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ABSTRACT

THERMOMAGNETIC PHENOMENA IN MESOSCOPIC AND
PARAMAGNETICALLY LIMITED SUPERCONDUCTORS

By

Mengling Hettinger

The superconducting fluctuation effect, due to droplets of preformed Cooper pairs above

the critical temperature Tc, governs the temperature dependence of kinetic coefficients in

superconductors at the onset of the phase transition. The transverse thermoelectric response

– Nernst effect – is particularly sensitive to the fluctuations, and the large Nernst signal found

in the various superconducting materials has raised much debate on its connection to the

origin of unconventional superconductivity. In this thesis, we present a systematic study of

the electrical and thermomagnetic transport phenomena in mesoscopic and paramagnetically

(Pauli) limited superconductors.

In the first chapter of this thesis we concentrate on the study of mesoscopic effects on

transport in superconductors. We find that long-range phase coherence developing close to

Tc triggers a great amplification of mesoscopic fluctuations due to strong pairing correla-

tions. As a result, mesoscopic conductance fluctuations cease to be universal and exhibit

pronounced dependence on temperature. Despite the lack of universality, in the sense of ran-

dom matrix theory classification, we have discovered a different kind of universality in terms

of temperature dependence of fluctuating characteristics. We find that mesoscopic fluctu-

ations of conductivity, transversal thermoelectric coefficient and diamagnetic susceptibility

consistently display the same scaling with temperature close to Tc. We connect our results

to the existing experimental measurements of conductance fluctuations in superconducting

films. Experimental verification of the temperature scaling and the overall magnitude of



the mesoscopic fluctuations of Nernst coefficient will provide a powerful tool for a better

understanding of thermomagnetic transport phenomena in correlated systems.

In the second chapter of this thesis we examine the electrical and thermal transport

anomalies in the ultra-thin superconducting films in an external in-plane magnetic field.

We concentrate on the Clogston-Chandrasekhar phase transition, i.e., the destruction of

superconductivity by a magnetic field by virtue of the Zeeman splitting. Near the quantum

critical point of the supercooling line in the phase diagram, we discover highly non-monotonic

magnetoresistance. The most remarkable feature of this effect is that fluctuation-induced

transport is dominated by the virtual excitations rather than real preformed Cooper pairs.

We also carefully study how spin-orbit scattering and other pair-breaking effects modify the

fluctuation transport. In the strong spin-orbit scattering regime, we find that the scaling

of the thermomagnetic coefficient is the same as conductivity within the classical region

of transition, however they are drastically different near the quantum critical point. Even

though we primarily focus on the conventional superconductors our result for the Nernst

effect may have important implications to the other systems, such as iron-pnictides, and in

particular to FeSe compound, which has comparable Zeeman and superconducting gaps.
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Chapter 1

Introduction

The study of fluctuation effects at the onset of the second order phase transition, which

naturally emerged from the Landau’s theory of the phase transformations [1], was instru-

mental in the development of statistical mechanics and modern condensed matter theory.

The seemingly simple question – how accurately does the mean field theory describes the

second order phase transitions – lead to the ideas of scaling, universality [2–6], and eventually

to the development of the renormalization group [7]. In the context of superconductivity,

fluctuations were first studied by Ginzburg [8]. In particular, he analyzed effects of fluc-

tuations above the critical transition temperature, Tc, on the thermodynamic properties of

superconductors and demonstrated that, in clean materials with ballistic transport, the fluc-

tuation phenomena become important only in a very narrow temperature region near the

transition. This result explained the great level of accuracy of the Bardeen-Cooper-Schrieffer

(BCS) theory of superconductivity [9] (which in its essence is a mean field model) in appli-

cation to various existing experiments of that time. Almost a decade later Aslamazov and

Larkin [10], and independently Maki [11] and Thompson [12], realized that the fluctuation

region in disordered superconducting films is determined by the resistance per unit square
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and could be much wider than that in bulk samples. Perhaps even more importantly they

demonstrated that within microscopic BCS theory superconducting fluctuations, in fact,

play a very important role in explaining temperature dependence of kinetic coefficients, such

as conductivity. These authors discovered the phenomenon which nowadays is called the

paraconductivity effect – the decrease of the resistance of a superconductor in the normal

phase with lowering temperature towards the critical temperature. In a parallel vein this

effect was observed in experiments by Glover [13]. Little [14], Langer and Ambegaokar [15],

and McCumber and Halperin [16] showed that superconducting fluctuations associated with

the phase of the superconducting order parameter, so called phase slips, are also required

to explain the residual resistance in the superconducting phase. At very low temperatures,

thermal activation of the phase slips is severely suppressed, however resistance may appear

due to quantum phase slip tunneling [17].

Abrahams, Redi and Woo [18] demonstrated that fluctuation effects play an important

role at the level of single particle properties, namely fluctuation-induced formation of su-

perconducting droplets in the normal state leads to the depletion in the density of states

that manifests as a pronounced zero-bias anomaly revealed by the tunneling experiments.

The delicate interplay between paraconductivity and density-of-states effects is instrumental

in explaining transport anomalies as observed in the granular superconductors. These early

studies set the stage for the new and fruitful field of research that spanned over many decades

and were recently summarized in the monograph by Larkin and Varlamov [19].

What makes superconducting fluctuations so pronounced in experiments and interesting

from the theoretical point of view is their strong dependence on temperature, magnetic field,

frequency of external drive parameter, etc. In practice these characteristic features allow one

to separate fluctuations from the other competing effects contributing to transport, and use
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them to extract important information about the microscopic parameters of a material which

are not accessible by other means of measurement. In theory, studying fluctuation effects

advances our understanding of the underlying origin of superconductivity as a macroscopic

quantum phenomenon. This becomes especially critical in the cases when this origin is in

fact not completely known, like in the case of high-temperature cuprate superconductors or

heavy-fermion superconductors. Furthermore, many ideas of the theory of superconducting

fluctuations have been extensively used in other branches of condensed matter physics, e.g.

in developing ideas of quantum criticality. For instance, superconducting fluctuations at

zero temperature near the upper-critical field, Hc2, give perhaps the simplest example of a

quantum critical metal.

A different kind of fluctuation effect that attracted tremendous attention over the span

of last several decades is mesoscopic fluctuations [20–23]. This phenomenon occurs due to

quantum mechanical interference between coherent electrons backscattering off random dis-

order potential. It manifests as completely reproducible oscillatory patterns of conductance

as a function of magnetic field or the gate voltage with universal amplitude in the units

of conductance quantum e2/h. Since disorder substantially broadens the region of super-

conducting fluctuations, one may be intrigued by the question of whether there exists a

parameter range within which superconducting fluctuations coexist with mesoscopic fluctu-

ations, and what their interplay will give for observable quantities. In particular, one may

want to investigate the ultimate fate of universality of conductance fluctuations in the pres-

ence of strong superconducting correlations. This set of questions defines the main theme

of the present dissertation. Our focus in on thermomagnetic transport in mesoscopic su-

perconductors. Thermomagnetic effects are difficult to measure and difficult to calculate

theoretically. The mere difficulty of the problem makes it to be of fundamental importance.

3



In metals, thermomagnetic effects are usually small because of strong cancellation of cur-

rents generated by electronic excitations above and below the Fermi level – the electron-hole

asymmetry is at the heart of the nonvanishing thermomagnetic response. Because of this

compensation property, thermomagnetic effects are very sensitive to the characteristics of

the electronic spectrum, presence of impurities, and peculiarities of scattering mechanisms.

The inclusion of many-body interaction effects, such as electron-phonon renormalization,

electron-electron scattering, drag effects, etc., adds a completely new level of complexity to

the problem of calculating thermomagnetic kinetic coefficients. The observation that the

collosal Nernst signal – the electric field, Ey, generated as a response to a transverse tem-

perature gradient, ∇xT , in the presence of a perpendicular magnetic field, H – is mediated

by superconducting fluctuations in the vicinity of transition triggered much interest to these

transport phenomena.

On the technical side there is a well defined way how one can compute response functions

based on the diagrammatic methods of many-body theory in condensed matter physics [24].

These methods are extremely powerful and, in the context of superconducting and mesoscopic

fluctuation effects, can be reduced to the summation of certain classes of diagrams. The

diagrammatic technique is especially suited for problems containing a small parameter when

the whole treatment simplifies to the summation of ladder type diagrams. Importantly for

our study, mesoscopic and superconducting fluctuations are controlled by the same parameter

– inverse dimensionless conductance – which allows us to treat these effects on equal footing

within the same formalism.

This dissertation is organized as follows. In Chapter-II we provide brief but yet sufficient

introductory discussion for the foundations of mesoscopic physics of conductance fluctua-

tions. We devote special attention to the mesoscopic effects in supeconducting systems.
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After reviewing existing literature we place our work in the context of existing studies. Next

we elaborate on the technical prerequisites and set the stage for the calculation of conduc-

tivity and transverse thermomagnetic power. We demonstrate that mesoscopic fluctuations

proliferate in the presence of superconducting pairing correlations and that the universality

of this phenomenon breaks down. We then relate our results to available experimental find-

ings. In Chapter-III we concentrate on transport effects in thin superconducting films in the

in-plane magnetic field. In such systems, superconductivity is limited either by orbital effects

or by spin Zeeman effects. Depending on the film thickness and electron mean free path, one

effect dominates the other and we consider both scenarios. In either case, the phase diagram

in the field-temperature plane is interesting and we discuss fluctuation effects along the en-

tire transition line including the most interesting quantum critical points. Despite certain

similarity of the phase diagram, the underlying nature of fluctuation effects is conceptu-

ally different. The most remarkable feature of fluctuations in the Zeeman case (so called

paramagnetically or equivalently Pauli limited superconductors) is that fluctuation-induced

transport is mediated by virtual Cooper pairs in the quantum limit because of the Zeeman

gap in the excitation spectrum at low temperatures. Chapter-III structurally is similar to

Chapter-II. We review the history of studies on the subject of Pauli limited systems, discuss

more recent tunneling results, and carry out calculation for electrical and thermomagnetic

effects. Various technical aspects of this work are delegated to multiple appendices.
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Chapter 2

Thermomagnetic transport in

mesoscopic superconductors

2.1 Background and motivation

Universality of conductance fluctuations (UCF) is the hallmark of mesoscopic physics [20–

23]. This phenomenon emerges from the quantum coherence of electron trajectories and

is sensitive to changes in external magnetic field or gate voltage. At temperatures below

the Thouless energy, T < ETh, which is related to the inverse dwell time for an electron

to diffuse across the sample ETh = D/L2, variance of conductance fluctuations saturates to

the universal value of the order of conductance quantum, ∼ e2/h, as long as characteristic

sample size L is smaller than dephasing length, L < Lφ. Interaction effects in normal metals

barely change the magnitude and universality of conductance fluctuations although they

are crucially important in determining temperature dependence of dephasing effects, and in

particular Lφ [25]. Robustness of UCF can be rooted to random matrix theory description

of Wigner-Dyson statistics of electron energy levels in disordered conductors. Indeed, in
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the Landauer picture of transport across a mesoscopic sample, conductance is given by e2/h

times the number of single particle levels within the energy strip of the width of the Thouless

energy. While the average number of such levels depends on the dimensionality, random

matrix theory predicts that their fluctuations are universally of the order of one [26,27].

When superconductivity is induced at the boundary of the mesoscopic sample via the

proximity effect, UCF remain intact [28, 29]. The magnitude of oscillations changes only

by a numerical factor of the order of unity, with a value depending on the underlying sym-

metry class [30–32]. Things get quantitatively different if superconducting correlations are

induced at the bulk of the sample. Experimentally this is achieved by tuning superconduct-

ing systems to the vicinity of the critical temperature Tc or the superconductor-insulator

transition. There exists compelling evidence from measurements such as those in two-

dimensional granular arrays [33, 34], sub-micron scale superconducting cylinders [35], and

quantum wires [36,37], that mesoscopic oscillations could become anomalously large, some-

times reaching the level of ∼ 104 × e2/h. These observations seemingly imply that the role

of mesoscopic effects proliferate in the presence of superconducting correlations.

Theoretical studies devoted to various aspects of mesoscopic fluctuations in superconduc-

tors cover a diverse range of topics. These works include mesoscopic effects on the Josephson

current [38–42], upper critical field [43,44], critical temperature [45], condensation energy and

glassy phase transitions, [46,47] persistent currents [48–51], density of states, gap fluctuations

and level statistics [52–56], and also some transport properties [57, 58]. In the recent years,

measurements of the Nernst-Ettingshausen effect and the diamagnetic response in super-

conductors [59, 60], including high-Tc [61–69] and heavy-fermion systems [70–72], attracted

tremendous attention and triggered a flood of theoretical works [73–83]. Our motivation is to

study mesoscopic effects on the thermomagnetic transport in superconductors at the onset
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of Tc where pairing correlations due to preformed Cooper pairs are profoundly important.

We find that in a parametrically wide temperature region, g−1 < (T − Tc)/Tc � 1, where

g is the dimensionless conductance, amplitude of mesoscopic fluctuations in the diagonal

component of the conductivity tensor σxx and transversal component of the thermomagnetic

tensor αxy become parametrically bigger than their bare values.

2.2 Foundations of UCF

In the multiple scattering diffusive regime, the quantum mechanical interference effects as-

sociated with coherent backscattering on impurities modify the average value of electrical

conductivity. Similarly, correlation functions of the single-particle density of states are af-

fected by the same coherence effect. In what follows, we discuss the second moment of these

physical quantities which will lead us to the universality of conductance fluctuations.

