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ABSTRACT

Realizable control methods for distributed parameter systems (DPS)

are usually implemented using finite order controllers designed for

truncated models and are subject to spillover effects. In general, it

is difficult to guarantee closed-loop controlled DPS stability and

performance in the presence of this spillover. This problem is solved

in this dissertation. Our work allows for truncated-model-based

control design for DPS in a modal representation of an infinite partial

fraction expansion. A "tube of uncertainty“ is obtained via bounds on

the DPS model truncation error. The Nyquist plot of the actual system

is shown to lie within the "tube of uncertainty" of the plot for the

truncated model. This combined with a single-input single-output

frequency domain stability criterion developed here is utilized to

define an modified criterion where one can analyze the stability of the

actual DPS. The modified criterion is employed in studying frequency

domain controller designs for enhanced stability and active suppression

of Bernoulli-Euler beam vibration. The limitations imposed by the

structure of typical truncated models and by the truncation errors are

discussed.

The theory presented here does not require a prerequisite

understanding of sophisticated mathematics, provides a easy to compute

robustness measure with respect to model truncation errors and

parameter variations, and allows for classical frequency domain

controller design. The practical design method can be utilized to

decide the necessary order of the model truncation required to

guarantee closed-loop frequency response performance criteria.
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§1. INTRODUCTION

1.1. Literature Review

Research in the area of linear distributed parameter systems (DPS)

control has intensified in the past decade. Most of the work was

motivated by the need to achieve satisfactory performance of large

space structures, scheduled to be launched into space in the near

future [Juang 1986]. Such structures are made of mechanical parts with

small natural damping and sustain long lasting vibration due to

disturbances or during maneuvers which can significantly degrade their

performance. To achieve a satisfactory performance, it is necessary in

many cases to implement an active controller which is closed-loop

stable and performs well in the presence of this flexibility. Other

contributions were motivated by similar problems arising in flexible

robots, long boom antennas, manufacturing, and heating processes.

Models for DPS have an infinite number of degrees of freedom and

are characterized by nonrational transfer functions in the frequency

domain and a infinite-order set of matrices in the state space domain.

Practical constraints require that the controller be implemented using

a reduced (finite) order model (ROM) and that it should be robust with

respect to to parameter uncertainties. The common practice is to

obtain a full-order model and then synthesize a controller using a

finite-order model, truncated according to some criterion, with the

objective of meeting performance specification for the full-order

closed-loop system. Because of the above implementation constraints

most of the contributions deal with ROM-based controllers.



Early work on DPS control [e.g. Leonhard 1953] included the first

few system modes in the ROM, assuming that these modes dominate the

response and that the neglected modes will not be affected by closing

the loop. This branch of DPS control is now known as Modal Control,

and is described in the classic control text by Takahashi (1970).

Modal Control can also be applied in finite-dimensional systems [Simon

1968]. When applied to a DPS system, Modal Control cannot guarantee

stable closed-loop performance for the following reason.

Most ROM-based control methods utilize both actuators and sensors.

The actuator force on the neglected modes and the contribution of the

neglected modes in the sensor output are referred to as control and

observation spillover, respectively. It has been shown, theoretically

[Balas 1978, Meirovitch 1983, Leipholtz 1984, and Chait l988d] and

experimentally [Breakwell 1983, and Sundararajan 1984], that excessive

spillover degrades the DPS performance and in extreme cases

destabilizes the closed-loop controlled DPS. In fact, for any ROM-

based control method, there is uncertainty as to whether or not the

controller will have the desired effect on the actual DPS.

The infinite dimensionality of DPS models renders the well

developed finite dimensional control theory unsuitable. In DPS

control, one must first establish existence of finite-dimensional

controllers. It was shown [Gibson 1980] that it is not always possible

to stabilize a DPS with a finite-dimensional controller. Triggiani

(1975) presented counter examples demonstrating that controllability of

the DPS does not imply stabilizability. Similar conclusions were

arrived at by Vidyasagar (1987). Roughly speaking, a finite-

dimensional controller can stabilize a finite-dimensional system; the

analogy in DPS is that an infinite-dimensional controller is required

to arbitrarily shift an infinite number of eigenvalues. Therefore,



much of the theoretical work was initially focused on putting necessary

and sufficient conditions on existence of initially infinite-

dimensional and later finite-dimensional controllers for various

classes of DPS. Once existence was shown, interest shifted to the

development of extensions of time-domain and frequency domain finite-

dimensional control methods: pole placement, optimal, adaptive, Nyquist

criterion, and root locus.

Time domain (state-space) DPS control theory is based on semi-

groups theory from functional analysis. Balas (1978) developed

spillover bounds for a ROM-based controller/estimator for the

generalized wave equation with damping, which can be used to guarantee

DPS closed-loop stability. Sakawa (1983) obtained even sharper

estimates on the influence of the spillover on the stability of the DPS

system, but a functional observer was used. In Balas (1983), the

controller was designed for a finite approximation of a class of DPS

models using the Galerkin method. Pohjolainen (1982) derived necessary

and sufficient conditions for the existence of a robust PI controller

for a class of open-loop stable DPS. Mashkovskii (1983) proposed a

method for approximation of a DPS with discrete spectrum by a ROM for

synthesis of a modal control. Schumacher (1983) presented a design

procedure for constructing stabilizing dynamic compensators for a class

of DPS. Curtain (1985) developed estimates on spillover effects on all

modes for pole placement methods. Jain (1987) proposed a new method

for designing low-order compensators based on extended fractional

representation and Youla parametrization. A generalization of LQG

theory was given by Bernstein (1986). Gibson (1981), for a ROM based

LQG, showed that as the order of the ROM is increased the control

approaches the optimal control for the DPS. The interested reader can

find several texts which treats in detail time-domain DPS control



theory, e.g. the mathematical framework which generalizes finite-

dimensional control theory to DPS [Curtain 1978], exposition of some

main areas in DPS control [Banks 1983], and a more applied presentation

by Leipholtz (1986). The drawback of all the methods cited above is

the assumption that the DPS model is known precisely, and hence the

degree of robustness for these methods is very small.

Frequency domain DPS theory is based on complex algebra and

transfer function algebra [Vidyasagar 1975, Desoer 1978, and Callier

1986]. The celebrated Nyquist criterion [Nyquist 1932] was generalized

to MIMO systems [Desoer 1965, and Desoer 1968], extended to nonrational

transfer functions [Callier 1972, Desoer 1975, MacFarlane 1977,

MacFarlane 1988, Desoer 1980, and Chait 1988b], and simplified

[Vidyasagar 1988]. Khatri (1970) developed a Popov-like criterion for

DPS. Vidyasagar (1972) defined necessary and sufficient conditions for

stability of a large class of DPS transfer functions. Again, it is

assumed that the DPS model is known precisely in all the above cited

publications.

It is well known that transfer functions of DPS can have

nonminimum phase zeros [Wie 1981, Cannon 1984a, and Chait 1988c].

Arbitrary model truncation may not include these zeros and could give a

false sense of stability for the full-order system. Hence, robustness

of a ROM-based control method becomes essential.

In contrast to a ROM-based design, the collocated rate feedback

method can increase system stability margin (i.e. damping) without

having the spillover problem. This was shown using Lyapunuv theory

[Russel 1969, and Balas 1979], and the positive real lemma [Benhabib

1983]. The collocated rate feedback theory cannot guarantee stability

of the closed-loop system in the presence of significant dynamics in

the actuators and sensors. A "low authority" non-collocated rate



feedback has been suggested to moderately modify system behavior and

reduce spillover effects [Auburn 1980]. Optimal passive control can be

used to add damping to a DPS without sustaining spillover, but with

limited effectiveness [Joshi 1980].

Several survey papers on theory and applications of DPS control

are available. Ray (1978) surveyed applications of DPS theory to

process control problems in industrial plants. Balas (1982) presented

the mathematical framework and related topics in DPS control trends.

An assessment of various contributions to control theory with

applications to large space structures was given by Johnson (1983) and

Nurre (1984). Applications to control of bridges and civil structures

can be found in the text by Leipholtz (1979).

Various techniques are available for minimizing spillover effects,

assuming that the truncated model is also finite-dimensional.

Orthogonal filters, rather than a mode shape based estimator, were used

to better accommodate model errors (e.g. spillover) and certain

disturbances [Skleton 1978]. Sesak (1979) used a quadratic performance

criterion to minimize spillover of a finite set of modes. Spillover

reduction by employing various state transformations and constraints

were developed for an LQG controller [Calico 1979, and Longman 1979].

Another method obtained similar objective using optimal sensor

placement [Barker 1986]. Chait (1988d) presented an augmented

deterministic observer which includes spillover reducing filters.

The control problem of flexible robotic arms is somewhat more

difficult. In addition to the infinite-dimensionality, the system is

rotating, and thus is not self-adjoint under the usual inner-product.

This excludes a series solution with orthogonal eigenmodes, which most

DPS control theories rely on. This problem can be described in the

context of unconstrained vs. constrained modeling approach [Hughes



1980, Hablani 1982, and Ulsoy 1984]. Because current theories for

flexible robot control utilize the constrained approach [Cannon 1984a,

Kanoh 1985, Rakhsha 1985, and Hastings 1987], ROM-based controllers

suffer from the additional problem of mode coupling, resulting in

spillover-like effects. A recent formulation presented a self-adjoint

form which can be utilized in conjunction with ROM-based control

methods to alleviate the mode coupling problem [Chait l988e].

A recent direction in DPS theory is simultaneous robust

stabilization of both the ROM and the DPS, based on frequency domain

formulation. A general notion of robustness in a control system can be

found in Doyle (1981) for lumped systems and in the text by Vidyasagar

(1985) for a more general class of systems. Chen (1982) and Nett

(1983) obtained sufficient and necessary conditions for robust

stability, but good estimates for the degree of robustness were not

given. The theory of H00 optimal sensitivity minimization has been

generalized to include certain DPS, in particular delay systems [Foias

1988]. The method developed in this dissertation is similar in spirit

to the plant perturbation Lco bound-based methods in Glover (1986),

Curtain (l986a,b), and Bontsema (1986), used to obtain the robustness

degree. While the Lh methods cited above can be applied to MIMO

systems, they do not provide a procedure for computation of the bounds

and the their approach for stability verification is different.

