Iy‘k -." 7A.“. " ~ “-u’nb-X 1"! " ‘9 ‘ h v 1 R was)?“ ‘ ,4 ‘n 1w ~*jfl2r .242” 4" 5'4 .1 ,w n in :"RJ‘. ' t “may 1." V. :1;le :5: ' V . ‘ my - ‘. “Maw v‘N'ci-‘IT' gr mu, .x'.‘ 3* 43v Bali“; , .72..» . u m f .. ’2' .L “as .-:? ‘~ 9957‘»: "‘"21 “4‘71;- " an' :8 .. ,, fi- 1‘. . v , a . ' c‘ y, ’ v ,< gt: *3; V ’5 :fit“; I F.‘ A ,. r 's “3:52: i: ' t' 1;, , b « ‘2 .1 4‘ 4 ~ 4 V t ‘ A 1" v" ‘ ' . I’ ‘ QIcS ‘52: IU’ "(351,117 ‘ a ‘i 44:. \‘4 ’ J Lied 3?, I. K " fig!) '3 r. ' N,“ h: 5.. Juvigfi};;ggn. 8' " ”It a v. A J"; ' 1‘»! r v r p- . ’i'ta’aaifixvfixv 'J'J’ ‘3' ‘51 “ ’ 3408'“ 114i.- ‘ n 1 ‘40:”. 4 ,.-‘ "a film)“ I 4 ‘ VI“: ‘ a 1:15; ,1?! "A ‘4'” ”U ”3H; ~ . ,. ., , N ’ ." ; (eififejsxe sate-:2. 25,814.49,“ (19’7" 12:13:}; " ’p ' 9r" ('1‘ figuu. "’~”"I"§H \ .4 . ‘. I If 1.; . s '0‘; ‘. , Ignaz; ' , am I . If I . l ‘ ‘-‘z1~-..’.- 1.1.4.1» F1325” HAW” r‘;:;g>3€7f-T?‘£€;gd ' r'lfrr‘réfiVW‘L ‘ a My; rg»: - Q . v a, . ' my. ‘1‘ , Effigy .. x‘wzw ‘ ' .(4 l ll‘lf ’~' \‘Pt'f' , ' l .. (:3Qhé l; ‘1‘, >,». I. i _ < {tn-31.9; a :3 1' 7- 1}” 5‘»: l 4 a?“ ”a ”w, « Q‘AR‘EET “t. "‘1'. Pf.“ w 3' «2&1? ‘ “i; J; a war g.“ ,u 74,313 ' "’1‘"; “(2)1121 1;! a f}. £1.39?” fa}; gag-y. ’“ ' ”“4 ":2"- ,, , .. A \. 4&9? a'l \f/ 4 . L . . I ‘ ‘ -‘ . .u 4". an. “If" " , r ., .‘ *g:::¢, ;; . AII» , , ha }l.‘){or \' 2‘" ’, x ‘ N r ,-v Map. A," . a (Ll { » nlJ (a pr 92.“ . M ‘0‘ Date gnqfing llllHllHlHHllHll|U||l||||IIHNIH”IIIIIIIIIIIIIHHHHI 3 1293 00542 0108 imam? Michigan State University This is to certify that the thesis entitled NUMERICAL STUDY OF NATQRAL CONVECTION BETWEEN TWO VERTICAL PLATES WITH ONE OSCILLATING SURFACE TEMPERATURE presented by WEI CHA has been accepted towards fulfillment of the requirements for MASTER . SCIENCE degree in Major professor/ 9%: L/ Vigil/OK 67 JAN. 6‘ 1989 V 0-7 639 MS U is an Affirmative Action/Equal Opportunity Institution MSU LIBRARIES “ \— RETURNING MATERIALS: Piace in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. NUMERICAL STUDY OF NATURAL CONVECTION BETWEEN TWO VERTICAL PARALLEL PLATES WITH ONE OSCILLATING SURFACE TEMPERATURE by Wei Cha A THESIS Submitted to Michigan State University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Department of Mechanical Engineering 1989 it) '0 fi" \ x- ABSTRACT NUMERICAL STUDY OF NATURAL CONVECTION BETWEEN TWO VERTICAL PARALLEL PLATES WITH ONE OSCILLATING SURFACE TEMPERATURE by Wei Cha This study utilizes a finite difference numerical method (employing the program NUDSFAE) to simulate the natural convection heat transfer between two vertical parallel plates, one of which has a time oscillation of its surface temperature. The nu- merical code deals with real variables rather than stream function and vorticity trans- formation variables and it solves the coupled equations by introducing a pressure cor- rection scheme. The active surface temperature has a periodic time variation with non-zero average. The dimensionless time average heat transfer rate, Nusselt num- ber, is compared with that of a constant surface temperature case, and this constant temperature is the same as the average of the oscillation. The results of this study show that by oscillating the surface temperature the heat transfer rate can be in- creased significantly. The study also investigates the effects of oscillation frequency, amplitude and spacing aspect ratio on the enhancement of heat transfer. The results and the study method can be applied to investigate new electronic cooling techniques with natural convection heat transfer. ACKNOWLEDGMENTS I would like to thank my advisor, Dr. J. R. Lloyd, who helped me to initiate the graduate study program, and whose advice and encourages not only helped me through my studies at Michigan State University in the last two and half years but will also benefit me for my whole carer life. I would also like to express my respect and appreciation to Dr. K. T. Yang for his valuable advice. I wish to acknowledge Dr. J. V. Beck and Dr. C. W. Somerton for their constructive comments to my thesis. I feel very graceful to Dr. J. V. Beck, Dr. J. Foss Dr. C. W. Somerton, and Dr. Rosen- berg for knowledge I learned from them. I would like to express great appreciations to Dr. St. Clair for his efforts that make my studying here very enjoyable. I am very gratitude to Dr. H. Q. Yang for his advising me on numerical method. I also like to thank National Science Foundation for the financial support at the beginning of the nu- merical study. Finally, I wish to thank my husband, W. J. Gesang, for his being supportive and understanding. TABLE OF CONTENTS LIST OF TABLES ................................................................................................... LIST OF FIGURES ................................................................................................. NOMENCLATURE ................................................................................................. 1. INTRODUCTION ................................................................................................ 2. LITERATURE REVIEW ..................................................................................... 3. NUMERICAL FORMULATION ........................................................................ 3.1 Governing equations .................................................................................... 3.2 Numerical solution ....................................................................................... 3.2.1 Cell structure ....................................................................................... 