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solutions). The best approximation of the average shear stress of stan-

dard power—law fluids was obtained with the Model 2 (concentric

cylinders analogy with end effects) for the paddle impellers. Model 3

(d - de ) gave the best results for the flag impeller.

The procedure was evaluated with an actual power-law food

product, creamy salad dressing. In this case Model 2 also gave the best

results for the paddle impellers. For the flag impeller, Model 3 yielded

higher values of the average shear stress, with Model 1 (concentric

cylinders analogy with negligible end effects) being the best model for

approximation of the average shear stress of the tested food material.

Established mixer viscometry methods, the viscosity matching and

the slope method, were evaluated for determination of average shear

rates when agitating time—independent non-Newtonian fluids. Results

indicate that the use of a constant value of the mixer proportionality

constant, k', is not valid for all ranges of fluid rheological

properties, system geometry and operating conditions. The relationship

betwaen the average shear rate and the impeller rotational speed was

found to be different for different rheological properties and system

geometries. The effect of the fluid properties on the value of k' is not

clearly understood and needs further investigation.
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CHAPTER 1

INTRODUCTION

Many food materials, especially the suspension-type, present non-

Newtonian flow characteristics. To evaluate, design, and control

processing systems for the product, the engineer needs to understand the

flow properties of these materials. This work is motivated by the need

for new instrumentation and methodologies to evaluate the rheological

behavior of suspension-type food products.

When dealing with food materials that are suspensions (tomato

sauce, baby foods, salad dressings, etc.), conventional narrow gap

Viscometers (such as tube, cone-and-plate and concentric cylinders

Viscometers) become unsuitable for complete characterization because of

effects such as phase separation (and consequent slip at the walls), and

blocking of the measuring gap by particle aggregates. Significant errors

in measurements can also occur due to the destruction of the particles.

An alternative instrument to use in evaluating the flow

Pr°perties of suspension-type fluids is the "impeller" or "mixer" vis-

c”letter, based upon the theory of mixing non-Newtonian fluids developed

by Metzner and Otto (1957). The method has proven to be useful for

determination of rheological properties of viscous fermentation broths

(3°ngenaar et a1., 1973; Kemblowski et a1. , 1988) and suspension—type

f°°d products (Rao, 1975; Steffe and Ford, 1984).

The Metzner and Otto approach is based on the assumption of a

direct proportionality between average shear rate in the fluid and

rotational speed of the impeller, and the proportionality constant, k',

 



depending only on the geometry of the impeller. This assumption implies

that the investigated fluid has no effect on the proportionality con-

stant. The application of an average shear rate given by the above

assumption has successfully been applied in the development of power

correlations in mixing vessels. For rheological applications, however,

it could lead to significant errors in the evaluation of the rheological

behavior of shear-dependent fluids. Hence it is necessary to explore the

implications of using the linear shear rate in mixers, to quantify the

interaction of the mixer proportionality constant, k' , and system

geometry as well as fluid properties, and to develop a procedure for

evaluating fluid properties (especifically, power-law) using a mixer

viscometer.

The movement of solid surfaces (e.g., an impeller) in contact

with a fluid causes the fluid to move in some characteristic pattern

Will-Ch results in the development of internal stresses and the applica-

tion, on the solid surfaces, of characteristic forces which must be

contonuously counterbalanced (e.g. by a drive motor) ir order to sustain

the fluid motion (Charles, 1978). The nature of the flow pattern and the

Illafinitudes of internal stresses and applied forces depend primarily on

the geometry of the system, the rate of fluid motion and the rheological

Pmperties of the fluid.

Approximate expressions for the determination of the shear

Stress and shear rate in a vessel with an impeller can be obtained using

approximate geometries (such as the concentric cylinders analogy) for

the System, since the complicated geometry of the system makes the

solution of the proper set of differential equations of motion a dif—

ficult task .



CHAPTER 2

OBJECTIVES

The objectives of this dissertation are:

. To review and evaluate established mixer Viscometry methods.

- To analyze the influence of system geometry, operating conditions and

fluid properties on mixing shear rates when agitating power-law

fluids .

- To obtain expressions for estimation of the shear stress and the

Shear rate in the mixing systems.

- To develop a new procedure for rheological characterization of power

-1aw fluids, using mixer Viscometry data.

 



CHAPTER 3

LITERATURE REVIEW

In the food and chemical industry many operations are dependent

on effective agitation and mixing of fluids; therefore, an understanding

of the phenomena involved in mixing fluids with complex rheology (time-

dependency, shear-thinning, elasticity) is increasingly important.

The chapter leads of with a review of certain aspects of the use

of mizters and mixing principles to evaluate the rheological behavior of

fhdd or semi-solid materials and a summary of the developments in the

81333- The theory of mixing is reviewed in the second part of the chap-

ter .

3.1) U§Ifl§ MIXING TO EVALUATE RHEOLOGICAL PROPERTIES

Use of mixers for rheological evaluation was initially suggested

by Metzner and Otto (1957) with the development of a method of ap-

PrOXi-mating power-law parameters for non-Newtonian pseudoplastic (shear—

thinning) fluids using an apparent viscosity, "a calculated from data

Obtained with a mixing vessel. Their results were verified by Calderbank

(1958) and Metzner and Taylor (1960), who observed that local fluid

shear rates were found to be directly proportional to impeller speed,

f°r both Newtonian and non-Newtonian fluids, and high shear rates oc-

curred close to the impeller. Saravacos and Meyer (1967) observed

similar‘behavior when studying the rheological parameters of fruit

Purees in agitated kettles. They found that the apparent viscosity

 



decreased considerably at high agitation speeds for pseudoplastic fluids

and the shear rate at a particular speed of agitation varied with the

distance from the center of rotation.

The general principle of measurement used in mixer Viscometry is

based on the determination of the torque on the shaft of the impeller as

a function of its rotational speed. Thus, a suitable value of the ap-

parent viscosity for a non-Newtonian fluid can be obtained from

viscometric measurements if a representative value of shear rate "y in

the given vessel can be predicted. It must be noted that due to the

relatively complex flow (complex velocity profiles, hence shear rates)

escablished in the mixing vessel, mixer Viscometry only results in

aPPrfifiximate data and only average values can be determined. The mixing

V6336]. is generally a cylindrical container with numerous possible

1mPellet configurations (Figure 3.1).

3.1.1) Applications of Mixer Viscometry

Mixers for rheological studies have been used by investigators in

the food and fermentation areas (Table 3.1). In a review of the

eSui-Fluent used in fermentation studies, Solomons (1971) expressed the

need for an "in-situ" measurement system and suggested the possibility

0f “Sing a rotating impeller instead of the usual "cup and bob" type of

ViscOmeter to determine the rheological properties of fermentation

culturea. An initial application of a mixer as a viscometer was con-

sidel'ed by Bongenaar et a1. (1973), who developed a reproducible method

of characterizing the rheological properties of mold suspensions using a

turbIlne impeller instead of a rotating cylinder in a rotational
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F1gure 3.1: Typical Impellers Used In The Determination Of Rheological

Properties With A Mixer (Castell-Perez and Steffe, 1989).

A



Table 3.1:

Mixing Systems (CastelloPerez and Steffe, 1989).

Products And Rheological Characteristics Consideredvln The
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Viscometer. This method solved the problem of particle settling and

Phase separation because the impeller achieved mixing and no water layer

was developed adjacent to the impeller blades (Charles,1978). In recent

Years, many types of rheological behavior have been studied using mixers

(Table 3.1): shear-thinning, yield stress, time-dependency, elasticity,

etc.

Some investigators have used the mixer concept to determine

SUbJective rheological parameters that are a function of measuring

instrument. An example of this is the Ottawa Starch Viscometer (Voisey

et 81. , 1977) developed for measuring the properties of starch slurries

during cooking, where the starch slurry is mixed by a flat paddle rotat-

ing at: constant speed in a stationary bowl. The torque generated by

shearing the starch slurry was recorder by a transducer, and the test

time Was considerably shorter than for other instruments such as the

Brabender Amylograph. With a similar concept in mind, Steffe et a1.

(1989) developed a mixer viscometer system to evaluate the flow behavior

of corn starch slurries during gelatinization. The method requires small

samPIE volumes (13 m1.) and short test times. A commercial version of

the i‘l'lstrument is being implemented. Walker et a1. (1988) described the

latest efforts dedicated to the evaluation of pasting behavior of

Sta“relies. An instrument developed for the wheat industry, the Rapid

v18°°~Analizer (RVA), uses a disposable cup and plastic paddle, and

gives a pasting curve resembling the Brabender curve. The method also

requires small sample sizes (25 ml.) and short test times. The instru-

“lent has been tested and is comercially available.

Adoption of mixer Viscometry techniques has been limited by the

he

1atively high cost of the necessary instrumentation. The performance



0f a low cost concentric cylinder viscometer was analyzed by Griffith

and Rao (1978) . Castell-Perez et al. (1987) developed a low cost mixer

Viscometer system, based on the Brookfield Viscometer, for determination

0f the rheological properties of power-law fluids.

Due to the growing interest in on-line instruments for the

measurement of rheological properties of fluids during processing,

Kemblowski et a1. (1988) developed a measuring system consisting of a

helical screw impeller rotating in a draught tube, based on torque

Measurements, for on-line Viscometry. Tamura et al. (1988) investigated

the applicability of the helical screw rheometer developed by Kraynik et

31- (1984) for on-line rheological measurements.

From the point of view of improved process efficiency and quality

°f the final product, applications of mixer Viscometry techniques rather

than conventional techniques have been and can be used to successfully

j*“VeStzlgate the flow properties of food products, with a major potential

f°r send-solid, suspension-type food materials.

3‘2) IO T C UES IN MIXER VISCOME Y - TRADITIONAL METHODS

Various techniques using a mixer viscometer for the determination

of the rheological behavior of food materials have been developed and

tested. Procedures may vary from the geometry of the mixing system to

the type of fluid and rheological behavior considered. Because many food

Ina"tel'ials, especially the suspension-type, present non-Newtonian flow

Q‘ha‘racteristics, mixer Viscometry efforts have dealt primarily with the

rheological characterization of non-Newtonian fluids. Specific calcula-

ti

on techniques, summarized in Figure 3.2, are discussed in

 bk
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the following sections.

3 2.1) Analxsis_2f_Iime;lndsnsadeat_§shaxi2r

3.2. 1 .1) fligcosity Matching Method

Based on the earlier work of Magnusson (1952), who proposed a

Procedure for calculation of the apparent viscosity of a non-Newtonian

fluid in mixing vessels from the power curve for Newtonian fluids, the

Work of Metzner and Otto (1957) provided engineers with a method to

determine the apparent viscosity of non-Newtonian fluids using a mixing

system. Their approach is based on the theory for power consumption in

agitated vessels .

The generally accepted empirical relationship between the Power

number, Po' and the mixing Reynolds number, Re, in the laminar flow

region (Re < 10) for a Newtonian fluid is

—-A-— (3.1)

Where A is a constant dependent on the geometry of the system. The

dimensionless numbers in Eqn. (3.1) are defined as

p0 - ——2;—; (3.2)

p d N

and

2

R __LM (3.3)

e ’7
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where:

d - impeller diameter, 111

N - impeller rotational speed, rev/s

p - fluid density, kg/m3

7) - Newtonian viscosity, Pa 5

and the power input, P, is related to the torque M exerted on the im-

peller by

P - 21rNM (3.4)

Combining the equations, the following relationship is obtained,

5 3 ' 2 (3.5)

pd N pd N

3 2

and P-Ad N ,, (3.6)

Thus, power measurements can be used to characterize the vis-

cosity of a Newtonian fluid in a mixing system by measuring the torque

required to turn the shaft of the impeller at a certain rotational

speed. The geometry of the system and fluid density must also be known.

When mixing a non-Newtonian fluid, especially one obeying the

r:

(“oar-law model ,

or-nm-‘yn (3.7)
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where:

a - shear stress, Pa

’1 - shear rate, 1/5

In - consistency coefficient, Pa 5n

n - flow behavior index, dimensionless

the viscosity increases from a minimum value closer to the impeller to a

maximum value in regions far away from the impeller (Ulbrecht and

Carreau, 1985). Metzner and Otto suggested that Eqn. (3.1) could be

Valid for a non—Newtonian fluid if an apparent viscosity, 17a, evaluated

at an average shear rate given by

"y - k’N (3.8)

were used. Equation (3.8) assumes that the average shear rate around the

1mpeller is proportional to the rotational speed of the impeller, N,

being k' the impeller proportionality constant.

Once the average shear rate, :Yav , has been calculated, an

&Verage apparent viscosity can then be obtained (Nagata, 1975). In their

ex1)‘"‘5'3‘.mental procedure, Metzner and Otto utilized two identical sets of

mixing equipment, one containing a Newtonian fluid and the other a non-

Newt'~')l'lian fluid. Using the same impeller speed and varying the viscosity

of the Newtonian fluid so that the power measured at each impeller is

the Same, the apparent Viscosities should be the same in both instru-

ments. Thus, they were able to determine the apparent viscosity, "a , of

t

he non-Newtonian fluid by knowing the viscosity of the Newtonian under

1

dentical experimental conditions in the laminar region.

5‘ ‘a
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The procedure for data collection and analysis was:

1. Measurement of the torque required to rotate the impeller at a fixed

rotational speed (Newtonian and non-Newtonian fluids).

2. Determination of Power Number- Reynolds Number curve for Newtonian

fluids. The value of the constant A is determined from the slope of

this curve.

3. Determination of power input and Power number, Po’ [Eqn. (3.2)] at

each impeller speed N using non-Newtonian measurements in the mixing

system.

4. From the curve obtained in (2), read the corresponding Re and find

the viscosity from the expression for the Reynolds number

_w_d (3_9)

5‘ Let r) - "a . When the apparent viscosity of the non-Newtonian fluid

18 obtained, the corresponding average shear rate can be determined

from the viscometric curve (0 versus ’7 data, obtained with a

conventional viscometer), based on the assumption that 11 - 0/7.

6‘ calculate the value of the mixer impeller proportionality constant k’

at a specific value of the rotational speed N using Eqn. (3.8) ,

1-e.. k' - +/N

Holland and Chapman (1966) outlined a more complete description

of the technique developed by Metzner and Otto (1957):

1 ' w1th "a obtained from Eqn. (3.9), plot "a versus impeller speed N.

ERperimentally determine the apparent viscosity of the non-Newtonian

fluid in a conventional viscometer at various shear rates.

Plot log "a versus log ’7 .

L



 

15

~ From the plot of (1), determine the value of "a at a specified N

b

5- From the plot of (3), read the value of "1 which gives the same "a of

(4).

6- Plot these values of "7 versus the values of impeller speed N.

7- Obtain the value of k’ by measuring the slope of the plot made in

step (6).

The "viscosity matching" method assumes the value of k’ a con-

Stem; which depends only on the geometry of the impeller. Even though

this assumption has been used by numerous investigators, Metzner and

Otto recommended further analysis to determine the effect of the power-

13" parameters (m and n) in the values of the proportionality constant

1"- Wood and Goff (1973) applied the matching Viscosities method to

eStimate the average shear rate in a Brabender Viscograph. The values of

iav for the impeller were obtained from a plot of shear rate versus the

viscosity (or apparent viscosity) of the Newtonian and non-Newtonian

fluids- The magnitude of the shear rate where the two Viscosities inter-

sect is the average shear rate, fiav (Wood and Goff, 1973).

An alternative procedure to obtain the average shear rate is by

e

quating the two expressions for the Viscosities. Hence,

”av - m #2,, (3.10)

'“'l - -" (3.11)
and av :11

1

. n - l

1,“,- [ n/m 1 (3.12)

31 This procedure was used by Rao and Cooley (1984) and Mackey et

(1987) for determination of rheological properties of fluids
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characterized by the power-law model.

Mackey et a1. (1987) utilized the matching technique to inves-

tigate the effect of some parameters on the assumed constant value of k’

using a Brookfield Viscometer. From power requirements:

"a _ ill:— -— (3.13)

Ad N N

where k2 — 27"", the mixer coefficient, is a constant dependent on

d A

the geometry of the system. To find k2, the torque required to turn the

impeller agitating a Newtonian fluid of known viscosity is measured as a

function of the rotational speed. Torque M is plotted versus 17N and the

31°Pe is equal to 1/k2. Thus, the value of constant A from Eqn. (3.13)

is determined. It is important to check that Re <10 (laminar flow

assumption),

The rheological properties of the investigated power-law fluids

are dete-rmined with a rotational cylinder viscometer. Torque versus

rotational speed data are also collected with the mixer viscometer.

Using Metzner and Otto’s approach of matching Viscosities,

 

n - "a - macro”1 (3.14)

Thus,

1

1‘: H “'1

k"+[um] (3.15)
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where k' is a function of the geometry of the system, the rheological

properties of the fluid and the operational conditions. The authors

observed that the value of k’ was significantly affected by the values

of the flow behavior index and the rotational speed of the impeller. (At

rotational speeds less than 1.05 rad/s (10 rpm), the value of k’ was a

strong function of n and N). Extensive work should be done to quantify

the interaction of these parameters on the proportionality constant and

the critical limits for the impeller-to-cup diameter ratio (d/D) must be

identified .

3-2-1-2) Linear §hear Stress Method

Bongenaar et a1. (1973) developed a technique for characterizing

the rheological properties of mold suspensions using a mixer (turbine)

viscometer_ The instrument consisted of a standard 6-blade Rushton

turbine impeller connected to a rotational viscometer and the torque on

the impeller was measured as a function of the rotational speed. Data

analy513 considered that the shear rate was given by Metzner and Otto’s

(1957) assvamption ( iav - k'N ) and that the shear stress was directly

proportional to the torque M,

aav - k"M (3.16)

where k" is a constant independent of the value of n. A constant value

of k' (- 10) was selected based on the work done by Calderbank and M00-

Young (1959) for turbine impellers. The rheological parameters of the

Pover-law fluid were determined as follows:

1. The value of the flow behavior index of the unknown suspension, nx,
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is obtained from the slope of the log-log plot of torque,M, versus

rotational speed N.

, the2. To calculate the value of the consistency coefficient, mx

properties,ny and my, of a calibration fluid are measured in a

conventional rotational viscometer and the following expression is

written

n
M a m x x

__x _ x _ x N k’
M —a 111—nn (3.17)

Y Y y N Y k' 37’

Thus,

M n

_x_ M m (3.18)
m - y
x M 1:1x

3’ (mm

In the case of n - (valid when In — n |< 0.1), Eqn. (3.18)

Y X X y

simplifies to

_?5_ (3.19)

with Mx and My as torque values for corresponding fluids measured in the

mixer system.

The authors also worked with the "a’ defined as
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a

"a - [‘7‘]. . (3.20)

where 70 is an arbitrary standard shear rate. Thus, for a power-law

 

fluid

m _ "a (3.21)
.n-l
7

and

“x _ "fix (3.22)

M n

Y ay

The procedure was also applied to fluids obeying the Casson

model,

a - a - "c "1 (3.23)

with the Casson viscosity, no , obtained from the slope of a linear plot

of 00.5 versus 70.5 . The yield stress, 00 , is obtained from extrapola-

tion of the M versus N plot, assuming that k' and k" are independent of

the Casson rheological parameters. According to Charles (1978), it is

not clear if the calculated viscosity is an intrinsic property of the

fluid. However, analysis of data is based on well-proven and widely

accepted empirical correlations and the method is useful for determining

the rheological properties of viscous fermentation broths.

The mixer Viscometry technique developed by Bongenaar et al.

(1973) was applied by Roels et a1. (1974) on their investigation of
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fermentation broths. They observed that the use of a mixer prevented

phase separation and settling of the particles. Their derivation for

data analysis is as follows:

From power requirement theory in the laminar region,

2 3

P - A "aN d (3.24)

with A - 64 for a turbine impeller (using Newtonian fluids). Since the

power P is related to the torque M,

64 3 (3.25)
M - 2" naNd

From measurement of torque M as a function of rotational speed N,

the value of the apparent viscosity "a can be obtained from Eqn. (3.25)

- -—!ZE-— (3.26)
0 3

a 64 N d

Following Metzner and Otto's suggestion that fiav- k’N, with k’ a

constant and with aav - "a 7av , or taking advantage of Eqn. (3.25),

a v. Zfiflk (3.27)

5 64d

Equation (3.27) can also be written as

u - ci a (3.28)

where :

m'
Ci‘ an’ , (3.29)
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is viewed as an instrument constant.

The measured torque as a function of N and the use of Eqns. (3.8)

and (3.28) allows for determination of rheograms for the investigated

fluid in the laminar flow region. Also, the apparent viscosity can be

calculated from Eqn. (3.26). Different rheological models were analyzed

and the authors concluded that the Casson model better described the

rheology of a fermentation broth.

This technique requires further testing and results to be com-

pared with those obtained with conventional viscometry methods. It must

be emphasized that the impeller proportionality constant, k', was as-

sumed a constant for the particular turbine impeller. When the torque is

measured as a function of N, then the constant k' can be found from

- m 7 “'1 - m (k’N) “'1 (3.30)
i-"a

Kemblowski and Kristiansen (1986) adapted the method developed by

Roels et a1. (1974) to design a suitable impeller-cylinder system for

continuous on-line measurements in fermentation technology. The analysis

assumed a two-cylinder system. Thus, in a rotational viscometer, the

shear stress a is given by

a _ z a (3.31)

where:

z - a constant of the instrument, Pa/reading

a — instrument reading
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The torque is then determined from the measured shear stress from

the following expression: (concentric-cylinders with narrow gap)

_ M (3.32)

Zillr
m

a

where:

11 - inner cylinder length, m

r - (r1 + r,)/2

and r - arithmetic mean of the radii of inner and outer cylinders, m

r1 - inner cylinder radius, m

r2 - outer cylinder radius, m

Combining Eqns. (3.31) and (3.32),

M - a a (3.33)

where a - instrument constant, N m/reading = 2w11r; z (3.34)

According to Eqn. (3.33), the value of the constant a, obtained

from a concentric cylinder system, is used to evaluate the torque for

the mixer system on the basis of the reading from the instrument, a. The

average shear stress is then obtained from Eqn. (3.32) as

a 1rk' (3-35)

av

or aav - Z a (3.36)
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where Z - a constant for a given geometry of the impeller system,

Pa/reading

with

I 'a (3.37)

The procedure to determine the value of k' for the particular

impeller is as follows:

1. For power-law fluids, the shear dependent viscosity is given by

Eqn. (3.30) and

3L": - III1(1<'N)“'1 (3.38)

ANd

or

(3.39)

where B is found from experimental curves of torque versus rotational

speed.

2. The value of the proportionality constant k' is now a function of the

geometry of the impeller and rheological properties of the fluid,

since

T1

k' - [115,] (3.40)

with A determined from Newtonian Po versus Re curves according to

Eqn. (3.1).
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Eqns. (3.8) and (3.36) allow determination of the curve flow for

the investigated fluid. The technique proved to be sensitive and able to

detect the variation of rheological parameters, especially the consis-

tency coefficient, m, resulting from the differences in processs

parameters. Modifications of the instrument are being made for on-line

application. It is important to recognize that this method assumes a

narrow gap between the rotating unit and the cup. Hence, care must be

taken not to violate this assumption when using a system with geometri-

cal characteristics other than the ones used in this study (six—blade

turbine impeller, H/d - 2.7 and 1.8, d/D - 0.93).

3 .2 . 1 . 3) Slope Method

Based on the initial work of Metzner and Otto (1957), Rieger and

Novak (1973) developed a method to determine the value of the impeller

proportionality constant for the agitation of highly viscous fluids

characterized by the power-law model, in the laminar region of flow. It

is called the "slope method" in this study.

From dimensional analysis, the following relationship is obtained

__2_ _ cm) (3.41)

Using the power relationship given by Eqn. (3.1):

P __°_(‘L (3.42)
0

en

2 2_

with R _d N “2 (3.43)
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and

C(n) - constant, f(n, geometry)

For a Newtonian fluid,

P _ __A__n_ (3.44)

Replacing 11 with "a for a power-law fluid,

P _, Am Lk'N)“'1 _M (3.45)
2 R

o N d )0 en

Comparing Eqn. (3.45) with Eqn. (3.41),

l
C(n) - A k'“‘ (3.46)

or log C - log A - (1-n) log k' (3.47)

with C given by Eqn. (3.41)

The authors suggested that Eqn. (3.8) is valid for a particular

impeller only if a plot of log [P/(mdan+1)] versus (1-n) is a straight

line [Eqn. (3.47)]. The slope of this line is equal to -1og k' . If the

plot were nonlinear, Eqn. (3.8) would be invalid since k' would not

exist. Results suggested that the linear shear rate assumption was

useful for engineering calculations of power consumption with certain

mixer impellers. However, certain dependence of the value of the con-

stant k' with the flow behavior index, n, was observed. This procedure

has been tested to determine the average shear rates of food
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materials by Rao (1975).

3.2.1.4) Combined Slgpg and Linear Shear Strggs Mgthod

Rao (1975) combined the procedure of Rieger and Novak (1973) for

determination of the impeller proportionality constant with the proce-

dure for determination of the rheological properties of power-law fluids

developed by Bongenaar et al. (1973). This technique will be called the

"Combined Slope and Linear Shear Stress Method" in this review, and it

has been utilized with food products by several investigators (Rao and

Cooley, 1984; Steffe and Ford, 1985; Ford and Steffe, 1986; Castell-

Perez et al., 1987).