Experimental applications are found in large space structures and

similar systems [Schaechter 1982, Bauldry 1983, Burke 1983, Radcliffe

1983, Sundararajan 1984, Auburn 1984, Hallauer 1985, Schafer 1985, and

Ozguner 1987], in robotic arms [Cannon 1984a, and Ranch 1985], in

heating processes [Luasterer 1979, and Komine 1987], and in a boring

bar machine [Klein 1975a,b]. Reading through the applications cited

above, one can observe a striking similarity: all were distributed



parameter control systems but none employed a control similar to DPS

control theories available in the literature. This might be

understandable in large space structure applications, where no

analytical model is available and the only information available is a

ROM obtained from a finite-element method or from an identification

procedure. In such systems, the only hope for spillover minimization

is by utilizing some of the techniques discussed above. Nevertheless,

models for the other systems cited above are available in the form of

partial differential equations. Some possible reasons for not employing

DPS control theory are that the theory is too abstract and thus not

understood by the engineering community, or that it does not provide a

reasonable degree of robustness, or that it requires actuators and

sensors which cannot be implemented.

1.2. Objectives

The objectives of this dissertation were:

i) develop a DPS control theory for a ROM-based control of a DPS

which can be employed without a prerequisite understanding of

sophisticated mathematics.

ii) provide a "simple to define and compute" robustness measures

with respect to model truncation errors and parameter

variations.

iii) allow classical frequency domain controller designs for

rational transfer functions.



1.3. Organization of the Dissertation

An extended Nyquist stability criterion for DPS is develOped in §2

in order to show stability of a DPS in the abstract. In §3, frequency

domain bounds are developed for the truncation error of several classes

of DPS. The extended Nyquist stability criterion is then modified to

allow for truncated models and error bounds, and the concept of a "tube

of uncertainty" is presented in §4. Classical frequency domain control

designs for disturbance rejection and closed-loop magnitude shaping is

discussed in §5. The results in §3-§5 are accompanied by several

numerical examples. Following the conclusions are recommendations for

future work. Some mathematical facts and theorems used in the

dissertation are summarized in Appendix A. Relevant parts from the

theory of the Laplace Transform pair are given in Appendix B.



§2. EXTENDED NYQUIST STABILITY CRITERION

FOR DISTRIBUTED PARAMETER.SYSTEMS

In this chapter we develop an extended Nyquist stability criterion

for nonrational transfer functions in the spirit of the classical

Nyquist criterion [Nyquist 1932]. Recall that a necessary and

sufficient condition for asymptotic stability of a rational transfer

function is that all its poles lie in the open left half complex plane.

This condition is easily verified using a partial fraction expansion of

the transfer function which has a finite number of terms each

asymptotically stable. However, this condition is only sufficient for

stability of a nonrational transfer function. In fact, there exist

transfer functions, nonrational and entire, that are not stable [Desoer

1965].

Several extensions to the classical Nyquist stability criterion

are available [Desoer 1965, Callier 1972, Desoer 1980, Chait 1988b],

for a system such as shown in Figure 2.1 with P(s) nonrational. These

extensions differ in the assumptions made on 0(5) and P(s) and on its

impulse response p(t). In [Desoer 1965], for G(s)-1, p(t) is assumed

to be bounded on [0,w), absolutely integrable (L1) on [0,m), and

approaches zero as t+w. In [Callier 1972], for G(s)-l, it is assumed

that P(s)-Pa(s)+Pu(s), where pa(t) is L1[0,w), and where Pu(s) is

rational and contains the poles of P(s) in Re(s)20. In [Chait 1988b],

for proper C(s), the assumptions are given in terms of P(s) only, in

contrast to the above mentioned extensions. A generalization of the

Nyquist criterion for matrix transfer functions [Desoer 1980] requires
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similar assumptions as in [Desoer 1965] and a coprime factorization of

P(s).

 

 

 

   

 

 

 

   

U + Y

z + D

C(s) r :—

Figure 2.1: The feedback control system including measurement noise

All Nyquist stability criteria, classical and extended, require,

in addition to the particular assumptions, that the encirclement

condition is met by the Nyquist plot. In some cases, however,

obtaining a complete Nyquist plot for a complicated transfer function

in a transcendental form is difficult. This problem is solved in §4.

2.1. Extended Nyquist Stability Criterion for 8130 [Chait l988b]

Consider the control system (typically used in control theory)

shown in Figure 2.1. The system is described by the four transfer

functions: Y(S)/U(S)AH(S)-P(S)/[1+Q(S)I. Y(S)/D(S)--Q(S)/[1+Q(S)].

Z(s)/U(s)--Y(s)/D(s), and Z(s)/D(s)-C(s)/[1+Q(s)], where P(s) is

possibly non-rational, Q(s)-P(s)C(s), and where C(s) is a prOper

rational transfer function. It is often the case that P(s), arising in

a distributed parameter control system, satisfies, for some non-

negative real constant 00, the following properties:

(A1) P(s) is meromorphic in the finite right half-plane Re(s)2—ao;

(A2) P(s) and its first two derivatives are absolutely integrable
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(L1) on the vertical line Re(s)--ao outside some bounded sub-

interval of the line;

(A3) P(s) and its first two derivatives vanish as Isl40° on the

closed right half-plane Re(s)z-ao.

(A4) There are no zero/pole cancelations in P(s)C(s) in the closed

right half-plane Re(s)z-ao.

The results in this section are given for H(s) only. Results for

the other three transfer functions follow from Theorem 2.2 and are

given afterwards.

Remark 2.1. P(s) can include unstable elements. Delays are

allowed as long as the above properties hold.

Remark 2.2. H(s) is meromorphic in Re(s)2-ao since the sum,

product, and quotient of meromorphic functions are again meromorphic.

Remark 2.3. H(s) vanishes as Isl+w on Re(s)z-ao because its

denominator 1+Q(s) is essentially 1 for large Is]. In fact, H(s) is

dominated in magnitude by kP(s) on Re(s)2-ao for large Is] and some

constant k. Likewise, H'(s) and H"(s) are dominated by certain

derivatives of P(s) and thus vanish as |s|+m on Re(s)2-ao.

Remark 2.4. Because H(s) is meromorphic and strictly proper on

Re(s)z-ao, then H(s) can have at most a finite number of poles in

Re(s)z-ao. As a result, the contour of the Nyquist graphical test can

be finite.

For a stability theorem to make any sense at all, then existence,

uniqueness, and causality of the closed-loop impulse response h(t)

defined by the inversion formula

~00+j°° co

h(t) A I H(S)eSt ds/2nj = I H(-ao+jw)e

’ao’J” ‘m

(“00+3“)t dw/2n, (2.1)
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must be demonstrated. We begin with a lemma showing that properties

(A1)—(A4) plus a Nyquist-like criterion imply that H(s) is analytic on

Re(s)2-ao. We then proceed to show existence, uniqueness, causality,

and stability.

Lanna 2.1. Suppose that P(s) of a linear time-invariant system,

shown in Figure 2.1, satisfies properties (A1)-(A4). If the Nyquist

plot of Q(s) encircles the point (-1,0) po times counterclockwise,

where po denotes the number of poles of Q(s) in Re(s)>-ao, then H(s) is

analytic on Re(s)2-ao (for a Nyquist plot definition see, for example,

MacFarlane 1977).

Proof. By the Argument Principle [App. A], 1+Q(s) has no zeros on

Re(s)2-ao, and since H(s) is meromorphic on Re(s)z-ao, it follows that

H(s) is analytic on Re(s)2-oo.

A system with a rational P(s) satisfying the hypotheses of Lemma

2.1 is stable since H(s) has no poles in Re(s)200. However, as

indicated earlier, this is only a necessary condition for a nonrational

P(s) to be stable. The stability criterion extension for nonrational

P(s) is given in the following theorem.

Theorem 2.2. If the hypotheses on P(s) given in Lemma 2.1 are

satisfied, then the impulse response h(t) exists, is unique, causal,

and asymptotically stable when 00-0 and exponentially stable when ao>0.

Proof. Existence: Because H(s) is continuous and is dominated by

P(s) on Re(s)Z-ao, and since P(s) is, by A2, eventually L1 on

Re(s)=-oo, then
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m o -0

I |H(-ao+jw)|dw s I IH(-ao+jw)|dw + k I IP(-ao+jw)ldw

-oo -0 -00

+ k I |P(-ao+jw)|dw < m, (2.2)

0

for some large positive 0 and some positive constant k. Hence H(s) is

L1 over the entire vertical line Re(s)=-ao. Thus the integral (2.1)

converges absolutely.

Causality: Because H(s) is analytic on Re(s)Z—ao, by the Cauchy

Theorem [App. A] the integral (2.1) can be separated into three contour

integrals as follows

h(t) = I H(s)eSt ds/an + e‘aot I H(—ao+jw)ejwt dw/2n

0

-0

+ e-aot I H(-ao-l—jm)ejwt dw/2n , (2.3)

-CD

where 0 is a large positive number and F denotes the semicircle

s=-ao+flej6, -n/2$65«/2. Because H(s) vanishes as |s|+w on Re(s)z-ao,

the Jordan Lemma [App. A] guarantees that the integral along F

approaches zero as 04w for t<0. Because H(-ao+jw) is L1, the last two

integrals can be made arbitrary small for sufficiently large 0.

Therefore, h(t)-0 for t<0.

An easier but non-traditional proof of causality can be obtained

by employing a rectangular contour rather than the above semi-circle

employed in the Jordan Lemma. This proof is given in Appendix B.

Remark 2.5. Because H(s) is L1, h(t) is continuous by the

Lebesgue Bounded Convergence Theorem [App. A].
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Stability: Because of Remark 3, Lemma 2.1, and property A2,

integrating the inversion formula (2.1) twice by parts yields, for t>0,

co

 

 

 

eaot h(t) = I H(-ao+jw)ejwt dw/Zn

ejwt w 1 m ‘wt

= H(-ao+jw)/(2n) jt - t I H'(-ao+jw)eJ dw/2n

ejt m 1 m 'wt

= - H'<-ao+jw>/<2«> W + E JH"(-Oo+jw)e3 dw/zvr

1 CD

= —E§ I H"(-ao+jw)ert dw/2n . (2-4)

-00

The following notation is used H'(o)-dH'(-)/dw. The product egoth(t)

is in L1[o,w) since the function on the right hand side of Eqn. (2.4)

is of order l/t2 at w. Thus h(t) is asymptotically stable when 0020

and exponentially stable when 00>0. By asymptotic stability we mean

bounded-input bounded-output stability plus h(t)40 as tam (for

stability definitions see App. A).

Uniqueness: Because both H(s) and h(t) are absolutely integrable

and since H(s) is differentiable, then by [Doetsch 1970], h(t) and H(s)

are a Laplace transform pair.

