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ABSTRACT

GEOMETRIC ASPECTS OF EXACT SOLUTIONS OF BELLMAN
EQUATIONS OF HARMONIC ANALYSIS PROBLEMS

By

Paata Ivanisvili

In Chapter 1 we find the sharp constant C = C(τ, p,EG,EF ) of the following inequality

‖(G2+τ2F 2)1/2‖p ≤ C‖F‖p, where G is the transform of a martingale F under a predictable

sequence ε with absolute value 1, 1 < p < 2, and τ is any real number. Thereby we solve

the open problem posted by Boros–Janakiraman–Volberg.

In Chapter 2 under some assumptions on the vectors a1, . . . , an ∈ Rk and the function

B : Rk → R we find the sharp estimate of the expression
∫
Rk B(u1(a1 · x), . . . , un(an · x))dx

in terms of
∫
R uj(y)dy, j = 1, . . . , n. In some particular cases (k = 1, n− 1 and n) we show

that these assumptions on B imply that there is only one Brascamp–Lieb inequality.

In Chapter 3 we find underlying PDEs on the Bellman functions B which imply inequal-

ities such as John–Nirenberg inequality, Prekopa–Leindler inequality, Ehrhard’s inequality,

Borell’s Gaussian noise “stability”, hypercontractivity of Ornstein–Uhlenbeck semigroup,

logarithmic Sobolev inequality, Beckner–Sobolev inequality and Bobkov’s inequality. We

also describe underlying differential geometry that arises in solving these PDEs, and we

formulate some open questions.
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am grateful to my fianće Maria for what we already have created and for what we are going

to create in the future.

In my graduate years I had the company and the support of many other friends. I am

also grateful to my fellow MSU graduate students Ch. Ang, K. Bhola, T. Bongers, Z. Cang,

W. Chen, A. Chapman, M. Che, L. Chu, R. Fakhry, B. Jaye, W. Jiang S. Lee, G. Livshyts,

B. Mackey, M. Maridakis, S. Mehri, W. Park, G. Rey, A. Reznikov, A. Sharliev, B. Wang,

K. Wu, X. Yang, E. Yildiz, W. Zhou and the rest of the graduate students to whom I owe a

lot of joyful moments.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Inequality for Burkholder’s martingale transform . . . . . . . . 4
1.1 History of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Our main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Plan of the Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Definitions and known results . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Homogeneous Monge–Ampère equation and minimal concave functions . . . 11

1.3.1 Foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Cup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Construction of the Bellman function . . . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Reduction to the two dimensional case . . . . . . . . . . . . . . . . . 35
1.4.2 Construction of a candidate for M . . . . . . . . . . . . . . . . . . . . 39
1.4.3 Concavity in another direction . . . . . . . . . . . . . . . . . . . . . . 47

1.5 Sharp constants via foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.5.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.5.2 Case yp ≤ s0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.5.3 Case yp > s0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.6 Extremizers via foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.6.1 Case s0 ≤ yp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.6.2 Case s0 > yp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 2 Hessian of Bellman functions and uniqueness of Brascamp–
Lieb inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.0.3 Brascamp–Lieb inequality . . . . . . . . . . . . . . . . . . . . . . . . 78
2.0.4 Bellman function in Brascamp–Lieb inequality . . . . . . . . . . . . . 85

2.1 How to find the Bellman function . . . . . . . . . . . . . . . . . . . . . . . . 94
2.1.1 Case k = 1. Jointly concave and homogeneous function . . . . . . . . 96
2.1.2 Case k = n. B(y) = Const · y1 · · · yn . . . . . . . . . . . . . . . . . . 96

2.1.2.1 First proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.1.2.2 Second proof . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.1.2.3 Third proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.1.3 Case k = n− 1. Young’s function. . . . . . . . . . . . . . . . . . . . . 99
2.1.3.1 Example of necessity of the assumption Byiyj 6= 0 in Theorem

2.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.1.3.2 Theorem 2.1.2 does not hold in the case 1 < k < n− 1 . . . 102

vi



2.1.4 Case of Young’s function . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 3 Harmonic analysis, PDE and differential geometry . . . . . . . 107
3.0.5 Short review of some harmonic analysis problems . . . . . . . . . . . 107

3.0.5.1 John–Nirenberg inequality . . . . . . . . . . . . . . . . . . . 107
3.0.5.2 Uniform convexity . . . . . . . . . . . . . . . . . . . . . . . 108
3.0.5.3 Brunn–Minkowski and isoperimetric inequalities . . . . . . . 109
3.0.5.4 Sobolev inequality . . . . . . . . . . . . . . . . . . . . . . . 110
3.0.5.5 Prekopa–Leindler inequality . . . . . . . . . . . . . . . . . . 111
3.0.5.6 Borell–Brascamp–Lieb inequality . . . . . . . . . . . . . . . 113
3.0.5.7 Ehrhard’s inequality . . . . . . . . . . . . . . . . . . . . . . 114
3.0.5.8 Borell’s Gaussian noise “stability” . . . . . . . . . . . . . . 115
3.0.5.9 Hypercontractivity . . . . . . . . . . . . . . . . . . . . . . . 115
3.0.5.10 Logarithmic Sobolev inequalities . . . . . . . . . . . . . . . 116
3.0.5.11 Beckner–Sobolev inequality . . . . . . . . . . . . . . . . . . 116
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Introduction

The current dissertation is split into 3 chapters. The first chapter solves the open problem

put forward by Boros–Janakiraman–Volberg regarding sharp estimates of the perturbation

for Burkholder’s martingale transform (see [8], [15]). The inequality stems from important

questions concerning the Lp bounds for the perturbation of Beurling–Ahlfors operator and

hence it is of interest. We refer the reader to recent works regarding martingale inequali-

ties and estimates of Beurling–Ahlfors operator [1, 3, 4, 5, 8] and references therein. It is

worth mentioning that the problem was solved by using the theory of minimal concave func-

tions developed jointly with N. Osipov, D. Stolyarov, P. Zatitskyj, V. Vasyunin and myself.

For example, such notions and objects as foliation, force functions, cup and torsion already

appeared in the recent works [9], [10], [11], [12] and [13]. However, since the theory was

developed in two dimensional setting, it required some additional technical work to solve

the problem in three dimensional setting. In particular it includes finding minimal concave

solution of homogeneous Monge–Ampère equation with Dirichlet and Neumann boundary

data, and minimality was proved by constructing optimal martingale trajectories along the

foliations. Concave solutions were found by detailed investigation of the important object:

smooth transformation of the torsion of Dirichlet boundary data (further called force func-

tions, see (1.3.11)) which coincides up to some positive factor (depending only on the domain

1



and foliation) with the trace of the Hessian of a Bellman function (or mean curvature).

Second chapter is devoted to the inequalities of Brascamp–Lieb in the Lebesgue mea-

sure case for a general function B (see also [14]). The particular case B(x1, . . . , xn) =

x
1/p1
1 · · ·x1/pn

n , which corresponds to the Brascamp–Lieb inequality is important for a num-

ber of reasons, including applications in analysis and convex geometry, and, for example,

includes the sharp form of Young’s convolution inequality (established in [22], and [25]). For

general function B, it turns out that B satisfies inequality of Brascamp–Lieb if under some

mild assumptions on B it also satisfies some interesting concavity condition (see property

L3 in Subsection 2.0.4, Chapter 2). Similar concavity condition was found recently indepen-

dently by Ledoux (see [31]). Our second main contribution is that under the assumptions

L1-L5 (see properties L1-L5 in Subsection 2.0.4, Chapter 2) we give complete description of

such functions B in the case k = 1, k = n − 1 and k = n. In these special cases the results

below imply uniqueness of Brascamp–Lieb inequalities and it sheds light to the works of

E. Calren, E. Lieb and M. Loss (see [25]), and J. Bannett, A. Carbery, M. Christ and T. Tao

(see [26, 27]).

Third chapter mainly contains brief overview of some old and recent isoperimetric prob-

lems, hints and new ideas about their relations to PDE and differential geometry. This

chapter is not as rigorous as previous chapters because the initial purpose was to give to the

reader very short overview and an attempt of the general picture which shows underlying

PDEs and PDIs (partial differential inequalities), which govern these classical isoperimetric

inequalities of analysis. Even though the chapter is short, it requires very careful reading

since the objects (as they are written down) only make sense under some extra assumptions

on the functions. For example, If there are no a priori assumptions on the functions B and f ,

and the reader sees the expressions of the form
∫
RB(f(x)), the reader should automatically
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assume that we deal with those B and f such that the composition B(f(x)) is measurable,

moreover it is integrable on the real line. The material is still under the preparation, there-

fore, for now we decided to avoid finding the best conditions under which the theorems of

the chapter are fulfilled. However, we believe that the reader can easily find for her/himself

at at least some sufficient conditions under which all the computations are justified (or one

can extract such conditions them from the applications given after each theorem).

Our goal is to try to find underlying PDEs and PDIs for the following inequalities:

John–Nirenbeg inequality, sharp inequalities on BMO, Ap, Reverse Hölder, Gehring and

the classes of functions with bounded oscillation (see [9, 10, 11, 12] and references therein),

uniform convexity (see [16, 13, 28, 29, 30] and references therein). Isoperimetric, Prekopa–

Leindler and Ehrhard’s inequality (see [39, 38, 37, 33, 32, 34, 35, 36] and references therein ).

Borell’s Gaussian noise “stability” and hypercontractivity for Ornstein–Uhlenbeck semigroup

(see [31, 40, 42, 43, 44, 45, 46, 47] and references therein). Log-Sobolev, Beckner–Sobolev

and Bobkov’s inequality (see [48, 49, 50, 51, 52, 53, 54, 55] and references therein). Plan

of the chapter is simple. It is divided in 3 parts. First part briefly formulates these in-

equalities. Second part finds underlying PDEs and PDIs for these inequalities, and the third

part mentions the relation to differential geometry and in it we also formulate some open

questions.
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Chapter 1

Inequality for Burkholder’s

martingale transform

1.1 History of the problem

Let I be an interval of the real line R, and let |I| be its Lebesgue length. By symbol B we

denote the σ-algebra of Borel subsets of I. Let {Fn}∞n=0 be a martingale on the probability

space (I,B, dx/|I|) with a filtration {I, ∅} = F0 ⊂ F1 ⊂ ... ⊂ F . Consider any sequence of

functions {εn}∞n=1 such that for each n ≥ 1, εn is Fn−1 measurable and |εn| ≤ 1. Let G0

be a constant function on I; for any n ≥ 1, let Gn denote

G0 +
n∑
k=1

εk(Fk − Fk−1).

The sequence {Gn}∞n=0 is called the martingale transform of {Fn}. Obviously {Gn}∞n=0

is a martingale with the same filtration {Fn}∞n=0. Note that since {Fn} and {Gn} are

martingales, we have F0 = EFn and G0 = EGn for any n ≥ 0.

In [17] Burkholder proved that if |G0| ≤ |F0|, 1 < p < ∞, then we have the sharp

estimate

‖Gn‖Lp ≤ (p∗ − 1)‖Fn‖Lp for all n ≥ 0, (1.1.1)
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where p∗ − 1 = max{p− 1, 1
p−1}. Burkholder showed that it is sufficient to prove inequality

(1.1.1) for the sequences of numbers {εn} such that εn = ±1 for all n ≥ 1. It was also

mentioned that such an estimate as (1.1.1) does not depend on the choice of filtration {Fn}.

For example, one can consider only the dyadic filtration. For more information on the

estimate (1.1.1) we refer the reader to [17], [18].

In [20] the result was slightly generalized by Bellman function technique and Monge–

Ampère equation, i.e., the estimate (1.1.1) holds if and only if

|G0| ≤ (p∗ − 1)|F0|. (1.1.2)

In what follows we assume that {εn} is a predictable sequence of functions such that

|εn| = 1.

In [8], a perturbation of the martingale transform was investigated. Namely, under the

same assumptions as (1.1.2) it was proved that for 2 ≤ p < ∞, τ ∈ R, we have the sharp

estimate

‖(G2
n + τ2F 2

n)1/2‖Lp ≤ ((p∗ − 1)2 + τ2)1/2‖Fn‖Lp , for all n ≥ 0. (1.1.3)

It was also claimed to be proven that the same sharp estimate holds for 1 < p < 2, |τ | ≤ 0.5,

and the case 1 < p < 2, |τ | > 0.5 was left open.

The inequality (1.1.3) stems from important questions concerning the Lp bounds for the

perturbation of Beurling–Ahlfors operator and hence it is of interest. We refer the reader to

recent works regarding martingale inequalities and estimates of Beurling–Ahlfors operator

[1, 3, 4, 5, 8] and references therein.
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We should mention that Burkholder’s method [17] and the Bellman function approach [20], [8]

have similar traces in the sense that both of them reduce the required estimate to finding

a certain minimal diagonally concave function with prescribed boundary conditions. How-

ever, the methods of construction of such a function are different. Unlike Burkholder’s

method [17], in [20] and [8] the construction of the function is based on the Monge–Ampère

equation.

1.1.1 Our main results

Firstly, we should mention that the proof of (1.1.3) presented in [8] has a gap in the case

1 < p < 2, 0 < |τ | ≤ 0.5 (the constructed function does not satisfy necessary concavity

condition).

In the present paper we obtain the sharp Lp estimate of the perturbed martingale trans-

form for the remaining case 1 < p < 2 and for all τ ∈ R. Moreover, we do not require

condition (1.1.2).

We define

u(z)
def
= τp(p− 1)

(
τ2 + z2

)(2−p)/2
− τ2(p− 1) + (1 + z)2−p − z(2− p)− 1.

Theorem 1.1.1. Let 1 < p < 2, and let {Gn}∞n=0 be a martingale transform of {Fn}∞n=0.

Set β =
|G0|−|F0|
|G0|+|F0| . The following estimates are sharp:

1. If u
(

1
p−1

)
≤ 0 then

‖(τ2F 2
n +G2

n)1/2‖Lp ≤
(
τ2 + max

{∣∣∣∣G0

F0

∣∣∣∣ , 1

p− 1

}2
)1

2

‖Fn‖Lp , for all n ≥ 0.
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2. If u
(

1
p−1

)
> 0 then

‖(τ2F 2
n +G2

n)1/2‖pLp ≤ C(β)‖Fn‖pLp , for all n ≥ 0,

where C(β) is continuous nondecreasing, and it is defined as follows:

C(β)
def
=



(
τ2 +

|G0|2
|F0|2

)p/2
, β ≥ s0;

τp

1− 22−p(1−s0)p−1

(τ2+1)(p−1)(1−s0)+2(2−p)
, β ≤ −1 + 2

p ;

C(β), β ∈ (−1 + 2/p, s0);

where s0 ∈ (−1 + 2/p, 1) is the solution of the equation u
(

1+s0
1−s0

)
= 0.

Explicit expression for the function C(β) on the interval (−1+2/p, s0) was hard to present

in a simple way. The reader can find the value of the function C(β) in Theorem 1.5.1, part

(ii).

Remark 1. The condition u
(

1
p−1

)
≤ 0 holds when |τ | ≤ 0.822. So we also obtain

Burkholder’s result in the limit case when τ = 0. It is worth mentioning that although

the proof of the estimate (1.1.3) has a gap in [8], the claimed result in the case 1 < p < 2,

|τ | < 0.5 remains true as a result of Theorem 1.1.1.

One of the important results is that we find the function (1.2.2), and the above estimates

are corollaries of this result. We would like to mention that unlike [20] and [8] the argument

exploited in the current paper is different. Instead of writing a lot of technical computations

and checking which case is valid, we present some pure geometrical facts regarding minimal

concave functions with prescribed boundary conditions, and by this way we avoid compu-
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tations. Moreover, we explain to the reader how we construct our Bellman function (1.2.2)

based on these geometrical facts derived in Section 1.3.

1.1.2 Plan of the Chapter 1

In Section 1.2 we formulate results about how to reduce the estimate (1.1.3) to finding of a

certain function with required properties. These results are well-known and can be found in

[8]. A slightly different function was investigated in [20], however, it possesses almost the

same properties and the proof works exactly in the same way. We only mention these results

and the fact that we look for a minimal continuous diagonally concave function H(x1, x2, x3)

(see Definition 3) in the domain Ω = {(x1, x2, x3) ∈ R3 : |x1|p ≤ x3} with the boundary

condition H(x1, x2, |x1|p) = (x2
2 + τ2x2

1)p/2.

Section 1.3 is devoted to the investigation of the minimal concave functions in two vari-

ables. It is worth mentioning that the first crucial steps in this direction for some special

cases were made in [9] (see also [10, 11]). In Section 1.3 we develop this theory for a slightly

more general case. We investigate some special foliation called the cup and another useful

object, called force functions.

We should note that the theory of minimal concave functions in two variables does not

include the minimal diagonally concave functions in three variables. Nevertheless, this knowl-

edge allows us to construct the candidate for H in Section 1.4, but with some additional

technical work not mentioned in Section 1.3.

In section 1.5 we find the good estimates for the perturbed martingale transform. In

Section 1.6 we prove that the candidate for H constructed in Section 1.4 coincides with H,

and as a corollary we show the sharpness of the estimates found for the perturbed martingale

transform in Section 1.5.
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In conclusion, the reader can note that the hard technical lies in the construction of the

minimal diagonally concave function in three variables with the given boundary condition.

1.2 Definitions and known results

Let EF def
= 〈F 〉I where

〈F 〉J
def
=

1

|J |

∫
J
F (t)dt

for any interval J of the real line. Let F and G be real valued integrable functions. Let

Gn = E(G|Mn) and Fn = E(F |Mn) for n ≥ 0, where {Mn} is a dyadic filtration (see [8]).

Definition 1. If the martingale {Gn} satisfies |Gn+1 −Gn| = |Fn+1 − Fn| for each n ≥ 0,

then G is called the martingale transform of F .

Recall that we are interested in the estimate

‖(G2 + τ2F 2)1/2‖Lp ≤ C‖F‖Lp . (1.2.1)

We introduce the Bellman function

H(x)
def
= sup

F,G
{EB(ϕ(F,G)), Eϕ(F,G) = x, |Gn+1 −Gn| = |Fn+1 − Fn|, n ≥ 0}. (1.2.2)

where ϕ(x1, x2) = (x1, x2, |x1|p), B(ϕ(x1, x2)) = (x2
2 + τ2x2

1)p/2, x = (x1, x2, x3).

Remark 2. In what follows bold lowercase letters denote points in R3.
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Then we see that the estimate (1.2.1) can be rewritten as follows:

H(x1, x2, x3) ≤ Cpx3.

We mention that the Bellman function H does not depend on the choice of the interval

I. Without loss of generality we may assume that I = [0, 1].

Definition 2. Given a point x ∈ R3, a pair (F,G) is said to be admissible for x if G is the

martingale transform of F and E(F,G, |F |p) = x.

Proposition 1. The domain of H(x) is Ω = {(x1, x2, x3) ∈ R3 : |x1|p ≤ x3}, and H

satisfies the boundary condition

H(x1, x2, |x1|p) = (x2
2 + τ2x2

1)p/2. (1.2.3)

Definition 3. A function U is said to be diagonally concave in Ω, if it is concave in both

Ω ∩ {(x1, x2, x3) : x1 + x2 = A} and Ω ∩ {(x1, x2, x3) : x1 − x2 = A} for every constant

A ∈ R.

Proposition 2. H(x) is a diagonally concave function in Ω.

Proposition 3. If U is a continuous diagonally concave function in Ω with boundary con-

dition U(x1, x2, |x1|p) ≥ (x2
2 + τ2x2

1)p/2, then U ≥ H in Ω.

We explain our strategy of finding the Bellman functionH. We are going to find a minimal

candidate B, that is continuous, diagonally concave, with the fixed boundary condition

B|∂Ω = (y2 + τ2x2)p/2. We warn the reader that the symbol B denoted boundary data

previously, however, in Section 1.6 we are going to use symbol B as the candidate for the

10



minimal diagonally concave function. Obviously B ≥ H by Proposition 3. We will also

see that given x ∈ Ω and any ε > 0, we can construct an admissible pair (F,G) such that

B(x) < E(F 2 + τ2G2)p/2 + ε. This will show that B ≤ H and hence B = H.

In order to construct the minimal candidate B, we have to elaborate few preliminary

concepts from differential geometry. We introduce notion of foliation and force functions.

1.3 Homogeneous Monge–Ampère equation and minimal concave

functions

1.3.1 Foliation

Let g(s) ∈ C3(I) be such that g′′ > 0, and let Ω be a convex domain which is bounded

by the curve (s, g(s)) and the tangents that pass through the end-points of the curve (see

Figure 1.1). Fix some function f(s) ∈ C3(I). The first question we ask is the following: how

the minimal concave function B(x1, x2) with boundary data B(s, g(s))) = f(s) looks locally

in a subdomain of Ω. In other words, take a convex hull of the curve (s, g(s), f(s)), s ∈ I,

then the question is how the boundary of this convex hull looks like.

We recall that the concavity is equivalent to the following inequalities:

det(d2B) ≥ 0, (1.3.1)

B′′x1x1
+ B′′x2x2

≤ 0. (1.3.2)

The expression (1.3.1) is the Gaussian curvature of the surface (x1, x2,B(x1, x2)) up to a

positive factor (1 + (B′x1
)2 + (B′x2

)2)2. So in order to minimize the function B(x1, x2), it is

reasonable to minimize the Gaussian curvature. Therefore, we will look for a surface with
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zero Gaussian curvature. Here the homogeneous Monge–Ampère equation arises. These

surfaces are known as developable surfaces i.e., such a surface can be constructed by bending

a plane region. The important property of such surfaces is that they consist of line segments,

i.e., the function B satisfying homogeneous Monge–Ampère equation det(d2B) = 0 is linear

along some family of segments. These considerations lead us to investigate such functions

B. Firstly, we define a foliation. For any segment ` in the Euclidean space by symbol `◦ we

denote an open segment i.e., ` without endpoints.

I

y

Ω

s

Figure 1.1 Domain Ω

Fix any subinterval J ⊆ I. By symbol Θ(J, g) we denote an arbitrary set of nontrivial

segments (i.e. single points are excluded) in R2 with the following requirements:

1. For any ` ∈ Θ(J, g) we have `◦ ∈ Ω.

2. For any `1, `2 ∈ Θ(J, g) we have `1 ∩ `2 = ∅.

3. For any ` ∈ Θ(J, g) there exists only one point s ∈ J such that (s, g(s)) is one of the

end-points of the segment ` and vice versa, for any point s ∈ J there exists ` ∈ Θ(J, g)
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such that (s, g(s)) is one of the end-points of the segment `.

4. There exists C1 smooth argument function θ(s).

We explain the meaning of the requirement 4. To each point s ∈ J there corresponds

only one segment ` ∈ Θ(J, g) with an endpoint (s, g(s)). Take a nonzero vector with initial

point (s, g(s)), parallel to the segment ` and having an endpoint in Ω. We define the value

of θ(s) to be an argument of this vector. Surely argument is defined up to additive number

2πk where k ∈ Z. Nevertheless, we take any representative from these angles. We do the

same for all other points s ∈ I. In this way we get a family of functions θ(s). If there exists

C1(J) smooth function θ(s) from this family then the requirement 4 is satisfied.

Remark 3. It is clear that if θ(s) is C1(J) smooth argument function, then for any k ∈

Z, θ(s) + 2πk is also C1(J) smooth argument function. Any two C1(J) smooth argument

functions differ by constant 2πn for some n ∈ Z.

This remark is the consequence of the fact that the quantity θ′(s) is well defined re-

gardless of the choices of θ(s). Next, we define Ω(Θ(J, g)) = ∪`∈Θ(J,g)`
◦. Given a point

x ∈ Ω(Θ(J, g)) we denote by `(x) a segment `(x) ∈ Θ(J, g) which passes through the point

x. If x = (s, g(s)) then instead of `((s, g(s))) we just write `(s). Surely such a segment

exists, and it is unique. We denote by s(x) a point s(x) ∈ J such that (s(x), g(s(x))) is

one of the end points of the segment `(x). Moreover, in a natural way we set s(x) = s if

x = (s, g(s)). It is clear that such s(x) exists, and it is unique. We introduce a function

K(s) = g′(s) cos θ(s)− sin θ(s), s ∈ J. (1.3.3)

Note that that K < 0. This inequality becomes obvious if we rewrite g′(s) cos θ(s) −
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sin θ(s) = 〈(1, g′), (− sin θ, cos θ)〉 and take into account the requirement 1 of Θ(J, g). Note

that 〈·, ·〉 means scalar product in Euclidean space. We need few more requirements on

Θ(J, g).

J

g

Figure 1.2 Foliation Θ(J, g)

5. For any x = (x1, x2) ∈ Ω(Θ(J, g)) we have an inequality K(s(x)) + θ′(s(x))‖(x1 −

s(x), x2 − g(s(x)))‖ < 0.

6. The function s(x) is continuous in Ω(Θ(J, g))∪Γ(J) where Γ(J) = {(s, g(s)) : s ∈ J}.

Note that if θ′(s) ≤ 0 (which happens in most of the cases) then the requirement 5 holds.

If we know the endpoints of the segments Θ(J, g), then in order to verify the requirement 5

it is enough to check at those points x = (x1, x2), where x is the another endpoint of the

segment other than (s, g(s)). Roughly speaking the requirement 5 means the segments of

Θ(J, g) do not rotate rapidly counterclockwise.

Definition 4. A set of segments Θ(J, g) with the requirements mentioned above is called

foliation. The set Ω(Θ(J, g)) is called domain of foliation.

A typical example of a foliation is given in Figure 1.2.

14



Lemma 1. The function s(x) belongs to C1(Ω(Θ(J, g))). Moreover

(s′x1
, s′x2

) =
(sin θ,− cos θ)

−K(s)− θ′ · ‖(x1 − s, x2 − g(s))‖ . (1.3.4)

Proof. Definition of the function s(x) implies that

−(x1 − s) sin θ(s) + (x2 − g(s)) cos θ(s) = 0.

Therefore the lemma is an immediate consequence of the implicit function theorem.

Let J = [s1, s2] ⊆ I, and let (s, g(s), f(s)) ∈ C3(I) be such that g′′ > 0 on I. Consider an

arbitrary foliation Θ(J, g) with an arbitrary C1([s1, s2]) smooth argument function θ(s). We

need the following technical lemma which describes behavior of the gradient of the function

B which satisfies homogeneous Monge–Ampère equation.

Lemma 2. The solutions of the system of equations

t′1(s) cos θ(s) + t′2(s) sin θ(s) = 0, (1.3.5)

t1(s) + t2(s)g′(s) = f ′(s), s ∈ J (1.3.6)

are the following functions

t1(s) =

∫ s

s1

(
g′′(r)
K(r)

sin θ(r) · t2(r)− f ′′(r)
K(r)

sin θ(r)

)
dr + f ′(s1)− t2(s1)g′(s1),

t2(s) = t2(s1) exp

(
−
∫ s

s1

g′′(r)
K(r)

cos θ(r)dr

)
+∫ s

s1

f ′′(y)

K(y)
exp

(
−
∫ s

y

g′′(r)
K(r)

cos θ(r)dr

)
cos θ(y)dy, s ∈ J
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where t2(s1) is an arbitrary real number.

Proof. We differentiate (1.3.6) and combine it with (1.3.5) to obtain the system

cos θ sin θ

1 g′


t′1
t′2

 =

0 0

0 −g′′


t1
t2

+

 0

f ′′

 .

This implies that

t′1
t′2

 =
g′′

K

0 sin θ

0 − cos θ


t1
t2

+
f ′′

K

− sin θ

cos θ

 . (1.3.7)

By solving this system of differential equations and using the fact that t1(s1)+g′(s1)t2(s1) =

f ′(s1) we get the desired result.

Remark 4. Integration by parts allows us to rewrite the expression for t2(s) as follows

t2(s) = exp

(
−
∫ s

s1

g′′(r)
K(r)

cos θ(r)dr

)(
t2(s1)− f ′′(s1)

g′′(s1)

)
+
f ′′(s)
g′′(s)

−

−
∫ s

s1

[
f ′′(y)

g′′(y)

]′
exp

(
−
∫ s

y

g′′(r)
K(r)

cos θ(r)dr

)
dy.

Definition 5. We say that a function B has a foliation Θ(J, g) if it is continuous on

Ω(Θ(J, g)), and it is linear on each segment of Θ(J, g).

The following lemma describes how to construct a function B with a given foliation

Θ(J, g), boundary condition B(s, g(s)) = f(s), such that B satisfies the homogeneous

Monge–Ampère equation.
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Consider a function B defined as follows

B(x) = f(s) + 〈t(s), x− (s, g(s))〉, x = (x1, x2) ∈ Ω(Θ(J, g)) (1.3.8)

where s = s(x), and t(s) = (t1(s), t2(s)) satisfies the system of the equations (1.3.5), (1.3.6)

with an arbitrary t2(s1).

Lemma 3. The function B defined by (1.3.8) satisfies the following properties:

1. B ∈ C2(Ω(Θ(J, g))) ∩ C1(Ω(Θ(J, g)) ∪ Γ), B has the foliation Θ(J, g) and

B(s, g(s)) = f(s) for all s ∈ [s1, s2]. (1.3.9)

2. ∇B(x) = t(s), where s = s(x), moreover B satisfies the homogeneous Monge–Ampère

equation.

Proof. The fact that B has the foliation Θ(J, g), and it satisfies the equality (1.3.9) imme-

diately follows from the definition of the function B. We check the condition of smoothness.

By Lemma 1 and Lemma 2 we have s(x) ∈ C2(Ω(Θ(J, g))) and t1, t2 ∈ C1(J), therefore the

right-hand side of (1.3.8) is differentiable with respect to x. So after differentiation of (1.3.8)

we get

∇B(x) =
[
f ′(s)− 〈t(s), (1, g′(s))〉

]
(s′x1

, s′x2
) + t(s) + 〈t′(s), x− (s, g(s))〉(s′x1

, s′x2
).

