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ABSTRACT

ESTIMATING THE COVARIANCE COMPONENTS OF AN UNBALANCED

MULTIVARIATE LATENT RANDOM MODEL VIA THE EM ALGORITHM

/ /I- ByI. /..

r'

x? I

f/ f

qu Leonard Joseph Bianchi

II 7 f [1" 4 ’7 q

Iélthgugh statistical procedures’gze aggilable_£gx £§£1QQELEE.

_E£§atment effects in: students taught in glggggpoms, these.prgcedures

are applicable only when every class has the same number of students.

The present study‘investigated a procedure that was originally

established to handle missing data (EM Algorithm) but which also

provides a solution to the problem of estimating parameters in

multivariate analysis when samples contain unequal group\sizes. The

focus of thepresent dissertation was on the estimation of latent group

nd individual level variances and covariances with measurement error

emoved when group sizes varied in a sample. Previous methods could

nly find maximum likelihood estimates for this problem if the dataset

contained groups of equal size. The EM Algorithm offers A method for

finding maximum likelihood estimates of parameters in situations where

classical maximum likelihood procedures faiI.

The estimate of balanced and unbalanced samples were both studied

while varying two factors, mainly the number of groups in the sample



Leonard Joseph Bianchi

(the size) and the particular model being estimated (that is to say,

the unrestricted.model, the correctly specified model and the

incorrectly specified model). Only I? replications ere used in this

demonstration of the algorithm under different circumstances.

Tests of the model based on the criteria of convergence showed

this estimation procedure to be a satisfactory and effective method in

theory. However, problems in the use of this algorithm appearred in

the form of large number of iterations needed for convergence and lack

of a universally accepted criterian for convergence.



This dissertation is dedicated to Robert Garden, Chris
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CHAPTER I: INTRODUCTION

Although statistical procedures are available for estimating

treatment effects for students taught in classroom groups, these

procedures are only applicable when every class has the same number of

students. Since equal class size is rare in schools, however, it is

important to develop practical methods that extend current procedures to

cover all patterns of class size. The present study investigates a

procedure that was originally established to handle missing data (the EM

algorithm), but which also provides a solution to the problem of unequal

sample sizes in multivariate analyses. After presenting a review of

V existing procedures, this dissertation will: (i) show how the EM

algorithm can be applied to this case; (ii) exhibit a computer program

that uses this procedure to analyze such data; and (iii) illustrate the

procedure and program with an analysis that estimates parameters from a

sample data set generated from a known distribution.

Many educational researchers have engaged in attempting to

identify the various factors which affect student achievement.

Laboratory studies have identified how individuals respond to different

educational treatments, but most formal education occurs in classroom

settings in which students receive treatments as a group. Two effects

are introduced in the latter situation, however, which cannot be

overlooked.

First, there may be some process which\affects the class as a

whole. A teacher with a class having a mean IQ of 120 may decide to

cover more material than one with a class having a mean of 100. Such an

.-'\ w " .fiw ‘_ _

\

_ NJ
3
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effect, unless accounted for, could obscure the relatiggghgiLJufigfiggLJUL

"od-d .1.- ‘5“----- ~w“ I

and

Second, similarly, there may be an interactive effect between

individuals and the class. A person with an IQ_of 110 may do much

differently in a class with a mean of 100 than inW,

‘V I,”

{I

. ectibetween_120 That is,\class level processe caQMaff ‘Sgass analyses,

>W -

4Wgan influence__iih_in class anal ses and

undividuals can have an effect on both.\\The analysis of such data must

   

 

e interpreted carefully.

Estimates of relationships between variables at the class and

individual levels can either be low, or high, as two effects can either

combine to indicate a spuriously high relationship or work against each

other to reduce it. A number of models and strategies have been

recently developed to analyze this type of data. One line was the

development of regression models to study the individual and group

effects. Others\developed\models\to estimate underlying latent

variances at each level.

Keesling and Wiley (1974) used the relationship between two

student level variables to adjust class level scores. The aggregated

values of the variables were used with the estimated student level

regression coefficients to compute an expected group score. This score

was then subtracted from the aggregated class scores in order to obtain

residual scores which, in turn, were then used within regular linear

regression models with class level variables. Keesling and Wiley's

model was based on the assumption that the relationship between two

variables would be identical for all levels of the model.



3

Cronbach (1976) proposed an analytic approach that focussed on/

processes going on both between and within groups. He felt regression"L

effects were composed of two components, a between and a within effect.3

His model allowed for the relationship between two variables to varyv

between the individual and classroom levels. .1

Burstein, Linn and Capell (1980) developed a model allowing /

regression coefficients between two variables to change from class to ,5

class. These coefficients were then used as dependent variables in g;

regression analyses at the group level. Raudenbush (1986) applieda

empirical Bayes theory to develop a procedure for producing Maximum, .3.»

Likelihood (ML) estimates of the regression coefficients in Burstein's

2241 model. I)"

ffiNone of the univariate regression models, however, offered

/’{,;methods for estimating measurement error. Tests and i used in

If"education, virtually gy_definition, contain measurement errors which can

i

f L {Elate the analyses' errorWe model. _

I“? Schmidt (1971) addressed this problem by developing a

 

 

a." ,émultivariate structural model. By fitting an 5.91.1211 structure the

Nfivariance matrix of the student's test?, the variance and covariance of

Tathe latent dimensions and ’measurement errors {could be estimated for both

. , ‘ r

significant as both the variance and1’ levels. This was especiall

  

 

‘1

alveovariance of latent dimensions are frequently thegitems/ of importance

“fixto researchers.

aann example of the applicability of this notion was evidenced in

“gifthewlnternational Associationfor the Study of Educational Achievement's

If:

’5£(IEA) ”Second International Mathematics Study", where items within].

W— m

4

7"“; academic tests were systematicallyvzonstructed, from a number 0f

i
4
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dimensionsuf In one case, one dimension was word problems v§,numerical

examples.while another was arithmetic vs algebra. All items,containing

the two dimensions, in turn, could be combined to make four subtests.

The subtests, theoretically, were assumed to have served as con

  tests (see Chapter 8, Lord and Novich, 1976).

The four subtests contained the following dimensions: IN7‘

PM”

Waffles Wales

Subscore A Word Problems Arithmetic

Subscore 8 Word Problems Algebra

Subscore CI Numerical Arithmetic

Subscore D Numerical Algebra

/ /
Of interest to the IEA study/was not the four subscores/but the

/

variance and covariance of the twolunderlying dimensioms. Schmidt's

—,—
.‘ A ‘ 3‘ "-_ .—-— ‘WY—m nun-o...

".

model/bould have been used/to provide estimates of theflatentiéariance

and covariance/é; both the class‘and individual leve .3

“.4-"  3: [covariance matricegycan then ’ sis

numerous models”.

Wisenbaker (1981), following the same logic, further developed the

estimation procedures necessary to estimate parameters of a causal model

for latent covariance structures.: The structural parameters of the

between and within levels, according to Wisenbaker's model, are

simultaneously estimated yielding ML estimators. 3/”.

’0 \ V

Schmidt's and Wisenbaker's models, however, both require groups C;~V¢V

\\;g

(classes) to be of equal size. The underlying multivariate normal



distribution upon which the ML equations are based is a vector of length

up where n is the number of students in each class and p is the number

of observed measures (tests) taken by each student. The ML procedure

requires that each group contains the same number of subjects - n. In

educational research, however, the number of subjects usually varies

from classroom to classroom.

The present dissertation concentrates on the problem of estimating

the latent between and within covariance matrices when the number of

subjects (students) varies between groups (classes). The early chapters

contain information on the background of the problem. Chapter Two,

Latent Structural Models, describes the development and background of

those models. Chapter Three describes the background of the specific

model used in this study and the development of different techniques for

estimating variance components in the unbalanced random model. Chapter

Four contains a statement of the problem.

The last chapters contain the derivation of the procedure and an

example of its use. Chapter Five contains the derivation of the

equations needed in the estimation procedure. Chapter Six details the

design of a monte carlo study for illustrating the use of the EM

algorithm under the current model. The results of the study are

described in Chapter Seven. Chapter Eight, finally, presents a

discussion of the results and conclusions.



CHAPTER II: LATENT COVARIANCE STRUCTURE MODELS

1. Single Level Covariance Structure Model

Latent Covariance structure analysis was developed along two

\ -’\7,” Hz“ “\J' " ~ # -2 ,—

different lines of inquiry. The,first approach, factor analysis, was

_f‘__,,P’

derived explicitly for the purpose of finding latent structures

(Spearman, 1904). The second line of inquiry applied the  existing

random analysis of variance model toward solving the same problem (e. g.

832k, 1960).

Factor analysis was developed by Spearman as a method for

confirming his theory on ability. Spearman sought to show that IQ tests

measured two components, a "general or G factor” common to all IQ tests

and a second factor specific only to the test. Through the application

of factor analysis, he was able to isolate the variance component of

each test attributable to the G factor, as well as the variance

component specific to the individual tests. As the mathematics for

factor analysis were expanded and refined, however, its use changed from

confirmatory to exploratory and became a method for reducing a set of

items or measures to a lesser number of underlying latent dimensions.

These dimensions, in turn, were used to form factor scores for

discriminating between subjects. These later exploratory methods of

factor analysis lacked a firm theoretical basis and were simply

algebraic manipulations of the data.

A confirmatory approach to factor analysis did not resurface

until the 1950's when such an approach was considered by Howe (1955),

Anderson and Rubin (1956), and Lawley (1958). The advantage of

6
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confirmatory approaches lie in their use of statistical theory and

ability to test the fit of the latent models, but early efforts went

largely ignored because of computational difficulties. Interest

gradually rose after Joreskog (1966) developed more efficient estimation

procedures.

Joreskog (1969) developed a general approach to confirmatory

maximum likelihood factor analysis. Unlike the prior models, this model

had the flexibility of allowing/)esearchers the capability of selecting

different structures from possible solutions: orthogonal, oblique and

various mixtures of the two. The factor analysis model is based on the

‘\fundamental equation

r

(2.1a) x- 2+Azs+£

where y is a p x 1 vector of observed variables, a is a vector of grand

means, A is p x q matrix connecting the p observed values to the q

latent factors (with q 5 p), 3 is a q x 1 vector of the latent factors,

and z is a p x 1 vector of the error or unique parts of the test. It is

assumed that E(x)-E(z)eQ, E(xx')- O, E(zz')- i, and E(yy')- 2;. The

dispersion matrix for y is

Z, - AQA'+ W

Assuming 1 has a multivariate normal distribution, the maximum

likelihood equation is

(2.3a) L - 11:11am“ Izyl'“2 exm -§ (1, - 2y)’ 2’; (x, - a?) 1



The efficient part of the log(L) is

(2.4a) log(L) - - it n { logIEI + tr(SZ-1) )

Minimizing the following function

(2.5a) F( A, O, ‘1') - logIEI + tr(SE-1) - logISI - p

yields the likelihood ratio test statistic of goodness of fit.

/A second approach“ as developed through the use of the random
p; ——————‘ 

analysis of variance model. Burgfl£l947) was the first to point out the

<:analogy between the analysis of variance (ANOVA) and factor analysis.>>

This was further elaborated EZ,§EE§§X;S}2§EZ; #Bock;(lgggl showed that a

formal relationship exists/between the two approaches. This relationship

only becomes clear if a distinction is made between factor analysis used

as a ”structural” versus "discriminal" analysis. According to Bock

(1960, p153): 3 N

”By Cstructural' analysis is meant a measure which attempts to make

l/éausal statements about test performances by assigning to definite

sourcesvthe covariation which arises between certain psychological
1‘

( .

tests: this was the original use of factor analysis. In its

subsequent application to the construction of3£esqibatteries, factor

analysis was also used to assess whether tests of known measurement

error yield reliable distinctions/between individuals, and, if so, in

how many dimensions: it seems appropriate to designate this

/ldiscriminal'fénalysis.' Factor analysis doesn't separate\fhese two

uses or give clear answers for either.



Bock showed that a Model II (Rendom) ANOVA,mgggl.can be applied

to tests in light of specific hypothesis about their composition and

suitably adjusting their psychometricvcharacteristics. The analysis

could be used to study stmctural and discriminal propertig§,bf the

1".—.
‘x

' tests,(freeofdiffiéfiltstatistical andinterpretationproblems} The
 

  

 

purposes of this dissertation deal only with the structural analysis and

 

ing an example to facilitate the discussion.

w

Consider the design of four testslfrom two dichotomgus
r"...- 3---.--,_ -__,,,,..... -»~~....__.-m-v-~Mm -......._,.,.—...... W..- 3 __3_ ~,”____,i...,-.. ,..- ,1...an

shall concentrate on it

dimensions, as referred to in Chapter1, namely TypeofProblem_((11,v
_.- ”Mr-1...”

._—

V“!

WordProblems vs (2) Numerical) and Type of Mathematics ((1) Arithmetic-

vs (2) Algebra).

Plnnour3example, the four tests may be_identified bythe following
------------

ordered pairs:

 

 

A(J)

1 2

1 ll 12

B(k) '

2 21 22

TestUk) W W

/Test 113 Word Problems Arithmetic

f’Test 12 Word Problems Algébra

/ Test 2; Numerical Arithmetic

/ Test 22 Numerical Algbbra

A mpdelvfor the structural analysis of this design is

2.6a ' - -+ + + +

( ) xijkt ai fiiJ 71k 6 13k 6 13kt
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where xnfit is the score of individual i on test jk on occasionat, a1 is a

component pf score specific \to individual i‘on all tests, flu and 1“ are

components of scoré\specific q? individual 1 en dimensions B and C respectively,

6am is a component of score specific\to individual i and the test jk

(with the dimensions effect exdiuded) and GL1: is a replication
k

error specific to individual, test, and occasion}: These‘components are

considered random effectsyhnd are assumed normal and independent,

N

a ~ N(O, 0‘);

p-Nw.{fl

1~Nw.{f

5 ~ N(O, 0:):

e - N(0, of)

f

Because the number of components/with a distribution over individuals is

equal/to the number of tests/in the dichotomous fac ,/the

covariance structure may be fully estimated. This will not be true when

 

 

there are more than 2 levels to a dimension._!

The/design‘jor our exampletcan be represented in matrix form as
v

the Hamadand design matrix

p B C

,1 1 l

1 l -l

(2.7a) P -1/2 1 -1 1

l -l -1

'The purpose of the structural analysis is to test whether the sample

covariances between tests fit the model. The covariance matrix of the

data from our example is
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(2.8a) Sr - X.'X. - ( M /(n-1) )

where X is the N x 4 matrix of means of r replicate scores and M is the

matrix of corrections to the sample data. Pre and post multiplying the

population covariance matrix by P will reduce it to its canonical or

diagonal form (P ZIP'). If the sample covariance matrix is treated in

this way, the off diagonal elements will not necessarily be equal to

zero but if the model fits though, any non zero value will attributed

simply to sampling variance. Therefore a statistical test of the off

5..___ _‘

diagonals being equal to zero will be a test of the fit of the model.
 

W _ w—

wvv ‘|

A maximum likelihood ratio test given by Wilk's criterion and a

chi-squared approximation provided for moderate to large samples by

Bartlett can be used to test that hypothesis (Anderson,1984). This is

(2.9a) x2 - - (N - (2p + 11)/6 ) logIRrI

where p is the number of variates, erl is the determinate of ARA' and R

is the correlation matrix corresponding to S.

Book's work on reformulating factor analysis in the form of a

random model has spurred (the development of more complicated models)and

situations. Bock and Bargmann (1966) presented a method for analyzing a

sample covariance matrix<3n order to assesépthe latent sources of

variance and covariance within multivariate normal data. This

"structural” analysis of the sample covariance matrix has a two fold

purpose. The first purpose is to statistically test the feasibility of

/a hypothesized model/and the second is to provide estimates of variance

components associated with the latent variables of this model.

V
.
m
-
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This analysis is an alternative to Type III (Mixed) ANOVA Model.

The method of maximum likelihood estimation is used to test the model

and estimate the latent variance-covariance components. The model for

the observed score vector of p tests is given as

(2.10s) yu-u-i-Afi14- e

where u is the vectorKnean of the 13' tests, @is a p x 9 matrix of 44..

@Coefficients'c
onnecting the "observed and theVlatent variables,

“wt/flw

g is an m x 1 vector of latent scores for subject i having an m x m
W4-_- ”V“" ii". I”..- ’

#'

covariance matrix 0 and {gigis a p x 1 vector of measurement errors

with a p x p covaW

The model implies that vector x“ has a multivariate normal

distribution 41th mean vector u and covariance matrix 2y where

(2.11a) 2: - A no + i:

In this modelthe latent variablesare considered independent of each
___ _.._ __._

k. ..m;——

other with <5considered to be a diagonalmatr x\
_ .'¢‘WM~-mw

 

The likelihood function of the general model proposed by Bock and

Bargmann for p measures on N individuals sampled randomly from a

multivariate normal population is

12/2 -1/2 _ 3 - , -1 _
(2.12s) L nf_1(2«) lzyl exp{ 2 (11 2,) 3,, (x1 2,) 1

Taking the natural log of the function, differentiating and setting the

derivitive equal to zero will yield a maximum likelihood estimate
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(2.13a) Log(L) - -(Np/2) 10g21r - (N/2) longyI - (N/2) cm 2'13 )

Assuming the elements of E; are functions of a scalar variable x,

the first derivitive with respect to x is

(2.1%) mm - <N/2) tr { a; < 2‘13 2" - 2'1) 1

6x 6x

The second derivitive with respect to scalars x and y is

(2.15a) mam-Numb Sim-gummy

6x 6y 2 6x 6x6y

+Htr(:}i§.2}+utr{W§:Z_}

2 6y 6x 2 6x5y

where w - 2'13 2'1

Because the scalars/ire not directly estimable, the Newton

Raphson algorithm as used. ,Tgis algorithm reauired the first and
 

 

 

 

 

second derivitives of the Log likelihoodménd ma tel ield

wv- .’

var w_ ,_ e values..\(:9’

___._...— ‘v-fv

The likelihood equations and computational schemefhbove has been

distinct—easee'worked out for/three structural models.//They were hree

V ’

  for the model.
w.

2.16 2 - A 0 A' + W

( a) x, / ‘ /

ase I. r The latent variables are YncorrelatedW
M

——¥ _7
u" «q... ’ME‘K” V

s ec d and unscaled,§and\the error variances are assumed homogeneous‘Qy

t-wv .e_ , -- ~———____.~

; 'f—"V

( i - 0’21 1. Ci’ “*
...—--\, ..., ,uv/ " r 1 .

Case 11. The 1 variables are uncorrelated A is coggletely

specified angiagégaled, andflthe error variances3F§g§§3299d
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Wéi-diag [it,Waunt!” ] ).

Case 6‘ Thelatent variables are assumed uncorrelated, A is W,

mwfl'wwm'h“ I .

/W,but scaled by an unknown, but estimable, matrix of g

:Cdé‘lin iQ%#
7Wt

variances»are1a
ssumedhomogene

ous: J1

- a'zl).

 

 
 

Bock and Bargmann chose the likelihood statistic

|s|§

(2.17a) A - - -*-

|z|§

to test the hypothesis that the population covariance matrix has a Case

I, II or III structurevvs an unrestricted structure. The distribution

«4"
—\ ,- _'~'-

of S in large samples may be approximated by a chi square.

(2.18a) x? - -2 log) - N log{|Z|/ISI}

The degrees of freedom for this statistic is equal to the difference in

the number of parameters in the restricted and unrestricted models.

FThese three cases are only a small number of the many possible

covariance \4tructure modelsf‘ thatlcan be hypothesized for the general
_\ v

model (2.6a).

 

Wiley (1161) developed liset of 16 models that can be hypothesized

W

by applyingdifferent combinations of restrictions ,tomthe threermai-n

wuentsmof the general model. Studin othe '
7 A... n. MU...M-:Wm,u,mnmw

ariables to also be correlated

The constraints

‘ ‘11“a“.”MP-Q!“‘1

Wm

 

 

about the model, he (a/llowed the

Q“and onof the elementsof L

  

 

 

  

 

A

W

he proposed for the parameter matrices/of the model/formed 16/possible



 

\l/ 15

models (4 x 2 x 2). The(E:fiatrix could be constrained four different

ways/while‘é and“! could have one of two different shapes.

