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ABSTRACT

A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF
THE TEMPERATURE DISTRIBUTION ON THE FLOOR
OF A FARROWING HOUSE

By

Heeseung Choi

The typical hot water floor heating system for a solid floor farrowing
house has a complicated pipe circuit that heats the pig creep area but avoids the
area beneath the sow. The typical system is costly to construct, has a relatively
high pumping resistance and provides a less-than-desirable temperature distribu-
tion in the creep area. An improved hot water heating circuit that runs beneath
the sow and the creep area has been used to eliminate some of the problems. This
improved system uses insulation around the pipe and between the pipe and floor
surface in the area beneath the sow to obtain the desired floor temperature in the

SOW area.

No design method exists for the improved system. The floor temperature
provided by the improved pipe system is a function of the number, size, depth
and spacing of the heat pipes, the insulation size and the placement, and the size
of the fins that can be attached to the pipes. A three-dimensional finite element
heat transfer program was used to calculate the temperature distribution on the
floor surface for various arrangements of the new heating system. The finite ele-

ment method was also used to find a design condition for each of three possible



Heeseung Choi

arrangements. A three-dimensional finite element grid generation program was
written specifically for this study to generate the large volume of input data

required in a solution.

Three different arrangements were studied: (1) three hot water pipes
without fins, (2) three pipes with a steel fin attached, and (3) three pipes with a
copper fin attached. Prototype designs that gave the most desirable temperature
distribution on the floor were recommended for each case. The recommended
heating systems provide six places in the creep area with the desired piglet tem-
perature range and a sow area within the desired temperature range. The heat
input of the sow to the floor was not incorporated into this study. The structural
strength of the floor resulting from the placement of flat sheets of insulation in
the concrete also was not investigated. The new designs reduce operation costs
and the pumping energy requirements. The farrowing areas near the cooler end of
the hot water pipe line can be heated to the desired temperature by adjusting the

size of the fins attached to the pipes.
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I. INTRODUCTION

The farrowing house must provide a comfortable environmental condition
for the young piglets and the sows at the same time. The new-born piglet needs a
temperature of 29.4°C to 32.2°C (85°F to 90°F) to protect it from chilling,
because it is poorly endowed with hair, has a low amount of body fat and a thin
skin. Since chilling is a major cause of death in baby pigs, the new born piglet
must be kept warm enough to survive the first three days of life. On the con-
trary, the sow prefers a temperature of 15.6°C to 18.3°C (60°F to 65°F) to
optimize feed intake, milk production, and sow condition. Two separate thermal

environments are needed in a relatively small region of a farrowing house.

To provide the environment for the piglets, additional heat sources are
added in the baby pig creep area. Suspended infra-red lamps and suspended elec-
tric bar heaters are often used in solid floor systems while heat pads are used to
provide a warm micro-climate for the baby pigs on slotted floors. The use of
these devices allows the remainder of the room to be maintained at a condition
better for the sow. A hot water floor heating system is also used in farrowing
houses to provide extra heat for the litter without excessive heating of the entire
building. The hot water pipe system shown in Figure 1.1 by a dotted line is the
typical arrangement used in farrowing buildings. This arrangement has many

elbows that increase the construction time and cost, the likelihood of leaks, and
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the operating cost of a swine facility. This complicated pipe line has been
simplified to the one shown in Figure 1.2 where the heating pipes that cross the
sow area are insulated to provide the proper temperature for the sow. The

amount of insulation needed beneath the sow is not known.

There are many variables that affect the temperature distribution on the
floor of a farrowing house. Some of these include the number, spacing and depth
of the pipes, the insulation size and placement over the pipes and around the
pipes, and the effect of fins that could be attached to the pipes. The temperature
distribution on the floor surface of a farrowing house can not be calculated analyt-
ically. A numerical procedure must be used. The finite element method appears

to be the powerful tool available to study the temperature distribution of such a

complicate model.

The general objective for this study was to calculate the temperature dis-
tribution on the floor of a farrowing house for specified hot water pipe arrange-
ments and insulation placement. Another objective was to develop configurations
that will provide comfortable temperature distribution for both the sow and baby
pigs. Specific objectives relative to the design of a new hot water heating system

evolved after the first analysis was completed; these are discussed later.



Figure 1.1 Pipe arrangement in a typical hot water heating system of the

fallowing house which has 10 pens.
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Figure 1.2 Pipe arrangement in a modified hot water heating system.



II. LITERATURE REVIEW

2.1 Farrowing House

Butchbaker and Shanklin (1965) studied the temperature regulating
mechanisms of young pigs in the test chamber using four different room tempera-
tures. They found a single newborn pig cannot maintain homeothermic status
without supplemental heat despite a well-developed shiver mechanism. Karhnak
and Aldrich (1971) measured the room temperature and floor temperature of a
farrow-to-finish building equipped with an under floor heating system. The room
temperature, measured using thermocouples, ranged from 16°C to 21°C (61 °F to
69°F) in the winter time. The floor temperature ranged from 21°C to 39°C
(69°F to 102°F). They observed that pigs usually laid across the front of the
pen, although the warmest spots were along both sides of the pen beneath the
guard rails. Spillman and Murphy (1976) found that producers with totally slot-
ted floor creep areas tended to keep the room temperature around 27°C (80°F)
while those with partially slotted or solid floor creep areas maintained room tem-
peratures from 16°C to 24°C (60°F to 70°F). They observed that pigs more

than 7 to 10 days old tend not to sleep under heat lamps.

Muehling and Stanislaw (1979) provided the important design factors for

farrowing units whose floors are solid or slotted. They suggested the room tem-
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perature of solid and slotted floors to be 15.6°C to 18.3°C (60°F to 65°F) and

21.1°C to 23.9°C (70°F to 75°F), respectively. The floor temperature for a
litter at farrowing was suggested to be in the range of 29.4°C to 32.2°C (85°F
to 90 °F) for the first three days of life while the comfortable floor temperature for
a sow was 15.6°C to 18.3°C (60°F to 85°F). Van Fossen and Overhult (1980)
provided the fundamental information to select, design, install and operate an
electric or a hot water floor heating system. They emphasized that heating pipes
across the sow area must be insulated with a 1.3 ¢cm to 2.5 em (0.5 inch to 1.0
inch) thickness of rigid, non-deteriorating insulation. They recommended the
heated floor area of from birth to weaning as 0.56 to 1.4 m? per litter (6 to 15 ft2
per litter). England et al. (1987) stated that the baby pig areas, on solid or slot-
ted floors without bedding, should be kept at 32.3°C to 35.0°C (90°F to 95°F)
for the first few days, and then in the 21.2°C to 26.7°C (70°F to 80 °F) range

until weaning at three to six week of age.

The ideal floor temperature distribution in the farrowing house can be
achieved based upon the literature. The floor temperature in the sow area should
be kept uniform through the whole sow area in the range of 15.6°C to 18.3°C
(60 °F to 65 °F) regardless the change of the hot water temperature and the age of
baby pigs. The floor temperature in the baby pig area, however, should be con-
trolled according to the age and the weight of baby pigs. Furthermore, it will be
more desirable the baby pig area provides several micro temperature environments
which baby pigs can choose by themselves because the individuals vary in their
preferred temperature. It is not economical to keep the whole litter area (1.95 m?

21 ft?) warm in the temperature range of 29.4°C to 32.2°C (85°F to 90°F) for
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the first few days of life (Muehling and Stanislaw, 1979). The small heated area

(0.56 m?2, 6 ft%), only about 30 % of total baby pig area, is necessary for the new
born pigs (Van Fossen and Overhult, 1980). The ideal floor temperature distribu-
tion in the baby pig area was assumed in this study as that of providing a uni-
form temperature in the range of 29.4°C to 32.2°C (85°F to 90°F) on the over
30 % of total baby pig area. Moreover, it should provide several temperature

ranges to satisfy the baby pigs individually.

2.2 Three-Dimensional Finite Element Analysis

The finite element method was introduced at the mid 1950s as a method
of analyzing structures with reinforcing coverings. The method has become a
powerful computational tool in the field of structural mechanics, fluid mechanics,
and heat transfer, especially for the analysis of irregularly-shaped objects having

different materials or complex boundary conditions through extensive rearch.

For the case of three-dimensional steady state heat transfer, the pro-
cedure was completely described by Zienkiewicz et al. (1967). The transient heat
conduction problem for two dimensions was performed by Wilson and Nickell
(1966) using a variational principle. They also solved time dependent problems
using a single step technique. A detailed description of the general theory of
finite element method is given in several textbooks such as Zienkiewicz (1977),

Segerlind (1984) and Allaire (1985).
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The accuracy of the finite element method for steady state heat transfer
was studied by Laura et al. (1974) who calculated the error between analytical
and finite element results for two cases whose domains were extremely compli-
cated. Good agreement, less than 1 % error, was obtained between the finite ele-
ment results and the analytical solutions for a hexagonal model with a concentric,

circular hole and a square model in a nonhomogeneous media.

Since the preparation of numerous input data is necessary and is a tedi-
ous task, automatic input data generation is nearly a necessity when solving a
three-dimensional problem. Akyuz (1970) presented a scheme for generating input
data in two- and three-dimensional space using the concept of natural coordinate
systems. He divided the solution domain into subdomains depending on the field
quantities and the complexity of the geometrical form. Cavendish et al. (1985)
describe the algorithm for the computer generation of tetrahedral finite element
meshes for solids. The proposed algorithm was separated into two independent
modules. First, the node points were defined within and on the surface of the
solid. Then, the node points were automatically connected to form well-
proportioned tetrahedral finite elements. To minimize the memory space and
computer time, a banded matrix solution technique is used. The matrix should
have a bandwidth as small as possible. Grooms (1972) presented a simple and
straightforward matrix bandwidth reduction procedure. The basic idea was to
systematically move rows that are far apart and coupled closer together. He com-
pared his method with other bandwidth reduction methods. Collins (1973)
presented a method in which the engineer numbered the nodal points but the

computer renumbered the nodes to minimize the bandwidth during calculations.
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The computer restored the original numbering for output.

2.3 Finite Flement Formulation

The finite element method can be viewed as a numerical procedure for
solving differential equations. The finite element analysis in conjunction with a
variational principal is a powerful method for the determination of the tempera-
ture distribution within a complex body that has different material properties, an

irregular shape and mixed boundary conditions.

The governing partial differential equation for steady state three-

dimensional heat conduction (Kreith, 1965) is

4 oT 2] oT [’] aT _
az(K” az)+‘37(Kwa—y)+5;(Ku'§;)+Q—0 (2.1)
with the boundary conditions
T=Tg on S, (2.2)
and/or
oT aT aT
K:,Fz—lz""KwTy-l,+K”El,+q+h(T—T°°)=o on 52 (2.3)

where T (°K) is a temperature that is a function of x, y, and z. K, K,,, and
K, (kW/m *K) are the thermal conductivities in the x, y, and z directions,
Q (kW /m?®) is an internal heat source or sink, ¢ (kW /m?) is the heat flux over the
surface, and h (kW/m? °K) is the convection coefficient. T, (°K) is the ambient

temperature, and T ( ‘K) is the known boundary temperature. The quantities of
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l,, |, and [, are the direction cosines of a vector normal to the surface. S, is the
boundary surface where temperature is known, and S, is the another surface

where heat is gained or lost due to a convection heat transfer or a heat flux.