(1.3.10)

Using (1.3.5) and (1.3.6) we obtain ∇B(x) = t(s). Taking derivative with respect to x the
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second time we get

∂2B

∂x2
1

= t′1(s)s′x1
,

∂2B

∂x2∂x1
= t′1(s)s′x2

,
∂2B

∂x1∂x2
= t′2(s)s′x1

,
∂2B

∂x2
2

= t′2(s)s′x2
.

Using (1.3.5) we get that t′1(s)s′x2
= t′2(s)s′x1

, therefore B ∈ C2(Ω(Θ(J, g))). Finally, we

check that B satisfies the homogeneous Monge–Ampère equation. Indeed,

det(d2B) =
∂2B

∂x2
1

· ∂
2B

∂x2
2

− ∂2B

∂x2∂x1
· ∂2B

∂x1∂x2
= t′1(s)s′x1

· t′2(s)s′x1
− t′1(s)s′x2

· t′2(s)s′x1
= 0.

Definition 6. The function t(s) = (t1(s), t2(s)) = ∇B(x), s = s(x), is called gradient

function corresponding to B.

The following lemma investigates the concavity of the function B defined by (1.3.8). Let

‖˜̀(x)‖ = ‖(s(x)− x1, g(s(x))− x2)‖, where x = (x1, x2) ∈ Ω(Θ(J, g)).

Lemma 4. The following equalities hold

∂2B

∂x2
1

+
∂2B

∂x2
2

=
g′′

K(K + θ′‖˜̀(x)‖)

(
−t2 +

f ′′

g′′

)
=

g′′

K(K + θ′‖˜̀(x)‖)
×
[
− exp

(
−
∫ s

s1

g′′(r)
K(r)

cos θ(r)dr

)(
t2(s1)− f ′′(s1)

g′′(s1)

)
+

∫ s

s1

[
f ′′(y)

g′′(y)

]′
exp

(
−
∫ s

y

g′′(r)
K(r)

cos θ(r)dr

)
dy

]
.

Proof. Note that

∂2B

∂x2
1

+
∂2B

∂x2
2

= t′1(s)s′1 + t′2(s)s′2.
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Therefore the lemma is a direct computation and application of Equalities (1.3.4), (1.3.5),

(1.3.6) and Remark 4.

Finally, we get the following important statement.

Corollary 1. The function B is concave in Ω(Θ(J, g)) if and only if F(s) ≤ 0, where

F(s) = − exp

(
−
∫ s

s1

g′′(r)
K(r)

cos θ(r)dr

)(
t2(s1)− f ′′(s1)

g′′(s1)

)
(1.3.11)

+

∫ s

s1

[
f ′′(y)

g′′(y)

]′
exp

(
−
∫ s

y

g′′(r)
K(r)

cos θ(r)dr

)
dy =

f ′′(s)
g′′(s)

− t2(s).

Proof. B satisfies the homogeneous Monge–Ampère equation. Therefore B is concave if and

only if

∂2B

∂x2
1

+
∂2B

∂x2
2

≤ 0. (1.3.12)

Note that

g′′

K(K + θ′‖˜̀(x)‖)
> 0.

Hence, according to Lemma 4, the inequality (1.3.12) holds if and only if F(s) ≤ 0.

Furthermore, the function F will be called force function.

Remark 5. The fact t2(s) = f ′′/g′′ − F together with (1.3.7) imply that the force function
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F satisfies the following differential equation

F ′ + F · cos θ

K
g′′ −

[
f ′′

g′′

]′
= 0, s ∈ J (1.3.13)

F(s1) =
f ′′(s1)

g′′(s1)
− t2(s1).

We remind the reader that for an arbitrary smooth curve γ = (s, g(s), f(s)), the torsion

has the following expression

det(γ′, γ′′, γ′′′)
‖γ′ × γ′′‖2 =

f ′′′g′′ − g′′′f ′′
‖γ′ × γ′′‖2 =

(g′′)2

‖γ′ × γ′′‖2 ·
[
f ′′

g′′

]′
.

Corollary 2. If F(s1) ≤ 0 and the torsion of a curve (s, g(s), f(s)), s ∈ J is negative, then

the function B defined by (1.3.8) is concave.

Proof. The corollary is an immediate consequence of (1.3.11).

Thus, we see that the torsion of the boundary data plays a crucial role in the concavity of

a surface with zero Gaussian curvature. More detailed investigations about how we choose

the constant t2(s1) will be given in Subsection 1.3.2.

Let Θ(J, g) and Θ̃(J, g) be foliations with some argument functions θ(s) and θ̃(s) re-

spectively. Let B and B̃ be the corresponding functions defined by (1.3.8), and let F , F̃

be the corresponding force functions. Note that F(s) = F̃(s) is equivalent to the equal-

ity t(s) = t̃(s) where t(s) = (t1(s), t2(s)) and t̃(s) = (t̃1(s), t2(s)) are the corresponding

gradients of B and B̃ (see (1.3.6) and Corollary 1).

Assume that the functions B and B̃ are concave functions.

Lemma 5. If sin(θ̃− θ) ≥ 0 for all s ∈ J , and F(s1) = F̃(s1), then B̃ ≤ B on Ω(Θ(J, g))∩

Ω̃(Θ(J, g)).
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˜̀

x

(s(x),g(s(x)))

`(x)

g

Θ(J,g)

Θ̃(J,g)

Figure 1.3 Foliations Θ(J, g) and Θ̃(J, g)

In other words, the lemma says that if at initial point (s1, g(s1)) gradients of the functions

B̃ and B coincide, and the foliation Θ̃(J, g) is “to the left of” the foliation Θ(J, g) (see

Figure 1.3) then B̃ ≤ B provided B and B̃ are concave.

Proof. Let K and K̃ be the corresponding functions of B and B̃ defined by (1.3.3). The

condition K, K̃ < 0 implies that the inequality sin(θ̃− θ) ≥ 0 is equivalent to the inequality

cos θ̃

K̃
≥ cos θ

K
for s ∈ J. (1.3.14)

Indeed, if we rewrite (1.3.14) as K cos θ̃ ≥ K̃ cos θ then this simplifies to − sin θ cos θ̃ ≥

− sin θ̃ cos θ, so the result follows. The force functions F , F̃ satisfy the differential equation

`−

(s2,g(s2))

`+

g

Θ+Θ−

J− J+

Ang(s2)

Figure 1.4 Gluing of B− and B+
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(1.3.13) with the same boundary condition F(s1) = F̃(s1). Then by (1.3.14) and by compar-

ison theorems we get F̃ ≥ F on J . This and (1.3.11) imply that t̃2 ≤ t2 on J . Pick any point

x ∈ Ω(Θ(J, g)) ∩ Ω̃(Θ(J, g)). Then there exists a segment `(x) ∈ Θ(J, g). Let (s(x), g(s(x)))

be the corresponding endpoint of this segment. There exists a segment ˜̀ ∈ Θ̃(J, g) which

has (s(x), g(s(x))) as an endpoint (see Figure 1.3).

Consider a tangent plane L(x) to (x1, x2, B̃) at point (s(x), g(s(x))). The fact that the

gradient of B̃ is constant on ˜̀, implies that L is tangent to (x1, x2, B̃) on ˜̀. Therefore

L(x) = f(s) + 〈(t̃1(s), t̃2(s)), (x1 − s, x2 − g(s))〉,

where x = (x1, x2) and s = s(x). Concavity of B̃ implies that a value of the function B̃

at point y seen from the point (s(x), g(s(x))) is less than L(y). In particular B̃(x) ≤ L(x).

Now it is enough to prove that L(x) ≤ B(x). By (1.3.8) we have

B(x) = f(s) + 〈(t1(s), t2(s)), (x1 − s(x), x2 − g(s))〉.

Therefore using (1.3.6), 〈(−g′, 1), (x1 − s, x2 − g(s))〉 ≥ 0 and the fact that t̃2 ≤ t2 we get

the desired result.

Let J− = [s1, s2] and J+ = [s2, s3] where J−, J+ ⊂ I. Consider arbitrary foliations

Θ− = Θ−(J−, g) and Θ+ = Θ+(J+, g) such that Ω(Θ−) ∩ Ω(Θ+) = ∅, and let θ− and θ+

be the corresponding argument functions. Let B− and B+ be the corresponding functions

defined by (1.3.8), and let t− = (t−1 , t
−
2 ), t+ = (t+1 , t

+
2 ) be the corresponding gradient

functions. Set Ang(s2) to be a convex hull of `−(s2) and `+(s2) where `−(s2) ∈ Θ−,

`+(s2) ∈ Θ+ are the segments with the endpoint (s2, g(s2)) (see Figure 1.4). We require

22



that Ang(s2) ∩ Ω(Θ−) = `− and Ang(s2) ∩ Ω(Θ+) = `+.

Let F−,F+ be the corresponding forces, and let BAng be the function defined linearly

on Ang(s2) via the values of B− and B+ on `−, `+ respectively.

Lemma 6. If t−2 (s2) = t+2 (s2), then the function B defined as follows

B(x) =



B−(x), x ∈ Ω(Θ(J−, g)),

BAng(x), x ∈ Ang(s2),

B+(x), x ∈ Ω(Θ(J+, g)),

belongs to the class C1(Ω(Θ−) ∪ Ang(s2) ∪ Ω(Θ+) ∪ Γ(J− ∪ J+)).

Proof. By (1.3.6) the condition t−2 (s2) = t+2 (s2) is equivalent to the condition t−(s2) =

t+(s2). We recall that the gradient of B− is constant on `−(s2), and the gradient of

B+ is constant on `+(s2), therefore the lemma follows immediately from the fact that

B−(s2, g(s2)) = B+(s2, g(s2)).

Remark 6. The fact B ∈ C1 implies that its gradient function t(s) = ∇B is well defined, and

it is continuous. Unfortunately, it is not necessarily true that t(s) ∈ C1([s1, s3]). However,

it is clear that t(s) ∈ C1([s1, s2]), and t(s) ∈ C1([s2, s3]).

Finally we finish this section with the following important corollary about concave ex-

tension of the functions with zero gaussian curvature.

Let B− and B+ be defined as above (see Figure 1.4). Assume that t−2 (s2) = t+2 (s2).

Corollary 3. If B− is concave in Ω(Θ−) and the torsion of the curve (s, g(s), f(s)) is

nonnegative on J+ = [s2, s3] then the function B defined in Lemma 6 is concave in the

domain Ω(Θ−) ∪ Ang(s2) ∪ Ω(Θ+).
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In other words the corollary tells us that if we have constructed concave function B−

which satisfies homogeneous Monge–Ampère equation, and we glued B− smoothly with B+

(which also satisfies homogeneous Monge–Ampère equation), then the result B is concave

function provided that the space curve (s, g(s), f(s)) has nonnegative torsion on the interval

J+.

Proof. By Lemma 1 concavity of B− implies F−(s2) ≤ 0. By (1.3.11) the condition t−2 (s2) =

t+2 (s2) is equivalent to F−(s2) = F+(s2). By Corollary 2 we get that B+ is concave. Thus,

concavity of B follows from Lemma 6.

1.3.2 Cup

I s0 s1a(s1) a(s0)

`(s1,g(s1))

J

g

Figure 1.5 Foliation Θcup(J, g)

In this subsection we are going to consider a special type of foliation which is called Cup.

Fix an interval I and consider an arbitrary curve (s, g(s), f(s)) ∈ C3(I). We suppose that

g′′ > 0 on I. Let a(s) ∈ C1(J) be a function such that a′(s) < 0 on J , where J = [s0, s1]

is a subinterval of I. Assume that a(s0) < s0 and [a(s1), a(s0)] ⊂ I. Consider a set of open

segments Θcup(J, g) consisting of those segments `(s, g(s)), s ∈ J such that `(s, g(s)) is a

segment in the plane joining the points (s, g(s)) and (a(s), g(a(s))) (see Figure 1.5).
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Lemma 7. The set of segments Θcup(J, g) described above forms a foliation.

Proof. We need to check the 6 requirements for a set to be the foliation. Most of them are

trivial except for 4 and 5. We know the endpoints of each segment therefore we can consider

the following argument function

θ(s) = π + arctan

(
g(s)− g(a(s))

s− a(s)

)
.

Surely θ(s) ∈ C1(J), so requirement 4 is satisfied. We check requirement 5. It is clear that

it is enough to check this requirement for x = (a(s), g(a(s)). Let s = s(x), then

K(s) + θ′(s)‖(a(s)− s, g(a(s))− g(s))‖ =
〈(1, g′), (g − g(a), a− s)〉
‖(g(a)− g, s− a)‖ +

(g′ − a′g′(a))(s− a)− (1− a′)(g − g(a))

‖(g(a)− g, s− a)‖ =
a′ · 〈(1, g′(a)), (g − g(a), a− s)〉

‖(g(a)− g, s− a)‖

which is strictly negative.

Let γ(t) = (t, g(t), f(t)) ∈ C3([a0, b0]) be an arbitrary curve such that g′′ > 0 on [a0, b0].

Assume that the torsion of γ is positive on I− = (a0, c), and it is negative on I+ = (c, b0)

for some c ∈ (a0, b0).

Lemma 8. For all P such that 0 < P < min{c− a0, b0− c} there exist a ∈ I−, b ∈ I+ such

that b− a = P and

∣∣∣∣∣∣∣∣∣∣∣
1 1 a− b

g′(a) g′(b) g(a)− g(b)

f ′(a) f ′(b) f(a)− f(b)

∣∣∣∣∣∣∣∣∣∣∣
= 0. (1.3.15)
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Proof. Pick a number a ∈ (a0, b0) so that b = a+ P ∈ (a0, b0). We denote

M(a, b) = (a− b)(g′(b)− g′(a))

(
g(a)− g(b)

a− b − g′(a)

)
.

Note that the conditions a 6= b and g′′ > 0 imply M(a, b) 6= 0. Then

∣∣∣∣∣∣∣∣∣∣∣
1 1 a− b

g′(a) g′(b) g(a)− g(b)

f ′(a) f ′(b) f(a)− f(b)

∣∣∣∣∣∣∣∣∣∣∣
=M(a, b)

[
f(a)− f(b)− f ′(a)(a− b)
g(a)− g(b)− g′(a)(a− b) −

f ′(b)− f ′(a)

g′(b)− g′(a)

]
.

Thus our equation (1.3.15) turns into

f(a)− f(b)− f ′(a)(a− b)
g(a)− g(b)− g′(a)(a− b) −

f ′(b)− f ′(a)

g′(b)− g′(a)
= 0. (1.3.16)

We consider the following functions V (x) = f(x) − f ′(a)x and U(x) = g(x) − g′(a)x. Note

that U(a) 6= U(b) and U ′ 6= 0 on (a, b). Therefore by Cauchy’s mean value theorem there

exists a point ξ = ξ(a, b) ∈ (a, b) such that

f(a)− f(b)− f ′(a)(a− b)
g(a)− g(b)− g′(a)(a− b) =

V (a)− V (b)

U(a)− U(b)
=
V ′(ξ)
U ′(ξ)

=
f ′(ξ)− f ′(a)

g′(ξ)− g′(a)
.

Now we define

Wa(z)
def
=

f ′(z)− f ′(a)

g′(z)− g′(a)
, z ∈ (a, b].

So the left hand side of (1.3.16) takes the form Wa(ξ)−Wa(b) = 0 for some ξ(a, P ) ∈ (a, b).
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We consider the curve v(s) = (g′(s), f ′(s)) which is a graph on [a0, b0]. The fact that the

torsion of the curve γ(s) = (s, g(s), f(s)) changes sign from + to − at the point c ∈ (a0, b0)

means that the curve v(s) is strictly convex on the interval (a0, c), and it is strictly concave

on the interval (c, b0). We consider a function obtained from (1.3.16)

D(z)
def
=

f(z)− f(z + P ) + f ′(z)P

g(z)− g(z + P ) + g′(z)P
− f ′(z + P )− f ′(z)

g′(z + P )− g′(z)
, z ∈ [a0, c]. (1.3.17)

Note that D(a0) = Wa0(ζ)−Wa0(a0+P ) for some ζ = ζ(a0, P ) ∈ (a0, a0+P ). We know that

v(s) is strictly convex on the interval (a0, a0+P ). This implies that Wa0(z)−Wa0(a0+P ) < 0

for all z ∈ (a0, a0 + P ). In particular D(a0) < 0. Similarly, concavity of v(s) on (c, c + P )

implies that D(c) > 0. Hence, there exists a ∈ (a0, c) such that D(a) = 0.

Let a1 and b1 be some solutions of (1.3.15) obtained by Lemma 8.

Lemma 9. There exists a function a(s) ∈ C1((c, b1]) ∩ C([c, b1]) such that a(b1) = a1,

a(c) = c, a′(s) < 0, and the pair (a(s), s) solves the equation (1.3.15) for all s ∈ [c, b1].

Proof. The proof of the lemma is a consequence of the implicit function theorem. Let a < b,

and consider the function

Φ(a, b)
def
=

∣∣∣∣∣∣∣∣∣∣∣
1 1 a− b

g′(a) g′(b) g(a)− g(b)

f ′(a) f ′(b) f(a)− f(b)

∣∣∣∣∣∣∣∣∣∣∣
.

We are going to find the signs of the partial derivatives of Φ(a, b) at the point (a, b) = (a1, b1).

We present the calculation only for ∂Φ/∂b. The case for ∂Φ/∂a is similar.
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∂Φ(a, b)

∂b
=

∣∣∣∣∣∣∣∣∣∣∣
1 0 a− b

g′(a) g′′(b) g(a)− g(b)

f ′(a) f ′′(b) f(a)− f(b)

∣∣∣∣∣∣∣∣∣∣∣
=

= (a− b)g′′(b)
(
g(a)− g(b)

a− b − g′(a)

)[
f(a)− f(b)− f ′(a)(a− b)
g(a)− g(b)− g′(a)(a− b) −

f ′′(b)
g′′(b)

]
.

Note that

(a− b)g′′(b)
(
g(a)− g(b)

a− b − g′(a)

)
< 0,

therefore we see that the sign of ∂Φ/∂b depends only on the sign of the expression

f(a)− f(b)− f ′(a)(a− b)
g(a)− g(b)− g′(a)(a− b) −

f ′′(b)
g′′(b)

. (1.3.18)

We use the cup equation (1.3.16), and we obtain that the expression (1.3.18) at the point

(a, b) = (a1, b1) takes the following form:

f ′(b)− f ′(a)

g′(b)− g′(a)
− f ′′(b)
g′′(b)

. (1.3.19)

The above expression has the following geometric meaning. We consider the curve v(s) =

(g′(s), f ′(s)), and we draw a segment which connects the points v(a) and v(b). The above

expression is the difference between the slope of the line which passes through the segment
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[v(a), v(b)] and the slope of the tangent line of the curve v(s) at the point b. In the case as

it is shown on Figure 1.6, this difference is positive. Recall that v(s) is strictly convex on

(a1, c), and it is strictly concave on (c, b1). Therefore, one can easily note that this expression

(1.3.19) is always positive if the segment [v(a), v(b)] also intersects the curve v(s) at a point

ξ such that a < ξ < b. This always happens in our case because equation (1.3.16) means

that the points v(a), v(ξ), v(b) lie on the same line, where ξ was determined from Cauchy’s

mean value theorem. Thus

f ′(b)− f ′(a)

g′(b)− g′(a)
− f ′′(b)
g′′(b)

> 0. (1.3.20)

Similarly, we can obtain that ∂Φ
∂a < 0, because this is the same as to show that

f ′(b)− f ′(a)

g′(b)− g′(a)
− f ′′(a)

g′′(a)
> 0. (1.3.21)

Thus, by the implicit function theorem there exists a C1 function a(s) in some neighborhood

of b1 such that a′(s) = −Φ′b
Φ′a

< 0, and the pair (a(s), s) solves (1.3.15).

Now we want to explain that the function a(s) can be defined on (c, b1], and, moreover,

lims→c+0 a(s) = c. Indeed, whenever a(s) ∈ (a1, c) and s ∈ (c, b1) we can use the implicit

function theorem, and we can extend the function a(s). It is clear that for each s we have

a(s) ∈ [a1, c) and s ∈ (c, b1). Indeed, if a(s), s ∈ (a1, c], or a(s), s ∈ [c, b1) then (1.3.15) has

a definite sign (see (1.3.17)). It follows that α(s) ∈ C1((c, b1]), and the condition a′(s) < 0

implies lims→c+0 a(s) = c. Hence a(s) ∈ C([c, b1]).

It is worth mentioning that we did not use the fact that the torsion of (s, g(s), f(s))

changes sign from + to −. The only thing we needed was that the torsion changes sign.
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Let a1 and b1 be any solutions of equation (1.3.15) from Lemma 8, and let a(s) be

any function from Lemma 9. Fix an arbitrary s1 ∈ (c, b1) and consider the foliation

Θcup([s1, b1], g) constructed by a(s) (see Lemma 7). Let B be a function defined by (1.3.8),

where

t2(s1) =
f ′(s1)− f ′(a(s1))

g′(s1)− g′(a(s1))
. (1.3.22)

Set Ωcup = Ω(Θcup([s1, b1], g)), and let Ωcup be the closure of Ωcup.

Lemma 10. The function B satisfies the following properties

1. B ∈ C2(Ωcup) ∩ C1(Ωcup).

2. B(a(s), g(a(s))) = f(a(s)) for all s ∈ [s1, b1].

3. B is a concave function in Ωcup.

Proof. The first property follows from Lemma 3 and the fact that ∇B(x) = t(s) for s = s(x),

where s(x) is a continuous function in Ωcup.

We are going to check the second property. We recall (see (1.3.6)) that t1(s) = f ′(s) −

t2(s)g′(s). Condition (1.3.22) implies that

t1(s1) + t2(s1)g′(a(s1)) = f ′(a(s1)). (1.3.23)

Let B(a(s), g(a(s))) = f̃(a(s)). After differentiation of this equality we get t1(s1)+t2(s1)g′(a(s1)) =
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f̃ ′(a(s1)). Hence, (1.3.23) implies that f ′(a(s1)) = f̃ ′(a(s1)). It is clear that

t1(s) + t2(s)g′(s) = f ′(s),

t1(s) + t2(s)g′(a(s)) = f̃ ′(a(s)),

t1(s)(s− a(s)) + t2(s)(g(s)− g(a(s))) = f(s)− f̃(a(s)),

which implies

∣∣∣∣∣∣∣∣∣∣∣
1 1 s− a(s)

g′(s) g′(a(s)) g(s)− g(a(s))

f ′(s) f̃ ′(a(s)) f(s)− f̃(a(s))

∣∣∣∣∣∣∣∣∣∣∣
= 0.

This equality can be rewritten as follows:

f ′ ·

∣∣∣∣∣∣∣
1 s− a(s)

g′(a(s)) g(s)− g(a(s))

∣∣∣∣∣∣∣− f̃ ′(a)

∣∣∣∣∣∣∣
1 s− a(s)

g′ g(s)− g(a(s))

∣∣∣∣∣∣∣+ (f − f̃(a))(g′(a(s))− g′(s)) = 0.

By virtue of Lemma 9 we have the same equality as above except f̃ is replaced by f . We

subtract one from another one:

[f(a(s))− f̃(a(s))] + [f ′(a(s))− f̃ ′(a(s))] ·

∣∣∣∣∣∣∣
1 s− a(s)

g′ g(s)− g(a(s))

∣∣∣∣∣∣∣
g′(a(s))− g′(s) = 0.
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Note that

∣∣∣∣∣∣∣
1 s− a(s)

g′ g(s)− g(a(s))

∣∣∣∣∣∣∣
g′(a(s))− g′(s) < 0

and a(s) is invertible. Therefore we get the differential equation z(u)B(u) + z′(u) = 0 where

B ∈ C1([a(b1), a(s1)]), z(u) = f(u)− f̃(u) and B < 0. The condition z′(a(s1)) = 0 implies

z(a(s1)) = 0. Note that z = 0 is a trivial solution. Therefore, by uniqueness of solutions to

ODEs we get z = 0.

We are going to check the concavity of B. Let F be the force function corresponding to

B. By Corollary 2 we only need to check that F(s1) ≤ 0. Note that (1.3.11) and (1.3.22)

imply

F(s1) =
f ′′(s1)

g′′(s1)
− t2(s1) =

f ′′(s1)

g′′(s1)
− f ′(s1)− f ′(a(s1))

g′(s1)− g′(a(s1))
,

which is negative by (1.3.20).

Remark 7. The above lemma is true for all choices s1 ∈ (c, b1). If we send s1 to c then one

can easily see that lims1→c+ t2(s1) = 0, therefore the force function F takes the following

form

F(s) =

∫ s

c

[
f ′′(y)

g′′(y)

]′
exp

(
−
∫ s

y

g′′(r)
K(r)

cos θ(r)dr

)
dy.

This is another way to show that the force function is nonpositive.

The next lemma shows that the regardless of the choices of initial solution (a1, b1) of
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g′(ξ)

v(s)

g′(a) g′(b)g′(c)

Figure 1.6 Graph v(s)

(1.3.15), the constructed function a(s) by Lemma 9 is unique (i.e. it does not depend on the

pair (a1, b1)).

Lemma 11. Let pairs (a1, b1), (ã1, b̃1) solve (1.3.15), and let a(s), ã(s) be the corresponding

functions obtained by Lemma 9. Then a(s) = ã(s) on [c,min{b1, b̃1}].

Proof. By the uniqueness result of the implicit function theorem we only need to show

existence of s1 ∈ (c,min{b1, b̃1}) such that a(s1) = ã(s1). Without loss of generality assume

that b̃1 = b1 = s2. We can also assume that ã(s2) > a(s2), because other cases can be solved

in a similar way.

Let Θ = Θcup([c, s2], g) and Θ̃ = Θ̃cup([c, s2], g) be the foliations corresponding to the

functions a(s) and ã(s). Let B and B̃ be the functions corresponding to these foliations

from Lemma 10. We consider a chord T in R3 joining the points (a(s1), g(a(s1)), f(a(s1)))

and (s1, g(s1), f(s1)) (see Figure 1.7). We want to show that the chord T belongs to the

graph of B̃. Indeed, concavity of B̃ (see Lemma 10) implies that the chord T lies below

the graph of B̃(x1, x2), where (x1, x2) ∈ Ω(Θ̃). Moreover, concavity of B, Ω(Θ̃) ⊂ Ω(Θ)

and the fact that the graph B̃ consists of chords joining the points of the curve (t, g(t), f(t))
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imply that the graph B lies above the graph B̃. In particular the chord T , belonging to the

graph B, lies above the graph B̃. This can happen if and only if T belongs to the graph

B̃. Now we show that if s1 < s2, then the torsion of the curve (s, g(s), f(s)) is zero for

s ∈ [s1, s2]. Indeed, let T̃ be a chord in R3 which joins the points (a(s1), g(a(s1)), f(a(s1)))

and (s2, g(s2), f(s2)). We consider the tangent plane L(x) to the graph B̃ at the point

(x1, x2) = (a(s1), g(a(s1))). This tangent plane must contain both chords T and T̃ , and it

must be tangent to the surface at these chords. Concavity of B̃ implies that the tangent

plane L coincides with B̃ at points belonging to the triangle, which is the convex hull of

the points (a(s1), g(a(s1))), (s1, g(s1)) and (s2, g(s2)). Therefore, it is clear that the tangent

plane L coincides with B̃ on the segments ` ∈ Θ̃ with the endpoint at (s, g(s)) for s ∈ [s1, s2].

Thus L((s, g(s))) = B̃((s, g(s))) for any s ∈ [s1, s2]. This means that the torsion of the curve

(s, g(s), f(s)) is zero on s ∈ [s1, s2] which contradicts our assumption about the torsion.

Therefore s1 = s2.

Corollary 4. In the conditions of Lemma 8, for all 0 < P < min{c−a0, b0− c} there exists

a unique pair (a1, b1) which solves (1.3.15) such that b1 − a1 = P .

The above corollary implies that if the pairs (a1, b1) and (ã1, b̃1) solve (1.3.15), then

a1 6= ã1 and b1 6= b̃1, and one of the following conditions holds: (a1, b1) ⊂ (ã1, b̃1), or

(ã1, b̃1) ⊂ (a1, b1).

Remark 8. The function a(s) is defined on the right of the point c. We extend naturally its

definition on the left of the interval by a(s)
def
= a−1(s).
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1.4 Construction of the Bellman function

1.4.1 Reduction to the two dimensional case

We are going to construct the Bellman function for the case p < 2. The case p = 2 is trivial,

and the case p > 2 was solved in [8]. From the definition of H it follows that

H(x1, x2, x3) = H(|x1|, |x2|, x3) for all (x1, x2, x3) ∈ Ω. (1.4.1)

Also note the homogeneity condition

H(λx1, λx2, λ
px3) = λpH(x1, x2, x3) for all λ ≥ 0. (1.4.2)

These two conditions (1.4.1), (2.1.7), which follow from the nature of the boundary data

(x2 + τ2y2)2/p, make the construction of H easier. However, in order to construct the

function H, this information is not necessary. Further, we assume that H is C1(Ω) smooth.

Then from the symmetry (1.4.1) it follows that

∂H

∂xj
= 0 on xj = 0 for j = 1, 2. (1.4.3)

For convenience, as in [8], we rotate the system of coordinates (x1, x2, x3). Namely, let

y1
def
=

x1 + x2

2
, y2

def
=

x2 − x1

2
, y3

def
= x3. (1.4.4)
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We define

N(y1, y2, y3)
def
= H(y1 − y2, y1 + y2, y3) on Ω1,

where Ω1 = {(y1, y2, y3) : y3 ≥ 0, |y1 − y2|p ≤ y3}. It is clear that for fixed y1, the function

N is concave in variables y2 and y3; moreover, for fixed y2 the function N is concave with

respect to the rest of variables. The symmetry (1.4.1) for N turns into the following condition

N(y1, y2, y3) = N(y2, y1, y3) = N(−y1,−y2, y3). (1.4.5)

Thus it is sufficient to construct the function N on the domain

Ω2
def
= {(y1, y2, y3) : y1 ≥ 0, −y1 ≤ y2 ≤ y1, (y1 − y2)p ≤ y3}.