The four forms of restriction on A are

(1) General ( A ) - allelementsare to be estimatedrv
LM‘1.- mes-mm

r"

(2) General (A) - most elements are to estimated excgp§,jhrmcaxtain~
“aw-NM!nfimmmi“ vvvvvv

rfl‘.‘ m."""’

specified ones s

q I "Hfl‘k

 

 

'(3) Completely specified (2“ and scaledbyn unknown butWestimable‘/////
 

matrix7of scaling weights ( P )

"no-u...

Completely specified (A andunsealed

\ \
 

The covariance matrix of the latent variables ( ¢ ) has two

restrictions.

(l)The latent variables are uncorrelated i.e. ¢ is a diagonal matrix.

(2)The latent variables are correlated i.e. d is a symmetric matrix.

*1

The matrix of errors can take on one of two forms.

(l)The errors areihetengeneous,{ageneral diagonal matrix.\/

(2)The errorsare homogeneous (ya;I
a. _ “-1:

final,.uv- "‘ "'t ' ‘" ‘«Hwagmww“'w"
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These models cover Book and Bargmann's three cases and also a number of

Joreskog's confirmatory factor analysis models.

Wiley,Schmidt and Bramble (1975) developed the maximum likelihood

estimators for eight of these models. They used only restrictions<:;Lnd

(QQfor A.

_, ./
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"WM” (7 fi 4 17 i p./ 212/rw/ €441!

Mul level CovarianceStructure Models

77777
//‘: M41441: . [’gfie,[#7/,_

#395, 3 I249}:"I'ZMV// 3? a 1%

Book's mode-Iriac the ability to separate lassroom effects rom

y
:
1
1
"
\

 

individual effects\for data gathered in a natural classroom setting. If

tests are given to classes, the variance-covariance matrix of these ‘-

tests will be affected by £Ehe classroom effect{ 4

Assuming classes were sampled at random, Schmidt's Multivariate

Random Model gives estimates of the population variance-covariance

matrices of the tests at both class and individual level. An

individual's score is composed of a number of parts.

(2.1b) y.“ -u+§1 +2”

, where x is a vector of p scores for person in roup i
.4 J 13 8

«TOO u is a vector of p grand means

1/: ’yzi) ”,44 91 is a vector of p effects due to being in group i
I .,

g ,4 7/20 14 g“ is a vector of p effects for person j in group i

;¥Q. '

The cova ance matrix of this model would be :

+ —< >4? /" 4

4. 437,) ‘7’"!

b ”ff-Q"

(2.2b) 2y - Z + 6

2y is the variance-covariance of p measures for y

2 is the variance-covariance due to class effects

9 is the variance-covariance due to individual effect.

The two variance-covariance matrices contain information about the class

level effects and the individual level effects. These two matrices can

be expressed as a function of matrices relating observed to latent

, I

3 2.

:4 w“ d

4 g '

l ’ s

‘ \
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variables and to errors of measurement.

In order to estimate the underlying latent covariance structure

and error that compose the two matrices, Schmidt (1971) applied Bock's

model to multilevel data. The model included class effects.

(2.3b) yum - pk + all + b1.j + on + duh + emm

where i-1,...,m groups, j-l,,..,nfli) students/group, k-l,...,p

measures, n-l, . . . ,N students, "I: is the overall mean of the kth

variable, a1 is the effect of group 1, bid is the effect of

person j in group i, on is an interaction betwaen measure 1: and

class i, d“: is the interaction between student i in group j and

measure 1:, and eun is measurement error for person j in group i on

test k for this occasion.

Notice that the effect at the class level occurs in two terms

(2.4b) 6 - a1 + on

\

and the effect at individual level is found in another two terms.

(2.5b) 63k - bi: + duh

Substituting these variables in the model give the following equation.

(2.51)) )4 kn - uk + 611: + £3 + e ‘\\:

Assuming that u, 6 , 5 and e are uncorrelated, the covariance matrix of

the y‘s is given by



19

(2.71)) 2 -0+¢+‘F

where 0 is the covariance matrix of Q, r is the covariance matrix of

i and i is the covariance matrix of g. The model now has three

components, 0 which contains the effects at class level, 1 which

contains the effects at individual level and ‘1' which contains the

measurement errors.

The interactive random variables 2&1 and {51: could be

visualized as combinations of some latent random vectors 2 and g.

(2.8b) -A¢.0.

(2.9b) fi -Ag

The error matrix i can be rewritten as the linear combination of two

components, a within (‘7') and a between group matrix (in) . From

these two assumptions the covariance matrix of y is

(2.1%) 2 -A¢A'+A¢A'+w +1!

y one to a

where A is a pxr matrix of weights relating the observed mean level

variables to the vector of r latent variables.

This implies that the basic model for the structural analysis of

covariance component matrices of the multivariate random model is given

by

(2.11b) 2' - AR‘A‘ + Wu

(2.12b) Z-Afl’A-i-‘I'w
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where All is matrix of weights relating the observed mean-level

variables to the latent variables Q, A is matrix of weights relating the

observed individual variables to the latent variables g,, o. and o

are the covariance matrices of the between and within latent effects 9,

and g, and i;, and i; are the diagonal covariance matrices of the two

error matrices. Each of these variance-covariance matrices, 2.4and 2,

correspond to those considered by Joreskog (1967). The primary

difference is that these models, which represent a set of equations, are

themselves intended to be simultaneously estimated.

A class of models can be generated by varying the restrictions on

the six parameter matrices of this model, A‘, A, Q;, w, W. and 0;. The

classifications proposed by Wiley (see last section) can be fit to

these parameters.

The two forms of matrices that the latent variance covariance

matrices, é’ and Q, can assume are:

I

(l) The latent variables are uncorrelated i.e. éb is a diagonal

matrix.

(2) The latent variables are correlated i.e. ¢b is a symmetric

matrix.

The two error matrices, W and W , can have one of the

8 W

following two structures:

(l)The errors are heterogeneous, a general diagonal matrix.

(2)The errors are homogeneous ( 021 ).
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The four forms of restriction on A are

(1) General ( A ) - all elements are to be estimated.

(2) General ( A ) - most elements are to estimated except for certain

specified ones

._ /,4m\

If A s reparameterized into/T A/bhere(£ is a matrix of scaling factor ,

two different sets of restriction can be applied.

(3) Completely specified (A)\and scaled by an unknown but estimable

matrix of scaling weights ( P ).\

(4)Completely specified (A) and.unscaled. \

4A.

x’ ‘t

R

There are (4 x 4 x 2 x 2 x 2 x 2)i25S)possible models‘which can

V!

be formed from them.
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3. Extension of o. and w to causal models.

Once the latent covariance matrices, é and ¢., are estimated,

the matrices themselves can be used to test causal models. Specifically

once scaling factors have been specified and measurement error removed,

these residual covariance components contain all of the relevant

information necessary to analyze a given data structure and hypothesized

causal models can be tested.

Joreskog (1971) has developed a procedure for estimating the

parameters of causal models using maximum likelihood estimation

- (LISREL). His procedure estimates the parameters for two components of

casual models, namely the measurement model (based on his work mentioned

in section A) and the structural model. The measurement model estimates

the underlying latent constructs of the model while the structural model

specifies the causal relationships among the latent variables. These

two components, in turn, are used to describe the causal effects and the

amount of unexplained variance among the observed var ables.

Wisenbaker (1980) extended Joreskog's model t multilevel

situations. His work simultaneously estimated par eters of causal

models at both the between and within levels.

The focus in this dissertation is on the estimation of o‘ and

Q. One natural extension of this work is to develop the algorithm

necessary for directly estimating the parameters of Wisenbaker's causal

model when groups are unbalanced.



CHAPTER III: REVIEW OF RELEVANT WORK

1. Schmidt's Structural Model

The focusvof this dissertation is the estimation of the latent

covariance matrices Q. and tb. Schmidt (1969) developed a general

procedure \for estimatingNthese latent covariance matrices“ for

multivariate normal data: Assuming classes \Vto be drawn at random, the

random multivariate model is :

(3.18) X '1 +a+§

where y“ is the observed set of individual level variables for p values

and y” is ‘a p x 1 vector of general means. The term 31 is a random

vector of schools and g“ is a random vector of errors. Both of these

are considered to be distributed multivariately normal with zero mean

vectors and covariance matrices 23. and 2.. This would imply that the

covariance structure for this model would be:

(3.2a) 2 - 2 + 2

Y C 0

Usually 2. and 2. are estimated by using the expectations of the

mean squares of a Multivariate Analysis of Variance (MANOVA). In the

random multivariate model it can be shown that

23
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(3.3a) E( S(w)/[kn-k] ) - 2.

and

(3.4a) E( S(b)/[k-l] ) - 2.-+ n 2..

By using these formulae, 2. and 2.4can be estimated from the

following equations

A

(3.5a) 2. - S(w)/[kn-k]

A

(3.68) E. - (l/nH S(b)/[k-1] - S(W)/[kn-k] }.

Unfortunately this method can yield non-positive definite estimates of

the matrix 2..

Schmidt used the principle of maximum likelihood to estimate

these two matrices. The data in a random model would consist of m

factor levels each containing n subjects with p measures on each

 

subject.

Dependent Variables (measures)

Subjects

Factor 1 ,2 3 . . - n

Levels 1

2

l
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Basing the likelihood function on the general notions of Tiao and Tan,

(1965), the data can be visualized as m independent observations from a

np-dimensional multivariate normal distribution. The general linear

model for any y is given by

(3-78) I - l 9 g + l 8 (
b

4
.

I
O

where l 8 g is a vector of pn means (p means repeated over n times),
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g1 is vector of pn effects (p effects repeated over n times) and g

is a vector of pn errors. Both 51 and g are considered to have come

from multivariate normal distributions

(3.8a) 5 ~ N( 0. 2‘) 2 ~ N( O. 2.)

The covariance matrix for this model is

(3.9a) B-E -ll'@2 +132

Y n I e
P

This appears as

  

Fz+z. . . . . . . 2 -1
. C l

2:
.

t3, ......2.+2'j

The covariance between observations within a factor level is given by

(3.10a) Cov (XJ' Y'i) - 2‘I i fj

The density function of y is then

l-l/Z

(3.1141) f<y> - new” Iznp exm-j [(1 - 182)'2n:(1 - 1mm

from which the likelihood function follows

-m/2

(3.12a) 1.04. E...) - <2«>‘““”"|znp| eprj (my, - lem'znjwi - 1mm
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The matrix 2n must be expressed in terms of 2. and 2.. The relationship

is given in (3.9a), from which the following inverse and determinate

follow.

(3.13s) |2 |- I: |“'1 + |z + nz|
up 0 o a

(3.14s) 2'1 - I e 2’1 - 11' e (2 + n2 )'1 2:" 2'1
up 0 o a a o

The Likelihood can be simplified as

(3.14...) M44. 2.. z.) - <21r>""“"’zlz,|""""”zexp{-;1 [tn-{2:131

+ m ma: + n2 )‘131
C l I

+ m crux. + nz‘f‘dv - m5! - pm 1 1

n II
o

where S. - 1/mn 2.1-1 21% (YL1 ' Y1) (Y1.1 ' Y1)

a I

S. - n/m ZN (y1 - >')(y1 - y)

and y” is a pxl observation vector for the jth person in the ith

group. The log of the likelihood is

(3.15a) Log(L(p, 2., 2.) - - ffiogax) + “immglzJ

Q -l

- 2 logIZ. + nBJ - :Imn tr{2.S)

+ m tr((2. + nza)'ls‘)

+ mn tr{(2. + n2.)'1(y-u)(y-u)'11

The effective part of the log likelihood function for the estimation of

2. and 2. is given by



28

(3.16a) Log L(g, 2., E.) - Ill:zmilogIZJ- 2’ logIE. + nZ‘I

- ’5‘ cuzllm - 2 crux:ll + n2.)-18a}

By expressing g",in.this manner, Schmidt was able to obtain the

following maximum likelihood estimates for 2.4and 2a.

A

(3.17s) 2.!— [n/(n-1)]S.

A

(3.1841) 2. -.% (s. - [n/(n-l)]S.)

This gives estimates of the between and with-in covariance

matrices but says nothing about the latent constructs or the measurement

error associated with the observed values. The equation for a single

observation with latent constructs is

(3.19a) y -u+a+b +c +d +e
ijkn k 1 13 1k 13k iJkn

i-l,...,m groups j-l,...,n(i) students/group k-l,...,p measures

n-l,...,N students

where u is the mean of the kth variable, a is the effect of group i, b

is the effect of person j in group i, c is an interaction between

measure k and class i, d is the interaction between student 1 in group j

and measure k, and e is measurement error for person j in group i on

test k for this occasion. Notice that the class effect occurs in two

terms .
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(3.20a) Qn - a1 + on

The effect due to individuals exists in two terms.

(3.21s) fink - b1.j + (Ink

The model can be written in terms of the effects at each level.

(3.228.) -u+Q +§ +g

1mm '1 u: Jk ijkn

Assuming that g, Q, g and g are uncorrelated, the covariance matrix of

the y‘ s are

(3.23a) 2y -0+ 1' +\F

where 0 is the covariance matrix of Q, r is the covariance matrix of

6 and I is the covariance matrix of g. The model now has three

components, 0 which contains the effects at class level, 1 which

contains the effects at individual level and W which contains the

measurement errors.

The vectors Q and g could be visualized as combinations of latent

random vectors 9 and 9,.

(3.21m) Qk1 - A69

(3.25a) £11k - A Q
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The error matrix Q can be rewritten as the linear combination of two

components, a within ( i; ) and a between group matrix ( W. ). From

these two assumptions the covariance matrix of y is

(3.26s) 2 -AQA'+AQA'+W +1!

y III I I

where A is a pxr matrix of weights relating the observed mean level

variables to the vector of r latent variables.

This implies that the basic model for the structural analysis of

covariance component matrices of the multivariate random model is

(3.278.) 2 -A¢A + W

a sea a

(3.28a) 2 - A Q A + W”

where A. is matrix of weights relating the observed mean-level variables

to the latent variables 9, A is matrix of weights relating the observed

individual variables to the latent variables 9,, Q. and Q are the

covariance matrices of the between and within latent effects g, and g, and

i., and i; are the diagonal covariance matrices of the two error

matrices.

Substituting the structural model for 2. and 2. into the

likelihood function in (3.16a) gives the maximum likelihood appropriate for

the structural analysis. Taking partial derivitives of the log

likelihood in respect to Q;, Q, A., A, Q., and W; and setting them

equal to zero will yield maximum likelihood estimates of those parameter

matrices. These equations proved to be to complicated too be solved
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algebraically and Schmidt used the modified method of Davidson as an

algorithm to estimate the matrices.

Formulating the maximum likelihood equation by considering the

data as 3 random vectors from a multivariate normal distribution of up

measures constrained the model to have the same number of individuals in

each group (i.e. there must be 2 measures for n students). When groups

have unequal numbers of students, the likelihood function developed in

(3.16a) will no longer hold true. In education, researchers are often

in the position of collecting data for groups of unequal sizes. To

obtain maximum likelihood estimates of the structural matrices in this

situation requires either a new analytic strategy or the development of

an alternative likelihood function. However finding maximum likelihood

estimates of the covariance matrices of an unbalanced design has proved

to be difficult.
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2. Unbalanced Designs

In multivariate analysis very little has been done to exam the

effects of unequal group size on the estimation of the covariance

matrix, although there has been much exploration in estimating variance

components in the this design for the univariate case. Since Anderson

(1984) feels that a number of statistical problems arising in

multivariate populations are straightforward analogs of problems arising

in univariate populations and the suitable method for handling these

problems are similar; parsimony would suggest looking at previous

developments regarding the univariate case.

Searles (1971) points out the following problems which must be

faced when dealing with unbalanced designs:

"The property of unbiasedness itself merits questioning in

the case of variance component estimators. This is so

because with unbalanced data from random models the concept

of repetitions of similarly structured data and associated

repetitions of estimators is often not appropriate --- more

data, maybe, but not necessarily with the same pattern of

unbiasedness. Replications of data can not be thought of

as mere resamplings of the data already available."

and

"even in the simplest of cases the effect of the n-pattern

on properties of estimators is apparently itself a function
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of the variance components being estimated. The effects of

unbalancedness therefore appear to differ according to the

values of the true variance components."

This last statement refers to the fact that the MINQUE procedure

and those based on it rely on the researcher choosing the “true" ratio

of the between variance component to the within variance component of

the variable.

Welsh (1937) was the first to point out how unequal number of

subjects in each group can affect the estimation and testing of

statistical hypotheses. Henderson (1953) proposed three methods for

estimating variance components for the unbalanced random design, using

the expectations of the Random Anova Model.

Rao (1971) advanced a new method for estimating variance

components called MINQUE, a minimum quadratic unbiased estimator.

Ahrens, Kleffe and Tenzler (1981) state "this procedure provides some

kind of optimality and does not refer to the normal assumption" and

'MINQUE ... has been justified by heuristic arguments without reference

to the normal distribution". Formulas for the MINQUE have been

developed with increasing explicitness by Lamotte (1973, 1976) and

Ahrens (1978). MINQUE has also been developed for more difficult

designs (e.g. see Kleffe (1977))

MINQUE can at times give negative estimates of the variance

components. Rao (1972), in turn, developed MINQE which gives variance

estimates that are always positive but can be biased. It may be noted

that no properties are yet known about this estimator.

Searle (1972) devotes an entire review to the methods of variance



34

estimation in unbalanced random designs. The estimators reviewed are

all unbiased, their other properties are unknown. Most of these

estimation procedures can lead to negative estimates of the variance

component.

Chatterjee and Das (1983) developed a simple estimator of

variance components in the random model based on Weighted Least Squares

(WLS). They found that as the number of classes increase the proposed

estimator is seen as not only to be the best asymtoptically normal but

also to be asymtoptically equivalent to the maximum likelihood

estimates. A review of recent developments in WLS can be found in

Williams, Radcliffe and Speed (1975).

There is no agreement on what constitutes a good estimator of the

covariance when groups are unbalanced. As shown above there are many

different measures each with its own strengths and weaknesses.



CHAPTER IV: STATEMENT OF PROBLEM

The interest of this dissertation lies in the latent covariance

 

structure implied by the simple true score model. Based on the Simple

 

Multivariate Random Effects Model, the two variance components, between
'g  

 

(2.) and within (2), are expressed as linear combinations of a set of

latent variables.

(4.1.) 2-A§A+W

a sea a

(4.2) 2 - A Q A + W

It is the latent covariance matrices Q. and Q that are of primary

interest. I In chapter 3, a maximum likelihood procedure developed by

fi-r—

Schmidt was presented for estimating the error matrices %; and i and
..ac.__.lWh‘_fi~“_"fd__v_fi,

/—‘———-’_f ‘— w—

the latent covariance matrices Qll and Q when A. and A are known.__.4i—l—7“
MW

   

 

 

... -QHH

E‘- h" ~ ‘4‘ fl.- ." --
...—....— 4-F"'

f However, this procedure can only be used when groups in the sample

, 1......)

contain the same number of individualsy If the number of individuals in

,___———————-—"” 1

each group is different, this estimation procedure would not be directly

 

 

 

’-

 

appropriate.

The focus of this dissertation is upon the estimation of the

group and individual level variances, with measurement error removed,

when group sizes vary in a sample.

A promising approach is the EM Algorithm. Developed as an

estimation procedure for handling data sets with missing data, it offers

a method of finding maximum likelihood estimates of parameters in

situations where classical maximum likelihood procedures fail.

35
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The applicability of the EM Algorithm to latent structure models

is demonstrated in the next chapter.



CHAPTER V: ESTIMATION PROCEDURE

1. Expectation-Maximization (EM) Algorithm

The EM algorithm has gradually evolved as a method for estimating

the parameters of a model when a sample contains missing data. Early

works by Hartley (1958), Healy and Westmoratt (1956), Baum et al (1970),

and Brown (1974) among others contained specific uses of the EM

algorithm under different names. Dempster, Laird and Rubin (1975)

developed a more general form for the algorithm and provided a formal

proof that if the algorithm did converge, it would result in maximum

likelihood estimates.

