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ABSTRACT 
 

EVALUATING LAKE PHYTOPLANTON RESPONSE TO HUMAN DISTURBANCE AND 

CLIMATE CHANGE USING SATELLITE IMAGERY 
 

By 

Linda Nicole Novitski 
 

Accurate and cost-effective assessment of water quality is necessary for proper 

management and restoration of inland water bodies susceptible to algal bloom conditions. 

Landsat and MODIS satellite images were used to create chlorophyll and Secchi depth 

predictive models for algal assessment of Great Lakes and other lakes of the United States. 

Boosted regression tree (BRT) models using satellite imagery are both easy to use and can 

have high predictive performance. BRT models inferred chlorophyll and Secchi depth more 

accurately than linear regression models for all study locations. Inferred chlorophyll of 

inner Saginaw Bay was subsequently used in ecological models to help understand the 

ecological drivers of algal blooms in this ecosystem. 

For small lakes (non-Great Lakes), the best national Landsat model for ln-

transformed chlorophyll was the BRT model and had a cross-validation R2 of 0.44 and a 

0.76 ln-transformed µg/L RMSE. The best national Landsat model for Secchi depth was also 

a BRT model that had an adjusted R2 of 0.52 and a 0.80 m RMSE. We assessed the 

applicability of the national chlorophyll model for ecological analysis by comparing the 

total phosphorus- chlorophyll relationship with chlorophyll determined from sampling or 

remote sensing, which showed the total phosphorus-chlorophyll relationship had an 

adjusted R2 = 0.58 and 1.02 ln-transformed µg/L RMSE with sampled chlorophyll versus an 

adjusted R2 = 0.56 and 1.04 ln-transformed µg/L RMSE with chlorophyll determined by the 



 

 

boosted regression tree remote sensing model. For Great Lakes models, the MODIS BRT 

model predicted chlorophyll most accurately of the three BRT models and compared well 

to other models in the literature. BRT models for Landsat ETM+ and TM more accurately 

predicted chlorophyll than the MSS model and all Landsat models had favorable results 

when compared to the literature. BRT chlorophyll predictive models are useful in helping 

to understand historical, long-term chlorophyll trends and to inform us of how climate 

change may alter ecosystems in the future. In inner Saginaw Bay, annual average and upper 

quartile Landsat-derived chlorophyll decreased from 7.44 to 6.62 and 8.38 to 7.38 µg/L 

between 1973-1982, and annual upper quartile of 8-day phosphorus loads increased from 

5.29 to 6.79 kg between 1973-2012. Simple linear and multiple regression models and 

Wilcoxon rank test results for MODIS and Landsat-derived chlorophyll indicate that 

distance from the Saginaw River mouth influences chlorophyll concentration in Saginaw 

Bay; Landsat-derived surface water temperature and phosphorus loads to a lesser extent. 

Mixed-effect models for MODIS and Landsat-derived chlorophyll were related to 

chlorophyll better than simple linear or multiple regressions, with random effects of pixel 

and sample date contributing substantially to predictive power (NSE=0.35-70), though 

phosphorus loads, distance to Saginaw River mouth, and water were significant fixed 

effects in most models. Water quality changes in Saginaw Bay between 1972-2012 were 

influenced by phosphorus loading and distance to the Saginaw River’s mouth.  

Landsat and MODIS imagery are complementary platforms because of the long 

history of Landsat operation and the finer spectral resolution and image frequency of 

MODIS. Remote sensing water quality assessment tools can be valuable for limnological 

study, ecological assessment, and water resource management.  



 

 

Copyright by 
LINDA NICOLE NOVITSKI 

2014 

 
 



 

 v

 

ACKNOWLEDGEMENTS 

 

Many thanks are due to the research group in which this research was created; my 

main advisor, Dr. R. Jan Stevenson, Dr. Jiaguo Qi, Dr. Dave Hyndman, Dr. Peter Esselman, Dr. 

Anthony Kendall, Dr. Sherry Martin, Dr. Siam Lawawirojwong, Dr. Tanita Suepa, and Dr. 

Shengpan Lin. Thanks are also due to committee members Dr. Elena Litchman, Dr. Orlando 

Sarnelle, and Dr. Mantha Phanikumar. Thanks to Dr. Narumon Wiangwang and Zhen Zhang 

for their assistance. Finally, I am deeply appreciative of the continuous support of my 

loving parents, sisters, and husband through this process. 

 

 

  



 

 vi

TABLE OF CONTENTS 
 
 

LIST OF TABLES ...................................................................................................................................................... viii 
 

LIST OF FIGURES .................................................................................................................................................... ix 
 

KEY TO ABBREVIATIONS ....................................................................................................................... xi 

 

CHAPTER 1 

REMOTE SENSING OF CHLOROPHYLL-A IN THE GREAT LAKES USING LANDSAT AND 
MODIS SATELLITE IMAGERY; A HISTORY ................................................................................................. 1 

Literature Review ................................................................................................................................... 1 
LITERATURE CITED ................................................................................................................................ 5 

 

CHAPTER 2 

NATIONAL CHLOROPHYLL AND SECCHI DETECTION BY LANDSAT 7 ETM+ SATELLITE 
IMAGERY FOR WATER QUALITY ASSESSMENT ...................................................................................... 11 

Abstract ........................................................................................................................................................ 11 
Introduction ............................................................................................................................................... 13 

Methods ........................................................................................................................................................ 16 

Ecological data, satellite imagery, and pixel extraction ................................................. 16 

Remote sensing images and data processing ...................................................................... 17 

Linear regression analyses ........................................................................................................ 18 

Boosted regression tree analyses ............................................................................................ 20 

Model diagnostics  ..............................................................................................................................21 

Results ........................................................................................................................................................... 22 

National and lake type models to predict chl .........................................................................22 

National and lake type models to predict Secchi depth .................................................. 24 

Discussion ................................................................................................................................................... 25 

Evaluation of national chl model ............................................................................................ 25 

Evaluation of national Secchi depth model ......................................................................... 25 
Possible improvement of models ............................................................................................. 26 

Robustness and application of national models ................................................................ 28 

Summary and concluding remarks ........................................................................................ 29 

APPENDIX .................................................................................................................................................... 31 
LITERATURE CITED ................................................................................................................................ 47 

 

CHAPTER 3 
MODIS AND LANDSAT BOOSTED REGRESSION TREE CHLOROPHYLL PREDICTIVE 
MODELS FOR THE GREAT LAKES ................................................................................................................... 52 

Abstract ........................................................................................................................................................ 52 

Introduction ............................................................................................................................................... 52 
Methods ........................................................................................................................................................ 55 



 

 vii

Study locations and ecological data ...................................................................................... 55 

MODIS satellite image processing and pixel extraction for BRT model training ... 55 
Landsat image processing and pixel extraction for BRT model training .................. 56 

Data preparation and statistics for MODIS and Landsat data ..................................... 58 
MODIS image processing for model application ................................................................ 59 

Landsat image processing for model application ............................................................. 60 
Model evaluation .......................................................................................................................... 61 

Results ........................................................................................................................................................... 61 
BRT models and partial correlation plots ............................................................................ 61 

Discussion ................................................................................................................................................... 63 
APPENDIX .................................................................................................................................................... 67 

LITERATURE CITED ................................................................................................................................ 80 
 

CHAPTER 4 
IMPACTS OF CLIMATE CHANGE AND LAND-USE/LAND-COVER CHANGE ON 
PHYTOPLANKTON IN INNER SAGINAW BAY USING LANDSAT AND MODIS SATELLITE 
IMAGERY, 1973-2012 .......................................................................................................................................... 84 

Abstract ........................................................................................................................................................ 84 

Introduction ............................................................................................................................................... 85 

Research objectives ...................................................................................................................... 88 

Methods ........................................................................................................................................................ 88 

Data ..........................................................................................................................................................88 

Statistics for MODIS and Landsat ........................................................................................... 90 

Results ........................................................................................................................................................... 92 

Temporal trends ........................................................................................................................... 92 

Relationships between algal blooms and global change variables ............................. 93 
Discussion ................................................................................................................................................... 94 

APPENDIX .................................................................................................................................................... 98 

LITERATURE CITED ................................................................................................................................ 115 

 

CHAPTER 5 

SUMMARY AND SYNTHESIS: USE OF REMOTE SENSING IN ECOLOGIAL ASSESSMENT ...... 121 
National Lakes Assessment chlorophyll and Secchi depth predictive models ....... 121 
Landsat and MODIS boosted regression tree models for chlorophyll prediction 
in the Great Lakes ................................................................................................................................... 122 
Using Landsat- and MODIS-derived chlorophyll to assess water quality in 
Saginaw Bay from 1972-2012 .......................................................................................................... 123 
LITERATURE CITED ................................................................................................................................ 125 

  



 

 viii

LIST OF TABLES 

 
 
Table 2-1: Landsat 7 ETM+ wavelength band features (USGS 2011a). ..................................... 32 
 

Table 2-2: US EPA National Lakes Assessment lake types. .............................................................. 33 
 
Table 2-3: National boosted regression tree chl and Secchi depth models. .......................... 34 
 
Table 2-4: National and lake type linear regression chl detection models. ........................... 35 

 

Table 2-5: National and lake type linear regression chl and Secchi model coefficients. 36 
 
Table 2-6: National and lake type linear regression Secchi depth detection models. ...... 37 

 

Table 2-7: Chlorophyll and Secchi depth models from the literature. ...................................... 38 

 

Table 3-1:  MODIS wavelength band features (NASA 2013). .......................................................... 68 

 

Table 3-2:  Landsat 7 ETM+ wavelength band features (USGS 2011). ....................................... 69 

 
Table 3-3:  Landsat 1-3 MSS wavelength band features (USGS 2011). ...................................... 70 

 

Table 3-4: Boosted regression tree results for MODIS, Landsat ETM+, TM, and MSS. ...... 71 

 

Table 3-5: Comparison of BRT chl predictive models to models in the literature. ............ 72 

 

Table 4-1: Linear regression results for temporal trends in chlorophyll, water 
temperature, and phosphorus loads in inner Saginaw Bay............................................................ 99 

 

Table 4-2: Wilcoxon Rank test results using near and far groupings of MODIS or 
Landsat chl or water temperature data. ................................................................................................... 100 
 

Table 4-3. MODIS (2000-2012) linear regression results. .............................................................. 101 
 

Table 4-4: MODIS linear mixed-effect model results. ........................................................................ 102 
 

Table 4-5: Landsat (1973-2012 or 1984-2012) linear regression results. ............................ 103  
 

Table 4-6: Landsat linear mixed-effect model results. ...................................................................... 104 
 

Table 4-7: Comparison of MODIS- and Landsat-derived inner Saginaw Bay 
chlorophyll values and values from the literature. ............................................................................. 105 

 

  



 

 ix

LIST OF FIGURES 
 
 

Figure 2-1: Histograms of untransformed and ln-transformed chlorophyll and Secchi 
depth. ........................................................................................................................................................................... 42 

 
Figure 2-2: Remotely sensed (linear regression predicted) ln-transformed 
chlorophyll a using band ratio 1/3 versus measured ln-transformed chlorophyll a 
(R2adj=0.19, 1.38 ln-transformed µg/L). .................................................................................................. 43 
 
Figure 2-3: Remotely sensed (boosted regression tree predicted) natural ln-
transformed chlorophyll versus measured ln-transformed chlorophyll a (R2adj=0.44, 
0.76 ln-transformed µg/L). ................................................................................................................... 44 
 

Figure 2-4: Remotely sensed (linear regression predicted) natural ln-transformed 
Secchi depth using band ratio 1/3 versus measured ln-transformed Secchi depth. 

(R2adj=0.49, 0.77 ln-transformed m RMSE).  .......................................................................................... 45 

 

Figure 2-5: Remotely sensed (boosted regression tree predicted) Secchi depth versus 
measured untransformed Secchi depth (R2adj=0.52, 0.80 m RMSE). ....................................... 46 

 

Figure 3-1: Measured chl versus MODIS BRT predicted chl for 2007-2009 GLNPO 
training data with 1:1 line. ............................................................................................................................... 73 

 

Figure 3-2: Partial dependence plots for the MODIS BRT. ............................................................... 74 

 

Figure 3-3: Measured chl versus Landsat ETM+ and TM BRT predicted chl for 2007-
2009 GLNPO training data with 1:1 line.................................................................................................... 76 

 

Figure 3-4: Partial dependence plots for the Landsat ETM+ and TM BRT. ............................. 77 

 

Figure 3-5: Measured chl versus Landsat MSS predicted chl for 2007-2009 GLNPO 
training data with 1:1 line. ............................................................................................................................... 78 

 
Figure 3-6: Partial dependence plots for the Landsat MSS BRT. .................................................. 79 

 

Figure 4-1: Saginaw Bay’s inner bay with depth ≥ 5 m...................................................................... 107 

 
Figure 4-2: Inner Saginaw Bay study area and river mouth inputs into Saginaw Bay. .... 108 

 
Figure 4-3: Annual average and upper quartile MODIS and Landsat-derived 
chlorophyll concentration (µg/L) in inner Saginaw Bay, 2000-2012. ...................................... 109 
 

Figure 4-4: Annual average and upper quartile Landsat-derived chlorophyll 
concentration (µg/L) in inner Saginaw Bay, 1973-2012.................................................................. 110 

 



 

 x

Figure 4-5: Annual average and upper quartile 8-day phosphorus load (kg) in inner 
Saginaw Bay, 1973-2012. .................................................................................................................................. 111 
 

Figure 4-6: Annual average and upper quartile Landsat-derived surface water 
temperature (˚C) in inner Saginaw Bay, 1984-2012. .......................................................................... 112 

 
Figure 4-7: MODIS-derived chlorophyll vs. mixed-effect model chlorophyll (µg/L) in 
inner Saginaw Bay, 2000-2012 with 1:1 line. ......................................................................................... 113 
 
Figure 4-8: Landsat-derived chlorophyll vs. mixed-effect model chlorophyll (µg/L) in 
inner Saginaw Bay, 1984-2012 with 1:1 line. ......................................................................................... 114 

 
  



 

 xi

KEY TO ABBREVIATIONS 
 
 

A=August 

AIC = Akaike information criterion 

avg. = average 

BIC = Bayesian information criterion 

BRT = boosted regression tree 

chl = chlorophyll a  

D = distance between satellite image pixel and Saginaw River mouth (km) 

diff. days = difference between in-lake sample date and date of satellite overpass 

DOC = dissolved organic carbon 

DOY = day of year 

ETM+ = enhanced thematic mapper 

GLNPO = Great Lakes National Program Office 

JL=July 

JN=June 

L1G = Landsat image processing level 

L1T = Landsat image processing level 

LOESS = locally weighted scatterplot smoothing 

max = maximum 

MCKT = MODIS conversion toolkit 

MERIS = Medium Resolution Imaging Spectrometer 

min = minimum 



 

 xii

MOD02 = MODIS satellite data product 

MOD09 = MODIS satellite data product 

MODIS = Moderate Resolution Imaging Spectroradiometer 

Month=sample month 

MRT = MODIS reprojection tool 

MSS = multispectral scanner 

NASA = National Aeronautics and Space Administration 

NLA = United States Environmental Protection Agency National Lakes Assessment 

NOAA = National Oceanic and Atmospheric Administration 

NS = not statistically significant 

NSE = Nash-Sutcliffe efficiency 

OT=one-time 

P = 8-day phosphorus load (kg) 

R=range 

RMSE = root mean square error 

S=September 

SA=seasonal average  

SeaWiFS = Sea-Viewing Wide Field-of-View Sensor 

TM = thematic mapper 

TOA = top of atmosphere 

TOTS=two one-time samples 

TP = total phosphorus 

Type=sample type 



 

 xiii

UQ = upper quartile 

USGS = United States Geological Survey 

WT = Landsat-derived water temperature (˚C) 

 

 



 

 1 

 
 

CHAPTER 1 
REMOTE SENSING OF CHLOROPHYLL-A IN THE GREAT LAKES USING LANDSAT AND 

MODIS SATELLITE IMAGERY; A HISTORY 
 
Literature Review 

Since the 1970s, improving water quality has been a national priority, however, in 

the Great Lakes, concerns, such as fish population declines (Burkholder 1930) and 

eutrophication (Beeton 1965), were noted much earlier. One retrospective study of diatom 

records indicates nutrient enrichment as early as European settlement and forest clearing 

in some part of the Great Lakes (Schelske et al. 1983). In 1972, guidelines were established 

by the Clean Water Act that mandated regulation of point source pollution into water 

bodies, including municipal and industrial sources of nutrients (Copeland 2010). 

