THEORETICAL STUDY OF PRODUCT - GENERATED ATMOSPHERE PACKAGES FOR FRUIT

> Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY THOMAS JAMES BUSSELL 1976

 $\sqrt{1+\epsilon}$.

This is to certify that the

thesis entitled \mathbb{Z} thesis entitled
Theore fie of Study of Product-Generated Hmosphere Paskages for Fruit

presented by

Thomas James Bussell

has been accepted towards fulfillment of the requirements for

M.S. degree in Packaging

G. T. Jõnson
ajor professor Gunilla G. T. Jonson

Major professor

I

Date <u>August 10, 1976</u>

0-7639

ABSTRACT

THEORETICAL STUDY OF PRODUCT-GENERATED ATMOSPHERE PACKAGES FOR FRUIT

BY

Thomas James Bussell

This thesis investigates the possibility of replacing controlled atmosphere storage of fruits with a product-generated atmosphere package. The investigation is comprised of an economic analysis and a computer model. The McIntosh apple is the product. Internal package conditions are generated for three films and temperatures between 3.5°C and 7°C.

Results of the economic analysis and computer model support the feasibility of product-generated storage costs for product-generated storage packages are less than either cold storage or controlled atmosphere storage. Apples stored in low density polyethylene had significantly lower respiration rates than cold storage apples.

THEORETICAL STUDY OF PRODUCT-GENERATED

ATMOSPHERE PACKAGES FOR FRUIT

BY

Thomas James Bussell

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements **for the degree of**

MASTER OF SCIENCE

School of Packaging

ACKNOWLEDGMENTS

I would like to thank Dr. Gunilla Jonson for her patience and understanding with this thesis. Sincere appreciation is also extended to Dr. Wayne Clifford for his assistance in the computer model and to Dick Patterson and Dr. Thomas Pierson for their help. Lastly, I would like to thank my wife, Barb, for all the many ways she helped me.

TABLE OF CONTENTS

Chapter

Page

LIST OF TABLES

 $\langle \pmb{v} \rangle$

LIST OF FIGURES

Figure

CHAPTER I

INTRODUCTION

CHAPTER I
INTRODUCTION
Section 1: Background Section 1: Background

Packaging fruits and vegetables in transparent plastic bags has become pOpular commercially. These packages provide efficient distribution and attractive display at point of sale.¹

This package is utilizing the three basic functions of a package--that is, the package: (1) communicates to the consumer, (2) provides utility, and (3) provides protection and containment of the product.

Extending storage life, which is part of the protection function, is economically important. The major storage life benefit derived from the familiar polyethylene fruit bag is that it hinders water loss and subsequent shriveling of the fruit. functions of a packa
municates to the con
(3) provides protect
Extending st
protection function,
major storage life b
polyethylene fruit b
and subsequent shriv
Greater gain
are today achieved b
prior to the packagi
ethylen

Greater gains in extending storage life of fruits are today achieved by modifying the storage atmosphere prior to the packaging and distribution of the poly ethylene bag. An atmosphere with low concentration of Grea

are today ac

prior to the

ethylene bag

are today ac

prior to the

ethylene bag

ackages by

of These Con

Bacteriology

 $^{\text{\textsf{1}}}$ R. G. Tomkins, "The Conditions Produced in Film Packages by Fresh Fruits and Vegetables and the Effect of These Conditions on Storage Life," Jrnl. Applied Bacteriology (1962), 25(8):290.

oxygen and a high concentration of carbon dioxide retards the fruits' ripening process. This increases the storage life. 2

concentration of ca

ng process. This i

Section 2: Purpose

Section 2: Purpose

The objective is to study if it is theoretically possible to achieve and maintain favorable storage conditions within a fruit package and in that way eliminate the necessity of controlled atmosphere storage. If this is possible, the package will be analyzed from an economic standpoint. 2

h concentration of carb

ning process. This inc

<u>Section 2:</u> Purpose

ctive is to study if it

eve and maintain favora

n a fruit package and i

ty of controlled atmosp

, the package will be a

int.

Section 3: Limita The objec
possible to achie
conditions within
nate the necessit
this is possible,
economic standpoi
Fruit and Variety ns within a fruit package and in
necessity of controlled atmosph
possible, the package will be an
standpoint.
<u>Section 3: Limitations</u>
d Variety
The McIntosh apple (<u>Malus pumilu</u>

Section 3: Limitations

Fruit and Variety

The McIntosh apple (Malus pumilu, Mill.) is the particular fruit and variety that this theoretical study focuses on. The McIntosh was chosen on the basis of its commercial importance in Michigan's fruit industry and that it is commonly stored under modified atmospheres. economic standpo

Fruit and Variet

The McIn

the particular f

study focuses on

of its commercia

and that it is c

Storage Function

Storage Function

The movement of apples from harvest to consumer sales encompasses numerous handlings and environments. The scope of this thesis is limited to the storage function (Figure 1). The emphases of this paper are not concerned with the apples' distribution system, but are concerned with package design and an economic analysis of storage methods.

Figure 1.--Distribution System from Point of Harvest. Figure l.-Distribution System from Point of Harvest.

Storage Life Storage Life

Storage life is dependent on numerous factors. Some of the factors are: metabolism, moisture loss, physiological disorders, chemical treatments, maturity at harvest dates and rate of cooling.² Of these factors, controlling the apple's metabolism is the most critical.

The metabolism, or respiration rate, of the apples is affected by the fruits' environment. It is the control of respiration (and, therefore, storage life) that is of concern to this problem.

 $\boldsymbol{4}$

²A. VanDoren, "Physiological Studies with McIntosh Apples in Modified Atmosphere Cold Storage," Proc. Am. Soc. Hort. Sci. (1937), 37:453.

CHAPTER II

DEFINITIONS

Listed below are terms that are frequently used in this paper. Several terms and definitions may only be correct within the context of this paper. Most of the terms are particular to the apple or its storage. CHAP
DEFIN
Listed below are te
paper. Several ter
within the context
e particular to the
Aerobic respiration DEF

Listed below are

paper. Several t

within the contex

e particular to t

Aerobic respirati

ate supply of oxy

ration and is ref

Activation energy Listed below are term
paper. Several terms
within the context of
e particular to the a
Aerobic respiration:
ate supply of oxygen.
ration and is referre
Activation energy: A
, that quantifies the
eability.
Anaerobic respira Listed below are terms t
paper. Several terms an
within the context of th
e particular to the appl
Aerobic respiration: Re
ate supply of oxygen. T
ration and is referred t
Activation energy: A co
, that quantifies the ef
e

Aerobic respiration: Respiration that occurs in an adequate supply of oxygen. This is the typical form of respiration and is referred to as simply "respiration."

Activation energy: A coefficient, particular to the film, that quantifies the effect of temperature on the permeability.

Anaerobic respiration: Fermentation--respiration in the absence of oxygen with by-products of ethyl alcohol, carbon dioxide and acetaldehyde. Anaerobic r
bsence of o
carbon diox
Carbon diox
ove excess
re rooms.
Climacteric

Carbon dioxide scrubbers: Chemicals or processes that remove excess carbon dioxide from controlled atmosphere rooms.

Climacteric: Ripening process, evidenced by increasing respiration rate. The high respiration rate supplies energy for the conversion of starch to hexose,

the production of ethylene and the distinction of cell wall material.³ uction of et
erial.³
Cold storage

Cold Storage: Synonymous with "regular storage"- warehouse storage units that maintain a low temperature in an air atmosphere. The temperature is usually near 0°C. Extinction point:

Extinction point:

Extinction point:

Extinction point:

Extinction point:

Extinction point: erial.³
Cold storage: Synon
e storage units that
r atmosphere. The t
Controlled atmospher
units which control
concentration and te
Cultivar: Variety.
Extinction point: M
in aerobic respirati
Intercellular spaces

Controlled atmosphere (CA) storage: Airtight storage units which control oxygen concentration, carbon dioxide concentration and temperature. **Controll**
units wh
concentr
Cultivar Controlled atmosphere
units which control of
concentration and tem
Cultivar: Variety.
Extinction point: Mi
in aerobic respiration
Intercellular spaces:
he apple pulp. The of
immediate supply of
Ontogeny: The life contogeny

Cultivar: Variety.

Extinction point: Minimum oxygen level needed to sustain aerobic respiration.

Intercellular spaces: Void spaces between cells within the apple pulp. The oxygen in these spaces provide the immediate supply of oxygen for metabolism. in aerob
Intercel
he apple
immedia
Ontogeny concentration a

<u>Cultivar</u>: Vari

Extinction poin

in aerobic resp

Intercellular s

he apple pulp.

immediate supp

Ontogeny: The

Packing density Intercellul
within the apple pu
vide the immediate
<u>Ontogeny:</u>
Packing den
package volume.
Permeabilit
specific gas that p
material that is on
Product-gen
flexible film packa

Ontogeny: The life cycle of a single organism.

Packing density: Ratio of product volume to package volume.

Permeability constant: A measure of grams of Specific gas that pass through one square centimeter of material that is one millimeter thick, in one hour.

Product-generated atmosphere package: A sealed, flexible film package that contains a living, respiring

 3_F . Kidd and C. West, "Recent Advances in the Work on Refrigerated Gas--Storage of Fruit," Jrnl. of Pomology (Hort. Sci.) (1936), 14:306.

organism (the product), where the respiratory process of the organism produces (generates) concentrations of oxygen and carbon dioxide within the package (atmosphere) that are in different quantities than is found in air. (the product), w
rganism produces
nd carbon dioxide
in different qua
<u>Permeability rate</u>

Permeability rate: A measure of grams of specific gas that pass through one square centimeter of material one millimeter thick, in one hour, at a temperature other than 0°C. nd carbon d
in differe
Permeabilit
pass throu
imeter thic
an 0°C.
Respiration Permeability rat

: pass through on

imeter thick, in

an 0°C.

Respiration: Th

to carbon dioxid

6 0₂ + C₆H₁₂0₆

Respiration rate reass through one sq

imeter thick, in one

an 0°C.

Respiration: The up

to carbon dioxide, w

6 0₂ + C₆H₁₂0₆ -----

Respiration rate: M

ioxide output. Typi

ch as: CO₂ grams/ki

Respiratory quotient

Respiration: The uptake of oxygen to convert sugar into carbon dioxide, water and energy. The reaction is:

6 0₂ + C₆H₁₂O₆ - 6H₂O + 6CO₂ + 673 Kcal

Respiration rate: Measure of oxygen uptake or carbon dioxide output. Typically, carbon dioxide is used, such as: $CO₂$ grams/kilogram apple/hour. $\begin{array}{r} \text{6 O}_2 + C_6\text{H}_{12}\text{O} \\ \text{Respiration r} \\ \text{carbon dioxide output} \\ \text{used, such as: } \text{CO}_2 \text{ g} \\ \text{Respiratory q} \\ \text{divide produced divi} \\ \text{ously consumed.} \\ \text{Sensecence:} \\ \text{process.} \\ \text{Storage life:} \\ \text{10 percentage wasted} \\ \end{array}$

Respiratory quotient (R.Q.): Volume of carbon dioxide produced divided by volume of oxygen simultaneously consumed.⁴ Mioxide outp

uch as: CO₂

Respiratory

produced dionsumed.⁴

Senescence: ch as: CO₂
Respiratory
produced div
nsumed.⁴
Senescence:
Storage life

Senescence: Post-maturity stage, an aging process.

Storage life: Period of time from harvest to 10 percentage wastage.of the fruit.

4W. 0. James, Plant Respiration (1953). p. 82.

 $\overline{7}$

8
Temperature coefficient (Q Temperature coefficient (Q_{10}) : This is the rate of respiration at a given temperature, divided by the respiration rate at 10°C lower. Temperature coeff
ration at a given
ion rate at 10°C
Transmission rate

Transmission rate: A measure of grams of a specific gas that pass through a package per period of time.

CHAPTER III

PRODUCT DESCRIPTION

This chapter is divided into three sections. The first section discusses the general ontogeny of apples. It focuses on apples from time of harvest to ultimate degradation. Harvest corresponds to the beginning of storage life. The first section discusses the
apples. It focuses on apples fr
ultimate degradation. Harvest c
ning of storage life.
The second area discusse
anaerobiosis is an important con
apples are to be stored in modif
The final sec

The second area discusses anaerobiosis. Anaerobiosis is an important concept to understand if apples are to be stored in modified atmospheres.

The final section describes specific characteristics of the McIntosh apple relevant to this analysis. The effect of oxygen, carbon dioxide and temperature on the respiration rate are given special attention. discusses the genera

s on apples from tim

on. Harvest corresp

fe.

l area discusses anae

important concept t

tored in modified at

section describes sp

tosh apple relevant

en, carbon dioxide a

te are given special
 The second a

Anaerobiosis is an i

apples are to be sto

The final se

istics of the McInto

The effect of oxygen

the respiration rate

<u>Se</u>

An apple is

which is constantly

structural changes a

Section 1: Ontogeny

An apple is a living, respiring biological system which is constantly undergoing physical, chemical and structural changes as it develops, ripens and dies.⁵

^{5&}lt;br>A. Jabbari, N. N. Mohserin and W. S. Adams, "Analog Computer Model for Predicting Chemical and Physical Properties of Selected Food Materials," Transactions, American Soc. Agri. Eng. (1971), 14(2):319.

Respiration rate is an ideal parameter for determining the physiological age of the apple. The respiration rate has a definite trend through the ontogeny of the apple (Figure 2). Respiration rate is an
the physiological age o
has a definite trend th
(Figure 2).
Pre-climacteric Minimum

Pre-climacteric Minimum

The harvest date is at the pre-climacteric minimum (point A in fig. 2). At this stage of ontogeny, the apple is fully developed and the respiration rate is at a minimum. Harvesting at or just prior to the preclimacteric minimum will provide the greatest storage potential.⁶ minimum (po
the apple i
at a minimu
climacteric
potential.⁶
Climacteric

The next stage of ontogeny is the climacteric, which is the ripening process. At this point, the apple is converting its energy supply of starch into sugar, oxygen, carbon dioxide, ethylene and heat. This will cause a change in color of the skin and a softening and sweetening of the flesh.⁷ climacteric minimum
potential.⁶
Climacteric
The next sta
which is the ripenin
is converting its en
oxygen, carbon dioxi
cause a change in co
sweetening of the fl
The climacte
Once the climacteric

The climacteric is critical to storage-life. Once the climacteric starts, the ultimate storage-life is

 6 D. R. Dilley, "Prediction and Verification of Proper Harvest Date for Storage Apples," Mich. St. Hort. Soc. (1965), 95:48.