Missing data cannot be directly measured but exists as function

of observed data. This could be censored or truncated data where the

value of the data is not the direct value of interest or it could be

viewed as being comprised of combinations of latent constructs which

form the observed data (Hartly and Hocking, 1971).

Assuming a sample, y, is drawn from a population of a known

distribution with unknown parameters ¢, then y (incomplete data) can be

pictured as a subsample of x (complete data) determined by the equation

y - y(x). .The complete data situation has a family of sampling

densities f(x|¢) depending on ¢, from which the corresponding family of

sampling distributions for the incomplete data, g(y|¢) can be derived.

The EM algorithm is aimed at finding the ¢ which maximizes g(y|¢)

given an observed y, but making essential use of the family f(x|¢).

There are many possible f(x|¢) that will generate a g(y|¢), making the

choice of f(xl¢) a major problem.

37
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Each iteration of the EM algorithm goes through two steps, the

expectation step (E-Step) and the maximization step (M-Step). If the

complete data, x, comes from a distribution with parameter o, the steps

can be stated as follows:

1. E-step: Estimate the ggmnlg§g_§§§g sufficient statistics

conditional upon the inggmplggg_g§;§, y, and the parameter d. This step

provides the connection between the complete data, x, and the incomplete

data, y.

2. The M-step determines the parameter ¢ that maximizes the conditional

anplggg gag; sufficient statistics. This requires writing the Maximum

Likelihood equation for ¢ in terms of the complete data.

The sufficient statistics for the complete data are calculated

using the incomplete data and estimates of the parameters. (For the

first iteration these values of the parameters are given by the user.)

The sufficient statistics are then used to estimate the parameters.

This value is used to recalculate the sufficient statistics which in

turn are used to recalculate the parameter ¢. The iterations continue

until some chosen criterion for convergence is met.
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2. Theory for the Restricted Model

It is the application of the E-M algorithm to the estimation of

the variance-covariance matrices of a latent multivariate model that is

the thrust of this dissertation. The model chosen was based on

Schmidt's latent multivariate model with two modifications. First, the

groups may or may not contain different numbers of subjects; Schmidt's

model allowed only groups of equal size. This modification, however,

makes Schmidt's estimation procedure inapplicable. Second, the group

level error term in Schmidt's model is not included in the present

model.

To estimate the parameters of this unbalanced model, the EM

algorithm was employed. The E-step requires the derivation of the

conditional sufficient statistics and the M-step requires the Maximum

Likelihood Equations of the parameters for the complete data.

The model of interest has the following structure

(5.1) X“ - u + Ala-Q1 + A g” + g“

whereXU is a p x 1 vector of observed variables for subject j in

group i (incomplete data)

2 is a p x 1 vector of grand means for p variables.

(Complete data)
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1.1

1.1
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is a p x q matrix connecting the p observed measures for

individuals to the q underlying group latent values.

is a q x 1 vector of q (where q 5 p) latent group effects

for group i. (Complete data)

is a p x r matrix connecting the p observed measures for

individuals to the r underlying individual latent values.

is a r x 1 vector of r (where r S p) latent individual

effects for person j in group 1. (complete data)

is a p x 1 vector of random error.

For purposes of the derivation of the conditional equations

necessary for this EM Algorithm, u will be considered to be a random

vector from a multivariate normal distribution with a mean vector of

zero and covariance matrix, 2“. ZLater in the derivation, 2: will be

defined as a zero matrix, yielding posterior estimates of the grand

means. This procedure is mentioned in Dempster g; a1 (1976) and

further elaborated in Raudenbush (1986).

The latent effects and the error are assumed to come from the

multivariate normal distributions

(5.2) prams“) g-N( l
o

.9)

§~N(Qv¢a) 6~N(9."F)
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It is the estimation of Q.,1Q and i that is of interest.

Assuming the latent effects are independent, then:

Cov{u.fi)- 0 COV(§.9_)- 0

(5.3) COV(u.e)- 0 COV(Q..{)- 0

COV(u.:.)- 0 COV(9...{)- 0-

Before finding the conditional sufficient statistics for the

maximum likelihood equations, it is important to have a clear

understanding of which variables comprise the missing data, the complete

data and the parameters of interest. The missing data is our observed

dataset X. The complete data consists of the three latent variables u,

Q and.g. The parameters of interest are the covariance matrices Q.,

Q and i.

E-Step

Development of the conditional expectations and dispertions for

u,,Q and g are delineated in this section. These expectations are

conditional on the observed data Y and the three parameter matrices

Q;, Q and i. The observed dataset has the following expression:

(5.4) I-llflg+(X®A‘)Q+(IN®4\)g+g.

where 1' is a N x 1 vector and X is an N x m pattern matrix

containing 1's and 0's. This matrix connects person N(i) with

group m(k).
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The variance of the observed dataset, Y, is:

(5.5) 2-11'82+)Q('84\Q4\+I®AQ4\+I®W

y N u one

The joint distribution of X, g, Q and g is:

   

r- _ 7- fl

Y J 2’ Symmetric Matrix

(5.6) p l' O 2 N2 :

~ N N u u 1

a X' 8 Q A' 0 I 9 Q i

a a k a ‘

J 9 I e 01 o o I: o o ’
L .1 __ N ___J

with

Cov(Y, u ) - 1' o 2“

Cov(Y, 6 ) - X 0 Q.

Cov(Y, a ) - I 0 Q

Covm. Q ) - 0

COV(u. a ) - 0

CONE. a ) - 0.

By defining the matrices and vectors as

z- [1‘91 xoxa 19A]

_ ., P 1

p N Eu Symmetric Matrix

(5.7) T - 6 O— O I @Q

k a

a O O I 8 Q
h _ 4b N J    
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the joint normal prior distribution can be written as

Z 0

0

I Z 0 Z' + I 9 W

(5.8) ~ N

I 0 Z'

Raudenbush (1986) derived the formulas for the conditional expectation

and dispersion of matrices written in this form. The conditional

expectation and dispersion of T given Y are:

(5.9) mm - ("54ng + “212".
 

(5.10) pm!) - ( rm 49 «0‘12 + 0’1)’1

I e W)":

By substituting the original values of Z, I and O in (6.7) and

allowing 2‘: to become a matrix of zeros as previously mentioned, the

dispersion matrix becomes

 

I’N i-1 Symmetric Matrix

(5.11) Dmx) - 1 a any" I e (n x'w’lx + o")
k i a k i a a a

_ 1' 0 mil x o Arr") I" 9 (MFA + o'l)  

Partitioning this matrix into a 2 x 2 matrix and applying the procedure

in Morrison (1972) for inverting such a matrix, leads to the following

values for the elements

1

D(T|Y)- 2 3

a 5 6

(5.12) 1-D(u|X) - w

(5.13) 2 - um, um - -1]: o ‘33?“
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(5.14) 3 - mam - 1k 9 (o. - 14.13113.) + 141; e <53;in Q3113.

(5.15) a - D(g, pm - -1n 0 o 1'in

(5.16) 5 — D(g, SIX) - 1:411; o (1/n1) o 1'ij Q1A.Q.

- x o (1/n1) <5 1'ij Q1113.

(5.17) 6 - D(g|X) - 1’11; 9 (1/n1)(1/nJ) o 1 de Q14\ o

+ In a (an - <1 .vu A e) + xx' 9 (l/n1)QA'(M - (1/n1)Q1)AQ

where u - (A o 1' + it)"

, -1«1

Q1 - (4\.Q‘l4\II + (1/ni)M )

-1

w - [2:10,]

The conditional expectations of u, Q and a can be formulated by

substituting (6.7) into (6.10). This yields:

uIY u 2qu QiY

(5.18) E QIY - 2' - 1.. o “'0 (i - 2’)
a a i i

..le-j LQJ 1n 8 Q 4\'M(XLj - 4\ 9 - p)

   

M-Step.

The second step of the EM Algorithm requires expressing the

maximum likelihood equations of the parameters Q;, Q and 0 in terms

of the complete data. Assuming the values g, Q and g are known, the

expression of the likelihoods for our three parameters can be directly

stated as:

(5.19) L(Y, o.) - 11::1 (21r)""’2|414“|'1’2 exp {-4} e'ofe}
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'1/2

(5.20) L(Y, e) - n“ (2«)“”2|e| exp {-zl-e'e‘le)
i-l

‘1/2

(5.21) L(Y, 1F) - II“ (2x)"”z|w| exp {-2 e'w’le)
1-1

The maximum likelihood estimate of Q. is derived by first finding the

log of (5.18).

(5.22) log(L(Y, e.)) - -kp/2 (103(k)) - flogIQJ - ézfue'ofe

Taking the derivitive with respect to Q. and setting it equal to

zero yields:

(5.23) o -éz" 99'
a i-l

In reality, only the conditional expectation of g, Q and g are known

(U., 6., 0*). By rewriting (5.22) as

>
0
>

t -321; (9* + 9 ‘ 9*)(9. + 9 - 61')’

“a ‘32-: (9.5”) + (9.)(9 - 6')' + (e - 94*)(9') + (e - 9*)(6 - 9*).

(5.24) e. - 22:“ (9'5") + mg')

The equation can be clarified by substituting By substituting (5.18) for

8. and (5.12) for D(6.). The maximum likelihood estimate becomes:

A - O l I c u(5.25) Q.I Q. 3 _1[Q'4\.(Q1 Q1(A W)Qi)A.Q.]

where A - (i1 - #1.) (i1 - u*)'
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Following the same likelihood procedure from steps (5.22) through

(5.24) above, gives the following maximum likelihood estimate for Q:

A

*

_ 1 *.

(5'26) ‘b u 2:1 rat-1 a1.) a” + 0(013)

Equation (5.25) can be clarified by substituting By substituting (5.18)

for e' and (5.15) for 0(6). The maximum likelihood estimate

becomes:

(5.27) e - <5 - QA'[(l/N)):_1QA'((1/n1)[Q1- 0541-10011 - M[B-(n1- l)M-1]M)AQ

where n - (1,5 - (4* - in: - 1.9} - u’)’

The maximum likelihood for W followed steps (5.22) and (5.23).

The maximum likelihood estimate is:

‘ _ 1 4
(5.28) 0 u :1 $31“ cue“

Replacing e by Y - (p + A + Aa) permits (5.25) to be rewritten as:

A

- l o c '(5.29) w l X X (Yid (,4 + A‘s + xenon“1 (,4 + 1.9 + 1a))

replacing conditional values expanding the equation yields

(5.30) w '11): X ()413 - (p*+A.9*+Aa*))(Y - (p'+.\.e'+).e'))'

+ D03. + i.e. + if)

(5.31) 0(p'+x.e*+xa‘) - D(m*)+2n(p*, i.e')+2n(m*, Aa*)+D(A‘6*)

+ 20(189', Aa*)+D(.\a')
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By substituting (5.12), (5.13), (5.14), (5.15), (5.16), (5.17) and

(5.18) into (5.30) the estimate of Q can be written as:

(5.32) v - w -:)f_lw<<1/n,>[c2,- 010140011 - MlB-(ni - 1)M"1M>w

where B - <3:1d - A 6' - u'm: - Ag" - m‘)’
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3. The E-M Algorithm.

The implementation of this algorithm is now complete for this

latent model. The E-step uses the observed dataset Y and starting

values for the parameters Q;, Q and Q to find estimates of the

following sufficient statistics in (5.12) through (5.18). The M-step

finds estimates of the three parameters using the values from the first

step in (5.25), (5.27) and (5.32). These estimates are used in step 1

to reestimate the sufficient statistics in (5.12) through (5.18). Then

in the M-step, Q.,‘Q and W are estimated again using the new values

from E-step. The algorithm iterates between these two steps until some

criteria is reached.



Chapter VI: Design of Study

1. Design.

By applying the estimation procedure (described in Chapter Five)

to a set of data sampled from a population of known parameters, a check

was provided for the solution of the EM algorithm together with the

identification of its prOperties. Although the underlying parameters of

the sample data were known, this was not intended to be a simulation

study but, rather, an example of the algorithm's ability to estimate the

parameters of a latent model.

The EM algorithm, in operational terms, was used to estimate

covariance components from both unbalanced and balanced samples drawn

from the same multivariate normal distribution with known parameters.

The balanced case contained 30 subjects for each group, while the

unbalanced case averaged 30 subjects per group. The distribution of

subjects across the groups in the unbalanced case was as follows: 20%

of the groups included 10 subjects within each group, 20% had 20

subjects, 20% had 30 subjects, 20% had 40 subjects and, finally, the

last 20% had 50 subjects. .

The estimates of the balanced and unbalanced samples were both

studied while varying two factors, namely the number of groups in the

sample (the size) and the particular model being estimated (i.e. the

unrestricted model, the correctly restricted model and incorrectly

restricted model). The size of the sample consisted of two levels. The

small sample consisted of 25 groups and the large sample of 100 groups.

The difference in the number of classes gave an indication of the

49
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properties of the EM Algorithm when the sample size varied from 25

groups with 750 subjects to 100 groups with 3000 subjects.

Each of the three models studied contained different sets of

parameters to be estimated. The first set involved the two covariance

components for the simple multivariate random model (Unrestricted

model); 2., the between groups covariance and 2, the within groups

covariance matrix. The Unrestricted model gave estimates of the between

and within covariance matrices of the multivariate random model.

The second set consisted of Q‘, the latent group covariance

matrix, Q,the latent individual covariance matrix and W, the error

covariance matrix from the latent multivariate model. These parameters

were derived from a latent measurement model based on the multivariate

random model. The latent group covariance matrix, Q‘, and the

latent individual covariance matrix, Q, were allowed to be full rank

(i.e. covariances were not constrained to zero) while the error

covariance matrix was constrained to a diagonal matrix.

The last set of parameters were from an incorrectly specified

latent multivariate random model. The parameters included were

Q2, the latent group covariance matrix, Q., the latent individual

covariance matrix and 1., the error covariance matrix. All three matrices

were restricted to diagonal matrices. Applied to data from a population

in which the parameter matrices contained non-zero covariance terms,

this model demonstrated the reaction of the EM algorithm to incorrectly

specified models.

Figure l is a diagram of the design. There were 12 cells, each

containing 10 replications.
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FIGURE 1

Design of Study

W525

25 100

Classes Classes

I .

Balanced | Unbalanced I Balanced | Unbalanced

119519.]. I I l

I | I | I

Unrestricted I a | b I c | d I

I | I | I

I | I | I

Correctly I e | f I g | h I

Specified I | I | I

I | I | I

Incorrectly I i | j I k | 1 I

Specified I | I | I

1. Each cell contains 10 repetitions (different sets of data)

2. Cells a through f contain comparable datasets; the same can

be said for datasets g through 1.
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2. Generation of Data.

.r
--...-"

Implementation of the experimental design required a method of

creating samples drawn from a population of known parameters. The data

had to fit the assumptions for the multivariate random latent model

specified in Chapter Five. The values of the parameters chosen for this

example are listed in Table 1.

Each subject's four observed scores, 1“, were a combination

of three latent group effects, QL , three latent individual

effects, 9” 1, four measurement errors, $1.1 , and four grand

means, u.. The most direct way to generate a dataset of observed

values containing these characteristics is to create four separate

vectors, one for each effect, for each subject and then to create the

observed values through the equation ,<. b

6.1 y

("7’73")

This is the equation from the random latent model in Chapter Five.

Unlike the other three vectors, the grand mean, u , will be identical

Eor all subjects. Each vector is representative of a sample vector from

normal distribution with mean zero and variance covariance matrix as

shown in Table l.

The SAS package contains a subroutine which generates independent

values from a univariate normal distribution with mean of zero and

variance of one. By repeated applications three vectors of dimensions

3 x 1, 3 x l and 4 x l were created for each subject. The vectors,

X( Q ), X( g ) and X( g ) each constitute a random sample of values
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Table 1

Parameter Values Used in Data-Generationvf

The dimension of the observed variables is four (p-h). The

dimension of the latent group variables is three (r-3) and the dimension

of the latent individual variables is three (s-3).

The pattern matrices connecting the latent to the observed

variables are:

I

P
'
P
‘
F
‘
h
‘

u
:
u
a
u
:
u
1

0
0
0
0

u
a
u
a
u
a
u
:

o

0
0
0
0

L - A -

P
‘
F
‘
P
‘
P
‘

The latent error, individual and group matrices are:

64 8 40

m-e- a 5 7

‘ 40 7 107

PS - Q -

O
O
O
U
I

O
O
O
‘
O

H .
.
.
;

25

10

15

OM - Q -

10

20

10

-O.

-0. U
I
U
'
I
U
I
U
'
I

0.5

-0.5

0.5

-0.5

15

10

35

The Expected values of the grand means of the four observed

variables were set to zero (g - Q).
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drawn from multivariate normal distributions having means of 0 and

identity covariance matrices.

The three vectors X( Q ), X( 2,), and X( g ) are each created

from multivariate normal random distributions with mean vectors of

zero and identity variance-covariance matrices. Sample data from a

population with that parameter were obtained by multiplying each vector

by the cholesky of the known parameter matrix. The final sample

vectors were

me) -T(<».)*x<§)

X'(g)) -T(¢)*X(se)

10(1) -T(‘I')*X(_6.)

where T( Q. ) is the cholesky of Q., T( Q ) is the cholesky of

Q and T( W ) is the cholesky of W.

By using X'( Q ), X'( g ), X'( g ) and 5 together as shown in

equation 6.1, an observed sample data set from a population of known

latent parameters was created. Each data set was created through the

SAS normal random generation procedure using different seed numbers.

The data sets were then used by a computer program to estimate the

values of the parameters.
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thsrtinaflalues 0}? Parameter. $251998... V

The EM algorithm requires starting values for each parameter

being estimated. The computer program written for this study estimates

two sets of parameters, first the unrestricted between and within

covariance matrices for the observed data, then in turn, the parameters

of a more restricted latent model. The calculations of the starting

values for the parameters of the latent model are based on the final

estimates of the unrestricted between and within covariance matrices.

Starting values for the between and within variance covariance

matrices were estimated from equations 6.2 and 6.3 as developed by

Schmidt (1971).

6.2 2- [n/(n-1)]3

A

6.3 2.:— l/m (S. - [n/(n-l)]S)

These estimates are maximum likelihood estimators under the case of

equal group size.

These equations are used as starting values for an unbalanced

design with one modification, replacing n by its harmonic-mean. In a

balanced design the use of harmonic n will give the maximum likelihood

estimates. When the design is unbalanced, the harmonic Q will give

weighted starting values for the parameters.

After 2 and )3. have been estimated, starting values for the

parameters of the latent model Q., Q and Q are found. Assuming

E-AQA and2-AQA+\Fthen

I III

‘ 'v'
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6.5

6.6
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A

o - (A'A )‘1'A'z A (A'A).1
I I I I I I I I .

o - (A'A)-1'A 2: A (11%)“.

11-12 -AQA4+2-AQA,
AI I .

 

--r ‘sh_

These values form the starting estimates of theflparameters for the

latent model.
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4. The Computer Program.

The computer program was written using the §A§ Procedure "Froc_MatrixF.r

, v

1. Necessary Input: Y - a N x p matrix for p measures on N

individuals, A. and A. a which are pattern matrices connecting

the underlying latent variable with the observed-level variables and a

K x 2 matrix, 2, which specifies the number of students in each group.

2. Next the program creates two new matrices, YM, a K x p matrix of

means for each group, and SS, a Kp x p matrix containing the sum of

squares for each group.

Estimate of the parameters of a simple random model.

3. Using Schmidt's Maximum Likelihood Equations 6.2 and 6.3 the program

then estimates starting values for 2. and 2.

E-step

4. Using the equations given above the program next estimates the

conditional varibles W, Q, g*, and Q..

M-step

5. Using these values the program then recalculates estimates for the

parameters 2. and E.
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6. A reiteration then occurs between steps 4 and 5 until the changes in

2. and 2 are less than 0.01

Estimate the parameters of the latent Restricted Model.

7. The next step in the program computes the starting estimates of

Q., Q and i from 2. and 2 from the two parameter matrices in

step 5 and estimates the sufficient statistics W, Q, M, Q. and

u. from these values (E-step) .