3.2.2 QUICK scheme .................................................................................... 3.2.3 Pressure correction scheme ................................................................. 3.2.3 Boundary conditions ............................................................................ 4. RESULTS AND DISCUSSIONS ........................................................................ 4.1 Validation test ............................................................................................... 4.2 Discretization of time step ......................................................................... 4.3 Mechanism of natural convection heat transfer with an oscillating boundary tmeperature ................................................................. 4.4 Effect of oscillation frequency on Nusselt number ..................................... 4.5 Effect of oscillation amplitude on Nusselt number ...................................... 4.6 Effect of aspect ratio on Nusselt number .................................................... 5. CONCLUSIONS .................................................................................................. 6. RECOMMENDATIONS ..................................................................................... APPENDIX (Numerical code) ................................................................................ LIST OF REFERENCES ........................................................................................ ii Page iii iv v 1 6 1 1 11 13 13 15 16 18 22 22 23 27 46 50 50 54 55 56 81 LIST OF TABLES Page Table 1 Validity Test .................................................................................... 23 Table 2 Stability Test .................................................................................... 25 iii LIST OF FIGURES Page Figure 1 The Importance of Heat Transfer in Electronic Design .................. 2 Figure 2 Problem Description ......................................................................... 5 Figure 3 Basic and Staggered Grids .............................................................. 14 Figure 4 Flow Chart for Pressure Correction ................................................ 17 Figure 5 Calculation Domain .......................................................................... 19 Figure 6 Surface Temperature as a Function of Time ................................... 21 Figure 7 Grid Size Effect on Accuracy ........................................................... 24 Figure 3 Time Step Size Effect on Accuracy .................................................. 26 Figure 9 Temperature and Flow Fields Responses to Oscillating Surface Temperature ............................................ 29 Figure 10 Nusselt Number Variation with Time ............................................. 47 Figure 11 Frequency Effect on Heat Transfer Enhancement ......................... 49 Figure 12 Amplitude Effect on Heat Transfer Enhancement .......................... 51 Figure 13 Amplitude Effect on Heat Transfer Enhancement .......................... 53 iv ASP Ra NOMENCLATURE space aspect ratio specific heat distance between two vertical plates boundary temperature variation frequency gravitational acceleration Grashof number [gBH3(T-T°°)/V2] convective heat transfer cooefficient height of the vertical plate thermal conductivity measurement of heat transfer enhancement [Nuo/Nuc] Nusselt number [hH/k] numericaloverflow pressure field Prandtl number [v/a] Rayleigh number [GrPr=gB(T-T°°)H3/v0t] numerically stable dimensional time ave,t media characteristic time [Hz/v] temperature vertical velocity nonfdimensional vertical velocity [u/uO] characteristic velocity horizontal velocity non-dimensional horizontal velocity [v/uo] horizontal coordinate non-dimensional horizontal coordinate [x/H] vertical coordinate non—dimensional vertical coordinate [y/H] Greek letters thermal diffusivity [pCP/K] volume thermal expansion coefficient [~pp/ T] density non-dimensional time [tv/Hz] non-dimensional temperature [(T-TW)/(Tavc-T°°)] Subscript space average time average constant surface temperature case oscillating surface temperature case ambient vi 1. INTRODUCTION The increasing importance of thermal aspects of electronic equipment design is one of the many motivations for continued interest in natural convection heat transfer studies. It is a well known fact that electronics performance is strongly affected by working temperature. To avoid malfunctions of electronic devices and prevent them from being destroyed (burn out of the element or bad connection of the solder joints due the thermal stress, etc.), the geometry of the cooling passages is a primary con- sideration in packaging of the electric devices. On the other hand, the tendency of mi- crominiaturization of electronic components and higher performance speed, make the electronic design more temperature dependent. Therefore, electronic cooling problems are drawing more attention. Nakayama [1] addressed the situation of thermal man- agement of electronic equipment based on Hitachi Ltd’s technology and research on thermal design of their electronic devices. In Figure 1, the thermal design is seen to be of equivalent importance along with geometrical, environmental and economical considerations. Due to the fact that natural convection cooling requires the least addi- tional hardware, and for most cases the surrounding media, such as air, exist already, natural convection is a primary mechanism for electronics cooling. From a heat transfer point of view, basic natural convection heat transfer phe- nomena should be studied to enable it to integrate into electronic design. Usually, the features of interest can be classified by their geometry, their thermal properties, and their boundary conditions. More precisely, there are channel natural convection and 5.89 u_=e...uo_m E 3.25:. .8: he 8:8..35— 2:. — «Eur.