The point of departure is the Einstein formula (throughout the text we use unites ~ =

kB = 1)

σαβ(ε) = 2e2νd(ε)Dαβ (2.1)

which relates conductivity σαβ to the diffusion constant Dαβ and density of states νd. We

introduce the mean for conductivity σ̄ and sample specific variance δσ = σ − σ̄. Then the

product

〈δσ(ε)αβδσγδ(ε
′)〉 = σ2

0

(
δαβδγδ

〈δνd(ε)δνd(ε′)〉
ν2

0

+
〈δDαβ(ε)δDγδ(ε

′)〉
D2

)
(2.2)

contains two contributions related to the density of states fluctuations and the diffusion co-

efficient fluctuations, while the cross-correlation between ν and D is absent. Here ν0, D, and
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σ0 are bare disorder-averaged density of states, diffusion constant, and Drude conductivity

respectively, while angular brackets 〈. . .〉 stand for the disorder average of the irreducible

correlation function. These correlation functions can be computed by using a conventional

Diffuson-Cooperon diagrammatic technique [20–23]. The total conductivity fluctuation can

be written in the form

〈δσαβ(ε)δσγδ(ε
′)〉 = σ2

0 [δαβδγδKν(ε− ε′) + (δαγδβδ + δαδδβγ)KD(ε− ε′)] , (2.3)

Kν(ω) =
〈δνd(ε)δνd(ε′)〉

ν2
0

=
δ2

2βπ2

∑
q

Re

(
1

Dq2 − iω

)2

, (2.4)

KD(ω) =
〈δD(ε)δD(ε′)〉

D2
=

δ2

2βπ2

∑
q

1

[(Dq2)2 + ω2]
, (2.5)

where ω = ε−ε′, δ = 1/νdL
d is the mean level spacing and coefficient β captures the symme-

try class. For the time reversal invariant system β = 1 (orthogonal ensemble), while β = 2

if it is not (unitary ensemble). To translate conductivity fluctuations into the conductance

fluctuations at finite temperature one uses g = σLd−2 (assuming cubic conductor of size L)

and g(T ) =
∫
g(ε)∂εfdε, where f(ε) is the Fermi distribution function, so that

〈δgαβ(ε)δgγδ(ε
′)〉 = δαβδγδG

2
ν(T ) + (δαγδβδ + δαδδβγ)G

2
D(T ), (2.6)

G2
ν(T ) =

4

β

(
e2ETh
π

)2 ∫
dω

2T
F (ω/2T )

∑
q

Re

(
1

Dq2 − iω

)2

, (2.7)

G2
D(T ) =

4

β

(
e2ETh
π

)2 ∫
dω

2T
F (ω/2T )

∑
q

1

(Dq2)2 + ω2
, (2.8)

F (z) =
z coth(z)− 1

sinh2(z)
. (2.9)

The sensitivity of conductance fluctuations to a variation of the Fermi energy shows up

in the temperature dependence of the correlations. At low temperatures T � ETh, it is
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sufficient to take ω → 0 limit in the q-summations of G2
ν(D) functions since F (ω/2T ) is

sharply peaked at zero frequency. In this case both contributions become equal. As an

example, suppose that the sample is connected to leads along the x-direction and isolated

in the other directions. The leads play the role of a reservoir, and the boundary conditions

in that direction correspond to an absorbing wall. The diffusion modes in this direction are

thus quantized as qx = nxπ/L with nx = 1, 2, . . .. In the other directions, the boundary

conditions are those of hard walls which implies the same quantization of diffusion modes

with the contribution of the mode ny,z = 0 added. This results in the q-summation in above

expression in the form
∑

nx 6=0,ny ,nz
(n2

x + n2
y + n2

z)
−2. As a result, in the zero temperature

limit (restoring Planck’s constant ~)

〈δgαβ(ε)δgγδ(ε
′)〉 =

4bd
βπ6

(
e2

~

)2

(δαβδγδ + δαγδβδ + δαδδβγ), (2.10)

with b1 = π4/90, b2 ≈ 1.51, and b3 ≈ 2.52. This formula shows that conductance fluctu-

ations do not depend on the strength of disorder since the diffusion constant dropped out

from the final expression: the fluctuations are said to be universal. They depend only on

the sample geometry and time-reversal symmetry. At high temperatures T � ETh, one

finds an algebraic decay of fluctuations ∝ (ETh/T )p with a power exponent depending on

dimensionality of the system. The significant dependence of the conductance fluctuations

on space dimensionality is a consequence of the diffusive nature of electronic transport.
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2.3 Qualitative considerations

We proceed by discussing how results of the previous section will change in superconducting

systems close to transition. It has been emphasized early on [43,46] that quantum interference

mesoscopic effects may lead to a formation of superconducting droplets that nucleate prior to

transition of the whole system. Above Tc there are also thermally induced superconducting

fluctuations [19] that are known to be crucially important in describing transport proper-

ties. One thus expects that the combined effect of two fluctuation mechanisms may have

interesting implications for the kinetic properties of superconductors. Indeed, the probability

amplitude of the fluctuations in the pairing gap ∆ is controlled by the competition of Cooper

pair condensation energy and entropy, and can be estimated from the Ginzburg-Landau func-

tional. The condensation energy exhibits mesoscopic fluctuations with the amplitude ∝ 1/g

and the correlation radius of the order of thermal length ∼ LT =
√
D/T . Near Tc the latter

coincides with the superconducting coherence length ξ =
√
D/Tc. On the other hand, ther-

mal superconducting fluctuations are susceptible to the Ginzburg-Landau correlation length

ξT = ξ
√
Tc/(T − Tc)� LT so that mesoscopic fluctuations are almost local with respect to

superconducting fluctuations, and thus should be summed randomly from different blocks

of the size ξ. For the sample size L � ξ, the above consideration leads to an estimate of

the mesoscopic fluctuations of the critical temperature δTc/Tc ∝ (1/g)(ξ/L)(4−d)/2, where d

is the dimensionality of the system. The response functions in superconductors near Tc are

governed by the dynamic pair susceptibility propagator L(ω, q) ∝ (Dq2 + T − Tc + |ω|)−1

for a given mode at finite frequency ω and wave vector q, which acquires mesoscopic fluctu-

ations δL ∝ L2δTc. Even though the whole effect seems to be small, as it scales inversely

proportional to conductance, g � 1, the singular nature of L at T − Tc � Tc as {q, ω} → 0
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translates into the substantial temperature dependence of kinetic coefficients. This is the

microscopic reason why the universality of mesoscopic effects breaks down in the case of

fluctuating superconductors. Following Ref. [58] we elaborate on this point in the context

of conductivity fluctuations and then carry out microscopic verification of this result with

further extension to thermomagnetic transport.

At the qualitative level the conductivity enhancement near Tc due to superconducting

fluctuations can be estimated as

δσ

σ
∼
∑
q

〈∆q∆−q〉τq ∼
1

g

(
Tc

T − Tc

)(4−d)/2

, (2.11)

where d is dimensionality. In essence this estimate is obtained from the Drude formula for

conductivity but applied for fluctuation-induced Cooper pairs. Indeed, the average of pairing

gap fluctuations

〈∆q∆−q〉 '
T

ν

1

Dq2 + T − Tc
(2.12)

measures the average concentration of preformed pairs, while their life-time

τq '
1

Dq2 + T − Tc
(2.13)

at a given mode q is nothing but Ginzburg-Landau relaxation time. Because of its mesoscopic

origin, discussed above, fluctuations of Tc lead to a giant mesoscopic fluctuations of the order

parameter field 〈〈δ∆qδ∆−q〉〉, where double-brackets stand for the thermal and disorder

average. Near the critical point

〈〈δ∆qδ∆−q〉〉
〈∆q∆−q〉

∝ 1

g

(
ξ

L

)(4−d)/2
Tc

Dq2 + T − Tc
. (2.14)
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This yields the estimate for mesoscopic fluctuations of conductivity from squaring Eq. 2.11

in the form

〈〈δσ2〉〉
σ2

∼ 1

g4

(
ξT
L

)4−d(
Tc

T − Tc

)(8−d)/2

. (2.15)

Despite the large factor in the denominator, this expression is substantially more singular

than Eq. (2.11) in terms of the temperature dependence near Tc. For concreteness, let’s

concentrate on the two-dimensional case d = 2. Recall that perturbative treatment of the

fluctuation effect breaks down beyond the Ginzburg region, so that at most we can allow

T −Tc ∼ Tc/g when correction to conductivity from Eq. (2.11) becomes of the same order as

a bare Drude conductivity. Remarkably, at that temperature scale, and assuming samples

size of the order of coherence length L ∼ ξT , the amplitude of mesoscopic fluctuations in

conductivity, as estimated from Eq. (2.15), exceeds the bare value by a large parameter

√
g � 1.

From these considerations one can infer an estimate of expected fluctuations in thermo-

magnetic response. This can be achieved by the following lines of reasoning. When subject to

crossed electric and magnetic fields, the charged carriers acquire a drift velocity v̄x = cEy/H

in the x direction (H is in z-direction). That would result in the appearance of a transverse

current Jx = env̄x with respect to Ey. Under open circuit conditions, no current flows,

and the drift of carriers is compensated by the spacial variation of the electric potential

∇xϕ = −Ex = (enc/σ)(Ey/H). Because of electroneutrality, this generates the gradient

of the chemical potential ∇xµ(n, T ) + e∇xϕ = 0, which ultimately corresponds to the ap-

pearance of the temperature gradient ∇xT = (dµ/dT )−1∇xµ along the x direction. Hence,

the Nernst coefficient ν = Ey/H(−∇xT ) can be expressed in terms of the full temperature

derivative of the chemical potential ν = (σ/e2nc)(dµ/dT ). This result can be checked for a

13



Figure 2.1: The layout of the Nernst experiment: by applying a temperature gradient (−∇T )
in the presence of magnetic field, an electric field is generated.

degenerate electron gas; the chemical potential µ(T ) = µ0 − (π2T 2/6)(d ln ν/dµ) reproduces

the Sondheimer formula ν = (π2T/3mc)(dτ/dµ), where τ is the elastic scattering time. For

the preformed Cooper pairs, dµ/dT = −1 so that ν ∝ σ and fluctuations in ν should fol-

low that of conductivity. This conjecture will be verified with a microscopic calculation in

Sec 2.6.

2.4 Definitions and assumptions

We start with the definition of kinetic coefficients concentrating on the linear response anal-

ysis. The electric Jetr and heat Jhtr transport currents are related to the electric field E and

temperature gradient ∇T by the following matrix

 Jetr

Jhtr

 =

 σ α

α κ


 E

−∇T

 , (2.16)
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where σ is the electric conductivity tensor , α and α are the thermoelectric tensors (α = Tα

due to Onsager relations), and κ is the thermal conductivity tensor. Applying the open

circuit conditions to Eq. (2.16) (see Figure 2.1 for the layout of the experiment), we have

E/∇T = σ−1/α where the inverse of σ is

σ−1 =
1

det |σ|

 σyy −σxy

−σyx σxx

 .

Multiplying it by α, taking the corresponding element of the matrix, the Nernst coefficient

is expressed in terms of the conductivity and thermoelectric tensors

ν =
Ey

(−∇xT )H
=

1

H

αxyσxx − αxxσxy
σ2
xx + σ2

xy

. (2.17)

An important aspect of the calculation of the transverse thermoelectric response αxy, dis-

cussed in detail in Ref. [84], is the need to account for bulk magnetization currents. This

issue arises because the microscopic electric and heat currents, as calculated below by the

Kubo formula, are composed of transport and magnetization currents

Je = Jetr + Jemag, Jh = Jhtr + Jhmag. (2.18)

The magnetization currents are currents that circulate in the sample and do not contribute

to the net currents which are measured in a transport experiment. On the other hand,

they do contribute to the total microscopic currents, and it is thus necessary to subtract

them from the total currents to obtain the transport current response. In the presence of an
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applied electric field, it was shown in Ref. [84] that the magnetization current is given by

Jhmag = cM× E, (2.19)

where M is the equilibrium magnetization (in the absence of the electric field). It then

follows that the transverse thermoelectric response is given by

αxy = − Jh

ExT
+
cMz

T
= ᾱxy +

cMz

T
. (2.20)

It is apparent from the above expression that αxy is obtained by subtracting the result of

two independent calculations: the response of the total current to the applied electric and

magnetic fields, and the magnetization currents as derived from the equilibrium magnetiza-

tion. Therefore, we need to know magnetic susceptibility M = χH, which will be computed

diagrammatically along with ᾱxy. Importance of the magnetization contribution to αxy in

the context of superconducting fluctuations was elaborated by Ussishkin [74].

