DYNAMIC ANALYSIS OF UNDERGROUND CYLINDERS
SUBJECTED TO EARTHQUAKE EXCITATIONS

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
PAIBOON CHOWCHKUVECH
1973



WERLEVRI I

3 1293 00073 6334

IBRARY
Michigan State
University

This is to certify that the
thesis entitled

DYNAMIC ANALYSIS OF UNDERGROUND
CYLINDERS SUBJECTED TO EARTHQUAKE EXCITATIONS
presented by

Paiboon Chowchuvech

has been accepted towards fulfillment
of the requirements for

PH.D.  degreein Civil Engineering

Uile 7K (Cin

Major professor

Date NovenPer 1, 1973

©0-7639




(SO P . W
Bir ot e

¥ 5025



ABSTRACT

DYNAMIC ANALYSIS OF UNDERGROUND CYLINDERS
SUBJECTED TO EARTHQUAKE EXCITATIONS

By
Paiboon Chowchuvech

An analytical study is made of the dynamic response of
buried cylinders subjected to horizontal and vertical earthquake
excitations. The problem is assumed to be one of plane strain, the
axis of the cylinder being perpendicular to the plane. Both the
cylinder and the soil are assumed to have linear stress-strain
relationships.

A typical column of "free field" soil at a large distance
horizontally from the cylinder is modelled by a series of springs
and dashpots which is excited by the bedrock earthquake accelerations.
The responses of the free field soil are used as inputs to a '"cylinder-
soil composite'. The latter represents the cylinder and the soil
in its vicinity within which the cylinder-soil interaction is considered
significant. Within the region of the cyl}nder-soil composite, the
soil is idealized by two-dimensional finite elements and, immediately
around the cylinder, by radial springs. The cylinder is represented
by either a lumped mass, continuous flexibility model or an infinitely

rigid model.
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Analyses based on both the modal analysis method and direct
integration are programmed in FORTRAN for a numerical solution of the
problem on the CDC 6500 System of Michigan State University.

Response analysis and parametric studies were made. It was
found that the response of the flexible cylinder case would converge
to that of a rigid one as the stiffness of the flexible cylinder is
increased. The rigid case requires much less computer time. Curves
are given which show quantitative relationships between the cylinder
stiffness and the convergence of the lowest five frequencies to
those of the rigid cylinder case. The response of the cylinder depends
on the bedrock accelerations and the free field soil displacements
and velocities. It was found that the free field displacement inputs
dominated the response. It was found that the modal analysis as
formulated required a high degree of computational precision and
the inclusion of higher modes. To alleviate these computational
difficulties, it 1is suggested that the free field displacement inputs
be decomposed into a uniform part and a deviatory part.Effects on
the frequencies due to variation of a number of modelling parameters
are also considered. These parameters include: the number of cylinder
nodes, the distance of the boundary of the cylindér—soil composite
away from the cylinder, and the width of the soil represented by

radial springs.
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CHAPTER I

INTRODUCTION

1.1 General

For a variety of reasons, it has been often found desirable
or even necessary to build structures underground. Tunnels have
been constructed to shorten the distance of travel, culverts to
provide drainage, and underground pipes to minimize man’s intrusion
on the landscape.

There have been extensive experimental and analytical works
done on the problem of buried structures. Earlier investigations
had concentrated on the statics of the problem. More recently the
dynamic response of these structures, particularly under a seismic
environment, has been increasingly receiving the attention of civil
engineering researchers.

The development has arisen mainly from two causes. The first
is the continuing need to construct underground structures (for example,
the planned underground oil pipeline across part of the seismic
region in Alaska). The other is the advancement of computer technology
and the attendant development in numerical methods of structural
mechanics.

The problem under consideration is a highly complex one.

Past works (see Section 1.3) have been generally concerned with
very specific cases. The present study attempts to examine the problem

of buried cylinders subject to earthquakes on a broader scope by



using the latest state-of-the-art.

1.2 Objectives and Scope

The objectives of this study are two-fold: to develop a
numerical model and solution procedure for the analysis of a buried
cylinder subjected to earthquake effects, and to use the method to
obtain numerical data in order to gain a clearer understanding of
the problem such as the relative importance of the physical parameters
as well as the modelling parameters.

The problem is assumed to be one of plane strain, the axis
of the cylinder being perpendicular to the plane. Both the cylinder
and the soil are assumed to have linear stress-strain relationship.
The cylinder and the soil around it is considered to be in contact
at all times. A proportional viscous type of damping is assumed. The
discrete model developed for the problem consists of two separate
parts:

a). A series of springs and dashpots representing a column of soil
at a large distance horizontally from the cylinder where the effect
of the cylinder inclusion is negligible.

b). A rectangular composite consisting of two -dimensional soil
finite elements surrounding a smaller annular area of radial soil
springs which in turn circumscribe the cylinder.

The cylinder is represented by either a lumped mass conti-
nuous flexibility, or an infinitely rigid model. The composite
represents the area in which the cylinder-soil interaction is

significant.



The bedrock earthquake motion is transmitted upward through
the soil layer of part a), whose motions will be used as inputs to
the boundary of part b).

Numerical analyses based on both direct integration and the
moda} analysis method are formulated and programmed in FORTRAN. Parame-
tric studies and response analysis were made using the programs
developed. As the stiffness of the cylinder is increased, the response
of the cylinder is found to approach that of a rigid cylinder. The
latter case takes much smaller computer time to solve. The response
of thg cylinder depends on the bedrock accelerations and the displace-
ments and velocities inputs to the boundary of part b). It is found
that the influence of the displacements input was predominant. Results
from modal analysis suggests that a uniform part of this displace-
ments input should be separated from a deviatory part if the inclusion
of the higher modes and the necessity for a high degree of compu-

tational precision are to be avoided.

1.3 Related Works

One of the earliest civil engineering treatment of soil
structure interaction is in the area of design of'culverts to with-
stand overburden loads. Marston (1)* first formulated the theory
for loads on underground conduits. This work was continued by Spangler
(2), the result being the well known Iowa Formula which predicts
the vertical deflection of culverts. Other methods of design for loads

on culverts can be found in (3).

*
Numbers refer to references listed in the bibliography.



Further works along this line were concerned with the
buckling loads of buried pipes and arching. Among the well known
findings is the fact that the buried cylinders have several times
higher loads at failure than in-air cylinders. Allgood (4) and
Clarke (18) provide good references on the current state-of-the-art
in the design of buried culverts and pipelines. In all the works
cited above, the methods of analysis are semi-empirical in which
certain gross approximations were made, based on experimental ob-
servations, as to the nature and the distribution of overburden loads
on thevculverts.

Mow and McCabe (5), using the theory of elasticity, derived
expressions for stresses around a thick elastic cylinder in an
infinite elastic media during the passage of a plane compressional
wave. Robinson (6) used the Fourier frequency analysis for the
problem of a plane wave in an elastic half space traversing a buried
cylinder. In both of these works, the method of analysis, giving a
closed form solution, are not easily adaptable to more complex patterns
of loading and/or boundary conditions.

Ang and Chang (7) used a discrete model analogous to a central
finite difference approximation to solve the pfoblem of a plane blast
wave acting on the ground surface of a half space soil medium surr-
ounding a tunnel. The procedure can also easily incorporate nonlinear
soil behavior. However, the discretization pattern must follow a
systematic scheme. For a cylindrical tunnel, for example, the domain
must be formulated in cylindrical coordinates in order to meet the
conditions inherent in the finite difference procedure. Thus it

would be difficult to apply this approach to problems with complex



boundaries.

Dawkin (13) studied the problem of a reinforced concrete
tunnel protected against stress wave passing through the surrounding
rock by a layer of liner-packing system. A lumped mass, lumped
flexibility model was used for the tunnel and the packing material
is represented by a number of radial massless springs. He found that
a minimum of twelve mass nodes are required to reasonably predict
the behavior of the system. In the present study the cylinder and
the soil in its immediate vicinity will be modelled similar to the
above except that the cylinder will have coptinuous flexibility.

The method of finite element is very easily adaptable to
irregularities in material properties or boundary conditions and,
as a result, has found many applications involving interaction of
soil and structures. Costantino, Wachowski and Barnwell (8) developed
a computer program that can treat the problem of a general two-
dimensional continuum with irregular soil layers and inclusions
subjected to nuclear detonation. Yamada (9, 10) cited the results
of some works done in Japan in which the finite element method is
applied to the problem of foundation structures and underground
tunnels subjected to earthquake. Results pertinent to individual
cases are also given. In both the works cited above, the finite
elements representing the soil were extended down to bedrock and
horizontally to the two side boundaries at a relatively large distance
from the inclusions, which made the problem rather large in scope
(and expensive to solve). Roller supports were provided at the side

boundary nodes. In this study finite elements will also be used,



but only to idealize a smaller area of soil.

Finally, in cases where (i) there is no inclusion in the
soil medium, (1i) the ground surface, the rock surface and the
boundaries between soil layers with different properties are essen-
tially horizontal, and (1ii) the lateral extent of the soil 1is
8o large that it exerts only negligible influence on the response,
the problem can then be analyzed as a column of soil being excited
at the bedrock end. Idriss and Seed (11) solved such a problem
using a lumped mass springs and dashpots model and the results were
found to be in good agreement with those obtained from closed form
solutions. A procedure was also outlined for obtaining equivalent
linear parameters for a soil with bilinear characteristics. The result
obtained using this procedure was found to be in good agreement with
those obtained from the bilinear case. Penzien, Scheffey and Parmelee
(12) utilized results obtained from the procedure in (11) as free
field inputs in determining the interaction of a bridge and piles

system with a moving clay medium.



CHAPTER II
DISCRETE MODEL

2.1 General

In order to keep the computer cost within practical limits
for this study, it is necessary that the number of degrees of freedom
first be reduced to a manageable size. This is achieved by separating
the horizontally infinite soil medium with the embedded cylindervas
shown in Figure 2.1a into two different parts as illustrated in Figure
2.1b. The first part consists of that portion of the soil medium far
enough from the cylinder that its behavior is essentially the same as
that when no cylinder is present in the soil. In such a case, there
will not be any interaction between adjacent columns of soil (11) and
the behavior of all soil at far enough distance from the cylinder can
be studied by considering any one typical soil column, hereafter referred
to as the free field soil column. This soil column can be represented
by a lumped mass spring-dashpot model as indicated in Figure 2.1b.

The second part, hereafter referred to as the cylinder-soil
composite, consists of the cylinder and the soil medium within a distance
of B from the sides and from the bottom of the cylinder. This is the
region in which the cylinder-soil interaction is considered significant.
The cylinder will be represented by a lumped mass, continuous flexibi-
lity model, the soil immediately around the cylinder, hereafter referred

to as the packing soil, by a number of radial springs and the rest of



the soil by finite elements.

The mass matrix used in this study is of the diagonal '"lumped
mass" formulation which has been found to yield results with similar
degree of accuracy as the "consistent mass' formulation(16). It is also

easy to formulate and requires less computational efforts.

2.2 Basic Assumptions

The basic assumptions implied by the discrete model are
summarized in the following.
a). The problem is assumed to be one of plane strain. Variation of load-
ing in the axial direction of the cylinder is neglected.
b). If the side and the bottom boundaries of the cylinder-soil composite
are taken far enough from the cylinder, wave reflections at these
boundaries would be negligible. It is assumed that the feedback bet-
ween the responses of the free field soil column and those of the
cylinder-soil composite is negligible.
c). The stress-strain relationships for both the materials making up
the cylinder and the soil are assumed to be linear. For the soil, this
linear modulus will be the same as the equivalent linear modulus in (11).
d). Damping is assumed to be of the linearly viscous type. The damping

stresses are assumed to be proportional to the strain velocities, i.e.,
{0}, = u[D] (¢} cee.(2-1)

where {o}d denotes the damping stresses, u is the damping constant,
[D] denotes the stress-strain relationship and {c} denotes the strain

velocities. This is a frequently used assumption that would render the



damping matrix proportional to the stiffness matrix, i.e.,

[c] = u [S] ceee(2-2)

where [C] denotes the damping matrix and [S] denotes the stiffness

matrix.

2.3 Free Field Soil Column

As shown in Figure 2.1b, the free field soil column will be
idealized by a series of lumped masses My sMy,eeem o, interconnected by

springs and dashpots. The spring constants K, and ki represent the

i
compressive and shear stiffness properties of the soil between any
two masses m, and mo_q Likewise the dashpot constants Ci and ¢y
represent the compressive and shear damping properties. If E and Gs
denote the unconstrained modulus of elasticity and the shear modulus
of elasticity of the soil, respectively, at level i, then the constrained
modulus of elasticity, Es’ at level i will be given by

E (l-va)

Es = — i (2-3)
(1-2vs) (1+vs)

where vs denotes the soil Poisson’s ratio.