The functional formulation, that is derived from the variational calculus

(Pars, 1962), for (2.1) and its boundary conditions (2.2) and (2.3) is

n=jv.;.[x,,(“’9—f)2+x,,(%)2+x( 9Ty 99 T|dv (2.4)
+fS[qT+—;-h(T—T°,,)2]dS

Functional, II, must be minimized with respect to the set of nodal values {T}

The minimization of II occurs when

aM 3 ) _ v o)
Ty AT S N T Ay T

em] em]

=0 (2.5)

where E is the total number of elements.

e)
The derivative 8?1('} in (2.5) is given by Segerlind (1976) as

g{nz(‘e; - fw) [B“)]T [D(e)] [B(e)] dv + };4-) A [M°)]T [N(e)] ds ) {T} (2.8)

[ ,@INTav + fs{«) g [N)T ds — fsé,, h Too [N©)T dS

where [D(¢)] contains the thermal conductivities

Kz 0 0
D) =| o K, o
0 K

0
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[N®)] contains the shape functions, and [B(®)] is related to the derivatives of the
shape functions. The set of integrals in (2.8) can be condensed by using the ele-

ment stiffness matrix [K(¢)] and the element force vector {EF(*)} as

o)

(T (K] {T} — {EF(*} (2.7)
where
(K] = [ BE)T DB av + [ o h (N T [NLe)) ds (2.8)
and
(EF)} = | 0@ [N)T dv — jS (o9 [ME)T dS + fs " h T [N T ds  (2.9)
The final system of equations is obtained by substituting (2.7) into (2.5),
giving
oMl R Ny _
T & (K“YT} - {EF)) =0 (2.10)
or
K] (T} = {EF) (2.11)
where
E
K] =% [K©)

em]

{EF} = § {EF(*)}y

em]

Before evaluating the element stiffness matrix [K{?)] and the element force
vector {EF(¢)}, equation (2.9) and matrix [D(*)] can be simplified with the condi-

tion of K, =K,, =K,, = K,, @ =0, and ¢ =0, because of the same thermal con-
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ductivities in the x, y, and z direction, no internal heat source, and no heat flux

over the surface for the models in this study. Therefore, the element force vector

reduces to
{EF@)} = [ oh T o [N)T dS (2.12)
while
100
D) =K, [010 (2.13)
001

Since the three-dimensional element used in this study was an eight node

hexahedron, the matrices [NM*)] and [B(*)] are

(M) =[Ny Ny N3 --- Ng]

[ 9N, 8N, 8N, 8N |
oz dz 0z ' Oz
dy Jdy 9y dy
ON, 0N, ON; ... 0Ng
0z 8z 0z 8z

The coordinate transformation, from the global to the natural coordinate
system, allows the boundaries of elements to be distorted, and requires the
integrals in equation (2.8) and (2.12) to be evaluated numerically using a Gauss -
Legendre technique (Segerlind, 1976). The global coordinate system (x, y, z), the
natural coordinate system (&, n, ¢), and the location of the eight - node are shown
in Figure 2.1. The shape functions and their derivatives for the natural coordi-

nate system are given in Table 2.1.
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Figure 2.1 Location of eight nodes in natural and Cartesian coordinates.
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Table 2.1 Shape functions and derivatives for eight node hexahedron.

Node

Shape functions

F1-61-n)(1—9)
F+E(-n)(1—9)
(141
F1-E)(14n)(1=9)
F1-6)1-n)(1+9)
L1+
FUHE(L+n)(14)

F=E(1+n)(1+9)

Derivatives
ON; ON; ON;
¢ on ¢

—5{1-n)(1—9)
F1-n)(1—)
FH1+n)(1—)

-—;—(1+n)(1—§)

1
g(l-n)(l'*'s‘)

1
S+
1+

—%(1 +n)(1+¢)

—5{1-6(1-9)
—%(1-’-8)(1—3‘)
FH1+6)(1—9)
F1-601-9)
—5{1-6)(1+)
—5 {1461+
F1+0(1+9)

F1-6)(1+9)

—5{1-6)(1-n)
—5{1+)(1-1)
—5{1+€)(1+m)
—5{1-6(1+n)
F1-€)(1-n)
SH1+€)(1-m)
F1+E)(1+n)

F1-6)1-+n)




The change in the increment volume dV is

14

dV = dz dy dz = |det[J]| d€dnd¢

where [J] is the Jacobian matrix of the transformation

] =

and the limits of integration are from -1 to 1 for each coordinate variable.

0z 8y 0z |
3¢ B¢ o€
oz oy O
dn dn 39
9z By 8=z
| d¢ ds  O¢ |

The Cartesian coordinates are given by

8

(2.14)

(2.15)

(2.16)

where X;, Y; and Z; are the nodal coordinates. Substitution into (2.15) yields

[ 9N, 0N,
9 8¢
dN, 8N,
AN, O8N,

| 4 &¢

and each column of [B] is given by

-

3N,
o€

AN,
on

AN,
o¢

(X, Y, Z, |
Xy Y, Z,

J|Xs Ys 23

(2.17)
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. - ; B o, ;
oz 8¢
dN; aN;
(e) = —_ =J -1 —_— 2.
BYEng) = | 3 Ul = (2.18)
dN; ON;
9z F=18 | iy F=18

The change of variable in the surface integral is
dS =dz dy = |det[J]| d€dn (2.19)

Since convection heat loss in this study occurs only on the top surface, ¢ =1, the

Jacobian matrix for the surface integral becomes

9z 9y 0z |

9 9 o€

- |96z 9y 9z
[J] on ¢ml = a'l 317 3” (2.20)

0 o0 1

The unit value assigned to the diagonal allows the inverse matrix of [J] to be

evaluated.

Substituting (2.14) through (2.20) into (2.8) and (2.12) gives

[KE) = [ 'J_,f_l (B n, 0T (D] (BEXE )] |det[J] | d€dndsg (2:21)
+ f_llf_ll h (NEXEn)T (MEn)] |det ]| d€dn

{EF)y = [ f_ h Too [N©XEn)] |det [J] | d€dn (2:22)

The Gauss - Legendre quadrature was applied to numerically evaluate the
integration shown in (2.21) and (2.22). Since the highest order of the polynomials

that occur in [B)T[D()[B(?)] and [M)T[N)] of equation (2.21) is two, the
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number of integration points (n) becomes two for each coordinate direction. The
sampling points of +0.577350 and a weight coefficient (H;; and H;;) of 1.00 were
used to evaluate the integrals. Eight integration points were required for the
volume integral and four integrating points were required to evaluate the surface
integral in (2.21). Since the highest order of polynomials in [N*)] is one, one
integration point is required for each direction. The sampling point for one
integral point in the Gauss - Legendre is O and the weight coefficient (H;;) is 2.0.

One integration point is required in (2.22).

The numerical integration changes (2.21) and (2.22) to the following final

2 2 2
KN=23 S [f1(&im;.66) Hijp | |det [J] | (2.23)

im]jmli=l

+ 22)}23 [fA&m;) Hy; | |det[J] ]

fmljeml
where
f l(ei 1"] ;gk) = [B(e)(fnﬂj 1Sk )]T [D(C)(Enn] rgk)] [B(e)(Et ,’7, 'Sk )]
S o(&m;) = hINCE ;)T [N & n;)]
Hfjk = H‘J =1.0
and
11
{EF*)y = h T, 5 3 [fal€im;) Hy] | det[J] | (2.24)
fm]jm
where

fa(&mj)=[0000 % .i_

H,'j =2

11y
4 4



III. ANALYSIS OF A TYPICAL FARROWING HOUSE

The first calculations performed were done on the typical pipe layout
shown in Figure 1.1. The cross section of the concrete floor heated with hot water
is shown in Figure 3.1. A two-dimensional analysis was performed. This assumed
that the pipes extended an infinite distance parallel to the sow area. The pipes

beneath the sow area were not include in this analysis.

3.1 Farrowing Crate Dimensions and Finite Element Model

Most farrowing crates have dimensions of 152.4 cm (5 feet) wide by 213.4
cm (7 feet) long. The width includes an 45.7 cm (1.5 feet) young pig area on both

sides of a 1.0 cm (2 feet) sow stall as shown in Figure 3.2.

The repeated symmetry of farrowing crates reduces the region to be
analyzed. The X - axis was defined as the direction of the alley, while the Y - axis
was the perpendicular to the X - axis as shown in Figure 3.2. The Z - axis was

defined as the direction of the floor depth, upward being positive.

Boundaries with respect to the X - axis were the center of the crate and
the right side of the crate, while boundaries with respect to the Y - axis were the

center of the crate and the center of the alley. Each boundary was an axis of

17
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Figure 3.1 Typical cross - section of concrete floor heated with hot water.
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Figure 3.2 Typical crate dimensions.
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symmetry. The shaded part shown in Figure 1.2 was the region analyzed.

Two simple models were introduced to decide the amount of floor depth
to be analyzed. The rigid insulation used to insulate the concrete floor from the
earth in the typical system of a concrete floor heated with hot water was located
at the 10.2 cm (4 inches) depth as shown in Figure 3.1. The first model, therefore,
had 10.2 cm depth, whose boundary was assumed to be totally insulated. Hart
and Couvillion (1986) reported that water from wells deeper than 600 cm (20 feet)
has a constant temperature year round of approximately 10°C (50°F). There-
fore, the second model had 600 cm depth, whose boundary temperature was
10° C. That was a real situation even though the model had too many elements.
The result showed the temperature on the floor did not change significantly with
the model depth. The bottom of the concrete floor, therefore, was assumed to be
a nonconducting insulated boundary; 10.2 cm (4 inches) was selected as the depth
of the model. This simplification reduced the computer memory requirement and
the running time. The boundaries with respect to the Z - axis were the floor and

the top of the rigid insulation beneath the concrete.

The size of the model to be analyzed was 76.2 cm X 167.6 cm X 10.2 cm

(30 inches X 66 inches X 4 inches). The boundary conditions on the surfaces were

T=60°C on the surfaces of the pipes
kéﬂ =q + h(T-Ty) on the floor surface
n
%l =0 on the all of the other surfaces except the floor
n

The temperature on the outside surface of the pipe was assumed as same

as the hot water temperature 60°C (140 °F) regardless of the thickness and the
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material property of pipe. The values of input data, such as the surface conduc-
tance (h) of concrete and the thermal conductivity (k) of concrete, insulation,
steel, and copper, came from the ASHRAE Handbook (1981), Meyer and Hansen

(1980), and Kreith (1965).

The surface convection coefficient on concrete at zero air speed was 11.35
W/m? *K (0.0139 Btu/hr inch? °F). Since Muehling and Stanislaw (1979) recom-
mended rigid insulation board for perimeter insulation and for insulation under
concrete floor, particularly in heated floors, the wood or cane fiberboard was
selected and its thermal conductivity was 0.0577 W/m ‘K (0.00278
Btu/hrinch °F). The new plastic insulations, such as polystyrene and
polyurethane, are also used for a rigid insulation. But, they were not considered
in this study because of their low structural strength. The thermal conductivity

of concrete was 1.8025 W/m *K (0.08681 Btu/hr inch *F).

Van Fossen and Overhults (1980) recommended 60°C (140°F) as the
water temperature and Spillman and Murphy (1976) found that most of the far-
rowing houses were operated with a room temperature from 16°C to 24°C (60°F
to 75°F). Therefore, I assumed the water temperature to be 60 ° C and the room

temperature to be 15.6 ° C (60 ° F), the coolest condition.

3.2 Calculated Temperature Values

The temperature distribution on the cross section A - A’ in the Figure 3.2

is shown in Figure 3.3. The shape of temperature distribution shown in Figure
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Figure 3.3 Temperature distribution on the floor of the typical farrowing house
heated with hot water.
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3.3 was the same shape of floor temperature measured by Karhnak and Aldrich
(1971). The 34 % of the baby pig area had a temperature higher than the recom-
mended temperature range of 29.4°C to 322°C (85°F to 90°F). The
overheated area wastes energy and increases the operating costs. The 45 % area
had a temperature below 29.4 ° C which is too cold for new-born pigs. Only 23 %
area was in the optimal temperature range for baby pigs. In the sow area, the 34
% was in the desired temperature range of 15.6°C to 18.3°C (60°F to 65°F).
The temperature contours are shown in Figure 3.4. The contours are straight line

because of the assumption made about the pipes in the two-dimensional analysis.

Since the highest temperature in the creep area exceeded the desired
values, the possibility of placing insulation over the pipes was analyzed. Applying
the wood or fiber board insulation, 1.3 cm (0.5 inches) thick and 5.1 em (2.0
inches) wide, above the pipe helps to remove the hot space in the baby pig area as
shown in Figure 3.5, but it was not enough to provide the temperature distribu-
tion desired. The temperature distribution was not uniform within the comfort-

able temperature range for the baby pigs
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Figure 3.4 Temperature contour on the floor of the typical farrowing house
heated with hot water.
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Figure 3.5 Temperature distribution on the floor when 1.3 cm thick and 5.1 cm
wide flat insulation is applied over the hot water pipes.



