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ABSTRACT 

EVALUATION OF PHYSIOLOGICAL STATUS OF POTATO TUBERS USING SPECTROSCOPIC AND 

HYPSESPECTRAL IMAGING SYSTEMS  

By 

Ahmed Mustafa Rady 

Potato is a major crop around the world with special importance given in developed countries to the French frying, and 

chipping industries. Quality attributes of potatoes dramatically influence final product conditions and consequently affect product 

marketability. Many research studies have been conducted to investigate the feasibility of measuring quality attributes and 

external and internal defects of potato tubers using rapid and/or noninvasive methods (spectroscopic, vison, and sonic). An 

extensive review has been conducted of nondestructive techniques that have been studied for assessing quality attributes of raw 

potatoes as well as chips and French fries. Such factors included specific gravity, dry matter, water content, carbohydrates, 

protein, defects, and diseases. In addition, systems for sorting tubers based on various quality characteristics have been discussed 

in detail. Also, commercial systems are available in the market for sorting and grading tubers based on different quality factors. 

However, more deep studies are needed to enhance rapid measurement performance and investigate more attributes that are 

important to growers and industry. The main objectives of this study were to investigate the potential of using spectroscopic as 

well as hyperspectral systems to evaluate processing-related constituents and parameters of two common potato cultivars, Frito 

Lay 1879 (FL) and Russet Norkotah (RN), using partial least squares regression (PLSR), and several types of artificial neural 

network (ANN) along with wavelengths selection techniques being interval partial least squares (IPLS), and genetic algorithm 

(GA). In addition, classification of tubers based on sugar levels has been conducted using linear discriminant analysis (LDA) 

functions, k-nearest neighbor (Knn), partial least squares discriminant analysis (PLSDA), feed forward artificial neural network 

(FFNN), and classifier fusion. The first study in the 2008 season was conducted to evaluate five constituents for both FL and RN 

using NIR transmittance, and VIS/NIR interactance modes as well as VIS/NIR hyperspectral systems for 0.5’’ (12.7 mm) sliced 

samples and whole tubers. Results showed that the interactance mode yielded most of the best PLSR results. For primordium leaf 

counts, glucose, sucrose, specific gravity, and soluble solids, the optimum prediction models obtained from the interactance mode 

resulted in R (RPD) values of 0.95 (3.29), 0.90 (2.14), 0.81(1.63), 0.61(1.27), and 0.55(1.18) respectively for FL. For RN, the 

R(RPD) values were 0.90 (2.19), 0.95 (3.12), 0.63(1.30), 0.59(1.22), and 0.37(1.08) respectively. Slightly lower performance was 

achieved for whole tubers with optimal R(RPD) values FL in the case of primordium leaf counts, glucose, sucrose, and specific 

gravity of 0.89(2.22), 0.88(1.78), 0.81(1.64), and 0.37(1.06) respectively. The R(RPD) values for RN were 0.77(1.50), 

0.79(1.60), 0.43(1.10), and 0.51(1.08) for primordium leaf counts, glucose, sucrose, and specific gravity. Soluble solids for whole 

tubers showed weaker correlation than above constituents.  



 
 

Following preliminary results in the 2008 season, more concentration was given to glucose and sucrose as they 

significantly affect chip and French fry products quality. Also, based on preliminary results, transmittance mode was replaced by 

NIR reflectance mode. The second study was conducted in the 2009 and 2011 seasons using interactance, reflectance, and 

hyperspectral systems on the same cultivars and also using 0.5’’(12.7 mm) sliced samples and whole tubers. 

Results of prediction models using PLSR and ANN along with models using IPLS and GA as wavelength selection 

techniques demonstrated strong correlation for VIS/NIR hyperspectral systems in which only sliced samples were used. For 

glucose prediction models, R(RPD) values were as high as 0.81(1.70) and 0.97(3.66) for FL and RN and those values for the best 

sucrose prediction models were 0.58(1.23) and 0.38(1.0) for FL and RN. For VIS/NIR interactance mode, promising results for 

glucose prediction were shown for FL and RN. FL and RN yielded R(RPD) values of 0.92(2.35) and 0.95(3.02) respectively for 

sliced samples, and 0.85(1.92) for FL and 0.97(4.16) for RN in the case of whole tubers. Sucrose prediction models resulted in 

strong correlation with R(RPD) values as high as 0.95(3.29) and 0.78(1.57) for FL and RN for sliced samples, and 0.94(3.01) for 

FL and 0.94(2.82) for RN in the case of whole tubers. NIR reflectance showed auspicious performance for both cultivars. The 

best glucose prediction models yielded R(RPD) values for FL and RN as high as 0.96(3.47) and 0.97(4.21) in the case of sliced 

samples, and 0.82(1.78) and 0.98(4.84) for FL and RN in the case of whole tubers. Sucrose also showed high correlation for 

sliced samples with R(RPD) values of 0.96(3.89) and 0.97(3.92) for FL and RN, and those values for the whole tubers were 

0.96(3.80) and 0.97(3.78) for FL and RN. In general, prediction models based on selected wavelengths showed similar or better 

performance compared to full wavelengths models, and it is worth stating that GA yielded higher numbers of selected variables 

(wavelengths) than IPLS; thus, the latter method was preferred as it often produced similar results compared to GA models.  

Classification of potatoes based on sugar levels associated with the frying process showed encouraging results with the 

lowest classification error values of FL and RN obtained for glucose being 16% and 13%, for sliced samples, and 18% and 0% 

for whole tubers. In the case of sucrose models, error values in the case of sliced samples were 23% and 18%, and those values 

for whole tubers were 26% and 18% for FL and RN respectively. Such classification results for whole tubers demonstrated the 

feasibility of explaining more variation between samples when the data from interactance and reflectance modes was used, in the 

listed wavelengths ranges, and consequently applying both modes in an on-line system has the potential to enhance the sorting of 

tubers based on sugar levels. 

