on the latent parameters is to require that one or more of

the latent parameters be given as unique functions of other latent
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parameter#, thus reducing the number of distinct parameters in the
model. Typically the constraints involve requiring two or more latent
parameters to have the same value.

Example 2 above is an example of the use of constraints on the
latent parameters to achieve identifiability. The model for example
2 can be produced from the model for example 1 by introducing the
following constraints on some of the latent parameters of the model

for example 1:

let 022 =1/2 021 and og = 021 = 022 .
T T E E
i.e.,
— — =
02 o ) 02 0
T2 T1T2 , E
¢ = and Yy = .
o Hozl 0 02
Tsz T E
L J — -

By introducing these constraints on the latent parameters a non-
identified model is modified into a model which is identified.

A word of caution is necessary here. The constraints to be
imposed on the latent parameters of a model for I should be reason-
able in terms of the situation to be analyzed. To introduce con-
straints which have no support in the situation merely to produce
an algebraically identified model will provoke problems in the
interpretation of results.

Since the number of possible combinations and types of con-
straints can be myriad even in a relatively simple model for I,

further discussion for this approach will center on a few specific



177

forms of constraints which may be reasonable in some situations under
analysis.

Consider the single predictor situation (p = 1). With only
one observed measurement of the single predictor, the only type of
constraint which will produce an identified model is if the error
variance can be considered to be a known function of the true score
variance. This is rather unlikely for most situations and will not
be pursued further.

Consider the multiple predictor situation (p > 1). Sometimes
an identified model can be produced from a non-identified model by
introducing constraints among the parameters of Wz, i.e., among the
parameters describing the errors of measurement. The simplest of this
type of constraint assumes that some error variance is equal to some
other error variance.

An example of a non-identified model for I where this
simplest type of constraint among the error variances produces an
identified model is a model for I similar to that given by (4.5).
Recall, for this model there is one predictor i (i =1,2,...,p)
which has exactly one observed measurement (Ki = 1). If each of the
other predictors has at least two observed replications (Kj > 2 for
j=1,2,...,0 with j # i) then identifiability can be achieved by

. . . 2 2 ]
imposing a constraint of the form o 1% for some m # i,
E E

1 )
m=1,2,...,p and some 1 = 1,2,...,Km. This constraint requires

that the error variance associated with the single predictor i
(i=1,2,...,p) 1is equal to the error variance for some replication
1 (1= 1,2,...,Km) of some other predictor variable m (m=1,2,...,p

with m # 1).
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It is possible to express all latent parameters of this model,

2
except ozi and ozi (where o , = ozi + 02.) as functions of ob-

1
T El Xl T El

served parameters using techniques similar to those used to show

that the model (4.7) for I was identifiable. This is possible with-
out the use of the constraint as long as Kj >2 for j=1,2,...,pP
and j # i. Under the imposition of the constraint the expression

for 02m as a function of observed parameters will also provide the

E
L
expression for ozi as a function of observed parameters of I since
E
1
2 2 2 2
g . =0 = f(A, &, Wz). Thus o |, = 02. - 0 ., where 02. can be
Er  EV ™ x  ET Ey
1 ) 1 1 1

expressed as a function of observed parameters of I. Therefore with
this one simple constraint imposed upon the error variances a non-
identified model has been modified into an identified model.

A more extreme extension of the imposition of constraints on
parameters of ?2 occurs when all error variances are constrained to
be equal across all V observed replications of the p predictors.
This constraint can be expressed as Wz = o;I where og is the
common value of all the error variances and I is the identity
matrix of rank V.

An example of a non-identified model which can be modified
into an identified model through the use of the constraint Wz = oéI
will be presented.

Consider a model with p predictors (p > 1). Let some one
of the predictors have two observed replications, i.e., Ki = 2 for

some i=1,2,...,p, while each of the other predictors has precisely

one observed measurement, i.e., K. =1 for j=1,2,...,p with
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P

j #i. In this case V= I K =p + 1l. As given without any con-

m=1
straints, the model is clearly not identified since it does not

satisfy the counting condition that V > p + 2 (see Appendix C.2 for

details). To reduce the number of distinct latent parameters in

model for I let Wz = o;I where I 1is the identity matrix of

V. The two observed replications for predictor i are noted as

i
and X2. The single observed measurement for the other j pre-

dictors is noted as xi (G #4.