IV. CALCULATIONS RELATED TO THE DESIGN OF
A HOT WATER HEATING SYSTEM

The calculations in the previous chapter indicate that the typical hot
water heating system does not produce the desired temperature distribution in
either the baby pig creep area or the sow area. The number of elbows in this sys- -
tem also makes it undesirable because of the increased construction costs,

increased pumping power required and the possibility of leaks.

The primary objective of the rest of this study was to obtain some proto-
type designs for hot water heating systems that use straight pipes and provide the
desired temperature profiles by utilizing insulation at various locations in the

floor.

The temperature distribution on the floor surface was calculated using a
three-dimensional finite element computer program. The thermal properties,
boundary conditions, room temperature, and the water temperature used in the

previous chapter were also used in the three-dimensional study.

This chapter discusses the design parameters. Three prototype designs

are presented and discussed in the next chapter.

26
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4.1 Finite Element Grid Generation

The preparation of numerous input data for a three-dimensional finite
element study is a time consuming task and a major source of errors. Programs
that automatically generate the element input data are recommended. The
advantages of generating the input data from a minimum amount of information
are a) the ease of changing the few parameters for different problems, b) reduction
of the hand labor involved, and c) avoidance of the human error. The necessary

input data for generating a three-dimensional grid are as follows.:

1. Number of regions, number of boundary points and the minimum

number of x, y, and z coordinates of boundary points that could describe

the model.
2. Region connectivity data which show the connection to other regions.
3. Number of required subdivisions in &, n, and ¢ directions that could be

changed with the shape of region and significance for the region.

4. An integer node number that defines the region.

The procedure to reduce the matrix bandwidth is necessary for minimiz-
ing the memory size and the running time of the computer. The computer run-
ning time required to solve the matrix is proportional to the square of the
bandwidth (Grooms, 1972). The node numbers from a grid generation program
usually have large bandwidths because the numbering of nodes is sequential

within a region, therefore, the elements on the boundary of the region have a big
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difference between the largest and smallest node numbers.

The way to obtain a small bandwidth is to renumber the nodes so the
nodes in each element are as close as possible. Since many algorithms for reducing
the bandwidth are available (Grooms, 1972), the method considered herein was to
number the element nodes in a sequence that starts at £ = —1, ¢ = +1 and n = —1
and proceeds to £ = +1, ¢ = —1 and n = +1 within a whole model. This simple
renumbering system proved advantageous in analyzing the temperature distribu-

tion even though it did not give the minimum bandwidth.

The following basic procedures are performed in grid generation and

bandwidth reduction for the three dimensional problem.

1. Minimum input data defining the model are read.

2. The nodes are numbered sequently from left to right (§ = —1 to § = +1),
from top to bottom (¢ = +1 to ¢ = —1) and from front to rear (n = —1 to

n = +1) skipping all previously numbered nodes within a region.

3. All nodes on the boundaries are stored for skipping when considering

regions that are adjacent to the stored boundary.

4. The whole node numbers are stored and changed to the new ones renum-

bered for bandwidth reduction.

The grid generation program written in FORTRAN language is shown in
Appendix A. One of the three-dimensional grid models used in this study is
shown in Figure 4.1. The length in the vertical direction (z-axis) has been

expanded for the sake of clarity.
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4.2 Calculations Related to the Design of a Piping System

The temperature distribution on the floor of a farrowing house depends
on the thickness, location, and width of insulation above the hot water pipe.
Several cases for one pipe were analyzed to get a 'feel’ for the temperature values

as they related to the different insulation conditions.

The cross section of the model used in this analysis is shown in the Fig-
ufe 4.2. The parameters W, D, tF, and tP are the width of insulation, the depth
of insulation from floor, the thickness of flat insulation, and the thickness of per-
imeter insulation, respectively. The model assumed that two hot pipes were per-
pendicular to the farrowing crate. Nodal points and nodal elements of this model
were 812 and 552, respectively. The CPU time spent in the VAX/VMS computer sys-
tem was 17 minutes. The three-dimensional finite element heat transfer program

used is given in Appendix B.

Laura et al. (1974) obtained less than 1 % error between the finite ele-
ment results and the analytical solutions in the extremely complicated model.
The error for the finite element heat transfer program used in this study was
tested using a problem whose temperature could be calculated analytically. The
model was divided into the same shape of elements as used in this study. The
maximum error of 5.8 % based on the Fahrenheit unit was obtained. The main
error came from the flat shape of elements due to the small thickness of model as

shown in Figure 4.1.
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Figure 4.2 Variables for the test model.
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4.2.1 Placement depth of flat insulation (D)

The temperature distribution as a function of the placement depth of an
flat insulation, 1.3 ¢cm (0.5 inches) thick and 15.2 cm (6.0 inches) wide, over the
not-insulated pipe is shown in Figure 4.3. The only effect was that the deeper
insulation placement leveled out the high temperature zone. A greater depth may
be desirable when structural integrity of the floor is considered. It is impractical

to place the insulation only 1.3 cm below the surface.

4.2.2 Thickness of flat snsulation (tF)

Figure 4.4 shows the temperature distribution obtained by varying the
thickness of the flat insulation whose width is 15.2 ¢cm (8.0 inches), placed at a
depth of 2.5 cm (1.0 inches), and without perimeter insulation on the pipe. A
large temperature difference occurred just above the pipe but no significant change
occurred in the region 17.6 cm from the pipe. The temperature on the floor just
above the pipe was decreased 5°C when compared with the 0.6 cm (0.25 inches)
thickness of insulation. The temperature drop just above the pipe increased with
the thickness of insulation nonlinearly as shown in Figure 4.5. The straight line
was forced using only data exclude zero point in order to get the rate of a tem-
perature drop with respect to the insulation thickness. The 1.94°C / cm (8.89°F
/ inch) rate was obtained. This information would be used to decide the thick-

ness of insulation in the new models.
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Figure 4.3 Effect of D, the placement depth of flat insulation
(tF = 1.3 cm, W = 15.2 cm).
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Figure 4.5 Temperature drop according to the thickness of flat insulation.
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4.2.8 Width of flat insulation (W)

The changes in the maximum temperature with the width of flat insula-
tion were analyzed in the case of two different thickness of a insulation, tF = 1.3
cm (0.5 inches) and tF = 2.5 cm (1.0 inches). The placement depth of the insula-
tion was kept as D = 2.5 cm. No insulation was around the pipe. Significant
temperature drops occurred with changes in the width of insulation as shown in
Figure 4.6 and 4.7. The temperature drop just above the pipe increased linearly
as shown in Figure 4.8 and 4.9 for each different thickness of insulation. When
the linear regression was applied to each case, the rate of a temperature drop for
1.3 cm and 2.5 cm thickness of insulation was 0.36 °C / cm (1.64 °F / inch) and
0.43 °C / cm (1.96 °F /inch), respectively. The coefficient of determination (R2)

in the linear regression was 0.98 and 0.96, respectively.

4-2.4 Thickness of perimeter insulation (tP)

The insulation wrapped around the pipe lowered the temperature
significantly as shown in Figure 4.10. There was no flat insulation above the pipe.
A thickness the 0.5 cm (0.2 inches) resulted in a 11.4°C decrease. The round
insulation reduced the ﬁemperature through the whole region as well as leveled the
temperature distribution. There was not a big temperature difference among the
thickness of perimeter insulation. The maximum temperature difference between

the various thickness of insulation was 2° C (3.6 °F).
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4.2.5 Thickness of flat insulation above the perimeter insulated pipe

A thickness of 1.3 cm (0.5 inches) of flat insulation over the round pipe
insulation whose thickness was 1.0 cm lowered the top temperature 0.9°C as
shown in Figure 4.11. No significant difference was shown between the thickness
of the flat insulation through the whole area. To level the top temperature, 1.3

cm thickness of flat insulation over the insulated pipe was desirable.

4.2.6 Width of flat insulation above the perimeter snsulated pipe

The Figure 4.12 shows the change in the maximum temperature with
width of the flat insulation on the perimeter insulated pipe. The thickness and
placement depth of flat insulation were 1.3 cm and 2.5 cm, respectively. The
thickness of perimeter insulation was 1.0 cm (0.4 inches). The wide insulation
increased the area of maximum temperature, but lowered that temperature. No

significant temperature difference was shown in the area 22.9 cm away from pipe.

4.2.7 Summary

The influence of the flat insulation and the pipe perimeter insulation on
the floor temperature is now understood. Some design ideas could be deduced

from that understanding.

The reasonable location of the flat insulation is 2.5 cm (1.0 inches) below
the floor level. The 0.6 cm or 1.3 cm thick flat insulation is necessary to remove

the hot space in the baby pig area. The 15.2 cm (6.0 inches) wide flat insulation
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Figure 4.11 Effect of the thickness of flat insulation on the perimeter insulated

pipe

(D = 2.5 cm, W = 15.2 cm, tP = 1.0 cm).
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Figure 4.12 Effect of the width of flat insulation on the perimeter insulated pipe
(tF = 1.3 cm, D = 2.5 cm, tP = 1.0 cm).
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could level out the high temperature zone in the creep area.

The perimeter insulation around the pipe is necessary when the pipe goes
beneath the sow area, and the 1.0 cm (0.4 inches) thickness of perimeter insulation
is appropriate. Additionally, thin flat insulation could be insulated over the insu-
lated pipe in the sow area to level out the high temperature and to drop a highest
temperature a little. The two - pipe system failed to keep the creep area in the
29.4°C to 32.2°C (85°F to 90 °F) temperature range ; only one-third part of the
creep area had a temperature over 25°C (77°F) in the case of no insulation.

Therefore a three - pipe system is needed.



V. PROTOTYPE MODELS FOR HOT WATER HEATING
SYSTEMS IN A FARROWING HOUSE

5.1 Three Heating Pipes without Fins

The temperature distribution on the floor of a farrowing house heated
with three hot water pipes was analyzed using the model shown in Figure 5.1.

This model contains a quarter of a farrowing crate.

The variables used to find the optimum temperature distribution on the
farrowing floor were the length (L;), width (W;, W,) and the thickness (TI) of the
flat insulation over the pipes and the length (L) of the perimeter insulation
around the pipes. The thickness of a perimeter insulation on the pipes and the
space between pipes were selected as 1.0 cm (0.4 inches) and 53.3 cm (21.0 inches),
respectively. The depth of the flat insulation was 2.5 cm (1.0 inches) below the
floor surface. The model consisted of 1694 nodes and 1194 elements. It took 27
minutes of CPU time on the VAX/VMS computer system to solve the system of

equations.

46
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5.1.1 Thickness of flat tnsulation

Temperature distributions for an insulation thicknesses of 0.64 cm (0.25
inches) and 1.3 cm (0.5 inches) were calculated under the condition of L, = 50.8
cm (20.0 inches), W; = W, = 15.2 e¢m (6.0 inches), and L, = 76.2 cm (30.0 inches).

See Figure 5.1 for an explanation of symbols.

The left drawing of the Figure 5.2 shows the temperature distribution
along the X - axis when Y = 106.7 cm. This location is just above the pipe. The
left side of the vertical dotted line in the left drawing is the sow area, and the
right side the litter area. The high and low horizontal dotted lines show the tem-
perature range appropriate for the sow and litter, respectively. The right drawing
of the Figure 5.2 represents the temperature distribution along the Y - axis when X
= 76.2 cm. The two horizontal dotted lines define the range of suitable tempera-
tures for the litter. The temperature distributions shown in Figure 5.2 are the
highest temperature values with respect to the X and Y - axis in the entire farrow-

ing area.

The flat insulation made the temperature in the baby pig area produced a
lower temperature than desired, but provided a temperature approaching the
desired temperature range in the sow area. The maximum 1.5°C difference was
obtained between the 0.8 cm and 1.3 cm thicknesses of a flat insulation in the
baby pig area. Without the flat insulation, there was a hot spot higher than the
maximum desirable temperature 32.2°C (90°F) in the baby pig area, and the
minimum temperature in the sow area was 1.6°C higher than the maximum

desirable temperature 18.3° C (65 °F).
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5.1.2 Width of flat snsulation

The width of a flat insulation in the baby pig area (W,;) was changed
from 0.0 cm to 15.2 cm (6.0 inches) to determine the effect of the width of the
insulation. The sow area was insulated with L, =L, = 50.8 cm, W, = 15.2 cm size
insulation in the all cases. The thickness of insulation (TI) was 1.3 c¢cm (0.5
- inches). The 5.1 cm (2.0 inches) insulation width was better than other widths
even though a low temperature zone for the baby pig existed between the hot
water pipes as shown in Figure 5.3. The highest temperature would be increased

when the thinner insulation (TI = 0.64 cm) was applied.