 T F. Kidd and C. West, "Recent Advances in the Work on Refrigerated Gas--Storage of Fruit," p. 306.

-
- Figure 2.--Ontogeny of Apples as Represented by **Chicagony CF Apple**
Respiration Rate.
- Source: Fidler, J.C.; Wilkenson, B.G.: Edney, K.L.: and Sharples, R.O. (1973), The Biology of Ltd., London. Page 4.

limited. If the climacteric can be delayed or suppressed, the storage-life will be increased. 8 A low temperature environment will delay the climacteric. A modified atmosphere can suppress the climacteric to the extent that the respiration rate is not affected.⁹

At one time, the onset of the climacteric was believed to be initiated by the presence of ethylene. It appeared that the increase in ethylene production by the apple triggered the chemical reactions associated with the climacteric. This has been proven false based on two findings: (1) ethylene production follows the respiratory peak of McIntosh apples by about four days at 20° C, 10 and (2) initial studies were done in air at 20°C, where low temperatures and a modified atmosphere negate any ethylene effect on the climacteric. $^{\rm 11}$ atmosphere can suppres
that the respiration i
At one time, the
believed to be initiat
It appeared that the :
the apple triggered the
with the climacteric.
on two findings: (1)
respiratory peak of Monte 20°C, where low temp , the onset of the climacteric viated by the presence of ethyle

e increase in ethylene production

the chemical reactions associanc.

This has been proven false 1

1) ethylene production follows

McIntosh apples by about tion rate is not affected.⁹
ime, the onset of the climacteric was
nitiated by the presence of ethylene.
the increase in ethylene production
red the chemical reactions associated
eric. This has been proven false bas
(1) e

⁸F. Gangerth, "Hypobaric Storage of Vegetables," Acta Horticulturae (1974), 1(6):23.

⁹F. Kidd and C. West, "Recent Advances in the Work on Refrigerated Gas--Storage of Fruit," p. 308; and J. C. Fidler, "Studies of the Physiological-Active Volatile Organic Compounds Produced by Fruit II. The Rate of Production of Carbon Dioxide and of Volatile Organic Compounds by King Edward VII Apples in Gas Storage, and the Effect of Removal of Volatiles from the Atmosphere of the Store on the Incidence of Superficial-Scald," Jrnl. Hort. Sci. (1950), 25(2):104. eratures and a m
effect on the c:
-
-
, "Hypobaric St
1974), 1(6):23.
LC. West, "Rece
Gas--Storage of the Physi
pounds Produced
f Carbon Dioxid
King Edward VI
ect of Removal
e Store on the
Jrnl. Hort. Sci

 10_R . M. Smock, "The Influence of One Lot of Apple Fruit on Another," Proc. of the Am. Soc. Hort. Sci. (1942), 40:187.

 11_J . C. Fidler, B. G. Wilkenson, K. L. Edney and R. O. Sharples, The Biology of Apple and Pear Storage (1973), p. 8.

<u>Senescence</u> Senescence

The final stage of the apple's life is called "senescence." The apple pulp or flesh becomes mealy and loses its flavor. At this point, storage-life and market value are very limited. The respiration rate during senescence is characterized by a downward drift. 13
1 stage of the apple's 1
the apple pulp or flesh b
. At this point, storag
imited. The respiration
aracterized by a downwar
Section 2: Anaerobiosis

Section 2: Anaerobiosis

Preventing anaerobic respiration is critical to apple quality. The by-products of anaerobic respiration are carbon dioxide, ethyl alcohol and acetaldehyde. Ethyl alcohol and acetaldehyde will remain in the apple, which results in an "off" flavor. Quality of apples will be severely affected after approximately one week in anaerobic conditions.¹²

Oxygen is necessary for the normal respiratory process. Decreasing the available supply of oxygen will have a retarding effect on the rate of respiration. There is, however, a limit to the amount that oxygen can be reduced and still maintain respiration. This lower limit (concentration) for oxygen is referred to as the extinction point. Extinction point is dependent on which results in an
will be severely af
in anaerobic condit
Oxygen is n
process. Decreasin
have a retarding ef
There is, however,
can be reduced and
lower limit (concen
the extinction poin
temperature and app temperature and apple variety. For the McIntosh apple,

 12 J. C. Fidler and C. J. North, "The Effect of Periods of Anaerobiosis on the Storage of Apples," J. Hort. Sci. (1971), 45:220; and R. G. Tompkins, "The Conditions Produced in Film Packages by Fresh Fruits and Vegetables and the Effect of These Conditions on Storage Life," p. 304.

the extinction point is 2% oxygen at 3.5° C, 13 and 3.5° oxygen at 20° c.¹⁴

When the oxygen supply falls below the extinction point, respiration is replaced by anaerobic respiration as the oxygen concentration approaches zero (Figure 3).¹⁵ Anaerobiosis results in total depletion of oxygen supply within the fruit which will disrupt and accelerate the metabolic processes. $^{16}\;$ An increase in carbon dioxide evolution is associated with anaerobic fermentation. as the oxygen concen

Anaerobiosis results

within the fruit whi

metabolic processes.

evolution is associa

Section 3:

The design o

affected by the char

product traits that

characteristics, (2)

(3) effect of oxygen

Section 3: Apple Cultivar--McIntosh

The design of a product-generated package is affected by the characteristics of the product.¹⁷ The product traits that must be determined are: (1) physical characteristics, (2) optimum storage conditions, (3) effect of oxygen on respiration rate, (4) effect of The des

affected by the

product traits

characteristics

(3) effect of o

13_A, Va

McIntosh Apples

p. 454.

¹⁴V, Ju

Respiration of

Food Technology expoduct.¹⁷ The
Internal Control of
Additions,
The Control of
tudies with
Did Storage,"
Son Control of
Angle Methods,"
Plant Metabolism

13_{A.} Van Doren, "Physiological Studies with McIntosh Apples in Modified Atmosphere Cold Storage," p. 454. (3) effect of o
 $\frac{13}{A}$. Va

McIntosh Apples

p. 454.
 $\frac{14}{V}$. Ju

Respiration of

Food Technology
 $\frac{15}{H}$. E.

(1972), p. 90.
 $\frac{16}{J}$. C.

Periods of Anae

Jrnl. Hort. Sci

14_V. Jurin and M. Karel, "Studies on Control of Respiration of McIntosh Apples by Packaging Methods," Food Technology (1963), 17(6):106.

 15 H. E. Street and W. Cockburn, Plant Metabolism (1972), p. 90.

16J. C. Fidler and C. J. North, "The Effect of Periods of Anaerobiosis on the Storage of Apples," Jrnl. Hort. Sci. (1971), 46:213.

17_{R. G.} Tomkins, "The Conditions Produced in Film Packages by Fresh Fruits and Vegetables and the Effect of These Conditions on Storage Life," J. Applied Bacteriology (1962), 25(8):305.

Figure 3.--Effect of the Partial Pressure of Oxygen on Subsequent Oxygen Uptake and Carbon Dioxide Output.

Source: James, W.O. (1953). Plant Respiration. Oxford Claredon Press, England. Page 90.

carbon dioxide on respiration rate, and (5) effect of temperature on respiration rate. carbon dioxide on respir
temperature on respirati
Physical Characteristics

Physical Characteristics

Following is a brief description of the physical characteristics of the McIntosh that are relevant to this study: Following is

characteristics of th

this study:

1. Density i

2. 30% - 35%

spaces.¹⁹

3. Approxima

is carbon

4. Approxima

is oxygen

dioxide i

depletion

5. 85% of th

to be wat

6. 0.5 is th

bags.²³ 16

respiration rate, and (5) effect of

piration rate.

istics

is a brief description of the physical

ithe McIntosh that are relevant to

y is .814.¹⁸

35% of volume is intercellular

.¹⁹

imately 4% of intercellula

- 1. Density is $.814.$ ¹⁸
- 2. 30% 35% of volume is intercellular spaces.19
- 3. Approximately 4% of intercellular space nppronimately 10 c
- 4. Approximately 17% of intercellular space is oxygen. The accumulation of carbon dioxide is almost balanced by the depletion of oxygen.²¹
- 5. 85% of the weight of the apple is assumed to be water.²
- 6. 0.5 is the packing density for plastic bags.23

 18 B. A. Stout, D. H. Dewey, and R. F. Mrozek, "Mechanical Orientation of Apples and Related Fruit Characteristics," Agr. Exp. Stn. Mich. St. Univ. Research Bulletin (1971), No. 32, p. I3. . 30* - 35* of volum
spaces.¹⁹
. Approximately 4% o
is carbon dioxide.
. Approximately 17%
is oxygen. The ac
dioxide is almost
depletion of oxyge
. 85% of the weight
to be water.²²
. 0.5 is the packing
bags.

19_{S. P.} Burg and E. A. Burg, "Gas Exchange in Fruits," Phypiologia Plantarum (1965), 18:876.

²⁰Ibid., p. 879.

 21 Ibid., p. 878.

22J. C. Fidler, "Studies of the Physiological Active Volatile Organic Compounds Produced by Fruit II," p. 89.

 23_R . G. Tomkins, "The Biological Effects of the Conditions Produced in Sealed Plastic Containers by Prepackaged Fresh Fruit and Vegetables," Bull. Int. Inst. $\begin{array}{r} \texttt{suitetin} & (19/1 \\ \texttt{19}_\text{S. P} \\ \texttt{Fruits, " Physi} \\ \texttt{20}_{\text{Ibid}} \\ \texttt{21}_{\text{Ibid}} \\ \texttt{22}_{\text{J. C}} \\ \texttt{Active Volatil} \\ \texttt{P. 89}. \\ \texttt{23}_{\text{R. G}} \\ \texttt{Conditions Pro} \\ \texttt{packaged Fresh} \\ \texttt{Refrig, Annexe} \end{array}$ "Mechanical Orientation of Apples and Related Fruit
Characteristics," Agr. Exp. Stn. Mich. St. Univ. Rese.

Bulletin (1971), No. 32, p. 13.

19_{S.} P. Burg and E. A. Burg, "Gas Exchange in

Fruits," Physiologia Plantarum (

Optimum Storage Conditions Optimum Storage Conditions

The optimum storage conditions for McIntosh are a temperature of 3.5°C and an atmosphere of 5 percent carbon dioxide and 3 percent oxygen. This atmosphere can be stated as 5:3. These ideal storage conditions are quite typical among common Michigan apple cultivars (Table 1). 24 17

Optimum Storage Conditions

The optimum storage conditions for McIntosh are

a temperature of 3.5°C and an atmosphere of 5 percent

carbon dioxide and 3 percent oxygen. This atmosphere

can be stated as 5:3. These idea 17

Optimum Storage Conditions

The optimum storage conditions

a temperature of 3.5°C and an atmosphere of 5 percent

carbon dioxide and 3 percent oxygen. This atmosphere

can be stated as 5:3. These ideal storage condit 17

Conditions

mum storage conditions for McIntosh are

3.5°C and an atmosphere of 5 percent

nd 3 percent oxygen. This atmosphere

5:3. These ideal storage conditions

1 among common Michigan apple cultivars

e Condition

			17	
Optimum Storage Conditions				
				The optimum storage conditions for McIntosh are
				a temperature of 3.5°C and an atmosphere of 5 percent
				carbon dioxide and 3 percent oxygen. This atmosphere
				can be stated as 5:3. These ideal storage conditions
(Table 1). 24				are quite typical among common Michigan apple cultivars
Cultivars.				TABLE 1.--Storage Conditions for Some Michigan Apple
	Conditions			Rates of Respiration in 1/1,000 kg day
Cultivar	Т°	$°CO_{2}$	80 ₂	co_2
Golden Delicious 3.5		5 ⁵	3	20
Delicious	$\mathbf 0$	$\overline{}$	$\overline{3}$	18
Jonathan	3.5 7		$\overline{13}$	33
McIntosh	3.5	$\overline{}$ 5	$\overline{\mathbf{3}}$	35
Oxygen Effect				
				The effects of both oxygen and carbon dioxide partial pressures on the respiration rate of McIntosh
apples have been measured by Jurin and Karel. ²⁵				This

TABLE 1.--Storage Conditions for Some Michigan Apple Cultivars.

Oxygen Effect

24J. C. Fidler and G. Mann, Refrigerated Storage of Apples and Pears--A Practical Guide (1972), p. 34.

25_V. Jurin and M. Karel, "Studies on Control of Respiration of McIntosh Apples by Packaging Methods," p. 107.

study was conducted at a constant 20°C. The effects of the gases are illustrated in Figures 4 and 5.

Jurin and Karel found that the oxygen effect on the rate of respiration was practically linear between the extinction point concentration of .035 and .21. In this span of oxygen concentrations, the respiration was suppressed from 10 cc $O_2/Kg \cdot hr$ to 6 cc $O_2/Kg \cdot hr$ at the extinction point. The respiration rate fell sharply when the oxygen supply was below the extinction point.

Carbon Dioxide Effect

Increasing the partial pressure of carbon dioxide had a retarding effect on respiration rate (Figure 5). The retarding effect was minor at the lower concentrations.

The effect of decreasing the respiration rate by changing the partial pressures of oxygen and carbon dioxide are additive.²⁶ When the atmosphere is oxygen deficient and carbon dioxide rich, the gases will have a combined retarding effect on the respiration rate. Increasing the
dioxide had a retardin
(Figure 5). The retar
lower concentrations.
The effect of
changing the partial p
dioxide are additive.²
deficient and carbon d
a combined retarding e
It is not comp
trations of oxyge

It is not completely understood how the concentrations of oxygen and carbon dioxide affect metabolism. The probable dictating factor is the quantity of the two deficient and c
a combined reta
It is n
trations of oxy
The probable di
26_{J.C.}
Conditions of S
Jrnl. Hort. Sci

 26 J. C. Fidler and C. J. North, "The Effect of Conditions of Storage on the Respiration of Apples," Jrnl. Hort. Sci. (1967), 42:203.