— _ cozoanoi _ _l.| llllllllllllllllllll J 952 «o: “ 32555.35 . zoaom eozaom .moEoEooG . 83858.2. .meafi . 3:388. 55.5 5.89 _ q “ _3_Eocoom . . -. _. ....... + ............ L. _ .oeam mocmpeorod oncoaomm _ 3 single surface natural convection geometries; there are some situations where tem- perature variations are not too big to make the Bousinesq approximation while there are other cases that require the involvement of variable properties; there are cases where the boundary-temperature is better known and cases where surface heat flux is better known; and there are cases where the boundary conditions will vary with time and space. In electronic devices, there are usually many individual chips mounted on boards which are placed next to each other. If the boards are close enough, channel type natural convection flows will occur. If the boards are far enough apart from each other, a single surface assumption is reasonable. Even for a single surface, the sur- face curvature and heating locations can have a significant effect on the total heat transfer. For a single surface, depending on the surface physical properties and the func- tion it has in the device, more may be known about the surface temperature than the heat flux, or vice versa. For instance, if an electrically heated plate has a low thermal initia, the heat flux may be a better known function of time than the temperature, but if the thermal conductivity is very high, the surface temperature may be known as a function of time. Example of the cases where surface temperature or heat flux varies with time are found when the electric circuit switch for a device is turned on or off. The thermal boundary conditions will have an exponential-like response to that step change in current. More kinds of time variations can be from a periodically varying power supply. Boundary conditions can have a spacial variation. When individual chips are separated sufficiently, the surface will have spots of which temperatures and heat fluxes are higher or lower than the rest part of the surface. 4 The current study develops a numerical finite difference program to simulate natural convection driven by electronic element, of which the surface temperatures vary with time. The physical model of the problem studied is sketched in figure 2. The physical model includes two vertical plates, with height H. They are placed paral- lel to each other, separated by a distance D. Each of the two surface temperatures can have its own function of time. The medium is air. An experiment was done pre- liminarily to develop a general feeling for temperature and velocity fields caused by a hot plate, especially with the time varying boundary conditions. Then a finite differ- ence numerical method was utilized to reveal the detailed quantitative descriptions of the temperature and velocity fields with one surface temperature varying with time periodically. By doing this, the natural convection heat transfer and corresponding flu- id flow driven by an oscillating surface temperature is simulated numerically. The success in simulating the natural convection driven by the time varying wall temperatures, provides the way to expose the magnitude of heat transfer en- hancement achieved by oscillating the surface temperature and to develop possible approaches to thermal control in electronic thermal design. '— l/llllllll/l/Ill/l’l/l/l/l/Il/’l/l/l/l/l/l/l/l/I/Illli l Tw2(t)=const. Twl (t) Figure 2 Problem description .' ilfa- 6 2. LITERATURE REVIEW The dealing with cooling problems for electronic devices can be dated back to 60 years ago. Bergles (1986) [2] gave a historical overview of electronics thermal control. In his paper, he pointed out that the electronic cooling problem, starting from 1942 when the vacuum tube cooling was concerned to the 80’s when the microelec- tronic revolution is advancing rapidly, has been becoming more and more desirable. To meet the desire, a lot of research was conducted and important papers were pub- lished. As described by Steinberg (1980) in his book, [3], in an electronic device, there are all kinds of electronic elements, and heat transfer could be modeled in differ- ent ways. For example, there are chip, package, printed wiring boards (PWB) and system levels. Different geometries, different power levels and different working en- vironments make the electronic cooling related natural convection very comprehensive. Elenbaas (1942) [4] proposed a simple model of heat transfer and made some measurements of natural convective flow between two isothermal vertical plates. His experiments were conducted for a wide range of Rayleigh number, 0.2Itrnax ? Figure 4 Pressure correction flowchart 18 corrected mass flux through a surface of the basic cell is proportional to the gradient of the pressure correction across the surface is employed. An iteration loop is designed so that at the end of the iteration, the mass is conserved in each cell. The next time level may start from the just corrected pressure field to calculate the velocity and tem- perature fields. Figure 4 illustrates the iteration idea. 3.2.4 Boundary condition The numerical representation of the boundary conditions described by equa- tions (19, 20, 21, and 22) affects the total compatibility