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ABSTRACT

STRESS ANALYSIS OF GROOVED

AND THREADED DIE CASTING MACHINE TIE BARS

By

Frank De Roos Baron

The analysis of stresses in die casting machine tie bars is a speci-

fic example of the general case of the stress analysis of projection

loaded members. Other examples would be gears and shafts with keyways.

The two types of bars analyzed are a threaded bar with a nut and a

grooved bar with a split collar. The stresses were analyzed to increase

fatigue life.

Two finite element programs were used to analyze the stresses. One

used linear elements, the other quadratic elements. Previously published

empirical and analytical methods were also used. The maximum.stresses

obtained were used to calculate factors of safety.

The finite element analyses indicate that a radius fillet is the

best design for the grooved bar. The threaded bar analyses indicate

that the stress concentration factors for nut and bolt combinations

may be higher than generally believed.
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CHAPTER ONE

INTRODUCTION

This paper examines the stress concentration factors and fatigue

resistance of various tie bar designs. The tie bar is a typical example

of a machine member in tension. The methods presented are also used to

analyze stresses in conventional nut and bolt combinations.

A die casting machine is a press which holds two die halves to—

gether. Molten metal is injected under high pressure into the cavities

of the die halves to form the desired part. These high injection pres-

sures dictate the need for large forces to hold the die halves together.

Die casting machines are rated by the force that can be applied to the

die halves. Ratings range from 90 to 3000 tons.

The basic parts of a die casting machine are the three plates, the

toggles, the four tie bars, and the tie bar fasteners. The plates are

all approximately square and have a hole bored in each corner. The tie

bars slip through these holes and are fastened on the ends.

Figure 1.1 shows how the toggles slide the movable plate along the

tie bars to squeeze the die halves together. The spacing on the machine

is such that the die halves touch just before the toggles are fully

extended. After the die halves touch, the toggles continue to extend,

pushing the plates up against the fasteners and putting the tie bars

1
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in tension. The tie bars have to stretch to let the toggles reach their

full extension. This tensile load in the tie bars is what provides the

force that holds the die halves together. Since there are four tie bars,

the load per bar is the rated tonnage divided by four. Once the toggles

are fully extended and the tie bars stretched, the molten metal is in-

jected to make a part. The toggles then retract so the part can be re-

moved, and the cycle begins again. Because of the cyclic load the tie

bars are subject to fatigue failure in the fastener area.

The first die casting machine was introduced in 1908. Early

machines had Whitworth or American National threads machined on the ends

of the tie bars. A solid nut was used as a fastener. Acme threads were

used later to ease nut removal (Figure 1.2). The fasteners must be re-

movable to allow for adjustment in machine spacing. This adjustment

is necessary if dies are changed or if there is thermal growth of the

die. A later development in threaded bars with Acme threads was the use

of a tapered nut to improve load distribution among the threads. The

last bar fastening method developed was to machine a groove in the tie

bar and bolt a split collar around the groove.

The tie bar is a specific example of a member being put in tension

by projection loading (Figure 1.3). The projection loading of threads

was of particular interest in the mid 19A0's when the unification of

threads was being studied. Thread analysis took two forms at this time

(1) testing and analysis of a specific thread form, (2) use of mathe—

matical and empirical formulas to analyze thread forms in general. M.

Hetenyi used testing and analysis in 19A3 when he performed three

dimensional photoelastic testing on a 1 inch diameter Whitworth nut

and bolt combination. Hetenyi's testing showed that with a cylindrical
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nut the Whitworth threads had a stress concentration factor of 3.85 based

on outside diameter. Use of a tension nut reduced this value to 3.00E2].

If the stress concentration factor is based on minor diameter, the values

[21.
are 2.70 and 2.10 respectively The stress concentration factors

derived by Hetenyi are the values generally used today for Whitworth or

Unified National threads.

D.G. Sopwith used a more general approach in l9A8 when he used a

mathematical analysis to calculate the distribution of load in a nut

and bolt of arbitrary thread form. There is not a uniform distribution

due to the differences in strain between the nut and bolt. When the

nut and bolt are loaded, the bolt is in tension while the nut is in com—

pression. This causes changes in the pitch of the nut and bolt relative

to each other and consequently a large percentage of the load is carried

by the first thread. Sopwith's mathematical results showed good agree-

[2]
ment with the experiments performed by J.N. Goodier in l9A0 Goodier

loaded a l-l/A inch American National nut and bolt, measured the axial

and radial displacements, and from these calculated the load distribu-

tion[2].

In l9A8, R.B. Heywood derived empirical results to calculate the

stress in the fillet of a loaded projection. Heywood's results were

based on his photoelastic experiments which included work on various

thread forms. He used the mathematical results of Sopwith to deter-

mine the load distribution in a Whitworth nut and bolt combination, and

the mathematically derived charts of Neuber to determine the stress

concentration factor of a multiply grooved shaft in tension (no projec-

tion load). The preceeding mathematical results were used with his

empirical results to determine the maximum tensile stress in the thread



fillet. From this he calculated the stress concentration factor for

Whitworth threads to be 5.2 based on minor diameterEl]. This is sub-

stantially higher than Hetenyi's results. In 1952, Brown and Hickson

obtained a stress concentration factor of “.8 based on minor diameter

from their three dimensional photoelastic testing of a 2 inch Unified

[2]. These mixed results show thatNational nut and bolt combination

exact stress concentration factors for nut and bolt combinations are not

well determined.

The work presented here calculates the stress concentration factors

for the eight bars listed below.

Bar #1 .500 min. dia., .688 maj. dia.

Bar #2 .750 min. dia., 1.00 maj. dia.

Bar #3 1.00 min. dia., 1.38 maj. dia.