Amendments to the Clean Water Act in 1987 added regulations for nonpoint nutrient 

sources, including agriculture (Copeland 2010). In addition to the protection provided to 

the Great Lakes by the Clean Water Act, independent remediation action plans have been 

created and carried out for numerous areas of concern, including Saginaw Bay (USEPA 

2013). In the years following remediation, nutrients and chemicals from municipal, 

industrial, and agricultural sources decreased significantly and led to improvements in 

water quality in some areas (Auer et al. 1976, Bierman et al. 1984). Meanwhile, other 

perturbations, including invasive species introductions and climate change, have caused 

additional ecological challenges (Fahnenstiel et al. 1995, Lofgren and Gronewold 2012).  

To enable effective assessment, remediation, and management of affected water 

bodies, it is necessary to understand how the water quality varies in space and time and 

how it is related to sources of pollution. Chlorophyll a (chl) concentration, a proxy of algal 
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biomass, is often used to help quantify ecological health of water bodies, as it can be 

indicative of high nutrient levels and water temperatures (Carlson 1977, Paerl and 

Huisman 2008). In some cases, high algal biomass may have deleterious effects on fish and 

other aquatic organisms, as well as humans who touch or ingest water with algae (Paerl et 

al. 2001). Numerous studies indicate that algal blooms have the potential to increase 

(Hauer et al. 1997) and, in some areas, are already increasing in frequency, which could be 

caused by increased nutrient input, higher water temperatures  and increasing 

atmospheric CO2 (Shapiro 1997, Hunter 2003). 

Water quality assessments are usually done by physically taking water samples and 

analyzing them in the lab. However, advancements in remote sensing technology and 

development of modeling tools in recent decades have allowed ecological assessment from 

a distance, enabling evaluation with larger spatial and temporal scales and providing a 

more comprehensive view at, potentially, less cost. Landsat satellite imagery has often been 

used to detect chl in inland lakes (Lillesand et al. 1983, Mayo et al. 1995) and coastal ocean 

waters (Erkkila and Kalliola 2004, Han and Jordan 2005).  Landsat also has a long history in 

water quality detection in the Great Lakes, from observation of colors in Lake Erie (Strong 

1974), calcium carbonate precipitation in Lake Michigan and Lake Ontario (Strong 1978), 

chl detection in central Lake Michigan and Green Bay (Lathrop and Lillesand 1986), total 

suspended solids or Secchi depth in Green Bay (Lathrop et al. 1991), or phycocyanin 

detection in western Lake Erie (Vincent et al. 2004). While some Landsat studies have 

looked back at water quality over time (Olmanson et al. 2008), none have looked back at 

chl trends over the lifetime of Landsat. 

Since its inception, chl algorithms have also been created, tested, and used for the 
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Moderate Resolution Imaging Spectroradiometer (MODIS) satellite in both ocean waters 

(O'Reilly et al. 2000, Carder et al. 2004) and in the Great Lakes (Shuchman et al. 2006, 

Kerfoot et al. 2008, Weghorst 2008, Becker et al. 2009, Kerfoot et al. 2010, Binding et al. 

2012, Lesht et al. 2013). One of the early MODIS chl predictive models, the OC3 model that 

was created for ocean waters (O'Reilly et al. 2000) was applied with some success in 

freshwater lakes with little non-algal color producing agents (CPAs), or when chl was the 

dominant CPA at the time (Kerfoot et al. 2008), but not as well when other CPAs are 

present. More recent MODIS algorithms for freshwater lakes have tried to take account of 

the other CPAs, such as colored dissolved organic matter (CDOM) and suspended particular 

matter (Shuchman et al. 2006, Binding et al. 2012). 

Whether using chl models for Landsat or MODIS, complications arise when 

detecting chl in shallow areas, where reflectance from the bottom of the lake could 

interfere with the chl signal detected by the satellite. Numerous studies have acknowledged 

and tried to address this issue (Højerslev et al. 1977, Lyzenga 1981, Rundquist et al. 1995, 

Lee et al. 1998, Tolk et al. 2000, Lodhi and Rundquist 2001, Cannizzaro and Carder 2006), 

however no standard approach has been widely accepted and applied.  

Historically, two general approaches have been use to develop models for predicting 

chl with satellite images: 1) deriving empirical relationships between chl and satellite 

bands or band ratios, alone or separately from other CPAs using linear or polynomial 

regression analyses (Carpenter and Carpenter 1983, O'Reilly et al. 1998, Giardino et al. 

2001) or 2) deriving relationships between two or more CPAs (including chl) at once 

(Carder et al. 2004, Pozdnyakov et al. 2005). Many of the current models are either not 

widely applicable, have not been tested for wide use, are challenging to implement without 
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expert statistical and programming knowledge, or require costly computer programs.  

Other algorithms have been created and tested for the Great Lakes using other 

satellites, including the medium resolution imaging spectrometer (MERIS)(Gons et al. 

2008, Wynne et al. 2008), CZCS and SeaWiFS (Bukata et al. 1981, Shuchman et al. 2006, 

Binding et al. 2007), or hyperspectral devices (Ali 2011). For additional information, there 

are comprehensive summaries of remote sensing of cyanobacteria (Kutser 2009), of case II 

waters (Bukata 2005, Odermatt et al. 2012, Lesht et al. 2013), or ocean waters (Stumpf and 

Tomlinson 2005). 

In my dissertation I used field data in conjunction with satellite imagery to test 

models for chl and Secchi depth using existing remote sensing models and using a new 

approach with boosted regression tree (BRT) model-building techniques. In the first 

project, US Environmental Protection Agency field measurements and Landsat satellite 

imagery were used to create chl concentration and Secchi depth predictive models for use 

in small inland lakes across the United States. The second chapter explorers the use of BRT 

models for chl prediction in the Great Lakes, using both Landsat and MODIS satellite 

imagery. Landsat and MODIS complement each other in that Landsat allows for long-term 

analysis of algal biomass at a finer spatial scale, and MODIS allows for chl detection with 

finer spectral wavelengths at more frequent intervals. The third chapter uses Landsat and 

MODIS-derived chl concentrations in mixed-effects models to better understand the 

influence of river discharge and nutrient loading on chl concentration in Saginaw Bay. I 

expect that developing remote sensing tools for water quality assessment can be useful for 

ecological analysis to not only understand the natural dynamics of the ecosystem, but also 

help predict future trends caused by climate change.  
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CHAPTER 2 
NATIONAL CHLOROPHYLL AND SECCHI DETECTION BY LANDSAT 7 ETM+ SATELLITE 

IMAGERY FOR WATER QUALITY ASSESSMENT 
 
Abstract 

 We developed remote sensing models for chlorophyll a (chl) and Secchi depth for 

use at national and regional scales with US EPA’s National Lake Assessment data (NLA) and 

Landsat 7 ETM+ satellite images.  Using linear regression, separate Landsat models for chl 

and Secchi depth were developed at the national scale and for each of seven NLA lake 

classes to determine if climatic as well as naturally varying physical and chemical attributes 

could reduce variation in Landsat models.  National boosted regression tree (BRT) models 

were also made and compared to national models made with linear regression. For all 

models, Landsat bands and band ratios were used to infer chl or Secchi depth, and adjusted 

R2 and RMSE were used to select the best models. For the linear regression models, the 

national chl model performed better than the lake type models, except for lake type B, and 

the national Secchi depth model performed better than all lake types except for lake types F 

and G. Overall, the best national Landsat model for ln-transformed chl was the boosted 

regression tree model and had a cross-validation R2 of 0.44 and a 0.76 ln-transformed µg/L 

RMSE. The best national Landsat model for Secchi depth was also a boosted regression tree 

model that had an adjusted R2 of 0.52 and a 0.80 m RMSE. Potential sources of error in the 

national chl boosted regression tree model were indicated by residuals being positively 

correlated with DOC (adjusted R2=0.14) and cyanobacterial density (adjusted R2=0.18), and 

negatively correlated with lake depth (adjusted R2=0.25). Lake area, difference between 

image and sample date, and percent cloud cover were not correlated with national chl 

boosted regression tree model residuals. National Secchi boosted regression tree model 
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residuals were weakly, negatively correlated with DOC (adjusted R2=0.08) and 

cyanobacterial density (adjusted R2=0.06) and weakly, positively correlated with difference 

between image and sample dates (adjusted R2=0.02) and lake depth (adjusted R2=0.17). 

Percent cloud cover of Landsat image and lake area were not correlated with national 

Secchi boosted regression tree model residuals. We assessed the applicability of the 

national chl model for ecological analysis by comparing the total phosphorus-chl 

relationship with chl determined from sampling or remote sensing, which showed the total 

phosphorus-chl relationship had an adjusted R2=0.58 and 1.02 ln-transformed µg/L RMSE 

with sampled chl versus an adjusted R2=0.56 and 1.04 ln-transformed µg/L RMSE with chl 

determined by the boosted regression tree remote sensing model.  Remote sensing water 

quality assessment tools can be valuable for limnological study, ecological assessment, and 

water resource management.  
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Introduction 

Lakes are important sources of water for drinking, agriculture, industrial processes, 

recreation, and aesthetic well being.  Water quality is highly threatened by withdrawals, 

pollution, and climate change-related alterations in precipitation and temperature (Parry 

et al. 2007).  Toxic or nuisance algal growth in lakes can result from human activities 

generating nitrogen and phosphorus pollution (Carpenter et al. 1998) and may be 

exacerbated by increasing temperature with climate change (Paerl and Huisman 2008). 

Excessive algal biomass causes a variety of problems ranging from decreasing oxygen as 

the algae decompose (Wetzel 2001), harboring pathogens (Ishii et al. 2006, Byappanahalli 

et al. 2009), and generating toxins that harm aquatic organisms (Carmichael 1996) and 

cause sickness or death in terrestrial vertebrates (Briand et al. 2003) and humans (Watson 

et al. 2008, Backer et al. 2010). Therefore, developing and refining tools to assess algae at 

spatial and temporal scales that will advance ecological understanding for resource 

management is imperative as human needs and climate change stress lake ecosystems. 

Satellite imagery has been used to assess water quality of freshwater ecosystems for 

several decades (Strong 1974, Scarpace et al. 1979, Lillesand et al. 1983, Gitelson et al. 

1993, Kloiber et al. 2002a, Bustamante et al. 2009) Remote water quality assessment has 

the potential to be more time and cost-effective than traditional sampling techniques 

because the cost of acquiring some satellite imagery and time for processing are relatively 

low.  Remotely sensed imagery also has advantages over more traditional sampling 

techniques by incorporating spatial variation over the size of a pixel and providing spatial 

detail throughout a lake.  In addition, many historic satellite images are available, which 

enables temporal study of climate and land use change.   
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Landsat has greater potential for historical analyses than other satellites with nearly 

four decades of available data. Perhaps most importantly, unlike other satellites (e.g., 

MODIS, SeaWiFS), Landsat’s small pixel size allows for the assessment of small lakes and 

fine resolution of spatial patterns within bigger lakes (Chipman et al. 2004, Han and Jordan 

2005, Olmanson et al. 2008, Torbick et al. 2008).  The disadvantages of Landsat are the 

relatively low number of bands compared to other satellites and relatively wide 

bandwidths, which produce some limitations on spectral resolution.  However, Landsat 

imagery was used as early as Strong (1974) to detect the presence of algae in freshwater 

lakes.  Since Strong’s study, many models using spectral band measurements from Landsat 

images have been developed for inference of chl and Secchi depth using data from 

relatively small regions, such as states, and using only a subset of the available Landsat 

bands (Kloiber et al. 2002b, Nelson et al. 2003, Chipman et al. 2004) . 

While Landsat’s visible wavelengths capture peak absorption and reflectance 

wavelengths for chl, they also capture changes in reflectance due to the increased 

scattering of light by particles near the water’s surface (Lathrop et al. 1991, Han et al. 

1994).  Therefore, we might expect the visible wavelength bands to be the most useful for 

inferring chl and Secchi depth.  However, infrared bands can also capture the scattering 

caused by either particles in the surface water (Lavery et al. 1993, Kloiber et al. 2002a), or 

by floating biomass, which reflects more light than clear water (Strong 1974). Additionally, 

the thermal infrared band can detect increases in surface water temperature that can both 

cause increased algal biomass and indicate warming by energy absorption and heat 

dissipation by organic and inorganic matter (Wetzel 2001).  Furthermore, using bands in 

ratios can help minimize the relative influence of atmosphere between images (Jensen 
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2005).  Despite this demonstrated utility, many studies have excluded all or most of the 

infrared bands in Landsat models of water quality parameters (Brivio et al. 2001, Kloiber et 

al. 2002b, Nelson et al. 2003, Chipman et al. 2004, Olmanson et al. 2008).  

Most Landsat remote sensing studies have been limited in geographic range, or in 

the ranges of chl or Secchi depth they use to develop the model, for example, not covering 

both the lower and upper range of chl concentrations found in nature (Baban 1993, Cox et 

al. 1998, Allee and Johnson 1999, Giardino et al. 2001, Duan et al. 2007). Often the 

geographic ranges of studies are single lakes or states (Carpenter and Carpenter 1983, 

Mayo et al. 1995, Brivio et al. 2001, Nelson et al. 2003, Mishra and Mishra 2010). Having 

one or a strategically designed set of remote sensing models that could be used throughout 

the country would enhance lake studies by providing data at spatial and temporal scales 

that practically cannot be achieved by water sampling and also provide a standard method. 

The goal of our study was to develop and test remote sensing models of chl and 

Secchi depth using Landsat 7 ETM+ imagery for application across large spatial and 

temporal scales by using field measurements from the National Lakes Assessment (NLA) of 

the United States Environmental Protection Agency (USEPA).  We developed national chl 

and national Secchi models and compared them to a set of models for different types of 

lakes found across the US, using linear regression. National chl and Secchi models were also 

made with boosted regression tree statistical techniques and compared to the national 

models made with linear regression. In this effort, all Landsat bands and band ratios, 

including infrared and thermal, were used in model development.  Sources of error, such as 

confounding environmental factors and non-linearities of relationships were evaluated. 

Finally, to determine if the national remote sensing model for chl was accurate enough to 
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be useful for ecological and management studies, we compared relationships between total 

phosphorus (TP) concentrations in lakes and either chl measured with water samples or 

chl measured with Landsat imagery. 

Methods 

Ecological data, satellite imagery, and pixel extraction 

Algal and water chemistry data were collected during the USEPA’s NLA from more 

than 1000 lakes in the 48 contiguous states (USEPA 2009). Lakes were sampled between 

May and October of 2007 (USEPA 2009). Landsat 7 ETM+ images with level 1G processing 

were downloaded from the US Geological Survey’s Global Visualization Viewer website 

(USGS 2011b) for dates as close as possible to when lakes were sampled.  Images were 

reprojected to a WGS-84 projection system in Erdas Imagine 9.3. Exact location of lakes 

was determined by overlaying a shapefile (made in Arc Map 9.3) of NLA sampling sites on 

each Landsat image. Landsat 7 ETM+ images are comprised of seven layers, each layer 

representing a different range of wavelengths, called “bands” (Table 2-1).  Each layer is 

comprised of 30 m2 pixels except for the thermal infrared, which has 60 m2 pixels.  Each of 

the pixel’s seven layers has an associated, unitless numeric value that represents the 

amount of reflectance emitted by those Landsat band wavelengths. Pixel values were 

extracted from Landsat images using Erdas Imagine 9.3 software.  

Lakes were included in our study if the sample location could be found in an image 

without being covered by clouds and images were taken within eight days of the NLA 

sample date.  We picked eight days because Landsat images are taken every sixteen days.  

Thus, the maximum time between sample collection and a Landsat image would be eight 

days. Due to a mechanical malfunction, some Landsat 7 ETM+ images contain black stripes 
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in areas where information has been lost.  If a sample location coincided with a black stripe, 

a nearby pixel (when possible in the same row or column as the sample pixel) was selected.  

The same method was used when sample locations were located in a mixed pixel that had 

both water and land signatures.  We considered using all 1028 lakes in the 2007 NLA, 

however, clear Landsat images could not be found for some lakes within a month of the 

sample date and so were not used in the analysis. Also, lakes with maximum depth less 

than three times Secchi depth were removed due to the possible influence of lake bottom 

detection on Landsat images. This criterion allowed for retention of lakes in the dataset 

with a range of depth, from shallow to deep. The final dataset had 447 lakes. Chl ranged 

from 0.14–684 µg/L. TP ranged from 1-2147 µg/L in these lakes.  Secchi depth ranged from 

0.04 meters to 13.7 m.  

Remote sensing images and data processing 

Radiometric calibration, provided by conversion to top of the atmosphere (TOA) 

reflectance values, is necessary to account for image differences in sun angle, in Earth-Sun 

distance, and in solar irradiance for different wavelengths that occur above the earth’s 

atmosphere (Chander et al. 2009).  Therefore, after pixel extraction, raw pixel values were 

converted to spectral radiance values with the equation: 

LMIN)number digital pixel(
255

)LMINLMAX(
Radiance +

−
=  

Where pixel digital number is the raw pixel value, and LMAX and LMIN correspond to 

known spectral radiances for each of the Landsat 7 ETM+ spectral bands (Chander 2009).  