Apples by Packaging Methods." Food Technology 17(6):107.

gases that is dissolved in the apple sap.²⁷ The amount of soluble gas in the sap is dependent on physiological age of the apple, temperature and the atmosphere in the intercellular spaces. This atmosphere is dependent on the apple's external atmosphere and current respiration rate.²⁸ When the external atmosphere is altered, the respiration rate may not reach equilibrium for several days.

Research in measuring and controlling the solubility of oxygen and carbon dioxide in apple sap has been limited. Most horticulturalists have remained satisfied with quantifying the effects of external conditions on the apple's respiration. This theoretical study is based on their experimental findings. Research in m
solubility of oxygen
been limited. Most h
satisfied with quanti
conditions on the app
study is based on the
Jurin and Kar
oxygen and carbon dio
(R.Q.). It was found
remained at that rela

Jurin and Karel also studied the effects of oxygen and carbon dioxide on the respiratory quotient $(R.Q.)$. It was found that at 20 $°C$, the R.Q. was 1.0 and remained at that relationship until the oxygen supply

²⁷J. C. Fidler and C. J. North, "The Effect of Conditions of Storage on the Respiration of Apples V. The Relationship Between Temperature, Rate of Respiration and Composition of Internal Atmosphere of the Fruit," Jrnl. Hort. Sci. (1971), 46:233. 2
Condition
Relations
Compositi
Hort. Sci

 28 E. G. Hall, F. E. Huelin, F. M. V. Hackneys, and J. M. Bain, "Gas Exchange in Granny Smith Apples," VIII Congrés International Botanigue (1954), p. 405.

fell below the extinction point (Figure 6).²⁹ Carbon dioxide did not effect the R.Q. (respiratory quotient) at any concentration. fell below the ext
dioxide did not ef
any concentration.
Temperature Effect

Temperature Effect

Temperature has a great impact on respiration rate. A change of several degrees can have a significant effect on metabolism.3o

There is a direct relationship between respiration rate and temperature. This relationship is commonly expressed in terms of Q_{10} coefficient. The Q_{10} for specific varieties, such as McIntosh, could not be obtained. Instead, the average Q_{10} for apples based on information from Recommended Conditions for Cold Storage of Perishable Produce (Table 2)³¹ will be substituted for the unknown Q_{10} for McIntosh. There is a dir
tion rate and temperat
expressed in terms of
specific varieties, su
obtained. Instead, th
on information from Re
Storage of Perishable
substituted for the un
Table 3 has th
in three ten-degree ra
is 2.77, th

Table 3 has the calculated Q_{10} for temperature in three ten-degree ranges. The Ω_{10} used for McIntosh is 2.77, the average Q_{10} of the Q_{10}' 's in Table 3. A Q_{10} of 2.77 means that the respiration rate at 15°C is 2.77 times greater than the respiration rate at 5°C Table 3 ha

in three ten-degre

is 2.77, the avera

Q₁₀ of 2.77 means

2.77 times greater

29_{V.} Jurin

Respiration of McI

P. 107.

30_{F.} Kidd

II. Optimum Tempe

Pomology (Hort. Sc

31

Recommen

Perishable Produce

²⁹V. Jurin and M. Karel, "Studies on Control of 'Respiration of McIntosh Apples by Packaging Methods," p. 107.

^{30&}lt;sub>F</sub>. Kidd and C. West, "The Gas Storage of Fruit II. Optimum Temperatures and Atmospheres," Jrnl. of Pomology (Hort. Sci.), (1930), 13:74.

³¹Recommended Conditions for Cold Storage of "Perishable Produce, InternationaI Institute of Refrigera- $\frac{1}{100}$ (1967), p. 47.

6.--Effect of Oxygen on Respiration Quotient. Figure 6.-Effect of Oxygen on Respiration Quotient. Figure

Jurin, V. and Karel, M. (1963). "Studies on Control of Respiration of McIntosh
Apples by Packaging Methods." Food Technology. 17(6):107. of McIntosh Source: Jurin, V. and Karel, M. (1963). "Studies on Control of Respiration Apples by Packaging Methods." Food Technology. 17(6):107. Source:

(10° less). The Q_{10} corresponds well with the data in the Agriculture Handbook, 32 which has an average Ω_{10} of 2.85 in the same temperature range (Table 3). ²⁴

(10° less). The Q_{10} corresponds well with the data in

the Agriculture Handbook,³² which has an average Q_{10} of

2.85 in the same temperature range (Table 3).

TABLE 2.--Respiration Rates for Apples at Seve 24
 Q_{10} corresponds well with the data in

andbook, 32 which has an average Q_{10} of

temperature range (Table 3).

tion Rates for Apples at Several

tures.

Temperature

		24			
(10° less). The Q_{10} corresponds well with the data in					
the Agriculture Handbook, 32 which has an average Q_{10} of 2.85 in the same temperature range (Table 3).					
TABLE 2.--Respiration Rates for Apples at Several					
Temperatures.			Temperature		
		0° C 5 $^{\circ}$ C	10° C 273° K 278°K 283°C	15°C 20°C 288°K	$293^\circ K$
Early Ripening	800- 1420		$1280 - 3400 - 4400 - 4800 -$ 2600 5000	7600	10000
Late Ripening	$440-$ 880		$1120 - 1680 - 2280 -$ 1720 2560	4800	$3600 -$ 6000
Source: Agriculture Handbook 66, U.S. Department of	Agriculture, Oct. 1968, pg. 8.				
Heat of Respiration in BTU./ton/day.					
TABLE 3.--Q ₁₀ of Apples for Different Temperature Ranges.					
			Q_{10} Q_{10} Q_{10} 0°-10° 5°-15° 10°-20°		Ave. Q_{10}
Early Ripening	3.78	3.09		1.76	2.77
Late Ripening	3.21	2.49		2.26	

TABLE 2.--Respiration Rates for Apples at Several Temperatures.

Contract Contract

TABLE 3.-- Q_{10} of Apples for Different Temperature Ranges.

Source: Agriculture Handbook 66, U.S. Department of Agriculture, Oct. 1968, pg. 8.										
Heat of Respiration in BTU./ton/day.										
TABLE 3.--Q ₁₀ of Apples for Different Temperature Ranges.										
			Q_{10} Q_{10} Q_{10} 0°-10° 5°-15° 10°-20°	Ave. Q 10						
Early Ripening 3.78 3.09			1.76	2.77						
Late Ripening 3.21 2.49 2.26										
Agriculture (October, 1968), p. 8.			32 Agriculture Handbook 66, U.S. Department of							

^{32&}lt;br>Agriculture Handbook 66, U.S. Department of (October, 1968), p. 8.

CHAPTER IV

STORAGE

The duration of market life is primarily dependent upon physiological changes already accrued during the storage period.³³ Different methods of storage suppress the apple's physiological changes in varying degrees. The duration of maximum storage connotates the effectiveness of different storage methods. ferent metho
cal changes
m storage co
age methods.
ng discussio
will be desc
Cold Storage

In the following discussion, the two main methods of commercial storage will be described and compared.

Cold Storage

The temperature is held slightly above the temperature that would initiate low temperature breakdown, a physiological disorder. 34 The temperature is typically between -2°C and 1°C. The duration of maxi

ness of different st

In the follo

of commercial storag

The temperat

The temperature that wou

a physiological diso

between -2°C and l°C

The cold sto

This temperature coi

The cold storage temperature for McIntosh is 0° C. This temperature coincides with the lowest respiration

³³G. D. Blanpied and D. H. Dewey, "Quality and Condition Changes in McIntosh Apples Stored in Controlled Atmospheres," Quarterly Bulletin of Mich. Agr. Exp. Stn. (1960) , $42(4):778$.

³⁴J. C. Fidler and C. J. North, "The Effect of Conditions of Storage on the Respiration of Apples," p. 204.

rate attainable without midifying the atmospheric conditions. The maximum cold storage life for McIntosh is two to four months.35

Cooling is rapid in cold storage. The temperature of the fruit is cooled from 20°C to 3°—4°C within five days. It is essential to establish storage conditions within a week. 36

Cold storage aids in suppressing respiration, aging due to ripening, water loss and spoilage due to bacteria, fungi and yeast.³⁷ If the temperature is 2° or 3° above the optimum temperature, there is an increased danger of increased decay and unnecessary ripening.³⁸ days. It is essentia
within a week.³⁶
Cold storage
aging due to ripening
bacteria, fungi and y
or 3° above the optim
danger of increased d
<u>Controlled</u>
The atmospher
carbon dioxide of CA
of the organism. CA
extend storag is essential to establi

eek.³⁶

ld storage aids in supp

to ripening, water loss

fungi and yeast.³⁷ If

re the optimum temperatu

increased decay and unn

<u>Controlled Atmosphere</u>

e atmospheric concentra

xide of CA

Controlled Atmosphere (CA) Storage

The atmospheric concentration of oxygen and carbon dioxide of CA storage will hinder the respiration of the organism. CA is used extensively for apples to extend storage life and marketability.³⁹

35Agriculture Handbook 66, p. 23.

36J. C. Fidler, et al., The Biology of Apple and Pear Storage, p. 33.

37Agriculture Handbook 66, p. 2.

 38 Ibid., p. 2.

39
P. Veiraju and M. Karel, "Control of Atmosphere Inside a Fruit Container," Modern Pkg. (1967), 40(2):168: ³⁵Agriculture Handbook 66, p. 23.

³⁶J. C. Fidler, et al., <u>The Biology of Apple a</u>

Pear Storage, p. 33.

³⁷Agriculture Handbook 66, p. 2.

³⁸Ibid., p. 2.

³⁹P. Veiraju and M. Karel, "Control of Atmosph

Inside Apples in Modified Atmosphere Cold Storage," p. 453.
Controlled atmosphere storage facilities consist of airtight store rooms that control oxygen concentration and carbon dioxide, as well as temperature. Apples are pre-cooled before being sealed in the storage rooms. The ideal atmospheric conditions are either achieved by artificial means or by letting the apples' respiratory process generate ideal conditions. The effect of these partial pressure changes is to decrease the respiration rate. Product-generated and artificially-generated atmospheres give identical storage results.⁴⁰ It mav require two to three weeks to attain CA conditions.⁴¹ The desired conditions are maintained by venting with cooled air and using carbon dioxide scrubbers.

The oxygen concentration is kept slightly above the extinction point to reduce the possibility of incurring anaerobic conditions. The temperature maintained in CA storage is generally several degrees higher than found in cold storage. The change in gas concentration elevates the temperature at which low temperature breakdown starts to appear. $^{4\,2}$ rate. Product-gener
atmospheres give ide
require two to three
The desired conditio
cooled air and using
The oxygen c
the extinction point
incurring anaerobic
tained in CA storage
than found in cold s
tion elevates the te
b s give identical storag

o to three weeks to att

d conditions are mainta

and using carbon dioxi

e oxygen concentration

tion point to reduce th

anaerobic conditions.

CA storage is generally

in cold storage. The

tes

^{40&}lt;sub>Fidler, et al., The Biology of Apple and Pear</sub> Storage, p. 33.

 $^{\textbf{41}}$ Agriculture Handbook 66, p. 17.

^{42&}lt;sub>G.</sub> D. Blanpied and D. H. Dewey, "Quality and Condition Changes in McIntosh Apples Stored in Controlled Atmospheres," p. 774.

CA offers several advantages over cold storage. They are:

- 1. Carbon dioxide retards not only respiration, but also the germination and growth of fungi.43
- 2. Brown core, storage scald and mealy breakdown is retarded.⁴⁴
- 3. Firmness is better maintained.
- 4. Ripening is significantly slowed down.⁴⁵
- 5. Shelf-life after removal from storage is greatly lengthened.
- 6. Storage life is extended to 6-8 months.46
- 7. Climacteric is suppressed.

The retention of flesh firmness during CA storage

is apparent from the results shown in Figure 7. The storage temperature was 3.5°C. Cold storage is associated with the greatest loss of flesh firmness, while all of the various modified atmospheres indicate some degree of maintaining firmness. The atmosphere 5:2 preserved the most firmness. 3. Firmness
4. Ripening
5. Shelf-lif
greatly 1
6. Storage 1
7. Climacter
The retention
is apparent from the
storage temperature w
with the greatest los
the various modified
maintaining firmness.
most firmness.

46 Agriculture Handbook 66, p. 23.

^{43&}lt;sub>F.</sub> Kidd and C. West, "The Gas Storage of Fruit II. Optimum Temperatures and Atmospheres," p. 77.

 44 G. D. Blanpied and D. H. Dewey, "Quality and Condition Changes in McIntosh Apples Stores in Controlled Atmospheres," p. 778.

^{45&}lt;sub>F.</sub> Kidd and C. West, "Recent Advances in the Work on Refrigerated Gas—Storage of Fruit," p. 303.

Source: Van Doren, A. (1937) "Physiological Studies with McIntosh Apples in Modified Atmosphere Cold

The atmosphere of 5:2 is sometimes used in lieu of 5:3 for McIntosh. However, this is not the general commercial practice. The risks of anaerobiosis offset the possible gains gotten at 5:2 rather than at 5:3.

Extending the market life after removal from storage (Figure 8) is almost as important commercially as extending the storage period. Extending the storage period only to have the quality to maintain for several weeks would hardly justify the added costs of CA storage. Fortunately, this is not the case with CA stored McIntosh apples. Modifying the atmosphere consistently preserves apple quality⁴⁷ and marketing life in comparison to cold storage. Fortunately, this is n
McIntosh apples. Modi
preserves apple qualit
son to cold storage.

⁴⁷T. Murata and T. Minamide, "Studies on Organic Acid Metabolism and Ethylene Production During Controlled Atmosphere Storage of Apples (Mallus pumila Miller, cv. Rolls)," Plant and Cell Physiology (1970), ll(3):857

Source: Van Doren, A. (1937). "Physiological Studies van Boren, nr (1997). Thighchoghear Beaules
with McIntosh Apples in Modified Atmosphere Cold Storage." Proc. Am. Soc. Hort. Sci. 37:456.