Bar #4 5.20 min. dia., 6.75 maj. dia. (600 ton machine)

Bar #5 1/2—13 UNC thread

Bar #6 3/4-10 UNC thread

Bar #7 1-8 UNC thread

Bar #8 6.50 dia M thds/in Acme thread (650 ton machine)

All dimensions in inches

Bars one through four are the grooved type, while bars five through

eight are the threaded type. Bars four and eight have dimensions of

tie bars in use today.

The work discussed here includes two approaches, empirical methods

and finite element methods. Chapter Two of this paper follows Heywood's

procedure quite closely. Sopwith's results are used to determine the

distribution of loading in the threaded bars and Neuber's charts are



used to determine the stress concentration factors of multiply grooved

bars in tension. This information is used in Heywood's results to deter—

mine the maximum.tensile stress. Heywood also did photoelastic testing

of members similar to the grooved tie bars, so his results could be ap-

plied directly to determine the maximum tensile stress in the grooved

tie bars. These maximum stresses are used to calculate stress concen-

tration factors for the two types of bars. Chapter Three determines

the maximum.tensile stress in the bars by using finite element analysis.

The maximum stresses are used to calculate stress concentration factors.

Chapter Four uses the stress concentration factors in the Soderberg

[5]
equation to determine factors of safety based on fatigue strength for

bars four and eight. Chapter Four includes results derived from testing

model tie bars on a tensile testing machine.



CHAPTER TWO

ANALYTICAL AND EMPIRICAL FORMULATIONS

2.1 INTRODUCTION

The calculation of the maximum tensile stress in the various tie

bar designs using the empirical results of R.B. HeywoodEl], the mathe-

matical results of D.G. SopwithEu], and the mathematical charts of

H. Neubertz] is discussed in this chapter.

2.2 THE GROOVED BAR

Projection loaded members are frequently encountered in machine

design. The grooved tie bar (Figure 1.2) is a specific example. The

projection is the shoulder created by machining a groove in the end of

the tie bar. Other types of projection loaded members include gears,

threaded bars, and shafts with keyways.

R.B. Heywood did photoelastic testing of projection loaded members

in the mid 1940's in order to derive empirical results that can be used

to calculate the tensile stress in the fillet of a loaded projection.

Heywood used his results to analyze the stresses in bolt heads which

are similar to the geometry of the grooved tie bar. His results are

used here to calculate the maximum tensile stress in the fillet of the

grooved tie bar.



Heywood observed from his photoelastic testing that when a shaft is

in tension due to a projection load, there are two factors that produce

stress in the fillet region of the projection. There will be a stress

component due to the axial load, and a stress component due to projec-

tion load as shown in Figure 2.1[l]. The stress due to projection load

will be examined first.

Heywood observed that there are three factors to be considered when

calculating the stress due to projection load. These factors are: Bend-

ing stress, proximity of the load to the fillet, and the fillet geometry.

With the dimensions shown in Figure 2.2, Heywood developed Equation 2-l

to fit his photoelastic dataEl].

_ e 0.7 1.5a 0.3 . P
Ob - [l + 0.2605) JL? + Tee—.0" + l/LlSlny)J(-t-) (2-1)

fillet bending proximity

geometry stress stress

effect

The bending stress term in Equation 2—l is similar to the Lewis

formula for gear teeth. It represents the stresses in the fillet due

to the moment created by P (Appendix A). The proximity stress term is

the stress due to the proximity of the load to the fillet and is attri-

buted to the transitional strains between loaded and unloaded areas.

When one section is under load, the unloaded section adjacent to it

will have strains induced in it as shown in Figure 2.3. The fillet geo-

metry effect term represents the effect of the radius of the fillet.

Heywood's results can be used for a wide range of geometriesEl].

In the case of a long projection, b, gets large, and the proximity term

diminishes (Figure 2.2). In the case of a short projection, a, gets

small and the moment term.diminishes (Figure 2.2). If a large radius



lO

AXIAL STRESS ONLY

f 5 mm
~I-~;:=::=::i.—-AOQ‘d. Ad‘t)

BENDWG

- STRESS

V7 /

Figure 2.1 Stresses in Projection Loaded Shafts

 

 

 
  

  

  

.
.
+
_
_
_
_
_
.
.
_
_
_
_

..
..

..
ll

 
tzTNCKNESS =LEN6TH OF PROJECTION

Figure 2.2 Dimensions for Using Heywood's Results



ll

W

W

L___/\W\I\__

TRAN S\T \ONAL STRMNS

  

Figure 2.3 Exaggerated Strains

 
'-‘—————--d ._

 

  
l\/ __l‘§k 4P 

 

  

    

Figure 2.A Grooved Bar Dimensions



12

fillet is used, the geometry effect term is reduced, while smaller

radii tend to increase stress.

The dimensions required to apply Heywood's general projection formu-

la results specifically to the grooved bar are shown in Figure 2.A. The

thickness, t, equals, nd, the circumference of the smallest diameterEl].

Comparisons of Heywood's formulations with photoelastic testing

done by Hetenyi on similar members, showed Heywood's results for stresses

to be consistently lower. This was attributed to the significant dif-

ferences in geometry between the conventional projection and the grooved

tie bar geometry. Heywood modified the fillet geometry effect term as

 

shown in Equation 2-2 to correct this[l].

