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ABSTRACT

DIRECT PERFECT HASHING FUNCTIONS

FOR EXTERNAL FILES

By

Yuichi Bannai

A composite perfect hashing scheme for large external files which guarantees single disk access

retrieval has been proposed in [RL88]. It was suggested that direct perfect hashing functions be

found by trial and error methods. In this thesis. we explore systematic methods of finding direct

perfect hashing functions. Extensions of Sprugnoli’s Quotient Reduction and Remainder Reduc-

tion methods are proposed. The experimental results indicate that these methods are practical.

Also, the performance of different universal; classes of hashing functions are studied.
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1. Introduction

Hashing is an important and widely used technique for organizing files. The storage area is

partitioned into a finite number of buckets. Hashing involves the computation of the address of

the data item directly by evaluating a function (hashing function) on the search-key of the desired

record. The record is then stored in the corresponding bucket. Ifthe bucket is already full, we say

an ‘overfiow’ has occurred. A hashing function is said to be ‘perfect’ if no overflows occur for the

given data. There is no need to handle overflows in a perfect hashing scheme, and hence we

obtain ideal retrieval performance.

A composite perfect hashing scheme for large external files was proposed in [RL88]. An

ordinary hashing fimction is used to divide records of the file into a number of groups. The

records in each group are stored using direct perfect hashing functions. A simple trial and error

method for finding perfect hashing functions is proposed and analyzed. In this scheme, any record

can be retrieved in a single disk access. and the analysis shows that records can be inserted and

deleted at an average cost comparable to that of many traditional hashing schemes. One drawback

of this scheme is that there is no guarantee of finding a direct perfect hashing function for a given

set of keys, which motivated this thesis. The proposed methods here ,. are an extension of

Sprugnoli’s Quotient Reduction and Remainder Reduction methods [SP77].

In [RL88], Ramakrishna er a1. experimentally showed that wriversalz class H 1 of hashing

functions could be used for making trials: the relative frequency of perfect hashing functions

within universal2 class H 1 is the same as that predicted by the analysis for the .set of all func-

tions. However, they did not study other universalz functions: classes H2 and H3 of hashing

functions. In this thesis, we examine if classes H2 and H3 behave similar to the class H 1.

Outline of the Thesis

The next section presents the background of research into perfect hashing. The external per-

fect hashing scheme proposed in [RL88] is introduced in section 3. In section 4, the Quotient
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Reduction method for generating perfect hashing functions is introduced and analyzed. The

Remainder Reduction method, which is superior to the Quotient Reduction method, is presented

in section 5. The performance of universal; classes H2 and H3 functions are studied in section

6. Section 7 discusses the dynamic behavior of the proposed scheme.

Definitions and Assumptions

A hash table consists of m buckets. and each bucket has a capacity of b records. A set

I = {x1,x2. .....,1.) of n search keys are to be stored in the table. A hashing function

h :l -> [ 0 .. m—l ] assigns an integer 0 through m-l to each key. We will consider functions of

integer keys in this paper. A hashing function h is a perfect hashing function for a given key set

and table if no bucket receives more than b keys under the ftmction h. We use [p .. q] to denote

the interval [p, p-I-l, p+2, ..... , q-l, q] (p < q), the length ofwhich is q—p+ 1. The load factor

( a ) is the ratio of the number of keys to the total capacity of the hash table, or = n/mb.



2. Background

The perfect hashing schemes dealt with in the literature may be grouped into two classes

[RL88]:

a) Direct perfect hashing;

b) Composite perfect hashing.

Direct perfect hashing functions map a given key into an address where the key and its associated

record are stored. The composite perfect hashing scheme involves additional table look-up to find

the desired address. This means that a retrieval involves more than one level of access.

Direct Perfect Hashing

Sprugnoli, who was the first to formally define perfect hashing, proposed a systematic

method of finding perfect hashing functions, called the Quotient Reduction method [SP77]. The

functions are of the form h(x) = |_ (x+s)/NJ , where s and N are constants, and are called the

admissible increment and quotient. respectively. He gave a constructive proof of the existence

of the Quotient Reduction perfect hashing function for any given key set. His algorithm finds s

and N for a given set of keys I = {x1,x2, .....,xn}. However, his algorithm was restricted to the

special case of the bucket size being one. He also proposed the Remainder Reduction method,

which yields better storage utilization especially when the keys are not uniformly distributed. The

functions are of the form h(x) = L((xq+d) mod m) IN] .

Jaeschke [1881] proposed the Reciprocal Hashing function of the form

h (x) = [Cl(Dx+E)j mod n, where C, D, and E are constants. He proved that there always exists

a perfect hashing function of this form for any given I. Chang [CH84] proposed a similar scheme

based on the Chinese Remainder Theorem. However. these schemes are not of practical value.

Please refer to [RM86, MR84] for further details.



Composite Perfect Hashing

Composite hashing is necessary to handle for large sets of data. Spnrgnoli suggested the

idea of segmentation to handle large sets of keys [SP77]. The keys are divided into a number of

groups by an ordinary hashing function so that each group can be handled by direct perfect hash-

ing. Fredman er al. [FR82] constructed perfect hash tables using Sprugnoli’s idea. Their scheme

guarantees constant time retrieval with 0 (n) space requirement. However, they did not discuss

how to update the table. Cormack er a1. [CR85] pmposed a similar scheme including algorithms

for insertion and deletion.





3. External Perfect Hashing Scheme

The external perfect hashing scheme proposed by Ramakrishna er a1. [RL88] attempts to

achieve single disk access retrieval at the cost of a small header table in internal memory. They

used a composite data structure similar to that proposed by Cormack er al. [CR85]. Direct perfect

hashing functions are found by a simple trial and error method. One drawback of this method is

that there is no guarantee that perfect hashing functions can always be found for any given key set

although the expected number of trials is small and can be controlled. We investigate systematic

methods for finding direct perfect hashing functions for external files, and study properties of the

file constructed by the proposed method such as the storage utilization and fiequency of rehash-

ing.

The details of the external perfect hashing scheme are described below. The set of keys is

divided into several groups. The keys in each group are stored in a number of contiguous pages in

the secondary memory using a perfect hashing function. An ordinary hashing function H is used

to accomplish the grouping. Let key group t denote the set of keys {1: I x e the given key set and

t =H(x)}. Each entry of the header table in the internal memory is of the form ( p, m, R, ),

where (p,) denotes pointers to starting addresses of each group, (m,) is the group size, and (R,)

denotes the parameters of the perfect hashing function for group t. Any record can be retrieved in

a single access of the secondary memory in this scheme. Algorithms for retrieval, insertion, and

deletion are given below.

Retrieval of a record with key x:

- Compute the group r to which 1: belongs by t :=H(x).

- Extract <p,,m,,R,> from entry t of the header table.

- Compute the page address ofx by A, :=p,+h (x, R,).

- Read in page A,.