Condition (1.4.3) turns into

∂N

∂y1
=
∂N

∂y2
on the hyperplane y2 = y1, (1.4.6)

∂N

∂y1
= −∂N

∂y2
on the hyperplane y2 = −y1. (1.4.7)

The boundary condition (1.2.3) becomes

N(y1, y2, |y1 − y2|p) = ((y1 + y2)2 + τ2(y1 − y2)2)p/2. (1.4.8)
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The homogeneity condition (2.1.7) implies that N(λy1, λy2, λ
py3) = λpN(y1, y2, y3) for λ ≥

0. We choose λ = 1/y1, and we obtain that

N(y1, y2, y3) = y
p
1N

(
1,
y2

y1
,
y3

y
p
1

)
(1.4.9)

Suppose we are able to construct the function M(y2, y3)
def
= N(1, y2, y3) on

Ω3
def
= {(y2, y3) : −1 ≤ y2 ≤ 1, (1− y2)p ≤ y3}

with the following conditions:

1. M is concave in Ω3

2. M satisfies (1.4.8) for y1 = 1.

3. The extension of M onto Ω1 via formulas (1.4.9) and (1.4.5) is a function with the

properties of N (see (1.4.6), (1.4.7), and concavity of N).

4. M is minimal among those who satisfy the conditions 1,2,3.

Then the extended function M should be N . So we are going to construct M on Ω3. We

denote

g(t)
def
= (1− t)p, t ∈ [−1, 1], (1.4.10)

f(t)
def
= ((1 + t)2 + τ2(1− t)2)p/2, t ∈ [−1, 1]. (1.4.11)
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Then we have the boundary condition

M(t, g(t)) = f(t), t ∈ [−1, 1]. (1.4.12)

We differentiate the condition (1.4.9) with respect to y1 at the point (y1, y2, y3) =

(1,−1, y3) and we obtain that

∂N

∂y1
(1,−1, y3) = pN(1,−1, y3) +

∂N

∂y2
(1,−1, y3)− py3

∂N

∂y3
, y3 ≥ 0.

Now we use (1.4.7), so we obtain another requirement for M(y2, y3):

0 = pM(−1, y3) + 2
∂M

∂y2
(−1, y3)− py3

∂M

∂y3
(−1, y3), for y3 ≥ 0. (1.4.13)

Similarly, we differentiate (1.4.9) with respect to y1 at point (y1, y2, y3) = (1, 1, y3) and use

(1.4.6), so we obtain

0 = pM(1, y3)− 2
∂M

∂y2
(1, y3)− py3

∂M

∂y3
(1, y3), for y3 ≥ 0. (1.4.14)

So in order to satisfy conditions (1.4.6) and (1.4.7), the requirements (1.4.13) and (1.4.14)

are necessary. It is easy to see that these requirements are also sufficient in order to satisfy

these conditions.

The minimum between two concave functions with fixed boundary data is a concave

function with the same boundary data. Note also that the conditions (1.4.13) and (1.4.14)

still fulfilled after taking the minimum. Thus it is quite reasonable to construct a candidate

for M(y2, y3) as a minimal concave function on Ω3 with the boundary conditions (1.4.12),
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s2c s1a(s1)=ã(s1)a(s2)

Figure 1.7 Uniqueness of the cup

(1.4.13) and (1.4.14). We remind that we should also have the concavity of the extended

function N(y1, y2, y3) with respect to variables y1, y3 for each fixed y2. This condition can

be verified after the construction of the function M(y2, y3).

1.4.2 Construction of a candidate for M

We are going to construct a candidate B for M . Firstly, we show that for τ > 0, the torsion

τγ of the boundary curve γ(t)
def
= (t, g(t), f(t)) on t ∈ (−1, 1), where f, g are defined by

(1.4.10) and (1.4.11), changes sign once from + to −. We call this point the root of a cup.

We construct the cup around this point. Note that g′ < 0, g′′ > 0 on [−1, 1). Therefore

sign τγ = sign

(
f ′′′ − g′′′

g′′
f ′′
)

= sign

(
f ′′′ − 2− p

1− t f
′′
)

= sign(v(t)),

where

v(t)
def
= −(1 + τ2)2(p− 1)t3 + (1 + τ2)(3τ2 + τ2p+ 3− 3p)t2+

(2τ2p− 9τ4 + τ4p+ 3− 3p− 6τ2)t− p+ 5τ4 + 2τ2p− τ4p− 10τ2 + 1.
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Note that v(−1) = 16τ4 > 0 and v(1) = −8((p− 1) + τ2) < 0. So the function v(t) changes

sign from + to − at least once. Now, we show that v(t) has only one root. For τ2 <
3(p−1)

3−p ,

note that the linear function v′′(t) is nonnegative i.e. v′′(−1) = 8τ2p(1 + τ2) > 0, v′′(1) =

−4(1 + τ2)(τ2p− 3τ2 + 3p− 3) ≥ 0. Therefore, the convexity of v(t) implies the uniqueness

of the root v(t) on [−1, 1].

Suppose τ2 <
3(p−1)

3−p ; we will show that v′ ≤ 0 on [−1, 1]. Indeed, the discriminant of

the quadratic function v′(x) has the expression

D = 16τ2(τ2 + 1)2((3− p)2τ2 − 9(p− 1)),

which is negative for 0 < τ2 <
3(p−1)

3−p . Moreover, v′(−1) = −4τ2(τ2p+ 3τ2 + 3) < 0. Thus

we obtain that v′ is negative.

We denote the root of v by c. It is an appropriate time to make the following remark.

Remark 9. Note that v(−1 + 2/p) < 0. Indeed,

v(−1 + 2/p) =
(3p− 2)(p2 − 2p− 4)τ4 + (16 + 5p3 − 8p2 − 16p)τ2 + 8(1− p)

p3
,

which is negative because coefficients of τ4, τ2, τ0 are negative. Therefore, this inequality

implies that c < −1 + 2/p.

Consider a = −1 and b = 1; the left side of (1.3.15) takes the positive value −22p−1p(1−

p). However, if we consider a = −1 and b = c, then the proof of Lemma 8 (see (1.3.17))

implies that the left side of (1.3.15) is negative. Therefore, there exists a unique s0 ∈ (c, 1)

such that the pair (−1, s0) solves (1.3.15). Uniqueness follows from Corollary 4. The equation
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(1.3.15) for the pair (−1, s0) is equivalent to the equation u
(

1+s0
1−s0

)
= 0, where

u(z)
def
= τp(p− 1)

(
τ2 + z2

)(2−p)/2
− τ2(p− 1) + (1 + z)2−p − z(2− p)− 1. (1.4.15)

Lemma 9 gives the function a(s), and Lemma 10 gives the concave function B(y2, y3) for

s1 = c with the foliation Θcup((c, s0], g) in the domain Ω(Θcup((c, s0], g)).

The above explanation implies the following corollary.

Corollary 5. Pick any point ỹ2 ∈ (−1, 1). The inequalities s0 < ỹ2, s0 = ỹ2 and ỹ2 > s0

are equivalent to the following inequalities respectively: u
(

1+ỹ2
1−ỹ2

)
< 0, u

(
1+ỹ2
1−ỹ2

)
= 0 and

u
(

1+ỹ2
1−ỹ2

)
> 0.

y3

y=(y2,y3)

`(y)

y2−1 1s=s(y)

h(s)

(t,g(t))

∂M
∂y2

=− ∂M
∂y3

∂M
∂y2

= ∂M
∂y3

Figure 1.8 Segment `(y)

Now we are going to extend C1 smoothly the function B on the upper part of the cup.

Recall that we are looking for a minimal concave function. If we construct a function with a

foliation Θ([s0, ỹ2], g) where ỹ2 ∈ (s0, 1) then the best thing we can do according to Lemma 6

and Lemma 5 is to minimize sin(θcup(s0)− θ(s0)) where θcup(s) is an argument function of

Θcup((c, s0], g) and θ(s) is an argument function of Θ([s0, ỹ2], g). In other words we need to
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choose segments from Θ([s0, ỹ2], g) close enough to the segments of Θcup((c, s0], g).

Thus, we are going to try to construct the set of segments Θ([s0, ỹ2]) so that they start

from (s, g(s), f(s)), s ∈ [s0, ỹ2], and they go to the boundary y2 = −1 of Ω3.

We explain how the conditions (1.4.13) and (1.4.14) allow us to construct such type of

foliation Θ([s0, ỹ2], g) in a unique way. Let `(y) be the segment with the endpoints (s, g(s))

where s ∈ (s0, ỹ2) and (−1, h(s)) (see Figure 1.8).

Let t(s) = (t1(s), t2(s)) = ∇B(y) where s = s(y) is the corresponding gradient function.

Then (1.4.13) takes the form

0 = pB(−1, h(s)) + 2t1(s)− ph(s)t2(s). (1.4.16)

We differentiate this expression with respect to s, and we obtain

2t′1(s)− ph(s)t′2(s) = 0. (1.4.17)

Then according to (1.3.5) we find the function tan θ(s), and, hence, we find the quantity

h(s)

tan θ(s) = −ph(s)

2
⇔ h(s)− g(s)

s+ 1
=
ph(s)

2
.

Therefore,

h(s) =
2g(s)

p

(
1

yp − s

)
where yp

def
= −1 +

2

p
. (1.4.18)

We see that the function h(s) is well defined, it increases, and it is differentiable on −1 ≤
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s < yp. So we conclude that if s0 < yp then we are able to construct the set of segments

Θ([s0, yp), g) that pass through the points (s, g(s)) , where s ∈ [s0, yp) and through the

boundary y2 = −1 (see Figure 1.9).

y3

y2−1 1s0 yp

h(s0)

c

Θ([s0,yp),g)

Ang(s0)

Θcup((c,s0],g)

∂M
∂y2

=− ∂M
∂y3

∂M
∂y2

= ∂M
∂y3

Figure 1.9 Foliations Θcup((c, s0], g) and Θ([s0, yp), g)

It is easy to check that Θ([s0, yp), g) is a foliation. So choosing the value t2(s0) of B

on Ω(Θ([s0, yp), g)) according to Lemma 6, then by Corollary 3 we have constructed the

concave function B in the domain Ω(Θcup((c, s0], g)) ∪ Ang(s0) ∪ Ω(Θ([s0, yp], g)).

It is clear that the foliation Θ([s0, yp), g) exists as long as s0 < yp. Note that
1+yp
1−yp = 1

p−1 .

Therefore, Corollary 5 implies the following remark.

Remark 10. The inequalities s0 < yp, s0 = yp and s0 > yp are equivalent to the following

inequalities respectively: u
(

1
p−1

)
< 0, u

(
1
p−1

)
= 0 and u

(
1
p−1

)
> 0.

At the point yp the segments from Θ([s0, yp), g) become vertical. After the point (yp, g(yp))

we should consider vertical segments Θ([yp, 1], g) (see Figure 1.10), because by Lemma 5 this

corresponds to the minimal function. Surely Θ([yp, 1], g) is the foliation. Again, choosing

the value t2(yp) of B on Ω(Θ([yp, 1], g)) according to Lemma 6, then by Corollary 3 we have

43
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y2−1 1s0 yp

h(s0)

c

Θ([s0,yp),g)
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∂M
∂y2

=− ∂M
∂y3

∂M
∂y2

= ∂M
∂y3

Θ([yp,1],g)

Figure 1.10 Case u
(

1
p−1

)
< 0

constructed the concave function B on Ω3. Note that if s0 ≥ yp (which corresponds to the

inequality u
(

1
p−1

)
> 0) then we do not have the foliation Θ([s0, yp), g). In this case we

consider only vertical segments Θ([s0, 1], g) (see Figure 1.11), and again choosing the value

t2(s0) of B on Ω(Θ([s0, 1], g)) according to Lemma 6 then by Corollary 3 we construct a

concave function B on Ω3. We believe that B = M .

We still have to check the requirements (1.4.13) and (1.4.14). The crucial role is played

by symmetry of the boundary data of N . Further, the given proofs work for both of the

cases yp < s0 and yp ≥ s0. Therefore, we do not consider them separately.

The requirement (1.4.14) follows immediately. Indeed, the condition (1.3.8) at the point

y = (1, y3) (note that in (1.3.8) instead of x = (x1, x2) we consider y = (y2, y3)) implies

that B(1, y3) = f(1) + t2(1)(y3 − g(1)). Therefore, the requirement (1.4.14) takes the form

0 = pf(1) − 2t1(1). Using (1.3.6), we obtain that t1(1) = f ′(1). Therefore, we see that

pf(1)− 2t1(1) = pf(1)− 2f ′(1) = 0.

Now, we are going to obtain the requirement (1.4.13) which is the same as (1.4.16). The

quantities t1, t2 of B with the foliation Θ([s0, yp), g) satisfy the condition (1.4.17) which was
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obtained by differentiation of (1.4.16). So we only need to check the condition (1.4.16) at

the initial point s = s0. If we substitute the expression of B from (1.3.8) into (1.4.16), then

(1.4.16) turns into the following equivalent condition:

t1(s)(s− yp) + t2(s)g(s) = f(s). (1.4.19)

Note that (1.3.6) allows us to rewrite (1.4.19) into the equivalent condition

t2(s) =
f(s)− (s− yp)f ′(s)
g(s)− (s− yp)g′(s)

. (1.4.20)

And as it was mentioned above we only need to check condition (1.4.20) at the point s = s0,

i.e.

t2(s0) =
f(s0)− (s0 − yp)f ′(s0)

g(s0)− (s0 − yp)g′(s0)
. (1.4.21)

On the other hand, if we differentiate the boundary condition B(s, g(s)) = f(s) at the

points s = s0,−1, then we obtain

t1(s0) + t2(s0)g′(−1) = f ′(−1),

t1(s0) + t2(s0)g′(s0) = f ′(s0).

Thus we can find the value of t2(s0):

t2(s0) =
f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
. (1.4.22)
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So these two values (1.4.22) and (1.4.21) must coincide. In other words we need to show

f(s0)− (s0 − yp)f ′(s0)

g(s0)− (s0 − yp)g′(s0)
=
f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
. (1.4.23)

It will be convenient for us to work with the following notations for the rest of the current

subsection. We denote g(−1) = g−, g′(−1) = g′−, f(−1) = f−, f ′(−1) = f ′− g(s0) =

g, g′(s0) = g′, f(s0) = f, f ′(s0) = f ′. The condition (1.4.23) is equivalent to

s0 =
fg′− + f ′g − fg′ − gf ′−

f ′g′− − g′f ′−
+ yp = (1.4.24)

=

(
fg′− + f ′g − fg′ − gf ′−

f ′g′− − g′f ′−
− 1

)
+

2

p
.

On the other hand, from (1.3.15) for the pair (−1, s0) we obtain that

s0 =

(
fg′− + f ′g − fg′ − gf ′−

f ′g′− − g′f ′−
− 1

)
+
f ′g− + g′−f− − g′f− − f ′−g−

g′f ′− − f ′g′−
.

So, from (1.4.24) we see that it suffices to show that

f ′g− + g′−f− − g′f− − f ′−g−
g′f ′− − f ′g′−

=
2

p
.

We note that g′− = −(p/2)g−, f ′− = −(p/2)f−, hence g′−f− = f ′−g−. Therefore, we have

f ′g− + g′−f− − g′f− − f ′−g−
g′f ′− − f ′g′−

=
f ′g− − g′f−
g′f ′− − f ′g′−

=
2

p
.
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1.4.3 Concavity in another direction

We are going to check the concavity of the extended function N via B in another direction.

It is worth mentioning that the both of the cases yp < s0, yp ≥ s0 do not play any role in

the following computations, therefore we consider them together. We define a candidate for

N as

N(y1, y2, y3)
def
= y

p
1B(1, y2/y1, y3/y

p
1) for

(
y2

y1
,
y3

y
p
1

)
∈ Ω3, (1.4.25)

and we extend N to the Ω1 by (1.4.5). Then, as it was already discussed, N ∈ C1(Ω1). We

need the following technical lemma:

Lemma 12.

N ′′y1y1
N ′′y3y3

− (N ′′y1y3
)2 = −t′2s′y3

p(p− 1)y
p−2
1

(
st1 + gt2 − f +

y2

y1
t1 ·
(

2

p
− 1

))

where s = s

(
y2
y1
, y3

yp1

)
and

(
y2
y1
, y3

yp1

)
∈ int(Ω3) \ Ang(s0).

As it was mentioned in Remark 6, the gradient function t(s) is not necessarily differ-

entiable at point s0, this is the reason of the requirement

(
y2
y1
, y3

yp1

)
∈ int(Ω3) \ Ang(s0)

in the lemma. However, from the proof of the lemma, the reader can easily see that

N ′′y1y1
N ′′y3y3

− (N ′′y1y3
)2 = 0 whenever the points

(
y2
y1
, y3

y
p
1

)
belong to the interior of the

domain Ang(s0).

Proof. Definition of the candidate N (see (1.4.25)) implies N ′′y3y3
= t′2(s)s′y3

, N ′′y3y1
= t′2s

′
y1

,
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N ′y1
= y

p−1
1

(
pB

(
y2

y1
,
y3

y
p
1

)
− t1

y2

y1
− pt2

y3

y
p
1

)
. (1.4.26)

Condition (1.3.8) implies

B

(
y2

y1
,
y3

y
p
1

)
= f(s) + t1 ·

(
y2

y1
− s
)

+ t2 ·
(
y3

y
p
1

− g(s)

)
.

We substitute this expression for B

(
y2
y1
, y3

yp1

)
into (1.4.26), and we obtain:

N ′y1
= y

p−1
1

(
pf +

y2

y1
t1(p− 1)− pst1 − pgt2

)
. (1.4.27)

Condition

(
y2
y1
, y3

yp1

)
∈ int(Ω3) \ Ang(s0) implies the equality N ′′y1y3

= N ′′y3y1
which in

turn gives

t′2s
′
y1

= y
p−1
1

(
pf ′ +

y2

y1
t′1(p− 1)− (pst1 + pgt2)′s

)
s′y3

.

Hence

t′2 · (s′y1
)2 = y

p−1
1

(
pf ′ +

y2

y1
t′1(p− 1)− (pst1 + pgt2)′s

)
s′y3

s′y1
. (1.4.28)

We keep in mind this identity and continue our calculations
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N ′′y1y1
= (p− 1)y

p−2
1

(
pf +

y2

y1
t1(p− 2)− pst1 − pgt2

)
+

y
p−1
1

(
pf ′ +

y2

y1
t′1(p− 1)− (pst1 + pgt2)′s

)
s′y1

.

So, finally we obtain

N ′′y1y1
N ′′y3y3

− (N ′′y1y3
)2 = t′2

(
N ′′y1y1

s′y3
− t′2(s′y1

)2
)
.

Now we use the identity (1.4.28), and we substitute the expression t′2(s′y1
)2:

N ′′y1y1
N ′′y3y3

− (N ′′y1y3
)2 = t′2s

′
y3

(
N ′′y1y1

− yp−1
1

(
pf ′ +

y2

y1
t′1(p− 1)− (pst1 + pgt2)′s

)
s′y1

)
=

t′2s
′
y3

(p− 1)y
p−2
1

(
pf +

y2

y1
t1(p− 2)− pst1 − pgt2

)
=

− t′2s′y3
p(p− 1)y

p−2
1

(
st1 + gt2 − f +

y2

y1
t1 ·
(

2

p
− 1

))
.

Now we are going to consider several cases when the points (y2/y1, y3/y
p
1) belong to the

different subdomains in Ω3. Note that we always have N ′′y3y3
≤ 0, because of the fact that B

is concave in Ω3 and (1.4.25). So we only have to check that the determinant of the Hessian

N is negative. If the determinant of the Hessian is zero, then it is sufficient to ensure that

N ′′y3y3
is strictly negative, and if N ′′y3y3

is also zero, then we need to ensure that N ′′y1,y1
is

nonpositive.

Domain Ω(Θ[s0, yp]).
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In this case we can use the equality (1.4.19), and we obtain that

st1 + gt2 − f = ypt1.

Therefore

N ′′y1y1
N ′′y3y3

− (N ′′y1y3
)2 = −t′2s′y3

p(p− 1)y
p−2
1 t1yp

(
1 +

y2

y1

)
≥ 0.

because t1 ≥ 0. Indeed, t1(s) is continuous on [c, 1], where c is the root of the cup and

B′′y2y2
= t′1s

′
y2
≤ 0, therefore, because of the fact s′y2

> 0, it suffices to check that t1(1) ≥ 0

which follows from the following inequality

t1(1) = f ′(1)− t2(1)g′(1) = f ′(1) > 0.

Domain of linearity Ang(s0).

This is the domain which is obtained by the triangle ABC, where A = (−1, g(−1)),

B = (s0, g(s0)), and C = (−1, h(s0)) if s0 < yp and by the infinity domain of linearity, which

is rectangular type, and which lies between the chords AB, BC ′, where C ′ = (s0,+∞) and

AC ′′, where C ′′ = (−1,+∞) (see Figure 1.11).

Suppose the points
(
y2/y1, y3/y

p
1

)
belong to the interior of Ang(s0). Then the gradient

function t(s) of B is constant, and moreover s

(
y2
y1
, y3

yp1

)
is constant. The fact that the

determinant of the Hessian is zero in the domain of linearity (note that s′y3
= 0) implies that

50



we only need to check N ′′y1y1
< 0. Equality (1.4.27) implies

N ′′y1y1
= (p− 1)y

p−2
1

(
pf +

y2

y1
t1(p− 2)− ps0t1 − pgt2

)
≤

(p− 1)y
p−2
1 (pf − ps0t1 − pgt2 − t1(p− 2)) = 0.

The last equality follows from (1.4.19). The above inequality turns into the equality if and

only if y2
y1

= s0, this is the boundary point of Ang(s0).

Domain of vertical segments.

On the vertical segments determinant of the Hessian is zero (for example, because the

vertical segment is vertical segment in all directions) and B′′y3y3
= 0, therefore, we must

check that N ′′y1y1
≤ 0. We note that s(y2, y3) = y2, therefore,

N ′′y1y1
= y

p−2
1 ×

[
(p− 1) (pf + st1(p− 2)− pst1 − pgt2)− s

(
pf ′ − t′1s− t1p− pg′t2

)]
.

However, from (1.3.6) we have pf ′ − t1p− pg′t2 = 0, therefore,

N ′′y1y1
= y

p−2
1 ×

[
(p− 1) (pf − 2st1 − pgt2) + s2t′1

]
.

Condition t′1 ≤ 0 implies that it is sufficient to show pf − 2st1 − pgt2 ≤ 0. We use (1.3.6),

and we find t1 = f ′ − g′t2. Hence,

pf − 2st1 − pgt2 = pf − gpt2 − 2s(f ′ − g′t2) = pf − 2sf ′ − t2(gp− 2sg′).

Note that gp − 2sg′ ≥ 0 (because s ≥ 0 and g′ ≤ 0), and we recall that from (1.3.6) and
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the fact that on the vertical segments t2 is constant, since we have cos θ(s) = 0 (see the

expression of t2 from Lemma 2), so t2 is constant and hence 0 ≥ t′1 = f ′′ − g′′t2, therefore,

we have t2 ≥ f ′′/g′′. Therefore,

pf − 2sf ′ − t2(gp− 2sg′) ≤ pf − 2sf ′ − f ′′

g′′
(gp− 2sg′).

Now we recall the values (1.4.12), (1.4.11), and after direct calculations we obtain

pf − 2sf ′ − f ′′

g′′
(gp− 2sg′) =

f(1− s2)p(p− 2)(τ2(1 + s)2 + (1− s)2 + 2τ2(1− s2))

(p− 1)((1 + s)2 + τ2(1− s)2)2
≤ 0.

Domain of the cup Ω(Θcup((c, s0], g)).

y3

y2−1 1s0ypc

Ang(s0)

Θcup((c,s0],g)

∂M
∂y2

=− ∂M
∂y3

∂M
∂y2

= ∂M
∂y3

Θ([s0,1],g)

Figure 1.11 Case u
(

1
p−1

)
≥ 0

The condition that N ′′y3y3
is strictly negative in the cup implies that we only need to show

st2+gt3−f+ y2
y1
t1(2

p−1) ≥ 0, where s = s(y2/y1, y3/y
p
1) and the points y = (y2/y1, y3/y

p
1) lie

in the cup. We can think that y2/y1 → y2 and y3/y
p
1 → y3 and s(y2/y1, y3/y

p
1)→ s(y2, y3),

and we can think that the points (y2, y3) lie in the cup. Therefore it suffices to show that
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st2 + gt3− f + y2t1(2
p − 1) ≥ 0, where y = (y2, y3) ∈ Ω(Θcup((c, s0], g)). On a segment with

the fixed endpoint (s, g(s)) the expressions s, t1, g(s), t2, f(s) are constant, except of y2, so

the expression st1 +gt2−f +y2t1(2
p−1) is linear with respect to the y2 on the each segment

of the cup. Therefore, the worst case appears when y2 = a(s) (a(s) − is the left end (it is

abscissa) of the given segment). This is true because t1 ≥ 0 (as it was already shown) and

(2
p − 1) ≥ 0. So, as the result, we derive that it is sufficient to prove the inequality

st1 + gt2 − f + a(s)t1 ·
(

2

p
− 1

)
= t1(s− a(s)) + gt2 − f +

2a(s)

p
t1 ≥ 0. (1.4.29)

We use the identity (1.3.8) at the point y = (a(s), g(a(s))), and we find that

t1(s− a(s)) + gt2 − f = g(a(s))t2 − f(a(s)).

We substitute this expression into (1.4.29) then we will get that it suffices to prove the

inequality:

g(a(s))t2 − f(a(s)) +
2a(s)

p
t1 ≥ 0. (1.4.30)

We differentiate condition B(a(s), g(a(s))) = f(s) with respect to s. Then we find

the expression for t1(s), namely t1(s) = f ′(a(s)) − t2(s)g′(a(s)). After substituting this

expression into (1.4.30) we obtain that:

g(a(s))t2 − f(a(s)) +
2a(s)

p
t1 =

1 + z

g′(z)

(
(z − 1)(τ2 + 1)f(z)

((1 + z)2 + τ2(1− z)2)g′(z)
− t2(s)

)
,

53



where z = a(s). So it suffices to show that

(z − 1)(τ2 + 1)f(z)

((1 + z)2 + τ2(1− z)2)g′(z)
− t2(s) ≤ 0 (1.4.31)

because g′ is negative. We are going to show that the condition (1.4.31) is sufficient to check

at the point z = −1. Indeed, note that (t2)′z ≥ 0 on [−1, c], where c is the root of the cup,

and also note that

(
(z − 1)(τ2 + 1)f

((1 + z)2 + τ2(1− z)2)g′

)′
z

=

τ2 + 1

p
(p− 2)(1− z)−(p−1)[(1 + z)2 + τ2(1− z)2]p/2−22(1 + z) ≤ 0.

The condition (1.4.31) at the point z = −1 turns into the following condition

t2(s0)− τp−2(τ2 + 1)

p
≥ 0.

Now we recall (1.3.21) and t2(s0) = (f ′(−1)− f ′(s0)/(g′(−1)− g′(s0)), therefore we have

t2(s0)− τp−2(τ2 + 1)

p
≥ f ′′(−1)

g′′(−1)
− τp−2(τ2 + 1)

p
=
τp(p− 1)2 + τp−2

p(p− 1)
> 0.

Thus we finish this section by the following remark.

Remark 11. We still have to check the cases when the points

(
y2
y1
, y3

y
p
1

)
belong to the bound-

ary of Ang(s0) and the vertical rays y2 = ±1 in Ω3. The reader can easily see that in this

case concavity of N follows from the observation that N ∈ C1(Ω1). Symmetry of N covers

the rest of the cases when

(
y2
y1
, y3

y
p
1

)
/∈ Ω3.

54



Thus we have constructed the candidate N .

1.5 Sharp constants via foliation

1.5.1 Main theorem

We remind the reader the definition of the functions u(z), g(s), f(s) (see (1.4.15), (1.4.10),

(1.4.11)), the value yp = −1 + 2/p and the definition of the function a(s) (see Lemma 9,

Lemma 11 and Remark 8).

Theorem 1.5.1. Let 1 < p < 2, and let G be the martingale transform of F and let

|EG| ≤ β|EF |. Set β′ = β−1
β+1 .

(i) If u
(

1
p−1

)
≤ 0 then

E(τ2F 2 +G2)p/2 ≤
(
τ2 + max

{
β,

1

p− 1

}2
)p

2

E|F |p. (1.5.1)

(ii) If u
(

1
p−1

)
> 0 then

E(τ2F 2 +G2)p/2 ≤ C(β′)E|F |p,
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where C(β′) is continuous, nondecreasing, and it is defined by the following way:

C(β′) def
=



(
τ2 + β2

)p/2
, β′ ≥ s∗;

τp

1− 22−p(1−s0)p−1

(τ2+1)(p−1)(1−s0)+2(2−p)
, β′ ≤ −1 + 2

p ;

f ′(s1)− f ′(a(s1))

g′(s1)− g′(a(s1))
, R(s1, β

′) = 0 for s1 ∈ (β′, s0);

where s0 ∈ (−1 + 2/p, 1) is the solution of the equation u
(

1+s0
1−s0

)
= 0, and the function

R(s, z) is defined as follows

R(s, z)
def
= −f(s)− f ′(a(s))g′(s)− f ′(s)g′(a(s))

g′(s)− g′(a(s))
(z − s) +

f ′(s)− f ′(a(s))

g′(s)− g′(a(s))
g(s) = 0, z ∈ [−1 + 2/p, s∗], s ∈ [z, s0].