The calculations will be carried out assuming particle-hole symmetry, i.e., neglecting any

contributions which arise due to asymmetry around the Fermi surface in properties such as

the density of states or scattering time. Particle-hole symmetry implies that σxy = αxx =

κxy = 0, and therefore the general expression for the Nernst coefficient Eq. (2.17) greatly

simplifies. The conventional result for αxy in the normal metallic state (so-called quasiparticle

contribution) also vanishes in this limit. However, it has been emphasized [74] that this result

is not required by the symmetry, and will not necessarily hold when additional processes, such

as superconducting or mesoscopic fluctuations, are taken into account without breaking the

particle-hole symmetry. Another simplification of our analysis comes from assuming s-wave
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G	  

λ	   Π	  

1/2πντ	  

Figure 2.2: Building blocks of the diagrammatic technique. Straight lines represent disorder-
averaged single-particle Green’s functions. The straight-dashed lines represent single impu-
rity lines that carry an overall factor 1/2πνdτ in the diagrams. The vertex function λ(ε, ε′, q)
is drawn in the ladder approximation, while diagrams with the crossed impurity lines yield
parametrically smaller contributions in 1/g � 1. The polarization operator Π(ω, q) (“bub-
ble” diagram) is also presented in the main ladder approximation.

symmetry of the superconducting order parameter. In the context of the high-temperature

superconductors, it is of interest to consider also the case of d-wave symmetry in a similar

approach.

2.5 Technical prerequisites

In our calculations we closely follow Ref. [19] for all the basic definitions and notations of

the diagrammatic technique. Graphical rules for constructing Feynman diagrams in the

context of transport in the disordered systems are depicted in Fig. 2.2. We start from the
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disorder averaged single particle Green’s function, which in the energy and momentum (ε, p)

representation reads

G(ε, p) =
1

ε− ξp + i
2τ

sgnε
, ξp = p2/2m− εF , (2.21)

where τ is the elastic scattering time on impurities. In the parameter Tτ one should dis-

tinguish three different transport regimes in fluctuating superconductors: the diffusive scat-

tering Tτ � 1, the ballistic limit 1 � Tτ �
√
Tc/(T − Tc), and the ultra-clean limit

Tτ �
√
Tc/(T − Tc). We will concentrate on the diffusive case exclusively, which is also

mathematically simpler. In the ballistic case, fluctuation effects become strongly non-local

in space, while diffusive impurity scattering makes response functions isotropic and local.

The basic building block of the Cooper ladder is two Green’s functions connected by one

impurity line, which we denote by Γ. Each impurity line brings a factor 1/2πνdτ , where νd

is the density of states. In two-dimensional case ν2 = m/2π, so that

Γ(ω, q) =
1

2πνdτ

∫
ddp

(2π)d
GR(ε+, p+)GA(ε−, p−), (2.22)

where superscript R(A) stands for the retarded (advanced) component of Eq. (2.21). We

used shorthand notations ε± = ε ± ω/2 and p± = p ± q/2. Integrating above over ξp and

expanding to the first order in ωτ,Dq2τ � 1,

Γ(ω, q) = 1 + τ(iω −Dq2), (2.23)

where D = v2
F τ/2 is the diffusion coefficient (here and in the remaining parts of the thesis

we concentrate of the two-dimensional case unless otherwise explicitly mentioned). Having
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Γ one can sum up the whole series of ladder diagrams to obtain the Cooperon propagator

C(ω, q) =
1

2πνdτ
(1 + Γ + Γ2 + . . .) =

1

2πνdτ

1

1− Γ
=

1

2πνdτ 2

1

Dq2 − iω . (2.24)

In practice it is also useful to have the same expression but rewritten in the Matsubara

representation with two different energies ε1,2 running through each of the Green’s function

lines of the Copper ladder

C(ε1, ε2, q) =
1

2πνdτ 2

θ(−ε1ε2)

Dq2 + |ε1 − ε2|
, (2.25)

where θ(x) is the unity step-function. The vertex function dressed with impurities is repre-

sented as follows (see Fig. 2.2)

λ(ε1, ε2, q) = 2πνdτC(ε1, ε2, q). (2.26)

The propagator of superconducting fluctuations reads

L−1(ω, q) = −λ−1
sc + Π(ω, q), (2.27)

where λsc is the coupling constant in the particle-particle (Cooper) channel and

Π(ω, q) = 4πνdT
∑
εn>0

1

2εn + |ω|+Dq2
(2.28)

is the polarization operator (summation goes over the fermionic Matsubara frequency εn =

(2n + 1)πT , while ωm = 2πmT corresponds to bosonic frequency). With these ingredients
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Figure 2.3: The Dyson equation for the fluctuating propagator L(ω, q) which represented
graphically as the wavy line and computed in the ladder approximation. Solid lines represent
one-electron Green’s function, greay triangle is the impurity dressed effective vertex, while
each cross between two Green’s functions is associated with the electron-electron coupling
constant −λsc.

at hand one can explicitly calculate the pair propagator which takes the form (see Fig. 2.3)

L−1(ω, q) = −νd
[
ln
T

Tc
+ ψ

(
1

2
+
Dq2 + |ω|

4πT

)
− ψ

(
1

2

)]
, (2.29)

where ψ(x) is the digamma function, and the critical temperature is expressed through the

coupling constant Tc = (2γEωD/π)e−1/νdλsc with γE = 1.78 being the Euler constant and

ωD being the Debye frequency, which cuts logarithmically divergent summation at nmax =

ωD/2πT in the polarization operator. At small frequencies and momenta (the most relevant

limit for most of the further applications) one can expand digamma functions at small

argument {Dq2, ω}/T � 1 and use ψ′(1/2) = π2/2 to obtain a simpler expression

L(ω, q) = − 1

νd

1

ln(T/Tc) + πDq2/8T + π|ω|/8T . (2.30)

For the purpose of calculating kinetic coefficients, the crucial objects are current vertices.

In particular, the electric current vertex function consists of three Green’s functions with
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two impurity ladders

Bei (ωm,Ωk, q) = 2eT
∑
εn

λ(εn + Ωk, ωm − εn, q)λ(εn, ωm − εn, q)

×
∑
p

vi(p)G(εn + Ωk, p)G(εn, q)G(ωm − εn, q − p), (2.31)

where Ωk is the external frequency (which will be eventually set to zero in the Kubo formula

to get dc-transport coefficient). Being a function of three frequencies and momentum, this

vertex is fairly complicated, however in the classical region of fluctuations near Tc its eval-

uation is straightforward. The essential simplification comes from the separation of energy

scales. Bosonic modes are pinned to the energy set by the pole structure of superconducting

propagator Dq2 ∼ |ωm| ∼ T − Tc, which can be readily seen from Eq. (2.30). At the same

time all fermionic modes are governed by the temperature |εn| ∼ T . Near the transition

T − Tc � T we can evaluate the vertex function by setting all the bosonic frequencies to

zero. As stated above, within the linear response Kubo analysis the external frequency is

also set to zero. As a result, we approximate

Bei (0, 0, q) = 2eT
∑
εn

λ2(εn,−εn, q)
∑
p

vi(p)G2(εn, p)G(−εn, q − p). (2.32)

Transforming now momentum summation into the integral
∑

p . . . → νd
∫
dξp〈. . .〉ϑ, where

averaging goes along the Fermi surface, and using Eq. (2.21) we get

Bei (0, 0, q) = −2eνdT
∑
εn

λ2(q, εn,−εn)

∫ +∞

−∞

dξp
(iε̄n − ξp)2

〈
vi(p)

iε̄n + ξp − vj(p)qj

〉
ϑ

, (2.33)

where in addition we used ξq−p ≈ ξp − v · q and abbreviated ε̄n = εn + 1/2τ . From here we

need only the leading small-q part of the vertex. Expanding the denominator to the linear
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order in q and using Eq. (2.26), the above equation transforms into

Bei (0, 0, q) = −2eνdT 〈vivjqj〉ϑ
∑
εn

|2ε̄n|2
|εn|2

∫ +∞

−∞

dξ

(ξ2 + ε̄2
n)2

. (2.34)

The remaining ξ-integration, followed by a εn-summation, can be completed in the closed

form in terms of the digamma function

Bei = 2eBi(q), Bi(q) = νdDτqi

[
ψ

(
1

2
+

1

4πTτ

)
− ψ

(
1

2

)
− 1

4πTτ
ψ′
(

1

2

)]
. (2.35)

Focusing on the diffusive case only Tτ � 1, the above expression simplifies even further

Bi(q) = −2νηqi , η = πD/8T . (2.36)

We will also need the heat current vertex function

Bhi (ωm,Ωk, q) = T
∑
εn

i(2εn + Ωk)

2
λ(εn + Ωk, ωm − εn, q)λ(εn, ωm − εn, q)

×
∑
p

vi(p)G(εn + Ωk, p)G(εn, p)G(ωm − εn, q − p). (2.37)

Under the same approximations as specified above one finds

Bhi = 2iνωmηqi = −iωmBi(q) . (2.38)

It should be stressed that such simple expressions for the electrical and heat current vertices

are only possible to obtain near Tc. We will see later in the text that in the quantum low

temperature regime the above calculation has to be revisited, and frequency dependence of

22



Figure 2.4: Feynman diagrams for the main fluctuation-induced corrections to the conductiv-
ity. In the first row we show the Aslamazov-Larkin diagrams (left) and the Maki-Thompson
interference diagram (right). In the second row we show two density of states diagrams.

both Be and Bh (omitted here) will play a crucially important role. The above results however

are sufficient to make further progress in addressing the classical region of superconducting

fluctuations.

As has been discussed in the introductory chapter, the superconducting fluctuations en-

hance the conductivity above Tc due to so called Aslamazov-Larkin [10] and Maki-Thompson

[11,12] contributions as well as density of states effects [18], which are less important for the

conductivity unless one studies granular systems. A similar identification of the microscopic

contributions applies to other transport coefficients. In the case of the transverse thermo-

magnetic response, the leading order contribution to αxy is due to the Aslamazov-Larkin

(AL) diagrams alone. The contributions of the Maki-Thompson (MT) and density of states

(DOS) diagrams are less divergent as T → Tc; see Fig. 2.4 for the identification of diagrams.

Within the linear response analysis, diagonal Aslamazov-Larkin conductivity is deter-
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mined from the following current-current Kubo kernel Kee
xx:

σxx = lim
Ω→0

1

Ω
Im[Kee

xx(Ω)]R , Kee
xx(Ωm) = 4e2T

∑
qωk

B2
x(q)L(ωk, q)L(ωk + Ωm, q) , (2.39)

where [Kee
xx]

R indicates the retarded component of Kee
xx(Ωm) as it is analytically continued

from the discrete Matsubara frequencies into the entire complex plane iΩm → Ω + i0. The

Aslamazov-Larkin contribution to the transversal thermoelectric coefficient is found from

the mixed electric current-heat current Kubo response function Keh
xy :

ᾱxy =
H

cT
lim

Ω,Q→0

1

ΩQ
Re[Keh

xy(Q,Ωm)]R, (2.40)

where

Keh
xy(Ωm, Q) = −4e2T

∑
q

Bx(q)B2
y(q)

∑
ωn

(iωn + iΩm/2) (2.41)

× [L(ωn, q −Qx)L(ωn, q)L(ωn + Ωm, q) + L(ωn, q)L(ωn + Ωm, q)L(ωn + Ωm, q +Qx)]

We finally define magnetic susceptibility from the equilibrium magnetization M = χH.

Diagrammatically, it may be calculated to linear order in H by considering the current

response to a magnetic field at a finite wavevector Q [85]:

χµν = −4e2

c2
εαγµεβκνT

∑
ω,q

x̂γx̂κL2(ω, q)Π′α(ω, q)Π′β(ω, q), (2.42)

where εαβγ is the anti-symmetric Levi-Civita unity tensor, and x̂ is thecoordinate operator in

momentum representation. Below we will consider only the isotropic case χµν = χδµν . With

these ingredients at hand we proceed with the calculation of fluctuation-induced corrections
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to σxx, αxy, and χ, as well as their mesoscopic correlation functions 〈δσ2
xx〉, 〈δα2

xy〉, and 〈δχ2〉

along with the possible cross-correlators.

2.6 Mesoscopic Nernst effect

The first step in the derivation of desired kinetic coefficients within the Kubo formalism

requires consideration of the discrete sums over Matsubara frequencies, such as sums in the

response kernels of Eqs. (2.39) and (2.41). Such summations over bosonic frequencies can be

conveniently done with the help of closed contour integration in the complex plane by using

the following formula

T
∑
ωm

f(ωm) =
1

4πi

∮
dωf(−iω) coth

( ω
2T

)
. (2.43)

Applying this to Eq. (2.39) one finds

Kee
xx(Ωm) = 4e2

∑
q

B2
x(q)

1

4πi

∮
dωL(−iω, q)L(−iω + Ωm, q) coth

( ω
2T

)
. (2.44)

The propagators under the integral have breaks of analyticity in the complex plane of ω at

Im(ω) = 0 and Im(ω) = −Ωm, so that the integration contour has two branch cuts along

these lines. We delegate details of this integration, followed by an analytical continuation,

to Appendix-A and present here only the result for the conductivity correction

σxx =
e2

πT

∑
q

B2
x(q)

∫ +∞

−∞

dω

sinh2(ω/2T )
[ImLR(ω, q)]2. (2.45)
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For the further integrations we define the following dimensionless units: x = ηq2, y = πω/8T ,

and ε = ln(T/Tc) ≈ (T − Tc)/Tc. In these units, the interaction propagator and vertex

function become

ImLR(x, y) = −1

ν

y

(ε+ x)2 + y2
, B2

x(x) = 4ν2ηx cos2 φ , (2.46)

and integrations transform into

∑
q

→
∫ 2π

0

dφ

∫ ∞
0

dx

8π2η
,

∫ +∞

−∞

dω

sinh2(ω/2T )
→ πT

2

∫ +∞

−∞

dy

y2
, (2.47)

where we expanded sinh y ≈ y since major contribution comes from the range of parameters

{x, y} ∼ ε� 1. Combining these definitions together, rescaling y → (ε+ x)y first and then

x→ εx, the latter expression transforms into

σxx =
e2

4π2ε

∫ 2π

0

dφ cos2 φ

∫ ∞
0

xdx

(x+ 1)3

∫ +∞

−∞

dy

(1 + y2)2
, (2.48)

with the three integrals equal to π, 1/2, and π/2, respectively, and thus with the final result

σxx =
e2

16

Tc
T − Tc

. (2.49)

So far we have only reproduced the celebrated result of Aslamazov and Larkin [10]. Our

immediate task is to generalize this result for mesoscopic effects associated with fluctuations

of pair propagator. For that matter we return to Eq. (2.45), take its variation, square the
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result, and average it over the realization of disorder potential. We thus find

〈δσ2
xx〉 =

4e4

π2T 2

∑
q1q2

B2
x(q1)B2

x(q2)

∫ +∞

−∞

dω1dω2

sinh2(ω1/2T ) sinh2(ω2/2T )

ImLR(ω1, q1)ImLR(ω2, q2)〈ImδLR(ω1, q1)ImδLR(ω2, q2)〉. (2.50)

In order to calculate the irreducible correlation function of the pairing susceptibility,

one has to draw two diagrams for L and connect their diffusive parts by impurity lines.