M-step

8. Reestimated values for the parameters Q‘, Q and i are then

obtained and, finally, the program iterates between steps 7 and 8 until

the changes in the parameters Q., Q and Q are less than 0.01.



CHAPTER VII: RESULTS

1. Design and Measures.

The EM Algorithm's ability to estimate covariance components in

both balanced and unbalanced latent multivariate random effects models

were demonstrated by estimating the parameters of independent samples

generated from a population with a known distribution. The balanced

samples contained 30 subjects for each group, and the unbalanced samples

averaged 30 subjects per group.

[The estimates of the balanced and unbalanced samples were studied

across two dimensions, namely the number of groups in the sample and the

type of model being estimated (i.e. the unrestricted model, the

correctly specified latent model and an incorrectly specified latent

model. Twenty elements were estimated in the unrestricted model, 10 for

the Phi matrix and 10 for the Psi matrix. Sixteen elements were

estimated in the correctly specified model; six for the Ph matrix, six

for the Om matrix and four for the Pa matrix. The incorrectly specified

model differed from the correctly specified model only in the number of

matrix elements being estimated. Only the 10 diagonal elements were

estimated, three for the Ph matrix, three for the Om matrix and four for

the Pa matrix.

Tables 2, 3 and 4 contain descriptive statistics of the estimates

of the individual items of the covariance matrices for the three models

over 10 repetitions for different situations. These tables include the

Expected Value of the parameter (E), the Mean, the Standard Deviation

(SD), the Bias, the Mean Square Error (MSE), the Bias divided by the

59



60

parameter's Expected Value (B/E), Ratio(l) and Ratio(2). Mean and

Standard Deviation are self explanatory. The Bias is the difference

between the Expected value of the parameter and its sample mean. The

Mean Square Error (MSE) is the averaged squared deviation of the

parameter estimates around their Expected value.

The ratio of the Bias to the Expected Value (B/E) of a variance

or covariance term converts the Bias into a percentage of the

parameter's Expected Value, giving it a relative value.

The difference between the MSEs of the balanced sample estimate

and the corresponding unbalanced sample estimate divided by the MSE of

the unbalanced sample estimate (Ratio(l)) yields a comparison of the

MSEs of the two types of datasets.

The last measure (Ratio(2)) is the difference between the MSEs of

an element of the incorrectly specified model and the correctly

specified model divided by the MSE of the element of the correctly

specified model. The ratio gives a comparison of the precision of the

two models.

The three tables contain the lower diagonal elements of the

different covariance matrices. In Tables 2 and 3, the elements of the

latent matrix at group level, Q., are labeled Ph(X), the elements of

the latent individual level matrix, Q , are Om(X) and the elements of

the error matrix from the latent models, Q ,are labeled Ps(X). The (X)

corresponds to the elements position in the lower diagonal. The latent

covariance matrices would be



   

.1 - v- --.

r1 1 11 ,1 i

l , 5

Ph( )- 2 3 0m( )- 2 3 j Ps( )-' 2 ‘

a 5 6 a 5 6; ' 3 :l

. 4!
b ...3

Ph(3) is the variance of the second latent measure and Ph(5) is the

covariance between the second and third elements of the Ph matrix.

Ps(2) would the variance of the second observed measure.

The elements of the unrestricted model are similarly labeled.

The elements of the between group covariance matrix, 2., are labeled

Phi(X) while the elements of the within covariance matrix, 2 , are

Psi(X). They are the same dimension as the error matrix of the latent

model, 4 x 4, but include the six covariance terms in their estimates.

Tables 5 through 7 contain aggregated statistics for each matrix

in the latent models under the different conditions. Table 8 lists the

Maximum Likelihood Ratio test of the estimates of the correctly and

incorrectly specified latent models. Tables 9 and 10 list aggregated

statistics for each matrix in the unrestricted models under the

different conditions. Table 11 has information about the iterations

necessary for the algorithm to converge.

With only 10 repetitions per cell, the power of any statistical

test would be low. Although some characteristics of the estimation

procedure may appear with this size sample, it should be recalled that

this was just a demonstration of the use of the EM algorithm for an

unbalanced latent model under different circumstances and not a

statistical study.
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2. Results of Estimation Procedure

Table 2 contains information about the estimates of the

parameters for four different situations when the datasets are

comprised of 100 groups. The four conditions are: (l) applying the

correctly specified model to the balanced samples; (2) applying the

correctly specified model to the unbalanced samples; (3) applying the

incorrectly specified model to the balanced samples; and, lastly, (4)

applying the incorrectly specified model to the unbalanced samples.

The items in this table represent the statistics for cells g, h, k and

l in Figure l.

The B/E in Table 2 indicates the percentage of bias of the

estimates. The correctly specified latent model had values of the B/E

ranging from -0.9% to -13.7% for the estimates of the elements of the

Ph matrix for the balanced data and 15.1% to -11.5% for the unbalanced

dataset. The B/E of the estimates of the elements of the Om matrix

ranged from 8.7% to -l.3% for the balanced data and from 10.9% through

-9.8% for the unbalanced data and the Pa matrix had B/E values ranging

from 8.7% to -27.4% for the balanced data and 5.2% to -4l.5% for the

unbalanced data.

In the incorrectly specified model, the estimates of the

elements of the Ph matrix, the variance components, had B/E values are

almost identical to the corresponding elements in the correctly

specified model. The B/E of the estimates of the elements of the Om

matrix ranged from 6.4% to -10.4% for the balanced data and 6.6%

through -10.2% for the unbalanced data and the P3 matrix had B/E values
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TABLE 2

Summary Statistics of the Latent Models for Balanced

and Unbalanced Data Sets with 100 Groups

Ph Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal -

(h) (k) (1) (1)

Ph(l) Mean 64.000 63.400 62.960 63.440 63.240

SD 9.330 10.710 9.290 10.530

MSE 87.449 115.906 86.653 111.523

Bias(B) -0.600 -l.040 -0.560 -0.760

B/E -0.009 -0.016 -0.009 -0.012

Ratio 1 0.325 0.287

Ratio 2 -0.009 -0.038

Ph(2) Mean 8.000 7.600 9.210 0.000 0.000

SD 1.880 2.090

MSE 3.712 5.995

Bias(B) -0.400 1.210

B/E -0.050 0.151

Ratio 1 0.615

Ratio 2

Ph(3) Mean 5.000 4.550 4.450 4.550 4.450

SD 0.640 0.600 0.650 0.560

MSE 0.635 0.696 0.648 0.650

Bias(B) -0.450 -0.550 -0.450 -0.550

B/E -0.090 -0.110 -0.090 -0.110

Ratio 1 0.097 0.003

Ratio 2 0.020 -0.067

Ph(4) Mean 40.000 39.060 38.720 0.000 0.000

SD 6.270 5.610

MSE 40.295 33.293

Bias(B) -0.940 -l.280

B/E -0.023 -0.032

Ratio 1 -0.l74

Ratio 2

Ph(5) Mean 7.000 6.040 6.560 0.000 0.000

SD 3.210 3.360

MSE 11.328 11.505

Bias(B) -0.960 -0.440

B/E -0.137 -0.063

Ratio 1 0.016

Ratio 2
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TABLE 2 (Continued)

Ph Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

Ph(6) Mean 107.000 98.420 99.560 98.190 99.210

SD 14.980 12.760 15.470 13.060

MSE 306.196 224.322 325.561 237.990

Bias(B) -8.580 -7.440 -8.810 -7.790

B/E -0.080 -0.070 v0.082 -0.073

Ratio 1 -0.267 -0.269

Ratio 2 0.063 0.061

0m Matrix

0m(1) Mean 25.000 25.580 25.900 26.600 26.640

SD 0.880 0.990 1.000 0.960

MSE 1.148 1.880 3.844 3.910

Bias(B) 0.580 0.900 1.600 1.640

B/E 0.023 0.036 0.064 0.066

Ratio 1 0.637 0.017

Ratio 2 2.348 1.080

0m(2) Mean 10.000 10.870 11.090 0.000 0.000

SD 0.830 0.900

MSE 1.530 2.130

Bias(B) 0.870 1.090

B/E 0.087 0.109

Ratio 1 0.392

Ratio 2

0m(3) Mean 20.000 19.740 19.990 18.780 18.750

SD 0.830 0.830 0.710 0.650

MSE 0.764 0.689 2.158 2.159

Bias(B) -0.260 -0.010 -1.220 -1.250

B/E -0.013 -0.001 -0.061 -0.063

Ratio 1 -0.098 0.000

Ratio 2 1.824 2.133

0m(4) Mean 15.000 15.020 14.840 0.000 0.000

SD 1.300 1.410

MSE 1.690 2.017

Bias(B) 0.020 -0.160

B/E 0.001 -0.011

Ratio 1 0.193

Ratio 2
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TABLE 2 (Continued)

0n Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

0m(5) Mean 10.000 10.390 9.020 0.000 0.000

SD 3.710 4.140

MSE 13.933 18.207

Bias(B) 0.390 -0.980

B/E 0.039 -0.098

Ratio 1 0.307

Ratio 2

0m(6) Mean 35.000 36.300 36.370 31.370 31.440

SD 2.900 3.180 0.670 0.690

MSE 10.288 12.198 15.090 14.558

Bias(B) 1.300 1.370 -3.630 -3.560

B/E 0.037 0.039 -0.104 -0.102

Ratio 1 0.186 -0.035

Ratio 2 0.467 0.193

Ps Matrix

Ps(l) Mean 5.000 3.630 5.260 12.120 12.070

SD 4.410 5.460 0.460 0.470

MSE 21.534 29.887 56.539 55.760

Bias(B) -l.370 0.260 7.120 7.070

B/E -0.274 0.052 1.424 1.414

Ratio 1 0.388 -0.014

Ratio 2 1.626 0.866

Ps(2) Mean 6.000 5.250 3.510 2.070 2.050

SD 3.650 4.170 0.260 0.250

MSE 13.948 24.278 17.229 17.399

Bias(B) -0.750 -2.490 -3.930 -3.950

B/E -0.125 -0.415 -0.655 -0.658

Ratio 1 0.741 0.010

Ratio 2 0.235 -0.283

Ps(3) Mean 11.000 12.280 11.530 6.260 6.250

SD 3.060 3.540 0.570 0.550

MSE 11.184 12.844 25.289 25.372

Bias(B) 1.280 0.530 -4.740 -4.750

B/E 0.116 0.048 -0.431 -0.432

Ratio 1 0.148 0.003

Ratio 2 1.261 0.975
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TABLE 2 (Continued)

0m Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

Mean 12.000 13.040 13

SD 2.120 1

MSE 5.696 7

Bias(B) 1.040 1

B/E 0.087 0

Ratio 1 0

Ratio 2

.890

.960

.811

.890

.158

.371

15.390 15.480

0.610 0.610

13.141 13.828

3.390 3.480

0.283 0.290

0.052

1.307 0.770
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ranging from 142% to -66% for the balanced data and 141% to -66% for

the unbalanced data.

Table 3 contains information about the estimates of the

parameters for the four different situations in Table 2 when the

datasets are comprised of 25 groups. Statistics for cells e, f, i and

j in Figure 1 are presented in this table.

The B/E of the corresponding items in Table 3 show higher

percentages of bias than those in Table 2. The correctly specified

latent model had values of B/E ranging from ~6.6% to -33.9% for the

estimates of the elements of the Ph matrix for the balanced data and

-0.6% to -33.9% for the unbalanced dataset. The B/E of the estimates of

the elements of the 0m matrix ranged from 7.9% to 1.1% for the balanced

data and 5.7% through -1.7% for the unbalanced data and the Ph matrix

had B/E values ranging from 14.3% to -43.6% for the balanced data and

3.7% to -13.0% for the unbalanced data.

In the incorrectly specified model the estimates of the elements

of the Ph matrix, the variance components, had B/E values almost

identical to the corresponding elements in the correctly specified

model. The B/E of the estimates of the elements of.the 0m matrix

ranged from 5.1% to -8.0% for the balanced data and 4.9% to -8.4% for

the unbalanced data and the P3 matrix had B/E values ranging from 136%

to -65% for the balanced data and 136% to -64% for the unbalanced data.

Table 4 contains information about the estimates of the

variables of the unrestricted model under the following conditions: (1)

for balanced samples containing 100 groups; (2) for unbalanced samples

containing 100 groups; (3) for balanced samples containing 25 groups;

and lastly (4) for unbalanced samples containing 25 groups. Although
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TABLE 3

Summary Statistics of the Latent Models for Balanced

and Unbalanced Data Sets with 25 Groups

Ph Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

(e) (f) (1) (J)

Ph(l) Mean 64.000 59.750 63.620 59.890 64.070

SD 16.730 20.280 16.790 16.830

MSE 299.962 411.439 300.673 283.254

Bias -4.250 -0.380 -4.110 0.070

B/E -0.066 -0.006 -0.064 0.001

Ratio 1 0.372 —0.058

Ratio 2 0.002 -0.312

Ph(2) Mean 8.000 6.260 7.290 0.000 0.000

SD 3.050 3.520

MSE 12.667 12.951

Bias -1.740 -0.710

B/E -0.218 -0.089

Ratio 1 0.022

Ratio 2

Ph(3) Mean 5.000 4.040 4.400 4.060 4.130

SD 1.580 1.530 1.580 2.080

MSE 3.520 2.741 3.478 5.167

Bias -0.960 -0.600 ~0.940 -0.870

B/E -0.192 -0.120 -0.188 -0.174

Ratio 1 -0.221 0.486

Ratio 2 -0.012 0.885

Ph(4) Mean 40.000 28.940 33.070 0.000 0.000

SD 14.760 18.120

MSE 353.773 381.695

Bias -11.060 -6.930

B/E -0.277 -0.l73

Ratio 1 0.079

Ratio 2

Ph(5) Mean 7.000 4.660 4.630 0.000 0.000

SD 4.160 6.170

MSE 23.390 44.310

Bias -2.340 -2.370

B/E -0.334 -0.339

Ratio 1 0.894

Ratio 2
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TABLE 3 (CONTINUED)

Ph Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

Ph(6) Mean 107.000 77.450 78.720 77.910 78.770

SD 22.380 26.990 23.190 27.490

MSE 1471.089 1617.081 1478.030 1641.181

Bias -29.550 -28.280 -29.090 -28.230

B/E -0.276 -0.264 -0.272 -0.264

Ratio 1 0.099 0.110

Ratio 2 0.005 0.015

Om Matrix

0m(l) Mean 25.000 25.380 25.580 26.270 26.220

SD 1.850 1.680 2.130 2.160

MSE 3.583 3.196 6.329 6.319

Bias 0.380 0.580 1.270 1.220

B/E 0.015 0.023 0.051 0.049

Ratio 1 -0.108 -0.002

Ratio 2 0.766 0.977

0m(2) Mean 10.000 10.770 10.540 0.000 0.000

SD 1.790 1.540

MSE 3.863 2.696

Bias 0.770 0.540

B/E 0.077 0.054

Ratio 1 -0.302

Ratio 2

0m(3) Mean 20.000 21.010 21.150 20.060 20.430

SD 2.400 2.310 2.230 2.400

MSE 6.893 6.806 4.977 5.965

Bias 1.010 1.150 0.060 0.430

B/E 0.051 0.057 0.003 0.021

Ratio 1 -0.013 0.199

Ratio 2 -0.278 -0.123

0m(4) Mean 15.000 15.170 14.970 0.000 0.000

SD 1.230 1.610

MSE 1.545 2.593

Bias 0.170 -0.030

B/E 0.011 -0.002

Ratio 0.678

N
D
F
‘

Ratio
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TABLE 3 (CONTINUED)

0m Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

0m(5) Mean 10.000 10.500 9.830 0.000 0.000

SD 2.830 3.900

MSE 8.287 15.242

Bias 0.500 -0.170

B/E 0.050 -0.017

B /MSE 0.034 0.002

Ratio 1 0.839

Ratio 2

0m(6) Mean 35.000 37.780 35.910 32.190 32.070

SD 5.340 2.010 2.420 2.370

MSE 37.103 4.960 14.630 15.156

Bias 2.780 0.910 -2.810 -2.930

B/E 0.079 0.026 -0.080 -0.084

Ratio 1 -0.866 0.036

Ratio 2 -0.606 2.055

Ps Matrix

Ps(l) Mean 5.000 2.820 4.350 11.810 11.820

SD 4.250 4.700 1.450 1.430

MSE 23.343 22.559 53.632 53.725

Bias -2.180 -0.650 6.810 6.820

B/E -0.436 -0.130 1.362 1.364

Ratio 1 -0.034 0.002

Ratio 2 1.298 1.382

Ps(2) Mean 6.000 5.260 5.380 2.100 2.190

SD 3.560 3.560 1.190 1.230

MSE 13.282 13.101 18.316 17.642

Bias -0.740 -0.620 -3.900 -3.810

B/E -0.123 -0.103 -0.650 -0.635

Ratio 1 -0.014 -0.037

Ratio 2 0.379 0.347

Ps(3) Mean 11.000 12.570 11.410 6.430 6.520

SD 1.960 2.810 1.020 0.980

MSE 6.580 8.083 24.246 23.261

Bias 1.570 0.410 -4.570 -4.480

B/E 0.143 0.037 -0.415 -0.407

Ratio 1 0.228 -0.041

Ratio 2 2.685 1.878



71

TABLE 3 (CONTINUED)

Ps Matrix

Balance Unbalance

Expected Balance Unbalance Diagonal Diagonal

Ps(4) Mean 12.000 12.280 11.830 14.060 13.880

SD 2.330 1.290 1.220 0.430

MSE 5.516 1.696 6.204 4.112

Bias 0.280 -0.170 2.060 1.880

B/E 0.023 -0.014 0.172 0.157

Ratio 1 -0.692 -0.337

Ratio 2 0.125 1.424
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TABLE 4

Summary Statistics of the Unrestricted Models for Balanced

and Unbalanced Data Sets for Both 25 and 100 Groups

Phi Matrix

100 100 25 25

Groups Groups Groups Groups

Expected Balance Unbalance Balance Unbalance

(e) (d) (a) (b)

Phi(l) Mean 143.500 141.962 141.230 127.691 139.317

SD 16.359 16.865 34.203 44.422

MSE 270.245 290.154 1447.539 1992.756

Bias(B) -1.538 -2.270 -15.809 -4.183

Bias/Expected(B/E) -0.011 -0.016 -0.110 ~0.029

Ratio 1 0.074 0.377

Ratio 2 4.356 5.868

Phi(2) Mean 46.500 48.521 47.472 51.845 56.904

SD 12.099 13.831 20.467 23.513

MSE 150.924 192.346 450.641 673.131

Bias 2.021 0.972 5.345 10.404

B/E 0.043 0.021 0.115 0.224

Ratio 1 0.274 0.494

Ratio 2 1.986 2.500

Phi(3) Mean 32.500 35.633 34.445 39.816 44.156

SD 11.939 12.684 19.156 21.152

MSE 153.446 165.087 426.423 598.365

Bias 3.133 1.945 7.316 11.656

B/E 0.096 0.060 0.225 0.359

Ratio 1 0.076 0.403

Ratio 2 1.779 2.625

Phi(4) Mean 49.500 49.980 49.060 53.453 53.344

SD 7.474 7.330 8.875 9.751

MSE 56.117 53.944 96.128 111.500

Bias . 0.480 -0.440 3.953 3.844

B/E 0.010 -0.009 0.080 0.078

Ratio 1 -0.039 0.160

Ratio 2 0.713 1.067

Phi(S) Mean 129.500 128.490 128.139 116.448 126.424

SD 14.652 15.129 33.778 42.182

MSE 215.815 230.945 1330.236 1789.834

Bias -1.010 -1.361 -13.052 -3.076

B/E -0.008 -0.011 -0.101 ~0.024

Ratio 1 0.070 0.346

Ratio 2 5.164 6.750
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TABLE 4 (Continued)