The spring constants K, and ki will be given by

i

E
K = —S
1
i
cee..(2-43a)
GS
k, = —
|
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and the dashpot constants Ci and ¢y will be given by

ceeso(2-4D)

where yu is the damping constant defined in Egs.(2-1) and (2-2).

The mass, m, will be given by

1 1
m, . m_ + A ms) for i =1,2,...,n-1
2 2
.....(2-4C)
1
and, m o= -t m
2

where m_ is the mass per unit volume of the soil.

2.4 Cylinder-Soil Composite

2.4.1 Cylinder
As shown in Figure 2.2, the cylinder is idealized
by a lumped mass, continuous flexibility model. The masses are equally
spaced around the cylinder with each mass attached to a spring of the
packing soil. The mass of a typical mass i is computed simply as the
sum of the mass of the cylinder wall segment of length aR (see Fig-
ure 2.2) and the mass of the packing soil from the tributary area Al.
It is reasonable to assume that the packing soil spring exerts
no rotational constraint on the lumped mass of the cylinder to which
it is attached. If the number of the lumped masses on the cylinder
is "nr" , the cylinder stiffness would be the 2nrx2nr matrix [S*

N

which relates the cylinder node forces to node displacements as follows:
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{F} = [s;] {u} veeee(2-5)

where, as shown in Figure 2.3, {F} = {Fl’FZ""’Fan} is the trans-
lational forces vector, and {U} = {Ul,Uz,...,Uan} is the correspond-
ing displacements vector, both in global coordinates. {F} and {U} are
column vectors. (The notation in which {Fl’FZ""Fan}’ for example,
represents a column vector will be used throughout this investigation).
The procedure to obtain [S;] is described in the following.

a). Local stiffness matrix, [SuJ’ of a typical arc. Figure 2.4a shows

a typical cylinder arc between two mass points A and B. The local

stiffness matrix [SEJ is such that
{F} = [sm] {u } ceeee(2-6)

where {Fm} = {F ’FAZ’FA3’:FBI’FB2’FB3} is the force vector (moments
= 1

included) in local coordinates, and {Um} {UAl’ A2’UA3’:UBI’UBZ’UB3}

is the displacement vector (rotations included) in local coordinates.

[SmJ can be partitioned corresponding to nodes A and B:

S
[Sm] = —S -oooo(2‘7)

The flexibility matrix , [FBB , for the structure shown in
Figure 2.4b can be found, for example, by the principle of minimum

strain energy to be:
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R3(60-831na+sin2a)| -R3(l-cosa)2 |
4E 1 2E 1
rr | rr |
+ R(2a+sin2a) | + R(1-cos2a)
A E_ 4A E_ I
- = - - 4+ =
_ R3(1-cosa)2 | R (20-sin2a) ‘
2E I 4E I
[F B]' rr rr '
B + R(1-cos2a) + R(2a-8in2a)
4A_E | © 4A_E |
. rr __ _ xr
2 | .2 |
-R" (a-8ina) R”(1-cosa)
EI I EI
rr rr |

-Rzga-sina}
EI
rr

ceee.(2-8)

where Er is the modulus of elasticity of the cylinder material in

‘plain strain, Ar and Ir are the area and the moment of inertia of one

unit depth of the cylinder wall,

the radius of the cylinder.

a is the subtending angle and R 1is

The stiffness matrix [SBB] in Eq.(2-7) can be calculated as:

s S S

11 12 13

17 - s

21 S S

[sgg] = 22 523

[Fys

S

31 S32 S

32 °33

To obtain [SAB] by statics from [SBB]

ceees(2-9)

, the coordinate transformation

matrix [TAB] has to be found first. It may be written as:

[1,5] = [RG][T,]

cosoa sina 0
~where [RB] = |-8ina cosa O
0 0 1

rotates the local coordinates at B to those at Aj;

eess.(2-10)

eeeee(2-11)
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1 0 0
]
and’ [TAB] = 0 1 0 DR ) (2‘12)

R(1l-cosa) Rsina 1

translates the parallel coordinates from B to A.

Substituting Eq.(2-11) and Eq.(2-12) in Eq.(2-10), we have

cosa sina 0

-R(1-cosa) Rsina 1

Then each column of [SAB] is just the static equilibrating force

vector at A for each column of [SBB] , i.e.,‘

T-Sllcosa l-Slzcosa I -Sl3cosa
-S,,8ina I-Szzsina | -S,451na
S, ,s8ina |S sina | S, ,sina
11 12 13
= —821cosa I-Szzcosa | —Sz3cosa
“S3 l'ssz -S43
+SllR(l-cosa)'+812R(1—cosa)| +813R(1-cosa)
-SZIRsina |-822Rsina | -823Rsina |

eeeeo(2-14a)

The other two submatrices in Eq.(2-7) can be computed as

T
[SBA] = [SAB] eeess(2-14b)
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and [sya] = [TABJ[SBB][TAB]T veees (2-14c)

The latter, in the case of a circular arc with coordinates at A and

B defined as in Figure 2.4a, reduces simply to

[s);, =Sy, Sy
[S4ad= | =S21 S92 Sy «veee(2-15)
S31 533 S35

Thus all the submatrices for [Sm] in Eq.(2-7) are obtained.

b). Rotation to global coordinates. The local stiffness matrix, [qu’

of an arc is used to obtain the global stiffness matrix, [Ss]i, for

member 1 between cylinder node points A and B as illustrated in Figure 2.5:

[s.]" = [R]" [s.][R,] vere.(2-16)

— —

cosg, sing, 0 |

-sineA coseA 0 | 0
0 0 1
where [R] = | — — — — |- — — |20
coseB sineB 0
0 l -sineB coseB 0
| 0 0o 1

The matrix [Ss]i can be partitioned corresponding to end A and B of

member 1 as follows:

i
[s]t - ceeen(2-18)
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c). Assembly of overall cylinder stiffness matrix, rotation included

Once -[Ss]i for all the cylinder nodes, i=1,2,...,nr, have been found,

the overall cylinder stiffness matrix, [S 1], can be assembled

overal

by putting the submatrices [SAA1]’ [SABi]... etc in the appropriate

joint locations in [S ]. For a node numbering system that increases
overall
consecutively around the cylinder as in Figure 2.3, [Soverall is
assembled as:
IV mber 1 "
AA 1 member nr
4500 S 1 ' pa |
_ BB L - dJ
s member 2
m
s | 22| s
AA
S 2
2 BB member 3
S 3 L
BA +SAA
[soverall] -
N\
AN
AN
| -
0 g nr 1
| AB
=1 - Ts-nr-l
nr : nr-1 BB
s l Spa | +5 nr
LL_ - AA

ceses(2-19)
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d). Modified overall cylinder stiffness matrix (no rotational constraints).

[soverall] in Eq.(2-19) can be rearranged to separate translation and

1
rotations. The rearranged matrix, [Soverall] is such that

{-:—} - [Sc')verall] {-: -}

R R
S S U

= TT TR - = .-...(2-20)
S S U

where {F} and {U} refer to translational forces and displacements,
and {FR} and {UR} refer to moments and rotational displacements.

The condition that the moments at all the nodes be zero is now imposed,

i.e.,

{Fg} = {0} = [S. ] {U} + [Spe]{Us} veee(2-21a)
from which

{Ug} = - [SRR]'1 [Sgr] (U} veees(2-21D)

Also, from Eq.(2-20)
{(F} = [STT]{U} + [STR]{UR} ’ eeees(2-22a)
Substitution of Eq.(2-21b) in Eq.(2-22a) yields
(F) = ([Sgq] - [Spa) [Sgal ™ [Sprd) W)
= [Sg] (U} ve ... (2-22b)

*
Therefore, the final modified cylinder stiffness matrix, [SR], mentioned
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in Eq.(2-5) is given as
* -1
[sgl= [Sppl= [Segl [Spel ~ [Sgo) ceene(2-23)

- .
The elements of [Sﬁ] can then be put directly in the appropriate rows

and columns in the stiffness matrix of the cylinder-soil composite.

2.4,2 Packing Soil

As mentioned previously and illustrated in Figure 2.1b
and Figure 2.2, the term packing soil used in this study refers to an
annular area of soil immediately around the cylinder. The thickness
of this annulation is arbitrarily set at a small number relative to
the dimensions of the cylinder-soil composite. The packing soil is
modelled by radial shear and compression springs as opposed to the
rest of the soil in the cylinder-soil composite which is modelled
by two-dimensional finite elements. There is no particular advantage,
computational or otherwise, from this aspect.of modelling of the soil
other than the fact that recognition is given to the following situation.
Oftentimes in mining engineering practices, as pointed out in (13), a
layer of soft, energy absorbing packing material is built around a
tunnel to reduce the effects of disturbances transmitted from the
surrounding rock medium. A spring would be appropriate to use as a
model for such a material. However, in this investigation no such
packing material is assumed and the term "packing soil" is used to
designate the soil around the cylinder that is represented by springs
rather than by finite elements.

The packing soil mass of area Al (see Figure 2.2) will be

lumped with the cylinder mass node m, to which one end of the spring

i
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is attached. The packing sqil mass of area A2 will be lumped at the
soil mass node (node J in Figure 2.2), to which the other end of the
spring is attached. Node J will also include 1/4 of the mass from the
soil finite elements JKLM and JMNO

In Figure 2.6 the shear spring constant, P1l, and the compress-
ion spring constant, P2, are approximated by those of a column of soil
whose width is equal to the average width, wd, of the area the stiffness

of which is represented by the spring. Therefore,

P1 S ¥ M

coeee(2-24)

in which EB denotes the soil compressive modulus of elasticity in plain
strain, G8 denotes the shear modulus of elasticity and TH is the thickness
of the packing soil annulation.

The local stiffness matrix with the coordinates defined in

Figure 2.6 is given by

[Sp]local" - - - - - eeee.(2-25)

0 -P2 | 0 P2

The global stiffness matrix of member i of the packing soil 1is
i ihT i
[sp]global = [R ] [Sp]local[R ] ceees(2-26)

in which the rotation matrix [Ri] is equal to
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- -
cosf, sing, I .
-81ing cosg, |
[Ri] = - j; - —j: b — —_ -_— es s (2-27)
| cose1 s:l.nei
0
i | --sinei coset
and the angle °1 is defined in Figure 2.6
i

For each packing soil spring i , the elements of [sp]global

found from Eq.(2-26) can be put directly in the appropriate rows and
columns in the stiffness matrix of the cylinder-soil composite.

2.4.3 Soil Finite Elements

2.4.3.1 General.-- Other than the cylinder of radius

R and the packing soil of thickness TH, the rest of the cylinder-soil
composite is idealized by two-dimensional finite elements. The finite
elements pattern varies depending on many factors such as, for example,
the number of lumped masses assumed for the cylinder. Most of the
examples in this study use a twelve node model for the cylinder; the
corresponding finite element mesh is shown in Figure 2.7. The triangular
finite elements, such as (42,25,61) are the basic element shapes from
which the stiffness is derived. Most of the studies , however, are done
using a further approximation procedure referred to here as Method 1
that would delete the degrees of freedom associated with node 61 in
Figure 2.7.

In formulating the problem, only the coordinates of the four
corners of each quadrangle need be defined, e.g., the coordinates of
nodes 42,25,26 and 41 for quadrangle number 25. Then the following

steps will be used to obtain the soil finite element stiffness matrix.
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a). For each quadrangle, an interior node is defined at the intersection
of the two diagonals. An isolated typical quadrangle ABCD is shown in
Figure 2.8a with I being the interior node. The coordinates of I are

found by simple geometric consideration to be

Y.-Y Y -Y

€ Ay -y - B_D X, + ¥
x. -x, | & A \x -x D
. ¢~ X B~ Xp
1=
AN
X. - X X, - X
c A B D cernn(2-28)
Y. -¥
c ™ Ya
L S (xI-XA)
c” X

b). After the coordinates of I are calculated, the stiffness of each
triangular element ABI, BCI, CDI and DAI is derived according to the
method of finite element. The principle underlying this method can
be found in many literatures and will not be discussed here. The
procedure used in this study followed that outlined in (14) for tri-
angular element in plane strain and is summarized as follows.