Radiance values were further converted to TOA reflectance values with this equation:  

Pp =
(Π)(Lλ)(d2)

(Eλ)(cosθ s)
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Here Pp is unitless planetary reflectance, Lλ is spectral radiance at the sensor’s aperture, d 

is the earth-sun distance in astronomical units based on the image acquisition date 

(Chander et al. 2009), and Eλ is mean solar exoatmospheric irradiance. Solar zenith ((θs) 

values were obtained from NOAA’s Solar Position Calculator (NOAA 2011).  High gain 

thermal band radiance values were converted directly to temperature (˚C) with this 

equation:  

T=
K2

K1
Lλ

+1










 -273.15 

Where, T is the effective at-satellite temperature in Kelvin, K2 is calibration constant, 

1282.71, K1 is calibration constant, 666.09, and Lλ is the spectral radiance in 

watts/((m2)(steradians)(µm)) (Chander 2009). 

If the TOA value was 0.3 or greater, pixel values for that lake were excluded from 

further analyses due to the likelihood of nearby cloud interference.  No additional 

atmospheric correction was done due to lack of information on atmospheric conditions for 

the sampling date and location. 

Linear regression analyses 

Natural log transformations were formed on both chl and Secchi depth data to 

obtain normal distributions before use in linear regression analyses (Figure 2-1). Linear 

regression analyses were run using Landsat’s visible bands, infrared bands (including 

thermal infrared), and all possible two-band ratios to determine the best Landsat 7 ETM+ 

model. It should also be noted that, although including inverse ratios (e.g., 1/3 and 3/1) in 

the same model would seem to cancel effects of each other, inverse ratios have different 

rates of change along the same band ranges, and therefore have different weights in 
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different band ranges. Linear regression analyses were run, first, with each of the 49 

possible band or band ratios, individually, to elucidate the relationship between each band 

or ratio and chl or Secchi depth. Testing all bands/ratios also formed a base for comparison 

to previous studies that often did not test the same subset of bands or ratios for their 

respective predictive power. Bootstrapping was run on each model to assess the 

robustness of the model. The bands/ratios that yielded the highest R2 and lowest RMSE 

were chosen for multiple linear regression analysis. Multiple linear regression was done 

starting with the best predictive bands from the first round of linear regression and adding 

all other bands or ratios one at a time. The model was retained if it improved the linear 

regression model R2 by at least 0.05. Next, bootstrapping was done on the multiple linear 

regression model to determine if R2 value of the multiple linear regression retained the 

0.05 increase in predictive power over the linear regression model. None of the 

bootstrapped multiple linear regression models improved the R2 linear regression model 

by at least 0.05, so no further work was done on multiple linear regression models. We 

checked for non-linearities by running a LOESS analysis and visually comparing model fits.  

To assess model robustness, we looked for consistencies in band and band ratios used in 

the national models, the lake type models, and models in the literature.  

We also developed chl and Secchi depth linear regression models by lake type to test 

whether grouping lakes by natural features allows for better predictive power. Lake types 

were determined by a cluster analysis of variables that are relatively unaffected by human 

activities (Herlihy et al. 2013), but do influence the lakes’ ecology (Table 2-2).  These 

variables included: surface area, maximum depth, morphology, elevation, maximum annual 

air temperature in the watershed, annual maximum of monthly precipitation, calcium 
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concentration, latitude, and longitude.  Variables were transformed to reduce skewness, 

and they were standardized to provide similar weights. The cluster analysis was 

constrained by level three ecoregions, which were: Eastern Highlands; Plains and 

Lowlands; and Xeric and Mountain West.  Seven lake types resulted from the cluster 

analysis, labeled A through G.  As with national models, all bands and ratios were 

considered in the lake type models. We compared national model and lake type models by: 

1) comparing the adjusted R2 and RMSE of relationships between chl and Secchi depths 

measured by sampling and Landsat imagery using national and lake type specific models, 

and 2) comparing the resulting R2 and RMSE values to remote sensing water quality 

models in the literature.   

Boosted regression tree analyses 

 To test whether simultaneously incorporating multiple Landsat spectral 

bands/ratios and accounting for non-linearities could improve predictive power, national 

boosted regression tree models were created using the same Landsat ETM+ pixel data as 

the linear regression models and all 49 band and band ratios that can be created from 

Landsat ETM+ bands 1-7, rather than previous analyses with one or two bands or ratios (as 

with linear or multiple linear regression models). Although response variables should, 

generally, not require transformation for use in boosted regression tree analysis, we found 

it necessary to ln-transform chl for with this dataset. This may be due to the extreme 

skewness of the chl data (Figure 2-1). Secchi depth was left untransformed for boosted 

regression tree analysis. Initial boosted regression tree models were simplified using the 

gbm.simplify program in R that determines the number of variables that can be removed 

without increasing predictive deviance (Elith et al. 2008). Root mean square error (RMSE) 
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values, calculated using predicted and measured chl, were compared for final model 

selection. Since boosted regression tree models were already cross-validated with data 

internal to the dataset we did cross-validate them a second time with bootstrapping. All 

statistics were run in gbm package 2.9 in R. R 2.15.1. 

Model diagnostics 

 An internal 10-fold cross-validation procedure, incorporated into the boosted 

regression tree program code, is designed to avoid overfitting the data. The cross-

validation process began with a division of the data into 10 subsets. Ten boosted regression 

trees were run, simultaneously.  Model training was done on 90% of the data and testing it 

on the remaining 10% until each of the 10 subsets has been used as a test dataset. Next, a 

new set of 10 boosted regression trees was run and tested with a larger number of trees. 

This process was continued until, at a given number of trees, the average predictive power 

of the first five boosted regression trees was surpassed in predictive power by the second 

set of five boosted regression trees. At the point, the minimum (optimal) number of trees 

for the model had been passed. From this, we determined optimal tree number and 

continued to refine other model parameters, including learning rate, bag fraction, and tree 

complexity. Learning rate, or relative contribution of each tree to the final model, was 

determined to be 0.005 for the chl model and 0.011 for the Secchi model; optimal bag 

fraction, or amount of data chosen at random from the data set for tree construction, was 

determined to be 0.50 for both chl and Secchi models; optimal tree complexity, or 

approximate order of the model, was determined to be three for both chl and Secchi 

models; number of trees in final boosted regression tree models was 3050 for the chl 

model and 1800 for the Secchi model (Table 2-3). 
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To determine if the national boosted regression tree models could be improved with 

available information, we analyzed national model residuals to determine if other 

ecological variables were confounding the inference of chl or Secchi depth.  Non-remotely 

sensed predictor variables used in the residuals analysis included dissolved organic carbon 

(DOC), cyanobacterial density (cells/cm2), “diff. days” (the number of days between 

sampling and Landsat image acquisition), percent cloud cover of the Landsat image, lake 

area, and maximum measured lake depth.  Any variables that were correlated to national 

model residuals were further analyzed to elucidate trends.  Partial correlation coefficients 

were calculated to determine the relative influence of band ratios vs. depth on chl or Secchi 

depth detection. Finally, to determine if the national boosted regression tree models are 

useful for ecological and management studies, we used linear regression to relate TP and 

actual, measured chl and Landsat-inferred chl.  All statistics were run with R, version 

2.15.0.  

Results 

National and lake type models to predict chl 

For the linear regression national model, band ratios 1/2 and 1/3 were selected for 

the national model (Tables 2-4 and 2-5, Figure 2-2). Bootstrap adjusted R2 values for all 

linear regression chl models were about the same as the original model adjusted R2 (Table 

2-4), perhaps, due to the simplicity of the model and the size of the training data set. No 

two-band/ratio multiple linear regression models had bootstrap R2 values that improved 

the R2 of the original linear regression model by more than 0.05.  Band ratio 1/2 was also 

the best predictor of chl for lake types B, C, and D, while other bands or ratios were best 
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predictors for other lake types. Lake type chl models had lower adjusted R2, but also lower 

RMSE values than the national model in all cases, except for lake types B (Table 2-4).  

Lake type B yielded the best model, while lake type D yielded the weakest (Table 2-

4). Bands ratio 1/2 was most frequently the best predictor of chl in the lake type ratios and 

band 1 was used in at least one of the best predictor ratios in all lake types except for F.  

Band 3 was the next most common band used in best predictor band ratios.  Band 4, near 

infrared, was used in a best predictor ratio in lake type E; band ratio 7/5 was just as good a 

predictor of chl as ratio 1/2 in lake type D; band 6, thermal infrared, was the best predictor 

in lake type F.  Using ratio 1/2 on lake types for which it was not the best predictor, did not 

yield substantially poorer results, except for lake type A (Table 2-4). Some of the lake type 

models with smaller sample size also had some of the highest R2 and lowest RMSE values 

(Table 2-4). Upon visual inspection, the national linear regression chl model did not display 

substantial non-linearities.  

The national chl boosted regression tree model had the highest R2 and lowest RMSE 

of all models (0.44 cross-validation R2 and 0.76 ln-transformed µg/L RMSE; Table 2-3, 

Figure 2-3). National chl boosted regression tree model residuals were positively 

correlated with DOC (adjusted R2 = 0.14) and cyanobacterial density (adjusted R2 = 0.18), 

and negatively correlated with lake depth (adjusted R2 = 0.25).  Lake area, difference 

between image and sample date, and percent cloud cover were not correlated with national 

chl boosted regression tree model residuals. The relationship between TP and chl using 

NLA data had an adjusted R2 = 0.58 and 4.90 µg/L RMSE, whereas the relationship between 

TP and Landsat inferred chl had an R2 of 0.40 and 5.64 µg/L RMSE. 
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National and lake type models to predict Secchi depth 

For the national linear regression Secchi model, band ratio 1/3 produced the best 

model, while ratios 3/1, 1/2, and 2/1 produced similarly predictive models (Table 2-5 and 

2-6 and, Figure 2-4). Bootstrap adjusted R2 values for all linear regression Secchi depth 

models were about the same as the adjusted R2 of the original model (Table 2-6). As with 

the chl models, this similarity may be due to the simplicity of the model and the size of the 

training data set.   As with chl models, no two-band/ratio multiple linear regression models 

had bootstrap R2 values that improved the original linear regression model ≤ 0.05.  The 

best Secchi depth models were for lake types F and G and the poorest in lake types D, E, and 

A.  Band ratio 1/3 was also the best predictor of chl for lake types C, D, and E, while ratio 

3/1 was equally predictive for lake type E.  Ratio 2/1 yielded the best model for lake types 

B and F.  Band 1 was used in all best predictor models for Secchi depth.  No infrared bands 

were found to be useful in a best predictive model.  Lake type models generally had lower 

adjusted R2, but higher RMSE values than the national model in all cases, except for lake 

types F and G (Table 2-6).  Using ratio 1/3 on lake types for which it was not the best 

predictor, yielded similar results for best predictive models using band ratio 3/1 and more 

poorly for best predictive models using band ratio 2/1 (Table 2-6). All results for national 

and lake type models were statistically significant at p≤ 0.05. As with the lake type chl 

models, some of the lake type Secchi depth models with smaller sample size also had some 

of the highest R2 and lowest RMSE values (Table 2-6). Upon visual inspection, the national 

linear regression Secchi depth model did not display any non-linearities.   

The national Secchi boosted regression tree model had the highest R2 and lowest 

RMSE (0.52 cross-validation R2 and 80 m RMSE; Table 2-6, Figure 2-5) of all models.  
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National Secchi boosted regression tree model residuals were weakly, negatively 

correlated with DOC (adjusted R2 = 0.08) and cyanobacterial density (adjusted R2 = 0.06) 

and positively correlated with lake area (adjusted R2 = 0.02) and lake depth (adjusted R2 = 

0.17). Percent cloud cover of Landsat image and diff. days were not correlated with 

national Secchi boosted regression tree model residuals.  

Discussion 

Evaluation of national chl model 

The national chl boosted regression tree model made using a combination of 

Landsat bands/ratios performed well based on our evaluation criteria. The adjusted R2 of 

our national and lake type models was lower than many other studies, and those studies 

were done at smaller scales or with satellite imagery with narrower bandwidths (Table 2-

7).  The linear regression model for lake type B also had good performance compared to 

others from smaller geographic areas. Therefore, grouping eastern highlands lakes and 

reservoirs may be useful for improvement of chl prediction. Alternatively, small RMSE 

values and correspondingly high adjusted R2 values of some lake type models may be a 

result of a smaller sample size and/or smaller chl range. These results may also indicate 

that the sampling structure of the NLA, with one chl sample per lake, cannot adequately 

capture the spatial variability needed for model chl development. Having a gradient of chl 

within one lake could help to calibrate the model in relation to other lakes attributes, such 

as DOC. Chl inferred from Landsat imagery was a good predictor of TP when compared to 

measured chl. 

Evaluation of national Secchi depth model 
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The national boosted regression tree Secchi depth model made using a combination 

of Landsat bands/ratios performed adequately, while the lake type models performed well 

based on our criteria, falling well within the performance range seen in the literature for 

smaller regions, based on R2 values (Table 2-7). As with chl model results, smaller RMSE 

values with corresponding higher adjusted R2 values for Secchi depth lake type models 

may, in some cases, be a result of a smaller Secchi depth range. Overall, our national 

boosted regression tree model performs well compared to the lake type linear regression 

models, and by incorporating spatial variation across the United States, it can be a valuable 

tool for larger-scale ecological studies. Interestingly, at least one each of the best predictor 

band ratios for national and lake type chl and Secchi models overlapped in best predictor 

band ratios, except for lake types C and D. This may be due to the overlapping information 

in chl and Secchi depth measurements, as Secchi depth includes algal-related turbidity.  

Possible improvement of models 

Investigation of possible non-linear trends in the relationship between measured 

chl in samples and Landsat inferred chl or measured Secchi depth and Landsat-inferred 

Secchi depth were not evident upon visual comparison of linear and LOESS models.  

However, testing a variety of boosted regression tree models indicated a third order trend, 

which agrees with previous chl models made for MODIS (O'Reilly et al. 2000). Analysis of 

national boosted regression tree chl and Secchi model residuals elucidated additional 

trends.  The correlation between maximum depth and both chl and Secchi depth, and the 

partial correlation coefficients suggested that Landsat may detect differences in color 

intensity based on the volume of water.  For example, it is possible that more chl is detected 

in deeper water bodies due to the increased volume of water for algae to inhabit.  The fact 
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that depth explained so much variation in chl agrees with the idea that shallower lakes are 

more susceptible to algal blooms, due to lower phosphorus processing capacity and higher 

water temperatures.  A similar explanation can be made for the correlation between 

national Secchi model residuals and lake depth.  With increasing depth of a lake, there is 

more cumulative suspended matter throughout the water column that Landsat may be able 

to detect, but that is unaccounted for in field measurements that only represent a small 

portion of the water column.  

The weak, positive and negative correlation of cyanobacterial density and boosted 

regression tree model residuals of the Landsat chl and Secchi depth models, respectively, 

was likely driven by differences in the taxonomic composition of algal communities, which 

affects algal color because of accessory pigments, such as phycocyanin. Alternatively, this 

positive correlation could be due to different cell mass/volume relationships of taxa (Morel 

and Bricaud 1981, Gitelson et al. 2000, Wetzel 2001). The fact that there was a correlation 

with cyanobacterial density indicates that Landsat’s utility for cyanobacteria density 

prediction should be tested. 

The weak, positive and negative correlation of DOC to national boosted regression 

tree chl and Secchi models, respectively, indicates that the varying levels of reddish-brown 

color reflected by DOC may be introducing noise into the signals reaching Landsat.  For the 

chl model, the positive correlation suggests that the reflectance in the red band that DOC 

creates may overwhelm the subtle absorption changes we expect to see detecting chl.  

A weak, positive relationship between Secchi boosted regression tree model 

residuals and lake area may indicate that surface area-related ecological attributes were 

not all account for in the model. This is also suggested by the lack of significance in the 
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relationship between chl boosted regression tree model residuals and lake area. Lack of 

correlation between diff. days and boosted regression tree model residuals indicates that 

number of days between sampling and image acquisition was not a factor in ability to 

predict chl and Secchi. We conclude that 8-day differences in sampling and imagery had 

little effect on model development.  

Percent cloud cover was not related to either boosted regression tree chl or Secchi 

model residuals. Non-normality of percent cloud data, even after transformation, could 

have contributed to this result, however, precautions in choosing pixels for data extraction 

could have prevented any major cloud interference in chl and Secchi prediction. 

Robustness and application of national models 

Since each Landsat 7 ETM+ band provides different biological or physical 

information about the ecosystem, it is not surprising that the best boosted regression tree 

models included all of the visible bands in various combinations as well as infrared bands. 