Phi Matrix

100 100 25 25

Groups Groups Groups Groups

Expected Balance Unbalance Balance Unbalance

Phi(6) Mean 56.500 55.834 55.339 59.803 60.973

so 9.087 8.879 9.528 10.791

use 83.066 80.334 102.905 138.676

Bias -0.666 -1.161 3.303 4.473

B/E -0.012 -0 021 0.058 0 079

Ratio 1 -0.033 0.348

Ratio 2 0.239 0.726

Phi(7) Mean 120.500 119.725 119.638 109.674 118.120

so 13.156 13.843 33.908 40.686

use 173.748 192.454 1279.977 1661.644

Bias -0.775 -0.862 -10.826 -2.380

o/o -0.006 -0.007 -0.090 -0.020

Ratio 1 0.108 0.298

Ratio 2 6.367 7.634

Phi(8) Mean 39.500 41.359 41.109 45.143 49.719

so 10.461 12.173 21.005 23.745

ass 113.272 151.058 476.592 679.856

Bias 1.859 1.609 5.643 10.219

B/E 0.047 0.041 0.143 0.259

Ratio 1 0.334 0.426

Ratio 2 3.207 3.501

Phi(9) Mean 30.500 33.114 32.664 37.596 41.590

so 10.240 10.916 19.657 21.313

ass 112.450 124.362 442.346 590.897

Bias 2.614 2.164 7.096 11.090

B/E 0.086 0.071 0.233 0.364

Ratio 1 0.106 0.336

Ratio 2 2.934 3.751

Phi(lO) Mean 47.500 46.748 47.373 51.063 50.635

so 6.523 6.079 8.626 9.364

MSE 43.178 36.972 88.513 98.605

Bias -o.752 -0.127 3.563 3.135

B/E -0.016 -0.003 0.075 0 066

Ratio 1 -0.144 0.114

Ratio 2 1.050 1.667
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TABLE 4 (Continued)

Psi Matrix

100 100 25 25

Groups Groups Groups Groups

Expected Balance Unbalance Balance Unbalance

Psi(1) Mean 73.750 73.985 74.058 73.822 73.404

so 1.682 1.659 4.438 4.283

ass 2.890 2.858 19.702 18.477

Bias 0.235 0.308 0.072 -0.346

8/3 0.003 0.004 0.001 -0.005

Ratio 1 -0.011 -0.062

Ratio 2 5.816 5.466

231(2) Mean 31.250 31.613 31.616 31.392 31.609

so 1.118 1.095 3.445 3.387

ass 1.396 1.348 11.890 11.615

Bias 0.363 0.366 0.142 0.359

B/E 0.012 0 012 0.005 0.011

Ratio 1 -0.035 -o.023

Ratio 2 7.515 7.617

931(3) Mean 6 250 6.533 6.513 6.341 6.817

so 0.609 0.576 2.235 2.399

ass 0.460 0.409 5.004 6.112

Bias 0.283 0.263 0.091 0.567

B/E 0.045 0.042 0.015 0.091

Ratio 1 -0.111 0.221

Ratio 2 9.882 13.958

931(4) Mean 13.750 13.925 13.894 14.022 14.362

so 0.767 0.728 1.601 1.545

ass 0.622 0.553 2.645 2.803

Bias 0.175 0.144 0.272 0.612

8/8 0.013 0.010 0 020 0.045

Ratio 1 -0.111 0 060

Ratio 2 3.251 4.069

231(5) Mean 43.750 44.095 44.216 43.565 43.741

so 1.396 1.323 2.512 2.201

ass 2.081 1.992 6.348 4.844

Bias 0.345 0.466 -0.185 -0.009

B/E 0.008 0.011 -0.004 0.000

Ratio 1 -0.043 -0.237

Ratio 2 2.050 1.432
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TABLE 4 (Continued)

25

Psi Matrix

100 100 25

Groups Groups Groups

Expected Balance Unbalance Balance

34.750 34.987 34.936 35.350

0.857 0.864 2.306

0.797 0.785 5.718

0.237 0.186 0.600

0.007 0.005 0.017

-0.015

6.175

49.750 49.935 50.034 49.971

1.306 1.237 2.009

1.744 1.620 4.090

0.185 0.284 0.221

0.004 0.006 0.004

-0.071

1.346

16.250 16.690 16.710 15.915

1.122 1.084 2.278

1.474 1.410 5.314

0.440 0.460 -0.335

0.027 0.028 -0.021

-0.043

2.605

11.250 11.354 11.308 11.681

0.660 0.628 1.812

0.448 0.398 3.490

0.104 0.058 0.431

0.009 0.005 0.038

-0.111

6.796

30.750 30.860 30.861 30.662

0.905 0.878 1.210

0.832 0.785 1.473

0.110 0.111 -0.088

0.004 0.004 -0.003

-0.058

0.769

Groups

Unbalance

35.831

1.922

4.992

1.081

0.031

.127

5.360

0.328

2.072

4.664

0.578

0.012

0.140

1.880

.095

2.303

5.331

.155

.010

0.003

2.780

.121

.836

.214

.871

.077

.207

.584\
D
O
O
C
i
P
I
-
‘
N

.770

.141

.302

.020

.001

.116

.660O
O
O
O
H
H
O
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the Unrestricted model was a linear combination of the latent variance

and covariance components of the correctly specified model, it was

directly estimated from the data.

For the estimates from data containing 100 groups, B/E ranged

from 9.6% to -1.6% for the balanced data and 7.1% to -12.7% for the

unbalanced data. The estimates from the datasets containing 25 groups

had B/E ranging from 23.3% to -11.0% for the balanced data and 36.4% to

-2.9% for the unbalanced data.

Table 5 contains the average B/E value for each matrix, for the

balanced and unbalanced data, for both the correctly and incorrectly

specified latent models.

In the correctly specified latent model, the matrices from large

group data (n-100 groups) showed lower average B/E than matrices from

small group data (np25 groups). The Om and P8 matrices had average B/E

percentages ranging between 2.9% and -4.9% versus 4.7% and -9.8%. The

Ph matrices had values of -2.3% to -6.5% versus -16.5% to -22.7%.

The findings regarding the incorrectly specified model were not

as consistent. The B/E for the Om matrix was lower for the small group

data in both the balanced and unbalanced datasets. The Ph and Ps

matrices, on the other hand, had lower B/E for the large group data.

The data from the balanced group would be expected to have the

best estimates with the smallest MSE. If this procedure can get esti-

mates of the unbalanced design, with only a small increase in the MSE,

than the estimation procedure would be practical. Table 6 contains the

average values of Ratio(l), the ratio of the difference between the MSE

of the balanced and unbalanced samples to the MSE of the balanced

sample, of each matrix of the two latent models for both sample sizes.
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Table 5

Average B/E of the Latent Models for Balanced and

Unbalanced Data Sets for Both 25 and 100 Groups

25 Classes

(e) (f) (i) (J)

Incorrect Incorrect

Balance Unbalance Balance Unbalance

Ph -0.227 -0.165 -0.175 -0.146

(0.093) (0.121) (0.130) (0.130)

Om 0.047 0.024 -0.009 -0.004

(0.029) (0.030) (0.047) (0.050)

Ps -0.098 -0.053 0.115 0.120

(0.250) (0.078) (0.899) (0.894)

100 Classes

(3) (h) (k) (1)

Incorrect Incorrect

Balance Unbalance Balance Unbalance

Ph -0.065 -0.023 -0.060 -0.065

(0.047) (0.091) (0.045) (0.050)

Om 0.029 0.012 -0.034 -0.033

(0.035) (0.069) (0.087) (0.088)

Ps -0.049 -0.026 0.103 0.102

(0.185) (0.256) (0.936) (0.933)

(a), . indicates row of figures under letter refer to cell

in Figure 1.
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Table 6

Average Ratio(l) of the Ph, 0m and Ps Matrices for the

Latent Models in Data Sets for both 25 and 100 Groups

25 Classes

Ph

Ps

100 Classes

Ph

Ps

Unbalance

0.208

(0.386)

0.038

(0.634)

-0.128

(0.395)

Unbalance

0.102

(0.326)

0.269

(0.245)

0.412

(0.245)

Incorrect

Unbalance

0.179

(0.227)

0.078

(0.089)

-0.103

(0.113)

Incorrect

Unbalance

0.007

(0.197)

-0.006

(0.019)

0.013

(0.028)

Ratio 1 - ( MSE(Unbalanced)-MSE(Ba1anced) )/( MSE(Ba1anced) )
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In the correctly specified model for the samples containing 100

groups, the unbalanced samples had greater MSE than the balanced in all

three of the matrices averaging from 10% to 41% more. For samples

containing 25 groups, the two individual level matrices, Om and P3,

showed little or negative increase on the average. The P3 matrix had

an average drop of 13% for the MSE, while the Om matrix had only a

slight increase of 3%. The Ph matrix had an average increase of 20%.

The incorrectly specified model showed the same results for

samples containing 25 groups. The balanced samples containing 100

groups showed very little difference in the MSE from the unbalanced

samples containing 100 groups for all three matrices.

The estimates of the balanced samples improved more than the

unbalanced samples (in terms of MSE) as group size increases.

The imposition of a structure on the data, in turn, permits

specification of incorrect models. Table 7 contains the average values

of Ratio(2), the ratio of the difference between the MSE of the

correctly and incorrectly specified latent models divided by the MSE of

the correctly specified model, of each matrix for the balanced and

unbalanced samples for both sample sizes.

In the samples containing 25 groups, the balanced data shows

little difference between the MSE's of the incorrectly and correctly

specified models for the Ph and Om matrices, 0% and -4%. The P3 matrix

had an increase in the MSE of 112%. The unbalance sample had rises in

the MSE of 19% for the Ph matrix, 97% for the Om matrix and 125% for

the P8 matrix.

For the balanced and unbalanced samples containing 100 groups,

the Ph matrix showed little increase in the MSE between the correctly
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Table 7

Average Ratio(2) of the Ph, Om and P3 Matrices for Balanced

and Unbalanced Data Sets for both 25 and 100 Groups

25 Classes

Incorrect Incorrect

Balance Unbalance

Ph -0.002 0.196

(0.006) (0.619)

0m -0.039 0.970

(0.507) (1.093)

Ps 1.121 1.258

(1.157) (0.647)

100 Classes

Incorrect Incorrect

Balance Unbalance

Ph 0.025 -0.015

(0.036) (0.067)

0m 1.546 1.135

(0.971) (0.971)

Ps 1.107 0.582

(0.604) (0.583)

Ratio 2 - ( MSE(Incorrect)-MSE(Correct) )/( MSE(Correct) )
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and incorrectly specified models, while the 0m matrix increased 13% and

15%, respectively, and the P3 matrix showed increases of 58% and 110%.

The large rises in the MSE of the P3 matrices for the

incorrectly specified model can be explained by reviewing Tables 2 and

3. The P3 matrix of the incorrectly specified model is very biased

with a small sampling variance. It is this bias that causes the MSE to

greatly increase. Without knowing the true values of the variances and

covariances, the incorrect model would be tempting to accept because of

the small sampling variance that accompanies it.

The incorrectly specified model does well in estimating the

variances of Ph, but Om and P3 show problems with their estimates. In

Tables 1 and 2 the standard deviation of the Ps elements in the

correctly specified model vary between 2 to 10 times as large as the

corresponding elements for the incorrectly specified model. On the

other hand, the bias of the estimates of the elements of the P3 matrix,

in the incorrectly specified model, range between 2 to 10 times as

large as the bias for the corresponding elements in the correctly

specified model. The percentage of the MSE which was due to bias in

the incorrectly specified model in P3 (all sizes) ranged between 91% to

99.6%. The low standard deviation of the sample, but very incorrect

estimates, indicate a very consistent but extremely biased estimate.

The direction of the bias was not consistent across elements.

It is also important to test the model for fit. By using the

Maximum Likelihood Ratio (MLR), the correctly and incorrectly specified

models can be tested for fit. If the MLR is significant, it is an

indication that the model does not fit the data. Table 8 contains the

statistics of the maximum likelihood ratio for the correctly and
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Table 8

Maximum Likelihood Ratio Test of the Pit

of the Correct and Incorrect Models

Classes

*

(b)

Balance

Mean 2.77

(1.76)

Minimum 1.29

Maximum 7.41

No. of samples (1)

significant at

p < .05

Classes

*

(h)

Balance

Mean 7.41

(7.05)

Minimum 0.82

Maximum 22.72

No. of samples (3)

significant at

p < .05

* df - 4

** df - 10

'k

(e)

Unbalance

4.21

(3.77)

1.58

13.13

(2)

*

(k)

Unbalance

15.16

(12.49)

2.46

34.25

(6)

*1?

(C)

Incorrect

Balance

129.77

(39.16)

81.12

210.99

(10)

*‘k

(i)

Incorrect

Balance

618.59

(99.09)

475.21

769.72

(10)

**

(f)

Incorrect

Unbalance

144.53

(54.53)

68.36

231.57

(10)

*1!

(1)

Incorrect

Unbalance

603.88

(89.86)

443.02

783.49

(10)
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incorrectly specified models. The MLR's of the correctly specified

model are lower than those for the incorrectly specified model's by a

factor of more than 10. The tests of fit for all forty samples for the

incorrectly specified model had significant MLR's. Only 12 of those

samples were significant for the correctly specified model, nine of

which were from samples containing 100 groups.

The datasets containing 100 groups had MLR's four times the size

of those from datasets with 25 groups. If the dataset is very large,

the fit may be acceptable, but the MLR significant. This is a common

problem in covariate structural analysis. The same problem occurs in

Lisrel when using a very large sample.

The unrestricted model estimated only one covariance matrix for

the group level and one matrix for the individual level. Neither of

these matrices, Phi or Psi, were structured or constrained. This

particular model was estimated separately from the latent models.

The starting values of the unrestricted model were Maximum

Likelihood Estimates when the data was balanced. Schmidt's Maximum

Likelihood Equations for the between and within covariance matrices of

a multivariate random model were used as starting points. This

algorithm always converged at the end of the first iteration for

balanced datasets.

Table 9 contains the average B/E of Phi and Psi in the

unrestricted model. Both the balanced and unbalanced samples showed

little difference in the average B/E of either matrix when the data

contained 100 groups. The B/E averaged less than 2.4% of the expected

value. When the data was comprised of 25 groups, the average B/E of

the Psi matrix was less than 2.5% for both the balanced and unbalanced



Table 9

Average B/E of the Unrestricted Model for Balanced and

Unbalanced Data Sets for Both 25 and 100 Groups

(e)

100

Balance

Phi 0.023

(0.042)

Psi 0.013

(0.013)

(d) (a) (b)

100 25 25

Unbalance Balance Unbalance

0.013 0.063 0.135

(0.033) (0.127) (0.154)

0.013 0.007 0.025

(0.013) (0.016) (0.035)

samples. The Phi matrix, on the other hand, had values of 13% and 17%

for the balanced and unbalanced datasets irrespectively. The increase

in the sample size, from 750 to 3000, had little effect on the B/E for

the Psi matrix. The increase from 25 to 100 groups, however, reduced

the average B/E for the estimates of the elements of the Phi matrix in

the balanced and unbalanced samples from 13% and 17% to 2% and 1%.

Table 10 summarizes the values of Ratio(l) for the unrestricted

model. The Phi matrix showed a higher average MSE for the unbalanced

samples than for the balanced samples in both small and large group

data. (33% and 8%, respectively). The Psi matrix showed little

difference between the MSE's of the balanced and unbalanced samples for

samples of either size. As the number of groups in a sample increase,

the MSE of the unbalanced data evidently approaches that of the

balanced data.

One last note, statistical theory states that as the sample size

increases the sample variance will decrease. The SD should be about



Table 10

Average Ratio(l) of the Phi and Psi Matrices for Balanced

and Unbalanced Data Sets for Both 25 and 100 Groups

100 25

Unbalance Unbalance

Phi 0.083 0.330

(0.142) (0.116)

Psi -0.061 0.007

(0.039) (0.151)

twice as large for the 25 group as for the 100 group samples. This is

borne out for the Ph and 0m matrices, but not by the P3 matrix. The P3

matrix has approximately the same SD for both samples of 25 and 100

groups.
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3. Results of the Process.

A section of the findings of this study apply to the process of

the EM algorithm Problems encountered in the procedure of the

algorithm in this environment may apply to other situations.

Table 11 contains information on the number of iterations the

estimation procedure took to converge for each of the cells in Figure 1.

The incorrectly specified model needed the most iterations to converge

for both data containing 100 groups and data containing 25 groups. The

means of the balanced and unbalanced samples were very

close, 82 and 86 for the data with 25 groups and 99 and 100 in the data

with 100 groups.

The correctly specified model averaged 74 and 76 iterations for

the balanced and unbalanced samples of 25 groups. For data containing

100 groups, the unbalanced sample averaged 38 iterations less than the

balanced sample, 99 vs 61.

The unrestricted model averaged fewer iterations than either of

the latent models for all conditions. The latent models, at the least,

averaged over 50 more iterations than the unrestricted model. The

samples containing 100 groups for the unbalanced sample averaged less

iterations than the unbalanced sample from the 25 group case, 5.8

against 10.3.

The unrestricted model for the balanced sample under both cases

always stopped after the first iteration. The starting value for the

algorithm was Schmidt's maximum likelihood estimators for the between

and within models. This confirmed that the algorithm was capable of

stopping at a maximum likelihood estimate.



25 Groups

Unrestricted

Correctly

Specified

Incorrectly

Specified

100 Groups

Unrestricted

Correctly

Specified

Incorrectly

Specified
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TABLE 11

Iterations Required by Algorithm to Convergence

Mean Standard

1.0

74.6

82.2

1.0

98.8

Balanced

Design

Range

Deviation

- 1 l

53.43 23 198

19.42 50 105

- 1 1

62.84 27 192

3.62 92 104 H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

Mean

10.

76.

86.

U
)

Unbalanced

Design

Standard

Deviation

7.79

39.40

16.83

Range

1 28

37 159

53 102

5 6

27 117

96 104

Ph and Om were estimated as full matrices for the correctly

specified model and as diagonal matrices for the incorrectly

specified model.
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Convergence was found to be a problem for two datasets and they

were not used in the final analysis. In one dataset under the

unbalanced case, the unrestricted model moved toward convergence for

seven iterations until only one element of the three covariance matrices

was slightly larger than criterion. At iteration eight, the estimates

of the parameters of the matrix

diverged from the expected values until the program automatically

stopped at the 250th iteration. The estimates of the parameters had

significantly diverged from the maximum likelihood values. WA slight_“

change in the values of the starting matrix of this dataset caused the

algorithm to converge in seven iterations.

In the Unrestricted model the Psi matrix converged very quickly.

The convergence of the model came only after the elements in the Phi

matrix reached the criteria.

In the correctly specified latent model the Ph matrix was the

first matrix for all of the elements to reach the convergence criteria.

The P3 matrix was the last in which all elements reached criteria.

_Finally, the starting values of the parameters affected the final
 

  

estimated values at which the algorithm converged. Specifically,

 

proximity of the starting values to the true values appeared to be

positively related to how closely the final estimated parameters would

be to the maximum likelihood estimates when reaching criterion.

Criterion was reached when all elements in the covariance matrices

changed less than .01. Using a set of data, an initial computer run was

done on the data using values close to the expected values as starting

values. These starting values caused the final estimates of the

parameters to be close to the Expected value. A second run of the
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program was then done on this data using Schmidt's formula to find

starting values for the parameters. The run resulted with estimates of

the parameter that were not as close to the expected values as were

those from the first run. The criteria were ignored and the second was

allowed to continue for 95 more iterations. It then reached values

which were nearly identical to those from the first run.



CHAPTER VIII: DISCUSSION

1. “Summary and Conclusions..

wAlthough statistical procedures are available for estimating

treatment effects for students taught in classrooms, these procedures

are applicable, only, when every class has the same number of

students. The present study investigated a procedure that was

originally established to handle missing data (EM Algorithm) but-which

also provides a solution to the problem of estimating parameters in

multivariate analysis when samples contain unequal group sizes. The

focus of the present dissertation was on the estimation of latent group

and individual level variances and covariances with measurement error

removed when group sizes varied in a sample. Previous methods could

only find maximum likelihood estimates for this problem if the dataset

contained groups of equal size. The EM Algorithm offers a method for

finding maximum likelihood estimates of parameters in situations where

classical maximum likelihood procedures failed.