For a typical triangular element "ijm" in Figure 2.9, the

displacement functions are assumed to be

= + x +
u=a ay a

1 3y

v = a4 + us x + a6 y

where u and v denote translations in the x and y directions, respectively,
and @15 Gpseee,lc are constants at each time instant that depend on
the displacements of the three vertices i, j and m. The strain inter-

polation function matrix [B] is then found to be
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i 3 m
B =L (o a4 o0 4, 0 d (2-29)
2A i j m e o0 00
_di bi dj bj dm -
where bi = yj =Y , di =x - xj ,
bj=ym—yi bl dj=xi-xm’
bm = yi - yj , d = xj - xi .
1 X Yy
2A = det. | 1 xj yj = 2 ( area of triangle ijm )
1 X Yo

and Xis Yy ooo etc are the coordinates of the nodes as defined in

Figure 2.9. Then the stiffness matrix, [Striangle]’ of the element
ijm may be computed from the equation:
T
[striangle] = s [B]" [p][B] t' ax dy N ¢ 25 10))

where t' is the thickness of the finite element. The matrix [ﬁ] repre-

sents the stress strain relationship for the plane strain case and is

given by:
a -
1 vS/(l-vS) 0
E (1-v)
[p] = S v /(1-v) 1 0
(1+vs)(1-2vs) s s
i 0 0 (1—2vs)/2(1-vs)J

ceeee(2-31)
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For constant t', Eq.(2-30) can be integrated to obtain

E

[sttiangle]

B | l : ]
2
(1-vs)b1 vsbidi | (1-vs)bibj vsbidj (1-vs)b1bm vabidlIl
+ | + + , + + ' +
1-2\)8 2 1-2v 1-2\’s 1-2Vs 1-2\’s 1-2v'
e S A s SO e o N e e T U T2 Pas
2
(l-vs)di | vsbjdi (l-vs)didj vsbmd1 (l-va)didm
| + + I+ | + +
1-2v8 2 | 1-2v8 1-2v8 1—2\>s 1-2v
! 7 P34y 1 =77 byby | 2 bidm+ 7 4P
2
(l-vs)bj | vsbjdj (l—vs)bjbIII vebjdn
| + + + l +
1-2vs 2 | 1-2vs 1-2v8 1-2v8
S I S i L T
I 2
(l-Vs)dj | \’sbmdj (l-Vs)den
|t + +
1-2v 1-2v |1-2\’
s 4 2 | 8 b d 5 b b
R Z 4 m' 2 “im
i T = B
Symmetric (l-vs)bm Vsbmgm
TP B
1—2\)8 2 1-2\)s
2 dm 2 bmdm
L "— | = —
2
(l-vs)dm
| +
b
| 2 m

4A(1+v8)(1-2v8)

eeeea(2-32)




23

c). After the stiffness for each of the triangles ABI, BCI, CDI and

DAI in Figure 2.8 has been found by Eq.(2-32), the final stiffness

matrix for the quadrangle area ABCD can be derived by either Method 1

or Method 2. These methods will be discussed in the next two sections.
2.4.3.2 Method 1.-- This is an approximate method

(15) in which the degrees of freedom associated with node I (see

Figure 2.8a) are eliminated from the dynamic analysis. Consider

Figure 2.8b, a quadrangle stiffness matrix, [Squad]’ can be constructed

by appropriate superposition of the four triangular stiffness matrices

i=1, 2, 3, 4, calculated from Eq.(2-32). This stiffness

i
[Strianglé] ’

relates the quadrangle forces and displacements as follows:

Fex Uex
F [Squad:l {U
in in

= eeees(2-33)
q21 q22 in
where {Fex} = {Fl’FZ""’F } and {Uex} = {Ul’UZ""’UB} refer to forces
and displacements vectors at the exterior nodes A,B,C,d; and
= = ispl t

{Iin} {Fg,Flo} and {Uin} {Ug,UlO} refer to forces and displacements
vectors at the interior node I.

Since the interior node I is connected to node A,B,C,D only
and not to any other nodes, the equation of motion for node I will
involve only {Uex} and {Uin}' Keeping in mind the absence of any

external applied forces at I, this equation of motion can be written as:

[Min]{Uin} + [SqZI]{Uex} * [SqZZJ{Uin} = (o)
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-1 .o
or {u, } = '[quz] ([m, JMU, 3+ [sq21]{Uex}) ceeea(2-34)

where [MinJ is the mass matrix for node I, and damping is ignored.
From Eq.(2-33), the elastic forces at the external nodes caused by

displacements within the quadrangle are

{Fex} B [Sqll]{Uex} + [Sq12]{Uin}

and, on substitution of Eq.(2-34),
_ -1
{Fex} - ([Sq11:I - [SqIZ][SqZZ] [Sq21]){Uex}

_1 e
- [Sqlz][sqzé] [Mig]{Uin} ..... (2-35)

The second term on the right in Eq.(2-35) is the effect of
the inertia force at the interior node I on the exterior nodes A,B,C,D.
This effect can be approximately accounted for by lumping the interior

node mass at the four exterior nodes. When this is done, Eq.(2-35)

becomes
*
{F b= [sgltu (2-36)
* -1
where [sg] = [sqll] - [Sqlz][SqZZ] [sq21] ..... (2-37)

[S;] is the modified stiffness matrix for the quadrangle ABCD involving
only the degrees of freedom associated with the exterior nodes A,B,C,D.
2,4,3.3 Method 2.-- No approximation of the inertia
force of the interior node I is involved in this second method to
represent the stiffness of the quadrangle ABCD (see Figure 2.8). Instead,

a computer routine is written so that after the coordinates of node I
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have been computed from Eq.(2-28), the node will be given a number
designation and treated as a finite element node just as nodes A,B,C
or D. For each triangle ABI, BCI, CDI and DAI in Figure 2.8b, a tfi—
angular finite element stiffness matrix is calculated from Eq.(2-32)
and the elements of the resultant 6x6 stiffness matrix are put directly
in the appropriate rows and columns in the stiffness matrix of the
cylinder-soil composite.

| 2.4.3.4 Mass Matrix.-- For Method 1, 1/4 of the
mass of the area ABCD in Figure 2.8a, for example, will be lumped at
each of the nodes A,B,C and D. For Method 2, 1/5 of the mass of ABCD

will be lumped at each of the nodes A,B,C,D and I.

2.5 Stiffness and Mass Matrices for the Cylinder-Soil Composite

2.5.1 Flexible Cylinder

*
The cylinder stiffness matrix, [SR],is given by

i
Eq.(2-23) and the packing soil stiffness matrix, [sp]global’

for each packing spring i, 1=1,2,...,nr. The quadrangle finite element

*
stiffness matrix for Method 1, [SF], is given by Eq.(2-37) for every
soil quadrangle. Or, the triangular finite element stiffness matrix

for Method 2, [S is given by Eq.(2-32) for every soil trian-

triangle]’
gular finite element. The elements of all these stiffness matrices

can be added directly to the appropriate joint stiffness in the stiff-
ness matrix for the cylinder-soil composite shown in Figure 2.7.

This assembly of the overall stiffness matrix is a routine procedure

in matrix analysis of structures and will not be discussed here. The

mass matrix, likewise, is simply a superposition of all the masses
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within an area assigned to a joint.

2.5.2 Rigid Cylinder

As will be seen in the chapter on numerical results,
the treatment of the cylinder as rigid results in a saving in computer
time. However, the procedure is valid only when the cylinder is stiff
enough so that its response can be approximated by that of a rigid
cylinder. The rigid cylinder formulation can be achieved in two ways.
a). At each time integration, the equation of motion can be written
for the cylinder as a whole, rather than for each cylinder node.The
mass will then be the combined mass of all the cylinder nodes and
the elastic forces in the x and y directions will be the combined
elastic forces from each of the packing soil springs on the cylinder
in the corresponding directions. This procedure is followed in this
study when the equation of motion is solved numerically by direct
integration and will be discussed in detail in the next chapter
dealing with the equations of motion.

b). When the equation of motion is solved by modal analysis, the
stiffness and mass matrices are formed incorporating the feature that
the cylinder is infinitely rigid. The new stiffness matrix for the
"rigid" cylinder-soil composite can be found as follows.

Suppose the stiffness matrix for the "non rigid" cylinder-
soil composite is [S], the matrix can be partitioned according to

whether the nodes belong to the cylinder or to the soil:



27

S S U
- KR RS { } ver..(2-38)
S

Ssp Sgs| \U

where {F} and {U} refer to forces and displacements of the cylinder
nodes, and {FS} and {US} refer to forces and displacements of the soil
nodes. Now for a cylinder with "nr" number of nodes, the 2xnr dimen-
sional "non rigid" cylinder displacement vector ,{U}, can be related
to the three dimensional rigid cylinder displacement vector,{U'}, as

follows.
{u} = [A] {U"} veees(2-39)

or, expanding

( [ - ] '
Ulw 1 0 Rcose1 Ux
- ]
U2 0 1 Rsine1 UY
- L
U3 1 0 Rc0362 UZ
{Uppa |0 1 -Rsind, el (2-40)
U5 1 0 -Rcose3
P6 ? 1 -Rsin63
' [
I
v.) |
2xnr |0 1 -Rsiné
L nr |

The symbols are defined in Figures 2.10a and 2.10b.
Suppose that the 2xnr dimensional "non rigid" cylinder force

vector, {F}, is related to the three dimensional rigid cylinder force
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vector, {F'}, as

{F} = [B']{F'} eee.(2-41)

For a virtual displacement of a rigid cylinder, the virtual work

expressed in the non-rigid and the rigid cylinder coordinates must

be the same:
w THE) = W' En ceven(2-42)
Substitution in Eq.(2-42) from Eq. (2-39) and Eq.(2-4l1) yields
wnt (AT [37eFy = T Ery
1T T ' '
or, 'y ([a]” [B'] - [1]) {F'} =0 oo (2-43)

in which [I] denotes the unit matrix. Since in a virtual displacement
of a nonsingular system, neither {U'} nor {F'} can vanish, Eq.(2-43)

implies

[T [3] = [1] e (2240)
We can make use of Eq.(2-44) to transform the coordinates from

non-rigid to rigid cylinder. From Eq. (2-38),
{F} = [Sgel{U} + [Sp MU} veees(2-45)
{Fg} = [Sgp] (U} + [sg ] {UG} veee.(2-46)

Now, for rigid cylinder movement, we can substitute Eq.(2-39) and

Eq.(2-41) in Eq.(2-45) and obtain

[B'1{F'} = [spp] [A]{U"} + [s ]{U}
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Premultiplying by [A]T » and using Eq.(2-44), we obtain
(#'} = [A]" [Sggl [A](U'} + [A]T [s,]Mug) veene (2-47)
Also, substituting Eq.(2-39) to Eq.(2-46), we get

{Fg} = [Sgp] [A]{U"} + [S. ] {UG} veee.(2-48)

Combine Eq.(2-47) and Eq.(2-48):

P |[A]" [sggl[a] ' [A]” [spgl| (v
a| — - - 4 - —
Fg [ssalla] | [ss] | ‘v
- [s] {U'} ool (2-49)
Ug

[S'] is then the stiffness for the rigid cylinder-soil composite.
The mass matrix for the rigid cylinder case differs from the
non-rigid cylinder case in the fact that a 3x3 diagonal mass matrix
replaces the original 2xnr by 2xnr non-rigid cylinder mass matrix.
The first two diagonal entries, representing translational inertia
in the x and y directions , are simply the sum of all the cylinder
nodal masses. The third diagonal entry, representing rotational
inertia, is equal to the sum of all the cylinder nodal masses

multiplied by the square of the radius of the cylinder.

2.6 Damping Matrix

As mentioned in the section on basic assumptions and Eq.(2-2),

the damping matrix,[C], is assumed to be proportional to the stiffness
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matrix , [S], i.e.,

[c] = u[s]

In a direct integration procedure, the above expression is used as
is. In modal analysis, each modal damping ratio, An, will be

related to p by the equation

eees.(2-50)

where wy is the circular frequency of the nthmode.

The drawback to this assumption of proportional damping
is apparent, i.e., only one damping parameter can be arbitrarily
specified; this can either be the damping factor u or one of the
modal damping ratios An. The rest of the damping parameters then
become fixed relative to this parameter by Eq.(2-50). Obviously,
the same equation also imposes the condition that the damping be
more effective in the higher modes than in the lower modes. The
~ decision to use proportional damping rests on the following con-
siderations:

a). The problem becomes much more simplified.

b). The actual loss mechanisms in most structures are highly
complicated such that other alternatives (for example, assigning
an individual damping ratio to each mode) would also involve a
high degree of uncertainty.

¢). Most importantly, the damping terms in problems involving
earthquake excitations are not expected to have an overly large

effect on the responses.



CHAPTER III
METHOD OF ANALYSIS

3.1 General

The models have been developed and their structural proper-
ties deterﬁined. The next step is to derive the equations of motion.

An eigenvalue analysis to obtain the mode shapes and fre-
quencies of the cylinder-soil composite will be discussed in the
first section.

The main body of the analysis can be separated into two
parts in line with the two part representation of the problem as
shown in Figure 2.1b. The motions of the free field soil colummn
will first be determined. Then the parts of these motions that corr-
espond to the boundary of the cylinder-soil composite will be used as

excitation inputs for the cylinder-soil composite.

3.2 The Eigenproblem

The homogenous equation of motion for the cylinder-soil

composite vibrating in one of the harmonic modes is
2
[s]ix} = wi [M;]{x} cened(3-1)

where [S] 1s the stiffness matrix and [MI] is the diagonal mass matrix

(assuming that the boundary points do not move), both of which are

31
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discussed in Section 2.5, and {Xi} and w, are the shape and circular
frequency of the ithmode. Eq.(3-1) can be reduced to the standard

form:
[K]{X,} = wi{ii} e (3-2)

by the substitution
-1 _ 1
2 2
(K] = (M) % (s]0M;]
ceeea(3-3)

N

(X} = ) °axp)

Because of the diagonal form of [M ], computation of [K] and {ii}
from Eq.(3-3) becomes very simple.