5.1.8 The length of perimeter insulation

The 38.1 cm (15 inches) and 50.8 e¢m (20 inches) length of the perimeter
insulation were compared in the flat insulation condition of TI = 0.64 cm, W, =
15.2 cm, Wy, = 5.1 cm, and L, = 50.8 cm. The 38.1 cm length of the perimeter
insulation showed wider high temperature distribution than the 50.8 cm length of
insulation in the sow area, since the 50.8 cm length of the perimeter insulation
showed the wider low temperature distribution than the 38.1 ¢cm length of insula-
tion in the litter area as shown in the left side drawing of Figure 5.4. The 50.8

cm length of perimeter insulation was more desirable than 38.1 cm length.
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5.1.4 Recommended model

Of the various combinations considered, the most desirable model when
using three pipes is shown in Figure 5.5. All of the flat insulation had 0.64 cm
(0.25 inches) of thickness. The space between the flat insulation in the litter area
and the sow area was provided to permit heat flow to the litter area, and to widen
the high temperature zone in the litter area. The two dotted lines shown in Fig-

ure 5.5 are the borders between sow and litter areas.

The temperature distribution on the quarter-floor is shown in Figure 5.6.
The temperature was 0.8 ° C higher than suggested for the sow, but nearly con-
stant across the whole sow area. If the thicker insulation is used throughout the
sow area, the temperature would be decreased a little, but not significantly. A
small portion of the litter area was in the desirable temperature zone. If the flat
insulation in the litter area is removed, a higher temperature zone could be
obtained. Figure 5.7 and Figure 5.8 show the temperature contour and the three-
dimensional temperature distribution on the whole floor, respectively. As shown
in Figure 5.7, six separate hot areas exist for litter while a nearly constant tem-
perature distribution exists in the sow area. A cooler area for the litter occurs on

the floor between the pipes.

It was difficult to get the desirable temperature distribution in the litter
area when the only three hot water pipes were used for heating the floor. The
possibility of attaching fins to the pipes to get an additional conduction effect was
proposed. The idea is analyzed in the following sections because additional pipes

in the heating system complicate the construction, and increase the operating
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Figure 5.7 Temperature contour on the floor of the recommended model for three

pipes without fin.
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costs, with no significant improvement in temperature distribution.

5.2 Three Heating Pipes with Steel Fins

A steel fin would be attached to each of the pipes to widen the high tem-
perature zone in the litter area. The fin would probably be welded under the
pipes for ease of construction. The thermal conductivity of the steel fin was 37.49
W / m°K (1.805 Btu / hr inch °F). The dimensions of the fin and insulation are
shown in Figure 5.9. The length and thickness of the perimeter insulation were set
at 50.8 cm (20 inches) and 1.0 cm (0.4 inches), respectively. The spacing between
pipes was 53.3 cm (21 inches). The finite element model consisted of 2100 nodes
and 1566 elements and required 28 minutes of CPU time to solve using the

VAX/VMS computer system.

5.2.1 Length of fin

Five different fin lengths, 0 cm, 15.2 cm (6 inches), 22.9 cm (9 inches),
30.5 cm (12 inches), and 53.3 cm (21 inches), were analyzed for flat insulation
dimensions of 15.2 cm wide, 76.2 cm (30 inches) long, and 1.3 cm (0.5 inches)
thick. The width and thickness of the fin were 25.4 cm (10 inches) and 0.5 cm (0.2

inches), respectively.

The curves in Figure 5.10 show that addition of the steel fin increases the

litter area temperature more than 2.5°C. This increase occurs through the whole
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litter area. However, the length of the steel fin was not an important factor even
though a longer fin raised the temperature between pipes. That was because the
temperature on the steel fin dropped rapidly with respect to the fin length as
demonstrated in Figure 5.11 which shows the temperature distribution at the
same depth as the fin. The 22.4 cm (9 inches) length of steel fin was the most
desirable when the thickness of flat insulation was reduced to 0.64 cm (0.25

inches) as shown in Figure 5.12.

5.2.2 Thickness of fin

Two fin thickness values, 0.5 cm (0.2 inches) and 0.25 e¢m (0.1 inches)
were analyzed using a length of 22.9 cm (9 inches) and a width of 15.2 cm (6
inches). The flat insulation was 0.64 cm (0.25 inches) thick. Because the thinner
fin produced a 1.1 ° C lower maximum temperature than the thicker fin shown in

Figure 5.13, the 0.5 cm thick fin was more desirable.

5.2.8 Recommended model

The most desirable model of using three hot water pipes with steel fins is
presented in Figure 5.14 based on the insulation information obtained in the pre-
vious section, and fin information in this section. Most of the sow area was insu-
lated with 1.3 cm (0.5 inches) thick flat insulation to decrease the temperature in
this area. On the other hand, the litter area was insulated with 0.64 cm (0.25

inches) thick to enhance the temperature. The space between the flat insulation
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Figure 5.11 Temperature change on the steel fin.
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Figure 5.14 Recommended model for three pipes with steel fins.
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of the litter area and the sow area was same as in the case of pipes without fins.
The 30.5 cm (12 inches) long fin was attached to the center pipe since shorter 22.9
cm (9 inches) long fin to the side two pipes. That could widen a comfortable tem-
perature space for baby pigs and raise the temperature of cooler area between

pipes in the litter area.

Figure 5.15 shows the temperature distribution for the quarter part of the
floor and Figure 5.16 and Figure 5.17 present the temperature contour and the
three-dimensional temperature distribution of the whole farrowing floor, respec-
tively. The temperature distribution in sow area was even and within the ade-
quate temperature range except for the small center portion of the sow area. A
large part of the litter area was within the desirable temperature range. Widen-
ing the space between pipes along with extending the length of the fin would be
helpful in removing the cold zone existing in the upper and lower litter areas.
Using a fin which is high in the thermal conductivity such as a copper would be

another approach.

5.3 Three Heating Pipes With Copper Fins

A copper fin that has a high thermal conductivity was introduced to
‘widen the desirable temperature zone for the litter and to reduce the size of fin.
The thermal conductivity of copper is 377.23 W / cm °K (18.17 Btu / hr inch °F)
which is 10 times higher than steel. The variables for the copper fin are the same

as those shown in Figure 5.9 for the steel fin. The insulation constants were same
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Figure 5.16 Temperature contour on the floor of the recommended model
for three pipes with steel fins.
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as in the case of the steel fin. The finite element model was also the same as that

used for the steel fin.

5.8.1. Length of fin

The four cases of fin length, 0 ¢cm, 15.2 cm (6 inches), 22.9 em (9 inches),
and 30.5 cm (12 inches), were analyzed. The width and thickness of the fin were

25.4 cm (10 inches) and 0.5 em (0.2 inches), respectively.

The 15.2 cm long fin increased the highest temperature by 4.5°C as
shown in Figure 5.18. The temperature distribution varied with the length of fin
very significantly. Figure 5.19 shows the temperature changes with respect to the
Y - axis at the buried depth of the fin. The temperature on the copper fin itself
did not vary significantly with the length because of the high thermal conduc-
tivity. Therefore, the copper fin gave the same effect as widening the hot water
pipe. The 15.2 cm and 22.9 ¢m long fin showed good temperature distributions.
The 15.2 cm long fin showed a better temperature distribution when thinner flat

insulation (TI = 0.84 cm) was used over the pipe and fin as shown Figure 5.20.

5.8.2 Thickness of fin

The effect of the thickness of the copper fin was analyzed using 0.25 cm
(0.1 inches) and 0.5 cm (0.2 inches) thickness values under while keeping length at
15.2 cm, the width at 15.2 cm, and the thickness of the flat insulation at 0.64 cm.

No significant difference attributable to the thicknesses of fins was found as shown
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Figure 5.19 Temperature change on the copper fin.
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in Figure 5.21. The 0.25 cm thickness fin is the most desirable from the economi-

cal viewpoint.

5.8.8 Width of flat snsulation

The influence of the width of the flat insulation over the finned pipe was
analyzed for the 22.9 cm (9 inches) long copper fin as shown in Figure 5.22. The
widths of insulation were 15.2 cm (6 inches), 22.9 cm (9 inches), and 30.5 cm (12
inches) under the condition of 22.9 cm long fin and 1.3 cm thick insulation. The
temperature distribution was influenced significantly by the width of the insula-
tion. The same width of insulation and the length of fin, the 22.9 ¢cm wide insula-
tion and 22.9 cm long fin, showed the best temperature distribution in Figure

5.22.

5.8.4 Recommended model

Figure 5.23 shows the desirable farrowing unit heated using three hot
water pipes with the copper fins attached. The 22.9 cm (9 inches) long fin was
attached to the center pipe since 15.2 cm (6 inches) long fin to the side two pipes
to widen a comfortable temperature zone in the baby pig area. The thickness of
flat insulation in the sow area was 1.3 em (0.5 inches) while the thickness in the
litter area was 0.64 cm (0.25 inches). The width of insulation and the length of
fin was set using the result determined in Figure 5.22. The model gave a good

temperature distribution as shown in Figures 5.24, 5.25, and 5.26. The tempera-
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Figure 5.23 Recommended model for three pipes with copper fin.



78

*suy Joddoo y3im sedid 334y Joj
[9pOUl P3pULWIUIOAL JO JOOY Y3 U0 UoiINqLIIsip aunjeiedway, $g'q aIndiyg

(wd) sixy — A (wod) spxy — X
€S L'92 00

! 1 Sl

(D) sunjosedwe)

(0.) sumpuedwe)



79

213.4

Y — Axis (cm)

189

189

T
76.2
X = Axis (cm)

Figure 5.25 Temperature contour on the floor of the recommended model
for three pipes with copper fins.
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ture distribution in the sow area was very similar to the case of steel fins, but a
wider comfort temperature zones for the litter was obtained even though the size

of copper fins was smaller than the steel fins.

5.4 Effect of Room and Hot Water Temperature

The temperature distribution on the floor of a farrowing house is affected
by the temperature of the hot water running through the pipes and by the room
temperature. Generally, the floor temperature is controlled with the water tem-
perature. Van Fossen and Overhults (1980) recommended 60°C (140°F) as the
water temperature and not more than 5.6 ° C (10°F) as the temperature difference

between the supply line and the return line to obtain a high thermal efficiency.

Heat loss for four different water temperatures, 62.8° C (145°F), 60.0°C
(140°F), 57.2°C (135°F), and 54.4°C (130°F), were analyzed using the model
consisting of three pipes and a steel fin (Figure 5.14). The water temperature had
little effect on the floor temperature in the sow area, but did significantly affect
the temperature in the litter area as shown in Figure 5.27. The temperature in
the litter area was raised by 2.0° C (3.6 °F) in the litter area when the water tem-
perature rose 5.6 °C (10°F). The highest temperature in the litter area was some-
what lower than the desirable temperature when the water was at 54.4 ° C. There-
fore, the crate near the end of the pipe system could be cool for the baby pigs.

The room temperature significantly influenced the floor temperature

through the whole area as shown in Figure 5.28. The lowest temperature in the




82

‘D.,99S1 ainjesadwaq wood Y3 je amjesodwag J9j8m 04 343 JO 93yH LGS 0.:.~wmr.w

(wdo) spxy — A
L°901 0°08 e'es L'92 00
_ 1 I sl
De8'C9 = | 0-0
0009 = | B8
QeTlGS = | *¥
JQe¥'¥S = | 0—0
—0¢C
—G¢
—0¢f

11

(0.) sumpuedwe)

(wo) sy — X
YA YA ﬂom ¥'ST 00
uuuuuuuuuuuu .—wu ——__—_1°S}
|
I DR
..... 0z
“ —GC
|
/ |
—peplan sl / S
pm———a__" [/ _ —0F
..... (Je0EL) De¥'¥S = L o~
(4eGE€1) DeZTUS = 1 *¥
(4071) 0.009 = | &8
(d4eSPL) 00829 = 1 0-0 o«

(0+) sunyouedwe)



[ .