- Search page A, for key x. If key 1: is not found, the search has failed.

Insertion of a record with key x:

- Compute A, as above and read in page A, .

- If the page is not full then

- Insert the record into page A, and write back the page.

else { Rehashing }

- Read in all pages of the group t. The number of pages is m,.
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Find a new perfect hashing function for all the keys in the group, including the

new key 1:. The number of pages obtained by the new perfect hashing function.

mu, may or may not be equal to m,, and let R. be the parameter of the new per-

fect hashing function.

Find an address p, in the secondary storage having space for m, contiguous

pages (pa may be equal tom )-

Restore the records on pages p“. p,+l, p,+2.....,p.+m..—l using the new perfect

hashing function.

Update the header table entry of group r to < p,m,,R, >.

Deletion of a record with key x:

Compute A, as above and read in the page.

Search page A, for key 1:.

If key 1: is found then delete the record and write back the page,

else the desired record is not in the file.

It may be necessary to rehash the group to avoid low storage utilization. The pro-

cedure of rehashing is similar to that for insertion.



4. Quotient Reduction Method

Quotient Reduction hashing functions are of the form h (x) = |_(x+s)/NJ , where s and N

are constants. We will show that functions of this form, which are perfect. exist for any given

bucket size, by giving a constructive proof.

The basic idea of this method is to divide the given set of keys into a number of intervals

whose length is N, and to move the boundaries between the intervals by adding the admissible

increments so that each interval, corresponding to a bucket, contains no more than b keys. The

following is an extension, of Sprugnoli’s construction, to the general case b > 1.

Admissible increments

Let I = {x1,x2, ......x.) be the set of keys to be bashed. in sorted order. When the bucket

size is b, keys x,- and Jim, must not fall in the same bucket. A set of admissible increments J,- of

the key x.- for a given N is a set of integers for which the condition

l-(x;+t,-)/NJ < l-(x;+b+tg)/NJ 1 Si 5 n—b, I; 8.];

holds. In other words, an admissible increment for x,- is any translation value which adjusts x,-

and xm, to two different intervals [(p—1)N .. pN-l] and [(q-1)N .. qN-l], where p and q are

integers, and p<q. There are n-b sets of admissible increments for a given I and b.

Proposition 1

There exists a quotient reduction perfect hashing function for a given I, b, and N if and only

if the set of admissible increments J,- , 1 Si 5 n—b, have at least one element in common: i.e.,

n-b

nJi ¢¢.

i=1

Proof



The "only if" part is obvious. The "if" part can be proved as follows.

The condition It (x,)<h (xm) must hold for every x,, 1 S i S n—b, for h to be a perfect hashing

function. Hence.

[(x;+t,-)/NJ < l-(xi+b+r,)/NJ for every x,-, 1 Si 5 n-b (4.1)

LCI k=[(x;+b+t;)/NJ and 5; =x,-...1 -x,~. II fOHOWS that x,- + I; < W and xi”, + t,- 2 UV. The SCI

of all admissible increments J,- of x,- is given by

Jg={ti I kN-x,+bSt,-SkN—x,-}. (4.2)

Let u,- =t,- +x,-+¢, -kN. J,- canbe represented in terms of 8,- as follows.

i+b-l

J,-={t,-lt;=u.-—x,-+b+kN,OSu,-< z Oj}. (4.3)

jar'

Infact, x;+t;=x.-+u,--x.-+b+kN=ug-28j+kN, and

x,» + r,- =x.-+b + u,- — x5“, + kN = u,- + kN. Thus, two keys xi“, and x,- fall in two different inter-

 

i+b-l

vals [(p-1)N ..pN—l] and [(q-UN ..qN-1] , (p <k. kSP). if and only if 0514 < z 5]-

j-i

Figure 4.1 shows the admissible increments for x; with b = 2.

kN

XL; Xifr I {3+2 1.43

l I I l

5i + 8i+l

The keys can be moved to the left by xm - kN. and to the right by [W - x;.

The range of the admissible increments is given by

xi+2 '1‘” +1!” -Xr = Xr+2 -Xi = 5: +5.41-

Figure 4.1 Admissible increments when b = 2.

Taking modulo N, the reduced admissible increments for x,- is given by
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i+b-—l

J;={t,-|t,-=u,~—x,-+bmodN IOSu,-< 2 61'}. (4.4)

jai

Each J,- is a subset of integers [0..N—1]. For each interval [xi .. xm], 1 Si S n-b, the set of

admissible increments, J,- is computed by (4.4). If an element s common to all J,-, 1 Si S n-b

exists, then the relation

[(x;+s)/NJ < |_(x,-+b+s)/NJ

holds for every x;, 1 Si S n-b. The corresponding s and N define a perfect hashing function

h(x,-) =[(x,~+s)/NJ . Thus, there exists a quotient reduction perfect hashing function if and only

13-!)

if n J,- ze (b. Cl

is]

In order to find admissible increments for a given I, N, and b, we compute J,-, l S i S n—b,

and take their intersection. If the length of the interval between xi”, and x,- is equal to or greater

i+b—l

than the quotient N. 2 8,- 2N. the set of admissible increments is simply [0..N-1]. This

jai

means that any integer can be taken as an element of 1;, and we can ignore this set for the inter-

section operation mentioned above. Example 4.1 illustrates the computation of the set of admissi-

ble increments with b = 3.

Example 4.1

31 58 67 123 142 146 154 187 198 220

lstdifference 27 9 56 19 4 8 33 11 22

2nd difference 36 65 75 23 12 41 44 33

3rd difference 92 84 79 31 45 52 66

Figure 4.2 Set of keys for Example 4.1
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Suppose N = 74 (later we will see how to choose the value of N), it follows from (4.4) that

L, = [ 0,24]\J[68,73],

J5 = [ O, 5]U[35,73]

.15 = [ 0, 1]U[24,73]

17 = [ 2,67]

By taking the intersection of all the J,- J1, 12, 13 since they are all [0..731), we obtain

J4 (3.15 (3.15 ab =4).

It follows from the previous proposition 1 that a Quotient Reduction perfect hashing function

does not exist for the given key set with N = 74. However, with N = 73.

J4 = [ 0.22]U[65,72]

J5 = [ O, 3]U[32,72]

J5 = [21,72]

17 = [0.641UI721

J4 nls mfg nJ7 = [72].

Thus, there exists a Quotient Reduction perfect hashing function for N = 73. El

The number of buckets m for a given N and s

The number of buckets m for a given set of keys I, a quotient N, and an admissible incre-

ment sis given by

{Lr/Nj +1 if{rmodN+(x1 +s)modN}SN-1

m =

Lr/NJ + 2 otherwise

where r is the range ofkeys, r = x, — Jr]. This can be readily shown as follows:

m=h(x,,)-h(x1)+1
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= [(x,+s)/NJ -[(x1+s)/NJ +1

= [(x1+s+r)/NJ —l_(x1+s)/NJ +1. (45)

The first term is reduced to

[aim/NJ ”1”” if{(x,-+s)modN+rmod N} SN-l

m = .