There are various mathematical and iterative schemes to
solve the eigenproblem of Eq.(3-2). The computer routine used in
this study is a library program available at Michigan State
University based on Jacobi’s Method, the discussion of which is
beyond the scope of this study.

Once {ii} is found, the mode shape {Xi} can be computed
from the relation in Eq.(3-3). For consistency, all mode shapes in

this study are normalized with respect to mass, i.e.,

{xi}T [ 1{X,} = 1 e (3-4)

3.3 Equations of Motion for Free Field Soil

From the notations for the free field soil column in

Figure 2.1b, the equation of motion for a typical mass i, i=1,2,...n,
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in the vertical direction can be written as:

m (Vg + V) = (Vi VPRt Gy - VP0G
- (vi - vi-l)Ki - (vi - vi—l)ci eeees(3-6)
with Vo = Vo = Kh+l = Cn+1 =0 ;

and in the horizontal direction as:

m @y + ) = oy, —upky, + @y, - ey

- (uy - uy k- g -0y gdey ceee (3-7)

with u0 = uo = kn+1 = cn+l =0 .

In the above equations, vy and uy denote the displacements of mass 1
in the vertical and horizontal directions with respect to the bedrock
motion, and Vg and ﬁg are the bedrock vertical and horizontal accele-

rations.

3.4 Interpolation from Free Field to Cylinder-Soil

With the assumption that the feedback between the free
field soil and the cylinder-soil composite is negligible, the motions
of the side and the bottom boundaries of the cylinder-soil composite
will be equated to those of the free field soil at the same level. If
the masslpoints of the two do not fall on the same level, the motions
of the boundaries will be obtained from a straight line interpolation
from the motions of the free field soil mass points.

Consider Figure 3.1. The displacement and velocity components,
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uysvy and &1’61 » 1=8,9,10 , are the motions of the three topmost

masses of the free field soil column that will be prescribed at the
boundaries of the cylinder-soil composite. The horizontal displace-
ments, UB3’UBII’UBS’UBI3’UB7’UBIS’UB9’UBl’UBI7 , of the nine

boundary masses can be found by a straight line interpolation from

the three horizontal displacements ugs Ugs U;, @8 on the right of

10
Figure 3.1. The same procedure is followed when dealing with velocities.

This interpolation can be written in terms of coordinate transformation

as

(ug} = [THug)
ceees(3-9)
(U} = [T]{ug)

where {UB} - {UBl’UB2”°"UBIB} and {“F} = {u8,v8,u9,v9,ulo,vlo} (see
Figure 3.1) and, for the case of Figure 3.1 with the dimensions as

shown, the transformation matrix is

B I | I [ | m

1/3 2/3 _ _ __ _ _ _ _

__Tis T T s | _

e - L - _I1_-_""C

_ — r - "'

I Y - N V- S

_ —y= =24 —3/5_

— a5 T ais

- _ L _ _lifisy 1/15|

m = |2+ 113—' ;/3_|_2 = - = =" veee.(3-10)

| L B S

— - - 4 - 11 T

Tl Tt T T Tyt o

— _ 2651 _ 13/5

— ., _ Asns_ 4 115,

R S ARG VY R V4 I

1/3 (_2/3 . L _
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[T] will have to bevconstructed individually for each different case

of boundary dimensions locating the mass points.

3.5 Equation of Motion for Cylinder-Soil Composite

3.5.1 For Direct Integration

3.5.1.1 Flexible Cylinder.-- Consider Figure 2.7.

Let {UB} and {ﬁB} denote the displacements and velocities (relative
to the bedrock) of the boundary nodes, i.e., nodes 40, 41, 42, 43,
44, 45, 46, 47, 48; and {UI}, {ﬁI} and {ﬁI} denote the displacements,
velocities and acceleratiogs (relative to the bedrock) of all the
interior nodes not located at the boundary, i.e., nodes 1, 2, 3,

4, 5, ..., 39; and let {§8}= {ﬁg, Vg, ﬁg, Vg,..., Vg} be the bedrock
acceleration vector with the horizontal and vertical accelerations
alternately placed. The dimension of this vector is 2ni where ni is
the number of interior nodes.

The stiffness matrix, [S], of the cylinder-soil composite

can be rearranged and partitioned as

[S] = _ ceeea(3-11)

SBI SBB

to separate the stiffness related to the interior nodes and those
related to the boundary nodes. This can be done with the stiffness
calculated from either Method 1 or Method 2 in Section 2.4.3.2 and

Section 2.4.3.3, respectively.
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The equation of motion expressing the equilibrium of the dynamic

forces may be generally written as

in which the terms on the left side represent the inertia force,
elastic force and damping force vectors, respectively, and the right
side is the applied load vector. For the case of the interior nodes
of the cylinder-soil composite, the inertia force vector can be

expressed as:

{Fr} = MU} + (& D
the elastic force vector as:

{Fg} = (S, 1{UL} + [S51{UL}
the damping force vector as:

{Fy} = uls MU} + uls 1{U,)

and, due to the fact that there is no applied force, the applied

force vector as:
{p} = {0}

where

ni | 2nix2ni
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represents the mass of the interior nodes in the horizontal and ver-

tical directions, y is the damping constant as defined in Eq.(2-2)

and Eq.(2-50), and the rest of the variables have been defined earlier.
Thus the equation of motion for the interior nodes of the

cylinder-soil composite becomes
LI + (D + IS U7} + [551{U)

+ ulS U} + uls UL} = 0 cvve.(3-12b)

At each time instant, {UB} and {ﬁB} can be interpolated
from the free field soil motions as in Eq.(3-9) and used as inputs
in Eq.(3-12b) along with the bedrock acceleration input {ig}.
Eq.(3-12b) can then be integrated to obtain the motions {UI}, {ﬁI}
and {ﬁI}.

3.5.1.2 Rigid Cylinder.-- For the case of the

rigid cylinder-soil composite, the equations of motion for the soil
nodes are exactly the same as Eq.(3-12b). For the cylinder nodes,
however, the number of variables may be reduced as shown below.

a). The force on node i of the cylinder from the packing soil spring

can be computed as (see Figure 3.2):

Pt Yn1 T Y11
F [Sin] u - eo e (3-13)
yvi n2 i2

where Fx F_, represent the forces in the x and y directions on

1’ “yi

the cylinder node i, and U represent the displace-

nl’ Un2’ Uip» Ugo
ments in the x and y directions of the packing soil node n and the

cylinder node 1. [Sin] is the appropriate stiffness involving
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node 1 and n.
b). Once Eq.(3-13) is applied for all the cylinder nodes, the total
forces on the rigid cylinder can be computed as

nr
F = I F
X total {=1 xi
see e (3-14)
nr
z

F
g=1 Vi

F. total =

c). The equations of motion for the rigid cylinder can then be written

as:

Mr:lgid ( Ux rigid + ug ) = Fx total
eess.(3-15)

Motgta (Y rigia ¥ Vg ) = & toral

where Mr represents the total mass of all the cylinder nodes and

igid

Uy rigia * Yy rigid
bedrock) of the rigid cylinder in the x and y directions.

are the accelerations (relative to those of the

3.5.2 For Modal Analysis.

For the modal analysis method, the equations of
motion for all the interior nodes remain the same as Eq.(3-12b).

Next we express the motions in terms of the modal ampiitudes.
{u;} =[0] A
{I.JI} = [¢] A 00000(3-16)
{u;} = [e] A

where [¢] = [{xl}{XZ}"°{ }] is a square matrix containing mode

x2n1
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shape columms obtained as in Section 3.2 , and {A} is the modal ampli-

tudes.

Substituting Eq.(3-16) into Eq.(3-12b), premultiplying by

[]T and using the orthogonality conditions:

(017 100) = [1]

(017 s ;1101 = [w,°], eeen(3417)
and [o171c 110 = (22w 1]

we obtained the decoupled equation of motion for each mode 1 :

K+ wiz A+ D uh = -{xi}T[SIB]{UB}- u{xi}T[SIB]{ﬁB}

T . T .

- {xi} [MI] é ug - {xi} [MI] g vg eeeee(3-18)
1 0
0 1
0 ’1

Note that the last orthogonality condition in Eq.(3-17) involving
damping follows directly from the proportionality of the damping
matrix to the stiffness matrix and implies the relation indicated in
Eq.(2-50) between the modal damping ratio Ai and the damping constant
H.

For the rigid cylinder case, the number of degrees of freedom

is reduced accordingly and the equation of motion for mode i becomes:
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ot 2 VYA o _fx'1lrQy _ 11T ¥
- ' T ' ( LX) - ' T ' L] _

04 0

ﬁl f 0)
0 1
1 0

0 1

] [

' 1

LO J 1)

The superscript " ' " signifies that, e.g., the mode shape {Xi} and

the stiffness matrix [SiB] all derive from the modified stiffness
matrix [S'] in Eq.(2-49) for the rigid cylinder. The modified mass
matrix for the rigid cylinder, [Mi] , 18 as discussed at the end of
Section 2.5.2.

Eq.(3-18) and Eq.(3-19a) can also be written in terms of
{uF} and {ﬁF} , the displacement and velocity inputs from the free

field soil. For example, by substituting (see Eq.(3-9) and Eq.(3-10))
[THug} = {U;}
in Eq.(3-19a), we obtain

X' +m'2

vratZ Al + o) A= -a,) (ug) - wa tag)

174 1

v veee.(3-19Db)

The mode participation factors and vector for the various inputs

on the right hand side of Eq.(3-19b) are defined as follows:

1 Trar o
{di} = {Xi} [SIB][T] veeeo(3-20a)
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is the mode participation vector for the displacement inputs from
the free field soil.

X 11 T
cy = (X1 Ml

B

eeeee(3-20Db)

oo+

—
[
[}
'
—

(= = N

~

—

is the mode participation factor for the horizontal bedrock accele-
ration.

y 11 e
c; = {Xi} [MI] 0 veese(3-20c)

T O O M
—

/

is the mode participation factor for the vertical bedrock acceleration.
For the example in Figure 3.1, the right hand side of
Eq.(3-19b) for mode 1i‘'can be expanded corresponding to the 14 inputs

A' + w'2

HE T VN A} = ~(dgqugtd vt sug. e otdy (V) o)
~(ud,  ag+ud JL2{18+ud 13{19 ...tud 16{'10)
- ¢} ‘ﬁg - cz Vg eeoe.(3-20d)
where qd,_,d

11° iZ""’di6 are the mode participation factors forming

the elements of {di}'
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Eq.(3-20d) is a linear differential equation which can be
integrated directly to obtain the modal amplitude, Ai . Alternatively,
Ai can be found as the sum of the contributions from the forcing

functions associated with each of the 14 inputs, i.e.,

14
L - -
Ai jfl (mode part. fact.)ij Bij eeees(3-20e)

In the above equation, (mode part. fact.),, signifies one of the

ij
L3 x y'
mode participation factors: dil’diZ"’"d16’ud11’udi2”"’udi6’°i’ci’

and B,, is the solution obtained from the equation of motion;

1]

LX] '2 ' ' . = -

Bij + 0 Bij + 2>\iwi Bij (input)j e oo (3-201£)
vwhere (1nput)j signifies one of the 14 inputs: UgsVgslgseeesVygs
u8’v8’u9""’v10’ug’ and vg. It should be noted here that the free

field motions which are prescribed to the boundary of the cylinder-
soll composite are inputs only in so far as the cylinder-soil compo-
site 1s analyzed independently from the rest of the soil. These
motions are the result of the bedrock accelerations being transmitted
up the free field soil column. The only real inputs to the problem

as a whole are, of course, the bedrock accelerations.
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3.6 Moment Calculation

3.6.1 General

The final results of interest in this study are
the internal moments that occur in the cylinder wall. For the flexi-
ble cylinder case, obtaining the moments is a straight forward
procedure once the displacements of the cylinder nodes are determined,
because the stiffness matrix that would give the resulting moments
has already been obtained earlier. For the rigid cylinder case,
the forces (including the D’Alembert forces) on the rigid cylinder
nodes are first found and then the moments are computed as though
the cylinder is flexible, i.e., with a finite ErIr' The final ex-
pression, however, is independent of ErIr; therefore, it is wvalid
for ErIf+ o, The problem is somewhat similar to that of finding the
moments in a rigid beam fixed at both ends.

When the solution is obtained by modal analysis, it is
instructive to know the moments in the cylinder wall caused by each
mode and the term "modal moment" is used to represent the moment
magnitude and distribution in the cylinder wall corresponding to
each of the normalized mode shapes found as in Section 3.2.

Each of these three topics will be discussed in detail.