_ e 0.7
geometry effect — [l + 0.26(E) k] (2-2)

= 5.6m/d + 1
where k 2.0m/d + 1 (2-3)

see Figure 2.“ for dimensions

Heywood derived Equation 2-A by use of the dimensions in Figure

2.A and the correction shown in Equation 2-2. Equation 2-U is used to

calculate the stress due to projection load in the grooved bar.

a. = n + .2; :: We :1.
since a = b and y = 0

The second source of stress in the fillet is the stress component

due to axial load. Equation 2-5 gives the maximum stress in an axially

loaded shouldered shaft. It is obtained by multiplying the nominal

stress by the stress concentration factor, Kt’ obtained from Figure

2.5[2].
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The stress in the fillet is a combination of stress due to projec-

tion load (Equation 2—4) and axial stress (Equation 2-5). Addition of

the two stress components will give a value of stress that is too high

because the points of maximum stress due to the two types of loading

occur at different locations on the fillet. Photoelastic experiments

by Heywood showed that the point of maximum stress due to bending occurs

[1].
30 degrees from the tangent point of the radius The point of maxi—

mum stress due to axial load occurs at the bottom of the filletEl] (Fig-

ure 2.6). The relationship that Heywood deveIOped to calculate the come

6m
bined stress is given in Equation 2-

Ob
o = o + (2-6)
C t l + c Ot/Ob

 

The coefficient, c, is reducing factor based on the distance between

[1]
the two points of maximum stresses . Heywood expressed it as a func-

tion of the angle between these points as given in Equation 2-7.

(2-7)

B in degrees

Heywood's analysis is intended for a grooved tie bar with a circu-

lar fillet. His photoelastic testing indicated that a streamline fillet

(Figure 2.7), will reduce the maximum tensile stress in the fillet by

25 percent. The results of the above analysis (Appendix B) for the

various sizes of grooved bars are shown in Table “.1.
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2.3 THE THREADED BAR

Because of the difficulties involved in determining the distribution

of load between the threaded bar and nut, analyzing the threaded bar is

a more complex problem than analyzing the grooved bar. When the bar and

nut are loaded, the nut is compressed, shortening its pitch. The bar,

however, is stretched, lengthening its pitch. This creates disparities

in strain, which concentrate a large percentage of the load at the first

thread. The load carried by the first thread is determined by Sopwith's

analysis. This information is then used in Heywood's projection formula

to calculate the stress due to thread load (bending). Stress due to

axial load can be determined by using the charts of Neuber. The combined

stress is then obtained by using Equation 2—6, which was also derived by

Heywood.

Sopwith analyzed the strains produced in a loaded threaded bar and

nut, and found that the load carried by the first thread is a function

of length of nut, equivalent outside diameter of nut, pitch of thread,

and the ratio of thread depth to height of fundamental triangle (Figure

2.8).

The assumptions made by Sopwith are listed hereEu].

1. Manufacturing errors in pitch and flank angle can be neglected.

2. Stress concentrations at the root of the thread can be neglected

since they are local in nature and will not affect overall

strain.

3. The thread can be treated as a tapered cantilever built in at

the root diameter.

A. The load is concentrated at mid-depth on this cantilever because

of symmetry (Figure 2.9).

5. The radius of the root does not affect the stiffness of the

threads.



l7

 

/\

T

THREADIDEPTHW

L__-___--_S

 I

FUNDAMENTAL

TRIANGLE

 

Figure 2.8 Fundamental Triangle

CONTACT AT

V PITCH “NEW

Figure 2.9 Deflection of Thread



18

The formulas resulting from Sopwith's studies are given in Appendix

C. The dimensions required are shown in Figure 2.10Eu].

The final result of Sopwith's analysis is the value H, which is by

definition the maximum load per length of helix divided by the average

load per length of helix. This ratio is used to calculate stress due to

thread load.

The axial load plus frictional forces combine to form the resultant

force, R, given in Equation 2-8 and shown in Figure 2.ll[u].

I
) ll

P(seC(B-7)) (2-8)

flank angle (Figure 2.2)

friction angle«
o
n

II
II

The average load per length of helix is given by Equation 2-9.

 

R _ R

(t)avs mm) (mp) (2 9)

Here n(dm) is the circumference of the minor diameterEl], (L) is the

length of nut and (p) is the pitch of the threads.

The maximum load per length of helix is given by Equation 2—10.

(R
._ R)

t max 5 avg (2-10)

=H(

The stress due to thread load, 0 is obtained by substituting
b)

H(R/t)avg for P/t in Equation 2—l and is given by Equation 2-ll[1].

_ e 0.7 1.5a 0.3 R

Ob — [l + 0.26(;) ][—;§—-+‘/—BE§-(l + l/Asiny)]H(E)an(2-ll)

The stress concentration factor of a multiply grooved shaft in

tension must be found to determine the fillet stress component due to

axial load. The stress concentration factor is higher in a shaft with
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a single groove than it is in a shaft with.multiple grooves. Figure

2.12 is used to determine the correction factor 6, which is used to cal-

culate he’ the depth of a single groove that yields the same stress con—

centration factor as multiple grooves (Equation 2—l2).

h = 6h
e

where h = depth of multiple grooves (2-l2)

h8 = effective depth for single groove

The stress concentration factor for a grooved shaft in tension, Kt’

is now determined from Figure 2.13. The parameters needed for Figure

2.13 are the minor diameter d, and the major diameter D, which is equal

to d+2(he).

Figure 2.13 is intended for straight-sided grooves. The angled

flanks of the threads reduce the stress concentration factor. The value

of Kt can be corrected by Equation 2-l3El].

2B 1 + 2.A Vr/he '

Kc = 1 + (Kt-DLI - ($30) 1 (2-13)

B in degrees

The tensile stress for the threaded rod is now given by Equation

2-lA.

KCP ( A)

t nCdm/2)2

The combined stress can now be calculated as it was in Equation

2-6, which is repeated here as Equation 2—l5.

Ob
 

0c = 0t + l + c ot/ob (2-15)

again c = (Qfi—EF (2-16)

B in degrees
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The analysis above is intended for a standard nut. One way of

improving the distribution of loading is to use a tapered nut of the

design shown in Figure 1.2. The taper improves load distribution by

making the nut more flexible near the first threads which allows more

load to be carried by the last threads. Tests by Hetenyi show that a

30 percent improvement in load distribution can be achieved by this de-

sign[2]. The combined stress can be divided by the nominal stress to

obtain the projection loaded stress concentration factor.