[(xfis-r-r) [(x1+s)/NJ + Lr/Nj +1 otherwrse

Thus, it follows from (4.5) that

Lr/NJ +1 if{rmodN+(x1+s)modN}SN-l

m={ (4.6)
Lr/Nj + 2 otherwise

The upper bound ofN

The previous result leads to the upper bound of N for given I and b. The minimum number

ofbuckets In“ is given by

m* = [n/b'l .

The upper bound ofN which yields the minimum number of buckets m* is given by (4.6),

m* = Lr/Nj + 2 (where r mod N at 0). (4.7)

Therefore.

m“ — 2 = Lr/Nj

r = (m*—2)N + r mod N.

Since 1SrmodNSN—l,

(m*-2)N +1 S r S (m*—1)N +N —1

r+l r-l

m*-l SNSm*_2.
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Since N is an integer, the upper bound ofN is given by

r-l _ r-l I

N*- mj -l_—rnm-2J- (4'8)

 

Solution space of the Quotient Reduction method

Figure 4.3 illustrates the relationship between quotient N, admissible increment s, and the

number of buckets m for a given set of keys. The horizontal axis represents the value of

(x1 + s )mod N , with s as a variable. The vertical axis represents the value of the quotient N.

The first row of the figure corresponds to N = N*. The left hand side of the boundary in the first

row corresponds to the space in which the following inequality holds.

(x1+s)mod N* S (N* - 1) -r mod N*.

The values N"I and s in this space yields m* - 1 buckets. The space in which the following ine-

quality

(xx +s)modN* > (N"‘ -1)—rmodN*

holds is in the right hand side of the boundary. The values s and N (= N") in this space yields

m* buckets. Similarly, each row represents the solution space for a different N.
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(x1+s)modN

Nar-

N*-l

N*-2

N*-3

N*-4

N‘-5

N*—6

 
N* denotes the upper bound of N.

m* denotes the minimum number of buckets.

N* =|_(r-1)/(m* -2)J

m* =[ n/b]

Figure 4.3 Solution space

Consider the range of possible N which give a fixed number of buckets m. Let NLl and

NU 1 denote the lower bound and the upper bound ofN respectively, when

{r mod N + (x1+s) mod N} SN—l, NLI. They can be obtained as follows.

m = Lr/Nj + 1.

r =(m-1)N+r mod N, since OSr modN SN—l

(m—1)N S r S (m-1)N +N-l

(r+1)/m SN S r/(m-l).

Since N is an integer, the lower bound NLI and upper bound NU 1 are

NL1=[(r+1)/m'l , NUl = Lr/(m-1)J .

Similarly, when {r mod N + (wl-l-s) mod N} 2N, the lower bound NL2 and the upper bound

NU2 are given by
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m = Lr/NJ + 2.

(r+1)/(m—l) S N S r/(m-2),

and hence.

1w.2 = [(r+1)/(m-1)l , NU2 = Lr/(m-2)j .

Algorithm QR (Quotient Reduction )

We are now ready to introduce our algorithm QR to generate a perfect hashing function for

the given set of keys I. The basic idea of this algorithm is to search the solution space of N and s

to obtain m* buckets, m*+1 buckets and so on.

Algorithm QR

STEP 1 { Initialization }

Compute the range of the key: r := 1,, - x 1.

Compute the minimum number of buckets: m := I’n/b] .

STEP 2

Compute the upper bounds and lower bounds ofN corresponding to m buckets.

NU; := Lr/(m-2)_|

NL; := [(r+1)/(m-1)l

NU] := Lr/(m-l)j

1w.1 := [(r+1)/m]

IOI'N I=NL1 t0 NUI d0

Compute the set of the admissible increments J,- (as described in proposition 1 ) with

N including only those elements t in the A’s such that the condition

r modN +(x1 +t) mod N 2N holds.

Take the intersection of 1,-’ s.

if not empty then goto STEP 3

end for

for N :=NL2 to NU2 do

Compute the set of the admissible increments J,- (as described in proposition 1 ) with

N including only those elements t in the J,-’s such that the condition

r modN +(x] +t) mod N SN—l holds.
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Take the intersection of J,’ s.

if not empty then goto STEP 3

end for

m := m +1

gotoSTEPZ

STEP3

s := Choose a value from intersection set.

The perfect hashing function h (x) = [(x +s)/Nj

The range of N that corresponds to m buckets is found as follows. When the range of N is

NU; 2N 2NL;, the condition {r mod N + (x1 +1) mod N }2N holds. When the range ofN is

NU] 2N ZNLI, the condition {r mod N +(x1+!) mod N} SN—l holds.

If the intersection is not empty, any element of the set is acceptable (all give the same load

factor). However, to obtain more uniform distribution of bashed keys, choose 5"“ from the inter-

section set such that,

3* =er IN —(x1+j)modN -(x,,+j)modN I.

J

This choice of 3* makes the interval covered by the first bucket. [x1 .. p (N—l)]. as close as pos-

sible with that of the last bucket [qN .. x3]. where p =h(x1)+ 1 and q =h(x,,). Finally. we

need the transformation

s =s* —N{(x1 +s*) div N}

so that x1 hashes to bucket zero, Le, [(x, + s)/NJ = 0.

Example 4.2

Consider the key set I = {31, 58. 67, 123, 142, 146. 154, 187, 198, 220} with b = 3. n = 10

and the range of keys, r= x10 - x1 = 189. The minimum number of buckets is m* = I'n/b'l = 4.

The upper bound NU; := Lr/(m—2)J = L189/(4—2)_] = 94.

Thelowerbound NL; := [(r+1)/(m—1)] = [(189+1)/(4—1)'| =64.

The upper bound NU] := Lr/(m-1)j = L 189/(4—l)j = 63.
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The lower bound NL. := [(r+1)/ml = [(189+1)/4] =48.

The solution space is shown in Figure 4.4.

(x1+s)modN

 
Figure 4.4 Solution space for Example 4.2

The search starts with the value N = NLl = 48, and the set of admissible increments J =

[17.18.19] is found with N = 48 in STEP 2. We move to STEP 3, and the element [18] is chosen

which is transformed as s =18 -48{(31 + 18) div 48} =—3O , so that h(x1)=0. We thus have

the Quotient Reduction perfect hashing function,

(x.- - 30) J
h (xi) = l 48

The hash table for this example is shown below.
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Table 4.1 Hash table of Example 4.2

 

bucket# 0 l 2 3

x.- 31 58 67 123 142 146 154 187 198 220

 

       

Efficient QR Algorithm ( EQR )

We can see from (4.8) that the upper bound N* of the quotient N is proportional to the range

of keys r. It is obvious that the algorithm QR is impractical for a large r due to the large computa-

tion time. This is because every N is examined sequentially in the algorithm QR.