This research demonstrated the feasibility of hyperspectral imaging systems as well as spectroscopic systems, in 

reflectance and interactance modes, in rapidly and accurately measuring some important constituents for potato growers and 

processing industries. Such results, especially for whole tubers, proved that there is a possibility for conducting an on-line sorting 

system based on sugar levels, or a hand-held device for rapid evaluation of quality either in field or during storage, to maintain 

potato tubers quality and accurately estimate the suitable time for harvesting or processing.   
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CHAPTER 1   INTRODUCTION 

 

1.1 Economic Importance of Potatoes 

Potatoes (Solanum tuberosum) rank as the fifth highest produced commodity used for 

human consumption (after: sugar cane, maize, wheat, rice), with the world production of 324.2 

million metric ton (FAOSTAT, 2012). Potato is a common source of carbohydrate with a diverse 

set of uses. In North America, Europe, and Australia, the majority of potatoes are processed as 

chips (crisps), French fries, dehydrated, canned, mashed, diced, etc. For example, in U.S.A, 

which produces 18.3 million metric ton, only one-third is consumed as fresh product; 

approximately, 60% is consumed as processed products, and 6% is used as seeds (FAOSTAT, 

2012). However, other countries, especially the developing ones, consume the majority of 

potatoes as fresh due to the living and income style. The modern life style promotes high quality 

foodstuff products in either home-prepared or fast food which increases the need for efficient, 

rapid, cost effective and easy to use devices and systems to assure that final product, processed 

or fresh, meets the required quality. There has been a considerable change in the trend of potato 

product consumption in the US since 1960. Almost 38.10 Kg per capita fresh tuber was 

consumed in 1960, and that number decreased to 19.05 Kg per capita by 2005. However, frozen 

potato fries and chips consumption increased from 8.16 to 31.75 Kg per capita from 1960 to 

2005. Moreover, the value of US exports of chips and frozen French fries increased from $610 

million in 2006 to more $810 million in 2010 (Bohl and Johnson, 2010). On the other hand, the 

USA was the highest country outside the European Union in importing French fries with a 

quantitative increase of 28% from 2000 to 2010. Other developed countries such as: Japan, 

Canada, and Australia also showed a considerable increase in imports of French fries in the same 

http://en.wikipedia.org/wiki/Solanum
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time span of 22%, 435%, and 558% respectively. A similar trend was noticed for some of the 

developing countries such as Brazil (229 %), Mexico (177%), and China (241%) (Faulkner, 

2012). Given the previous statistics, one can conclude that there is a tremendous growth of 

processed potato products in many countries (developed and developing) that requires reliable, 

accurate, rapid, and reproducible systems to maintain quality aspects of tubers and final products. 

The more importance given to preserving the high quality of potatoes before processing, the 

higher marketability of products, and consequently more benefit for growers, processors, and 

consumers.  

Potato global trade has shown increase through the last three decades. International 

potato trade has doubled from 1986 (<10 MT) to 2006 with a quadrupled value in the same time 

range reaching $9.6 billion in 2007 with majority of which being processed (Chrome et al, 2010). 

Moreover, In USA, $9 billion was spent on potato chips in 2011. Such statistics show the 

economic value of potato products in US as well as in the world.  

Some chemical constituents and physical properties in potato tubers determine their end 

use for either the processed industry or as fresh, or prevent the use of tubers if the levels of these 

parameters are beyond the suggested thresholds. These constituents are, but not limited to, 

specific gravity, carbohydrate, protein, vitamins, glycoalkaloids, minerals, flesh and skin color, 

carotenoids, and anthocyanins. Other aspects which determine quality and potential use are the 

external or internal defects such as greening, bruises, enzymatic browning, non-enzymatic 

browning, and other physiological disorders, (Storey, 2007). Additionally, the accurate 

estimation of optimal harvest time is critical for potato tubers as it strongly affects quality of the 

harvested tubers. 
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1.2 Morphological Description of Potato Tuber 

A potato tuber is a modified stem with leaves and axillary buds that are reduced and 

poorly developed. In addition, a potato tuber has shortened internodes and a stem axis that 

expands radially. The end of the tuber attached to the stolon is called the heel, or stem end, while 

the other end is called the rose end or stolon apex. A potato tuber is considered a third type of 

stem in a potato plant as there are the regular above-ground stems, and the stolon which is the 

under-ground stem. Moreover, potato tubers are considered as the swollen parts of the stolon 

which is the rhizome of the potato plant. Stolons are diageotropic shoots or stems with elongated 

internodes and rudimentary leaves. Stolons are grown from the basal stem nodes below the soil 

surface. Stolonization mostly starts after 15 days from planting and at the nodes closer to the 

seed tuber and then progress acropetally. Earlier stolons grow faster and become longer than 

later ones and the number of stolons increases with time. Tuber formation can be thought as of 

the result of two operations: stolon formation, or stolonization, and tuberization of the stolon tip. 

Tubers are formed after 25 days from planting in most potato cultivars. Tuberization starts before 

all stolons are formed, and it occurs first in the lower stolons and results in dominant tubers in 

terms of weight over those formed later. Sugar in potato tubers are either monosaccharaides 

(glucose and fructose) with portions in the tuber of 0.15-1.5% of FWT for either sugar, or 

disaccharides that is the sucrose sugar and its levels are 0.4-6.6%. Sugar levels depend on 

cultivar, preharvest treatments, storage temperature and period.    

1.3 Overview 

In this study, the experiments were conducted on three seasons. In the first season, 2008, 

VIS/NIR spectroscopic system in the interactance mode, NIR transmittance, and VIS/NIR 

hyperspectral imaging were used to study the prediction of glucose, sucrose, specific gravity, 
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soluble solids, and primordial leaf count for Frito Lay 1879, and Russet Norkotah potato 

cultivars. Whole tubers and 0.5’’ (12.7 mm) sliced samples were tested to build calibration and 

prediction models using PLSR. Based on the results obtained in the 2008 season, electronic 

measurements were narrowed to glucose and sucrose in the 2009 and 2011 seasons. Moreover, 

the transmittance mode has been replaced by the reflectance mode in the same wavelength range. 

Additionally, in the 2009 and 2011 seasons, an artificial neural network (ANN) technique was 

also used for building prediction models, and the most influential wavelengths were identified 

using IPLS and GA. Finally, the classification of potato tubers and sliced samples has been 

studied based on glucose and sucrose.              