Thus the model for I is:

2
(4.11) I = A ) A" + ¥
vxv Vxp pXp pxV vxv
where
(2 A
L = |o 1
vxv X
1
2 .
o (o] symmetric
X2Xl X2
11 1
S .. 0. ... ot
il i2 " i
xlxl xlxl X1
o . ag e« « « @O . O
il i 2 i i i
XX X% XX %
- e - - - - - —— - - —
- 2
oxp l oxp 2 L] Ll L Oxp i 0 p i . - . Oxp
%1 % %1 X% 1
— -/
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P
1 0 ... 0 0 0 ... o]
o 1L ... 0 0 0 ... 0
| il ——
©o 0 ... 1 0 0 ... 0
o 0o ... 2o o ... o
b - - -—— 2 - - 1.
©o 0 ... 0 1 0 ... 0
©o 0 ... 0 0 1 ... 0
Lo o ... 0 0o 0o ... 1

N

52
1
T
2 .
o 21 ag 2 symmetric
e T
(o} g 0'2
el plg? ot
o} g « o o (o} « o o g
Pl P72 Pt
 —
— -
52
E
2 .
oL symmetric
e gmmmmmmmmmmmmn e i
o e ]
2
o 0 ... o ... of
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In this model for ¢, (4.11), there are V(V + 1)/2 =
(p+1)(p+2)/2=p(p+1)/2 + p +1 observed parameters in I
since V =p + 1. There are p(p + 1)/2 1latent parameters in ¢,
one latent parameter in A (i.e., A;) and one latent parameter in
WZ (i.e., og). Thus there is a total of r = p(p + 1)/2 + 2 latent
parameters in the model for . Since p > 1, then p(p + 1)/2 +
p+1>p(p+1)/2 + 2 and the counting condition for identifi-
ability is satisfied since there are more observed parameters in I
than there are distinct latent parameters in the model for .
Expression (4.11) produces p(p + 1)/2 + p + 1 simultaneous
equations of the form zij = £(A, ¢, Wz). Each of the p(p + 1)/2 + 2
distinct latent parameters in the model for I can be expressed as
functions of observed parameters. See Appendix C.4 for additional de-

tails. The results are presented below.

The one latent parameter of A is:

for some specified i (i =1,2,...,p).

The p(p + 1)/2 latent parameters of ¢ are:

o . =0 . for k #3j with k,j=1,2,...,p

(p(p - 1)/2 number of off-diagonal elements of ¢).

31941
2 XX X%y
o, = — for some specified i (i =1,2,...,p)
T il
X%

(one diagonal element of ¢)



for j=1,2,...,p with j # i

1
(p = 1 number of diagonal elements of ¢).

The single latent parameter of Wz is:

(o g

x;xi x;xi
0O =04~ % for some specified i (i =1,2,...,p).
il
1 X2X1
Where r=1+p(p-1)/2+1+p-1+1=p(p+ 1)/2 + 2 number of
latent parameters in the model (4.11) for ZI. Thus the model (4.11)
for I 1is identified, since each latent parameter in the model for
I can be expressed as a function of observed parameters in I.
In the work above the only constraints which were considered
involved the parameters of Wz, that is, the error variances. These
are not the only constraints which are possible for use. It is
possible to impose constraints on elements of A or ¢ as well as on
elements of ?2. It is even possible to impose constraints which in-
volve elements of any of the three latent parameter matrices in the
. 1 2 2
model for I simultaneously, e.qg., k3 =0 g = 04 -
T E
2
tion to be answered though, concerns not what constraints are possible

The major ques-

but what constraints are reasonable for the given situation. This
criterion of reasonableness should be the first priority in any con-
sideration of constraints for a proposed model.

The brief work above does not even begin to exhaust the
possibilities for the use of constraints to modify models to achieve
identifiability. The few examples given were merely to illustrate

some of the potential of this approach.
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Summary for Section C

This section has included an examination of the identifiability
of models for I and E;i) (i=1,2,...,3). The model for I based
on the classical measurement model (2.24b) as included in (4.1) was
shown to be not identified. Thus unique estimates for the latent
parameters of the model will not exist. However, by the inclusion of
multiple observed replications for each predictor (with at least two
observed replications for each predictor) the model for I based on
the expanded measurement model (2.27b) and the model for E;i)
(i=1,2,...,J) based on (2.27a) were shown to be identified.