0 . 09 2anjesodura) JagBM 9y 98 aunjeiaduIa) WIOOI Y} JO 103PH 85'G NS

(wo) spxy — A (wo) spy — X
L9014 008 ] L9z 00 9/ 805 ¥'sT 00
I ] 1 sl ] I 1
0.871 = 1 0-e P& T f S ]
0.9°GL = L =8 >4 | LeaBl 2y
Je€8lL =1 v [
Del'IT = L o— / ullnnlllunllﬂ\ |||||| o
—0c -0z
N
© 3
2 3
Sz m -sc
3
e
e #
1 e et o - - - - - - o o =
—0¢ \u. —0¢
/ h.oc De11Z = L o—e
[T o 27/ (e9) OegBl = L w¥
==7" / (4409) 0.9} = 1 z-8
e | — o (455) 0,871 =1 0-0 -

(D) ®anmpsedwey



84
sow area was 1.9°C to 3.4°C (3.4 °F to 6.1 °F) higher than the steady state room

temperature. Raising the room temperature by 2.8°C (5°F) increased the tem-
perature in the sow area by 2.5°C (4.5°F) which is around same as the room
temperature change while the temperature in the litter area by 1.8°C (3.2°F).
Spillman and Murphy (1976) surveyed most of the farrowing house operated with
the room temperature from 16°C to 24°C (60°F to 75°F). Farrowing hous;
with solid floor, typically concrete, tends to operate at somewhat lower tempera-
ture. Figure 5.28 shows the same result. A solid floor with hot pipe heating sys-

tem could be operated at a lower room temperature.

Figure 5.29 gives the temperature distribution on the floor when the room
temperature was 13.9°C (57 °F) and the water temperature 62.8°C (145°F). A
desirable temperature distribution is obtained throughout in both the sow and the

litter area.

comd
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VI. DISCUSSION AND SUMMARY

The floor temperature values for three new layouts of hot water floor
heating pipes were calculated. The three layouts consisted of (1) pipes only, (2)
pipes with steel fins, and (3) pipes with copper fins. The temperature distribu-
tions on the floor for the three different layouts were similar. Each had six
separate hot areas for the baby pigs per stall and a relatively uniform temperature
distribution in the sow area. The six separate hot spaces in the litter area should
encourage baby pigs to scatter, preventing piling up and crushing. Moreover,
since the high temperature zones in the litter area were well out of the sow area,
baby pigs might stay out of the sow area where there is the risk of being crushed
by sow. These new models could reduce the baby pig loss because Liptrap et al.
(1987) reported that one of the main causes of baby pig mortality was crushing
and injury.

The lower temperature zones between the pipes in the baby pig area
would be used by the baby pigs that prefer a lower temperature environment
because individual baby pigs vary in their preferred temperature. Several groups
of litters with substantially different heat requirements owing to their age or
weight are in a farrowing room at the same time. Each crate in the typical far-
rowing house, however, has the same temperature environment since it has the

same type of pipe circuit. Therefore, it is impossible to satisfy the needs each
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litter in the typical farrowing house at the same time.

Controlling the fin size and insulation could solve the decrease in water
temperature problem in the typical farrowing house. Van Fossen and Overhults
(1980) recommended that the water temperature should not drop more than
5.6°C (10°F) from the supply line to the return line. Such a difference of water
temperature between the supply pipe and the return pipe makes the temperature
on the litter area near the return pipe to decrease by 2°C (3.6 °F) compared with
the area near the supply pipe as shown in Figure 5.27. If a larger fin and/or less
insulation is used for the crate near the end of return line, the temperature drop
in the litter area would be decreased and the temperature drop from inlet to

outlet could be. tolerated.

The new models have simple heating pipe circuits that reduce the pump-
ing resistance by 36 % compared with the complicate heating pipe circuit of the
typical layout shown in Figure 1.1. The comparison is given in Appendix C. The
head loss due to the pipe fittings was significantly diminished in the new model.

Therefore, that simple circuit would reduce the operation cost.

The room temperature in the new model can be somewhat lowered than
that in the current model while still keeping a desirable temperature in the sow

area as shown in Figure 5.29.
Some advantages of the new models are :

1. Preventing baby pigs from piling up on each other and being crushed by

the sow owing to the desirable temperature distribution.

[ EN
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Baby pigs can select their comfortable temperature area because various

temperature zones exist within the litter area.

Heating the only necessary area for baby pigs, not all of the baby pig

area, can save the energy consumption.

New model could remove the effect to the floor temperature change by the

water temperature difference between the supply line and return line.

Energy consumption and operation cost could be decreased by the lower

room temperature and simple heating pipe circuit.




VII. CONCLUSIONS

The typical hot water floor heating system for a solid floor or partially
slotted floor in the farrowing house has some problems in the pipe circuit and its
thermal efficiency. To solve those problems, the new heating pipe circuit was
introduced. To find the best model for the sow and her litter, the temperature
distributions on the floors of various models were analyzed using the three-

dimensional finite element method.

The basic information about the heating ability of hot water pipes with
flat and perimeter insulations and steel and copper fins attached to the pipes were
obtained. This information was used to decide the numbers of pipes, the insula-
tion size and placement and the fin size in order to obtain a desirable temperature
distribution on the floor. Even though several models that have new pipe circuits
were analyzed for the case of solid-floor farrowing system, the basic information
could be helpful in the design of the new hot water pipe circuits for partially -

slotted floor farrowing system, and a partially - slotted floor swine finishing pen.

Three different cases, using only hot water pipes and using pipes with a
steel fin or a copper fin attached were analyzed to determine the best model for
each case. The three pipes across the crate were reasonable number of pipes and
the fins attached to the pipes were necessary to widen the high temperature zone

in the litter area. The perimeter insulation around the pipe running across the
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sow area was essential. Three recommended models of each case showed adequate
temperature distributions for the litter and the sow. The new models make it
possible to build crates having different local floor temperature in the same far-
rowing house. Energy consumption and operation cost can be reduced in the new
pipe circuit. There will be some difficulties to attach fins to pipes and lay insula-

tion over the pipes. The proposed models can be modified for manufacture if they

are hard to construct as is.
Future studies are suggested as follows :

1. All data showed in this study were derived from the simulated models.
Measuring the actual temperature on the floor after constructing the

recommended model is needed for validation of the simulation.

2. In the model, I was assumed there was no bedding on the floor and did
not include heat produced by the sow. Further study is necessary to

analyze the temperature distribution while including the effects of the sow.

3. The floor will be weakened compared with the typical floor when the wide
flat insulation is laid over the pipes. A stress analysis for the floor should

be performed to determine its durability and strength.
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APPENDIX A

PROGRAM GRID_3D
C

CAok koK ok ok ko ok koK ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ko k ok ok ok ok ok ok ok k sk ok ok ok ook sk ok ok ok ok ok ok ok ok ok ok ok ok

C*** This program generates the node numbers and element numbers in

C**x  3.D model and reoders the node numbers for minimizing the bandwidth
C 3k 3k 3k ok ok K ok ok ok %k dk ok 3k ok 3k ok 3k ok sk ok dk %k 3k dk 3K ok 3k sk %k Xk ok ok ok 3k ok ok dk %k ok Ak ok ok sk ok 3k 2k %k 3k ok ok 3k 2k Xk 3k % Xk 3k ok 5k %k %k 3k %k %k %k %k k

VARIABLES
INBP : The number of boundary points
INGR : The number of regions
NBP : Boundary points
NGR : Region number
NBW : Band width
N : The shape function
XC,YC,ZC :x,y and z coordinates of the region nodes
XP,YP,ZP :x,y and z coordinates of the boundary points
JT : The region connectivity data
NDN : Node numbers consisting of one region
NN : The region node number
NNRB : The node numbers on the boundary of the region
XE,YE,ZE :x,y and z coordinates of the elements

: Node numbers of elements

XP,YP,ZP : }NBP) (150)

JT : (NRG,6) ; (60,6%3

NN,XC,TC,ZC: (ZETA MAX, ETA MAX, KSAI MAX) ; (10,10,10

NNRB : (NRG, 6, ZETA & ETA MAX, KSAI & ETA MAX);(60,6,10,10)
XE,YE,ZE,NE: (KSAIMAX * ETAMAX * ZETAMAX) ;(500)

AXI : (3000,3)

NAXI : (3000)

IELEOLD  :(2000,8

I[ELENEW : (2000,8

leleleololololo oo lolololoololoIolololo ol ool ololololololololo ol o o 0
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DIMENSION XP(150),YP(150),ZP(150),XRG(9), YRG(9),ZRG(9)
DIMENSION Ng; ,NDN(8),NN(10,10,10

DIMENSION X¢(10,10,10),YC(10,10,10),ZC(10,10,10), NNRB(60,6,10,10)
DIMENSION XE(500), YE(500),ZE(500),NR(8),NE(500),JT(60,6)
DIMENSION AX1(3000,3),NAX1(3000),IELEOLD(2000,8),IELENE W(2000,8)
REAL N,KSAI

DATA IN/5/,10/6/,NBW/0/,NB/0/,NEL/0/,NODE/1/

C Input of the global coordinate and connectivity data

C

100
C

2

OPEN(UNIT=IN,FILE='GRIDIN.DAT’,STATUS="0OLD’)
OPEN(UNIT=IO,FILE="GRIDIO.DAT’,STATUS="NEW’)
READ (IN,*) INRG,INBP

DO 100 I=1,INBP

READ(IN,*) NBP,XP(I),YP(I),ZP(I)

DO 2 I=1,INRG
READ(IN,*) NRG,(JT(NRG,J),J=1,6)

CHF¥%okdokdokokokokokok ok ok okok kokokok k kK dkok ok k

C*** Loop of generating elements
C*****************************

C

C

DO 16 KK=1,INRG
READ(IN,*) NRG,NKSAI,NETA,NZETA,(NDN(I),I=1,8)

C Generation of the region nodal coordinates

C

DO 5 I=1,8

YRG(9)=YRG(1
ZRG(9}=ZRG(1)

TR=NKSAI-1
DX=2./TR
TR=NETA-1
DY=2./TR
TR=NZETA-1
DZ=2./TR

XRG?Q;=XRG§1}

DO 12 I=1,NZETA
TR=I-1
ZETA=1-TR*DZ

DO 12 J=1,NETA
TR=J-1
ETA=-1+TR*DY

DO 12 K=1,NKSAI
TR=K-1
KSAI=-1+TR*DX
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.125%(1.-KSAI)*(1.-ETA)*(1.-ZETA)
.125%(1.+KSAI)¥(1-ETA)*(1.-ZETA)
.125%(1.+KSAI}*(1.+ETA)*(1.-ZETA)
.125%(1.-KSAI)*(1.+ETA)*(1.-ZETA
.125%(1.-KSAI)*(1-ETA)*(1.+ZETA
125%(1.+KSAI)*(1.-ETA)*(1.+ZETA)
125%(1.+KSAI)*(1.+ETA)*(1.+ZETA)
.125*(1.-KSAI)*(1.+ETA)*(1.+ZETA)

222222227
00 1 O UL obs €O 0D =
[oNoXo]

(o)oNoRo)o]

XC
YC

XC(I,J,K)=XC(I,J, K)+XRG(L)*N(L
1,J,K)=YC(I,J,K)}+ YRG(L)*N(L
=12C(1,J, K)+ZRG(L)*N(L)

C Generation of the region node numbers

C

56

45

46

KX1=1
KY1l=1
KZ1=1
KX2=NKSAI
KY2=NETA
KZ2=NZETA

DO 51 I=1,8
NRT=JTéNRG,8
IF(NRT.EQ. 0 .OR. NRT.GT. NRG) GO TO 51
DO 58 J=1,6
IF(JT(NRT,J).EQ.NRG) NRTS=J

IF(LEQ.1 .OR. LEQ.8) THEN
=NETA
M=NKSAI
ELSE IF(LEQ.2 .OR. 1.EQ.4) THEN
L=NZETA
M=NETA
ELSE IF(LEQ.3 .OR. LEQ.5) THEN
L=NZETA
M=NKSAI
END IF

DO 60 KL=1,L
DO 60 KM=1,M
GO TO (45,46,47,48,49,50),1
NN(NZETA,KL,KM)=NNRB(NRT,NRTS,KL,KM)
KZ2=NZETA-1
GO TO 60
NN(KL,KM,1)=NNRB(NRT,NRTS,KL,KM)
KX1=2