A second proof of the theorem can be obtained by appeal to the

results in [Desoer 1975, Desoer 1980]. Splitting off the unstable

singular part from Q(s) to obtain a residual part analytic on Re(s)2-

00, and by employing at times conditionally convergent integral, it can

be shown that the inverse Laplace transform of Q(s) belongs to the

class of systems considered there. Thus our hypotheses can be employed

to decide whether or not a non-rational transfer function is covered
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there. Our analysis also provides an independent proof for closed-loop

impulse response stability.

The results for the transfer function Q(s)/[1+Q(s)] follow by

similar arguments used in the proof of Theorem 2.2 and are given in the

following corollary.

Corollary 2.3. If the hypothesis given in Theorem 2.2 is

satisfied, then the conclusions of Theorem 2.2 also hold for the

impulse response of Q(s)/[1+Q(s)].

To consider the fourth transfer function F(s)AC(s)/[1+Q(s)], we

must consider stability in the generalized sense [MacCluer l988b].

Corollary 2.4. If the hypothesis given in Theorem 2.2 is

satisfied and 0(5) is analytic on Re(s)2-ao, then f(t) is stable in the

generalized sense [MacCluer 1988b]. Moreover, if C(s) is strictly

proper, f(t) is asymptotically stable when ao=0 and exponentially

stable when 00>0.

Proof. In the time-domain, the impulse response f(t) is given by

f(t)=C(t)-C(t)*0(t)*h(t). (2.5)

where '*' denotes generalized convolution [MacCluer 1988]. Because

C(s) is proper, f(t) is the difference of bounded-input bounded-output

stable impulse responses. Moreover, if C(s) is strictly proper, then

C(t) is exponentially stable. Therefore, because of Equation (2.5),

f(t) and h(t) share stability type. Note that C(s) is not required to

be stable in Theorem 2.2 and in Corollary 2.3.
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2.2. Extended Nyquist Stability Criterion for MIMO [Smith 1984]

A generalization of the above extended criterion to the MIMO case

where P(s) and 0(5) are matrix transfer functions can be obtained using

the return-difference matrix

P(s) - I + P(s)C(s) = I + Q(s). (2.6)

The conditions for analyticity of Det[F(s)], which replaces the

polynomial l+Q(s) in Lemma 2.1, are presented in the following theorem.

Theorem 2.3. Suppose that Q(s) has po poles in Re(s)200. Then

Det[F(s)] is analytic on Re(s)>-ao if and only if the number of

counterclockwise encirclements of the origin by the Nyquist diagram of

Det[F(s)] is equal to p0.

There may be cancelations between the numerator and denominator of

[P(s)]-l-Adj[F(s)]/Det[F(s)]. When each of the entries in the matrices

P(s) and C(s) satisfies the hypothesis in Thm. 2.2 and Corollaries 2.3-

2.4, then their corresponding conclusions should hold for the matrix

transfer functions H(s)-P(s)[F(s)]-1, Q(s)[F(s)]-1, and C(s)[F(s)] 1.

The details are left for future work.



§3. FREQUENCY DOMAIN TRUNCATION BOUNDS

In this chapter truncation error bounds are developed for systems

whose dynamics can be represented by a series solution, where each term

in the series arises from a first or second order ordinary differential

equation. Truncation of higher order terms from the series solution

yields errors which must be considered in any control design that is

essential in any realistic control implementation. It is assumed here

that the truncated model includes all the unstable terms (modes) of the

open-loop system. This assumption is necessary if the control

objective is to stabilize unstable modes or improve performance of the

system.

3.1. Bounds for First Order Terms [Chait 1988a]

Consider the following transfer function

G(s) = , (3.1)

k-l k

where m is finite or infinite, 6k are bounded real numbers, and rk=ckkp

where both p and ck are positive reals, kzl,2,...,. The transfer

function (3.1) is nonrational if m=® and rational if m<w. Without loss

of generality we consider a truncated, rational, transfer function

obtained by retaining the first n terms in Equation (3.1) while the

remaining terms, infinite in number, are neglected:

17
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n 6k

Gn(s) = E ———-———— , n<m. (3.2)

s + r

k=1 k

This method of truncation is not unique, if fact, one can retain any

finite number of modes in Gn(s). The following results hold for Gn(s)

obtained from any finite truncation method.

For frequency domain stability analysis, the transfer function is

converted to a frequency response function (FRF) by letting s-jw, where

w denotes the frequency. Define a truncation error E(jw) as

m 6k

E(jw) A G(jw) - Gn(jw) = E -——-———- , n<m. (3.3)

k=n+1 j“ + ’k

A Uhifbrm Bound. Consider the modulus of the kth term of the FRF

(3.3)

 

ISk(jw)| = . (3.4)

The modulus ISk(jw)| has a supremum over we[0,m) equal to ISkI/rk, the

DC gain of the FRF. The uniform bound for the truncation error modulus

is thus defined as

 

m 1

lE(jw)| S 6 E T A R1, w E (~w,w), (3.5)

k=n+l k

where 645up{|6k|}¢0, k=n+l,...,. Note that the series with m=m will

converge only if p>l and the sequence {ck} is bounded below. The

uniform bound provides a constant nonzero bound for all wZO.
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A.Frequency Dependent Bound. A bound that approaches zero as the

frequency approaches infinity can be derived for the FRF (3.3). The

modulus of the kth term can be bounded as follows

l6k| 1 wa l6k|

lSk(jw)| = s ——— sup , w¢0, (3.6)

JEEF'TTE" w“ 8 7753717:—

  

where 0<a<l, and where sup
  

denotes the supremum over we[0,w) for a

fixed k. It can be shown that

wa |6k| 1

sup = lskl (003/2 (1-a)(1"")/2 ———— , (3.7)

J wz +ri
Tfl

 

where fi=l-a. The frequency dependent bound for the truncation error

modulus is thus defined as

  

m

|E(jw)| s a <a>“/2 <1-a>’a E 0 R2<w), w e <-w,w), (3.8)

where 6Asup{l6kl}#0, k=n+l,...,. The sum exists when fl-a>l. This

bound increases for decreasing frequencies below one and approaches

zero as W .

3.2. Bounds for Second Order Terms [Chait l988a]

Consider the following transfer function
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m 6

k

0(8) - E . (3 9)

S
2 2

k=1 + 2§kwks + wk

 

where m is finite or infinite, both p and ck are positive real, 6k are

bounded real numbers, wk—ckkp are the natural frequencies, and (k are

the modal damping factors for underdamped transfer functions with

overshoot: 0<elsgk562<0.707, k-l,2,...,. Whenever §k>0.707 one can

show that a resonant peak in the FRF magnitude does not exist. Thus

there is no magnification and both bounds are computed as shown in

Section 3.1 for first order terms. A typical truncated rational

transfer function was obtained in Section 3.1. The truncation error

E(jw) is here defined as

m 6k

E(jw) A G(jw) - Gn(jw) - E , n<m. (3.10)

2_ 2 ‘

k-n+l (”k w ) + ngkwkw

 

A Uniforn.Bound. Consider the modulus of the kth term of the FRF

 
 

 

(3.10)

6k 6k

ISk(jw)| = = , (3.11)

/ (wfi- (.02)2 + (2(kwkw)2 mi J fk(w)

where

fk(w) a [1-w2/w§]2 + [2gkw/wk12. (3.12)

The modulus ISk(jw)| has a supremum over w6[0,w) exactly when fk(w) has

a infinum there. A simple algebraic rearrangement yields [Ogata 1970]
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2 _ 2 , 2
w wk(1 2§k)

fk(w) = (012C + “f(l'gfi)’ (3.13)
 

and by inspection, the infinum of fk(w) occurs when wnwal-Zgfi . Thus

the uniform bound for the modulus of a single FRF Sk(jw) is

5 k

ISk(jw)| s , w e [0,m). (3.14)

2 ”i {k 41'§§

 

The uniform bound for the truncation error modulus is thus defined as

Ill

 

6 l

|E(jw)| s =—- 1 R. , w e («n.w). (3.15)

F1 w2
k=n+1 k

where 6Asup{l5k|}¢0, and FIAinf{2§k/l—2§§ }#0 k=n+l,...,. The series

converges for m=w only if p>0.5 and the sequence {ck} is bounded above

from zero.

It is a common practice in control analysis to assume that the

modal damping factor Ck is a constant for all terms (modes). However,

the uniform bound (3.15) allows for a wide variation in the damping

ratio for different terms which agrees with experimental results

[Breakwell 1983]. To compute this bound it is sufficient to know the

constants 61 and 62, giving F1=min{eiJ1-2ei }, i=l,2. Therefore, this

bound is robust to modal damping variations in different terms and

allows flexibility in compensator design. The uniform bound provides a

constant nonzero bound for all frequencies.
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A.Frequency Dependent Bound. A bound that approaches zero as the

frequency approaches infinity can be derived for the FRF (3.10).

Consider the modulus of the kth term rearranged to

6k

ITk(jw)| = . (3.16)

w wk J hk(w)

 

where

hk(w) = ———:;—::—— + 4§fi . (3.17)

k

The modulus ITk(jw)l can be bounded above using the inequality

ITk(jw)|s (1/wwk)inf{Jhk(w)}, we[0,m). The infinum of hk(w) occurs

when w-wk giving

5k

ITk(jw)| s , w e (0,m). (3.18)

2 w wk {k

 

The frequency dependent bound for the truncation error modulus is thus

defined as

S

  
|E<jw>| s a R2<w>. w e <-w,w>, (3.19)

where Fgéinf{2§k}=261¢0, and yAsup{a #0, k=1,2,...,.

kflk}
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3.3. Overall Bound [Chait l988a]

The smaller of the bounds R1 and R2(w) can be used over different

frequency ranges to produce a smaller overall bound (Figure 3.1). Note

that as more terms (modes) are included in the truncated model, both

bounds decrease with limit zero as n+0. Both bounds are robust to

modal damping variations in different terms.

   

   

FREQUENCY

Logl El DEPENDENT

UNFORM

Figure 3.1: The truncation bounds

 

3.4. Bounds for Terms About Any Vertical Axis

When closed-loop exponential stability is desired, similar error

bounds for first and second order terms must be developed about a

vertical line to the left of the imaginary axis. The bounds derived

below are similar to the bounds derived in Sections 3.1 and 3.2.
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First Order Terms. Consider the following transfer function

 G(s-ao) = , (3.20)

k=l S - 00 + Tk

where 00 is a nonnegative real number, m is finite or infinite, and 6k

and 7k are defined as in Section 3.1. This transfer function is

equivalent to the transfer function (3.1) with a modified root ;kATk-0°

(Figure 3.2).