Two approaches to the modification of non-identified models
in an attempt to produce identified models were presented. One
approach involved the inclusion of replicate observed measurements
for the predictors. The other approach involved imposing constraints
on the latent parameters of the model. In many situations the most
appropriate procedure to modify a non-identified model to produce an
identified model will involve a combination of both approaches. That
is, include observed replicate measurements and impose constraints
on latent parameters of the model.

Any model for I in terms of latent parameters which is to
be used in an estimation procedure should first be examined carefully
to ensure that the model is identified. This examination for
identifiability should be conducted whether or not observed replica-

tions of the predictors are included or whether or not constraints

are imposed on the latent parameters.
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For the remainder of this research, unless otherwise in-
dicated, the assumption will be made that all models which involve a

structure for I have been checked and found to be identified.
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Section D: Maximum Likelihood Estimation Procedures Associated with
the Reformulated Observed Random Predictor Quantal
Response Model

For this section maximum likelihood estimation procedures
associated with the Observed Random Predictor Quantal Response Model
(2.2) will be described. 1In this model the vectors of category means,

(1)

x (i=1,2,...,J3), and the covariance matrix, I, have structures

given by (2.27a) and (2.27b) based on the application of the expanded
measurement model (2.26). Expression (4.2) results from (2.2) when
the structures of the parameter matrices are displayed. The models
of interest here will be assumed to be identified and thus estimates
of the latent parameters in (4.2) will exist.

The structure imposed on the parameter matrices by the applica-
tion of the expanded measurement model (2.26) is not apparent in the
expression of the model given by (2.2). Thus the model (2.2) has the
same appearance as the general case model examined by McSweeney and
Schmidt (1974). Therefore the derivation of the likelihood function
and the logarithm of the likelihood function produced by McSweeney
and Schmidt (1974) is appropriate for presentation here.

Recall first that in (2.2) X is the V x 1 vector of
observed replications for the p predictors which has the structure
X = AT + E, from (2.26). For each category of the criterion X is
normally distributed with V x 1 mean vector E;i), where R;i) = Eéi)
(i=1,,2,...,J3) from (2.27a), and V x V covariance matrix I which
is assumed homogeneous across all categories, where I = A¢A' + Wz

from (2.27b).
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In order to apply the maximum likelihood estimation procedures
associated with reformulation (4.2) of model (2.2) it is necessary to
have a random sample of subjects from each category of the criterion
with nj subjects from category j (j =1,2,...,J) of the criterion.
Thus there is a total of n subjects from all categories, i.e.,

J =(3)
n= I n.. Let § J

j=1 N
for the observed replications in category j and S, represent the

represent the V x 1 vector of sample means

V x V matrix of sums of squares and cross-product deviations about
the respective means for the observed replications in categoty j
(j =1,2,...,3).

Based on the presentation in McSweeney and Schmidt (1974, p.
13) the effective part of the logarithm of the likelihood function

can be written as:

J-1 J-1 J-1
(4.12) 1InL' = I n.lnp, + (n - £ n,)ln(l - I p.)
5e1 303 o1 3 o1 3
J
- 3 1|z - % I tr(z ish
3=1 ?
1 Y =(3) (3) (=1 ,=(3) (3)
- — - ' -
> jEl n (X B )X p) -

The maximum likelihood estimators for pj and Eij) are then

indicated:
n,
ﬁj = ;l for j =1,2,...,3
(4.13) ana i3 = ¥ for j =1,2,...,d.

The procedures presented by McSweeney and Schmidt (1974) for

the estimation of I will be of little help in determining estimates
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of the latent parameter matrices (A, ¢ and Wz) in the structure
for L.
Thus consider the effective part of the logarithm of the

likelihood (4.12) for estimating components of I, i.e.,

(4.14a)  1nL" = - 2 1n[z| - tr(z'ls;)

N
™Mo

j=1

n g3 -y 3T

l(—1j) ()
1 -

SRy

N ~Mg

-1
2,
J

Consider the last term in (4.14a). Let

J
CcC = - % I n (X
j=1 7
(1974) have shown that

(3) - E;J))'Z-l(zxj) - Réj)). McSweeney and Schmidt
EQJ) = E(J) will maximize 1ln L" and L, the
likelihood function. Thus g}((” - x99
(3)
X

is the maximum likelihood

estimate for y . Therefore there is no need to continue to include

C 1in the expression for 1ln L", since its contribution to maximizing

~(3) _ <(3)