 1.4 Objectives 

This research was conducted to study the feasibility of using spectroscopic and 

hyperspectral imaging systems to evaluate some constituents of potato tubers for some cultivars 

used in processing, table, or seed industries. Consequently, the particular objectives of work 

were: 

1) Determine calibration and prediction models for glucose and sucrose for potato tubers 

using different regression methods on spectroscopic and hyperspectral imaging data 

against traditional chemistry-based measurements. 

2) Identify the most effective wavelengths related to glucose and sucrose prediction in 

potato tubers. 

3) Determine whether combined data from different spectroscopic and hyperspectral 

systems (sensor fusion) can improve prediction models of glucose and sucrose for 

potato tubers.      
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4) Study the potential of using spectroscopic and hyperspectral imaging systems in 

potato classification based on sugar levels associated with frying. 
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CHAPTER 2   RAPID AND/OR NON-DESTRUCTIVE METHODS FOR QUALITY 

EVALUATION OF POTATOES: A REVIEW 

 

(Rady, A.M., Guyer, D.E. 2014. Rapid and/or Non-Destructive Quality Evaluation Methods for 

Potatoes: A Review. Computers and Electronics in Agriculture (in review)) 

 

There are many rapid techniques which have been used in attempts to evaluate the 

physiological status of potato tubers as well as to test the quality attributes of finished potato 

products. These systems range in basic operation theory and they include: traditional imaging 

systems (CCD cameras, multispectral imaging, X-ray, magnetic resonance imaging (MRI)), 

spectroscopic systems (UV, visual, near, and mid infra-red systems), hyperspectral imaging 

systems, and ultrasonic systems. The applications of such systems for raw tubers include 

predicting of chemical constituents and physical characteristics (dry matter, specific gravity, 

carbohydrate, and water content), detecting of defects and diseases, and electronic-based sorting. 

Other applications address automated quality evaluation of potato products (chips, French fries). 

While there have been a significant number of studies regarding the application of rapid 

estimation of quality attributes of raw potato tubers and processed products, no study was 

conducted to summarize such different approaches. In addition to discussing the above systems 

overall, this review aims to present some of the commercial systems that exist for the potato 

industry. Fig.2.1 depicts the applications of non-destructive methods for postharvest potatoes and 

potato products reviewed in this study. 

 

 

 



 

7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Breakdown of reviewed technology used in potato postharvest and quality assurance of some potato 

products. 

2.1 Applications Related to Raw Tubers 

These applications vary based on the material being tested: whole tubers, sliced samples, 

or any other non-cooked forms. The applications are mostly related to measuring quality 

assurance attributes right before harvesting, after harvest, or in the storage facilities, and the use 

of such tubers might be fresh, or preparing for processing.      

2.1.1 Specific Gravity, Dry Matter, and Water Content 

Being one of the most important factors for assessing potato tubers for processing, 

specific gravity (SG) is strongly affected by: environmental factors (weather, soil type), variety, 

and production operations: seed management, plant density, nutrient management, irrigation, 

tuber growth period, disease management, vine killing, and harvest management (Stark and 
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Love, 2003). Higher SG results in more output of chip, French fry, and dehydrated products. 

Levels for SG in potato tubers are crucial for processing. A SG level of 1.08 or higher is 

preferred for chipping (Gould, 1995a; Stark et al., 2003). Literature confirmed the positive 

correlation, with linear relationship, between SG and dry matter (DM) with many equations 

found to obtain the SG from dry matter (Woodbury and Weinheimer, 1964; Houghland, 1966; 

Agle and Woobery, 1968; Willson and Lindsay, 1969; Schippers, 1976; Simmonds, 1977). 

Therefore, the SG is generally and extensively used as a stick measure of dry matter and to 

estimate the suitability of tubers destined to processing. Moreover, DM is commonly correlated 

to the texture quality of raw and cooked tubers which is evaluated by sensory-related tests (Tarn 

et al., 1992). DM content is about 18 to 26% for most potato cultivars dedicated for commercial 

use (Burton, 1989). Desirable levels of DM for processing depend on the use of potatoes. DM 

ratios of 20-24%, 22-24, and >21% are preferred for French fries, chipping and dehydrated 

industries respectively. 

DM distribution inside tubers was studied by many researchers (Glynne and Jackson, 

1919; Johnston et al., 1968; Pritchard and Scanlon, 1997; Gaze et al., 1998). It was shown that 

DM is more concentrated in the storage parenchyma between the cortex and the vascular ring, 

and longitudinally decreases in towards the pith. There have been two common methods to 

estimate specific gravity, the first one based on the weight in air vs. weight in water relationship, 

and the other is using a hydrometer. Both methods, however, are time consuming, depend on 

human proficiency level, and do not cope with on-line sorting applications based on SG.  

Therefore, several rapid techniques, most of which are spectroscopic-based systems, have 

been tested to estimate either the specific gravity or dry matter as illustrated in table 2.1. Model 

accuracy for spectroscopic systems is usually judged using root mean error of calibration 
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(RMSEC), root mean error of calibration using cross validation (RMSECcv), or prediction 

(RMSEP), coefficient of correlation (R), and/or the ratio of the standard deviation of reference 

variable to RMSEP or RMSEC which is abbreviated as RPD. Values of R for prediction or 

validation models, and RMSEP or RMSECcv are listed in this review study; otherwise R values 

for calibration models are listed. The sign (?) was used in table 2.1 and subsequent tables in the 

case of the non-availability of model strength descriptive values. Among the varying types of 

electronic systems used for the evaluation of DM in potatoes and applied on various sampling 

techniques, studies conducted by Hartmann and Büning-Bfaue, 1998; Haase (2004 and 2011), on 

homogenized, mashed, and ground samples, respectively, NIR or VIS/NIR reflectance (1100-

2500 nm, 300-2500 nm, and 850-2500 nm) yielded the best prediction performance (RMSEP= 

0.19%, 0.568%, and 0.42%). Generally, it was shown that NIR radiation intensity inside fruit 

tissue decreases in an exponential trend with depth (Lammertyn et al., 2000; Fraser et al., 2000). 

Consequently, having relatively lower performance for whole tubers, and slices, for estimating 

chemical constituents can be understandable. Moreover, skin is a factor resulting in dispersing, 

interfering, and weakening of detected signals, and mostly yields lower correlation between 

spectra and chemical compounds inside the tissue (Fraser et al., 2003). Therefore, and based on 

the DM distribution inside potato tubers, reflectance and interactance modes generally yielded 

better correlation than transmittance mode. However, sampling methods applied on such studies 

are not suitable for on-line sorting. SG prediction models showed the same performance as DM, 

between the three spectroscopic modes, which probably is a result of the fact that SG is a direct 

indication of DM or the solids inside the tuber.  