The value s∗ ∈ [−1 + 2/p, s0] is the solution of the equation

f ′(s∗)− f ′(a(s∗))
g′(s∗)− g′(a(s∗))

=
f(s∗)
g(s∗)

. (1.5.2)

Proof. Before we investigate some of the cases mentioned in the theorem, we should make

the following observation. The inequality of the type (1.5.1) can be restated as follows

H(x1, x2, x3) ≤ Cx3, (1.5.3)

where H is defined by (1.2.2) and x1 = EF, x2 = EG, x3 = E|F |p. In order to derive the
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estimate (1.5.1) we have to find the sharp C in (1.5.3). Because of the property (1.4.1) we

can assume that both of the values x1, x2 are nonnegative. So non-negativity of x1, x2 and

the condition |EG| ≤ β|EF | can be reformulated as follows

−x1 + x2

2
≤ x2 − x1

2
≤
(
β − 1

β + 1

)(
x1 + x2

2

)
. (1.5.4)

The condition (1.5.4) with (1.5.3) in terms of the function N and the variables y1, y2, y3

means that we have to find the sharp C such that

N(y1, y2, y3) ≤ Cy3 for − y1 ≤ y2 ≤
(
β − 1

β + 1

)
y1, y ∈ Ω2.

Because of (1.4.9) the above condition can be reformulated as follows

B(y2, y3) ≤ Cy3 for − 1 ≤ y2 ≤
(
β − 1

β + 1

)
, y3 ≥ g(y2), (1.5.5)

where B(y2, y3) = N(1, y2, y3). So our aim is to find the sharp C, in other words the

value supy1,y2
B/y3 where the supremum is taken from the domain mentioned in (1.5.5).

Note that the quantity B(y2, y3)/y3 increases with respect to the variable y2. Indeed,

(B(y2, y3)/y3)′y2
= t1(s(y))/y3, where the function t1(s) is nonnegative on [c0, 1] (see the

end of the proof of the concavity condition in the domain Ω(Θ[s0, yp])). Note that as we

increase the value y2 then the range of y3 also increases. This means that the supremum of

the expression B/y3 is attained on the subdomain where y2 = (β − 1)/(β + 1). It is worth

mentioning that since the quantity (β − 1)/(β + 1) ∈ [−1, 1] increases as β increases and

because of the observation made above we see that the value C increases as the β′ increases.
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1.5.2 Case yp ≤ s0.

We are going to investigate the simple case (i). Remark 10 implies that s0 ≤ yp, in other

words, the foliation of vertical segments is Θ([yp, 1], g) where the value θ(s) on [yp, 1] is

equal to π/2. This means that t2(s) is constant on [yp, 1] (see Lemma 2), and it is equal to

f(yp)/g(yp) = (τ2 + 1
(p−1)2 )p/2 (see (1.4.20)).

If β−1
β+1 ≥ yp, or equivalently β ≥ 1

p−1 , then the function B on the vertical segment with

the endpoint (β′, g(β′)) where β−1
β+1 = β′ ∈ [yp, 1) has the expression (see (1.3.8))

B(β′, y3) = f(β′) +
f(yp)

g(yp)
(y3 − g(β′)), y3 ≥ g(β′).

Therefore,

B(β′, y3)

y3
=
f(yp)

g(yp)
+
g(β′)
y3

(
f(β′)
g(β′)

− f(yp)

g(yp)

)
, y3 ≥ g(β′). (1.5.6)

The expression f(s)/g(s) is strictly increasing on (−1, 1), therefore, the expression (1.5.6)

attains its maximal value at the point y3 = g(β′). Thus, we have

B(y2, y3)

y3
≤ B(β′, y3)

y3
≤ B(β′, g(β′))

g(β′)
=
f(β′)
g(β′)

=
(
τ2 + β2

)p/2
for − 1 ≤ y2 ≤ β′, y3 ≥ g(y2).

If β−1
β+1 < yp, or equivalently β < 1

p−1 , then we can achieve such value for C which was

achieved at the moment β = 1
p−1 , and since the function C = C(β′) increases as β′ increases

this value will be the best. Indeed, it suffices to look at the foliation (see Figure 1.10). For
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any fixed y2 we send y3 to +∞, and we obtain that

lim
y3→∞

B(y2, y3)

y3
= lim
y3→∞

f(s) + t1(s)(y2 − s) + t2(s)(y3 − g(s))

y3
=

lim
y3→∞

t2(s(y)) = t2(yp) =

(
τ2 +

1

(p− 1)2

)p/2
.

1.5.3 Case yp > s0.

As it was already mentioned, the condition in the case (ii) is equivalent to the inequality

s0 > yp (see Remark 10). This means that that the foliation of the vertical segments is

Θ([s0, 1], g) (see Figure 1.11). We know that C(β′) is increasing. We remind that we are

going to maximize the function
B(y2,y3)

y3
on the domain mentioned in (1.5.5). It was already

mentioned that we can require y2 =
(
β−1
β+1

)
= β′. For such fixed y2 = β′ ∈ [−1, 1] we are

going to investigate the monotonicity of the function
B(β′,y3)

y3
. We consider several cases.

Let β′ ≥ s0. We differentiate the function B(β′, y3)/y3 with respect to the variable y3, and

we use the expression (1.3.8) for B, so we obtain that

∂

∂y3

(
B(β′, y3)

y3

)
=
t2(β′)y3 −B(β′, y3)

y2
3

=
−f(β′) + t2(β′)g(β′)

y2
3

.

Recall that t2(s) = t2(s0) for s ∈ [s0, 1], therefore, direct calculations imply

t2(β′) =
f(s0)− (s0 − yp)f ′(s0)

g(s0)− (s0 − yp)g′(s0)
<
f(s0)

g(s0)
≤ f(β′)
g(β′)

, β′ ≥ s0.
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This implies that

C(β′) = sup
y3≥g(β′)

B(β′, y3)

y3
=

B(β′, y3)

y3

∣∣∣∣
y3=g(β′)

=
f(β′)
g(β′)

= (τ2 + β2)p/2.

Now we consider the case β′ < s0.

For each point y = (β′, y3) that belongs to the line y2 = β′ there exists a segment

`(y) ∈ Θ((c, s0], g) with the endpoint (s, g(s)) where s ∈ [max{β′, a(β′)}, s0]. If the point y

belongs to the domain of linearity Ang(s0), then we can choose the value s0, and consider

any segment with the endpoints y and (s0, g(s0)) which surely belongs to the domain of

linearity. The reader can easily see that as we increase the value y3 the value s increases as

well. So,

∂

∂y3

(
B(β′, y3)

y3

)
=
t2(s)y3 −B(β′, y3)

y2
3

=
−f(s)− t1(s)(β′ − s) + t2(s)g(s)

y2
3

.

Our aim is to investigate the sign of the expression −f(s)− t1(s)(β′ − s) + t2(s)g(s) as

we variate the value y3 ∈ [g(β′),+∞). Without loss of generality we can forget about the

variable y3, and we can variate only the value s on the interval [max{α(β′), β′}, s0].

We consider the function R(s, z)
def
= −f(s)− t1(s)(z − s) + t2(s)g(s) with the following

domain −1 ≤ z ≤ s0 and s ∈ [max{α(z), z}, s0] (see Figure 1.12). As we already have seen

R(s0, s0) < 0. Note that R(s0,−1) > 0. Indeed, note that R(s0,−1) = t2(s0)g(−1)−f(−1).

This equality follows from the fact that

f(s0)− f(−1) = t1(s0)(s0 + 1) + t2(s0)(g(s0)− g(−1)),
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which is consequence of Lemma 10. So, (1.4.22) and (1.3.21) imply

t2(s0) =
f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
>
f ′′(−1)

g′′(−1)
≥ f(−1)

g(−1)
.

Note that the function R(z, s0) is linear with respect to z. So on the interval [−1, s0] it has

the root yp = −1 + 2/p. Indeed,

−f(s0) + t2(s0)g(s0) + t1(s0)s0

t1(s0)
= yp.

The last equality follows from (1.4.22), (1.4.24) and (1.3.6). We need few more properties

of the function R(s, z). Note that for each fixed z, the function R(s, z) is nonincreasing on

[max{α(z), z}, s0]. Indeed

R′s(s, z) = −f ′(s)− t′1(s)(z − s) + t1(s) + t′2(s)g(s) + t2(s)g(s). (1.5.7)

We take into account the condition (1.3.6), so the expression (1.5.7) simplifies as follows

R′s(s, z) = t′2(s)g(s) + t′1(s)(s− z).

We remind the reader equality (1.3.5) and the fact that t′2(s) ≤ 0. Therefore we have

R′s(s, z) = y3t
′
2(s) where y3 = y3(s) > 0. Thus we see that R(s, β′) ≥ 0 for β′ ≤ yp.

So if the function R(·, z) at the right end on its domain [max{α(z), z}, s0] is positive, this

will mean that the function B/y3 is increasing, hence, the constant C(β′) will be equal to

C(β′) = lim
y3→∞

B(z, y3)

y3
= t2(s0) =

f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
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(this follows from (1.4.22) and the structure of the foliation). Since u
(

1+s0
1−s0

)
= 0 and

(1.4.23) direct computations show that

f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
=

τp

1− 22−p(1−s0)p−1

(τ2+1)(p−1)(1−s0)+2(2−p)
. (1.5.8)

So it follows that if β′ ≤ yp then (1.5.8) is the value of C(β′).

If the function R(·, z) on the left end of its domain is nonpositive this will mean that

the function B/y3 is decreasing, so the sharp constant will be the value of the function

B(z, y3)/y3 at the left end of its domain

C(β′) =
B(z, y3)

y3

∣∣∣∣
y3=g(z)

=
f(z)

g(z)
= (τ2 + β2)p/2. (1.5.9)

We recall that c is the root of the cup and c < yp (see Remark 9). We will show that the

function R(z, s) is decreasing on the boundary s = z for s ∈ (yp, s0]. Indeed, (1.3.6) implies

(R(s, s))′s = −f ′(s) + t′2(s)g(s) + t2(s)g′(s) = −t1(s) + t′2(s)g(s) < 0.

The last inequality follows from the fact that t′2(s) ≤ 0 and t1(s) > 0 on (c, 1]. Surely

R(yp, yp) > R(s0, yp) = 0, and we recall that R(s0, s0) < 0, so there exists unique s∗ ∈

[yp, s0] such that R(s∗, s∗) = 0. This is equivalent to (1.5.2). So it is clear that R(z, z) ≤ 0

for z ∈ [s∗, s0]. Therefore C(β′) has the value (1.5.9) for β′ ≥ s∗.

The only case remains is when β′ ∈ [yp, s
∗]. We know that R(z, z) ≥ 0 for z ∈ [yp, s

∗]

and R(s0, z) ≤ 0 for z ∈ [yp, s
∗]. The fact that for each fixed z the function R(s, z) is

decreasing implies the following: for each z ∈ [yp, s
∗] there exists unique s1(z) ∈ [z, s0] such
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that R(z, s1(z)) = 0. Therefore, for β′ ∈ [yp, s
∗] we have

C(β′) =
B(β′, y3(s1(β′)))

y3(s1(β′))
, (1.5.10)

where the value s1(β′) is the root of the equation R(s1(β′), β′) = 0. Recall that

R(s1(β′), β′) = t2(s1)y3(s1)−B(β′, y3(s1)) = −f(s1)− t1(s1)(β′ − s1) + t2(s1)g(s1).

(1.5.11)

So the expression (1.5.10) takes the form

C(β′) = t2(s1) =
f ′(s1)− f ′(a(s1))

g′(s1)− g′(a(s1))
.

Finally, we remind the reader that

t2(s) =
f ′(s)− f ′(a(s))

g′(s)− g′(a(s))
,

t1(s) =
f ′(a(s))g′(s)− f ′(s)g′(a(s))

g′(s)− g′(a(s))
.

for s ∈ (c, s0], and we finish the proof of the theorem.

1.6 Extremizers via foliation

We set Ψ(F,G) = E(G2 + τ2F 2)2/p. Let N be the candidate that we have constructed

in Section 1.4 (see (1.4.25)). We define the candidate B for the Bellman function H (see
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(1.2.2)) as follows

B(x1, x2, x3) = N

(
x1 + x2

2
,
x2 − x1

2
, x3

)
, (x1, x2, x3) ∈ Ω.

We want to show that B = H. We already know that B ≥ H (see Lemma 3). So, it remains

to show that B ≤ H. We are going to do this as follows: for each point x ∈ Ω and any ε > 0

we are going to find an admissible pair (F,G) such that

Ψ(F,G) > B(x)− ε. (1.6.1)

Up to the end of the current section we are going to work with the coordinates (y1, y2, y3)

(see (1.4.4)). It will be convenient for us to redefine the notion of admissibility of the pair.

Definition 7. We say that a pair (F,G) is admissible for the point (y1, y2, y3) ∈ Ω1, if G

is the martingale transform of F and E(F,G, |F |p) = (y1 − y2, y1 + y2, y3).

So in this case condition (1.6.1) in terms of the function N takes the following form: for

any point y ∈ Ω1 and for any ε > 0 we are going to find an admissible pair (F,G) for the

point y such that

Ψ(F,G) > N(y)− ε. (1.6.2)

We formulate the following obvious observations.

Lemma 13. The following statements hold:

1. A pair (F,G) is admissible for the point y = (y1, y2, y3) if and only if (F̃ , G̃) =

(±F,∓G) is admissible for the point ỹ = (∓y2,∓y1, y3); moreover, Ψ(F̃ , G̃) = Ψ(F,G).
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z

s

−1 0 c s∗yp s0

s0

a(z)

1

R > 0 R < 0

Figure 1.12 Domain of R(s, z)

2. A pair (F,G) is admissible for the point y = (y1, y2, y3), if and only if (F̃ , G̃) =

(λF, λG) (where λ 6= 0) is admissible for the point ỹ = (λy1, λy2, |λ|py3); moreover,

Ψ(F̃ , G̃) = |λ|pΨ(F,G).

Definition 8. The pair of functions (F,G) is called an ε-extremizer for the point y ∈ Ω1 if

(F,G) is admissible for the point y and Ψ(F,G) > N(y)− ε.

Lemma 13, homogeneity, and symmetry of N imply that we only need to check (1.6.2)

for the points y ∈ Ω1 where y1 = 1 (y2, y3) ∈ Ω3. In other words, we show that Ψ(F,G) >

B(y2, y3)−ε for some admissible (F,G) for the point (1, y2, y3) where (y2, y3) ∈ Ω3. Further,

instead of saying that (F,G) is an admissible pair (or ε-extremizer) for the point (1, y2, y3)

we just say that it is an admissible pair (or an ε-extremizer) for the point (y2, y3). So we

only have to construct ε-extremizers in the domain Ω3.

It is worth mentioning that we construct ε-extremizers (F,G) such that G will be the

martingale transform of F with respect to some filtration other than dyadic. A detailed

explanation on how to pass from one filtration to another the reader can find in [19].
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We need a few more observations. For α ∈ (0, 1) we define the α− concatenation of the

pairs (F,G) and (F̃ , G̃) as follows

(F • F̃ , G • G̃)α(x) =


(F,G)(x/α) x ∈ [0, α],

(F̃ , G̃)((x− α)/(1− α)) x ∈ [α, 1].

Clearly Ψ((F • F̃ , G • G̃)α(x)) = αΨ(F,G) + (1− α)Ψ(F̃ , G̃).

Definition 9. Any domain of the type Ω1∩{y1 = A} where A is some real number is said to

be a positive domain. Any domain of the type Ω1 ∩ {y2 = B} where B is some real number

is said to be a negative domain.

The following lemma is obvious.

Lemma 14. If (F,G) is an admissible pair for a point y and (F̃ , G̃) is an admissible pair

for a point ỹ such that either of the following is true: y, ỹ belong to a positive domain, or

y, ỹ belong to a negative domain, then (F • F̃ , G • G̃)α is an admissible pair for the point

αy + (1− α)ỹ.

Let (F,G) be an admissible pair for a point y, and let (F̃ , G̃) be an admissible pair for

a point ỹ. Let ŷ be a point which belongs to the chord joining the points y and ỹ.

Remark 12. It is clear that if (F+, G+) is admissible for a point (y+
2 , y

+
3 ) and (F−, G−)

is admissible for a point (y−2 , y
−
3 ) then an α− concatenation of these pairs is admissible for

the point (y2, y3) = α · (y+
2 , y

+
3 ) + (1− α) · (y−2 , y−3 ).

Now we are ready to construct ε-extremizers in Ω3. The main idea is that these functions

Ψ and B are very similar: they obey almost the same properties. Moreover, foliation plays

crucial role in the contraction of ε− extremizers.
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1.6.1 Case s0 ≤ yp.

We want to find ε-extremizers for the points in Ω3.

Extremizers in the domain Ω(Θcup((c, s0], g)).

Pick any y = (y2, y3) ∈ Ω(Θcup((c, s0], g)). Then there exists a segment `(y) ∈ Θcup((c, s0], g).

Let y+ = (s, g(s)) and y− = (a(s), g(a(s)) be the endpoints of `(y) in Ω3. We know

ε-extremizers at these points y+, y−. Indeed, we can take the following ε-extremizers

(F+, G+) = (1 − s, 1 + s) and (F−, G−) = (1 − a(s), 1 + a(s)) (i.e. constant func-

tions). Consider an α−concatenation (F+ • F−, G+ • G−)α, where α is chosen so that

y = αy+ + (1− α)y−. We have

Ψ[(F+ • F−, G+ •G−)α] = αΨ(F+, G+) + (1− α)Ψ(F−1, G−) >

αB(y+) + (1− α)B(y−)− ε = B(y)− ε.

The last equality follows from the linearity of B on `(y).

Extremizers on the vertical line (−1, y3), y3 ≥ h(s0).

Now we are going to find ε-extremizers for the points (−1, y3) where y3 ≥ h(s0). We

use a similar idea mentioned in [20] (see proof of Lemma 3). We define the functions (F,G)

recursively:

G(t) =



−w 0 ≤ t < ε;

γ · g
(
t−ε

1−2ε

)
ε ≤ t ≤ 1− ε;

w 1− ε < t ≤ 1;
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F (t) =



d− 0 ≤ t < ε;

γ · f
(
t−ε

1−2ε

)
ε ≤ t ≤ 1− ε;

d+ 1− ε < t ≤ 1;

where the nonnegative constants w, d−, d+, γ will be obtained from the requirement E(F,G, |F |p) =

(2, 0, y3) and the fact that G is the martingale transform of F . Surely 〈G〉
[0,1]

= 0. Condition

〈F 〉
[0,1]

= 2 means that

(d− + d+)ε+ 2γ(1− 2ε) = 2. (1.6.3)

Condition 〈|F |p〉
[0,1]

= y3 implies that

y3 =
ε(d

p
+ + d

p
−)

1− (1− 2ε)γp
. (1.6.4)

Now we use the condition |F0 − F1| = |G0 −G1|. In the first step we split the interval [0, 1]

at the point ε with the requirement F0 − F1 = G0 − G1, from which obtain w = 2 − d−.

In the second step we split at the point 1 − ε with the requirement F1 − F2 = G2 − G1,

obtaining w = 2γ− d+. From these two conditions we obtain d−+ d+ = 2(1 + γ)− 2w, and

by substituting in (1.6.3) we find the γ

γ = 1 +
εw

1− ε.

Now we investigate what happens as ε tends to zero. Our aim will be to focus on the limit
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value limε→0w = w0. We have 1− (1− 2ε)γp ≈ ε(2− wp). So (1.6.4) becomes

y3 =
ε(d

p
+ + d

p
−)

1− (1− 2ε)γp
→ 2(2− w0)p

2− w0p
. (1.6.5)

Note that for w0 = 1 + s equation (1.6.5) is the same as (1.4.18). By direct calculations we

see that as ε→ 0 we have

〈(G2 + τ2F 2)p/2〉
[0,1]

=
ε[(w2 + τ2d2

−)p/2 + (w2 + τ2d2
+)p/2]

1− (1− 2ε)γp
→ 2f(w0 − 1)

2− w0p
.

Now we are going to calculate the value B(−1, h(s)) where h(s) = y3. From (1.4.16) we have

B(−1, h(s)) = h(s)t2(s)− 2

p
t1(s).

By using (1.3.6) we express t1 via t2, also because of (1.4.18) and (1.4.21) we have

B(−1, h(s)) = h(s)t2(s)− 2

p
t1(s) = h(s)t2 −

2

p
(f ′ − t2g′) =

t2(h(s) +
2

p
g′)− f ′2

p
=
f(s)− (s− yp)f ′(s)
g(s)− (s− yp)g′(s)

(
2g

p(yp − s)
+

2

p
g′
)
− f ′2

p
=

2

p

[
f(s)

yp − s

]
=

2(2− w0)p

2− w0p
.

Thus we obtain the desired result

〈(G2 + τ2F 2)p/2〉
[0,1]
→ B(−1, y3) as ε→ 0.

Extremizers in the domain Ω(Θ([s0, yp), g)).

Pick any point y = (y2, y3) ∈ Ω(Θ([s0, yp], g)). Then there exists a segment `(y) ∈

Θ([s0, yp], g). Let y+ and y− be the endpoints of this segment such that y+ = (−1, ỹ3) for
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some ỹ3 ≥ h(s0) and y− = (s̃, g(s̃)) for some s̃ ∈ [yp, s0). We remind the reader that we

know ε-extremizers for the points (s, g(s)) where s ∈ [s0, 1], and we know ε-extremizers on

the vertical line (−1, y3) where y3 ≥ h(s0). Therefore, as in the case of a cup, taking the

appropriate α−concatenation of these ε-extremizers and using the fact that B is linear on

`(y), we find an ε-extremizer at point y.

Extremizers in the domain Ang(s0).

Pick any y = (y1, y2) ∈ Ang(s0). There exist the points y+ ∈ `+, y− ∈ `−, where

`+ = `+(s0, g(s0)) ∈ Θ([s0, yp), g) and `− = `−(s0, g(s0)) ∈ Θ((c, s0], g), such that y =

αy+ + (1−α)y− for some α ∈ [0, 1]. We know ε-extremizers at the points y+ and y−. Then

by taking an α−concatenation of these extremizers and using the linearity of B on Ang(s0)

we can obtain an ε-extremizer at the point y.

Extremizers in the domain Ω(Θ([yp, 1], g)).

Finally, we consider the domain of vertical segments Ω(Θ[yp, 1], g). Pick any point y =

(y2, y3) ∈ Ω(Θ[yp, 1]). Take an arbitrary point y+ = (−1, y+
3 ) where y+

3 is sufficiently large

such that y = αy+ + (1 − α)y− for some α ∈ (0, 1) and some y− = (y−2 , y
−
3 ) such that

(1, y−2 , y
−
3 ) ∈ ∂Ω1. Surely, y+, y− belong to a positive domain. Condition (1, y−2 , y

−
3 ) ∈

∂Ω1 implies that we know an ε-extremizer (F−, G−) at the point y− (these are constant

functions). We also know an ε-extremizer at the point y+. Let (F+ • F−, G+ •G−)α be an

α−concatenation of these extremizers. Then

Ψ[(F+ • F−, G+ •G−)α] > αB(y+) + (1− α)B(y−)− ε.
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Note that the condition y = αy+ + (1− α)y− implies that

α =
y3 − y2

y−2
y−3

y+
3 +

y−3
y−2

.

Recall that B(y2, g(y2)) = f(y2) and B(y+) = f(s)+ t1(s)(−1−s)+ t2(s)(y+
3 −g(s)), where

s ∈ [s0, yp] is such that a segment `(s, g(s)) ∈ Θ([s0, yp), g) has an endpoint y+.

Note that as y+
3 →∞ all terms remain bounded; moreover, α→ 0, y− → (y2, g(y2)) and

s→ yp. This means that

lim
y+

3 →∞
αB(y+) + (1− α)B(y−)− ε =

lim
y+

3 →∞
t2(s)y+

3

y3 − y2

y−2
y−3

y+
3 +

y−3
y−2

+ f(y2)− ε = t2(yp)(y3 − g(y2)) + f(y2)− ε.

We recall that t2(s) = t2(yp) for s ∈ [yp, 1]. Then

B(y) = f(y2) + t2(s(y))(y3 − g(y2)) = f(y2) + t2(yp)(y3 − g(y2)).

Thus, if we choose y+
3 sufficiently large then we can obtain a 2ε-extremizer for the point y.

1.6.2 Case s0 > yp.

In this case we have s0 ≥ yp (see Figure 1.11). This case is a little bit more complicated than

the previous one. Construction of ε-extremizers (F,G) will be similar to the one presented

in [21].

We need a few more definitions.
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Definition 10. Let (F,G) be an arbitrary pair of functions. Let (y2, g(y2)) ∈ Ω3 and let J

be a subinterval of [0, 1]. We define a new pair (F̃ , G̃) as follows:

(F̃ , G̃)(x) =


(F,G)(x) x ∈ [0, 1] \ J

(1− y2, 1 + y2) x ∈ J.

We will refer to the new pair (F̃ , G̃) as putting the constant (y2, g(y2)) on the interval J

for the pair (F,G)

It is worth mentioning that sometimes the new pair (F̃ , G̃) we will denote by the same

symbol (F,G).

Definition 11. We say that the pairs (Fα, Gα), (F1−α, G1−α) are obtained from the pair

(F,G) by splitting at the point α ∈ (0, 1) if

(Fα, Gα) = (F,G)(x · α) x ∈ [0, 1];

(F1−α, G1−α) = (F,G)(x · (1− α) + α) x ∈ [0, 1];

It is clear that Ψ(F,G) = αΨ(Fα, Gα) + (1 − α)Ψ(F1−α, G1−α). Also note that if

(Fα, Gα), (F1−α, G1−α) are obtained from the pair (F,G) by splitting at the point α ∈

(0, 1), then (F,G) is an α−concatenation of the pairs (Fα, Gα), (F1−α, G1−α). Thus, such

operations as splitting and concatenation are opposite operations.

Instead of explicitly presenting an admissible pair (F,G) and showing that it is an ε-

extremizer, we present an algorithm which constructs the admissible pair, and we show that

the result is an ε-extremizer.

By the same explanations as in the case s0 ≤ yp, it is enough to construct an ε-extremizer
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(F,G) on the vertical line y2 = −1 of the domain Ω3. Moreover, linearity of B implies that

for any A > 0, it is enough to construct ε-extremizers for the points (−1, y3), where y3 ≥ A.

Pick any point (−1, y3) where y3 = y
(0)
3 > g(−1). Linearity of B on Ang(s0) and direct

calculations (see (1.3.8), (1.4.22)) show that

B(−1, y3) = f(−1) + t3(s0)(y3 − g(−1)) = f(−1) + (y3 − g(−1))
f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
. (1.6.6)

We describe the first iteration. Let (F,G) be an admissible pair for the point (−1, y3),

whose explicit expression will be described during the algorithm. For a pair (F,G) we put a

constant (s0, g(s0)) on an interval [0, ε] where the value ε ∈ (0, 1) will be given later. Thus

we obtain a new pair (F,G) which we denote by the same symbol. We want (F,G) to be an

admissible pair for the point (−1, y3). Let the pairs (Fε, Gε), (F1−ε, G1−ε) be obtained from

the pair (F,G) by splitting at point ε. It is clear that (Fε, Gε) is an admissible pair for the

point (s0, g(s0)). We want (F1−ε, G1−ε) to be an admissible pair for the point P = (ỹ2, ỹ3)

so that

(−1, y3) = ε(s0, g(s0)) + (1− ε)P. (1.6.7)

Therefore we require

P =

(−1− εs0

1− ε ,
y3 − εg(s0)

1− ε

)
. (1.6.8)

So we make the following simple observation: if (F1−ε, G1−ε) were an admissible pair for

the point P , then (F,G) (which is an ε−concatenation of the pairs (1 − s0, 1 + s0) and

(F1−ε, G1−ε)) would be an admissible pair for the point (−1, y3). Explanation of this obser-
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vation is simple: note that these pairs (F1−ε, G1−ε) and (1− s0, 1 + s0) are admissible pairs

for the points P and (s0, g(s0)) which belong to a positive domain (see (1.6.7)); therefore,

the rest immediately follows from Lemma 14. So we want to construct the admissible pair

(F1−ε, G1−ε) for the point (1.6.8).

We recall Lemma 13 which implies that the pair (F1−ε, G1−ε) is admissible for the point(
1, −1−εs0

1−ε ,
y3−εg(s0)

1−ε
)

if and only if the pair (F̃ , G̃) where

(F1−ε,−G1−ε) =
1 + εs0

1− ε (F̃ , G̃)

is admissible for a point W =
(

1, ε−1
1+εs0

,
(y3−εg(s0))

(1+εs0)p
· (1− ε)p−1

)
. So, if we find the admis-

sible pair (F̃ , G̃) then we automatically find the admissible pair (F,G).

Choose ε small enough so that
(

ε−1
1+εs0

,
(y3−εg(s0))

(1+εs0)p
· (1− ε)p−1

)
∈ Ω3 and

(
ε− 1

1 + εs0
,
(y3 − εg(s0))

(1 + εs0)p
· (1− ε)p−1

)
= δ(s0, g(s0)) + (1− δ)(−1, y

(1)
3 )

for some δ ∈ (0, 1) and y
(1)
3 ≥ g(−1). Then

δ =
ε

1 + εs0
= ε+O(ε2)

y
(1)
3 =

(y3−εg(s0))
(1+εs0)p

· (1− ε)p−1 − ε
1+εs0

g(s0)

1− ε
1+εs0

= y3(1− ε(p+ ps0 − 2))− 2εg(s0) +O(ε2).

(1.6.9)

For the pair (F̃ , G̃) we put a constant (s0, g(s0)) on the interval [0, δ]. We split the new

pair (F̃ , G̃) at point δ so we get the pairs (F̃δ, G̃δ) and (F̃1−δ, G̃1−δ). We make a similar

observation as above. It is clear that if we know the admissible pair (F̃1−δ, G̃1−δ) for the point
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(−1, y
(1)
3 ) then we can obtain an admissible pair (F̃ , G̃) for the point

(
ε−1

1+εs0
,

(y3−εg(s0))
(1+εs0)p

· (1− ε)p−1
)

.