between the finite difference equations and the differential equations. The two vertical walls have prescribed tem- peratures and non-slip velocities. These are a lot easier to treat than the free bound- aries. The top opening of the geometry has zero derivatives of u, v, T and P. The bot- tom opening has the leading edge effect. If the entrance boundary is not well treated, the effect of the false boundary conditions may be propagated into the downstream calculation. In this study, the real entrance boundary conditions, both velocity and temperature, are simulated by introducing a set of imaginary walls as sketched in Fig- ure 5. As can be seen, the surrounding medium will flow into the calculation domain more naturally. In other words, the entrance inaccuracy of the finite difference tech- nique is softened by the added reservoir and the flow and temperature at the real en- trance can be more realistically determined. The boundary conditions at the two verti- cal walls will remain the same. The boundary conditions at the imaginary walls will have zero-gradient characters. The extra width and height are determined by the cri- teria given by [19 ], i.e., D’=4/3D, H’=2/3H. To simulate the natural convection heat transfer with an oscillatory boundary temperature, the two vertical surfaces have the following prescribed temperatures. One of the surfaces has a uniform temperature which is the same as the environment. 19 Free boundary \ Calculation domain —\ lg \_ R Real Boundary, Twl _/ cal 30‘1“di . Tw2 x1 \ I I .a APvcmm®<+0>a®H3® M9 ‘armerodulol soaring [euogsuomrp-uoN 22 4. RESULTS AND DISCUSSIONS 4.1 Validation test The case of natural convection from an isothermal vertical plate in an infinite medium has been studied very thoroughly. In the current study, this case was simu- lated by the numerical program and compared against the book values. By doing this, we can test the validity of the grid system, the pressure correction scheme, the boundary model and the finite difference code. Usually, when calculations are carried out, accuracy and efficiency are compro- mised. So before a series of calculations were carried out, the necessary grid density to ensure the accuracy must be found out. This was as a preliminary work to prevent misleading by the lack of accuracy when comparisons were made. According to [16], uniformly spaced 20x20 cell grid is too crude, 80x80 cell grid slows down the calcula- tion speed and the 40x40 cell grid gives the accurate results not significantly different from those of 80x80 cell grid. So all the calculations were carried out with 40x40 cell grid. The test case is a simplified problem of the real model shown in Figure 2. The semi-infinite single plate is numerically realized by placing the two plates far away from each other. One plate has a fixed surface temperature higher than the surround- ing temperature, and the other has a temperature the same as that of the surround- ing. Rayleigh number was varied in the range from 1,000 to 747,400. This range of Rayleigh number started from 1,000 is because cases with lower Rayleigh numbers will become conduction. And the Rayleigh numbers are no higher than 1000,000 so that the calculations are done for laminar flows (the number 747,400 resulted form the characteristic length, it is close to 1000,000). The heat transfer coefficient, Nusselt number, results from the calculations is compared with the corresponding theoretical 23 values for laminar flow in Table 1. The Nusselt numbers of the calculations are within 4% difference from the theoretical values, except case 04, of which Rayleigh number is 747,400. This may be due to the transition from laminar to turbulent flow. These er- rors were sufficiently small that the numerical code including the uniform grid was thought to be suitable for treating the posted problem in section 3. TABLE 1 Validation test Test No. Ra Nutheoretical Num Error (%) 01 (20X20) 7474 5. 3 5.92 1 1.6% 02(20X20) 74740 7.94 7 .10 10.5% 03(40X40) 1000 3.9 3.98 2.1% 04(40X40) 7474 5.3 5.51 3.9% 05 (40x40) 74740 7.94 8.15 2.6% 06(40X40) 747400 15 .49 16.8 8.4% 07(80X80) 7474 5.3 5.35 0.94% Figure 7 plots the error vursus non-dimensional grid size. 4.2 Discretization of time step The oscillation of the temperature of the boundary surface is of primary signifi- cance in the current study. For transient problems, the accuracy and stability are all very sensitive to the size of the time step. How to choose the calculation marching time step which takes care of accuracy and stability is another preliminary problem which needed to be solved. One non-dimensional parameter describing the stability is mesh Reynolds num- ber, Re, as defined in the following: Re=[(AX)2+(AY)2]/At (30) 24 Amuo< .Nzoofinm Jun—m3 .3958." :e .809 on? Saw 5 ensur— Nag 0n00.0 ¢N0.0.0 0 0.0.0 N £00 00m0.0 0000.0 000 — flex 0 < . 0 . {Knox o . ovhthuom b N .. . 