The procedure is as follows:

1. Collect torque versus rotational speed data of several non-Newtonian

(power-law) fluids and the investigated fluid with the mixer system.

2. Determine the rheological properties of fluids with a concentric

cylinder viscometer.

3. Plot log [P/(mdan+1)] versus (l-n) (Rieger and Novak, 1973) using

torque data obtained from mixer system. Find value of proportionality

constant k' for that particular impeller at a specific value of

rotational speed.

4. Find value of flow behavior index of investigated fluid nx, from

slope of log torque versus log rotational speed data from concentric

cylinders.

5. Determine value of consistency coefficient of the investigated fluid

mx , from mixer torque data, fluid properties and k', Eqn. (3.18)

(Bongenaar et a1., 1973).

Rao and Cooley (1984) compared the mixer Viscometry techniques
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developed by Metzner and Otto (1957) (Viscosity Matching) and by Rieger

and Novak (1973) (Slope) for complex geometry impellers and observed

that results obtained from both techniques were in good agreement. They

also observed that the ”slope method“ could lead to large errors when

finding the value of k' , since

k' - 10"“pe (3.48)

The advantage of this method is its relative simplicity as compared to

the matching of Viscosities required in Metzner and Otto's. However, the

"Viscosity matching" method seems to yield more consistent values of k'

for a particular type of impeller.

3.2.1.5)WW

3.2.1.5.1) Eggggurg Difference Method

Using a helical screw, Kraynik et a1. (1984) designed an instru-

ment to measure the viscosity of concentrated suspensions of coal

particles in organic solvents. This Viscometry technique differs from

all the Others in the fact that it relates the pressure difference in

the fluid to the viscosity of the fluid. The instrument is essentially a

metering screw pump operating at zero discharge. The sample can be

pressurized and the pressure difference is measured across two ports

Spaced at different heights along the outer wall by a series of pressure

transducers (Kraynik et a1., 1984).

The authors emphasize the advantages of pressure measurements

OVer t°rQue measurements in high-pressure rotational instruments where

fitti

“3 seals are required around a rotating shaft that could affect
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force measurements. This viscometer has potential in high-pressure

Viscometry and could be applied to determination of the pressure-

dependence of viscosity. It is also suitable for chemically-reacting and

heterogeneous fluids. Applications of this technique in on-line vis-

cometry of food products has been investigated by Tamura et a1. (1988).

3.2.1.5.2) Qitgtt Detemiggtign of ILIE Elow Curve Method

Kemblowski et al. (1988) suggested that the methods of correla-

tion of Power number as a function of the Reynolds number using the

Metzner and Otto assumption may be suitable for engineering purposes,

bUC not precise enough for rheological applications. The authors

developed a method which enables a direct determination of the flow

curve without the need for power data obtained with Newtonian fluids.

The analysis assumes a system of two concentric cylinders to

model the impeller system (helical screw impeller rotaing in a draught

tube). The torque on the impeller shaft is the combination of the torque

resulting from the shearing in the screw channel plus the torque result-

ing from the shearing in the gap between the edge of the screw flight

and the innner surface of the draught tube (Kemblowski et al., 1988)-

Thus

M-M, +u, (3.49)

hw ere M1 ._ torque resulting from shearing in screw channel, N m

M2 ‘ torque resulting from shearing in the gap, N m
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The technique for determination of the flow curve of the inves-

tigated fluid is the following:

1. Using a helical screw impeller rotating in a draught tube as the

measuring system, determine the torque M on the impeller shaft as a

function of rotational speed N.

2. A log-log plot of M versus N should give a straight line for power

law fluids and the slope is equal to n.

3- Calculate the parameters which characterize the geometry of the

measuring system :

A1 - surface of the screw channel, m

2

A2 - surface of the edge of the screw flight, m

de - equivalent diameter of the helical screw impeller according

to Chavan et al. (1972), m

4. F01: a given value of rotational speed, the shear rate is determined

from Metzner and Otto's assumption that

)7 _ k'N

(3.8)

With 761v - shear rate on the surface of the "equivalent" cylinder

and 41rCr1
k'- 2 (3.50)

1-¢

 

The shear stress is given by
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- 43—, (3.51)

2Hd
aav

where:

Cr1 - correction factor - f(n, ¢) (See Calderbank and Moo-Young,

1959)

H - total height of the inner cylinder, m

M - experimentally determined torque on the

impeller shaft during the shearing of the

investigated fluid, N m

p - geometric ratio, dO/de

do - outer cylinder diameter, m

Significant changes of k' with the value of n were observed.

Comparison of experimental data with those obtained with a concentric

cylinders system showed that the mixing instrument yielded reasonable

results. Again, care must be taken when applying this method to dif-

ferent impeller geometries due to the importance of the d/D ratio in the

development of the theoretical analysis.

3.2.2) e d tr 3 Dete i ation

Knowledge of the yield stress is important in handling, process-

ing and transport of fluids. The presence of a yield stress can affect

the settling of particles in concentrated suspensions (Nguyen and Boger,

1983). Also, agitation of such fluids often gives a well-mixed region

close to the impeller and a stagnant or near-stagnant fluid in the

remainder of the container if the yield stress is not exceeded (Solomon

et a1., 1981). This well-mixed region around the impeller has been

called a cavern (Witcherle and Wein, 1981) and the boundary of the
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cavern is defined by the surface where the local shear stress equals the

fluid yield stress (Nienow and Elson, 1988).

Nguyen and Boger (1983) investigated the applicability of the use

of a vane for yield stress measurements in concentrated non-food suspen-

sions. Haimoni and Hannant (1988) used it on cement slurries.A vane

(Figure 3.1) consists of 2-8 thin blades centered around a small

cylindrical shaft. This technique has been called the "vane method".

In this technique, the fluid under investigation is placed in a

container and the vane (which is attached to the torsional spring-

driving motor system of a concentric cylinder viscometer) is fully

immersed into the sample, then rotated very slowly at a constant speed,

and the torque required to maintain this motion is recorded as a func-

tion of time.

The technique detects the yielding moment when the torque exerted

on the vane shaft reaches a maximum. The presence of such a maximum in

the torque response is a characteristic of yield stress materials which

can be explained by the concept of structural defamation and breaking

of bonds in flocculated suspensions (Nguyen and Boger, 1985a).

From a torque balance on the surface of the impeller, the yield

stress can be calculated from the measured maximum torque, Tm , and the

dimensions of the vane, by

H l

T 33L _V _ (3.52)

o - 3 +
ID D 3
V V

Where:

To - vane yield stress, Pa
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Tm - maximum measured torque, N m

“V - vane height, m

Dv - vane diameter, m

The method provided satisfactory yield stress measurements only

if the vane was rotated at sufficiently low speeds. At high speeds,

significant viscous resistance together with instrument inertia and

insufficient damping may introduce errors to the measured TIn and hence

to the calculated value of yield stress. Nguyen and Boger (1983) recom-

mended some operational procedures:

1. Vane should be operated at rotational speeds below 10 rpm.

2. Depth of sample and diameter of the container should be at least

twice as large as the length and diameter of the vane to minimize any

effects caused by the walls of the container.

3. The vane should be placed at approximately the center of the

container.

4. Geometric criteria (Nguyen and Boger, 1985a) for satisfactory

measurements:

Hv/Dv < 3.5 ; D/Dv > 2.0

Zl/Dv > 1.0 ; 22/Dv > 0.5

where:

D - container diameter, m

21 - clearance from surface to top of impeller, m

2, - clearance from bottom of impeller, m

Values of yield stress obtained with the vane were compared with
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those obtained by other methods and the agreement confirmed that the

vane method is useful for measuring accurately and directly the true

yield stress of concentrated suspensions (Nguyen and Boger, 1985a). The

advantageous features of this technique are:

1. Introduction of the vane into the sample does not significantly

disturb the sample prior to measurement.

2. Wall slip effects are eliminated and particles remain unsettled.

3. It allows measurement of the yield stress under static conditions and

within the material itself.

4. Technique requires short operation time and low cost apparatus.

5. Experiments are easy to perform and of high precision.

Keentok et a1. (1985) observed that the vane diameter had negli-

gible effect on the ratio of the diameter of the fracture zone to the

diameter of the vane. Their data supports the use of the vane for yield

stress measurements if a diameter correction is applied.

Leong et al. (1987) measured the yield stress of brown-coal water

suspensions using this technique. Yoshimura et al. (1987) utilized this

technique for the measurement of yield stress of oil-in-water emulsions,

conducting stress-controlled rather than shear-controlled experiments.

Qiu and Rao (1988) investigated the determination of yield

stresses of food materials using a mixer viscometer with the vane

method. The authors observed that the magnitudes of do for applesauce

were higher than those obtained by extrapolation of the Herschel-Bulkey

and the Mizrahi-Berk model,

n

a -a + [K’y J (3.53)

where :
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2

00m - Mizrahi-Berk yield stress, Pa

2

Km - constant to be determined, Pa sn

nm - flow behavior index, dimensionless

and very similar to those magnitudes of the Bingham yield stress ob-

tained by the common procedure of extrapolation of the linear portion of

the shear stress-shear rate data. Two different impellers (a star im-

peller and a vane) were used and impeller geometry seemed to affect the

values of do. The technique proved suitable for the measurement of yield

stresses of food suspensions for a specific impeller and rotational

speed.

3.2.3) Analysis of Tine-Dengndgnt fignnvior

A better understanding of the flow properties of time-dependent

fluids is essential in handling and process design. For instance, reduc-

tion in the viscosity of the material by mechanical treatments prior to

pumping may imply lower transport energy requirements and minimization

of start-up problems usually associated with occasional pipeline shut-

down (Nguyen and Boger, 1985b).

During the mixing process, an element of thixotropic fluid ex—

periences short periods of time at high shear rates close to the

1Illpeller and longer periods in the lower shear rate regions remote from

the impeller (Edwards et al., 1976). The rheological state of the

material will depend upon this shear history and the instantaneous shear

rate, which will affect the power requirements for the impeller.
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3.2.3.1) finenlogitnl Mtge]. Elns Lingat Sneat gate Method

Edwards et al. (1976) developed a procedure for the calculation

of power consumption with time when a thixotropic fluid is agitated from

rest using an impeller which rotates at constant speed. Even though a

simplifying assumption, the use of Metzner and Otto's linear relation-

ship ( i - k'N ), provided a simple means of predicting the power input-

time behavior for thixotropic fluids using the Newtonian data [value of

constant A from Eqn. (3.1)] and that for time-independent non-Newtonian

fluids (value of impeller proportionality constant, k').

If the thixotropic fluid is agitated for a time t in a mixing

container using an impeller at rotational speed N, this is considered to

be equivalent to shearing the fluid in a viscometer, from the same

starting condition, at the average shear rate for time t. Thus, using

the viscometer at constant shear rate, the average apparent viscosity "a

of the thixotropic fluid at time t can be measured. Experimental proce-

dure consisted of:

1. Measurement of torque as a function of time as the impeller rotates

at constant speed.

2. Obtaining equivalent na/time data in a concentric cylinder

viscometer.

3. Calculating k' from a plot of "a versus N .

Some evidence of the dependence of k' on fluid properties was

present but the authors assumed an average value of the impeller con-

stant. They concluded.that it was possible to extend the average shear

rate (lav ) concept for time-independent non-Newtonian fluids (Metzner

and Otto, 1957) to the mixing of thixotropic fluids. The procedure
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proved satisfactory for a variety of impellers and thixotropic fluids

provided that the impeller was capable of maintaining the entire

fluid in motion.

Nienow and Elson (1988) strongly suggested that this approach

( ”yav 0: N ) should be carefully revised when using it for time-dependent

fluids, especially shear-thickening fluids due to the still unknown flow

behavior of dilatant fluids in mixed vessels. The authors conclude that

the method for determination of k' developed by Metzner and Otto (1957)

should be carefully revised and even repeated for different fluids and

mixing systems .

3.2.3.2) Com ne co 0 ical And inetic Model Plus Lingr Shear Rate

Mashed

Sestak et al. (1982) developed a procedure for calculating the

time-dependent torque necessary for mixing inelastic thixotropic fluids

by means of impellers. The relationships of the impeller (anchor

agitator) torque versus time for constant rotational speeds when mixing

a bentonite-water suspension, were measured. The deformation histories

were expressed by means of initial values of the structural parameter,

X0 , at the beginning of any mixing experiment. A stepwise change of

rotational speed was engaged and time-dependent torque values were

measured.

A time-dependent apparent viscosity given by

r) --fl£)- (3.54)
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was used, and an expression for the time-dependency of the impeller

torque was obtained,

M - daa(t) (3.55)
A—

2nk'

The authors also compared several models of thixotropy and con-

cluded that Cheng's model

. n
yo y1 + my (3.56)

—§%— - a(1-)) - b q A (3.57)

where:

a - yield stress, Pa
yo

0 - shear stress, Pa
yl

A - time-dependent structural parameter (f(fi)),

which ranges from an initial value of 1.0 for

zero shear time to an equilibrium value, Ae’

which is less than 1.0 (Tiu and Boger, 1974)

a - model parameter, l/s

b - model parameter, dimensionless

was the best for calculations of the impeller torque-time variations for

an arbitrary past deformation history of a thixotropic fluid in a mixing

process. The ability of this model to include the influence of the past

deformation history upon the instantaneous apparent viscosity of the

fluid was also proven.
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A more complete analysis was developed by Ford and Steffe (1986),

who combined mixer viscometry techniques with a fundamental analysis CUE

thixotropy to determine the basic parameters describing the time-

dependent behavior of starch-thickened strained apricots. Tiu and Boger

(1974) obtained a model to describe the structural breakdown of a

product:

no
a - A [ ayo + KO 1 ] (3.58)

where:

no
KO - consistency coefficient at time zero, Pa S

n0 - flow behavior index at time zero, dimensionless

A - structural parameter, accounting for time-dependent

effects, dimensionless

ayo - yield stress at time zero, Pa

with the decay of the structural equation assumed as a second order rate

equation:

JA— - -k1(A - A )2 (3.59)

(it e

where:

k1 - rate constant - f(i), l/s

Ae - equilibrium structural parameter, dimensionless

g; - change in A with respect to time, l/s

dt
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The relationship between apparent viscosity and time is

1 1 + alt (3.60)

where:

fie - apparent viscosity at equilibrium, Pa 5

n - apparent viscosity at time zero, Pa 3
80

t - time, 3

k1 ’7 (3.61)

n

 

ayo + K01

and the value of Ae was calculated as:

n *‘1
A _ __e.___ (3.62)

e . n

ayo + K01

The technique developed by Ford and Steffe (1986) is as follows:

1. Use Metzner and Otto's approximation: lav. k'N (k' - 4.46 for the

paddle impeller used (Steffe and Ford, 1985)).

2. Use the linear shear stress assumption: 0 - k"M (k" - 9835 for

the system used (Ford, 1984)).

3. Find an approximate shear stress for the sample, aax’ given by

”g M (3.63)

witil as - shear stress for standard solution, Pa
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0x - shear stress for test sample, Pa

Ms - mixer torque when agitating standard solution, N m

Mx - mixer torque when agitating test sample, N m

4. Plot l/(na - ne) versus time for each sample.

5. From linear regression obtain values of a1 (slope) and 1/("a - ne)

(intercept). [See Eqn. (3.60)]

6. Plot values of a1 versus fiav’

7. The torque at time zero, Mo, is obtained as

Mo 9835 b + 9

Equation (3.64) is obtained from b - 1/("a - ne) . Since

' /' the value of the 510 e b become b — 78V
"3 0 7av ’

P S, —- aao - 0e

Substituting the expressions for the shear rate and the shear stress and

manipulating the data yields Eqn. (3.64).

8. Calculate the value of "a0 from Eqn. (3.63) using the calculated

value of M .
o

9. Plot 0 versus 7 .

ao av

10. Find the values of K0, no and ayo from linear regression using

Herschel-Bulkley model: a - 0° - n 7 n

11. Determine Ae using Eqn. (3.62).

12. Determine k using Eqn. (3.61).

1

13. Obtain complete rheological characterization of sample [Eqns. (3.59)

and (3.60)].
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This technique mathematically describes irreversible breakdown

and it proved useful for suspension-type products because the slip at

the wall and breakdown problems involving product loading are minimized

(Ford and Steffe, 1986).

3.2.3.3) snhjgttivg Aggggsnent 9f Ibingtrony Using n Vang Lmneller

When studying the time-dependent rheology of highly concentrated

and flocculated suspensions of bauxite residue (red mud), Nguyen and

Boger (1985b) found that the concentric cylinder viscometer was un-

suitable since the transient data obtained were not reproducible due to

the presence of slippage at the walls. A mixing system using a vane

impeller was found to be particularly suited for following the time-

dependent transformation of the structure of red mud suspensions without

causing any significant disturbance to the material. The procedure was

as follows:

1. Agitation of the suspension either in a capillary viscometer or in a

separate container using an anchor impeller rotating at constant

speed.

2. After a determined period of mixing, the impeller is stopped to allow

for rheological measurements.

3. Using the vane method (Nguyen and Boger, 1983), the vane is slowly

iJIIIIMEu'sed into the sample, then rotated at a speed of 0.1 rpm,

and torque measurements are recorded.

4° At the end of the test, the suspension is remixed and the procedure

repeated until no further changes in the flow properties are

°b3erved.
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The vane method was also employed to quantify the thixotropic

recovery with resting time. In the recovery experiment, the suspension

was allowed to rest undisturbed in closed containers and the yield

stress was determined at intervals of resting time (Nguyen and Boger,

1985b).

Experimental results provided a complete description of the

thixotropic behavior of highly concentrated red mud suspensions. The

drastic reduction in the magnitude of the rheological properties with

mixing, and the subsequent slow increase in the yield stress when at

rest, may be a way to characterize irreversible thixotropic behavior.

Simple thixotropic models were formulated for correlating the experimen-

tal results. The same technique was followed to characterize the time-

dependent behavior of brown-coal suspensions (Leong et a1. , 1987).

3.2.4) Elagtic Flnids

Many fluid and semi-solid foods exhibit viscoelastic behavior,

i.e. they exhibit viscous and elastic properties simultaneously. Due to

their complex rheology, a complete understanding of the phenomena in-

volved in mixing these fluids is important in industrial operations to

ensure proper selection of process and geometrical variables (Ulbrecht,

1974).

Even though the effects of fluid elasticity on agitators are not

totally clear, elasticity is known to affect the power required for

agitation and to produce differences in the flow fields around the

mixing impeller. Generally, it is predicted that the viscoelastic nature

of a fluid tends to reverse the direction of secondary flows induced by

centrifugal force. White et a1. (1977) observed that three different
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flow regimes can exist in the mixing tank depending upon the level of

viscoelasticity.

3.2.4.1)W

In general, mixer viscometry techniques require the measurement

of the power required to turn the impeller agitating the fluid. The

calculation of torque (power) requirements for mixing viscoelastic

fluids is also important in the design of fermentors or processing tanks

(Prud'homme and Shaqfeh, 1984). The vast majority of studies on rheology

of agitated fluids have focused only on shear viscosity. However, vis-

cosity alone is not sufficient for calculating the torque required to

mix a viscoelastic fluid. Thus, it is important to know under what

conditions power correlations for viscoelastic fluids differ sig-

nificantly from those of inelastic fluids.

The classical apparent viscosity approach introduced by Metzner

and Otto (1957) for power consumption of non-Newtonian fluids in

agitated tanks has been considered by researchers (Table 3.2) to inves-

tigate agitation requirements of viscoelastic fluids. Their findings

indicate that mere use of the "a of non-Newtonian fluids may not be

applicable in the case of viscoelastic fluids as they exhibit different

power consumptions due to their elastic nature. However, there seems to

be a controversy as how viscoelasticity affects power requirements in

agitated tanks. Other works (mainly theoretical) in mixing of viscoelas-

tic fluids are also listed in Table 3.2.

Mashelkar et al. (1975b) observed that when agitating shear-

thinning liquids even having moderate elastic properties, the power
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consumption is considerably less than that predicted by the classical

apparent viscosity approach. The same behavior was observed by Ranade

and Ulbrecht (1977) and Oliver et a1. (1984). They also found that

Metzner and Otto's approach is likely to fail in scaling-up on the basis

of power consumption per unit volume due to the different power require-

ments. The need for extensive experimental work to evolve design

procedures under these conditions using the dimensionless groups

connected with the elasticity of the fluid was strongly emphasized.

ConverseLy, other investigators have observed an increase on

power requirements when mixing viscoelastic fluids (Nienow et al., 1983;

Prud'homme and Shaqfeh, 1984; Collias and Prud'homme, 1985).]flienow and

Elson (1988) , in a review of the mixing of rheologically complex non-

Newtonian fluids in mixing tanks, concluded that viscoelastic properties

of the fluid may either decrease or increase the power requirements.

They state the impossibility of predicting which because of the complex

flow patterns developed in the mixing tank which strongly depend on the

geometry of the system and impeller, the type of fluid and the scale of

operation.

Yap et al. (1979) assumed Metzner and Otto's method was adequate

to describe the viscous properties of the fluid around duainmeller

blade only for fluids that exhibited low elasticity and for low values

of rotational speed. This method assumes that the value of k' [from Eqn.

(3.8)] is independent of the fluid and system characteristics. The

authors developed an expression for generalized power consumption for

fluids with a low degree of elasticity:

o 93 o 91 1 23 -1

Po " 2“ “bl (Rge) ° (1)/d) ° (d/l) ° ] (3-65)
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where:

nb - number of blades

D - diameter of vessel, m

d - diameter of impeller, m

l - length of impeller blade, m

23

 

2

d NP (tiiav )

Rge- Generalized Reynolds Number = fl ‘

o

with t1 - fluid characteristic time, s

s - fluid rheological parameter, dimensionless

n - limiting viscosity at zero shear rate, Pa 5

This model was not successful with fluids showing a high degree

of elastic behavior.

Nienow et al. (1983) assumed that the lav determined by the

nwthod of Metzner and Otto can be applied to parameters other than

viscosity when studying the power requirements in aerated vessels. Thus,

W1 - l —- 1 <1 ) (3.66)

I

where A' is obtained from N1 - A' "1b correlations. Also, the ratio of

elastic to inertial forces can be similarly derived as

W

[ 2] ( Vav) (3-67)
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where W1 - Weissenberg Number - P; N

$1 - first normal stress coefficient, Pa 32

The significance of this assumption was not clear from their

findings and the authors suggested further work to test their results.

Since most viscoelastic fluids have strong shear-thinning vis-

cosity, power changes may be due to changes in fluid viscosity or

elasticity. Boger (1977/1978) observed that maltose syrup-separan solu:

tions were highly viscoelastic fluids which exhibited a nearly constant

viscosity with high elasticity (normal stress levels) over a broad shear

rate range. This model fluid, called the Boger fluid, has been used to

better assess the effects of elasticity on agitated tanks (Oliver et

al., 1984; Prud'homme and Shaqfeh, 1984).

Prud'homme and Shaqfeh (1984) developed a correlation that ex-

plicitly includes fluid elasticity which provides a basis for assessing

whether elastic effects are likely to cause significant increases in

mixing torque (or power) requirements. Thus, the total torque is given

by the torque that would prevail in mixing a Newtonian fluid times a

contribution due to elasticity as follows:

r - (1+ma1/‘) (12.711e + 2.41 x 10'3 Res) (3.68)

[ elastic] [ Newtonian effects]

where:

l‘ - dimensionless torque

and

N1

ma - 2 2 - elastic parameter, (3.69)

2 p r w
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also called the Aberystwyth Number (Thomas and Walters, 1964)

where:

r - impeller radius, m

N, - first normal stress function, Pa

(9 - angular velocity of rotation, rad/s

This correlation is based on data in the laminar flow regime and does

not account for changes in the geometry of the system and fluid vis-

cosity.

Collias and Prud'homme (1985) found that elasticity substantially

increases power requirements of turbine impellers in the viscous

(laminar) regime - the torque more than tripled for the most elastic

fluid. However, the magnitude of theieffect of elasticity depends on

both the fluid properties and the size of the vessel. A procedure to

determine the additional torque to mix an elastic fluid was developed”

Secondary flow patterns are determined by the balance between inertial

and elastic forces with

 

E - 2 (3.70)

and W - R . E (3.71)

where:

E1 - elasticity Number

A dimensionless torque, T, is determined as,
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T - “a: - £036,121) - g<Re.wi> (3.72)

'7

for a given geometry. The Torque Number is related to the Power Number

by,

2

Zn T - P R (3.73)

o e

Viscosity and elasticity data were collected in a cone-and-plate vis-

cometer. A correlation for torque as a function of Re and E was
1

obtained by determining the «av in the vessel at each Reynolds Number

using Metzner and Otto's relationship for turbine impellers:

iav - 11 N (3.74)

Finally, the torque required, at a certain Reynolds Number, to mix a

viscoelastic fluid (a mixture of corn syrup, water, glycerin and

polyacrylamide polymer (Boger f1uid)) using a turbine impeller, was

determined by adding the torque required for a Newtonian fluid the

additional torque due to elasticity, given by:

s 3 2

T - 13.12 Re + 0.01167 R6 + Re (71 E - 3200 E ) (3.75)
l 1

or, in terms of Weissenberg Number [Eqn. (3.71)]:

3 2 2

T - 13.12 R + 0.01167 R + (71 W R - 3200 W. R ) (3.76)

e e i e 1 e
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Equations (3.75) and (3.76) provide quantitative results on the effects

of elasticity on mixing torque in the laminar flow regime.

