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ABSTRACT

A FINITEW APPROXIMATION

OF THE FLOW IN A TOROIDAL TUBE

BY

ADEL BOULES

The problem is to compute the velocity field of an incompressible

viscous fluid in a toroidal pipe under the effect of constant pressure

gradient in the axial direction. The complete set of momentum and

continuity equations were derived. The motion depends on two

parameters: The Reynolds number and curvature ratio.

An appropriate function space was introduced. and a variational

formulation of the problem in that space was defined.

A proof of existence and uniqueness of the solution was then

presented.

Using a finite element approximation. the continuous infinite

dimensional problem was replaced by a finite dimensional (yet

nonlinear) approximate problem.

Two methods were used to solve the finite element equations:

(a) A direct linearization iterative scheme which was shown to

converge to the solution of the approximate problem. This scheme has

the rather serious drawback that at each iteration one must compute and

solve a different set of unsynlnetric linear equations.



(b) A least squares formulation was presented. In this

formulation the solution of the problem is the minimizer of a certian

"cost" functional. A conjugate gradient scheme was found most

efficient in finding the minimizer of the cost functional and hence the

solution to the problem.

The great advantage of this scheme is that during the different

steps of the conjugate gradient scheme. one solves the same symmetric

positive definite banded matrix equation for different forcing terms.

Thus we need to compute and factor this constant matrix only once

during the entire computation.

Being symmetric and banded. the mtrix is easy to store compactly

thus allowing the use of a fine mesh. and consequently producing

greater accuracy. Because the untrix is also positive def inite. it can

be factored by the stable Choleski decomposition.

Both schemes were implemented and the velocity field was computed.

The two schemes produced almost identical results for all cases

computed. Excellent agreement is also achieved in comparison with the

results of previous investigators. I

A perturbation solution of the equations of motion was then

obtained for small curvature ratios and low Reynolds numbers. These

solutions also compare well with the numerical solutions described

above .
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CHAPTER 1: INTRODUCTION AND FORMULATION

1.1 Description of the problem

This work is concerned with the flow of an incompressible viscous

fluid in a toroidal pipe. Duct flows are important in many engineering

and biological applications. such as piping systems. the design of heat

exchangers. and the study of blood flow in arterial systems. The

geometry and coordinate system are shown in Figure 1. where O is the

center of the torus. and C is the center of the circular cross section.

Let one of the independent variables be the arc length X3 of the center

line of the pipe measured from a fixed point F. and Let T. N. B be unit

vectors along the tangent. normal and binomial of the center line. thus

N and B lie in the plane of the cross section. and for a typical point

Q in that plane we have

Q = xln + x213

The flow is assumed to be laminar. steady. fully developed. and

driven by a constant pressure gradient in the axial direction. We

therefore assume that the pressure P is a linear function of X3. and

that the velocity components are functions of X1 and X2 only.
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1.2 Governing equations

The major portion of this work is concerned with a circular cross

section. Let 2 be the radius of the torus. a be the radius of the

cross section. and let x = é-be the curvature of the tube. As was done

in Vang (1981). we computed the metric tensors (gij) and (gij). and the

Christoffel symbols F1 For a torus the system is orthogonal. The

jk'

metric tensors are

- 11 _ -1

O 1 O O 1 0

O 0 J O O 1/J

where J = (1 - KX1)2

There are only two non-zero Christoffel symbols

For j = 1. 2. 3. let uJ be the velocity component in the xJ direction

and let VJ be the tensorial components in the same directions. thus

V1 = U1. V2 = U2. V3 = U3 / «51 The covariant velocity derivatives are

given by

ik62v1(av“
V.j =3;E5;3 + --{Fav“) - Fa'(k(ax7+ fivfi) + F;“(5x3 +r§bv“)

where summation over repeated indices is understood.
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A list of the velocity derivatives Vijk is given in appendix A.

We now substitute the above in the tensorial form of the Navier-Stokes

equations:

iav1 iva _g_-’aaP kji
V(‘a—XF+raJ )= P —J-+ vg VJk. i=1. 2. 3.

i

'ali'+r;iva=
6X

Where p is the density. and v is the coefficient of kinematic

viscousity 'both. assumed constant. After some rearrangement. the

momentum equations can be written as

2

(1.1) (mute—1+ Uzi) u1 + .403)?" = - £§—+ v div (73'le ) - —U1

ax J5
ax2 1

g
:

(1.2) V5(Ul;§T-+ 026:2) U2: J—pa:; + v div(v5'vU2)

 

2

.r 1 6 U26 ”3 103 1 a?

and the continuity equation

(1.4) infill) + 2«7592) = o
ax 6X2

where for a scalar function ¢(X1 X2)

=N_a£ _5‘£.B

axl axzB



and for a vector function 4’ = («91. 4’2. «93)

1 2

div o = 92T-+ 935- (vi = ¢1(X1. X2))

ax ax

Thus the gradient v and the divergence div. and later the Laplacian

are all two dimensional operators. This convention will be adopted

throughout the thesis to simplify notation.

We normalize the independent and dependent variables as follows:

1 J v 122.
X -axJ.U '5-11". P: 2 p

a

Substituting in equations (1.1) — (1.4) yields the dimensionless

momentum and continuity equations

3
(1.5) VAT-(£1153:- + u --a—)u1 + eu2 1

2
-JjJZP...d1 Jj .. 2.6x1 v( vul) Jj' u

253—29112 - {T g + div(~/.Tvu2)(1.6) «flulag—l + u

1 2

(1.7) (Hula-x6: + “26—63(2‘13 -. eulu3 = 4R 4- div (VJ-VH3) - 3- u:3

(1.8) diiju) = o

-a3 a?
where R = — is the Reynolds' number.

4p02 6X3
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e = a/E is the curvature ratio. and now vfi'= 1 - exl.

Equations (1.5) - (1.8) are solved subject to the boundary conditions

(1.9) u = 0 1:1, 2, 3,

where F is the boundary of the unit disk

2 2
0—{x1+x2(l}

Note that when e = 0. equations (1.5) - (1.9) reduce to the equations

describing the motion in a straight pipe.

The velocity component u will henceforth be called the axial
3

velocity (or primary flow). and the transversal velocities ul. u2 will

be referred to as the secondary flow. Most of this work is devoted to

investigating efficient approximations of equations (1.5) - (1.9).

1.3 Literature review

In this section we give a brief account of some studies related to

our work. An extensive compilation of references can be found in the

review by Berger. Talbot. and Yao (1983).

We begin by giving an equivalent set of equations to (1.5) - (1.7)

which uses the Dean number D = 4Rv22; and the curvature ratio e as the

governing parameters. If in equation (1.5) - (1.7) we substitute

u

u3 = -§-and drop the prime. we obtain the following set of equations.

2

(1.10) Jflul-a-g—li» u2 522-) 111 + -;-u3 = — Jib-33+ div(\/.Ivu1) - Eul



J3 E + div(\/.Tvu(111) «3(u15x_1+u2afiz)u2 =- 6x2 2)

(:2

(1.12) Jfiulaxl + u2 6x2) u:3 - eu1u3 = D + div (\[I- vu3) - JET-“3

(1 . 13) div(u~/J') ll 0

where D = M is the Dean number as defined by McConalogue and

Srivastava (1968). Clearly equations (1.10) - (1.13) are completely

equivalent to equation (1.5) - (1.8) except for renaming the parameters

and rescaling the axial velocity “3'

Now if we set 6 = O in equations (1.10) - (1.13) we obtain a

conlnonly used set of approximte equations describing the motion in

"the limit of zero curvature".

_6__ 6 1 2 fl
(1.14) (u1+ u —) 111 + u = - + Au

2 6x2 2 3 6x1 1

_a_ .2. - - .92
(1.15) (111 (ix + u2 6x2) u2 .. 6x2 4- Au2

(1.16) (u1 33% 1121-) 113 -n+ Au3

1 “"2

(1.17) div u = 0

where A = i + i is the 2 dimensional Laplacian.

2 2

“"1 “"2

Equations (1.14) - (1.17) will henceforth be referred to as Dean’s
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equations for the motion in the limit of zero curvature. The same

equations can be seen to be equivalent to the equations used by

McConalogue and Srivastava (1968). Greenspan (1973). Collins and Dennis

(1975). Dennis and Ng (1982) and Dennis (1980). except that the authors

of these works employed a polar coordinate system in the plane of the

cross section. and used a vorticity-stream function-axial velocity

formulation. The authors of the papers cited above used a variety of

numerical methods to solve Dean’s equations. and among them Collins and

Dennis (1975) seem to have achieved the most accurate set of results

covering the range 96 g D S 5000. The accuracy of their calculation

was later confirmed by the study of Dennis (1980) and that of Dennis

and Ng (1982).

Collins and Dennis (1975) also report very good agreement with

experimental results and results obtained by applying boundary layer

methods which they documented in their paper. .

We believe that there is enough evidence of the reliability of the

results of Collins and Dennis (1975). and therefore take their results

as a reference set of solutions against which we measure the accuracy

of our solutions. It should be noted that all the references mentioned

above deal with the flow in the limit of zero curvature. and that none

of them addresses the effect of curvature on the flow.

There are a few works that attempt to study the effect of

curvature. Truesdell and Adler (1970) used a finite difference method

to obtain solutions up to D = 3578 and e = .1. with a set of equations

first derived by Cuming (1952). The equations used by Truesdell and

Adler (1970) can be manipulated into equations (1.5) - (1.8) of this

work. The results of Truesdell and Adler (1970) however were not

sufficiently accurate beyond D = 1131. as the authors of that work
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noted in their paper. Most of the works mentioned above used finite

difference methods which often requires a great number of mesh points

to achieve reasonable accuracy. which in turn puts tremendous bearing

on computer memory and execution time (Collins and Dennis (1975) used a

finite difference mesh with 2921 points and achieved the same accuracy

we did in this work with a finite element mesh of 489 nodes). Many of

the above authors also used a vorticity - stream function - axial

velocity formulation. and were confronted with the difficulty of

approximating the axial vorticity at the boundary of the region.