00vsvufla¢ n s 4 a .. in a N s W l e 10 — . r T q I fl s p p p n e P p p b m— 25 The stability criteria is that the quantity, Re, keeps in a range when AX, AY or A1: changes. As the grid gets denser and denser, the time step should correspondingly decrease. Table 2 gives the results of a series test calculations. In these test cases, the grid sizes, AX and AY, are first fixed while the time step size, At, varies within a range. Then the A1: is fixed while AX and AY vary a little bit. The quantity [(AX)2+(AY)2]/At was calculated for every test case. As can be seen in Table 2, the numerical calculation is stable only when the [(AX)2+(AY)2]/At is within a cer- tain range. This verifies the stability condition mentioned above. TABLE 2 Stability test 2 2 Test No. AX AY At ( AX + AY ) 2811:1103; A1: 01* 0.025 0.025 0.006975 0.179 S 02 0.025 0.025 0.06975 0.0179 0 03 0.025 0.025 0.3488 0.358 S 04 0.025 0.025 0.03488 0.0089 S 05 0.025 0.025 0.0006975 1.79 S 06 0.025 0.025 0.0003488 3.58 O 07 0.025 0.0167 0.006975 0.129 S 08 0.0167 0.0167 0.06975 0.0796 S 09 0.025 0.0125 0.006975 0.1 12 S 10 0.0125 0.0125 0.006975 0.0895 S * CASE 01 is taken as a base case and every other case has some factors different from those of the base. Since the grid is 40x40 uniformly spaced, the AX and AY are fixed for the spe- cific problem. So the range of At is limited too. On the other hand, the goal of the cur- rent study is to calculate the oscillating surface temperature—driven temperature and velocity fields. This implies that the time step should also be small enough, so that the oscillation character is accurately described. This can be better illustrated by Fig- ure 8. In Figure 8, there are three curves. Each of them represents the overall aver- 26 GH0< £20070 Jun—mac 55:58 .5 “cute on? 3% 2:2. w 2:»:— 9 6:5 Ecoficoéwéoz ON 0 F 0 . _ om .. a to... . , .. . r . low I I I .I 1 10m .. a .. ,I T , woo_ . H I acoEmomlm o. .e IONF LeoEmomlop $10 .. acoEoomlow I . _ (1) nN ‘roqulnu llosan 27 age heat transfer history of the same driving force, but each has a different time step size. The smoothest curve resulted from the calculation with the time step 1/20 of the oscillation characteristic time, the period. The curve that lost its smoothness at the peeks and the valleys resulted from the calculation with time step 1/5 of the character- istic time. The calculation with time step equal to 1/10 of the characteristic time has improved significantly in terms of the carrying the complete information of the driving force. With this time step the amount of calculation is reduced by half, but the infor- mation lost is very little compared with the result of calculation with 1/20 time step size. For the current study, each oscillation period is divided into ten step to carry out time marching procedure. 4.3 Mechanism of natural convection heat transfer with an oscillating boundary temperature The character of natural convection is that the temperature difference initiates a fluid flow and the flow can have all different patterns as a response to different ther- mal boundary conditions. In return, the flow affects temperature field distribution The thermal boundary condition not only arouses the fluid flow, but also can manipu- late the fluid flow patterns. As a very expressive example, the natural convection driven by a time varying boundary temperature shows how the thermal boundary con- dition variation leads the fluid flow movement The numerical simulation was canied out with the boundary conditions de— scribed by equations (28) and (29), and Figure 6 in section 4.2.4. It can be imagined that as the boundary temperature oscillates the temperature field adjacent to the hot surface will responde to it in a periodic manner. But what is of the interest here is that the fluid flow pattern changes periodically too. 28 The group of pictures in Figure 9 show the temperature field and velocity field time history during time of two surface temperature oscillation periods. This group of pictures are resulted from calculations for Ra=7,474, ASP=1, 1:0.001, AX=l/40, AY=1/4O and A'c=1/10. The number on each figure means the time step in sequence, and every ten steps make an oscillation period. It is found out that for the specific case, starting from a quiet initial condition, it takes about 500 steps to reach a fully developed time varying response. For the purpose of relating the temperature and ve- locity fields to the corresponding surface temperature, a detailed set of figures in the time range 560~600 is attached to each individual instant field pictures (temperature and velocity) in Figure 9. First of all, it is observed that the isotherms are not always open curves starting from the bottom entrance and ending at the top opening, as is seen for the constant temperature vertical plate. Instead, some loops and some heavily bent iso- therms occur. The thermal boundary layer analysis is no longer suitable for this type of natural convection. It is also noted that the existence and locations of the new pat- tern of isotherms vary in time. Actually, the isotherm pattern variation has a periodic behavior. Secondly, the velocity field is seen to be more exited than that of a single plate with a constant surface temperature. The fluid can flow upwards along the hot surface or form a circulation, depending on the corresponding surface temperature. Again, like the temperature field, the flow field changes its pattern (either parallel upwards flow or the circulation flow) periodically, too. The transition from parallel up flow to circula- tion actually represents a different mode during the circulation core developing histo- ry. As can be seen from pictures in Figure 9, the circulation is always there. As time passes- step by step, the core will move the bottom to the top, then out of the inner 29 Elli“ FRI! 11mm ID '0 2 \\K \\ ~ \\ \ \\\ \ III'lllrttlllltllllltllttllTFFtTTTr l a E m L1. 1 .1 . 0" I -3, ' -2: I _§ I n ! -d ' ‘II l 4:. p; d: C. t§§35 ._ )—. 9:), .1? 1 fig 5 - l -6 l l _& | l dd I 45 b : ‘5 i -§ ; du- ' 5 | .‘U 0 .‘f“ .13 l .l l l .4 l 1' _ | - l l - _ d 1 . / / ’ . 41/ l l l l l l l l l 1 L1 L I J l l l J l L l l l l l l 1 l l l l [J l ‘ . ‘ . ' - :-‘°::-::o:oo?o.-..-.:..no.. ’..'..--—'o.