Water content (WC) is also an important factor of potato tubers as it is inversely 

proportional with DM, SG, and starch content. Thus, it’s desirable to keep WC in potato tubers at 
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levels that protect tubers from water loss and shrinkage without any excess that reduces tubers’ 

suitability for processing. Water absorption peaks in the NIR range are located at 970, 1200, and 

1450 nm (Workman, and Weyer, 2008). In some cases, however, some interfering might occur 

between water and other constituents’ absorption when using a broad wavelength range. 

Consequently, table 2.1 shows that relatively low RMSEP values were obtained for WC 

estimation when using narrower wavelength range as conducted by Qiao et al., 2005 (RMSEP= 

0.14%) compared with RMSEP values of 6.414%, 4.791%, 1.761%, and 0.387% obtained by 

Singh et al., 2004.  

Table 2.1. Reported electronic techniques to estimate specific gravity, dry matter and water content for raw and non-

processed potatoes. 
Mode(spectral range) Parameter Tested material R%(RMSEP) Reference 

NIR transmittance (800-1000 nm) 

 

DM Whole tubers 

Thin slices(2.54 cm) 
Thick slices(4-6 cm) 

92(1.52%) (no test set) 

97(?) 
95(1.69%) 

(Dull et al., 1989) 

NIR reflectance (1100-2500 nm) DM Homogenized 97(0.19%) (no test set) (Hartmann and 

Büning-Pfaue, 1998) 

NIR reflectance (770-2498 nm) 
 

SG 
DM 

Cylindrical 
 

87(0.007) 
88(1.3%) 

Scanlon et al., 1999) 

NMR (low field) 

 

DM Slices 

Raw 

Boiled 

?(?) 

?(?) 

?(?) 

(Thybo et al., 2000) 

NMR (low field) DM Slices ?(?) (Thygesen et al., 2001) 

VIS/NIR transmittance (530-1100) 

 

SG Whole tubers 

Punctured tubers 

85(0.002) 

82(0.002) 

(Kang et al., 2003) 

NMR (low field)/ MRI 
 

DM Slice 
Cylindrical 

?(?) 
?(?) 

(Thybo et al., 2003) 

VIS/NIR reflectance (400-2500 nm) DM Mashed 98(0.533%) (Haase, 2004) 

VIS/NIR reflectance (300-2500 nm) 

 

WC slab samples (6x4x0.3 

cm3) 
Without skin(400-1750) 

Without skin(700-

900,1000-1100,1250-1600) 
With skin(400-1750) 

With skin(850-900,1100-

1200,1400-1500) 

 

99(6.414%) 
99(4.791%) 

 

99(1.761%) 
99(0.387%) 

(Singh et al., 2004) 

NIR transmittance DM Whole tuber 79(1.04%) (no test set) (Walsh et al., 2004) 

VIS/NIR interactance  (400-1100 nm) SG Whole tubers 90(0.004) (no test set) (Chen et al., 2005) 

Hyperspectral imaging (934-997 nm) WC Whole tuber 88(0.014%) (Qiao et al., 2005) 

NIR interactance (750-950 nm) 

 

DM Peeled 

Slices 

Slices(moving) 

95(1.13%) 

93(1.08%) 

90(1.08%) 

(Subedi and Walsh, 

2009) 

NIR reflectance   (850-2500 nm) DM Ground samples 99(0.42%) (Haase, 2011) 

1 D VIS/NIR interactance (449-1040 

nm) 
2 D NIR interactance (760-1040 nm) 

DM Whole tubers (unpeeled)  97(0.91%) (no test set) 

91(1.68%) 

(Helgerud et al., 2012) 
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2.1.2 Carbohydrates and Protein Content 

Potato is known as a good source of carbohydrates in comparison with grains. 

Carbohydrate concentrations, as well as chemical constituents, depend on variety, soil type, 

cultural practice, maturity stage, diseases, and storage conditions (Rama, and Narasimham, 

2003). Total carbohydrates significantly differs between the raw potato (18.5% FW), and dried 

potato (74.3% weight) which exceeds or is close to the same value for other carbohydrate 

sources: rice (80.2% FW), wheat (70.9% FW), sweet potato (27.4% FW), yam (24.2% FW), and 

cassava (35.2% FW) (Woolfe, 1987). McCay et al. (1975), stated that the number of calories 

obtained from one medium size potato tuber is the same as that obtained from an apple or a 

banana. Carbohydrates in potato tubers include: starch, sugars, cellulose, hemicellulose, and 

other polysaccharides.  Starch is the major component in potato carbohydrates accounting for 60-

80% of the dry matter (Kadam, et al.,1991). There are two main types of starch in potato tubers: 

amylose (linear chain of glucose molecules linked by 1,4-glycosidic bonds) that account for 20% 

of the tuber starch and the rest is amylopectin in which the glucose chains are also branched by 

1,6 glycosidic bonds (Storey, 2007).  

Starch concentration in potato tubers starts with low levels after tuber initiation with an 

increase during buckling, and reaches its maximum value at the start of the senescence process. 

Starch then decreases with the time of vine killing in a similar trend to the specific gravity 

accumulation process (Stark and Love, 2003). Starch is shown to positively correlate with 

specific gravity and dry matter. Tubers with starch content of 13% or higher are acceptable for 

processing (Stark et al., 2003). The common method to determine total starch in potato tubers is 

the enzymatic hydrolysis in which the starch is completely converted into D-glucose using 

specific enzymes. In addition of being a destructive method requiring preparation time, the 
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enzymatic method has some possible drawbacks including the interfering of other enzymes that 

leads to higher or lower total starch levels than the actual content (BeMiller, 2003). 