Surely (F̃ , G̃) is a δ−concatenation of the pairs (1− s0, 1 + s0) and (F̃1−δ, G̃1−δ).

We summarize the first iteration. We took ε ∈ (0, 1), and we started from the pair

(F (0), G(0)) = (F,G), and after one iteration we came to the pair (F (1), G(1)) = (F̃1−δ, G̃1−δ).

We showed that if (F (1), G(1)) is an admissible pair for the point (1, y
(1)
3 ), then the pair

(F (0), G(0)) can be obtained from the pair (F (1), G(1)); moreover, it is admissible for the

point (1, y
(0)
3 ).

Continuing these iterations, we obtain the sequence of numbers {y(j)
3 }Nj=0 and the se-

quence of pairs {(F (j), G(j))}Nj=0. Let N be such that y
(N)
3 ≥ g(−1). It is clear that if

(F (N), G(N)) is an admissible pair for the point (−1, y
(N)
3 ) then the pairs {(F (j), G(j))}N−1

j=0

can be determined uniquely, and, moreover, (F (j), G(j)) is an admissible pair for the point

(−1, y
(j)
3 ) for all j = 0, .., N − 1.

Note that we can choose sufficiently small ε ∈ (0, 1), and we can find N = N(ε) such

that y
(N)
3 = g(−1) (see (1.6.9), and recall that s0 > yp). In this case the admissible

pair (F (N), G(N)) for the point (−1, y
(N)
3 ) = (−1, g(−1)) is a constant function, namely,

(F (N), G(N)) = (2, 0). Now we try to find N in terms of ε, and we try to find the value of

Ψ(F (0), G(0)).

Condition (1.6.9) implies that y
(1)
3 = y

(0)
3 (1 − ε(p + ps0 − 2)) − 2εg(s0) + O(ε2). We

denote δ0 = p+ ps0 − 2 > 0. Therefore, after the N -th iteration we obtain

y
(N)
3 = (1− εδ0)N

(
y

(0)
3 +

2g(s0)

δ0

)
− 2g(s0)

δ0
+O(ε).

The requirement y
(N)
3 = g(−1) implies that
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(1− εδ0)−N =
y

(0)
3 +

2g(s0)
δ0

g(−1) +
2g(s0)
δ0

+O(ε).

This implies that lim supε→0 ε ·N = lim supε→0 ε ·N(ε) <∞. Therefore, we get

eεδ0N =
y

(0)
3 +

2g(s0)
δ0

g(−1) +
2g(s0)
δ0

+O(ε). (1.6.10)

Also note that

Ψ(F (0), G(0)) = Ψ(F,G) = εΨ(Fε, Gε) + (1− ε)Ψ(F1−ε, G1−ε) =

εf(s0) + (1− ε)Ψ(F1−ε, G1−ε) = εf(s0) + (1− ε)
(

1 + εs0

1− ε

)p
Ψ(F̃ , G̃)

= εf(s0) + (1− ε)(1− ε)
(

1 + εs0

1− ε

)p [
δf(s0) + (1− δ)Ψ(F̃1−δ, G̃1−δ)

]
= 2εf(s0) + (1 + εδ0)Ψ(F (1), G(1)) +O(ε2).

Therefore, after the N -th iteration (and using the fact that Ψ(F (N), G(N)) = f(−1)) we

obtain

Ψ(F (0), G(0)) = (1 + εδ0)N
(
f(−1) +

2f(s0)

δ0

)
− 2f(s0)

δ0
+O(ε) =

eεδ0N
(
f(−1) +

2f(s0)

δ0

)
− 2f(s0)

δ0
+O(ε). (1.6.11)

The last equality follows from the fact that lim supε→0 ε ·N(ε) <∞.
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Therefore (1.6.10) and (1.6.11) imply that

Ψ(F (0), G(0)) =

 y
(0)
3 +

2g(s0)
δ0

g(−1) +
2g(s0)
δ0

(f(−1) +
2f(s0)

δ0

)
− 2f(s0)

δ0
+O(ε) =

f(−1) + (y
(0)
3 − g(−1))

f(−1) +
2f(s0)
δ0

g(−1) +
2g(s0)
δ0

+O(ε).

Now we recall (1.6.6). So if we show that

f(−1) +
2f(s0)
δ0

g(−1) +
2g(s0)
δ0

=
f ′(−1)− f ′(s0)

g′(−1)− g′(s0)
(1.6.12)

then (1.6.12) will imply that Ψ(F (0), G(0)) = B(−1, y
(0)
3 ) + O(ε). So choosing ε sufficiently

small we can obtain the extremizer (F (0), G(0)) for the point (−1, y3). Therefore, we need

only to prove equality (1.6.12). It will be convenient to make the following notations: set

f− = f(−1), f ′− = f ′(−1), f = f(s0), f ′ = f ′(s0), g− = g(−1), g′− = g′(−1), g = g(s0) and

g′ = g(s0). Then the equality (1.6.12) turns into the following one

δ0
2

=
fg′− − fg′ − f ′−g + f ′g

g′f− − f ′g−
. (1.6.13)

This simplifies into the following one

s0 − yp =
2

p
· fg

′
− − fg′ − f ′−g + f ′g
g′f− − f ′g−

=
fg′− − fg′ − f ′−g + f ′g
−g′f ′− + f ′g′−

which is true by (1.4.24).
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Chapter 2

Hessian of Bellman functions and

uniqueness of Brascamp–Lieb

inequality

2.0.3 Brascamp–Lieb inequality

The classical Young’s inequality for convolutions on the real line asserts that for any f ∈

Lp(R) and g ∈ Lq(R) where p, q ≥ 1, we have an inequality

‖f ∗ g‖r ≤ ‖f‖p‖g‖q (2.0.1)

if and only if

1

p
+

1

q
= 1 +

1

r
. (2.0.2)

In what follows f ∗ g denotes convolution i.e. f ∗ g(y) =
∫
R f(x)g(y − x)dx. The necessity

of (2.0.2) follows immediately: by stretching the functions f and g as fλ(x) = λ1/pf(λx),

gλ(x) = λ1/qg(λx) corresponding norms do not change. Since ‖fλ∗gλ‖r = λ
1
p+1

q−1−1
r ‖f∗g‖r

we obtain (2.0.2). Beckner (see [22]) found the sharp constant C = C(p, q, r) of the inequality
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‖f ∗g‖r ≤ C‖f‖p‖g‖q. At the same time (see [23]) Brascamp and Lieb derived more general

inequality, namely, let a1, .., an be the vectors of Rk where 1 ≤ k ≤ n, let uj ∈ L1(R) be

nonnegative functions, where 1 ≤ pj ≤ ∞ and
∑n
j=1

1
pj

= k, then we have a sharp inequality

∫
Rk

n∏
j=1

u
1/pj
j (〈aj , x〉)dx ≤ D(p1, . . . , pn)

n∏
j=1

(∫
R
uj(x)dx

)1/pj
, (2.0.3)

where 〈·, ·〉 denotes scalar product in Euclidian space,

D(p1, . . . , pn) = sup
b1,..,bn>0

∫
Rk

n∏
j=1

g
1/pj
j (〈aj , x〉)dx (2.0.4)

and gj(x) = b
1/2
j e−πx

2bj . In other words, supremum in (2.0.3) is achieved by centered,

normalized (i.e. ‖gj‖1 = 1) gaussian functions. Usually inequality (2.0.3) is written as

follows:

∫
Rk

n∏
j=1

wj(〈aj , x〉)dx ≤ D(p1, . . . , pn)
n∏
j=1

‖wj‖pj .

for uj ∈ Lpj (R). Surely the above inequality becomes the same as (2.0.3) after introducing

the functions wj(x) = u
1/pj
j (y).

It is clear that Brascamp–Lieb inequality (2.0.3) implies sharp Young’s inequality for

convolutions. Indeed, just take n = 3, k = 2, a1 = (1, 0), a2 = (1,−1), a3 = (0, 1) and use

duality argument.

The next natural question which arose was the following one: what conditions should

the vectors aj and the numbers pj satisfy in order for the constant D(p1, . . . , , pn) to be

finite. It turns out that the answer has simple geometrical interpretation which was first
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found by Barthe (see [24]): we consider all different k-tuples of vectors (aj1 , .., ajk) such that

they create basis in Rk. All we need from these tuples are the numbers j1, . . . , jk. Each

k-tuple defines a unique vector v ∈ Rn with entries 0 and 1 so that ji-th component is 1

(i = 1, . . . , k) and the rests are zeros. Finally we take convex hull of the vectors v and

denote it by K. The constant D(p1, . . . , pn) is finite if and only if
(

1
p1
, . . . , 1

pn

)
∈ K. In

other words, in order to make the set K large we want the vectors a1, . . . , an to be more

linearly independent. Later the proof of the Brascamp–Lieb inequality (2.0.3) was simplified

(see [25]) by heat flow method. The idea of the method is quite similar to Bellman function

technique which we are going to discuss in the current article. The same idea was used in [26]

in order to derive general rank Brascamp–Lieb inequality (see also [27]): let Bj : Rk → Rkj

be a surjective linear maps, uj : Rkj → R+, kj , k ∈ N, and pj ≥ 1 are such that
∑n
j=1

kj
pj

= k

then we have a sharp inequality

∫
Rk
u

1/p1
1 (B1x) · · ·u1/pn

n (Bnx)dx ≤ C

(∫
Rk1

u1

)1/p1

· · ·
(∫

Rkn
un

)1/pn

where

C = sup
A1,...,An>0

∫
Rk
G

1/p1
1 (B1x) · · ·G1/pn

n (Bnx)dx (2.0.5)

and Gj(y) = e−π〈Ajy,y〉(detAj)
1/2. Supremum in (2.0.5) is taken over all positive definite

kj × kj matrices Aj . One of the main result obtained in [26] describes finiteness of the

number C, namely, C is finite if and only if

dim(V ) ≤
n∑
j=1

dim (BjV )

pj
for all subspaces V ⊂ Rk.
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After this result the original inequality (2.0.3) got a name rank 1 Brascamp–Lieb inequality.

If k = 1 the inequality (2.0.3) becomes usual multilinear Hölder’s inequality

∫
R

n∏
j=1

u
1/pj
j (x)dx ≤

n∏
j=1

(∫
R
uj

)1/pj
⇐⇒

∑
j

1

pj
= 1. (2.0.6)

From the Bellman function point of view the multilinear Hölder’s inequality holds because

the following function

B(x1, . . . , xn) = x
1/p1
1 · · ·x1/pn

n (2.0.7)

is concave in the domain xj ≥ 0 for
∑n
j=1

1
pj
≤ 1 (we assume that pj > 0).

This Bellman function point of view asks us to look for the description of functions B

such that

∫
Rk
B(u1(〈a1, x〉), . . . , un(〈an, x〉)dx is estimated in terms of

{∫
R
ui(x)dx

}n
i=1

. (2.0.8)

Function B(x1, . . . , xn) = x
1/p1
1 · · ·x1/pn

n ,
∑n
j=1

1
pj

= 1, is an example of such a function for

k = 1. But for k = 1 one can easily get the full description of “Bellman functions” that give

inequality (2.0.9) below.

The equality
∑n
j=1

1
pj

= 1 was needed because the function B(x1, . . . , xn) has to be

homogeneous of degree 1 i.e., B(λx) = λB(x). This allows us to write integral over the real

line. Indeed, if the nonnegative functions uj are integrable then Jensen’s inequality implies

1

|I|

∫
I
B(u1, . . . , un)dx ≤ B

(
1

|I|

∫
I
u1dx, . . . ,

1

|I|

∫
I
undx

)
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where I is any subinterval of the real line. Since the function B is 1-homogeneous we can

rewrite the above inequality as follows

∫
I
B(u1, . . . , un)dx ≤ B

(∫
I
u1dx, . . . ,

∫
I
undx

)
.

Take I = [−R,R] and send R to infinity. B is continuos, so that

B

(∫
I
u1(x)dx, . . . ,

∫
I
un(x)dx

)
→ B

(∫
R
u1dx, . . . ,

∫
R
undx

)
.

Continuity of B and monotone convergence theorem implies that

∫
R
B(u1(x), . . . , un(x))dx ≤ B

(∫
R
u1dx, . . . ,

∫
R
undx

)
(2.0.9)

It is worth to formulate the following lemma. Set Rn+ = {(x1, . . . , xn) : xj ≥ 0}.

Lemma 15. Let uj be nonnegative integrable functions j = 1, . . . , n on the real line. If B is

1-homogeneous concave function on Rn+, then (2.0.9) holds. Equality is achieved in (2.0.9)

if (u1, . . . , un) are all proportional.

Proof. As we just saw, the proof follows from showing that
∫
I B(u1, . . . , un)→

∫
RB(u1, . . . , un).

We are going to find now a summable amjorant. Take any point x0 from the interior of Rn+.

Consider any subgradient v = (v1, . . . , vn) at point x0 i.e. B(x) ≤ 〈v,x−x0〉+B(x0). Take

x = λx0 and use the homogeneity of B. Thus we obtain (λ − 1)B(x0) ≤ (λ − 1)〈v,x0〉 for

any λ ≥ 0. This means that B(x0) = 〈v,x0〉 and, therefore, B(x) ≤ 〈v,x〉. On the other

hand let ej = (0, . . . , 1, . . . , 0) be a basis vectors (j-th component entry is 1 and the rests

are zero). Consider any point x = (x1, . . . . , xn) ∈ Rn+. Concavity and homogeneity of B
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implies that B(x) ≥∑n
j=1 xjB(ej). So we obtain the majorant

|B(x)| ≤ max


n∑
j=1

xj |B(ej)|,
n∑
j=1

xj |vj |

 for any x ∈ Rn+.

Plugging uj for xj we see that the use of Lebesgue’s dominated convergence theorem is

justified.

The above Lemma says that homogeneity and concavity of the function implies the

inequality (2.0.9). The converse is also true.

Now the following question becomes quite natural:

Question. Assume a1, . . . , an ∈ Rk, B is continuous function defined on Rn+ and uj, j =

1, . . . , n are nonnegative integrable functions. What is the sharp estimate of the expression

∫
Rk
B(u1(〈a1,x〉), . . . , un(〈an,x〉))dx (2.0.10)

in terms of
∫
R uj?

In other words, along with Young’s functions

B(x1, . . . , xn) = x
1/p1
1 · · · · · x1/pn

n ,
∑ 1

pj
= k,

what can be other Brascamp–Lieb Bellman functions that would give us sharp estimates of

(2.0.10)?

We give partial answer on this question. It turns out that if one requires function B is

homogeneous of degree k and in addition it satisfies some mild assumptions (smoothness and

exponential integrality given below), then we can find the sharp estimate of the expression

83



(2.0.10) in terms of
∫
R uj , if B satisfies an interesting concavity condition. In a trivial case

k = 1 our theorem gives us of course inequality (2.0.9).

In the trivial case k = 1 we already saw that the interesting concavity condition men-

tioned above is precisely the usual concavity of B. In another trivial case k = n, the

interesting concavity condition mentioned above becomes “separate concavity” of B in each

of its variables.

For 1 < k < n our concavity condition is, in fact, some compromise between these two

concavities.

As we will see k = n − 1 and k = n this concavity condition (plus k-homogeneity and

mild regularity) imply that Brascamp–Lieb Bellman functions B can be only the standard

ones: B(x1, . . . , xn) = x
1/p1
1 · · · · · x1/pn

n ,
∑ 1

pj
= k.

Before we start formulating our results, we will explain that there are many 1-homogeneous

concave functions B on Rn+.

Lemma 16. Function B is continuous, concave and homogeneous of degree 1 on Rn+ if and

only if there exists continuous, concave function B̃(y) on Rn−1
+ such that limλ→∞ 1

λB̃ (λy)

exists, it is continuous with respect to y and B(x1, . . . , xn) = x1B̃
(
x2
x1
, . . . , xnx1

)
Proof. Indeed, if B is continuous, concave and homogeneous of degree 1 then B(x1, . . . , xn) =

x1B
(

1, x2
x1
, . . . , xnx1

)
and the function B̃ = B(1, y1, . . . , yn−1) is continuous and concave in

Rn−1
+ . Moreover, for each y ∈ Rn−1

+ , limλ→∞ 1
λB̃(λy) exists and it is continuos with respect

to y.

Assume B̃ satisfies the conditions of the Lemma. Consider

B(x1, . . . , xn) = x1B̃

(
x2

x1
, . . . ,

xn
x1

)
.
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It is clear that B is continuous on Rn+ and it is homogeneous of degree 1. We will show that

B is concave in the interior of Rn+ and hence by continuity it will be concave on the closure

as well. Let x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn. Let x̄ = (x2, . . . , xn), ȳ = (y2, . . . , yn)

and α + β = 1 for α, β ∈ [0, 1]. Then we have

B(αx + βy) = (αx1 + βy1)B

(
1, α

x̄

αx1 + βy1
+ β

ȳ

αx1 + βy1

)
≥ (αx1 + βy1)×[

αB

(
1,

x̄

αx1 + βy1

)
+ βB

(
1,

ȳ

αx1 + βy1

)]
= αB(x) + βB(y).

2.0.4 Bellman function in Brascamp–Lieb inequality

In what follows we assume that B ∈ C(Rn+)∩C2(int(Rn+)). In order for the quantity (2.0.10)

to be finite it is necessary to assume that 1 ≤ k ≤ n. Fix some vectors aj = (aj1, . . . , ajn) ∈

Rk and k×k symmetric matrix C such that 〈Caj , aj〉 > 0 for j = 1, . . . , n. Let A be a k×n

matrix constructed by columns aj i.e. A = (a1, . . . , an). We denote A∗ transpose matrix of

A.

Let uj : R → R+ be such that 0 <
∫
R uj < ∞. Let uj(y, t) solves the heat equation

∂uj
∂t − 〈Caj , aj〉

∂2uj
∂y2 = 0 with the initial value uj(y, 0) = uj(y). Let HessB(y) denotes

Hessian matrix of the function B at point y.

For two square matrices of the same size P = {pij} and Q = {qij} , let P •Q = {pijqij}

be Hadamard product. Denote by symbol

u(x, t) = (u1(〈a1, x〉, t), . . . , un(〈an, x〉, t))

85



and denote

u′(x, t) =
(
u′1(〈a1, x〉, t), . . . , u′n(〈an, x〉, t)

)
,

where u′j(〈aj , x〉, t) =
∂uj(y,t)
∂y

∣∣∣
y=〈aj ,x〉

.

Lemma 17. For any 0 < t <∞ and any x ∈ Rk we have

 ∂

∂t
−

k∑
i,j=1

cij
∂2

∂xi∂xj

B(u(x, t)) = −〈(A∗CA) • HessB(u(x, t))u′(x, t),u′(x, t)〉.

(2.0.11)

Proof. First we show that the functions u`(〈a`,x〉, t) satisfy the following heat equation

 ∂

∂t
−

k∑
i,j=1

cij
∂2

∂xi∂xj

u`(〈a`,x〉, t) = 0, for any ` = 1, . . . , n.

Indeed, let u′′j (〈aj ,x〉, t) =
∂2uj(y,t)

∂y2

∣∣∣∣
y=〈aj ,x〉

. Then

k∑
i,j=1

cij
∂2

∂xi∂xj
u`(〈a`,x〉, t) =

k∑
i,j=1

cij
∂

∂xi

(
a`ju

′
`(〈a`,x〉, t)

)
=

k∑
i,j=1

cija`ja`iu
′′
` (〈a`,x〉, t) = 〈Ca`, a`〉u′′` (〈a`,x〉, t) =

∂

∂t
u`(〈a`,x〉, t).
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Let u = u(x, t) and u` = u`(〈a`,x〉, t). Then

 ∂

∂t
−

k∑
i,j=1

cij
∂2

∂xi∂xj

B(u) =
n∑
`=1

∂B

∂u`

∂u`
∂t
−

k∑
i,j=1

cij
∂

∂xi

(
n∑
`=1

∂B

∂u`

∂u`
∂xj

)
=

n∑
`=1

∂B

∂u`

 k∑
i,j=1

cij
∂2

∂xi∂xj
u`

− k∑
i,j=1

cij

 n∑
`,m=1

∂2B

∂um∂u`

∂um
∂xi

∂u`
∂xj

+
n∑
`=1

∂B

∂u`

∂2u`
∂xi∂xj

 =

−
k∑

i,j=1

n∑
`,m=1

cij
∂2B

∂um∂u`

∂um
∂xi

∂u`
∂xj

= −
k∑

i,j=1

n∑
`,m=1

cij
∂2B

∂um∂u`
amia`ju

′
mu
′
` =

−
n∑

`,m=1

〈Cam, a`〉
∂2B

∂um∂u`
u′mu

′
` = −〈(A∗CA) • HessB(u)u′,u′〉.

Remark 13. Let us denote by ∆C :=
∑k
i,j=1 cij

∂2

∂xi∂xj
. We used above that

(
∂

∂t
−∆C

)
u`(〈a`,x〉, t) = 0 .

This is exactly the equality that implies

(
∂

∂t
−∆C

)
B(u`(〈a`,x〉, t)) = −〈(A∗CA) • HessB(u(x, t))u′(x, t),u′(x, t)〉 . (2.0.12)

In other words, we look at the natural “energy” of the problem
∫
B(u`(〈a`,x〉, t)) dx at

time t, and differentiate it in t. Replacing d/dt by d/dt − ∆C does not change the result

because when we integrate the above equality over x varibales, we should expect the term∫
∆C B(u`(〈a`,x〉, t)) dx to disappear (and this is exactly what happens below). But the

definite sign in the right hand side of (2.0.11) guarantees us now the monotonicity property

of the energy.

So composing of the special heat flow e−t∆C and special function B seems like a good idea
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exactly because of the monotonicity formula, which we are going to obtain shortly below.

Further we make several assumptions on the function B. The assumption L3 is exactly

the concavity we were talking about above.

L1. B ∈ C(Rn+) ∩ C2(int(Rn+)).

L2. B(λy) = λkB(y) for all λ ≥ 0 and y ∈ Rn+.

L3. There exists k × k symmetric matrix C such that (A∗CA) • HessB(y) ≤ 0 for y ∈

int(Rn+), and 〈Caj , aj〉 > 0 for all j = 1, . . . , n.

L4. B ≥ 0 and B is not identically 0.

L5.

∫
Rk
B(e−〈a1,x〉2 , . . . , e−〈an,x〉

2
)dx <∞. (2.0.13)

We make several observations: properties L3 and L4 imply that the function B is sep-

arately concave (i.e. concave with respect to each variable) and increasing with respect to

each variable, moreover, B > 0 in int(Rn+). The above properties imply that

∫
Rk
B(b1e

−δ1〈a1,x〉2 , . . . , bne−δ2〈an,x〉
2
)dx <∞ (2.0.14)

for any positive numbers bj , δj > 0.

Consider the following class of functions E(R): u ∈ E(R) if and only if there exist

constants b, δ > 0 such that |u(y)| ≤ be−δy
2
. It is clear that if u ∈ E(R) then u(y, t) ∈

E(R) for any t ≥ 0 where u(y, t) denotes heat extension of u(y) i.e. u(y, t) = u(y, 0) and
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∂
∂tu(y, t) = σ ∂2

∂y2u(y, t) with some σ > 0. Note that E(R) contains the functions with

compact support. Also note that if nonnegative functions uj belong to the class E(R) then

the following function

B(t) =

∫
Rk
B(u1(〈a1, x〉, t), . . . , un(〈an, x〉, t))dx. (2.0.15)

is finite for any t ≥ 0.

Lemma 18. Let uj be nonnegative functions from E(R). Then for any t ∈ (0,∞) we have

lim
r→∞

∫
Vr

k∑
i,j=1

cij
∂2

∂xi∂xj
B(u(x, t))dx = 0 where Vr = {x ∈ Rk : ‖x‖ ≤ r}.

Proof. Let F (x) = B(e−〈a1,x〉2 , . . . , e−〈an,x〉
2
). Let x = rσ where σ ∈ Sk−1

1 . Since B is

increasing with respect to each components, for each σ the function F (rσ) is decreasing

with respect to r. Therefore the function F̃ (r) =
∫
Sk−1

1
F (rσ)dσ1 is decreasing. Here σr

denotes surface measure of the sphere Sk−1
r or radius r. Since

∫∞
0 F̃ (r)rk−1dr < ∞ we

obtain

RkF̃ (2R) ≤ R min
R≤r≤2R

F̃ (r)rk−1 ≤
∫ 2R

R
F̃ (r)rk−1dr.

This implies that limr→∞ rkF̃ (r) = 0.

By Stokes’ formula we have

∫
Vr

∂2

∂xi∂xj
B(u(x, t)) =

∫
∂Vr

∂

∂xj
B(u(x, t))nidσr

89



where ni is the i-th component of the unit normal vector to the boundary of the ball Vr.

Homogeneity of B implies that
∑n
j=1

∂
∂yj

B(y)yj = kB(y). Since ∂
∂yj

B(y) ≥ 0 we obtain

estimate ∂
∂yj

B(y)yj ≤ kB(y). Also we note that for each t > 0 there exists a constant L

depending on the parameters t, uj such that
∣∣ ∂
∂yuj(y, t)

∣∣ ≤ Lyuj(y, t) for all y ∈ R.

So we obtain that

∣∣∣∣∫
∂Vr

∂

∂xj
B(u(x, t))nidσr

∣∣∣∣ ≤ n∑
`=1

∫
∂Vr

∂B

∂u`

∣∣∣∣∂u`(〈a`,x〉, t)∂xj

∣∣∣∣ dσr ≤
c

∫
∂Vr

rB(u(x, t))dσr ≤ C1r
kF̃ (C2r)

where constants C1, C2 do not depend on r. Since B is homogeneous and it is increasing with

respect to each components the last inequality follows from the the observation B(u(x, t)) ≤

C3F (C2x) where C3, C2 do not depend on x. So the lemma follows.

Remark 14. Lemma 18 holds even if we take supremum with respect to t over any compact

subset of (0,∞).

Corollary 6. The function B(t) is increasing for t > 0, and it is constant if and only if

(A∗CA) • HessB(u(x, t))u′(x, t) = 0 for all x ∈ Rn and any t > 0.

Proof. First we integrate (2.0.11) with respect to t (over any closed interval [t1, t2] ⊂ (0,∞))

and then we integrate other the balls Vr. Thus the corollary is immediate consequence of

Lemmas 17, 18 and Remark 14.

Thus we obtain an inequality B(t1) ≤ B(t2) for 0 < t1 ≤ t2 < ∞ and we want to pass

to the limits.
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Lemma 19. Let B satisfies assumptions L1 − L5 and let uj ∈ E(R) be nonnegative (not

identically zero) functions. Then the following equalities hold

lim
t→0

B(t) =

∫
Rk
B(u1(〈a1,x〉), . . . , un(〈an,x〉))dx, (2.0.16)

lim
t→∞

B(t) =

∫
Rk
B

 e
− 〈a1,x〉2
〈Ca1,a1〉√

π〈Ca1, a1〉

∫
R
u1dx, . . . ,

e
− 〈an,x〉

2

〈Can,an〉√
π〈Can, an〉

∫
R
undx

 dx. (2.0.17)

Proof. Take any nonnegative (not identically zero) functions uj ∈ E(R). Then there exist

positive numbers βj , δj such that uj(y) ≤ βje
−δjy2

for all j = 1, . . . , n. Note that

uj(y, t) =
1

(4πt〈Caj , aj〉)1/2

∫
R
uj(x)e

− (y−x)2

4t〈Caj,aj〉dx ≤

βj√
1 + 4tδj〈Caj , aj〉

e
− y2δj

1+4tδj〈Caj,aj〉

So the first limit (2.0.16) follows immediately from Lebesgue’s dominated convergence the-

orem. For the second limit (2.0.17) we use homogeneity of the function B. So by changing

variable x = y
√
t we obtain

∫
Rk
B

. . . , 1

(4πt〈Caj , aj〉)1/2

∫
R
uj(x)e

− (〈aj ,x〉−x)2

4t〈Caj,aj〉 dx, . . .

 dx =

∫
Rk
B

. . . , e
− 〈aj ,y〉2

4〈Caj,aj〉

(4π〈Caj , aj〉)1/2

∫
R
uj(x)e

2
√
t〈aj ,y〉x−x2

4t〈Caj,aj〉 dx, . . .

 dy.
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It is clear that that for each fixed y integrand tends to

B

. . . , e
− 〈aj ,y〉2

4〈Caj,aj〉

(4π〈Caj , aj〉)1/2

∫
R
uj(x)dx, . . .

 .

Since uj(x) ≤ bje
−δjx2

we obtain

uj(x)e

2
√
t〈aj ,y〉x

4t〈Caj,aj〉 ≤ bje
− δj2 x2

emaxx≥0[− δj2 x2+αj(t)x],

where αj(t) :=
〈aj ,y〉

2
√
t〈Caj ,aj〉

. Hence

uj(x)e

2
√
t〈aj ,y〉x

4t〈Caj,aj〉 ≤ bje
− δj2 x2

e
1
2

αj(t)2

δj = bje
− δj2 x2

e

〈aj ,y〉2
8tδj〈Caj,aj〉2 ,

Now we can apply Lebesgue’s dominated convergence theorem twice.

The last display estimate gives us a summable majorant for the integration in x. On the

other hand,

e
− 〈aj ,y〉2

4〈Caj,aj〉 e

〈aj ,y〉2
8tδj〈Caj,aj〉2 ≤ e

− 〈aj ,y〉2
8〈Caj,aj〉

for all t ≥ tC . Thus we get the uniform in t estimate for the jth argument of function B:

γj e
− 〈aj ,y〉2

8〈Caj,aj〉

(4π〈Caj , aj〉)1/2
,

where γj :=
∫
R bje

− δj2 x2
dx. Therefore we have the summable majorant (that it is summable
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follows from L3)

B

. . . , γj e
− 〈aj ,y〉2

8〈Caj,aj〉

(4π〈Caj , aj〉)1/2
, . . .