Such construction involves four colliding Diffuson-Cooperon ladders and, on a technical level,

requires computation of four- and six-order Hikami boxes [86], see Fig. 2.5 for the illustration.

Some of these diagrams have been studied before [43,45–47,58] and we invoke that knowledge

for our purposes. In particular we use

〈δLR(A)(ω1, q1)δLR(A)(ω2, q2)〉 =
Aν2

d

g2

(
LT
L

)2

[LR(A)(ω1, q1)]2[LR(A)(ω2, q2)]2. (2.51)

Precise calculation of the numerical factor A ∼ 1 is not of principal importance in a view

of strong dependence of the whole expression on temperature in the low momentum and

frequency limit (ω, q)→ 0, which in a way defines T -dependence of transport coefficients. It

is then straightforward to show that

〈ImδLR(ω1, q1)ImδLR(ω2, q2)〉 =

4Aν2
d

g2

(
LT
L

)2

ImLR(ω1, q1)ReLR(ω1, q1)ImLR(ω2, q2)ReLR(ω2, q2). (2.52)

We take this back into the equation for 〈δσ2
xx〉, and introduce dimensionless x, y, ε variables,
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Figure 2.5: Leading order diagrams for the irreducible correlator of mesoscopic disorder-
averaged two pair-propagators. This averaging contains collisions of four diffusion or Cooper
modes, and involves forth and sixth order Hikami boxes (internal impurity lines are implicit
on diagrams).
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as in the case considered above, to arrive at

〈δσ2
xx〉 =

Ae4L2
T

π4g2L2

∫ 2π

0

dφ1dφ2 cos2 φ1 cos2 φ2∫ ∞
0

dx1dx2

∫ +∞

−∞
dy1dy2

x1x2(x1 + ε)(x2 + ε)

[(x1 + ε)2 + y2
1]3[(x2 + ε)2 + y2

2]3
, (2.53)

that after rescaling of integration variables gives the final result

〈δσ2
xx〉 =

Ae4

32πg2

(
ξT
L

)2(
Tc

T − Tc

)3

. (2.54)

Thus by microscopic analysis we have confirmed our earlier result Eq. (2.15) which was based

on a qualitative considerations. We have already argued that interplay of superconducting

and mesoscopic effects trigger giant fluctuations for samples L� ξT at the temperatures T−

Tc ∼ Tc/g. For larger samples L� ξT , fluctuations saturate to 〈δσ2
xx〉 ∼ (e2/g)2(Tc/ETh)

3.

We can build on this result to consider emergent mesoscopic fluctuations in the transversal

thermoelectric coefficient. We start from Eq. 2.41 where we need only contributions linear

in Q, which can be easily extracted by expanding the pair propagator and noticing that

∂L(ω, q)

∂qx
= −Bx(q)L2(ω, q). (2.55)

Next we have to sum the resulting expression for Keh
xy(Ωm, Q) over the Matsubara frequency,

as in the case of the conductivity calculation by contour integration in the complex plane.

We find

Keh
xy(Ωm, Q) = −4e2Q

∑
q

B2
x(q)B2

y(q)
1

4πi

∮
dω coth

( ω
2T

)
(ω + iΩm/2)

×[L3(ω, q)L(ω + iΩm, q)− L(ω, q)L3(ω + iΩm, q)]. (2.56)
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Figure 2.6: The Aslamazov-Larkin diagrams contributing to Keh
xy(Ω). The wavy lines cor-

respond to the fluctuation propagator L(q, ω); electric current vertices Be and heat current
vertices Bh are indicated in the figure along with running momenta and frequencies.
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After further calculation (see analytical continuation that is done carefully in the Appendix-

A) we arrive at

ᾱxy =
4e2H

cπT

∑
q

B2
x(q)B2

y(q)

∫ +∞

−∞
dω coth

ω

2T

×
{

[ReLR(ω, q)]3ImLR(ω, q) + ReLR(ω, q)[ImLR(ω, q)]3
}
. (2.57)

In the dimensionless units x = ηq2 and t = πω/2T , and after the rescaling y → (x+ ε)y and

x→ εx, one finds at the intermediate step

ᾱxy =
16e2H

cπ3

η

ε

∫ 2π

0

dφ cos2 φ sin2 φ

∫ ∞
0

x2dx

(x+ 1)4

∫ +∞

−∞
dy

1

(1 + y2)3
. (2.58)

After remaining integration, where each of the three integrals yields coefficient π/4, 1/3, and

3π/8 respectively, one finds

ᾱxy =
e

2π

ξ2
T

`2
H

∝ Tc
T − Tc

(2.59)

Here `H =
√
c/eH is the magnetic length and ᾱxy has the same scaling with temperature as

the conductivity. As shown by Ussishkin [74] the magnetization contribution has the same

structural form but comes with the coefficient −1/3 instead of 1/2 so that αxy = ᾱxy+cMz/T

has an overall coefficient of 1/6.

We can address now the mesoscopic fluctuations of αxy by taking the variation of Eq. (2.57),

squaring the result, and averaging over the disorder realization with the help of the corre-

lation function Eq. (2.51). In doing so we encounter quite a cumbersome expression with

several contributions to 〈δα2
xy〉, but we make an observation that all the emergent terms have

exactly the same scaling with temperature and differ from each other only by a numerical
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coefficient of the order of unity. For brevity we present here one particular such term

〈δα2
xy〉 = A

(
e2νdHLT
cgTL

)2∑
q1q2

B2
x(q1)B2

x(q2)B2
y(q1)B2

y(q2) (2.60)∫ +∞

−∞
dω1dω2 coth

ω1

2T
coth

ω2

2T
[ReLR(ω1, q1)]4[ReLR(ω2, q2)]4 ImLR(ω1, q1)ImLR(ω2, q2)

and carry out the calculation up to a factor modulo one (we will absorb all the numerical

factors into the redefinition of coefficient A). Since most relevant frequencies ω ∼ T −Tc are

small compared to temperature we can approximate coth(ω/2T ) ≈ 2T/ω. Transforming the

above into dimensionless variables

〈δα2
xy〉 =

e2A

g2

(
ξ2LT
`2
HL

)2 ∫ ∞
0

dx1dx2

∫ +∞

−∞
dy1dy2

x2
1x

2
2(x1 + ε)4(x2 + ε)4

((x1 + ε)2 + y2
1)5((x2 + ε)2 + y2

2)5
, (2.61)

followed by rescaling and integration, one finds

〈δα2
xy〉 =

e2A

g2

(
ξT
`H

)4(
LT
L

)2(
Tc

T − Tc

)2

. (2.62)

Interestingly 〈δα2
xy〉 has exactly the same temperature scaling as 〈δσ2

xx〉, namely ∝ (T−Tc)−4,

that we already anticipated based on qualitative considerations in Sec. 2.3, and the above

diagrammatic calculations provide the microscopic justification for our results.

It remains to consider fluctuation-induced corrections to magnetic susceptibility and its

mesoscopic fluctuations. From Eq. (2.42) we get for the Aslamazov-Larkin contribution [85]

χ = −16e2

3c2
T
∑
ωm,q

Π′xL3(ωm, q)
[
Π′xΠ

′′
yy − Π′yΠ

′′
xy

]
, (2.63)
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where derivatives of the polarization operator can be easily computed from Eq. (2.28)

Π′x,y = −πνD
4T

qx,y, Π′′yy = −πνD
4T

, Π′′xy = 0. (2.64)

Already at this level, by simple power counting of integration variables, one can deduce that

χ ∝ Tc/(T − Tc). Consequently one expects that 〈δχ2〉 will also scale with T − Tc in the

same way as the conductivity and thermomagnetic coefficients. Indeed,

〈δχ2〉 = A

(
e2ν2

dηLT
c2gL

)2∑
q1q2

B2
x(q1)B2

x(q2)

∫
dω1dω2 coth

ω1

2T
coth

ω2

2T

×Im[LR(ω1, q1)]4Im[LR(ω2, q2)]4, (2.65)

which, as in the previous examples, reduces with standard steps to

〈δχ2〉 = A

(
e2D

c2g

)2(
LT
L

)2(
Tc

T − Tc
.

)4

(2.66)

Finally, we will not delve into detailed calculation of the possible cross-correlation functions

between different kinetic coefficients, and merely state here that all such correlations are of

the same order and yield the same temperature dependence.

2.7 Summary

The main results of this Chapter are expressions Eqs. (2.54), (2.62), and (2.66) for variances

of different kinetic coefficients in mesoscopic superconductors. Because of the long-range

phase coherence developing close to Tc, sample-specific mesoscopic fluctuations should be

observable at large length scales. Similarly to normal samples, these fluctuations are sensi-
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tive to magnetic field strength, impurity configuration, and gate voltage. However, in sharp

contrast to the normal case, where such fluctuations are universal, interaction effects in

the Cooper channel trigger a great amplification of fluctuations due to pairing correlations.

This interplay of coherent impurity scattering and interactions leads to a spectacular exam-

ple of quantum mesoscopic phenomena occurring at a macroscopic scale. Despite the fact

that mesoscopic fluctuations are no longer universal, in the sense of random matrix theory

classification, we have discovered a different kind of universality in the sense of tempera-

ture dependence, which was found to be consistently the same for all the considered kinetic

coefficients.

These calculations have been carried out for homogeneously disordered superconductors.

Therefore, our results cannot be directly compared to the existing experimental findings

where the samples were granular in their origin [33–36]. Granularity adds another parame-

ter into the model – inter-grain conductance – which leads to a strong competition between

Aslamazov-Larkin, Maki-Thompson, and DOS effects [87]. Nonetheless, the main features

predicted by the theory should be present for inhomogeneously disordered superconductors

as well. Indeed, the predicted sample-specific conductance fluctuations were observed ex-

perimentally in samples of macroscopic length, and only in a narrow temperature range in

the immediate vicinity of Tc, consistent with the theory. The amplitude of the conductance

fluctuations was found to greatly exceed that of the UCF in normal samples. It should

be also emphasized that some other features accompanying giant mesoscopic effects, such

as suppression of h/2e oscillations in cylindrical samples, negative mangetoresistance, and

its asymmetry, can be also addressed within the same theoretical model. As of today we

are unaware of experimental measurements of mesoscopic effects in thermomagnetic trans-

port of superconductors, except for the measurements of magnetic susceptibility [88]. The
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mesoscopic Nernst effect has been studied experimentally only in the non-superconducting

systems [89]. Verification of the temperature scaling and the overall magnitude of the ef-

fect for mesoscopic fluctuations of the Nernst coefficient predicted here would provide an

important test for our understanding of thermomagnetic transport phenomena in correlated

systems.
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Chapter 3

Transport anomalies in Pauli-limited

superconductors

3.1 History of the subject

According to the microscopic BCS theory [9] a magnetic field H extinguishes superconductiv-

ity. In the absence of spin-orbit interaction there are two basic mechanisms. The first one is

the diamagnetic effect associated with the action of the field on the orbital motion of electrons

forming a Cooper pair. The second, paramagnetic mechanism, is due to Zeeman splitting

of the states with the same spatial wave function but opposite spin. In the former case, the

estimate for the upper critical field follows from the condition Hc2ξ
2 ' Φ0, where Φ0 = hc/2e

is the flux quantum. In contrast, Zeeman splitting destroys superconductivity at a different

critical field Hz that follows from the condition Ez ' ∆, where Ez = gLµBH is the Zeeman

energy, µB = e~/2mc is the Bohr magneton and gL is the renormalized giro factor, while ∆ is

the superconducting gap. The ratio between the two fields is Hz/Hc2 ∼ kF ` ∼ g � 1, where

kF is Fermi momentum and ` is the elastic scattering length. Thus, in bulk systems, the
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Figure 3.1: Above the tricritical point T ∗ the second order paramagnet to superconductor
transition occurs along the (black) solid line obtained from Eq. 3.1. At T < T ∗ this line
becomes a supercooling part of the hysteresis, and the dashed line is its superheating part.
The latter is obtained following Ref. [95]. The grey shaded area with the critical point
(0,∆0) as its lowest corner bounded by the black dashed line marks the region of quantum
fluctuations (QF).

suppression of superconductivity is typically governed by the first diamagnetic mechanism.