3.6.2 Flexible Cylinder

When the cylinder is treated as flexible, the
procedure to obtain cylinder moments is as follows:
a). At each time instant, the numerical integration will have been
carried out and the displacements of all the node points will have

been determined including the global cylinder node displacements,
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{U}. Then the rotations, {UR}, of the cylinder nodes can be obtained
by applying Eq.(2-21b).
b). For each cylinder arc i of Figure 2.5, the local displacement
vector can be obtained by using the rotation matrix, [Ri]’ in
Eq. (2-17):
Ua
{u} = [Ri]{ } ceeea(3-21)

Us

{Um} represents the local displacement vectors at node A and B
including roctation (see Figure 2-5). {UA} and {UB} are the global
displacement vectors obtain in the preceding step as appropriate
elements of {U} and {UR}.
c). The force vector {Fm} will be obtained by application of
Eq.(2-6), {Um} having been known. The third and sixth rows of {Fm}
will then be the internal moment in the cylinder wall at the two nodes
A and B.

Step b). and c). will be repeated for all cylinder arcs
until the moments are found at all the cylinder nodes.

3.6.3 Rigid Cylinder

The problem of finding the moments in this case
is different in nature from the case when the cylinder is treated
as flexible; i.e., instead of the cylinder nodes’ displacements
being obt#ined explicitly, here the packing soil forces acting on
the cylinder nodes are determined, the D’Alembert forces are added
and then the analysis can be treated as a static problem. The moment

computation becomes a routine solution of a statically indeterminate
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structure (to the third degree in this case). The procedure is
. outlined step by step as follows.
a). The moment acting on the rigid cylinder can be found by summing
the moments around the center of the cylinder caused by all the
packing soil forces on the cylinder nodes (see Figure 3.3a):

nr

M= ifl (-in Xdyi) + (Fyi xd

xi) ceese(3-22)

4 Fyi are found from Eq.(3-13).

b). M above will be equilibrated by the D’Alembert moment which is

M is the scalar moment and Fx

equal to the sum of the "tangential D’Alembert" forces about the
K
center of the cylinder. If the tangential D’Alembert force at node

i is designated by fi (see Figure 3.3b), then

M
£ = -k

eeses(3=23)

Note that the magnitude of fi is the same for all the cylinder nodes
due to the fact that all the nodes have the same rotational accele-
ration equal to the rotational acceleration of the rigid cylinder.
c). The tangential D’Alembert force fi will be rotated into the x

and y global coordinates (see Figure 3.3b):

F' = cose1

x1i fi

eeeea(3-24)

F',£ = sinei f

vi i

d). The final static forces, F;i and F;i, for node i will be the

sum of the spring forces from the packing soil, the translational

D’Alembert forces and the tangential D’Alembert forces:
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” - - []
Fet ™ Fxs " M3 Vg rigia t P

eeese(3-25)

. " - - e
Fyi Fyi Mi Uy'rigid + F;i

where Hi is the mass of node i and Ux rigid ° Uy rigid

accelerations of the rigid cylinder as given by Eq.(3-15). The forces

are the

F;i R F;i for 1=1,2,...,nr will now become for the cylinder a sta-
tically equilibrated system of forces.

The remaining step 18 a routine procedure for analysing a
statically indeterminate structure.
e). A cut is made at the left horizontal end (Figure 3.4a) to release
the structure into a statically determinate one. The released struc-
ture is assumed fixed at the upper end of the cut.
f). For each node i, a flexibility matrix, [FLEX]i, for the section
between the fixed end of the released structure and node i is found.
Also, a transformation matrix, [T]1 , that will transform the trans-
lation and rotation at node i to the free end at the cut is found
(see Figure 3.4b).

The expression for the flexibility matrix in local coordi-

nates is the same as the right hand side of Eq.(2-8):

[FLEX = right hand side of Eq.(2-8) eee..(3-26)

localli

the only difference being that o here signifies the subtending angle
between node 1 and the fixed end, rather than being the subtending

angle of a typical cylinder arc as in Eq.(2-8).
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Then the global flexibility matrix is

[FLEX], = [Ri]T [FLEx, .1, [R] veve (3-27)

in which the rotation matrix [Ri] is given as

cosei sinei 0
[Ri] = -sinei cosei 0 eeees(3-28)
0 0 1

and 61 is defined as in Figure 3.4b.

The transformation matrix is given as

1 0 Y =Y,
[tl, = |0 1 Xp -X; .er..(3-29)
Lo 0 1

where (XI,YI) and (XF,YF) are the coordinates of node 1 and the free

end respectively.
g). The total displacements at the free end caused by the applied

cylinder nodal forces around the released structure are ( see Figure

3.4a)

D

1 nr-1 F"i
D.}= & [T]. [FLEX] =y .. (3-30)
2 i i "

i=1 F

D yi

3

f). The actual internal forces at the cut, {Fint}’ would be the

forces that restore compatibility at the cut, therefore



48

D

{F, _} = -[FLEX] eee..(3-31)

int nr D2

where [FLEX]nr is the flexibility of the whole arc (360°) between

the fixed end and the free end.

g). Once {Fint} are known, the internal forces, including the moments,
at the other cylinder nodes can be found by simple statics.

It should be noted that even though the procedure above
involved the flexibility matrix , and thus the flexural rigidity,
ErIr’ of the cylinder, this term cancels out in the final computa-
tion of the internal forces, Eq.(3-31)

3.6.4 Modal Moment

In the usual method of normal modes, the displace-
ment vector can be obtained by superposition of the mode shapes
weighed by the modal amplitudes, as in the first of Eq.(3-16). In
this study, however, the results of interest are the internal
moment in the cylinder wall which could be obtained likewise by su-
perposition of the "modal moment" , {Mo}i, weighed by the modal
amplitudes. The modal moment can be found as follows:

a). If the cylinder is treated as flexible, the mode shapes, {Xi},
obtained for each mode i will yield the displacements of the cylinder
nodes which can be treated in the same way as the cylinder node
displacements, {U}, in Section 3.6.2. The procedure to obtain the
modal moment the proceeds in exactly the same way as the procedure

to obtain the moments at the cylinder nodes in Section 3.6.2.

b). If the cylinder is treated as rigid, the mode shape , {X;}, for

each mode i1 yields the displacements of the rigid cylinder and the
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surrounding packing soil which can be treated the same way as the
displacements U _, Uil’ «.. etc in Eq.(3-13). Eq.(3-13) will give

the forces F Fyi from the packing soil on the cylinder nodes.

xi’

The procedure to obtain the modal moment is then the same as in

Section 3.6.3.



CHAPTER IV

NUMERICAL PROCEDURE AND COMPUTER PROGRAM

4.1 General

The equations of motion for the different models have been
developed in the preceding chapter. The next step in the analysis is
to numerically solve the differential equations from one time station
to the next, step-by-step. For completeness the equations of motion
to be solved are listed below.

a). Free field soil column- Eq.(3-6), Eq.(3-7)
b). Cylinder-soil composite:
direct integration method- Eq.(3-12b) for flexible cylinder
- Eq.(3-15) and Eq.(3-12b) for
rigid cylinder
modal analysis method- Eq.(3-18) for flexible cylinder
- Either Eq.(3-19a), Eq.(3.19b) or

Eq.(3-20d) for rigid cylinder

4,2 Numerical Integration Procedure

Each of the above equations 1is a second order differential
equation of the initial value type which can be solved numerically
by the Newmark’s B-integration procedure (17). In particular, the

B = 0 method is chosen in this study. This method has the advantage

50
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of being non-iterative if the acceleration does not explicitly
depend on the velocity. Even though this is not the case here, damping
terms being included in the equations of motion, we can still
approximate the velocity at each time step by the velocity in the
previous time step and then the B = 0 method when applied will again
be non-iterative. This approximation is justified by the fact that
damping terms usually have relatively small influences in problems
of this type, and the fact that velocity varies one order slower
than acceleration. The approximation has been applied to many
problems in the past with good results.

If the displacement, velocity and acceleration of component
i (which can either be the ith mass or the ith mode as the case

may be) are denoted by u,, ﬁi’ and U, then the B = O method presc-

i
ribes the displacement and velocity at time t+At by the relations

u, (E+8E) = u (£) + Bt &, (1) + % at? i, (6) veen(4-1)
3, (+8E) = G, (6) + % AL i, (6) + G (c4at) ] veen(4-2)

where At denotes the time increment.

4.3 Step-by-Step Numerical Solution

The general procedure involved in extending the solution
from the "previous" time t to the '"present'" time t+At is briefly
explained below. It is necessary at the outset that the state of the
cylinder and the soil be known at time t. In this problem the state

can be completely defined by the displacement, the velocity and the
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acceleration.

a). The "present" displacement ui(t+At) is found from Eq.(4-1) in
terms of the variables of the previous time step.

b). The "present" acceleration ﬁi(t+At) is obtained from the
appropriate equation of motion among those listed in Section 4.1.
The acceleration in all cases is actually in terms of the present
displacement, velocity and the bedrock input accelerations. As
mentioned earlier, the present velocity will be approximated: by the
previous velocity.

¢). The present velocity ﬁi(t+At) can then be found from Eq.(4-2).

These three steps complete the solution for all the variables
at time t+At. The same process can be repeated to advance in the
time domain for the next time step and so on.

It should be noted that due to the assumption of no
feedback between the free field soil column and the cylinder-soil
composite, the responses of the free field within the entire period
of interest can be obtained completely independent of the cylinder-
soil composite. These can of course be used later as inputs for the

numerical solution of the responses of the cylinder-soil composite.

4.4 Stability of the Numerical Solution

Newmark (17) has shown that the stability of the 8 = 0
integration method requires that the time increment, At, be less
than 1/7 times the smallest natural period of the system. Strictly
speaking, this implies that an eigenvalue analysis should be made

for each problem to determine the proper time increment before any
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numerical integration can proceed. However, in many instances the
extra work involved in the frequency analysis can be avoided by
applying some simple rule of thumb for a rough estimate of the
smallest period and then a "safe" fraction of that period, say 1/10,
be taken as the time increment.

For the free field soil column, the smallest period can
be approximated by the period of the smallest one degree of freedom
lumped mass with all other lumped mass fixed. For the free field soil

shown in Figure 2.1b, supposing m, to be the smallest mass, the

i
time increment can be taken as
st = nia. ;Lo
ki *kip
oy
1 .
= min. the vertical 3 the horizontal|..... (4-3)
10
period of m period of my

For the rigid cylinder-soil composite, At can similarly

be taken as

Mrigid

where Kc is the total resisting spring force from the packing soil
against a unit movement of the rigid cylinder, all other (soil) nodes

being fixed, and Mr is the total mass of the rigid cylinder. This

igid
approximation of the smallest period for the rigid cylinder-soil
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composite was found to be reasonable for all the cases encountered
in this study.

However, no easy rule of thumb was found for the case when
the cylinder 1is treated as flexible. Here the frequency analysis
will have to be resorted to. Another not necessarily less tedius
alternative sometime followed in this study is to try various values
of At and that value is used when it yields stable results in the
sense that the responses computed are not sensitive to small

changes in the At used.

4.5 Computer Programs

There are several packages of programs developed for this
study: they are shown in Figure 4.1 each symbolized by a rectangle.
Each package, containing a main program and (usually) a number of
subprograms, does a certain portion of the analysis and its results
may be used as one of the inputs for another package. In Figure 4.1
each package is headed by the name as was actually used in the main
program in the computer code, and a summarization of its main
function is described within the rectangle. Then the outputs are
summarized immediately below the rectangle. The arrow pointing down
might branch off to many other packages where the outputs of this
particular package will be used as inputs. Most of the information
between the packages were transmitted in binary mode (i.e., using
unformatted READ and WRITE) and, in between the packages, were

stored on disks or tapes. For a floating point number, this would
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preserve a 14 digit (48 bit coefficient) accuracy.

The programs were checked separately c¢n the two main parts.
Firstly, the stiffness matrices were checked by statics. Static loads
were applied to the cylinder and displacements of the cylinder nodes
were compared with known solutions. In addition, static lonads were
applied at the top (free) surface nodes uf the cylinder-scil compo-
site and checks were made on the equilihrium betwze¢n the loads and
the boundary reactions and also on the disunlacement distributions.
Secondly, the dynamics pait of the prcgraus was validated by compa-
risons between the responses obtained f.om the mudal analysis and from
direct integration.

The following 1is a brief discussion for each of the packages.
The computer codes themselves are given in Appendix A.
1). NSTIFF. This package reads in the geometric and material proper-
ties for the cylinder-soil composite and computes the stiffness and
mass matrices, treating the cylinder as flexible, in the manner
described in Sections 2.4 and 2.5.