Finite difference approxinations also suffer the further difficulty

that for different cross sections. different formulations of the

problem must be used. For example. Collins and Dennis (1975) used a

polar mesh for a circular cross section and were forced to use the

equations of motion in polar coordinates. and later Collins and Dennis

(1976) had to convert the equations to rectangular form in order to

solve the flow problem in a triangular duct.

The switching of formulation often requires substantial

modifications of numerical techniques and computer code. We view the

problem of duct flow as essentially one problem regardless of the shape

of the cross section. and consequently believe that a unified approach

is needed to avoid redundancy. The situation becomes worse if one uses

a mesh that does not conform to the shape of the boundary. An example

of this is the work of Truesdell and Adler (1970) who used a

rectangular finite difference mesh to compute the flow in tubes of

circular and elliptic cross sections. and there they used a number of

fictitious boundary points to avoid the difficulty of approximating

derivatives near the boundary. Works on duct flows in cross sections

other than the circle include Cuming (1952). Truesdell and Adler
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(1970). Joseph. Smith and Adler (1975). Collins and Dennis (1976).

1.4 Objectives and Organization

Our first goal in this work is to give an accurate mathematical

description of the problem. In chapter 2 we introduce appropriate

solution spaces and give an accurate variational formulation of

equations (1.5) - (1.8). We then consider the questions of existence

and uniqueness of the solution. The main objective of this work is to

build efficient numerical schemes to solve equations (1.5) - (1.8). and

since we believe that finite difference methods are rather cumbersome

and expensive for the reasons stated in section 1.3. we utilize finite

element methods to achieve our goal. Our solution method avoids all

the problems classically associated with finite difference methods. and

we believe it is far more efficient than methods used by earlier

investigators.

In Chapter 3 we describe a finite element scheme to reduce the

infinite dimensional problem to a finite dimensional nonlinear problem

whose solutions are described in Chapters 3 and 5. and there we also

give some details on the practical implementation of those schemes.

which we hope will cast some light on the advantages of finite element

approximations. and hence the computational efficiency of our solution.

In chapter 4 we present our error analysis. and give a bound on

Ilu - uhll. where u is the exact solution. uh is the approximate

solution. and II 9 II denotes the norm in 111(1))3

Numerical results and the physical discussion are given in Chapter

6. In Chapter 7. we apply a perturbation method to obtain solutions

for the flow in a tube of elliptic cross section. and use our scheme to
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generate a numerical solution of the same problem. This was done for

two reasons. On the one hand. it supplies further evidence that our

computation is accurate. and on the other hand it demonstrates the ease

with which finite elements are able to handle irregular boundaries. In

particular the same scheme and the same computer program can be used to

solve the problem for any shape of the cross section at the small

additional expense of generating a finite element mesh to discretise

the cross section.

From the physical point of view. it is our aim to show the effect

of curvature on the velocity field. and to show the significant

deviation of our solutions from those obtained in the limit of zero

curvature.

We also study the effect of curvature on the flow rate. and

discuss the adequacy of each of the parameters R and D to describe the

motion.



CHAPTER 2: EXISTENCE AND UNIQUENESS

2.1 Preliminaries and notation

In this chapter we use standard functional analytic notations.

For example if B is a Hilbert space. we denote the inner product by

(...). and distinguish the duality bracket between H and B” by the

superscripted bracket (...)*. thus for x e H and f e H“. (f.x)* = f(x).

The reason for this is that we do not always identify a Hilbert space

with its dual in the canonical way via the Riesz-Fisher theorem.

Throughout the chapter. 0 is the open unit disk. and all integrals are

taken over 0. We also use standard notations like 63(0) for Cu0

functions of compact support in 0. and 113(0) for real valued functions

on 0 which vanish in the sense of trace on the boundary of 0. and whose

generalized derivatives are also in L2(0). with norm defined by

2 2 an 2 du 2 1

Hull = Ilullo+ Ila-{Hy Hag-Ho iorueuocm

where II° II denotes the usual norm on L2(0). II° I ID will be used for

O

the norm in Lp(0). and to distinguish the norm on 113(0). we simply

denote the norm on the latter space by II- I I. We also use standard

notations like 003(0)3 to denote the space 63(0) x 03(0) x 03(0) and

similarly for 115(0)? Hé(0)3 etc. Product spaces are given the product

norm. Thus for u = (ul. u2. u3) e llama (vector functions will be

denoted by boldface letters)

M
O
D

2
Hull = Mum’-

1:1

12
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The continuity equation

6 iii 6 JJ‘

div(ui/j)=—(;1‘—l-—).+_(:_i2._)=o

suggests the introduction of the following space in which the above

equation is automatically satisfied.

Difinition 2.1.1:

For 0 S e < 1. define

V. = {u e 113(0)“: div (um = 0} ; 115(0)“

Observe that Vo

divergence-free vector fields which has been studied in detail in Temam

= {u e Hé(0)2: div u = 0) is the space of

(1984) and Girault and Raviart (1979). Note that Va is the kernel of

the linear operator Le: Hé(0)2 -» 19(0) defined by Len = div(m/.T). Note

also that Le is the composition div 0 Me where div is the divergence

operator and Me: lrl(1)(0)2 -b ll(l)(0)2 is the multiplication operator defined

by

g.Mu

e

Lem 2.1.1:

V6 is a closed subspace of 06(0)? Thus V6 is a Hilbert space

with the norm II-II.
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Proof: Observe the the divergence operator is continuous. and that Me

is a linear homeomorphism on llcl)(0)2 since J5. fl: 6 Cw(0). Thus L6 is

J

bounded and V6 = Ker Le [J

Definition 2.1.2:

2 2 .
Lo(0) = {p e L (0). [pdx = 0}

Learn 2.1.2:

The linear operator Le defined before lenlna 2.1.1 maps [1(1)(0)2 onto

2
LO(0).

Proof: Clearly for u e l-l(1)(0)2 we have

[div(u\/j)dx = - I {Tum ds = 0.

l"

l 2 1 2 2
since u 6. 110(0) . Thus Le maps l~l0(0) into L0(0).

By theorem 3.5 page 32 of Girault and Raviart (1979). the

divergence operator naps [1(1)(0)2 onto Lg(0). Hence given q 6. L(2)(0).

there exists v e 11(1)(0)2 such that div v = q. Set 11 = v/fi. Clearly

Leu = q B

Lem 2.1.3:

0° 2
V‘5 n 00(0) is dense in V6.

Proof: By theorem 3.8 page 36 of Girault and Raviart (1979).
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V0 n C370)2 is dense in V0. The result now follows directly since ME

is a linear hemeomorphism on Hé(0)2. El

We now define the velocity solution space:

Definition 2.1.3:

x = ve x 113(0)

Observe that the continuity equation (1.8) does not involve the third

veloctiy component u:3 and thus X is the natural space for a solution u

of equations (1.5) - (1.8) to exist.

Since X is given the product norm. and 03(0) is dense in. 113(0).

the following lenlna follows directly from lenlnas 2.1.1 - 2.1.3.

Lenlna 2.1.4:

(a) X is a closed subspace of Hcl)(0)3. and is therefore a Hilbert space

(b) The operator Le maps il(l)(0):3 onto Lg(0). and X = ker Le“

(c) X fl 63(0)3 is dense in X. D

Remark: The two dimensional operator Le is extended in the obvious way

aiulm aiuzm
Leu - T...T . u = (111. u2. us) a l-l(1)(0)3

2.2: Variational Formulation of the Problem

To motivate the variational definition of the problem. let us
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assume that smooth solutions (u.p) exist for equations (1.5) - (1.8).

Multiplying equations (1.5) - (1.7) respectively by wl. w2. w3 e Hé(0).

integrating over 0. we obtain the following equation after integrating

the viscous terms by parts and adding the resulting equations.

3
2 1 a d

I vu ° vwwfi dx + e I 3(u1w1+ u3w3) dx + 2 IVE wJ(u1§-:-+ u -—-) ujdx

j=l 26x2

+ e [ (u3u3w1 - u1u3w3)dx = - [Vp ' wVfi dx + I F 0 w dx

0

where u = (ul. u2. u3). w (wl. w2. 3). F = [O J. and

4R

3

F o I =J:1FJ'J = 4RW3.

The above equation can be written more compactly in the form

ao(u.w) + B(u. u. w) = - (Vp. who + (F. w)0

. 3

where (.'.)0 denotes the inner product in L2(0)3. vu. vw = E vu ° vw

i=1

and

(2.1) ao(u. w) = [vu - vw JJ' dx + e2 [ (ET-(“1'1 + u3w3)dx

3
6 6

(2.2) B(u.v.w) = 2 f vfivj(u1 5;—-+ u2 5;;)vjdx + ef(u3V3w1 u1v3w3)dx

J=l 1

We now define the variational form of equations (1.5) - (1.8) and refer

to the problem by (P).

(P) Find u e x and p e L(2)(0) such that
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ao(u.w) + B(u.u.w) = - (Vp. wVfi)“ + (F.w)* for every w e Hé(0)3.

In the above. (Vp. “(I)” is the duality bracket between [161(0):3

and Hé(0)3. thus Vp is viewed as a bounded functional on 113(0)3 defined

by (Vp. wVfi)” = - fp div (vvfi) dx. For the rest of this chapter

-1 3
F e HO (0) .

Proposition 2.2.1:

a0 is continuous. symmetric. bilinear. and coercive on B(l)(0)3.

Thus there exists a constant a > 0 such that

(2.3) acme) 2 a Ilul 12

Proof: The result follows immediately from the Poincare inequality and

the properties of V5. 0

Proposition 2.2.2:

B is well defined. trilinear and separately continuous on H5(0)3.

Thus the number B ) 0 defined by

B u.v.w . 1 3(2.4) B = sup { u v ' . u. V. w e Hb(0) }

is finite.

Proof: The trilinearity of B is obvious once we prove that all the

integrals appearing in the definition of B are finite.