In this section, we aim to reduce the computation time. The basic idea is to consider the

values of N such that N =Lr/(m-1)J to determine if an admissible increment exists. We begin

with m* + 1 buckets. If the search fails, we proceed with m* +2, and so on. If the search

succeeds with N=N, and m, buckets. we proceed with m, - 1 buckets and for N =N, +1 to

Lr/(m-2)_| . (This is to achieve better storage utilization due to less buckets.) Also, attempt is

made to find the smallest N for the value in obtained, so that we have as uniform a distribution as

possible.

Algorithm EQR

STEP 1 { Initialization }

Compute the range of the keys: r := x, - x1.

Compute the minimum number of buckets: m := [- nib] . { The value in“ }

Compute the upper bound NU for the search: NU := Lr/(m-1)J .

m := m + 1 { Starting with m*+l }

STEP 2

Compute the lower bound NL for the search: NL = Lr/(m -1)_| .

Compute the set of admissible increments J,- with NL including only those elements tin the

Jg’s such that the condition,

r mod NL +(w, + t) mod NL S NL-l, holds.

STEP 3

Take the intersection ofJg’s.

if not empty then { next searches }
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Store the result temporarily

forN :=NL+l to NU do

Compute the set of admissible increments J,- with N including only those ele-

ments t in the Ji’s such that the condition,

r mod N +(x1+ t) mod N S N—l, holds.

Take the intersection of J,-’s.

if not empty then { Search Complete }

goto STEP 4

end for

{ Another set of searches ]

Compute the lower bound NL; for the search: NL; := l' (r + 1)/m] .

forN := NL; to NL-l do

Compute the set of admissible increments J,- with N including only those ele-

ments tin the Ji’s such that the condition

r mod N +(x1+ t) mod N SN-l, holds.

Take the intersection of J,-’s.

if not empty then { Search Complete }

goto STEP 4

else

Return the result of intersection & NL.

goto STEP 4

else

or := m + 1 { Next bucket size }

NU := [H(m-2)J { Next upper bound ]

goto STEP 2

STEP 4

s := Choose a value from intersection set

The perfect hashing function h (x) = |_(x +s)/Nj

In STEP 2, NL is set to the maximum value of N corresponding to (m+I) buckets. The

range of the admissible increments to be examined is calculated by the same method as in the

algorithm QR. In STEP 3, a search is made for the quotient NL. If admissible increments exist,

they are stored temporarily and further searches in the range NL+1 through NU are made that

yield m buckets. If the first search fails, the next bucket size and the next upper bound NU are set,

and the control is transferred to STEP 2. If one of the searches succeeds, we go to STEP 4 and the

result is used in STEP 4. If none of the searches succeeds. another set of searches is made for

N = NL; to NL -1. (Although we have found admissible increments for NL. we need the smal-

lest N that yields the same number of buckets as NL.) The lower bound of these searches NU;

which corresponds to m buckets is computed by NU; := i (r + 1)/m] . If none of these searches

succeeds, the result of the very first successful search (N = NL) is retumed, or the result of the

first successful search of this set is used in STEP 4. In STEP 4, the value of s is chosen by the
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. same method as in the algorithm QR

Example 43

For the same set of keys as in example 4.2, the EQR examines if there exist admissible

increments with

NL = Lr/(m-1)J = L189/(4-1)j = 69.

The search failed for NL=69 in this example, and the next value ofNL is set as

Lr/(m-l)_] = L189/(5—1)J = 47.

This search succeeded, and we obtained the perfect hashing function which requires five buckets.

The next set of searches for the range ofN that correspond to four buckets were done from N=48

to 68. A set of admissible increments J=[17,18,l9] was found in STEP 3. and the perfect hashing

function H(x): [(x - 30)/48j , was obtained. (This hashing function is the same as that in

example 4.2.) E]

Complexity of the Algorithms QR and EQR

The taking intersection in the QR and EQR is rather straightforward, and its complexity is

0(n2). (Please refer to the Appendix). In the algorithms QR and EQR, the time complexity is

determined by the loop of N. In both algorithms, the total number of execution in these loops in

the worst case is proportional to the upper bound of N, [r/fn/b'] —2J . Thus, the complexity of

these algorithms is 0(rbn). The difference between the two algorithms is the constant of pro-

portionality. Although the constant is small, the complexity is not practically acceptable in many

cases. In Remainer Reduction method discussed next, we control r, using modulo operation, and

hence the complexity. It is clear that the space requirement of these algorithms is 0 (n).
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Results of the experiments

To test our algorithms, we conducted several experiments using the following real life files.

(A) Userids from IBM System at the University of Waterloo (12,000 keys);

(B) Userids from the msudoc at MSU (600 keys).

All the data was in alphanumeric form and the length of individual keys varied fiom 2 to 25 char-

acters. The keys were converted into 2 byte long unique integers by the RADIX_Convert method.

Details of this method is described in [RM86]. The keys in each file were divided into s groups

using hashing functions of the form H(x)==(((cx+d) mod p) mod g), where p is a large prime

number. The hashing function used to separate groups is as follows.

H (x) = (((314559x+27182) mod 65521) mod 9) (4.9)

For each of the nine groups obtained, direct perfect hashing functions were generated using

algorithms QR and EQR. The average load factors obtained for the nine groups of file (A) are

shown Table 4.2. The third row gives the ratio of the average load factor obtained by the EQR to

that by the QR.

Table 4.2 Average load factor of nine groups of file (A) (percentage)

 

 

 

   
 

 

 

 

1) n = 100

Algorithm b=10 b=20 b=30

QR 69.5 82.0 83.3

EQR 67.8 82.0 83.3

Ratio 97.6 100.0 100.0

2) n = 250

Algorithm b=10 b=20 b=30 b=40 b=50

55.1 69.6 80.1 80.6 82.0

52.1 68.1 78.5 80.6 82.0

94.6 97.8 98.0 100.0 100.0  
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3) n = 500

Algorithm b=10 b=20 b=30 b=40 b=50

QR 50.3 70.5 78.0 81.0 84.1

EQR 47.9 69.7 77.6 80.4 83.3

Ratio 95.2 98.9 99.5 99.3 99.0

Perfect hashing functions were generated for the keys in file (B) without any partitioning.

  
 

Table 4.3 shows the load factor for these keys.