1ln L" occurs for = , i.e., C = 0.
E’x ~

+
Note: Sj = anj where Sj is the sample covariance matrix

of the V observed replications in category j.
J J
-1 + -
Note also: I tr(c 1Sj) I tr(: 1n.S.)

j=1 3=1 )

J -—
=tr{ T (T
j=1

1
n.Sj)}

-l J
=tr{ (I n.s,)}

1

= tr{Z n s
r{ n p}

n tr{Z-ls }
p

J
where n= I n.
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L n.S,
and S = i.e., Sp is the pooled sample
covariance matrix of the observed

replications.

Therefore (4.14a) can be rewritten as:
(4.14b) InL" = - 2 1n|z| - 2 eriz7is ).
2 2 P

Or when the structure for I 1is indicated (4.14b) can be reformulated

as:

(4.140)  1n 1" = - 2n[nen’ + ¥¥| - 2 ex((nont wz)'lsp}.

The problem now is to find values of A, ¢ and Wz which
will maximize 1n L". Let F = -1ln L", thus maximizing 1n L" is

equivalent to minimizing F where F can be written as:

1

(4.15) F = 2 1n[aent + ¥7| + 2 er{cnen + ¥%)” s 1

The values of the elements of A, ¢ and Wz which minimize
F and thus maximize 1n L", for the given pooled sample covariance
matrix Sp, will be the maximum likelihood estimates of the latent
parameter elements of A, & and WZ.

The problem of minimizing an expression F such as (4.15),
which is a function of a covariance matrix I with a given structure,
is a common problem encountered in the set of procedures termed
Analysis of Covariance Structures (ANCOVST). Wiley, Schmidt, and
Bramble (1973) indicate that "Covariance structure analysis is a

term used to describe s recently developed series of procedures and
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models which are used for the structural analysis of covariance
matrices" (p. 317). Both JWreskog (1970) and Wiley, Schmidt and
Bramble (1973) indicate that the minimization of F as a function of
the elements of A, ¢ and Wz in the structure for I can be
carried out by an application of the numerical method of Fletcher and
Powell (1963).

The application of this numerical method requires expressions
for the derivatives of F with respect to thé elements of each of the
latent parameter matrices, A, & and Wz. These derivatives are pre-
sented by J6reskog (1970) for a more general model of the structure
of I than that employed in this research. The results presented by
Joreskog (1970) for the derivatives of F have been verified by

derivations contained in Appendix C.5 and are:

(4.16a) gi - 0 if Aij = constant
ij -1 -1 .
2(Z L - S ] TAD) .. f A.,. = parameter
( [ p] )lJ i ij P
for i=1,2,...,V
j=1,2,...,p
3F 207z - s 157 for i # j
(4.16b) Yy P ij
+J Az iz -s 1., for i= 3
p ij
for i,j=1,2,...,p
(4.16c) E - 27z - s 157y for i=1,2,...,V
awii p ii

where Wz =Y « VY and wii is the ith diagonal element

of V.
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A numerical approximation procedure is typically needed to
produce values of the estimates of the latent parameters in I when
ANCOVST procedures are being employed. When a structure is hypo-
thesized for I such as (2.27b) the standard maximum likelihood
estimation procedures will typically not be applicable, since the
set of simultaneous equations gained by setting equal to zero the
derivatives of F with respect to the elements of the parameter
matrices in the structure for I will not, in general, be explicitly
solvable.

Since the structure being hypothesized for I for this area
of this research, that is, I = A¢A' + Wz (2.27b) is completely con-
sistent with a special case of the general model presented by
Jéreskog (1970) and with model (8) presented by Wiley, Schmidt and
Bramble (1973), the estimation procedures described in either re-
ference (which differ only in minor details) will apply for the model
for I for this research.

Thus numerical values for the estimates of each latent para-
meter can be produced. That is, the maximum likelihood estimates
K, ¢ and @2 will exist. As noted above the values of these
estimates will be the values which minimize F.