3.2.4.2)WW

Another manifestation of viscoelasticity is the climbing of the

fluid up a rotating rod associated with nonlinear effects, the normal

stress, which does not occur in Newtonian fluids (Joseph et al. , 1984).

This phenomenon is often called the Weissenberg effect. Figure 3.3

illustrates the rod-climbing phenomenon in a vessel agitated by an

impeller. When the elastic force is sufficiently high, it overcomes the

inertia and the fluid is pulled towards the impeller. Because of the

role it may play in rheological testing and processing operations, the

possibility of using the Weissenberg effect as a method of characteriz-

ing viscoelastic fluids has been investigated (Table 3.2).

Beavers et a1. (1980) showed that the free surface deformations

on a viscoelastic fluid sheared between two concentric cylinders when

the Weissenberg effect occurrs, can be used to determine rheological

data about the fluid. They also investigated the effect of the impeller

diameter to vessel diameter ratio, using two concentric cylinders. When

d/D approached unity, more complex shapes of the free surface occurred

and it showed dependence on the rotational speed, N.

Eitelberg (1983) numerically analyzed the influence of the finite

length of a rotating cylinder upon the Weissenberg effect. Results

indicate that the secondary flow influences the shape of the free sur-

face and that it is affected by the ratio of the distance from the free

surface of the fluid to the end of the rotating cylinder, h, to the

radius of the outer cylinder, r2. The main result of this study is that
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Figure 3.3: Flow Patterns In Agitated Vessels. A) Newtonian Fluid.

B) Elastic Fluid (Rod-climbing).
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secondary flow does not reach the free surface if the distance h is

considerably greater than r2.

Even though rod (or shaft) climbing is a sure indication of

viscoelasticity, the absence of the Weissenberg effect does not imply

that the fluid is inelastic. Nienow and Elson (1988) indicated that

certain geometric (shaft diameter) and operational (impeller rotational

speed) variables as well as the presence of a yield stress, may reduce

the climbing effect.

Available mixer viscometry techniques are considered unsuitable

for viscoelastic foods due to the Weissenberg effect (Rao, 1977).

However, the need to measure the rheological parameters (particularly

elasticity) at the same time as the power data is obtained while agitat-

ing the fluids suggests the potential applicability of mixers for the

evaluation of rheological properties of viscoelastic fluid foods.

Reliable techniques could be developed which consider the effects of

geometry on the Weissenberg effect as well as power requirement deter-

mination .
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3.3)W

3.3.1)WWW

3.3.1.1) Balatian fiatwaan Elaw Pattern and Power Conaumption In A
 

Cylindriaal Vegaal.

The state of flow in a cylindrical mixing vessel is complicated

and there is some turbulence near the impeller blades. For simplicity,

it is assumed that the tangential flow is predominant and the flow can

be approximated as a type of Rankine's combined vortex (Nagata, 1975).

When a low viscosity fluid is agitated in a cylindrical vessel, a

cylindrically rotating zone around the central axis of the vessel is

formed, where the fluid rotates with the same angular velocity as that

of the impeller blade, while the flow in the outer part is similar to

that of a free vortex as shown schematically in Figure 3.4a. The central

area of the impeller [abcd] is assumed to have no relation to the power

consumption and only the outer part (the tips of the impeller) [AadD]

and [BbcC] have an important effect upon the power consumption (Nagata

et al., 1957).

When a fluid of higher viscosity is agitated, the radius of the

cylindrically rotating zone, rc , decreases and it approaches zero at

the transition from turbulent to laminar flow. Thus, the whole impeller

area [ABCD] has a relative velocity, u to the fluid and contributes

rel ’

to the power consumption. Other vortices present in the low viscosity

region such as V, , V1' , V2 and V; , are weak compared with the forced

vortex in the central zone (Figure 3.4a).

In the range of turbulent flow, an impeller has a relative

Velocity urel - AA' - AA”. Figure 3.4b illustrates the relative velocity
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Figure 3.4: a) Simplified Flow Model for Power Correlation; b) Relative

Velocity Distribution Between Paddle and Liquid (Nagata,

1975)
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distribution in the case of a paddle impeller. The impeller power con-

sumption to maintain the flow is considered as the energy per unit of

time to overcome the resisting forces on the blades. The internal

resisting force of fluid acting on an element of area bdl may be written

as

2

dF - pCure b d1 (3.78)
l

where C is assumed to be a constant. When the impeller rotates opposite

this resisting force at a relative velocity urel , the power consumption

is expressed by

dP - w dM (3.79)

or

dP - w 2r dF (3.80)

where M - the moment of force acting on the impeller shaft, N m

w - angular velocity - 2xN, rad/s

r - radial distance from the axis to any section of the impeller

Thus,

dP - 4«Nr dF (3.81)

Substituting Eqn. (3.78) into Eqn. (3.81),

2

dP - 41rNprure r dl (3.82)
1
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By integration, the power consumption for the impeller is given

14 2 1

P - f0 «Nprurelr d (3 83)

Integration of Eqn. (3.83) requires an evaluation of u which
rel’

is a function of the hydrodynamics of the vessel. Thus, the fluid flow

induced by a radial type impeller (paddle) rotating in an unbaffled

vessel can be described by using the forced and free vortex theory:

u - 0 when r < rc (3.84)

rel

2

u - 2xN ( r - rc /r ) when r > rc (3.85)

rel

where rc is the radius of the forced vortex cylinder; it is a function

of the Reynolds Number and goes to zero at small values of the Re

(laminar region).

An approximate equation for the power input in agitated vessels

in the turbulent region is then obtained (Nagata et al. , 1957):

3

p
P _ 93 - B [10 + 0.6fRea] (3.86)

a
5 3

p N d 10 + 1.6flle

where a, p, f and B are the coefficient for the empirical Eqn.(3.86).

In the range of laminar flow, the power consumption increases

with the viscosity of the fluid, and can be characterized by the

following relationship
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A

Po - R

e

(3.87)

Following this reasoning, Nagata (1975) developed an approximate

equation for the power consumption of paddle impellers in agitated

vessels with free surface for the complete range of flow regime.

Combining Eqns.(3.86) and (3.87),

 

9
P

P P B 10 + 0.6fRe A (3.88)

o - 3 5 - 3 a + R
p N d 10 + 1.6fRe e

[ turbulent ] [ laminar ]

with B, A, f, a and p determined experimentally. Equation (3.88) can be

applied to wide ranges of Reynolds numbers and to various paddle

geometries.

The above analysis is valid only under the following conditions:

1. The agitated fluid is Newtonian.

2. The system consists of a single impeller centered in the axis of a

vertical cylindrical vessel with a flat bottom and no baffles.

3. The fluid in the cylindrically rotating zone rotates with the same

angular velocity as the impeller.

4. The value of C in Eqn.(3.78) is constant.

33.2)121mslesaLAnslmsisLuitiss

Power consumption data have often been correlated using dimen-

sional analysis. The variables which affect fluid motion.i111nixing are

of three types (Chavan and Mashelkar, 1980):

1. geometric (linear dimensions)
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2. fluid properties [density (p), viscosity (0)]

3. kinematic and dynamic characteristics of flow [velocity (u),

gravitational acceleration (g), power (P)]

In mixing with rotating mechanical impellers, the velocity is

defined as the linear speed of the tip of the impeller (Rushton et al.,

1950), so that

u - ndN (3.89)

where, d - impeller diameter, m

N - impeller rotational speed, rev/s

Power input by the impeller, P, is used to produce the forces ir1

the mass flow and also to overcome the force of gravity, g. The power

required to rotate the shaft and blades of the impellers may be expected

to be a function of many variables:

P - f( d. D. H. b. C. L. p. n. g, N) (3.90)

Dimensional analysis (Appendix A) gives the general equation relating

the physical variables most often encountered in mixing a Newtonian

fluid,

+5 -. [._._._]8 Mi”: 8-1“ [2]“ [1]“ [1]“ [a]:
(3.91)

The last five terms define the effects of system and impeller

geometry. Thus, for geometrically similar systems,
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 _L 91.8.1. ’31 d N2 ’92 <3 92)

. . - . [ J [ ] 'pN d ’7 g

#91 132

P0 - A (Re) (Fr) (3.93)

where:

P - Power Number - —% (3.94)
o

p N d

2

Re - Impeller Reynolds Number - —d—l:—L (3.95)

2

41-N— (3.96)F - Froude Number -

r 8

White et al. (1934a) first defined the drag coefficient group now

known as the Power Number, Po, which characterizes the flow pattern and

represents the ratio of the power dissipated per unit volume to the

increase in kinetic energy.

The impeller Reynolds Number, Re’ has significance as a ratio of

accelerate force to viscous force. The form [ dsz/r] ] has come into

general use for characterizing mixer operations that employ rotating

agitators (Hyman, 1962). When agitaing non-Newtonian fluids, the form of

the Reynolds Number may vary, as is shown in section 3.2.1.

The Froude Number, Fr’ is theoretically required to account for

the vortex formation as a result of the influence of gravity in an

agitated system. The influence of the FI. on power consumption seems to

be important only in unbaffled vessels outside the laminar flow region

(Green, 1953). The addition of baffles has little effect on power re-

quirements in the laminar flow region (Treybal, 1956; Nagata et a1.,
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1957; Blasinski et al., 1970; Nagata, 1975). Also, high viscosity fluids

(above 20 Pa 3) have sufficient internal resistance to show little if

any vortex motion, i.e. , the surface of the fluid remains essentially

horizontal (Nagata, 1975; Deak et a1., 1985).

In general, the influence of the Froude Number on the mixing

power requirement is considered negligible and practically non-existent

in the laminar region of flow. Thus, the power consumption relationship

can be expressed for each flow regions

9‘1

Laminar flow or fully baffled vessel: Po - A Re (3.97)

C'1 a2

Turbulent flow or unbaffled vessel: Po - A Re Fr (3.98)

3 . 3 . 3) Lamina; Mining Region

3.3.3.1) Lamina: Eluig nation in Agitated Vessels

In the laminar flow region, the fluid around an impeller moves

with the impeller rotation and the fluid distant from the impeller is

almost stagnant (Figure 3.5). At very low Re, there is no turbulent flow

and the secondary circulation flow is very weak, so that the momentum

transfer from the fluid near the impeller to the more remote parts of

the fluid depends mainly upon the molecular viscosity of the fluid and

therefore the amount transferred is small and the velocity of remote

fluid is low. As the Re increases, secondary circulation flow occurs and

momentum transfer increases (Nagata et a1. , 1960).
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Figure 3.5: Fluid Motion in Agitated Vessels (Nagata, 1975)



62

Nemax A\

It. Np max 6
(”dc C----- '1 F (2)

-‘uNp -E (3)

Mpg,"

i 103:102 103 104 105 106

R.

 

     
 

Figure 3.6: Schematic Diagram Showing The Relation Between Power Number

and Reynolds Number For a Paddle Impeller (Nagata, 1975).
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3.3.3.2)LemineLE12w—Qmm

Because of the similarity of the power correlation curves [Po versus Re

(Figure 3.6)] to the friction factor plot for pipeline flow, the region

where the slope is equal to -1 is considered to represent a laminar

(viscous) flow region. This has been experimentally verified by numerous

researchers. Thus, for all impellers, the laminar flow regime is charac—

terized by a linear decrease in the Power Number (P0) with Reynolds

Number (Re) ,

(3.99)
 

Applicability of Eqn. (3.99) is limited by the critical value of the Re

which depends on the geometry of the mixed system alone for Newtonian

fluids .

3.3.3.2.1) Qtitical Raynolds Nnnbet

In the mixing system, the transition from laminar to turbulent

flow proceeds gradually and no distinct critical Re exists for the flow

in an agitated vessel as for other hydrodynamic processes such as

pipeline flow (Re - 2100) and sedimentation (Re - 1). However, ex-

perimental values of the Reynolds Number defining the limit of laminar

flow for mixing by mechanical agitators have been determined (Rushton et

al., 1950; Green, 1953; Hirsekon and Miller, 1953; Nagata et al. , 1957;

Pollard and Kantyka, 1969; Nagata, 1975). Results show that the region

of purely viscous (laminar) flow extends to Re numbers from ten to one

hundred (10-100) and it seems to be influenced by the geometry of the

system (Chavan and Mashelkar, 1980). Thus, it may be incorrect to define
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the laminar flow region unless impeller and vessel type is defined.

Laminar flow can be achieved throughout the vessel by the correct design

of the system, i.e. , selecting the correct combination of impeller and

vessel geometry, and diameter and rotational speed of the impeller.

The laminar flow region is also a function of the type of fluid

being investigated. Metzner and Otto (1957) observed that the region

extends to higher Reynolds Numbers in pseudoplastic fluids than in

Newtonian fluids. For turbine impellers, a value of Re - 10 was obtained

for Newtonian fluids while laminar flow was observed until Re - 20 for

power law fluids with 0.25 < n < 0.45.

The laminar flow region can be limited quite safely by defining

Re < 10. When this criterion is satisfied, baffles are not needed and

it allows for maximum sensitivity when calculating the average shear

rate in the agitated vessel.

When agitating non-Newtonian fluids, especially pseudoplastics,

the use of a generalized (modified) Reynolds Number enables the ap-

proximate prediction of the power of the impeller at low Re (Metzner,

1956). The values of the apparent viscosity, "a’ which are functions not

only of the fluid properties but also of the conditions under which it

is flowing (Begachev et al., 1980), are substituted into the expression

for the Reynolds Number [Eqn.(3.95)] . A variety of modified Reynolds

Numbers have been used by investigators in mixing studies (Table 3.3),

where

R - Jul—2 (3.100)

By analogy with Newtonian fluids, an apparent viscosity is
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Table 3.3 Modified Impeller Reynolds Numbers for Mixing of Non-Newtonian

Fluids.

 

Reynolds Number (Re) Researchers Impeller Type

 

Magnusson (1952)

Hiraoka et a1. (1979)

Rushton & Oldshue (1953)

Metzner & Otto (1957)

Metzner et al. (1961)

Godleski & Smith (1962)

Nienow et a1. (1983)

2 Ducla et al. (1983)

n Reher & Bohm (1970)

a Hall & Godfrey (1970)

Nagata et al. (1971)

Prokopec (1972)

Edwards et al. (1976)

Takahashi et al. (1984)

Shamlou & Edwards (1985)

Su & Holland (1967)

Rieger & Novak (1974)

Bourne et a1. (1981) 
FForesti & Liu (1959)

Metzner & Taylor (1960)

Wichterle & Wein (1981)

Q_N___g <Bourne & Buttler (1969)

Chavan et al. (1972, 1975)

Chavan & Ulbrecht (1972,

1973)

Rieger & Novak (1973)

Begachev et al. (1980)

Bertrand & Courdec (1985)

Sestak et al. (1986) 

Paddle

Turbine

Helical

Anchor

Turbine

Helical

Anchor



Table 3.3 (cont'd.)
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Reynolds Number (Re) Researchers Impeller Type

 

2 2.n

m

2

4.32

"p
22-

Lil—“p. [H/hlnld/dw]

-2

82%” n]

m L6n + 2]

ding [k'Nil‘nLaLi

m [3n + 1]

2 2-n

51.8 a

m [Mn-lnn'1

infill (4a)”
II

3

d Ne

nD

{ Mashelkar et a1. (1975)

Sawinsky et al. (1976)

(Plastic fluid)

{ Foresti & Lui (1959)

P Hall & Godfrey (1970)

Blasinski & Rzyski (1976)

 _ Nienow et al. (1983)

Calderbank & Moo-Young

(1959)

(1961)

Beckner & Smith (1966)

Pavlushenko & Gluz (1968)

Conti et al. (1981)

{ Calderbank & Moo-Young

Disc

Anchor,

Helical

Turbine

Anchor

Helical

Turbine,

Paddle,

Screw

Turbine

Paddle,

Turbine,

Anchor

Paddle,

Turbine,

Anchor

Anchor

concentric

cylinders

Disc Turbine
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conveniently defined as follows:

a, - 0/1'1 - m (1)“ (3.101)

for a power-law fluid. The equation shows that the apparent viscosity,

"a’ can be obtained from the known deformation or shear rate, :1.

?3JL40 fiflflMLJMEELDlSDEUflflEQN_DEJLfiflLflMflflEfiiaMLKflflilfl§§EL

For non-Newtonian fluids, the apparent viscosity "a varies

throughout the mixing vessel due to variations in the shear rate (1'1).

For pseudoplastic fluids (power-law fluids with 0<n<1, also called

shear-thinning fluids), the "a of the fluid in the region near the

impeller is rather low and increases progressively at regions away from

the impeller. This results in high velocities and velocity gradients in

the region near the impeller, which die away rapidly as distance from

the impeller increases (Chavan and Mashelkar, 1980).

In rheological studies, a suitable value of the "a for the non-

Newtonian fluid is required. This can be obtained from viscometric

measurements if the velocity gradient, i.e., shear rate (at least in the

immediate vicinity of the impeller) in the given vessel can be

predicted. However, it is precisely the determination of the shear rate

in the agitated vessel which presents the main difficulty since it

requires the knowledge of the velocity field. The flow of a non-

Newtonian fluid in a mixing vessel has as yet not been described

analytically because of the very complex flow structure in a vessel with

a mixer (Witcherle et al., 1984). It is therefore convenient to use
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other methods for determination of the shear rate distribution in a

mixing vessel.

Following the idea of Magnusson (1952), Metzner and Otto (1957)

proposed the use of an averaga ahea: gate (lav) which is proportional to

the impeller speed in pseudoplastic fluids in the laminar-flow region

which is given by

lav - k' N (3.8)

The physical concept of the lav has been well-established as an

important design parameter in the evaluation of the impeller performance

and prediction of power consumption (Nguyen, 1983). The fiav,represents

the rate of shear which has to exist around the impeller to produce an

observed power consumption (Oldshue, 1983). It is important to recognize

that it is a simplified approximation. Even though an experimental

result, theoretical supporting evidence may be obtained from the expres-

sion for the shear rate at the bob of a concentric cylinder viscometer

for a pseudoplastic fluid in an infinite cylinder (Ro >>> Ri), (Krieger

and Maron, 1954):

1 - 4 n N (3.102)
 

where k', from Eqn. (3.8), would be equal to &_n . Calderbank (1958)

n

experimentally verified the linear relationship of the shear rate around

an impeller in the laminar-flow region with the impeller speed, N.

The experimental and theoretical evaluation of the impeller

proportionality constant, k', and consequently the rate of shear in the
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mixing vessel, has been the subject of many studies. The most common

approach is the analysis of a non-Newtonian fluid flowing between two

concentric cylinders.

3.3.4.1) Ineotatital Enntaaaigna F9; The Rate Of Shear In A Mixing

Veaaal

3.3.4.1.1) ansentris.§xlinders

Expressions for the determination of the average shear rate in a

vessel with an impeller have been determined by considering the mixing

system as a two-cylinder system, with the impeller as a rotating

cylinder.

It is known from theoretical hydrodynamics (Bird et al. , 1960)

that the generalized Newtonian law of internal friction for an incom-

pressible fluid is

T - 2 n D (3.103)

where

T - stress tensor, Pa

0 - fluid viscosity, Pa 3

D - deformation rate tensor, l/s

In cylindrical coordinates, equation (3.103) becomes (Bird et a1.,

1960),

a _ 2 3.; . a a _ r 2.. 32 + i 33; (3.104)

rr " 6r r9 0r " 8r r r 60

a _ 20[ .l 330 + .3r] . a _ a _ r 321 + E 33; (3.105)

on r as r 92 20 " 82 r 88
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810 649 600

_ ._z . _ _ r __a __t (3.106)

022 2" az azr arz " I: 6r + 62 :I

For a rotary motion in steady-state laminar flow, the fluid moves in a

circular pattern and only the tangential velocity prevails, i.e. , we =

we (r) and (or - wz - 0. Then, the shear stress, a, may be written as

(0

a -a -qu[-1] (3.107)

to

i - a/n - r a [L] (3.108)

Using Eqn. (3.108) an expression for the shear rate at the sur—

face of a rotating cylinder in an infinite Newtonian fluid is obtained

as

:1- -41rN (3.109)

which relates the shear rate with the rotational speed of the impeller.

Pavlushenko and Gluz (1968) referred to the use of Eqn. (3.108)

to determine the average shear rate in mixing non-Newtonian fluids by

mechanical impellers. To develop the analysis, the motion of the fluid

caused by the rotation of a cylinder is again assumed as an approximate

model of the fluid flow produced by mixing with any of the usual im-

peller types and the problem of the steady motion of a non-newtonian

fluid rotating between coaxial cylinders is considered. It is also
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assumed that the internal cylinder with a radius Ri rotates at a con-

stant angular velocity (w - 2wN) in a stationary cylinder with a radius

of Ro - (D/d)R1. End effects are considered negligible in this

analysis.

At low velocities characterizing the flow of non-Newtonian fluids

in vessels with impellers, the inertia forces and the pressure gradient

have no marked effect on the phenomenon and may be neglected as a first

approximation (Pavlushenko and Gluz, 1968). Another assumption is that

the flow of the homogeneous, incompressible fluid is planar (because of

the symmetry). Then, the following expression is obtained from the

equations of motion in terms of stress components (cylindrical

coordinates),

2

‘i; g; (r Ora) - 0 (3.110)

This equation can be rewritten as

60

.1. 2 ._rr -

Integrating Eqn.(3.111) once leads to,

2

r a - 01 (3.112)
r0

For a power-law fluid, a - m in . Thus, the Ora component of the

stress tensor in cylindrical coordinates is,
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dr r (3.113)

Using equation (3.112), this yields

(«0) n
2+n a_ _fl

0, - mr [dr r ] (3.114)

After integration, we - C.‘.r(n'2)/n + Car (3.115)

Using the following boundary conditions:

(i) we - 2nNRi at r - Ri (3.116)

(ii) we - O at r - R0

the expression for the angular velocity becomes

[1 "R 2/1'1 ‘

' _2

_ r

w - 2nNr (3.117)

r 1 _ P 52 2/n

I. :- R1 .1

and the expression for the shear rate is

2/n

. FR ‘ .

_a

w l - _r .

. _ d_. [J ] _ 5L _

7 r dr r r dr ZflN l - Ro-Z/n

. .131- 1

{2 21m 1 [JJ‘Z/n (3.118)

R

o
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At r - R1, the expression simplifies to

i _ - 41.11 (1)/(1)2/n (3.119)

n 1 _ (D/d)2/n

Considering & - k'N, then

k, _ - a; (0/<1)2/n (3.120)

n 1 _ (D/d)2/n

Equation (3.119) determines the average shear rate in a vessel with a

mixer as a function of the rheological properties of the fluid, the

mixing conditions, and the geometrical characteristics of the system and

should give more accurate results for mixing of non-Newtonian

(pseudoplastic) fluids than the use of the equation developed for

Newtonian fluids [Eqn.(3.109)].

3.3.4.1.2) Em ir ca And eoretical Ex ressions For The Im eller

Eronortionality Constant, k'

The suggestion of Metzner and Otto (1957) of a constant value of

the impeller constant, k', which is a unique function of the geometry of

the system has been questioned and other expressions for the constant

have been determined (both theoretically and empirically) for the mixing

of non-Newtonian (mostly pseudoplastic) fluids.

Expressions for the impeller proportionality constant, k', are

summarized.in Table 3.4. Looking carefully at the expressions, it seems

that the value of k' can be a function of the geometry of the system

(impeller shape and size, vessel size), the rheology of the fluid

(values of shear-thinning index (n) and consistency coefficient (01) or
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Table 3.4. Empirical and Theoretical Expressions for Determination of

the Impeller Proportionality Constant, k'.

 

kl

Researcher Impeller Type

 

fi/N - constant

C (l-n)

C - f(Hg/d)

slope of

3

log IP/(mN“*1d>1
versus (l-n)

Zr ___1___ 2

17 1- (d/D)

.1.

(4)1'“ (d/D)2(1/d)

13.5 N + 4.43

EMPIRICAL EXPRESSIONS

Metzner and Otto (1957)

Used by: Roger & Bohm (1970),

Bongenaar et al. (1973), Roels

et al. (1974), Nagata (1975).

{ Beckner & Smith (1966)

Rieger & Novak (1973)

Used by: Rao (1975),

Rao & Cooley (1984),

Steffe & Ford (1986),

Castell-Perez et al. (1987)

{ Sestak et a1. (1976)

{ Hiraoka et al. (1979)

{ Yap et al. (1979)

{.Nguyen (1983)

a (H,/D)p(s/D)7(w/D)6 { Takahashi et al. (1984)

Turbine, paddle

Helical, turbine,

Turbine, paddle

Anchor

Anchor, helical

Flag

Flag, star

Pitched paddle

Flag

Anchor

Paddle

Helical ribbon

(viscoelasticity)

Anchor

Helical ribbon
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Table 3.4 (cont'd.)