Table 4.3 Load factor for file (B) (percentage)

 

 

 

    

 

 

 

  
 

 

 

 

1) n = 100

Algoritlun b=10 b=20 b=30

QR 71.4 83.3 83.3

EQR 71.4 83.3 83.3

Ratio 100.0 100.0 100.0

2) n = 250

Algoritlun b=10 b=20 b=30 b=40 #50

QR 61.0 65.8 69.4 78.1 83.3

EQR 61.0 65.8 69.4 78.1 83.3

Ratio 100.0 100.0 100.0 100.0 100.0

3) n = 500

Algorithm b=10 b=20 b=30 b=40 b=50

QR 42.4 75.8 83.3 83.3 83.3

EQR 42.0 75.8 83.3 83.3 83.3

Ratio 99.1 100.0 100.0 100.0 100.0  
 

 

 

 

These tables show that higher b gives better storage utilization. We obtained over 80% load

factors for large bucket sizes. whereas about 40% to 70% for small bucket sizes. For large bucket

sizes. the load factor remains almost the same as the group size increases. whereas the load factor
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falls clearly for small bucket sizes as the group size increases. The ratio of the average load factor ‘

obtained by the EQR to that obtained by the QR is close to 100%. However, the computation

time ofthe EQR is not practical even though the EQR is faster than the QR.
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5. Remainder Reduction Method

The Quotient Reduction methods described in the previous section has two major problems.

a) The low storage utilization when the keys are not uniformly distributed;

b) Large computation time.

The Remainder Reduction method overcomes these two problems. The basic idea of this method

is to scramble the set of keys to obtain a more uniform distribution within a narrow range. fol-

lowed by Quotient Reduction perfect hashing. Since we can control r in the Remainder Reduction

method. the computation time can be controlled. Remainder Reduction perfect hashing functions

areofthe form

h(x,-) = [{(qxi) mod M + s }/NJ . (5.1)

where q, M. s, N are constants to be determined. The transformation

1,- = (qxg) mod M (5—2)

accomplishes the scrambling mentioned above by choosing a q and M appropriately. The

transformation (5.2) may cause a collision, i.e.. more than two distinct primary keys are

transformed into identical keys. The probability p of no collision occurring by the transformation

can be obtained as follows [FL68].

  

___ MP. = M(M-l)(M-2).....(M-n+1)

p M" M"

1 2 n-l

_(1—-117)(1-M).....(1— M
 

).

For small positive it. we have log(1-—x) = -x .

l+2+......+(n-l) =_‘_n(n-l)

M 2M '

 

logp =

We obtain

p2,, 2M _ (5.3)
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The probabilities of having no collisions for n=500. 250, and 100 are shown in Table 5.1.

 

 

M =500 n=250 n=100

216 (65536) 0.15 0.62 0.93

217 0.39 0.79 0.96

218 0.62 0.89 0.98

219 0.79 0.94 0.99

22° 0.89 0.99 1.00

221 (2097152) 0.94 0.99 1.00      
Table 5.1 Probability of having no collisions for given M and n.

If we want to avoid collisions. we have to select suitably large M. For example. M should be

greater than 221 when n = 500. However, we do not gain the advantages of the Remainder Reduc-

tion method mentioned above with this large M.

We can tolerate some collisions by the transformation (5.2). If the maximum number of

identical keys is less than or equal to the bucket size b. then in general there exists a quotient

reduction perfect hashing function.

On the other hand. the probability that more than b keys collide under this transformation is

almost zero. Let P (0t.m.b) denote the probability that none of the urns contain more than b balls.

where n. n = orbm. balls are tossed into m urns. An approximate formula is derived in [RL88].

P (mm,b) Z e-MPOVQLb)’

where.

n -b(1 i

P0v(0t,b)= Z _e__.(’_b_0t)_

i=b+l ‘-

2 (bot)"+‘ 8..., b+2

(b+l)! b(l-0t)+2 '

For example. when n=500. m=500. and b=10. The probability that more than b keys collide is

given by



-25-

1 FP(0.1.500.10) : 1_ e-500Pov(0.1,10)

—5.03x10"
2 l— e = a negligibly small quantity

Now we are ready to introduce our Remainder Reduction algorithm. To implement this

method. it is necessary to apply the transformation 1’,- = (qx.-) modM for each x;. 1 S i Sn, and

sort before applying Quotient Reduction method. Let {w1,w;, ..... .w,,} denote sorted keys from

{£1.x’;, ..... .16.}. q and M are chosen to be prime numbers.

Algorithm RR

STEP 1

Transform keys {x1.x;, ..... .x,} into {11 .x’;, .....,Jin} using 1, = (qx;) modM .

Sort the keys (£1.16. ..... .X,} in non decreasing order. and obtain sorted keys

{w1.w;, ..... .wn}.

STEPZ

Apply the algorithm QR to the sorted keys

QR(n. {w1.w;,.....w,.} ) or

Apply the algorithm EQR to the sorted keys

EQR(n, {w,.w;.....,w,.} )

Perfect hashing function h (x.) = [{(ng) mod M + s} /NJ

The complexity of Remainder Reduction Algorithm is given by

0 (Mb).

where M is the modulo of the transformation (5.2). As the range of keys is given by M in this

method. r in the QR is substituted by M. The space requirement is 0(a).

Results of experiments

For each of nine groups obtained by the hashing function (4.9). perfect hashing functions

are generated using algorithm R with the QR and with the EQR. The average load factor of nine

groups of file (A) is shown in Table 5.2. Several values of q were used in this experiment. and we

observed that the value of q hardly affected the result.
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Table 5.2 Average load factor of nine groups of file (A) obtained using RR (percentage)

1) n = 100, 4:37, M=2039.

 

 

 

    

 

 

 

   

 

 

 

Algorithm b=10 b=20 b=30

RR using QR 70.0 78.3 83.3

R using EQR 69.3 78.3 83.3

Ratio 99.0 100.0 100.0

2) n = 250. q=71. M=4093.

Algorithm b=10 b=20 b=30 b=40 b=50

RR using QR 65.2 78.9 80.8 84.3 85.2

R using EQR 64.1 77.4 80.8 84.3 85.2

Ratio 98.3 98.1 100.0 100.0 100.0

3) n = 500. q=101, M=8l91.

Algorithm b=10 b=20 b=30 b=40 b=50

RR using QR 56.7 72.0 78.7 81.7 81.9

R using EQR 56.1 71.8 78.2 81.7 81.9

Ratio 98.9 98.7 99.4 100.0 100.0   

Table 5.3 shows the load factor for file (B)

Table 5.3 Load factor for file (B) obtained using RR (percentage)

1) n = 100, q=37. M=2039.

 

 

 

  

Algorithm b=10 b=20 b=30

RR using QR 76.9 83.3 83.3

RR using EQR 76.9 83.3 83.3

Ratio 100.0 100.0 100.0   

 

 



2) n = 250. q=7l. M=4093.

-27-

 

 

 

   

 

 

 

 

Algorithm b=10 b=20 b=30 b=40 b=50

RR using QR 71.4 78.1 83.3 89.3 83.3

Rusing EQR 71.4 78.1 83.3 89.3 83.3

Ratio 100.0 100.0 100.0 100.0 100.0

3) n == 500. q=101, M=8191.