Some of the integrals defining B have the form
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[fiwju dx(1$i$21$j$3)whereu v.chl)eH(0)_.l.
iax1 ' i' j

By the Sobolev imbedding theorem. B(l)(0) is continuously imbedded in

L4(0). thus ui. w

6v

and since d—xl e L2(0). the generalized Holder inequality guarantees the

i

is L4(0).andl|u1||4 s c lluill. IIw_,II.1 s Cllell.

finiteness of the above integrals. and together with the imbedding

theorem and the boundedness of J5 gives

IIrwJu.6.a—"=1I dxsc IlvII4 IluII4 II—lllosc llw II Ilu II IIv II

sCIIuII IIvII Ilwll.

In the above. the symbol C denotes different positive constants. The

other integrals involved in the definition of B have the form

[u1vkadx. Using a similar argument. one can show that

IIungkIdx s c ||u|| IIvII IIvII.

The above inequalities imply that IB(u. VI. III S C Hall IIvII IIwII

and the proof is complete. 0

Now that we lmow that problem (P) is well defined. we give an

equivalent form of the problem. Consider the following problem

(Q) Find u e X such that

ao(u.w) + B(u. u. w) = (F. w)” for every w e X
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Clearly if (u.p) is a solution of problem (P). then u is also a

solution of problem (Q) since div (u VJ.) = 0.

We now prove that the two problems are equivalent in the sense of

the fol lowing proposi tion.

Proposition 2.2.3:

Suppose u e X is a solution of problem (Q). Then there exists a

unique function p 5 [3(0) such that the pair (u.p) is a solution of

problem (P) .

Proof: Let us view Le as bounded linear operator from Bcl)(0)3 to

L(2)(0)*. where Lg(0)* is the dual of Lg(0) and the two spaces are

identified via the Riesz-Fischer theorem. Thus Le: l'l(1)(0)3 -b 13(0)” is

defined by

(Leu.q)* = I qLeu dx = I q div(u\/.I)dx. q 6 Lg(0)

By lelmiia 2.1.4.. L‘5 naps II(I)(0)3 onto L(2)(0)*. thus the range of Le

is closed. hence

(2.5) Range (LZ) = (ker 1.6)" = x”

* 2 ' 1 3 fl -1 3 + .

where Le: LO(0) 4 (110(0) ) = “0 (0) is the adjoint of Le and X is

the annihilator of x defined by x“ = {L e H31(n)3: l.(X) = 0}. Observe

that by definition

(8.31. n)” = new)" = Iq diva/fldx = - (vim/1')? q a L310)»: e 113(013
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Now assume that u e X is a solution of (Q). Define an element

L e H61(0)3 by (.(w) = a0(u.w) + B(u.u.w) - an)“. w e 113(9)?

By assumption L(w) = 0 for w e X.thus L e X+ and by (2.5)

L 5. Range (LZ).

Thus there exists p e Lg(0) such that L = L:p i.e.

a0(u.w) + B(u.u.w) - (r.v)" = (sz.v)” = -(Vp.w\/.I)*

for every w e 115(0)?

We have proved the existence of the function p promised in the

statement. The uniqueness of p follows from the fact that Le maps

i-l(1)(l'2)3 onto Lgm) . D

2.3: Existence

In this section. we prove that problem (Q) has a solution.

Uniqueness is discussed in the next section. First we need the

following properties of B.

Proposition 2.3.1

(a) B(u.u.u) = 0 for every u e X.

(b) B(u.u.v) + B(v.v.u) = B(u—v.u—v.v) for every u e X. v e X.

Proof: Assume first that u e X n C3(0)3. In this case we have

3
a 6

B(u.u.u) = 2 I (In (u —+ —)u dx =
1:1 j 16x1 26x2 .1
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3

2 “fl-u
l a a 2
_. __ + Ju __.)(u )dx = 1fu2d1v(m/j)dx =

2 1:1 16x1 26x2 1

.1.
2

I
I
M
W

n w 3 n
Now for u e X. choose a sequence u e X n C062) such that u -> u

in X; This is possible by lemma 2.1.4. The trilinearity of B yields

the identity

B(u-un. u-un. u-up) = B(u.u.u) - B(up. up. up) + B(u. un-u. up)

+ B(ug-u. up.u) + B(up. u. up-u)

If in the above identity we let n 4»¢. use the fact that B(up.up. up) =

O and the separate continuity of B (proposition 2.2.2). we obtain

B(u.u.u) = O which proves (a). The proof of (b) is trivial.

Definition 2.3.1:

We define the auxilliary trilinear form

2.6 B =2 J3 dx
( ) 1(u'V W) j=lI "1(ulaxl+ “26x2)vj

Observe that

(2.7) B(u.v.w) = Bl(u.v.w) + e f(u3v3wl — ulv3w3)dx

The proof of the following proposition is similar to that of

proposition 2.3.1 and is therefore omitted.

Proposition 2.3.2:

For u. v. w e X
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(a) Bl(u.v.v) -l O

(b) Bl(u.v.w) -Bl(u.w.v) 0

Proposition 2.3.3:

If a sequence “n in X converges weakly to an element u e X. then

for every v e X we have

lim B(un.un.v) = B(u.u.v).

[H on

Proof t We prove that every subsequence of the numerical sequence

B(un. u“. v) has in turn a subsequence that converges to B(u.u.v). We

first prove the proposition for v e X n C;(0)3. By equation (2.7) and

proposition 2.3.2 (b). the following is true

n n n n n n n n
B(u .u .v): B1(u .u .v) + e f(u:3 u3 v1 - u1 u:3 v3)dx

n
=-Bl(un.nu.vu)+e[(3un3 v1 -ulu3v3)dx

=_2 \U + dx-I- n n _ n n )dx
ng1] uJ(ulax—l- “3632)” e[(u3u:'3v1 u1u3v3

Since un is weakly convergent in X. IIunII is bounded. thus by the

Sobolev compact imbedding theorem. un has a subsequence u“k which

converges strongly in L2(0)3.

l
4uJu1 in L (0) asThusu -»u inL2(0) ask-H”. henceuJ

“k ““14

J J “1
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av

k -b 0°. and consequently flu?u1nka—vl-> {T ujui 5x1 in L1(0). since

1 1

and its derivatives are in I.”(0).

6x

v e C”0(l'l) and hence v

J J

The above shows that

lim B(unk. unk.v) = -Bl(u.v.u) + e f(u3u3vl - u1113v

Rain
3"!"

= B1(u.u.v) + e f(u3u3v1 - ulu3v3)dx = B(u.u.v).

To prove the result for v e X. choose v1 e X n Cm03(0) such that

IIv-vlll is "smll" and use the inequality

IB(un .uun.v) - B(u. u. v)I S IB(un .un.v)- B(un. un.v1)l

+IB(un. uvn.1) - B(u. u. vl)I+ [B(u.u.v1 ) - B(u.u.v)l D

Proposition 2.3.4: (apriori estimte)

A solution u of problem (Q) satisfies

a:

(2-8) Ilull S Ill-“ll la

where a is defined by (2.3) and HF“ = —— : w e X

llwll

Proof:

By assumption:

ao(u.w) + B(u.u.w) = (F.w)* for every w e X.
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Choose w = u and recall that B(u.u.u) = O. we obtain

ao(u.u) = (F.u)*.

2
llThus a Ilu S IIFII” IIuII and the result follows 0

Existence now follows from the theorem below. Its proof can be

found in Temam (1984) and Girault and Raviart (1979).

Theorem 2.3.5: (Existence)

Let H be a separable Hilbert space. Let ao be continuous.

symnetric. coercive bilinear form on H, and let B be a trilinear.

separately continuous form on H which satisfies

(a) B(u.u.u) = O for every u e H.

(b) lim B(un. u“. v) = B(u.u.v) for v e H and a sequence un converging

n-om

weakly to u in H.

Then for f 6 HT. the problem

ao(u.w) + B(u.u.w) = (f.w)* for every w e H

has a solution u in H. D

2.4: Uniqueness

x

Let the numbers a and B be defined by (2.3) and (2.4). and for F e X .

define
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fl .

(2.9) IIFII” = sup {4%§;f%_ll: v e X. v # 0}

v

Theorem 2.4.1: (Uniqueness)

If

* 2
(2.10) IIFII (a/p

then the solution u of problem (Q) is unique.

Proof: Let u. v be solutions of problem (Q).

Then for every w e X

x

ao(u.w) + B(u.u.w) = (F.w)

x

a0(v.w) + B(v.v.w) = (F.w)

subtracting the last equation from the one above we have

ao(u - v. w) = B(v.v.w) - B(u.u.w)

Selecting w'= u - v in the above equation and using proposition 2.3.1.

we obtain

ao(u - v. u - v) = B(u - v. u - v. v)

By definition of a and B it follows that

2

aHu-flFsalh-vn Hfll
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Since v is a solution. it satisfies the apriori estimate (2.8) thus

N

allu-v||2gEl-lfll IIu-vll2 i.e.
a

(a2 - burn") nu - m2 s O

The hypothesis of the theorem now implies that u u 5

Remark: In our problem. the functional F is the vector F = [O

on X by integration. thus

* 3

(my) = 2IFwdx=4RIw3dx

i=1 J J

Ilwdxl
and IIFII*=4Rsup{——3—:weX.wa£O

llwll

IIWII '

$Msup{—l-l-3—l-|2:wex.w#0 $41M?

W

0

Thus we have the following corollary which asserts the uniqueness of

the solution for "311311" Reynolds numbers.

2

 Corollary: For R ( a . the solution of problem (Q) is unique.



Chapter 3: THE APPROXIMATE PROBLEM AND ITS SOLUTION

3.1: Motivation and Statement of the Problem.

In this chapter we introduce finite element (F.E.) analogues of

the continuous problems (P) and (Q). Our F.E. formulation resembles

the well-known Taylor-Hood approximation of the Navier-stokes

equations. References on F.E. approximation of the Navier Stokes

equations include the works of Hood and Taylor (1973). Girault and

Raviart (1979). Glowinski and Pironneau (1979). Bercovier and Pironneau

(1979). Le Tallec (1980). and Glowinski (1984).