 ,

and the lemma is proved.

Corollary 6 and Lemma 19 imply the following theorem.

Theorem 2.0.1. Let B satisfies assumptions L1 − L5 and let uj ∈ E(R) be nonnegative

(not identically zero) functions. Then we have

∫
Rk
B(u1(〈a1,x〉), . . . , un(〈an,x〉))dx ≤ (2.0.18)

∫
Rk
B

 e
− 〈a1,x〉2
〈Ca1,a1〉√

π〈Ca1, a1〉

∫
R
u1, . . . ,

e
− 〈an,x〉

2

〈Can,an〉√
π〈Can, an〉

∫
R
un

 dx.

Equality holds if and only if

(A∗CA) • HessB(u(x, t))u′(x, t) = 0 for all x ∈ Rn and any t > 0. (2.0.19)

Remark 15. So any function satisfying our strange concavity condition L3, homogeneity

condition L2 and some mild conditions L1, L4, L5 gives a certain Brascamp–Lieb inequality.

Our next goal will be to show that in interesting cases the finiteness of (2.0.13) implies that

there is basically only one such B.

In the Bellman function technique theorems of the above type are known as a first part

of the Bellman function method which is usually simple. Any function B that satisfies

properties L1− L5 will be called Bellman function of Brascamp–Lieb type.

The difficult technical part is how to find such Bellman functions. It is worth mentioning
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that the property L3 in principle requires solving partial differential inequalities. We are

going to give partial answer on this question in the following section.

2.1 How to find the Bellman function

Definition 12. Let y = (y1, y2, . . . , yn) ∈ int(Rn+) and let D(y) be a diagonal square matrix

such that on the diagonal it has the terms
yj

〈Caj ,aj〉 , j = 1, . . . , n.

Theorem 2.1.1. If the function B satisfies assumptions L1− L5 then we have

AD(y)[A∗CA • HessB(y)] = 0 for all y ∈ int(Rn+). (2.1.1)

Remark 16. Equality (2.1.1) is a second order partial differential equation on B. However,

assumptions L1− L5 are either of quantitative nature, or in the form of partial differential

inequalities. So it is quite surprising that based only on assumptions L1−L5 one can expect

equality (2.1.1).

The proof of the above equality is interesting in itself.

Proof. We saw in the previous section that assumptions L1−L5 imply the inequality (2.0.18).

One can easily observe that the following functions

uj(y) = bj
e
− y2

〈Caj,aj〉√
π〈Caj , aj〉

, bj > 0.

give equality in the inequality (2.0.18). Since u′(x, t) = −2
4t+1D(u(x, t))A∗x, Theorem 2.0.1
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implies that

A∗CA • HessB(u(x, t))D(u(x, t))A∗x = 0

Choose any x ∈ Rk, any y ∈ int(Rn+) and any t > 0. We can find b1, . . . , bn > 0 such that

uj(〈aj ,x〉, t) = bj
e
− 〈aj ,x〉2
〈Caj,aj〉(4t+1)√

π〈Caj , aj〉(4t+ 1)
= yj , j = 1, . . . , n.

Hence we obtain

[A∗CA • HessB(y)]D(y)A∗x = 0, ∀x ∈ Rk, ∀y ∈ int(Rn+).

So equality (2.1.1) follows.

Theorem 2.1.1 implies the following corollary.

Corollary 7. For any y ∈ int(Rn+) we have

rank(A∗CA • HessB(y)) ≤ n− k. (2.1.2)

The above corollary immediately follows from the fact that rank(AD(y)) = rank(A) = k

and, for example, from the Sylvester’s rank inequality.

Thus for each fixed n we have a range of admissible dimensions 1 ≤ k ≤ n. For the

boundary cases k = 1 and k = n, we find the Bellman function with the properties L1−L5.

For the intermediate cases 1 < k < n we partially find the function B.
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2.1.1 Case k = 1. Jointly concave and homogeneous function

We want to see that in this case L1 − L5 gives us precisely convex and 1-homogeneous

functions. In the case k = 1 we have A = (a1, . . . , an) ∈ Rn. Since the condition 〈Caj , aj〉 >

0 must hold, the 1× 1 matrix C must be a positive number and aj 6= 0 for all j = 1, . . . , n.

The fact that B is homogeneous of degree 1 and B is increasing with respect to each variable

immediately imply L5. The only property we left to ensure is L3. For v = (v1, . . . , vn) ∈ Rn

let d(v) denotes n× n diagonal matrix with entries vj on the diagonal.

A∗CA • HessB(y) = C · A∗A • HessB(y) = C · d(A)HessB(y)d(A) .

So the inequality A∗CA • HessB(y) ≤ 0 is equivalent to the inequality HessB(y) ≤ 0,

because C is just a number. Thus we obtain the following lemma.

Lemma 20. If the function B satisfies assumptions L1 − L5 then aj 6= 0 for all j, C is

any positive number and B ∈ C(Rn+) ∩ C2(int(Rn+)) is a concave homogeneous function of

degree 1. Conversely, if aj 6= 0 for all j and B ∈ C(Rn+) ∩ C2(int(Rn+)) is a nonnegative,

not identically zero, concave, homogeneous function of degree 1 then B satisfies assumptions

L1− L5.

The above lemma gives complete characterization of the Bellman function in the case

k = 1, and the inequality (2.0.18) is the same as inequality (2.0.9) (see Lemma 15).

2.1.2 Case k = n. B(y) = Const · y1 · · · yn

We show that in the case k = n the assumptions L1 − L5 are satisfied if and only if

B(y) = My1 · · · yn where M is a positive number. We present 3 different proofs (according

96



to their chronological order), each of them uses different assumptions on B in necessity part.

Sufficiency follows immediately. Indeed, if B = My1 · · · yn then all the assumptions L1−L5

are satisfied except that one has to check existence of the symmetric matrix C such that

A∗CA • HessB ≤ 0 and 〈Caj , aj〉 > 0. But it is enough to take C = (AA∗)−1. Now we go

to proving necessity.

2.1.2.1 First proof

As we already mentioned the assumptions L1−L5 imply that B ∈ C2(int(Rn+))∩C(Rn+) is

nonnegative, separately concave, and it is homogeneous of degree n. We need to show that

such B then must have the form B(y) = My1 · · · yn. To show this, we consider a function

G such that G(ln z1, . . . , ln zn) =
B(z1,...,zn)
z1···zn for zj > 0. Homogeneity of order 0 of B implies

that divG = 0, and concavity of B with respect to each variable implies that ∂G
∂yj

+ ∂2G
∂y2
j
≤ 0

for j = 1, . . . , n. After summation of the last inequalities we obtain that G is superharmonic

function on Rn. But then it is easy to check that if ∆G ≤ 0, then ∆g ≥ 0, where g := e−G.

We get a bounded subharmonic function g, 0 ≤ g ≤ 1, in the whole space. It is well known

that then g must be constant. This implies implies that G is a constant.

2.1.2.2 Second proof

The second proof immediately follows from the following lemma which does not use any

assumptions regarding smoothness of B.

Lemma 21. If a function B defined on Rn+ is nonnegative on the boundary of Rn+, and it is

separately concave and homogeneous of degree n then B(y1, . . . , yn) = My1 · · · yn for some

real number M .
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Proof. The idea is almost as follows: we are going to construct superharmonic function in

the bounded domain such that it is nonnegative on the boundary and it achieves zero value

at an interior point of the domain. This implies that the constructed function is identically

zero.

Consider a function G(y1, . . . , yn) = B(y) − B(1, . . . , 1)y1 · · · yn. Take any cube Q =

[0, R]n where R > 1. The function G is separately concave and it is zero on the diagonal

of the cube Q i.e. G(y, . . . , y) = 0 for y ∈ [0, R]. G is nonnegative on the whole boundary

of the cube Q. Indeed, G is zero at the point (R, . . . , R) and it is nonnegative at point

(R, . . . , R, 0), so separate concavity implies that G is nonnegative on the set (R, . . . , R, t)

where t ∈ [0, R]. Similar reasoning implies that G is nonnegative on the whole boundary of

the cube Q.

Suppose now G is not zero at some interior point of the cube Q, say at point W . Take any

interior point A0 of the cube Q such that G(A0) = 0. Take a sequence of points A1, ..., An

belonging to the interior of Q such that the segments AjAj+1 (the segment in Rn with the

endpoints Aj , Aj+1) are collinear to one of the vector ek = (0, . . . , 1, . . . , 0) (on the k-th

position we have 1 and the rest of the components are zero) for all j = 0, .., n − 1, and the

same is true for the segment AnW . Then clearly G is zero on the segment A0A1. Indeed, It

is zero at point A0. Take a line joining the points A0, A1. This line intersects the boundary

of the cube Q, and G is concave on the line. Since G is nonnegative at the points of the

intersection and it is zero at point A0 we obtain that G is zero on the part of the line which

lies in the cube Q. In particular, it is zero at A1. By induction we obtain that G is zero at

the points A2, .., An,W . So the lemma follows.
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2.1.2.3 Third proof

In this proof let us assume that B is infinitely differentiable in
∫

(Rn+). The assumptions

L1 − L5 imply that B must be a separately concave. Therefore for the assumption L3 we

can choose C = (AA∗)−1. Then (2.1.2) implies that ∂2B
∂y2
j

= 0 for all j = 1, . . . , n. We claim

that if B satisfies the system of differential equations ∂2B
∂y2
j

= 0 for all j = 1, . . . , n then it

has a form

c0 +
n∑
k=1

 n∑
ip 6=iq, i1,...,ik=1

ci1...ik

k∏
j=1

yij

 (2.1.3)

where the second summation is taken over the pairwise different indexes. Indeed, proof is by

induction over the dimension n. If n = 1 the claim is trivial. Since ∂2B
∂y2

1
= 0 we have B(y) =

y1B1(y2, . . . , yn) + B2(y2, . . . , yn). The condition ∂2B1

∂y2
j

= ∂3

∂y1∂2yj
B = 0 for j = 2, . . . , n

implies that B1 satisfies hypothesis of the claim. On the other hand, B2 = B(0, y2, . . . , yn),

and so B2 has less variables, but satisfies the same system of differential equations.

Homogeneity of B implies that B(y) = cy1 · · · yn.

Remark 17. The second proof is a modification of the proof shown to us by Bernd Kirchheim,

we express our gratitude to him.

2.1.3 Case k = n− 1. Young’s function.

Theorem 2.1.2. If B satisfies assumptions L1 − L5 and Byiyj 6= 0 in int(Rn+) for all

i, j = 1, . . . , n then B(y) = Myα1
1 · · · y

αn
n for some M > 0 and 0 < αj < 1, j = 1, . . . , n

In the end of the section we present F. Nazarov’s examples which show that if we remove

the condition Bxixj 6= 0 in the Theorem 2.1.2 then the conclusion of the theorem does not
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hold. It is also worth mentioning that in the classical case when n = 3 and k = 2 we obtain

that under the assumptions L1 − L5 and Byiyj 6= 0 there are only Young’s inequalities for

convolution.

Proof. Equality (2.1.1) is the same as

n∑
j=1

yjajsBy`yj
〈Ca`, aj〉
〈Caj , aj〉

= 0, ∀` = 1, . . . , n, ∀s = 1, . . . , k. (2.1.4)

We introduce a vector function P (x) = (p1(x), . . . , pn(x)), where x ∈ Rn, such that

P (ln y1, . . . , ln yn) = ∇B(y).

Then equality (2.1.4), the fact that Byiyj = Byjyi and homogeneity of B combined imply

the following

〈∇p`, w`s〉 = 0, ∀` = 1, . . . , n, ∀s = 1, . . . , k; (2.1.5)

e−xjpixj = e−xipjxi , i, j = 1, . . . , n; (2.1.6)

div p` = (k − 1)p`, ` = 1, . . . , n. (2.1.7)

where

w`s =

(
a1s
〈Ca`, a1〉
〈Ca1, a1〉

, . . . , ans
〈Ca`, an〉
〈Can, an〉

)
, ∀` = 1, . . . , n, ∀s = 1, . . . , k. (2.1.8)

Now we show that the assumptions Byiyj 6= 0 imply that 〈Cai, aj〉 6= 0 for all i, j = 1, . . . , n.

Indeed, suppose that 〈Cai0 , aj0〉 = 0 for some i0 and j0. Assumption L3 implies that
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i0 6= j0. Since C is symmetric we get that 〈Caj0 , ai0〉 = 0. Corollary 7 says now that

rank(A∗CA•HessB(y)) ≤ 1. So the determinant of any 2×2 submatrix of A∗CA•HessB ={
〈Cai, aj〉Byiyj

}
ij

(2-minor) is zero. Consider 2× 2 submatrix of A∗CA • HessB with the

following entries: (i0, i0), (i0, j0), (j0, i0) and (j0, j0). Since its determinant is zero and we

assumed 〈Cai0 , aj0〉 = 0, we get that 〈Cai0 , ai0〉〈Caj0 , aj0〉 = 0. This contradicts to our

assumption L3.

Thus we obtain that for each fixed ` the vectors w`s, s = 1, . . . , n, span k = n −

1 dimensional subspace W`. Therefore, equality (2.1.5) implies that ∇p`(x) = λ`(x)v`

where λ`(x) is a nonvanishing scalar valued function in int(Rn+), v` ⊥ W` and none of the

components of v` is zero.

The equality (2.1.7) implies that we can choose v` so that 〈v`,1〉 = k − 1 (here 1 =

(1, . . . , 1) ∈ Rn) and so that λ`(x) = p`(x) for all ` = 1, . . . , n.

Hence the equation ∇p`(x) = p`(x)v` easily implies that p`(x) = e〈v
`,x〉p`(0) for all `.

The equalities (2.1.6) imply that

v` = (q1, . . . , q`−1, q` − 1, q`+1, . . . , qn), ∀` = 1, . . . .n.

where q = (q1, . . . , qn) ∈ Rn. It also follows that P (0) = kq for some number k 6= 0. Thus

we get that By` = kq`y
q1
1 · · · y

qn
n /y` and this proves Theorem 2.1.2.
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2.1.3.1 Example of necessity of the assumption Byiyj 6= 0 in Theorem 2.1.2

Let n = 3, k = 2 and B(x1, x2, x3) = ϕ(x1, x2)x3 where ϕ ∈ C2(intR2
+) ∩ C(R2

+) is an

arbitrary concave function and homogeneous of degree 1. Let

A =

 0 0 1/
√

2

1 1 0

 , C =

 2 0

0 1

 .

Then

A∗CA =


1 1 0

1 1 0

0 0 1

 .

Since ϕ satisfies homogeneous Monge–Ampère equation we have A∗CA•HessB ≤ 0. Clearly

all the assumptions L1− L5 are satisfied.

2.1.3.2 Theorem 2.1.2 does not hold in the case 1 < k < n− 1

It turns out that even if Byiyj 6= 0 and 1 < k < n − 1 then it is not necessarily true that a

function B which satisfies assumptions L1− L5 has a form B = Myα1
1 · · · y

αn
n . This means

that Theorem 2.1.2 cannot be improved. We give an example in a general case.

Assume that 1 < k < n − 1 and n > 3 (case n = 3 was already discussed above).

Take arbitrary nonnegative ϕ ∈ C2(int(R2
+)) ∩ C(R2

+)) so that ϕ is a concave function and

homogeneous of degree one. We choose ϕ so that it has nonzero second derivatives. We
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consider the following function

B(y) = yα1
1 · · · y

αn−2
n−2 · ϕ(yn−1, yn), y ∈ Rn+. (2.1.9)

Let an−1 = an = (0, . . . , 0, 1) ∈ Rk and let a1 = (ã1, 0), . . . , an−2 = (ãn−2, 0) ∈ Rk. We

choose vectors ã1, . . . , ãn−2 ∈ Rk−1 in the following way. First of all they span Rk−1. Inter-

section of the interior of the convex hull K (described in the Introduction and constructed

by the vectors ã1, . . . , ãn−2) with the hyperplane {y1 +y2 + · · ·+yn−2 = k−1} is nonempty.

We choose a point (α1, . . . , αn−2) from this intersection.

Then there exists (k − 1)× (k − 1) symmetric, positive semidefinite matrix C̃ such that

Ã∗C̃Ã • Hess B̃ ≤ 0 where Ã = (ã1, . . . , ãn−2) and

B̃(y1, . . . , yn−2) = yα1
1 · · · y

αn−2
n−2 .

Moreover, we have 〈C̃ãj , ãj〉 > 0 for j = 1, . . . , n − 2. The existence of such a matrix C̃

follows from the solution of the Euler–Lagrange equation for the right side of (2.0.18) (see

[25], Theorem 5.2), see also Subsection 2.1.4 below. It is clear that the function B satisfies

all properties L1− L5 except one has to check the property L3. We choose C as follows

C =

 C̃ 0

0T 1

 .

Function B from (2.1.9) satisfies L3 (and of course it can easily be made to satisfy all

other properties L1− L5), but it is not a Young function.
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2.1.4 Case of Young’s function

In this subsection we consider classical case when B(y) = y
1/p1
1 · · · y1/pn

n where 1 ≤ pj <∞.

Assumptions 1 ≤ pj follows from the assumption L3 (which implies in particular that the

function B is separately concave) and the assumption pj <∞ was made because otherwise

we have a function of less variables m < n. Note that we also must require that
∑ 1

pj
= k.

This function satisfies all assumptions of L1 − L5 except of L3. We try to understand for

which matrix A and numbers pj there is a matrix C mentioned in the assumption L3. The

answer on this question was obtained in [25] by using Euler–Lagrange equation.

We will obtain equation on the matrix C.

Note that HessB = B ·
{

1
pipjyiyj

}
−B ·

{
δij
piy

2
i

}
where δij = 1 if i = j, and otherwise it

is zero. Therefore equality (2.1.1) becomes

A

{
yi

〈Cai, ai〉

}[
A∗CA •

(
B ·
{

1

pipjyiyj

}
−B ·

{
δij

piy
2
i

})]
= 0

After simplification we obtain

A

{
1

pi〈Cai, ai〉

}
A∗C = Ik×k (2.1.10)

Notice that the rank of A

{
1√

pi〈Cai,ai〉

}
is k because the rank of A is k. Then k × k

matrix A
{

1
pi〈Cai,ai〉

}
A∗is invertible by Binet–Cauchy formula. Then we can find C from

(2.1.10) by the following obvious formula

C =

(
A diag

{
1

pi〈Cai, ai〉

}
A∗
)−1

(2.1.11)
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if we can solve the following system of non-linear equations fefining 〈Caj , aj〉, j = 1, . . . , n:

〈Caj , aj〉 = 〈
(
A diag

{
1

pi〈Cai, ai〉

}
A∗
)−1

aj , aj〉 . (2.1.12)

Using the notations

s2
j :=

1

pj〈Caj , aj〉
, j = 1, . . . , n,

we readily transfer (2.1.12) to

1

pj
= s2

j〈
(
A diag

{
s2
j

}
A∗
)−1

aj , aj〉, j = 1, . . . , n, (2.1.13)

which is precisely equation (3.12) of [25]. In [24], [25] it is proved that for { 1
pj
}nj=1 in the

interior of the convex set K from [24], [25] this system (2.1.13) has a solution. In particular,

C as in (2.1.11) does exist.

Notice also, that the Young’s functions found by Brascamp–Lieb [23] and corresponding

to the interior of the convex set K from [24], [25], do satisfy all properties L1−L5. Only L3

is interesting because we need to show that there exists a certain matrix C. We just found a

certain C in (2.1.11) (when the system (2.1.12) has a solution). This matrix C will satisfy L3

when B is the Young’s function B(y) = y
1/p1
1 · · · y1/pn

n where 1 < pj < ∞,
∑n
j=1 1/pj = k.

In fact, A∗CA •HessB(y) ≤ 0 for such a B is equivalent to

diag

{
1

yjpj

}
A∗CA diag

{
1

yjpj

}
≤ diag

{
〈Caj , aj〉pj

y2
j p

2
j

}
.

This is immediately equivalent to

A∗CA ≤ diag{1/s2
j}.
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But denoting S = diag{sj} we make this inequlity (AS)∗C(AS) ≤ In×n, which holds

because (AS)∗C(AS) is an orthogonal projection onto the span of the columns of S(A∗).

So, we repeat, that the Young’s functions found by Brascamp–Lieb [23] and corresponding

to the interior of the convex set K from [24], [25], do satisfy all properties L1−L5. But it is

more interesting that, as we have shown above, in certain situations all functions satisfying

L1− L5 must be of the form of a Young function found by Brascamp and Lieb.
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Chapter 3

Harmonic analysis, PDE and

differential geometry

3.0.5 Short review of some harmonic analysis problems

3.0.5.1 John–Nirenberg inequality

For a measurable function f , and measurable set K we set

〈f〉K
def
=

1

|K|

∫
K
f.

We say that the measurable function f belongs to BMO(Rn) if

‖f‖BMO
def
= sup

Q⊂Rn
〈|f − 〈f〉Q |2〉1/2Q

<∞,

where the supremum is take over all hypercubes Q. Theorem about equivalence of BMO

norms states that

Theorem 3.0.3. For any p ∈ (0,∞) there exist c1, c2 > 0 such that:

c1‖f‖BMO ≤ sup
Q⊂Rn

〈|f − 〈f〉Q |p〉1/pQ
≤ c2‖f‖BMO.
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The celebrated John–Nirenberg inequality describes growth of the distributions of the

function from BMO:

Theorem 3.0.4. There exist constants c1, c2 > 0 such that for any f ∈ BMO we have

1

|Q|
∣∣∣{x : |f(x)− 〈f〉Q| > λ

}∣∣∣ ≤ c1e
−c2 λ

‖f‖BMO .

John–Nirenberg inequality in integral form states that:

Theorem 3.0.5. There exists ε0 > 0 and a positive function C(ε), 0 < ε < ε0 such that

〈eϕ〉I ≤ C(ε)e〈ϕ〉I for all ϕ ∈ BMO(I) : ‖ϕ‖BMO ≤ ε.

Interesting question is to find the best possible C(ε) and ε0.

Closely related classes to BMO are Ap classes, reverse Hölder classes and Gehring classes.

3.0.5.2 Uniform convexity

Let I be an interval of the real line. For an integrable function f over I, we set ‖f‖p def
=

〈|f |p〉1/pI . We recall the definition of uniform convexity of a normed space (X, ‖·‖) (see [29]).

Definition 13. (Clarkson ’36 ) X is uniformly convex if ∀ε > 0, ∃δ > 0 s.t. if ‖x‖ = ‖y‖ =

1 and ‖x− y‖ ≥ ε, then
∥∥∥x+y

2

∥∥∥ ≤ 1− δ.

Modulus of convexity of the normed space X is defined as follows:

δX(ε) = inf

{(
1− ‖f + g‖

2

)
: ‖f‖ = 1, ‖g‖ = 1, ‖f − g‖ ≥ ε

}
.

Remark 18. (X, ‖ · ‖) space is uniformly convex iff δX(ε) > 0.
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O. Hanner (see [28]) gave an elegant proof of finding the constant δLp(ε) in Lp([0, 1])

space for p ∈ (1,∞) in 1955. He proved two necessary inequalities (further called Hanner’s

inequalities) in order to obtain constant δLp(ε). Namely,

‖f + g‖pp + ‖f − g‖pp ≥ (‖f‖p + ‖g‖p)p + |‖f‖p − ‖g‖p|p, p ∈ [1, 2], (3.0.1)

and the inequality (3.0.1) is reversed if p ≥ 2. Hanner mentions in his note [28] that his

proof is a reconstruction of some Beurling’s ideas given at a seminar in Upsala in 1945.

In [30] non-commutative case of Hanner’s inequalities was investigated. Namely, Hanner’s

inequality holds for p ∈ [1, 3/4] ∪ [4,∞), and the case p ∈ (3/4, 4) (where p 6= 2) was left

open.

3.0.5.3 Brunn–Minkowski and isoperimetric inequalities

Let A and B be nonempty compact subsets of Rn.

Theorem 3.0.6. The following sharp Brunn–Minkowski inequality holds

|A+B|1/n ≥ |A|1/n + |B|1/n,

where n ≥ 1 and |A| denotes Lebesgue measure of the set A.

The Brunn-Minkowski inequality is a consequence of its multiplicative version:

Theorem 3.0.7. Let λ ∈ (0, 1). Then for any compact measurable sets U, V ⊂ Rn we have

|λU + (1− λ)V | ≥ |U |λ|V |1−λ. (3.0.2)
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Indeed, if one sets Uλ = A and (1− λ)V = B then inequality (3.0.2) takes the form

|A+B| ≥ |A|λ|B|1−λ
λλ(1− λ)1−λ . (3.0.3)

By maximizing the right hand side of (3.0.3) over λ ∈ (0, 1) we obtain the Brunn–Minkowski

inequality.

Brunn–Minkowski inequality implies the classical isoperimetric inequality:

Theorem 3.0.8. Among all simple closed surfaces with given surface area, the sphere en-

closes a region of maximal volume. In other words

|∂A| ≥ n|A|1− 1
n |B(0, 1)| 1n .

Where |∂A| means surface area of the boundary of the body A. |A| denotes volume of the

body and B(0, 1) denotes the ball of radius 1 at center 0.

Indeed, let us sketch the proof: Since |A+B(0, ε)| = |A|+ ε|∂A|+O(ε2), we have

|∂A| = lim
ε→0

|A+B(0, ε)| − |A|
ε

≥ lim
ε→0

(|A|1/n + |B(0, ε)|1/n)n − |A|
ε

= n|A|1− 1
n |B(0, 1)| 1n .

3.0.5.4 Sobolev inequality

It is known that the classical isoperimetric inequality is equivalent to its functional version,

to Sobolev inequality on Rn with optimal constant

∫
Rn
|∇f | ≥ n|B(0, 1)| 1n

(∫
Rn
|f |

n
n−1

)1− 1
n

. (3.0.4)
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Indeed, testing (3.0.4) over characteristic functions f(x) = 1A(x) we obtain implication in

one direction. Opposite direction follows from Coarea formula: assume f ≥ 0 is sufficiently

nice compactly supported function. Then by coarea formula we have

∫
Rn
|∇f |dx =

∫ ∞
0
|{x : f(x) = t}|dt ≥ n|B(0, 1)| 1n

∫ ∞
0
|{x : f(x) ≥ t}|1− 1

ndt.

It is left to show that

(∫ ∞
0
|{x : f(x) ≥ t}|n−1

n dt

) n
n−1

≥ n

n− 1

∫ ∞
0
|{x : f(x) ≥ t}|t

1
n−1dt

This follows from the following observation

F

(∫ ∞
0

ϕ

)
=

∫ ∞
0

d

dt
F

(∫ t

0
ϕ

)
dt =

∫ ∞
0

F ′
(∫ t

0
ϕ

)
ϕdt ≥

∫ ∞
0

F ′(tϕ(t))ϕ(t)dt,

where ϕ is decreasing and F ′ is increasing (F (t) = t
n
n−1 , ϕ(t) = |{x : f(x) ≥ t}|n−1

n ). So

the claim follows.

3.0.5.5 Prekopa–Leindler inequality

Multiplicative Brunn–Minkowski inequality follows from its functional version, so called

Prekopa–Leindler inequality.

Theorem 3.0.9. Let h, f, g be positive measurable functions and λ ∈ (0, 1). If

h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ (3.0.5)
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Then

∫
Rn

h ≥
(∫

Rn
f

)λ(∫
Rn

g

)1−λ
.

If one takes h(x) = 1λU+(1−λ)V (x), f(x) = 1U (x) and g(x) = 1V (x) then clearly the

assumption (3.0.5) is satisfied and one obtains multiplicative version of Brunn–Minkowski in-

equality. It is not quite clear what will be the functional analog of original Brunn–Minkowski

inequality.

Straightforward generalization of Prekopa–Leindler inequality takes the following form:

Theorem 3.0.10. Let fj : Rn → R+ be integrable functions, and let
∑m
j=1 λj = 1, 0 <

λj < 1. If

h

 m∑
j=1

λjxj

 ≥ m∏
j=1

f(xj)
λj ,

then

∫
Rn

h ≥
m∏
j=1

(∫
Rn

fj

)λj
.

The above inequality can be treated as reverse to Hölder’s inequality:

∫
Rn

sup


m∏
j=1

f(xj)
λj :

∑
xjλj = z

 dz ≥
m∏
j=1

(∫
Rn

fj

)λj
≥

m∏
j=1

∫
Rn

fj(xj)
λj .

where integral in the left hand side is understood as upper Lebesgue integral.

One of the other applications of Prekopa–Leindler inequality in probability is that:
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Corollary 8. If F (x, y) : Rn × Rm → R+ is log-concave distribution i.e.,

F (λu+ (1− λ)v) ≥ F (u)1−λF (v)λ for all u, v ∈ Rn+m,

then H(x) =
∫
Rm F (x, y)dy is log-concave distribution.

The corollary immediately follows from application of Prekopa–Leindler inequality to the

functions F (x, λy1 + (1− λ)y2), F (x, y1) and F (x, y2).

3.0.5.6 Borell–Brascamp–Lieb inequality

We also mention Borell–Brascamp–Lieb inequality since it generalizes Prekopa–Leindler in-

equality

Theorem 3.0.11. Let h, f, g be nonnegative functions, 0 < λ < 1 and − 1
n ≤ p ≤ ∞.

Suppose

h(λx+ (1− λ)y) ≥Mp(f(x), g(y), λ),

where

Mp(a, b, λ)
def
= (λap + (1− λ)bp)1/p, M0

def
= (a, b, λ) = aλb1−λ.