Monitoring starch content in potatoes, as shown in table 2.2, using spectroscopic systems 

was feasible with most of tests conducted on mashed or ground tubers, and resulting in relatively 

low RMSEP values (0.651%, and 0.740% by Haase 2004; and Haase, 2011) compared to limits 

recommended for tuber processing. The relatively high content of starch in potatoes, compared 

to other constituents, and the broad distribution inside the tuber (in cortex, vascular ring, and 

parenchyma) resulted in strong correlation with NIR, or VIS/NIR spectroscopic systems. Some 

studies showed standard error of prediction (SEP) rather than RMSEP. Studies with a separate 

test set (Haase, 2004; Haase, 2006; and Haase, 2011) resulted in higher error values than that 

with only validation set which is statistically expectable (Hartmann and Büning-Pfaue, 1998).  

 The main reducing sugars in potato tubers are: glucose (0.15-1.5%FW), and fructose 

(0.15-1.5%FW) which are reducing sugars, and sucrose (0.4-6.6%FW), (Storey, 2007). Sugar 

level varies with variety, and low sugar varieties are usually dedicated for processing (Liu et al., 

2009). There are different scenarios for sugar formation in potato tubers; sucrose is usually 

formed during the photosynthesis process, it then is enzymatically divided into glucose and 

fructose. Fructose is converted into glucose and the glucose forms the starch molecules (Stark 

and Love, 2003). Traditional methods of sugar measurement include: HPLC (high performance 

liquid chromatography), HPAEC (high performance anion chromatography), gas-liquid 

chromatography, and the YSI Analyzer invented by Yellow Springs Instruments (Yellow Springs 

Instrument, Yellow Springs, Ohio, USA). While these techniques are shown to be accurate and 

used for quality assurance in processing facilities, they are still destructive, time consuming, and 

cannot cope with in-line sorting applications. The levels of sugars in potato tubers are very 
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critical for estimating the viability of processing, especially chipping, and French frying. 

According to Stark and Love (2003), the recommended thresholds of glucose at either harvest 

time or during storage are 0.035% (FW) for potatoes destined to chips and 0.12% (FW) for 

potatoes used for French fries. Sucrose thresholds are 0.15% (FW) at harvest and 0.10% (FW) 

during storage for chipping tubers, whereas those values were 0.15% (FW) at harvest or during 

storage for tubers dedicated to French fries use. Higher levels of reducing sugars cause a dark 

browning color resulting from the non-enzymatic reaction, known as the Maillard reaction, 

between reducing sugars and the amino acid asparagine (Storey and Davies, 1992). In addition, 

sweetening flavor found in potato chips, and French fries is due to the increase of sucrose 

content as a result of storing tubers at low temperatures (< 4 
o
C) (Storey, 2007). Thus, 

monitoring sugars in potato tubers before, and during, storage becomes a basic quality practice in 

the frying industry.       

  Some studies of electronically assessing sugar content of potato tubers yielded relatively 

low values of RMSEP (Mehrubeoglu and Cote, 1997; Hartmann and Büning-Pfaue, 1998; Haase, 

2011; Rady et al., 2014) that are lower than the threshold listed for processing. Other 

experiments conducted on whole tubers, however, either resulted in higher RMSEP values 

(Yaptenco et al., 2000, Rady et al., 2014) or did not include independent prediction sets (Chen et 

al., 2010). Such lower performance is mainly due to the skin effect that is cultivar dependent. 

Consequently, sorting potato tubers based on sugar content is a more challenging task than 

assessing sugars in ground, homogenized, or even sliced samples. Classifying tubers with respect 

to their sugar content reduces the variation of sugars between them and helps improve frying 

quality and consistency. Moreover, tubers with higher sugar content than the processing 

thresholds may be reconditioned by storing at elevated temperatures for 2-6 weeks (Storey, and 
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Davies, 1992). More research regarding the on-line sorting of potato tubers based on sugar 

content is still needed for enhancing the quality of both fried products, and fresh tubers.  

Potato does not contain considerable amounts of proteins, 1.7-2.1 g per 100 FW, 

compared to eggs, fish, and dairy products. However, in countries with high potato consumption, 

potato significantly contributes to human diet. Moreover, the high quality of potato protein 

within 100 g of boiled potato supplies the portion of Recommended Daily Allowance (RDA) of 

8-13% for children, 6-7% for adults (Storey, 2007; Storey and Davies, 1992). Burton (1989), 

also stated that potatoes yields more protein per hectare than major cereal crops. Other uses of 

potato protein include cattle and pig feed, as well as some other applications including treatments 

for weight loss, peri-anal dermatitis, thrombotic disease, and cancer (Kärenlampi and White, 

2009). Therefore, estimating protein content in potatoes in a rapid way can help assess the 

viability of tubers for industry. The Kjeldahl procedure is the traditional method for estimating 

protein in food products, and it is a destructive technique requiring enough time for digestion, 

neutralization, and titration steps (Chang, 2010). NIR diffuse reflectance (1100-2500 nm) was 

successfully used by Hartmann and Büning-Bfaue (1998), to estimate protein content of potatoes 

with R(RMSEP) values of 0.86(0.06%), which was more accurate than results achieved by Haase 

(2006), using VIS/NIR reflectance (400-2500 nm) with R(RPD) values being 0.79(0.205%FW) 

which refers to the advantage of choosing narrower wavelength bands in the former study so that 

interference from other chemical compounds was reduced.      
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Table 2.2. Reported electronic methods to estimate carbohydrates (starch, sugars), and protein content for raw and 

non-processed potatoes. 
Mode(spectral range) Parameter Tested material R%(RMSEP, %FW) Reference 

NIR transmittance (2050-2400 nm) 

 

Total reducing sugars Sliced samples 

Russet variety 

Chipping variety 

Both 

 

98(0.0671) (no test set) 

81(0.0224) 

51(0.0600) 

(Mehrubeoglu and 

Cote, 1997) 

NIR reflectance (1100-2500 nm) 

 

Fructose 

Glucose 

Sucrose 

Total reducing sugars 

Starch 

Crude protein 

Homogenized 

samples 

 

 

89(0.028) (no test set) 

70(0.041) 

62(0.037) 

82(0.061) 

93(0.028) 

86(0.06) 

(Hartmann and 

Büning-Pfaue, 1998) 

VIS/NIR interactance (400-1100 

nm) 

Glucose 

Fructose 

Sucrose 

Reducing sugars 

Total sugars 

Whole tubers 83(0.087) (no test set) 

95(0.101) 

95(0.341) 