 

 

 

k' Researcher Impeller Type

exp[4.2 (d/D) - 0.5] '{ Deak et al. (1985) Ribbon

34 - 144 (c/D) {:Shamlou & Edwards (1985) Helical ribbon

an_ l/(n-l) { Kemblowski & Six-blade turbine

3
Amd Kristiansen (1986)

(l/N) an 1/(“'1) {,Mackey et al. (1987) Flag

Nm

THEORETICAL xxrnnssxous

n/(n-l)
F3L_] B Calderbank & Moo-Young Anchor

3“+1 (1959, 1961) (conc. cylinders)

.31.

___JL______ { Bourne (1965) Sphere

1 -(d/D)3/n

__fi;g___ { Mizushira et a1. (1966) Cylinders

0.5 (D-d)

2/n .

£1 (D/d) { Pavlushenko & Gluz (1968) Conc. cylinders

n 1 - (D/d)2/n

Bourne & Butler Helical ribbon4x [ n.(l - (d/D)l

(1969) (Conc. cyl.)

z/n Jl/(l'n)

l- (d/D)2
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k' Researcher Impeller Type

n_ [d/(d-D)] { Mitsuishi & Hirai (1969) Helical ribbon

J2 (parallel plates)

n- 1 2

0.9(n-1)

£4”) (D/d) ' 0‘75 n {Schilo (1969) Anchor

n i (D/d) - 0.75]

£9 { Prokopec (1972) Screw type

H2

1/(1-n) 2/n n/(l-n)

_ag__ _n_L_LDLga1____;_ll_ Chavan & Ulbrecht Helical
2 4' crew

I D H (1972) (conc. cyl.)

1/(n-1)

["w (ww + 2)] Paddle

« NN { Hiraoka et al. (1979) ( Numerical)

[w + 2 ]
w N

4« [n (1-" /“)]’l { Sinevic et a1. (1986) Coaxial cyl.

2/n { Nguyen & Boger (1987) Vane

4w Cr1

Kemblowski et al. (1988) Helical Screw

2

[1 ' (l/fi) ] (Conc. cyl.)
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viscosity) and the operating conditions (impeller rotational speed). The

geometry of the system also plays an important role, especially the

ratio of diameters, d/D. This is particularly true for the theoretical

expressions. In addition, the various expressions presented in Table 2.2

indicate the importance of the type of impeller to be used in the mixing

process. This should be expected since the shape of the impeller affects

the shear field in the agitated vessel.

Hall and Godfrey (1970) and Nagata (1975) confirmed that impeller

pitch, and.number of blades have no significant influence on the values

of the impeller constant but it is greatly influenced by impeller size.

The effect of the impeller height has been considered negligible by some

investigators [White and Brenner (1934), Nagata (1975)].

The value of the shear-thinning index, n, also seems important in

the determination of k'. This should be expected since the shear rate at

a given distance from the impeller has been found to be slightly greater

for a larger impeller (smaller D/d ratio) (Metzner and Taylor, 1960) and

the more shear-thinning the fluid, the greater the difference.
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CHAPTER 4

mnmmmrmmonmxvmmmmwsmmm

This chapter consists of the presentation of the theoretical

aspects for the development of a procedure for the rheological charac-

terization of non-Newtonian (power-law) fluids with a mixer viscometer.

The experimental verification of the developed procedure is presented in

Chapter 6.

4 - 1) 03113511153191: 0: m1: QURVES

Traditional mixer viscometry techniques present two main disad-

vantages. First, the need for calibration with Newtonian fluids (Po vs

Re curves) and secondly, the use of a simplifying assumption for the

aVerage shear rate (lav - k'N), with k' a function of impeller geometry

only - Taking into account these disadvantages, the application of these

tec"’}‘l‘t‘1iques in rheology has been questioned (Kemblowski et a1., 1988;

Nienow and Elson, 1988) and the need for new procedures to evaluate the

rheological behavior of power-law fluids has been suggested.

The main purpose of this chapter is to develop a new procedure for

q 1 t‘ect determination of the flow curve (shear stress-shear rate

relationships) of power-law fluids using a low-cost mixer viscometer.

The existing literature presents a similar attempt by Kemblowski et

a1 ‘ (1988) for a system of complex geometry (a helical screw impeller

Q’tating in a draught tube) for application to fermentation broths using

SQInlisticated instrumentation. Other attempts [Bongenaar et a1. , 1973;

Rao . 1975; Metz et al. (1979); Kemblowski et al. (1986)] require
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calibration with Newtonian fluids using power correlation methods.

Expressions for the shear rate and shear stress of power law fluids have

been developed for a disc spindle (Williams, 1979) but no attempts have

been made for geometries such as the paddle or the flag impeller.

4-1.1)WM

The movement of solid surfaces (e.g. , an impeller) in contact with

a fluid causes the fluid to move in some characteristic pattern which

results in the development of internal stresses and the application, on

the solid surfaces, of characteristic forces which must be continuously

CourIterbalanced (e.g. by a drive motor) in order to sustain the fluid

motion (Charles, 1978). The nature of the flow pattern and the mag-

hi t\ICIes of internal stresses and applied forces depend primarily on the

gec“nettry of the system, the rate of fluid motion and the rheological

p

roperties of the fluid.

Approximate expressions for the determination of the shear stress

a

nd shear rate in a vessel with an impeller can be obtained using ap-

PT:

Qutilllate geometries for the system, since the complicated geometry of

th

Q system makes the solution of the proper set of differential equa-

t1

9118 of motion a difficult task.

4;

‘ 1 ~ 1.1) Model Sygtems

ItConsider the measuring system shown in Figures 4.1A and 4.1B.

Qt)
1“sists of an impeller (paddle or flag) of height b and diameter d,

r

Qtating in a cylindrical cup, with the impeller replaced by a cylinder

w

ith the same dimensions of the impeller, b and d. The following assump-

t.

1bus were made for the model system:
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the fluid is purely viscous and obeys the power-law model, a - m1)

m“.

11) the fluid flow produced by stirring with any impeller type is

approximated to the steady motion of fluid caused by the rotation

of a cylinder [i.e. , the impeller is replaced by a cylinder whose

dimensions are equal to those of the impeller (d and b)].

111) the shearing due to the immersed section of the impeller shaft is

negligible.

1") the resistance to flow caused by the top and bottom of the impeller

is negligible.

The first of these assumptions can be readily checked. Assumptions

( ii) and (iii) imply that the cylindrical model is sufficient to

deseribe the viscometric flow induced by a rotating impeller and that

t

he sheared surface of rotation is cylindrical. Even though this is not

3

o ’ this approximation is reasonable for the purposes of this study.

e adequacy of assumption (iv) will be tested in this investigation.

Also, since the complicated geometry of the impeller system does

no

t allow for determination of the shear rate and shear stress at a

f1
Red point of the system, average values should be used instead.

4

‘1~1.2)WAW

The expression for the shear rate at the surface of a rotat-

i

“3 cylinder in an infinite Newtonian fluid is

(4.1)7b - th

with the

w

hich relates the shear rate at the bob of the cylinder, fib’
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Paddle

       

 

Fiepare 4.1: Model Systems. A) Paddle Impeller; 8) Flag Impeller;

C) Flag Impeller (Model 3)
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rotational speed (rev/s) of the impeller, N.

Krieger and Maron (1954) worked on the shear rate problem for non-

Newtonian fluids sheared within the (narrow) gap of a Couette viscometer

by solving the corresponding equations of motion for a cylindrical

system. The resultant shear rate equation for a fluid obeying the power-

law is,

lb " n 2/n 2/n (4'2'1)

’yb - (4.2.2)

W1 th {2 — 21rN - angular velocity, rad/s

w I outer cylinder (cup) radius, m

innner cylinder (bob) radius, m

U
P I

n - power-law index, dimensionless

N - cylinder rotational speed, rev/s

Equations (4.2.1) and (4.2.2) show the dependence of the shear

rate at the surface of the rotating cylinder on the flow behavior index

and the system geometry.

It is possible to approximate the complex situation of an impeller

r°tating in a tank by assuming that all fluid elements are exposed to an
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”average shear rate” during the mixing process. Pavlushenko and Gluz

(1968) considered approximating the shear rate in a mixing system with

Eqn. (4.2.1) and (4.2.2) [See section (3.3.4.1.1) for the development]

and the shear rate at the impeller (cylinder) surface is written as,

 

 

2/n

(D/d)

1b '21?— 2/n (4.3.1)
(D/d) - l

c>:zr

. 4m (1)/c1)“n (a 3 2)
1 :- _ . .

b n (D/d)2/n _ 1

‘Vuflnlealx:

D - cup diameter, m

d - impeller diameter, m

The previous equations assume a dependence of the shear rate at

the surface of the impeller on fluid properties, impeller speed (rpm)

and, system geometry, in a form identical to that of a cylindrical im-

pe11er. Thus, from Eqns. (4.3), an expression for the average shear rate

in the real measuring system (a vessel with a mixer) is expected to

present a similar form (but somewhat different due to the differences in

geometry) to that of Eqn. (4.3.1) and (4.3.2) as follows:

(1)/de a
2, - p [b/d] 3 N (4.4)
av 1 (1)/drug _ 1
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where fl, is a constant and, al, a2 and as are parameters dependent on

the power-law index, n.

Equation (4.4) differs from Equations (4.2.1), (4.2.2), (4.3.1)

and (4.3.2) in the addition of the term which takes into account the

effect of impeller variation (i.e., impeller height, b). Equation (4.4)

may also be written in the familiar form of the linear dependence of the

average shear rate in a mixer on rotational speed, proposed by Metzner

and Otto (1957),

78v - k'N (3.8)

with

(1)/d)“1 a

k' - 5. a [b/d] 3 (4.5)
(D/d) 2 - 1

 

Where k' is the impeller proportionality constant, dependent on the

system geometry (cup and impeller) and the rheological behavior of the

fluid. The average shear rate of an impeller (paddle or flag) can be

E”"‘l>ected to be a function of these parameters.

Also, a direct relationship between the average shear rate and

the geometric dimensionless numbers [(D/d) and (b/d)] can be expressed

as f0110ws:

5,, - a. [ (1)/d)“1 <b/d>“3 1N (4.6)

Where
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k' - fl; [ (1)/d)“1 <b/d)°3 1 (4.7)

with ,81 a constant and, a1 and as parameters dependent on the power-law

index, n. Eqn. (4.6) differs from Eqn. (4.4) in the simplification of

the (D/d) term with the consequent elimination of a2 . Thus, Eqn. (4.6)

makes the (D/d) term a more significant parameter since the terms under

brackets in Eqn. (4.4) is close to one.

In the case of a flag impeller (d/b- constant in this

investigation), Eqn. (4.6) can be rewritten as follows:

+w-pxwmflu (mm

and

k' - a. [D/dla‘ (4.9)

With 51 and (:1 similar to Eqn. (4.6).

Equations (4.4) to (4.9) allow for determination of the average

shear rate in the mixing system as a function of impeller and cup

geometry and fluid properties for each value of the impeller rotational

Speed, N.

In summary, this section presents a series of equations which

allow estimation of the average shear rate, 1 , when agitating a
av

POWer-1aw fluid with an impeller (paddle or flag). The development of

the eQuations for the average shear stress will be presented in the next

section.
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4.1.1.3)WM

4. 1.1.3.1) node; 1 (gongentzig cylinders analogy with negligible end

effects).

Consider a stationary cylindrical cup of large radius, with

laminar flow at the surface of the rotating inner cylinder of diameter

d - The fluid exerts a tangential force on the outer cylinder while the

inner cylinder exerts such a force on the fluid in contact with it. This

force is transmitted through the fluid from one layer to the next. At

any point in the fluid, the tangential force divided by the surface area

on which it acts is defined as the shear stress, a.

The torque (proportional to the drag offered by the fluid when the

cylinder is rotated) on the shaft resulting from the rotation of the

inner cylinder may be regarded as a sum of two parts: Mw , resulting

from the shearing in the cylindrical wall, and Me , resulting from the

shearing in the two end surfaces. Thus,

M-M + 2M (4.10)
w e

or

M - (21rb)ar + 2(2xr20) (4.11)

with

a - shear stress from fluid, Pa

b - inner cylinder height, m

r - any radius (in fluid) from axis, 111
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Taking into account assumption (iv), the second term of the right-hand

side of Eqn. (4.11) is eliminated and Eqn. (4.11) becomes

2

M - 21rbr a (4.12)

At the innner cylinder wall (r-R),

2

M - 21rbR aw (4.13)

W1 th aw - shear stress on the wall of the inner cylinder, Pa

Let aw - aav (since the shear stress cannot be determined at a

fixed point). With R - d/2 , Eqn. (4.13) becomes

2

M - be (d/2) aav (4.14)

‘vtierre M - torque on the shaft resulting from the rotation of the inner

cylinder of diameter d and height b, (N m), i.e., the

experimentally determined torque on the impeller shaft during

the shearing of the fluid.

oav - average shear stress on the surface of the inner cylinder,

Pa

The average shear stress, aav , can then be determined from

Eqn. (4.14) as follows,

aav - J“,— (4.15)

«bd
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Equation (4.15) represents the average shear stress in the real

measuring system (impeller rotating in a cylindrical cup).

4 - 1.1.3.2) Mgdgl 2 (gonggntrig cylinders analogy with and effects)

The validity of assumption (iv) is questionable when the diameter

of the outer cylinder is small and, therefore, the effect of the end

S urfaces of the system (top and bottom) become significant. The

theoretical development for an approximate expression for the average

Shear stress takes advantage of the analysis used by Nguyen and Boger

( 1983) for the vane shear approach as a starting point and is as fol-

lows.

The total torque measured is composed of one component due to

shearing on the cylindrical wall and another to shearing at the two end

surfaces. The diameter of the cylindrical connecting rod is small in

comparison with the paddle diameter and so the measured torque is due to

the paddle surface only. The torque balance is given by

M-M + 2M (4.16)
w e

R

M - (21I'Rb)aw R + 2 [211' Iae(r) r2 dr] (4.17)

0

Where

M - measured torque, N m

R - impeller (cylinder) radius, m

b - impeller (cylinder) height, m

ae(r) - shear stress at the end surface (a function of radial
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position r), Pa

aw! shear stress at the cylindrical wall, Pa

The main assumption of this approach is that 0e is uniformly

distributed over both end surfaces and that 0e is equal to aw at the

cylindrical wall. Thus, 0e - a“.7 , and integration of Eqn. (4.17) yields

R

M - [(211’)R2b]aw + 41r Jaw r2 dr (4.18)

O

2 3 R

M - [(2101: 13].;W + 411' (r /3) lo aw (4.19)

Equation (4.19) can be rewritten in terms of the impeller diameter, d.

T'tmus,

2 3

M - [(1r/2)d b]aw + 4n -% aw (4.20)

Finally,

3 b 1
_ .114— _. + __

M 2 [a 3] aw (4.21)

Assuming that the average shear stress is equal to the shear stress at

the cylindrical wall (aw - aav ), the dependence of the average shear

stress in the real measuring system can be written as follows:

M

a -

av —K_ (4'22)
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:3 b + 1

with K - "’ "' , (4.23)

an impeller parameter dependent on the impeller dimensions only.

Equations (4.22) and (4.23) indicate that the oav can be calculated from

the measured torque, M, and impeller dimensions (d and b).

Even though the assumption of uniformly distributed 0e is valid

only for a extremelly small cylinder (d e 0), Nguyen and Boger (1985)

demonstrated that the error involved in using Eqn. (4.22) is not sig-

nificant when compared to an assumed relationship for the shear stress

at the end surfaces, i.e.,

gem - (r/R)paw, when 0 s r s R (4.24)

where p - parameter ( z 0 ). The two boundary conditions to be satisfied

are:

0e - 0 at r - 0 (4.25)

a - a at r - R (4.26)
e w

Integrating Eqn. (4.17), after the introduction of Eqn. (4.24) yields

R

M - (2nR2b) aw + 2 [2x I [r/R]pr2 awdr] (4.27)

o

R p + 2

2

M - (2xR b) a + 4nd I -—£————' 0 dr] (4.28)

w w Rp w

o
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4‘0 p + 3 R

2

M- (21rR b) a +——‘ll —R—— (4.29)
w (p+3) RP 0

41m 3

(4.30)

2

M-(21rR b) aw+-(p—+§)R

Rewriting Eqn. (4.30) in terms of the impeller diameter, d,

 

3 b 1

1rd +

M - 2 [ d 5:; J aw (4.31)

(4.31) accounts for theThe second term in the parentheses in Eqn.

(1.error involved when using impellers (cylinders) of finite diameter,

If p - 0, Eqn. (4.31) yields Eqn. (4.21) (uniform shear stress distribu-

tion case).

4.1.1.3.3)n2§;¢.LLLE12LImllsr_).

Because of the more complicated geometry of a flag impeller

another model can be considered as shown in Figure 4.1C. The reasons for

this alternative model are due to the particular geometry of the im-

Peller, which consists of a central cylinder with two blades attached.

Thus, the impeller is now replaced by an inner cylinder with an equiv-

alent diameter de’ where de is equal to half the length of each

1mFeller blade plus the diameter of the cylindrical section, dC . Thus,

cle - 2 (82) + (1c (4.32)
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with 2 - blade length, m

Following the same analysis for the System Model 1 [concentric

cylinders analogy with negligible end effects; Section (4.1.1.3.1)], the

corresponding expression for the average shear stress in the cylindrical

surface is given by

2M

 

av (4.33)
2

arbd

e

with de- equivalent diameter of ideal system model, m [Eqn. (4.32)]

b - cylinder height, m

In a similar manner, the expression for the average shear stress

for the System Model 2 [Concentric cylinders analogy with end effects;

Section (4.1.1.3.2)], is as follows:

M

aav - Z
(4-34)

3

1rd b + l

w - —-—€L- — ——1th K3 2 de 3 (4.35)

In summary, a series of equations for approximation of the average

shear stress, aav , when agitating a power-law fluid with an impeller

(Paddle or flag) have been determined based on an analogy with the

concentric cylinders case.
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CHAPTER 5

HATERIAIS ARDHETBODS

This chapter is divided into four main sections. The first sec-

tion describes the equipment and the materials used for the data

collection. In the second section, the procedure and the experimental

design are presented. The third and fourth sections present the proce—

dure for calculations using traditional and the new mixer viscometry

methods , respectively .

5.1) EQQIPMENT AND MIQIALS

The Brookfield RVTD and HBTD mixer viscometers were monitored by

a data acquisition system and torque responses were collected every two

seconds. Six impellers (five paddles and one flag) and three sample cups

were utilized in this investigation. Four Newtonian fluids and three

Non-Newtonian fluids were selected as the main fluids.

5.1.1) The Brookfield nixer

The Digital Brookfield Viscometer (Brookfield Engineering

Laboratories, Inc., Stoughton, M.A.), is a rotational viscometer that

measures the torque required to rotate an immersed element (the spindle)

in a fluid. The spindle is driven by a synchronous motor through a

calibrated spring and the deflection of the spring is indicated by a

digital display. For a given viscosity, the viscous drag, or resistance

to flow (indicated by the degree to which the spring winds up). is
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proportional to the spindle's speed of rotation and is related to the

spindle's size and shape (geometry).

Two digital viscometers, the Brookfield RVTDV-I and the

Brookfield HBTDV—I were used in this investigation. The calibration

spring torque were 7187 dyne cms and 57496 dyne cms (full scale),

respectively. Eight rotational speeds (0.5 to 100 rpm) were selected.

These viscometers are guaranteed to be accurate within 1% of the range

in use (when utilizing the display reading) and have a sensitivity and

reproducibility of 0.2%. Digital viscometers include a O-lOmV (or O-lV)

output signal for continuous data collection.

5.1.2) Data Acquisition System

The output signal from the Brookfield Viscometer was sent to a

Data Acquisition System (Dianachart PC-Acquisitor Model PCA-14,

Dianachart Inc., Rockaway, NJ). The acquisitor (A/D board with 48

channels) is connected to a IBM PC by using a parallel printer cable.

The viscometer torque voltage was measured and stored onto a floppy

disk. Software provides continuous on-screen display of measurements and

a series of data handling alternatives. Published accuracy is

10.02% of range (0.3pV-10V). Measurements were stored at two second

intervals. When the experiment was completed, the disk data was read

into a spreadsheet using LOTUS 1-2-3 and printed in tabular form.

5 - 1 . 3) Impellers and Cups

The impellers (Figure 5.1) were constructed from standard

BrOokfield spindle shafts (300 series stainless steel) shortened to the

required length. The paddle impeller blades were ground from a solid
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piece of stainless steel that had been drilled to allow a press fit on

to the shaft. The flag impeller was supplied by Brookfield Engineering

Laboratories as a component of a commercial version of the instrument

described by Steffe et a1. (1989).

The fluid containers (Figure 5.2) consisted of cylindrical

cups, with flat bottoms, made with acrylic tubing (United States Plastic

Corp. , Lima, OH) cut to desired lenghts. The base of the cups and the

standard base were constructed from a plastic sheet extruded from cel-

lulose acetate butyrate plastic (United States Plastic Corp., Lima, OH).

These materials guarantee high optical clarity, high impact resistance

as well as light weight. Cups were constructed with fluid jackets for

temperature control.

5.1.4) Eluids

Two types of fluids were used in this study, Newtonian and non-

Newtonian fluids. The Newtonian fluids consisted of four Brookfield

Viscosity Standards: non-toxic silicone fluids calibrated at 25°C (77°F)

with Viscosities of 100 cp, 993 cp, 4840 cp and 12200 cp (0.1-12.0 Pa

5). The non-Newtonian fluids consisted of 1.0%, 1.5% and 2.0% (dry

basis) concentrations of aqueous solutions of Hydroxypropyl

Methylcellulose Premium (Methocel, Dow Chemical Co. , Midland, MI).

5. 2) EEEEDIMENIAL DESIGN AND PROCEDURE

5. 2.1) Design of Experiment

Data were collected to assess the variability in torque

measurements (needed for further data analysis) introduced by the
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impeller and cup changes. Six impellers and three cups were used in a

total of 13 treatment combinations. Tests were conducted in duplicate

and the order was determined by randomization. Table 5.1 shows the

different impeller/cup combinations investigated in this study. Impeller

diameter, d,(Figure 5.3) was kept constant due to problems during

manufacture of the paddles. The impeller blade height b, was varied to

investigate the effect of impeller size. Three sample cups of different

diameter, D, were used with a range of d/D ratio from 0.3 to 0.7.

To not vary a large number of geometric constants at once, the

length of the sample cups was maintained at L - 1.5D. The fluid level,

Ii, in the cups was kept at H - 1.2D. This distance was selected to keep

all impellers sufficiently immersed in the fluid to avoid surface waves,

especially for the bigger impellers. Preliminary tests showed that the

position of the impeller, that is, the distance between the bottom of

the impeller and.the bottom of the cup, c, had no significant effect on

torque readings when placed close to the top, in the middle, or close to

the bottom. For practical considerations, impeller depth (c) was set at

c - 0.5d since it made possible the immersion of the impellers under

sufficient volume of fluid. The effect of the distance from the surface

of the fluid to the top of the impeller's blade was assumed negligible

(as in Nagata (1975). The effect of different impeller shape was inves-

tigated by using a flag impeller (Figure 5.1).

5.2.2) Madam

5 . 2 . 2 . l) Dreparation of Non-Newtonian Fluids

Aqueous solutions of Hydroxypropyl Methylcellulose were prepared

by heating distilled water to 70°C (158°F) and slowly pouring the



Table i
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Table 5.1: Experimental Design.

 

GEOMETRICAL DIMENSIONS DIMENSIONLESS VARIABLES

SYSTEM IQQI
 

n d b d/D d/b

 

Paddle Impellers

l 5.55 1.8 1.0 0.327 1.8

2 5.55 1.8 1.8 0.327 1.0

3 5.55 1.8 3.0 0.327 0.6

4 5.55 1.8 4.0 0.327 0.45

5 5.55 1.8 5.0 0.327 0.36

6 3.50 1 8 1.0 0.515 1.8

7 3.50 l 8 1.8 0.515 1.0

8 3.50 1 8 3.0 0.515 0.6

9 2.54 .8 1.0 0.709 1.8

10 2.54 1.8 1.8 0.709 1.0

Flag Impellers

l 5.55 1.5 3.0 0.273 0.5

2 3.50 1.5 3.0 0.429 0.5

3 2.54 1.5 3.0 0.591 0.5

 

where: D - cup diameter

d - impeller diameter

b - impeller blade height
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percent weight of sample into the water. Mixing was carried out with a

Corning PC-351 Hot-Plate Stirrer. Solutions were cooled down and allowed

to rest for a period of 24-48 hours to eliminate air bubbles.

5.2.2.2) Detetmingtinn of finenlngitgl Dronerties of Non-Newtonian Fluids

Rheological behavior of the materials was determined with a

Haake RV-12 concentric cylinder viscometer with M-500 head and the MVFI

sensor (d/D-0.90). The viscometer is interfaced to a Hewlett-Packard 85

computer and a 3457 data acquisition system. The samples were previously

agitated for a period of 10 minutes to check for thixotropic behavior.