- ::.:’.:o:: :0 . sci ' " o " ’ t: 3". ttttt ‘6 0 oooooooooooooooooo “.”::..o oooooooooooooooo 00. r-.." '.-I It) i : l '. : l .' i '. '. '1 .n ‘ ' O 3 I -> i ‘ ' T : . g u 1 I a 9 : . s . . -' L. I. I t. 1 0 - I ' n "‘ r ’I‘ . : é _ ,z t I- a E l I III I 'I .- ' ’o’ I a” : .-“...O..l'.-"‘ ' ~ I, I I- I I-t ‘ h ........................... )- .0 1' 1m CI!” [Um ' mm 0 4.1“ v v CHI-ll m IzgnglgsllLlllll p ..._. __ —— m __ _-., ~:‘—-“ fir . ,D( fi..._. ~_ -‘ Figure 9 (1) Temperature field (a) and flow field (b) responses to oscillating surface temperature at 1:560 (a) (b) 30 I.‘£OO (OHM FRI! timed) I'D ll] 4/ / ‘- IILLIIIAIIIJOIllllJOllllLLllllllLll ' l I l r I r r r I r r . r r l l l l r r r I r I r I I r r r T T I r Hr .. 3 r j )1» $ .. .1 g a. .1 a hot -4 O F _ II to -‘ i ~> '1 if i§| §| § § 3 5 .. . . m - a .. _. i) d d I - lg n. d 1 up | I — E -- l j l - 2 I i i : g (a) rt» ; '1 5 r g‘ 8 8 | l [r " -t> 6' NI I I ‘1 . I l l .. —( _. d 3 _( .. _. .1 '1 .4 j l .. ~ .- . -o- ' —' ----- . ----. .e ._ .n...-.. 0 - _ ..---' r- Infifi I"l--3--{.I.':.':J..;"{.j;,;v_11fi::{-.;..—J~-J""I J 3"T"F In? I l'Iv‘l l l l v —1 “fl 1 1 1 1 1 r I 0.23iltflt 71”.}! 3 l p. - ,a ‘\.--a- (1)) 1.1100 -" -a' .«4' ,. ....... .................. -l.5 -l-J-iole-L—LJ l- 1.1. l.J_.l_l_l_fll_fil_l_l__L_l_L.1_l_1_l__Ld.fil_J_L_l_l_Ll can“ warm or 0.3mm . HLIEIZILLIJLI IILIC-I:T‘I"T_I—I—‘I—I I I I Lmlflfl FBI! .1 ._l. .1. A fl ___:_“__:_:::-—=I"m=—-~._=--_ Figure 9 (2) Temperature field (a) and flow field (b) responses to oscillating surface temperature at 1:563 lTTllTITirTTITITTIT.T‘T. .TTYYTT I ILSI ”1(4)? . 100 200 0.30““! 4” PH 1. )I : (a) ‘mlflfl "NEW“ 0‘ 100 —. 200 l .9500 000(le “'13 lo I 641063 1P?” 1.1 l_LJ_l._LL.l_J._1__l_.l_L_L_l 1‘1 1 l l l l l l l l l l l L_1_L.1_L_L_L__L.l_l ' i ' ‘ l I ' I l l I ' ' t ' l l | 1 l l 3 ‘ ..... ..... ............ “g“-....”_----oIooc-‘-‘--‘.- .O" 1T1. T‘L.) I l 1"F‘1'-¥°-F--F-+-(--¥--§"P‘T ‘l I I L L--I'"Y T T }—'T i T T [E .- “'..'.o... .0--.‘--‘-- .5 v. a- ~ .o ‘- ~~ ”l3.” 3 -0.l||.7l-OI can” “HEM ‘ 1m (b) [0 1.10m u , - o .......... .......... ..-- ....... ---...---.- CON" man om “L . __ 0 _-_-_;:T:.‘—*‘-'- ms——__ Figure 9 (3) Temperature field (a) and flow field (b) responses to oscillating surface temperature at 1:565 32 a \II ) (am I b I ( 23.2.53 2 ”:5; .2, 3:3... 3 (it... 525... 8B... 3 3.5.5:... :3: :26. 5.833...- "3.2... and “I 123.... Giza”. RE; 3 ID.D _ 4-44.4I4I; 4I4JIJiqla|qifiJIqI«JIJJI714IJIaIaIJl144I4IH .4 4.4 #4-. T. a d a u 4N 4 4 a a #4 _ 11 I I o. I. T I. T [I Y; 1+ 1 i | vI 1 I I I I l I I oomtIIIIIIII [III Ioo.I.II I I I I , II .IwIIIH-IIIIHIIIIIMIwIIH- I- I , I, ,. / I I.-I - .IIIIII.:--;I.IIIIIIII-IIIIIIIIIIMIIIII III I S» , II I I I ISTIII IIIlIIIIIIII1o2..- -HwIIIIIIH.I.II-....m. .../ . / I III- IIIIIIIIIIIIIIIIEIIIlIzIIIIHHWXIH.U/, f I . I-- .I.;ImHI:IIIII:IIIIInuuuummuNma,w / 95 8QIIIIIIIIIIII... , avg» IIIIIIIHNSQ //9! E... I .13, I! I/ mLfimWNHMWWWWMWEMVL, IIIIIIIIIIIIIIII ,.-a.oo------~~s...,‘ .0 . _ _ d _ q _ . . quofijququ4J--jlql 3.0. g 528.4 “lllllll HI I H “I I .l I I I N I W F F I I i field (a) and flow field (b) responses to face temperature at 1::567 'llating sur OSCI Figure 9 (4) Temperature 33 " TTI IIYV*VTIfirY r', vyyy, rvfir . 400 200 .- l l .1_J_J_l__L_1_L,l_L.l_J..1 .l_.l .l. J._.|._L_Ll l l l l l l l l l J_.1_l__L..L_1__J.| .I II II //.///// III I/ ,I/ = . I / [x / ~ /§// w //// 74. JllllJl'llLlllllllllllI'lIl'lL _:- a“ ———_._...——- __.—'——' ———;—-" -" " r ’ 2","- —— it _' OT U.“ o... ................ ..... s.“ ‘y x 1 1 x .n-. ..... l l 1 r I I t J I I I 1 L 1 1 x .U I l ...... I I I I I I I I I I I l I l 11111lllllénlljlllllLllJnll - . ' .go.-....-...o-..-Q.OOOOOOO 0‘ I ‘ ..:.--~':7';«‘:.-:~ "~l--L._l I I' I’ll I I l l L l L L ['4 I I l : o a l I I I .‘.6|1‘,9[ U9 0.9M”)! -UI P I l i. ll 3 lm'lilfl "HEW”! OF I , 'BHU Immm mun I).ll0(fl(H)) IO PHSJI = -o.sozq5£-0| (III-R III'EIWI. ‘ 0.21111) 3.1000 V. CON“ M -0.6flm (a) (b) Figure 9(5) Temperature field (a) and flow field (b) responses to oscillating surface temperature at 1:570 34 I‘Ollalfl FRDH 0.110((DE ND {0 [11500 I [I IT T 7 l j ' I I. I I “I ”P ' I "I ~- I a I 4 ~- = : I -I 8 -- II ; , ~' 8: I... : 5 f 5 ' _I g ”’ I ' ' :‘ In}. ! i I } ll "' I I , 2 "" I | I _I E P I I I :_ % §I § I 8 I I I ‘1 E I. I I I I 3 g .. I I If I a HI- I I 4 .1 3 ~ I I i I I g I ‘ I w l I I -I E I I -1' a: I a (a) I q .- I . E I L -+ I I ~ I (I _ I -1 q J. .1‘ I "JllLILILLI'IIIJI"Ililllllll "' “ IIIIIIIIIIITIIIIIIII l I I JAINH-‘fl cm Wt I tmi-Ol "ll-3|: (b) 1’. La. llllLlll‘nllllllllJlllllllllllLll cum "I! '0. sun II; I‘ I! ‘a‘. . Q‘s». Lin--. . I J -. {'Isi’ 1‘1.l-l l‘ I I l.l~l-l~ 1.1.3-1-‘I‘IZI:‘I‘~'1:1‘I‘I'Ii Figure 9 (6) Temperature field (a) and flow field (b) responses to - oscillating surface temperature at 1:573 35 (a) ll 9?. 9.3.0:: u .m .«..L 2. gm c 59 $232. c.5352 8m...— 2 pl: fl-Uwccé 20K... «HS—’5. 1411-74444 _ _ _ q a A q q q a _ 14I_IqJI4|dI-14Iq.J-4J4.41. I. 4.. .._- Y I I I :3 . III. I- c?- .. IIw--.-;-.. I w! I II I III I I III III; -II. - I..- I...-.-..-. l IIIIIIII IIIIIII II III-HUM . - - - I- II 8,.IIIIwI I-@.--IHWI-II . . I HI. [III/[HI I :8 I Q;- llf’l‘lll I - a3. ISn-IIHIIIIII/h. ILLIFLLIPFIPLILIPLLIEI r1 _-_.. ._ -_.I_ LICIQ. u ;..-.3- u : A:L Shun-C .5 .3653— ‘53.: (b) :an... a =an :- EE EQI‘: .fiqfid—quqdqdu_-—qquqq ;.za' ' ' ' / I // / / / / __—_ _ F- ‘ , _ _ - ’ fl» 1%. .43ajJJJIfi-q ......_ Figure 9 (7) Temperature field (a) and flow field (b) responses to oscillating surface temperature at 1:575 36 (a) a? u: 3%.: u 2 .27; 2v ETA. & EB... :29“. jal— q H — q q — u fi‘ « q dId q q d d fi q q J_.