The only inputs required are the five material parau=ters
Es’ Vgr Do Er’ and m described in the bottom rigri cocrner of
Figure 4.2 and the five geometric parameters R, YJiCk, TH, B and H,
also shown in Figure 4.2, The program will then automatically
assume the node and element number (in accordance with the rules
which are given below) and compute the nodes’ coordinates to give
a problem definition (for a standard twelve node cylinder) similar
to that in Figure 2.7. To facilitate computer coding, the following

rules on geometry and tha numbering system are observed.
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a). Given a set of the five geometric parameters mentioned earlier,
the coordinates of all nodes will then be fixed in terms of these
parameters in the manner shown in Figure 4.2. The origin will be
at the center of the cylinder.
b) . The node number will start with the node at the left horizomtal
perimeter of the cylinder and will increase consecutively in a
clockwise fashion and in a widening circle of soil nodes. The last
interior nodes will be the nodes at the top ground surface. The
boundary nodes will be numbered in the following order: bottom nodes
left to right, left side boundary nodes top to bottom, right side
boundary nodes top to bottom (see Figure 2.7).If the stiffness of the
s0il finite elements are computed by Method 2, the extra interior
nodes within the quadrangles will be numbered next after the boun-
dary nodes, again in a clockwise widening circle manmer.
¢). The element number will start with the left horizontal packing
soil spring and again will increase in a clockwise widening circle
manner.

The cylinder, packing soil and soil finite element stiff-
nesses and masses are calculated in accordance with Sections 2.4.1,
2.4.2 and 2.4.3. Each of the non-zero upper triangﬁlar cylinder-
soil composite stiffnesses will be stored row by row as a one-
dimensional array. The diagonal elements of the mass matrix, the
only ones that are non—zero,‘are also stored in a one-dimensional
array.
2). MSOLVE. This package reads in the geometric and material prop-

perties and the resultant stiffness and mass matrices of the
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flexible cylinder-soil composite obtained from package NSTIFF, reads
in the free field soil column properties, the damping factor u, the
integration time increment and the input and output control parame-
ters. Finally, it reads in, all at one time, the horizontal and
vertical bedrock earthquake accelerations for the entire period of
interest.

Then making use of the numerical integration procedure out-
lined in Section 4.2, the step-by-step solution will begin as follows:
a) . The responses of the free field soil column will be obtained
according to the equation of motion in Section 3.3.

b). The boundary displacements and velocities of the cylinder-soil
composite will be interpolated from the result of a). in the manner
described in Section 3.4.

c). The responses of the flexible cylinder-soil composite will be
obtained according to the equation of motion in Section 3.5.1.1.
The direct integration method 1is used.

d). The internal moments at the cylinder nodes will be obtained in
the manner described in Section 3.6.2.

Step a). to d). will be repeated up to the time desired.
3). RIG20. This package does the same thing as MSOLVE except that
here the cylinder is treated as rigid. All the steps in the solu-
tion are similar to those of MSOLVE except the following:

c). The responses of the rigid cylinder-soil composite will be
obtained with the rigid cylinder equation of motion as described
in Section 3.5.1.2.

d). The internal moments at the rigid cylinder nodes are found in
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the manner described in Section 3.6.3.

4). WACC. In modal analysis, the responses of the free field are
found for the entire period of interest by this package. These res-
ponses will be read later on at each time increment as inputs for
the cylinder-soil composite.

As before, the equation of motion for the free field soil
column in Section 3.3 will be integrated numerically up to the time
desired.

5). FQTAl. This package reads in the stiffness and mass matrices

of the cylinder-soil composite, deletes the degrees of freedom asso-
ciated with the boundary nodes and then performs the eigenvalue
analysis as described in Section 3.2 to obtain the frequencies

and mode shapes.

6). EIGl. This package reads in the mode shapes of the flexible
cylinder-soil composite from package FQTAl and calculates the modal
moments in the manner described in Section 3.6.4.

7). SRIGFQl. This package reads in the stiffness and mass matrices
of the flexible cylinder-soil composite from NSTIFF, then the oper-
ation described in Section 2.5.2 is performed on these matrices to
obtain the stiffness and mass matrices for the case of a rigid
cylinder-soil composite.

8). SRIGFQ2. This package reads in the stiffness and mass matrices
of a rigid éylinder-soil composite from package SRIGFQl, deletes

the degrees of freedom associated with the boundary nodes and performs
the eigenvalue analysis described in Section 3.2 to obtain the fre-

quencies and mode shapes.



59

9). EIGRIG. This package reads in the mode shapes of the rigid
cylinder-soil composite from package SRIGFQ2 and calculates the modal
moments in the manner described in Section 3.6.4.

10) . PA. This package reads in the stiffness matrix of the cylinder-
soil composite (including the boundary degrees of freedom) from
SRIGFQl, the mode shapes from SRIGFQ2, and then calculates the mode
participation factors c?, ci, and {di} according to Eqs.(3-20a),
(3-20b) and (3-20c) in Section 3.5.2.

11). TNORM4. This package reads in the mode participation factors

X
Cc

P ci and {di} from package PA and multiplies them at each time step

by either the appropriate free field displacements, {uF}, the appro-
priate free field velocities, {ﬁF}, or the bedrock accelerations,

ﬁg and Vé (see Eq.(3-19b)) read in from WACC. For each mode all the
results of the multiplications above are added to form the right

hand side of Eq.(3-19b). With the excitation input on the right hand
side found and with the frequencies read in from SRIGFQ2, the equation
of motion, Eq.(3-19b), is then numerically solved to determine the
modal amplitude, Ai'
12) . DINORM4. This package reads from TNORM4 the modal amplitude, Ai’
for all the modes at each time step; from EIGRIG2 the modal moments
for each mode; and from SRIGFQ2 the mode shape for each mode. The
sum over all the modes of each modal amplitude multiplied by the
corresponding mode shape give the displacements for all the nodes.
The sum over all the modes of each modal amplitude multiplied by the

corresponding modal moment gives the internal moments for the

cylinder nodes.



CHAPTER V
NUMERICAL RESULTS

5.1 General

This chapter presents the results that were obtained by
applying the method of analysis and computer programs developed
previously to a number of numerical problems. Inferences can be made
from these results to gain insights into the behavior of the models
as well as of the physical problems of engineering interest they
represent.

A summary of all the parameters that enter the problem is
given in the following.

a). For the eigenproblem of the cylinder-soil composite, the
parameters are the four geometric parameters - B, H, THICK, R - and
the five material parameters - Er’ m, ES, Vgr My - as noted in
Figure 4.2.

If the cylinder is assumed to be rigid, the result will
be independent of the cylinder elasticity modulus, Er' In such case
any nominal value for Er may be used for computational purposes.

b). For the free field soil column, the parameters are the geometric

parameters 1 i=1,2,...,n for "n" number of lumped mass (see

i 9
Figure 2.1b) and the material parameters Es, GS, m and u , all of

which have been defined in Section 2.3.

60
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c). The damping matrix for the cylinder-soil composite is defined

by the damping proportionality constant u as given in Eq.(2-2).
Also, note should be given to the‘following.

a). The number of cylinder nodes is twelve in all the examples used

unless otherwise stated. This is considered to be the maximum

number of cylinder nodes that is practical considering the limited

computational resources.

b). The packing soil annular thickness, TH, is .5 ft. unless

otherwise stated.

5.2 Influences of Modelling Parameters for the Cylinder-Soil Composite

5.2.1 General
Parameters such as the boundary distance, the pack-

ing soil annulation thickness and the number of cylinder nodes do
not have any meaning in the real physical problem, but rather exist
only in the particular numerical model used. The effects of these
parameters on the natural frequencies and modal moments will be
investigated. This will be done following the discussion in the next
section on the frequencies and mode shapes of a representative
problem. |

5.2.2 Frequencies and Mode Shapes

An eigenvalue analysis is made of a cylinder-soil
composite with the following parameters:

B=12 ft. , H=4 ft., , THICK = 3/8 in. , R = 2 ft. ,

E_= 4.589x10° psf. , m_ = 15.155 1b.-sec.2/ee.* |
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With the cylinder treated as rigid, the frequencies are listed in
Table 5.1, a few of the mode shapes are plotted in Figure 5.1 and
a few typical modal moments are listed in Table 5.2. With the
cylinder treated as flexible, a few of the mode shapes are plotted
in Figure 5.2.

The following obsérvations are made.
a). Unlike the case of a shear beam in which the fundamental fre-
quency 1s much smaller than the higher frequencies, the frequencies
of the cylinder-soil composite increase quite gradually as shown
in Table 5.1. This would tend to lessen the dominance of the lowest
few modes in the response as is the case of the shear beam.
b). The first five modes of the rigid cylinder case (Figure 5.1)
have very similar configurations to the corresponding ones of the
flexible cylinder case (Figure 5.2). They would most likely
converge to the same frequency and mode shape, mode by mode, as the
flexible cylinder is made incresingly stiffer. The sixth modes for
the two cases obviously have different mode shapes and can not be
sald to correspond to each other.

5.2.3 Variation of Boundary Distance

One of the basic assumptions in this investigation
is that the motions of the bottom and side boundaries of the cylinder-
soil composite are the same as those of the free field soil columm
at the same level. Intuitively, the appropriateness of this assump-
tion should increase as the boundaries are set further away from

the cylinder. In other words, the frequencies and mode shapes of
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the cylinder-soil composite should converge toward certain values
and shapes as the boundary distance is increased .

To verify the above, frequencies analyses were made of rigid
cylinder-soil composites with varying boundary distance, B. The dimen-
sionless frequency term, fi/VEs/(msHZ) , are plotted in Figure 5.3a
and Figure 5.3b for the first 15 modes as a function of the dimen-
sionless boundary distance term, B/R. In these figures fi is the
frequency of mode i1 in cps. It should also be noted that, as the
cylinder are assumed to be rigid, the parameters ms/mr and THICK/R
will enter only in that portion of the mass matrix that involves
the cylinder masses.

As expected, both Figures 5.3a and 5.3b suggest that the
frequencies do tend to become constant as B/R is increased. The mode
shapes, not shown here, also have the same trend. In most of the
examples in this study the value of B/R used is about 7. It can
be seen from Figure 5.3a that at that point, even though some of
the frequencies still indicate a dependence on the parameter B/R,
the rate of change is small and thus it will be assumed that these
frequencies are close to their asymptotes at B/R = o,

5.2.4 Variation of Packing Soil Annulation Thickness.

Eigenvalues analyses were made of four cases of
rigid cylinder-soil composites with varying packing soil annulation
thickness, TH. For the cases 1, 2, 3 and 4 the values of TH will
be .25, .5, 1.0 and 1.5 ft. respectively. Other parameters are

as follows:
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B=12 ft. , H= 4 ft. , THICK = 3/8 in. , R = 2 ft. ,
m_ = 15.155 1b.-sec.2/t.% | E_ = 1.85x10° pef. ,
v, = «4, m_ =3.725 Ib.-sec./£t.?

The frequencies and modal moments for the first four modes
and for mode 20 are listed in Table 5.3. It is seen that the freq-
uenciles and modal moments for case 1 and case 2 are very close toge-
ther for the first four modes, while those of case 3 and case 4
have somewhat larger discrepanci;s. However, for the higher modes
such as mode 20 in Table 5.3, the modal moments for the four cases

have a totally different configurations.

5.2.5 Variation of Number of Cylinder Nodes

Eigenvalue analyses were made of four cases of rigid

cylinder-soil composite in which the number of cylinder nodes are
8, 12, 16 and 20 for the cases 1, 2, 3 and 4 respectively. Note
that each case would involve a different finite element mesh pattern
for the soil. The other parameters are as follows:

B=56 ft. , H= 20 ft, , THICK = .41 ft. , R =9 ft. ,

m_ = 15.155 1b.-sec.’/ft.% , E_ = 1.85x10° psf. ,
2

vy = 4oy, m = 3.725 1b.-sec. /ft.4

Since each of the four cases involves a éubstantially
different number of degrees of freedom, the comparison of any other
than the lowest frequencies is considered to be inappropriate.

Figure 5.4 shows the 1owesf frequencies and the correspon-
ding modal moments for the four cases. They are seen to be in

reasonably close agreement.
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5.3 Responses from Direct Integration and Modal Analysis

Responses were obtained, using both direct integration
and modal analysis, for a problem defined in Figure 5.5 and

summarized in the following:
a). The rigid cylinder-soil composite has the following parameters:

B=12 ft. , H= 4 ft. , THICK = 3/8 in. , R = 2 ft, ,

E_= 4.589x10° psf. , m_ = 15.155 1b.-sec.2/£e.t |

E_ = 1.85x10° psf. , v = .4, m =3.725 1b.-sec.2/ft. %

This is the same cylinder-soil composite as discussed in Section 5.,2.2
whose frequencies and mode shapes are given in Table 5.1 and

Figure 5.1.

b). The depth of the soil layer down to bedrock is 150 ft. which

will be divided into ten equal sublayers. Thus for the free field

soil column, 1, = 15 ft. for i=1,2,...,10. The soil properties

i

are uniform throughout the ten sublayers and are the same as those
of the cylinder-soil composite, i.e., Es = I.BSXIOS psf.,

Gs = 6.607><104 psf. (corresponding to vy =.4) and m, = 3.725

lb.-sec.zlft.a.

c). The damping proportionality constant for the cylinder-soil compo-
site is assumed to be u = .,00136 which, by Eq.(2-50), corresponds
to the following modal damping ratios:

A, = .02078, A

1 = .02485, A

= .02660, A, = .04084,

2
= .09583, A

3 4

A

20

57 = .25934

for mode 1, 2, 3, 4, 20 and mode 57 (the last mode) respectively.