CHAPTER V

THEORY FOR PRODUCT-GENERATED

ATMOSPHERE PACKAGE

The hypothesis of this thesis is that it is possible to design a flexible package system that will provide longer storage life for fruits and vegetables (specifically, apples) than is possible with cold storage. If an atmosphere within a package is oxygen deficient and/or carbon dioxide rich, the metabolism will be suppressed. Metabolism is inversely related to storage life.

The intensity of metabolism is evidenced by the respiration rate. The rate of respiration is altered by changing temperature and partial pressure in the apples' environment. Metabolism can be depressed in a number of ways: decreasing oxygen concentration, increasing carbon dioxide concentration, decreasing temperature, or any combination of the three.⁴⁸ deficient and/or carb
will be suppressed.
storage life.
The intensity
respiration rate. Th
changing temperature
environment. Metabol
ways: decreasing oxy
dioxide concentration
combination of the th
This chapter
first secti

This chapter is divided into five sections. The first section will present the variables that effect

^{48&}lt;sub>F.</sub> Kidd and C. West, "The Gas Storage of Fruit II. Optimum Temperatures and Atmospheres," p. 67.

equilibrium concentrations. The next three sections quantify three of the variables: oxygen effect, carbon dioxide effect and temperature effect. The other variables are quantified in the Appendix. The final section depicts these variables in two theoretical equations. A computer simulation based on the two equations is presented in the Appendix.

Equilibrium conditions may not be achieved. Respiration has a minimum rate that corresponds with the extinction point in oxygen. If the net transmission rate for oxygen is less than the respiration rate when the partial pressure of oxygen is at the extinction point, the partial pressure will continue to decrease. Reducing the oxygen partial pressure below the extinction point will cause anaerobic respiration. Fermentation increases the respiration rate (Figure 9). This will cause a greater imbalance in the system because the oxygen supply is further depleted. Equilibrium will not be attained. rate for oxygen is less
the partial pressure of
the partial pressure wi
the oxygen partial pres
will cause anaerobic re
the respiration rate (F
greater imbalance in th
supply is further deple
attained.
Section 1:
The equil

Section 1: Equilibrium Variables

The equilibrium is approached by two actions, a declining respiration rate and an increasing net transmission rate (Figure 10).⁴⁹ The barrier qualities and a

^{49&}lt;sub>R. G.</sub> Tompkins, "Film Packaging of Fresh Fruit and Vegetables--the Influence of Permeability," The Inst. 'of Packaging Conference Guide, 1962, p. 66.

Figure 9.--Unba1anced System.

Figure lO.--Equilibrium Conditions.

respiring organism will provide a dynamic environment system that will continue to evolve until equilibrium conditions are reached. Equilibrium conditions are reached when the respiration rate is equal to the package's transmission rate of oxygen and carbon dioxide.⁵⁰

The transmission rate and respiration rate are dependent upon a number of variables. The variables affecting transmission rate are:

- l. permeability constant
- 2. film thickness
- 3. temperature
- 4. package surface area
- 5. activation energy for the film
- 6. concentration of oxygen
- 7. concentration of carbon dioxide
- 8. head space in the package.

The variables affecting respiration rate are: 5. activat

6. concent

7. concent

8. head sp

The variables affec

1. apple v

2. concent

3. concent

4. tempera

5. respira

6. total a

- 1. apple variety
- 2. concentration of oxygen
- 3. concentration of carbon dioxide
- 4. temperature
- 5. respiratory quotient
- 6. total apple weight.

 50 Ibid.

The interaction of these variables will determine the eventual atmosphere within a product-generated atmosphere package.⁵¹ 37

of these variables will

here within a product-gen

Section 2: Oxygen Effect

Section 2: Oxygen Effect

Respiration rate is a function based on the effect of oxygen, carbon dioxide and temperature and can be written as $RR(P_{O_2},P_{CO_2},T)$. The effect of oxygen is based on Figure 4. This figures is simplified into a straight line (Figure 11). The oxygen effect can be written as:

$$
6 + (22.2 \cdot partial pressure of 02)
$$
 (1)

based on line points (6.0, 0.03) and (10.0, 0.21).

Section 3: Carbon Dioxide Effect

The depressing effect of carbon dioxide is based on Figure 5. The results are represented by two connecting straight lines (Figure 12). The carbon dioxide effect for line AB can therefore be written as: based on line points

<u>Section 3</u>

The depressi

on Figure 5. The re

ing straight lines (

effect for line AB c

1.0 - 2.

based on points (1.0

1.0 - 2.25 \cdot CO₂ partial pressure (2)

based on points (1.0, 0.0) and (0.82, 0.08).

^{51&}lt;sub>R.</sub> G. Tomkins, "The Conditions Produced in Film Packages by Fresh Fruits and Vegetables and the Effect of these Conditions on Storage Life," p. 293.

Figure ll.--Oxygen Effect on Respiration Rate of McIntosh.

Figure 12.--Carbon Dioxide Effect on ReSpiration Rate of McIntosh.

The second line represents the effect of carbon dioxide of a partial pressure at or above 0.08. The equation for line BC based on points (0.82, 0.08) and (0.40, 0.13) is:

.82 - 6.6 \cdot (CO₂ partial pressure) - 0.08 (3)

The values generated from equations (2) and (3) are in the form of percentages. The product of equations (2) or (3) with equation (1) reflect the additive effect of carbon dioxide and oxygen on the respiration rate. 40

econd line represents the effer

partial pressure at or above 0

line BC based on points $(0.82,$

is:

82 - 6.6 · $(CO_2$ partial pressure

alues generated from equations

rm of percentages. The produc

or (3) with eq

Section 4: Temperature Effect

The temperature effect is based on a Q_{10} of 2.77. The following statement is made to quantify the temperature effect on respiration rate:

$$
e^{X} [-8181 \cdot (\frac{1}{T} - \frac{1}{293})]
$$
 (4)

if
$$
\frac{kR_{293\degree K}}{RR_{283\degree K}} = 2.77
$$
 (5)

 \mathbf{r}

DD

then
$$
\frac{KR \times 283 \text{°K}}{RR_{293 \text{°K}}} = 0.36
$$
 (6)

$$
0.36 = e^{X} \left[\frac{\Delta H}{R} \cdot \left(\frac{1}{283} - \frac{1}{293} \right) \right]
$$
 (7)

$$
\frac{\Delta H}{R} = \frac{1 \cdot 0.36}{\frac{1}{283} - \frac{1}{293}}
$$
(8)

$$
\frac{\Delta H}{R} = -8470
$$

This is the temperature effect between 10°C and 20°C. The temperature effect between 0°C and 10°C is:

$$
.36 = e^{X} \left[\frac{\Delta H}{R} \cdot \left(\frac{1}{273} - \frac{1}{283}\right)\right]
$$
 (9)
 $\frac{\Delta H}{R} = -7892$

The average of the two $\frac{\Delta H}{\Delta}$ is -8181.

Section 5: Theoretical Equations

The definitions of symbols used in this discussion are:

A surface area of package in square centimeters. dp_{CO2} = derivative of partial pressure of carbon $^{\rm o}$ 2 dt derivative of time dioxide. derivative of partial pressure of oxygen. $P_{CO_2}^e$ = external partial pressure of carbon dioxide. p_{CO_2} ⁱ = internal partial pressure of carbon dioxide.

$$
\tilde{P}_{CO_2}(T) = \text{permeability constant for carbon dioxide at temperature T°K, where "K" is degrees absolute.}
$$
\n
$$
P_O = \text{atmospheric pressure.}
$$
\n
$$
P_O^e = \text{external partial pressure of oxygen.}
$$
\n
$$
\tilde{P}_{O_2}(T) = \text{permeability constant for oxygen at T°K.}
$$
\n
$$
R = \text{gas constant}
$$
\n
$$
RR(p_{O_2}, p_{CO_2}, T) = \text{respiration rate in grams of carbon dioxide per kilogram product per hour as a function of the partial pressure of oxygen and carbon dioxide and the temperature.}
$$

- $S_{CO_2}(T)$ = solubility of carbon dioxide in apple sap in grams carbon dioxide per kilogram apple sap as a function of temperature.
	- solubility of oxygen in apple sap in $S_{O_2(T)}$ grams oxygen per kilogram apple sap as a function of temperature.
		- T_{Ω} = standard temperature, O°K.
		- W_n = weight of apples in kilograms.
			- $x = film$ thickness in centimeters.
			- $V =$ combined void volume of gas in cubic centimeters of package head Space and intercellular spaces in the apples.
		- 32 molecular weight of oxygen.
		- 44 molecular weight of carbon dioxide.

The initial supply of oxygen and carbon dioxide within the package can be represented as:

$$
\text{(initial o}_2 \text{ supply)} \quad S_{O_2(T)} \cdot W_A + \frac{32 \cdot V}{R \cdot T} \tag{10}
$$

$$
\text{(initial co}_2 \text{ supply)} \quad S_{\text{CO}_2(T)} \cdot W_A + \frac{44 \cdot V}{R \cdot T} \tag{11}
$$

The supply includes gas that is in apple sap, intercellular spaces and package headspace or void.

The transmission rate of oxygen is represented as:

$$
\tilde{P}_{O_2(T)} \cdot \frac{32 \cdot P_0}{R \cdot T_0} \cdot \frac{A}{x} \cdot (p_{O_2}^e - p_{O_2}^i)
$$
 (12)

Carbon dioxide transmission rate is represented as:

$$
\tilde{P}_{CO_2}(T) \cdot \frac{44 \cdot P_0}{R \cdot T_0} \cdot \frac{A}{x} \cdot (p_{CO_2}^e - p_{CO_2}^i)
$$
 (13)

Combining the respiration function (equations (1) and (2)), initial gas supplies (equations (10) and (11)), and the representations for transmission rates (equations (12) and (13)) can be simplified into two theoretical equations. The equation for oxygen is:

$$
[S_{O_2(T)} \cdot W_A + \frac{32 \cdot V}{R \cdot T}] \cdot \frac{dp_{O_2}}{dt} = [\tilde{P}_{O_2(T)} \cdot \frac{32 \cdot P}{R \cdot T_0} \cdot \frac{A}{x} \cdot (p_{O_2}^e - p_{O_2}^i)] -
$$

$$
[RR(p_{O_2} \cdot p_{O_2}^i)^T \cdot W_A]
$$
 (14)

The second equation, which represents carbon dioxide evolution within the package, is:

$$
[S_{\text{CO}_2(T)} \cdot W_A + \frac{44 \cdot V}{R \cdot T}] \cdot \frac{dp_{\text{CO}_2}}{dt} = [\tilde{P}_{\text{CO}_2(T)} \cdot \frac{44 \cdot P_0}{R \cdot T_0} \cdot \frac{A}{x} \cdot (p_{\text{CO}_2} - p_{\text{CO}_2})] +
$$

$$
[RR(p_{\text{O}_2}, p_{\text{CO}_2}, T) \cdot W_A]
$$
 (15)

Equations (14) and (15) provide the basis for the computer model. The computer model is presented and described in the appendix.

CHAPTER VI

SIMULATION RESULTS

In this chapter the results from the simulation of the three films are presented. This is in Section 1. The following two sections discuss the effect of film thickness and pallet-sized product-generated atmosphere packages, respectively. CHAPTER VI
SIMULATION RESULT
pter the results
are presented. Th
ections discuss t
t-sized product-g
ely.
Section 1: Films

Section 1: Films

The respiration rate and package atmosphere are affected by the film used. Respiration rate at equilibrium is directly related to the permeability constants.

Figures 13, 14 and 15 denote the downward trend of respiration at the different temperatures over a thirty day period for the three films. The two horizontal lines in each figure represent the respiration rates of cold storage and CA storage. The cold storage respiration rate corresponds with .0025 grams CO_2/Kg x hr. The CA respiration rate is the lower of the two lines and represents a rate of .0020 grams CO_2/Kg x hr.

Figure 13.--Results of One Mil Cellulose Acetate Simulations.

Figure 14.--Results of One Mil Low Density Polyethylene Simulations.

Figure 15.--Results of One Mil Polybutadiene Simulations.

These two respiration rate values were calculated from the FUNCTION RESP of the model in the appendix. The environmental values of cold storage and CA storage were substituted into the model.

The cold and CA respiration rates are important in the analysis of the data. These two respiration rates are reference points in analyzing the effectiveness of the packages. The package would be effective in extending storage life if the respiration rate is below the respiration rate of cold storage. The respiration rate is an index of storage potential.

Cellulose acetate (Figure 13) is not an effective package. It is not effective because the final respiration rate at the lowest temperature, 3.5°C, is .0032. This rate is greater than the cold storage respiration rate (.0025). The storage life provided by this package would be less than the storage life attained through cold storage conditions.

The low density polyethylene (Figure 14) provided a package option that will extend storage life. In an ambient temperature of 3.5°C, an effective respiration is achieved. The respiration rate is .0022. Within seven days, the respiration was below .0025. The respiration rate was still falling after thirty days, indicating that equilibrium conditions had not been reached.

The oxygen concentration at the end of the simulation was .0491. This partial pressure was almost .02 above the extinction point. In order to state with confidence that this package would extend storage life, an additional simulation was made. The duration of the simulation is 210 days, or 7 months.

The results of this simulation are presented in Figure 16. The equilibrium conditions are: 4.716% oxygen, 3.289% carbon dioxide, and a respiration rate of .00220 grams carbon dioxide/Kg x hr. It can now be stated that the low density polyethylene package at 3.5°C is effective.

The barrier properties of polybutadiene are too restrictive (Figure 15). Anaerobic conditions are established at all temperatures. Less than 3% oxygen was reached within 11 to 15 days.

Table 4 is a summary of the simulations. The values represent the conditions at the 30th day of the simulation, unless anaerobic conditions develop. In event of anaerobiosis, the values are taken from the day that anaerobic fermentation initiated.

Section 2: Thickness

Changing the thickness will alter the equilibrium of the package. Increasing the thickness is similar to using a less permeable material.