Torque was monitored as a function of time and reached an equilibrium

value after the completion of the test for all samples. Triplicate

replications of torque versus rotational speed data were collected for

every sample at 1-120 rpm (0.105-12.57 rad/s). The values of the flow

behavior index, n, and the consistency coefficient, m (Table 5.2), were

obtained from shear stress-shear rate data, with shear rate evaluated

using the method developed by Krieger (1968). The fluids showed power-

law behavior and no elastic characteristics, such as rod climbing. The

experiments were carried out at a constant temperature of 25°C i 1°C

(77°C) .

5.2.2.3) inittatign of Dronttield Visggmeters

The viscosity of a Newtonian standard (Brookfield Viscosity

Standards) was determined with the RVTDV-I and the HBTDV—I Brookfield

Viscometers and cylindrical spindle # 7 (0.32 cm diameter, 5.37 cm

height) to ensure proper instrument performance and high accuracy.
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5.5.2.4) Data tollection

Figure 5u4 illustrates the overall experimental system. Once

loaded into the cup, the temperature of the fluid was controlled with a

constant-temperature water bath connected to the cup jacket with stan-

dard tubing and fittings. Temperature of the sample was allowed to

equilibrate up to 25°C (77°F). To ensure proper alignment of the im-

peller and cup system, a standard base enabled proper placement of the

cups. A guard leg was initially utilized to determine the proper align-

ment of the impellers but removed before data collection. A selected

impeller was immersed in the ution to a fixed mark with care to avoid

excessive entrainment of air bubbles. The torque reading at a selected

rotational speed was measured after steady state was reached (constant

readings). Readings were collected during one minute at the specific

value of rpm. For any given run, the rotational speed varied (a step-

wise increase) and the range of rotational speed was the operating range

of the viscometers (0.5, 1.0, 2.5, 5, 10, 20, 50, and 100 rpm). The

tests were done in duplicate and the reproducibility of results was very

high.

Neither surface waves nor vortex formation occurred in any of the

impeller/cup/fluid combinations which satisfied the laminar flow condi-

tion (Re<10). After completion of the test (data collected with impeller

rotating at 100 rpm), the impeller was removed and the next impeller was

tested.

The above procedure was repeated for all systems and fluids.

Results will be presented and discussed in the following chapter.



Table
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Table 5.2: Rheological Properties of Sample Fluids

 

Newtonian Fluids

(Brookfield Standards)

 

3

Fluid n (Pa 3) p (kg/m )

Standard 1 0.093 i 0.001 928.570

Standard 2 0.923 i 0.001 930.000

Standard 3 4.840 i 0.001 966.829

Standard 4 12.200 i 0.001 969.421

 

anrNewtonian.F1uids

 

1 n 1 s

Fluid m (Pa 8 ) n p (kg/m )

CMC 1% 6.492 t 0.03 0.504 i 0.01 974.800

CMC 1.5% 28.417 i 0.02 0.374 t 0.007 1025.870

CMC 2% 59.275 i 0.02 0.352 t 0.003 1144.280

 

1

Means of three replications for 0-2 rev/s for Haake Viscometer data.



 

BOB

Brookfield
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5.3) CA TIONS USING T ER VISCO Y METHO S

Three commonly used mixer viscometry methods were used for deter-

mination of the impeller proportionality constant, k' , (thus, average

shear rates) in the mixing system. The procedures are outlined in

Chapter 3.

5.3.1)W

The procedure for the two matching methods: [Metzner and Otto,

1957; and Mackey et al., 1987] is outlined in Section (3.2.1.1). The

main equations used in these methods are Eqns. (3.1), (3.8) and (3.15).

Expressions for the Po versus Re relationships were developed for each

impeller/cup combination for both the Newtonian and the non-Newtonian

(power-laMO fluids. Also, values of k' were determined as a function of

fluid properties and system geometry.

5.3.2) filmne Method

The procedure is outlined in Section (3.2.1.3). The main equa-

tions are Eqns. (3.41), (3.45) and (3.47). Values of the impeller

proportionality constant, k', were determined as a function of system

geometry .

5.4) A CU ONS US NG NEW R V COMETRY METHODS

5.4.1) Detetminntion of Average Shear Rate

The procedure for determination of the average shear rate in the

mixing systems is as follows:
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1) Using the values of k' obtained with traditional mixer viscometry

2)

methods, a model was found by fitting the data using stepwise

regression. Thus, the values of 31, a1, 02 and as from Eqns. (4.31)

through (4.35) were obtained for each impeller/cup combination and

fluid under study and expressions for the average shear rate were

obtained.

The values of k' obtained with traditional methods are plotted versus

the values of k' calculated using the equations above. The equation

which gives the better agreement is considered the best equation for

approximation of the average shear rate in the mixing system.

5.4.2) Dgtgtminntinn 9f Axgzage Shea; Stress

1) To check the applicability of the shear stress equations [Eqns.

(4.6), (4.13) and (4.24)], the values of torque calculated from the

corresponding equations are compared with the experimentally measured

values of torque using the impeller (mixing) system. Hence, the

torque equations for the paddle impellers are,

M - 2nb (d/2)2 a (4 5)
8V

for the concentric cylinders analogy with negligible end effects.

When end effects are considered, the equation for torque is the

following:

M - —£4— [ —g— + ——l— ] (4.12)



f(

5.4.:
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For the flag impellers, the above equations apply in addition to

Model System 3 (d - de ),

M - 21rb (de/2)2 a (4.36)
av

where aav - m (iav )n , for a fluid of known rheological properties,

n and m. Thus, using the values of n and m and the expression for

Iav , the values of an aav are obtained for use in the torque

equations.

2) Plot calculated torque versus experimental torque. The equation that

best represents the shear stress relationship in the mixing system

will then be the one which gives better estimates of the experimental

torque values.

3) Develop flow curves (average shear stress- average shear rate curves)

for a set of geometric parameters (D, d and b).

5.4.3) o dur o e use 0 a ixer viscomete to directl determine

e eo o ic ro erties f ower-law fluids

On the basis of the considerations presented in Chapter 4, the

following procedure is proposed for the determination of the flow curve

(shear stress-shear rate relationship) of a power-law fluid:

1) Measure the torque on the impeller shaft, M, as a function of

rotational speed, N, using the mixer viscometer.

2) Determine the value of the flow behavior index, n, from the slope of

the log-log plot of M vs. N.

3) Select the appropriate equations for the average shear rate and shear



4)

5)

6)

7)

108

stress in the mixing system by following the steps outlined in

Sections (5.4.1) and (5.4.2).

For a given value of rotational speed, measured values of torque and

known system dimensions, determine the average shear stress, a
9

av

for the investigated fluid using the appropriate equation.

For a given value of rotational speed, known system dimensions and

the value of the flow behavior index of the fluid, n, determine the

average shear rate, 78v, using the appropriate equation.

Repeat steps 4) and 5) for the complete range of rotational speeds

of the viscometer.

Evaluate the flow curves (rheograms) by plotting the ”av versus the

fiav , for the investigated fluid in log-log coordinates. The

intercept of the log-log plot is the fluid consistency coefficient,

m, in Pa 3“.
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CHAPTER 6

RESULTS AND DISCUSSION

The results of the experimental investigation are presented and

analyzed in this section. In the first part, results obtained widn

traditional mixer viscometry methods for estimating the average shear

rate are presented and discussed. In the second part, results from the

proposed method are described and its suitability determined for

rheological.characterization of power-law fluids. A procedure for using

the Mixer Brookfield Viscometer with Newtonian fluids is presented in

Appendix C.

6.1) ESIIMAIION OE AVEBAQE SHEAR BATE USING MIXERS: TRADITIONAL METHODS

6.1.1) Matching Viscosities

6.1.1.1) Powgr Qurves Metngd (Metzner and Otto, 1957)

Newtonian mixing curves for the paddle impellers in terms of

mixing power number (Po) versus Reynolds number (Re) are shown in

Figures 6.1 to 6.3. Each figure represents power data for mixing the

Newtonian fluids in the same selected sample cup. Data points are means

of two replications. These plots indicate that in the viscous regime the

power characteristics are in agreement with the relationship indicated

by Metzner and Otto (1957) for the laminar region of flow,

P -— (6.1)

i.e, they follow a straight line with a slope of -1. Regression analysis
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on the data yielded slope values ranging from -0.98 to -l.03. Similar

results were obtained with the flag impeller. The effect of the Froude

Number, Fr , on power consumption was investigated and no significant

effect was observed (Appendix B, Tables B1 and B2) for all systems.

To account for the effect of geometry, a generalized Po versus Re

relationship was preferable and Eqn. (6.1) was transformed to

P0 - a0 Rea1 (d/b)°2 (d/D)°3 (6.2)

for the paddle impellers, and

Po - p, Refll (d/D) fl? (6 3)

fer the flag impeller. Equations (6.2) and (6.3) are nonlinear. To

simplify the regression analysis, the following transformation was made,

log Po - 10g ao + allog Re + azlog (d/b) + a3log (d/D) (6.4)

log PO - log 80 + fillog R8 + fizlog (d/D) (6.5)

The results of the regression are presented in Table 6.1 for the paddle

impellers and Table 6.2 for the flag impeller. The resultant power

prediction equations are,

Paddle impellers: (R2-0.990)

o 083 0 223 ,1 058 1

Po - 415.524 [ Re ° (d/b) ' (d/D) ' ] (6.6)
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Table 6.1: Regression Results of Eqn. (6.2) (Paddle Impellers)

‘Linear Multiple Regression.Analysis

 

  

Regression Estimated Regression Estimated Standard t

Coeffitient Coeffinignt Error

log a0 415.524 -- --

a. -0.983 0.005 -l74.50

a, -0.223 0.006 -6.52

as 1.058 0.006 17.40

 

Analysis of variance

 

    

 

 

Sum of Degrees of Error Mean F

Squates Freedom Squares

Regression 516.414 3 172.138 --

Residual 5.226 310 0.017 10211.5

Iotal 521.630 314

2

R - 0.990

a - 0.05



Ta

Te
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Table 6.2: Regression Results of Eqn. (6.3) (Flag Impeller)

Linear Multiple Regression.Analysis

 

  

 

 

 
 

 

  

Regression Estimated Regression Estimated Standard t*

Coefficient Coeffitignt Error

log 50 28.469 -- --

61 -0.972 0.015 -63.23

82 0.105 0.0156 0.72

Analysis of variance

Sum of Degrees of Error Mean F*

Squares Freedom Squares

Regression 146.532 2 73.266 --

Residual 3.188 87 0.036 1999.2

Total 149.710 90

R - 0.980

Test of hypothesis for 52 : C1: 82 - O

For a level of significance of a - 0.05, t(0.975,87) - 2.00

*

Since t - 0.72 < t(0.975,87), we accept C1 and conclude that 82 = 0
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2

Flag impeller: (R -O.980)

0.972 _1

PO - 25.912 [ Re 1 (6.7)

Figures 6.4 and 6.5 illustrate the validity of Eqns. (6.6) and

(6.7) for the paddle and flag impellers, respectively. Figure 6.4a is

the plot of predicted power numbers [Eqn. (6.6)] versus the "observed"

power numbers (calculated with the measured values of torque) with the

paddle. The correlation coefficient (0.990) shows the good agreement

‘between.observed and predicted values. The slope of Figure 6.4a (0.906)

also indicates that Eqn. (6.6) predicts power numbers close to those

observed. The closer the slope and the regression coefficient to the

value of one, the better the model. Figure 6.4b presents the Po [Eqn.

(6.6)] versus Re curves for Newtonian fluids using paddle impellers.

Figure 6.5a is the plot of predicted [Eqn. (6.7)] versus observed

power numbers when using a flag impeller. The correlation coefficient

(0.980) and the slope (0.900) indicate the ability of Eqn. (6.7) to

'predict power numbers. Figure 6.5b presents the Po versus Re curves for

Newtonian fluids using the flag impeller. A t-student test was performed

to verify whether the ratio of diameters (d/D) has any significance on

the PC for the flag impeller (Table 6.2). Results indicate that the

effect of the geometric term is negligible. It is evident that Eqns.

(6.6) and (6.7) are useful to indicate the effect of controllable mixing

variables: cup diameter, impeller size and impeller shape.

Non-Newtonian mixing data (i.e. power numbers) were based on the

correlation developed for Newtonian fluids. Power numbers for the non-

Newtonian (power-law) fluids were calculated and, as Metzner and Otto
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(1957) proposed, the corresponding Reynolds number was determined from

the plots of Figures 6.4 and 6.5. Thus, The values of an "average"

apparent viscosity, "a’ were obtained from

2

Re EEC—1— (6.8)

n ”8

6.1.1.1.1) Estimation of Averagg Shear Rates

Figure 6.6 shows the plot of shear stress or apparent viscosity,

"a , calculated as a/y using Haake data, versus shear rate independ-

ently measured in a concentric cylinders viscometer (Haake Rotovisko)

for a non-Newtonian fluid (CMC 1%, n-0.504, 111-6.4195 Pa s“). The plots

for the other non-Newtonian fluids are presented in Appendix B (Figures

B1 and B2). From the known shear stress (or "a ) versus shear rate

relationship, a relationship between the average shear rate, ’1 , and
av

rotational speed, N, can be established. The values of "a obtained from

Eqn. (6.8) were used to determine the corresponding iav from plots such

as Figure 6.6. The fiav thus determined are shown as a function of im-

peller speed and geometry in Figures 6.7 through 6.9 for the paddle

impellers (Figures B3 and B4 present the results for the other systems).

These plots indicate that the shear rates vary with the geometry of the

system as well with the properties of the fluid being agitated. Figure

6.7 shows the relationship between the average shear rate and the rota-

tional speed of two impellers in the same container. The impeller in

Figure 6.7a is 1 cm smaller (impeller blade height, b) than the impeller

in Figure 6.7.b. Results indicate slighlty higher shear rates at

specific values of rotational speed for the smaller impeller (Figure

6.7a).
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Similar results are presented in Figures 6.8 and 6.9. Figure 6.8b

shows the values of the average shear rate for a small impeller in a

medium cup. Figure 6.9b shows the results for a bigger impeller (three

times) in the same cup. Figure 6.10 presents the results for the flag

impeller (Figures 6.11 and B5 show results for other conditions). The

experimental data indicate that the results are dependent on the flow

properties as well as on the geometry of the mixing system. In com-

parison with the paddle impellers, the flag impeller usually yields

lower average shear rate values. This indicates that results are depend-

ent on the shape of the impeller.

Regression analysis was used to determine the relationship between

48v and N. Results are presented in Table 6.3 for the paddle impellers

and Table 6.4 for the flag impeller. It may be seen that :yav increases

linearly with N for the paddle and flag impellers. Then, the average

shear rate has the same form as the expression assumed by Metzner and

Otto (1957) ,

lav - k' N (3.8)

However, when agitating the less viscous fluid (n=0.504, m=6.4915 Pa sn)

with a paddle impeller (Table 6.3), a better fit of the data is given by

the model lav - a + k'N (systems 3, 6, and 7) (It should be emphasized

that this is only a mathematical expression with no necessary physical

meaning). Table 6.4 shows that experimental data for the flag impeller

always follow the relationship given by Eqn. (3.8) . It seems that the

values of k' are not as highly dependent on fluid properties and system

geometry as for the paddle impellers (Table 6.3), where significant
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Table 6.3: Values of k', defined by Eqn. (3.8) (k' - fiav/N ), for

Paddle Impellers.

 

' 2

FLUID SYSTEM 33 R

 

 

1 33.527 0.994

2 15.890 0.986

3 9.535 0.938*

4 10.855 0.979

CMC 1% 5 11.740 0.941

6 32.309 0.925**

7 16.154 0.899***

8 23.647 0.996

9 25.372 0.995

10 20.424 0.993

1 24.375 0.996

2 13.568 0.988

3 10.305 0.977

4 9.051 0.964

CMC 1.5% 5 8.712 0.983

6 22.564 0.981

7 12.784 0.981

8 13.859 0.998

9 21.062 0.998

10 19.511 0.989

1 17.019 0.986

2 10.776 0.976

3 9.948 0.995

4 8.834 0.991

CMC 2% 5 7.395 0.978

6 20.999 0.979

7 12.215 0.998

8 9.417 0.981

9 24.199 0.989

10 13.937 0.998

 

2

* i - 3.5072 + 6.6217N, R -0.973
av

2

** fiav - 13.695 + 20.9313N, R -0.966

2

*** Iav - 8.3535 + 9.2137N, R - 0.999
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Table 6.4: Values of k', defined by Eqn. (3.8) (k' - yav /N) for Flag

 

 

 

 

Impeller.

2

FLUID SYSTEM, k' R

1 8.602 0.969

CMC 1% 2 9.389 0.997

3 7.704 0.974

1 7.535 0.985

CMC 1.5% 2 7.639 0.997

3 6.952 0.994

1 6.411 0.993

CMC 2% 2 6.919 0.992

3 7.087 1.000
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differences are obtained for each fluid.

6.1.1.1.2) actor ec in ver e ear Rates and k'

6.1.1.1.2.1) Impeller Rotatlepal Speed

The relationship between the average shear rate and the impeller

speed has been shown in Tables 6.3 and 6.4 for the paddles and flag

impeller, respectively. The slope from the plots gives a value of k',

independent of the value of N. However, if individual values of k' were

obtained at specific values of N, a relationship between k' and N could

be established.

6.1.1.1.2.2) Fluid Ppoperties

Previous research has shown a possible dependence of k'

(therefore, average shear rate) on the flow behavior index, n, widn

pseudoplastic fluids. However, this dependence has been found to be

highly dependent on system geometry and impeller shape (Calderbank and

Moo-Young, 1961; Beckner and Smith, 1966). Their results indicate a

possible decrease in the value of k' with an increase in the value of n

but results were not conclusive and this needs further study.

It is interesting to find that, in this investigation, the less

shear-thinning fluid (i.e. , larger value of n) generated higher values

of k' (higher average shear rates) than that produced.by the highly

shear-thinning fluid (lower n value) when agitating the fluid with the

paddle impellers (Figures 6.7 to 6.9). A similar behavior was observed

by Sinevic et a1. (1986) when agitating power-law fluids in a concentric

cylinders system. It is reasonable to suggest that k3 is not only a

function of the flow behavior index, n, but it also varies with the
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value of the fluid consistency coefficient, m. In this investigation,

the less shear-thinning fluid (CMC 1%) was also the less viscous fluid.

Also, a decrease in the gap between impeller and cup (d/D) reduces the

effect of the properties of the fluid. With an impeller to cup diameter

ratio of 0.709 or greater, k' was not significantly affected by n (Table

6.3, Systems #9 and #10).

Shear rates in a cylindrical container agitated by a flag impeller

are not as significantly affected by the rheological properties of the

fluid as in the case of the paddle impellers (Figures 6.10 and 6.11),

with a slight variation at high rotational speeds for the less viscous

fluid.

6.1.1.1.2.3) Cup Diepeter

The diameter of the cylindrical cup where the fhxhiis being

agitated does not have a significant effect on the value of k' when

using paddle impellers. Figures 6.7a and 6.9b show results for the same

impeller (b-3 cm; d/b-0.6) rotating in different cups. Impeller-to-cup

ratios significantly less than 1.0 (d/D-0.327; Figure 6.7a), yielded

lower shear rates values (at high rotational speeds) than those deter-

mined when using a larger impeller-to-cup diameter ratio, i.e. a smaller

gap (d/D-0.515) (Figure 6.9b). The same behavior was observed with all

the paddle impellers. However, Table 6.3 suggests that d/D may not have

a significant effect on the values of k'. This was confirmed by results

using multiple regression analysis.

As was expected, in the case of the flag impeller, the fluid

container has no significant effect (Figures 6.10a to 6.11). However, it
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is interesting to note that the more viscous fluid (also the more shear-

thinning fluid), (Figure 6.lla) generated higher values of :Yav when

increasing the d/D ratio (smaller gap), a trend not exactly followed by

the less viscous fluids. It is suspected that the effect of the

geometric term (d/D) is highly dependent on the type of fluid being

agitated.

6.1.1.1.2.4)W

Values of the average shear rate determined for the five paddle

impellers are shown in Figure 6.12 for two non-Newtonian fluids (CMC 1%

and CMC 2%). The difference in values becomes important at high mixing

speeds, with the smaller impeller (d/b-l.8) generating the higher

average shear rates, especially when agitating a low viscosity fluid

(Figure 6.12b). This is due to the fact that a small impeller produces

low flow and thus, higher shear rates. The difference is smaller when

agitating a high viscosity fluid (Figure 6.12a). In both cases, the

difference in average shear rates generated by the different impellers

is small at low mixing speeds. It is interesting to note that the k'

values determined with the less viscous fluid (CMC 1%) show some incon-

sistency, i.e., they do not correlate with the height of the impeller

blade. This phenomenon was not observed with the more viscous fluids.

Again, the type of fluid being agitated seems to be an important factor

in the determination of the proportionality constant, k' (Figure 6.13).

Thus, the correlation between k' and the height of the impeller blade

was determined for each fluid. The best fit was obtained with the fol-

lowing model ,
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k' - fl. (cl/m”? + p. (6.9)

with 31 , 62 and B; as regression constants. Results from regression are

shown in Table B3 (Appendix B).

In summary, results obtained with the method developed by Metzner

and Otto (1957) indicate that the value of the mixer proportionality

constant, k', is not only a function of the geometry of the system as

the authors suggested but is is also highly dependent on the properties

of the fluid under consideration.

6.1.1.2) Mixer Iorgpe Qurvee Merhee (Mackey et a1., 1987)

Following the procedure of matching Newtonian and non-Newtonian

data employed by Mackey et al. (1987), the mixer torque, M, versus nN

plots for the Newtonian fluids are shown in Figure 6.14 for all treat-

ments with the paddle impellers. As it was expected, linear results were

obtained. The slope of the lines, l/k2 (rev/m3), with k2 the mixer

coefficient, seemed to be a function of the geometric variables d/b and

d/D. Thus, the following model for the mixer coefficient, k2, was

proposed

k2 - a0 (d/b) 01 (d/D)°2 (6.10)

After linearization of Eqn. (6.10), multiple linear regression analysis

(Table 6.5) indicates an excellent fit of the data. The prediction

equation for the mixer coefficient, k2, is given by

0 684 .0 408

k, - 6121.262 (d/b) ' (d/D) ' (6.11)
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Table 6.5: Regression results for the fit of Eqn. (6.10)

Linear Multiple Regression Analysis

 

  

 

 

  
 

 

 

 

 

Regression Estimated Regression Estimated Standard t*

Coefficient Coefficient Error

log a0 6121.262 -- --

a, 0.684 0.066 16.75

a2 -0.403 0.066 -5.51

Analysis of variance

*

Sum of Degrees of Error Mean F

Squares Freedom Squares

Regression 0.222 2 0.111 --

Residual 0.005 7 0.028 143.51

Total 0.227 10

2

R - 0.980

a - 0.05
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2

R - 0.980

Figure 6.15 presents the predicted values of k2 using Eqn. (6.11)

‘versus the values of k2 determined from the slopes of the lines for the

paddle impellers (Figure 6.14). The adequacy of the prediction equatiorI

is indicated by the regression coefficient and the slope of 0.990.

Figure 6.16 presents the plots of torque (M) versus viscosity

times rotational speed (nN) to determine the values of the mixer coeffi-

cient, kg, for the flag impeller rotating in the different cups. It is

clear that the value of k2 is also a function of the geometry of the

system for the flag impeller.

The value of the mixer proportionality constant, k' , can then be

calculated from the following equation [Section 3.2.1.1, Eqn. (3.15)],

“’1 (6.12)

with k2 a function of system geometry (Tables 6.6 and 6.7). Finally, the

average shear rates are determined from

y - k'N (3.8)

The effect of the parameters in Eqn. (6.12) on the value of k'

and, consequently, on the estimation of average mixing shear rates will

be discussed in the following section.
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Table 6.6: Values of k', defined by Eqn. (6.12), for Paddle Impellers

 

 

 

 

 

kl

FLUID SYSTEM 5 rung, 20 rngi 100 rpm

1 48.594 15.176 8.206

2 36.983 14.329 8.685

3 32.451 12.772 7.823

4 26.583 11.296 6.808

CMC 1% 5 23.737 10.191 6.277

6 61.948 23.409 14.274

7 50.159 19.975 12.503

8 37.851 16.298 10.130

9 39.847 15.562 10.882

10 38.515 16.101 10.8494

1 26.094 12.872 8.325

2 27.485 13.557 8.647

3 23.803 11.939 7.636

4 21.240 10.528 6.139

CMC 1.5% 5 19.219 9.525 5.742

6 25.729 13.895 9.972

7 26.456 13.807 9.354

8 15.568 8.993 6.559

9 21.019 11.468 8.692

10 16.806 9.699 7.301

1 21.400 11.537 8.024

2 22.656 11.701 7.891

3 20.392 10.602 7.099

4 18.347 9.551 6.529

CMC 2% 5 16.347 8.683 5.665

6 22.572 12.537 9.079

7 34.282 16.127 9.605

8 18.385 10.136 7.159

9 10.903 8.914 6.099

10 18.267 10.825 8.361
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Table 6.7: Values of k', defined by Eqn. (6.12), for Flag Impeller

 

 

 

kl

UID 00 m

1 39.852 11.246 6.402

CMC 1% 2 38.589 14.038 8.458

3 47.601 16.707 9.811

1 22.475 10.756 7.111

CMC 1.5% 2 19.045 9.846 6.625

3 21.788 11.445 7.833

 

1 18.135 9.558 6.801

CMC 2% 2 18.184 9.727 6.866

3 19.105 9.914 7.408
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6.1.1.2.1) Factors Affecting k'

6.1.1.2.1.1) 1m elle otati na

Equation (6.12) predicts a dependence of the proportionality

constant, k',<n1the impeller rotational speed, N. Figure 6.17 shows

that as N increases, the value for the proportionality constant of the

paddle impellers decreases for any impeller and cup geometry. At values

below 10 rpm (0.1667 rps), significant changes in the value of k' are

observed. At higher rotational speeds, the proportionality constant

might reach a constant value, independent of the system geometry.