93(0.204) 

95(0.598) 

(Yaptenco et al., 

2000) 

NMR (low field) Starch Raw (slices) ?(?) (Thygesen et al., 

2001) 

VIS/NIR reflectance (400-2500 

nm) 

Starch 

 

Mashed tubers 

 

98(0.651) 

 

(Haase, 2004) 

NIR interactance (700-1100 nm) Carbohydrates  Whole tubers 93(0.98)  (Chen et al., 2004) 

Opto-electric system Starch (using density) Whole tuber ?(?) (Hoffmann et al., 

2005) 

VIS/NIR reflectance (400-2500 

nm) 

 

Starch 

Protein 

Coagulable protein 

Mashed tubers 

 

95(0.740)  

79(0.205) 

50(0.093) 

(Haase, 2006) 

VIS/NIR interactance (400-1100 

nm) 

Glucose 

Fructose 

Whole tubers 0.65(0.046) (no test set) 

0.71(0.026) 

(Chen et al., 2010) 

NIR interactance (850-2500 nm) 

 

Starch (incremental) 

Starch (retrospective) 

Reducing sugars (incremental) 

Reducing sugars (retrospective) 

Sucrose (incremental) 

Sucrose ( retrospective) 

Total sugars (incremental) 

Total sugars (retrospective) 

Ground samples 

 

98(0.50) 

98(0.47) 

57(0.00483) 

66(0.00389) 

77(0.0106) 

84(0.00969) 

73(0.0156) 

81(0.0135) 

(Haase, 2011) 

Vis/NIR interactance (446-1125) 

 

 

 

 

 

Vis/NIR hyperspectral reflectance 

(400-1000 nm) 

 

 

 

 

NIR transmittance (900-1685 nm) 

 

Glucose 

 

 

Sucrose 

 

 

Glucose 

 

 

Sucrose 

 

 

Glucose 

 

Sucrose 

Sliced samples &  

Whole tubers   

(Chipping-table  

use) 

 

 

 

 

 

 

 

 

Only sliced 

samples 

 

90-95 (0.0515-0.0786) & 

 88-79(0.0620-1529) 

 

81-50(0.0439-1.0273) & 

81-26(0.0436-0.2051)  

 

64-74 (0.0880-0.1643) & 

38-52 (0.0681-0.3259) 

 

62-57(0.0580-0.1533) & 

14-43 (0.0702-0.1805) 

 

66-87 (0.0515-0.1921)& 

 

57-63 (0.0582-0.8962) 

(Rady et al., 2014) 

 

 2.1.3 Defects and Diseases Detection of Potato Tubers          

Mechanical damage and disease management are probably the most critical postharvest 

issues that face growers and processors. Negative consequences occur for potato products when 

there are inappropriate harvest and handling operations. The study of mechanical damage in 

potatoes was among the earliest postharvest problems addressed and presented in literature 

(Klapp, 1945; Hopkins, 1953; Nylund, and Hempkill, 1955; Volbracht, and Kuhnke, 1956; 
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Lamp, 1960; Ophuis et. al, 1958; Zahara et. al, 1961; Parke, 1963; Loow, 1964; Kunkel, and 

Gardner, 1965; Johnston et. al, 1968; Gray and Hughes, 1978; Hyde et. al, 1979; Balls et. al, 

1982; Mohsenin, 1986; Burton, 1989; Kleinschmidt and Thronton, 1991; Baritelle et. al, 1998;  

Baritelle and Hyde, 1999; Thronton and Bohl, 2000; Hemmat and Taki, 2001; Rady, 2006; Rady 

and Soliman, 2013). Dean (1996), stated that the brown or black discoloration seen in tubers 

after impacts is caused by both enzymatic and non-enzymatic oxidation of phenolic substances. 

The enzyme called polyphenoloxidase (PPO) results in the formation of melanin pigments. 

According to Storey and Davies (1992), mechanical damage of potato tubers may be divided, 

based on the form of damage, into two groups: external or internal damage. External damage 

includes skin scuffing, cuts or gouges, crushing, which are apparent by inspection, and leads to 

direct losses when grading or preparation for consumption or processing. It also causes an 

increase in weight loss during storage and allows for the ingression of disease pathogens. The 

second type is internal damage, which includes internal shattering or cracking and black spots. In 

some cases, internal damages may be visible under the skin of the tuber, but in most instances it 

is not apparent until tubers are cut or peeled.  

Defects and diseases were also some of the first postharvest problems that received much 

investigation into noninvasive and/or electronic techniques. These disorders usually result in 

change in shape, tissue color, or moisture content that can be detected using non-invasive 

techniques. This domain became an open field for research using rapid and/or electronic methods 

which led to systems already available to the industry to help sort non-desirable tubers or potato 

products. The reason of this early importance is the severe economic impact of such problems in 

either fresh or processed forms. There are many electronic-based rapid techniques applied to 

potato to assess defects including traditional machine vision, spectroscopic, and ultrasonic. 
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Application of such methods on raw potato tubers along with performance are discussed in 

sections 2.1.3.1.-2.1.3.3. Various electronic methods used for defect detection of potato tubers 

are shown in table 2.3.    

2.1.3.1 Spectroscopic-based methods  

Spectroscopic techniques have been used in many quality evaluation applications 

including detecting defects for fruits, vegetables, grains, and meat. Detection of potato defects 

using spectroscopic systems depends on variation of absorbance between sound and damaged 

tissues that is usually used to classify tubers into different categories.       

Hollow heart (HH) was one of the earliest defects to be studied using noninvasive 

techniques possibly because it is a major internal physiological disorder that significantly affects 

tubers dedicated for processing. Due to the fact that HH usually develops as an irregular cavity in 

the pith area (Watts and Russel, 1985), the transmittance mode was probably the appropriate 

technique for detecting such defect. Several factors, however, resulted in somewhat low 

classification rates of HH (83-98% for Birth 1960; and 83% for Kang et al., 2008) using 

spectroscopic methods as noted in table 2.3. The most influencing factor for such results is the 

similarity of absorption characteristics between skin and damaged tissue (Birth, 1960). 

Consequently, some small tubers were classified as false-positive as a result of the fact that the 

proportion of path length through the skin with respect to the total path length is higher for small 

tubers than larger tubers. Other internal defects (black spot) followed the same results as for HH.  