Then

∫
Rn

h ≥M p
np+1

(∫
Rn

f,

∫
Rn

g, λ

)
.
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3.0.5.7 Ehrhard’s inequality

The condition of Preko–Leindler type appears in Ehrhards inequality:

Theorem 3.0.12. Let dγ(x) = e−|x|
2/2

(2π)n/2
dx be the Gaussian measure. And let Φ(x) =

∫ x
−∞ dγ.

Then for any measurable compact sets A,B ⊂ Rn and any numbers λ, µ ≥ 0, such that

λ+ µ ≥ 1 and |λ− µ| ≤ 1 we have

Φ−1(|λA+ µB|γ) ≥ λΦ−1(|A|γ) + µΦ−1(|B|γ),

where |A|γ denotes Gaussian measure of A i.e., |A|γ =
∫
A dγ.

The inequality initially was stated for convex sets A and B. Later it was improved in the

sense that only one of them has to be convex and it was conjectured that the inequality is

true in general for any measurable sets, and the conjecture was proved recently. Ehrhrad’s

inequality is consequence of its functional version:

Theorem 3.0.13. Let h, f, g : Rn → [0, 1] be functions such that

Φ−1(h(λx+ µy)) ≥ λΦ−1(f(x)) + µΦ−1(g(y)), for all x, y ∈ Rn,

where λ, µ ≥ 0, λ+ µ ≥ 1 and |λ− µ| ≤ 1 then

Φ−1
(∫

Rn
hdγ

)
≥ λΦ−1

(∫
Rn

fdγ

)
+ µΦ−1

(∫
Rn

gdγ

)
.
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3.0.5.8 Borell’s Gaussian noise “stability”

Let γn = e−|x|
2/2

(2π)n/2
be a standard Gaussian measure on Rn and let Φ =

∫ x
−∞ dγ1. Borell’s

Gaussian noise “stability” states that

Theorem 3.0.14. If A,B are measurable subsets of Rn. Then if X = (X1, . . . , Xn), Y =

(Y1, . . . , Yn) are independent Gaussian standard random variables, and p ∈ (0, 1) then

P(X ∈ A, pX +

√
1− p2 Y ∈ B) ≤ P(X1 ≤ Φ−1(γn(A)), pX1 +

√
1− p2 Y1 ≤ Φ−1(γn(B))).

The functional version of the above inequality can be stated as follows:

Theorem 3.0.15. Let p ∈ (0, 1), f, g : Rn → (0, 1) and let

B(u, v) = P(X1 ≤ Φ−1(u), pX1 +

√
1− p2 Y2 ≤ Φ−1(v)).

Then

∫
R2n

B

(
f(x), g(px+

√
1− p2 y)

)
dγdγ ≤ B

(∫
Rn

fdγ,

∫
Rn

gdγ

)
.

3.0.5.9 Hypercontractivity

Let

Ptf(x) =

∫
Rn

f(e−tx+
√

1− e−2t y)dγ(y)

be Ornstein–Uhlenbeck semigroup where t ≥ 0. The hypercontractivity for Ornstein–

Uhlenbeck semigroup means that
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Theorem 3.0.16. Let p, q > 1 be such that q−1
p−1 ≥ e−2t. Then

‖Ptf‖Lp(dγ) ≤ ‖f‖Lq(dγ).

3.0.5.10 Logarithmic Sobolev inequalities

Let dγ(x) = e−|x|
2/2

(2π)k/2
dx. Logarithmic Sobolev inequality can be stated as follows

Theorem 3.0.17. For any positive function f on Rk we have

∫
Rk
f2 ln f2dγ −

(∫
Rk
f2dγ

)
ln

(∫
Rk
f2dγ

)
≤ 2

∫
Rk
|∇f |2dγ. (3.0.6)

3.0.5.11 Beckner–Sobolev inequality

W. Beckner proved tho following Sobolev inequality for Gaussian measure:

Theorem 3.0.18. Let 1 ≤ p ≤ 2. Then

‖f‖2
L2(dγ)

− ‖f‖2Lp(dγ) ≤ (2− p)‖∇f‖2
L2(dγ)

.

3.0.5.12 Lévy–Gromov’s isoperimetric inequlity

Let M be a compact connected Riemannian manifold of dimension n ≥ 2, and of Ricci

curvature bounded below by R > 0. Let µ be normalized Riemannian measure on M . Let

σ(r) be normalized volume of a geodesic ball of radius r ≥ 0 on the n-sphere with curvature

R > 0. Lévy–Gromov’s isoperimetric inequality states that:
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Theorem 3.0.19. For every set A in M with smooth boundary ∂A we have

σ′(σ−1(µ(A))) ≤ µs(∂A),

where µs(∂A) stands for the surface measure of the boundary ∂A.

3.0.5.13 Bobkov’s inequality

In particular since the spherical measures converge to Gaussian distributions one expects to

obtain Lévy–Gromov’s isoperimetric inequlity in infinitely dimensional setting

Theorem 3.0.20. Let Φ(x)
∫ x
−∞ dγ and ϕ(x) = Φ′(x). Then for every Borel set A ∈ Rn

with smooth boundary,

ϕ(Φ−1(γ(A))) ≤ γs(∂A). (3.0.7)

The celebrated functional version of the above inequality was obtained and proved by

Bobkov.

Theorem 3.0.21. Let U(x) = ϕ(Φ−1(x)). Then for any differentiable f : Rn → (0, 1)

U

(∫
Rn

fdγ

)
≤
∫
Rn

√
U2(f) + |∇f |2 dγ. (3.0.8)

Testing (3.0.8) on the characteristic functions f = 1A and noticing that U(0) = U(1) = 0

gives the desired result (3.0.7).

It is worth mentioning Brascamp–Lieb inequality. We refer the reader to the Chapter 2.
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3.0.6 Relation to PDEs

3.0.6.1 Prekopa–Leindler, Ehrhard’s inequality and its underlying PDE

One can see that in general inequalities of these types (Prekopa–Leindler, Ehrhard) can

be formulated as follows. Let B(x1, . . . , xm) be a smooth real valued function defined on

Ω ⊂ Rm. And let Aj : Rn → Rnj be matrices j = 1, . . . ,m. Let (u1, . . . , um) : Rn1 × . . .×

Rnm → Ω be smooth functions.

Question. Under what conditions on B it is true that whenever

B(u1(A1x), . . . , um(Amx)) ≥ 0, for all x ∈ Rn (3.0.9)

we have that

B

(∫
Rn1

u1dγn1 , . . . ,

∫
Rnm

unmdγnm

)
≥ 0. (3.0.10)

where dγk(x) = e−|x|
2/2

(2π)k/2
dx denotes k dimensional Gaussian measure.

Note that for the function u : Rk → R its heat extension can be written as follows

Ptu(x) = u(x, t) =

∫
Rk
u(x+

√
2t y)dγk(y) t ≥ 0.

Notice that inequality (3.0.9) must remain true under the shifts and dilation of the variable
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x. In particular this implies that (3.0.10) can be written as follows

C(x, t)
def
= B(u1(A1x, t), . . . , um(Amx, t)) =

B

(∫
Rn1

u1(A1x+
√

2t y1)dγn1(y), . . . ,

∫
Rnm

unm(Anmx+
√

2t ym)dγnm(y)

)
≥ 0.

Remark 19. The same is true for Ornstein–Uhlenbeck extensions.

Now the question is under what conditions on C(x, t) the inequality C(x, 0) ≥ 0 implies

that C(x, t) ≥ 0 for all t > 0. Further we always assume that

lim inf
|x|→∞

(
inf

T≥t≥0
C(x, t)

)
≥ 0 for all T > 0.

There is a simple way to check this condition: maximum principle for elliptic operator. If the

action of an elliptic operator is nonpositive then the infimum is attained on the boundary.

In other words, if there exists positive semi-definite matrix {aij(x, t)}ni,j=1 such that

 n∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
j=1

bj(x, t)
∂

∂xj
− ∂

∂t

C(x, t) ≤ 0 (3.0.11)

for some vector b(x, t) = (b1(x, t), . . . , bn(x, t)) then infimum is attained on the boundary

t = 0. Indeed, the condition (3.0.11) implies that “whenever we are on the hill we go up”.

In other words if whenever HessxC(x, t) ≥ 0 and ∇xC(x, t) = 0 then ∂
∂tC(x, t) ≥ 0.

Now the last conclusion gives the desired result. Indeed (see also [32]), take any ε > 0

and set Cε(x, t) = C(x, t) + εt. If Cε(x, t) < 0 at some point then since HessxCε(x, t) =

HessxC(x, t) ≥ 0 and ∇xCε(x, t) = ∇xC(x, t) = 0 at that point then we must have

∂
∂tCε(x, t) = 0. This means that ∂

∂tC(x, t) = −ε < 0, but this contradicts to the fact
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that whenever we are o the hill we must go up.

Definition 14. We say that the function C(x, t) satisfies ellipticity if (3.0.11) holds for

some nonnegative matrix {aij(x, t)}ni,j=1 and the vector {bj(x, t)}nj=1. We say that the func-

tion C(x, t) satisfies hill property if whenever HessxC(x, t) ≥ 0 and ∇xC(x, t) = 0 then

∂
∂tC(x, t) ≥ 0.

Remark 20. As we already mentioned ellipticity implies the hill property, however the con-

verse is not true. Ehrhard’s inequality is an example when the desired elliptic operator does

not exists, however the hill property holds.

In the following particular case we will describe all functions B for which C(x, t) satisfies

hill property and thus we will answer on our question. We consider the following case

B(u1(a1x+ a2y), u2(x), u3(y)) ≥ 0, (3.0.12)

where a1, a2 are real numbers and x, y ∈ Rn. If B is sufficiently nice then one can rewrite

the pointwise inequality (3.0.12) as follows

u1(a1x+ a2y) ≥ H(u2(x), u3(y))

fore some function H.

Theorem 3.0.22. Let Ω be a rectangular domain in R2. Let a1, a2 ∈ R be such that

|a1| + |a2| ≥ 1 and 1 ≥ ||a1| − |a2||. Let the function H(x, y) : Ω → R be such that

H1, H2 6= 0 and

H1H2H12(1− a2
1 − a2

2) + a2
1H

2
2H11 + a2

2H
2
1H22 ≥ 0. (3.0.13)
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If the real-valued functions u1, u2, u3 are such that (u2, u3) : Rn → Ω and

u1(a1x+ a2y) ≥ H(u2(x), u3(y)) for all x, y ∈ Rn,

then

∫
Rn

u1dγ ≥ H

(∫
Rn

u2dγ,

∫
Rn

u3dγ

)
.

Proof. It is enough to prove the theorem for the case n = 1. Indeed, for arbitrary n proof

goes by induction. Consider the functions

h(z) = u1(z, a1x2 + a2y2, . . . , a1xn + a2yn)

f(x1) = u2(x1, x2, . . . xn)

g(y1) = u3(y1, . . . , yn)

Then the theorem implies that

∫
R
h(z)dγ(z) ≥ H

(∫
R
u2(x1)dγ(x1),

∫
R
u3(y1)dγ(y1)

)

After that we apply the theorem to the new functions

h̃(z) =

∫
R
u1(x, z, a1x3 + a2y3, . . . , a1xn + a2yn)dγ(x)

f̃(x2) =

∫
R
u2(x, x2, x3, . . . xn)dγ(x)

g̃(y2) =

∫
R
u3(x, y2 . . . , yn)dγ(x)
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and by iterating this process we see that it is sufficient to prove the theorem for the case

n = 1.

We will check the hill property. We would like to show that the following quantity is

nonnegative

∂

∂t
(u1(a1x+ a2y, t)−H(u2(x, t), u3(y, t))) = u′′1 −H1u

′′
2 −H2u

′′
3 , (3.0.14)

under the assumptions that

 u′′1a
2
1 −H11(u′2)2 −H1u

′′
2 u′′1a1a2 −H12u

′
2u
′
3

u′′1a1a2 −H12u
′
2u
′
3 u′′1a

2
2 −H22(u′3)2 −H2u

′′
3

 ≥ 0, (3.0.15)

and

a1u
′
1 −H1u

′
2 = 0 and a2u

′
1 −H2u

′
3 = 0. (3.0.16)

Expressing u′2, u
′
3 from (3.0.16) and substituting into (3.0.15) gives

 u′′1a
2
1 −

H11

H2
1
a2

1(u′1)2 −H1u
′′
2 u′′1a1a2 − H12

H1H2
a1a2(u′1)2

u′′1a1a2 − H12
H1H2

a1a2(u′1)2 u′′1a
2
2 −

H22

H2
2
a2

2(u′1)2 −H2u
′′
3

 ≥ 0.

Further we assume that H1, H2 6= 0. We will treat derivatives u′1, u
′′
1 , u
′′
2 , u
′′
3 as independent

variables. We multiply the above matrix by (u′2)−2 (and (3.0.14) as well) and we introduce

the new variables
u′′1

(u′1)2 = x,
H1u

′′
2

(u′1)2 = ya2
1 and

H2u
′′
3

(u′1)2 = za2
2 (further we assume that a1, a2 6= 0).

Then positive definiteness of the above matrix is the same as positive definiteness of the

following matrix (after conjugating by 2×2 diagonal matrix with the elements on the diagonal
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a1, a2)

 x− H11

H2
1
− y x− H12

H1H2

x− H12
H1H2

x− H22

H2
2
− z

 ≥ 0. (3.0.17)

Desired expression (3.0.14) takes the following form

x− ya2
1 − za2

2 = (x, y, z) · (1,−a2
1,−a2

2). (3.0.18)

We denote H11

H2
1

= p, H22

H2
2

= q, and H12
H1H2

= r. Then Condition (3.0.17) is equivalent to the

following two inequalities

(x, y, z) · (2,−1,−1) ≥ p+ q;

yz − xy − xz + pz + qy − x(p+ q − 2r) + pq − r2 ≥ 0.

We shift coordinates x 7→ x + r, y 7→ y + r − p, z 7→ z + r − q and we obtain that the

above conditions take the following form:

(x, y, z) · (2,−1,−1) ≥ 0; (3.0.19)

yz − xy − xz ≥ 0; (3.0.20)

and the desired inequality becomes

(x, y, z) · (1,−a2
1,−a2

2) + r − a2
1(r − p)− a2

2(r − q) ≥ 0. (3.0.21)
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Testing (3.0.21) for x = 0, y = 0, z = 0 we obtain the necessary condition that

r − a2
1(r − p)− a2

2(r − q) ≥ 0.

By stretching the point (x, y, z) 7→ λ(x, y, z) (where λ > 0) we see that conditions (3.0.19,

3.0.20) remain true and we can get rid off the term r−a2
1(r−p)−a2

2(r−q). So it remains to

understand when the quantity (x, y, z) · (1,−a2
1,−a2

2) is nonnegative under the assumptions

(3.0.19, 3.0.20). Since the cone (3.0.19, 3.0.20) must lie below the hyperplane (x, y, z) ·

(1,−a2
1,−a2

2) = 0 we obtain that we must have

|a1|+ |a2| ≥ 1;

1 ≥ ||a1| − |a2||.

Corollary 9. If a function H satisfies conditions of Theorem 3.0.22 and in addition it is

1-homogeneous then the conclusion of the theorem holds for Lebesgue measure, i.e.,

∫
Rn

u1dx ≥ H

(∫
Rn

u2dx,

∫
Rn

u3dx

)

Corollary 10. If H is convex then conclusion of Theorem 3.0.22 holds.

Corollary 11. If H(x, y) = xa1ya2 then

H1H2H12(1− a2
1 − a2

2) + a2
1H

2
2H11 + a2

2H
2
1H22 = x3a1−2y3a2−2a2

1a
2
2(1− a1 − a2)

so the hill property holds if a1 + a2 ≥ 1 and ||a1| − |a2|| ≤ 1.
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Corollary 12. Set Φ =
∫ x
−∞ ϕ(s)ds, where ϕinC1 is positive and integrable function at

negative infinity, and let Φ−1(x) be inverse function of Φ. Take

H(x, y) = Φ(a1Φ−1(x) + a2Φ−1(y)) where (x, y) ∈ (0, 1)2.

Denote Λ = a1Φ−1(x) + a2Φ−1(y). Then direct computation shows that

H1 =
a1ϕ(Λ)

ϕ(Φ−1(x))
;

H2 =
a2ϕ(Λ)

ϕ(Φ−1(y))
;

H11 =
a2

1ϕ
′(Λ)

ϕ(Φ−1(x))2
− a1ϕ(Λ)ϕ′(Φ−1(x))

ϕ(Φ−1(x))3
;

H12 =
a1a2ϕ

′(Λ)

ϕ(Φ−1(x))ϕ(Φ−1(y))
;

H22 =
a2

2ϕ
′(Λ)

ϕ(Φ−1(y))2
− a2ϕ(Λ)ϕ′(Φ−1(y))

ϕ(Φ−1(y))3
.

So we obtain

H1H2H12(1− a2
1 − a2

2) + a2
1H

2
2H11 + a2

2H
2
1H22 =

a2
1a

2
2ϕ(Λ)3

ϕ(Φ−1(x))2ϕ(Φ−1(y))2
×(

ϕ′(a1Φ−1(x)) + a2Φ−1(y))

ϕ(a1Φ−1(x)) + a2Φ−1(y))
− a1

ϕ′(Φ−1(x))

ϕ(Φ−1(x))
− a2

ϕ′(Φ−1(y))

ϕ(Φ−1(y))

)
.

Denote Φ−1(x) = u,Φ−1(y) = v. Then we see that if the logarithmic derivative of the density

ϕ satisfies concavity condition

f(a1u+ a2v) ≥ a1f(u) + a2f(v),

where f(x) =
ϕ′(x)
ϕ(x)

then the hill property holds. In particular this implies Ehrhard’s inequality

125



if ϕ = e−|x|
2/2 and it implies Prekopa–Leindler inequality if ϕ = ex.

3.0.6.2 log-Sobolev inequality, Beckner–Sobolev inequality, Bobkov’s inequal-

ity and its underliyng PDE

The inequalities mentioned in the title are related to some PDEs which we are going to

describe shortly. Firstly we will need some preliminaries from Bakry–Émery “Gamma cal-

culus”. Complete description of the required material the reader can find in [48].

Mostly we will be working with Ornstein–Uhlenbeck semigroup Pt on the Euclidean

space whose generator is L = ∆− x · ∇, however the most part of the results (thanks to the

Bochner–Lichnerowicz formula) can be pushed forward to the diffusion semigroups Pt on the

some weighted Riemannian manifolds (M, g) with uniformly bounded below Ricci curvature.

We remind that the differential operator L is a diffusion operator if for every C∞ function

Ψ on Rk and every finite family F = (f1, . . . , fk) from some suitable algebra A we have

LΨ(F ) =
∑
j

∂Ψ

∂fj
Lfj +

∑
i,j

∂2Ψ

∂fi∂fj
Γ(fi, fj),

where the so-called carré du champ operator Γ is defined as follows

2Γ(f, g) = L(fg)− Lf · g − f · Lg.

For example, if

L =
∑
i,j

aij(x)
∂2

∂xi∂xj
+
∑
j

bj(x)
∂

∂xj
,
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where aij(x) is symmetric matrix then

Γ(f, g) =
∑
i,j

aij(x)
∂f

∂xi

∂g

∂xj
,

for f, g : Rn → R. One can define iterated carré du champ operator

2Γ2(f, g) = LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf).

Sometimes we will write just Γ(f, f) = Γ(f) and Γ2(f, f) = Γ2(f). It is important to notice

that for the Ornstein–Uhlenbeck generator L = ∆− x · ∇ we have

Γ(ui, uj) = ∇ui∇uj ;

Γ2(uj) = |∇uj |2 + |Hessuj |2HS ;

Γ(ui,Γuj) = 2〈Hessuj∇uj ,∇ui〉;

Γ(Γui,Γuj) = 4(Hessui∇ui)THessuj∇uj .

where |Hessuj |HS denotes Hilbert–Schmidt norm of the matrix Hessuj . For the C2 function

M : R2n → R, say M(x1, . . . , xn, y1, . . . , yn) by
(∇yM

y

)
2n×2n

we denote 2n × 2n diagonal

matrix so that in the first n× n block it has entries
Myi
yi

and the rest is zero. For the vector

v we write v ≤ 0 if each component of v is nonpositive.

Theorem 3.0.23. Let Ω be a convex subset of Rn. Let (u1, . . . , un) : Rk → Ω be sufficiently

nice. Let M : Ω× Rn+ → R, say M(x1, . . . , xn, y1, . . . , yn) where yj ≥ 0, satisfy

HessM +

(∇yM
y

)
2n×2n

≤ 0, and ∇yM ≤ 0, (3.0.22)
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then

∫
Rk
M(u1, . . . , un, |∇u1|, . . . , |∇un|)dγ ≤M

(∫
Rk
u1dγ, . . . ,

∫
Rk
undγ, 0, . . . , 0

)
. (3.0.23)

If the inequalities (3.0.22) are reversed then we have reversed inequality in (3.0.23). In the

case n = 1 we do not need the condition ∇yM ≤ 0 (or ∇yM ≥ 0).

Proof. Let uj : Rk → R for all j = 1, . . . , n. Take

B(x1, . . . , xn, y
2
1, . . . , y

2
n) = M(x1, . . . , xn, y1, . . . , yn).

Then we are going to show that PtB −B(Pt) ≤ 0 for all t ≥ 0 where

PtB = PtB(u1, . . . , un,Γu1, . . . ,Γun)

and B(Pt) = B(Ptu1, . . . , Ptun,ΓPtu1, . . . ,ΓPtun) then by sending t→∞ and noticing that

ΓPtu = e−2tPtΓu we obtain the desired result thanks to the ergodicity of the semigroup Pt

i.e., Ptu→
∫
udγ.

Remark 21. The condition PtB − B(Pt) ≤ 0 can be verified by showing that the function

C(x, t) = PtB − B(Pt) satisfies ellipticity (or even hill property see Definition 14) i.e.,

(L − ∂
∂t)(B(Pt) − PtB) ≤ 0 for some elliptic operator L. We will check its ellipticity by

choosing L to be Ornstein–Uhlenbeck generator. Note that

PtB −B(Pt) =

∫ t

0

d

ds
PsB(Pt−s)ds =

∫ t

0
Ps

(
L− ∂

∂t

)
B(Pt−s).

Therefore the reader can notice that since Ps is positive operator, the next computations are
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the same as checking ellipticity for the function B(Pt)−PtB where L is Orsntein–Uhlenbeck

generator.

PtB(u1, . . . , un,Γu1, . . . ,Γun)−B(Ptu1, . . . , Ptun,ΓPtu1, . . . ,ΓPtun) =

=

∫ t

0

d

ds
PsB(Pt−su1, . . . , Pt−sun,ΓPt−su1, . . . ,ΓPt−sun) =

∫ t

0
Ps

LB − n∑
j=1

∂B

∂uj
LPt−suj −

n∑
j=1

∂B

∂vj
2Γ(LPt−suj , Pt−suj)

 =

∫ t

0
Ps

 n∑
j=1

∂B

∂uj
LPt−suj +

n∑
j=1

∂B

∂vj
LΓPt−suj +

n∑
i,j=1

∂2B

∂uiuj
Γ(Pt−sui, Pt−suj)+

n∑
i,j=1

∂2B

∂vivj
Γ(ΓPt−sui,ΓPt−suj) + 2

n∑
i,j=1

∂2B

∂ui∂vj
Γ(Pt−sui,ΓPt−suj)

−
n∑
j=1

∂B

∂uj
LPt−suj −

n∑
j=1

∂B

∂vj
2Γ(LPt−suj , Pt−suj)

 =

∫ t

0
Ps

 n∑
j=1

∂B

∂vj
Γ2(Pt−suj) +

n∑
i,j=1

∂2B

∂uiuj
Γ(Pt−sui, Pt−suj)+

n∑
i,j=1

∂2B

∂vivj
Γ(ΓPt−sui,ΓPt−suj) + 2

n∑
i,j=1

∂2B

∂ui∂vj
Γ(Pt−sui,ΓPt−suj)

 .
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Now notice that

n∑
j=1

∂B

∂vj
Γ2(Pt−suj) +

n∑
i,j=1

∂2B

∂uiuj
Γ(Pt−sui, Pt−suj)+

n∑
i,j=1

∂2B

∂vivj
Γ(ΓPt−sui,ΓPt−suj) + 2

n∑
i,j=1

∂2B

∂ui∂vj
Γ(Pt−sui,ΓPt−suj) =

n∑
j=1

∂B

∂vj
(2|∇Pt−suj |2 + 2|HessPt−suj |2HS) +

n∑
i,j=1

∂2B

∂ui∂uj
∇Pt−sui∇Pt−suj+

4
n∑

i,j=1

∂2B

∂vi∂vj
(HessPt−sui∇Pt−sui)THessPt−suj∇Pt−suj+

4
n∑

i,j=1

∂2B

∂ui∂vj
〈HessPt−suj∇Pt−suj ,∇Pt−sui〉.

We will check that the last expression is nonpositive. We need the following technical lemma

Lemma 22. For the given x the image of Ax as A runs over all matrices such that ‖A‖HS =

r is the the set B(0, ‖x‖r).

Proof. If x = 0 there is nothing to proof. Assume x 6= 0. It is clear that {Ax : ‖A‖HS =

r} ⊂ B(0, ‖x‖r) because ‖Ax‖ ≤ ‖A‖‖x‖ ≤ ‖A‖HS‖x‖ = r‖x‖. Let y ∈ B(0, ‖x‖r). Take

the matrix A+ = yxT

‖x‖2 . Clearly A+x = y and

‖A+‖HS = (Tr[A+(A+)T ])1/2 =
1

‖x‖2 (Tr[yxTxyT ])1/2 =
‖y‖
‖x‖ ≤ r.

Consider the matrix Ã = I − xxT

‖x‖2 . Then Ãx = 0. Take the matrix f(λ) = A+ +

λÃ. Clearly f(λ)x = y for all λ ∈ R and ‖f(λ)‖HS = (Tr[A+(A+)T ] + 2λTr[A+Ã∗] +

λ2Tr[ÃÃ∗])1/2. And ‖f(0)‖HS ≤ r, and limλ→∞ ‖f(λ)‖HS → ∞. Hence there exists λ∗

such that ‖f(λ∗)‖HS = r.
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The above lemma implies that we should study the sign of the expression

n∑
j=1

∂B

∂vj
(2|∇Pt−suj |2 + 2|HessPt−suj |2HS) +

n∑
i,j=1

∂2B

∂ui∂uj
∇Pt−sui∇Pt−suj+

4
n∑

i,j=1

∂2B

∂vi∂vj
〈zi, zj〉|∇Pt−sui||∇Pt−suj |+ 4

n∑
i,j=1

∂2B

∂ui∂vj
|∇Pt−suj |.〈zj ,∇ui〉

for any vectors zi so that they satisfy the condition ‖zi‖ ≤ |Hessui|HS . Going back to the

function B(x1, . . . , xn, y
2
1, . . . , y

2
n) = M(x1, . . . , xn, y1, . . . , yn) we obtain

n∑
j=1

∂M

∂yj
|∇Pt−suj |+

n∑
j=1

∂M

∂yj

|HessPt−suj |2HS − ‖zj‖2
|∇Pt−suj |

+
n∑

i,j=1

∂2M

∂xi∂xj
∇Pt−sui∇Pt−suj+

n∑
i,j=1

∂2M

∂yi∂yj
〈zi, zj〉+ 2

n∑
i,j=1

∂2M

∂xi∂yj
〈zj ,∇Pt−sui〉 ≤

n∑
j=1

∂M

∂yj
|∇Pt−suj |+

n∑
i,j=1

∂2M

∂xi∂xj
∇Pt−sui∇Pt−suj +

n∑
i,j=1

∂2M

∂yi∂yj
〈zi, zj〉+

2
n∑

i,j=1

∂2M

∂xi∂yj
〈zj ,∇Pt−sui〉.

Let w1 = ∇Pt−su1, . . . , wn = ∇Pt−sun, wn+1 = z1, . . . , w2n = zn be columns. And let W

be the corresponding matrix constructed by these columns. Let wj be the columns of the

transpose matrix W . Then the above expression can be written as

∑
j

wj

T [HessM +

(∇yM
y

)
2n×2n

]∑
j

wj

 .

The last expression is nonpositive and since the operator Pt is positive semidefinite we obtain

the desired result.
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Corollary 13. Take

M(x, y) = x lnx− 1

2

y2

x
.

Then clearly M satisfies conditions of Theorem 3.0.23, i.e., Ω = R+,

 M11 + 1
yM2 M12

M12 M22

 ≤ 0, and M2 ≤ 0.

Therefore

∫
Rk

(
u lnu− 1

2

|∇u|2
u

)
dγ =

∫
Rk
M(f, |∇u|)dγ ≤M

(∫
Rk
udγ, 0

)
=

(∫
Rk
udγ

)
ln

(∫
Rk
udγ

)
.

This is log-Sobolev inequality (3.0.6) after introducing the function u(x) = f(x)2.

Corollary 14. Take

M(x, y) = x
2
p − 2− p

p2
x

2
p−2

y2,

and Ω = R+. Clearly M satisfies condition of Theorem 3.0.23. This function gives Beckner–

Sobolev inequality for f ≥ 0.

Corollary 15. Take

M(x, y) =
√
U2(x) + y2,

where Ω = (0, 1), U(x) = ϕ(Φ−1(x)) , Φ(x) =
∫ x
−∞ dγ and ϕ(x) = Φ′(x). Clearly M satisfies
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opposite inequalities of Theorem 3.0.23. Therefore it gives Bobkov’s inequality

∫
Rk
M(f, |∇f |)dγ ≥M

(∫
Rk
fdγ, 0

)
.

Thus we see that some special functions which satisfy underling PDE with prescribed

obstacle conditions solve the problems.