The situation changes in the case of restricted dimensionality. For example, in the case of a

thin-film superconductor in a parallel field, the above ratio becomes Hz/Hc2 ∼ (kF `)(d/ξ),

which can be small provided that the film is thin enough d � ξ/kF `, such that spin effects

dominate.

The scenario of paramagnetically limited superconductivity has a long history that goes

back to pioneering works by Clogston and Chandrasekhar [90, 91]. The first order phase

transition from superconductor to paramagnet was predicted at the critical field approaching

Ez =
√

2∆ at low temperatures. In practice, the measured film resistance follows a hysteresis

loop [92–96] instead of a sharp first order transition, and the experimental phase diagram

is qualitatively as in Fig. 3.1. At low temperatures, the system remains superconducting as
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the field increases up to the superheating field; above the critical field, the film is trapped in

a metastable state. At fields exceeding the superheating threshold the film becomes normal.

When the field is reduced, the film stays normal down to the supercooling field Esc
z (T ),

which corresponds to the zero binding energy of a Cooper pair. At T = 0, the normal state

is metastable in the interval ∆ < Ez <
√

2∆ [97,98]. One should ote that these papers also

predicted spatially inhomogeneous state for
√

2 < Ez/∆ < 1.52. We neglect such possibility

in this work.

In this Chapter, we study the transport properties near the supercooling field, which is

determined by the equation [99]

ln

(
Tc
Tc0

)
= ψ

(
1

2

)
− Reψ

(
1

2
+
iEsc

z

4πTc

)
(3.1)

similar to that in the theory of paramagnetic impurities [100]. Here ψ is the digamma

function and Tc0 = Tc(H = 0) is the critical temperature in the absence of a magnetic field.

The zero temperature solution of Eq. 3.1, Esc
z (0) = ∆, defines the quantum critical point

(QCP), which is the premier interest of our study. Since in this case the critical parameter

depends on H, it allows for a well controlled exploration of the QCP and its vicinity by

varying the applied magnetic field.

In the scenario when orbital effects dominate the phase diagram is determined by a

similar equation

ln

(
Tc
Tc0

)
= ψ

(
1

2

)
− ψ

(
1

2
+

α

4πTc

)
(3.2)

where pair-breaking parameter α ∼ τ−1
d can be deduced from the time-scale of the loss

of phase coherence of the Cooper pairs in the presence of the finite magnetic field τ−1
d ∼

DH2d2/Φ2
0. This transition is of the second order throughout the entire H − T line, see
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Figure 3.2: Phase diagram of a superconducting thin film in a parallel magnetic field
parametrized by pair breaking parameter α = D(eHd)2/6 due to orbital mechanism.
Tc0 = Tc(H = 0) is the critical temperature in the absence of a magnetic field. At T = 0 the
superconductivity breaks down at the critical value αc = πTc0/2γE, where ln γE ≈ 0.577 is
the Euler constant.

Fig. 3.2. Despite apparent similarity between the two cases at the level of the phase diagram,

we will demonstrate that the microscopic nature of the fluctuation-induced transport near

respective QCPs is conceptually different.

Equation (3.2) implicitly defines the critical temperature Tc as a function of the pair-

breaking parameter α. A full analytic solution of this equation in terms of Tc(α) is not

possible, but asymptotic expressions can be easily extracted. For α � Tc0 we can expand

the digamma function ψ(x+ 1/2) to first order in x and thus obtain

ln

(
Tc0
Tc(α)

)
− π2

2

α

4πTc(α)
= 0. (3.3)

To first order in α this yields Tc(α) ≈ Tc0 − πα/8. The expansion for large values of α is a
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bit more involved, because there exists a critical value of the pair-breaking parameter αc at

which the critical temperature vanishes nonanalytically as a function of α. In order to see

this, we rewrite (3.2) in the following form

Tc0
Tc(α)

= exp

[
ψ

(
1

2
+

α

4πTc(α)

)]
exp

[
−ψ

(
1

2

)]
. (3.4)

Since we are in the regime where α is finite but Tc goes to zero, we make use of the asymptotic

expansion exp[ψ(x+ 1/2)] ≈ x+ 1/(4!x) + . . . being valid for large x. This expansion yields

Tc0
Tc
≈ 4γE

(
α

4πTc
+

1

4!(α/4πTc)

)
. (3.5)

The critical pair-breaking parameter is defined as the value at which the critical temperature

vanishes Tc(αc) = 0. In this case we can neglect the second term on the right hand side of

the above equation and obtain αc = πTc0/2γE ≈ 0.88Tc0. Expressed in terms of this quantity

the critical temperature becomes Tc ≈ (
√

6/π)
√
α(αc − α).

3.2 Motivation and qualitative picture

The renewed interest in the physics of paramagnetically limited superconductors is motivated

by the rapid growth of its experimental realizations. Recent parallel magnetic field studies of

two-dimensional superconducting systems were extended to much lower temperatures thus

making it feasible to approach the limit of QCP. Tunneling spectroscopy of ultrathin Al

and Be films revealed field-induced spin mixing and anomalous resonances in the density of

states (DOS) [94,101,102]. The latter was successfully explained in theory [103–105], which

emphasized the crucial role of superconducting pairing correlations in the paramagnetic
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state even far from the transition region. A surprising enhancement of superconductivity

by a parallel magnetic field, deduced from the transport measurements, was observed in

ultrathin, homogeneously disordered amorphous Pb films and in the two-dimensional electron

gas realized at the interface of oxide insulators LaAlO3 and SrTiO3 [106]. In addition,

pronounced negative magnetoresistance (NMR), concomitant with the enhanced Tc, was

reported. Although we do not dwell onto the issue of Tc enhancement in these systems (see

Ref. [107] for the recent theoretical proposals), we show that transport anomalies, such as

NMR, can be successfully addressed within BCS theory.

The issue of NMR in superconductors, either near the QCP or near the parallel field-tuned

superconductor-insulator transition, was previously discussed in the literature experimen-

tally [108,109] and attributed theoretically [110–112] to the proliferation of superconductive

fluctuations. These studies emphasized mainly the orbital effect of a magnetic field on the

preformed Cooper pairs. In this Chapter we develop transport theory of paramagnetically

limited ultrathin superconductors focusing on the quantum regime of zero temperature near

the critical Zeeman field. The regime of classical fluctuations was partially discussed in the

early papers [113–116].

The conceptual difference of our analysis from the problem of fluctuation-induced trans-

port close to Tc is that unpaired particles, have finite excitation energy Ez. As a result,

the activation probability of such pairs is suppressed exponentially ∝ exp(−Ez/T ) at low

temperature with the statistical Boltzmann factor. We argue that, while in the standard

case the real gapless pairs are only important in the paramagnetically limited case, such

pairs are always virtual.

Let us illustrate this point by taking the Aslamazov-Larkin correction to the conduc-

tivity as an example. Consider first the standard case of near–Tc. In the AL diagram the
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triangular vertex can be estimated as B(ω,Ω, q) ∝ Dqx∂Π(ω, q)/∂ω. At small momenta

we can take Π(ω, 0) in a clean system. The imaginary part of the polarization operator

ImΠ ≈
∫
dξ[n(−ξp + ω)n(ξp)− f̃(−ξp + ω)f̃(ξp)]δ(ω − 2ξ) = ν(ω/2) tanh(ω/2T ), where the

particle and hole occupation numbers are f(ε) = (1 + eε/T )−1, f̃(ε) = 1 − f(ε). The real

part, due to virtual pairs ReΠ(ω, q) ≈ ln |(ω2 − T 2)/ω2
D|, is the familiar Cooper logarithm.

The imaginary part contribution B(ω,Ω, q) ∝ Dqx/T . In contrast, the real part contribu-

tion vanishes at ω = 0 due to the particle-hole symmetry, ν(ω) = ν. The expansion in

ω ∼ T − Tc � T yields a correction small in the parameter (T − Tc)/Tc � 1.

In the presence of a Zeeman field the situation is very different. The pair activation

rate, ImΠ(ω, q) ≈ ν(ω)[f(ω/2− Ez/2)− f(ω/2 + Ez/2)], gives an exponentially suppressed

contribution ∝ Dqx exp(−Ez/T )/T . The real part, due to virtual pair excitation, can be

obtained by the Kramers-Kronig relation, Re(ω, q)Π ≈ ln |(ω2 − E2
z )/ω

2
D|. Its contribution

to B(ω,Ω, q) is suppressed only algebraically ∝ DqxT/E
2
z . Unlike the standard case the

virtual quasiparticles make a dominant contribution to the triangular vertex excitations. The

algebraic suppression of vertexes is most pronounced in the case of the AL and is manifested

in additional factors of Dq2 and ω in σAL, which makes it logarithmic in Ez/(Ez − ∆0).

Note that in the case of the near–Hc2 problem [110] the AL contribution is also suppressed

due to the current matrix elements connecting adjacent Landau levels. The regular MT and

DOS contributions are proportional to a second derivative of the real part of the polarization

operator ReΠ(ω, q). Since the latter is finite at ω = 0, these contributions are as singular as

AL terms. These technicalities will be explained in great details in the following section.
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3.3 Fluctuation-induced conductivity near the quan-

tum critical point

We approach the problem of transport in the in-plane magnetic field close to the supercon-

ducting transition based on the diagrammatic perturbation theory. Note that the technique

based on the time-dependent Ginzburg-Landau formalism applied for studying transport

near QCP [117, 118] accounts correctly only for the classical part of AL-type contribution

to the conductivity, but it misses completely the quantum zero-temperature corrections. A

microscopic approach takes care of all the contributions including the DOS part, resulting

from the depletion of the normal state density of states by superconducting fluctuations,

and also the MT interference term [110–112]. In fact, at T = 0, where the corrections

come from purely quantum fluctuations, these effects turn out to be of the dominant na-

ture. In calculations T � {Ez,∆} � τ−1 � εF , these conditions are satisfied in many

experiments [94,101].

Our starting point is the current-current response kernel which can be conveniently pre-

sented as a sum of three contributions K = KAL + KMT + KDOS. Within this section we

will be discussing only longitudinal electrical transport so the subscript Kxx is suppressed in

all the expressions for brevity. The general expression for the AL term reads

KAL(Ωn) = −e2T
∑
q,ωk

B2(ωk,Ωn, q)L(ωk, q)L(ωk + Ωn, q), (3.6)

where ωk = 2πkT . Notice here the factor of 4 difference compared to the earlier expression

Eq. (2.39). This is due to the fact that, in the finite in-plane magnetic field, different spin

projections σ = ± contribute unevenly to the current vertex B. It reads explicitly now as
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follows

B(ωk,Ωn, q) = T
∑
σ,εm

λσ(εm+n, ωk − εm, q)λσ(εn, ωk − εn, q)JσAL, (3.7)

JσAL =
∑
p

vpGσ(εn+m, p)Gσ(εn, p)G−σ(−εn + ωk,−p+ q), (3.8)

with the impurity ladders

λσ(εn, εm, q) =
θ(−εnεm)

τ [Dq2 + |εn − εm| − iσEzsgn(εn − εm)]
, (3.9)

and an integral over the block of three Green’s functions with Gσεn,p = (iεn − ξp + σEz/2 +

isgn(εn)/2τ)−1. Here we used notations: εm = 2πT (m + 1/2), ξp = p2/2m − εF , vp = ∂pξp,

θ(ε) is the step-function, and sgn(ε) is the sign-function. The propagator of fluctuating

Cooper pairs in Eq. (3.6) is given by

L−1(ωk, q) = −ν
[

ln
T

Tc0
− ψ

(
1

2

)
+

1

2

∑
σ=±

Ψσ(ωk, q)

]
, (3.10)

Ψσ(ωk, q) = ψ

(
1

2
+
Dq2 + |ωk|+ iσEz

4πT

)
. (3.11)

When calculating the B-vertex one should follow a few basic steps which we already discussed

in the previous Chapter: i) In the leading order in the transferred momentum q one can

approximate G−σ(−εn + ωk,−p + q) ≈ G−σ(−εn + ωk, p) + v · q[Gσ(−εn + ωk, p)]
2. ii)

Furthermore, one can neglect Zeeman energy as compared to the inverse scattering time in

the Green’s functions (provided the condition T � {Ez,∆} � τ−1 � εF is satisfied) and

then complete p integration in a standard way with density of states and angular averaging

over the Fermi surface. iii) Next is the fermionic Matsubara εm sum in Eq. (3.7), which can
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be found in the closed form with the result

B(ωk,Ωn, q) =
νdqxD

Ωn

∑
σ

[Ψσ(|ωk|+ Ωn, q)−Ψσ(|ωk|, q)

+Ψσ(|ωk+n|+ Ωn, q)−Ψσ(|ωk+n|, q)] . (3.12)

iv) The remaining step of the calculation is a bosonic ωk sum followed by an analytical

continuation iωn → ω. The latter is accomplished via the contour integration over the circle

with two-branch cuts at Im(ω) = 0,−Ωn where the product of propagators in Eq. (3.6) has

breaks of analyticity. After the Ω-expansion of KR
AL(Ω) to the linear order, one finds for the

AL conductivity correction σAL = σALcl + σALq1 + σALq2 , where

σALcl =
e2

4πT

∑
q

∫ +∞

−∞

dω

sinh2(ω/2T )
[BRA(ω, q)]2[ImLR(ω, q)]2, (3.13)