The visible bands represent pigments or colors of matter suspended near the water’s 

surface, infrared bands detecting biological structure, and thermal infrared detecting 

differences in temperature.  Although there are differences in the bands and ratios in 

national models compared to those included in the lake type models (Tables 2-4 and 2-5), 

the similarities in the linear regression models agree with previous studies (Table 2-7) that 

visible bands and sometimes infrared bands alone or in ratios are important for chl and 

Secchi depth inference.  

The boosted regression tree models, but especially the linear regression national 

and lake type models emphasize the importance of the visible bands as part of the chl and 

Secchi depth models.  As there is variation in the bands used in the literature, there is also 
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variation in exactly which bands used in our national and lake type models. Such variation 

probably reflects the variety of algal species or inorganic suspended sediments in the water 

in those areas.  For example, Lake type D includes relatively shallow lakes, which might 

become stratified more quickly. Lake type A, whose lakes are not particularly shallow, but 

whose temperature (similarly to lake type D) is significantly higher than other lakes types 

might also stratify more quickly, allowing high temperature tolerant phytoplankton species 

to thrive, and change overall pigment content or amount of floating biomass on the water’s 

surface (Gitelson et al. 2000).  Lake type E has a much larger range of DOC than other lake 

types which may flood the more subtle changes in red wavelength absorptance and 

reflectance of chl or colors of various sediment types.  Lake depth, itself, may affect which 

bands/ratios are most useful in detecting chl due to change in color at different depths 

(Provost et al. 2004). In short, differences in algal pigments, DOC, and sediment types may 

explain variation in bands and ratios for each lake type. 

Another reason for the variety of models is that the spectral signatures of certain 

pigments or particular matter may lie at the edge of Landsat wavelength bands.  For 

example, Gitelson et al. (2000) found that chl has a subtle absorption feature starting 

around 690 nm, which coincides with the upper edge of the red Landsat 7 ETM+ detection 

band (Gitelson et al. 2000).  In addition, algae have many accessory pigments with 

absorption peaks varying across the visible spectrum.  Slight differences in environmental 

conditions can alter algal physiology, accessory pigment concentration, and color of the 

algae (Reynolds 2006).  

Summary and concluding remarks 
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The national boosted regression tree models to infer chl and Secchi depth using 

Landsat imagery performed well and shows substantial potential for use in ecological 

studies.  Confounding environmental variables limited the precision of national models, but 

future studies could  incorporate natural landscape feature that can help predict the 

confounding variables. Refinement of national or regional-scale remotely sensed water 

quality might include accounting for different algal types, or wind speed near the lake. 

Other refinements may also be possible with the launch of the Landsat 8 (Landsat Data 

Continuity Mission) that occurred in February, 2013. Landsat 8 includes a second blue 

wavelength band, a new shortwave infrared band, and a narrower near infrared band that 

better cover the absorption features of chl (USGS 2011a).  Continued refinement of remote 

sensing tools for characterizing water quality will be valuable for water resource 

management. 
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Table 2-1:  Landsat 7 ETM+ wavelength band features (USGS 2011a). 

Landsat bands Band wavelength (nm) Resolution (m) 

Blue 450-520 30 

Green 520-600 30 

Red 630-690 30 

Near Infrared 770-900 30 

Short Wave Infrared 1550-1750 30 

Thermal Infrared 10400-12500 60 

Short Wave Infrared 2090-2350 30 
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Table 2-2: US EPA National Lakes Assessment lake types. Lake types, based on cluster 
analysis of US EPA National Lakes Assessment water chemistry. 

Lake type Lake type description 

A Eastern highlands: Low to moderate-elevation, 

warm reservoir 

B Eastern highlands: Low to moderate-elevation, 

northern lakes and reservoirs 

C Northern central plains and lowlands: Low-

elevation lakes and reservoirs with small surface 

area 

D Southern and coastal plains and lowlands: Low-

elevation, shallow, warm lakes and reservoirs with 

large surface area 

E Northern central plains and lowlands: Low to 

moderate-elevation, shallow lakes and reservoirs 

F North-western mountains: Moderate to high-

elevation, cold, deep lakes and reservoirs 

G South-western mountains: Moderate to high-

elevation, cold lakes and reservoirs 
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Table 2-3: National boosted regression tree chl and Secchi depth models. National 
boosted regression tree models for ln-transformed chl and untransformed Secchi depth 
made with Landsat 7 ETM+ bands and ratios. Units of RMSE are ln-transformed µg/L for 

chl and m for Secchi, CV=cross-validation, NT=number of trees in final BRT model, LR=BRT 
learning rate, BF=bag fraction, TC=tree complexity. 

Model N 
Training 

R2 RMSE CV R2 NT LR BF TC 

Ln Chl 447 0.78 0.76 0.44 3050 0.005 0.50 3 

Secchi 447 0. 87 0.80 0.52 1800 0.008 0.50 3 
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Table 2-4: National and lake type linear regression chl detection models. National and 
lake type chl detection models made with Landsat 7 ETM+ bands and ratios. All results for 

national and lake type models were statistically significant at p≤ 0.05. Both national models 

using band ratio 1/2 and 1/3 were tested on each lake type, consecutively. Units of RMSE 
are ln-transformed µg/L, LT = lake type, NS = not statistically significant, NA = not 

applicable. 

Model N 
Best 

model 
Adj 
R2 RMSE 

Adj R2 

Bootstrap 

Nat. 
Model on 
LT RMSE 

Nat. 447 1/2 
1/3 

0.18 
0.19 

1.39 
1.38 

0.19 
0.20 

NA 

A 44 2/3 

3/1 

3/2 

0.14 

0.14 

0.15 

1.38 

1.38 

1.37 

0.15 

0.15 

0.16 

1.46, 1.40 

B 48 1/2 

2/1 

0.31 

0.31 

1.17 

1.16 

0.33 

0.33 

1.17, 1.26 

C 102 1/2 0.11 1.00 0.12 1.01, 1.04 

D 44 1/2 

7/5 

0.09 

0.09 

0.94 

0.94 

0.10 

0.09 

1.60 1.52 

E 102 4/1 0. 24 1.31 0.25 1.54 

F 45 6 0.14 1.04 0.15 1.55, 1.60 

G 62 1/3 0.17 1.17 0.18 1.47, 1.40 
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Table 2-5: National and lake type linear regression chl and Secchi model coefficients. 
BR=band ratios., coeff. = coefficients, int.= intercept. 

Model Chl BR Chl coeff. Chl int. Secchi BR Secchi coeff. Secchi int. 

National 1/2 

1/3 

-3.64 

-1.42 

7.21 

5.18 

1/3 1.58 -3.04 

A 2/3 

3/1 

3/2 

-3.28 

6.54 

7.50 

7.19 

-1.06 

-2.80 

3/1 -5.62 

 

3.15 

B 1/2 

2/1 

-4.31 

9.35 

8.12 

-4.68 

2/1 -6.61 5.31 

C 

D 

 

E 

 

F 

1/2 

1/2 

7/5 

4/1 

 

6 

-2.51 

-2.20 

-1.62 

3.26 

 

0.14 

5.65 

6.53 

4.59 

1.36 

 

-1.78 

1/3 

1/3 

 

1/3 

3/1 

2/1 

1.38 

0.90 

 

1.53 

-4.28 

-8.04 

-2.56 

-2.30 

 

-3.29 

1.95 

6.77 

G 1/3 -1.12 3.92 3/1 -4.56 2.90 
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Table 2-6: National and lake type linear regression Secchi depth detection models. 
National and lake type Secchi depth detection models made with Landsat 7 ETM+ band 

ratios. All results for national and lake type models were statistically significant at p≤ 0.05. 

Units of RMSE are ln-transformed meters. LT = lake type, NA = not applicable. 

Model N 
Best 

model 

Adj 

R2 RMSE 
Adj R2 

Bootstrap 

Nat. Model 
on LT 

RMSE 

Nat. 447 1/3 0.49 0.77 0.49 NA 

A 44 3/1  0.36 0.66 0.36 5.19 

B 48 2/1 0.40 0.69 0.41 6.44 

C 102 1/3 0.47 0.55 0.47 4.91 

D 44 1/3 0.34 0.41 0.34 4.12 

E 102 1/3 

3/1 

0. 35 
“ 

0.77 

“ 

0.35 

“ 

3.38 

F 45 2/1 0.65 0.53 0. 63 7.26 

G 62 3/1 0.61 0.75 0.60 4.38 
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Table 2-7: Chlorophyll and Secchi depth models from the literature. Previous studies 
using various satellites and bands or band ratios to infer chl and Secchi depth. Dashes 
indicate duplicate information from the line above. 

Year Authors Satellite 
Geographic 

extent 
Bands 
used 

Chl/Secchi R2 

1983 Lillesand et al. Landsat MSS 

Twenty-eight 

Minnesota 
lakes 

Green, 

red, near-
infrared 

Chl 0.84 

-- -- -- -- 
Green, 

red, near-
infrared 

Secchi 
0.88-

0.94 

1983 
Carpenter and 

Carpenter 
Landsat MSS 

Lake Burley 

Griffin, 

Australia 

Green, 

red, near-

infrared 

Chl 
0.50-

0.85 

1989 
Lathrop and 

Lillesand 
Spot-1 

Lake 

Michigan, 

USA 

Near-

infrared 
Secchi 0.83 

1991 Khorram et al. Landsat TM 
August Bay, 

Italy 

Blue, 

green 
Chl 0.84 

-- -- -- -- 
Blue, 
green 

Secchi 0.83 

1992 
Mittenzwey et 

al. 
Ship-based 

spectrometer 

Several lakes 

and rivers in 

Germany 

Two red 
bands 

Chl 0.98 

1994 
Pattiaratchi et 

al. 
Landsat TM 

Cockburn 
Sound, 

Australia 

Blue, 
green, 

red 

Chl 
0.73-

0.77 
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Table 2-7 (cont’d) 

Year Authors Satellite 
Geographic 

extent 

Bands 

used 
Chl/Secchi R2 

-- -- -- -- Red Secchi 
0.72-

0.78 

1995 Gitelson et al. 

Landsat TM 
and  

ship-based 

radiometer 

Haifa Bay, 
Israel 

Blue, 
green, 

red 

Chl 
0.37-
0.93 

1995 Mayo et al. Landsat TM 

Lake 

Kinneret, 

Israel 

Blue, 

green, 

red 

Chl 0.49 

2000 Gitelson et al. 

LI-1800, 

Ocean Optics 

ST1000, ASD 

spectrometers 

Several water 

bodies in 

Israel and 

several lakes 

in Iowa, USA 

Two red 

bands 
Chl 

083-

0.96 

2001 Brivio et al. Landsat TM 
Lake Garda, 

Italy 

Blue, 

green, 

red 

Chl 
0.68-

0.82 

2001 Giardino et al. Landsat TM 
Lake Iseo, 

Italy 

Blue, 

green 
Chl, Secchi  

2001 
Pulliainen et 

al. 

Airborne 
imaging 

spectrometer 

Eleven lakes 

in Finland 

Two red 

bands 
Chl 

0.41-

0.97 

2002b Kloiber et al. Landsat MSS 
Five hundred 

Minnesota 

lakes 

Blue, 
green 

Secchi 
0.60-
0.79 
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Table 2-7 (cont’d) 

Year Authors Satellite 
Geographic 

extent 

Bands 

used 
Chl/Secchi R2 

-- -- Landsat TM 

Five hundred 

Minnesota 
lake 

Blue, red Secchi 
0.72-

0.93 

2003 Nelson et al. Landsat ETM+ 
State of 

Michigan 
Blue, red Secchi 

0.43-
0.82 

2004 Chipman et al. 
Landsat TM 

and ETM+ 

State of 

Wisconsin 
Blue, red Secchi 

0.42-

0.88 

2005 Brezonik et al. Landsat TM 

Fifteen 

Minnesota 

lakes 

Blue, 

green, 

red, near 

infrared 

Chl 0.88 

2008 Kabbara et al. Landsat ETM+ 
Coast of 

Tripoli 

Blue, 

green, 

red 

Chl 0.72 

-- --. -- -- 
Blue, 
green 

Secchi 0.54 

2008 
Olmanson et 

al. 
Landsat MSS, 

TM, and ETM+ 

State of 

Minnesota 
Blue, red Secchi 

0.71-
0.95 

2009 Nas et al. ASTER 

Lake 

Beysehir,  
Turkey 

Green, 

red, 

near-

infrared 

Chl 0.86 
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Table 2-7 (cont’d) 

2010 
Mishra and 

Mishra 
MODIS 

Lake 
Pontchatrain, 

USA 

Green, 
red 

Chl 0.65 
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Figure 2-1: Histograms of untransformed and ln-transformed chlorophyll and Secchi 
depth. 
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Figure 2-2: Remotely sensed (linear regression predicted) ln-transformed 
chlorophyll a using band ratio 1/3 versus measured ln-transformed chlorophyll a 
(R2adj=0.19, 1.38 ln-transformed µg/L). Line indicates model’s fit. 
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Figure 2-3: Remotely sensed (boosted regression tree predicted) natural ln-
transformed chlorophyll versus measured ln-transformed chlorophyll a (R2adj=0.44, 
0.76 ln-transformed µg/L). Line indicates model fit. 
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Figure 2-4: Remotely sensed (linear regression predicted) natural ln-transformed 
Secchi depth using band ratio 1/3 versus measured ln-transformed Secchi depth. 

(R2adj=0.49, 0.77 ln-transformed m RMSE). Line indicates model’s fit. 

 

-2 -1 0 1 2 3

-2
-1

0
1

2
3

Measured Secchi ln(m)

R
S

 P
re

di
ct

ed
 S

ec
ch

i l
n(

m
)



 

 46

  
Figure 2-5: Remotely sensed (boosted regression tree predicted) Secchi depth versus 
measured untransformed Secchi depth (R2adj=0.52, 0.80 m RMSE). Line indicates 

model’s fit.  
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CHAPTER 3 
MODIS AND LANDSAT BOOSTED REGRESSION TREE CHLOROPHYLL PREDICTIVE 

MODELS FOR THE GREAT LAKES  
 

Abstract 

Numerous models for predicting chlorophyll (chl) based on satellite images have 

been tested on the Great Lakes, and some have been built specifically for the Great Lakes. 

However many of these models either lack the ability to predict chl or are technically 

complicated or expensive to employ. Also, few studies have taken advantage of archived 

satellite images to assess spatial and temporal dynamics over chlorophyll during past 

decades. Boosted regression tree (BRT) models of chl using satellite imagery are both easy 

to use and can have high predictive performance.  Landsat and MODIS imagery are 

complementary platforms because of the long history of Landsat operation and the finer 

spectral resolution and image frequency of MODIS. Three BRT models were created: 1) a 

MODIS model; 2) a Landsat ETM+ and TM model; and 3) a Landsat MSS model. MODIS BRT 

model predicted chl most accurately of the three models and compared well to other 

models in the literature. BRT models for Landsat ETM+ and TM more accurately predicted 

chl than the MSS model and all Landsat models had favorable results when compared to the 

literature. BRT chl predictive models are useful in helping to understand historical, long-

term chl trends and to inform us of how climate change may alter ecosystems in the future. 

Introduction 

Early water quality assessments were done by physically taking samples. However, 

advancements in remote sensing technology and development of modeling tools in recent 

decades have allowed ecological assessment from a distance, enabling evaluation from 

larger spatial and temporal scales and providing a more comprehensive view at potentially 



 

 53

less cost. Historically, the two main approaches to remote sensing chl predictive model 

development in the Great Lakes have been: 1) deriving empirical relationships between chl 

and satellite bands or band ratios, alone or separately from other color producing agents 

using linear or polynomial regression analyses (Carpenter and Carpenter 1983, O'Reilly et 

al. 1998, Giardino et al. 2001) or 2) deriving relationships between two or more color 

producing agents (including chl) at once (Carder et al. 2004, Pozdnyakov et al. 2005). Many 

of the current chl models are either not widely applicable, have not been tested for wide 

use, or are challenging to implement without expert statistical and programming 

knowledge, or without costly computer programs. One model-building approach that has 

potential to alleviate these challenges is boosted regression tree (BRT) analyses, which is 

relatively easy and fast to run with free software, the R program. Code for models can be 

easily shared and applied with models to output from standard remote sensing software. 