We use Co piecewise biquadratic polynomials to approximate the

velocity components. and Co piecewise bilinear polynomials to

approximate the pressure. The reference elements and their respective

basis functions are shown in Figure 2.

Let the domain 0 be approximated by a union Oh of elementary

rectangles. Observe that the unit disk 0 cannot be covered exactly by

elementary rectangles. and thus Oh it 0. In practice however. one uses

isoparametric elements to accomodate the curved boundary. and since in

this thesis we do not study the effect of using isoparametric elements.

we shall disregard the distinction between 0 and Oh. and assume that

O = flh'

As is usually done in F 0 E - approximations. we are thinking of a

family ( of tessilations of 0. indexed by the parameter h which is

7131:

the maximum diameter of an element in Th. We also assume that h -) O.

The precise assumptions on the family {Th}h will be stated in the next

chapter.

Let Q1 and Q2 denote respectively the spaces of bilinear and

biquadratic polynomials in two variables. and define the finite element

27
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v
4

2

I x(x-1)y(y-1)/4

. - - -1 2(1'1) N2 (x 1)(x+1)y(y )/

 x(x+1)y(y-1)/4

\
1

$
!

0
‘ U
L
J z

u

I

-x(x+l)(y-l)(y+l)/22

p

I

x(x+1)y(y+l)/4

L 

  
  

X N . -(x-1)(x+l)y(y+1)/2

8 9 a 6

N7 = x(x-1)y(y+1)/4

1 N8 = -x(x-1)(y-l)(y+l)/2

(-1,-1) 1L u - (x-1)(x+1)(y-1)(y+1)

1. 2 3 9

The reference element for the velocity and its basis functions.

 

 

   

Y

(1.1)

4 ._A. 3

M1 - (x-l)(y-l)/4

M2 = -(x+1)(y-1)/4

x M3 - (x+l)(y+l)/4

M4 - -(x-1)(y+l)/4

1‘: 2

(-1.-1)  
The reference element for the pressure and its basis functions.

The reference elements

Figure 2
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spaces HOh and 11h as follows:

(3.1) "(1”! = {uh e Co(fi): uh

 

e4';Q2.!.1h|r=0}

(3.2) 11., = {qh e c°(s‘i)= qh e 01. Iqh dx = 0}
 

In the above. e denotes a typical element. 1‘ is the boundary of 0. and

the integral in (3.2) is taken over 0.

Observe that "Oh is a subspace of Hcl)(0) and that "h is a subspace

of 13(0) (in fact is a subspace of 111(0)). The spaces (“(1)192 and

1 3

equation div (m5) = O is equivalent to the condition

are defined in the obvious way. Observe that the continuity

(3.3) I q div (us/fidx = O for every q e L§(0)

and in the approxinate problem we replace (3.3) by the discrete

condition that the approximate velocity uh satisfies

(3.4) fqh div (uhV/j) dx = O for every qh e "h

We now define the approximate solution space for the velocity as

follows:

(3.5) veh = (uh e (113,192: I qhdiv(uh\/.T)dx = O for every qh 6 Mb)

(3.6) . xh = v‘5h x “(luv
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Remrk: veh is not a subspace of V6. and consequently Xh is not a

subspace of X.

We now state the approximte versions of problems (P) and (Q) of

chapter 2 .

Problem (Ph)

Find u.h e (H311)3 and ph e uh such that

30(“h"h) * B(uh'uh’ h) = ‘(Vph' 'h‘mo + (F' b)”

for every wh 6 (H3193

I qhdiv (tuba/I) dx = o for every qh e uh

Problem (oh)

Find uh e xh such that

ao(uh. h) + B(uh.uh.wh) = (F.wh)*. for every 'h e Xh.

As in the continuous case. we show the equivalence of (Ph). and (Oh).

To achieve this we need a discrete analogue of lenlna 2.1.2 which

guarantees the existence and uniqueness of the pressure.

3.2: Brezzi-type condition

The proof of the following technical lemna can be found in

Bercovier and Pironneau (1979).
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Lemma 3.2.1:

If every element e 5 Th has at least one vertex which is not on

the boundary of 0. then there exists a constant C > O.

 

1 independent of

h such that

(VPh- 'h)o
1 2

Ilwhl lo

for all ph 5 lb. 0

Lemma 3.2.2:

If the assumption of lemma 3.2.1 holds. then for 6 "small enough".

there exists a constant C2. independent of h such that for all ph e Uh

( . w 45)
(3.7) sup “a“ h 0 = “h e (H3192. h 3‘ o 2 c2 llvphllo

llwhllo

 

Proof: Recall that VGD= l — exl. lel S 1. thus

(”h' 'h‘mo = (Vph’ 'h)0 _ e (”11' "1'h’0

Huh”. _ Ilwhllo llwhllo
  

 

(vph. uh). I(vph. wol 2 (wk, uh). llvphl Io llxlwhl lo 2
... e

"' e

Hth I0 :1th lo IIth I. ”th I.

 

(VPh' 'h)o
- . llvrhllo

Huh”.
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Thus by lemma 3.2.1 we have.

 

 

(VPh' 'h‘mo 1 2
sup : wh e (HOh) . h x 0 2

llwhllo

( . V)

SUP Vph ho: whe(H(l)h)2, hi0 ‘5 ”VPhHOZ

llwhllo

(Cl - E.) HvPhHO

Now take e < Cl' and set Cé = Cl - e. D

3.3: The Equivalence of (Ph) and (Qh)

Lemma 3.2.2 now implies the equivalence of (Pb) and (Qh):

Define Leh: (Héh)3 at]: by (Lehwh.ph)” = I phdiv (whv5)dx.'

Then the adjoint Lzh: uh -» ((Héhfl" is defined by

(Lthh' h)” = ‘ (”ph' 'h‘mo

x 1 3

Condition 3.7 implies that Leh is one-to-one. and hence Lehmaps (th)

onto I:. Now the proof of the following equivalence theorem is exactly

like that of proposition 2.2.3.

Theorem 3.3.1:

Problems (Pb) and (Qh) are equivalent in the following sense: If

(uh. ph) e Xh x lh is a solution of (Pb). then uh is also a solution of
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(Oh). Conversely if uh is a solution of (Qh). then there exists a

unique phe "h such that the pair (uh. ph) is a solution of (Ph.) D

Remrks :

(a) The space Xh is the kernel of the linear operator Leh' and thus if

N is the number of interior mesh points for the velocities. and M(< N)

is the number of mesh points for the pressure. then lh has dimension

.(01h)3 has dimension 3N and Xh has dimension 3N - M + 1.

1
(b) Let {NJ}J=1. {119:11 be the basis functions for HOh and Eh

respectively. Define a mtrix D = (D1.Dz) by

(3-8) D = I NJ—dex

__i_“
(3.9) 132: NJ 5x2 fidx

lSiSM-l. ISJSN

Then condition (3.7) implies that the matrix D has full rank (M - 1)

3.4: The Solution of the Approximate Problem.

We turn now to the question of existence and uniqueness of the

approximate problem (Qh). Observe that the restriction of the

trilinear form B to the space Xh does not have the properties given in

proposition 2.3.1. because the space xh is not a subspace of X. and

thus the elements of Xh do not satisfy the continuity equation exactly.



34

This makes problem (Qh) more difficult to study since for example the

apriori estimte (2.8) is no longer valid for the solution of (Qh).

However. at the additional cost of restricting the size of the forcing

term IIFII” more than we need for uniqueness (Condition (2.10) in

theorem 2.4.1). we can show that problem (Qh) has a unique solution uh

which satisfies the same apriori estimate as the exact solution u.

The following condition is a standing assumption in this chapter

and the following one:

2
1‘ a

(3.10) IIFII < 33

where a and B are defined by equation (2.3) and (2.4).

2

Definition: For IIFII" < 3‘5. let

 

(3.11) r = (a-«eZ-ebnrn") /2p

Observe that r is the snaller zero of the quadratic equation

Br2 - ar +IIFII” = O. and that

(3.12) a - Br ) O

(3.13) a - 2Br > 0

Bl IFII"
(3.14) = ———2- ( 1

(ct-Br)

Observe also that when condition (3.10) is satisfied. the exact
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solution u of the continous problem in unique. and by (2.8) it follows

 

that

HHP 2
(am) IhHs a =r-%}<r

Thus the exact solution lies in the ball

m={ue%mf=udlso

This suggests that we look for an approximate solution in Dr’ and

indeed there is a unique solution of (Qh) in Dr'

We begin with the following

Lemma 3.4.13

For uh e Xh. Iluhll S r. and for any L e XE. the problem

x

ab(vh. h) + B(uh’vh"h) = (L. h) for every 'h e Xh

has a unique solution vh.

Proof: The result follows from the Lax- Milgram theorem. since for all

vh e Xh we have

aoh’h' h) + B(uh'vhovh) 2 (“’5' luhl I) I lvhl '2 2 (a—Br) ”th '2

and a - Br ) O by (3.12). D

The above lemma allows us to make the following definition. Define a
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mapping ¢= Dr diXh by ¢(uh) = vh. where vh is the unique solution of

(3.16) ao(vh"h) + B(“h'vh"h) = (F"h)* for every 'h e Xh

Lemma 3.4.2:

The mapping ¢ defined above maps Dr into Dr'

Proof: If we choose 'h = vh in (3.16) we obtain

:1th l2(a - m s ao(vh-vh) + B(u.,mhwh) = Mb)" .<. IIFI I“ Ilvhll.

N

IIFII
mus||vhllgm=r D

Remark: Observe that every solution of problem (Qh) is a fixed point

of 0.

Proposition 3.4.3:

¢ is a contraction on Dr'

Proof: For uh 5 Dr’ define Auh e 2(Xh.X;) by

*.