To estimate a set parameters, the EM Algorithm requires two

steps, an expectation step (E-step) and a maximization step (M-step).

The E-step is characterized by the formulation of the sufficient

statistics in terms of the observed data and the parameters. The

M-step consists of developing the maximum likelihood equations for the

parameters in terms of the conditional statistics. ‘93595—31VEE_

starting values for the parameters, the algorithm calculates the

sufficient statistics in the E-step. These values are used to estimate

the parameters in the M-step. The algorithm returns to the E-step to

90
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recalculate the sufficient statistics based on the new values of the

parameters. The parameters are reestimated using these new values of

the sufficient statistics. The algorithm iterates between the E-step

and the M-step until a specified criteria is reached.

The estimate of balanced and unbalanced samples were both

studied while varying two factors, mainly the number of groups in the

sample (the size) and the particular model being estimated (that is to

say, the unrestricted model, the correctly specified model and the

incorrectly specified model). The unrestricted model was

(8.1) I“ -u+;z1 +3.“

I is a p x 1 vector of observed data.

u is a p x 1 vector of grand means.

1 is a p x 1 vector of group effects.

6 is a p x 1 vector of individual effects.

These variables were considered to have come from multivariate normal

distributions:

(8.2) x~N(0.2Y) 1~N(9.21)

u~N(Q.2u) 3~N<0.2¢)

The parameters of interest for this model were 2% and 2‘.

The correctly specified model was visualized as the application

of a structure to the unrestricted model. By assuming 1 -'A}§ and

g - Ag + £1, (8.1) becomes:



 

(8.3) I“ - g + A.§1 + Ag”

1 is a p x 1 vector of observed data.

u is a p x 1 vector of grand means.

A is a p x q matrix connecting the p observed variables

with q latent group variables.

Q is a q x 1 vector (q 5 p) of the latent group effects.

A is a p x r matrix connecting the p observed variables

with r latent group variables.

g is a r x 1 vector (r 5 p) of the latent individual

effects.

;1 is a p x 1 vector of the latent individual errors.

with X-N(Q.Z‘Y) §~N(.Q.45a)

u-N(Q.3u) 2~N(9..4>)

sl~N(Q.‘I')-

The parameters of interest in this model are 0., Q and W.

The incorrectly specified model differs from the correctly

specified model in the constraints placed on the two latent covariance

matrices. In the incorrect model, the latent covariance matrices,

and 0; and 0 are considered to be diagonal matrices. No such constraints

are placed on the latent matrices in the correct model.

‘g Tests of the m9g§1;5a§ed on the criteria of convergené37showed

this estimation procedure_tgfibe a satisfactory and effective method n

 

 
 

 

 

theory. wever, once the study had been completed, it was recognized

u e‘rgrmterm, ould gg(§”EZ;;33iti)for all

 

 

tha ‘a’ggdel.
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pract lication . This model can be described as follows:

_.\

\

z )

(8.5) X-g-O-AQ-i-Aa +£_l+_§_2_

i.) a i ‘13 i.) 1.) I

I is a p x 1 vector of observed data.

a is a p x 1 vector of grand means.

A is a p x q matrix connecting the p observed variables

with q latent group variables.

Q is a q x 1 vector (q 5 p) of the latent group effects.

A is a p x r matrix connecting the p observed variables

with r latent group variables.

3 is a r x 1 vector (r g p) of the latent individual

effects.

£1 is a p x 1 vector of the latent individual‘érrors.

$2 is a p x 1 vector of the latent groupvgrrors.

with x~N(9.2Y) 1-N(0.9.)

u~N(Q.2“) a~N(0.¢)

11~N<0.91) 32~N(0.wz)

The parameters of interest in this model are 0., 0, $1 and 92.

The EM Algorithm was developed for thi§_purpose and run on a
,\,__‘~________’_7 1__15 _,__1

trial set of data. The results were similar to those obtained in the

N4

old del See Table 12

Three issues whighithe users of the EM orithm st contend

with! are tie—enjemWandW

6./

 

  



Summary Statistics of the Four Parameter Latent Model for

Balanced and Unbalanced Data Sets with 100 Groups

Ph(l)

Ph(2)

Ph(3)

Ph(4)

Ph(5)

Ph(6)

Mean

SD

MSE

Bias(B)

B/E

Ratio 1

Mean

SD

MSE

Bias(B)

B/E

Ratio 1

Mean

SD

MSE

Bias(B)

B/E

Ratio 1

Mean

SD

MSE

Bias(B)

B/E

Ratio 1

Mean

SD

MSE

Bias(B)

B/E

Ratio 1

Mean

SD

MSE

Bias(B)

B/E

Ratio 1
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TABLE 12

Ph Matrix

Expected Balance

0!)

64.000 64.040

3.710

13.766

0.040

0.001

8.000 7.160

3.990

16.704

-0.840

-0.105

5.000 4.380

1.600

2.987

0.620

0.124

40.000 39.430

10.440

109.355

-0.570

-0.014

7.000 7.040

6.880

47.336

0.040

0.006

107.000 102.600

15.970

276.552

-4.400

-0.041

Unbalance

(k)

64.

3

12.

.280

0.

-0.

0

100.

18.

384.

-6.

-0.

.390

280

.470

128

004

119

.130

.780

.689

.870

.109

.418

.340

.480

.674

.660

.132

.105

.720

.860

.027

.280

.007

.079

.000

.900

.610

.000

.000

.006

940

540

536

060

057



95

TABLE 12(Continued)

Summary Statistics - Ph Matrix

Balance Unbalance

Mean of B/E -0.046 -0.050

SD of B/E 0.056 0.059

Mean of Ratio 1 0.112

SD of Ratio 1 0.238

Om Matrix

Expected Balance Unbalance

0m(1) Mean 25.000 24.490 24.420

SD 1.020 0.900

MSE 1.329 1.184

Bias(B) -0.510 -0.580

B/E -0.020 -0.023

Ratio 1 -0.110

0m(2) Mean 10.000 11.780 11.670

SD 1.360 1.410

MSE 5.370 5.087

Bias(B) 1.780 1.670

B/E 0.178 0.167

Ratio 1 -0.053

0m(3) Mean 20.000 18.270 18.360

SD 1.080 1.510

MSE 4.492 5.269

Bias(B) -1.730 -l.640

B/E -0.087 -0.082

Ratio 1 0.173

0m(4) Mean 15.000 16.920 16.940

SD 1.540 1.370

MSE 6.468 6.059

Bias(B) 1.920 1.940

B/E 0.128 0.129

Ratio 1 -0.063

0m(5) Mean 10.000 12.950 13.220

SD 4.200 4.060

MSE 27.309 28.004

Bias(B) 2.950 3.220

B/E 0.295 0.322

Ratio 1 0.025
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TABLE 12(Continued)

Om Matrix

Expected Balance Unbalance

0m(6) Mean 35.000 32.320 32.510

SD 2.710 3.380

MSE 15.325 18.313

Bias(B) -2.680 -2.490

B/E -0.077 -0.071

Ratio 1 0.195

Summary Statistics - Om Matrix

Mean of B/E 0.070 0.074

SD of B/E 0.155 0.160

Mean of Ratio 1 0.028

SD of Ratio 1 0.129

Psl Matrix

Balance Unbalance

Psl(l) Mean 5.000 6.710 6.700

SD 10.380 10.270

MSE 110.993 108.684

Bias(B) 1.710 1.700

B/E 0.342 0.340

Ratio 1 -0.021

Psl(2) Mean 6.000 15.380 15.670

SD 6.740 6.180

MSE 143.188 142.091

Bias(B) 9.380 9.670

B/E 1.563 1.612

Ratio 1 -0.008

Psl(3) Mean 11.000 25.330 26.330

SD 8.410 8.910

MSE 298.894 340.509

Bias(B) 14.330 15.330

B/E 1.303 1.394

Ratio 1 0.139

Psl(4) Mean 12.000 23.910 22.970

SD 7.540 6.250

MSE 214.461 172.775

Bias(B) 11.910 10.970

B/E 0.993 0.914

Ratio 1 -O.l94
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TABLE 12(Continued)

Summary Statistics - Psl Matrix

Balance Unbalance

Mean of B/E 0.700 0.710

SD of B/E 0.527 0.564

Mean of Ratio 1 -0.021

SD of Ratio 1 0.137

P52 Matrix

Expected Balance Unbalance

Ps2(1) Mean 7.000 5.160 5.330

SD 8.170 8.170

MSE 70.511 69.848

Bias(B) —l.840 -l.670

B/E -0.263 -0.239

Ratio 1 -0.009

Ps2(2) Mean 6.000 7.130 7.370

SD 5.700 5.620

MSE 33.909 33.670

Bias(B) 1.130 1.370

B/E 0.188 0:228

Ratio 1 -0.007

Ps2(3) Mean 10.000 10.490 11.090

SD 7.470 7.860

MSE 56.068 63.100

Bias(B) 0.490 1.090

B/E 0.049 0.109

Ratio 1 0.125

Ps2(4) Mean 11.000 10.700 9.760

SD 6.380 5.620

MSE 40.804 33.293

Bias(B) -0.300 -1.240

B/E -0.027 -0.113

Ratio 1 -0.184

Summary Statistics - P52 Matrix

Balance Unbalance

Mean of B/E -0.009 —0.002

SD of B/E 0.189 0.211

Mean of Ratio 1 -0.019

SD of Ratio 1 0.127
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The present study.usedfthe absolute change of the estimate! as,(Z:)
\ ‘ r (

_£heconvergence criteria. Raudenbuash (1986) used the change in the

  
 

 

likelihood for their criteriaélatfli gradie of

also been suggested (See no (1987)): However, each_hasfits problems:)

V

Theflfirst criteriawmay not reach the max likelihood solution since
r.

./”’

the starting point/definitel affects’the finishing point_in such a

situational Using the likelihood or its gradient can fail if theremis a

 

 

K

ghance.that the matrix bei“

‘ using estimate differences, will con!gzgg_ggE_a_gingg;§;_mgggixg;fl___i#3

The pattern of the estimation in the two sets of data which

failed to converge exposes a problem. The data irs onver ed toward

the ooggflsjthe¥ digerged. The slight change of one value in

the starting matrices/baused/éhese data sets/go converge, There are

W T

 

is singular. The a1gorithm,g¥}

 

some articles written on the convergence of the E-M algorithm (most

notably Wu (1983)) but these are for univariate cases. The

multivariate case becomes much more complex. Being a linear method,

the EM Algorithm goes on a slow line toward a convergence point. ££_i§,,_

much more susceptiblesto any_localgmaxima_gngLQymg_§han/Raphson-Newton

or any 0th?!39.565353933999919rewihicomaxiusoishss--9_9___1£§._J.9R§R§x

toward_§hg maximum likelihood estimate.
_"-——~._, .... -

.3ggj13531§331tho restrictiflgcgf.£hggggégla The less_fThelthifd.

rEEEEEEEEEEERRLQQedwonathe.medelutheubetterwthe,estimatignnappearsto

 

 

be. If the model is wrongly restricted, however, the EM Algorithm will

still converge yielding\bad (but attractive) result' with no indicationbfr

that a problem existsa\ It become imperativ that t e Maximum Likeli-

hood Ratio test or a similar test be used to test the fit of the model.
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2. Future Exploration.

/ i
There is no clear choice-as the best criterion/for this method.

This convergence criterion for this algorithm used the absolute change

of the estimates. Alternative choices for the convergence criterion are

the change in the model's likelihood or the likelihood's gradient.

Each has its advantages. Si fina teria used in this study

“was affected by the starting values of the estimated matrices, the

”
a
.
.
.

 

other choices of criterion might yield closer consistent estimates.

owever if any 6f thewmatriceé)is singular, the likelihood will

approach infinity and likely fail to converge.

Future models can be expanded nglarger more regtrictiveéand

complicated models. The only problem facing these models is the.number;>

o£_iterations necessary for convergence. _As the models become more

complicated, more iterations are required to reach convergence. New

developments‘arising in the work on the E-M algorithm might shorten

j this process. The E-M algorithm however\must be derived separatelyifor

_each model to which it is applied limiting the generalization from one

model to another.

Another factor not examined here but of importance is the

unbalancedness of the sample. The degree to which the data contains

unbalanced groups may or may not affect the estimation procedure.

Using the unbalanced design a lower and upper limit of the MSE could

be found for the sample. Literature indicates that the relative size

of the matrices of the random model can affect the reliability of the

estimates.
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Lastly the expansion of this model into the unbalanced design

is important for educational research. This procedure opens the way

for more complicated multilevel analysis such as the causal modeling of

Joreskog.
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APPENDIX A

EQUATIONS FOR THE ESTIMATION OF THE COVARIANCE COMPONENTS OF

THE TWO-PARAMETER MODEL USING THE EM ALGORITHM

The model of the two-parameter (unrestricted) model is:

- +I u+11 51
13 J

I is a p x 1 vector of observed data.

g is a p x 1 vector of grand means.

1 is a p x 1 vector of group effects.

is a p x 1 vector of individual effects.

I
n

The EM algorithm is used to estimate the two covariance matrices

of this model, 2% and 22. Both matrices are assumed to come from

multivariate normal distributions:

1~N(Q,2)

7

£~N(QREE)

E-Step

The conditional expectations of 7 and E are:

101



MY 7" 2:11 W Q1?

E - = -

1|Y 1 1k 9 231(17- u)

where Q1 - (Z1 + (l/n1)2‘)-1

w - [2" 0,1"
i-l

M-Step

° The maximum likelihood equations of the parameters for the M-step

are I

A

2:1 - 21 - é):_1[27(Q1 - 01<A - 1003271

where A - (3'11 - 14")(21 ' ”3'

2¢ - z. - [(l/N) film/n,» 3J9. - Q1(A - wmilzc - B - 2e

where B - (X - 3.9. - a.) (X ' 3‘9. ' a.)'



APPENDIX B

EQUATIONS FOR THE ESTIMATION OF THE COVARIANCE COMPONENTS OF

THE FOUR-PARAMETER MODEL USING THE EM ALGORITHM

The four-parameter (unrestricted) model is:

:1 - g + AG) + Ag +-£J,-+ 62

8ij "'i 1.1 1.) _1.1

X is a p x 1 vector of observed data.

3 is a p x 1 vector of grand means.

A is a p x q matrix connecting the p observed variables

with q latent group variables.

Q is a q x 1 vector (q s p) of the latent group effects.

A is a p x r matrix connecting the p observed variables

with r latent group variables.

g is a r x 1 vector (r 5 p) of the latent individual

effects.

;1 is a p x 1 vector of the latent individual errors.

32 is a p x 1 vector of the latent group errors.

The EM algorithm is used to estimate the four covariance matrices

of this model, 0.,10, ‘1 and $2. The matrices are assumed to come from

multivariate normal distributions:

9~N<0.¢.> 3~N(0.9)

11~N(0.91) 3.2~N<0.92).

103
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E-Step

The conditional expectations of Q, g, gl_and g2 are:

ulY\ u' 2:111 Q1?

QIY L 9' - 12° 93525; - 8*)

1le 7' 32} 11‘ s 9201(3- 11)

aIY/ 3' 1 some: -Ae*-a‘-32‘)
1! i.) a

(5.18) E

where a - (A o 1' + 1:1)"

'1 '1

Q1 - (he’s); + *2 + (l/m)M )

-1

w - [2:101]

M-Step

The equation can be clarified by substituting By substituting (5.18) for

and (5.12) for D(8.). The maximum likelihood estimate becomes:

‘ i .
0 - o. - k :11 [3. 1.821 - Qi (A - W) (21)]

" 1
w - 92 - k 2:, [‘FZ(Q1 - 01(4 - 1009921
2

9 - 9 - 9w} lewvul/nincz1 - 05A - mi]

- ans-(n1 - 1)a‘1]a) A o
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~11 - 1'1 - «‘XLIRIMI/mptcz1 - 0104 - 10011

- ans-(n1 - 1)a'1]a)i«1

where a - (j:1 - abet1 - u‘)’

8 - (x1d - A e' - in: - A‘s." - a)



APPENDIX C

COMPUTER PROGRAM FOR THE ESTIMATION OF THE THREE PARAMETER

LATENT MODEL IN SAS

SECTION 1 - PART 1

THIS SECTION CREATES THE SAMPLE DATASET FOR USE IN THE E-M ALGORITHM

STEPS. EACH DATA POINT CONSISTS OF THREE COMPONENTS, LATENT WITHIN

(OM), LATENT BETWEEN (PH) AND ERROR (PS). THE OBJECT IS TO USE

PATTERN MATRICES L AND LA TO CONVERT THE 3 X 3 LATENT MATRICES INTO

4 X 4 MATRICES OF OBSERVED VALUES. THE ERROR MATRIX IS ALWAYS A

4 X 4 MATRIX OF MEASUREMENT ERRORS OF THE OBSERVED VALUES.

1. SEED IS ANY RANDOM NUMBER USED TO CREATE RANDOM VALUES FROM A

RANDOM GENERATOR (NORMAL).

USED IN STUDY

22.939u25 199.939n25

10199 -

50199

80199

100199

110199

2. CIRCLE IS A COUNTER USED TO LOOP THROUGH THE PROGRAM CREATING

DIFFERENT DATA SETS FOR ANALYSIS.

3. {AI IS A Z X 2 MATRIX OF THE NUMBER OF STUDENTS IN THE

GROUPS. NOl HAS THE NUMBER OF SUBJECTS IN GROUPS - N02 HAS THE

NO OF GROUPS OF THAT SIZE.

FOR UNBALANCED 25 GROUPS: | FOR BALANCED 25 GROUPS:

PAT-10 5/20 5/30 5/40 5/50 5; I PAT-30 25;

FOR UNBALANCED 100 GROUPS: | FOR BALANCED 100 GROUPS:

PAT-10 20/20 20/30 20/40 20/50 20; I PAT-30 100;

4. QM IS THE PARAMETER OF THE WITHIN COVARIANCE MATRIX. OF THE

POPULATION .

5. EH IS THE PARAMETER OF THE BETWEEN COVARIANCE MATRIX OF THE

POPULATION.

6. 23 IS THE PARAMETER OF THE ERROR COVARIANCE MATRIX OF THE

POPULATION.

7. L IS A PATTERN MATRIX CREATING LINEAR COMBINATIONS OF THE LATENT

VARIABLES IN PH.

8. LA IS A PATTERN MATRIX CREATING LINEAR COMBINATIONS OF THE LATENT

VARIABLES IN OM.

I
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.
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PROC MATRIX ;

SEED-10199;

CIRCLE-O;

106

-
0

‘
0

-
0

.
0

.
0

-
0

-
0

.
0

‘
0

.
0

.
0

.
0

.
0

.
0

‘
0

-
0

‘
0

.
0

.
0

.
0

.
0

.
0

.
0

‘
0

.
0

.
0

-
0

.
0

.
0

.
0

.
0

.
0

.
0

-
0

-
0

.
0

.
0

.
0

-
0

.
0

-
0



107

PAT-30 25;

OM - 25 10 15/ 10 20 10/ 15 10 35;

PH - 64 8 40/ 8 5 7/ 40 7 107;

PS - 5 0 0 0/ 0 6 0 0/ 0 0 ll 0/ 0 0 0 12;

L - 1 0.5 0.5/

l 0.5 -0.5/

1 -0.5 0.5/

1 -0.5 -0.5;

LA- 1 0.5 0.5/

l 0.5 -0.5/

1 -0.5 0.5/

1 -0.5 -0.5;

NOTE 'THESE ARE THE PARAMETER VALUES AND PATTERN OF SIZES' ;

PRINT PAT WITHIN BETWN ERR;

*

* SECTION 1 - PART 2

*

* THREE DIFFERENT VECTORS OF DATA ARE NEEDED, ONE FOR PH, ONE FOR OM

* AND ONE FOR PS. THESE ARE INDEPENDENT RANDOM VARIABLES.

* FOR LATER USE THE CHOLESKYS OF OUR PARAMETER MATRICES ARE NEEDED.

*

* 9. QHQLQM IS THE CHOLESKY OF DH.

*10. QHQLPH IS THE CHOLESKY 0F PH.

*11. QHQLPS IS THE CHOLESKY 0F PS.