σALq1 =
e2

4π

∑
q

∫ ∞
0

dω coth
( ω

2T

)
Re
{

[BRA(ω, q)]2 − [BRR(ω, q)]2]∂ω[LR(ω, q)]2
}
, (3.14)

σALq2 = − e
2

4π

∑
q

∫ +∞

−∞
dω coth

( ω
2T

)
×
{
∂Ω[BRR(ω,Ω, q)]2[LR(ω, q)]2 − ∂Ω[BAA(ω − Ω,Ω, q)]2[LA(ω, q)]2

+∂Ω[[BRA(ω − Ω,Ω), q]2 − [BRA(ω,Ω, q)]2]|LR(ω, q)|2
}
. (3.15)

The superscript R(A) in the vertex functions and propagators stands for the retarded (ad-

vanced) component while subscript cl(q) refers to classical (quantum). This convention comes

form the observation that as T → 0 the classical contribution vanishes while the quantum

contribution remains finite.
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We turn now to the derivation of the MT contribution whose response kernel is given by

KMT (Ωn) = e2T
∑
ωk,q

L(ωk, q)Σ
MT (ωk,Ωn, q), (3.16)

where

ΣMT (ωk,Ωn, q) = T
∑
σ,εm

λσ(εm+n, ωk−n − εm, q)λσsgn[εmεm+n](εm, ωk − εm, q)JMT (3.17)

JMT =
∑
p

vpvq−pGσ(εm+n, q)G−σ(ωk−n − εm, q − p)Gσ(εm, p)G−σ(−εm + ωk, q − p). (3.18)

Momentum integration in the block of Green’s functions JMT is done under the same ap-

proximations as in the case of the AL term described above. According to the standard

convention [19] we now split the MT term into the so-called regular and anomalous contri-

butions:

ΣMT (reg)(ωk,Ωn, q) = −νdD
Ωn

∑
σ

[Ψσ(|ωk|+ 2Ωn, q)−Ψσ(|ωk|, q)] , (3.19)

ΣMT (an)(ωk,Ωn, q) = − νdD

2(Dq2 + Ωn)

∑
σ

[Ψσ(−|ωk|+ 2Ωn, q)−Ψσ(|ωk|, q)] . (3.20)

After the analytical continuation these translate into the conductivity correction σMT =

σMT
reg + σMT

an , where

σMT
reg = −e

2νdD

8π3T 2

∑
σq

∫ ∞
0

dω coth
( ω

2T

)
Im[LR(ω, q)[Ψσ(−iω, q)]′′], (3.21)

σMT
an =

e2νdD

8πT

∑
σq

∫ +∞

−∞

dω

sinh2(ω/2T )

LR(ω, q)[Ψσ(iω, q)−Ψσ(−iω, q)]
Dq2 + Γ

. (3.22)

In order to regularize the logarithmically divergent momentum integral in the case of the
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anomalous contribution we have introduced a pair-breaking cutoff parameter Γ. The micro-

scopic origin of the latter (e.g. spin-orbit scattering) will be discussed in the next section.

We finally discuss the DOS contribution to the conductivity. It is given by the similar to

Eq. (3.16) expression with

KDOS(Ωn) = e2T
∑
ωk,q

L(ωk, q)Σ
DOS(ωk,Ωn, q), (3.23)

where

ΣDOS(ωk,Ωn, q) = 2T
∑
σ,εm

[λσ(εm, ωk − εm, q)]2JDOS, (3.24)

JDOS =
∑
p

v2
p[Gσ(εm, p)]

2Gσ(εm + Ωn, p)[G−σ(ωk − εm, q − p)

+
1

2πνdτ

∑
p′

[Gσ(εm, p
′)]2G−σ(ωk − εm, q − p′)]. (3.25)

After completing the standard steps outlined above one arrives at the conductivity correction

σDOS = σDOScl + σDOSq in the form

σDOScl = − e2νdD

16π2T 2

∑
σq

∫ +∞

−∞

dω[[Ψσ(iω, q)]′ − [Ψσ(−iω, q)]′]
sinh2(ω/2T )

LR(ω, q), (3.26)

σDOSq = σMT
reg . (3.27)

The equality between the two contributions in Eq. (3.27) has parallels with the original

fluctuation transport considerations at T − Tc � T . In the original near–Tc problem, the

typical energy of diffusing pairs Dq2 ∼ T − Tc is smaller than the thermal energy of the

quasiparticle ∼ T . In our case, Ez adds to the energy of pairs making it bigger than T .

Correspondingly, unlike the near–Tc case, the off-shell energy of a pair, 2ε ∼ T , falls below
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the pair excitation energy set by Ez. This causes a sign inversion of the energy denominator

associated with the unbound intermediate state, and the correction Eq. (3.27) turns out to

be positive. In general, the derived above conductivity corrections are applicable at any field

H and temperature T above the transition. In the following, we discuss limiting cases of

interest.

It is convenient to regroup all contributions and present the total conductivity correction

as the a sum of zero-temperature (δσq) and finite-temperature (δσT ) terms, namely

δσ(H,T ) = δσq(H) + δσT (H,T ). (3.28)

The first term here is determined by the quantum AL [Eqs. (3.14)-(3.15) and DOS [see

Eq. (3.27)] contributions, and also the regular part of the MT conductivity [see Eq. (3.21)].

The remaining terms define δσT . The magnitude of δσq decreases monotonically with an

increasing field. This leads to a pronounced magnetoresistance at zero temperature. At

finite temperature, based on how the quantum critical point is approached, there are several

regimes that show different T and H dependencies, which should be experimentally accessi-

ble. Below we focus on QCP only and extract the leading singularity in δσq as the function of

the Zeeman field. Thermal contribution δσT and various crossover regimes will be discussed

in the next section.

At zero temperature Ψσ(±iω, q) → ln[(Dq2 ± iω + iσEz)/4πT ] and the pair propagator

can be taken in the leading pole approximation

LR(A)(ω, q) ≈ − 2∆2
0/νd

E2
c − (ω ± iDq2)2

, (3.29)
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which is obtained from Eq. (3.10) under the conditions Dq2 � ∆0 and |Ec±Ω| � ∆0. Here

∆0 = πTc0/2γE where ln γE ≈ 0.57 is the Euler constant, and Ec =
√
E2
z −∆2

0. The branch

cut of the propagator (due to the logarithmic structure) also contributes to δσq, but gives

the subleading singularity. Within the same accuracy we compute the vertex functions:

[BRR(AA)(ω(−Ω),Ω, q)]2 =
8ν2

dD

E4
z

Dq2(Dq2 ∓ iω)(Dq2 ∓ iω − 2iΩ), (3.30)

[BRA(AR)(ω,Ω, q)]2 =
8ν2

dD

E4
z

(Dq2)2(Dq2 − 2iΩ). (3.31)

Alltogether this leads to the conductivity correction near the Zeeman field-induced quantum

critical point

δσq(H) =
2e2

π2
ln

(
Ez

Ez −∆0

)
, (3.32)

which is obtained within the logarithmic accuracy. Equation (3.32) is the main result of this

section. We have checked explicitly that other contributions, such as the diffusion coefficient

renormalization or the contribution with only one or no Cooperon vertex, are either small

or nonsingular. Since the temperature can be set to zero in integrations over fast-fermion

degrees of freedom, the additional factors of τ results in small prefactors τEz, τDQ
2 or τΩ.

3.4 Effects of pair-breaking scattering

In the preceding calculations we assumed that impurity scattering of electrons does not cause

spin flips. There are two sources of spin relaxation of conduction electrons: localized spins

(magnetic impurities) and spin-orbit (SO) scattering of electrons by nonmagnetic disorder.

The latter is characterized by the scattering amplitude ivso([p×p′]·σ)/p2
F , where p and p′ are

the initial and final momenta of an electron, and σ is the spin operator whose components
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are the Pauli matrices. Let us discuss the effect of SO scattering first starting with the

qualitative physical picture [103]. In the absence of both, SO interactions and magnetic field

two-spin states, which belong to a given orbital, have the same energy. Magnetic field split

this degeneracy. It is important that the splitting energy Ez is exactly the same for all of

the orbital states, which is no longer the case for finite SO interaction. Without an external

magnetic field the states are still doubly degenerate due to time-reversal invariance (Kramers

doublets). A magnetic field splits the Kramers doublets similar to how it splits pure spin

states in the absence of SO interactions. The main difference is that this splitting is not

exactly uniform anymore [119].

The spin-orbit scattering and finite thickness effects modify the fluctuation transport, due

to the finite spectral weight in the particle-particle channel at zero frequency. The addition

of a finite spin-orbit scattering introduces a finite lifetime Γ−1 to the Cooperon. At lowest

temperatures the superconductivity survives if this scattering is not too strong, Γ� Ez with

a somewhat lower critical field. While Ez approaches the supercooling transition from above

the results obtained in the previous section are expected to crossover to a different regime

at Γ ≈ Ec. The finite film thickness affects the crossover in a similar way. Inclusion of these

effects was shown to be necessary for quantitative analysis of measurements of the density

of states [102].

As was discussed early in Sec. 2.5 [see Eq. (2.25)] the Cooperon is formed by two electron

Green’s functions. In the absence of an external magnetic field it is convenient to classify

Cooper poles by the total spin of the two electrons S+ = (σ1 + σ2)/2. Spin-orbit scattering

does not affect the spin singlet part of the Cooperon (S2
+ = 0), however, this scattering

leads to total spin relaxation, i.e., the triplet (S2
+ = 2) component of the Cooperon decays

and, consequently, the pole in the ω plane is shifted from the real axis even for q = 0. An
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external magnetic field is coupled with the difference S+ = (σ1 + σ2)/2 of two electron

spins, and as a result we classified the Cooperon by the eigenvalue of the operator S− · Ez.

These eigenvalues for S2
− = 2 are 0,±Ez, corresponding to Sz− = 0,±1 and 0 for S2

− = 0.

Neither of those two classifications is exact when both a magnetic field and SO scattering

take place simultaneously. We assume that the SO effect is weak that allows us to evaluate

the Cooperon perturbatively

Π(ω, q) = 4πνdT
∑
εn>0

∑
σ=±

1

2εn + |ω|+ iσEz +Dq2 + Γso
, (3.33)

where Γso = 2/3τso, and τ−1
so = 2πνdv

2
so is the time of the spin relaxation by SO scattering

[compare Eq. (3.33) to Eq. (2.28)]. This consideration suggests that any physical mechanism

of violation of either time-reversal invariance or conservation of spin will have a similar effect

on a Cooperon field. In the following discussion we assume that Γ = Γso + Γs + ΓH is the

total scattering rate that include spin-orbital, spin-flip and finite film thickness effects.

3.5 Thermomagnetic phenomena

Since the Cooperon is no longer a soft mode at (ω, q) → 0 and has a finite gap Γ, due to

spin-related scattering processes, it inevitably enters into the pair propagator L(ω, q), shifts

its pole and ultimately changes temperature dependence of the kinetic coefficients. Thus

with Eq. (3.33) at hand we have to recompute all the basic ingredients of the diagrammatic

technique. Most importantly we find the generalized form of the fluctuation propagator

LR(ω, q) = − 2∆2
0/νd

E2
c − 2iΓ(ω + iDq2)− (ω + iDq2)2

, (3.34)
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which is different from the expression that we used before [Eq. (3.29)] in two important

aspects. First is the presence of the new term in the denominator which introduces an

additional scale E2
c /Γ to the problem. Second is shifted value of the critical point Ec =√

E2
z −∆2

Γ with ∆2
Γ = ∆2

0 + Γ2. Another important building block of the theory is the

vertex function B. We present only its mixed retarded-advanced component

[BRA(AR)(ω,Ω, q)]2 =
8ν2

dD

E4
z

(Dq2 + Γ)2(Dq2 − 2iΩ), (3.35)

which is the most relevant for the transport regime that we will specify next. The subsequent

calculations will be carried out assuming Γ� Ec and for temperatures not too close to the

critical line E2
c /Γ � T . Γ � Ez, which is quite relevant for the actual experimental

realization. Under these conditions the third term in the denominator of Eq. (3.34) can be

neglected so that one finds approximately

ImLR(ω, q) = −2∆2
0

νd

2Γω

(E2
c + 2ΓDq2)2 + 4Γ2ω2

. (3.36)

In order to determine δσT (H,T ) we have to reexamine all the contributions to fluctuation-

induced conductivity. In the course of this analysis we found that the most singular term

originates from the classical part of the AL contribution Eq. (3.13), so that in large δσT (H,T )

is governed by σALcl . To calculate this term explicitly in the above discussed regime, we

introduce dimensionless variables x = Dq2/2T , y = ω/2T , γ = Γ/2T , and ε = Ec/2T and

obtain from Eq. (3.13)

δσT (H,T ) =
16e2

π2

∫ ∞
0

dx

∫ +∞

−∞

dy

sinh2 y

γ2y2x(x+ γ)2

[(ε2 + 2γx)2 + 4γ2y2]2
, (3.37)
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where, in addition, we set ∆0/Ez → 1 assuming that H is tuned sufficiently close to the

transition line. The remaining integrations can be done with having small parameter ε2/γ �

1, which leads to the result

δσT (H,T ) =
e2

2π

(
TΓ

E2
z

)(
Ez

Ez −∆Γ

)
. (3.38)

It is worth mentioning here that, unlike the quantum regime Eq. 3.32, which is logarithmically

singular in Ez−∆, the magnetoresistance in the classical region is more pronounced. We have

further checked that the other terms remain smaller and scale logarithmically ∝ ln(EzΓ/E
2
c )

(see Appendices C and D for further details).