(Auh(vh). h) = 0(vh"h) + B(uh‘vh"h)'

'ao("h' h) + B(uh'vh"h)|:
 

*

IlAuh(vh)|| =sup IIvII wheXh.wh#0 2

h

Iao(vh.vh) + B(uhw .vhu a(vh. h) - IB(uhwhwhH

llvhll llvhll
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m-pnqninmnzia-m)nmn

Since a - Br ) O (by 3.12). Auh is bounded away from zero. and is

therefore one-to-one.

Lem 3.4.1 states that Auh is also onto. The open mapping

theorem implies that Auh has a bounded inverse Au}:l and that

l

a-Br

 min Ingflls

Observe that now by definition ¢(uh) = AuglF. We now show that O is a

contraction: let url‘. u: be in Dr’ and let

A1 = Au; (i = 1.2).

We have A-1 - A-1 A-}.
-1

2 1 = A 2(A1 - A thus by (3.17)2)

l l- -1
(3'18) IlAz-AIIIS—EIIA1_A2”

(“*BP)

1 2

It is easy to check that ”Al - A2” S B Iluh - uhll.

N.. Ilocufii - ¢<u;>ll = Ila-gr - A'irll s IIA'; - A'ill llFll”$

BHHP 2 1 2 1
----§-||uh - uhll = kIluh - uhll.

(a-Br)

where k < 1 is defined by (3.14) 0

Theorem 3.4.4: Problem (g9 has a unique solution uh in Dr'

a
n
n
u
q
u
r
—
1
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Proof: The result follows directly from proposition 3.4.3 and the

remark preceeding it. D

3.5: A Fixed Point Scheme.

Proposition 3.4.3 provides the following practical scheme for

finding the solution uh of (Oh). Choose an initial approximation

ug e Xi n Dr' and define a sequence (ufi) (n 2 1). converging to uh by

“:+1 = ¢(“:) 1-0- given “2' u:+l is the solution of the linear problem

n+1

uh exh-

n+1 l

(3.18) ao(uh . h) + B(ufimfi+ . h) = (F. h)” for every 'h e Xh.

Again by an argument similar to the proof of proposition 2.2.3 it is

easy to show that lemma 3.2.2 can be used to show that problem (3.18)

is equivalent to the following problem.

Given u: e Xh n Dr' find ufi+1 e (H0h)3‘ pfifl e Uh such that

n+1 n+1

(3.19) ao(u:+1.wh) + B(uh’uh , h) = -(Vph "hy530 + (F.wh)*

1 3
for every 'h e (HOh)

(3.20) I qhdiv (“2”l Vfi)dx = 0 for every qh e Eh

Observe that the solution of (3.19). (3.20) can be obtained by solving

a linear system of algebraic equations which is constructed as follows:

let (N )N be the basis functions for H; and let {M )M-1 be the

1 i=1 h J 1:].

basis functions for Uh. then the space (H311)3 has the basis

”
-
2
1
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(3.21) ((N1.O.O). (0.N1.0). (0.0.Ni)}: 1

Clearly. equations (3.19) is satisfied for all wh e (HOh)3 if and only

if it is satisfied for all the basis functions (3.21). The same

applies to equation (3.20) and the basis functions M Thus if we1'

substitute the basis functions (3.21) in (3.19). we obtain 3 sets of

linear systems each containing N equations. Simiarly (3.20) gives rise

to a system of 11-1 equations. The combined system of 3N + M - 1

equations can then be solved for the nodal values of the velocities and

the pressure. The matrix of the system described above will be

referred to as the grand fluid mtrix. As an illustration. let us

describe explicity the equations that correspond to using wh = (0.0.111)

in equations (3.19).

Let ur'l = (“31:1 . “12:1. ugl). where for example

n+1_g N dltUn+l-( )T

“3h ‘ 1:1 “33 J' a“ e 3 ‘ “31' ° ° " “3N

be the nodal values of u3;1.'1he substitution wh = (0.0.111).

1 g i g N. yields the mtrix equation

(3.22) A3+1 Un+1 = c

h
where G is the column vector whose it component is (F.(O.0.N1))*. and

the (i.j) entry of A3” is

[VJ-vNi-VN
J

1 ax2

2 an 6N

+ (:75- ' “Elwin; + ‘5 Ni”? 51 + “g 4) dx'
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Similar equations can be derived by substituting (N1.0.0). (0,111.0) in

(3.19) and NJ in (3.20). Observe that equation (3.22) involves the

nodal values of “13:1 only. and thus the grand fluid matrix can be

rearranged into a block diagonal mtrix. Observe also that this is no

coincidence. indeed the triliniear form B was defined in such a way to

guarantee this nice feature of the grand fluid matrix. Other

definitions of B are possible. and for some of these definitions. the

existence proof given in chapter 2 can be greatly simplified. however.

such definitions lead to more dense matrices than the one described

above. The reader is referred to Taylor and Hughes (1981) for more

details on the computer implementation of F.E. method in flow problems.

3.6: The discrete Stokes Problem.

The continuous stokes problem associated with the flow under

investigation has the form

(SP) Find u e li(1)((l)3 and p e L3H!) such that

a0(u.w) = -(Vp.w\’j)* + (F.w)* for every w 5 113(0)?

div(m/.T) = 0

Again problem (SP) can be shown to be equivalent to the problem

($) Find u e X such that

a°(u.w) = (F.w)* for every w e X.

Problem (SQ) has a unique solution by the Lax-Milgram theorem.

The discrete form of problems (SP) and (SQ) will have great importance
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in clnpters 4 and 5. and hence deserve the brief description we give

below.

If we use the same F.E. approximations of u. p as was done in

section 3.1. one obtains the discrete versions of problems (SP) and

(s0):

(SPh) Find uh e (35193 and ph 45. uh such that

ao(u.h. h) = - (vph. thO + (F.wh)* for every wh 5 (H3193.

I qhd1V('h\/.T)dx = 0 for every qh e "11'

(80h) Find uh e Xh such that

}

x

ao(uh.wh) = (F.wh) for every wh 5 Kb

Equations (SPh) lead to the following system of linear equations for

the nodal values [11.02.U3 and P of ulh' u2h. “3h and (3h respectively.

      

’A o (1)1)T o‘ ' u1 ‘ ' c:1 ‘

1 “r
(3.23) o A (112) o 02 = (:2

' 131 132 o o P o

_o o .o A _ 03 . . G3 .

 

where the ith components of Cl. G2. G3 are given by

N

(cl)1 (F. (Ni.0.0)) .

N

(62)1 (F. (0.N..0))
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)1

(c3)! = (F. (0.0.N1)

D1 and D2 are defined by (3.8) and (3.9). and the (i.J) extries of A

and A1 are

2
6

A13 = [(VN1 ° VNJ J3"?—fiNiNJNX'

1
Aij = [in1 - VNJJI dx.

Observe that D = (D1. D2) has full rank. and that A and A1 are

syuInetric. positive definite. and by numbering the mesh nodes

appropriately A and A1 are banded with the band width considerably

smaller then the size of these mtrices. The practicalities involved

in solving (3.23) are outlined in appendix B.



CHAPTER 4: ERROR ANALYSIS

In this chapter we give an error bound on Iluruhll. where

throughout the chapter. u will denote the exact solution. and uh will

denote the solution of the approximate problems (Ph) and (Qh)'

Thus u e X satisfies the equations

(4.1) ao(u.w) + B(u.u.w) = (p. div(w\/J'))o + arm)”

for every w e Hé(0)3.

(4.2) ao(u.w) + B(u.u.w) = (F.w)* for every w e X.

and uh e Xh satisfies the equations

(43) a1w1+B< )=-( mun)"
° ouh'h uh’uh’h wh‘h o ’h

1 3
for every 'h e (th)

(4.4) ao(uh. h) + B(uh'uh"h) = (F.wh)* for every 'h e Xh.

2..
”I

that satisfies (4.1) and (4.2). and uh is the unique solution of (4.3)

It will be assumed that IIFII” < thus u.is the unique element of X

and (4.4) that satisfies

(4-5) lluhll S r.

2

Observe that under the assumption that IIFII“ < g5; the exact solution

43
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u also satisfies

(4.6) Ilull S r.

We also assume that the hypotheses of lemma 3.2.2 are satisfied. thus 6

is small enough to allow condition (3.7) to hold. We quote condition

(3.7) here for the ease of reference:

There exists a constant Cé ) 0. independent of h such that

(”911' 'h‘mo, 1 3
(4'7) 3UP '1'! 5 (H011) - 1') fl 0 2 02 I'Vphllo

Huh”.

for all ph e Mb.

In the sequel we will continue using the letter C to denote (possibly)

different positive constants. however when a specific condition such as

(4.7) is used. the constant C2 will be used to call the reader‘s

attention to the specific condition used. we assume that our family

(Th)h of tessilations of 0 is regular in the sense of Ciarlet (1978).

thus if he denotes the diameter of element e e T . and pe denoted the

diameter of the largest circle that can be inscribed in e. then

(i) There exists a constant a ) 0 such that for every e e Th and

every Th

he

3“"

(ii) The quantity h = max { he : e 5 Th} approaches zero.



45

Besides the regularity of the {Th} . we also assume that {Th)h

h

satisfies the inverse assumption:

(iii) There exists a constant v > 0 such that for every e e Th and

every Th

:
3
"
?
!

1
A

:
2

Observe that conditions (i) - (iii) are by no means restrictive in

practice. We begin by stating the following lenma whose proof can be

found in Ciarlet (1978)

Len-11a 4.1.

Under assumptions (i) - (iii). there exists a constant C3 > 0.

independent of h such that

Il'hl '0

(4.8) inf - wh 6 (H392. wh ,. o 2 can :1

Huh”.