 

jm

X #6 X 0

Tn+2 Tn+1 '60 In

  
Figure 3.2: The modified first order root

Following the derivation in Section 3.1, the uniform bound for the

truncation error modulus of the FRF (3.20) is thus defined as

 
A.) R.. w e<-oo,oo>. (3.21)
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where 6Asup{l6kl}, k=n+l,...,. This bound has a meaning only if rk>a0

for all k2n+1. The frequency dependent bound is defined as

6 m l

IE(jw)| s a (a)a/2 (1-az)(1"“)/2 —:§— 4 R2(w), we(-w.w).

“ k=n+1 'k (3.22)

where 6Asup{l6kl}#0, p-fl>l, 0<a<l, fl=l-a, k=n+l,...,.

Second Order Terms. Consider the following transfer function

m 6k

G(S'Oo) = , (3.23)

k-l (5-00)2 + 2§kwk(s-ao) + wfi

where 00 is a nonnegative real constant, m is finite or infinite, and

6k, wk, and (k are defined in Section 3.2. This second order system in

similar to the system in Equation (3.9) with modified natural

frequencies wk-Bk and damping ratios {ksfk (Figure 3.3). We first

derive intermediate bounds for 5k and Ek' From Figure 3.3 it is clear

that

Sfi a w§(1-§k)+(gkwk-ao)2 2 (wk-oo)2, §k<1, (3.24)

and hence,

1/5k s 1/wk-00, wk>ao. (3.25)

This bound should be used for terms whose real part is located to the

left of the shifted imaginary axis, i.e. {kwk>ao. When 00>0, the range
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of the modified damping ratio Ek is changed. Clearly, 21551 and 22562.

Using Cos[¢]A§k, Equation (3.25), and Figure 3.3 we obtain bounds for

the modified range fke[?1,?2]k. For each fixed k we have

l
l
>

Cos[¢k] Z inf{(§kwk-ao)/5k} = (elwk-ao)/ZJk (3.26a)61k ,

and

I
I
>

m

l
0Cos[¢k] s sup{(§kwk-ao)/5k} - (e20k-ao)/5k (3.26b)

Note that both inf{2,} and in£(22} for k>n+1 occur when k=n+l, and that

the sector in the second quadrant defined by the pair (E1,;2)k is being

reoriented toward the imaginary axis. The modified range is thus

defined by

:1 A (€1wn+1-0°)/wn+l and :2 A (62w (3.27)
n+1'0°)/”n+1°

Also note that (21,:2)kf(61,52) as kem, Iao|<m. Following the

derivation in Section 3.2, we define a uniform bound for the truncation

error modulus of a FRF (3.23)

 

5 m 1

IE(-ao+jw)| S = :— E A R1 , w E (-m,w), (3.28)

I‘

n

 

where 6Asup{|6kl}#0, Fléinf{22/l-222 }¢0, EE[?1,E2], and k=n+l,...,.

The frequency dependent bound is defined as
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6 m 1

  IE(-ao+jw)l s e R2(w), w e (—m,w), (3.29)

P2“ k-n+l “k

where 6Asup{|6k|}#0, and fzein£(2fk}=221, k=n+l,...,.

Cmin=81 j“)

,/ 2

mn+1 1 -Cn+1

 

  

 
 

Figure 3.3: The modified second order root

3.5. Numerical Computation of the Bounds

The numerical computation of the bounds (3.5), (3.15), and (3.19)

is often straight forward. Sums for series with maw and ao=0 are

tabulated for different integer powers p in many mathematical handbooks

[Beyer 1982]. Let ck=l in this section. When p is positive real one

can resort to the inequality employed in the Integral Test [Trench

1978]

m+1 m m

J x‘p dx 5 E k-p S l-p I x-p dx, (3 30)

l 1 l
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for some integer l<m. Additional work is required to compute the

bounds (3.21), (3.28) and (3.29). To do so, consider the series

  

m 1 k” 1 k” m 1

ET=ETTST ET’ (3'31)
k—l k '00 k=1 k -00 k k '00 m k=1 k

where p>l, 00 is a nonnegative constant, kp>a°, and
  

denotes the
co

supremum over k. The inequality (3.31) implies that the series on the

left is absolutely convergent by the Comparison Test [Trench 1978].

The sum for ao>O is bounded above by the sum for a°=0 multiplied by the

kp/<k”-ao>factor This factor monotonically decreases toward aCD .

  

limit of one as kem. Thus, in a series truncated after n terms,

l-Iw4<n+1)p/[(n+1>P-a,].

3.6. Graphical Interpretation of the Error Bounds [Chait l988a]

The nonrational FRF G(jw) is within the error bounds R1 and R2 of

the truncated (rational) FRF Gn(jw). At each frequency, G(jw) is

within circles of radii R1 and R2(w), centered at the point Gn(jw)

(Figure 3.4). Therefore, G(jw) always lies within the smaller of the

two circles. That circle represents the uncertainty due to the order

truncation.

The polar plot for G(jw) over a range of frequencies has a similar

interpretation. The polar plot Gn(jw) is drawn together with error

circles associated with each frequency in that range. The union of all

the smaller error circles defines two plots: an interior boundary and

an exterior boundary. The polar plot of G(jw) is then found within

that tube of uncertainty, enclosed by the interior and exterior
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boundaries (Figure 3.4). The tube of uncertainty represents a bound on 5

model truncation error in the frequency domain. The tube of

uncertainty corresponds, in an abstract sense, to spillover bounds

[Balas 1978] and Gershgorin discs [Franke 1985] in the time domain.

|mG(s)

  

   

INTERIOR BOUNDARY  
EXTERIOR BOUNDARY *

Gn<s>

Figure 3.4: Bound circles and the tube of uncertainty

3.7. Numerical Example: Error Bounds Calculation [Chait 1988a]

Consider a transfer function of the form (3.11) with m=m,

wk-(kn)2, 6-2, el=0.005, and €2=0.5. This transfer function

corresponds to the ratio between a position point sensor to a point

actuator of the Bernoulli-Euler beam with unity parameters.
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The uniform bound, R1, and the frequency dependent bound, R2(w),

can be calculated for 00-0 using Equations (3.15) and (3.19) since p=2.

For this system we have: 6-2, and P1=F2-0.01. For a truncated series

which consists of the first term (n=l) alone:

on

1

 

R, - 200 E ——————— a 0.1692 (3.32)

4

k=2 (k“)

and

200 w 1 13.13

R,(w) - E —————-— z ——————— . (3.33)
(.0 k=2 (kfl)2 6)

For a truncated series which consists of the first ten terms (n=10):

 

e

R1 = 200 ——-£——— = 0 00000373 (3.34)

k-11 (k")‘

and

200 w 1 0.0102

R200) " w ———=—w——. (3.35)

k-ll (k")2

For the transfer function considered in this example and a shifted

imaginary axis by 00-0.1 we can compute similar bounds. For n-l, since

{2w2>0.1 we can use Equations (3.26a) and (3.26b) to compute E1=0.00246

and 22-0.497. Using the result of Section 3.5 we compute the modified

bounds for n=1: R1-0.344 and R2(w)-26.79/w. For n=10 since (11w11>0.1

we compute 61-0.0049 and 22-0.497, and the modified bounds are:

R1-0.00000381 and R2(w)-0.0104/w. Note that the effect of shifting the

imaginary axis on the bounds becomes larger as the axis is shifted

closer to the (n+1)th root.



§4. FREQUENCY DOMAIN STABILITY ANALYSIS USING TRUNCATED MODELS

In this chapter a practical Nyquist stability criterion is

developed for nonrational transfer functions based on truncated,

rational models and truncation error bounds. The results below are

based on Nyquist stability results from §2 and truncation error bounds

and tube of uncertainty from §3.

4.1. Generation of Nyquist Plots [Chait 1988a,c]

Consider a typical SISO control system shown‘in Figure 4.1 which

includes a disturbance at the DPS input. This figure is different from

Figure 2.1 which includes measurement noise since typically a

controller is added in order to attenuate the undesirable effects of

disturbances. The general stability theory developed in §2 also

applies to this block diagram configuration. Let P(s)=GC(s)G(s) and

C(s)=Gf(s) satisfy the hypothesis given in Theorem 2.2. Let Gn(s) be a

rational approximation (truncation) of G(s), such that G(s) and Gn(s)

share the same poles in Re(s)z-ao. To begin Nyquist stability

analysis, let ao=0. Consider the open-loop transfer function

Q(jw) 4 ccccfuw) e Qn(jw) + ccacfow), (4.1)

where E(jw)=G(jw)-Gn(jw). It is assumed henceforth that E(s) does not

have any poles in Re(s)20 since the steady-state response of an

unstable pole is unbounded. One can extend this restriction to E(s)

31
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condition that says: all eigenvalues of a system to be shifted by the

controller must be included in the model. The problem in applying any

of the extended Nyquist stability criteria discussed in §2, arising

from such truncation, is that the Nyquist plot of Q(s) must be known

exactly. To overcome this difficulty, Nyquist plots for nonrational

transfer functions were obtained using truncated models and bounds on

truncation error [Chait 1988a].

  

 

   

A Gc(s) , » G(s) __.__»
   

 

  

 

 

Gf(S) <——

  

Figure 4.1: The feedback control system including input disturbances

lemma 4.1. The number of encirclements (-l,0) of the nonrational

open-loop system Q(s) can be determined using a Nyquist plot of the

rational open-loop system Qn(s) and a tube of uncertainty.

Proof. Bounding the truncation error modulus of the open-loop

frequency response function gives

IQ(jw)-Qn(jw)l = IGC(jw)E(w)Gf(jw)| s IGCGf(jw)Ri|, i=1 or 2. (4.2)

The tube of uncertainty is defined by the smaller error circle of

radius IGCGf(jw)RiI obtained for each point in the range of w. Thus

the Nyquist plot of the nonrational Q(s) can be can be described by the
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Nyquist plot of a rational Qn(s) and the tube of uncertainty. Note j

that this bound is proportional to the gains of Gc(jw) and Gf(jw).

Remark 4.2. In practice, the Nyquist plot can only be computed up

to some finite frequency along the imaginary axis, say w’, and an

additional bound circle which contains the Nyquist plot of Q(w) for all

frequencies higher than w', must be defined. The radius of this

additional bound obtained for equation (8) is

R3(w') A supIIGch(jw) [Gn(jw)+R]|, w e [w',w). (4.3)

When R3(w’) is so large that no stability conclusion can be drawn, then . [

either the order of Gn(jw) or the maximum computed frequency w' must be

increased until a conclusion can be drawn. An example for the above

condition is whenever R3(w’) is equal to or greater than unity. This

is a straight forward test for deciding on the largest frequency w' in

the construction of the Nyquist plot.