		52		
TABLE 4.--Summary of Program Simulation.				
	Temp.	Final	Final	Final
Film	\mathbf{C}	pp0 ₂	ppCO ₂	RR
Cellulose Acetate	3.5	.1906	.0035	.003249
	5.0 6.0	.1882 .1865	.0038 .0040	.003790 .004196
	7.0	.1848	.0043	.004641
Low Density P.E.	3.5 5.0 6.0	.0491 .0417 .0369	.0331 .0347 .0358	.002207 .002528 .002766
	7.0	.0322	.0369	.003023
Polybutadiene	3.5 5.0	$.0281*$ $.0244*$.0874 .0928	.001738 .001928
	6.0 7.0	$.0278*$ $.0259*$.0964 .0998	.002094 .002240
\star Anaerobic Condition.				
		The thickness of the low density polyethylene in		
Section 1 was increased from one mil to two mils.				
results of the 2 mil simulation was anaerobic conditions				The
at all temperatures (Figure 17). Anaerobic conditions				
were reached in 10-15 days. The outcome for 2 mils is				
similar to the results of the least permeable material				
in Section 1, ploybutadiene.				

TABLE 4.--Summary of Program Simulation.

Section 3: Pallet-sized Product generated'Atmopphere Package

The commercial impact of product-generated atmosphere packages is significant. The model is based on a five-pound retail package. The impact would be

Figure l7.--Two Mil Low Density Polyethylene.

 $\gamma_{\rm{in}}$

maximized if the concept of product-generated atmosphere packages could be applied to storage containers. Most of Michigan apple growers store apples in pallet bins instead of the retail package.⁵²

The apples are placed in pallet bins at time of harvest. The base of the bin is a standard pallet size (40 inches x 48 inches) and is 32 inches in height. The weight capacity is 1100 - 1200 pounds.

Once at the warehouse, the bin and apples are drenched with a fungicide and water solution. The bins are then moved to storage and rapidly cooled. The apples are then retail-packaged and shipped, according to sales demand.

This system is advantageous to immediate retail packaging on three counts. This first advantage is that an employment level can be regulated. Immediate retail packaging means that all the packaging efforts are concentrated during the harvest season. apples are then retaintified and the sales demand.
This system is
packaging on three conthat an employment length retail packaging mean
are concentrated during the labor for
basis. Immediately puthe fluctuations in extint

The labor force already fluctuates on a seasonal basis. Immediately packaging the apples would amplify the fluctuations in employment. Harmonizing packaging with sales demand would have stabilizing effects on the growers' workforce.

⁵²Unpublished apple storage information, March 1976, Richard Patterson, School of Packaging, Michigan State University, East Lansing, Michigan.

A second advantage is that a bottleneck in the packaging operation can be avoided. In order to package the fruit as it is harvested, the operation would need an enormous capacity. The investment to accommodate a high capacity, short-duration packaging operation may be prohibitive for most growers. By the grower packaging as the demands require, a more moderate size operation can fulfill the packaging needs.

The final advantage is that better quality fruit will reach the retail market. It is inevitable that handling operations, such as sorting and packaging, bruise some of the fruit. Bruises are not visible immediately and lead to deterioration. If the fruit is packaged and then stored for several months, the bruises incurred from the packaging operation will initiate deterioration. By the time the fruit reaches the market, the bruised apples from the packaging operation will be inferior in quality.

Storing in pallet bins minimizes the handling prior to storage. This in turn will eliminate much of the rotting. Whatever damaged fruit there is at the time of packaging can be sorted out during the pre-packaging operation. This type of operation would enable greater numbers of high-quality fruit to reach the retail market.

A simulation was conducted with the pallet bin as the product-generated atmosphere package. The pallet bin would be more practical than a five-pound package in current storage operations.

Only low density polyethylene film was in the simulations. The change in package size to 40" x 48" x 32" necessitates changes in the package's parameters. These changes are:

- 1. Weight is based on 1200 pounds. This is 545,454 grams.
- 2. Package void space is 685.542 cm^3 .
- 3. Film area is $61,111$ cm^2 .
- 4. Film thickness is 1.5 mil.⁵³

Low density polyethylene was not successful in producing a beneficial atmosphere (Figure 18). The extinction point for oxygen was reached within 7 to 10 days, depending on the temperature.

The carbon dioxide accumulations are in excess of 12 percent at all four temperatures. This accounts for the extremely low respiration rates in the simulations. Such high partial pressures are not used in conjunction with low oxygen partial pressures. The physiological disorder, carbon dioxide injury, is a 3. Film area i
4. Film thickn
Low density pol
producing a beneficial
extinction point for ox
days, depending on the
The carbon diox
of 12 percent at all fo
for the extremely low r
tions. Such high parti
conjunction with lo problem at the higher carbon dioxide concentrations.

^{53&}lt;sub>D</sub>. H. Dewey, H. J. Raphael and J. W. Goff, "Polyethylene Covers for Apples Stored in Bushel Crates on Pallets," Quarterly Bulletin, Mich. Agri. Exp. Stn., (1959) , $42(1)\overline{.197}$.

In summary of this chapter, it is possible to produce a beneficial atmosphere within a package. Each package variable has a significant effect on the equilibrium and must be consolidated into the package system.

 \cdot

CHAPTER VII

ECONOMICS

In order to analyze the various storage costs of cold storage, CA storage and product-generated atmospheres storage packages on a monthly basis, it is necessary to determine the maximum storage life of each type of storage. Based on Figure 19, the cold storage of McIntosh is depleted after approximately four months and the last CA storage apples are predicted to be sold after about seven months. The monthly storage costs are based on four months and seven months, respectively, for cold storage and CA storage. The results in Chapter VI indicated that the Optimum product-generated atmosphere package was one mil low-density polyethylene at 3.5°C. Based on the theoretical respiration rate (Figure 14) the maximum storage life from this package is assumed to be six months.

Implementation of the product-generated atmosphere package would affect five cost areas of storage: building and equipment, labor, management, storage supplies/repairs, and energy.

Combined. Figure l9.--Michigan 1976 McIntosh Sales Cold, CA and

Packaging material costs are not effected. The current retail package and the product-generated atmosphere package both utilize one mil low density polyethylene. Therefore, packaging material costs have not been included in this cost analysis.

The average size cold storage warehouse in Michigan accommodates 72,000 bushels of apples and the average capacity for CA storage warehouses is 80,000 bushels.⁵⁴ The cost analysis is based on the average size cold and CA storage warehouses.

,All cost figures are based on unpublished work by Brown and Pierson.⁵⁵ The costs in this work are expressed in a per storage season basis. To reduce the costs to costs per month, the cold storage seasonal costs were divided by four and the CA storage costs were divided by seven. The description of the various cost areas is based on work done by Mathia 56 unless otherwise Michigan accommodates
average capacity for
bushels.⁵⁴ The cost
size cold and CA stor
All cost figu
by Brown and Pierson.
expressed in a per st
costs to costs per mo
costs were divided by
divided by seven. Th
areas is bas referenced.

⁵⁴Unpublished apple packing cost information, December, 1975. N Brown, County Building, Grand Haven, Michigan and T. Pierson, Dept. of Agri. Econ., MSU, East Lansing, Michigan, pp. 7-10.

^{55&}lt;sub>Ibid.</sub>, pp. 9-10.

^{56&}lt;sub>G</sub>. A. Mathia, "Cost of Storing North Carolina Apples," Economics Information Report No. 5, N.C. State University (1967), pp. 8-19.

62

Section 1: Building and Equipment Section 1: Building and Equipment

Building and equipment costs command the total investment costs. The difference in investment costs between cold and CA storage is significant. Buildings and equipment have an expected life of 25 vears.⁵⁷

The storage process for cold storage is a simple procedure that requires only the monitoring and control of temperature. Building and equipment costs are \$13.00 per square foot. Interest and depreciation amounts to \$.l36/bushe1/year. Interest and depreciation accrue throughout the year, even though the buildings may be empty much of the time. The income from the storage season must be used to meet interest and depreciation expenses. Therefore, the yearly interest and depreciation expense must be offset by profits from the storage. season. This expense will amount to \$.0340/bushel/month.

CA storage and equipment is more sophisticated than that found in cold storage. It is necessary that the structure has airtight storage rooms and equipment to measure and maintain the gas components, as well as the storage temperature. The building and equipment costs are based on a cost of \$21.00 per square foot. Interest and depreciation amounts to \$.29l/bushel/year (storage season must be used t
expenses. Therefore,
expense must be offse
season. This expense
CA storage an
than that found in co
structure has airtigh
measure and maintain
storage temperature.
are based on a cost o
and depreciati season). This will be a monthly expense of \$.0416.

57Ibid., p. 9.
Product-generated storage packages would utilize cold storage facilities. Building and equipment costs are the same for storage packages as for cold storage. The cost for the storage season is \$.136/bushe1/6 months. or \$.0227/bushel/month.

Section 2: Labor

Labor costs are essentially the same in cold storage and CA storage. Both storage methods require placing fruit into storage, 58 removing fruit from storage and daily monitoring storage conditions and appraising fruit quality.

The average wage is essentially the same in either storage method. The average hourly wage for labor in cold storage is \$3.35/hr and for CA it is \$3.39/hr. Labor time per bushel is nine seconds for cold storage (4-mongh storage period) and eighteen seconds for CA storage (7—month storage period). and daily monitoring s
fruit quality.
The average wa
either storage method.
labor in cold storage
\$3.39/hr. Labor time
cold storage (4-mongh
seconds for CA storage
Labor costs fo
months, or \$.0025/bush
cost of CA storage i

Labor costs for cold storage is \$.01/bushel/4 months, or \$.0025/bushel/month. The seasonal labor cost of CA storage is \$.018/bushe1/7 months. The monthly cost is the same as cold storage, \$.0025/bushe1/month.

⁵⁸J. C. Thompson, "Apple Storage Costs in New York State," Agricultural Experimental Station, Res. 87 (1962) , p. 23.

This monthly labor cost, \$.0025, is used for product-generated atmosphere packages. The seasonal cost would be \$.015/bushe1/6 months. 64
hly labor cost, \$.0025
atmosphere packages.
15/bushel/6 months.
Section 3: Management

Section 3: Management

The hourly costs for management for both storage methods is \$6.69/hr. The time spent per bushel in cold storage (4 months) was three seconds or \$.006/bushel/4 months, or \$.0015/bushel/month. Management costs for CA storage (seven months) was somewhat higher. Management was costed at 8 seconds per bushel. This is \$.016/ bushel/7 months, or \$.0023/bushel/month.

It is not clear what the difference between \$.0015 and 5.0023 is attributed to. It is assumed here that the management costs for the product-generated storage package will be the higher of the two, or \$.0023/ bushel/month. This would be a seasonal cost of \$.138/ bushel/6 months.

Section 4: Storage Supplies and Repairs

Other than supplying refrigerant, few supplies and repairs are needed for cold storage. However, CA storage requires the purchase of carbon dioxide scrubbers, such as caustic soda, which is a significant expense. Additional expenses, although minor, would be caulking compound and charcoal.

Repairs are also more costly for CA storage than cold storage. Before each season, the storage rooms are inspected, renovated and repaired to maintain airtightness. During the storage period there is a continual effort to prevent gas leaks and maintain the equipment used in monitoring the storage atmosphere.⁵⁹

Therefore, the costs in this category are \$.055/ bushel/7 months of CA and \$.Oll/bushel/4 months for cold storage. The month costs per bushel for CA and cold storage are \$.0079 and \$.0028, respectively.

Product-generated atmosphere packages would utilize the same facilities as cold storage. Monthly costs for storage supplies and repairs should not be affected (\$.0028/bushel/month). Since the storage season lasts six months or 50 percent longer, seasonal supply and repair costs will reflect the extra use. The seasonal cold storage cost for supplies and repairs will be increased 50 percent to represent these costs for product-generated atmosphere packages. The seasonal cost per bushel is \$.0165. costs for storage su

affected (\$.0028/bus

season lasts six mon

supply and repair co

The seasonal cold st

will be increased 50

for product-generate

cost per bushel is \$

Energy is th

Energy used to opera

Section 5: Energy

Energy is the main component of operating costs. Energy used to operate refrigeration and CA equipment

^{59&}lt;sub>Ibid.</sub>, pp. 28-29.

is the primary energy expense. Energy requirements for lights and miscellaneous items are insignificant.

On a month to month basis, energy expenses are erratic. The first month of storage has the greatest energy requirement because of the need to rapidly cool the apples. The following months also fluctuate because of changes in seasonal temperatures. In this analysis, the energy costs are a per-month average for the storage season.

The energy expenses for cold storage is \$.06/ bushel/4 months, or \$.015/bushel/month, and, for CA storage, is \$.13/bushel/month, or \$.0186. CA storage maintains a temperature of 3.5°C for McIntosh as Opposed to +.5°C in cold storage. The energy required for refrigeration during the first four months of CA storage would be less than the energy needed for four months of cold storage. However, this lower energyrequirement is offset by the power needed to refrigerate during the succeeding months, which will be warmer, and the operation of carbon dioxide scrubbers and other CA equipment.

The optimum temperature of the atmosphere for a product-generated storage package is 3.5°C. To achieve this temperature inside the package, a lower storage temperature will be needed. It has been shown that at the same storage temperature, crates with polyethylene

liners have an internal temperature that is 1°C greater than unlined crates. These were unsealed liners.⁶⁰ When air flow is restricted, a lower temperature is necessary to maintain the temperature of the air around the apple.

If a sealed package were used, it is conceivable that the storage temperature needed to establish a 3.5°C internal temperature may be close to the cold storage temperature of 0-1°C.

When comparing the energy expense of productgenerated storage packages to CA storage, the added refrigeration cost for the storage packages is partially offset by several factors. Refrigeration for the product-generated storage packages does not include the seventh month, May, which is the warmest storage month. Also, the storage packages would not utilize a carbon dioxide scrubber or most of the other CA equipment, all of which require energy to operate. refrigeration cost fo
offset by several fac
product-generated sto
seventh month, May, w
Also, the storage pac
dioxide scrubber or m
of which require ener
From this dis
energy requirements f
packages are approxim
The season

From this discussion, it is assumed that the energy requirements for CA and product-generated storage packages are approximately the same, \$.0186/bushel/month. The seasonal energy costs would be \$.1116/bushel/6 months.

 60 D. H. Dewey, H. J. Raphael, and J. W. Goff, "Polyethylene Covers for Apples Stored in Bushel Crates on Pallets," p. 206.

The storage costs for the three methods are summarized below. Costs are presented on a monthly and a seasonal basis.