Lem 4.2

For 11 e X. there exists a constant C > 0. independent of h such

that

(4.9) . inf {IIu-vhll:vh e Xh} S

CianIu-v Il+lIIu-v II =v e111?)h h h o h H0h

. 1 3
Proof- Fix vh e (HOh) . and let (2h. wh) e th "h be the solution of

the discrete stokes problem
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(4.10) ao(zh. h) = —(wh.wh\/j)o + ao(v .wh) for every wh e (HOh)3

(4.11) (vqh.zh\/J-)o = O for every qh e “h

The boundedness of a0 yields

o‘vh' 1h"):
a

(4.12) IIvh-Zhll 2 C sup { II II w 6. H3603. w i O} 2

w

 

a(v - .w)

Csup{0 h Zl1h:whe(l-l‘l)l,1)3. hi0}:

llvhll

(w.w\/.T)

Csup{ h h O:whe(ll(1)h)3. hi0}

Ilwhll

where the last equality in (4.12) is by (4.10). (4.12) yields

(W-V‘Ij)

h 1‘ ozwhe(H(l)h)2. h¢0}2 

(4.13) Ilvh-zhll 2 c sup{

llwhll

 

(W . w ff) H" II

c sup { h h 0 : wh 5 (11392} inf {——h—g : 'h e (115192}

. Ilwhllo Ilwhll

Now (4.13). (4.7) and (4.8) give

(4.14) IIvh-zhll 2 c czc3 Ilwhllo . h

We rename C C2 C3 to C. Using (4.14). the ellipticity of a0. and

(4.10) respectively we have
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llv - 112 a(v-.v-1
(4.15) hIIvh-ZhHSC h 2" go 0 hzh hzh =

llwhllo Ilvrrhllo

  

C (W - (VhTZhh/jh)

 

Ilvrhllo

(4.15). (4.11). and the fact that u e X imply

(W - (vb-u)‘/j)0

 

hIIv - II S C

h zh

||WhHO

Thus

(W 0 (VII-uh/jh) .

 

(4.16) hIIvh-zhll S C sup { "h e uh} S

”th Io

 

{(' . (vb-u)‘/‘T)O

C sup : w e L2(D)2} = C Il(vh-U)V5]|o S C I'Vh'ullo

Ilvllo

where the last inequality in (4.16) is by the boundedness of ¢3L By

the triangle inequality and (4.16) we have

(3

Ilu-zhll s IIu-vhll + ”vb-2.,” s llu—vhll + ..- llu-vhllo

and this implies (4.9) and completes the proof. 0

Theorem 4.3:

Under the assumptions stated before lemma (4.1). there exists a

constant C ) 0 such that
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llu-uhll S Ch2

Proof:

Fix vh e xh. and let wh = uh - vh.

Consider the expression

E = ao(wh.wh) + B(wh.uh.wh)

By (2.3). (2.4) and (4.5) we have

(..m t 2 (a - Br)llwh| :2

By (4.4) and the definition of B we have

(4.18) 1: = ao(u.h.wh) — a0(vh.wh) + B(wh.uh,wh) =

-B(uh,u.h.wh) + (F.wh)" - ao(vh.wh) + B(wh.uh.wh) =

(F.wh)" - B(vh.uh.wh) - ao(vh.wh)

(4.18) and (4.1) yield

(4.19) = -(p.div(whY53)o + ao(u.wh) + B(u.u.wh)

‘ 80(vh’wh) "' B("h"’h"'h)
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Using the fact that wh e Xh. a simple mnipulation of (4.19) gives

(4.20) E = -(p—qh.div(whvfi))o + a0(u-vh. h) + B(u—vh.uh. h)

where qh e "h is arbitrary. It now follows from (4.20). (4.5). (4.6)

and the triangle inequality that

(4'21) E S Cll'hll Hp—thlo + Cll'hll Hu-vh” + Brll'hll [nu-V11” +

llu-uhll] .<. c llwhll IIp-thlomllwhll IIu-vhll + 2n llwhll IIu-vhll

2

well...”

Now (4.17) and (4.21) yield

(«z-2m ”th12 s c Ilwhll [llp-thlo + llu—vhlll i.e.

(4.22) llwhll 4 152m [llp-thlo + Ilu—thIJ

Observe that a - 2Br > 0 by (3.13). Now the triange inequality and

(4.22) give

IIu-uhll s llu—vhll + IIvh-uhll s cmp-qhno + IIu-thIJ

for every vh e Xh. and every qh 6 11h.

Thus
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(4.23) IIu-uhll s c 1nf{||p-thl=<1h «2 uh} + c inf {IIu-vhll= vh e xh}

(4.23) and (4.9) give

(424) Ilu-uhll s c inf {IIp-thlo= qh e 15,}

1 , 1 3
+ C inf {I'll-Vb” 4' Kl Iu-vhl '0' vh 5 (Hob) }

Now the result follows from (4.24) if we choose for vh the interpolant

1 3
Uhu of u in (11011) and for qh the interpolant th in uh. By the

general interpolation theory in Sobolev spaces (see e.g. Ciarlet

(1978). Oden and Carey (1983)) we have

2 3 2
IIu-Hhull == 0(h ). Ilu - Hhullo = 0(h ). IIp-Uhpllo = 0(h ). and the

proof is complete. 0

Remark: The results quoted above require that u 15 [13(0), p e “2(0).

Although our results in chapter '2 do not include a study of the

regularity of solution (u.p). we believe that the solution is actually

in COUZ). This is intuitively obvious since the domin D is bounded.

80 e C”. and the data (boundary and forcing) are all C”.



CHAPTER 5: LEAST SQUARES APPROACH

5.1: Introduction

In section 3.5 we described an iterative scheme to solve the

nonlinear problems (Ph) and (Oh). Each step of the iteration required

the solution of a large system of linear equations. but unfortunately

the coefficient natrix used to solve for ufi+l was dependent on the

previous approximtion n: Thus at each step of the fixed point scheme

(3.19) one must form and solve a different set of linear equations.

This turned out to be rather expensive since we were interested in

computing the solution over a wide range of values of R and e.

In this chapter. we give an alternative scheme for solving the

nonlinear equations (Ph) and (Qh). The method described here is a

straightforward extension of the techniques described in Glowinski

(1984). (Mr discussion will be brief since this method of solution is

well described in the above cited reference.

5.2: A least squares formulation

The assumptions and notations of chapter 3 will be maintained

here. Probelm (Qh) can be converted into a minimization problem as

follows:

For a fixed uh e Xh. define an element Eh e Xh to be the solution of

the discrete Stokes problem

Eh e Xh is such that for every "h e X'h we have

(5.1) ao(fh.nh) = ao(uh-nh) + B(uh-uh-nh) - mun)”

Problem (5.1) will be referred to as the state equation. and Eh will be

51
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termed the state variable that corresponds to “h' Observe that the

right hand side of (5.1) is a linear functional in rib. and thus (5.1)

is a perfectly well-defined (discrete) Stokes problem whose solution Eh

exists and is unique by the elliplicity of a0. We now define a

functional Jh: Xh -b Xh by

(5.2) Jh(uh) =% 0(Eh' Eh)

where Eh = Eh(uh) is the solution of the state equation (5.1). The

proof of the following proposition is obvious if one assumes that

problems (Ph) and (Qh) have solutions which is the case for example if

IIFI I” < 112/413.

Proposition 5.2. 1:

An element u.h e Xh is a (global) minimizer of Jh if and only if uh

is a solution of problems (Pb) and (Qh)' D

As a corollary of the above proposition. Jh has a unique global

minimizer uh 6 Dr which is also the unique solution of (Pb) and (Qh) in

2

Dr ( here we again assume that IIFII” ( 5415 ). Now instead of solving

(Oh). we try to solve the following minimization problem:

(uh) Find uh e Xh such that

Jhwh) S Jh(vh) for every vh e Xh.

5.3: A conjugate gradient scheme.

Following Glowinski (1984). we use the following conjugate
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gradient scheme to solve the minimization problem (Mh). Let ug e Xh be

an initial approximation of uh. and let 23 5 X5 be the solution of the

"linear variational equation"

(5.3) ab(z:.nh) = < Jg(u:).nh > for every "h e Xh.

o o n+1 m+1 n+1
Set 'h - zh. For m 2 0. compute uh . zh . h as follows

Step 1 (Descent)

Compute

(5.4) in = Argmin who; - Mfi). x e IR}

and set

(5.5) u:+1 =u:-7\m w:

Step 2 (New descent direction)

Define z:+l to be the solution of the linear variational equation

m+1
(5.6) ao(zh . nh) = < Jg(u:+l). "h > for every "h e Xh

 

. <4“- 4+1- 4)
(5.7) Set em” = 0 m m

30(211' 2h)

(5.8) and wig.” = 2T1 + «m1 w:

Replace m by m+1 and go to (5.4). a

In equations (5.3) and (5.6). Jh(vh) denotes the Frechet derivative of

Jh(vh + t"1.) ‘ Jh(vh)
 

Jh at 'h e Xh defined by < Jh(vh)' "h > = limo t
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(1')h e Xh). It can be easily shown that

(5 9) < Jh(vh).nh > = ao(Eh.nh) + B(nh.v .fh) + B(vh.nh.§h)

where Eh = §h(vh) is the state variable corresponding to vh.

Observe that the linear variational equation (5.6) is a discrete

m+1
Stokes problem for the unknown function zh Observe that computing

2:” actually requires the solutions of two Stokes problems: first of

all. one must compute the state variable Eh(u.h) in order to use (5.9)

to compute the right hand side of (5.6). and then solve the Stokes

problem (5.6) for 2:“ once ( J};(uhm). "n > is known. The one

dimensional minimization problem (5.4) deserves a brief conment since

it is in fact the most expensive step in the above scheme. Given “E'

w:. define a real valued function

g(x) = Jh(u: - hwfi) A e m

and to find the minimizer Am in (5.4). we solve equation

(5.10) g'(x) = 0

Observe that

(5.11) g'(x) = - < J'(u: - Awfi). wh >

In our implementation of the above scheme. we used the modified false

position method to solve equation (5.10). Observe that each evaluation

of g'()\) (through (5.11)) requires the solution of one Stokes problem

to find the state variable Eh corresponding to u: - Awg. which is
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needed in evaluating the right hand side of (5.9). Consequently the

solutions of several Stokes problems must be computed in order to find

Am“

It must be noted that although the conjugate gradient scheme

requires the solution of many Stokes problems in each iteration. it is

actually a very efficient scheme since only the forcing term needs to

be computed each time. but the bilinear form ao(. . .) is the same for

all the the Stokes problems needed to implement the above scheme. This

amounts to computing the matrix in equations (3.23) only once

throughout the entire computation. and once this has been done. solving

the Stokes problem only requires a back substitution to find the nodal

values of the velocity and pressure.