Similar results were obtained with the flag impeller (Figure

6.18). Again, the proportionality constant,ld, is signifhunufly af-

fected by impeller speeds less than 10 rpm (0.1667 rps). fUnis behavior'

was also observed by Mackey et al. (1987) for a flag impeller.

6.1.1.2.l.2) Fluid Properties

The value of k' is also dependent on the rheological properties of

the agitated fluid (Figure 6.19). When agitating a non-Newtonian fluid

with a paddle impeller, as n increases the value of k' increases and the

effect of n on k' diminishes significantly at high impellers speeds

(from 10 to 100 rpm). Also, geometry effects become less important at

that range of rotational speeds. Similar behavior was observed with the

flag impeller.

Figures 6.20 and 6.21 illustrate the variations in.tflua‘value of

k' when agitating fluids with different rheological properties with a

flag impeller at high rotational speeds (100 rpm) in different cups.

Figure 6.20 presents the changes on the value of k' with the value of n,
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the flow behavior index. The lower the n, the lower the value of k'.

However, no conclusions can be made by analyzing only the effect of the

flow behavior index. Figure 6.21 shows that the more viscous fluid

(m- 59.275 Pa 3“) yields the lower values of k' (consequently, average

shear rates). Figures 6.22 and 6.23 show similar plots for a paddle

impeller (d/b-1.8) at 20 and 100 rpm (0.333 and 1.6667 rev/s). The

effect of the agitated fluid on the values of k' was the same as for the

flag impeller. No final conclusions can be drawn up to this point since

variations occur when the impellers operate in different geometric

systems and this needs further investigation. The effect of system

geometry will be discussed in the following section.

6.1.1.2.1.3) Cup Diameter

Results indicate that the value of the proportionality constant,

k', for the paddle impellers, is a function of the size of the cup

(Figures 6.22 and 6.23). The bigger cup (i.e., big impeller-to-cup-

diameter ratio, d/D-0.327) generates lower values of k' than the

produced in the smaller cups when rotating at high speeds. At lower

speeds (20 rpm) differences in the values of k' are only significant

when agitating a low viscosity fluid (CMC 1%) (Figure 6.22).

Figure 6.24b presents the changes in k' for a paddle impeller (d/b-1.0)

rotating in three different cups at 2.5, 10 and 100 rpm. It may be seen

that the diameter of the fluid container is an important parameter to

consider for the design of a mixing system for mixer viscometry tech-

niques when working at low rotational speeds. At higher speeds, the

influence of cup diameter becomes almost negligible when agitating

highly viscous fluids (n-0.352, m-S9.275 Pa s“).
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Results presented in Figures 6.20 and 6.21 indicate that cup

diameter becomes important only when agitating a low viscosity fluid,

with changes in the values of k' ranging from 9 to 6.5 (l/rev), as

compared to the values of k' of 7 to 7.5 (l/rev) for a high viscosity

fluid. It is interesting to find that the value of k' is higher for the

:more shearwthinning fluid (n-0.352) when the flag impeller rotates in a

bigger cup (d/D-0.273) than the value of the less shear-thinning fluid

(n-0.504) (Figure 6.20). The trend is reversed for smaller impeller to

cup diameter ratios. These results confitm the need for a better under-

standing of the influence of fluid properties on k'.

6.1.1.2.1.4) Impeller Size (Blade Height)

Figure 6.24a shows the changes of the values of k' as a function

of impeller size (d/b). It is clear that k' is significantly affected by

the height of the impeller's blade at low impeller speeds (2.5 rpm),

especially when agitating the low viscosity fluid (n-0.504). As N in-

creases, the effect of (d/b) becomes less important. The values of k'

for the different paddle impellers rotating in a big cup are shown in

Figure 6.25. Results agree with the previous observation that k' is not

significantly dependent on impeller size when rotating at high speeds,

independently of the rheology of the agitated fluid. At a rotational

speed of 20 rpm, k' values varied from 15.2 to 10.2 (1/rev) when agitat-

ing a low viscosity fluid as compared to k' values from 11.5 to 8.7

(l/rev) for a higher viscosity fluid when using big and small paddles.

It may also be noted that the bigger impeller generated the lower

k' values (i.e., shear rates). The same behavior was observed when using



152

 

 

 
 

 

 

 

 

  
  
 

 

 

 

 

    

__ 20Cl . I . I , . , Iv

g — ”=0-504 d/0-0.515 .
> ---- n-0.374

"_"" 160s --- n-0.352 -
.K

g .

g 12CL- -

U

‘3 .

‘g‘ 80- -
.2

‘t' rpm-2.5

o 1

8

i 40‘ 7;""""""""" ..-_ """".23;: ‘

E 1° If?.................. ....... .
5 100 :22:""" a

o a I . I . I . I .

DJ) 0.4 CL8 1.2 1.6 210

ti/b

__ 125 . r I I r r. I

i, d/b-1.0 —- n-0.504 ..

} .... n-0.374

1" 100- --- n-0.352 -
J

2: I1

g -75_,
_

u rpm-2.5 .

'2

'2 50- -
£2 ,_..._...-...-.... .

i ‘ w- _;:l;:. ‘

5 25d
~¢KR~u ‘

, w l -.........._
.5 4 100 M ‘ d

a b
0 r r7 r I . I r. I r

0J3 CL2 0:4 0.6 CLB 1.0

Figure 6.24: Plot of Mixer Proportionality Constant, k', as a Function

of System Geometry. a) Impeller Size (d/b); b) Cup Size

(d/D)



153

14 fii I -

(Vb-1.8 _ ,3
d/b-1.o rpm 100. d/D 0.327

d/b-O.5 1

d/b-0.45 I

d/b-0.38

 

.1

12-1

1

10--1

I
O
‘
I
.

 

l
e
e
r

P
r
o
p
o
r
t
i
o
n
a
l
i
t
y
C
o
n
s
t
a
n
t
.

k
'
[
l
/
r
e
v
l

a
:

d
.

$
4
.
:

  
 

 

 

 

6 g 21

4 e . I - a
__ 25 I I I

E . 0 d/b'i-B rpm=20. d/D=0.327 J

> I d/b-1.0

‘7‘ 21 4 v d/b-0.6 "
8

.: 4 e d/b-0.45

§ 1. d/b-0.36

g 17- -

8

2‘

g 14 : -

r v

8 . v

E 10 a:
3 §

§

6 . - . b
6.00 33.00 60.00

m. Consistency Coefficient [Pa 3"]

Figure 6.25: Plot of Mixer Proportionality Constant, k' , as a Function

of Fluid Consistency Coefficient, m (Pa 5“) for Different

Paddle Impellers. a) 100 rpm; b) 20 rpm.



154

the Power Curves Method.

6.1.1.2.2) Estimation 9: Average Shea: gates

Using the values of the mixer proportionality constant k' deter-

mined from Eqn. (6.12), the mixing average shear rates were calculated

from Eqn. (3.8). Shear rates were also calculated using a constant value

of k' at selected rotational speeds of 10 and 50 rpm in order to deterw

mine the significance of using a constant value of k' when using mixer

viscometry techniques. Results are presented in Figures 6.26 and 6.27

for the paddle impellers (Figure B6 presents other results). It is clear

that the choice of a constant value of the proportionality constant at

10 rpm generates considerably higher average shear rates than when using

the values of k' at 50 rpm and Eqn. (6.12). For the less viscous fluid”

the larger impeller-to-cup diameter ratio (d/D-0.327) (Figure 6.26b)

produces higher shear rates than the smaller gap (Figure 6.26a). Also,

Eqn. (6.12) seems to produce unstable results at low values of rota—

tional speeds.

Similar behavior was observed when agitating a high viscosity

fluid (Figure 6.27b). However, interesting results are observed in the

small gap situation (Figure 6.27s). In this case, the value of I" does

not significantly lead to considerable differences in the determined

shear rates. In all cases, Eqn. (6.12) presents unstability at low

rotational speeds.

For the flag impeller, the significant differences in shear rates

when using Eqn. (6.12) and a constant value of k' (at 10 rpm) are shown

in Figures 6.28 and 6.29. Variations are bigger when agitating a less

viscous fluid (Figure 6.28) than for the high viscosity fluid (Figure
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6.29).

Figure 6.30 shows the apparent viscosity-shear rate relationships

when agitating the high viscosity fluid. The use of a constant k' value

overestimates the values of "a while the use of Eqn. (6.12) predicts

lower values of "a for the shear-thinning fluid. Figure 6.31 shows the

results for a flag impeller (Other results are shown in Figures B7 and

B8).

In summary, results indicate that the proportionality constant k'

evaluated by the Mixer Torque Curves Method is significantly affected by

impeller rotational speed, fluid properties and mixing system. The

conventional mixer viscometry method of using a constant value of k’ ,

depending only on impeller geometry, may lead to significant errors when

measuring properties of shear-thinning fluids at low values of N.

6.1.2) Slope Method

The Slope Method consists of the construction of plots of log

[P/(mdsMn£l)] versus (l-n) [Eqn. (3.47)]. The value of the impeller

proportionality constant, k', is obtained from the slope of the straight

line (k' - 10$10133 ). Figure 6.32 shows a typical plot of log

[P/(mdaNn+1)] versus (l-n) for the paddle impellers. Figure 6.32a is the

plot for a paddle impeller with blades 3 cm high. Figure 6.32b is the

plot for a paddle impeller with blade heigth equal to 1 cm. Also shown

in Figure 6.32 is the line obtained by linear regression analysis (R2 =

0.980 and 0.983, respectively) of the experimental data. Similar results

were obtained with the flag impeller (Figure 6.33) rotating in a cup of

diameter (D) equal to 3.5 cm (d/D-O.591) (Results for the other

impeller/cup combinations are presented in Figures B9 through 813).
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The scatter in the values of the function [P/(mdaNn+1 )] observed

in Figures 6.32 and 6.33 is not uncommon, and it can be found for im-

pellers studied by others researchers (Rieger and Novak, 1973; Rao and

Cooley, 1984). Table 6.8 presents the values of the proportionality

constant k' (evaluated using the Slope method) for the different

geometries when agitating the fluids with the paddles and flag impeller.

Considerable differences in the values of k' are observed for paddle

impellers of different size (Systems 1 to 5). The effect of the

geometric variables will be discussed in the following section.

6.1.2.1) Factors Affecting k'

6.1.2.1.1) System Geometry

The geometry of the system is an important factor in the evalua-

tion of the proportionality constant (Table 6.8). As in the matching

method (Power Curves Method), the bigger impeller produces the lower

values of k' , and an increase in the values of k' is observed in the

smaller cups (small gap). For the flag impeller, the smaller gap

produced smaller values of k'. Thus, impeller shape seems to be a factor

since different results are obtained for the two impeller types.

Deviations from linearity in the plots of Eqn. (3.47) (Figures 6.32 and

6.33) were not observed for the impellers investigated in this study.

This suggests that the value of the impeller proportionality constant is

not a function of the properties of the fluid when using this mixer

viscometry method.

It was suspected that the slope method may mask the effect of the

impeller rotational speed on the value of k' . Since some researchers

have sometimes used a single value of the impeller rotational speed for
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Table 6.8: Values of k' (evaluated using the Slope Method)

Paddle Impellers

 

 

 

 

 

 

SYSTEM k' 3

d/D, d/b

1 0.327 1.80 16.354 0.983

2 0.327 1.00 12.576 0.985

3 0.327 0.60 10.407 0.981

4 0.327 0.45 10.000 0.960

5 0.327 0.36 9.880 0.980

6 0.515 1.80 16.89 0.960

7 0.515 1.00 15.99 0.960

8 0.515 0.60 10.306 0.904

9 0.709 1.80 17.730 0.972

10 0.709 1.00 9.827 0.920

Flag Impeller

2

SYSTEM k' R

1 0.273 20.070 0.980

2 0.429 15.090 0.970

3 0.591 16.04 0.965
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the development of plots such as Figure 6.32, this effect was inves-

tigated in this study. Figure 6.34 shows the changes in the slope of the

lines when selecting different values of N for the paddle

impellers. Similar results were obtained with the flag impeller (Figure

6.35) . Table 6.9 presents the values of the proportionality constant k'

(evaluated by using the slope method) for the different system

geometries when agitating the fluids with the paddles and flag impeller

obtained at three different values of N (5, 20 and 100 rpm). It is clear

that if only a particular value of the impeller rotational speed is used

for the evaluation of k' , the selection of N becomes a critical step in

the method since significant differences in the value of k' are observed

at the different values of N: the lower the value of N, the higher the

value of k'. Also, as N increases (100 rpm), k' becomes less dependent

on system geometry.

Regression analysis was conducted for the data for the paddle

impellers and results indicated that the diameter ratio (d/D) was not

statistically significant (Table 6.10). The following model was

proposed:

k' - a. (d/b)fl1 N’32 (6.13)

Thus,

0 41 0 347

k' - 9.365 (d/b) ' N ' (6.14)

Comparing the magnitude of k' (Table 6.8) for the flag impeller

with the one obtained for the paddle impeller with same blade height

(Impeller # 3: b - 3 cm; b/d - 0.6), the magnitude of k' is higher for

the flag impeller. Results in Table 6.9 also indicate that higher values
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Table 6.9: Values of k' (evaluated using the Slope Method) as a Function

of Impeller Rotational Speed

Paddle Impellers

 

 

 

 

 

 

 

SYSTEM, k'

d/D d/b 5 rpm 20 rpm 100 rpm

1 0.327 1.80 30.196 13.542 8.685

2 0.327 1.00 20.705 11.719 8.154

3 0.327 0.60 19.217 9.895 7.020

4 0.327 0.45 14.348 9.732 6.469

5 0.327 0.36 14.290 9.375 6.038

6 0.515 1.80 56.959 13.651 8.526

7 0.515 1.00 34.825 13.343 7.839

8 0.515 0.60 19.405 9.932 6.807

9 0.709 1.80 28.859 16.528 12.365

10 0.709 1.00 17.312 11.151 8.405

Flag Impeller

SXSTEM k'

5 rpm 20 rpm 100 rpm

1 0.273 134.986 14.544 7.592

2 0.429 52.150 12.478 7.577

3 0.591 40.885 9.760 6.883
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Table 6.10: Regression Results of Eqn. (6.13) (Paddle Impellers)

Linear Multiple Regression Analysis

 

  

Regression Estimated Regression Estimated Standard t

Coefficient Coefficient Error

108 30 9.365 -- --

61 0.410 0.073 5.96

62 0.347 0.073 -ll.39

 

Analysis of Variance

 

 

 

   

 

 

Sum of Degrees of Error Mean F*

Saueree Freeeem Squares

Regression 1.366 2 0.683 --

Residual 0.226 27 0.008 81.6

Tgtel 1,592 30

2

R - 0.900

a - 0.05
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of k' are encountered for the flag impeller, especially when using low

rotational speeds. However, at higher values of N, the differences in

the magnitude of k' become negligible and the average value of k' for

the paddle impellers (k' - 8.03 i 1.78 l/rev) is higher than the value

for the flag impeller (k' - 7.35 2t 0.40 l/rev). This may be due to the

larger surface area of the paddle impellers.

There is no published data on the value of k' for paddle impellers

using this mixer viscometry method. Steffe and Ford (1985) reported k'

values of 4.64 (at 60 rpm) for a pitched flag impeller. This magnitude

is in reasonably good agreement with the average value of k' - 7.35 i

0.40 1/rev (at 100 rpm) (Table 6.9) determined in this investigation.

When using different values of N, the average value is k' - 17.067 i

2.64 l/rev as compared to the value of 13.8 obtained by Rao and Cooley

(1984) (d/D-0.8, d/b-&.5). Differences in the magnitudes of k' are due

to differences in geometry.

6.1.2.2) Estimatiog of Average Shear Rates and Apparent Viscosity

Average shear rates were determined using Eqn. (3.8). Figures

6.36 and 6.37 present the average shear rates for the paddles and the

flag impeller, respectively. The effect of impeller and cup size on

average shear rates are presented in Figures 6.36a and 6.36b for the

paddle impellers. As it was expected, no significant effect of cup

diameter is observed.

Average apparent Viscosities were calculated with Eqn. (3.13).

Figure 6.38 presents the values of "a for two non-Newtonian fluids as a

function of iav for the different paddle impellers. It may be seen that

the choice of impeller will produce different values of "a' Figure 6.39
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shows results for the flag impeller. The size of the sample container

also results in different values of "a’ and the bigger the cup, the

smaller the values of "a“

6.1.3)WW

Three mixer viscometry methods were reviewed and evaluated. The

values of the mixer proportionality constant k' for determination of the

mixing average shear rate iav evaluated using the three mixer viscometry

methods have been presented in Tables 6.3 through 6.9 in the previous

sections. The assumption iav - k'N [Eqn. (3.8)] is the basis for the

three procedures. However, the original assumption of the work of

Metzner and Otto (1957) of a constant value of k' is not always valid

for variations in operating conditions (impeller rotational speed, N),

fluid rheological properties and system geometry.

It is important to note that the three methods predict variations

in k' with the geometry of the mixing system for the ranges investigated

in this study. However, the Epwer Curves Method shows little variation

with geometry for the flag impeller (Table 6.4). When working at high

mixing speeds [N equal to 100 rpm (0.167 rps)], the values of k' ob-

tained with the Iorgue Cuges Method and the Slope Method show excellent

agreement. Under this operating condition, the effect of the other

parameters (fluid rheology and system geometry) become less significant.

Thus, the assumption of a constant k' value is valid under these terms.

All the three mixer viscometry techniques require the determina-

tion of parameters using computer analytical techniques, i.e., small

changes in experimental data result in big changes in results of regres-

sion analysis. TheWcan be very tedious and deviation

from the basic assumption for the average shear rate ("yav - k'N) may
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occur when using different impellers. The Mixe; Torgue Curves and the

Slepe methods are simpler since they require less data handling.

Results indicate that the basic assumption of traditional mixer

viscometry methods of a direct proportionality between average shear

rate in the agitated fluid and the rotational speed of the impeller

[Eqn. (3.8)], with k' depending only on the geometry of the impeller,

may be incorrect when working at low rotational speeds. Variation in

fluid rheological properties has also proven to be an important factor

for determination of the average shear rate in the mixing system.

6.2) ERMI AT OLOGICAL 0 RTIES 0F POWER-LAW FLUIDS USING

THE ALTERNATIVE MIXER VISCOMETRY METHOD

This section presents the experimental verification of the

proposed procedure for determination of rheological properties of

power-law fluids using a measuring system which consists of an impeller

(paddle or flag) rotating in a cylindrical container.

6.2.1) Depermination of the Flow Behavio; Index, n

The measured torque on the impeller shaft is presented as a func-

tion of the rotational speed of the impeller for each non-Newtonian

fluid, with the geometry of the impeller as a parameter. Figure 6.40

shows the results for the CMC 2% solution for the different paddle/cup

combinations. Figure 6.41 shows results for the flag impeller. It fol-

lows from these plots that for every geometry of the impeller system the

experimental points may be approximated by a straight line. All
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lines have similar slope, and this slope is equal to the value of the

flow behavior index, n. Tables 6.11 and 6.12 present the values of the

rheological parameter for all the systems. It is seen that the mag-

nitudes of the flow behavior index n obtained with the impeller system

for the standard fluids are in good agreement with those using the

concentric cylinders viscometer when operating at the same range of

shear rates (0-40 l/s).

6.2.2) Depegpination of Shear Sereee-Spear Rate Relationships

6.2.2.1) Average Shea; Rete 1;; The Mixing System

To verify the applicability of Eqns. (4.4), (4.6) and (4.9) to

approximate the values of the mixing average shear rates, the values

of k' determined using the three investigated mixer viscometry tech-

niques [Section (6.1)] were used (as average values) for comparison with

the theoretical expressions. Initial values of the parameters of the

equations ([91, a1, a2 and as) were assigned following the concentric

cylinders analogy to find the values of the constant 191 and

the parameters a, , a2 and as that showed best agreement with the

experimental values of k'. These are the following:

131-411'

021 - a2 - 2/n and,

as - n/2, with n - power-law index.

Thus, Eqn. (4.5) can be written as follows,

2/n n/2
 k' - 4n [ (D/d) (6.13)(d/b)

(n/d)2/“ - 1 ]
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Table 6.11: Values of the Flow Behavior Index of Standard Power-Law

Fluids Using the Mixer System (Paddles) and a Concentric

Cylinders Viscometer (Haake Rotovisko)

 

iElow Behavior Index- n

1 2

Mixer Coneenezie Cylindegs
 

 

 

__ELQID_______§X§IEM

1 0.902 i 0.003

2 0.834 t 0.004

3 0.896 i 0.003

4 0.887 t 0.002

CMC 1% 5 0.842 t 0.002 0.829 i 0.005

6 0.808 i 0.003

7 0.807 i 0.005

8 0.857 i 0.004

9 0.869 i 0.006

10 0.857 t 0.005

n 0.856 t 0.030
avg

1 0.599 t 0.008

2 0.759 i 0.004

3 0.726 i 0.004

4 0.735 i 0.003

CMC 1.5% 5 0.718 i 0.002 0.718 i 0.005

6 0.599 t 0.007

7 0.687 i 0.005

8 0.584 i 0.006

9 0.660 i 0.005

10 0.640 i 0.005

n 0.670 i 0.060
avg

1 0.679 t 0.004

2 0.688 t 0.003

3 0.648 i 0.004

4 0.684 i 0.002

CMC 2% 5 0.676 t 0.003 0.528 i 0.003

6 0.646 i 0.001

7 0.662 i 0.002

8 0.653 t 0.003

9 0.641 i 0.001

10 0.628 i 0.001

n 0.660 i 0.020
avg

 

1

Brookfield Mixer. Shear rate range: 0-30 l/s [Eqns. (6.18) and (6.19)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 l/s
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Table 6.12: Values of the Flow Behavior Index of Standard Power-Law

Fluids Using the Mixer System (Flag) and a Concentric

Cylinders Viscometer (Haake Rotovisko)

 

Flow Behevior Index. n

 

 

 

1 2

ELQID SXSIEM Mixery Concentric Cylinders

1 0.933 i 0.005

CMC 1% 2 0.805 t 0.002 0.829 i 0.005

3 0.967 t 0.007

n 0.901 i 0.085
avg

1 0.811 t 0.004

CMC 1.5% 2 0.711 i 0.003 0.718 t 0.005

3 0.708 t 0.001

n 0.743 i 0.058
avg

1 0.690 i 0.003

CMC 2% 2 0.667 i 0.002 0.528 i 0.003

3 0.658 i 0.002

n 0.672 i 0.016
avg

 

1

Brookfield Mixer. Shear rate range: 0-30 1/s [Eqn. (6.23)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 l/s
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Equatirui (6.13) differs from the original equation for the shear

rate at the cylindrical bob,

 

 

 

qb .. gg (010)2/n (43)
n (D/d)2/n - 1

or

ab - am (D/dlz/n (6.14)

n (D/d)2/n _ 1

with 51 - (ZEN , al - a2 - 2/n, in the value of parameter 131 , since

the division by n is not present in the equation for the paddle Ln-

pellers. As stated before, the effect of the power-law parameters on the

value of k' is not clearly understood. For an impeller, the dependence

on the value of n seems to be less significant than in the case of the

concentric cylinders. The values of a1 and a2 are identical to the

concentric cylinders analogy.

Values of k' obtained with Eqn. (6.13) are shown in Figure 6.42a.

It is interesting to note that the above expression gives reasonably

good results, except for the small gap case (d/D a 0.709). (These data

are represented by the crosses (+) in Figure 6.42a). It is clear that

Eqn. (6.13) predicts considerably higher values of k' when the impeller-

to-cup diameter ratio is small [ (d/D) 2 0.709 ]. Thus, Eqn. (6.13) is a

good approximation of the data when the diameter ratio follows within

the range of 0.327 S d/D 5 0.515. An equation to approximate the values

of k' when (d/D) was 2 0.709 was obtained (based on the concentric
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cylinders analogy) by expressing the experimental values of k' by:

n/2
 

(6.15)

2.12
k, _ A" [ (010)

(«M»)

(1)/d)”In - 1 J

Due to the empirical nature of Eqn. (6.15) it is difficult to

physically explain the difference in the value of a1 - (2-n)/n. However,

this result indicates that the gap between the impeller and the fluid

container (cup) is a factor to be carefully taken into account when

considering the use of mixer viscometry methods.