The results of the analysis on the eight bars listed in Chapter One

are tabulated in Table 4.2. Calculations pertaining to these analyses

are shown in Appendix C. This chapter has outlined anayltical and

empirical methods for stress analysis. Chapter Three will outline the

finite element method.
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CHAPTER THREE

FINITE ELEMENT ANALYSIS

3.1 INTRODUCTION

The grooved tie bar is an example of an axisymmetric body. The

loading and geometry are functions of the radial and axial coordinates

only. It is also assumed that the threaded bar can be approximated as

an axisymmetric body by using axisymmetric grooves instead of helical

threads. The torsional effects due to the loading of the helical

threads are assumed to be small compared to the stresses produced by

the projection loading of the threads. Because of the axisymmetric

nature of the body, it can be analyzed using two dimensional finite ele—

ment methods. The results of this analysis are the three dimensional

stress components from which the principal stresses and maximum shear

stress can be determined.

3.2 PROGRAM OVERVIEW

The first step in the finite element method is to discretize the

region being examined into finite areas called elements. The points

that are specified around the boundaries of each element are called

nodes. The displacement at equilibrium is calculated for each node.
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Polynomials called shape functions are used to interpolate displacements

within the elements. Two programs are used to analyze the stresses in

the bars. The first uses first order shape functions, the second uses

second order shape functions. The finite element analysis is based on

the principle of minimum potential energy which states that when a loaded

member is in its equilibrium position, its potential energy at a.minimum.

The potential energy is expressed as a function of the nodal displace-

ments. The position of minimum.potential energy is found by taking the

derivative of the potential energy function with respect to the nodal

displacements and setting it equal to zero. Setting the derivative

equal to zero yields a set of simulataneous equations that can be solved

to find the nodal displacements associated with the point of minimum

potential energy. The element stresses are obtained from the nodal

displacements. Equations 3-l and 3—2 show these steps in matrix form.

811 _ _
 

3

here n

{U}

[K]

{F}

potential energy

nodal displacement vector

stiffness matrix

force vector

{0} = LDJLBJIU} - LD]{€O} (3—2)

here {a} = stress vector

[D] = material property matrix

[B] = strain interpolation matrix

{so} = initial thermal strain vector

The linear shape functions and the matrices in Equation 3-2 are shown in

Appendix E.

The first finite element analysis uses a.modified version of a two

dimensional linear elasticity program written by Dr. L. Segerlind of

Michigan State University. Modifications to change the two dimensional
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program into an axisymmetric program.include using linear triangular

torus elements that are obtained by rotating the linear two dimensional

triangular element 360 degrees around the axis of symmetry. The elements

are termed linear because they use first order shape functions. One

disadvantage of using linear elements is that the displacement gradients

are constant across the entire element. Since Orr’ 022’ and Trz are

dependent on these gradients, they will also be constant across the

entire element. This disadvantage can be overcome by using small ele-

ments in the areas where the stress is changing rapidlyEB]. Other

modifications to the two dimensional program.include a new material

property matrix, [D], a new initial thermal strain vector, {60}, a new

strain interpolation matrix, [B], and rewriting the shape functions in

terms of r(radial coordinate), and z(axial coordinate)[3].

In order to determine the element stiffness matrix, [k(e)] integral

(3-3) has to be evaluatedEB].

[159)] = J [BJTIDJIBldV (3—3)
vol

The matrix, [B], cannot be pulled out of the integral since it contains

terms that are a function of the coordinates. This problem is resolved

by evaluating [B] by using the r and z coordinates of the centroid of

the element. This leads to an approximate solution, but one that is

acceptable if small elements are used in areas where the stress is

changing rapidlyB].

The second analysis used the ANSYS finite element software which is

a product of Swanson Analysis Systems, Inc. The overall strategy of

ANSYS is similar to the previous program, but quadratic triangular torus

elements are used. The quadratic elements use second degree shape
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functions, so the constant displacement gradients are eliminated.

Because of this, the higher order elements will yield more accurate results

when using the same grid. In order to be able to see the trend of the

results as the more accurate elements were used, the same grids are used

in both analyses.

3.3 BOUNDARY CONDITIONS

In both the threaded and grooved tie bar, it is necessary to repre-

sent a surface pressure as concentrated loads applied at specific nodes.

The following distribution is used in the linear program for the loading

shown in Figure 3.1[3].

q

(2Rl + R2)Pr

2nLl2 node 1

{rp} = ——6— “N + R2)Pz (34:)

(R + 2R )P

l 2 r node 2

6R1 + 2R2)?Z   
The constants Pr and PZ are surface pressures, R and R2 are the

l

radial coordinates of the nodes, and L 2 is the distance between the
1

nodes. One should note that a greater percentage of the load is applied

to the node that has the largest radial coordinate. Figure 3.2 shows

the reason for this load distribution. The two shaded rings are of the

same thickness, but the outer ring has more area, so it would carry

more load if a surface pressure were imposed on the circle.

The distribution of load on the threaded bars is accomplished by

[A]. For each threadedusing information from Sopwith's thread analysis

bar the maximum load per length of helix is determined. This value is

multiplied by the circumference of a typical thread. This product is
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assumed to be the load carried by the first thread. It is then determined

what percentage of the total load this is. Each subsequent thread is then

assigned this percentage of the remaining load. The remainder is divided

equally among all threads. The load is discretized into R.and Z compo-

nents as shown in Figure 2.ll[3].

Because of the symmetry in the bar geometry and loading, nodes along

the axis are fixed in the R direction. Nodes along the unloaded end are

fixed in the Z direction (Figure 3.3).

3.A STRESS CONCENTRATION FACTORS

The finite element analysis can be used to determine stress concen-

tration factors. The tie bar is analyzed subject to a constant load.