BRT analysis is a machine learning approach for building models (De'ath 2007, Elith 

et al. 2008) with advantages of both regression trees and stochastic boosting. In regression 

tree analysis, models are fit by recursive partitioning of the response variable, such as chl, 

into the two most homogenous groups possible at each split in a way that maximally 

reduces error in chl prediction. Regression trees are able to simultaneously handle 

predictor variables of different types and scales, they can function in the presence of 

outliers and missing data, they can model non-linear relationships and interactions 

between predictors, and they do not require that the response variable is normally 

distributed (Elith et al. 2008). Boosting is the process of iteratively fitting the regression 

tree models to explain the largest error in residuals, in contrast to common modeling 

approaches where only one best model is created and chosen (Friedman 2002). Stochastic 
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boosting can decrease overfitting the data and increase predictive power in the final model 

by randomly selecting subsets of training data to use in each stage of the tree fitting 

process. The combination of regression tree analyses and boosting further increases 

predictive power (Elith et al. 2008). In addition, BRT analysis is relatively easy to perform 

and apply to satellite imagery. Results of BRT models can be used alone or in conjunction 

with other models depending on the study goals. While BRT models often have increased 

predictive performance, they can be harder to interpret due to their complexity, causing 

them to be more “black box” in nature when compared to simple linear or polynomial 

regression models. For both increased predictive performance and interpretability, a 

multimodel approach could be employed, combining BRTs and more simple regression 

models. 

Our research objectives were to develop and test boosted regression tree (BRT) 

predictive models for chl in the Laurentian Great Lakes using Landsat and MODIS imagery 

and chl measured in water samples from 2007-2009 by the Great Lakes National Program 

Office. Landsat and MODIS imagery are complementary platforms due to the fine spatial 

resolution and long history of Landsat operation and the finer spectral resolution and 

image frequency of MODIS. To take advantage of the strengths of both satellites, we 

developed separate models for Landsat and MODIS. A total of two models were made for 

Landsat due to significant differences in number and location of spectral bands of Landsat 

ETM+ and TM compared to the spectral bands of Landsat MSS. The three models developed 

include: 1) a MODIS model; 2) a Landsat ETM+ and TM model; and 3) a Landsat MSS model. 

In this effort, all MODIS and Landsat bands and band ratios, including infrared and thermal, 

were used in model development. Models were validated by k-fold cross validation. Root 
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mean square error (RMSE) was the final determinant of model function. BRT models were 

created and compared to algorithms from the literature. BRT models were applied to 

historical Landsat (1972-2012) and MODIS (2000-2012) images for long-term analysis of 

chl concentration in the Great Lakes. Historical trend data can also help elucidate how algal 

biomass may change in the Great Lakes due to climate change. 

Methods 

Study locations and ecological data 

 Study locations include the five Great Lakes, with a focus on three targeted areas: 

Saginaw Bay (43˚55’N 83˚35’W), Grand Traverse Bay (43˚3’53.24”N, 83˚29’9.56”W), and 

the eastern shore of Lake Michigan, near the Grand River mouth (43˚3’47”N 86˚13’42”). 

Great Lakes chl data were collected by the Great Lakes National Program Office (GLNPO) in 

August and September of 2007-2009 across the Great Lakes. Data for the MODIS model 

ranged from 7.2-306.1 m in sample station depth and 0.31-12.64 µg/L chl from 226 chl 

observations. Data for the Landsat ETM+ and TM model and the Landsat MSS model ranged 

from 7.9-306.1 m in sample station depth and 0.29-12.64 µg/L chl from 177 chl 

observations.  

MODIS satellite image processing and pixel extraction for BRT model training 

MOD021km  (1 km resolution) images, available free of charge, were downloaded 

from http://ladsweb.nascom.nasa.gov (Masuoka and Horrocks 2010) and converted to 

spectral reflectance using the MODIS Conversion Toolkit (MCTK). Images were chosen 

based on proximity of image date to GLNPO sample date. When sampling stations were 

located on pixels covered by clouds or cloud shadows, an image from a previous or 

subsequent day would be assessed. This process continued until a cloud-free pixel was 
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found. Number of days between image capture and sample collection ranged from 0-6 days. 

A shapefile containing GLNPO chl sample stations was created in ArcMap 9.3 and used in 

conjunction with MODIS images in Erdas Imagine 9.3 to extract pixels values closest to the 

sample station from bands 1-16 (for a total of 18 bands, with bands 13 and 14 each having 

a low and high gain bands, Table 3-1). 

Landsat image processing and pixel extraction for BRT model training 

Landsat 7 ETM+ (Table 3-2) images with level L1T processing were downloaded 

from the US Geological Survey (USGS) Global Visualization Viewer website: 

http://glovis.usgs.gov/ (USGS 2013c) for dates as close as possible to when lakes were 

sampled. Exact location of lakes was determined by overlaying a shapefile (made in Arc 

Map 9.3) of GLNPO sampling sites on each Landsat image. When sampling stations were 

located on pixels covered by clouds or cloud shadows, an image from a previous or 

subsequent image would be assessed. This process continued until a cloud-free pixel was 

found. Number of days between image date and sample date ranged from 0-19 days for 

Landsat training data. Due to mechanical malfunction, some ETM+ images contain black 

stripes in areas causing loss of information.  If a sample location coincided with a black 

stripe, a nearby pixel (when possible in the same row or column as the sample pixel) was 

selected. The same method was used when sample locations were located in a mixed pixel 

that had both water and land signatures.  

Radiometric calibration, provided by conversion to top of the atmosphere (TOA) 

reflectance values, is necessary to account for image differences in sun angle, in Earth-Sun 

distance, and in solar irradiance for different wavelengths that occur above the earth’s 

atmosphere (Chander et al. 2009). Therefore, after pixel extraction, raw pixel values were 
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converted to spectral radiance values with the following equation: 

 

Where pixel digital number is the raw pixel value, and LMAX and LMIN correspond to 

known spectral radiances for each of the Landsat 7 ETM+ spectral bands (Chander et al. 

2009). Radiance values were further converted to TOA reflectance values with this 

equation:  

 

Here Pp is unitless planetary reflectance, L is spectral radiance at the sensor’s aperture, d is 

the earth-sun distance in astronomical units based on the image acquisition date (Chander 

et al. 2009), and Eλ is mean solar exoatmospheric irradiance. Solar zenith ((s) values were 

obtained from NOAA’s Solar Position Calculator at: 

http://www.esrl.noaa.gov/gmd/grad/solcalc/ (NOAA 2013). High gain thermal band 

radiance values were converted directly to temperature (˚C) with this equation:  

 

Where, T is the effective at-satellite temperature in Kelvin, K2 is calibration constant, 

1282.71, K1 is calibration constant, 666.09, and L is the spectral radiance in watts/(m2 μm 

steridians)(Chander et al. 2009). 

If the TOA value was 0.3 or greater, pixel values for that lake were excluded from 

further analyses due to the likelihood of nearby cloud interference.  No additional 

atmospheric correction was done due to lack of information on atmospheric conditions for 
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the sampling date and location. 

Data preparation and statistics for MODIS and Landsat data 

To avoid the effects of lake bottom reflectance, stations for which depth was less 

than twice their Secchi depth were removed from the training data set before performing 

statistical analyses. For stations where Secchi was not available, it was estimated using 

Carlson’s (1977) Secchi-chl relationship: 

���������	 
 �0.68 � ������	 � 2.04 

Pixel value data were analyzed in separate BRT analyses for MODIS, for Landsat ETM+ and 

TM, and for Landsat MSS. For the Landsat MSS model, three of the ETM+ bands from the 

training data were used that corresponded most closely with MSS bands (Table 3-3). All 

statistics were run in gbm package 2.9 in R 2.15.1. For each BRT, all available visible and 

infrared bands, including thermal infrared were used, along with all possible band ratios. A 

total of 49 bands and ratios were used in BRT analyses for Landsat ETM+ and TM, ten 

bands and ratios were used for Landsat MSS, and 324 were used for MODIS. Although 

including inverse ratios (e.g., 1/3 and 3/1) in the same model would seem to introduce 

redundancy into the model, inverse ratios have different rates of change along the same 

band ranges, and therefore have different weights in high and low ranges of band ratios. 

Also, since each waveband covers a slightly different part of the electromagnetic spectrum 

and because chl detection is influenced by algal community structure and time of day 

sampled (Owens et al. 1980, Lebouteiller and Herbland 1982, Reynolds 2006), even bands 

in the same general category, such as “red bands,” can give us additional information about 

the presence of algae.  

Bag fractions (the percent of data taken from the training data set, at random) for 
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every BRT model were set to 0.5 and, learning rate, which controls the contribution of each 

tree to the model (Elith et al. 2008), was set to 0.01 for every model. Initial BRT models 

were simplified by looking at the partial correlation plots of each band or ratio and 

measured chl. Final BRT models were chosen using 10-fold internal cross validation 

procedure, incorporated into the gbm package. Top bands or ratios were kept, the number 

of which was based on the total number of data rows, so that the ratio of observations 

(rows of data) to predictors (bands/ratios) was no lower than 10:1 (Peng et al. 2002, 

Babyak 2004), which reduced the chance of overfitting the data. Root mean square error 

(RMSE) values, calculated between predicted and measured chl, were compared for final 

model selection. For the final MSS BRT model, measured (not remotely sensed) water 

depth was used as a predictor variable in conjunction with Landsat bands and ratios for 

better chl predictive performance.  

MODIS image processing for model application 

MODIS MOD02L2 images (1km resolution) were downloaded 

http://ladsweb.nascom.nasa.gov (Masuoka and Horrocks 2010), covering July 20 - 

September 6, 2000 to 2012 across the Great Lakes. Level 1B of MOD02L2 images were 

selected because they contain calibrated and geolocated at-aperture radiances for bands 1-

16, generated from MODIS Level 1A sensor counts (MOD01). Spectral radiance, in units of 

watts/(m2 μm steridians), was calculated for MOD02L2 bands 1-16 using the MODIS 

Conversion Toolkit (MCTK) and the images were mosaicked in the same date to generate 

the daily images at 1 km spatial resolution. 

MODIS MOD09A1 images (500 m resolution) were also downloaded 

http://e4ftl01.cr.usgs.gov/MOLT (USGS 2013b), covering July 20 - September 6, 2000 to 
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2012 across the Great Lakes. After processing, MOD09A1 images were reprojected, and 

converted to the GeoTIFF format using the MODIS Reprojection Tool (MRT) to provide the 

day of year (DOY) and cloud images. Since MOD09A1 images only include bands 1-7, we did 

not use the MOD09A1 8-day composite image product for our study. Instead, metadata 

from MOD09A1 images were used to create 8-day composite images from MOD02L2 

images. We assumed that that the best possible TOA reflectance of MOD02L2 bands 1-16 

during 8-day composite periods was the same as for the MOD09A1 product. For each pixel, 

the best possible observation of spectral radiance obtained during the 8-day composite 

period was assumed to be the DOY provided by MOD09A1. The criteria for selecting the 

DOY of MOD09A1 is based on high observation coverage, low view angle, absence of clouds, 

shadow, and aerosol loading, and minimum value of blue band (Toller et al. 2006). This 

compositing method minimized cloud effect as well as view angle, bi-directional effects, 

and other atmospheric effects. DOY and corresponding name of the final MOD02L2 8-day 

composite images, therefore, represent the first day of the 8-day period when the best 

observation is recorded. Cloud masking information, also found in the MOD09A1 product, 

was used to perform cloud masking of 8-day composite MOD02L2 images before applying 

the BRT chl model. 

Landsat image processing for model application 

Landsat 7 ETM+, Landsat 4 and 5 TM, and Landsat 1-3 MSS images (Tables 3-2 and 

3-3) with level L1T or L1G processing were downloaded from the US Geological Survey 

(USGS) Global Visualization Viewer website: http://glovis.usgs.gov/ (USGS 2013c) or the 

USGS Earth Explorer website: http://earthexplorer.usgs.gov/ (USGS 2013a). Landsat 

images were processed from digital number to TOA reflectance (Chander et al. 2009) using 
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Python 2.6. Images downloaded at L1G processing were georectified using four control 

points with RMSE of less than 30 m. The reference layer was Landsat TM image with 0% 

cloud cover and quality of 9. Cloud mask algorithm (Oreopoulos et al. 2011) was performed 

for all Landsat TM and ETM+ images. This method was modified from a cloud/clear 

masking algorithm initially developed for MODIS clear-image compositing. This cloud 

masking technique applies a simple threshold scheme by selection four bands (band 1, 3, 4, 

and 5) in Landsat TM and ETM+ to remove cloud pixels. 

Model evaluation 

When possible, we tested models in the literature with our data to standardize the 

evaluation process (Lathrop and Lillesand 1986, O'Reilly et al. 2000, Lesht et al. 2013). 

When either the full algorithm was not available to test with our data (Shuchman et al. 

2006, Becker et al. 2009) or we did not have measurements of other color producing agents 

to use with dual retrieval approaches (Binding et al. 2012), we based the performance of 

our model on reported R2 or RMSE values from those models. 

Results 
BRT models and partial correlation plots 

 The final MODIS BRT model had 27 predictors, 0.10 µg/L RMSE and 0.85 cross-

validation R2 (Table 3-4, Figure 3-1). Chl was accurately predicted through the range of 

measured chl values (Figure 3-1). As previously shown (Table 3-1), MODIS has multiple 

bands that fall into each general band category. Many of the bands were used in the final 

model, and some of those bands are from the same general band category. For example, 

1/13H is a band ratio comprised of two red bands. MODIS band ratios with the most 

predictive power included blue/green, green/blue, red/red and red/blue, using bands 1,10, 

11, and 13H (Figure 3-2). The MODIS BRT model had a lower RMSE and higher R2 than 



 

 62

other MODIS Great Lakes chl models (Table 3-5). 

The final Landsat ETM+ and TM BRT model had 17 predictors, 0.55 µg/L RMSE and 

0.69 cross-validation R2 (Table 3-4, Figure 3-3). Chl was accurately predicted between 0-8 

µg/L chl, above which higher measured chl are inaccurately estimated to be approximately 

8 µg/L. Bands and ratios with the most predictive power included short wave infrared 

(SWIR), green/blue, blue/green, thermal, and blue, using bands 1, 2, 6, and 7 (Figure 3-4). 

The Landsat ETM+ and TM BRT model had a lower RMSE and higher R2 than other Landsat 

Great Lakes chl models (Table 3-5). 

The final Landsat MSS BRT model had 10 predictors, 0.73 µg/L RMSE and 0.66 

cross-validation R2 (Table 3-4, Figure 3-5). As with the ETM+ and TM model, chl is fairly 

accurately predicted up until about 8 µg/L chl, above which measured chl are inaccurately 

predicted around 8 µg/L. Variables that had the most predictive power in this model 

included depth, green, and red; bands 2 and 3 (Figure 3-6). This is the first Landsat MSS chl 

predictive model created for the Great Lakes. 

Overall, MODIS was able to detect chl more accurately than Landsat, and Landsat 

ETM+ and TM models outperformed MSS models. Green/blue and blue/green band ratios 

were the most common predictors of chl, however the most powerful predictor of chl was 

different for each of the three models, including blue/green, SWIR, and depth (Figures 3-2, 

3-4, 3-6, 3-8, 3-10).  The blue/green and green/blue ratios were commonly found among 

the top predictors, except for the MSS models. MSS does not contain a blue band. 

Interestingly, the red band was a common variable in MODIS and MSS models, but not in 

the Landsat ETM+ and TM models.  
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Discussion 

To date, our BRT models are the some of the most accurate chl predictive models for 

the Great Lakes (Table 3-5). Both MODIS and Landsat BRT models were able to predict chl 

well compared to Great Lakes models in the literature as indicated by R2 and RMSE values 

(Table 3-5). Bands and ratios that are often used by models in the literature were also 

found among the top predictors in the BRT models, including blue-green ratios (O'Reilly et 

al. 2000, Lesht et al. 2013), red-green ratios (Lillesand et al. 1983), and red-blue ratios 

(Kabbara et al. 2008, Torbick et al. 2008). This was expected, since chl reflects light in the 

green wavelengths and has strong absorption features in the blue and red wavelengths. 

Infrared bands were also found in all BRT models, which may indicate that incorporation of 

physical features, such as algal scums on the surface of the water, is a relevant component 

to algal biomass detection. Predictive power of physical variables such as the thermal band 

and measured water depth in the Landsat models indicate that detection of chl can be 

improved by accounting for physical features of the sample location. Though in this study 

station depth was obtained by in-lake measurement, future values could be obtained by 

bathymetric map.  

One notable difference between BRT models is the incorporation of multiple band of 

the same general category (for example, red bands), in the MODIS model. This is 

compatible with the idea of satellites with more numerous and finer bands being able to 

detect different amount of chl or chl that comingle with other algal pigments more 

accurately (Gower and Borstad 2004). Great Lakes algal communities span over six 

divisions that include variety of non-chl a pigments, including chlorophylls b, c, and d, as 

well as carotenoids, xanthophylls, and phycobilins (Vollenweider et al. 1974, Reynolds 



 

 64

2006). Finally, pixel size of the remote sensing image influences the spatial scale at which 

chl is being summarized and possibly which bands would be most useful in chl prediction. 