In a similar spirit we can calculate now αxy. We have verified that, in the regime of

classical fluctuations, the relation between current Be and heat Bh vertices remains the same

Bh = (−iω/2e)Be, so that we can proceed immediately to Eq. (2.45) with the vertex and

propagator taken from Eqs. (3.35) and (3.34) respectively. At the intermediate step one finds

for transverse thermoelectric coefficient

αxy =
512e

π

L2
T

`2
H

∫ ∞
0

dxx2γ4

∫ +∞

−∞
dy coth(y)

γy(ε2 + 2γx)

[(ε2 + 2γx)2 + 4γ2y2]3
(3.39)

and after final integrations

αxy = 2e
L2
z

`2
H

(
Γ

Ez −∆Γ

)
, (3.40)

where Lz =
√
D/Ez. We reiterate that this result is valid provided E2

c /Γ � T . Γ � Ez

and observe that the singularity in αxy is the same as in the conductivity δσT . This resembles

similar situation as in the case of near Tc transport at zero field, namely identical scaling

of the α and σ with the critical parameter, while the underlying physics is very different.

53



It should be stressed, however, that the field dependence of αxy is extremely sensitive to

the pair-breaking scattering. For completeness, we also analyzed behavior of αxy in the

limit of negligible Γ � max{T,Ec} � Ez and find dependence different than that give by

Eq. (3.40). For that purpose, we use Eqs. (3.29) and (3.30) in the expression for αxy defined

by Eq. (2.57), which leads us to expression

αxy =
256e

π2

L2
T

`2
H

∫ ∞
0

dx

∫ +∞

−∞
dy coth(y)

x7y(ε2 + x2 − y2)

[(ε2 + x2 − y2)2 + 4x2y2]3
, (3.41)

which is valid in the thermal region of fluctuations T > Ec. The double integral gives as

factor of 9π2/256ε. This implies that αxy has square-toot singularity

αxy = 18
√

2e
L2
z

`2
H

√
Ez

Ez −∆0

. (3.42)

We conclude this section by briefly discussing behavior of αxy in the regime when orbital

effects of pair-breaking dominate over the spin-related effects. The phase diagram has been

already discussed above based on Eq. (3.2), where we analyzed limiting case of classical

and quantum fluctuation regimes. At a given pair-breaking strength α, superconductivity is

destroyed at T = Tc(α) and at a given temperature T , at α = αc(T ), obtained by solving

Eq. (3.2) for T and for α, respectively. In the neighborhood of this classical transition, for

α� Tc0we can define the quantity εT (α, T ) = [T −Tc(α)]/Tc(α)/ that measures the relative

distance from the critical temperature Tc(α). Conversely, in the vicinity of the the pair-

breaking quantum phase transition on can define the quantity εα(α, T ) = [α−αc(T )]/αc(T ),

which can be interpreted as the relative distance from the critical pair-breaking strength

αc(T ) at a given T � αc0 . In a parametrically broad temperature regime near the transition
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line (but not too close to the quantum region) it is legitimate to approximate pair-propagator

and vertex function by the following simple expressions

LR(ω, q) = − 1

νd

1

ln(α/αc(T )) + (Dq2 − iω)/2αc(T )
, Bi = −νdDqi/αc(T ). (3.43)

When combined with Eq. (2.57) this yields

αxy =
2e

π2

L2
T

`2
H

∫ ∞
0

dx

∫ +∞

−∞
dy
x2y coth(αcy/T )(εα + x)

[(εα + x)2 + y2]3
, (3.44)

where we introduced dimensionless variables for the momentum x = Dq2/2αc and frequency

y = ω/2αc. This result is valid for temperatures away from the critical region T � αc so

that it is legitimate to expand the cotangent at small argument. The double integral gives

a factor πT/8αcεα so that one arrives at

αxy =
e

4π

L2
α

`2
H

αc(T )

α− αc(T )
, (3.45)

where we introduced new length-scale Lα =
√
D/αc(T ), and also expanded the logarithm

ln(α/αc) ≈ (α− αc)/αc assuming close vicinity to the transition line.

Given the plethora of the different regimes and behaviors, it is desirable to have a system-

atic experimental study aimed specifically at exploring the physics of a pair-breaking phase

transition in superconducting films from the measurements of the conductivity δσ(H,T ) and

thermoelectric response αxy. There have been few works using a parallel field as a control pa-

rameter to scan across the phase diagram, but they have had other goals mainly focussing on

the physics of superconductor-insulator transition. To begin with, it will be useful to observe

the finite temperature classical transition and verify the predictions of the fluctuation the-
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ory presented in this section in its vicinity. By slowly increasing the pair-breaking strength

and lowering the temperature, one could approach the quantum phase transition. Having

identified the right films, measurements of the temperature and pair-breaking parameter

dependence of the conductivity, would afford an exciting possibility of discovering different

regimes in the vicinity of the pair-breaking quantum phase transition. The non-monotonic

magnetoresistance due to the presence of superconducting fluctuations that we find, is in

stark contrast to the intuitive expectation and is a purely quantum effect. A clear experi-

mental signature of such a characteristically quantum behavior would be an important step

forward in the study of quantum phase transitions and low temperature superconductivity.

3.6 Summary

In this Chapter we studied electrical and thermal transport anomalies of low dimensional su-

perconducting films in an external in-plane magnetic field. We concentrated on the Clogston-

Chandrasekhar (CC) phase transition, i.e., the destruction of superconductivity by a mag-

netic field by virtue of the Zeeman splitting. As a result, a normal paramagnetic state of

electrons is formed. The main conclusion we can draw from this study of the CC state

is, that despite this state being normal (namely with the mean-field superconducting order

parameter vanishing), it is drastically different from a usual normal metal with some attrac-

tive interaction. The latter state appears, e.g., in a superconductor at temperatures higher

than the transition temperature Tc. The difference becomes apparent when one studies ex-

cited states rather than those close to the ground state. In particular, fluctuation-induced

transport is dominated by the virtual excitations rather than real preformed Cooper pairs.

This leads to a nontrivial magnetoresistance near QCP. The reason why the effects of su-
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perconducting fluctuations in a CC metal are dramatically enhanced, in comparison with

the usual case, is the presence of the pole-like singularity in the correlation function of these

fluctuations. This pole at a finite frequency appears due to the fact that the CC transition

is of the first order. In contrast, the temperature-driven transition from superconductor to

normal metal is of the second order, and in a usual normal state the correlator of the su-

perconducting fluctuations is a smooth function of the frequency, i.e., any superconducting

excitations decay very rapidly.

Near the QCP of the supercooling line of the phase diagram, magnetoresistance is gov-

erned by density of states and regular Maki-Thompson terms. We found complete can-

cellation of quantum Aslamazov-Larkin corrections, while anomalous Maki-Thomspon and

classical Aslamazov-Larkin terms vanish in the zero-temperature limit. Nevertheless, the

latter terms are crucially important in describing the crossover regimes at finite temperature

where the sign of the magnetoresistance essentially depends on the direction at which the

transition line is approached in the field-temperature plane. Surprisingly, we find that, near

the transition line, scaling of the conductivity corrections is the same as the scaling of the

transversal thermoelectric coefficient, which is analogous to usual transport anomalies near

Tc and in the absence of the field. A priori this result is difficult to foresee since the mere

mechanism of fluctuation corrections is different in the CC phase. The apparent univer-

sality between the singular field dependences of σxx and αxy near the transition is another

important observation of this study.

We close this Chapter by briefly discussing outstanding problems that remain largely

unsolved, where our microscopic approach may give an opportunity to systematically study

thermomagnetic phenomena in other various superconducting systems. Since the Nernst

effect is highly sensitive to fluctuations, its measurements may shed light on the intimate
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connection between quantum criticality and unconventional superconductivity with compet-

ing or coexisting orders. Perhaps, the most interesting systems from that perspective are

heavy-fermion superconductors (e.g. URu2Si2) and iron-pnictide superconductors (e.g. FeSe

compounds).

It was recently reported [120] that the Nernst coefficient in URu2Si2 is anomalously

enhanced as compared to the theoretically expected value of the standard Gaussian fluctua-

tions. Moreover, contrary to the conventional wisdom, the enhancement is more significant

with the reduction of the impurity scattering rate. This unconventional Nernst effect inti-

mately reflects the highly unusual superconducting state embedded in the so-called hidden-

order phase of URu2Si2 that appears to point to a new type of superconducting fluctuations

generated by a degree of freedom which has not been hitherto taken into account. It is

tempting to consider that such a degree of freedom is intimately related to the supercon-

ducting state with broken time-reversal symmetry. To properly address the data one has

to seriously consider possible chiral or Berry-phase fluctuations associated with the broken

time-reversal symmetry of the superconducting order parameter [121].

Our theory of Pauli limited superconductivity may be highly relevant for the study of

FeSe superconductors. This is a unique solid state system that offers the possibility to enter

the previously unexplored realm where the three energies, Fermi energy, superconducting

gap, and Zeeman energy, become comparable, and thus access the crossover regime between

the weakly coupled Bardeen-Cooper-Schrieffer (BCS) limit and the strongly coupled Bose-

Einstein-condensate (BEC) limit. The results of the transport properties of FeSe near the

BCS-BES crossover reveal intriguing features [122]. What is remarkable is that, for the

Nernst effect, the Seebeck coefficient, the temperature derivative of the resistivity, and the

Hall coefficient, all show peaks at around 20 K, which is twice as large as the critical tem-
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perature (Tc ∼ 10 K). One of the most important subject in the BCS-BEC crossover is the

debate concerning the mechanism — preformed pair or pseudogap. It is useful to recall

that at the pseudogap temperatures of YBCO and CeCoIn5, the Nernst effect exhibits its

peak. Whether one can draw any conclusion from this similarity for FeSe systems remain to

be seen. What is clear, is that theoretical input is urgently needed and so thermomagnetic

transport in superconductors will continue to attract tremendous attention from researchers.
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Appendix A:

Matsubara sums and analytical

continuation

As outlined in the main text we convert the bosonic Matsubara sum into the integral

S(Ων) =
1

4πi

∮
C

dz coth
z

2T
L(−iz)L(−iz + Ων), (A.46)

where the contour of integration is a circle which contains two branch-cuts at Imz = 0

and Imz = −Ων , [see Fig. (A.3)], where functions L(−iz) and L(−iz + Ων) have breaks of

analyticity respectively (q-dependence of propagators is suppressed here for brevity). We

thus have explicitly

S(Ων) =
1

4πi

∫ +∞

−∞
dz coth

z

2T
LR(−iz + Ων)[LR(−iz)− LA(−iz)] +

1

4πi

∫ +∞−iΩν

−∞−iΩν
dz coth

z

2T
LA(−iz)[LR(−iz + Ων)− LA(−iz + Ων)] . (A.47)
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Figure A.3: Integration contour in the plane of complex frequency. The lower part of the
contour corresponds to advanced-advanced products of propagators after analytical continu-
ation. The middle section contains mixed causality components of advanced-retarded, while
the upper third contains only retarded-retarded products of propagators.

In the second integral we shift variable z + iΩν = z′ which gives us

S(Ων) =
1

4πi

∫ +∞

−∞
dz coth

z

2T
LR(−iz + Ων)[LR(−iz)− LA(−iz)] +

1

4πi

∫ +∞

−∞
dz′ coth

z′ − iΩν

2T
LA(−iz′ − Ων)[LR(−iz′)− LA(−iz′)] . (A.48)

Taking into the account that iΩν is the periodic of cotangent coth z′−iΩν
2T

= coth z′

2T
,

changing back z′ → z in the second integral, and taking the analytic continuation step

Ων → −iΩ, we get

SR(Ω) =
1

2π

∫ +∞

−∞
dz coth

z

2T
[LR(−iz − iΩ, q) + LA(−iz + iΩ, q)]ImLR(−iz, q) . (A.49)
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Since LR(−iz) = LA(iz) we get for the response kernel

[Kee
xx(Ω)]R =

2e2

π

∑
q

B2
x(q)

∫ +∞

−∞
dω coth

ω

2T
[LA(ω+Ω, q)+LR(ω−Ω, q)]ImLA(ω, q) . (A.50)

We do not write imaginary i in the frequency argument of LR(A)(iz), which is implicit in the

definition. To the linear order in external frequency

LA(ω + Ω, q) + LR(ω − Ω, q) ≈ Ω∂ω[LA(ω, q)− LR(ω, q)] = 2iΩ∂ωImLA(ω, q) . (A.51)

As a result the retarded component of the current-current response kernel reduces to

[Kee
xx(Ω)]R =

2iΩe2

π

∑
q

B2
x(q)

∫ +∞

−∞
dω coth

ω

2T
∂ω
[
ImLA(ω, q)

]2
, (A.52)

which can be integrated by parts to yield Eq. (2.45).