Figure 6.42b presents results for the values of k' calculated

using Eqn. (6.13) for 0.327 s d/D 5 0.515 and Eqn. (6.15) for (d/D) i

0.709. The results are satisfactory for all the impellers and power-law

fluids investigated. The agreement between experiment (mixer viscometry

techniques) and theory [Eqn. (6.15)] was usually better than 10%.

Simplified equations were attempted by using the same procedure of

data fitting. The final equations obtained were as follows:

n/2

kv - a, [——f§j§i§72 ] (6.16)

Simplifying, Eqn. (6.16) becomes

k' - 4n (1)/b)“/2 (6.17)

Figure 6.43 shows the values of k' calculated from Eqn. (6.17)

versus that determined from experimental data. Results show a reasonable

agreement between predicted and average values. Even though not as good
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as Eqn. (6.13), results fall within the range of k' values obtained

using mixer viscometry techniques. The maximum error was less than 20%.

It would seem that for the purposes of engineering design the use of

Eqn. (6.17) is reasonable.

Thus, results indicate that it is possible to approximate the

value of the impeller proportionality constant, k' , for a particular

impeller (paddle) by using Eqn. (6.13) for large to medium gaps, and by

Eqn. (6.15) for small gap (d/D 2 0.709). Only the geometry of the system

and the value of the flow behavior index, n, for the investigated fluid

are needed. Equations (6.13) and (6.15) [as well as Eqn. (6.17)] avoid

the dangerous assumption of k' being a constant independent of the fluid

properties. Also, it can.be said that k' remains constant at each value

of rotational speed. In terms of the average shear rate, these equations

 

 

become,

2/n

18v - 4n ‘D/g;n ] (d/b)“/2 } N (6.18.1)

(D/d) - 1

0r

2/n
. (D/d) n/2
1 - 20 (d/b) (6.18.2)

3" [ (1)/<1)”n - 1 i

for a paddle impeller and 0.327 s d/D 5 0.515 , and

zfin

18v - {4w [ (D/d) J (<1/b)“/2 } N (6.19.1)
(D/d)2/n - 1
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01'

(D/d)z;In

(D/d)2/n - 1

“/2 (6.19.2)’Iav - 20 [ J (d/b)

for d/D 2 0.709 (with 1 z b 2 5 cm and 0.5 2 n 2 0.9). Also, a

simplified approximation is given by

n/2
+av - [4w (D/b) 1 N (6.20.1)

01'

13v - [2«0(0/b)“/2] (6.20.2)

for the geometric range investigated (0.327 s d/D 5 0.709).

In the case of a flag impeller (b/d-0.5), Eqn. (4.9) gave good

results for the values of k' , with 51" 4x and 0:1 - n/2. An expression

such as Eqn. (4.9) was preferred for the flag impeller because Eqn.

(6.13) did not yield very good results for this type of impeller. Thus,

Eqn. (4.9) becomes,

k' - 4n [ (1)/d)“2 1 (6.21)

Equation (6.21) predicts the value of the proportionality con-

stant, k', for a flag impeller rotating in a power-law fluid. Figure

6.44a shows the results obtained from Eqn. (6.21) when d- 1.5cm. Figure

6.44b shows the case for Model 3 (d - de ). It seems that the assumption
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of a cylinder of equivalent diameter, de , as responsible for the

shearing of the fluid when using a flag impeller tends to overestimate

the values of k'. However, the values of k' fall within the range of k'

determined from the traditional mixer viscometry methods with a maximum

error of 15%. Again, the assumption of a constant k' value, only a

function of impeller geometry, is avoided and proved not to be tnnua for

the cases investigated in this study.

Thus, the average shear rate in a mixing system (flag impeller)

can be approximated by the following equation,

’1 - {411' [ (1)/d)“2 1} N (6.22.1)
8V

or

n/2

1 v - 201 (DA!) ] (6.22.2)
a

6.2.2.2) Avegage Shea; Strees in The Mixing System

6.2.2.2.1) Ieggue hppgoximegiope

To check the applicability of the shear stress equations, Um;

experimentally measured values of torque for every mixing system were

compared to those calculated using the following equations:

Model 1 (concentric cylinders analogy with negligible end effects):

M - 2th (d/2)2 aav (4.14)



191

Model 2 (concentric cylinders analogy with end effects):

a

fi L+_L
M- 2 I: d 3 :laav (4.21)

Model 3 (Flag impeller; d- de ):

2

M - 2nb (de/2) aav (6.23.1)

and

d3

n

___e L-rl
M 2 [ de 3 ] aav (6.23.2)

where

aav'- m (y'av) flwith n from mixing system or a conventional

concentric cylinders viscometer, and m from concentric cylinders vis-

cometer. The value of the average shear rate can be evaluated using the

appropriate equations [Eqns. (6.13) and (6.15) for the paddles and

(6.21) for the flag for the ranges investigated in this study].ffiua

average shear rate could also be determined by traditional mixer vis-

cometry methods.

Figure 6.45 presents the values of torque for two fluids (1% and

1.5% CMC solutions) in a system consisting of a small paddle impeller

(d/b-l.8) rotating in a large cylindrical cup (d/D-0.327). It can be

seen that the Model 1 (concentric cylinders analogy with negligible end

effects) [Eqn. (4.14)] gives better prediction of the torque values than

the Model 2 (concentric cylinders analogy with end effects) [Eqn.

(4.21)]. For a more viscous fluid (2% CMC), the Model 2 gives better

results for the torque values (Figure 6.46). These results indicate that
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the type of fluid being agitated is a significant factor for considera-

tion when using mixer viscometry methods.

When using a larger paddle impeller (d/b-0.36) in the same cup

[(d/D - 0.327] (Figure 6.47), the differences between the torque \nrlues

predicted by the two models becomes smaller, with the assumption of

negligible end effects (Model 1) showing better agreement between

experiment and theory than the assumption of the presence of end effects

(Model 2). Thus, when working in a large cup, the end effects can be

assumed negligible.

For the other mixing systems, Model 2 (presence of end effects)

(Figure 6.48) predicts values in close agreement with the experimentally

measured torque values. This is due to the presence of a smaller gap

between the impeller and.the wall of the cup and the use of Eqn. (4.21)

seems to account for any effect of the solid boundaries. Figure 6.48a

indicates that Eqn. (4.14) predicts lower values of torque. Figure 6.48b

indicates the applicability of Eqn. (4.21) to represent the torque on

the shaft resulting from the rotation of the paddle impeller

(approximated by a cylinder).

Based on the results presented in Figures 6.45 through 6.48, it can

be concluded that when using a mixer viscometer with a small paddle in a

large cup [(d/D) 5 0.327], assumption (iv) is valid, and the average

shear stress can be approximated by Eqn. (4.15),

a - 3L,- (4.15)

for standard power-law fluids of low to medium viscosity. For a highly

viscous standard fluid (CMC 2%), the effect of the solid boundaries
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becomes significant and assumption (iv) is questionable. Thus, the

average shear stress can be approximated by

-1
3

a - -1§— [ -g— + -%— ] M (6.24)

Equation (6.24) also applies to the other impeller/cup combina-

tions for the range of Viscosities of the standard fluids.

The torque values calculated by equations (4.14), (4.21) and

(6.23.1) were compared to those measured experimentally with the flag

impeller. Figure 6.49 presents the measured torque values versus those

calculated using Eqn. (4.14) (Model 1):

M - 2nb (d/2)2 aav (4.14)

It is evident that this model yields values of torque considerably

higher than the experimental values. Figure 6.50a presents tflue results

using Eqn. (4.21) (Model 2):

.12. .b. + .1.
M - 2 [ d 3 ] aav (4.21)

and it yields considerably lOwer values oi'torque. Equation (6.23.1)

(Model 3),

2

M - 2wb (de/2) aav (6.23 1)

seems to be the one that better represents the torque in the impeller
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shaft (Figure 6.50b).

Thus, the average shear stress for the flag impeller may be ex-

pressed by

3 '1

«d

e _L l
a — 2 [ (18 + ] M (6.25)

 

av 3

Equation (6.25) implies that the effect of the end boundaries (top

and bottom) is important when using a mixing system with a flag im-

peller.

6.2.2.3) Elow Curves

6.2.2.3.1) Ideal Eluids

Average shear stress-average shear rate curves were obtained for

the standard power-law fluids using Eqns. (6.18) and (6.19) for evalua-

tion of the average shear rate of paddle impellers and Eqn. (6.21) for

the flag impeller. The average shear stress was determined using Eqn.

(4.21) for the paddles and Eqn. (6.23.1) for the flag impellrnt. Figure

6.51 presents a typical shear stress-shear rate plot for the CMC 2%

solution obtained using the mixer viscometer with a paddle impeller.

Similar results were obtained with the other fluids and geometries

(Figures B14 and B15).

As indicated before, the values of the flow behavior index were

calculated as the slope of the log-log plot of torque, M, versus the

rotational speed of the impeller, N. The values of the consistency

coefficient, m, were obtained by linear regression of the power model,

a - m (y'av) 11 The values are shown in Tables 6.13 through 6.17 for
av

every system geometry and Models analized in this investigation.
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Table 6.13: Values of the Fluid Consistency Coefficient of Standard

Power-Law Fluids Using the Mixer System (Paddles) [Model

1: negligible end effects; Eqn. (4.14)] and a Concentric

Cylinders Viscometer (Haake Rotovisko)

 

n

Consistency Coefficient, m (Pa 3 2

 

 

 

1 2

FLUID SYSTEM Mixer Coheehtgic Cylindere

1 2.139 i 0.003

2 2.664 t 0.004

3 2.835 t 0.003

4 3.173 i 0.005

CMC 1% 5 3.557 i 0.002 2.619 t 0.003

6 2.492 i 0.003

7 2.737 i 0.004

8 2.823 i 0.002

9 2.937 i 0.001

10 2.906 t 0.003

m 2.826 i 0.378
avg

1 18.892 i 0.004

2 12.261 i 0.007

3 13.781 i 0.005

4 14.702 i 0.004

CMC 1.5% 5 15.687 i 0.003 15.620 i 0.004

6 18.892 i 0.002

7 15.299 i 0.002

8 22.967 i 0.003

9 21.619 i 0.004

10 24.742 i 0.003

m 17.877 i 4.200
avg

1 33.209 i 0.002

2 30.656 i 0.004

3 33.379 i 0.002

4 32.980 i 0.001

CMC 2% 5 35.142 i 0.003 33.170 i 0.005

6 37.737 i 0.002

7 34.793 i 0.004

8 38.149 i 0.001

9 45.239 i 0.002

10 47.738 i 0.005

m 36.900 i 5.540
avg

 

1

Brookfield Mixer. Shear rate range: 0-30 l/s [Eqns. (6.18), (6.19)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 l/s
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Table 6.14: Values of the Fluid Consistency Coefficient of Standard

Power-Law Fluids Using the Mixer System (Flag) [Model

1: negligible end effects; Eqn. (4.14)] and a Concentric

Cylinders Viscometer (Haake Rotovisko)

 

n

Qoneietency Coefficient, m (Pa 5 2

1 2

FLUID SXSIEM Mixer Concentric Cylinders

 

 

 

1 0.750 2 0.007

CMC 1% 2 1.288 2 0.005 2.619 2 0.003

3 1.155 2 0.004

m 1.064 2 0.280 7
avg

1 4.152 2 0.003

CMC 1.52 2 7.100 2 0.003 15.620 2 0.004

3 8.961 2 0.002

m - 6.738 2 2.421
avg

1 12.400 2 0.004

CMC 2% 2 15.926 2 0.002 33.170 2 0.003

3 21.318 2 0.003

m 16.548 2 4.491
avg

 

1

Brookfield Mixer. Shear rate range: 0-30 1/s [Eqn. (6.21)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 l/s
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Table 6.15: Values of the Fluid Consistency Coefficient of Standard

Power-Law Fluids Using the Mixer System (Paddles) [Model

2: concentric cylinders with end effects; Eqn. (4.21)])

and a Concentric Cylinders Viscometer (Haake Rotovisko)

 

n

Consistency CoefficientI m (Pa 3 2

 

 

 

1 2

FLUID SYSTEM Mixggi Concentric Cylinders

1 1.526 t 0.003

2 2.046 t 0.003

3 2.643 t 0.002

4 2.759 t 0.005

CMC 1% 5 3.161 t 0.002 2.619 i 0.003

6 1.562 i 0.003

7 1.056 i 0.004

8 2.353 i 0.001

9 1.836 t 0.002

10 2.219 t 0.004

m 2.116 t 0.642
avg

1 7.699 i 0.004

2 9.362 t 0.007

3 11.484 i 0.005

4 12.784 i 0.004

CMC 1.5% 5 14.006 i 0.003 15.620 i 0.004

6 11.808 i 0.002

7 11.473 i 0.002

8 19.139 i 0.003

9 13.523 i 0.004

10 18.556 i 0.002

m 13.001 i 3.644
avg

1 22.115 i 0.002

2 24.334 i 0.004

3 26.354 i 0.001

4 28.348 i 0.001

CMC 2% 5 31.378 i 0.003 33.170 i 0.005

6 23.595 i 0.003

7 27.543 i 0.004

8 31.794 i 0.002

9 26.356 i 0.003

10 36.085 1 0.004

m 27.790 i 4.268
avg

 

1

Brookfield Mixer. Shear rate range: 0-30 l/s

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 l/s
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Table 6.16: Values of the Fluid Consistency Coefficient of Standard

Power-Law Fluids Using the Mixer System (Flag) [Model

2: concentric cylinders with end effects; Eqn. (4.21)]

and a Concentric Cylinders Viscometer (Haake Rotovisko)

 

 

 

nc e ie t Pa sn

1 2

S xe Co centric C linders

1 0.640 i 0.007

CMC 1% 2 1.104 i 0.005 2.619 t 0.003

3 1.120 t 0.004

m 0.954 t 2.720

avg

1 4.001 i 0.003

CMC 1.5% 2 6.350 1 0.003 15.620 1 0.004

3 7.574 i 0.002

m 5.975 t 1.816

avg

1 12.210 i 0.004

CMC 2% 2 13.782 i 0.002 33.170 i 0.003

3 18.324 i 0.003

m 14.772 1 3.175

avg

 

1

Brookfield Mixer. Shear rate range: 0-30 1/s

2

Haake MV-III (d/D-0.73). Shear rate range: 0—40 l/s
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Table 6.17: Values of the Fluid Consistency Coefficient of Standard

Power-Law Fluids Using the Mixer System (Flag) [Model

3: d - de ; Eqn. (6.23.1)] and a Concentric Cylinders

Viscometer (Haake Rotovisko)

 

 

 

 

enc e ient Pa sn

1 2

__ELQ.I_D__§1$_TEM—_mx§1 COW.

1 1.522 1 0.006

CMC 1% 2 2.648 1 0.004 2.619 1 0.003

3 2.328 1 0.004

m 2.166 1 0.580
avg

1 8.408 1 0.003

CMC 1.5% 2 14.379 1 0.003 15.620 1 0.004

3 18.417 1 0.003

m 13.735 1 5.035
avg

1 25.120 1 0.004

CMC 2% 2 32.250 1 0 002 33 170 1 0.003

3 43.280 1 0.002

m 33.550 1 9.149
avg

 

1

Brookfield Mixer. Shear rate range: 0-30 l/s [Eqn. (6.23.1)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 1/s
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Tables 6.13 and 6.14 present the values of the fluid consistency

coefficient, m, obtained by replacing the mixing system with the Model 1

[negligible end effects, Eqn. (4.14)], for the paddles and flag im-

peller, respectively. Comparison with the values obtained using the

concentric cylinders viscometer show that the results with the paddle

impellers are satisfactory. However, the flag impeller gives con-

siderably lower values of the rheological parameter, m, when using Model

1 (Table 6.14). Also, the effect of the gap seems to be more important

for this impeller, since the value of the consistency coefficient ob-

tained with the small gap case (System 3, d/D - 0.591) is twice as high

as the value of the consistency coefficient in the large gap case

(System 1, d/D - 0.273) (See Table 6.14). A small gap also gives higher"

‘malues of the rheological parameter when using a paddle impeller

(Systems 9 and 10, d/D - 0.327), especially for the fluid of higher

viscosity (CMC 2%) (Table 6.13).

Tables 6.15 and 6.16 present the values of the consistency coeffi-

cient, m, calculated by replacing the mixing system with the Model 2

[presence of end effects, Eqn. (4.21)], for the paddles and flag im-

peller, respectively. No big differences with the values from Tables

6.13 and 6.14 are observed, with results from Model 2 [Eqn. (4.14)]

lower than those obtained with Model 1 [Eqn. (4.21)]. The same behavior

was observed in results for the flag impeller (Table 6.16).

Table 6.17 presents the results obtained by replacing the flag

impeller with a cylinder of dimensions as in Model 3 [d - de , Eqn.

(6.23.1)]. It can be seen that this model gives considerably higher

values of the fluid consistency coefficient than the previous models. In

 



208

comparison to the values obtained using a concentric cylinders vis-

cometer, results also show better agreement.

Rheogxams (shear stress-shear rate curves) were developed for all

fluids and systems. Figure 6.52 shows the flow curves for the 1% CMC

(Figure 6.52s) and the 2% CMC (Figure 6.52b) solutions using the mixer

viscometer with the paddle impellers in a large cup [(d/D) - 0.327]. The

model selected for approximation of the average shear stress was Model 2

(concentric cylinders analogy with end effect) since it gave more con-

sistent values of torque (Figure 6.48b). Results were compared with

those obtained with the concentric cylinders viscometer (Haake Rotovisko

with the MV-III sensor which provided a range of shear rates similar to

that obtained with the Brookfield viscometer and the mixer impellers)

and proved to be satisfactory. Figures 6.53a and 6.53b present results

for a small gap [(d/D) - 0.709]. Results indicate that the method works

better when the agitated fluid is highly viscous (CMC 2%) than when

agitating a low viscosity fluid (CMC 1%) when a small gap is present.

Figure 6.54 presents the flow curves obtained for the flag im-

peller using the Model 3 (d - de ). Results show excellent agreement

with those obtained using the concentric cylinder viscometer, with

better results for the more viscous fluid (CMC 2%). For comparison,

Figures 6.55 and 6.56 present the flow curves obtained using Model 1

[Eqn. (4.14)] and Model 2 [Eqn. (4.21)], respectively. It is clear tfluat

the Model 3 [Eqn. (6.23.1)] is still the best approximation for the

mixing system when agitating standard power-law fluids.

6.2.2.3.2) Eood Erodugt

Flow curves for an actual food product (Rancher's Choice Creamy
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Figure 6.55: Comparison of the Flow Curve for a Standard Fluid

Determined Using the Concentric Cylinders Viscometer

with the Data Obtained Using the Mixer Viscometer with

a Flag Impeller [Model 1, Eqn. (4.14)]; a) CMC 1%;

b) CMC 2%  
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Dressing; Kraft, INC., Glenview, Illinois) were estimated to check the

applicability of the proposed procedure. Figure 6.57 presents the

results using the paddle impellers [Model 2, Eqn. (4.21)] in comparison

with the ones obtained with the concentric cylinders viscometer. The

agreement of the data is evident for different impeller and cup sizes.

Tables 6.18 and 6.19 present the values of the rheological parameters (n

and m) for the salad dressing, evaluated using Model 1 [Eqn. (4.14)] and

Model 2 [Eqn. (4.21)] for approximation of the average shear stress with

the paddle impellers, respectively. The proposed procedure seems to be

able to approximate the rheological behavior of a food product when

using the mixer viscometer with the paddle impellers. The approach takes

into account the variations in impeller and cup geometry.

It is interesting to note that the differences due to variation in

impeller are less than the observed in the developed curve flows for the

standard fluids (See Figures 6.53 and 6.57, for instance). The same

trend was observed with the flag impeller (Figures 6.56 and 6.58).

For the flag impeller, peculiar results were obtained. Table 6.20

shows the values of the rheological parameters of the tested fluid with

the three models investigated in this study. Figure 6.58 shows the flow

curves obtained for the food product by approximating the flag impeller

with a cylinder of diameter (18 (Model 3). Approximation of the shear

stress-shear rate data with Model 3 gives higher values of the flow

curve as compared with the concentric cylinders viscometer (Haake

Rotovisko with MV-III). Figures 6.59 and 6.60 present results using

Model 1 and 2, respectively. Results indicate that the two models show

excellent agreement with the concentric cylinders data for the food

Product as compared with Model 3 (Figure 6.58). It might be said that
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Table 6.18: Values of the Flow Behavior Index (n) and the Fluid

Consistency Coefficient of Salad Dressing Using the Mixer

System (Paddles) [Model 1, Eqn. (4.14)] and a Concentric

Cylinders Viscometer (Haake Rotovisko)

 

  

n te e i ie Pa sn

1

SYSTEM Mixg;__21§ggm§ter

1 0.248 1 0.003 29.811 1 0.003

3 0.243 1 0.001 20.186 1 0.002

5 0.236 1 0.001 30.057 1 0.005

6 0.239 1 0.002 25.475 1 0.005

8 0.227 1 0.003 19.039 1 0.003

9 0.257 t 0.002 32.007 1 0.004

10 0.258 1 0.002 27.701 1 0.003

Average 0.244 1 0.011 26.325 1 5.029

 

2

Haake data: n - 0.399 0.0051

m - 15.00 2 0.003 Pa s“

1

Brookfield Mixer. Shear rate range: 0-30 l/s [Eqns. (6.18) and (6.19)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 1/s
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Table 6.19: Values of the Flow Behavior Index (n) and the Fluid

Consistency Coefficient of Salad Dressing Using the Mixer

System (Paddles) [Model 2, Eqn. (4.21)] and a Concentric

Cylinders Viscometer (Haake Rotovisko)

 

  

n s stenc Coe icient m Pa sn

1

SYSTEM MW:

1 0.248 1 0.002 19.314 1 0.003

3 0.236 1 0.003 15.484 1 0.004

5 0.243 1 0.001 18.023 1 0.002

6 0.239 1 0.002 18.793 1 0.005

8 0.227 1 0.003 15.867 1 0.002

9 0.257 1 0.002 18.313 1 0.003

10 0.258 1 0.002 18.999 1 0.004

Average 0.244 1 0.011 17.853 1 1.554

 

2

Haake data: n - 0.399 1 0.005 n

1m - 15.00 0.003 Pa 3

1

Brookfield Mixer. Shear rate range: 0-30 l/s [Eqns. (6.18) and (6.19)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 1/s
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Table 6.20: Values of the Flow Behavior Index (n) and the Fluid

Consistency Coefficient of Salad Dressing Using the Mixer

System (Flag) and a Concentric Cylinders Viscometer

(Haake Rotovisko)

 

  

 

 

 

n te en m Pa sn

1

__§y§1§u Mixg; Viscometer

Model System 1

1 0.257 1 0.003 14.916 1 0.004

2 0.230 1 0.002 15.030 1 0.004

3 0.235 1 0.002 16.249 1 0.003

Average 0.240 1 0.014 15.398 1 0.739

Model System 2

1 0.257 1 0.003 12.570 1 0.005

2 0.230 1 0.002 12.907 1 0.003

3 0.235 1 0.002 12.740 1 0.003

Average 0.240 1 0.014 12.739 1 0.168

Model System 3

1 0.257 1 0.003 28.691 1 0.003

2 0.230 1 0.002 29.240 1 0.002

3 0.235 1 0.002 30.690 1 0.004

Average 0.240 1 0.014 29.873 1 0.742

2

Haake data: n - 0.399 1 0.005 n

m - 15.00 1 0.003 Pa 5

1

Brookfield Mixer. Shear rate range: 0-30 l/s [Eqn. (6.21)]

2

Haake MV-III (d/D-0.73). Shear rate range: 0-40 l/s
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the area of the flag impeller of diameter d and blade height b con-

tributes to the torque values when agitating the food product. In the

case of a standard power-law fluid such as the CMC solutions, this is

not the case, since the assumption of the total area of the flag im-

peller yielded higher values of torque as compared with the geometry

given by Model 3 (d - de ). These results indicate that the fluid to be

investigated using mixer viscometry is of great importance when select-

ing the appropriate equations to approximate the flow curves since the

food product (salad dressing) shows more shear-thinning behavior (n=

0.244 1 0.011) than the standard CMC solutions (0.5 s n S 0.9).

In terms of comparison, plots of the apparent viscosity, "a ,

versus the average shear rate, :yav , were developed for the different

Models using the flag impeller and the results obtained with the con-

centric cylinders viscometer. Figures 6.61 to 6.63 present the results

for the three models analyzed in this investigation. The agreement of

results is clear and excellent. It may be seen that the differences

obtained with the Model 3 (d - de ) is not so drastic (Figure 6.63).

Figure 6.64 presents the results for two different gaps. Figure 6.64a

shows the results when agitating the food product with a flag impeller

and a small gap is present (d/D-0.591). Figure 6.64b shows the results

for the wide gap case (d/D-0.273). It may be noted that the effect of

the mixing system (in this case, the impeller-to-cup diameter ratio,

d/D) is not significant.