These damping ratios seem reasonable values for the physical systems
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under consideration.

If the dashpot damping constant and the spring constant
of the free field soil are assumed to be related by the same propor-
tionality u = ,00136, the shear damping coefficient of the soil
would be equal to 140.17 psf.-sec.

The bedrock motions will be those of 1940 El Centro earth-
quake in the N-S and the vertical directions.

For the earthquake up to 20 secs. the maximum moments for
each of the cylinder nodes (from direct integration) are listed in
Table 5.4. The maximum moment for all nodes is 1668.142 ft.-1b.
occuring at node 11 at 8.748 secs.

The moments at node 1, 2, 3 and 4 from both direct inte-
gration and modal analysis are plotted up to 9 secs. of earthquake
in Figures 5.6a, 5.6b, 5.6c and 5.6d. It is noted that at all the
four nodes, the responses calculated from the two methods are almost
identical except for a few small discrepancies that are most likely
due to round off errors. This constitutes a check on the reliability

of the dynamic part of the computer programs.

5.4 Method 1 and Method 2

The soil finite element stiffness is calculated either by
a procedure involving reduced degrees of freedom, referred to here
as Method 1 and discussed in Section 2.4.3.2 or by using the tri-
angular finite element stiffness, referred to as Method 2 and discussed

in Section 2.4.3.3. The degree of approximation introduced by Method 1
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has been discussed in (15) but in the framework of a different
physiéal problem. For the example in Section 5.3, the moments at node 1
of the cylinder when the stiffness is calculated by Method 1 and

Method 2 are shown in Figure 5.7. The magnitude of differences shown

is typical of all the other nodes. It will be noted that the difference
in the maximum moments between the two methods is about 8 Z in

Figure 5.7 which is small considering the approximate nature of the
stiffness calculation. The Method 1 case requires 94 secs. of CP

time for the solution up to 2 secs. of earthquake while the Method 2

case requires 415 secs. of CP time.

5.5 Effects of Stiffness of Cylinder (Relative to Soil)

5.5.1 General
Results are given in the following sections to

show the effects of the cylinder stiffness on the behavior of the
cylinder-soil composite. Specifically, these results are presented
in such a way as to emphasize the relationship between the stiffness
of the cylinder and the convergence of its behavior to that of a
rigid one. The rigid cylinder case, even though a limitting case
for the flexible cylinder, involves a different tréatment and solution
method and usually requires a smaller computer time to solve. The
information in these sections could be helpful for the determination
of whether a cylinder is stiff enough to be treated as rigid.

In connection with the above, the stiffness of the cylinder
is meaningful only when it is considered relative to that of the soil.

In this study, the relative cylinder-soil stiffness is expressed as
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r Ir
a = eeoes (5-1)

2, .3
Es (l-vs) R™ H

To obtain a feel for the range of values of o in actual physical
situations, it may be noted that a 36 in. diameter steel pipe with

a thickness of 0.7 in. (Ir = ,343 in?) having Er = 30><106 psi.,
buried under a cover depth (H) equal to 36 in. in a soil having

E8 = 1.85x105 psf. would correspond to a = .032; an R.C. concrete
pipe 36 in. in diameter conforming to ASTM Spec. for Class III, wall
A culverts (19) with Ir of the transformed section equal to approx-
imately 96.33 in? and buried under the same conditions would corres-

pond to a = .079.

5.5.2 Effects on Frequencies

Curves of the ratio, (f /£ )i , of the

flexible’ "rigid
1th frequency for the flexible cylinder case to that for the rigid
cylinder case are plotted against the relative cylinder-soil rigid-
ity, « , in Figure 5.8a and Figure 5.8b for i=1,2,...,5. These
figures show that, with increase in cylinder stiffness, the frequen-
cies, as expected, approach those of the rigid cylinder. The compa-
rison i3 done only for the first five modes due to considerations
as explained in b). of Section 5.2.2.

Figure 5.8a which is for H/R = 2 indicates that a cylinder
must have o > .15 for the frequencies of the first five modes to
converge to within 5 % of those of the rigid cylinder. Figure 5.8b

which is for H/R = 6 (other constants being the same as those for

Figure 5.8a) indicates that for the same 5 7 convergence the
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cylinder must have a > .004. This seems to suggest that a more deeply
buried cylinder would behave more like a rigid one.

5.5.3 Effects on Response of a Simplified Problem

A very simplified problem is devised as shown in

Figure 5.9a in which the cylinder is loaded by the indicated symmet-
rical sinusoidal displacements of the outer boundary of the packing
soil. The procedures for obtaining the stiffness and mass matrices,
the equations of motion and the moment computations for both rigid
and flexible cylinder are the same as those discussed earlier for
the cylinder-soil composite except that, of course, here the finite
element soil is out of the picture and the emphasis is on the
responses of the cylinder itself.

The example considered here has the following properties
(see Figure 5.9a):

T = Period of boundary displacement = 2% = ,1224 secs.,

a=,004 ft. , R=1 ft., , THICK = 1/4 in. , TH = .5 ft. ,

m_ = 15.155 1b.-sec?/ee? , E_ = 3x10° pst. , v_ = .25,

m = 3.725 lb.—sec?/ft?

Three values for Er are considered; they are 47.O><107 psf., 45.9x108

psf., and » (rigid cylinder) referred to as case 1; 2 and 3 respec-
tively.

The moments that occur at node 1, 2 and 3 for the three
cases of cylinder rigidity are shown in Figure 5.10. The spring forces
on the cylinder nodes (see Figure 5.9b) at .0324 secs., which is
approximately the time when the maximum moments occur at all the nodes,

are shown in Table 5.5. From these results it is noted that the pattern
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of the forces from the surrounding soil on the cylinder changes as

the rigidity of the cylinder varies. The maximum force and the maximum
moment become bigger with increase in cylinder rigidity. The above
behavior is observed when the period of the exciting load (.1224 secs.
in this case) is one order of magnitude larger than the largest period
of the flexible cylinder and packing soil system (.0153 secs. for

case 1). This is expected to roughly resemble the interaction within

a typical cylinder-soil composite where the modulus of elasticity

of the soil surrounding the cylinder is much smaller than the modulus
of elasticity of the cylinder material.

5.5.4 Effects on Response

5.5.4.1 Problems with Prescribed Motion on the

Top Boundary.-- A number of problems were solved in which the top

nodes’ boundary (node 37, 38 and 39, for example, in Figure 2.7) are
prescribed to have the same motions as the top side boundary nodes
(node 41 and 45). Hence, the top boundary cannot be regarded as a
free surface. Nevertheless, the responses obtained from these
problems should still be useful in giving us a feel in so far as
the quantitative relationship between the relative cylinder-soil
stiffness and the convergence of the response to that of a rigid
cylinder case is concerned.

A cylinder-soil composite with eight cylinder nodes is used
with the following parameters:

B=4 ft. , H=2 ft, , THICK = 1/4 in. , R =1 ft. ,
m = 15.155 lb.-sec?/ft? ’ ES = 3.0><105 psf. ,

v, = .25, m, = 3.725 lb.-aec?/ft?
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The cylinder stiffness varies for three cases in which Er = o (rigid
cylinder), E_ = 45.9x10° psf. ( a = .074) and E_ = 45.9x10° pef.
( a = .0074) referred to as case 1, 2 and 3 respectively. The soil
layer depth is D = 100 ft. which is divided into 10 equal layers
and all the parameters are the same as those for the cylinder-soil
composite. The bedrock motions are the 1940 El1 Centro earthquake
in the N-S and the vertical directions starting at 1.5 secs.
Moments at nodes 1, 2 and 3 are shown in Figure 5.11. It
is seen that the moment for case 3 ( a = .0074) and those for the
rigid cylinder case have a maximum discrepancy of about 60 Z at 1.6
secs., whereas the moment for case 2 ( a = .074) and that for the
rigid cylinder case have a discrepancy of only about 15 % at the

same time.

5.5.4.2 Responses of Rigid and Flexible Cylinder.--

The example in Section 5.3 is used here to demonstrate the difference
between a rigid cylinder and a flexible cylinder solutions for this
particular case in which the cylinder stiffness is a = .0044. Moments
at nodes 1, 2 and 4 for both solutions are shown in Figures 5.12a,
5.12b and 5.12c. It is seen that in this case in which the cylinder
is apparently very flexible, the assumption that the cylinder is
rigid will give moments which are higher by as much as eighteen times
(i.e., at node 4 at .9 secs.).

The rigid cylinder case having 57 degrees of freedom requires
a CP time of about 94 secs. and the flexible cylinder case having

78 degrees of freedom requires about 1168 secs. of CP time. The much
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larger computer time required for the flexible cylinder case is due
to the fact that, beside the increase in degrees of freedom, the
smallest periqd for the flexible cylinder case is .0004 secs. nec-
essitating an integration time increment of .0001 secs while the
smallest period for the rigid cylinder case is .01648 secs. allowing

a time increment of .002 secs.

5.6 Contributions of the Modes

It is of interest to consider the relative importance of
the various normal modes in the response of the system. The response
of the example in Section 5.3 and Figure 5.5 will be used. The foll-
owing additional information for that example is pertinent. First
it is noted that the bedrock accelerations (1940 El Centro earth-
quake) have significant frequency components ranging from .003 cps.
to about 30 cps. The free field soil column has frequencies ranging
from .210 cps. to 4.668 cps. Finally the cylinder-soil composite
(which has both the bedrock accelerations and the free field soil
motions as inputs) has frequencies ranging from 4.865 cps. to
60.690 cps., as shown in Table 1. From the above, we would not expect
any large modal responses of the cylinder-soil coﬁposite in modes
having frequencies higher than, say, 40 cps.

The response up to 9 secs of earthquake, discussed previously
in Section 5.3, has been given in Figures 5.6a, 5.6b, 5.6c and 5.6d,
from which it is seen that three '"peak" moments occur at approximately

6.0, 7.0 and 8.8 secs. The maximum moments at node 11 at these times
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are 1517.81, 1368.72, and 1492.82 ft.-1lb. respectively. The contri-
butions to these three moments broken down by the modes are shown

in Table 5.6. The modal amplitudes for the time 6.0, 7.0 and 8.8 secs.
are shown in Table 5.7, and the free field soil displacements inputs
at these times are shown in Figure 5.13. The following observations
are made.

a). From Table 5.6 it is seen that the bigger moment contributions

are from the lower half of the modes. The most important mode is

mode 4, Other modes whose contributions are also significant are

mode 1, 2, 3, 6, 7, 8, 9, 16, 18, and 19.

b). The moment contributions from the modes at 6.0 secs. and 8.8 secs.
are of different nature even though the values of the moments (sum

of all modes) for the two cases are of the same order of magnitude.

At 8.8 secs. (see Table 5.6), the maximum contribution from the modes
is at most of the same order of magnitude as the final sum (e.g.,

the maximum contribution from mode 4 of 2153.09 ft.-lb. as compared
to the sum of 1492.82 ft.-1lb.). The moment from any of the last four
modes, for example, constitutes at most 2.9 % of the final sum and
thus can be neglected without appreciable error. At 6.0 secs. however,
the moment contributions from some of the modes can be as much as

40 times the final sum (e.g., the contribution from mode 4 of 47685.30
ft.-1b. as compared to the sum of 1517.81 ft.-1lb.). This case of
getting a relatively small number as the difference of large numbers
necessitates a high degree of computational accuracy. The moment

from one of the last five modes, for example, is as much as 41 7%
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of the final sum and thus can not be neglected. This apparent signi-

ficance of the higher modes is unusual and is analyzed further below.
It will be shown in the next section that the response of‘

the cylinder-soil composite is predominantly governed by the displace-

ment inputs at the boundary (as against the boundary velocities and

the bedrock accelerations). It is then noticed from Figure 5.13 that

even though the relative distortions among the free field masses

(i.e., the distortion of the boundary) are about the same at both

6.0 and 8.8 secs., the values of the displacements as measured relative

to the instantaneous bedrock displacements all have much higher

values at 6.0 secs. than at 8.8 secs. The large magnitudes of the

moment contributions from the various modes at 6.0 secs. are the

results of these large inputs of free field displacements. Although

the contributions of the higher modes may be small in comparison

with those of the lower modes, they are not small in comparison

with the final sum. That sum, i.e., the final value of the moment

is relatively small due to the fact that the boundary distortions

are actually much smaller than the individual displacements. The

preceding observations seem to point to the desirability of separating

the boundary displacements input into two parts; (1) a uniform

displacement (same for all boundary points), and (2) deviations

from the uniform displacement. With such an approach the moment

contributions from the modes would probably have smaller numerical

values and the contributions of the higher modes would then become

negligible as compared to the magnitude of the final sum.