Normally for a ductile material with constant load, the stress concen-

tration factor is ignored because the material will yield locally and

[5].
relieve itself In this finite element analysis, no provision has

been made for yielding and the overstressed areas, which will be of in-

terest if the member is to be subjected to a cycling load, are pointed

out.

The results of the finite element analysis on the various geometries

are in Tables 4.1 and 4.2. Grids for the different bars are shown in

Figures 3.U through 3.9.
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Figure 3.4 Typical Grid for UNC Threaded Bar
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Figure35. Gr'id for Acme Threaded Bar
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Figure 3.6 Typical Grid for Small Grooved Bar
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Figure 3.7 Detail of Radius for Snell Grooved Bar
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Figure 3.8 Grid for 6.75 O.D. Grooved Bar
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Figure 3.9 Detail of Radius Fillet, 6.75 O.D.

 



CHAPTER FOUR

RESUDTS

4.1 GROOVED BAR

The projection loaded stress concentration factors for grooved bars,

KO show good correlation between the empirical results and the quadratic

finite element results for the three smaller bars (Table 4.1). The dif—

ference between the two methods ranges from 2.6 to 6.5 percent. The

6.75 in. O.D. bar with a radius fillet has a difference of 14.1 percent

between the two methods. The finite element results for the 6.75 in.

O.D. bar appear to be more accurate because a finer grid was used in

the fillet area. The stress concentration factors increase when the

more accurate quadratic elements are used, which indicates that the

stresses from Heywood's results are low, and that the correction factor

employed for the grooved bar is incorrect. Because of the small varia-

tions between the linear and quadratic finite element values for the

6.75 in. O.D. bar, it is assumed that a finer grid or higher order ele-

ments would not significantly effect the accuracy of the results. To

determine KO, Equations 4-1 and 4-2 are used.

P
C = ————-————

(LI-l)

nom “(d/2)2

36
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Q

 K = max (4—2)

nom

O 0

Two other fillet designs were tried on the 6.75 in. O.D. bar to

attempt to lower the maximum stress. The first is the streamline design

(Figure 4.1a) that Heywood claimed could lower the maximum.stress by 25

percent. The finite element results show that the maximum.stress is not

lowered significantly because of the small radius near the load. A re-

versed streamline (Figure 4.1b) was tried in order to place a large

radius near the load. This resulted in raising the maximum.stress by

46 percent because of the small radius at the bottom of the fillet. The

large difference between the finite element values indicate that the

stress concentration factor may be higher than the quadratic finite ele-

ment value for the reversed streamline.

The axial loaded stress concentration factors for shouldered shafts,

Kt (Figure 2.5), were examined by finite element methods and compared

with published empirical resultstz] (Table 4.1). To obtain Kt from the

finite element analysis, the maximum stress in the fillet adjacent to

the shoulder with no external load is divided by the nominal stress.

The difference between the empirical values and quadratic finite element

values of Kt for the smaller bars ranges from.5.2 to 17.5 percent.

These differences are attributed to the proximity of the unloaded

shoulder to the external load. The streamline fillet (Figure 2.7) used

on the unloaded shoulder of the 6.75 in. O.D. bar lowers the stress con-

centration factor by 22.6 percent. This type of fillet was derived by

Grodinzinski[2] and is similar to the fillet suggested by Heywood for

use on the loaded shoulder.
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4.2 THREADED BAR

The axial loaded stress concentration factors for threaded bars in

tension, Kt (Figure 2.13), show poor correlation between the analytical

[2]
values of Neuber and the quadratic finite element values (Table 4.2).

The differences range from 28.3 to 44.5 percent. Kt is obtained from

the finite element analysis by putting the threaded bars under a tensile

load (no thread load) and dividing the maximum stress by the nominal

stress. Since the maximum difference between finite element values is

reasonably small, it is assumed that the quadratic elements provide a

good approximation of the stress concentration factors. This indicates

that the analytical stress concentration factors of Neuber are too high.

The projection loaded stress concentration factors for threaded

bars, KO, show poor correlation between empirical results and quadratic

finite element results. The differences range from 24.4 to 71.0 percent.

These discrepancies have four possible sources. First, the values of

Kt are used in the empirical formulations of K0, and as noted in the

previous paragraph the values of Kt appear to be in error. Second,

Heywood included no correction factor in his empirical results for the

threaded bars as he did for the grooved bars. Third, the grid used in

the finite element analysis is not fine enough. Fourth, analytical

methods are used to determine load distribution. The load distribution

problem could be solved by modeling both the nut and the threaded bar

in the finite element analysis. Both empirical and finite element

methods yield results for KO for the UNC bar that are higher than the

accepted value of 2.7 (3.85 based on shank diameter) derived by Hetenyi

by means of three dimensional photoelastic testing. Brown and Hickson

obtained a value of 4.8 by performing similar experiments[2], while
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[1].
Heywood obtained a value of 5.2 by empirical means This indicates

that Hetenyi's results are low, and that the values in Table 4.2 form

an upper and lower bound for KO.

The Acme bar has higher values of K0 than the UNC bars because it

has a greater load concentration at the first loaded thread. The appli-

cation of Sopwith's results show that as the flank angle, 8 (Figure 2.10),

of a thread becomes smaller, the load is distributed less uniformly.

4 . 3 TBISILE TESTING

Tensile tests conducted at Michigan State University on a Tinius-

Olsen hydraulic tensile testing machine demonstrated that the stress

concentrations calculated above are important only to the fatigue

strength of the bars. Prior to testing, three material specimens (Fig—

ure 4.2) made out of the same steel (SAE 1018) as the tie bars modeled,

were tested. The tensile force was measured by a load cell which moni-

tored the hydraulic pressure in the tensile testing machine. The

elongation of the specimen was measured by an extensometer. The elec-

trical signals from the load cell and extensometer were fed into a

strip chart recorder to construct a stress—strain diagram, from which

the yield strength of the material was determined.