Solving the matrix equation (3.23) associated with ths discrete

Stokes problem is outlined in Appendix B.



CHAPTER 6: NUMERICAL RESULTS

6.1 Computational procedure

As we mentioned in section 1.4. the main objective of this work is

to find accurate approximations of equations (1.5) - (1.8). To achieve

this goal. we implemented the schemes described in chapters 3 and 5 to

compute the solution uh of problems (Pb) and (Nb) respectively. Since

an initial approximation is needed in both cases. the approximate

solution “h was computed for a sequence of values of R (keeping 5

fixed). starting at the initial value R = 25 and increments AR = 25.

The initial approximation for R = 25 was chosen to be zero. and after

the solution for a certain value of R has converged. R was incremented

and the solution for the previous value of R was used as an initial

approximation for the next value of R. This procedure was repeated

until the final desired value of R was reached.

The above procedure was carried out for e = .1. .2. . . .. .5 and

for values of R ranging from R = 25 to R = 1118.03.

The criterion

lama) - u“ ml _
(6.1) max 5“ 11‘ < 10 3

lug‘hii) I

 

was used as an indication that the sequence uhn has converged to the

solution uh.

In (6.1) the maximum is taken over 1 S j S 3 (the velocity

components) and over all the nodes i of the mesh used. Observe that

(6.1) implies that

56
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ll'“- “II
“h “h w<10-3

(6.2)

Hugl I.

Note however that (6.1) is a much more stringent condition than

(6.2). The same computer programs were used to solve Dean’s equations

(1.13) - (1.17) for the range 96 S D S 3500. The following slightly

modified version of the fixed point scheme (see section 3.5) was found

to accelerate the rate of convergence considerably

Given an initial approximation ug. define

D

= ¢(uh)IM
T
.
—

.3

or
..
.

n+1 n

uh = NJ: + (l-hhlh

where O S A < l is an averaging parameter whose optimal value is

determined by numerical ewerimentation. All the computations were

carried out in double precision on a VAX - 11/750 computer.

6.2 Some comparisons

First of all it must be mentioned that the two schemes gave

identical results for all the cases tested. but as expected. the least

squares scheme proved to be much faster than the fixed point scheme of

Chapter 3.

This must not be surprising since the fixed point scheme requires

a huge number of matrix factorizations. The relative speed of the two

schemes depends on the mesh size. for example. to compute the solutions

of Dean’s equations for 96 S D S 1000 (AD = 100) using MESH 24 (see
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Figure 3). the fixed point scheme requires 39:04 minutes of CPU time.

while the least squares scheme requires 57:45 minutes. Observe that in

this case the fixed point scheme is faster than least-squares.

However. to compute the flow at D = 2100 using MESH 96. the

least-squares scheme requires 1:16:04 hours vs. 5:45:57 hours for the

fixed point scheme.

We now turn to practical accuracy considerations.

In order to determine an adequate mesh size that gives good

accuracy. three different mesh sizes were used to solve equations

(1.14) - (1.17). Figure 3 shows the three meshes used. Table 1 shows

the values of the maximum axial velocity “3m at different Dean

numbers. while table 2 shows the values of the axial velocity u3(0) at

the center of the cross section
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4
' . MESH 24

89 velocity nodes,33 pressure nodes,24 elements.

 

  

 

 

  \\
Y\\

. MESH 96

321 velocuty nodes.113 pressure nodes,96 elements.

   

 
MESH I48

489 velocity nodes,171 pressure nodes,148 elements

Mesh configurations

Figure 3



1000

1000

6C)

MESH 24 MESH 96

23.30 23.35

84.26 83.77

150.92 141.59

-—— 238.64

Table 1: Variation of u with mesh size

3max

MESH 24 MESH 96

22.45 22.44

64.97 63.84

103.45 99.54

--—- 158.07

Table 2: Variation of u3(0) with mesh size

MESH 148

 

83.72

141.34

237.48

MESH 148

63.81

99.32

157.08
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It is clear from tables 1 and 2 that the results obtained by MESH

148 and MESH 96 are in excellent agreement for D S 2000. thus

indicating that either mesh is adequate for this range of the Dean

number.

In tables 3 and 4. we compared the same quantities (um. u3(0))

obtained from the finest mesh (148) with the results of previous

investigators. The tables indicate that our results are perfectly

consistent with those of previous studies for D S 2000. The agreement

is less than perfect for D > 2000 however. For this reason we restrict

the results in section 6.3 to the range D S 2000. and restrict the

values of R and e accordingly. thus for e = .1 we wake the restriction

R S 1118.03. and for e = .5. R S 500.

We believe that if MESH 148 is refined all around the boundary

(thus increasing the total number of velocity nodes to about 700

points). the flow in the entire laminar region can be accurately

computed .



605.72

1000

605.72

1000

2000

Present Study

83.72

96.53

141.34

237.48

317.72

354.72

Table 3:

Present Study

63.81

72.10

99.32

157.08

206.57

230.31

Table 4: Comparison of u3(0)

Collins & Dennis

(1975)

83.69

96.53

141.30

236.50

351.40

Comparison of 11:3

Collins 8; Dennis

(1975)

63. 70

99.00

154.70

224 . 70

Dennis

(1980)

83.67

 

141 . 10

 

314.80

Dennis

(1980)

63.78

99.16

203. 50



63

6.3 Results and discussion

The numerical results are summarized in Figures 4 - 11. Figures

4 - 7 show the contour lines of the axial velocity (u3) and the stream

function (W) of the secondary flow at R = 250 and R = 500 in the range

1 1

The stream function 4: is defined by

6x
(6.3) 9‘”- = - JJ'uz.

1

gig; = «5.1.

Clearly figures 4 - 7 show that the axial flow in diminished and the

secondary currents become stronger as the curvature increaces.

In order to study the effect of curvature on the flow when the

Dean number is fixed. we computed the solutions for D = 1000. D = 2000

in the range 0 S e S g; and the results are shown in Figures 8 - 11.

Observe that in Figures 8(a) - 11(a) (for e = O). the results are in

excellent qualitative agreement with those of Cbllins and Dennis (1975)

and Dennis (1980).

Notice however that in this case the secondary flow is diffused as

the curvature increases (see figures 9.11). The reason for this is

that for a fixed value of D. the Reynolds number R decreases as 5

increases (Recall that D = 4R5). We thus believe that from the

physical point of view. the pair (R.e) is a better set of parameters to

study the motion than (D.e). because when D is fixed. one cannot study

the effect of curvature independently of the effect of the pressure

gradient on the flow.

Table 5 shows the values of the flow ratio Q/Q0 at R = 250.

R = 500 as 5 increased from l—-
10

straight pipe at the same Reynolds number.

1

to 5. where Q0 is the flow rate in the
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In table 6. we give the values of the flow ratio Q/QD for

D = 1000. D = 2000 and the same range of values of e. where now QD is

the flow rate in the limit of zero curvature at the same Dean number.

Tables 5 and 6 show that when R is fixed. the flow ratio Q/QO

decreases rapidly with the curvature ratio. and that the variation of

Q/QD with e is minimal. Thus for a fixed Dean number. curvature has

virtually no effect on the flow rate for practical values of 8. One

must keep in mind however that for a fixed Dean number D. the curvature

ratio 6 cannot be increased without decreasing the pressure gradient.

and these two competing factors seem to stablize the resistence of the

tube (which should increase with increasing values of R and e). and

this is what we believe causes the flow ratio Q/QD to be almost

GODStant .



0
:
2
5
0
:
3
0

0
1
3
.
2
9
%
:

Table 5:

Table 6:
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R = 250

0.748179

0.685238

0.645136

0.615091

0.591105

D = 1000

0.978992

0.959563

0.942704

0.928089

0.915433

The flow ratio Q/Q0

The flow ratio Q/QD

R = 500

0.648668

0.585044

0.545185

0.516832

0.494718

D = 2000

0.970511

0.950805

0.933770

0.919073

0.906423
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.2(b) R=500. Epsilonul.1(o) R-SOO. Epsilon=

 
1‘ 1m

 

(d) R2500. Epsilon=.4
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OWUWER'7: A HJUUNNHHONEIXMTHXI

7.1 Introduction and formulation

The primry aim of this chapter is to give another example to

demonstrate the fact that our solution procedure applies to duct flows

in cross sections other than the circle.

Here we present a perturbation solution for the flow in a toroidal

pipe of elliptic cross section. Results and comparisons with numerical

solutions are given in the next section.

Consider the flow in a toroidal pipe whose cross section is an

ellipse with axes 2a. 2b where one of the axes makes an angle a with

the normal I of the center line of the tube. The geometry is shown in

Figure 12.

 

.
—

o
-
0
-

 
  

d—r z .3,

Geometry and coordinate system for elliptic cross section

Figure 12
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As was done in chapter 1. it can be shown that the dimensionless

momentum equations are

2 2

(7.1) (ugx-+v%)u+%—=-ng+Au-:—E(Bg;-6%)u-gE(Bu-5v)

65w2 6 562
 (7.2) (ug-x-+v%y-)v- =‘%+AU':‘(B%‘537)V+§'(BU‘5V)

W:

(7.3) (ug;+ ‘85”? - 3651“» - 6v) =

and the continuity equation

(7.4) g—jufi) + gy—(w/E) = 0

Where u.v are the dimensionless velocity components in the directions

X1. X2 and w is the dimensionless axial velocity. In equations (7.1) -

(7.4). x = Xl/b. y = X2/b are the normalized independent variables. B =

-b3 a?
-——-is

4p02 6X3

the Reynolds number. where gig-is the pressure gradient. The boundary

cos a. 6 = sin a. e = b/E. G = (1- efix + 66y)2 and R = 

conditions are

where F is the boundary of the elliptic region c x2 + y2 S 1. and c =

b2/a2 is the aspect ratio.