GO TO 60

—d
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47 NNI(<I§L,1,KI\/I)=NNRB(NRT,NRTS,IGJ,K1\/I)
1=2
GO TO 60

48 NN(KL,KM,NKSAIT)=NNRB(NRT,NRTS,KL,KM)

KX2=NKSAI-1
GO TO 60

49 NN(KL,NETA,KM)=NNRB(NRT,NRTS,KL,KM)

KY2=NETA-1
GO TO 60

50 NN(1,KL,KM)=NNRB(NRT,NRTS,KL,KM)
KZ1=2

60 CONTINUE

51 CONTINUE

IF(KX1.GT.KX2) GO TO 105
IF(KY1.GT.KY2) GO TO 105
IF(KZ1.GT KZ2) GO TO 105

DO 10 I=KZ1,KZ2
DO 10 J=KY1,KY?2
DO 10 K=KX1,KX2
NB=NB+1
NN(I,J,K)=NB
10 CONTINUE
C
8 Storage of the boundary node numbers
105 DO 42 I=1,NETA
DO 42 J=1,NKSAI
NNRB NRG 1,1,J)=NN(NZETA,I,J)
NNRBNRGGIJ—NNIIJ)
42 CONTINUE
DO 43 I=1,NZETA
DO 43 J=1,NETA
NNRB(NRG,2,1,J)=NN(1,J,1)
NNRB(NRG,4,1,J I,J,NKSAI)
43 CONTINUE
DO 44 I=1,NZETA
DO 44 J=1,NKSAI
NNRB(NRG,3,1,J)=NN(I,1,J)
NNRB(NRG,5,1,J)=NN(I,NETA,J)
o 44 CONTINUE

C
DO 63 I=1,NZETA
DO 63 J=1,NETA
DO 63 K=1,NKSAI
A)%INN(I J K).LT. NODE GO TO 63

NODE, 1 =XC(I,
NODE 2)=YC I J K
AXT NODE 3)=1C J K

N. NODE}=NODE
NODE=NODE+1

C Output of the region node numbers & x, y, z to AXI(NODE,3)
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63 CONTINUE
C

C Saving the elements and node numbers into ELEOLD(NEL,8)
C

L=1
DO 64 I=1,NZETA
DO 84 J=1,NETA
DO 64 K=1,NKSAI
XE(L)=XC(I,J K
YE(L)=YC(I,JK
ZE(L)=2C(1,J K)
NE%)= (1,9,K)
L=L+1

64 CONTINUE ™

DO 15 I=1,(NZETA-1)
DO 15 J=2 NETA |
DO 15 K—2,NKSAI ;
NR(1)=NKSAI*NETA*I+NKSAI*(J-2)+(K-1) ;_
NR(2)=NKSAI*NETA*I+ NKSAI*(J-2)+ -
NR(3)=NKSAT*NETA*I+NKSATI*(J-1}+K i-)
NR(4)=NKSAT*NETA*I+NKSAI*(J-1)+(K-1) ;
NR(5)=NKSAT*NETA*(I-1)-+ NKSAI*(J-2)+(K-1)
NR(6)=NKSAI*NETA*(I-1)+NKSAT*(J-2)+
NR(7)=NKSAI*NETA*(I-1)+ NKSAI*(J-1)+K
NR(8)=NKSAI*NETA*(I-1)+NKSAI*(J-1)+(K-1)
NEL—=NEL+1
DO 66 M=1,8
66 IELEOLD(NEL,M)=NE(NR(M))
Rt CONTINUE

C Output of last number of elements in each region
C

C

WRITE(IO,300) NRG,NEL
300 FORMAT(3X,'LAST NO. OF ELEMENTS IN ’,I3,” REGION IS’,I5)
16 CONTI
C
.C
C

C********************************************************

C*** Reodering the node numbers for minimizing the band width
C********************************************************

Y:MAX->MIN
Z:MAX->MIN
X:MIN->MAX

NODE=NODE-1
LAST=NODE-1
DO 200 J=1,LAST
C
C Finding MIN X, MAX Y and MAX Z
C

L=J

oYololoXe!
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JFIRST=J+1

DO 210 I=JFIRST,NODE

IF((AX[’[(L,2)-AXI(I,2)).GT.0.0001) THEN
GO TO 210

ELSELIF&(AXI(L,2)-AXI(I,2)).LT.-0.0001) THEN
ELSE IF((I{\XI(L ,3)-AXI(1,3)).GT.0.0001) THEN
ELSFi)‘ IF((AXI(L,3)-AXI(1,3)).LT.-0.0001) THEN

ELSE IF (AXI(L 1)AXI(1,1)).LT.0.0001) THEN
GO TO 2
ELSE

=]
END IF
210 CONTINUE
C
DO 220 M=1, 3A()]El
TEMP=AXI

AXI(LM I\5})M)
AXI(J ,M =TE
220 CONTINUE
NTEMP=NAXI(L
NAXI(L)=NAXI(J
NAXI(J)=NTE
200 CONTINUE
C
C Exchanging the node numbers

DO 230 I=1,NEL
DO 230 J=1,8
IELENEW(I,J)=0
230 CONTINUE

C
C CHANGE THE NODE NUMBER
C

DO 240 I=1,NODE

DO 2%7%).

DO 250 K=1,8
{E LEOLD(J, K% .NE. M) GO TO 250
NEW(J,K)=
250 CONTINUE
240 CONTINUE
C

C Rk koo ok ok ok ok ook ok ok ok ko ok ok ok ok ok ok ko ok

C*** Calculating the band width

CAkokokokok ok ok ok sk ok ok dkokok ok ok k ok ok ok ok

C
DO 280 I=1,NEL
DO 280 L=1,7
DO 280 M=L+1,8
=IABS(IELENEW(L,L)}-IELENEW(I,M))+1
IF(LB.LE. NBW) GO TO 280



280
C
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NBW=LB
NELBW=I]
CONTINUE

C**********#************#*******************#**********

C***

Output of x,y,z coordinates of nodes and node numbers

C*************#****************************************

C

261
260

DO 260 I=1,NODE
WRITE(10,261) L(AXI(1,J),d=1,3)
FORMAT(4X,14,5X,3F10.5)

CONTINUE

DO 270 I=1,NEL
WRITE(I0,271) I(IELENEW(L,J),J=1,8)
FORMAT(1X,915)

CONTINUE

WRITE(IO,71) NBW,NELBW

FORMAT((J/ //,1X,23H BAND WIDTH QUANTITY IS,I4,
' CAL TED IN ELEMENT’,14)

CLOSE(UNIT=IN,STATUS="SAVE’

CLOSE(UNIT=IO,STATUS="SAVE’

STOP

END
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APPENDIX B

PROGRAM HEAT_3D

8***************************************************************
CH**x This program determines the temperature distribution

CH*xx on the floor of farrowing house by F. E. M. Input data

CHrxx* for this program comes from grid_generating program.
C***************************************************************
C

C —— 33—t

C VARIABLES

C —————%—1

C

C NP : Total number of nodes

C NE : Total number of elements

C NBW : Band width

C XE,YE,ZE : Coordinates of elements

C XG,YG,ZG : Coordinates of global elements

C PX,PY,PZ :Partial derivatives of shape function

C X,Y,Z : Another expressions of Ksai, Eta and Zeta

C NS : Element node numbers

C ESM : Element stiffness matrix

C EF : Element force vector

C A : Column vector containg ;T}, {F} and [K]

C B : Derivatives of the shape functions

C JGF : Last pointer indicating the last storage for {T}
C JGSM : " " F

C JEND : ”" " "

C K1 : Thermal conductivity of concrete

C K2 : Thermal conductivity of insulation

C H : Convection coefficient

C TCON : Thermal conductivity

C TINF : Ambient temperature

C TEMP : Initial steady state temperature

C

C —— 33—t

8 SUBROUTINES

C

C BNDRYK  : Assigning the thermal conductivity to the each element
C NAT2D : Determination of the calculating points in 2-D

C NAT3D : " " in 3-D

C DERSHP  : Calculation of the derivative matrix of shape function ([B])
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C

10

99

ASMBL : Direct stiffness procedure

SHAPE : Calculation of partial derivatives of shape function
MODIFY : Input of the prescribed nodal values

DCMPBD  : Decomposition of the grobal stiffness matrix

SLVBD : Soving the system of equations by backward substitution

1. G YG,ZG : (

2. A JEND = NP + NP + BDW*NP)
3. N NEL

4. SUBROUTI NDRYK & MODIFY

5. OPEN FILE

6. CONVECTIVE SURFACE BOUNDARY CONDITION

ok 3k 3k ok ok ok ok 2k Ak ok ok koK ok 3k ok 3k 3k %k ok ok 3k 5k ok ok 3k 3k ok ok dk 3k ok ok dk 3k 3k ok 2k 3k ok 3k ko ok ok 3k k ko 3k 3k Xk X ok ok ok k Kk Xk ok k K

IMPLICIT REAL (A-H,0-Z)
DIMENSION XG 147)&\((3&70 ,ZG(1470)
COMMON /XY 8 % ZE(8)
COMMON NA U A(8) ZETA(S) WC
COMMON L}é Love JGF,JGSM,NP,NBW
COMMON /E M{( SM(8,8) EF)‘éS Ns‘}loss 8)
COMMON SHA Y.2 N(8) PX(8),PY(8),PZ(8),B(3,8)
REAL N, KSAI K1,
OPEN(UNIT=IN FILE—’HEATIN DAT' STATUS—OLD’
OPEN({UNIT=IO FILE="HEATIO.DAT’,STATUS='"NEW")
DATA IN/5/,10/6/
DATA K1/0.0868055/,K2/0.0013888/,H/0.013889/, TINF /60./,TEMP/140./
DATA K3/1.80544/
READ(IN,*) NP,NE,NBW
WRITE(IO,*) NP,NE,NBW,K1,K2,K3,H, TINF, TEMP

C Calculation of pointers and initialization of the column vector [A]

JGF=NP
JGSM=JGF+NP
JEND=JGSM+NP*NBW
DO 10 I=1,JEND

A(l)=

C Input of the node and element data (X,Y,Z & Node numbers)
C

11
12
C

DO 11 I=1,NP

READ(IN,*) ILXG(I),YG(I),ZG(I)
DO 12 I=1,NE

READ(IN,*) IL,(NS(1,J),J=1,8)

C********#*************************

C*** Generation of system of equations
CHFFF KRR KRR R KRR KRRk R KRk K

C
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DO 30 KK=1,NE

C
C Initialization of the element stifiness matrix and element force vector
C
DO 13 1=1,8
EF(1)=0.0
DO 13 J=1,8
ESM(I,J)=0.0
13 CONTINUE
C
C Retrieval of element nodal coordinates and node numbers
C
DO 14 I=1,8
J=NS(KK,I)
XE(I)=XG(J
YE(I)=YG(J
ZE(I)=ZG(J)
14 CONTI
C
g Check whether element has boundary convective surface or not
ICON=0
DO 15 I=1,8

IF(ABS(ZE(I}4.0) .GT. 0.00001) GO TO 15
ICON=1

15 CONTINUE
o CALL BNDRYK(KK,K1,K2,K3,TCON)

C Calculation of [B]T|D][B]

C
WC=1.0
CALL NAT3D
DO 17 K=1,8
X=KSAI(K)
Y=ETA(K)
Z=IETA(K)
CALL DERSHP(DET,ICON)
DO 16 I=1,8
DO 18 J=1,8
DO 16 L=1,3

ESM(I,J)=ESM(I,J)+ TCON*DET*WC*B(L,1)*B(L,J)

16 CONTINUE
17 CONTINUE

C
C Check of the boundary condition

C
IF(ICON .NE. 1) GO TO 25
CALL NAT2D
DO 20 K=1,4
X=KSAIK)
Y=ETA(K)
7=1.0
CALL DERSHP(DET,ICON)
DO 19 I=1,8

| > i
'\
,



101

DO 18 J=1,8
18 ESM(I,J)=ESM(I, JE—H*WC*DET*N(I)*N(J)
19 EIE&R—E (1)+H*WC*DET*TINF*N(I)
20 CONTINUE
25 CALL ASMBL(KK)
o 30 CONTINUE

C********#******************************************

C*** End of the loop of generating the system of equations
C***************************************************

C

CALL MODIFY(TEMP)
CALL DCMPBD
CALL SLVBD
C
C Output of surface temperature
WRI’I“E(I(()/‘m) 1y, {1, 1y, /1)
40 FORMAT X, XE(I),5X, YE(I),5X,'ZX(I),5X,"TEMP’
DO 60 I=1 KJ'P
W%t S(ZG(I)-4.0).GT.0.00001) GO TO 60
ITE(10,50) XG(I) YG(I),ZG(I),A(I)
50 FORMAT(3X,4F10.4)
60 CONTINUE
DO 70 I=1,NP
W%{ABS ZG(I)-0.7348).GT.0.00001) GO TO 70
ITE(I0,50) XG(I),YG(I),ZG(I),A(I)
70 CONTINUE
C
CLOSE(UNIT=IN,STATUS='SAVE’
g%ggE UNIT=IO,STATUS='SAVE’

END
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SUBROUTINE BNDRYK(;(K K1,K2,K3,TCON)
IMPLICIT REAL (A-H ng
COMMON z (8),YE(8),ZE(8)
c REAL K1,

CF ok ook ok ok ko okok ook ok okok ok ok ok ok ok ok ok ok ok ok kok ok ok ok k ok ok ok k ok

C***  Subroutine of assigning the K to each element
C*********************************************

© %f XEEI;i%CEEF ;/2.