In areas of the Great Lakes where chl values are fairly consistent, a larger pixel size may be 

adequate. A smaller pixel size becomes more important in areas with highly variable chl 

concentrations throughout the summer.  

Reasons that MODIS outperformed Landsat may include that MODIS is able to 

capture more subtle spectral features with greater temporal frequency (NASA 2013). Also, 

MODIS has more wavelength bands with which to build BRT models that have the potential 

to explain more color-related or physical attributes of water. As with MODIS to Landsat 

comparisons, the favorable performance of ETM+ and TM to MSS models may have to do, in 

part, with more numerous spectral bands, slightly finer spectral and temporal resolution.  

Application of BRT models to the 40-year Landsat image archive can help elucidate 

changes in algal biomass across the Great Lakes for as long as the Clean Water Act has been 

in place, with high spatial resolution. These patterns can help discern regular, seasonal 

fluctuations from climate change, invasive species, and habitat alteration effects on algal 

biomass. With its high chl prediction accuracy, application of the MODIS BRT model to the 

12-year MODIS image archive can give us additional information on the seasonal dynamics 

of algal biomass within each year. The notably high accuracy of the MODIS BRT model 

throughout the range of measured chl values indicates its applicability across the Great 

Lakes in areas with both somewhat high and low chl values. The Landsat models are less 

accurate at detecting higher chl values than MODIS, but can still capture algal conditions 

above 5 µg/L. Therefore, application of the MODIS BRT models would be appropriate 

across the Great Lakes and at times when chl values range from 0-12 µg/L. Landsat models 
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would be most appropriate for use in areas or during times of year where chl does not 

reach go much beyond 8 µg/L. The advantages of Landsat and MODIS complement each 

other and enable future research and management programs to be focused on parts of the 

Great Lakes that are most vulnerable to stress, including climate change related impacts. 

BRT predictive models could also be used conjunction with other chl models. As 

previously mentioned, a main advantage of BRT models is that they have high predictive 

accuracy. However, they are less easily interpretable than simple linear or polynomial 

algorithms, leading BRTs to be more “black box” in nature (Elith et al. 2008). If predictive 

accuracy and not interpretability is the objective, then the black box nature of the models is 

not as much of a drawback. However, if the study goal is both predictive accuracy and 

interpretability, then using a multimodel approach that incorporates results from BRT and 

other models may be best. With a multimodel approach one may gain benefits of both, for 

results that may be more accurate and more widely applicable than either model alone. Yet 

another approach to chl prediction might use different models in different parts of the 

Great Lakes. Where the dominant color producing agent is chl and concentrations are 

relatively low and constant, the ocean models may work well enough. In areas with higher 

or more variable chl, or with more reflective influence by the bottom in nearshore zones, 

other models may be more appropriate. 

Chl BRT predictive models, used alone or in conjunction with other models, could be 

used to establish a standard method in chl prediction in the Great Lakes. Advantages to a 

well-tested standard method include being able to compare chl concentrations across 

broader spatial and temporal scales and efficient use of resources for the implementation 

and improvement of one model rather than production of additional models. Such efforts 
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can advance our understanding of ecosystem changes and allow managers to reliably 

assess and target regions of the Great Lakes that experience the largest algae-related 

stresses. Improving water quality in these parts of the Great Lakes would allow for 

recovery of habitat for aquatic species that are negatively impacted by algal bloom 

conditions that often include, low oxygen levels, presence of toxins, and low light levels 

(Wetzel 2001). People, too, would benefit from more reliable chl prediction in Great Lakes 

waters, to ensure safe recreation, water and fish consumption, and aesthetic wellbeing.  

Our study sites may have been variably affected by color producing agents, such as 

dissolved organic carbon. Since we did not have total inorganic carbon or dissolved organic 

carbon data, we were not able to separate the chl signal from these color producing agents. 

Also, the range of chl provided by the training data is not representative of the upper range 

of chl experienced during bloom events (Freedman 1974). A larger data set, with more 

frequent sampling over the summer might allow for more bloom events to be sampled. 

Possible problems with developing or applying Landsat and MODIS model across lakes, 

time periods include turbulence caused by wind on the lake surface (Singh 1994). Such 

weather patterns can change within a short period, and can be hard to determine with 

accuracy after the sampling period in the vicinity of the sample station. Time delays in 

image and sample collection date in the training data could have introduced some 

additional error, particularly with Landsat images. For the Landsat models, better results 

might have been somewhat dependent on sample size. 
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Table 3-1: MODIS wavelength band features (NASA 2013). 

Band Number Band Band wavelength (nm) Resolution (m) 

1 Red 620-670 250 

2 Near Infrared 841-876 250 

3 Blue 459-479 500 

4 Green 545-565 500 

5 Near Infrared 1230-1250 500 

6 Short Wave Infrared 1628-1652 500 

7 Short Wave Infrared 2105-2155 500 

8 Blue 405-420 1000 

9 Blue 438-448 1000 

10 Blue 483-493 1000 

11 Green 526-536 1000 

12 Green 546-556 1000 

13 L/H Red 662-672 1000 

14 L/H Red 673-683 1000 

15 Near Infrared 743-753 1000 

16 Short Wave Infrared 1550-1750 1000 
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Table 3-2: Landsat 7 ETM+ wavelength band features (USGS 2011). Values are the 
same for Landsat 4-5 TM, unless indicated by and asterisk. * = 760 for TM, ** = 120 m for 
TM, and *** = 2080 for TM . 

Band number Landsat bands Band wavelength (nm) Resolution (m) 

1 Blue 450-520 30 

2 Green 520-600 30 

3 Red 630-690 30 

4 Near Infrared 770*-900 30 

5 Short Wave Infrared 1550-1750 30 

6 Thermal Infrared 10400-12500 60** 

7 Short Wave Infrared 2090***-2350 30 
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Table 3-3: Landsat 1-3 MSS wavelength band features (USGS 2011). 

Band 

number 

Corresponding 

ETM+/TM band 

Landsat bands Band wavelength 

(nm) 

Resolution 

(m) 

4 2 Green 500-600 60 

5 3 Red 600-700 60 

6 4 Near Infrared 700-800 60 

7 -- Near Infrared 800-1100 60 
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Table 3-4: Boosted regression tree results for MODIS, Landsat ETM+, TM, and MSS.   

Satellite RMSE 

(µg/L) 

R2 Cross-Val 

R2 

Number of 

BRT Trees 

MODIS 0.10 0.98 0.85 8300 

ETM+ & TM 0.55 0.93 0.69 1800 

MSS 0.73 0.88 0.66 1350 
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Table 3-5: Comparison of BRT chl predictive models to models in the literature. 

Satellite Source Model R2 RMSE 

(µg/L) 

TM & ETM+ Novitski et al. in 

prep. 

BRT 0.69 0.55 

TM & ETM+ Lathrop & 

Lillesand 1986 

Band ratio 

(Green bay) 

0.16 5.55 

TM & ETM+ Lathrop & 

Lillesand 1986 

Band ratio 

(Lake Michigan) 

0.16 4.39 

MSS Novitski et al. in 

prep. 

BRT 0.66 0.73 

MODIS Novitski et al. in 

prep. 

BRT 0.85 0.10 

MODIS O’Reilly et al. 

2000 

OC3 0.75 0.47 

MODIS Lesht et al. 

2013 

OC3-refine 0.75 0.49 
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Figure 3-1: Measured chl versus MODIS BRT predicted chl for 2007-2009 GLNPO 
training data with 1:1 line. 
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Figure 3-3: Measured chl versus Landsat ETM+ and TM BRT predicted chl for 2007-
2009 GLNPO training data with 1:1 line. 
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Figure 3-5: Measured chl versus Landsat MSS predicted chl for 2007-2009 GLNPO 
training data with 1:1 line. 
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Figure 3-6: Partial dependence plots for the Landsat MSS BRT.  Each plot shows the 

relationship of chl (response variable) to the individual band or ratio (predictor variables) 

after accounting for the effects of all other predictor variables in the final BRT model.  
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CHAPTER 4 
IMPACTS OF CLIMATE CHANGE AND LAND-USE/LAND-COVER CHANGE ON 

PHYTOPLANKTON IN INNER SAGINAW BAY USING LANDSAT AND MODIS SATELLITE 
IMAGERY, 1973-2012  

 
Abstract 

Saginaw Bay has experienced significant fluctuations in water quality over the last four 

decades. Remote sensing of chlorophyll (chl) can help to track water quality over large spatial 

and temporal scales. Our research objectives were to determine: 1) if water temperature and 

nutrient inputs have changed in inner Saginaw Bay from 1973-2012; and 2) how any changes in 

water temperature and nutrient inputs as well as distance from Saginaw River inputs affect algal 

blooms in Saginaw Bay. Chl concentrations were predicted from Landsat 1973-2012 and 

MODIS 2000-2012 maps with boosted regression tree analysis. Phosphorus loading was 

estimated with a mixed-effect model based existing phosphorus, precipitation, discharge, and 

land use/land cover data from various sources. Surface water temperature was derived from the 

thermal band aboard Landsat’s ETM and TM satellites. 

In inner Saginaw Bay, annual average and upper quartile Landsat-derived 

chlorophyll decreased from 7.44 to 6.62 and 8.38 to 7.38 µg/L between 1973-1982, and 

annual upper quartile of 8-day phosphorus loads increased from 5.29 to 6.79 kg between 

1973-2012. Wilcoxon rank tests comparing chl values in groups, “near” and “far” from the 

Saginaw River mouth showed increases in minimum, average, and upper quartile chl values for 

MODIS (2000-2012) and Landsat- (1984-2012) derived chl near the Saginaw River mouth. 

Simple linear and multiple regression models for MODIS-derived chl indicate that distance from 

the Saginaw River mouth may influence chl concentration in Saginaw Bay; Landsat-derived 

surface water temperature and phosphorus loads to a lesser extent. Mixed-effect models for 

MODIS and Landsat-derived chl were related to chl better than simple linear or multiple 
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regressions, with random effects of pixel and sample date contributing substantially to predictive 

power (NSE=0.35-70), though phosphorus loads, distance to Saginaw River mouth, and water 

were significant fixed effects in most models. Water quality changes in Saginaw Bay between 

1972-2012 may be influenced by phosphorus loading and distance to the Saginaw River’s mouth. 

Other factors, such as the zebra mussel invasion may have had an impact on chl concentration.  

Introduction 

 Saginaw Bay has been the subject of great ecological interest for decades. This shallow, 

elongated bay in southwestern Lake Huron, with surface area of approximately 2,960 km2, 

shows marked differences in water chemistry, chlorophyll (chl) concentration, and bacterial 

activity (Schelske et al. 1974, Moll et al. 1980) than the rest of Lake Huron. Even the inner and 

outer portions of Saginaw Bay that are separated by a broad shoal (Freedman 1974) differ in 

circulation patterns (Danek and Saylor 1977) and algal assemblages (Stoermer and Theriot 

1985). This may be due, in part, to differences in mean depth; 4.6 and 14.6 m for inner and outer 

bays, respectively (Freedman 1974). 

Degradation of water quality in Saginaw Bay over the years has been influenced not only 

by natural basin characteristics, such as water depth, but also by direct municipal, agricultural, 

and industrial inputs, and invasive species introductions. In the 1970s, approximately 50% of the 

land in the watershed was agricultural (Freedman 1974), and 55% of the phosphorus in Saginaw 

Bay was coming from agricultural runoff (MDNR 1988). However, large quantities of nutrient 

and chemical inputs were also coming from industrial and municipal sources from the Saginaw 

River, which provides over 90% of Saginaw Bay’s drainage inputs (Bierman et al. 1984). 

Around this time, phytoplankton studies indicated that cyanobacteria, including potential toxin-

forming Anabaena and Microcystis, were the dominant algal taxonomic group present in 
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Saginaw Bay between July and September (Munawar and Munawar 1982). High cyanobacterial 

abundance even caused taste and odor problems in municipal drinking water supplies until the 

late 1970s (MDNR 1988). 

After Saginaw Bay earned an area of concern designation (MDNR 1988), improvements 

in water quality followed reductions in nutrient inputs, including from a phosphorus ban in 

laundry and other detergents in the Great Lakes (Hartig and Horvath 1982, Bierman et al. 1984) 

and additional targeted remediation efforts. However, by 1991 other water quality changes 

occurred after zebra mussels (Dreissena polymorpha) became established (Nalepa and 

Fahenestiel 1995), namely a 59% decrease in phytoplankton biomass as chlorophyll a 

(Fahnenstiel et al. 1995b) allowing planktonic cyanobacterial species to thrive relative to diatoms 

and chlorophytes (Bridgeman et al. 1995, Heath et al. 1995, Lavrentyev et al. 1995, Vanderploeg 

et al. 2001, Bierman et al. 2005). As planktonic algae decreased, benthic algal production 

increased (Fahnenstiel et al. 1995a) along with macrophytes (Skubinna et al. 1995). Benthic 

community composition shifted from diatoms to filamentous green algae (Lowe and Pillsbury 

1995). 

Ecosystem changes that involve algal abundance and community composition have a 

number of possible causes and implications, including changes in nutrient cycling and presence 

of toxins. Some studies indicate that zebra mussels control algal abundance and community 

composition directly by selective feeding (Vanderploeg et al. 2001) or indirectly by controlling 

the amount of phosphorus in the water column through assimilation, or sedimentation and 

resuspension of feces (Johengen et al. 1995, Vanderploeg et al. 2002). Nicholls et al. (1999) 

found that chl:phosphorus ratios after zebra mussel invasion were significantly different in 

different parts of the Great Lakes, having implications for the efficacy of phosphorus reduction 
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efforts (Nicholls et al. 1999). Zebra mussels may even indirectly affect their own filtering rate by 

selective feeding on certain phytoplankton types, leaving the less edible taxa (Pillsbury et al. 

2002). Along with the increased presence of Microcystis, is increased chance for toxins. One 

study showed that the gene for microcystin production was more prevalent in Saginaw Bay than 

in Lake Erie (Dyble et al. 2008). Another study found that phosphorus has a large influence on 

microcystin based on its influence on Microcystis growth rates and abundance (Fahnenstiel et al. 

2008).  

Remote sensing is a useful tool for broad-scale, long-term assessment of water quality 

indicators, such as chl concentration. Early remote sensing studies of Saginaw Bay, using 

Landsat MSS satellite imagery, were done for the purpose of creating maps of water features, 

including chlorophyll, Secchi depth, and temperature (Rogers 1975, Rogers et al. 1976, McKeon 

et al. 1977). More recently, the AVHRR satellite has been used to evaluate differences in Secchi 

depth and total suspended solids before and after zebra mussel invasion in Saginaw Bay (Budd et 

al. 2001). Other satellites that have been used to study various parameters of Saginaw Bay, such 

as, chl concentration or concentration of cyanobacterial species, include the SeaWiFS 

(Pozdnyakov et al. 1999), and MERIS (Wynne et al. 2008). Little work has been done in 

Saginaw Bay with Landsat and MODIS satellites, both which are currently functional and have 

images available to the public free of charge. In addition, the constellation of Landsat satellites 

has an image archive dating back to 1972, the year the Clean Water Act was enacted. MODIS 

has an image archive that goes back to 2000. Therefore, these satellites have the potential to be 

extremely valuable for water quality assessment of water bodies, such as Saginaw Bay, that have 

variable ecological history.  
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Research objectives 

Using inferred-chl from MODIS and Landsat images and satellite boosted regression tree 

models, USGS river discharge data, and distance-to-river mouth data, our research objectives 

were to determine: 1) if water temperature and nutrient inputs have changed in inner Saginaw 

Bay from 1973-2012; and 2) how changes in water temperature and nutrient inputs as well as 

distance from Saginaw River inputs affect algal blooms in Saginaw Bay using satellite-derived 

chl concentrations. 

Methods 

Data 

Chl concentration was inferred from boosted regression tree (BRT) models (Novitski et 

al. in prep) applied to MODIS and Landsat MSS, TM, and ETM+ images using Python with 

GDAL and RPy2 (Lawawirojwong et al. in prep). Chl data were extracted from images with 

pixels that corresponded to a portion of Saginaw Bay’s inner bay (Figure 4-1) deemed deep 

enough to avoid the influence of reflection from the lake bottom, using Python 2.5 software 

(Lawawirojwong et al. in prep). This subset of pixels from the inner bay was chosen for the 

analysis based on a depth to chl relationship, derived from Carlson’s Secchi to chl relationship 

(Carlson 1977).  