Some defects have internal breakdown of the tissue extending to the surface (bacterial 

soft rot, dry rot, late blight, gangrene) and were also classified using spectroscopic methods 

resulting in comparable performance to that of HH, and black spot (Muir et al., 1982).     
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In general, internal defects were much more successfully detected using different 

spectroscopic systems than external defects due to specular reflectance and interference from 

tuber skin in the latter type. Moreover, external defects are usually not completely distributed 

over the tuber surface which requires scanning of the whole surface to obtain accurate 

description of tuber status and consequently a high classification rate.                

2.1.3.2 Imaging-based methods 

Applications of computer vision systems on detecting physiological disorders, 

mechanical damage, and other internal or external defects of potato tubers were studied to 

evaluate the potential of using such techniques for sorting tubers dedicated for either fresh use or 

processing. Hollow heart, bruises, greening, scab infection, and blemishes are probably the most 

frequent imperfections that received consideration of imaging-based methods as shown in table 

2.3.       

As a result of its efficient use in medical diagnostics, x-ray imaging systems were 

dominating computer vision research studies in the agriculture domain since the 1930’s. X-ray is 

a short-wave electromagnetic spectrum (0.002-100 nm) that interacts with specimen tissue and 

the intensity of detected signals mainly depends on incident intensity, absorption coefficient, 

product density, and sample thickness (Butz et al., 2005; Abbott, 1999).  Studying the detection 

of hollow heart in potatoes was the first application of x-ray in quality measurements for 

perishable produce (Abbott, 1999; Nylund, and Lutz, 1950; Harvey, 1937). Experiments 

conducted by Nylund, and Lutz (1950), Finney and Norris (1973 and 1978), resulted in 

classification rates of 84.1, 100, and 100% respectively for defected tubers.  
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Some challenges still restrict the application of x-ray imaging systems in the domain of 

food products. Such restraints include the limitation of detection to density-changing tissues and 

not chemical composition or mechanical damage forms, the high cost of x-ray inspection 

systems, and low operational speed (Mathanker et al., 2013; Butz et al., 2005; Chen et al., 2002).      

Rapid development of imaging hardware and computers resulted in the application of 

color cameras on tracking quality attributes of food products. Images resulting from color 

cameras show useful information about both internal and external status of samples. Obtained 

information includes color, shape, textures, disease, and defects. With the decreased cost, and 

increasing computing speeds, image analysis was made possible for building commercial grading 

systems for fruits, and vegetables (Chen and Sun, 1991). 

Several studies were conducted to investigate the potential use of color cameras, along 

with other imaging systems for defect detection of potatoes. Surface defects (skin cutting, shatter 

bruise, common scab, greening, cracks, etc.) were successfully evaluated for whole tubers using 

color cameras with classification rates higher than 95% (Hasankhani et al., 2012; Samanta et al., 

2012). Other internal or sub-surface defects were also studied using RGB, and multispectral 

cameras, or hyperspectral imaging systems. Results of classifying common scab defected tubers 

and healthy tubers using NIR hyperspectral imaging by Dacal-Nieto et al. (2012), showed 

promising performance with classification rates of healthy and defected tubers of 94.0%, and 

98.6% respectively. It is worth stating that hyperspectral imaging systems are not suitable for on-

line sorting purposes because the relatively long acquisition time needed to acquire each image. 

They can be effectively used to provide the most influencing wavelengths associated with the 

high classification rates, and those wavelengths can be utilized by multispectral imaging systems 

(Chen et al., 2002).  
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  Several techniques were noted above for effectively monitoring different external and 

internal disorders in potato tubers with various degrees of efficiency. Imaging systems were 

noted to present the best performance of tracking the presence of defects and damage compared 

to other systems, especially for internal defects. Although acquiring and analyzing spectroscopic 

signals is less time consuming than for imaging systems, the use of spectroscopic systems for 

detecting internal defects, that are not visible by human labor, did not yield acceptable 

performance for the industry.  

2.1.3.3 Sonic-based methods 

Ultrasound technology (UT) is known for its successful use in medical diagnosis, and 

manufacturing applications. UT usually works under either of two modes; the pulse-echo mode 

which is simply a reflectance mode in which one transducer is used for emitting and receiving 

the reflected signals. In the second mode, known as the through-transmission mode, one 

transducer works as a transmitter and the second one as a receiver. Evaluation of tested material 

using UT comes from both attenuated signals and the propagation speed as both parameters vary 

with the change of tissue nature or the presence of defects (Mizrach, 2012; Mizrach, 2008). 

Unlike solids, liquids, and human tissues, fruits and vegetables are very attenuating materials due 

to their scattering effect when applying the frequencies used for medical and industrial 

applications (0.5-30MHz) (Mizrach, 2008). More studies by Sarkar and Wolfe (1983), reported 

that lower frequencies (100-500 KHz) and higher acoustic power might be more effective for 

quality applications of fruits, and vegetables.  

As presented in table 2.3, ultrasound technology was generally applied for potatoes on 

detection of hollow heart as this physiological disorder tends to have distinguished wave 

attenuation characteristics compared with healthy tissue and generally, defective tubers had less 
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signal amplitude and intensity than the healthy tubers. Most studies were conducted in the 

frequency range of 50-200 KHz. Success in hollow heart detection was demonstrated with a 

classification rate as high as 100% (Ha et al., 1991; Cheng and Haugh, 1994). Such results 

showed the advantage of using ultrasound techniques for detecting hollow heart and possibly 

other diseases and damage in potato tubers. Limitation of tuber defects that can be effectively 

tracked using UT, however, restricted the application of UT to hollow heart only which is not 

economically valuable with the many diseases and disorders infecting potatoes in the postharvest 

stage as mentioned earlier. 
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Table 2.3. Reported spectroscopic, imaging, and sonic methods to detect defects, and diseases for potato raw and 

non-processed potatoes. 
Mode(spectral range) Defect/disease Classification rate (%) Reference 

Transmittance (540-910nm) Hollow heart 
Greening 

Decay 

Black spot 

83-98 
50 

50 

88 

(Birth, 1960) 

VIS/NIR diffuse reflectance (590-2030 nm) Defected tubers 

Sound tubers 

79 

82 

(Porteous et al., 1981) 