The original interest of this chapter was to develop estimates
for the latent weighting coefficients, g;_j (i # kx, 3,k =1,2,...,J)
of the Latent Random Predictor Quantal Response Model (2.19) using
estimates of latent parameters from the reformulated Observed Random
Predictor Quantal Response Model (4.2). Recall that by a result

derived in Appendix A.2 only a base set of J - 1 vectors of
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weighting coefficients associated with some arbitrarily selected
category need be derived. All other vectors of weighting coeffi-
cients can then be produced from linear combinations of vectors of
weighting coefficients in the base set. Since any category can be
selected to provide the reference for the base set of vectors, select
the first category for convenience, that is, the category associated
with Y = 1. Therefore, the J - 1 vectors of weighting coeffi-

cients in the base set will have the form:

* _ =1, (1) (3) .
(4.17) El'j = ¢ (ET ET ) for 3 =2,3,...,3.
*
In order to estimate the elements of gl‘j, estimates of ¢

(hence ¢-l) and gél) for i=1,2,...,J are needed. The ANCOVST

estimation procedures, applied to ¢, described by J6reskog (1970) or
Wiley, Schmidt and Bramble (1973) will produce an estimate for ¢,

call it &. 1In order to estimate the vectors of latent predictor
means, gél) for i=1,2,...,3, recall that (4.10) provides a formula-
(1)
. X

eay =1, (3) . . . 2
(A*A) A Ex (i=1,...,3). An estimate of A, call it A,

tion for Rél) as a function of A and , i.e.,

(1)
L":r =

will be available from the ANCOVST estimation procedures applied to

Z. An estimate of H;l) (i=1,...,3) was derived by McSweeney and

sz(i)

A;l) (1) is the sample

Schmidt (1974), that is, =X (4.13) where

mean of the observed replications in category i (i =1,...,J).
(1) (1)

Therefore an estimate of ET , call it ﬁT , can be written as:

(4.18) Qq(,i’ = (A'A)'IAE)‘(“

or

"
=
Z
=

1]

(i=1,2,...,3).
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Thus the estimates of the vectors of weighting coefficients

for the base set will have the following formulation:

71 Gy ¥ - aepyt

i g3

x|

A%
Bl

or

(4.19) g;,l P b REY -39 G =2,

where the estimates & and A will be produced from the
application of ANCOVST numerical approximation procedures

to the structure for 1I.
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Section E: Summary

The purpose of this chapter was to describe models with their
associated estimation procedures which would produce estimates of the
latent weighting coefficients from the Latent Random Predictor Quantal
Response Model (2.19). Since the variables which are available for
use as predictors typically contain errors of measurement, direct
application of the Latent Random Predictor Quantal Response Model is
not appropriate.

In section B two major reformulations of the Observed Random
Predictor Quantal Response Model were provided. The reformulation
(4.1) is based on the application of the classical measurement model
(2.22) while the reformulation (4.2) is based on the expanded measure-
ment model (2.26) which allows for multiple observed replications of
the predictors.

To determine whether or not estimates will exist, the
identifiability of various models for I and E;i) (i=1,2,...,J),
as contained in the two formulations, was examined in section C.

Since the model for I contained in reformulation (4.1) was not
identified, no unique estimates of the latent parameters in the model
for I can be found. However, the models for I and B;i)
(i=1,2,...,J3) contained in reformulation (4.2) were shown to be
identified under several combinations of inclusion of replicate measures
and imposition of constraints. Thus the estimation procedures pre-

sented in section D were those associated with reformulation (4.2) of

the Observed Random Predictor Quantal Response Model.
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In section D, the estimation procedures described by McSweeney
and Schmidt (1974) were shown to provide estimates of the uncondi-
tional probability of occurrence of each category, i.e., P.

]
(j =1,2,...,J3), and the vectors of means for the observed replica-

(3)

X (j =1,2,...,3). In order to provide estimates

tions, i.e., fi
for the elements of the latent parameter matrices, A, ¢ and Wz, in
the structure for I, the ANCOVST procedures described by J8reskog
(1970) and Wiley, Schmidt and Bramble (1973) are needed. The approach
involved in these procedures was outlined in section D. Since pro-
duction of the desired estimates of the vectors of weighting coeffi-
cients requires the use of components estimated through the applica-
tion of ANCOVST procedures and since ANCOVST procedures typically re-
quire the use of numerical iteration in the calculation of the maximum
likelihood estimates, the use of a computer program is a necessity if
values of the estima