The model tie bars (Figure 4.3) were tested in the setup shown in

Figure 4.4. The deflection A, was measured by an LVDT. Although A,

was made up of the compression of the frame, bending of the collars,

compression of the collars, stretch of the shank of the model, and

stretch of the neck of the model, it was assumed that yielding would

occur at the high stress areas indicated by the empirical and finite

element procedures. The tensile force at the yield point could then
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be used with the already determined yield strength of the material to

determine the stress concentration factor. This did not turn out to be.

The finite element results show that the points of high stress are

localized surface stresses. The ductile nature of the material used

allowed the models to yield locally at the points of high stresses

during the relatively static tensile test which eliminated the stress

concentration factors. The location of yielding is shown in Figure 4.5.

These tensile tests confirm that the problem being studied is not

of a static nature. If the tie bars had only steady loads on them, they

would yield locally and all stress concentration factors would be elimi-

nated. The tie bars however, are subjected to a cycling load. If the

surface stresses exceed the material's fatigure strength, a surface crack

will eventually occur which will prOpagate and cause failure.

4.4 FACTORS OF SAFETY

The maximum stress in the Acme threaded bar from the quadratic

finite element analysis is 46,070 psi. This stress is the result of a

325,000 lb load, which corresponds to a 650 ton machine. Reducing this

by 30 percent to account for a tapered nut would reduce the maximunl

stress to 35,440 psi. The stress concentration factor is 3.32 based on

minor diameter. The Acme threaded bars are made of AISI 4140 steel

with a hardness of Rc 19, a yield strength of 90,000 psi, and a tensile

strength of 102,000 psi. The endurance level is estimated at 38,000 psi,

using the machined surface curve of Figure 4.6[5]. The Soderberg equa-

tion, shown as Equation 4-3, is used to determine the factor of safety.

It is based on the fact that the stress concentration should be applied

[5]
to the alternating component of stress only .
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C + __xp.0 0 = __§:7p
(“-3)

o = average nominal stress
avg

= range of nominal stress from

= endurance limit

0

r

C

e

= ield stre thyp y n8

F.S. = factor of safety

The factor of safety is calculated from Equation 4—3 to be 1.90. See

Appendix D for calculations.

The maximum stress in the grooved bar with the streamline fillet

from the quadratic finite element analysis is 47,340 psi. This stress

is the result of a 300,000 lb load, which corresponds to a 600 ton

machine. The stress concentration factor is 3.34 based on the minor

diameter. The grooved bars are made of AISI 4340 with a hardness of

RC 34, a yield strength of 120,000 psi, and a tensile strength of

140,000 psi. The large size of the fillet allows it to be shot peened,

which is beneficial in reducing fatigue cracks because it puts the sur-

face in compression. Assuming that the shot peened surface is at least

as good as the ground surface in resisting fatigue, the endurance level

is estimated from Figure 4.6 to be 64,000 psi. The factor of safety

is calculated from Equation 4-3 to be 2.34. See Appendix D for calcula-

tions.





47

Table 4.1 Empirical and Finite Element Stress

Concentration Factors for Grooved Bars

KO, Projection Loaded Stress Concentration Factor

K K

KO Lingar Quadratic

Finite Finite

Size Empirical Element Element

.688 O.D. 3.08 3.09 3.28

1.00 O.D. 3.12 3.25 3.30

1.38 O.D. 3.10 3.10 3.18

6.75 O.D. 3.05 3.10 3.48

radius

6.75 O.D. 3.07 3.34

streamline

6.75 O.D. 4.08 5.10

reversed

streamline

Kt’ Axially Loaded Stress Concentration Factor

Kt Kt

Kt Linear Quadratic

Finite Finite

Size Chart Element Element

.688 O.D. 1.94 2.0 2.28

1.00 O.D. 1.92 1.91 2.16

1.38 O.D. 1.94 1.86 2.04

6.75 O.D. 1.86 1.32 1.44

streamline

All K's Based On Minimum Diameter

A11 Dimensions In Inches
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Table 4.2 Empirical and Finite Element Stress

Concentration Factors for Threaded Bars

Ko’ Projection Loaded Stress Concentration Factor

K K

KO Lingar Quadrgtic

Finite Finite

Size Empirical Element Element

1/2-13 4.95 3.41 3.74

3/4-10 5.34 3.64 3.79

1-8 5.38 3.49 3.73

Acme 14.9 4.63 4.32

Kt’ Axially Loaded Stress Concentration Factor

Kt Kt

Kt Linear Quadratic

Finite Finite

Size Chart Element Element

1/2-13 3.07 2.60 2.20

3/4—10 3.25 2.60 2.20

1-8 3.26 2.34 2.07

Acme 2.99 1.50 1.66

A11 K's Based On Minimum Diameter

A11 Dimensions In Inches



CHAPTER FIVE

CONCLUSIONS

The stresses in threaded and grooved tie bars were analyzed using

the analytical and empirical methods of Sopwith, Neuber, and Heywood,

and by finite element methods. The stresses were used to calculate

stress concentration factors which are tabulated in Tables 4.1 and 4.2.

The stress concentration factors were used in Soderberg's Equation to

calculate factors of safety (Section 4.4).

Two finite element programs were used to analyze stresses in the

two types of bars. One program used linear elements, the other qua-

dratic elements. Linear elements have constant displacement gradients

which result in constant stresses within each element. The quadratic

elements allow the stresses to vary linearly within the element. The

same grid was used for the two programs so the trends of the results

could be observed when the more accurate quadratic elements were used.

The finite element analysis and tensile testing of'model tie bars

showed that the maximum stresses that were calculated are local surface

stresses and therefore only important for fatigue calculations.