Remark 4.3. Compensators with poles on the imaginary axis rule

out the construction of a tube of uncertainty since the radius of the

tube in (4.2) is infinity at each of these poles. This problem can be

alleviated for certain truncation cases. When Gc(s)Gf(s) has a pole at

s=jwo, the Nyquist contour is indented to the left about the pole.

Clearly, the indentation contour F results in an infinite semi-circle

Nyquist plot for Q(s)=GC(s)Gf(s)[Gn(s)+E(s)]. Let M1, M2, ¢1, and d2

be the magnitude and the phase of Gc(s)Gf(s) and [Gn(s)+E(s)],

respectively; the magnitude of Q(s) is M1M2 and the phase is ¢1+¢2. If

M2>E(s)>0, for seF, then [Q(s)] is dominated by M1 which shows that

[Q(s)] also describes an infinite semi-circle. The complex number Q(s)

at the end points of F is within some are about the complex number

Gc(s)Gf(s). The angle of the arc is defined by the sector which the
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error E(s) generates about the complex number Gn(s), at the end points.

Simply stated, when M2>E(s)>0, then the Nyquist plot of Q(s) is

essentially the same as the Nyquist plot for Qn(s), and hence, there is

no need for a tube there. Similar arguments can be used when

Gc(s)Gf(s) has poles close to the imaginary axis which yield

unexceptable large error radii.

Remark 4.4. Note that the size of the tube of uncertainty is

proportional to the open-loop DC gain, K, of the compensators Gch(s),

(s/zl+l) --' (s+zm+1)

cccf(s) = K , (4.4)

(S/p1+l) ~-- (S/pn+l)

 

where mSn and where 21.- and pi are real or complex. It is suggested

that, whenever this gain K is greater than unity, both sides of

Equation (4.2) should be divided by K. This division translates to

shifting the (-l,0) point to the (-l/K,0) point. The advantage is

obvious.

4.2. Closed-Loop Stability [Chait l988a,c]

Suppose that the open-loop system Q(s) has p0 poles in the open

right-half plane Re(s)>0. Using the extended Nyquist stability

criterion from §2 and the error bounds from §3, three cases are

distinguished for the nonrational closed-loop system: guaranteed

stability, guaranteed instability, and an uncertain case.

(a) Whenever the point (-l,0) is encircled p0 times in the

counterclockwise direction by the tube of uncertainty, then

the nonrational closed-loop system is guaranteed to be
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asymptotically stable when 00-0 and exponentially stable when I

a°>0. ::

(b) Whenever the point (-l,0) is not encircled po times in the ,.

counterclockwise direction by the tube of uncertainty, then

the nonrational closed-loop system is guaranteed to have poles

in Re(s)>ao.

(c) Whenever the point (-1,0) is inside the tube of uncertainty,

then stability is an open question.

 

 
Figure 4.2: The different stability cases of the modified Nyquist

criterion - a)guaranteed stability, b)guaranteed instability, and

c)undetermined stability
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The key point here is that cases (a) and (b) guarantee simultaneous

stability or instability for the nonrational system and for the

truncated system.

As is the custom, only the polar plot for w€[0,m) is drawn, and

the polar plot for we(-w,0] is its reflection about the real axis. The

above three cases are illustrated in Figure 4.2 where the points a, b,

and c represent different location for the (-1,0) point. Assuming an

open-loop stable system (po=0) and ao=0, for a closed-loop system to be

unstable, it is necessary that the truncated Nyquist plot of Qn(s)

encircles the (-1,0) point. In practice, the compensator is chosen

such that Qn(s) yields a stable closed-loop system. Thus, the typical

problem caused by truncation is that the (-l,0) point lies inside the

tube of uncertainty as in case (c) where stability is unknown.

Retaining more modes in the truncated model reduces the size of the

tube of uncertainty and may result in case (a) or case (b) where

stability is known.

4.3. Numerical Example: Stability Verification [Chait l988a]

Consider a control system, with a single sensor and actuator pair,

for feedback control of a pinned-pinned beam (Figure 4.3). The

Bernoulli-Euler equation of motion for the lateral vibration of a

uniform beam including a linear damping model [Chen 1982] is

4 3 2

6 z(x,t) 8 z(x,t) a z(x,t)

EI—4—-u +m 2—2— = a(X) U(t), (4.5)

6x a x at at

where z(x,t) is the lateral displacement of an arbitrary point on the

beam at any given time t, E1 is the bending stiffness, u is a damping
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factor, m is the mass per unit length, u(t) is the external force

amplitude applied to the beam, and a(x) is the force spatial

distribution. The boundary conditions corresponding to pinned ends are

822(0,t) 822(L,t)

Z(O,t) - Z(L,t) = —‘———r'* = ‘—‘——3—— = 0. (4.6)

6x 6x

where L is the length of the beam. Without loss of generality, the

beam parameters EI, m, and L can be set to unity.

ACTUATOR SENSOR

EI,L,m

 

 

Figure 4.3: The Bernoulli-Euler beam showing the actuator and sensor

The solution of Equations (4.5)-(4.6) can be obtained using the

separation of variables method [e.g. Meirovitch 1967] and is given by

z(x,t) = E ¢k<x>qk<t>, (4.7)

k=l

where ¢k(x) are the mode shapes and qk(t) are the modal amplitudes

given by

oo 0 2

qk(t) + 2§kwqu(t) + wqu(t) = uk(t), k=1,2,..., (4.8)
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2

where wk-(kn) are the mode natural frequencies, ¢k-/25in(knx) are the

orthonormal mode shapes, {k are the modal damping factors for

underdamped modes with overshoot: 0<615§k562<0.707, and uk(t) are the

modal forces. The modal forces are given by

l

uk(t) = Io¢k(x)a(x)u(t)dx A aku(t), k=l,2,...,. (4.9)

The sensor output for position measurement is given by

l (D

y(t) — I b(x)z(x,t)dx A E fiqu(t), k-1,2,...,. (4.10)

0

k-l

where b(x) is the sensor spatial distribution. The Laplace-

transformed, nonrational transfer function from the control force

amplitude U(s) to the sensor output Y(s) can be derived directly from

Equations (4.7)-(4.10) and takes the form of Equation (3.9)

CD

ak fik

G(s) - E . (4.11)

S
2 2

k-l + 2§kwks + wk

 

The point actuator is located at xa-l/7 so that ak=J2sin(kn/7), and the

point sensor is located at xs=5/7 so that Bk=f2sin(kn5/7).

Experimental data indicates that a conservative range for modal damping

is between el= 0.005 and 62=0.5 [Breakwell 1983]. Different levels of

model truncation are considered. A first-order model with n=1 and

(1:0.005 lS
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0.6784

s + 0.09875 + 97.4091

 

with the error bounds (§3)

R, - 0.1692 and R2(w) - 13.18/w . (4.13)

A second-order model with n=2 and §1=§2=0.005 is

-l.5245

 G2(s) - G,(s) + 2 , (4.14)

s + 0.394785 + 1588.54

with the error bounds

R,-0.0408 and R2(w)=8.106/w. (4.15)

An illustration of the construction of the Nyquist plot for Q(s)

using the Nyquist plot of Qn(s) and a tube of uncertainty is given, for

a control system shown in Figure 4.1 with a pr0portiona1 controller

Gc(s)-K, a unity negative feedback, Gf(s)-1, and for ao=0. The Nyquist

plot of the open-loop system G,(jw) in (4.12) (up to 12 rad/sec), for

Kal, and the tube of uncertainty using R1 in (4.13) are shown in Figure

4.4. The tube of uncertainty is indicated by the shaded area. The

bound on IGch(jw)| for w>12 rad/sec is R3-0.184. Because the exterior

boundary of the tube of uncertainty does not encircle the point (-1,0)

and the system is open-loop stable (pa—0), we conclude that

the nonrational closed-loop system is guaranteed to be asymptotically

stable for K-l. The condition for stability can be found by varying the

gain K until the (-1/K,0) point brushes the exterior boundary. For

0<K< 2.55 we have guaranteed asymptotic stability (case a), and for
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K22.55 stability is an open question (case c). The later implies that

although the Nyquist plot of G,(s) never encircles the (-1,0) point,

for any choice of K, there exists a possibility that higher modes can

go unstable for a larger gain K. This point is now illustrated by

retaining more modes in the truncated model.

 
0.0-

 

 

 -1.0 4 Re

-1.0 0.0 1.0

Figure 4.4: Nyquist plot for Gc=l, n=1, and xa-l/7 xs=5/7



41

 
  

 

   

Im

1.0 --

0.0

.10 fi' Re

-1 _o 1.0

Figure 4.5: Nyquist plot for Gc=l, n=2, and xa=1/7 xs=5/7

The Nyquist plot of the open-loop system G2(jw) in (4.14) (up to

42 rad/sec), for K=l, and the tube of uncertainty using R1 in (4.15)

are shown in Figure 4.5. The bound on [G,GC(jw)| for w>12 rad/sec is

R3=0.05. Because the new truncated Nyquist plot crosses the negative

real axis as indicated by the tube of uncertainty , it may encircle the
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(-1,0) point for some large gain K. The nonrational closed—loop system

is guaranteed to be asymptotically stable for 0<K<5.62. This maximum

stable range is larger compared with the previous gain range of

0<K<2.55 obtained for n-l only, exactly because n=2>n-l. Increasing

the number of modes in the truncated model always changes the truncated

frequency polar plot as well as the size of the tube of uncertainty,

hence refining the evaluation of the range of guaranteed stable or

unstable closed-loop gain.



§5. CONTROL DESIGN IN THE FREQUENCY DOMAIN

A major objective in control of flexible structures is to suppress

vibration caused either by unknown disturbances or by fast maneuvers.

A typical feedback control system for this purpose is shown in Figure

4.1. Because the flexible system has an infinite number of modes, and

since usually the first few modes dominate the rest of the modes in

terms of the system response, the actual design is concerned with

improving performance in those few modes only. Closed-loop performance

can be measured either by gain and phase margins which are generally

related to damping and stability margin or by the closed-loop frequency

response magnitude.

The exact location of where the disturbance enters the beam is

rarely known, and we will assume it to be at the actuator location xa.

If some modal amplitude 6k is zero (the ith eigenfunction has a node at

either X8 or xs), then no controller can dissipate energy at that mode

frequency, arising from a disturbance acting at a location where 6k is

nonzero. This is known as the controllability-observability issue in

control of flexible systems [Simon 1968, Balas 1978]. Therefore, one

design constraint is that the actuator and sensor be located such that

6k#0 for energy dissipation from that mode.

5.1. Design for Improved Damping and Stability Margin [Chait 1988c]

A common and effective controller employed for this purpose is a

derivative compensator designed to dissipate energy from the first few

43
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  _100 i
# .