Table 5 summarizes costs of storage methods on a monthly basis. Product-generated storage packages have the smallest monthly cost per bushel, even though management and energy costs are greater than cold storage. CA costs are almost $2\frac{1}{2}$ cents greater than productgenerated atmosphere packages on a monthly basis. 68

Section 6: Summary

The storage costs for the three methods are

summarized below. Costs are presented on a monthly and

a seasonal basis.

Table 5 summarizes costs of storage methods on

a monthly basis. Product-gener 68

Section 6: Summary

The storage costs for the three methods are

summarized below. Costs are presented on a monthly and

a seasonal basis.

Table 5 summarizes costs of storage methods on

a monthly basis. Product-gener

TABLE 5.--Storage Economics on a Monthly Basis.

Table 6 summarizes the seasonal costs of the storage methods. The total costs show that productgenerated storage packages will provide a storage period that is two months longer than cold storage for a cost of \$.07/bushel. The additional month provided by CA storage would almost cost an extra \$.22/bushe1. 69

that is two months longer than cold storage for a cost

of \$.07/bushel. The additional month provided by CA

storage would almost cost an extra \$.22/bushel.

TABLE 6.--Storage Economics on a Seasonal Basis.

TABLE 6.--Storage Economics on a Seasonal Basis.

CHAPTER VIII

CONCLUSION

The product-generated atmosphere is a unique concept from a packaging perspective. Presently, packaging is used to protect or maintain the internal CONCLUSION
The product-generated atmosph
concept from a packaging perspective.
packaging is used to protect or <u>maint</u>
conditions of the package. Producing conditions of the package. Producing conditions that extend storage life would be a new function for the package.

Product-generated atmosphere package is not a proven method in the storage of fruits and vegetables. The results of this study do indicate that productgenerated atmosphere package is a feasible storage method. It is feasible not only in terms of storage, but also in terms of economics. Further work is recommended to establish product-generated atmosphere packages as a viable storage method.

BIBLIOGRAPHY

 $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

BIBLIOGRAPHY

- Allen, F. W. (1937). "Carbon Dioxide Investigation of Carbon Dioxide Atmosphere upon Cherries, Plums, Peaches and Pears under Simulated Transit Conditions." Proc. of the Am. Soc. for Hort. Sci. $37:467-472$. B

. W. (1937). "

Carbon Dioxide

Peaches and Pea

Conditions." P

Sci. 37:467-472

ure Handbook 66

Oct. 1968, pp.

, P. and Pflug,

Controlled-Atmo

by Gas Chromato

Food Technology BIBL

W. (1937). "Car

Carbon Dioxide Atm

Peaches and Pears

Conditions." Proc

Sci. 37:467-472.

ure Handbook 66, U

Oct. 1968, pp. 1-2

, P. and Pflug, I.

Controlled-Atmosph

by Gas Chromatogra

Food Technology 21

, F
- Agriculture Handbook 66, U.S. Department of Agriculture, Oct. 1968, pp. 1—23.
- Angeline, P. and Pflug, I.J. (1967). "Volatiles in Controlled-Atmosphere Apple Storage: Evaluation by Gas Chromatography and Mass Spectrometry." Food Technology 21(12):99-102.
- Bangerth, F. (1974). "Hypobaric Storage of Vegetables." Acta Horticulturae, (6):23-32.
- Beadle, C. L.; Stevenson, K. R.; Thurtell, G. W. and Dube, P. A. (1974). "An Open System for Plant Gas-Exchange Analysis." Can. J. Plant Sci. 54: 161-165. by Gas Chro
Food Techno
Pood Techno
Acta Hortic
C. L.; Stev
Dube, P. A.
Gas-Exchang
161-165.
, F. F. (19
Respiration dre handbook 66, 0.
Oct. 1968, pp. 1-23
, P. and Pflug, I.J
Controlled-Atmosphe
Bood Technology 21(
, F. (1974). "Hypo
Acta Horticulturae,
C. L.; Stevenson, K
Dube, P. A. (1974).
Gas-Exchange Analys
161-165.
, F. F. (1954)
- Blackman, F. F. (1954). Analytic Studies and Plant Respiration. University Press, Cambridge, G.B.
- Blanpich, G. D. and Dewey, D. H. (1960). "Quality and Condition Changes in McIntosh Apples Stored in Controlled Atmospheres." Quarterly Bulletin of Mich. Agr. Exp. Stn. 43(4):771-78.
- Bogdanski, K. A. and Bogdanska, H. W. (1963). "Changes in Ascorbic Acid Levels in Apples of Different Varieties in the Course of Storage." Acta P. F. T. (19)
Respiration
Agrobotanic Controlled
Mich. Agr.
i, K. A. an
in Ascorbic
Varieties i
Agrobotanic Agrobotanic 16:5-25.
- Braman, W. H. (1970). "Growing and Packing Quality Apples with Alar." Mich. St. Hort. Soc. 100:108-11.
- Burg, S. P. and Burg, E. A. (1965). "Gas Exchange in Fruits." Physiologia Plantarum 18:870-84.

- Chen, W. W.; Chong, C.; and Taper, C. D. (1972). "Sorbitol and Other Carbohydrate Variation During Growth and Cold Storage." Can. J. Plant Sci. 73
W.; Chong, C.; and Taper, C. D. (1972).
"Sorbitol and Other Carbohydrate Variation D
Growth and Cold Storage." Can. J. Plant Sci
52:743-50. W.; Chong, C.
"Sorbitol and
Growth and Col
52:743-50.
T. and Pflug,
Storage of Oni
Agri. Exp. Stn 73

and Taper, C. D. (1972).

her Carbohydrate Variation Durin

Storage." Can. J. Plant Sci.

J. (1968). "Controlled Atmosph

s." Quarterly Bulletin of Mich.

50(4):449-57. W.; Chong,
"Sorbitol a
Growth and
52:743-50.
T. and Pflu
Storage of
Agri. Exp.
al Storage
Stocks, The
Printing Of 73
W.; Chong, C.; and Taper, C. D. (1972).
"Sorbitol and Other Carbohydrate Variation Durin
Growth and Cold Storage." <u>Can. J. Plant Sci</u>.
52:743-50.
T. and Pflug, I. J. (1968). "Controlled Atmosph
Storage of Onions." Quar 3

aper, C. D. (1972).

arbohydrate Variation Du

ge." Can. J. Plant Sci.

1968). "Controlled Atmo

Quarterly Bulletin of Mi

:449-57.

Vegetables and Florist

U.S.D.A., U.S. Governmen

ington D.C.

ediary Metabolism in Pl
- Chawan, T. and Pflug, I. J. (1968). "Controlled Atmosphere Storage of Onions." Quarterly Bulletin of Mich. Exp. Stn. ariation Durin
Plant Sci.
rolled Atmosph
letin of Mich.
nd Florist and
. Government
lism in Plants
rders not Like
Mich. St. Hort
- Commercial Storage of Fruits, Vegetables and Florist and Stocks, The (1968). U.S.D.A., U.S. Government Printing Office, Washington D.C.
- Davies, D. D. (1961). Intermediary Metabolism in Plants. University Press, Cambridge, G.B.
- Dewey, D. H. (1971). "Jonathan Apple Disorders not Likely Corrected by Orchard Nutrition." Mich. St. Hort. Soc. 101:45-48. '
- Dewey, D. H.; Raphael, J. H. and Goff, J. W. (1959). "Polyethylene Covers for Apples Stored in Bushel Crates on Pallets." Quarterly Bulletin, Mich. al Storage of
Stocks, The (
Printing Offi
D. D. (1961).
University Pr
. H. (1971).
Corrected by
Soc. 101:45-4
. H.; Raphael
"Polyethylene
Crates on Pal
Agr. Exp. Stn $Exp.$ Stn. $42(1):$ 197-209. D. D. (1961).
University Pr
. H. (1971).
Corrected by
Soc. 101:45-4
. H.; Raphael
"Polyethylene
Crates on Pal
Agr. Exp. Stn
D. R. (1965).
Proper Harves
St. Hort. Soc Soc. 101:45-4

Soc. 101:45-4

"Polyethylene

Crates on Pal

Agr. Exp. Stn

D. R. (1965).

Proper Harves

St. Hort. Soc

D. R. and Aus

Alar (N-dimet

Maturation an

St. Hort. Soc
- Dilley, D. R. (1965). "Prediction and Verification of Proper Harvest Date for Storage Apples." Mich. St. Hort. Soc. 95:45-50.
- Dilley, D. R. and Austin, W. W. (1966). "The Effect of Alar (N-dimethylamino-succinamic Acid) on Maturation and Storage Quality of Apples." Mich. St. Hort. Soc. 96:102-109.
- Fidler, J. C. (1948). "Studies of the Physiologically Active Volatile Organic Compounds Produced by Fruits. I. The Concentration of Volatile Organic Compounds Occurring in Gas Stores Containing Agl. Exp. Stm. 42(1):1

D. R. (1965). "Predic

Proper Harvest Date fo

St. Hort. Soc. 95:45-5

D. R. and Austin, W. W

Alar (N-dimethylamino-

Maturation and Storage

St. Hort. Soc. 96:102-

J. C. (1948). "Studie

Active V Apples." Jr. Hort. Sci. 24(12):178-87.
- Fidler, J. C. (1950). "Studies of the Physiological-Active Volatile Organic Compounds Produced by Fruit. II. The Rate of Production of Carbon Dioxide and of Volatile Organic Compounds by King Edward VII Apples in Gas Storage, and the Effect of Removal of Volatiles from the Atmosphere of the Store on the Incidence of Superficial-Scald." **J. C. (1948)**
Active Volat
Fruits. I.
Compounds Oc
Apples." <u>Jr.</u>
J. C. (1950)
Active Volat
Fruit. II.
Dioxide and Edward VII A
of Removal o
the Store on
J. Hort. Sci J. Hort. Sci. 25(2):81-110.
- Fidler, J. C. (1971). "Amended Recommendations for the Storage of Certain Cultivars of Apples." Rep. 74
J. C. (1971). "Amended Recommen
Storage of Certain Cultivars of
E. Malling Res. Station for 1970 E. Malling Res. Station for 1970, (4):159. 74

J. C. (1971). "Amended Recommendations for the

Storage of Certain Cultivars of Apples." Rep.

E. Malling Res. Station for 1970, (4):159.

J. C. and Mann, G. (1972). Refrigerated Storage

of Apples and Plums. William C
- Fidler, J. C. and Mann, G. (1972). Refrigerated Storage
of Apples and Plums. William Clowes & Sons, Ltd., Colchester and Beccles, England.
- Fidler, J. C. and North, C. J. (1967). "The Effect of Conditions of Storage on the Respiration of Apples. **J. C. (1971)**
Storage of C
E. Malling R
J. C. and Ma
Oclchester a
J. C. and No
Conditions o
J. Hort. Sci J. Hort. Sci. 42:189—206. J. C. (1971). "Amended Recom
Storage of Certain Cultivars
E. Malling Res. Station for 1
J. C. and Mann, G. (1972). Rof Apples and Plums. William
Colchester and Beccles, Engla
J. C. and North, C. J. (1967)
Conditions of Sto J. C. and Ma
of Apples an
Colchester a
J. C. and No
Conditions o
J. Hort. Sci
J. C. and No
Periods of A
J. Hort. Sci
- Fidler, J. C. and North, C. J. (1970). "Sorbitol in Stored Apples." J. Hort. Sci. 45:197-204.
- Fidler, J. C. and North, C. J. (1971). "The Effect of Periods of Anaerobiosis on the Storage of Apples." J. Hort. Sci. 46:213-221.
- Fidler, J. C. and North, C. J. (1971). "The Effect of Conditions of Storage on the Respiration of Apples. V. The Relationship Between Temperature, Rate of Respiration and Composition of Internal Atmosphere of the Fruit." J. Hort. Sci. 46: J. Hort. Sci. 42:189-206.
J. C. and North, C. J. (1970). "Sorbit
Stored Apples." J. Hort. Sci. 45:197-2
J. C. and North, C. J. (1971). "The Ef
Periods of Anaerobiosis on the Storage
J. Hort. Sci. 46:213-221.
J. C. and Nort J. C. and North, C. J.
Conditions of Storage of
Apples. V. The Relatio
Rate of Respiration and
Atmosphere of the Fruit
229-235.
J. C. and North, C. J.
Conditions of Storage of
Apples. VI. The Effec
Controlled Atmosphere of n the Storage of App
971). "The Effect of
the Respiration of
hip Between Temperat
omposition of Intern
<u>J. Hort. Sci</u>. 46:
971). "The Effect of
the Respiration of
the Relationship
n of Ethylene and Ca
46:237-243.
971). "Th
- Fidler, J. C. and North, C. J. (1971). "The Effect of Conditions of Storage on the Respiration of Apples. VI. The Effect of Temperature and Controlled Atmosphere on the Relationship Between Rate of Production of Ethylene and Carbon Dioxide." J. Hort. Sci. 46:237-243. Atmosphere o
229-235.
J. C. and No
Conditions o
Apples. VI.
Controlled A
Between Rate
Dioxide." J
J. C. and No
Conditions o
Apples. VII.
J. C. and No
Conditions o
Apples. VII. Rate of Respiration and Composition of Int
Atmosphere of the Fruit." J. Hort. Sci. 4
229-235.
J. C. and North, C. J. (1971). "The Effec
Conditions of Storage on the Respiration c
Apples. VI. The Effect of Temperature ar
Co
- Fidler, J. C. and North, C. J. (1971). "The Effect of Conditions of Storage on the Respiration of Apples. VII. The Carbon and Oxygen Balance." J. Hort. Sci. 46:245-250. J. C. and North, C. J. (1971). "The Effe
Conditions of Storage on the Respiration
Apples. VII. The Carbon and Oxygen Balan
J. Hort. Sci. 46:245-250.
J. C.; Wilkenson, B. G.; Edney, K. L.; an
Sharples, R. O. (1973). The Bio
- Fidler, J. C.; Wilkenson, B. G.; Edney, K. L.; and Sharples, R. O. (1973). The Biology of Apple and rear besings. Meddley Brow
London, Chapters 1, 2, 3 and 4. ey, K. L.;
Biology of
rothers, Lt
4.
Holme, D. G
bolism of A
J. Hort. S
1949). "Ef
Substances
J. Hort Sci
- Griffiths, D. J., Potter, N. A. and Holme, D. G. (1949). "Data from the Study of Matabolism of Apples During Growth and Storage." J. Hort. Sci.
- Griffiths, D. G. and Potter, N. A. (1949). "Effects of the Accumulation of Volatile Substances Produced by Apples in Gas Storage." J. Hort Sci. 25(6): $10 - 18$.
- Griffiths, D. G. and Potter, N. A. (1950). "Effects of Ethylene Upon Respiratory Activity of Apples in Gas Storage, With Special Reference to Stage of 75
S, D. G. and Potter, N.
Ethylene Upon Respirator
Gas Storage, With Specia
Maturity." J. Hort. Sci Maturity." J. Hort. Sci. 26(12):1-8.
- Gurevitz, D. and Pflug, I. J. (1970). "High Temperature Controlled Atmosphere Pre-Storage Treatment Effect on the Quality of Jonathan Apples." Food s, D. G. a
Ethylene U
Gas Storag
Maturity."
, D. and P
Controlled
on the Qua
Technology Technology 24(7):88-92.
- Hall, E. G.; Huelin, F. E.; Hackneys, F. M. V.; and Bain, J. M. (1954). "Gas Exchange in Granny Smith Apples." VIII. Congres International Botigue, p. 405. , D. and Pflug,
Controlled Atmos
on the Quality o
Technology 24(7)
G.; Huelin, F.
Bain, J. M. (195
Smith Apples." V
Botique, P. 405.
. A. and Mohseni
of Apples." J.
154-167.
P.H. and Hardenbu
Liners of Better
Horticultural
- Hanna, M. A. and Mohsenin, N. N. (1972). "Pack Handling of Apples." J. of Agri. Eng. Research 17(2):
- Heinze,'P.H. and Hardenburg, R. E. (1961). "Film Box Liners of Better Storage and Transportation of Horticultural Products of the U.S.A." Int. Inst. Bain, J. M. (1954). "Gas Exchange in Granny

Smith Apples." VIII. Congres International

Botique, p. 405.