The grooved bar projection loaded stress concentration factors,

Ko’ have lower empirical values than quadratic finite element values

49
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(Table 4.1). The correction factor Heywood used for bar geometries of

this type appears to be incorrect because the stress concentration fac-

tors increase when the more accurate quadratic elements are used. Two

other fillet designs were tried in order to attempt to lower the

stresses obtained with the radius fillet. The first was a streamline

fillet (Figure 4.1a) suggested by Heywood. The finite element analysis

showed this type of fillet to be ineffective in lowering stresses be-

cause of the small radius near the load. A reversed streamline (Fig-

ure 4.1b) was tried in order to place a large radius near the load,

but the maximum stress increased because of the small radius at the

bottom of the fillet. Based on the finite element results a radius

fillet appears to be the best design for this bar geometry and loading.

The grooved bar axial loaded stress concentration factors, Kt

(Figure 2.5), have higher finite element values than previously pub-

lished empirical values[2] (Table 4.1), because of the proximity of

the unloaded shoulder to the external load. The finite element analysis

confirmed that the streamline fillet is effective in reducing stresses

in axially loaded shoulder shafts.

Application of Sopwith's results showed that the UNC thread is

superior to the Acme thread in the distribution of load because of the

greater flank angle 8, of the UNC thread (Figure 2.10).

The threaded bar axial loaded stress concentration factors, Kt’

have lower finite element values than the analytical values of NeuberEl]

(Table 4.2). The relatively small variation observed when comparing

linear and quadratic finite element values indicated that the use of a

finer grid or higher order elements would not significantly effect the
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the accuracy of the results. This indicated that the analytical stress

concentration factors of Neuber are too high.

The UNC threaded bar projection loaded stress concentration factors,

Ko’ have higher empirical and finite element values than the generally

accepted value derived by Hetenyi. This supports Heywood, Brown, and

Hickson who also disputed Hetenyi's results. Because of this, the

results in Table 4.2 appear to form an upper and lower bound for Ko'

The results presented here show that the accepted stress concen-

tration factor for projection loaded UNC threaded bars is too low.

Since this stress concentration factor is of importance to many indus-

tries, it is imperative that further finite element research be done,

modeling the nut and bar toether to solve the problem of load distri-

bution, and using finer grids or higher order elements to insure ac-

curacy.
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APPENDIX A

DERIVATION OR BENDING STRESS TERM

  

Ob! — m%- M = Moment = Pa

y = Distance From Neutral Axis = e

I = Moment of Inertia

, _ P(a)e _ Fae _ 1.5a,P

“b ‘ 3 ‘ 3 ‘ 3 f)
1/12(t)(2e) 2/3(t)e e
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APPENDIX B

GROOVED TIE BAR CALCULATIONS

See Figure 2.4 for Definition of Dimensions

(
D

II
II

II

b = (D d)/4

1/2(m+r(1-cos30))

Load

All Dimensions in Inches

BAR #l

m = .385

d = .500

D = .688

r = .040

a = b = .047

e = .195

B=Y=O

Ob = 13.7P See Equation 2-4

Kt = 1.94 See Figure 2.5

0t = 9.88P See Equation 2-5

0 = 1.86 See Equation 2-7

0c = 15.7P See Equation 2-6

KO = 3.08 Based on d
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BAR #2

m = .562

d = .750

D = 1.00

r = .060

a = b = .0625

e = .285

B=Y=O

Ob = 6.26P See Equation 2-4

Kt = 1.92 See Figure 2.5

0t = 4.35P See Equation 2-5

c = 1.86 See Equation 2-7

0c = 7.08P See Equation 2-6

KO = 3.12 Based on d

BAR #3

m = .750

d=1.00

D = 1.38

r = .080

a = b = .0938

e = .380

B=Y=O

ob = 3.45P See Equation 2-4

Kt = 1.94 See Figure 2.5

0t = 2.47? See Equation 2-5

0 = 1.86 See Equation 2-7



0

II

N

ll

BAR

C

II

"
S II

{
D II

(
D II

n
o ll

3-95P

3.10

See Equation 2-6

Based on d

See Equation 2-4

See Figure 2.5

See Equation 2-5

See Equation 2—7

See Equation 2-6

Based on d

55



0

II
II

APPEJDIX C

THREADED TIE BAR CALCULATIONS

See Figures 2.2 and 2.10 for Definitions of Dimensions

.2 Coefficient of Friction

.3 Poisson's Ratio

 

 

Dimensions in Inches

'1‘ = 2
l + cos2B + sin2B

2sin28

B 2(_2B—sin28+ T)

1 = 28 + sin28

 
  

 

 
 

B = 2 + l - 2o _ 2T 1 - c0328

2 2B - sin2B (I;o)sin28 sin28 - 2Bcos28

B = 2T

3 sin2B - 2Bcos28

_ m
x

2 z-l z-l

q -(1 - O ”Ell—NZ) - —E—(B2 + B3 7)]

2 2

_ (tans) - u W(D3 - pm)
U — + 2q

(cots) ' “ (D MD >2
m 3
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(C-1)

(C-2)

(0-3)

(C-A)

(0-5)

(0-6)

(0-7)



V = 1/2otan8

82=

2L¢U+v2
 

UD
m

V
 

 

 

w = .0769

x = .483

h = 0472

L = .484

T = 1.20

B1 = 11.2

B2 = 8.21

B3 = 6.98

z = 1.71

q = 1.29

U = 474

V'= .0866

A = .125

62 = 3.13

H = 2.75 J

(Ia/om =

(Emma, =

R = 1.056P

ab = 21.8P

5 = .55

Kt = 3.20

KC = 3.07

0t = 23.8P

c = .465

- /U+‘V2

H = 62(coth(e2) - A)

Dm = .453

D = 500

D3 = .750

e = .0333

.125R

.343R
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BAR #5 (1/2-13)

.0115

.500

.0243

See Equation 2-9

See Equation 2-10

See Equation 2—8

See Equation 2-11

See Figure 2.12

See Figure 2.13

See Equation 2-13

See Equation 2-14

See Equation 2-16

y:

dm =

8:

--See Equations C—l To C-11

11.30

.406

.524 rad.