ZE(1 +ZEgrs
0.0) .AND. (ABS(S)‘() .LT.15.0) .AND.

[F‘( ABS(X).G
ABS(Y GT 25.95).AND. (ABS(Y).LT.66.0) .AND.

ABS(Z).GT.2.2) .AND. (ABS(Z

).LT.44.45) .AND.

((ABS(X).GT.20. . :
ABS(Y).GT.61.15).AND. (AB ).LT.66.0) .AND.
ABS(Z).GT.2.2) .AND.

NN NDNNDNDNDNNDNDNNDNDNDNDNDNDNDNODNDNDNNDNDNDNDNNN

( KK.GE.25) .AND. (KK.LE.27))  .OR.
KK.GE.55) .AND. (KK.LE.57 .OR.
KK.GE.81) .AND. (KK.LE.63 .OR.
KK.GE.73) .AND. (KK.LE.75 .OR.
KK.GE.79) .AND. (KK.LE.81 .OR.
KK.GE.87) .AND. (KK.LE.69 .OR.
KK.GE.91) .AND. (KK.LE.93 .OR.
KK.GE.451) .AND. (KK.LE.453))  .OR.
KK.GE.457) .AND. (KK.LE.459 .OR.
KK.GE.463) .AND. (KK.LE.465))  .OR.
KK.GE.469) .AND. (KK.LE.471 .OR.
KK.GE.505) .AND. (KK.LE.507 .OR.
KK.GE.535) .AND. (KK.LE.537))  .OR.
KK.GE.541) .AND. (KK.LE.543))  .OR.
KK.GE.553) .AND. (KK.LE.555))  .OR.
KK.GE.559) .AND. (KK.LE.561 .OR.
KK.GE.547) .AND. (KK.LE.549 .OR.
KK.GE.571) .AND. (KK.LE.573))) THEN
TCON=K2
ELSE IF&(I(EIG{ .GE.76 ) .AND. (KK.LE.78 )) .OR.
3 70 .AND (KK.LE.72 ) OR.
3  ({ KK.GE. 322 .AND. KK.LE 324 .OR.
3 ({ KK.GE.352) .AND. (KK.LE.354 .OR.
3 ({ KK.GE.466) .AND. (KK.LE.468 .OR.
3 ({ KK.GE.556) .AND. (KK.LE.558 .OR.
3 ({ KK.GE.550) .AND. (KK.LE.552 .OR.
3 (( KK.GE.910) .AND. (KK.LE.912))) THEN
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TCON=K3
ELSE
TCON=K1
ENDIF
RETURN
END
C
C
SUBROUTINE ASMBL(KK)
IMPLICIT REAL (A-H,0-7)
COMMON /AV éA(l 19070),JGF,JGSM,NP,NBW
COMMON /ELEM/ESM(8,8),EF(8),NS(1068,8)
C

C Ak okok oo ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok

C***  Subroutine of direct stiffness procedure
C***************************************

C
DO 20 I=1,8
I=NS(KK,])
A(JGF+I)=A(JGF+II)+EF(I)
DO 10 J=1,8
JJ_NEémJ)H-n
IF(JJ GO TO 10
J1=JGS +§JJ—1)*NP+II-(JJ-1)*(JJ-2)/2
A(J1)=A(J1)+ESM(L,J)
10 CONT
20 CONTINUE
RETURN
END

QQ

SUBROUTINE NAT2D
IMPLICIT REAL (A-H,0-Z)
DIMENSION G(2)
COMMO A{NATU/KSAI(S) JETA(8),ZETA(8),W
REAL KS
c DATA (G(I),]=1,2)/0.577350,-0.577350/

CAdkk ok dodkok ok Aok ko o ok ok ok ko ook ok ok ok ook ok koK ok ok ok ko koK ok ok okok ki ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

C***x  Subroutine of determining the Ksai and Eta in Gauss-Legendre method
C*******************************************************************
C
=0
DO 10 I=1,2
DO 10 J=1,2
M=M+1
KSAI M)=G(IJ)
ETAM)=G(I)
10 CONTINUE
RETURN
END

aaa
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SUBROUTINE NAT3D
IMPLICIT REAL (A-H,0-Z)
DIMENSION G(2)
CONMOIX(NATU/KSAI(S),ETA(S),ZETA(S),WC
REAL KS
DATA (G(I),]=1,2)/0.577350,-0.577350/
C

(3*#*********************#*************************#*********************#

C***  Subroutine of determining the Ksai, Eta and Zeta in Gauss-Legendre method
(3************************************************************************

C
M=0
DO 10 I=1,2
DO 10 J=1,2
DO 10 K=1,2
M=M+1
KSAI(M)=G(K)
ETAM)=G(J
ZETAM)=G(I)
10 CONTINUE

RETURN
END

QQ

SUBROUTINE SHAPE

IMPLICIT REAL (A-H,0-7)

COMMON /SHA/X,Y,Z,N(8),PX(8),PY(8),PZ(8),B(3,8)
. REAL N

ko koo ok ook ko ok okok ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok kok kok ok

C***  Subroutine of calculating shape function ([N]) and partial derivatives

C***  of shape fuctions %P)%,_[.PY],[PZ]) in the natural coordinates
CH*x X : KSAI :ETA  Z:ZETA
C********************************#*********************************
C
J*(1-X)*(1-Y)*(1-Z
ARSI
DX(14X)*(14Y)*(1-Z)
JH1-X)*(1+Y)*(1-Z
JH1-X)(1-Y)*(1+2
J*(+X)*(1-Y)*(1+ %
JH14X)*(14+Y)*(1+2Z)
JH(I-X)*(1+Y)*(1+2Z)

J*(1-Y)*(1-2
J*(1-Y)*(1-2
J*(14+Y)*(1-
J*(14Y)*(1-Z
J*(1-Y)*(1+2Z
J*(1-Y)*(1+2Z
J* 1+Y;*§1+ ;

Wmnnnn
et e e e e

<<\<;<L<<\<\S\§\
Q0 Q0 Q0 QO 00 QO Q0 GO

la*BacBe laRa-laBacRe’)
SRy ZLZLLALL

00 ~J O Ut b QO BN =
00 Q0 00 Q0 QO 00 Q0 QO

J¥(1+Y)*(1+2

[JNY NN
RN WAURFURNIN LA

S

PY(1)=(-1./8.)%(1-X)*(1-Z)
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PY(2)=(-1./8.)*(14+X)*(1-Z
PY(3)=( 1./8.)*(1+X)*(1-Z
PY(4)=( 1./8.)*(1-X)* 1-z%
PY(5)=(-1./8.)*(1-X)*(1+ %
PY(6)=(-1./8.)*(1+X)*(1+
PY(7)=( 1./8.)*(14+X)*(1+Z
PY(8)=( 1./8.)*(1-X)*(1+2)
C
PZ(1)=(-1./8.)*(1-X)*(1-Y)
PZ(2)=(-1./8.)*(1+X)*(1-Y)
PZ(3)=(-1./8.)*(1+X)*(1+Y)
PZ(4)=(-1./8.)*(1-X)*(1+Y)
PZ(5)=( 1./8.}*(1-X)*(1-Y)
PZ(6)=( 1./8.)*(14+X)*(1-Y)
PZ(7)=( 1./8.)*(1+X)*(1+Y)
PZ(8)=( 1./8.)*(1-X)*(1+Y)
C
RETURN
END
c
c
SUBROUTINE DERSHP(DET,ICON)
IMPLICIT REAL (A-H,0-Z)
REAL JA,INJ,N
DIMENSION JA(3,3),INJ(3,3)
COMMON /SHA/X,Y,Z,N(8 ,PXéS),PY(S),PZ(8),B(3,8)
. COMMON /XYZ/XE(8),YE(S),ZE(8)

C ARk koo ook ook ok ok o ok ok ook ok ok ok ok ok ok ok ok ok kR ook ok ok ok ok ok ok ok ok ko k ok ok ok ok ok k ok k

C***  Subroutine of calculating the derivative of shape function [Bl
C*************************#********************************

C

CALL SHAPE
C
C Calculating the Jacobian matrix
C
DO 10 I=1,3
DO 10 J=1,3
JA(L,J)=0.0
10 CONTINUE
DO 20 I=1,8
JA(1,1)=JA(1,1)+PX(I *Egl
JA(1,2)=JA(1,2)+PX(I)*YE(I
JA(1,3)=JA(1,3)+PX(I)*ZE(
JA(2,1)=JA(2,1)4+PY(I)*XE
JA(2,2)=JA(2,2)+PY(I)*YE(I
JA(2,3)=JA(2,3)+PY(I)*ZE
JA(3,1)=JA(3,1)+PZ(I)*XE(I
JA(3,2)=JA(3,2)+PZ(I)*YE(I
JA(3,3)=JA(3,3)+PZ(I)*ZE
20 CONTI
IF(ICON.NE.1) GO TO 30

JA(1,3)=0.0
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JA(2,3)=0.0

JA(3,1)=0.0

JA(3,2)=0.0

JA(3,3)=1.0
C
C Calculating of the inverse of Jacobian matrix
C

30 DELTA—JAS 1)*JA 2)*JA(3 3 JA(l 1)*JA(2,3)*JA(3,2)
1 -JA(1,2)*JA(2,1)*JA(3,3)+JA(1,2)* JA(2,3)* JA(3,1)
2 +JA(1,3)*JA(2,1)*JA(3,2)-JA(1,3)*JA(3,1)*JA(2,2)
DET=ABS DELT
D=1./DELTA

INJ(1,1)=D*(JA(2,2)*JA(3,3}-JA(2,3)*JA(3,2
INJ(1,2)=D*(JA(1,3)*JA(3,2)}-JA(1,2)*JA(3,3
INJ(1,3)=D*(JA(1,2)*JA(2,3)-JA(2,2)*JA(1,3
INJ(2,1)=D*(JA(3,1)*JA(2,3)}JA(2,1)*JA(3,3
INJ(2,2)=D*(JA(1,1)*JA(3,3}JA(1,3)*JA(3,1
INJ(2,3)=D*(JA(2,1)*JA(1,3)-JA(1,1)*JA(2,3
INJ(3,1)=D*(JA(2,1)*JA(3,2)}-JA(2,2)*JA(3,1
INJ(3,2)=D*(JA(1,2)*JA(3,1)}-JA(1,1)*JA(3,2
INJ(3,3)=D*(JA(1,1)*JA(2,2)}-JA(2,1)*JA(1,2

C

g Calculating of the [B] matrix
DO 40 I=1,3

DO 40 J=1,8 w1)
IJ—INJII *PX(J)+INJ(L,2)*PY(J)+INJ(1,3)*PZ(J
10 CONTII\&UE) (DHINJ(L,2)*PY(I)HINJ(L,3)*PZ(J)