-1.0 -0.5 0.0 0.5 1.0

 

Figure 5.1: Nyquist plot for single lead, n=2, and xa=1/7 xs=5/7

vibration modes, and in many cases the first mode only. A physically

realizable version of the derivative controller is the lead compensator

(Ts+l)

GC(S) = KW , 0<a<l. (5-1)
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Let T-0.05 and a-O.2, and let Gf(s)-l; K=l in all the following Nyquist

plots. This compensator, for a truncated model with n=l, can

significantly improve the damping ratio of the truncated system (4.12).

However, the negative sign in the numerator of the second mode's

transfer function (4.14) introduces a pair of nonminimum phase zeros

given in G2(s). The dynamic compensator modifies the Nyquist plot for

the truncated model (Figure 5.1) by reorienting the plot in a CCW

direction. As expected, the plot for the first mode is moved away from

(-l,0), which indicates increased damping in this mode. However, the

tube of uncertainty (4.3) expands in proportion to the increasing

magnitude of the lead compensator. The result is that the second

mode's plot is both closer to (-l,0) and has a wider tube, which

suggests that both the damping and the stability margin of the second

mode are reduced. Guaranteed stability for high compensator gain

cannot be achieved because of the reduced stable gain range. The

optimal method for constructing a tube of uncertainty from bound circle

is yet to be developed. Advanced computer graphics was used in drawing

the tube shown in Figures 4.4 and 4.5, however, due to some

computational difficulties the tubes in Figures 5.1-5.5 are obtained by

drawing each bound circle in the frequency range. Also, the uniform

bound on the truncation error was used exclusively in all the plots in

this chapter, however, the magnitude of a lead compensator increases

with the frequency thus causing an increase in the radii of the bound

circles. The result is an increasing in size tube of uncertainty.

When the actuator and sensor are collocated, the nonrational

transfer function does not have nonminimum phase zeros [Wie 1981].

However, a noncollocated pair results in nonminimum phase zeros and a

truncated model, depending on the order of the truncation, may or may

not include any of these zeros. Thus, in a design using truncated
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models, both truncation errors and nonminimum phase zeros must be

accounted for. The criterion in §4 resolved this problem. Models with

these zeros and control design limitations are discussed at length in

Cannon (1984).

To increase the lead compensator effectiveness the sensor is moved

to xS-3/7 which results in a positive modal amplitude 62. For a

truncation with n-4 and (k-0.005, k-l-4, the resulting model is

 
 

  

0.846 0.6784

G4(5) a 2 + 2

5 + 0.09875 + 97.4091 5 + 0.394785 + 1588.54

(5.2)

-l.5245 -l.5245

+ 2
+ 2

7

s + 0.88835 + 7890.136 5 + 1.57915 + 24936.73

with the error bounds

R1-0.0075 and R2(w)-4.59/w. (5.3)

Because of both 61 and 62 are positive, the truncated plot for n=2 does

not have nonminimum phase zeros and its plot will not cross the real

line. The plot for the 3rd and 4th modes does cross the real line

since both 63 and 64 are negative since each introduce nonminimum phase

zeros to G4(s) (5.2).

The physical interpretation is that a positive sign for 5k

indicates that the actuator and sensor are in phase at that mode

frequency, and negative derivative feedback does actually dissipate

energy at that frequency. A negative sign for 6 indicates that energy
k

is being added by the controller to the system at that frequency.

These non-minimum phase zeros, which exist in transfer functions of

noncollocated systems, limit how much energy dissipation can be

achieved with any given compensator.
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The resulting Nyquist plot for the truncated model in (5.2) has a

much smaller tube since n-4 (Figure 5.2). It also crosses the real

axis twice with the plots of the 3rd and 4th modes since both 83 and 64

are negative. This crossing can be observed in a detailed Nyquist

(Figure 5.3) plot for the 3rd and 4th modes from Figure 5.2. Because

the size of the tube is smaller, gain and phase margins become larger,

and stability can be guaranteed for a larger gain. Note that in this

1.01—

0.5--

 
0 . 0

" .._...._
 

“6.5“-

  “1.9
1

"1.0 '43.5 0.0 0.5 1.0

c
-
h
-

.
—
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Figure 5.2: Nyquist plot for single lead, n=4, and Xa=1/7 xs=3/7
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Figure 5.3: Local Nyquist plot of Fig. 5.2

example, the phase margin is undefined since the magnitude is always

less than unity.

Higher order compensators should provide more flexibility in the

design and result in better closed-loop performance, if designed

carefully to consider truncation errors and nonminimum phase zeros via

the tube of uncertainty. Consider a double lead compensator
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(Ts+l) (Ts+l)

Ge“) = K (aTs+l) (aTs+l) '
0<a<1. (5.4)

This higher order compensator further reorients the first and second

modes’ plot away from (-1,0), which usually indicates added damping

(Figure 5.4). A root locus for a second order compensator (5.4) would

 
  

—@.5“

    
Figure 5.4: Nyquist plot for double lead, n=4, and xa=l/7 xs=3/7
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show that the closed-loop lst and 2nd mode poles are shifted further to

the left than with a first-order compensator (5.1). However, the 3rd

and 4th mode plots are further reoriented toward (-l,0), which

indicates reduced damping and reduced stability margin. The size of

the tube, especially at the 3rd and 4th mode frequencies, is larger

than the tube’s size for a first-order compensator (5.1). Hence a

compromise exists between the order of the compensator and its gain, in

order to achieve closed-loop performance.

5.2. Closed-Loop Frequency Response Shaping [Chait 19880]

The nonrational closed-loop frequency response from the

disturbance D(5) to the output Y(s) (Figure 4.1) is

H“(S) = G(S)/[1+Q(S)]. (5.5)

and the truncated closed—loop transfer function is

Hn(S) = Gn(S)/[1+Qn(S)]- (5.6)

Using simple algebra, the closed-loop frequency response error bound is

|H<jw>-Hn<jw>l,, s lawlm / inf|1+Q(J'w)| / inf|1+Qn(jw)| , <5-7>

    
where inf is taken along the imaginary axis. These inf are

readily available from the system’s Nyquist plot, where infll+Q(jw)| is

equal to the shortest distance between the tube of uncertainty and the

point (-l,0); similarly, inf|1+Qn(jw)l is equal to the shortest

distance between the truncated Nyquist plot and the point (-1,0).
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Figure 5.5: Closed-loop frequency response for the system in Fig. 5.2

The truncated closed-loop frequency response magnitude, the upper

bound on closed-loop frequency response magnitude, and the open-loop

frequency response magnitude approximated by the response of the first

10 modes are compared in order to verify closed-loop performance.

combined plot for 04(5) in (5.2) and K=l is shown in Figure 5.5.

This

The
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effectiveness of the lead compensator on the lst mode magnitude can be

observed in Figure 5.6, where the closed-loop frequency function

magnitude is reduced from an approximate open-loop value of 0.87 to a

guaranteed value, by the upper bound, of 0.65. In this example,

inf|1+Qn(jw)|=.939 and infll+Q(jw)|-.9l9 obtained from Figure 5.2. For
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Figure 5.6: Detailed closed-loop frequency response of the lst mode
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Figure 5.7: Detailed closed-loop frequency response of the 2nd mode

the 2nd mode, the truncated closed-loop frequency response magnitude

down to 0.0415 compared with an open-loop magnitude of 0.0428 (Figure

5.7). However, the upper bound magnitude is 0.05, which, in fact,

indicates that an increase is also possible. As discussed in the

previous section, the 3rd mode's damping factor is reduced, and Figure



54

5.8 shows an increase from 0.019 to between 0.02 (truncated plot) and

0.029 (upper bound). Using a gain of K-2.l (Figure 5.9), the lst mode

magnitude is further reduced to between 0.50-0.55. For this case,

ian1+Qn(jw)I-.423 and inf|1+Q(jw)I-.395 obtained from Figure 5.2.
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Figure 5.8: Detailed closed-loop frequency response of the 3rd mode
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In terms of the lst mode’s magnitude reduction, a double lead

compensator (5.4) and gain of K=l, results in similar magnitude

reduction of 0.50 but with a smaller upper bound of 0.51 (Figure 5.10).

For this case, infll+Qn(jw)I-.743 and inf|l+Q(jw)I—.700 obtained from

Figure 5.4, which is smaller compared with those values in Figure 5.2.
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Figure 5.9: lst vibration mode in Fig. 5.2 and K=2.1
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Figure 5.10: lst vibration mode in Fig. 5.4 5 K=l

This example demonstrate that one has a design choice between a

proportional compensator and a double lead compensator for achieving

larger closed-loop magnitude reduction in the first mode, and that this

method provides a simple tool for evaluating such designs. For both

compensator types, this reduction occurs with corresponding response
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magnitude increases in higher mode responses. Because higher modes

have larger open-loop stability margins than that of the lower modes,

this reduction may be acceptable. As control gain is increased

further, spillover induced instability may occur as predicted by the

previous Nyquist plots.





CONCLUSIONS

The results of this disseratation addressed the problem of

distributed-parameter system control design using truncated models.

Results in stability theory and in practical control design are treated

in the frequency domain. The results cover DPS whose modal

representation is known. The three objectives mentioned on page 7 were

met as follows.

i) Model truncation errors and the resulting spillover effects on

closed-loop stability can be predicted using our frequency domain

stability criterion. The stability is checked using simple graphical

tools: a Nyquist plot for a rational model, bounds on truncation

errors, and a consequent tube of uncertainty. That stability is

guaranteed for the nonrational closed-loop system even though the

controller is designed using a truncated model.

ii) The method for computing the truncation error bounds allows

for wide uncertainty in the modal damping rations and in the exact

location of the actuator and sensor. The robustness measure for the

truncation errors and the above mentioned uncertainties is simply the

shortest distance from the tube of uncertainty to the (-l,0) point on

the Nyquist plot.

iii) Classical frequency domain controller design methods for

rational transfer function were used. In particular, Nyquist plots and

closed-loop magnitude shaping method were employed.

Using the developed theory and the practical design tool the

following observations were drawn. Because noncollocated actuator and

sensor results in non-minimum phase zeros, compensator gains must be
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kept sufficiently low so that higher modes will not be destabilized by

the compensator. The numerical examples show that a compromise exists

between higher-order compensators and high-gain compensators. Lead

compensators were shown to increase damping in the first modes of the

beam. However, they also reduced damping in higher modes. The

criterion provides a practical stability analysis method to allow

compensator design for vibration suppression of the Bernoulli-Euler

beam. Associated closed-loop frequency responses with upper bounds

predict added damping in some vibration modes and indicate that

spillover effects translate into reduced damping in other modes.