(C-8)

(C-9)

(0-10)

(0-11)



38.2P

4.957
:

o

0

I
I

= .100

F
U
N
S

II

= .734

1.20 '

11.2

8.21

6.98

= 1.71

m
H

II
II

L
A
)

.456

.0866

= .127

= 3.18

H = 2.79‘

(R/t)avg

(R/t)max

R = 1.056P

Ob = 9.96P

.55

3.40

3.25

10.5P

= .465

17.2P

5.34

C
D
>
J
<
C
I
.
Q
*
S
U
J
I
I
J
E
D
Z
U

N  

V
:

o
o

o
7
:

7
:

o
.

o
0

II

D
n1
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See Equation 2-15

Based on d

In

3

.0691R

.1938

= .689

= .0866 D = .750

.0613 D = 1.25

e = .0427

.0141 Y

.0177 d

BAR #6 (3/4-10)

- 11.3

= .627
m

.0333 B = .524 rad.

1.29 '- See Equations C-l To C-ll

See Equation 2-9

See Equation 2—10

See Equation 2-8

See Equation 2-11

See Figure 2.12

See Figure 2.13

See Equation 2-13

See Equation 2-14

See Equation 2-16

See Equation 2-15

Based on dm



= .108

.0767

= .981F
‘
D
‘
X
S

II
II

}
_
J

[
\
J

O

11.2

8.21

6.98

1.71

= 1.29

= .432

= .0866

= .131

2 = 3.27c
p
>
a
<
C
1
Q
N
U
J
U
J
U
J
I
—
3

"
L
u

t
o

+
4
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BAR #7 (1-8)

Dm = .923 r = .0177 y = 11.30

D = 1.00 a = .0220 dm = .847

D3 = 1.62 b = .0407 8 = .524 rad.

e = .0540

'- See Equations C—l To C-ll

 
(R/t)avg

(R/t)max

R = 1.056P

b = 5.58P

.55

3.40

3.26

Ct 5.78P

c = .465

9-55P

5.38

3
7
4
?
:
a
n

0

I
I

I
I

7
:

0

II

.0477R See Equation 2-9

.136R See Equation 2-10

See Equation 2-8

See Equation 2-11

See Figure 2.12

See Figure 2.13

See Equation 2-13

See Equation 2-14

See Equation 2-16

See Equation 2-15

Based of dm
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BAR #8 (Acme Thread)

w = .250 0m 6.36 r = .0200 y = 11.30

X = .483 D = 6.50 a = .058 r' = .0562

h = .135 D3 10.2 b = .064 dm = 6.23

B = 253 rad L = 6.75 e = .08

T = 1.0111

B1 = 94.4

B2 = 89.6

B = 47.8

2 = 1.28

q = 1-29 t" See Equations C-l To C-ll

U = .0764

V = 0388

A = .134

9 = 7.75

H = 6.67 j

(R/t)avg = .00187R See Equation 2-9

(R/t)max = .0126R See Equation 2—10

R = 1.002P See Equation 2-8

Ob = .477? See Equation 2-11

6 = .55 See Figure 2.12

Kt = 3.00 See Figure 2.13 Use r', See Figure 2.10

Kc = 2.99 See Equation 2-13

at = .0981? See Equation 2-14

c = 1.07 See Equation 2-16

0c = .489? See Equation 2-15

KO = 14.9 Based on dm



APPEI‘JDIX D

CALCULATION OF FACTOR OF SAFETY

ACME THREADED BAR

Minor diameter = 6.23 in

Pavg = (EmaX + Emin)/2 = (325,000 + 0)/2 = 162,500 lb

Pr = Emax - Pavg = 325,000 - 162,500 = 162,500 lb

P

= _§XE_____= lééfi:§§L__= 5330 psi nominal stress0

avg n(dm/2)2 M3115)2

P

P = 1§§1599__.= 5330 psi nominal stress

“(dm/2)2 118.115)2

0

ll

0e 38,000 psi

pr = 90,000 psi

KO = 3.32 (obtained by reducing 4.32 by 30%)

Using Equation 4-3 F.S. = 1.90

GROOVED BAR

Nfinor diameter = 5.195 in

Pavg = (300,000 + 0)/2 = 150,000 lb

Pr = 300,000 - 150,000 lb



62

Gav = $59;QQQ_§,= 7070 psi nominal stress

3 M2598)

or = l59;999_§_= 7070 psi nominal stress

“(2.598)

0e = 64,000 psi

pr = 120,000 psi

KO = 3.34

Using Equation 5-3 F.S. = 2.34



APPENDIX E

COMPUTER MATRICES AND LINEAR SHAPE FUNCTIONS

 

{O}T = [OFF 022. 000 T1’22]

'1 13—0 T3; 0 1

[D] = I118721-201 130 l 153’ O

13‘; 1‘37? 1 o

. O O 0 57—133).  
where E = Elastic Modulus

= Poisson's Ratio

  

 

1

{so} = aAT 1

0.

where a = Coefficient of Thermal Expansion

AT = Change in Temperature

' 1
b1 0 bj 0 bk 0 K

_ 1 g 5 ,
[B] - 2A. 0 c1 0 cJ 0 ok ' J

2ANi 2AN. 2ANk

r. 0 —-J-r. 0 I, 0 TYPICAL ELEMENT

tci bi cj b3 ck bk_

 
where N's = Shape Functions

aNp

bp=—8‘I'— p=i9Jak

3N

Cp='_a'% p=iajak

A = Element Area

r = Centroidal Radius
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1 _..
2A£ap + bpr + cpz] p - 1,j,k

rjzk — rkzj

zJ - zk

rk - rJ

rkzi - zkri

2k _ Z1

rl - rk

r.z. - r z
1 j j 1

z. - z

1 J

r - r
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