���������	 
 �0.68 � ������	 � 2.04 

If depth was at least as deep as Secchi disk depth, we assumed that reflectance from the bottom 

of the bay would not interfere with detection of chl in the water column. Most of the predicted 

chl concentrations for Saginaw Bay were > 2 µg/L, which agrees with historical data of the inner 

bay (CCIW 1972, Schelske and Roth 1973, Schelske et al. 1974, Smith et al. 1977, Fahnenstiel et 

al. 1995b, Nalepa et al. 1995, Suzuki et al. 1995, Fanslow et al. 2001, Vanderploeg et al. 2001, 
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Lehman et al. 2004). Based on Carlson’s equation, with at least 2 µg/L, the minimum depth we 

used in our analyses is 4.8 m. For practicality, we rounded this number to 5 m. MODIS-inferred 

chl data consists of pixel values from 8-day composite MODIS images, starting from the last 

week of July through the first week of September, for a total of six images per year, except for 

the year 2000 in which only 5 composite images were created because images between 

08/04/2000-08/11/2000 were not available. Therefore, a total of 77 MODIS images were used in 

these analyses. The Landsat-inferred chl data consist of 209 images, taken from July through 

September of 1972-2012. Due to cloud interference or low image quality for some images, the 

number of images ranges from 0-11 per year, 1972 and 1983 having no images. To reduce the 

Landsat data to a more manageable size for statistical analyses, we found the latitude and 

longitude of each MODIS pixel centroid using ArcGIS 9.3 and extracted the Landsat-inferred chl 

value from the Landsat pixel at that same location using Python 2.5 software. Therefore, the 

resulting number of chl values per Landsat image, 1887, was the same for the MODIS data.    

Locations of river mouth in Saginaw Bay data were determined using hydrological 

information from NHDPlus (USEPA and USGS 2005). Once MODIS pixel centroids were 

determined in ArcGIS 10.1, distance-to-river mouth data were created in Microsoft Excel 2007 

by applying the haversine formula. For the purposes of this study, we selected the distance to the 

Saginaw River mouth for each pixel. 

Phosphorus loads at river mouths emptying into Saginaw Bay (Figure 4-2) were 

estimated for 1972-2012 using linear mixed-effects models (Esselman et al. in prep). Land 

use/land cover information used to inform phosphorus load models included 2001 and 2006 

National Land Cover Database data, 1978 Michigan Resource Inventory System data, and 1996 

Coastal Change Analysis Program data. Discharge data used in phosphorus load model 
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development were, themselves, created using precipitation data from NOAA North American 

Regional Reanalyis and National Centers for Environmental Prediction and from a watershed 

characteristics database of Dr. Dave Hyndman’s lab. Measured phosphorus data used in the 

phosphorus load model building came from three general sources: EPA STORET, Kendall et al. 

(unpublished), and Dr. R.J. Stevenson. To obtain phosphorus load values at a level that was 

spatially relevant to the chl data, phosphorus loads were weighted by the distance data using two 

weighting approaches (Van Sickle and Johnson 2008) inverse distance weighting f(d) = d-α and 

exponential weighting f(d) = exp(-αd) where d= distance between the pixel centroid and the river 

mouth. In early analyses, inverse distance weighting resulted in better model outcomes, so it was 

used for the remainder of analyses. 

Surface water temperature data were obtained from Landsat ETM+ and TM images by 

extracting thermal band pixel values corresponding to the location of MODIS pixel centroids and 

converting the digital number to degrees Celsius (Chander et al. 2009) using Python 2.5.  

Statistics for MODIS and Landsat 

Eighteen MODIS composite images and seven Landsat images had missing pixel values 

due to clouds. For one of the MODIS images (8/4/2000), no pixel values were available, and for 

Landsat, images from 1972 and 1983 missing due to cloud coverage or image quality problems. 

For the images with missing pixel values, temporal analyses of these pixels or sample dates 

could not be carried out.  

Simple linear regressions were done to determine temporal trends of chl, water 

temperature, and phosphorus loads in inner Saginaw Bay over the lifetime of each satellite. 

However, since Landsat MSS did not have a thermal band with which to detect water 

temperature, Landsat-derived water temperature only goes back to 1984. Landsat-derived chl 
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over the 1973-2012 had a non-normal, bimodal distribution. A category and regression tree 

analysis was run to determine if there were two statistically distinct chl groups (1973-1982 and 

1984-2012). Based on the category and regression tree results and the distribution of chl data in 

the resulting groups, linear regressions were run on the 1973-1982 and 1984-2012 data, 

individually. Wilcoxon rank test was done on “near” and “far” pixels (below and above 43.8˚N, 

respectively) to further discern the influence of the Saginaw Bay river mouth.  

Simple linear regression analyses were also run to model effects of water temperature 

(X1), phosphorus loads (X2) on chl concentration (Y). The effects on chl of distance to the 

Saginaw River mouth was tested, but never in conjunction with phosphorus loads due to the 

redundancy of the distance-weighted phosphorus loads.  

 Finally, mixed-effects models were calculated to determine if the predictive power can be 

improved by adding the unexplained or random variation of time or space using the following 

equation: 

��� 
  �� � ����� �  ����� � �� �  �� �   �� 

 

where � are the coefficients for the X predictors (fixed effects), the site index is 

represented by � 
 1,2, … , $, the time index is represented by % 
 1,2, … , &. Also, the 

residual term is  ��~$�0, (�	, the random effect on sample site is  ��~$�0, )�	, and the 

random effect on sample date is ��~$�0, *�	, where (�, )� and *� represent variability 

parameters.  

 Criteria used to evaluate the mixed-effects models included Bayesian information 

criterion (BIC) and Akaike information criterion (AIC). Both BIC and AIC evaluate the 

performance of the model while penalizing for increasing complexity. Root mean square 

error (RMSE) was calculated to help understand the error associated with the final predicted 
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values of the model, and Nash-Sutcliffe efficiency (NSE) was used determine the proportion of 

variation in the chl data that were explained, much like R2 values in linear regression models. 

Smaller BIC, AIC, and RMSE values and larger NSE values are preferable. All statistics were 

run in R version 2.15.1. Linear regression models were run in R the package, stats, and mixed-

effect models were run in the lme4 package. Satellite-inferred chl was then compared to values 

in the literature from inner Saginaw Bay.  

Results 

Temporal trends  

Although there was a slight increasing trend in annual average and maximum MODIS-

derived chl in the 2000-2012 time period during which MODIS has been operational, the results 

were not statistically significant (Table 4-1, Figure. 4-3). Annual average and upper quartile 

Landsat-derived chl decreased between 1972-2012, with a notable drop in the early 1980s, 

decreasing in one year from 6.5 to 4.5 µg chl/L and 8.5 to 6.5 µg chl/L in average and upper 

quartile values, respectively (Figure 4-4). Regression tree analysis showed a significant 

changepoint producing two distinct periods for Landsat-derived chl: 1973-1983 and 1984-2012 

(complexity parameter=0.95). It seemed likely that this changepoint was due to differences in 

differences in band ranges and widths for sensors on Landsat satellites, so the two periods were 

analyzed separately.  Linear regressions run on each group of Landsat-derived chl showed a 

decrease in average annual chl between 1973-1982 from 7.44 to 6.62 µg/L, but no change from 

1984-2012 (Table 4-1, Figure 4-4). For both MODIS and Landsat (1894-2012), Wilcoxon test of 

“near” and “far” derived chl, average, upper quartile, and minimum values were statistically 

significantly higher near the Saginaw River mouth. 
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Between 2000-2012, MODIS-derived chl concentrations were consistently higher than 

Landsat concentrations, although trends over time had some similarities with relatively low 

concentrations in 2000 and 2003, and higher concentrations in 2001, 2005, and 2007 (Figure 4-

3). Annual upper quartile 8-day phosphorus load increased between 1973-2012 from about from 

5.29 to 6.79 kg/8 days, while temporal trends in annual average 8-day phosphorus were not 

significant (4-1, Figure 4-5). Upper quartile values of 8-day phosphorus loading are notably 

smaller than average values (Figure 4-5). Between 1984-2012, annual upper quartile water 

temperature increased from about 19˚C to 20˚C, however trends in annual average water 

temperature were not statistically significant (Table 4-1, Figure 4-6).  

Relationships between algal blooms and global change variables 

MODIS-derived chl was significantly (p<0.05) related to phosphorus loading, distance to 

the mouth of the Saginaw River. Landsat-derived surface water temperature and interactions 

among these variables, but phosphorus loading and water temperature or other combinations of 

those predictor variables had almost no predictive power (Table 4-3) Interestingly, the best 

mixed-effect models for MODIS-derived chl were any that included random effects of sample 

site and sample date, explaining 56% (RMSE=1.10 µg/L) of the variation in the satellite-inferred 

chl data (Table 4-4; Figure 4-7). Water temperature was the fixed effect that was most commonly 

not statistically significant in mixed effect models, while phosphorus loads and distance were 

always significantly (p<0.05) related to MODIS-derived chl (Table 4-4).  

For 1973-2012, phosphorus loads and distance were negatively correlated to Landsat-

derived chl (p<0.05, Table 4-5). For 1984-2013, and phosphorus loads, water temperature were 

positively correlated to Landsat-derived chl, while distance was negatively correlated with chl 

(p<0.05, Table 4-5). Similarly to the MODIS mixed-effect model results, the best 1973-1982 
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Landsat mixed-effect model results were with models that included either sample date or both 

random effects of pixel and sample date, accounting for 70% (RMSE=0.80 µg/L) of the variation 

in the chl data (Table 4-6). Models that included sample date as the only random effect were 

almost as strong as those with both random effects (Table 4-6).  

The 1984-2012 mixed-effect models (some of which included water temperature as a 

fixed effect) showed similar trends to other Landsat and MODIS mixed-effect models with those 

that included both random effects being the strongest predictors of chl, explaining about 35% 

(RMSE=0.77 µg/L) of the variation in the chl data, and those with just sample date as explaining 

29-34% (RMSE=0.78-0.81 µg/L) of the variation (Table 4- 6). Only two Landsat mixed-effect 

models with non-significant fixed effect of phosphorus loads (Table 4-6). As with MODIS mixed 

effects models, the strongest of all Landsat mixed models was one that included distance as the 

only fixed effect, as well as pixel and sample date as random effects (Table 4-6; Figure 4-8).  

Discussion 

Long-term trends in satellite-derived chl, phosphorus loading, and surface water 

temperature, as well as and relationships among these variables and to distance to the Saginaw 

River mouth, indicate that land use change, climate change, and invasive species may be 

influencing water quality in inner Saginaw Bay. Although, it appears that chl concentration has 

decreased, overall, since the Clean Water Act was enacted in 1972, a possible weakening of that 

trend in recent years indicates a continued need for water quality assessment and management. 

Increasing upper quartile values of 8-day phosphorus load in the last 40 years, and substantially 

larger average vs. upper quartile phosphorus load values indicate that sizable phosphorus inputs, 

though possibly infrequent, could be one factor in the lack of chl decrease in recent years (Paerl 

and Huisman 2008). This occurred despite efforts to decrease phosphorus loads into Saginaw 
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Bay (Fahnenstiel et al. 1995b) since the mid-1970s. Possible explanations for increasing 

phosphorus could be a changing urban or agricultural landscape in the Saginaw River Watershed, 

or more frequent precipitation events in the Midwest (Lofgren and Gronewold 2012) that wash 

phosphorus directly into Saginaw Bay, or through nearby rivers. Also, though trends in surface 

water temperature were not apparent using Landsat-derived values, recent studies of warming in 

the Great Lakes indicate that warming may still be a factor in Saginaw Bay (Austin and Colman 

2007).  

Indirect or interactive effects of phosphorus, water temperature and chl may be important 

relationships to take into account. For example, the indirect effects of increasing water 

temperature on chl may be mediated by physical factors, such as length of water column 

stratification, and may effect phosphorus cycling and accessibility of phosphorus to biological 

organisms (Scavia 1979). We did not see an overall effect of zebra mussels on chl. This 

contradicts other findings of decreased phytoplanktonic chl after the zebra mussel invasion 

(Fahnenstiel et al. 1995b), which may be accounted for by the inclusion of shallow sampling 

stations. Zebra mussels, themselves, could be mediating the effects of phosphorus or water 

temperature on phytoplankton (Sarnelle et al. 2005) or they could be moderating effects of 

phosphorus or surface water temperature on chl by removing algae from the water column 

(Fahnenstiel et al. 1995b). Algal communities that have been grazed by zebra mussel tend to 

have more buoyant cyanobacterial species, such as Microcystis, which are thought to be harder 

for zebra mussels to ingest (Vanderploeg et al. 2001). Shifts toward more toxin-producing algal 

taxa is a major concern for managers and restoration efforts. 

Both MODIS and Landsat-derived chl were consistent with chl values observed in 

Saginaw Bay (Table 4-7). The July-September seasonal average of MODIS-inferred chl fit 
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within a range of average and one-time chl values from the literature (Table 4-7). Seasonal 

average Landsat-inferred chl for 1991 and 1994 were within 1 µg/L chl of average values from 

the literature for these years (Table 4-7). Overall, MODIS-inferred chl shows a more dynamic 

range than Landsat-inferred chl. and is possibly more accurate due to narrower band widths and 

larger numbers of spectral bands.  MODIS also has finer temporal resolution to capture the chl 

temporal signature. However, lakes that are too small for MODIS will still require the use of a 

Landsat model or a model that hybridizes MODIS and Landsat-derived chl values. In such a 

hybrid model, the bias between MODIS and Landsat models could be determined and used 

to recalibrated Landsat models to reflect a more accurate surface chl concentration.  

 Mixed-effects models were able to capture relationships between predictor variables and 

satellite-derived chl much more effectively than simple linear or multiple regression models. 

Continued refinement of mixed-effect models with existing data can enable us to understand 

which ecosystem attributes are most influential determinants of algal abundance over space and 

through time. Similar models can be applied to other water bodies for improved management. 

Future models could take into account the lag in the response of chl concentration to nonpoint 

source pollution, internal nutrient cycling, or water circulation effects. We would expect this 

connection to be particularly important in extreme weather events, including heavy storms or 

drought. Currently, the data used for chl model calibration do not necessarily include a spring or 

summer bloom event for each year of data collected. Having more chl data as well as 

information on the extent and duration of blooms events would help us better capture bloom 

timing and extent in our models, and it would also help us understand the timing of these events 

in relation to other ecological factors, such as storm events. Having satellite inferred-chl data for 

shallower depths could help to elucidate any relationships due to the proximity of river water and 
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nutrient inputs. In addition, the Landsat-inferred water temperature may have noise associated 

with it due to atmospheric conditions that could not be accounted for. Modeled phosphorus loads 

were extrapolated from numerous data sources. Refining both of these data sets could potentially 

allow for more accurate chl prediction. Finally, accounting for interactions not just within each 

pixel or sample date, but also between pixels and sample dates may help to improve model 

outcomes. Additional years of data may help to elucidate trends in MODIS-derived chl, which 

has the potential to be a powerful ecological assessment tool with its daily overpass and 

relatively fine spectral bands (NASA 2013). 

 Our results show the utility of using satellite-derived chl data to monitor and understand 

water quality trends in ecological models. Though changes in the data over the 40 year study 

period are modest, they show a distinct trend that could become more prominent in the future 

with possible tipping points after which management or restoration of Saginaw Bay is not 

practical or feasible. 
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Table 4-1.  Linear regression results for temporal trends in chlorophyll, water 
temperature, and phosphorus loads in inner Saginaw Bay. The 2000-2012 results 
correspond to MODIS-derived chl. Landsat-derived chl results are broken into two year 

groups (1973-1982 and 1984-2012) based on regression tree groupings. Landsat-derived 
water temperature values span 1984-2012. Chl = chlorophyll concentration (µg/L), P load 

= 8-day phosphorus load (kg), water temp. = surface water temperature (˚C), Avg = annual 
mean value, UQ = annual upper quartile value, NS = not statistically significant. 

Satellite Years Variable Annual 
Avg/Max 

Increase/ 
Decrease 

Coefficients Adjuste
d R2 

p-
value 

MODIS 2000-2012 Chl Avg -- -- -0.06 NS 
MODIS 2000-2012 Chl UQ -- -- -0.08 NS 
Landsat 1973-1982 Chl Avg Decrease -0.09 0.33 0.05 
Landsat 1973-1982 Chl UQ -- -- 0.15 NS 
Landsat 1984-2012 Chl Avg -- -- -0.03 NS 
Landsat 1984-2012 Chl UQ -- -- -0.04 NS 
Landsat 1973-2012 P Avg. -- -- 0.04 NS 
Landsat 1973-2012 P UQ Increase 0.02 0.26 <0.01 
Landsat 1984-2012 WT Avg -- -- 0.00 NS 
Landsat 1984-2012 WT UQ -- -- 0.07 NS 
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Table 4-2: Wilcoxon Rank test results using near and far groupings of MODIS or 
Landsat chl or water temperature data. Chl=chlorophyll, WT=water temperature, 
Max=annual maximum, Min=annual minimum, Avg=annual mean, UQ=annual upper 

quartile. * indicates ties in ranking for which an exact p-value cannot be calculated. 