-u_ _AI_ _ _ _ _t_ _ _ _I4I.qI_ _u I T I T I J L J I J I 1 T 1 fl I. T! II III II IIIIIIIII III | I. II. I .. I I III|8~,.I l-rI {-83 I I: y I a... II I III I III I I ll ., I II I / ,, I r II .I III! I-I:l I I- 11; / 8v, ,. /1 2E. . D. -an—HDAA. A. .31. i935. (b) ZYuahud- ”3.3—; 2.6 t 538. :_iu 836 2 3.9. ‘E I‘d—3.4 ‘- i~~=<=s- : C) 6‘ ’ ’——- .’ \2’33’ u—u-_‘d«—__A.J*__q.4_—q«~_q_~_‘q_.qfide 'Illll‘lllll Ihullllllulllll|IllIll I'1--9.4"1“1. 1 1 ‘r.1 1’1"}:1-4-v1 I t r L 1 x t"r~+:T.: 0 t S e s n m. 7 $7 [a WT (m we er am mm flD. dm an e ) C @m dr- Mm foe e.m ft .m fl C S o (8) Temperatu Figure 9 37 IIITTIYTTTTIIllllllllYlflllTrlllT , I l I .4 _. __ 0.12278t—U8 I .J -I ‘4 2 g g g :55 I I g I I I -1 I I I I - II ; I I I .4 9 I I I I I . I I I I I g II? I I d I? I; I I I j 3 (a) I: ,I I : I ' ‘ 5 P 8 ' 8 I ' ' '1 I8 g T I I N I I :I 8 II I I I I I "I”. I ' I I I I .JI - I I I I I I I I :I 2 I I I- I/III’I /: 1| g ' ;- 5/ ‘6’” ”I I g I r/ 5- 32...- #1 I I I I ' I I l I I I L LL} I I l I 1 I I 1 1 L4 1 I I I L I II II III / u “ “—— "———'"‘ --" 7' V 45: II I “ III § III a III ,, 3 III - III' " 3. III IIQ ‘ II II a COM” IMEM U I I (b) 3.5m 4 l I I l I I I l I 1 I in II: I Figure 9 (9) Temperature field (a) and flow field (b) responses to oscillating surface temperature at 1:580 . CON” "I“ 0.0011110) I'D lllLllLlLLlllJLllllJlllllLllllll11111 _ _ -—“ -"‘:II-l-S-‘ ‘ ._——--._ 38 r- 'fTTTT ) a ( 17:: :7ugn—wé m9 I733:— Kan—Eu WI 744.4!fi j-I1IfiI—II_-I4|4IJJIJI«JIJI4leqI«IJIqI 4II_IA--.1-4IJI«I_ .IqIfi q q .I P. 91 flaucoé x9: K629. V I ‘LllLLl‘ l '1111111LL" I 2.0 3 Eu;— uni—Eu (b) 36 _..,----... 0-0 2:1 ‘: :: :: O 14q._n.fi .~_q_. . qq _ qqq q _ ‘4 114-4IJJJIJIJJI141 ~_—_ __.._ F __‘ ”MM ‘71—: . ._ 0.. —1 ——.___——_~ ._—_‘ oscillating surface temperature at 1:583 ‘I r J. :‘y --L-I:J::! -sB-J-.J-.J..l.-K 8a. 8c. // H fl H HI H 4 - — H H H N II 1‘ fl H 1! rfi fl H H H H INJq — I f I Figure 9 (10) Temperature field (a) and flow field (b) responses to 39 (a) V m? gwmmu A. u .m 4 . E 2... gas. 8 dam—z. Caz—.9“. 8mm..— 2 Qt H:~o:.a 155 I625. W a «latqzfiifi.fitfilfildlfila§414 _ q a _ q _ _ — 4:4 4 q q d Al414i414|4l4ifilqld!filj TI :1 F I 33113-14 .1 5’-.- 'n" .' 1 2'. "95:33; on- ‘ .. Osoq-o.-¢--' ‘~-... ~ ‘. .‘~‘ 0" 1 "“ armed Kai-pm pa: 0“... ---.-s....o..-." oo- "“'--~-oooooo---ao“' ‘. ‘~.-.-. _ a .--o—-oo-“‘. 3.: 8 $2.: :30... mu 1 0.0 (1)) 3a u.— 34- 5E :30» *DV(IJ)‘(PP(IJM 1)-PP(I,J)) 603 CONTINUE 73 C ”‘ CORRECIION FOR PRESSURE P D0 606 I=2,NI DO 606 I=2,NI PGJ)=P(U)+PP(U) PP(I,J)=0. 606 CONTINUE C ‘" RECALCULATE THE ERROR SOURCE AFTER CORRECTIONS OF U. V. P SORSUM=0. RESORMCTERFO. DO 700 I=2,NJ IP2=J+2 IP1=J+1 IMP-'1 -1 IM2=J-2 DO 700 I=2,NI IP2=I+2 IP1=I+1 1M l=I-1 IM2.=I-2 DXI=DXX(I) DXM1=DXX(IM1) DXP1=DX'X(IPI ) DYJ=DYY(J') DYM1=DYY(IM1) DYP1=DYYOP1 ) DXEE=DXXS(IP2) DXE=DXXS(IPI) DXW=DXXS(I) DXWW=DXXS(IM1) DYNN=DYYSOP2) DYN=DYYSOP1 ) DYS=DYYS(I) DYSS=DYYSOM1 ) VOL=DYJ‘DXI VOLDT=VOIJDTIME CN=V(I,JPI )‘DXI CS=V(I,I)‘ DXI CE=U(IP1 J')’DYI CW :1] (LD‘ DY] SMP(IJ)=-CE+CW-CN+CS C ‘” SORSUM IS ACIUAL MASS INCREASE OR DECREASE FROM CONTINUITY C EQUATUON . THIS WILL COMPARE TO SOURCE SORSUM=SORSUM+SMP(IJ) C ”‘ RESORM IS SUM OF THE ABSOLUTE VALUE OF SMPOJ) FOR ANY I RESORMGTER)=RESORM(ITER)+ABS(SMP(IJ)) 700 CONTINUE RETURN END SUBROUTINE TRIDA(IBEGIN,JST ARTJENDJSTOPPHIIFROMJT OJ 3 .14) C ......‘0.’00.0.00“0.0.0.000...000000000000O“..“‘t¢tt$fi00“. COMMON/BL7/NI,NIP1,NIPZ,NIMI,NI,NIP1,NIP2,NJM1 COMMON/BL8/NII.NILP1,NIB,NIBP1.NJT,NIIM1,NITP1,N COMMON/B L36/AP(-60:90.-60:90),AE(—60:90,-60:90), & AW(-60:90,-60:90),AN(-60:90,-60:90). & AS(-60:90,60:90),SP(-60:90,-60:90).SU(-60:90,-60:90) & .REQ(-6O:90.-60:90) COMMON/B L4I/ A(-30:100),B(-30:100),C(-30: 100),D(~30: 100) DIMENSION PHI(-60:90.-60:90) C “'" COMMENCE S-N TRAVERSE D0 100 J=ISTARTJSTOP JM1=J-l IP1=I+1 C ‘” DEFINE ISTART AND ISTOP IF((I .LE. J3) .OR. (1 .GE. 14)) GO TO 201 GO TO 202 74 201 ISTART=IFROM ISTOP=ITO GO TO 203 202 ISTART=IBEGIN ISTOP=IEND 203 CONTINUE ISTMl=ISTART-l A(ISTM1)=0. C(ISTMI)=0. C ”‘ COMMENCE W-E SWEEP DO 101 I=ISTART,IST OP IMI=I~1 A(I)=AE(I.I) B(I)=AW(I,J) C(I)=AN(IJ)‘PHI(I.JP1)+AS(IJ)*PHI(LJM1)+SU(IJ) D(I)=AP(U) C ”" CALCULATE COEFFICIENT OF RECURRENCE FORMULA TERM=1 J(D(I)-B(I)"'A(IM1)) A(I)=A(I)"TERM C(I)=(C(I)+B(I)‘C(IMI))"TERM 101 CONTINUE C ‘“ OBTAIN NEW PHI’S PHI(ISTOP,J)=C(ISTOP) ISTARI=ISTART+1 DO 102 II=ISTAR1.ISTOP I=ISTUP+ISTART~II PHI(IJ)=A(I)’PHI(I+1,I)+C(I) 102 CONTINUE 100 CONTINUE RETURN END SUBROUTINE TRIDAGOS'TARTJBEGINJSTOPJENDIHIJFROMJIO ,I3) 4444 4444444444444444444 Vvvvvvvv‘f‘v vvvv‘rv v—vw—vvvv COMMON/BL7/NI,NIP1,NH’2,NINII,NI,NIP1,NIP2,NJMI COMMON/BLWIMBNIBPINTMTMIMTPIMTPZNHHNEPZ COMMON/BL36/AP(-60:W,«60:90),AE(-60:90.$90). & AW(-60:90,-60:90).AN(-60:90,-60:90), & AS(-a):90,-60:90),SP(-60:90,-60:90),SU(-60:90.-60:90) & ,REQ(-60:90,-60:90) COMMON/BIA“ A(-30:100),B(-30:100),C(-30:1m),D(-30: 100) DMENSION PHI(-60:90,-60:90) C ”* COMNIENCE W-E SWEEP DO 100 I=ISTART.IST OP IP1=I+ l IM1=I-1 C ”‘ DEFINE ISTART AND ISTOP IF(I .GE. I3) GO TO 201 GO TO 202 201 JSTART=IFROM ISTOHTO GO TO 208 202 ISTARTQE EGIN ISTOP=IEND 203 CONTINUE JSTM 1 fl ST ART- 1 AUSTM 1)=0. C(ISTM1)=0. C ”’ COMMENCE S-N TRAVERSE DO 101 I=JSTARTJSTOP IM 1:] -1 AOFANGJ) B(D=AS(U) C(J)=AE(IJ)’PHI(IP1J)+AW(IJ)‘PHI(IM1,J)+SU(I,J) DO)=AP(IJ) C m CALCULATE COEFFICIENT OF RECURRENCE FORMULA TERM=1J(D(I)~B(I)‘A(IM1)) 75 A(J)=A(.T)‘TERM CO)=(C(I)+B(I)‘C(IM1))’TERM 101 CONTINUE C “" OBTAIN NEW PHI'S PHI(I.J STOP)=C(IST OP) JSTAR1=JSTART+1 DO 102 JI=ISTAR1JSTOP I flST OP+J ST ART-II PHI(IJ')=A(J)‘PHI(IJ+1)+C(I) 102 CONTINUE 100 CONTINUE RETURN END C :::::*::::::::::::::::::::::t::::::::::::::::::::::::::::::::. COMMON/BL7/NI,NIP1,NIP2,NIM1.NI.NIP1.NIP2,NIM1 COMMON/BL8/NIL,NILP1 ,NTBNIBPINJTNJTM 1,NITP1.NJTP2,NILP2,NIBP2 COMMON/BL36/AP(-60:90,-60:90),AE(-60:90,-60:90), «It AW(-60:90,-60:90),AN(-60:90.