*12. A 18 VECTOR OF 21330 VALUES GENERATED AT RANDOM FROM A POPULATION

* OF VALUES WITH A MEAN OF 0 AND A VARIANCE OF 1 FROM SAS

* SUBROUTINE NORMAL.

*13. 2 IS A VECTOR OF 3000 VALUES EQUAL TO THE INDIVIDUAL VALUES FOR

* OM.

*14. 21 IS A VECTOR OF 100 VALUES EQUAL TO THE GROUP VALUES FOR PH.

*15. 22 IS A VECTOR OF 3000 VALUES EQUAL TO THE INDIVIDUAL VALUES FOR

* PS.

*16. g, 91 AND g2 ARE THE VARIANCE-COVARIANCES FOR THE THREE 2 VECTORS.

* THESE MATRICES SHOULD BE IDENTITY MATRICES.

*

CHOLOM - HALF(OM);

CHOLPH - HALF(PH);

CHOLPS - HALF(PS);

BEGIN: CIRCLE-CIRCLE+1;

A - J.(21300,1,0);

I - 1;

L: A(I,1)-NORMAL(SEED);

I-I+1;

IF I<- 21300 THEN GO TO L;

2 - a(1:3000,1)||a(3001:6000,l)||a(6001:9000,1);

Zl- a(21001:21100,1)||a(21101:21200,1)||a(21201:21300,1);

22-a(9001:12000,1)||a(12001:15000,1)||

a(15001:18000,1)||a(18001:21000,1)

TOTMI-NROW(Z)-1

TOTMIG-NROW(Zl)-l

C - (Z'*Z)#/TOTMI

Cl- (Zl'*Zl)#/TOTMIG

02- (22'*22)#/TOTMI
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NOTE 'THESE ARE THE VAR-GOV OF THE RANDOM DATA (NO TRANS)’ ;

PRINT C C1 C2;

* e

* SECTION 1 - PART 3 ;

* e

* BY MULTIPLYING RANDOM DATA FROM A POPULATION WITH MEAN 0 AND VARIANCE;

* 0F 1 BY THE CHOLESKY OF A MATRIX, A VECTOR IS CREATED WHICH WILL ;

* RECREATE THAT MATRIX. -

'k

*17. 1 IS THE PRODUCT 0F 2 AND CHOLW. ,

*18. 11 Is THE PRODUCT 0F 21 AND CHOLB. ,

*19. 12 IS THE PRODUCT OF 22 AND CHOLERR. ;

*20. n, 21 AND 02 ARE THE VARIANCE-COVARIANCES FOR THE THREE Y VECTORS-;

* THESE MATRICES SHOULD BE CLOSE TO THE PARAMETER MATRICES. ,

* 8

Y - z * CHOLW;

o - (Y'*Y)#/TOTMI;

Yl- 21 * CHOLB;

D1 - (Y1'*Yl)#/TOTMIG;

Y2- 22 * CHOLERR;

D2- (Y2'*Y2)#/TOTMI;

NOTE 'THESE ARE THE VAR-COV OF THE TRANSFORMED DATA’ ;

PRINT o D1 D2 ;

* ;

* SECTION 1 - PART 4 ;

* ;

* BY MULTIPLYING VECTORS 2 AND 21 To L AND LA, THE OBSERVED VALUES FOR ;

* FOR EACH INDIVIDUAL ARE CREATED. INSTEAD OF THREE MEASURES PER ;

* INDIVIDUAL THERE WILL BE FOUR. (THE ERROR MATRIX WAS CREATED IN ;

* TERMS OF ERRORS FOR EACH OBSERVED VARIABLES AND IS ALREADY 4 x 4.);

* ;

*21. x IS THE PRODUCT OF Y AND L. ;

*22. x1 IS THE PRODUCT OF Y1 AND LA. ;

* ;

x - Y * L'

X1- Y1 * LA' ;

*

* SECTION 1 - PART 5

*

* BY ADDING VECTORS X, YYl AND Y2 TOGETHER, A TOTAL SCORE IS ACHIEVED

FOR EACH INDIVIDUAL. THESE SCORES OBVIOUSLY CONTAIN THE THREE

VARIANCE COMPONENTS. ALL 30 INDIVIDUALS IN EACH GROUP RECEIVE

THE SAME GROUP VECTOR(X1). OTHERWISE EACH RECEIVES A DIFFERENT

VALUE FROM BOTH X AND Y2.

3
6
3
6
1
-
3
6
3
!
-

*23. 112 BECOMES A 3000 x 4 VECTOR WHICH REPEATS THE SAME X1 VALUE FOR

* N(I) TIMES FOR EACH GROUP.

*24. X BECOMES THE SUM OF X AND YYl AND Y2.

*25. FIN IS THE VARIANCE-COVARIANCE MATRIX FOR THE FINAL SET OF DATA-

* ITS A 4 X 4 MATRIX BASED ON 3000 OBSERVATIONS.

*26. HE IS A VECTOR OF SIZE K CONTAINING THE GROUP SIZE FOR EACH GROUP.

*27. ED REPLACES X AS THE MATRIX OF DATA. THIS IS USED IS OTHER

* SECTIONS.
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MMhO;

II—l;

NN-l;

JJ: MHFMM+1;

CC-J.(PAT(II,1),1,1);

DD-(CC @ X1(NN.)) ;

YYliYYl//DD ;

NN-NN+1 ;

NKFNK//PAT(II,1) ;

IF MM LT PAT(II,2) THEN GO TO JJ;

"MFG; II-II+1 ;

IF NN LT PAT(+, 2) THEN GO TO JJ ;

Fl-(YY1'*YY1)#/NROW(YY1) °

NOTE 'THIS IS THE VAR- COV MATRIX OF GROUP DATA FOR ALL IND' ;

PRINT Fl ;

RD-X+YY1+Y2 ;

FIN- (RD'*RD)#/TOTMI

NOTE 'THIS IS THE VAR-COV MATRIX OF THE DATA TO BE USED' ;

PRINT FIN ;

FREE MM NN II X X1 Y Y1 Y2 D 01 D2 E E1 FIN I YYl Z 21 22 CC DD ;

FREE F1 C C1 C2 A EE EEl EE2 TOTE WITHIN BETWN ERR TOTMI TOTMIG ;

END OF SECTION 1

AT THIS POINT IT BECOMES IMPORTANT TO REALIZE THAT ALL THE LINES

ABOVE DEAL ONLY WITH CREATING THE DATA FOR THIS ANALYSIS. THEY

CAN BE DROPPED IN USING THE EM ALGORITHM. TO USE THE REST OF THE

PROGRAM WITHOUT THE PRIOR LINES, THE FOLLOWING LINES MUST BE PLACED

AT THE TOP OF THE PROGRAM (REMOVING THE * FROM THE FRONT - SEE SAS

FOR THE FETCH COMMAND)

S
k
i
-
*
I
-
I
-
I
-
l
-
l
-
fl
-
X
-
H
-
l
-

*PROC MATRIX

*FETCH RD

*FETCH LA

SECTION 2 - PART 1

THIS SECTION USES THE EM ALGORITHM TO GET ESTIMATES OF THE

UNRESTRICTED MODEL. THE BETWEEN AND WITHIN VARIANCE-COVARIANCE

MATRICES ARE ESTIMATED WITH NO STRUCTURE APPLIED. THIS FIRST PART

TURNS OUT THE SUFFICIENT STATISTICS FOR THE SAMPLE DATA NEEDED

IN PART 2 AND IN PART 3.

E NUMBER OF GROUPS IN THE SAMPLE.

E NUMBER OF OBSERVED VARIABLES IN THE SAMPLE.

E TOTAL NUMBER OF OBSERVATIONS IN THE SAMPLE.

KP

KP

I

I

I

VECTOR OF THE GROUP MEANS. _

X KP MATRIX OF EACH GROUP‘S SUM OF SQUARE/NK.*
fi
fl
-
fi
l
’
I
-
I
-
fi
’
fl
-
I
l
-
M
'
fl
-
H
-
fi
-
I
-

U
|
§
U
N
H K S TH

E S TH

H 8 TH

. 13 IS A

SS ISSA

.
0

.
0

.
0

.
0

‘
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

‘
0

.
0

.
0

.
0

.
0

.
0

'
0

.
0

.
0

.
0

.
0

'
0

.
0

.
0

.
0

.
0

.
0



110

ZEROl-J.(NROW(L),NROW(L),O) 3

ZEROZ-J.(NCOL(L),NCOL(L),O) ;

ZERO3-J.(NCOL(LA),NCOL(LA),0) ;

NH-(l#/SUM(INV(DIAG(NK))))*K

PSI-((RD'*RD)-B1)*1#/(N-K)

PHI-(1#/NH)*((Bl-(RD(+.)'*RD(+.)*(1#/N)))*1#/(K-1)-PSI)

NOTE 'HERE ARE THE STARTING MATRICES'

PRINT PHI PSI

FREE Bl B s NH A ;

KFNROW(NK) , *NO OF CLASSES - K ;

P-NCOL(RD) ; *NO OF OBSERVED VARIABLES - P ;

NiNK(+,) ; *NO OF TOTAL INDIVIDUALS - N ;

GRP-J.(NROW(NK),1,1) ; *VECTOR OF 1'8, X X 1 ;

D-O ;

Bl-O ,

DO I-l TO K ;

C -D+l ;

D -C+NK(I,)-1 ;

A -RD(C:D,) ;

B -A(+.)*(1#/NK(I.)) ;

Ya -YM//B' ; *GROUP MEANS ;

E -(A'*A)*(1#/NK(I.)) ;

SS -SS//E ; *ss FOR EACH GROUP ;

Bl-((B'*B)*NK(I,))+B1 ; *SS/K OF THE GROUP MEANS ;

END :

* ;

* SECTION 2 - PART 2 ;

* e

* STARTING VALUES ARE NEEDED FOR THE BETWEEN GROUP COVARIANCE MATRIX ;

* PHI AND THE WITHIN COVARIANCE MATRIX PSI. THE MLE FOR EQUAL N'S ;

* WILL BE USED WITH NK (NUMBER OF STUDENTS IN A GROUP) REPLACED BY THE ;

* HARMONIC MEAN OF NK. ;

* ;

* 6. NH IS THE HARMONIC NK OF THE GROUPS. ;

* 7. PHI IS THE BETWEEN GROUPS COVARIANCE MATRIX. ;

* 8. PSI IS THE WITHIN GROUPS COVARIANCE MATRIX. ;

* ;

SECTION 2 - PART 3

THIS PART CREATES THE CONDITIONAL VALUES FOR THE MEAN AND GROUP

EFFECT FOR PHI AND PSI ESTIMATES. THERE ARE FOUR IMPORTANT VARIABLES'

CREATED HERE. THEY ARE CREATED IN SUBROUTINES ALPHAB AND ALPHAU. '

THIS IS PART OF THE INTERATIVE LOOP, THE E STEP.

10. TH IS A K X P MATRIX OF GROUP EFFECTS.

11. Q IS A KP X P WEIGHTING FACTORS FOR THE GROUPS.

12. W IS A P X P WEIGHTING FACTOR CALCULATED FROM THE Q'S.

*
fl
-
l
-
fl
-
fl
-
fl
-
fl
-
fl
-
l
'
I
-
fl
'
fl
-
l
l
’

9. U IS A P X 1 VECTOR OF CONDITIONAL MEANS. ;

BUDDYEO

BUD:BUDDY-BUDDY+1

IF NROW(PAT) EQ 1 THEN LINK ALPHAB

ELSE LINK ALPHAU
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D0 I-I To K

C -(P*I)-P+I

D -P*I

A -PHI*Q(C:D,)*(YM(C:D,)-U)

TH-TH//A

END

FREE A

a
t
-

SECTION 2 - PART 4

THIS PART CALGULATES THE MAXIMUM LIKELIHOOD VALUES FOR PHI AND PSI

USING THE DATA AND THE CONDITIONAL VARIABLES. (M-STEP). THIS PROGRAM

WILL KEEP LOOPING TO THE LAST PART UNTIL THE DIFFERENCES IN PHI

AND PSI, AND THE NEW ESTIMATES OF PHI AND PSI ARE LESS THAN .01.

13. ONEl IS THE DIFFERNECE BETWEEN PHI ON THE LAST ITERATION AND

THE NEW ESTIMATES OF PHI.

l4. TWOl IS THE DIFFERNECE BETWEEN PSI ON THE LAST ITERATION AND

THE NEW ESTIMATES OF PSI.

0
3
6
*
3
6
3
6
‘
3
6
3
0
1
-
0
1
"

E-J(P,P,0)

F—J(P,P,0)

DO I-l TO K

C -(P*I)-P+1

D -P*I

A -TH(C:D,)+U

E -E+NK(I,)*((SS(C:D,))-(YM(C:D,)*A')

-(A*YM(C:D,)')+(A*A')+(PHI*Q(C:D,)*

(PSI*(1#/NK(I.))+(W*Q(C:D.)*PHI-2*W)))) ;

F -F+Q(C:D.)-(Q(C:D.)*((YM(C:D.)-U)*(YM(C:D.)-U)'+W)*Q(C:D.)) ;

END ;

FREE A

PHI -PHI-(PHI*((I#/K)*F)*PHI)

ONEI-PHI-PHI

PSI -((1#/N)*E)+W

TWOI-PSl-PSI

PHID-DIAG(PHI)

PSID-DIAG(PSI)

PHID-PHID<>ZEROI

PSID-PSID<>ZEROI

PHI - PHI-DIAG(PHI)+PH1D

PSI - PSI-DIAG(PSI)+PSID

PHI-PHI

PSI-PSI

FREE PSI Q TH PHI PHID PSID

IF BUDDY GT 250 THEN GO TO FINAL;

IF MAX(ABS(ONE1)) LT 0.01 AND MAX(ABS(TWOI)) LT 0.01

THEN GO TO FINAL ;

ELSE GO TO BUD ;
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FINAL:PRINT BUDDY PHI PSI ONEl TWOl U

FREE PSl ONEl TWOl U BUDDY
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END OF SECTION 2

SECTION 3 - PART 1

THIS SECTION USES THE E-M ALGORITHM TO GET ESTIMATES OF THE

RESTRICTED MODEL. PH, OM AND PS ARE ESTIMATED WITH STRUCTURE

APPLIED TO THE MODEL. THIS FIRST PART MAKES USE OF PHI AND PSI

FROM THE LAST SECTION TO GET OPENING ESTIMATES OF PH, OM AND PSI.

PH IS THE LATENT GROUP LEVEL VAR-COV.

OM IS THE LATENT IND LEVEL VAR-COV.

PS IS THE OBSERVED VARIABLES ERROR MATRIX.

8 IS THE DIMENSION OF PH.

. R IS THE DIMENSION OF OM.

3
F
$
$
$
$
$
$
$
$
$
$
3
$
$
$
$
$
$

U
I
§
U
N
H

Y1-INV(L'*L) ;

Y2-INV(LA'*LA) ;

PHiY1*L'*PHI*L*Yl ;

OM-Y2*LA ' *PSI*LA*Y2 ;

PS-PSI+PHI-L*PH*L'-LA*OM*LA' ;

NOTE 'THESE ARE THE STARTING VALUES IN THIS STEP' ,

PRINT PH OM PS ;

S-NCOL(L) ; *NO OF LATENT CLASS VARIABLES - S ;

RPNCOL<LA) ; *NO OF LATENT IND VARIABLES -R ;

SECTION 3 - PART 2

THIS PART CREATES THE CONDITIONAL VALUES FOR THE MEAN AND GROUP

EFFECT FOR PH, OM, PS ESTIMATES. THERE ARE FOUR IMPORTANT VARIABLES'

CREATED HERE. THEY ARE CREATED IN SUBROUTINES BETAB AND BETAU.

THIS IS PART OF THE INTERATIVE LOOP, THE E STEP.

I A P X l VECTOR OF CONDITIONAL MEANS. ,

S A K X P MATRIX OF GROUP EFFECTS. ;

A P X P WEIGHTING FACTOR CALCULATED FROM THE Q'S. ,

S A VAR-COV OF THE IND LEVEL MATRICES, OM AND PS. ,°
P
P
F
F

g
n
o
g
c

S

I

S A KP X P WEIGHTING FACTORS FOR THE GROUPS.

S

Il .

3
0
3
0
3
6
0
3
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3
6
1
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3
6
3
6
0
1
-
0

BUDDYl-O ;

BUD1: MMP(LA*OM*LA'+PS) ;

BUDDYl-BUDDY1+1 ;

MFINV(MM) ; *INV OF WITHIN VARIANCES - P x P;

IF NROW(PAT) EQ 1 THEN LINK BETAB ;

ELSE LINK BETAU

DO I-l TO K

C-(P*I)-P+1

D-P*I ;

B-PH*L'*Q(C:D,)*(YM(C:D,)-U) ;

TH-TH//B ; *COND THETA - KP x P;

END ;

FREE B ;
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SECTION 3 - PART 3

THIS PART CALCULATES THE MAXIMUM LIKELIHOOD VALUES FOR PH,OM AND PS

USING THE DATA AND THE CONDITIONAL VARIABLES. (M-STEP). THIS PROGRAM

WILL KEEP LOOPING TO THE LAST PART UNTIL THE DIFFERENCES IN PH

OM AND PS AND NEW ESTIMATES OF PH, OM AN PS ARE LESS THAN .01.

11. ONE IS THE DIFFERNECE BETWEEN PH ON THE LAST ITERATION AND

THE NEW ESTIMATES OF PH.

12. TWO IS THE DIFFERNECE BETWEEN OM ON THE LAST ITERATION AND

THE NEW ESTIMATES OF OM.

'13. THREE IS THE DIFFERNECE BETWEEN PS ON THE LAST ITERATION AND

THE NEW ESTIMATES OF PS.

*
$
*
*
$
*
%
*
$
*
$
$
*
fi
-

VE— J(P,P,0) ;

B - J(P,P,0) ;

XX! J(P,P,0) ;

HH-LA*OM*LA' ;

II-LfiPH*L' ;

DO I-l TO K ;

C-(P*I)-P+l ;

D-P*I ;

CC-(S*I)-S+1 ;

DD-S*I ;

FF-LflTH(CC:DD,)+U ;

GG-Q(C:D.)*W*Q(C:D.) ;

KK-II+((1#/NK(I,))*HH) ;

VE-VE+(Q(C:D.)-Q(C:D.)*( (YM(C:D.)-U) * (YM(C:D.)-U)' - W )*Q(C:D.)) ;

AFMfiNK(I,)*(SS(C:D,)-(YM(C:D,)*FF')-(FF*YM(C:D,)')+(FF*FF'))*M ;

B-B+((l#/NK(I,))*GG+M*L$PH*L'*Q(C:D,)) + A ;

XXPXX+(PS*A*PS+(NK(I,))*((1#/NK(I,))*HH*M*HH-2*KK*Q(C:D,)*W

+10<*(GG-Q(C:D.))*KK)) ;

END ;

ONE--((1#/K)*(PH*L'*VE*L*PH)) ; *EST OF PHI (GROUP LEVEL) - S X S;

TWO-(OM*LA'*(B*(l#/N)-M)*LA*OM) ;

*EST OF OMEGA (IND LEVEL) - R X R;

THREE-DIAG(W-PS*M*PS+II+(I#/N)*XX) ;

PH-PH+ONE ; *EST OF PHI (GROUP LEVEL) - S X S;

OMhOM+TWO ;

PS-DIAG(PS+THREE)

PHD-DIAG(PH)<>ZERO2

OMD-DIAG(OM)<>ZERO3

PSD-DIAG(PS)<>ZEROI

PH-PH-DIAG(PH)+PHD

OM-OM-DIAG(OM)+OMD

PS-PS-DIAG(PS)+PSD

FREE TH Q W B VE XX B II

IF BUDDYI GT 250 THEN GO TO FINALI

IF MAX(ABS(ONE)) LT 0.01 AND MAX(ABS(TWO)) LT 0.01 AND

MAX(ABS(THREE)) LT 0.01 THEN GO TO FINALI ;

ELSE GO TO BUDl ;

FINALI: PRINT BUDDYI PH OM PS ONE TWO THREE SEED ;

PRINT U ;
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IF CIRCLE LT 2 THEN GO TO BEGIN

STOP

*

* HERE ARE THE SUBROUTINES

*

* ALPHAU

*

ALPHAU: TOT -J(P,P,O)

DO I-l TO K

Tl -INV((PSI*(1#/NK(I,)))+PHI)

TOT -TOT+T1

Q -Q//T1

END

W -INV(TOT)

U -W*Q'*YM

FREE T1 TOT

RETURN

*

* ALPHAB

*

ALPHAB: Tl -INV((PSI*(l#/NK(1,)))+PHI)

Q -GRP @ Tl

W -INV(T1*K)

U -W*Q'*YM

FREE Tl

RETURN

*

* BETAU

*

BETAU: W - J(P,P,0)

DO I-l TO K

A-INV( (L*PH*L') + (MM*(l#/NK(I.))) )

Q-Ql/A

WhW+A

END

FREE A

WhINV(W)

U-W*Q'*YM

RETURN

*

* BETAB

*

BETAB: A!INV( (LRPH*L')

O -GRP @ A

W -INV(A*K)

U-W*Q'*YM

RETURN

*

+ (MM*(1#/NK(1.)))