Observe that is we set a = b. a = 0 (thus c = 1. B = 1. 5 = 0).

equations (7.1) - (7.4) reduce to equations (1.5) - (1.8).
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In addition to the assumptions of Chapter 1. we assume that e. < <

l and R = 0(1). Define the stream function 4' by

H

(7.5) u =

$
1
2
3

Qty:63"

a
n
"

a
]

substituting (7.5) into (7.3) yields the equation

2

(7.6) Aw=ffigffi+fzm%-5gy)w+§_'-%-§_!(pgy—+ag—;)w

6 , 6w 6w
whereifig—=§L€x--%37

Eliminating p from (7.1) and (7.2) by cross differentiation. and

keeping terms only up to C(52) we obtain

225 6

a 'A 9— %)w - E (a a - 537nm+6 +6

2 1
(7.7) A .p = - p

Jc'a(y.x) ( 6’

Our discussion for obtaining a perturbation solution of (7.6) and

(7.7) will be brief since our formulation and solution procedure is

very similar to that of Srivastava (1980).

Theaxial velocity w and the stream function 4: are perturbed about

6:0

2
(7.8) w=wo+ewl+ew2+...

2
(7.9) w=ewl+e¢2+...

Substituting (7.8), (7.9) into (7.6), (7.7) we obtain the following obtain the
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of linear equations upon comparing the coefficients of different powers

of e

(7.10) AVG = - 4R

2 a a 2
(7.11) A 4.1 = (5517+ 5 5;) wo

awn-'0) a a
(7.12) Awl =W+ (55x- - 65)w0 - 4R(Bx - 6y)

2 a”'1"“"1) a a
(7.13) A (.2 = 777.3?)— + 2mg],- + ag—x-Mwowl) - 2(pa—x- - 5 %)(Aw1)

awl. 0) mm)
(7.14) Aw2'= (Bx - 5?) m)— * "T‘ay.x)

6N .w )

a a a a 2 '

we: ' bay—"1" 'omay‘ * 55;:Nr 4W" ‘ 53') + wo-

Equations (7.10) - (7.14) are solved subject to the boundary conditions

J = 0 on the boundary

cx +y =1

The exact solutions of equations (7.10) - (7.14) can be computed in

turn since in fact all the functions wJ. 403 are polynomials in x.y.

The solution for (7.10) can be easily seen to be
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2
(7.15) wo = KR(cx2 + y - l). K

1+c

Now (7.15) and (7.11) give the equation

Azwl = 4 cK2R26x(cx2 + y2 - 1) + 4K2R2By(cx2 + y2 - 1)

whose solution is

(7.16) 11 = R26P1(x.y.c) + 22522(x.y.c)

where for example

2 2 2 2 2

P1 = X(p + p x + p y )(cx + y - 1)

oo 20 02

and the coefficients p . p . p are obtained by substituting (7.16)

00 20 02

in (7.11) and comparing the coefficients. This leads to a 3X3 matrix

equation for the coefficients p . p , p .

00 2O 02

Solutions of equations (7.12) - (7.14) can be obtained similarly.

Many more details can be found in Srivastava (1980).

It must be observed that. although the procedure for solving

(7.10) - (7.14) is very simple in principle, the process of comparing

coefficients and inverting matrices to obtain the coefficients of the

(polynomial) solutions becomes impossible to do by hand as one proceeds

to compute wl. $2. w2. A rather lengthy computer program was written

to carry out the calculation.
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7.2 Results and discussion

'e begin by giving the results for an elliptic region where c = %.

thus the cross section is

2

E
2

4+y $1

Figures 13 - 15 show the first order stream lines 471/ R2 for

w w
a .. 0. a - '4" a = 2 respectively.

It must be mentioned here that the results of Srivastava (1980)

can all be easily reproduced if we choose a = 0 in our formulation.

All the comparisons given below are for the flow rate Q = [w

(where the integral is taken over the elliptic region). From (7.8) we

have

Q = ]w + efw + (:sz

0 1 2'

It is easy to see that w1 is an odd degree polynomial and therefore

does not contribute to the flow rate. thus

Q=Qo+52fw.

where 00 = fwo is the flow rate in the straight pipe.

It is easy to show that

w2 = RD1(x.y) + R3E1(x.y) + R5F1(x.y)

where D1. E1. F1 are polynomials and R is the Reynolds numbers.

Now the flow ratio Q/Q0 is given by
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(7.17) = 1 + e2(D + R213 + R417)
Q__

QO

where D = ga-IDI. E = gs-[El. F = [F1 are constants that depend on

o°
|"
’

B. 6 and c.

It is worth mentioning here that the results given by Srivastava

(1980) for the flow ratio coefficients D.E.F are completely erroneous.

In table 7. we quoted Srivastava (1980) for the coefficients D.E.F for

different values of c. and in table 8 we give the correct values of the

same coefficients.



O
.
°
.
°
.
°
.
°

8

1.0201

0
9
.
0
0
0

‘
1

(
I
I

1.25

D

-1.7617875

-1.6960690

-0.0052929

0.0201415

0.0208331

0.0213993

0.0223002

Table 7: Cbefficients in Equation (7.17)

81

E

-0.0037665

-0.0019303

-0.0010727

-0.0006594

-0.0006334

-0.0006085

-0.0003923

(Srivastava(1980))

D E

0.419048 -0.003770

0.133333 -0.001935

0.053724 -0.001077

0.022655 —0.000663

0.020833 -0.000637

0.019102 -0.000612

0.004678 —0.000395

Table 8: Cbefficients in Equation (7.17)

.(Present Study)

5
6
6
5
5
6
6

4
.
5
1
5
5
5
5
2
.

.00001032

.00000212

.00000083

.00000038

.00000036

.00000033

.00000017

.00000386

.00000188

.00000039

.00000037

.00000035

.00000017
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Finally we employed the method of chapter 5 to generate numerical

solutions of the problem with c = % %

and the flow ratio Q/Q0 was computed for each R in the range

a: forR=6.R=20.R=50.

-1— g e g .45.
10

The flow ratio 0/00 was then calculated for the same values of R

and 5 using the asymptotic formula (7.17) and the two sets of results

are sunmarized in Figures 16 - 18. As is obvious from Figure 16. the

results are in excellent agreement at R = 6. but the asymptotic

solution deviates considerably from the numerical solution as R

increases. (Recall that the perturbation solution is valid under the

assumptions that 6. << 1. R = 0(1))

Finally observe that at R = 6. the flow rate actually increases

with increasing values of e. In fact. for the given data (c = l
71"“:

‘11-), equation (7.17) takes the form

Q/Q0 = 1 + e2(l.809925 - 0.033573R2 - 0.000055R4)

and the expression in brackets is positive for R <m = 7.058.

The numerically computed values of Q/Qo reflect the same phenomenon

(see Figure 16).

It must be mentioned that the same phenomenon (that Q/Q0 increases

with e at low Reynolds numbers) was reported by Larrain and Bonilla

(1970) for toroidal pipes of circular cross section. and was later

confirmed by Wang (1981) who discovered that the same phenomenon occurs

for helically coiled tubes at small values of e and low Reynolds

numbers .
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Stream lines for a = 900 (Perturbation solution)

Figure 15
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Appendix A

The covariant velocity components Vi

 

 

 

 

 

jk

v1 =62‘Ul

.11 a(x1)2

vl =5ZUI
.22 a(x2)2

Vl = - K J §!1-- x201

.33 5x1

0202

v211 = a(x1)2

v2 .1213.
22 a(x2)2

6U2

farm/*7;

V3 - 62 [fi]-2x__q_[_vi]
11 ' 1 2 1

a(X) J5 Jj ax (T

v3 = .2 [.03
22 a(x2)2 11.?

a U3
V?” = - K315; [F]



Appendix B

In this appendix we outline the method we used to

solve the matrix equation

    

r 1 T a r a 1

(3.23) A 0 (D) 0 U1 = r61

1 2 “r
0 A (D ) 0 U2 02

I)1 02 o o P o

.0 o 0 A1 3’3. .631  
4

The. reader is reminded that the matrices A and

A1 are symmetric, positive definite, and banded, thus

they were computed, stored compactly and then factored in

place using LINPACK routine DPBFA which carries out the

Choleski decomposition of a symmetric positve definite

banded matrix.

Observe that (3.23) is a block diagonal system,thus

US can be computed separately by

(3.1) u =A’lc

where [lea is found by using the LINPACK routine DPBSL

which carries out the back substitution step since the

Choleski decomposition of A is now available.

The discrete velocity vectors U1 , 02. and the

discrete pressure P were computed as follows :

system (3.23) is equivalent to the equations

(B-2) AU + DTP = c.

(13.3) DU = o

90



where n = (01.02). A = [A o J. c = [01]. u = [111].

1
O A

observe that

(11.4) p .-.- (m'ln'rrl 0 [I c.-

and that once P is known, U = U1 can be computed

u2

directly from (3.2) since

(13.5) U [1“: - DTP).

The matrix nm'Hf' was computed by applying the

back substitution routine as many times as fiT has

columns, and then premultiplying the result A-IDT by D.

Observe that computing DA'IDT requires many back subs-

titutions for A, and then a matrix multiplication, but

the effort taken to accopmlish this is well justified

since several thousand solutions of (3.23) are

required.

Since DATHfl‘ is symmetric and positive definite

(it is a full matrix however) , its Choleski decompos-

ition was found by applying the LINPACK routine DPPFA,

which factors lyfdbr in place, and stores it compactly

since it is symmetric.
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Now each time we solve equation (3.23). we proceed as follows:

(1) Find 03 by (3.1)

(11) Find P by (3.4)

(111) Find u = [01] by (3.5)

. U2
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