Satellite Chl/WT Index W p-value 

MODIS 2000-2012 Chl Max 80 NS 

  Min 27 <0.01 
  Avg 24 <0.01 
  UQ 24 <0.01 
 WT Max 76 NS* 

  Min 51 NS* 

  Avg 65 NS  
  UQ 61 NS* 

Landsat 1973-1982 Chl Max 53 NS* 

  Min 36.5 NS* 

  Avg 55 NS 

  UQ 49 NS 

Landsat 1984-2012 Chl Max 529.5 NS* 

  Min 117.5 <0.01 

  Avg 119 <0.01 

  UQ 177 <0.01 

 WT Max 393.5 NS * 

  Min 339.5 NS * 

  Avg 367 NS * 

  UQ 337.5 NS * 
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Table 4-3. MODIS (2000-2012) linear regression results. Linear regression results 
using combinations of variables (water temperature, phosphorus load, and distance-to-
river mouth to predict chlorophyll concentration in inner Saginaw Bay. P=8-day 

phosphorus load (kg), D=distance to Saginaw River mouth from MODIS pixel centroid (km), 
WT=Landsat-derived surface water temperature (˚C), pixel=sample site, date=date of 

satellite-derived chl.  Phosphorus load and distance were never used in the same model 
because phosphorus load is inverse-distance weighted for regression analyses. 

Predictor Variables Adjusted R2 p-value 

P 0.01 < 2x10-16 

WT 0.01 < 2x10-16 

D 0.12 < 2x10-16 

P + WT 0.01 < 2x10-16 
WT + D 0.13 < 2x10-16 
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Table 4-4: MODIS linear mixed-effect model results. P=8-day phosphorus load (kg), 
D=distance to Saginaw River mouth from MODIS pixel centroid (km), WT=Landsat-derived 
surface water temperature (˚C), pixel=sample site, date=date of satellite-derived chl, 

RMSE=root mean square error, NSE=Nash-Sutcliffe efficiency, AIC=Akaike information 
criterion, BIC=Bayesian information criterion. Statistical significance is at p≤0.05 level. 

Fixed-effects variables Significant fixed 
effect variables 

RMSE NSE AIC BIC 

P + pixel P 1.52 0.17 466231 466270 
P + date P 1.21 0.47 403940 403979 
P + pixel + date WT 1.10 0.56 387856 387905 
WT + pixel WT 1.53 0.15 467454 467493 
WT + date WT 1.28 0.41 417343 417382 
WT + pixel + date -- 1.10 0.56 387859 387908 
D + pixel D 1.54 0.15 464877 467916 
D + date D 1.14 0.53 388388 388427 
D + pixel + date D 1.11 0.56 384771 384820 
P + WT + pixel P 1.52 0.17 465758 465807 
P + WT + date P 1.21 0.47 403757 403805 
P + WT + pixel + date P 1.10 0.56 387867 387926 
D + WT + pixel D,WT 1.53 0.15 464435 464483 
D + WT + date D, WT 1.14 0.53 388398 388447 
D + WT + pixel + date D 1.10 0.56 384782 384840 
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Table 4-5: Landsat (1973-2012 or 1984-2012) linear regression results. Linear 
regression results using combinations of variables (water temperature, phosphorus load, 
and distance-to-river mouth to predict chlorophyll concentration in inner Saginaw Bay. 

P=8-day phosphorus load (kg), D=distance to Saginaw River mouth from Landsat pixel 
centroid (km), WT=Landsat-derived surface water temperature (˚C), pixel=sample site, 

date=date of satellite-derived chl. Phosphorus load and distance were never used in the 
same model because phosphorus load is inverse-distance weighted for regression analyses. 

Year Range Predictor Variables Adjusted 
R2 

p-value 

1973-2012 P 0.05 < 0.01 

1973-2012 D 0.01 < 0.01 

1984-2012 P 0.00 < 0.01 
1984-2012 D 0.05 < 0.01 

1984-2012 WT 0.00 < 0.01 

1984-2012 P + WT 0.00 < 0.01 

1984-2012 D + WT 0.06 < 0.01 
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Table 4-6: Landsat linear mixed-effect model results. P=8-day phosphorus load (kg), 
D=distance to Saginaw River mouth from Landsat pixel centroid (km), WT=Landsat-
derived surface water temperature (˚C), pixel=sample site, date=date of satellite-derived 

chl, RMSE=root mean square error, NSE=Nash-Sutcliffe efficiency, AIC=Akaike information 
criterion, BIC=Bayesian information criterion. Statistical significance is at p≤0.05 level. 

Year Range Fixed-effects 

variables 

Signif. 

fixed 
effect 
variables  

RMSE NSE AIC BIC 

1973-2102  P + pixel  P 1.39 0.09 1291662 1291705 

1973-2102  P + date P 0.81 0.69 890991 891035 

1973-2102  P + pixel + date P 0.80 0.70 885052 885106 
1973-2102  D + pixel  D 1.45 0.14 1314953 1314996 
1973-2102  D + date D 0.80 0.70 883763 883807 

1973-2102  D + pixel + date D 0.80 0.70 882928 882982 

1984-2012 P + pixel  P 0.92 0.07 777789 777831 

1984-2012 P + date P 0.80 0.31 687537 687579 

1984-2012 P + pixel + date -- 0.80 0.35 676255 676308 

1984-2012 WT + pixel WT 0.93 0.07 778085 778127 

1984-2012 WT + date WT 0.81 0.29 697233 697276 

1984-2012 WT + pixel + date WT 0.77 0.35 675714 675767 

1984-2012  D + pixel  D 0.93 0.06 776769 776811 

1984-2012  D + date D 0.78 0.34 674787 674829 

1984-2012  D + pixel + date D 0.77 0.35 673112 673165 

1984-2012  P + WT + pixel  P,WT 0.92 0.08 776176 776229 

1984-2012  P + WT + date P,WT 0.80 0.31 687340 687393 

1984-2012  P + WT + pixel + date WT 0.77 0.35 675733 675797 

1984-2012  D + WT + pixel  D,WT 0.93 0.07 774963 775016 

1984-2012  D + WT + date D, WT 0.78 0.34 674239 674292 

1984-2012  D + WT + pixel + date D, WT 0.77 0.35 672553 672617 
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Table 4-7: Comparison of MODIS- and Landsat-derived inner Saginaw Bay chlorophyll values and values from 
the literature. Pub=publication,1=Schelske & Roth 1973, 2=CCIW 1872*, 3=Schelske et al. 1974, 4=Smith et al. 1977, 

Fahnenstiel et al. 1995, 6=Fanslow et al. 2001, 7=Nalepa et al. 1995, 8=Lehman et al. 2004, 9=Suzuki et al. 1995, 

10=Vanderploeg et al. 2001, 11=Landsat-derived chlorophyll, 12=MODIS-derived chlorophyll. *Cited in Freedman et al. 
1974, **samples taken from wetland area, †some values estimated from graph and some exact numbers taken from 

Fanslow et al. 2001. Month=sample month, JN=June, JL=July, A=August, S=September. Type=sample type, Avg.=average, 

R=range, Max=maximum, SA=seasonal average, OT=one-time, TOTS=two one-time samples. Last two digits used to 

indicate sample year (e.g., 70=1970, 00=2000).  

Pub Month Type 70 72 74 89 90 91 92 93 94 95 96 99 00 

1 JL Avg. 7.26 

2* A 

R; 

Max 

4.0-

12; 

20.0 

3 S Avg. 15.0 

4 

Avg.; 

R 

16.26; 

2.33-

45.7 

5 JN-S SA 11.0 7.5 6.0 3.0 

6 JL 16.1 3.49 

6 A OT 9.01 13.45 

7 S OT 6.28 16.79 

7 JL OT 9.1 7.8 1.1 

7 A OT 2.6 11.9 2.6 

7 S OT 2.6 16.4 2.9 

8 A OT 10.22 

8 S TOTS 

17.4, 

17.5 
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Table 4-7 (cont’d) 

Pub Month Type 70 72 74 89 90 91 92 93 94 95 96 99 00 

9** A R 
0.5-
42.0 

10† JL OT 9.0 8.0 1.0 8.0 13.0 1.85 

10† A OT 2.5 12.0 2.5 15.5 7.64 16.79 

10† S OT 14.0 2.5 16.5 3.0 11.0 3.74 7.68 

11 JL-S SA 7.03 4.58 4.69 4.32 4.43 4.52 4.40 4.56 4.40 4.45 4.47 

12 JL-S SA 6.68 



 

 

Figure 4-1: Saginaw Bay’s inner bay with depth 
Saginaw Bay’s inner bay with depth 

lower left is the Saginaw River. 
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1: Saginaw Bay’s inner bay with depth ≥ 5. The gray dots indicate

Saginaw Bay’s inner bay with depth ≥ 5 m that was used for statistical analyses.

lower left is the Saginaw River.  

 
dots indicate the portion 

≥ 5 m that was used for statistical analyses. In the 
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Figure 4-2: Inner Saginaw Bay study area and river mouth inputs into Saginaw Bay. 
Inner Saginaw Bay study area (gray dots) and river mouth inputs into Saginaw Bay (black 

dots). 
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Figure 4-3. Annual average and upper quartile MODIS and Landsat-derived 
chlorophyll concentration (µg/L) in inner Saginaw Bay, 2000-2012. Annual average 

MODIS and Landsat-derived chl concentration (µg/L) in inner Saginaw Bay, 2000-2012 

(left). Upper quartile MODIS and Landsat-derived chl concentration in inner Saginaw Bay, 

2000-2012 (right). 
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Figure 4-4: Annual average and upper quartile Landsat-derived chlorophyll 
concentration (µg/L) in inner Saginaw Bay, 1973-2012. Annual average Landsat-

derived chl concentration (µg/L) in inner Saginaw Bay, 1973-2012 (left). Upper quartile 

Landsat-derived chl concentration in inner Saginaw Bay, 1973-2012 (right). 
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Figure 4-5: Annual average and upper quartile 8-day phosphorus load (kg) in inner 
Saginaw Bay, 1973-2012. Annual average 8-day phosphorus load (kg) in inner Saginaw 

Bay, 1973-2012 (left). Upper quartile 8-day phosphorus load (kg) in inner Saginaw Bay, 

1973-2012 (right). 
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Figure 4-6: Annual average and upper quartile Landsat-derived surface water 
temperature (˚C) in inner Saginaw Bay, 1984-2012. Annual average Landsat-derived 

surface water temperature (˚C) in inner Saginaw Bay, 1984-2012 (left). Upper quartile 

Landsat-derived surface water temperature (˚C) in inner Saginaw Bay, 1984-2012  (right). 
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Figure 4-7: MODIS-derived chl vs. mixed-effect model chl (µg/L) in inner Saginaw 
Bay, 2000-2012 with 1:1 line. 
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Figure 4-8: Landsat-derived chl vs. mixed-effect model chl (µg/L) in inner Saginaw 
Bay, 1984-2012 with 1:1 line. 
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CHAPTER 5 
SUMMARY AND SYNTHESIS: USE OF REMOTE ESNSING IN ECOLOGICAL ASSESSMENT  

 
National Lakes Assessment chlorophyll and Secchi depth predictive models  

National Landsat boosted regression tree (BRT) models of chlorophyll (chl) 

concentration and Secchi depth are able to predict chl better than linear regression models 

for inland lakes in the United States (chl: R2 of 0.44 and a 0.76 ln-transformed µg/L RMSE; 

Secchi depth: R2 of 0.52 and a 0.80 m RMSE). Applicability of the national BRT chl model for 

ecological analysis was demonstrated with a comparable total phosphorus-chl relationship 

whether using measured chl (R2 = 0.58 and 1.02 ln-transformed µg/L RMSE) or remotely 

sensed chl (R2 = 0.56 and 1.04 ln-transformed µg/L RMSE). Using multiple bands and ratios 

in the model increased predictive power. There is, however, much improvement to be 

made in broad-scale chl and Secchi depth models for lakes with widely variable physical, 

chemical, and biological attributes, including differing depth, dissolved organic carbon 

levels, and algal community composition. Correlations of national BRT model residuals 

with algal community composition, lake depth, and dissolved organic carbon levels, as well 

as time between sampling and image capture indicate that other factors may need to be 

addressed to further model development.  Overall, subsetting the lakes into groups by 

similar regional characteristics did not improve chl or Secchi model performance.  

Next steps in models for satellite measures of chl in inland lakes using BRT should 

consider incorporation of natural landscape variables, such as land use, into the model. 

Also, sampling each lake at multiple locations and over several times may help understand 

fluctuations algal biomass in each individual lake more clearly. Matching sample date as 

closely as possible with Landsat passover date may also help to reduce the noise in the 

relationship between predicted vs. measured chl. Finally, including field measurements of 
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water quality attributes, such as inorganic carbon, can help distinguish the chl signal from 

other substances in the water. Remote sensing water quality assessment tools can be 

valuable for limnological study, ecological assessment, and water resource management. 

 

Landsat and MODIS boosted regression tree models for chlorophyll prediction in the 
Great Lakes 

Landsat and MODIS satellites are complementary platforms because of the long 

history of Landsat operation and the finer spectral resolution and image frequency of 

MODIS. Landsat and MODIS BRT models are better predictors of chl in the Great Lakes than 

other, readily available chl models. BRT models are also relatively easy to produce and to 

share. Of the three chl BRT predictive models that were made for the Great Lakes, the 

MODIS model was most accurate (0.85 cross-validation R2 and 0.10 µg/L RMSE) and 

compared well to other models in the literature. BRT models for Landsat ETM+ and TM 

more accurately predicted chl (0.69 cross-validation R2 and 0.55 µg/L RMSE) than the MSS 

model (0.66 cross-validation R2 and 0.73 µg/L RMSE). All our Landsat models had favorable 

results when compared to models in the literature.  

Though several of the current Great Lakes remote sensing models involving MODIS 

and Landsat were not publicly available for a direct comparison with our models, a 

comparison of this kind would be informative. Next steps should also include validation 

with external data and tests to see how widely the models can be applied. Model 

improvement may involve accounting for biological factors, such as position of the algae in 

the water column (Kutser et al. 2008). More consistent time of day for sampling may allow 

for more accurate detection with each image, and better means for comparison of long-

term ecological trends. Also, application of BRT models could assist with discerning 



 

 123

different algal groups in the Great Lakes, whether they be used with Landsat, MODIS, or 

with satellite products with higher spectral or spatial resolution (Bergmann et al. 2004, 

Hunter et al. 2008, Wynne et al. 2008, Bracher et al. 2009) various algal types and 

simulated responses from Landsat and other less-spectrally sensitive satellites. Accounting 

for other color producing agents will elucidate the benefits of using all bands and ratios in 

model creation. Also, further tests should be done to determine if models that use all bands 

and ratios are less sensitive to shallow water due to incorporation of more spectral 

information. Application of BRT chl predictive models to the lifetime of both Landsat and 

MODIS could be useful understanding historical, long-term chl trends and to inform us of 

how climate change may alter ecosystems in the future. 

 

Using Landsat- and MODIS-derived chlorophyll to assess water quality in Saginaw 
Bay from 1972-2012 
 

Deriving remotely-sensed chl concentrations from Landsat and MODIS satellite 

imagery enabled a long-term historical analysis of water quality trends in Saginaw Bay, 

which has a history of water quality problems and continues to experience regular, 

summertime algal blooms. Chl concentrations were predicted from Landsat 1973-2012 and 

MODIS 2000-2012 with boosted regression tree analysis. In a mixed-effect model, 

remotely-sensed chl concentration can be used with other physical, chemical, or biological 

parameters to test specific hypotheses about what drives algal biomass. Linear regression 

analyses show that Landsat-inferred chl decreased between 1973-1982 and that 8-day 

phosphorus load increased between 1972-2012. Simple linear regression showed 

influences of 8-day phosphorus load, distance to the Saginaw River mouth, and water 

temperature on satellite-inferred chl. Mixed effects models also show significant effects of 
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8-day phosphorus load, distance to the Saginaw River mouth, and Landsat-inferred water 

temperature on MODIS and Landsat-inferred chl, however, the results suggest that a large 

proportion of the random spatial effects are unaccounted for.  

In future studies, variables such as water circulation patterns or internal nutrient 

cycling could be added to the mixed-effects model to help elucidate the cause for spatial 

correlations in chl. Future models could also take into account the lag in the response of chl 

concentration to precipitation events and nutrient exposure. We would expect this 

connection to be particularly important in extreme weather events, including heavy storms 

or drought. Having more chl data for spring blooms might also be informative in seeing 

long-term trends. Finally, having satellite inferred-chl data for shallower depths could help 

elucidate any relationships due to the proximity of external river water and nutrient inputs. 

Using remotely-sensed chl in ecological analyses can help determine which factors have, 

historically, been the largest drivers of algal biomass production in Saginaw Bay, and, 

therefore, which may be the most critical for management in the face of climate change. 
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