3.0.6.3 Brascamp–Lieb, hypercontractivity, Borell’s Gaussian noise “stabil-

ity” and its underlying PDE

Let L =
∑k
i,j=1 cij

∂2

∂xi∂xj
be an elliptic operator (i.e., C = {cij}ki,j=1 ≥ 0). Let aj =

(aj1, . . . , ajk) ∈ Rk for j = 1, . . . , n so that the matrix A = (a1, . . . , an) has full rank

(n ≥ k). Let Pt be a semigroup with generator L and let

Ptf(y) =

∫
Rk
f(x)pCt (y, x)dx, for all t ≥ 0.

Note that pidt (y, x) = 1√
4πt

e−|x−y|
2/4t. Also note that if u : R → R, and gj(x) = uj(aj · x)

then

Ptgj(x) =

∫
R
u(aj · y + x

√
2t〈Caj , aj〉)dγ(x).

Theorem 3.0.24. If ATCA • HessB ≤ 0 then

∫
Rk
B(u1(a1 · x), . . . , un(an · x))pCt (y, x)dx ≤

B

(∫
R
u1(a1 · y + x

√
2t〈Ca1, a1〉)dγ, . . . ,

∫
R
un(an · y + x

√
2t〈Can, an〉)dγ

)
.
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If ATCA • HessB ≥ 0 then the inequality is reversed.

Proof. First we refer the reader to Remark 21.

PtB(uj)−B(Ptuj) =

∫ t

0

d

ds
PsB(Pt−suj) =

∫ t

0
Ps
∑
i,j,p,q

(
∂2B

∂ui∂uj
cpq

∂Pt−sui
∂xp

∂Pt−suj
∂xq

)
=

∫ t

0
Ps
∑
i,j,p,q

(
∂2B

∂ui∂uj
cpqaipajqPt−su′iPt−su

′
j

)
=

∫ t

0
Ps
(
〈A∗CA • HessBPt−su′, Pt−su′〉

)
.

Corollary 16. If we choose C = id, t = 1/2 and y = 0 then we obtain that if A∗A•HessB ≤

0 then

∫
Rk
B(u1(a1 · x), . . . , un(an · x))dγ ≤ B

(∫
R
u1(x|a1|)dγ, . . . ,

∫
R
un(x|an|)dγ

)
.

Corollary 17. The similar reasoning shows that if Aj are kj×k matrices i.e., Aj : Rk → Rkj

then

∫
Rk
B(u1(A1x), . . . , un(Anx))pCt (y, x)dx ≤

B

(∫
Rk1

u1(x)p
A1CA

∗
1

t (A1y, x)dx, . . . ,

∫
Rkn

un(x)p
AnCA

∗
n

t (Any, x)dx

)
.

If

ACA∗ • Hess B ≤ 0 (3.0.24)

where A∗ = (A∗1, . . . , A
∗
n) and Hadamard product is understood as

{
AjCA

∗
i
∂2B
∂xi∂xj

}k
i,j=1

.

Before we continue to the applications we have to mention some elementary facts from
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the linear algebra. If A is n×n positive semidefinite matrix then by spectral decomposition

we have

A =
∑
j

λjvj ⊗ vj , vj ∈ Rn, λj ≥ 0.

Proposition 4. If by using the n×n matrix A one constructs k copies of the matrix A, i.e.,

block matrix kn× kn then it is positive semidefinite if and only if A is positive semidefinite.

Proof. In one direction claim is obvious, in another direction claim follows from the spectral

decomposition.

Proposition 5. Let M ≥ 0 be kn× kn matrix constructed by k copies of the matrix A ≥ 0.

Let U ≥ 0 be k × k matrix. Then U ⊗ A ≥ 0.

Proof. The claim follows by linearity. It is enough to consider only the case A = vvT and

U = uuT and M is k copy of vvT . In this case

M ⊗ U = (vu1, vu2, . . . , vuk)⊗ (vu1, vu2, . . . , vuk) ≥ 0.

So the claim follows.

Corollary 18. In Borell’s Gaussian noise “stability”, take A1 = (In, 0n), A2 = (pIn, (1 −

p2)1/2In), C = In. Then

A1A
∗
1 = In;

A1A
∗
2 = A2A

∗
1 = pIn;

A2A
∗
2 = In.
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Therefore the condition ACA∗ • HessB ≤ 0 becomes

 B11 pB12

pB12 B22

⊗ In ≤ 0.

So in order to prove the functional version of Borell’s Gaussian noise “stability” it is enough

to check that the symmetric function

B(u, v) = P(X1 ≤ Φ−1(u), pX1 +

√
1− p2 Y2 ≤ Φ−1(v)),

satisfies the condition

 B11 pB12

pB12 B22

 ≤ 0.

Note that
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B(u, v) = P

(
X1 ≤ Φ−1(u), Y2 ≤

Φ−1(v)− pX√
1− p2

)
=

∫ Φ−1(u)

−∞

∫ Φ−1(v)−ps√
1−p2

−∞
ϕ(t)ϕ(s)dtds =

∫ Φ−1(v)

−∞

∫ Φ−1(u)−ps√
1−p2

−∞
ϕ(t)ϕ(s)dtds;

B1 =

∫ Φ−1(v)−pΦ−1(u)√
1−p2

−∞
ϕ(t)dt;

B11 = ϕ

(
Φ−1(v)− pΦ−1(u)√

1− p2

)
−p

(1− p2)1/2ϕ(Φ−1(u))
;

B12 = ϕ

(
Φ−1(v)− pΦ−1(u)√

1− p2

)
1

(1− p2)1/2ϕ(Φ−1(v))
;

B2 =

∫ Φ−1(u)−pΦ−1(v)√
1−p2

−∞
ϕ(t)dt;

B22 = ϕ

(
Φ−1(u)− pΦ−1(v)√

1− p2

)
−p

(1− p2)1/2ϕ(Φ−1(v))
;

It is clear that B11, B22 ≤ 0 and

B11B22 − p2B2
12 = 0.

Thus we obtain Borell’s Gaussian noise “stability”.

Corollary 19. With the same tensor trick we see that we have inequality

∫
R2n

B(ϕ(x), ψ(e−tx+
√

1− e−2t y))dγ ≤ B

(∫
Rn

ϕdγ,

∫
Rn

ψdγ

)
.
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If the function B satisfies the following condition

 B11 e−tB12

e−tB12 B22

 ≤ 0.

Taking B(u, v) = u1/av1/b we see that the above condition holds if and only if 1 ≤ a, 1 ≤ b

and

(a− 1)(b− 1)− e−2t ≥ 0.

This means that if we denote ϕ = fa, ψ = gb then we have inequality

∫
Rn

f · Ptgdγ =

∫
R2n

f(x)g(e−tx+
√

1− e−2t y)dγ ≤
(∫

Rn
fadγ

)1/a(∫
Rn

gbdγ

)1/b

.

Taking supremum over f ∈ La(dγ) we obtain hypercontractivity for Ornstein–Uhlenbeck

semigroup Pt:

‖Ptg‖Lq(dγ) ≤ ‖g‖Lp(dγ),

where q = a
a−1 is dual exponent to a, p = b under the condition (a − 1)(b − 1) − e−2t ≥ 0

which can be rewritten in terms of p, q ≥ 1 as follows

p− 1

q − 1
− e−2t ≥ 0.
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3.0.6.4 Extremal problems on BMO, Ap classes, Gehring classes and its

underlying PDE

PDE in this subsection corresponds to homogeneous Monge–Ampère equation (surfaces with

zero Gaussian curvature). These extremal problems correspond to finding minimal concave

function over an obstacle. We will start with the simplest example which correspond to the

convex domains.

Let Ω ⊂ Rn,m : Ω → Rk and H : Ω → R. Let Ω(I) denotes class of vector-valued

functions ϕ : I → Ω, and let conv(Ω) be the convex hull of the set Ω. We define the Bellman

function as follows

B(x) = sup
ϕ∈Ω(I)

{〈H(ϕ)〉I : 〈m(ϕ)〉I = x}.

Theorem 3.0.25. The following properties hold:

1. B is defined on the convex set conv[m(Ω)];

2. B(m(y)) ≥ H(y) for all y ∈ Ω;

3. B is concave function;

4. B is minimal among those who satisfy properties 1,2 and 3.

Proof. Fist we show the property 1. Let DomB denotes the domain where B is defined. Since

m(ϕ) ∈ conv[m(Ω)] we have 〈m(ϕ)〉I ∈ conv[m(Ω)]. Therefore DomB ⊆ conv[m(Ω)]. Now

we show the opposite inclusion. Carathéodory’s theorem implies that for any x ∈ conv[m(Ω)]

we have x =
∑n+1
j=1 ajxj , where aj ≥ 0,

∑n+1
j=1 aj = 1 and xj ∈ m(Ω). Let the points yj be

such that m(yj) = xj . We choose ϕ so that |{t ∈ I : ϕ(t) = yj}| = aj |I|. Then ϕ ∈ Ω(I).
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Hence,

〈m(ϕ)〉I =
1

|I|

∫
I
m(ϕ(t))dt =

n+1∑
j=1

1

|I|

∫
{t:ϕ(t)=yj}

m(ϕ(t))dt =
n+1∑
j=1

1

|I|xj |I|aj = x

Now we show the property 2. Let ϕ0(t) = y, t ∈ I. Then 〈m(ϕ0)〉I = m(y). Thus

B(m(y)) = sup
ϕ∈Ω(I):〈m(ϕ)〉

I
=m(y)

〈H(ϕ)〉I ≥ 〈H(ϕ0)〉I = H(y).

Now we show the property 3. It is enough to show that B(θx+ (1− θ)y) ≥ θB(x) + (1−

θ)B(y) for all x, y ∈ conv[m(Ω)] and θ ∈ [0, 1]. There exist functions ϕ, ψ ∈ Ω(I) such that

〈m(ϕ)〉I = x, 〈m(ψ)〉I = y and

〈H(ϕ)〉I ≥ B(x)− ε, 〈H(ψ)〉I > B(y)− ε.

We split interval I by two disjoint subintervals I1 and I2 so that |I1| = θ|I|. Let Lj : Ij → I

be a linear bijections. We consider the concatenation as follows

η(t) =


ϕ(L1(t)), t ∈ I1,

ϕ(L2(t)), t ∈ I2.

Clearly η(t) ∈ Ω(I), 〈m(η)〉I = θx+ (1− θ)y and

B(θx+ (1− θ)y) ≥ 〈H(η)〉I = θ〈H(ϕ)〉I + (1− θ)〈H(ψ)〉I > θB(x) + (1− θ)B(y)− ε.

Now we show the property 4. Let G satisfies properties 1,2 and 3. Then Jensen’s
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inequality implies that for any ϕ ∈ Ω(I) we have

〈H(ϕ)〉I ≤ 〈G(m(ϕ))〉I ≤ G(〈m(ϕ)〉I ) = G(x)

Corollary 20. The definition of the modulus of uniform convexity tells us to consider the

following function

Bθ(x1, x2, x3) = sup
f,g
{〈|θf + (1− θ)g|p〉I , 〈(|f |p, |g|p, |f − g|p)〉I = (x1, x2, x3)}. (3.0.25)

Theorem 3.0.25 implies that B is a minimal concave function over the obstacle. It is clear

that

δLp(ε) = 1− sup
2p≥x3≥εp

(B1/2(1, 1, x3))1/p.

There are different modulus of uniform convexity. One of them corresponds to the com-

plex case. Let (X, ‖·, ‖) be a normed space. For 0 < p <∞ we set

hXp (ε) = inf

{
1− ‖x‖ :

1

2π

∫ 2π

0
‖x+ eiθy‖pdθ ≤ 1, ‖y‖ = ε

}
.

Corollary 21. Theorem 3.0.25 implies that

B(x, y) = sup
f,g

{
〈|f |p〉I :

〈
1

2π

∫ 2π

0
|f + eiθg|p

〉
I

= x, 〈|g|p〉I = y

}
,

corresponds to the minimal concave function over the obstacle. By knowing B one finds the
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value hL
p

p (ε) i.e.,

hL
p

p (ε) = 1−
(

sup
0≤x≤1

B(x, εp)

)1/p

.

Corollary 22. It is worth mentioning that Hölder’s inequality corresponds to the function

B(x1, . . . , xn) = x
1/p1
1 · · ·x1/pn

n ,

which coincides with its obstacle. Minkowski inequality corresponds to the function

B(x, y) = (x1/p + y1/p)p,

which again coincides with its obstacle.

It turns out that if one imposes extra condition — “boundedness of the mean oscillation”

on the class of functions Ω(I), one again obtains minimal concave function over an obstacle

but in a different domain (not necessarily convex domain as it was before). Let us illustrate

example on the BMO class.

Let Ωε be a parabolic strip

Ωε = {(x, y) ∈ R2 : x2 ≤ y ≤ x2 + ε2}, (3.0.26)

and let let γ(t) = (t, t2). Then

BMOε(J) = {ϕ : 〈γ(ϕ)〉I ∈ Ωε ∀I ⊂ J }.
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In other words for general ϕ the points γ(ϕ(x)), x ∈ J belong to the parabola Γ = {(x, y) :

y = x2} (a convex curve) and the integral average (or convex hull of these points) 〈γ(ϕ)〉I

always will belong to the convex full of the parabola i.e., conv(Γ) = {(x, y) : y ≥ x2}. There-

fore extremal problems on this class of functions would correspond to the minimal concave

functions on the convex hull of the parabola (which is convex set). However, BMOε(J) class

can be seen as those functions ϕ ∈ L1 so that the convex hull of the points γ(ϕ) belong to

the parabolic strip Ωε and therefore extremal problems on this class of functions correspond

to the minimal concave functions on the parabolic strip.

Theorem 3.0.26. . Let f ∈ C3(R) be sufficiently nice. Then

Bε(x, y) = sup
ϕ
{〈f(ϕ)〉I : ϕ ∈ BMOε, 〈γ(ϕ)〉I = (x, y)}

is a minimal concave function defined in the parabolic strip Ωε with the obstacle condition

B(γ(t)) ≥ f(t). If the sign of the torsion of the space curve (t, t2, f(t)) changes finitely many

times then there we have the finite algorithm which finds the function B.

For the proof of the theorem we refer the reader to [9, 10, 11, 12]. What is more we

also describe evolution of the function Bε as ε changes. The important part of the theorem

is that we find the function B, and the fact that it is minimal concave function is just the

corollary of this result.

In other words one can think about the problem as follows. The function B(t, t2) is given

and it is equal to f(t). This is what we call obstacle condition, or boundary condition. Now

the question is to find its minimal concave extension in the parabolic strip Ωε, and the result

we will denote by the same function B(x, y). This means that we are looking for the function
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Bε(x, y) = sup
ϕ
{〈B(γ(ϕ))〉I : ϕ ∈ BMOε, 〈γ(ϕ)〉I = (x, y)},

where B(γ(t)) = f(t). Before we continuo let us mention some applications.

Corollary 23. For every p ∈ (0,∞) the p-(quasi)norm on the BMO(I) is equivalent to the

2-norm:

cp‖ϕ‖BMO(I) ≤ sup
J⊂I
〈|ϕ− 〈ϕ〉J |p〉1/pJ

≤ Cp‖ϕ‖BMO(I). (3.0.27)

In term of the Bellman function this is the same as

if B(t, t2) = |t|p, then ( sup
`≤ε2

Bε(0, `))
1/p ≤ Cpε, ∀ε > 0.

if B(t, t2) = −|t|p, then ( inf
`≤ε2
−Bε(0, `))1/p ≥ cpε, ∀ε > 0.

which is true by Theorem 3.0.26.

What is also important in these corollaries is that these inequalities (3.0.27) are equivalent

to the statements about estimates for the minimal concave extensions Bε(x, y). This means

that if one tries to prove these inequalities (3.0.27), one implicitly tries to obtain estimates

for the functions B.

Corollary 24. There exist some constants c1, c2 > 0 such that for all ϕ ∈ BMO(I) we have
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John–Nirenberg inequality

1

|I|
∣∣{t ∈ I : |ϕ(t)− 〈ϕ〉I | > λ

}∣∣ ≤ c1 exp

(
− c2λ

‖ϕBMO(I)‖

)
.

In terms of the Bellman function it is the same as to show that

if B(t, t2) = 1(−∞,−λ)∪(λ,∞), then sup
`≤ε2

Bε(0, `) ≤ c1e
−c2λ/ε, ∀ε, λ > 0,

which is true by Theorem 3.0.26.

Corollary 25. There exist ε0 > 0 and a positive function C(ε), 0 < ε < ε0, such that

〈eϕ〉I ≤ C(ε)e〈ϕ〉I , for all ϕ ∈ BMOε(I).

This is the same as to show that

if B(t, t2) = et, then Bε(x, y) ≤ C(ε)ex, 0 < ε < ε0, (x, y) ∈ Ωε,

which is true by Theorem 3.0.26.

One can find similar characterization for the Reverse Hölder classes, Gehring classes, Ap

a classes etc. We formulate our abstract theorem and then we mention that these examples

become corollaries of our theorem. It is important to notice that BMOε(I) defines parabolic

strip Ωε which uniquely reconstructs the class BMOε(I). On the other hand notice that the

parabolic strip Ωε is difference of two convex domains, of the convex hull of the parabola

{y = x2} and the convex hull of another parabola {y = x2 + ε2}, and second convex set

conv({y = x2 + ε2}) belongs to first convex set conv({y = x2}). This idea suggest to
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introduce the following class of functions. Let γ1, γ2 ∈ C3 be a strictly convex curves in R2

such that conv(γ2) ⊆ conv(γ1). Set

A(γ1, γ2, I)
def
= {ϕ : ∀J ⊂ I 〈γ1(ϕ)〉J ∈ conv(γ1) \ conv(γ2)}.

In some sense A(γ1, γ2, I) represents class of functions with “small mean oscillation”. Under

some mild assumptions on γ1, γ2, f we have the following theorem

Theorem 3.0.27. If the space curve (γ1(t), f(t)) has nowhere vanishing curvature and its

torsion changes sign finitely many times then we present an algorithm which finds expression

for the function B where

B(x, y)
def
= sup

ϕ∈A(γ1,γ2,I)
{〈f(ϕ)〉I : 〈γ1(ϕ)〉I = (x, y)}.

B(x, y) is minimal concave function defined in conv(γ1) \ conv(γ2) such that B(γ1) = f .

For the proof we refer the reader to [9, 10, 11, 12]. It is worth mentioning that we

can describe dynamics of the function B (which we call evolution) if the domain conv(γ2)

increases by inclusion. Note that

A((t, t2), (t, t2 + ε2), I) = BMOε(I).

Let p1 > p2 and Q ≥ 1. Then

A((t1/p2 , t1/p1), (Qt1/p2 , t1/p1), I) = Ap1,p2(Q),
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where

Ap1,p2(Q)
def
= {ϕ : [ϕ]Ap1,p2

= sup
J⊂I
〈ϕp1〉1/p1

J
〈ϕp2〉−1/p2

J
≤ Q}.

If p ∈ (1,∞) then A1,− 1
p−1

= Ap where Ap stands for the classical Muckenhoupt class. When

p2 = 1 and p1 > 1, the class Ap1,p2 coincides with the so-called Gehring class (sometimes

the Gehring class is called reverse-Hölder class).

Finally we finish this subsection by mentioning underlying PDE in these extremal prob-

lems. The concave function B has prescribed boundary condition f(t) and it satisfies homo-

geneous Monge–Ampère equation i.e.,

B(γ1(t)) = f(t);

Hess B ≤ 0 in conv(γ1) \ conv(γ2); (3.0.28)

det(HessB) = 0 in conv(γ1) \ conv(γ2).

3.0.7 Relation to differential geometry

If one tries to obtain sharp inequalities in the theorems 3.0.22, 3.0.23,3.0.24 and 3.0.27 then

besides of solving the corresponding partial differential inequalities (3.0.13), (3.0.22), (3.0.24)
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and (3.0.28) one also has to solve corresponding partial differential equations

H1H2H12(1− a2
1 − a2

2) + a2
1H

2
2H11 + a2

2H
2
1H22 = 0. (3.0.29)

HessM +

(∇yM
y

)
2n×2n

≤ 0 and det

[
HessM +

(∇yM
y

)
2n×2n

]
= 0. (3.0.30)

ACA∗ • HessB ≤ 0 and det (ACA∗ • HessB) = 0. (3.0.31)

HessB ≤ 0 and det(HessB) = 0. (3.0.32)

And find the minimal (or maximal if the inequalities are reversed) solution if possible with

prescribed obstacle conditions.

3.0.7.1 Developable surfaces, concavity and the torsion of the space curve

Solution of Theorem 3.0.27 includes finding the following function B: given f(t) and the

strictly convex curves γ1, γ2 on the plane R2 such that conv(γ2) ⊂ conv(γ1), find B in the

domain conv(γ1) \ conv(γ2) such that

B(γ1(t)) = f(t);

HessB ≤ 0 in conv(γ1) \ conv(γ2);

det(HessB) = 0. (3.0.33)

And among all possible solutions choose the minimal one. This means that in general we do

not have uniqueness results for B. This is so because the domain of B is not convex.

These surfaces (x, y, B(x, y)) are known as developable surfaces because they have al-

most everywhere zero Gaussian curvature. It turns out that torsion of the boundary data

(γ1(t), f(t)) appears as the main object in studying concavity of the surfaces with zero Gaus-
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sian curvature (see Chapter 1, see also [9, 10, 11, 12]). It is worth mentioning that some flaw

of 4 vertex theorem and bitangent line (see [56, 58, 58]) appeared in the work [13] in order

to find the function B in uniform convexity.

Some abstract works have been done regarding existence of such solutions in the works

of Caffarelli, Nirenberg and Spruck (see [2]). The main difference between these results is

that we explicitly construct solutions for each given boundary data (which as a corollary

gives answer about existence and uniqueness of the solution), however we do it only in two

dimensional case whereas in the work of [2] the proof of existence of smooth solutions (for

the smooth boundary data) in any dimension is given. Theory in [9] was developed also for

piecewise continuous boundary data f(t), and in particular it explicitly shows what happens

with the continuity of the global concave solutions of homogeneous Monge–Ampère equation

once we remove smoothness of the boundary data. We also developed dynamic for the

solutions once we change smoothly domain of the function B. This is what we call evolution

of the Bellman function over its domain.

There are still some open problems left:

Problem 1. Find the function B in some adequate way if the torsion of the space curve

(γ1(t), f(t)) changes sign infinitely many times.

Problem 2. Find the similar characterizations in the high dimensions n ≥ 3.
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3.0.7.2 Modified Monge–Ampère equation

Finding sharp inequalities in Theorem 3.0.24 includes solving the following differential equa-

tions

A∗CA • HessB ≤ 0 and det(A∗CA • HessB) = 0,

where B ∈ C2 is given in some parallelepiped, for example, say Rk+, A = (a1, . . . , an) is k×n

matrix with full rank.

If B satisfies assumptions L1-L5 (see Chapter 2) then we gave complete characterization

of such functions B in the case k = 1, k = n and in the case k = n− 1 if in addition Bij 6= 0.

General questions still remains open. Let A be k × n matrix.

Problem 3. Describe all possible solutions of the partial differential inequalities

A∗A • HessB ≤ 0 and det(A∗A • HessB) = 0.

Let us consider the following particular. Let B ∈ C2 be given in some rectangular

domain. Let n = k = 2 and take A = (a1, a2) where a1, a2 6= 0. Then we must have

A∗A • HessB =

 |a1|2B11 a1 · a2B12

a1 · a2B12 |a2|2B22

 ≤ 0 and det(A∗A • HessB) = 0.

If a1 · a2 = 0 then B has to be separate concave functions such that B11B22 = 0 and these

are the all possible solutions. Therefore we assume that a1 · a2 6= 0. Then we see that B
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must be separate concave function and moreover

|a1|2|a2|2
|a1 · a2|2

B11B22 −B2
12 = 0.

So in the case n = k = 2 the problem reduces to the following one

Problem 4. Let |c| ∈ [1,∞) and let B ∈ C2 be given on some rectangular domain in R2.

Characterize all possible separately concave functions B such that

c2B11B22 −B2
12 = 0. (3.0.34)

The trivial case |c| = 1 corresponds to developable surface and the characterization of

these surfaces are mostly known. For general |c| > 1 we can give local characterization.

Namely, we will show that the above equation can be reduced to the following one

∂f

∂z̄
= f̄

for some appropriate f (see below).

For separately concave B(x, y) set Bxx = −p2, Byy = −q2. Then equation (3.0.34)

implies that Bxy = cpq. We also have

− 2ppy = cqpx + cpqx, (3.0.35)

− 2qqx = cqpy + cpqy. (3.0.36)

Further we assume that p, q 6= 0. Assume that the locally the map p, q : (x, y) → R2 is
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invertible, and let (x, y) be its inverse map. Then

 px py

qx qy

 =

 xp xq

yp yq


−1

=
1

det(Jacob(x, y))
·

 yq −xq

−yp xp

 .

Therefore equations (3.0.35) and (3.0.36) take the following form

2pxq = cqyq − cpyp,

2qyp = −cqxq + cpxp.

This can be written as follows

2(px)q = c(qy)q − c(py)p,

2(qy)p = −c(qx)q + c(px)p.

We set Ũ(p, q) = px(p, q) and Ṽ (p, q) = qy(p, q). Then we obtain

2Ũq = cṼq − c
(
Ṽ p

q

)
p

,

2Ṽp = −c
(
Ũq

p

)
q

+ cŨp.

After the logarithmic substitution U(p, q) = M(ln p, ln q) and V (p, q) = N(ln p, ln q) then we
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obtain the linear equation

2M2 = c(N2 −N −N1),

2N1 = c(−M −M2 +M1).

By setting k = 2/c ∈ (−2, 2), this can be rewritten as follows

 N

M

 =

 −1 1

−k 0


 N1

N2

+

 0 −k

1 −1


 M1

M2

 .

We need the following technical lemma.

Lemma 23. If the vector function ~N(x, y) = (N,M) : Ω ⊂ R2 → R2 satisfies the following

first order system of linear differential equations

~N = P ~N1 +Q ~N2

for some invertible 2× 2 matrices P,Q where

QP−1 =

 −2t δ2

−1 0


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for some t ∈ (−δ, δ), δ > 0 then after making change of variables ~N(~x) = B~U(A~x) where

B =

 t
√
δ2 − t2

1 0

 and AT =
1

2
P−1

 −1 − t√
δ2−t2

0 − 1√
δ2−t2

 ,

and we obtain

∂f

∂z̄
= f̄ ,

where f = U + iV .

Proof. Set P = (P1, P2), Q = (Q1, Q2) where Pi, Qj are columns.

 N

M

 = N1P1 +N2P2 +M1Q1 +M2Q2.

Now let N(x, y) = Ñ(α1x+ α2y, β1x+ β2y) then

N1 = α1Ñ1 + β1Ñ2;

N2 = α2Ñ1 + β2Ñ2;

M1 = α1M̃1 + β1M̃2;

M2 = α2M̃1 + β2M̃2.
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So we obtain

 Ñ

M̃

 =(P1α1 + P2α2)Ñ1 + (P1β1 + P2β2)Ñ2+

(Q1α1 +Q2α2)M̃1 + (Q1β1 +Q2β2)M̃2.

Finally we set

Ñ = a1U + b1V

M̃ = a2U + b2V.

and

B =

 a1 b1

a2 b2

 .

Thus we obtain

 U

V

 =

B−1[a1(P1α1 + P2α2) + a2(Q1α1 +Q2α2)]U1+

B−1[a1(P1β1 + P2β2) + a2(Q1β1 +Q2β2)]U2+

B−1[b1(P1α1 + P2α2) + b2(Q1α1 +Q2α2)]V1+

B−1[b1(P1β1 + P2β2) + b2(Q1β1 +Q2β2)]V2.
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And we would like to see that

 U

V

 =
1

2

 1 0

0 −1


 U1

U2

+
1

2

 0 −1

−1 0


 V1

V2

 .

This can hold if and only if

(Pα,Qα) =
1

2
B

 1 0

0 −1

B−1 =
1

2
BI+B−1;

(Pβ,Qβ) =
1

2
B

 0 −1

−1 0

B−1 =
1

2
BI−B−1,

where

α =

 α1

α2

 ; β =

 β1

β2

 .

Let e1 = (1, 0), e2 = (0, 1), and let

B1 =
1

2

(
BI+B−1e1, BI

−B−1e1

)
,

B2 =
1

2

(
BI+B−1e2, BI

−B−1e2

)
.
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Then the above conditions hold iff

P (α, β) = B1;

Q(α, β) = B2.

Therefore if B is chosen in such a way that QP−1 = B2B
−1
1 then by setting (α, β) = P−1B1

we obtain the desired result. But note that if a and b are corresponding rows of the matrix

B then

B2B
−1
1 =

 −2 a·b|b|2
|a|2
|b|2

−1 0

 ,

so the claim follows.

In our case of P,Q we have

QP−1 =

 −k 1

−1 0

 =

 −2
c 1

−1 0

 ,

therefore we can apply the lemma and we see that taking t = 1/c ∈ (−1, 1) and δ = 1 we

have

B =

 t
√

1− t2

1 0

 A =

 0 −1
2

1
4t
√

1−t2 −1
4

2t2−1
t
√

1−t2

 .
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This means that if we set

 N(x, y)

M(x, y)

 =

 t
√

1− t2

1 0


 U

(
−y2 , x

4t
√

1−t2 −
y
4

2t2−1
t
√

1−t2
)

V
(
−y2 , x

4t
√

1−t2 −
y
4

2t2−1
t
√

1−t2
)
 ,

where by setting z = x+ iy for the function f(z, z̄) = U(x, y) + iV (x, y) we have

∂f

∂z̄
= f̄ .

It is known that all C1 solutions of the above equation are real analytic and they can be

represented in terms of power series

f(z) =
∞∑
k=0

ckJ
(k)(zz̄)zk + c̄kJ

(k+1)(zz̄)z̄k+1,

where J(r) is modified Bessel I-functions whose series representation is

f(r) =
∞∑
j=0

rj

(j!)2
.
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