Algorithm b=10 b=20 b=30 b=40 b=50

RR using QR 60.2 69.4 79.4 83.3 83.3

R using EQR 57.5 69.4 79.4 83.3 83.3

Ratio 95.5 100.0 100.0 100.0 100.0    

We observe that the load factors are almost above 70%. The average computation time for

generating a perfect hashing function is reduced to only a few seconds on VAX 8600. Thus, we

conclude that R method of finding perfect hashing function is a practical technique.
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6. Universal Classes of Hashing Functions

In order to compare the proposed method to other methods such as simple trial and error

method. we will examine the probability of a randomly chosen function being perfect. Let

P(n.m.b) denote the the probability that a randomly chosen function is perfect. where n is the

number of keys, m is the number of buckets. and b is the bucket size. A way of computing

P (mmb) using the following simple recurrence relation is described in [RL88]:

(m_1)n-b

P (n+l.m.b) = P (n.m.b) — ,CbP (n—b.m-l.b) n

m

(6.1)

However. choosing a function for a trial at random from the set of all functions is clearly imprac-

tical. Hence. universal; classes of hashing functions were introduced in [RL88].

Let H be a class of functions which map a set of integers A = {0.1.2......a-l} into the set

of integers B = {0.1.2......m-1}. where a > m. The set A corresponds to the set of keys and B

corresponds to the set of addresses. Let x and y be distinct integers x. y e A and h.- e H a hash-

ing function. We define

1 1fx $)’ and h;(X) = th)

’9 = 0 otherwise

If 61,. = 1. then x and y are said to collide under h. The class H is said to be a universal; class

of hashing functions if for all x.y 8A. 2 agony) s IHI /m. This means that H is a universal;

nu:

class of hashing functions if for every pair x.y e A. they collide no more than IH I /m functions.

This implies that if a function is chosen randomly from a universal; class. the probability of a

pair of keys colliding is less than or equal to l/m.

In [RM86]. Ramakrishna performed a series of experiments using several test files to deter-

mine if the universal; class H 1 functions could be used for selecting functions for trials. He

showed that the relative frequency of perfect hashing functions within universal; class H 1 is the

same as that predicted by the analysis for the set of all functions. However. he did not study other

universal; hashing functions: class H; and H3 functions. Since class H; and H3 functions do
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not require multiplication (only need Exclusive OR ). they may be convenient for long keys. The

experiments here are aimed at examining if class H; and class H3 functions behave similar to

the class H 1. The universal; class H3 is defined as follows by Carter and Wegrnan [CW79]:

Let A be the set of keys of i bit binary numbers. and B be the set ofj bit binary numbers.

The set B corresponds to 21 buckets. and the number of bucket has to be a power of two. Let Mt

be the set of arrays of length i whose elements are from B. We can regard Mt as i by j boolean

matrices. For mt eMt. let mt (It) be the bit string which is the kth element(row) of the matrix mt.

and for 1: 8A, let x, be the kth bit of x. Define f...,(x) =x1mt(1) Ox;mt(2) 0"" ®x1mt(i).

where 9 denotes exclusive OR operation. The meaning of this function is to take exclusive ORs

of those elements in nu that correspond to 1 bits of key it. The class H3 is defined as a the set of

functions {f...1 lmt 3 Mt }. over all possible matrices mt. An example of class H3 is shown

below.

Example 6.1

When the number of buckets m = 4. the bucket size b = 3. for the set of keys. which consists

of ten 8-bit keys. given in Figure 4.2, a hashing function is found as follows:

A 8>Q boolean matrix mt is obtained by generating eight random numbers in the range of 0 to 3.

The following is one such matrix.

mt(l) 01

mt(2) l 1

mt(3) 10

mt(4) 00

mt(5) 10

mt(6) 1 1

mt(7) 00

mt(8) 01

Keys 67 and 123 are converted to binary form (01000011); and (01111011);, respectively. The

hash addresses of these keys are given by
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f~(67)==mt(2) Omt(7) ®mt(8) = 11 000 901 =10

fm(123) =mt(2) @mt(3) ©mt(4) Omt(5) ®mt(7) ®mt(8)

=11 010 000 010 900 901 =10

Keys 67 and 123 are then stored in bucket 2. Sirnilerly after computing all the hash addresses. we

obtain the following hash table

Table 6.1 A hash table (example of failure)

 

bucket# 0 1 2 ' 3

keys 3158142187 146198 67123 154220

 

       

Since the bucket size b is 3. this trial has failed. However. the following mt gives a perfect hash-

ing ftmction:

mt(l) 01

mt(2) 00

mt(3) 10

mt(4) 11

mt(S) 00

mt(6) 01

mt(7) 10

mt(8) l 1

Using this matrix mt, we obtain the hash table given below.

Table 6.2 A hash table (example of success)

 

bucket# 0 1 2 3

keys 123 146 154 67 187 142 198 31 58 220

 

       

The definition of the class H; is similar to that of H3 except that a key is mapped into a

longer bit string. Let A be the set of keys of i-digit numbers written in base 0L For x eA. let x,
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denote the kth digit of x. B has the same definition as in H3. Define g to be the function which

maps x into the bit strings of length ior which has 1’s in positions x1+1. x1+x;+1,

x1+x;+x3+1. m, etc. where x, is the kth bit of x. Then. Mt is the set of arrays of length i0t

whose elements are from B. Mt can be regarded as ior by j matrices. We can apply the i or bit

keys defined above to the same operation as in H3. If H3 is the class defined above for i or hit

keys. then H; = {fg I feH3}. Although H; needs more space than H3. the computation time

ofH; is less than that of H3 . because converted keys in H; have fewer l-bits.

Example 62

When the base 0t=4. the same keys as in Example 6.1 are mapped into strings of length

16. For example. keys 67 and 123 are converted as follows.

3 (67) = g (0003)..) = 0100100000000000

g (123) = g ((1323).) = 0100101001000000.

We can apply the same operation to these converted keys as in Example 6.1. mt is a 16 by 2

boolean matrix and is generated similarly. El

Results of experiments

A set of experiments was conducted as follows. A set of 100 hashing function was created

randomly by generating random numbers in the range of 0 to 2j- l. The first n keys. n=ormb. in

each of nine groups of file (A) were bashed by each of the 100 hashing functions. and the number

of perfect hashing functions was recorded. n was selected so that the load factor varies from 50%

to 100%. This experiment was repeated for various values of m and b. Figure 6.1.1 shows the

results of one set of experiments with b = 10 and m = 16 using the group 8 of file (A). The solid

line is a plot of P (n. 16.10) computed using the recurrence relation (6.1). The symbols 2 and 3

represent the experimental probabilities obtained with class H; and class H3 of hashing func-

tions respectively.
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Figure 6.1.2 shows the results of another set of experiments with b = 40 and m = 8 using the

fourth group of file (A). The solid line is a plot of P (n. 8.40). The number of keys varied from

160 to 320. We used the same set of 100 hashing functions for all load factors and each of nine
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Figure 6.1.1 Observed and computed probability of a trial succeeding
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We computed the 95% critical region for each point. The relative frequency of perfect hash-

ing functions will fall within the region bounded by 01, and 01) with 95% probability. Let

P(ormb.m.b) = 0. then the approximate values of BL and 91) may be obtained using the rela-

tions 0,, = 0 - 1.96o and 01, = e + 1.966, where o =m. We observed that almost all

the experimental values fall within the critical region. The result indicates that relative frequency

of perfect hashing functions in class H; and class H3 is the same as that predicted by the
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Bucket size (b) : 40

Number of buckets (m) : 8

Key set : group 3 of file (A)

 
L i 1 1
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Load factor (%)

Figure 6.1.2 Observed and computed probability of a trial succeeding

theoretical analysis in [RL88] for the set of all functions.