-60:90), & AS(-60:90.-60:90).SP(-60:90.-60:90).SU(-&:90.-60:90), & REQ(-60:90,-60:90) COMMON/3L4” A(-30:100),B(-30:100).C(-30:100).D(-30: 100) DIMENSION PHI(-60:90,-60:90) C ‘” COMNIENCE W-E SWEEP DO 100 I=IST ARTJST OP IM1=IoI IP1=I+1 C ‘”” DEFINE JSTART AND ISTOP IF(I .GE. 13) GOTO 201 GOTO 202 201 ISTARTrJFROM ISTOP=ITO GOTO 203 202 JSTART=IBEGIN ISTOHEND 203 CONTINUE 181‘ GP] =IST OP+1 BOSTOPI)=0. C(I STUP1)=O. C ‘” COMMENCE S-N TRAVERSE DO 101 H=ISTARTJSTOP I =1 ST OP+J ST ART-II IP1=J+1 AC)=AN(I,J) BG)=AS(IJ) CO)=AE(IJ)"PHI(IPI J)+AW(I,J)‘ PHI(IM1,J)+SU(I,J) DOFAPGJ) C ”‘ CALCULATE COEFFICIENT OF RECURRENCE FORMULA TERM=1J(D(I)-A(J)‘B(IP1)) BO)=B(I)‘TERM C(J)=(C(J)+A0)‘C0P1))‘TERM 101 CONTINUE C ”" OBTAIN NEW PHI'S PHI(IJ START)=C(J ST ART) JST AR 1 =1 ST ART+1 D0102 IdSTARlJSTOP PmaJ)=B(D’Pm(U-1)tC(D 102 CONTINUE 100 CONTINUE RETURN END SUBROUTINE TRIDAY(IBEGIN,J ST ARTJENDJ STOP,PHI.IFROM ,IT 0,] 3 ,J 4) C‘ft‘iitttfittiiititiitiiC:ilfititttat aautttt‘tfiltifilttttttttttt COMMON/BL?INI,NIP1,NIP2.NIM1,NI..\'J Pl NJPZNIMI C 76 COMMON/BWIMBNIBPINJTNJTMINJTPINITPZWPZ COWON/BL36/AP(-60:90,-60:90),AE(-60:90,-60:90), & AW(-60:90,-60:90),AN(-60:90.-60:90). &. AS(-60:90,-a):90),SP(-60:90.-60:90),SU(-60:90,—60:90), & REQ(-60:90.-a):90) COMMON/BLAH] A(-30:100),B(-30:100),C(-30:1(X)).D(-30: 100) DIMENSION PHI(-60:90.-60:90) C ”* COMMENCE S.N TRAVERSE DO 100 JI=JSTARTJSTOP J=ISTART+ISTOPJJ IMlaI-l JPld+l C "'” DEFINE ISTART AND ISTOP IF (( I.LEJ3) .OR. (I.GE. 14)) GOTO 201 GOT O 202 201 ISTART=IFROM ISTOfiITO GOTO 203 202 ISTART=IBEGIN ISTOP=IEND 203 CONTINUE ISTM l=ISTART-1 A(ISTM1)=0. C(ISTMI)=0. C "'“ COMMENCE W-E SWEEP D0 101 I=ISTARTJST OP IM1=I-1 A(I)=AE(IJ) B(I)=AW(IJ) C(I):AN(I,I)"PHI(IJP1)+AS(IJ)"PHI(IJM1)+SU(IJ) D(D=AP(U) C '” CALCULATE COEFFICIENT OF RECURRENCE FORMULA TERM=l./(D(I)-B(I)‘A(IM1)) A(I)=A(I)‘TERM C(I)=(C(D+B(I)‘CCM1))‘TERM 101 CONTINUE C ”‘ OBTAIN NEW PHI’S PHI(ISTOPJ)==C(ISTOP) ISTAR1=ISTART+1 D0 102 II=ISTAR1.ISTOP I=ISTUP+ISTART0II PHI(IJ)=A(I)’PHI(I+1J)+C(I) 102 CONTINUE 100 CONTINUE RETURN END 4.4.44.44_44_4A44 LA‘A‘AAAAAAAAAAALJ 444.. Qt. ‘ U“ '73- 3-3333771333373333131,77 3,--- SUBROUTINE NU(RNU,RNUC,RNUH) 444.444LA4444 44.444.- 4 L4 A+A*A‘AA_LAA_AA 4444 4 4 COMMON/BLl/DXDY VOL,DTIME ,XOY. YOX, VOLDT, THOT. PI COMMON/BL7/NI,NIP1,NIP2,NIMI ,NJ,NIP1 ,NIP2,NIM1 COMMON/BL8/NIL.NILP1,NJBNIBPINJTNIT‘MLNITPINITPZMLPZNIBW COMMON/BL36/AP(-60:90,-60:90),AE(-60:90,-60:90), & AW(-60:90.-60:90),AN(—60:90,-60:90), & AS(-60:90,-60:90),SP(-60:90,-60:90),SU(-60:90.-60:90) & ,REQ(-60:90,-60:90) COMMON/BLIZ/ NWRITENT APENTMAXONTREALJIMESORSUMJT ER COMMON/ELM] CONST 1,CONST2,CONST3 ,RA.PR & ,NT‘,U0,H,UGRT,BUOY, & PSY,CPO,CONDO,VISO,RHOO,HR,TR,TA,DTEMP COMMON/BUZ/ T(-60:90,-60:90),R(-60:90,-60:90),U(—60:90,-60:90), & V(-60:90.-60:90),P(-60:90,-60:90) & ,PSI(-60:90,-60:90) COMMON/3L3” VIS(-60:90.-60:90),COND(-60:90,-60:90), & CPM(-60:90,-60:90).RESORM(20),TERM(20) 77 COMMON/R4] X(-60:90),Y(-60:90).DXX(-60:90).DYY(-60:90). & DXXS(-60:90).DYYS(—60:90) DIMENSION RNU(11) DO 100 K=1, ll RNU(K)=0. 100 CONTINUE RNUH=0. RNUC=O. DT=T(2.NIP1)-1. DO 20 I=2,NI Y1=DYYS(2)f2. Y2=YI+DYYS(3) DIDYC=(Y2‘Y2"(T(L2)-T(Ll ))-Y1 ‘Y1 ‘ (T (I,3)-T(I, 0))” 2 & /(YZ-Yl)/Y1 Y1=DYYS(NIP1)/Z. Y2=Y1+DYYS(NI) UTDYH=—(Y2‘Y2‘(T(I,NI)-T(I,NIPI ))-Yl ‘Yl"(T(I,NJMl)- & T(I,NIP1)))/Y2/(Y2.Y1)/Yl IF(I.EQ.20) GOTO 999 GOTO IMO 999 XNU=DTDYH"DXX(I) 1(D0 DTDYCI =2. ‘(T (12)-Ta, l ))IDYYS(2) DTDYHI=2.‘(T(I,NJP1)-T(I,NJ))/DYYS(1~UP1) RNU(10)=RNU(10)+DTDYC1*DXX(I) RNU(I l)=RNU(1 l)+DTDYHl"DXX(I) RNUC=RNUC+DTDYC’DXX(I) RNUII:RNUH+DTDYII‘DXX(I) DO 10 K=l.9 J=2‘K+2 IMlaI-l 1P1 dd GS: V(IJ)‘DIO((I) GSP=(GS+ABS(GS))‘ DYYSONDYYOMI ) GSM=(GS-ABS(GS))"DYYS(J)/DYY(I) Q=-5‘(T(IJ)+T(UM1))"GS & -1./16.‘((T(U)-T(IJ'M1)) & {IGJMI}T(IJ-2))‘ DYYSOIIDYYSOMI) & )‘GSP Q=Q-1.II6.‘((T(IJP1)-T(IJ))‘DYYS(J) & /DYYS(IP1)—(I'(IJ)-T(IJM1)))"GSM DTDY=('T(IJ)-T(IJM 1))IDYYSO) DQ=(Q-DTDY'DXX(D) RNU(K)=RNU(K)-DQ 10 CONTINUE C DLOC(I)=DTDYII 20 CONTINUE RETURN END BLOCK DATA C 0.0.00.000 LOGICAL‘I LBAND COMMON/BL?M,NIP1.NIP2,NIM1,NJ,NIP1NIP2,NIM1 COMMON/BL8/NILNILP1 ,NIBNJBPI .NJT.NITM1.NITP1,NJTP2.NILP2,NJBP2 COMMON/BLI6/ CONST1,CONSI2.CONST3 ,RA,PR a ,NT.UO.H,UGRT,BUOY, & PSY,CPO.CONDO.VISO,RHOO,HR,TR,TA,DTEMP COMMON/RU LBAND(9) DATA NIP2,NIP2,NIP1 ,NIPI ,NINI ,NIMI.NJM1/43 ,43 ,42,42.41 ,4 1 ,40,40/ END C .OOOOOOCOOOOODOO COMMON/R4]X(-60:90).Y(-60:90).DXX(~60:90),DYY(-60:90), & DXXS(—60:90),DYYS(-60:90) COMMON/BL32/ T(-60:90,-60:90),R(-60:90,-60:90).U(-60:90,-60:90), 78 & V(-60:%,-a):90).P(-a):90.-60:90). & PSI(-60:90.-w:90) COWON/BL16/ CONST 1.CONST2.CONST3 ,RA,PR & ,NT,U0,H,UGRT,BUOY, & PSY.CPO,CONDO,VISO,RHOO.HR,TR.TA,DTEMP COMMON/BL7/NI,N1P1,NIP2.NIM1.NI.NIP1 W1 COWON/BIS/NWINIBNIEPINITNTMIMTPIWWIBW COMMON/BWAP(-60:90,-6090).AE(-60:90,-$:90),AW(—60:90,-60:90), & AN(-60:90,-60:90), & AS(-60:90,-60:90),SP(-6):90,-60:90),SU(-60:90,-60:90) & ,REQ(-60:%,-60:90) DIMENSION UU(-6090.-6090),W(-6090,-6090) DO 307 I=I.NIP1 DO 307 J=1NP1 307 CONTINUE DO 23 I=1,NIP1 DO 23 I=1NP1/2 C T(IJ)=2.0+DTEIHP-T(NIP1+1-I,NIPI+1-I) 23 CONTINUE DO 24 I=1.NIP1 DO 24 I=2,NIP1I2+1 C V(IJ)=-V(NIP1+1-I.NIP1+2-I) 24 CONTINUE DO 25 I=2,NIP1 DO 25 1:1,NIP1/2 C U(IJ)=—U(NIP1+2-LNIP1+1-J) 25 CONTINUE C‘“”CALCU LATE STREAM FUNCTION DISTRIBUTIONS DO 701 I=2,NI DO 701 I=2,NI PSIWFRBQQZ)‘(U(IJ)+U (1+ 1.2))‘ DYYQ) IFO.LT.3) GO TO 701 D0 702 K=3J 702 PSIaJ)=PSI(IJ)+