In.summany, analytical systems were developed for the mixing

systems based on the original development for a power-law fluid agitated

in a concentric cylinders viscometer. These systems (or models) take

into account differences in impeller shape (paddle or flag) and
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differences in system geometry (impeller-to-cup diameter ration, d/D,

and impeller blade height, b). Thus, flow curves can be directly detemw

mined by only measuring the torque needed to rotate the impeller as a

function of the rotational speed of the impeller. The selection of the

model can be checked with data from a conventional viscometer when

available.

6.3 QENEBAL REQOMMEHQAIIQNS Egg IE5 AEELICAIION QE MIXER VISCOMETRY

This section presents the recommendations for a general procedure

Untxing system and unknown power-law fluid). Figure 6.65 shows the flow

diagram of the procedure. The procedure has been developed for use with

a simple and easy to handle data collection system. However, it can be

applied to different combinations of viscometers and mixing systems.

6.3.1 Mixer System Used in This Study

The procedure is as follows:

1. Maintain a constant temperature of the fluid.

2. Impeller and cup dimensions (d/D and d/b) must be known.

3. Other geometric parameters should remain constant for a set of

experiments (fluid height, distance from bottom of impeller to bottom

of container).

4. Check for time-dependent effects (there should be none for power law

fluids). Agitate fluid for a period of 10 minutes to reach an

equilibrium value of torque.

5. Select range of rotational speeds. The criterium to follow is
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Re 5 10. Also, check for presence of surface waves or turbulence.

The maximum allowable value of rotational speed, N, will be that

which does not produce formation of surface waves on agitated fluid.

Operating values of the rotational speed (rev/s) greater than 20 rpm

are recommended.

. Measure the torque in the shaft required to agitate the fluid, M, as

a function of impeller rotational speed, N.

. From log-log plot of M vs. N, evaluate the value of the flow behavior

index, n, of the fluid.

 

. To determine the flow curve of the fluid, a model is required.

Therefore, expressions for an average mixing shear rate, fiav , and

an average shear stress, a , were developed. Different models were
av

evaluated to determine the best model for flow curve determination.

. If working with a paddle impeller [ 0.36 s (d/b) S 1.8], use Eqn.

(6.19.1) or (6.19.2) if d/D 2 0.709 (small gap) and Eqn. (6.18.1) or

(6.18.2) if [0.327 S (d/D) 5 0.515] (wide to medium gap). For a flag

impeller [(d/b)-0.3], use Eqn. (6.21). Thus,

 

 

2/n
. (D/d) n/2
7 _ 4, (d/b) N (6.18.1)

av { [ (D/d)2/n _ 1 ] }

or

2/n
. (D/d) n/2
1 - 20 (d/b) (6.18.2)

av [ (D/d)2/n _ 1 ]

for a paddle impeller and 0.327 S d/D 5 0.515 , and
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zfifi

73v - {4x [ (D/d’ J (d/b)n/2 } N (6.19.1)

(D/d)2/n - 1

 

or

Zfin

. (D/d) n/2
7 - 20 (d/b) (6.19.2)

8" [ (1)/<1)”n - 1 J

 

for d/D 2 0.709 (with 1 z b 2 S cm and 0.5 2 n 2 0.9).

Flag impeller (b/d-0.5),

k' - 4x [ (1)/d)“2 1 (6.21)

10. Determine the best model to approximate the average shear stress.

A way to check the applicability of the shear stress equations

[Model 1 (Eqn. (4.14); Model 2 (Eqn. (4.21) and Model 3 (Eqn.

(6.23.1) and (6.23.2)] is to compare the values of torque calculated

using these equations with the experimentally measured values of

torque. The best equation will be the one that shows better

agreement with the experimental data. Thus,

Model 1 (concentric cylinders analogy with negligible end effects):

M - 2xb (cl/2)2 aav (4.14)

Model 2 (concentric cylinders analogy with end effects):
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12.

13.
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__NL L’r;

M 2 [ d 3 ] aav

Model 3 (Flag impeller; d- de ):

2

M - 2nb (dc/2) aav

and

(4.21)

(6.23.1)

(6.23.2)

Develop plots of average shear stress versus average shear rate for

the fluid (flow curves). The value of the consistency coefficient,

m, can be evaluated by linear regression of the plots.

Evaluate the apparent viscosity of the fluid from "a - m (iav )
n-l

If available, compare results with data obtained with a traditional

concentric cylinders viscometer. Make sure the range of shear rates

are comparable.

6.3.2 New Mixer Viscometer System

in this study is used, the following procedure is recommended:

If an impeller other than a flag or a paddle impeller considered

. Follow previous steps (1-7).

. Evaluate k' of the particular impeller using the Slope method. The

main reason for selection of this mixer viscometry method is its
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Figure 6.65: Flow Diagram of General Procedure For Mixer Viscometry
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simplicity. If differences in fluid properties are considered, the

Visccsicy_mccching_mcchcc should be used.

. Seek a range of variable where k' is constant (i.e., (d/D), (d/b) and

N).

. With the values of k' obtained in (2) find an expression for k' as

a function of system geometry and fluid properties. As a start, use

the ccncentric cyligcegs snslcgy sppzoach developed in this study

[Equations (6.18.1), (6.18.2), (6.19.1), (6.19.2), or (6.21)].

 

Different expressions may be obtained when different (d/D) ranges are

considered.

. From (3), find expressions for fiav'

. Follow previous step (10) to find approximations of the aav of the

fluid under study for the new mixing system.

. Follow steps (ll-l3) to develop the flow curves (shear stress-shear

rate relationship).

. Repeat procedure for different impeller/cup combination.
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CHAPTER 7

SUMMARY’ARD CONCLUSIONS

1. A procedure for determination of the rheological behavior of power-

law fluids using a mixer viscometer was developed.

2. Based on the concentric cylinders system analogy, an expression for

the average shear rate in the mixing system can be determined.

Average shear rates are a direct function of impeller to cup diameter

ratios, impeller rotational speed and the value of the flow behavior

index, n.

3. The size of the gap has a significant effect on the determination

of expressions for the average shear rate in the mixing system.

Hence, two different expressions were obtained for different d/D

ranges: Eqn. (6.18) for 0.327 s d/D 5 0.515 and Eqn. (6.19) for

d/D 2 0.709 when using paddle impellers.

 

 

2/n
. (D/d1_ n/2
1 - a, (d/b) N (6.18)
av { [ (D/d) 2/n _ 1 ] }

m
. (D/d) n/2
7 - 4, (d/b) N (6.19)

a" { [(1)/d) 2/n - I] }

4. Impeller shape plays an important role in the development of

equations for development of average shear stress-average shear rate
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relationships for power—law fluids. Thus, the expression for the

average shear rate for a flag impeller is different from the ones

obtained for the paddle impellers [Eqns. (6.18) and (6.19)}, and is

given by Eqn. (6.21).

- k'N - 4n [ (1)/d)”213v ] N (6.21)

. The analogy made with the concentric cylinders with the addition

of end effects is the best model [Eqn. (4.21)] for approximation of

the average shear stress of power-law fluids when agitated with a

paddle impeller rotating in a cylindrical cup. Results apply for all

the different impeller/cup combinations and power-law fluids tested

in this study ( 0.327 s d/D 5 0.709; 0.36 S d/b S 1.8; 0.5 S n s

0.9).

M - -49— {—9— + -%— ] aav (4.21)

. The best model for approximating the average shear stress when

agitating a standard power-law fluid with a flag impeller rotating

in a cylindrical cup is given by the assumption of the flag as a

cylindrical surface with two blades attached, with a total diameter

equal to de , with negligible end effects [From Eqn. (6.23.1)],

2

nd

e

av 2

 

. Flow curves (average shear stress versus average shear rate) were
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determined for power-law fluids without the need for calibration

with Newtonian fluids.

. The applicability of theWWprocedure

was experimentally verified with both ideal (standard) and actual

(food product) power-law fluids.

. Comparison of results obtained with the conccntcic cylinders

snslcgy procedure with those obtained using a conventional

concentric cylinders viscometer show excellent agreement for the

range of impeller and cup sizes investigated in this study.

10. The ccnccncgic cylinders snslogy procedure is capable of estimating

ll.

12.

13.

the rheological behavior of a food product when using the mixer

viscometer with the paddle impellers.

The QOBCGDEELQ cylinccss snalogy procedure is simple and requires

little data collection (torque measurements at selected values of

impeller rotational speed) in comparison to the more tedious

approach of established mixer viscometry methods.

The developed concentric cylinder procedure has proven to yield

excellent approximation of the rheological behavior of power-law

fluids using a low-cost viscometer.

Established mixer viscometry methods have been reviewed and

evaluated for power-law (shear-thinning) fluids.
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System geometry (impeller and cup), fluid properties and operating

conditions (impeller rotational speed) were varied to investigate

the effect of these parameters on the value of the mixer

proportionality constant, k', using traditional mixer viscometry

methods.

Traditional mixer viscometry methods (viscosity matching and slope)

predict variations in the mixer proportionality constant, k', with

geometry of the mixing system. The power curve method is very

tedious and deviation from the basic assumption (48v - k'N) may

occur. The mixer torque Curve and the slope methods are simpler

with the slope method requiring less data handling.

The common assumption of fiav - k'N, with k' a constant depending on

the geometry of the impeller only, may lead to significant errors in

the values of the average shear rate when measuring properties of

shear-thinning fluids at low rotational speeds. The determined

critical rpm range was found to be N S 20 rpm.

The effect of system geometry and fluid rheological behavior becomes

almost negligible at higher rotational speeds. Thus, the assumption

of a constant k' is valid under these conditions (N > 20 rpm).

There is a relation between the average shear rate and the type

of fluid being agitated. However, the influence of the power-law

rheological parameters, m and n, on mixer viscometry methods is not

clearly understood. It seems that the more shear-thinning the fluid

9
-
"
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(lower value of n), the lower the average shear rate. However, it

must be noticed that the fluid with lower n values in this study was

also the more viscous fluid (larger value of m). Thus, further

investigation is necessary to identify the effect of the power-law

parameters in mixer viscometry methods.

The shape of the impeller has an important influence on average

shear rates as determined by established mixer viscometry methods

since different values of k' are obtained for the two impeller

shapes investigated in this study, especially at low values of

rotational speed, N.

 

(
-
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CHAPTER 8

SUGGESTIONS FOR.PUTURB STUDY

. To study the influence of the power-law parameters (n and m) on

the value of the impeller proportionality constant, k'; one

possibility is to vary the values of the rheological parameters

and identify separate relationships for each parameter.

. To test the developed procedure (concentric cylinders analogy) with

different types of fluids and impeller shapes.

. To test the developed procedure (concentric cylinders analogy) for a

wider range of shear rates using different viscometers.

. To review and evaluate the mixer viscometry methods when agitating

fluids that do not obey the power-law model. The presence of a yield

stress and time dependent characteristics should also be evaluated.

. To extend the results from this investigation to scale-up of mixing

tanks.

. To evaluate shear fields in mixing systems.
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APPENDIX.A

DIMENSIONLESS ANALYSIS FOR MIXING VESSELS (NEWTONIAN FLUIDS)

When using dimensional analysis to design an experiment, the first

step is to define the pertinent quantities as shown in Table A.l. The

number of required pi terms (dimensionless quantities) is defined from

Buckingham's theorem as the number of pertinent quantities minus the

number of dimensions. Therefore the number of pi terms required to

design the experiment is 10 minus 3, which equals 7.

By describing the motion of a fluid in a mixing vessel only in

terms of length [LJ, time [T] and mass [M], the following set of dimen-

sionless products is obtained (Rushton et a1., 1950):

1

. Thus,

fi1 52 53 _

N D«1 (D) - d p

000 fil 'fl2 3fi3 -1

nl-LTM-L T (M/L) D

L: 51 ' 353 ‘ 1 ‘ 0 51 ‘ 1

T: ~62 - 0

M: 63 - 0 n1 - d/D = D/d

By inspection, «2 - H/d

n3 - b/d

n‘ - L/d
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7'5 - C/d

51 52 53

With u - n/p, «6 (v) - d N p V then,

0 O 0 fil '32 3 BS 2 '1

L T M - L T ( M/L ) ( L /T )

 

L: 51 ' 353 ' 2 ' 0 51 ' 2

1

o o o 51 2 3 53 2 '

L T M - L T ( M/L ) (l/T )

L3 51 ' 353 ' 1 ' 0 51 ' 1

1: -B2 + 2 - o p, - 2

M: fis-O

2

d N

«7 - “g“ - Froude Number, Fr

51 52 53 ’1

N"s (P) ' d p P . Thus,

1

51 '5O 0 0 2 3 33

L T M - L T ( M/L )

2 3

( ML /T )  
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L1 51 ' 353 ’2 ' 0 51 ' 5

M: fls ' 1 - 0 fis - 1

5 s

N ' 5 s

P d N p

- Power Number, P

According to the Buckingham's theorem (Langhaar, 1981), the

power consumption of mixer impellers is given by an.equathn10f the

form:

:82 53 54 55 :86 .37

P - f [ (Re) (Fr) (D/d) (H/d) (L/d) (b/d) (c/d) ]

or [Eqn. (3.91)]

 

In the current investigation, (H/d), (L/d) and (c/d) remained

constant. Therefore, Eqn. (3.91) becomes
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Table A.l: Pertinent Quantities Involved In Fluid Agitation Processes

(Newtonian Fluids)

 

Pertinent Quantities

 

Number Svmbol Description Units Dimensions

Independent Variables

 

l d Impeller m L

diameter

2 D Tank diameter m L

3 b Impeller blade m L -

height ‘

4 H Fluid depth m L

5 L Tank length m L

_1

6 N Impeller rev/s T

Speed

3 ,3

7 p Fluid kg/m ML

Density

,1 ,1

8 n Fluid kg/ms ML T

Viscosity

2 _2

9 g Gravitational m/s LT

Acceleration

 

Dependent Variable

2 3

10 P Power kgm/ 5 ML T

 

The fundamental factors affecting the mixing,process are the

configuration of the system, the behavior of the fluid and the process

control variables (rotational speed). The most significant variables

that can be manipulated to affect power consumption are rotational

speed, N; impeller and tank geometry, (d, D, b); and fluid properties, p

and 17 (Temperature dependency is built in p and 11. Therefore, tempera-

ture was not included as one of the pertinent quantities for the

analysis).
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A.l Development of Dimensionless Functions for Power-Law Fluids (Used in

Slope method)

 When agitating non-Newtonian (power-law fluids), the viscosity n

is replaced by the flow behavior index, n, and the fluid consistency

coefficient, m (kg sn'Z/m). Thus, the power requirement is a function of

P-f(d. N. p.m. n)

 

51 52 53 54 55

d N0 - C P p m (n is dimensionless and enters in m)

2 3 51 52 53 3 5a “,2 55

0 - (ML /T ) L T (M/L ) (MT /L)

L: 261 + 62 - 3B4 - 55 - 0

T: -3a1 - p. + (n-2)fl5 - 0

M: B, + 34 + 35 - 0

Let 61 - B4 - 0. Then, 65 - -1

 

52 ' ’3

53 ' -n-l

n _ P

1 3
m d Nn+1

Let 61 - 0 and 6‘ - 1. Then, 65 - -1

53 ' -n-2
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52'2
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APPENDIX B

EXPERIMENTAL RESULTS

“1
Table B.l: Regression Results of Po - ao(Re) (Fr)az2 (Paddle Impellers)

Linear Multiple Regression.Analysis

 

 

 

Regression Estimated Regression Estimated Standard t*

Coefficient Cosfficient Error

log a0 88.299 -- --

a1 -0.976 0.023 -43.53

122 -0.023 0.023 -1.08

 

Analysis of Variance

 

    

 

 

Sum of Degrees of Error Mean F

Squares Freedom Squares

Regression 48.346 2 24.173 --

Residual 0.585 312 0.022 1115.37

Totsl 481931 314

2

R = 0.988

Test of hypothesis for a2 : 0.: a2 - 0

C2: (12"0

For a level of significance of 0.05, t(0.975,w) = 1.960

*

Since t - 1.08 < t(0.975,m), we accept C1 and conclude that a2 = 0

 

I
1

a
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Table B.2: Regression Results of Po - 190(Re)’81 (Fr)flz (Flag Impeller)

Linear.Mu1tiple Regression.Analysis

 

 

 

 

 

 

 

Regression Estimated Regression Estimated Standard t*

Coefficienc Qccffiicicnt Error

log 60 12.567 -- --

81 -0.983 0.045 -20.07

fig -0.056 0.045 —l.87

Analysis of variance

Sum of Degrees of Error Mean F*

Squsres Freedom Squares

Regression 61.373 2 30.669 --

Residual 2.015 87 0.032 958.66

Totsl 63.388 90

2

R - 0.968

Test of hypothesis for 62 : C1: 62 - 0

6,: [92"0

For a level of significance of 0.05, t(0.975,87) = 1.990

*

Since t - 1.87 < t(0.975,87), we accept C1 and conclude that B2 = 0  
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Table B.3: Values of 61, fiz and 6, from k' - 61 (d/b)fi2 + 53 (Matching

Method of Power Curves) For Power-Law Fluids

 

 

2

FLUID 51 52 33 R

1 5 029 2.618 10.159 0.985

2 5.898 1.764 7.734 1.000 yr-

3 4.137 1.459 7.179 0.971

 

Fluid 1: Hydroxypropyl Methylcellulose 1% (n=0.504, m=6.49 Pa sn)

Fluid 2: Hydroxypropyl Methylcellulose 1.5% (n-0.374, m=28.42 Pa sn)

Fluid 3: Hydroxypropyl Methylcellulose 2% (n-0.352, m-59.27 Pa 5“)
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Figure B.2: a) Shear Stress Versus Shear Rate; b) Apparent Viscosity

Versus Shear Rate (Hydroxypropyl Methylcellulose 2%)
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Figure B.3: Average Mixing Shear Rate as a Function of Rotational Speed
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Curves - Matching Method)
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APPENDIX.C

PROCEDURE FOR USE OF THE MIXER BROOKFIELD

VISCOMETER FOR NEWTONIAN FLUIDS

This section provides the user of Brookfield Viscometers with the

information required to obtain viscosity readings with the "mixer

inmellers" (flag and paddle type). This information consists of the

impeller "factors" and viscosity ranges for use of the impellenfimq)

combinations with a Brookfield Viscometer. These factors are equivalent

to the Factor Finder supplied with the Viscometer for other spindle

geometries.

6.1) Determination of Impeller Factors

Brookfield Viscometers use a Factor for every spindle/speed

combination the user selects. It is simply multiplied by the Viscometer

reading to evaluate viscosity (in centipoise).

Table 0.1 presents the values of the Factors for the flag and

paddle impellers for evaluation of the viscosity of Newtonian fluids.

The recommended range of viscosity for the Viscometer model is almo

shown to assure proper use of the equipment.

The procedure for data collection and analysis was:

1. The torque required to rotate the impeller, at each value of

rotational speed for several Newtonian fluids of known viscosity at

constant temperature, was measured.
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Table C.1: Factors for Use of the Mixer Impellers with the Brookfield

 

 

 

 

 

Viscometer

Paddle Impellers

FACTOR VISCOSITY RANGE (Pa 3)

SYSTEM VISCOMETER MODEL Min - Max Min - Max

HBTD IRHTD, HBTD RVTD

l 45.1/N 5.7/N 4.51 - 451 0.57 - 57

2 33.8/N 4.2/N 3.38 - 338 0.42 - 42

3 22.7/N 2.8/N 2.70 - 227 0.28 - 28

4 19.0/N 2.3/N 1.90 - 190 0.23 - 23

5 15.5/N 2.0/N 1.50 - 150 0.20 - 20

6 45.0/N 5.0/N 4.50 - 450 0.50 - 50

7 29.0/N 3.3/N 2.90 - 290 0.33 - 33

8 21.0/N 2.3/N 2.10 - 210 0.23 - 23

9 34.0/N 4.1/N 3.40 - 340 0.41 - 41

10 22.5/N 2.8/N 2.25 - 225 0.28 - 28

Flag Impeller

1 55.0/N 6.5/N 5.50 - 550 0.65 - 65

2 55.0/N 6.6/N 5.50 - 550 0.66 - 66

3 42.5/N 5.3/N 42.5 - 425 0.53 - 53

N in rpm

Recommended RPM - 10 - 100

3

1 Pa 5 - 10 cp

Viscosity ranges (in Pa 5):

Maximum: Factor x 100

Minimum: Factor x 10
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2. Plots of Newtonian viscosity, n, versus torque, M, for each value of

rotational speed, N and each system geometry (impeller/cup

combination) were made. Figure C.1b is a typical plot for a selected

impeller/cup combination. 3. A relationship between Newtonian

viscosity, 0, and torque reading, was found to be of the form:

n - C1 M (C.].)

where:

3

C1 - constant, s/m

M - torque reading, N m

4. The proportionality constant, C1, was plotted as a function of N for

each system geometry as in Figure C.1a.

5. From Eqn. (0.1) and the plot of (4), the following expression for

the Newtonian viscosity was obtained for the different systems

(Table C.2):

B2

97 - BI (N/60) M (0.2)

with N - impeller rotational speed, rpm

3

B1 - constant, l/m

82 - constant, -n

Thus, the Newtonian viscosity, 0, can be calculated from the fixllow-

ing equation:

0 - FACTOR * Torque (C.3)
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Table C.2: Table for the fit of Eqn.

267

Paddle Impellers

(C.2)

 

 

 

 

SYSTEM 81 82

1 131.6462 -0.9541 0.999

2 97.2958 -0.9827 1.000

3 65.1144 -0.9753 1.000

4 54.3087 -0.9750 1.000

5 46.0179 -0.9773 1.000

6 139.0464 -0.8527 0.990

7 92.6439 -0.9134 0.989

8 61.7416 -0.9388 0.995

9 99.0534 -0.9771 1.000

10 65.6778 -0.9905 1.000

Flag meeller

1 162.9035 -O.9816 1.000

2 158.2457 -0.9755 1.000

3 124.8972 -0.9973 1.000
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B2

with FACTOR - 81(N/60)

IFactors were converted to constants for use with the Brookfield

display readings as follows:

,0

[FACTOR x spring constant (Nm) x 10 ] x N - FACTOR2 (C.3)

FACTOR:

with FACTOR - ——7§—- (C 4)

Table C.2 shows average values for every system (at all values of

N).

The mixer impeller Factors for every impeller/cup combination

presented in Table C.2 allow the user for direct determination of vis-

cosity readings. Torque readings were converted to Viscometer display

readings to facilitate the procedure.

Table 0.3 shows the values of viscosity obtained with the dif-

ferent impeller/cup combinations at two selected values of N (10 and 50

rpm). It may be seen that the maximum error obtained is about 10% which

indicates that the prediction factors provide accurate estimation of the

Newtonian viscosity.

C.2) ro dure Fo D e inat o O ewton n Vi cosit

The following procedure is a useful tool for analysis of vis-

cosity data of food.products of unknown behavior. It is also a starting

point from which more advanced techniques can be explored.

The procedure for determination of Newtonian viscosity with the

Mixer Brookfield Viscometer is as follows:
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Table 6.3: Values of Viscosity of a Newtonian Fluid (n - 4.84 Pa 3)

Obtained with The Impeller Factors

Paddle Impellers

 

 

 

 

0 (Pa 8)

SYSTEM N (rpm) HBTD RVTD % Error

1 10 4.71 4.76 -2.7 «1.7

50 4.50 4.55 -7.0 -6.0

2 10 5.00 4.98 3.3 2.9

50 4.75 4.72 -1.9 -2.5

3 10 4.68 4.62 -3.3 -4.5

50 4.66 4.60 -3.7 -4.9

4 10 4.99 4.84 3.0 0.0

50 4.93 -- * 1.9 --

5 10 4.95 5.11 2.3 5.6

50 4.84 -- 0.0 --

6 10 5.25 4.67 8.5 -3.5

50 4.66 4.79 -3.7 -1.0

7 10 4.79 4.95 -1.0 2.3

50 4.53 4.66 -6.4 -3.7

8 10 5.29 4.99 9.3 3.1

50 4.96 -- 2.5 --

9 10 4.85 4.67 0.2 -3.5

50 4.70 4.55 -2.3 -5.9

10 10 4.95 4.93 2.3 1.9

50 4.91 4.89 1.4 1.0

Flag Impeller

1 10 4.60 4.55 -4.9 -5.9

50 4.56 4.49 «5.7 -7.2

2 10 5.11 5.21 5.6 7.6

50 4.85 5.04 0.2 4.1

3 10 4.61 4.62 -4.7 —4.5

50 4.51 4.51 -6.8 -6.8

 

Reading out of range of viscometer
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. Determine if the fluid is Newtonian. To do so, record display

reading with impeller rotating at different values of rotational

speed. A plot of the reading values as a function of N should give a

straight line with slope equal to l.

. Select impeller/cup combination and value of rotational speed

according to standard Brookfield procedure. Generally, a reading

display of 10 or higher assures that proper selection of equipment

has been made.

. Read digital display from Viscometer.

. Find FACTOR for selected system and N in Table 6.1.

. To obtain viscosity readings (Pa s), multiply Brookfield reading by

the Factor at specified value of rotational speed (in rpm) from step

(2).
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