. A. and Mohsenin, N. N. (1972). "Pack Handling

of Apples." J. of Agri. Eng. Research 17(2):

154-167.

P.H. and H
- Hulme, A. C. (1954).. "The Relationship Between the Rate of Respiration of an Apple Fruit and its Content of Protein. II. The Value of the Relation Immediately after Picking and at the Respiration-Climateric for Several Varieties of Apples." of Apples."
154-167.
P.H. and Hard
Liners of Be
Horticultura
of Refrigera
..C. (1954).
C. (1954).
The Respiratiof Protein.
Immediately
Climateric f.J. Hort. Sci J. Hort. Sci. 29(4):98-103. Horticultura

of Refrigera

.. C. (1954).

of Respirati

of Protein.

Immediately

Climateric f

J. Hort. Sci

.. C. (1954).

Respiration

Pippin Apple

J. Hort. Sci

.. C. (1954).
- Hulme, A. C. (1954). "Studies on the Maturity of Apples. Respiration Progress Curves for Cox's Orange Pippin Apples for a Number of Successive Seasons." J. Hort. Sci. 29(4):l42-l49.
- Jabbari, A.; Mohaenin, N. N.; and Adams, W. S. (1971). "Analog Computer Model for Predicting Chemical and Physical Properties of Selected Food Materials. Transactions, American Soc. Agri. Eng. 14(2): 319-325.
- James, W. O. (1953). Plant Respiration. Oxford Claredon Press, England.
- James, W. O. (1973). An Introduction to Plant Physiology. Oxford University Press, England.
- Jurin, V. and Karel, M. (1963). "Studies on Control of Respiration of McIntosh Apples by Packaging Methods." Food Technology 17(6):104-08.
- Karel, M. and Go, J. (1964). "Control of Respiratory 76
The Marian Co. J. (1964). "Co.
Gases." <u>Modern Packaging</u> Gases." Modern Packaging 37(6):123.
- Kidd, F. and West, C. (1930). "The Gas Storage of Fruit. II. Optimum Temperatures and Atmospheres." 76

.. and Go, J. (1964). "Con

Gases." <u>Modern Packaging</u>

and West, C. (1930). "Th

II. Optimum Temperatures a

J. of Pomology (Hort. Sci. J. of Pomology (Hort. Sci.) 13:67-77. . and Go, J
Gases." Mo
and West,
II. Optimum
J. of Pomol
and West,
VI. Cox's O
(Hort. Sci. 76

. and Go, J. (1964). "Control of Respiratory

Gases." <u>Modern Packaging</u> 37(6):123.

and West, C. (1930). "The Gas Storage of Fruit

II. Optimum Temperatures and Atmospheres."

<u>J. of Pomology (Hort. Sci.</u>) 13:67-77.

- Kidd, F. and West, C. (1936). "Gas Storage of Fruit. VI. Cox's Orange Pippin Apples." J. of Pomology
- Kidd, F. and West, C. (1936). "Recent Advances in the Work on Refrigerated Gas-Storage of Fruit." 76

..and Go, J. (1964). "Con

Gases." <u>Modern Packaging</u>

and West, C. (1930). "Th

II. Optimum Temperatures a

<u>J. of Pomology (Hort. Sci.</u>

and West, C. (1936). "Ga

VI. Cox's Orange Pippin Ap

(Hort. Sci.) 14:276-94.
 J. of Pomology (Hort. Sci.) 14:299-316.
- Kidd, F.: West, C.; Griffith, D. G.; and Potter, N. A. (1950). "The Degradation of Starch in Apples Removed from the Tree at Different Stages of J. of Pomology (Hort. Sci.)
and West, C. (1936). "Gas
VI. Cox's Orange Pippin App
(Hort. Sci.) 14:276-94.
and West, C. (1936). "Rec
Work on Refrigerated Gas-St
J. of Pomology (Hort. Sci.)
; West, C.; Griffith, D. G.
(1950) Development." J. Hort. Sci. 25:289-296. Work on Refrigerated Gas-Storage of Fruit."

J. of Pomology (Hort. Sci.) 14:299-316.

; West, C.; Griffith, D. G.; and Potter, N.

(1950). "The Degradation of Starch in Apple

Removed from the Tree at Different Stages of

- Levitt, J. (1974). Introduction to Plant Phygiology. C.V. Mosby Company, Saint Louis, Mo.
- Looney, N. E. (1971). "Interaction of Ethylene, Auxin and Succinic Acid -2,2-Dimethy1hydrazide in Apple Fruit Ripening Control." J. Amer. Soc.
- Lougheed, E. C.; Franklin, E. W.; Miller, S. R.: and Procter, J. A. (1973). "Firmness of McIntosh Apples as Effected by Alar and Ethylene Removal from the Storage Atmosphere." Can. J. Plant Sci. 53:317-22. 76

1. and Go, J. (1964). "Control of Respirator

Gases." Modern Packaging 37(6):123.

1.1. Optimum Temperatures and Atmospheres."

II. Optimum Temperatures and Atmospheres."

1.1. Optimum Temperatures and Atmospheres."

1 **FIGURE 1988**
 FIGURE 10: A. (1973). "Firmess of McInto

Apples as Effected by Alar and Ethylene Rem

from the Storage Atmosphere." Can. J. Plan

<u>Sci</u>. 53:317-22.
 G. A. (1967). "Cost of Storing North Caro

Apples." E
- Mathias, G. A. (1967). "Cost of Storing North Carolina Apples." Economics Information Report No. 5. N.C. State Univ., December, 41 pp.
- McLean, D. C.: Dedolph, R. R.; Dilley, D. R.: and Dewey, D. H. (1969). "Effects of Cyclic Anaerobiosis of Pome Fruits." J. Amer. Soc. rrom the
Sci. 53:3
G. A. (1
Apples."
N.C. Stat
D. C.; De
Dewey, D.
Anaerobio
Hort. Sci
- Meherink, M. and Porritt, S. W. (1972). "Effects of Waxing on Respiration, Ethylene Production and Other Physical and Chemical Changes in Selected Apple Cultivars." Can. J. Plant Sci. 52:257-59.
- Meherink, M. and Porritt, S. W. (1973). "Effects of Picking Dates, Delayed Storage, Storage Temperatures and Storage Atmosphere on the Quality of Starking Delicious Apples." Can. J. , M. and P
Picking Da
Temperatur
Quality of
Plant. Sci Plant. Sci. 53:593-95. , M. and
Picking D
Temperatu
Quality o
Plant. Sc
Some Mor
Of Severa
Plant Sci
- Meherink, M.: Fisher, D. V.: and Lapins, K. O. (1973). "Some Morphological and Physiological Features of Several Red Delicious Apple Sports." Can. J. Plant Sci. 53:335-39.
- Michigan Apple Committee, Report 1—13, Jan. 23, 1976 through April 16, 1976.
- Michigan Apple Council, Newsletter No. 9-17, Nov. 6, 1975 through March 3, 1976.
- Murata, T. and Minamide, T. (1970). "Studies on Organic Acid Metabolism and Ethylene Production During Controlled Atmosphere Storage of Apples (Mallus pumila Miller, cv. Rolls). Plant and Cell Apple Com
through Ap
Apple Cou
through Ma
T. and Min
Acid Metab
Controlled
pumila Mil
Physiology Physiology $11(3):857-63.$
- Pekmezci, M. (1970). Interrelations Between the Carbon Dioxide and Oxygen Concentrations of the Cell Sap and of the Internal and External Atmospheres in Fruit of Different Pome Fruit Varieties. Diss. rhein, Friedrich Wilhelms, Univ. Bonn, pp. 92. , M. (1970).
Dioxide and
Sap and of t
in Fruit of
Thein, Fried
S. W. and M
Storage Humi
Spartan Appl
N. A. and Gr
Temperature
Volatile Sub
J. Hort. Sci
- Porritt, S. W. and Meheriak, M. (1973). "Influence of Storage Humidity and Temperature on Breakdown in Spartan Apples." Can. J. Plant Sci. 53:597-99.
- Potter, N. A. and Griffiths, D. G. (1947). "Effects of Temperature and Gas Mixture on the Production of Volatile Substances by Apples During Storage." J. Hort. Sci. 23:171-77. S. W. and
Storage Hu
Spartan Ap
N. A. and
Temperatur
Volatile S
J. Hort. S
. A. (1970
Physiology N. A. and
Temperatu
Volatile
J. Hort.
A. (197
Physiolog
n, M. P.
On the St
Of Refrig
- Price, C. A. (1970). Molecular Approaches to Plant . A. (1970). <u>Horecardr Approdence to Franc</u>
Physiology. McGraw-Hill Book Company, New York.
- Rasmussen, M. P. (1961). "The Effects of Plastic Timers on the Storage Behavior of Apples." Int. Inst. of Refrig. 1961:309-14.
- Recommended Conditions for Cold Storage of Perishable Produce (1967). International Institute of Refrigeration 117, Boulevard Malesherbes, 75, Paris, France.
- Smith, W. H. (1954). "The Structure of the Mature Apple Fruit in Relation to Gaseous Exchange." VIII. 78

78

. H. (1954). "The Structure of th

Fruit in Relation to Gaseous Excha

Congres International de Botanique Congres International de Botanique, 405-407. 78
tructure of the Mature App
Gaseous Exchange." VIII.
1 de Botanique, 405-407.
nfluence of One Lot of App
Proc. of the Am. Soc. Hort
- Smock, R. M. (1942). "The Influence of One Lot of Apple Fruit on Another." Proc. of the Am. Soc. Hort. Sci. 40:187-92.
- Street, H. E. and Cockburn, W. (1972). Plant Metabolism, 2nd ed., Pergamon Press, Oxford, Great Britain.
- Stout, B. A.; Dewey, D. H. and Mrozik, R. F. (1971). "Mechanical Orientation of Apples and Related Fruit Characteristics." Agr. Exp. Stn. Mich. St. Univ., Research Bulletin No. 32.
- Thompson, J. C. (1962). "Apple Storage Costs in New York." Agricultural Experimental Station Res. 87, Cornell University, 56 pp.
- Tomkins, R. G. (1960). "The Biological Effects of the Conditions Produced in Sealed Plastic Containers by Prepackaged Fresh Fruit and Vegetables." Bull. Int. Inst. Refrig. Annexe 1961, 1:233-41. W. H. (1954). "The Struct
Fruit in Relation to Gase
Congres International de
. M. (1942). "The Influe
Fruit on Another." Proc.
Sci. 40:187-92.
H. E. and Cockburn, W. (1
2nd ed., Pergamon Press,
. A.; Dewey, D. H. and Mr "M H. E. and Cockburn, W.
2nd ed., Pergamon Press
. A.; Dewey, D. H. and
"Mechanical Orientation
Fruit Characteristics."
St. Univ., Research Bul
, J. C. (1962). "Apple
York." Agricultural Ex
87, Cornell University,
R. G. (196
- Tomkins, R. G. (1961). "The Changes in the Concentration of Carbon Dioxide and Oxygen Produced Within Sealed Plastic Packages by Fruits and Vegetables." Int. Inst. Refrig. Annexe 1961, 1:315-23.
- Tomkins, R. G. (1962). "The Conditions Produced in Film Packages by Fresh Fruits and Vegetables and the Effect of these Conditions on Storage Life." J. Applied Bacteriology 25(8):290-307.
- Tomkins, R. G. (1962). "Film Packaging of Fresh Fruit and Vegetables--the Influence of Permeability." The Inst. of Packaging Conference Guide - 1962, pp. 64-69
- Troyan, A. V.: Mel'nichuk, L. 1.; and Kedesh, S. S. (1972). "Determining the Intercellular Volume in Succulent Fruit." Pishshevaga Tekhnologiya, No. 3, 183-84.
- Van Doren, A. (1937). "Physiological Studies with McIntosh Apples in Modified Atmosphere Cold Storage." Proc. Am. Soc. Hort. Sci. 37:453-58.
- Veeraja, P. and Karel, M. (1967). "Control of Atmosphere Inside a Fruit Container." Modern Packaging 40(2):168—l75. 79
 P. and Karel, M. (1967).
Atmosphere Inside a Fruit C
Packaging 40(2):168-175.