' *MATRIX OF Q

*COND VAR FOR U

' *COND U

' *COND U

)

-I(PXP;

"
U
'
U
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PROC MATRIX

SEED - 101997

CIRCLE - O

PAT - 30 100

APPENDIX D

COMPUTER PROGRAM FOR THE ESTIMATION OF THE FOUR PARAMETER

LATENT MODEL IN SAS

SECTION 1 - PART 1

THIS SECTION CREATES THE SAMPLE DATASET FOR USE IN THE E-M ALGORITHM

STEPS. EACH DATA POINT CONSISTS OF THREE COMPONENTS, LATENT WITHIN

(OM), LATENT BETWEEN (PH) AND ERROR (PS). THE OBJECT IS TO USE

PATTERN MATRICES L AND LA TO CONVERT THE 3 X.3 LATENT MATRICES INTO

4 X 4 MATRICES OF OBSERVED VALUES. THE ERROR MATRICES ARE ALWAYS

4 X 4 MATRICES OF MEASUREMENT ERRORS OF THE OBSERVED VALUES.

THE NOMENCLATURE USED IN THIS PROGRAM IS THE SAME AS THAT

IN THE PROGRAM IN APPENDIX 3. REFER TO APPENDIX 3 FOR

DEFININTIONS.

l. SEED IS ANY RANDOM NUMBER USED TO CREATE RANDOM VALUES FROM A

RANDOM GENERATOR (NORMAL).

USED IN STUDY

lQQ_§EQy£S - 26298, 27309, 49329, 93369, AND 181449

3. RAT IS A Z X 2 MATRIX OF THE NUMBER OF STUDENTS IN THE

GROUPS. NOl HAS THE NUMBER OF SUBJECTS IN GROUPS - N02 HAS THE

NO OF GROUPS OF THAT SIZE.

FOR UNBALANCED 100 GROUPS: FOR BALANCED 100 GROUPS:

PAT-10 20/20 20/30 20/40 20/50 20; | PAT-3O 100;

4. QM IS THE PARAMETER OF THE WITHIN COVARIANCE MATRIX OF THE

POPULATION.

5. 23 IS THE PARAMETER OF THE BETWEEN COVARIANCE MATRIX OF THE

POPULATION.

6. PSI IS THE PARAMETER OF THE WITHIN ERROR COVARIANCE MATRIX OF

THE POPULATION.

6. 2S2 IS THE PARAMETER OF THE BETWEEN ERROR COVARIANCE MATRIX OF

THE POPULATION .

.
0

.
0

.
0

.
0

0a - 25 10 15/ 10 20 10/ 15 10 35;

PH - 64 8 40/ 8 5 7/ 40 7 107;

Ps1 - 5 0 0 0/ 0 6 0 0/ 0 0 11 0/ 0 0

Ps2 - 7 0 0 0/ 0 8 0 0/ 0 0 10 0/ 0 0

0

0 F
‘
P
‘

r
a
n
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PRINT OM PH P81 P82 ;

L - 1 0.5 0.5/

1 0.5 -0.5/

1 -0.5 0.5/

1 -0.5 -0.5;

LA- 1 0.5 0.5/

1 0.5 -0.5/

1 -0.5 0.5/

1 -0.5 -0.5-

EOM - L#0M*L'+PSl ;

EPH - LA*PH*LA'+PS2 ;

PRINT EOM EPH ;

'A'

* SECTION 1 - PART 2

*

* FOUR DIFFERENT VECTORS OF DATA ARE NEEDED, ONE FOR PH, ONE FOR OM

* ONE FOR PS1 AND ONE FOR P82. THESE ARE INDEPENDENT RANDOM VARIABLES.

* FOR LATER USE THE CHOLESKYS OF OUR PARAMETER MATRICES ARE NEEDED.

*

CHOLOM - HALF(OM) ;

CHOLPH - HALF(PH) ;

CHOLPSI - HALF(PSl) ;

CHOLPS2 - HALF(P52) ;

BEGIN: CIRCLE-CIRCLE+1 ;

A - J.(21700,1,0);

I-l;

L: A(I,l)-NORMAL(SEED);

I-I+1;

IF I<- 21700 THEN GO TO L;

z - a(l:3000,1)||a(3001:6000,1)||a(6001:9000,l) ;

21- a(21001:21100,1)||a(21101:21200,1)||a(21201:21300,1) ;

22-a(9001:12000,l)||a(12001:15000,l)

||a(15001:18000,1)||a(18001:21000,1) ;

Z3-a(21301:21400,l)l|a(21401:21500,1)

||a(21501:21600,1)||a(21601:21700,1)

TOTMI-NROW(Z)-l

TOTMIG-NROW(Zl)-l

*

* SECTION 1 - PART 3

*

* BY MULTIPLYING RANDOM DATA FROM A POPULATION WITH MEAN 0 AND VARIANCE;

* OF 1 BY THE CHOLESKY OF A MATRIX, A VECTOR IS CREATED WHICH WILL ;

* RECREATE THAT MATRIX. ;

* ;

Y - Z * CHOLOM ,

Yl- Zl * CHOLPH ,

Y2- 22 * CHOLPSl ;

Y3- 23 * CHOLPS2 ;

*

* SECTION 1 - PART 4

'k

* BY MULTIPLYING VECTORS Z AND 21 TO L AND LA, THE OBSERVED VALUES FOR

* FOR EACH INDIVIDUAL ARE CREATED. INSTEAD OF THREE MEASURES PER
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* INDIVIDUAL THERE WILL BE FOUR. (THE ERROR MATRIX WAS CREATED IN

*

X - Y * L' ,

X1- Y1 * LA' ,

Xl-XI+Y3 ;

X2-X +Y2 ;

FOR EACH INDIVIDUAL.

VARIANCE COMPONENTS.

I
'
M
-
#
0
3
6
3
6
3
9
!
!
-

MMhO;

II-l;

NN-I;

JJ: HHFHH+1;

CC-J.(PAT(II,1),1,1);

DD-(CC @ X1(NN,)) ;

YYldYYl//DD ;

NN-NN+1 ;

NKFNK//PAT(II,1) ;

IF MM LT PAT(II,2) THEN GO TO JJ

“MFG; II-II+1

IF NN LT PAT(+,2) THEN GO TO JJ

FREE MM NN II X1 Y Y1

FREE A OM PH P81 P82 TOTMIG

RD—X+YY1+Y2

FIN— (RD ' *RD)#/TOTMI

FREE X Y2 FIN YYl TOTMI Z 21 Z2 Z3

END OF SECTION 1

FOR THE FETCH COMMAND)

0
3
0
0
0
3
6
0
0
0
0
0
0
3
!
-

*PROC MATRIX

*FETCH RD

*FETCH LA

*FETCH L

*FETCH NK

*

*

SECTION 1 - PART 5

BY ADDING VECTORS X1 AND X2 TOGETHER, A TOTAL SCORE IS ACHIEVED

THESE SCORES OBVIOUSLY CONTAIN THE FOUR

ALL INDIVIDUALS IN EACH GROUP RECEIVE

THE SAME GROUP VECTOR (X1) AND A DIFFERENT VALUE FROM X2.

I Z 21 Z2 CC DD

AT THIS POINT IT BECOMES IMPORTANT TO REALIZE THAT ALL THE LINES

ABOVE DEAL ONLY WITH CREATING THE DATA FOR THIS ANALYSIS. THEY

CAN BE DROPPED IN USING THE EM ALGORITHM. TO USE THE REST OF THE

PROGRAM WITHOUT THE PRIOR LINES, THE FOLLOWING LINES MUST BE PLACED

AT THE TOP OF THE PROGRAM (REMOVING THE * FROM THE FRONT - SEE SAS

* TERMS OF ERRORS FOR EACH OBSERVED VARIABLES AND IS ALREADY 4 X 4.);

.
0

.
0

.
0

.
0

.
0

-
0

‘
0

.
0

.
0

‘
0

'
0

.
0

.
0

.
0

.
0

.
0

-
0

.
0
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SECTION 2 - PART 1

THIS SECTION USES THE EM ALGORITHM TO GET ESTIMATES OF THE

UNRESTRICTED MODEL. THE BETWEEN AND WITHIN VARIANCE-COVARIANCE

MATRICES ARE ESTIMATED WITH NO STRUCTURE APPLIED. THIS FIRST PART

* TURNS OUT THE SUFFICIENT STATISTICS FOR THE SAMPLE DATA NEEDED

* IN PART 2 AND IN PART 3.

*

;ZEROI - J.(NROW(L),NROW(L),0) ;

ZERO2 - J.(NCOL(L),NCOL(L),0) ;

ZER03 - J.(NCOL(LA),NCOL(LA),0) ;

ZEROl - DIAG(ZEROI) ;

ZER02 - DIAG(ZER02) ;

ZER03 - DIAG(ZERO3) ;

KPNROW(NK) ° *NO OF CLASSES - K

P-NCOL(RD) *NO OF OBSERVED VARIABLES - P

NhNK(+,) *NO OF TOTAL INDIVIDUALS - N

GRP-J.(NROW(NR),1,1) *VECTOR OF 1'8, X X 1

S-NCOL(L) *NO OF LATENT CLASS VARIABLES - S

RFNCOL<LA) *NO OF LATENT IND VARIABLES -R

D-O

B -J(P,P,0)

Bl—J(P,P,0)

DO I-l TO K

C -D+1

D -C+NK(I,)-l

A -RD(C:D,)

AZ-A(+.)*(1#/NK(I.))

Yap YM//A2' ; *GROUP MEANS

EE - (A'*A)

SS-SS//(EE*(1#/NK(I.)))

B -B+EE-NK(I,)*A2'*A2

Bl-((A2'*A2)*NK(I,))+B1 ; *SS/K OF THE GROUP MEANS

$
3
6
-
$
3
6
?
!
-

‘
0

.
0

.
0

.
0

‘
0

-
0

.
0

.
0

'
0

.
0

.
0

.
0

’
0

-
0

‘
0

.
0

‘
0

'
0

'
0

‘
0

5

*

* SECTION 2 - PART 2

*

* STARTING VALUES ARE NEEDED FOR THE BETWEEN GROUP COVARIANCE MATRIX

* PHI AND THE WITHIN COVARIANCE MATRIX PSI. THE MLE FOR EQUAL N'S

* WILL BE USED WITH NR (NUMBER OF STUDENTS IN A GROUP) REPLACED BY THE

* HARMONIC MEAN OF NR.

*

;NH-(1#/SUM(INV(DIAG(NK))))*K ;

PSI-((RD'*RD)-Bl)*1#/(N-K) ;

PHI-(1#/NH)*((Bl-(RD(+.)'*RD(+.)*(1#/N)))*1#/(K-1)-PSI) ;

FREE s NH A ;

'k

* SECTION 2 - PART 3

*

* THIS PART CREATES THE CONDITIONAL VALUES FOR THE MEAN AND GROUP ;

* EFFECT FOR PHI AND PSI ESTIMATES. THERE ARE FOUR IMPORTANT VARIABLES

* CREATED HERE. THEY ARE CREATED IN SUBROUTINES ALPHAB AND ALPHAU.

* THIS IS PART OF THE INTERATIVE LOOP, THE E STEP.

*
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BUDDY-0

BUDzBUDDYhBUDDY+l

IF NROW(PAT) EQ 1 THEN LINK ALPHAB

ELSE LINK ALPHAU

E-J(P,P,0)

FhJ(P,P,0)

*

* SECTION 2 - PART 4

*

* THIS PART CALCULATES THE MAXIMUM LIKELIHOOD VALUES FOR PHI AND PSI

* USING THE DATA AND THE CONDITIONAL VARIABLES. (M-STEP). THIS PROGRAM

* WILL KEEP LOOPING TO THE LAST PART UNTIL THE DIFFERENCES IN PHI

* AND PSI, AND THE NEW ESTIMATES OF PHI AND PSI ARE LESS THAN .01.

*

DO I-1 TO K ,

C -(P*I)-P+l ,

o -P*I ;

G-Q(C=D.)*(W+(YH(C=D.)-U)*(YM(CID.)-U)')*Q(C=D.)-Q(C=D.) ;

s -E+1#/NK(I,)*G -

F -F+G ,

END .

FREE A ,

EE-(B-(N-K)*PSI) ,

ONEl-(PHI*((1#/K)*F)*PHI) ,

PHl -PHI+ONE1 ,

TWOl-((l#/N)*(PSI*E*PSI+EE)) ,

PSl -PSI+TWOl ;

PHlD-DIAG(PH1) ;

PSlD-DIAG(PSl) ,

PHlD-PHlD<>ZEROl ,

PSlD-PSlD<>ZEROl ,

PHI - PHl-DIAG(PH1)+PH1D ,

PSI - PSl-DIAG(PSl)+PSlD ,

FREE PSl Q W PHl PHlD PSlD G E F EE ,

IF BUDDY GT 25 THEN GO TO FINAL;

IF MAX(ABS(ONE1)) LT 0.01 AND MAX(ABS(TWOl)) LT 0.0l

THEN GO TO FINAL

ELSE GO TO BUD

FINALzPRINT BUDDY PHI PSI

FREE PSl ONEl TWOl U BUDDY

*

END OF SECTION 2

SECTION 3 - PART 1

I
'
M
-
0
*
!
-

* THIS SECTION USES THE EM ALGORITHM TO GET ESTIMATES OF THE

RESTRICTED MODEL. PH, OM, PSl AND P52 ARE ESTIMATED WITH STRUCTURE

* APPLIED TO THE MODEL. THIS FIRST PART MAKES USE OF PHI AND PSI FROM

* THE LAST SECTION TO GET OPENING ESTIMATES OF PH, OM, PSl AND PS2.

3'
.

.
0

.
0

‘
0

-
0

.
0

-
0

.
0

.
0

-
0

-
0

-
0
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Y1-INV(L'*L)

Y2-INV(LA'*LA)

PHin*L'*PHI*L*Yl

OM-Y2*LA'*PSI*LA*Y2

PSl-PSI-LA*OM*LA'

PS2-PHI-L*PH*L'

*NOTE 'THESE ARE THE STARTING VALUES IN THIS STEP' ;

*PRINT PH OM PSl ;

*

* SECTION 3 - PART 2

'A'

* THIS PART CREATES THE CONDITIONAL VALUES FOR THE MEAN AND GROUP

* EFFECT FOR PH, OM, PSI AND PS2. THERE ARE FOUR IMPORTANT VARIABLES

* CREATED HERE. THEY ARE CREATED IN SUBROUTINES BETAB AND BETAU.

* THIS Is PART OF THE INTERATIVE LOOP, THE E STEP.

*

BUDDYI-O

BUD1: MMP(LA*OM*LA'+PSI)

AA-(L*PH*L'+P82)

BUDDYl-BUDDY1+1

MPINV(MM) ; *INV OF WITHIN VARIANCES

IF NROW(PAT) EQ 1 THEN LINK BETAB

ELSE LINK BETAU

.
0

.
0

.
0

'
0

.
0

.
0

P X P

* SECTION 3 - PART 3

*

* THIS PART CALCULATES THE MAXIMUM LIKELIHOOD VALUES FOR PH OM PSI P82

* USING THE DATA AND THE CONDITIONAL VARIABLES (M-STEP). THIS PROGRAM

* WILL KEEP LOOPING TO THE LAST PART UNTIL THE DIFFERENCES IN PH, OM,

* PSI AND PS2 AND THEIR NEW ESTIMATES ARE LESS THAN .01.

*

DO I-l TO K ;

C-(P*I)-P+1 ;

D-P*I

LV-PH*L' *Q(C: D, )*(YM(C: D, ) -U) ;

'I'H-T'W/Lv ;

END ;

FREE LV ;

CVE- J(P,P,0) ;

BVE- J(P,P,0) ;

DO I-l TO K ;

C-(P*I)-P+l ;

D-P*I ;

CC-(S*I)-S+l ;

DD-S*I ;.

Z-LiTH(CC: DD, )+U

AVE-NR(I, )*M*(SS(C: D, )- (YM(C: D, )*Z' )- (Z*YM(C: D, )' )+(Z*Z' ))*M ;

BVE-BVE+(Q(C: D, )*( (YM(C: D, ) -U) * (YM(C: D, ) -U)' +W)*Q(C: D, )--Q(C:D,) );

CVE-I#/NK(I,)*( Q(C:D,)*W*Q(C:D,)-Q(C:D,) ) +CVE +AVE ;

END ;

E-(N-K)*M ;

ONE-((1#/K)*(PH*L'*BVE*L*PH)) ;

TWO-((1#/N)*OM*LA'*(CVE-E)*LA*OM) ;

THREE-DIAG((l#/K)*(PSZ*BVE*PSZ)) ;
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FOURPDIAG((l#/N)*(PSl*(CVE-E)*PSl))

PH-PH+ONE

OMhOM+TWO

PSl-DIAG(PSl+FOUR)

PSZ-DIAG(P82+THREE)

PHD-DIAG(PH)<>ZER02

OMD-DIAG(OM)<>ZERO3

PSAFDIAG(PSl)<>ZEROl

PSB—DIAG(P82)<>ZEROI

PH-PH-DIAG(PH)+PHD

OMFOM-DIAG(OM)+OMD

PSl-PSl-DIAG(PSl)+PSA

PSZ-PSZ-DIAG(PS2)+PSB

FREE Q W CVE AVE BVE TH

IF BUDDYl GT 250 THEN GO TO FINALl

IF MAX(ABS(ONE)) LT 0.01 AND MAX(ABS(TWO)) LT 0.01 AND

MAX(ABS(THREE)) LT 0.01 AND

MAX(ABS(FOUR)) LT 0.01 THEN GO TO FINALl

ELSE GO TO BUDl

FINALl: PRINT BUDDYl PH OM P81 P82

FREE NK RD YM SS N K R 8

IF CIRCLE LT 3 THEN GO TO BEGIN

PRINT SEED

STOP

*

* HERE ARE THE SUBROUTINES

*

* ALPHAU

*

ALPHAU: TOT -J(P,P,0)

DO I-1 TO K

T1 -INV((PSI*(1#/NR(I,)))+PHI)

TOT -TOT+T1

Q -Q//'1'1

END

W -INV(TOT)

U -W*Q'*YM

FREE T1 TOT

RETURN

*

* ALPHAB

*

ALPHAB: T1 -INV((PSI*(1#/NK(1,)))+PHI)

Q -GRP @ T1

W -INV(T1*K)

U -W*Q'*YM

FREE T1

RETURN

*

* BETAU

*

BETAU: W - J(P,P,O)

DO I-l TO K

‘
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A~INV( AA + (MM*(1#/NK(I.))) ) ;

Q—Q//A ; *MATRIX OF Q - KP X P;

W-W+A ;

END

FREE A

W-INV(W) ; *COND VAR FOR U -

U-W*Q ' *YM ; *COND U -

RETURN

*

* BETAB

*

BETAB: A.INV( AA + (MM*(1#/NK(1.))) )

Q -GRP @ A

w -INV(A*K)

U-w*Q'*YM ; *COND U - P X P;

RETURN :

*

ul-

"
U
'
d

N
M

'
U
’
U
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