Comparison with trial and error method

In view of the analysis in [RL88]. P(ormb,m,b) is a good measure of the cost of perfect

hashing. Figure 6.2 compares P (ounb.m.b) to the experimental results shown in Table 5.2.



~
<
"
w
e
d
—
'
0
‘
!
»
(
T
o
-
1
'
0

'
~
<
n
-
—
-
o
'
w
0
'
o
-
t

"
U

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

-34-

 

    l l l
 

Figure 6.2.1 Probability of a randomly chosen function being perfect (b = 10)
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Figure 6.2.2 Probability of a randomly chosen function being perfect (b = 20 )
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obtain the load factor in Table 5.2. Figure 6.2.1 plots the probabilities P (amb.m.b) as a function

of the load factor with b = 10 and m = 38. 39. 88, and 89. In Table 5.2. about 65% load factor

with n = 250 was obtained. In other words. on average m = n/orb = 38.5 buckets were produced

in the experiments. In Figure 6.2.1. the points P(65.38. 10) and P(65.39.10) correspond to the

experimental result with n = 250 in Table 5.2. When n = 500. about 55% load factor was obtained

with b = 10. The points P(65.88.10) and P(65.89. 10) then correspond to the experimental

result. We observe that these load factors obtained by the experiment can be mapped into the

range of the probability from 0.05 to 0.1 in P(ounb.m.b). This means that 10 to 20 trials are

required to find a perfect hashing function with load factor 65% for 250 keys and with load factor

55% for 500 keys when the bucket size is 10.

Similarly. Figure 6.2.2 plots P(omb.m.b) with b = 20 and m = 15. 16. 34. and 35. The

point at a = 79% on the lines with m = 15 and 16 correspond to the experimental result with n =

250. and the points at or = 72% on the lines with m = 34 and 35 conespond to the result with n =

500 in Table 5.2. We observe that the load factors with n = 250 and 500 in Table 5.2 can be

mapped into the range from 0.05 to 0.1 in P (amb.m.b). The other load factors obtained in Table

52 were mapped into the range from 0.05 to 0.4 in P (amb,m.b).
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7. Dynamic Behavior

In previous sections. we discussed about the static model: i.e., we showed how to find per-

fect hashing functions for a given set of keys. In this section, we will discuss about the dynamic

behavior of the proposed schemes such as frequency of rehashing and dynamic load factor.

Insertions and rehashing

In our scheme. an insertion causes rehashing when a new key is bashed into a full bucket or

when the address of the new key is beyond the range of the existing hash table. The latter can

happen when the new key is extremely large (or small) compared to the keys already stored in the

hash table. For the Remainder Reduction perfect hashing function

h(x,-)= [{(qx1mod M) +s}/NJ . the probability PR. of an insertion causing rehashing for the

given state where the set of keys has been already bashed. is given by

R +R

PR: "M f, (7.1) 

where R, is the range of keys not covered by the table. and Rf is the range of keys covered by

full buckets. R, and Rf are given by (7.2) and (7.3) respectively.

R0 = max(s. 0) + max((M-1) — (m+l)N. 0). (7.2)

where m is the number of buckets.

Rf = 2 Rfi , (7-3)

it‘F

where Rfi is the range of bucket i. and F = {i l bucket i is full}. Rf, is calculated as follows:

N + min (s. 0) (the first bucket)

Rfi = N + min ((M-1) — (m +1)N. 0)) (the last bucket)

N (otherwise)

If the hash table covers the entire range of M. the term R0 is equal to zero because the range of



-37-

keys is equal to M. The probability P3 was computed using (7.1) for each state obtained in

Table 5.2. Table 7.1 shows the result.

Table 7.1 Probability of an insertion causing rehashing using RR

 

 

n b=10 b=20 b=30 b=40 b=50

100 0.223 0.21 1 0.070 - -

250 0.088 0.142 0.1 10 0.144 0.208

500 0.049 0.077 0.083 0.107 0.066        

For each bucket size. on average. the probability decreases as the number of keys increases. For

practical range of the group size. the probability of rehashing is small: with b=50. only one in

about 15 insertions causes a rehash when the group size is 500 records. These results are close to

those results obtained by a trial and error method in [RL88].

The probability of an insertion causing rehashing is affected by the load factor and the uni-

formity of the distribution of keys. It is clear that the probability is lower when there are fewer

full buckets: i.e., when the load factor is lower on average. For the same load factor. more uni-

form distribution causes the lower probability. This is determined by the unifomrity of the distri-

bution of primary keys in the Quotient Reduction method. Table 7.2 shows the probability of an

insertion causing rehashing in the Quotient Reduction and Remainder Reduction methods.

Table 7.2 Probability of an insertion causing rehashing (n=250)

(The load factor in percentage is given within parenthesis.)

 

b=20

0.158 (69.6)

0.142 (78.9)

Algorithm b=10

QR 0.136 (55.1)

R 0.088 (65.2)
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In Table 7.2. when b=10. the probability decreases from 13.6% to 8.8% while the load factor

increasing 55.1% to 65.2%. This implies that the transformation (5.2) in the Remainder Reduc-

tion method yielded more uniform distribution than that of original keys.

In our methods. not only the uniformity of the distribution of keys but also the quotient N

affects the probability of rehashing. because smaller N usually yields the fewer full buckets. In

STEP 3 of algorithm EQR. "Another set of searches" is made in order to find the smallest value

of N among the values that correspond to the same number of buckets. Table 7.3 shows the

improvement of the load balance by this set of searches.

Table 7.3 Comparison of the probability of rehashing

 

 

 

 

   

n Algorithm b=10 b=20 b=30 b=40 =50

100 EQR’ 0.229 0.435 0.522 - -

EQR 0.223 0.211 0.070 - -

250 EQR’ 0.095 0.169 0.258 0.316 0.492

EQR 0.088 0.142 0.1 10 0.144 0.208

500 EQR’ 0.053 0.087 0.138 0.115 0.147

EQR 0.049 0.077 0.083 0.107 0.066
  
EQR’ denotes the algorithm EQR without "another set of searches".