. P. (1942). "The Nature of from Apples." <u>J. Hort. Sci</u> 79

P. and Karel, M. (1967). "Control of

Atmosphere Inside a Fruit Container." Modern

Packaging 40(2):168-175.

P. (1942). "The Nature of Volatile Products

from Apples." J. Hort. Sci. 20(8):59-67.

, W. R. and Hallowell
- Walls, L. P. (1942). "The Nature of Volatile Products from Apples." J. Hort. Sci. 20(8):59-67.
- Woolrich, W. R. and Hallowell, E. R. (1970). Cold and
Freezer Storage Manual, Avi Publishing Company, Inc., Westport, Connecticut.
- Unpublished apple packing cost information, Dec. 1975, Brown, N., County Building, Grand Rapids, Mich., and Pierson, J., Dept. of Agri. Econ., MSU, East Lansing, Mich.

APPENDIX

APPENDIX

APPENDIX
Section 1: Assumptions Section 1: Assumptions

The assumptions made in the computer simulation

are listed below:

- 1. Apple metabolism adjusts instantaneously to any change in the atmosphere.
- 2. Solubility of oxygen and carbon dioxide in apple sap at a given temperature is equivalent to water solubility constants.
- $3.$. Temperature effect on metabolism is additive to the oxygen-carbon dioxide effect.
- 4. Temperature does not affect the R.Q.
- No physiological disorders in the package. $5.$
- Internal package humidity and apple 6. transpiration are not factors.

Section 2: Values for Program Parameters 82

<u>Section 2:</u>

Values for Program Parameters 82

Section 2

for Program

This section quantifies the parameters of equations (1) and (2), with the exception of "RR(p_{O_2} , p_{CO_2} , T)." The computer program symbols are in parentheses. 82

Section 2:

Frogram Parameters

untifies the parameters of equations

sception of "RR(p_{O_2}, p_{CO_2}, T)." The

sare in parentheses.

e used in the simulation. They were

lative permeability rates.

om³ x standard tem

Three films were used in the simulation. They were chosen on a basis of relative permeability rates.

1. Cellulose Acetate

Three films were used in the simulation. They were
\nisen on a basis of relative permeability rates.
\nCellulose Acetate
\na.
$$
\tilde{P}_{O_2}
$$
 (PERO2Z)=2.44x10⁻⁴ $\frac{cm^3 x$ standard temp. & press x cm thickness
\ncm² x hour x atmosphere
\nb. activation energy for oxygen (ERO2) = 4200 kcal/mole
\nc. \tilde{P} (PERO2Z) = 1.47 x 10⁻³ $\frac{cm^3 x$ STP x cm

b. activation energy for oxygen (EPO2) = 4200 kcal/mole

c.
$$
\tilde{P}_{CO_2}
$$
 (PERCO2Z) = 1.47 x 10⁻³ $\frac{cm^3 x STP x cm}{cm^2 x hour x atm}$

c. activation energy for carbon dioxide (EPCOZ) = 5200 kcal/n'ole

2. Low density polyethylene

- a. (PERO2Z) = 1.75 x ${10}^{-5}$
- b. $(EPO2) = 10000$
- c. (PERCO2Z) = 8.8 x 10^{-5}
- d. (EPCO2) = 9000

3. Polybutadiene

a. (PERO2Z) = 8.57 x 10^{-6}

- $b.$ (EPO2) = 5000
- c. (PERCO2Z) = 2.97×10^{-5}
- $d.$ (EPCO2) = 4300

 W_n (WA) = 2273 grams

Retail package sizes for apples are typically 3, 4 and 5 pound packages. 61 A five pound package was chosen for this simulation.

$$
V(V) = 3606 \text{ cm}^3
$$

The value for the headspace volume of package system is the sum of the headspace void in the package and the intercellular spaces in the apples. The package is assumed to be of cylindrical shape with a diameter of 6 inches (15.24 cm) and a height of 12 inches (30.48 cm) . The density of McIntosh is .814 qm/cm^3 and the apple has about 30 percent intercellular space.62 ror this simulation
 $V(V) = 3606 \text{ cm}^3$

The value for the

is the sum of the

the intercellular

is assumed to be of

of 6 inches (15.24

(30.48 cm). The d

and the apple has a

space. 62

The commercial rat

volume is

The commercial ratio of product volume to package volume is 0.5 for apples. 63 The ratio for this package is 2792/5560 or 0.5.

 61 M. A. Hanna and N. N. Mohsenin, "Pack Handling of Apples," J. of Agri. Eng. Research (1972), 17(2):164. 62_{A.} V. Troyan; L. I. Mel'nichuk and S. S. Kedesh, "Determining the Intercellular Volume of Succulent Fruit," Pishshevaga Tekhnologiya (1972), 3:183. 63
R. G. Tomkins, p. 237.

$R(RGAS) = 82.06$

This is a gas constant.

 $t(DELT) = 4$

Time increment is ⁴ hours. The duration of the simulation (TMAX) is 720 hours or 30 days. CA storage may require 2-3 weeks to attain desired storage conditions (39). It is believed that equilibrium or anaerobic conditions would be reached within 30 days.

$$
p_{\alpha} = 1
$$

It is assumed that pressure is constant at one atmosphere (standard pressure). The value is then "1" and " p_{α} " is not a variable in this simulation.

 T_{o} (TA) = 273°K

It is assumed that gasses in the internal and external atmosphere are at standard tempersture, which is 0°C or 273°K.

 $A(AREA) = 1824.1 cm²$

Surface area of cylinder.

```
x(XM) = 1.0 mil
```
Thickness Of film in mils. One mil is the common thickness of film used in retail apple packages.

 $(XC) = 2.54 \times 10^{-3}$ cm/mil

Conversion factor to convert mils to centimeters.

e $P_{O_2}(\text{PO2E}) = .21$ Partial pressure of oxygen in air is 0.21. e $P_{CO_2}^{\text{e}}$ (PCO2E) Partial pressure of carbon dioxide in air is 0.0003 $p_{0_2}^1$ (PO2) = .2007 Average internal partial pressure of oxygen for package. (P02) is based on the volume and partial pressure of the headspace and the intercellular spaces in the apple. The partial pressure of oxygen in intercellular spaces is 0.17. i P_{CO_2} (PCO2) = 0.0095 Average partial pressure of carbon dioxide inside the package. The partial pressure of carbon dioxide in intercellular spaces is 0.04. $T(TEMP(NQQ)$ and TC) = 3.5°, 5°, 6° and 7°C The program model is designed to simulate the productgenerated atmosphere package at four specific temperatures. The lowest temperature, 3.5°C was chosen on the basis that this is the storage temperature of CA stored McIntosh apples. Storage life is inversely proportional to temperature. P_{CO} ¹ (PCO2) = 0.0095
Average partial pr
the package. The
in intercellular s
T(TEMP(NQQ) and TC) =
The program model
generated atmosphe
temperatures. The
chosen on the basi
temperature of CA
Storage life is in
Small c Small changes in temperature have a significant negative

 64 Ibid., p. 241.

effect on storage potential. Increasing the storage temperature above 7°C may cancel out any benefit derived from the package.

$$
T_A (TA) = TC + 273^{\circ}
$$

TC + 273[°] converts degrees Celsius to degrees Absolute.

$$
S_{O_2}^{(T)}
$$
 (SO2) = SOLO2 (TC) $\frac{gm O_2}{Kg + hr}$

SOLOZ(TC) is a function within the program simulation. This function has solubility factors for several temperatures between 0°C and 20°C. This covers the possible range of storage temperatures. SOLOZ(TC) interpolates the solubility for a given temperature based on data stored in the function.

There was no data available on oxygen solubility in apple sap. It was necessary to make an assumption. It was assumed that apple sap has the same solubility constants as water. Example that apple sap h
as assumed that apple sap h
tants as water.
(SCO2) = SOLCO2(TC) $\frac{gm CO_2}{cm O_2}$

$$
C_{CO_2(T)} (SCO2) = SOLCO2 (TC) \frac{gm CO_2}{Kg \cdot hr}
$$

SOLC02(TC) is also a function within the program simulation. It interpolates the solubility of carbon dioxide in water (apple sap).

 \tilde{P}_{\sim} (m) (PERO2) = PERO2Z $x e^{X} x$ [-EPO2/1.987 x (1/TA - 1/273)] 2 The permeability rate varies according to temperature. (PEROZ) reflects the permeability rate at specific temperatures (TA).

$$
\tilde{P}_{CO_2}(T)
$$
 (PERCO2) = PERCO2Z x e^x x [-EPOC2/1.987 x]
(1/TA - 1/273)]

PERCOZ reflects the permeability rate a specific temperature (TA).

Section 3: Program Prototype

The model consists of a main program and three functions.

APPLER, the main program (Figure 20) is concerned with the simulation of the diffusion of oxygen and carbon dioxide through the package. The internal concentration of these gases continue to change until the package system is at a steady state.

A check is made for the extinction point of oxygen. A partial pressure below this point indicates anaerobiosis and a steady-state condition that will not be reached. The system terminates at this point.

The functions SOL02 and SOLCOZ (Figure 21) determine the volume Of oxygen and carbon dioxide dissolved in the apple sap (water).

The function RESP (Figure 22) computes the respiration rate as influenced by environmental conditions.

The program consists of four 720 hour (30 day) simulations. Temperature is the only variable changed in the four simulations. The time increment is 4 hours. Conditions are printed out every six increments or every 24 hours.

 \blacksquare

PAGE

Figure 20-1.--Program Appler.

 $\ddot{}$

Figure 20-2.--Program Appler.

 \sim

 \sim

Figure 21.--Functions SOLCO2 and SOLO2.

 \bullet

 $\ddot{ }$

Figure 22.--Function RESP.

Section 4: Data from Simulations 93
Section 4: Data from Simulations 93

n 4: Data from Simu

and Proof of Program and Proof of Program

This section presents the data from the simulation. Values are printed out for the following:

- 1. Material name
- $2.$ Bag area
- $3.$ Headspace volume
- $4.$ Weight of apples
- $5.$ External partial pressure of oxygen
- $6.$ External partial pressure of carbon dioxide
- $7.$ Oxygen permeability
- $8.$ Carbon dioxide permeability
- $9.$ Mils thickness
- 10. Temperature, degrees Celcius
- 11. Temperature, degrees absolute
- 12. Solubility constant of oxygen
- l3. Solubility constant of carbon dioxide
- 14. Time, in days
- 15. Internal oxygen concentration
- 16. Internal carbon dioxide concentration
- 17. Respiration Rate.

Figure 23, 24 and 25 show the results of the simulations for cellulose acetate, low density polyethylene and polybutadiene, respectively. Figure 26 verifies the program by reducing the time increment from four hours to two hours. This simulation is for low density polyethyleneat 7°C.

- -
-
-
-
- **BAG MATERIAL IS SELLULOSE ASETATE
1. BAG AREA IS 1824.1 SQUARE CENTTMETERS
2. VOLUME IS 3606.0 CUBIC CENTTMETERS
3. MEIGHT OF APPLES IN GPAMS IS 2273.0
4. THE ENTERNAL PARTIAL OF GXYGEN IS .220
5. CARBON DIOXIDE EXTERNAL**

 $SOL-CO2$

201-02

T-ABSOLUTE

T-CELSIUS

MILS

CO2 PERMEADILITY

US DERMEATILITY

.4918

Figure 23-1.--Results of the Simulation for Cellulose Acetate.

 $\frac{1}{2}$

Figure 23-2.--Results of the Simulation for Cellulose Acetate.

 $\hat{\boldsymbol{\beta}}$

 $\hat{\boldsymbol{\beta}}$

Figure 23-3.--Results of the Simulation for Cellulose Acetate.

 $\ddot{}$

Figure 23-4.--Results of the Simulation for Cellulose Acetate.

 $\ddot{}$

940 MATERIAL IS LOW DENSITY POLIETHILLENE

1: BAG AREA IS 1824:1 SQUARE CENTIMETERS

25 VOLUME 19 3686 CURIC CENTIMETERS

3. HEIGHT OF APPLES IN GRANS IS 2273.0

4, THE EXTERNAL PANTIAL OF UXYGEN IS ,210

5. CARBON DIOXIDE EXTERNAL PARTIAL PRESSUBE IS 18003

BOT-4COS

SOLT02

T-ABSO_vUTE

1202181826

MILS

CO2 PERMEABILITY

02 PERMEARILITY

Figure 24-1.--Results of the Simulation for Low Density Polyethylene.

.

Figure 24-2.--Results of the Simulation for Low Density Polyethylene.

 $\ddot{}$

 $\overline{}$

 $\ddot{}$

Figure 24-3.--Results of the Simulation for Low Density Polyethylene.

 $\ddot{}$

Figure 24-4.--Results of the Simulation for Low Density Polyethylene.

 $\ddot{}$

 $\ddot{}$

-
- 1. dAG AREA IS 1824.1 SQUARE CENTIMETERS
2. VOLUME IS 1824.1 SQUARE CENTIMETERS
3. WEIGHT OF APPLES IN GRAMS IS 2273.6
4. THE EXTEMAL PARTIAL OF OXVGEN IS .218
5. CARBON DIQXIDE EVERNAL.

 $\bar{\bar{z}}$

-
-
- CARBON DIOXIDE EXTERML PARTIAL PRESSURE IS .0003

 \bar{z}

Figure 25-1.--Results of the Simulation for Polybutadiene.

ANAEROBIC CONDITIONS EXIST . . . TERMINATE.

201-205

SOL-02

T-ABSOLUTE

I-CELSIJS

HILS

CO2 PERMEABILITY

O2 PERMEABILITY

ANAEROBIS CONDITIONS EXIST . . . TERMINATE.

 $\hat{\mathcal{A}}$

 $\bar{\beta}$

 $\bar{\mathcal{A}}$

ANAEROUIC CONDITIONS EXIST . . TERMINATE.

Esterio
Parterio $\ddot{\cdot}$

Figure 25-3.--Results of the Simulation for Polybutadiene.

 $\hat{\boldsymbol{\beta}}$

 $\hat{\mathcal{I}}$

 $\ddot{}$

Figure 26.--Results of the Simulation for Low Density
Polyethylene at 7°C.

 $\bar{.}$