In summary, the work done here provides a clear cut indicator for

the minimum required number of modes in the truncated model. The

controller design process alleviate the need for practical experience,

since the robustness measure and the error bounds provide guaranteed

results. Similar analysis is possible for any distributed-parameter

system with a modal expansion and makes possible controller design for

a wide range of engineering systems with guaranteed levels of stability

and performance.





RECOMMENDATIONS FOR FUTURE WORK

Natural future directions are multi input-output and digital

version extensions to the theory. The design method could be

translated into a user friendly computer program which includes a tube

of uncertainty construction such as shown in Figures 4.4-4.5. However,

the main trust should be oriented toward developing a conjugate theory

to allow for time domain design for DPS using truncated models. In

this section we lay out the theoretical basis for such a design. We

show that frequency domain open-loop uncertainties, described by a tube

of uncertainty, can be utilized to define a corresponding closed-loop

system time response uncertainty.

For a system whose closed-loop stability was verified using any of

the theorems in §2, we know that the closed-loop transfer function H(s)

is bounded and L1 on Re(s)z-ao, and that its impulse response h(t) is

bounded and L1 on te[0,m). The following general relations hold for

the casual time domain function h(t) and the frequency domain function

H(s) restricted to Re(s)--oo, and follows directly from Appendix B:

llhllm é supIhI s <1/27r)||HI|1.

V

llhllz — IIHIIO, 11 supIHI-

By the above relations and using the stability result from Section 4.2,

having a stable H(s) implies that the impulse response error h(t)—hn(t)
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is bounded. This is true since H(s) stable implies Hn(s) stable under

the layout of §2. Such a bound on the impulse response is used in

bounding the output error y(t)-yn(t) for different classes of inputs.

Theorem. Suppose that the control system shown in Figure 4.1

satisfying the hypotheses of Theorem 2.2 is closed-loop stable for some

non-negative constant 00. In addition, suppose that the input U(s) is

rational, strictly proper, and analytic on Re(s)>0 with at most simple

poles on Re(s)=0. Then the output error y(t)-yn(t) is uniformly

bounded when ao=0 and approaches zero exponentially when 00>0.

Proof. The inputs which satisfy the hypothesis can be divided

into two classes: (a) U(s) is analytic on Re(s)>al>0 with 01>0, and (b)

U(s) has simple poles on Re(s)=0. The closed-loop, nonrational,

transfer function of the system is

Y(S)/U(S) = P(S)/[1+Q(S)] A H(S),

and the closed-loop, rational, transfer function of the truncated

system is

Yn(S)/U(S) = Pn(S)/I1+Qn(S)I A Hn(S)-

By hypothesis, H(s) and hence Hn(s) are L1 on Re(s)Z-ao, and all U(s)

in class (a) are bounded on Re(s)2-ao. Therefore, the inversion

formula

y(t)-yn(t) =J [H-Hn]U(s)esc ds/21r,
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is well defined along the vertical line Re(s)--a, a=min{oo,al}.

Bounding terms yields

I|y<c>-y,,<t>ll.. s e‘“ I IIH-Hn]U(J‘w)| dw/zvr

-at .

— K e , a-m1n{ao,al},

for some constant K. Using a=min{ao,al} instead of 00 implies that

there are no singularities in Re(s)-ao which is required to ensure

causality of the time domain functions.

Inputs U(s) in the class (b) are necessarily bounded in the time

domain: Iu(t)|SK1. From Theorem 2.2 we know that egoth(t) is L1[0,m),

and it follows that hn(t) has the same property. Using the convolution

theorem

y(t)-yn(t) =I [H—Hn]U(s) e'St ds/21r — e'aotJ- [h-hn](t-r) u(r) d7,

-CD 0

where s=-ao+jw. Bounding terms gives

|y(t)-yn(t>| s e'”°t Ilullm Ilh-hnIli = e'°°t K1 K2

Note that K 5 K1, however, using the Convolution Theorem we take

full advantage of '00: where in the first part of the proof we use

0500. The reason for requiring input with no unstable poles or

repeated poles on the imaginary axis is that such inputs are not

bounded in the time domain and hence cannot be produced in real systems
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over te[0,w). Having a stable system H(s) with input U(s) having poles

in the right half plane requires that the inversion integral be

evaluated along a vertical line to the right of the furthest pole of

U(s) -- as required for causality of y(t) -- which contradicts the

assumption that 00 is nonnegative. The strictly proper assumption on

U(s) excludes generalized functions as inputs.

The problem in the application of the above theorem is the

difficulty in obtaining a numerical value for IIH-Hnll1 and IIh-hnlll.

In some cases, however, it is possible to obtain a numerical value for

the norm IIH'HDII1- Consider the inversion integral for a stable

system

I IIH'HnIU('00+jw)I dw - I IGCEU [1+QI'1 I1+QnI’1<-ao+jw>l dw,

where both |[l+Q]-1I and |[1+Qn]-ll are bounded below on the vertical

line Re(s)--ao (from the Nyquist plot). Now suppose that the product

GC(s)E(s) is 0(w2) on the vertical line Re(s)--ao, which allows for a

numerical evaluation of the integral of H(s)-Hn(s) over (—w,-l] and

[1,w). Because H(s) is analytic on Re(s)--ao, the integral over [-l,l]

is finite and is given by the bound on the closed-loop frequency

response magnitude error (see §5). For example, E(s) for a second

order is 0(w), which combined with a strictly proper Gc(s) provides the

necessary condition for a numerical evaluation.

The Theorem shows that frequency domain tube of uncertainties can

be mapped into a time domain tube of uncertainty about the truncated

response yn(t). This combined with the results from §2-§5 should

provide the control engineer a simple method with absolute guarantee of

accuracy for analysis and synthesis of finite-dimensional controllers
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for the class of DPS covered in the work, for both frequency domain and

time domain specifications.
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APPENDIX A

Mathematical Preliminaries

Analytic Function [Hille 1959]. A function f(z) is said to be

analytic (or holomorphic, regular) in a domain D, if the derivative of

f(z) exists at each point z of D. Thus an analytic function is single-

valued, continuous, and differentiable in the domain under

consideration.

Metamorphic Function [Hille 1959]. A function f(x) is said to be

meromorphic in a domain D (finite or extended) if f(x) is analytic in D

except possibly at singularities which are poles.

Cauchy Integral Theorem [Hille 1959]. Let f(z) be analytic in a

simply connected domain D. Let C be a closed curve within D. Then

I f(z) dz = 0. (Al)

C

Corollary [Hille 1959]. If D is simply-connected domain, and if a

and b are any two points within D, then

b

I f(z) dz (A2)

a

is independent of any continuous path within D joining a to b.
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Cauchy Principal Value of Integrals [Hille 1959]. The improper

integral of a continuous f(x) over the infinite interval -wsxsw is said

to be Cauchy P.V. integral

P.V. I f(x) dx A lim I f(x) dx, (A3)

-w R” -R

provided this single limit exists. Example: The integral

I sin(t) dt (A4)

-ao

does not exist in the Riemann or Lebesgue sense, however,

P.V. I sin(t) dt = lim [~cos(R)+cos(—R)] = 0. (A5)

R—mo

-®

Tonneli's Theorem [Halmos 1950]. If h is non-negative, measurable

function on XxY, then fhd(vxp)—ffhdpdu—ffhdudp. In the extended sense,

all these integrals are simultaneously infinite, or finite and equal.

Fubini's Theorem [Halmos 1950]. If h is an integrable function on

XxY, and if the functions f and g are defined by f(x)=fh(x,y)dv(y) and

g(y)=fh(x,y)dp(x), then f and g exist a.e. and are integrable and

fhd(u,u)=ffdp=fgdu.

Jordan Lemma [Papoulis 1962]. If t<O and f(z)~0 with Izl+m, then
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I etz f(z) dz # 0 as raw, (A6)

P

where P denotes the semicircle s=-ao+re30, -w/2$0$«/2.

Iebesgue Bounded Convergence Theorem [Halmos 1950]. If {fn} is a

sequence of integrable functions which converges in measure to f or

else converge to f a.e. (almost everywhere), and if g is an integrable

function such that Ifn(x)lslg(x)| a.e., n-l,2,..., then f is integrable

and the sequence {nt convergence to f in the mean (i.e., flfn—fidx +0

as n+0).

Corollary.

ligo I f(X.Y) dV - I lggo f(x,y) dv (A7)

provided: a) lim[f(x,y)] exists for a.e. x as y”Yo, and

b) |f(x,y)| s g(x), for some integrable g.

Corollary. Suppose |f(x,y)|Sg(x) on X where g(x) is absolutely

integrable on X. If f(x,y) is continuous at yo for a.e. x, then

F(Y) = I f(X.Y) du(X) (A8)

is continuous at yo

Argument Principle [Hille 1959]. Let C be a simple closed

continuous curve, and let f(z) be meromorphic inside C and continuous

on C. When 2 describes C in the clockwise direction, the argument of

f(z) increases by a multiple of 2n, namely
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arg[f(z)] - 21 (Z-P), (A9)

C

where Z is the number of zeros of f(z) inside C, and P is the number of

poles of f(z) inside C.

Nyquist Criterion [Nyquist 1932]. Let P(s) denote the open-loop

rational function (transfer function) in s and let H(s)=P(s)/[1+P(s)]

be the closed-loop transfer function (which is also a rational function

in 5). Let F denoted the Nyquist contour that passes along the jw-axis

from -jw to +jw and then along the semicircle s-rejo, r+m and 0 starts

at «/2 and ends at -«/2, and let P be the contour generated by P(s) as

P

5 describes F. The closed-loop function H(s) is exponentially stable

if and only if, for the contour F the number of counterclockwise
P,

encirclements of the (-1,0) point is equal to the number of poles of

P(s) with positive real part. The proof for this criterion as well as

treatment of special cases can be found in many standard control text

books, and is a direct consequence of the Argument Principle.

Riemananebesgue Lemma [Doetsch 1974]. If a function f(w) is

absolutely integrable in an interval [a,b], then

b .

1im I f(w)e'3wt dw = 0, (A10)

t+tm a

where a and b are finite constants. In fact, the theorem holds when a

and b are infinite.

We give here a short proof [Tolstov 1962], based on the following

lemma.
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Lemma. Suppose f(w) is L1, then for any e>0, there exists a

continuously differentiable function p(w) such that flf(w)-p(w)|dw<e.