RETURN
END

C

C
SUBROUTINE MODIFY(TEMP)
IMPLICIT REAL (A-H, O-Z}
COMMON/AV/A(119070),JGF ,JGSM,NP,NBW

C

Cdkckok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ook k ok ok

C***  Subroutine of input of the known nodal temperature values
C**********************************************************

C
DO 30 I=1,NP
IF(((L.GE.36) .AND.(LLE 49)) OR. (g .Ge.106) .AND. &:LE 119)1)
1 ((I.GE.866).AND.(LLE.679)).0R.((I.GE.736). AND (LLE.749
IB=I

BV=TEMP
K=IB-1
DO 20 J=2,NBW
M=IB+J-1
IF(M.GT.NP) GO TO 10
1J=JGSM+(J-1)*NP+IB-(J-1 g-2)/2
tzJGF+M)—A(JGF+M)-A(I
A(17)=0
IF(K .LE. 0) GO TO 20
J=JGSM+(J-1)*NP+K-(J-1)*(J-2)/2

10
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A(JGF+K)=A(JGF+K)-A(KJ)*BV
A(KJ)=0.0
K=K-1
20  CONTINUE
A(JGF+IB)=A(JGSM+IB)*BV
ELSE
GO TO 30
ENDIF
30 CONTINUE
RETURN
END

Qo

SUBROUTINE DCMPBD

IMPLICIT REAL (A-H,0-2)

COMMON /AV/A(119070),JGF,JGSM,NP,NBW
C

Gk koo ok ok ok ok ok ok ook ok o ok ok ok ok ok ok ok a ok ok ko e ke ke ke ok ok ok ok o ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok k

C***  Subroutine of decomposition of a banded matrix into upper

C***x  triangular form using Gauss elimination
CFd kbR kokokk ok ko ok koo ok ko ok ok kKK ok

NP1=NP-1
DO 20 I=1,NP1
MJ=I+NBW-1
IF}MJ.GT.NP) MJ=NP
NJ=I+1
MK=NBW
II\F]‘]()(NP-I+1) LT. NBW) MK=NP-I+1
=0

DO 10 J=NJMJ
MK=MK-1
ND=ND+1
=ND+1
DO 10 K=1MK
NK=ND+K
JK =JGSM+(K -1)*NP+J-(K -1)*(K -2)/2
INL—=JGSM+{NL-1)*NP+I-(NL-1)*(NL-2)/2
INK=JGSM-+{NK-1)* NP +1-(NK-1)*(NK-2)/2
AU AQTK)-A(INL)* A (INK)/ A(I)
A =A(JK}A(INL)*A(INK)/A(II
10 CONTI
20 CONTINUE
RETURN
END

aQa

SUBROUTINE SLVBD
IMPLICIT REAL (A-H,0-Z)
. COMMON /AV/A(119070),JGF,JGSM,NP,NBW

CFdkokokok ok ok ok ok ook ook ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok dkok ok ok ok ok ok ok ok

C***  Subroutine of decomposition of the global force vector
C#****#******************************************#***

C



108

NP1=NP-1
DO 10 I=1,NP1
MJ=I+NBW-1
IF(MJ.GT.NP) MJ=NP
NJ=I+1
L=1
DO 10 J=NJMJ
L=L+1
IL=JGSM+(L-1)*NP+1-(L-1)*(L-2)/2
A(JGF+J)=A(JGF+J)-A(IL)*A(JGF+1I)/A(JGSM+1I)
10 CONTI
C

C Backward substitution for solving the system of equations

C
A(NP)=A(JGF+NP)/A(JGSM+NP)
DO 20 K=1,NP1
I=NP-K
MJ=NBW
w (I+NBW-1).GT.NP) MJ=NP-I+1
=0.0
DO 30 J=2MJ
N=I+J-1
IJ=JGSM-+(J-1)*NP+I-(J-1)*(J-2)/2
SUM=SUM-+A(LJ)*A(N)
30 CONTINU}E} ( N |
A(I)=(A(JGF+I}-SUM)/A(JGSM+I
20 CONTII\SL}E Al
RETURN
END
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PIPE HEAD LOSS
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The pumping resistance of typical pipe circuit (Figure 1.1) and the new
pipe circuit (Figure 1.2) were calculated in the hot water floor systems. The far-
rowing house was assumed to have the 20 crates. The length of pipe and the
bending points were 109.7 m (360 feet) and 80 for the typical pipe circuit and 91.4
m (300 feet) and 10 for the new pipe circuit, respectively. The pumping capacity

was assumed as 15.1 1/min. (4 gallon/min.).

1) Losses due to wall friction

The water velocity in the circular tube is

o 252.33 cm®/s
V=
(m/4) (1.905)? cm?

= 88.53 cm /s = 0.8853 m/s

At 60° C (140°F), kinematic viscosity, v = 0.478 X 10~° m?/s, so that

Re— VD _ 08853 m/s X 0.01905 m
v 0.478 X 1078 m?/s

= 3.5282 X 10*

The relative roughness is

£ _0045mm _ 505036
D 19.05 mm

for the wrought iron pipe.

109
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From the Moody diagram, the friction factor is f = 0.028. From the modified Ber-

noulli equation,

1 2fL
AP = — VP2
2" D
1 . 22,2 (0.028) (L) m
—— L (o832 0.8853
3 { g/m?) (08853 m*/s” =3 51905 m
= — (0575 L) KPa

For the typical pipe circuit,

AP, = — (0.575) X 109.7 KPa = — 63.1 KPa

AP <2
AH,, = — wi _ 63100 kg/m-s — —655m

g 983.2 kg/m® 9.8 m/s?
where AH,,, is head loss.

For the new pipe circuit,

AP,, = — (0.575) X 91.4 KPa = — 52.6 KPa

52600 kg/m-s?
983.2 kg/m® 9.8 m/s’

w2 =

=—54Sm

2) Losses in pipe bending

The loss coefficient of standard 90° elbow (K) is 0.75.

for one bending is

AP = —K %p\‘/?
= —(0.75) (%) (983.2 kg/m®?) (0.8853)% m?/s?

= — 0.289 KPa

The pressure drop
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For the typical pipe circuit,

AP,, = — (0.289) (80) = — 23.1 KPa
23100 kg/ms?

o 983.2 kg/m® 9.8 m/s’
For the new pipe circuit,
AP, = — (0.289) (10) = — 2.9 KPa
<2
AHy, = 2900 kg/m-s =—030m

983.2 kg/m® 9.8 m//s?

3) Comparison with typical and new pipe circuit

Head loss Typical pipe circuit New pipe circuit
=====

Loss due to wall friction - 6.55 m -545m
Loss in pipe bending -240 m -0.30 m
Total head loss - 895 m -5.75 m

The result shows the new pipe circuit reduced the head loss by 35.8 %.
The loss in pipe bending of new pipe circuit was negligible while that of typical

pipe circuit occupied a large portion of total loss.



BIBLIOGRAPHY



BIBLIOGRAPHY

Agricultural Engineers Yearbook. 1986. The American Society of Agricultural
Engineers, St. Joseph, MI.

Akyuz, F. A. 1970. Natural Coordinate systems, An Automatic Input Data Genera-
tion Scheme for a Finite - Element Method. Nuclear Engineering and
Design. Vol. 11, pp 195 - 207.

Allaire, P. E. 1985. Basics of the Finite Element Method. Wm. C. Brown Publish-
ers.

Beckett, F. E. and R. F. Barron. 1972. Heat Transfer from a Pig to the Floor.
Transactions of the ASAE, Vol. 15, No. 4, pp. 700 - 703.

Butchbaker, A. F. and M. D. Shanklin. 1965. Development of Homeothermic Regu-

lation in Young Pigs. Transactions of the ASAE, Vol. 8, No. 4, pp. 481 -
485.

Cavendish, J. C., D. A. Field and W. H. Frey. 1985. An Approach to Automatic
Three - Dimensional Finite Element Mesh Generation. International Jour-
nal for Numerical Methods in Engineering, Vol. 21, pp. 329 - 347.

Collins, R. J. 1973. Bandwidth Reduction by automatic Renumbering. International
Journal for Numerical Methods in Engineering, Vol. 6, pp. 345 - 356.

Curtis, S. E. 1981. The Enuvironment in Swine Housing. Extension Bulletin E-
1284. Michigan State University, Cooperative Extension Service.

England, D. C., H. W. Johnes and S. Pollmann. 1987. Care of the Sow During
Farrowing and Lactation. Extention Bulletin E-1232. Michigan State
University, Cooperative Extension Service.

Ergatoudis, I., B. M. Irons and O. C. Zienkiewicz. Curved, Isoparametric, Quadri-
lateral Elements for Finite Element Analysis. International Journal Solids
Structures, Vol.4, pp. 31 - 42.

112



113

Grooms, H. R. 1972. Algorithm for Matriz Bandwidth Reduction. American Society
of Civil Engineers, Vol. 98, No. ST1, pp. 203 - 214.

Hart, D. P. and R. Couvillion. 1986. Earth - Coupled Heat Transfer. National
Water Well Association, Dublin, Ohio. pp. 84 - 85.

John, J. E. A. and W. L. Haberman. 1980. Introduction to Fluid Mechanics.
Second Edition. Prentice-Hall, Inc., Englewood Clifis, New Jersey.

Karhnak, J. M. and R. A. Aldrich. 1971. Enuironmental Control in a Farrow-to-
Finish Facility, Transactions of ASAE, Vol. 14, No. 2, pp. 260 - 262.

Kelly, C. F., H. Heitman and J. R. Morris. 1948. Effect of Environment on Heat
Loss from Swine. Agricultural Engineering, Vol. 29, No. 12, pp. 525 - 529.

Kreith, F. 1965. Principles of Heat Transfer. Second Edition, International Text-
book Company, Scranton, Pennsylvania.

Lardner, T. J. 1963. Biot’s Variational Principle in Heat Conduction. AIAA Jour-
nal, Vol. 1, pp. 196 - 206.

Laura, P. A. A., J. A. Reyes and R. E. Rossi. 1974. A Comparison of Analytical
and Numerical Solutions sn Heat Conduction Problems. Nuclear Engineer-
ing and Design, Vol. 31, pp. 379 - 382.

Liptrap, D. O., J. H. Bailey and J. O’Neal. 1987. Baby Pig Management - Birth to
Weaning. Extension Bulletin E-1095. Michigan State University,
Cooperative Extension Service.

Mahan, D. C. 1985. Cold Facts on Nursery Enuvironments. Hog Farm Manage-
ment, pp. 26 - 28.

Meyer, V. M. and R. W. Hansen. 1980. Insulation for Swine Housing. Extension
Bulletin E-1396. Michigan State University, Cooperative Extension Ser-
vice.

Muehling, A. J. and C. M. Stanislaw. 1979. Swine Farrowing Units. Extension
Bulletin E-1087. Michigan State University, Cooperative Extension Ser-
vice.

Segerlind, L. J. 1984. Applied Finite Element Analysis. Second Edition. John Wel-
ley & Sons, Inc., New York.



114

Spillman, C. K. and C. N. Hinkle. 1969. Conduction Heat Transfer from Swine to
Controlled Temperature Floors. ASAE paper No. 69 - 441. ASAE, St.
Josept, MI.

Spillman, C. K. and J. P. Murphy. 1976. Effect of Farrowing House temperature
on Energy Use and Litter Size. ASAE Paper No. 76-4044. ASAE, St.
Joseph, MI.

Stainsbury, D. 1970. Pig Housing. Fifth Edition, Farm Press Ltd..

Van Fossen, L. and D. G. Overhults. 1980. Floor Heat for Swine. Extension Bul-
letin E-1397. Michigan State University, Cooperative Extension Service.

Wilson, E. L. and R. E. Nickell. 1966. Application of the Finite Method to Heat
Conduction Analysis. Nuclear Engineering and Design, Vol. 4, pp. 276 -
2886.

Zienkiewicz, O. C. and Y. K. Cheung. 1965. Finite Elements in the solution of
field problems. The Engineer, Vol. 220, p 507.

Zienkiewicz, O. C., A. K. Bahrani and P. L. Arlett. 1967. Solution of Three -
Dimenstonal Field Problems by the Finite Element Method. The Engineer,
Vol. 224, No. 5830, pp. 547 - 550.

Zienkiewicz, O. C. 1977. The Finite Element Method. Third Edition. McGraw-Hill
Publications, New York.






[T