Calculation of the Matsubara sum in the case of thermomagnetic response functions

follows the same steps as above but is more involved since it contains three propagators

S(Ωm) =
1

4πi

∮
C

dω coth
ω

2T
(ω + iΩm/2)

[
L3(ω, q)L(ω + iΩm, q)− L3(ω + iΩm, q)L(ω, q)

]
(A.53)

We transform this integral into a contour with branch cuts

S(Ωm) =
1

4πi

∫ +∞

−∞
dωω+ coth

ω

2T

{
[L3

R(ω, q)− L3
A(ω, q)]LR(ω + iΩ, q)

−[LR(ω, q)− LA(ω, q)]L3
R(ω + iΩ, q)

}
+

1

4πi

∫ +∞−iΩ

−∞−iΩ
dωω+ coth

ω

2T

{
[LR(ω + iΩ, q)− LA(ω + iΩ, q)]L3

A(ω, q)

−[L3
R(ω + iΩ, q)− L3

A(ω + iΩ, q)]LA(ω, q)
}
, (A.54)
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where we used notation ω± = ω ± iΩm/2. In the second integral we shift ω + iΩm → ω,

use the periodicity of the cotangent coth ω−iΩm
2T

= coth ω
2T

, and then perform the analytic

continuation iΩm → Ω, which gives

S(Ω) =
1

2π

∫ +∞

−∞
dωω+ coth

ω

2T

[
LR(ω + Ω, q)ImL3

R(ω, q)− L3
R(ω + Ω, q)ImLR(ω, q)

]
+

1

2π

∫ +∞

−∞
dωω− coth

ω

2T

[
L3
A(ω − Ω, q)ImLR(ω, q)− LA(ω − Ω, q)ImL3

R(ω, q)
]
. (A.55)

To the linear order in Ω, there are terms of two kind. First is the direct term proportional

to Ω due to the vertex. Second, is the linear term from the expansion of propagators. We

focus on the first possibility since it gives the most important contributions. We set Ω→ 0

in propagators and get

S(Ω) =
Ω

4π

∫ +∞

−∞
dω coth

ω

2T
(A.56)[

LR(ω, q)ImL3
R(ω, q)− L3

R(ω, q)ImLR(ω, q)− L3
A(ω, q)ImLR(ω, q) + LA(ω, q)ImL3

R(ω, q)
]
.

This can be rewritten as

S(Ω) =
Ω

2π

∫ +∞

−∞
dω coth

ω

2T

[
ReLR(ω, q)ImL3

R(ω, q)− ReL3
R(ω, q)ImLR(ω, q)

]
, (A.57)

or equivalently

S(Ω) =
Ω

π

∫ +∞

−∞
dω coth

ω

2T

{
[ReLR(ω, q)]3ImLR(ω, q) + ReLR(ω, q)[ImLR(ω, q)]3

}
,

(A.58)

which eventually translates into Eq. (2.57).

64



Appendix B:

Seebeck (αxx) and Hall (σxy)

coefficients near Tc

The Aslamazov-Larkin contribution to the diagonal (Seebeck) thermoelectric coefficient is

found from the mixed electric-heat currents Kubo response function

αALxx = − 1

T
lim
Ω→0

1

Ω
Im[Keh

xx(Ω)]R , Keh
xx(Ων) = 2ieT

∑
qω

ωnB2
x(q)L(ωn, q)L(ωn + Ων , q).

(B.59)

Summation over the Matsubara frequency ωn and analytical continuation follows the same

way as in the case of the conductivity calculation, and we obtain

αALxx =
e

2πT 2

∑
q

B2
x(q)

∫ +∞

−∞

ωdω

sinh2(ω/2T )
[ImLR(ω, q)]2 . (B.60)

Without particle-hole asymmetry, αxx is zero. Indeed, [ImLR]2 is even in frequency while the

rest of the integrand is odd. We have to use the generalized form of the pair propagator that

explicitly accounts for the particle-hole asymmetry factor Υω, which is essentially dictated
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by gauge invariance [123]

L(ωm, q) = − 1

νd

1

πDq2/8T + ε+ π|ωm|/8T + Υω

, Υω =
iωm
2Tc

∂Tc
∂εF

. (B.61)

Expanding LR to the leading linear in Υω order, ImLR = ImLR|Υ=0 + Υω∂εImLR|Υ=0 pro-

duces

αALxx =
e

πT 2

∑
q

B2
x(q)

∫ +∞

−∞

ωΥωdω

sinh2(ω/2T )
ImLR(q, ω)∂εImLR(ω, q), (B.62)

where now both propagators are taken at Υω = 0. After introducing dimensionless variables,

at the intermediate step, one has

αALxx =
8Te

π3εF

d lnTc
d ln εF

∫ xmax

0

dx

∫ +∞

−∞
dy

xy2(x+ ε)

[(ε+ x)2 + y2]3
. (B.63)

Logarithmically divergent momentum (x-integration) has to be regularized so that we intro-

duced upper cut-off xmax ' 1/ε (in the original notations this corresponds to (ξT qmax)
2 ' 1.

This choice is natural since LR, in the form we use, was obtained from the expansion of

the digamma function which works only as long as max{Dq2, ω} < T ). After the final

integrations one finds

αALxx =
2Te

π2EF

d lnTc
d lnEF

ln

(
Tc

T − Tc

)
. (B.64)

In order to calculate the Hall coefficient, we need to know the transversal component

of the current-current correlation function Kee
xy ∼

∑BxByLL. In the presence of Landau

quantization the vertex in real space becomes an operator

B̂i = −2νdη(−i∇i + 2eAi), (B.65)
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where we choose the vector potential in the Landau gauge A = (0, Hx, 0). Different compo-

nents of the vertex, B̂x and B̂y, do not commute and the matrix elements are

B̂nn′

α = −2
√

2νdη

`H


i〈n|â− â†|n′〉 α = x

〈n|â+ â†|n′〉 α = y

, (B.66)

where â, â† are oscillator operators. Recalling that 〈n|â|n′〉 = 〈n′|â†|n〉 =
√
nδn,n′+1, we see

that only transitions between nearest Landau levels n → n ± 1 are allowed. With this at

hand we find for the Matsubara response kernel [123]

Kee
xy(Ω) =

(4eνdη)2

8π`4
H

T
∑
ω

∞∑
n=0

(n−1)[Ln+1(ω, q)Ln(ω−Ω, q)−Ln(ω, q)Ln+1(ω−Ω, q)] . (B.67)

After analytic continuation one gets

σALxy = −(4eνdη)2

4π2`4
H

∞∑
n=0

(n+ 1)

∫ +∞

−∞
dω coth

( ω
2T

)
[
ImLRn (ω, q)∂ωReLRn+1(ω, q)− ImLRn+1(ω, q)∂ωReLRn (ω, q)

]
. (B.68)

In the weak field limit, one needs only the first term in the expansion in powers of 1/n

and then substitute integral for the n summation (1/`H)2
∑

n →
∑

q. Taking into account

∂nLn = 2ν(η/`2
H)L2

n and, after some algebra, we find

σALxy = −(4eη)2ν3
dη

3πT`2
H

∑
q

q2

∫ +∞

−∞

dω

sinh2(ω/2T )
[ImLR(ω, q)]3, (B.69)

where we also used integration by parts with respect to the energy variable. Since [ImLR(ω, q)]3

is odd in energy without particle-hole asymmetry, σALxy vanishes in this case. Expanding to
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the lowest non-vanishing order we get

σALxy =
(4eη)2ν4

dη

2πT`2
H

∂ lnTc
∂εF

∑
q

q2

∫ +∞

−∞

ωdω

sinh2(ω/2T )
[ImLR(ω, q)]2Im[LR(ω, q)]2. (B.70)

Introducing, as usual, dimensionless variables and using integrals
∫ +∞

0
xdx/(x + 1)4 = 1/6

and
∫ +∞
−∞ y2dy/(y2 + 1)4 = π/16 we finally get

σALxy =
e2

48
(ωcτ)

∂ lnTc
∂ ln εF

(
Tc

T − Tc

)2

, (B.71)

where ωc = eH/m is cyclotron frequency.
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Appendix C:

Quantum Aslamazov-Larkin terms

Within this section we analyze more carefully the unconventional AL terms in the quantum

limit T → 0. We start from Eq. (3.14) and obtain, in the dimensionless variables of the main

text

σALq1 = − e2

2π2

∫ +∞

−∞
dy coth(πy)

∫ ∞
0

dx

[
(−iy)(−iy + 2x)x

∂

∂y

( −2

ε2 + (x− iy)2

)2

+ c.c.

]
.

(B.72)

Here c.c. stands for the complex conjugate term. In this expression we can replace the

integrand with
∫ +∞
−∞ dy coth(πy)[. . .]→ 2

∫∞
0
dy coth(πy)Re[. . .]. At ε� 1, coth πy ≈ 1, and

using the integral

4

∫ ∞
0

dy(−iy)(−iy + 2x)∂y
4

[ε2 + (x− iy)2]2
= − 16

x2 + ε2
, (B.73)

we obtain

σALq1 =
8e2

π2
ln
Ez
Ec
' 8e2

π2
ln

√
Ez

2(Ez −∆0)
. (B.74)
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In the opposite limit, ε� 1, the expansion of coth(πy) ≈ 1/πy gives the vanishing real part

of the integrand. We therefore conclude that this contribution is not singular in the high

temperature limit when T � Ec.

The second type of unconventional AL corrections comes from differentiating the trian-

gular vertices B instead of the propagators. In the dimensionless notations, Eq. (3.15) can

be reduced to the form

σALq2 =
ie2

π2

∫ +∞

−∞
dy cothπy

∫ ∞
0

dxx
[
(−iy + x)[lR(x, y)]2 − (iy + x)[lA(x, y)]2

]
, (B.75)

where

lR(A)(x, y) = − 2

ε2 + (x∓ iy)2
. (B.76)

In the low-temperature, quantum limit T � Ec, one uses the integral

∫ ∞
0

dy
4(−iy + x)

[ε2 + (x− iy)2]2
=

2i

ε2 + x2
(B.77)

to obtain

σALq2 = −8e2

π
ln
Ez
Ec
. (B.78)

In the opposite limit, at higher temperatures away from the critical point, σALq2 = −2e2/πε.

Comparing σALq1 and σALq2 in the quantum limit T → 0, we observe acomplete cancella-

tion effect, namely AL terms have no divergent, singular correction in Ez/Ec near QCP.

As discussed in the main text, magnetoresistance δσq(H) is determined by DOS and MT

contributions.
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Appendix D:

Anomalous Maki-Thompson terms

In the main text we introduced the pair-breaking (dephasing) parameter Γ in order to regu-

larize the anomalous MT term. As discussed in details in Sec. (3.4), Γ naturally appears as

a result of spin-flip scattering. We thus concentrate on the Γ-dependence of the anomalous

MT term from Eq. (3.22) in various temperature regimes. In the dimensionless notations,

Eq. (3.22) reduces to

σMT
an =

e2

π

∫ +∞

−∞

dy

sinh2(πy)

∫ ∞
0

dx
1

(Γ/2πT + x)

(xy)2

[y2 − (ε− ix)2][y2 − (ε+ ix)2]
. (B.79)

In the high temperature limit ε� 1 (or equivalently in original notations T � Ec)

σMT
an =

e2

π3

∫ +∞

−∞
dy

∫ ∞
0

dx
1

(Γ/2πT + x)

x2

[y2 − (ε− ix)2][y2 − (ε+ ix)2]
, (B.80)

which eventually reduces to

σMT
an =

e2

2π2

∫ ∞
0

dx
1

(Γ/2πT + x)

x

x2 + ε2
=

e2

2π2

πε/2− (Γ/2πT ) ln(2πTε/Γ)

(Γ/2πT )2 + ε2
. (B.81)
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From this expression we can extract various limiting cases. For Γ/2 < 2πEc < T , which is

possible if Γ/2 < T , one finds σMT
an = e2/4πε. Alternatively, for 2πEc < Γ/2 < T , which

is possible if Γ/2 < T , or for 2πEc < T < Γ/2, which is possible if Γ/2 > T , one finds

σMT
an = (e2/π)(T/Γ) ln(Γ/Ec).

We proceed with the low temperature limit ε� 1 (or equivalently T � Ec). In this case

we have

σMT
an =

e2

π

∫ +∞

−∞

dyy2

sinh2(πy)

∫ ∞
0

dx
1

(Γ/2πT + x)

x2

[ε2 + x2]2
. (B.82)

At T < Ec < Γ,

σMT
an =

e2

3π2

2πT

Γ

∫ ∞
0

x2dx

(x2 + ε2)2
=

e2

12πε

2πT

Γ
. (B.83)

Alternatively, at T < Γ < Ec or Γ < T < Ec,

σMT
an =

e2

3π2

∫ ∞
0

xdx

(x2 + ε2)2
=

e2

6π2ε2
, (B.84)

and consequently, the anomalous MT term has no singular contributions near QCP. The

logarithmically divergent correction declared in Eq. (3.32) of the main text originates from

the regular part of the MT term. Indeed, from Eq. (3.21) we obtain

σMT
reg =

4e2

π2

∫ ∞
0

dx

∫ ∞
0

dy coth(πy)
xy

[(y + ε)2 + x2][(y − ε)2 + x2]
. (B.85)

At high temperatures T � Ec,

σMT
reg =

4e2

π3

∫ ∞
0

dx

∫ ∞
0

dy
x

[(y + ε)2 + x2][(y − ε)2 + x2]
=

e2

2πε
, (B.86)
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while at low temperatures T � Ec, near QCP ,

σMT
reg =

4e2

π2

∫ ∞
0

dx

∫ ∞
0

dy
xy

[(y + ε)2 + x2][(y − ε)2 + x2]
≈ 2e2

π2
ln(Ez/Ec). (B.87)
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