It may also be noted from Figure 5.13 that at 7.0 secs.
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the relative distortions of the free field masses have the same order
of magnitude as those at 6.0 and 8.8 secs. The displacements as
measured from the reference (bedrock) are approximately half way
between those at 6.0 and 8.8 secs. As expected, the apparent
importance of the higher modes is also seen to fall roughly half

way between those at 6.0 and 8.8 secs.

5.7 Relative Importance of the Various Input Motions

The example of Section 5.3 and Figure 5.5 will again be
used to examine the contributions of the various inputs to the
response of the cylinder-soil composite. In this case the inputs
consist of the free field displacements inputs Ugs Vgs Ug, Vgs Y0
V.03 the free field velocities inputs 68, 68’ &9, 69, ﬁlO’ 610;
and the bedrock accelerations inputs ﬁg and Vg as shown on the left
side of Figure 5.5.

Consider Eq.(3-20f). For a certain mode i, the maximum res-

ponse caused by an input, (input),, alone with no multiplication

]
by the mode participation factor (in other words, the mode partici-

pation factor is set equal to one unit) will be represented by the

maximum value of Bi , (B , over the entire time period considered,

ij)max
when multiplied by the appropriate mode

]
1j)max
participation factor, (mode part. fact.)

i.e., 20 secs. (B
13° as in Eq.(3-20e) will

give the maximum contribution from the forcing function associated

with (input), to the amplitude of mode i, A!.

3 i

Table 5.8 shows (Bij)max caused by the inputs ugs Voo U090



76

Vi0® Y9* Vgs 610, 610, ﬁg, and 69 for the more important modes, i.e.,
mode 1, 2, 3, 4, 6, 7, 8, 9, 16, 18 and 19. The corresponding mode
participation factors are listed in Table 5.9. Finally, the maximum
contributions to the modal amplitudes obtained by multiplication of
the appropriate corresponding elements in Table 5.8 and 5.9 as indicated
in Eq.(3-20e) are listed in Table 5.10.

In Table 5.8 it is noticed that the maximum responses due
to eacﬁ of the inputs (with the mode participation factor equal to
one unit) decrease as the mode becomes higher. This is reasonable,
considering the fact that (see the beginning of Section 5.6) the
frequency components of both the bedrock accelerations inputs and the
free field displacements inputs are lower than the middle frequencies
range of the cylinder soil composite.

It should be emphasized that (B in Table 5.8 and the

ij)max
maximum contributions to the modal amplitudes in Table 5.10 are the
m#ximum values over the 20 secs. period of earthquake. These maximum
values in general do not occur at the same time for different inputs.

Table 5.10 shows that the actual maximum contributions to the
modal amplitudes from each of the inputs do not necessarily decrease
as the mode becomes higher. This is, of course, due to the influence
of the mode participation factors.

It is also noted in Table 5.10 that the free field displace-
ments inputs have far greater maximum contribution than the other
inputs. For example, for mode 4 the maximum contribution, 8.5477
£e.1/2.1p,1/2

-sec., from the displacement input ug is about 240 times

greater than that from the bedrock accelerations and about 310 times
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that from the free field velocities.

To have a feel for the magnitude of contributions from various
inputs at any one instant in time, the '"peak" response time at 6.0
and 8.8 secs. will be used for illustrative purposes. At 6.0 secs.
it is seen from Table 5.7 that the three highest modal amplitudes
are 27.5570, 6.8248 and 5.0661 ft/2-1b1/%-sec. for mode 2, 4 and 9
respectively. From Table 5.10 the maximum contributions for all times
to mode 2, 4 and 9 from the bedrock accelerations inputs are .71527,

.03541 and .00988 ft}/z-lb}/z-sec., respectively; and from the free

field velocities inputs are .08398, .02767 and .01649 ft}lz—lb}Lgec.,

respectively. It is seen that the major portion of the modal amplitudes

come from the free field displacements. At 8.8 secs. the three highest

12 4,112

modal amplitudes are 2.037, .3628 and .3081 ft. -gsec. for mode

1, 8 and 4. The maximum contributions for all times to these modes

from the bedrock accelerations inputs are .38415, .01482 and .03541

1/2 ..1/2

ft.' "=1b,’ "-sec.; and from the free field velocities inputs are

.02966, .00345 and .02767 fri/2-1p1/2

-sec. It is, therefore, apparent
that the free field displacements have a dominating influence on the

response.

5.8 Effects of Damping

Figure 5.14 shows the effects on the response at node 1 of
the éxample presented in Section 5.3 if the damping (velocity) term
is deleted from the equation of motion. It is seen that the damping

in this example has negligible effects on the response for the short
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period of 2.0 secs. considered. The maximum difference between the
damped and undamped case is about 2 %Z. The magnitude of the difference
is typical of all other cylinder nodes. It should be kept in mind,
however, that the above relates only a single type of damping (i.e.,
proportional viscous damping) and a single value denoting the amount

of damping as specified by the damping constant, u.



CHAPTER VI

SUMMARY AND CONCLUDING REMARKS

6.1 Summary

A numerical model has been developed for the plane strain
formulation of the dynamic response of a buried cylinder subjected
to earthquake motions transferred from the bedrock. The model
consists of:

a). The free field soil - a series of lumped masses, springs and
dashpots extending from the bedrock to the top surface represents

a typical column of soil at a relatively large distance in the
horizontal direction away from the cylinder.

b). The cylinder-soil composite - a rectangular region of two-
dimensional finite elements represents the soil surrounding a
circular region of radial springs (packing soil), which in turn
circumscribes the cylinder. Two models were used for the cylinder.

One was lumped mass and continuous flexibility and the other lumped
mass but with infinite rigidity. A viscous type of damping is assumed.

The earthquake (bedrock) motion excites the free field soil
column, whose resultant motions are used as inputs to the boundary
of the cylinder-soil composite. The feedback between the two parts
is assumed to be negligible.

The equations of motion of the model were solved by both

79
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direct integration and modal analysis. In both cases, the Newmark’s
8 numerical integration procedure is applied. Computer programs in
FORTRAN were written to carry out the numerical soluéions. The
stiffness matrices were checked by statics, and the dynamics part

of the program were checked by comparison of results between modal
analysis and direct integration. The programs developed were utilized
in a series of response analysis and parametric studies. Inferences
were made from the results in order to gain more complete understan-
ding of the behavior of the problem and the relative importance

of the various parameters. The major results are summarized as
follows:

a). Concerning the modelling parameters, it was found that the
frequencies and mode shapes of the cylinder-soil composite tend to
become constant as the boundary distance is increased, that the
packing soil annulation thickness significantly affects the higher
modes, and that the values of the first mode of different cylinder-
soil composites with the number of nodes of the cylinder ranging
from eight to twenty are in close agreement with one another.

b). The responses of models with the stiffness of the finite element
representing the soil calculated by Method 1 and Method 2 do not
differ significantly.

¢). Curves are given which show the quantitative relationships
between the cylinder stiffness and the convergence of the first five
frequencies to those of the rigid cylinder case. It was found that

with an increase in the cylinder stiffness the maximum internal
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moments in the cylinder wall increase and converge to the values
calculated for the rigid cylinder case. The rigid cylinder case

is found to require much less computer time to solve.

d). The free field soil displacements have a much greater influence
on the cylinder response than either the free field velocity inputs
or the bedrock acceleration inputs.

e). A number of modes in the lower half of the frequency spectrum
have significant influence on the response. It also appears likely
that if the boundary displacements of the cylinder-soil composite
are separated into a uniform‘part and deviations from the uniform

part, the role of the higher modes may be drastically diminished.

6.2 Concluding Remarks

A model and method of analysis have been developed to
study the problem of a cylinder embedded in a semi-infinite soil
layer subjected to bedrock earthquake excitation. Parametric studies
and analyses of the responses yielded data and information that have
provided much insight'into the behavior of the system and the relative
importance of the parameters.

The studies involving numerical data in ihis investigation
must be considered exploratory in nature. This is due largely to
resource limitations. It appears that a number of pertinent topics
deserve further consideration. They include: the effects of the
various modelling parameters on the response and their bearings

on the degree of approximation; the potential advantage that may



.82

accrue from considering the boundary displacements of the cylinder-
801l composite as made up of a uniform part plus a deviatory part;
a sufficient number of response studies which would provide a clearer
picture, and possibly some criteria, as to the stiffness range of
the cylinder which can be approximated by an infinitely rigid ome.
Even though the method of analysis in this study utilizes
well known principles of mechanics and the problem formulation
employs reasonable numerical values and assumptions, the final
validation of this study, strictly speaking, must come from expe-
rimental data. Such experiments are difficult to perform, to say
the least. Once the analytical method in the linear range has been
validated, the next logical extension to this study would be the

incorporation of non-linearity in the soil and the cylinder material.
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Table 5.1.--Frequencies

Mode | Frequency, cps.
1 4.865
2 5.816
3 6.225
4 9.560
5 11.320
6 12,117
7 12.362
8 12,829
9 13.263

10 13.751

11 15.179

12 15.591

13 15.894

14 16.357

15 16.543

16 17.386

17 17.427

18 19.113

19 21.443

20 22.429

21 23.397

22 25.193

23 25.988

24 26.605

25 26.920

26 28.947

27 29.193

28 30.642

29 30.878

Mode | Frequency, cps.
30 33.628
31 33.708
32 34.486
33 35.093
34 35.159
35 35.437
36 36.164
37 36.804
38 39.558
39 39.717
40 42.173
41 42.175
42 42.489
43 42.596
44 42.763
45 46.126
46 48.814
47 48.998
48 49.405
49 49.625
50 50.303
51 50.404
52 51.066
53 51.332
54 52.464
55 54.097
56 56.603
57 60.690
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Table 5.4.--Maximum Moments

Maximum Time,

Node Moment, ft.-1b. | secs.
1 364.76 3.948
2 1624.27 8.748
3 1442.40 8.748
4 258.27 5.348
5 1464.08 8.748
6 1598.30 8.748
7 249.90 5.298
8 1614.88 8.748
9 1647.30 8.748
10 254.56 5.348
11 1668.14 8.748
12 1586.57 8.748
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(a) Cylinder and Semi-infinite Soil Layer
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(b) Two-Part Idealization

Figure 2.1 1Idealization of Cylinder and Semi-infinite Soil Layer
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Spring model
of packing soil

Soil finite elements

Cylinder

Compression spring

Shear spring

Figure 2.2 1Idealization of Cylinder and Packing Soil
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Figure 2.3 Degrees of Freedom of Cvlind~r
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(a) Coordinates for Stiffness Matrix [S ]

Flexural rigidity = E_I ‘rea = A
rr r

Momant of inertia = Ir

(b) Coordinates for Flaxirility fatrix [Fp.]

Figure 2.4 A Typical Arc
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3 Local Coordinate-

2% ‘at node B
eB

2

A

Global coordinates

Q

Local coordinates

at node A

Figure 2.5 Local and Global Coordinates of an Arc

Global coordinates

Packing soil
thickness, TH

nr = number of cyiinder nodes \\<§§A
a = Subtending angle between two cylinder nodes

Wd = 27 (R+TH/2) /nr

Figure 2.6 Local and Global Coordinates of Packing Soil
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Figure 2.7 Nodes and Elements Numbering Systenm
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Figure 2.8 A Finite Element Quadrangle
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Figure 2.9 A Triangular Finite Element
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(a) Flexible Cylinder Degrees of ~reedom

(b) Rigid Cylinder Degrees nf Freedom

Figure 2.10 Flexible and Rigid Cylinder
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Figure 3.2 Force on a Tvpical Crlinder XNode
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(b) Tangential D’Alembert Forces

Figure 3.3 Forces on a Rigid Cylinder
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Figure 3.4 Released Structure
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moving boundary
of the packing soil

material parameters
of cylinder

material parameters
of packing soil

Es . vs , ms

(a) Problem Definition

o 5P
v TYFE 3)

F 1)

(b) Forces on the Cylinder Nodes

Figure 5.9 Simplified Problem
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Figure 5.10 Moments for Simplified Problem
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node number

™ —o—e—case 1
—+—s-case 2
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Figure 5.11 Problem With Prescribed Top Boundary
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Figure 5.12 Rigid and Flexible Cylinder Solutions
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APPENDIX A

COMPUTER PROGRAMS

Presented in this appendix are the computer programs
used in this study. There are a total of 12 programs (or packages):
NSTIFF, MSOLVE, RIG20, WACC, FQTAl, EIGl, SRIGFQl, SRIGFQ2, EIGRIG2,
PA, TNORM4, DINORM4; all of which are shown in Figure 4.1 with a
brief description of their main functions. See also Section 4.5

for a discussion on relevant aspects of these programs.
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Package SRIGFQ2 This package also includes subroutine EIGEN given
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