We observe that the probability is decreased in all cases in Table 7.3. Especially. when the

number of buckets is small: i.e., for n=100 b=30 and n=250 b=40.50. the probability of

rehashing is reduced drastically. The low probability for small bucket sizes makes the incremen-

tally built up file. which is made by one insertion at a time starting an empty file, more efficient.

Dynamic Load Factor

We can build a file using the proposed external perfect hashing scheme in two ways. The

file can be built incrementally by making one insertion at a time starting from an empty file.

Whenever a bucket overflows. a new perfect hashing function is found by the proposed methods
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for the keys in the group. We refer to the file constructed by this method as an incrementally built

file. On the other hand. if all the records are available at a time. the records are divided into

groups and then are stored using direct perfect hashing functions. We refer to this as initial load-

ing. We will examine the load factor of an incrementally built file or group (dynamic load factor).

Figure 7.1.1 and Figure 7.1.2 show the load factor of a group. using algorithm RR, plotted

as a function of the number of records in the group. The oscillation for the small number of

records are due to fragmentation Peaks and valleys appear when the number of records in the

group is around b. 2b. 3b.... . In an incrementally built group. the load factor increases when an

insertion does not cause a rehash. If an insertion causes a rehash. the resulting load factor is the

same as that for a group built by initial loading. The experiment was done for the keys in fi1e(A)

using the Remainder Reduction hashing function with parameters q = 101 and M = 8191. The

initial perfect hashing function for x1(1 Si S b) is set to h(x,-)= [{(101x1) mod 8191}/8191J .

The ordinary hashing function (4.9) was not used due to the small file size. Figure 7.1.1 shows the

load factor with b = 10, and Figure 7.1.2 shows the load factor with b = 40.



H
e
r
-
0
0
9
3
1
1

c
a
r
n
a
l
"

H
o
e
-
9
0
9
m

G
N
O
I
"

85

80

75

70

65

55

50

95

85

80

75

70

65

60

-40-

 

 
 

] l l I   
100 200 300 400

Group size

Figure 7.1.1 Load factor of a group (b = 10)
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The result gives a significant advantage to the external perfect hashing scheme in practice. When

b=40. the load factor is over 80% on average. As the group size gradually increases from 500 to

1000. the load factor still stays over 80%. The oscillation becomes smaller as the number of

buckets increases.

In order to examine the overall load factor of an incrementally built file. we implemented

the proposed composite hashing scheme and simulated with keys in file (A). Figure 6.2 plots the

overall load factor of the file as a ftmction of the group size. The ordinary hashing function (4.9)

and the Remainder Reduction hashing function with parameters q =101 and M = 8191 were

used. We observe the behavior similar to above. The effect of the bucket size on the load factor of

a file is very significant. Clearly. the small size (b = 10) seems impractical because of the result-

ing low load factor. These results are close to those results obtained in [RL88].
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8. Conclusions and Future Work

External perfect hashing scheme was proposed in [RL88] and shown to be practical and

competitive. One drawback is a trial and error method of finding direct perfect hashing functions.

We investigated systematic methods of finding direct perfect hashing functions.

We gave algorithms to find the Quotient Reduction perfect hashing functions. However. the

Quotient Reduction method is not practical for a large set of keys due to the computation time.

Another disadvantage is that this method is sensitive to the uniformity of the distribution of pri-

mary keys. The uniformity of the distribution affects not only the storage utilization but also the

probability of rehashing.

The Remainder Reduction method is superior to the Quotient Reduction method. The

results of experiments indicate that the proposed method for finding perfect hashing functions is

not only practical but also competitive to the other methods such as a trial and error method with

reference to the resulting load factor and dynamic behavior.

We also showed experimentally that the relative frequency of perfect hashing functions

within universal; class H; and H3 is the same as that predicted by the analysis for the set of all

functions.

In algorithm Efficient QR including procedure Search. there is still much room for improve-

ment to reduce the computation time and to obtain better storage utilization.
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APPENDIX

The INT Procedure takes intersection of Us and finds common elements of each set of

admissible increments. An interval is represented by the starting and end values in this pro-

cedure. The procedure receives three arguments: the quotient N. the starting value of the set of

admissible increments j,. and the range of the set j,. and returns the set of intervals 1}“ (if any).

which are common elements, with setting the flag exist to true.

The calculation of j, and j, is as follows .

When {rmodN+(x1 +J)modN} SN—l,

0S(x1+J)modNSN—rmodN—l.

Then

j,=(N-rmodN-1)—0=(N-1)—rmodN.

On the other hand. j, is given by

I (x1+js)m0dN=0.

andhence.

j,=N-x1modN.

When {r modN+(x1 +J) modN}2N.

N-rmodNS(x1+J)modNSN—l.

fr=N—1_(N-rmodN)=rmodN—l.

On the other hand, j, is given by

(x1 +js)m0dN=N-rmod N.

Thus.

js=(N-x1m0dN)+(N-rmodN).

Procedure INT is outlined below.

Procedure INT( N, 1,, J,. I}, exist)

begin

{ Make intervals for the solution space. }

ifj, +j, 2N then

Create two intervals: Ij1 := [0 .. j,+j,—N-l] and Ij; := Li, .. N—l].

else
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Create the interval: Ij1 := Li, .. j,+j,-l].

{ check the interval [x1 .. x143]. 1S n S n-b. }

fori :=l ton-bdo

Sznw—n

if 6 < N then

{ Create intervals of admissible increments. }

Compute the starting value T}, and the range Tj,.

Tj, I= (N - 114.1,) mod N

Tj, := 5

iij, + Tj, 2 N then

Create two intervals:

T1 1: [T51 .. T51] I: [0 .. Tj,+Tj,-N—l]

and

T; := [T51 .. TE1] := [T], .. N-l].

else

Create the interval T1 1: [TS1 .. T51] 3= [7; .. T,+T,-l].

{ Take intersection of intervals I,- with TS. }

case of the number of T's being one

for each interval Ij1 := (s,- .. e.] do

“(TS1 > 81') Ol' (T51 < 31') then

Delete the interval Ij; := [s1 .. e1].

else

Change the interval lj; to [max(TS1.s.-) .. min (TE1.e,-)].

if the set of intervals Ij,- = (b then

return (exist :=false)

end for

case of the number of T's being two

for each interval Ij.- := [s1 .. e1] do

if (TS1 > e.) or (TE1 < s.) or ((TE 1 < s.) and (TS; > e.)) then

Delete the interval Ij1- := [s1 .. e1].

else if s,- S TE 1 then

if e,- 2 TS; then

Divide the interval 1;} into two intervals.

[max (”1.51) .. T51] and [T52 .. min (TE2,81')].

else

Change the interval Ij; to [max(TS 1 .s1) .. min (TE 1 .e1)].

else

Change the interval Ij1 to [max (TS;.s,-) .. min (TE;.e,)].

if the set of intervals Ij; = (D then

return (exist := false)

end for

end for

return( Ij, exist)

end
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