Proof of the RL lemma. Let e>0 be arbitrary number, and consider

the expression

b . t b

I] f(w)er dwl s I |f(w)-p(w)|dw +

a a
 

b . t

J p(w)eJ“ dwl. (All)

a

Integrating by parts, we obtain

b 'wt -1 'wt b -1 b 'wt
IpmeJ dw — (jt) Ip<w>eJ 1],, - (jt) Ip'meJ .1... (A12)
a a

where p’(w) denotes the derivative. Since p(w) is continuously

differentiable the expression in the brackets and the integral are

bounded. Therefore, for sufficiently large t

b 'wt

‘I p(w)eJ dw < 6/2. (A13)

a

By the lemma and (A13), it follows that

b . t

|J f(w)er dw < 6 (A14)

a

for sufficiently large t, i.e.,

b .

lim I f(w)e3“t dw = o.

at—mo
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Remark. The application here to our work is the simple deduction

that a time domain response

f(t) = ImF(jw)ert dw/2w, (A15)

(1)

vanishes at w when F(jw) is absolutely integrable.

Asymptotic Stability [Russell 1979]. The linear homogeneous

system

§<<t> = Ax<t). x<to)=xo. (A16)

x in some Banach space X, is said to be asymptotically stable if every

solution of (A16) satisfies

lim ||x(t)|] = o as t+m. (A17)

Bounded—Input Bounded—Output (BIBO) Stability. The forced linear

system

x(t) = Ax(t) + Bu(t) , x(t°)=xo, (A18)

x in some Banach space X, is said to be BIBO stable if

||X<t>|| s K I|u(t)|l. (A19)

for some constant K independent of u.
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Exponential Stability. The linear system (A16) is said to be

~1211v stable if

I|x(t)ll s K e'“, (A20)

for some nonnegative constants K and a>0.

.
r





APPENDIX B

The Laplace Transform Pair

The Laplace Transform F(s) of a time-domain function f(t) is

evaluated from the integral

I f(t) e'St dt, (Bl)

o

where s-a+jw. The conditions for existence of the integral and other

properties of F(s) evaluated by (B1) are presented in the following

theorem.

Theorem Bl. Suppose that f(t)e-a°t is L1[0,w), 00 real. Then

(a) F(s) exist for Re(s)200;

(b) F(s) is bounded in Re(s)Zao;

(c) F(s) is uniformly continuous in Re(s)20°;

(d) F(s) is analytic for Re(s)>ao;

(e) F(s)»0, for each in 0200 as warm;

Proof. (a) By hypothesis, the integral (Bl) exist for s=a+jw and

0200.

(b)

 

|F(s)| = I] f(t) e'St dt 5 I |f(t) e'aotl dt < a. (32)

o o

(c) Let so=ao+jw. By definition,

72
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w

lim [F(s) - F(so)I = lim f(t) (e'St- e‘sot) dt, (B3)

s-*so s-vso 0

where s-+5o in any direction within the half-plane Re(so)200. Because

f(t) (e‘St- e‘SOt)-f(t)e‘°°t[e'jwt(e'(°'°°)t-1)1, f(t)e"’°t is L1, and

I[e-Jwt(e-(a-a°)t-l)]|sl Vto, then by Lebesgue Bounded Convergence

Theorem [App. A] lim[f(so)-f(s)]-0 as 5450, V0200.

(d) It suffices to verify that the derivative of F(s),

F(s) - F(so) w

lim 3 _ S - lim I f(t) [(e'St- e's°t>/(s-s.>1 dt (34)
5+5o ° s-+so 0

 

exist Va>ao, where 5045 in any direction in the half-plane Re(so)200,

00>-a. Because |[e'jwt(e'(”'°°)t-1)/(s-so)IIsl Vt and f(t)e"’°t is L1,

then by the Lebesgue Bounded Convergence Theorem [App. A] the limit

exist.

(e) Let s-a+jw, and 0200. By hypothesis, for every given e>0, there

exist T such that

co no (I)

‘St -0t "Got

f(t)e dt 5 If(t)|e dt 5 If(t)|e dt <e/2. (BS)

T T T

By the Riemann-Lebesgue Lemma, there exist 0 such that

T

If f(t)e-St dt 5 6/2 for le>0, for each 0200. (B6)

0

Hence,
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co

IF(5)| = I] f(c)e'St dt 5 e for |w|>0. (B7)

0

We now turn to checking whether the time domain function f(t) can

be recovered from its Laplace Transform F(s) via the inversion integral

a+jm m

I F(s) eSt ds/an = eat I F(a+jw) eJyt dw/2n. (B8)

a-jao -00

Theorem B2. Suppose that f(t)ea°t is L1[0,w) and F(s) is defined

by (B2). Then for each 0200

0+jm

P.V. I F(s) eStO ds/2nj = f(to), (B9)

a-jw

at each to where [f(t)-f(to)]/(t-to) is integrable near to (Dini's

test).

Proof. Assume a=0 since this proves the rule. Consider the

integral

0 000

I F(jw)e3wt° dw = J I f(c)e'3wtdte3wt° dw, (B10)

-0 -n o

where O is a fixed positive constant. Because f(t) is L1 on te[0,m)

and the interval [~0,0] is compact, then the integrated integral

converges absolutely. By Tonneli's Theorem [App. A], the double
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integral of f(t)e.j(°"-m°)t is absolutely integrable on [-0,0]x[0,w).

By Fubini's Theorem [App. A], both iterated integrals converge and are

equal, and the integral on the right in (B10) can be written as

w a

I f(t) e‘j(t't°)w dw dt. (B11)

-0

which can be reduced to

2 I f(t) sin[(t-to)0]/(t-to) dt. (B12)

0

But (B12) can be written as the sum of three integrals

T

2f(to) I sin[(t-to)0]/(t-to) dt

0

T

+ 2 I {[f(t)-f(to)I/(t-to)} sin[(t-to)0] dt

0

+ 2 I f(t) {sin[(t-to)0]/(t-to)} dt, (B13)

T

for T>to. As 0+w, the first integral approaches 2nf(to) because

T 0(T-to) ”

J sin[(t-to)0]/(t-to) dt = I sin(x)/x dx + J sync(x) dx = n.

0 -0to -m (814)
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The second integral tend to zero as new by the Riemann-Lebesgue Lemma

[App. A], since by Dini's assumption [f(t)-f(to)]/(t-to) is L1. The

third integral can be made arbitrarily small for all large T since f(t)

is L1 and sin[(t-to)0]/(t-to) is bounded.

A weaker theorem showing when f(t) can be recovered from F(s) is

presented next.

Theorem B3. Suppose that F(s) is analytic in the half-plane

Re(s)>01, F(s) vanishes in every half-plane Re(s)201+6>a1 as 5 tends

two dimensionally toward w, and F(s) is L1 on every vertical line

Re(s)>al. Then F(s) is equal to the Laplace Transform (B1) of its

original function, which is evaluated with (B2) independent of the

choice of a in a>01.

Proof. The proof is given in Doetsch (1962).

Let us now turn the process around. Suppose we are given a

frequency domain function F(s) and wish to discover when this F(s) is

in fact the Laplace Transform of a time domain function f(t). The

answer in general is difficult, deep, and unresolved (see MacCluer

1988). A partial answer follows.

Theorem B4. Suppose that

(i) F(s) is analytic on Re(s)>ao and continuous on Re(s)zao;

(ii) F(s) is L1 on Re(s)=ao;

(iii) F(s) is strictly proper on Re(s)Zao.

Then
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(a) f(t) is well defined by (B8) independent of a for 0200,

(b) f(t) is bounded on [0,w),

(c) f(t) is uniformly continuous on [0,w),

(d f(t)—002"“),v

(e

(f

V

f(t) is causal, and

v

f(t)+0 as t+w.

Proof. (a) Using hypotheses (ii) and (iii), the result follows by the

Cauchy Integral Theorem [App. A].

(b) By hypothesis, the integral (B8) exist as L1, hence f(t) is

bounded.

(c) Continuity follows from the Lebesgue Bounded Convergence Theorem

[App. A] (see the proof given for Thm. Bl part 3).

(d) Because F(s) is L1 on Re(s)=a0

f(t) << eaot I |F(ao+jw)| dw/2n, (B15)

giving f(t)=0(e0°t).

(e) Because F(s) is analytic on Re(s)>-ao and continuous on Re(s)=ao,

by the Cauchy Integral Theorem [App. A] the integral (B8) can be

separated into five contour integrals by breaking the contour F into

five contours

* *

F = F1 + F2 + F3 - P2 - F1, (B16)

where on F1 s=ao+jw, w€(-w,-0) for 0 a large positive constant, on F2

*

s-a-jfl, ae[ao,al] for 01>00, on P3 s=01+jw, w€[-0,0], and where (')
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denotes the complex conjugate. Because F(-ao+j0) is L1 the first and

the last integrals are 0(1) as 04w. Because F(s) vanishes as Islam on

Re(s)Z-ao and 01 is arbitrary, the third integral F3 is also 0(1) for

t<0. Denote the second integral as I2.

01

12 << max|F(s)| I a“ ale/(21.) - max|F(s)| (e"1t-e°°t)/21rt. (B17)

00

For 01>0 and with 00 and t>0 fixed, we have max|F(s)]/t=o(l).

Therefore, f(t)=o(l) as 0+0 for t<0.

(f) The result follows by the Riemann-Lebesgue Lemma [App. A].

Theorem B5. Under the hypotheses of Theorem B4 with the

additional assumption (iv) F(s) is analytic on the line Re(s)=a°, then

the Laplace Transform of f(t) converges at each s with 0200 to F(s).

Proof. Because F(s) is analytic on Re(s)=ao, Dini's Criterion

certainly holds. Thus, as in the proof of Theorem B2 with the roles of

f(t) and F(s) interchanged, the Laplace Transform of f(t) exist and

equals F(s) at each s on the vertical line Re(s)=a°. For several

reasons, e.g. (B4), this Laplace Transform also converges on Re(s)20o

to a function F1(s) analytic on Re(s)>ao that agrees with F(s) on

Re(s)=a°.

By employing integration by parts, F1(s) can be shown to be

continuous at each point of the line Re(s)=ao, at the very least when

approaches from the right are limited to sectors with angle opening

less than n. Then the difference G(s)=F(s)-F1(s) is analytic on the

open RHP Re(s)>ao, and sectorially continuous at each point of the line
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Re(s)-a°. The author is indebted to Dr. Wade Ramey for the remainder

of the proof.

Let En-{w2IG(a+jw)ISn, aSaoSao+l). These sets En are closed and

hence by the Baire Category Theorem [Rudin 1973], some En must contain

an interval. But then G(s) is uniformly bounded on a rectangle, one of

whose sides coincide with the vertical line Re(s)-ao. By Hco theory

[Rudin 1973], since G(s) is continuous along horizontal lines with

limit zero on an open portion of the boundary, G(s) is identically zero

within the rectangle giving that F1(s)-F(s) on Re(s)-ao.
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