VIS/NIR diffuse reflectance (570-870 nm) Gangrene (control) 

Gangrene (diseased) 
Dry rot (control) 

Dry rot (diseased) 

98 

77 
93 

72 

(Muir et al., 1982) 

VIS/NIR diffuse reflectance  Surface & subsurface  
defects 

? (Muir et al., 1999) 

UV to NIR (250-1750 nm) reflectance 

UV 

 
VIS 

 

NIR 

Surface bruise 

Unpeeled 

Peeled 
Unpeeled 

Peeled 

Unpeeled 
Peeled 

 

45.5 

79.5 
55.1 

57.1 

65.9 
55.8 

(Evans and Muir, 1999) 

VIS/NIR transmittance (530 – 1100 nm) Hollow heart 83 (Kang et al., 2008) 

VIS/NIR  time resolved reflectance (540-900 nm) Internal brown spot 81 (Vanoli et al., 2012) 

X-ray Hollow heart ? (Harvey, 1937) 

X-ray Hollow heart 84.1  (Nylund and Lutz, 1950) 

X-ray Hollow heart 100  (Finney and Norris, 1973) 

X-ray Hollow heart 100 (Finney and Norris, 1978) 

CCD color camera Greening 
Shatter bruise 

74.0 
76.7 

(Deck et al., 1995) 

CCD color camera Greening 90.0 (Tao et al., 1995a) 

Multispectral camera (400-2000 nm) Surface & subsurface  

defects 

? (Muir et al., 1999) 

Color camera Colored bruises & 

greening 

? (Marique et al., 2005) 

CCD color camera Good potato 

Potato with defects 

100 

100 

(Jin et al., 2009) 

CCD color camera Blemishes 

White cultivar 

Red cultivar 

 

89.6 

89.5 

(Barnes et al., 2010) 

NIR Hyperspectral 
900-1700 nm 

Healthy tubers 
Common scab  

94.0 
98.6 

(Dacal-Nieto et al., 2011) 

CCD camera Greening 94.7  (Ebrahimi et al., 2011) 

CCD color camera Healthy 
Crack 

Greening 

Fetidness 
Skin cutting 

Other defects 

100 
100 

100 

86.0  
100  

100  

(Hasankhani et al., 2012) 

CCD color camera Defected tubers 95.0  (Razmjooy et al., 2012a) 

RGB camera Scab disease 97.5 (Samanta et al., 2012) 

Ultrasound attenuation at 175 KHz Hollow heart ? (Watts, and Russell, 1985) 

Ultrasound attenuation at 50, 100 KHz Data collection ? (Mizrah, 1989) 

Ultrasound attenuation at 50 KHz- 1 MHz Hollow heart 100 (Ha et al., 1991) 

Ultrasound attenuation at Hollow heart 
? (Mizrach, et al., 1992). 

 

Ultrasound attenuation at 250 KHz Hollow heart 100 (Cheng and Haugh, 1994) 

Ultrasound attenuation at 50,100,150 KHz Hollow heart 98 (Jivanuwong, 1998) 

Acoustic impact Hollow heart 98 (Elbatawi, 2008) 

Ultrasound attenuation at 2, 32.8, 40 and 50 KHz Mechanical damage 

(pressure, and impact) 

83-95 (Esehaghbeygi et al., 2011) 
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2.1.4 Systems for Non Destructive Sorting of Raw Potato Tubers 

Elimination of tubers with surface defects, physiological disorders, and/or internal 

drawback that don’t meet quality requirements is a necessary process during preparing potatoes 

for fresh market or processing. US Standards for Grades of Potatoes restrict potato growers with 

limits for defects, size, weight, maturity, and shape uniformity with tolerances either in the 

shipping or destination points with different grades including US. No.1, U.S. Commercial, and 

U.S. No. 2 (National Agricultural Statistics Service, USDA, 2012). Although there are regulation 

tolerances, proper considerations should be taken at sorting stations and packing houses to ensure 

higher product marketability and more benefits for producers. 

 The use of human labor for sorting and grading of agricultural products is the traditional 

technique especially in developing counties as the labor is much cheaper than in developed 

countries. Some disadvantages, however, are usually related to manual sorting including low 

sorting rate, inability to sort internally defected samples, degradation of performance with time, 

and the high cost and problems associated with immigrant workers in developed countries. Such 

drawbacks resulted in extensive research for developing techniques for detecting defects and 

physiological disorders in a noninvasive manner, as shown in section 2.1.3, and quantitatively 

and qualitatively improving the output of sorting stations. Sorting potato tubers, as well as other 

perishable products, is more complicated than the prediction of a single or multiple constituents 

or the detection of one or more defects. In designing any sorting system, one should consider not 

only important factors stated in section 2.1.3, but also other foreign materials that need to be 

discarded such as vine, stones, soil, etc. Moreover, a sorting process includes eliminating 

samples that don’t match size, appearance, and shape standards. Also, productivity of the sorting 

system (ton/hr) is a crucial factor to estimate its practicality, and marketability.   



 

24 
 

 In the case of potatoes, several operations are conducted on the harvested crop including 

removal of any remaining soil, clods, haulm, and stones, grading of tubers into several sub-

grades, and removing any tubers that do not meet requirements for local market (Pringle et al., 

2009). Table 2.4 shows the different reported studies for sorting potato tubers using several 

techniques (spectroscopic, imaging, ultrasonic, vibrational response characteristics).  

Spectroscopic methods are known to be rapid techniques for monitoring quality attributes 

for potatoes as shown in sections 2.1.1, 2.1.2, and 2.1.3. With the relatively low integration time, 

i.e. high acquisition speed, for the developed diode array-based NIR spectrometers, in addition to 

the powerful multivariate regression methods, i.e. PLSR, it was feasible to build online 

spectroscopic sorting systems (Nicolai et al., 2007). The most crucial factor affecting the 

performance of such a sorting system is the prediction model robustness that includes the ability 

to precisely predict quality attributes for samples that were not used to build the calibration 

model. The calibration models should be based on large datasets obtained from different 

destinations, growing conditions, and operational conditions (Nicolai et al., 2007).         
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Table 2.4. Reported electronic methods for sorting potato raw potato tubers using different quality attributes. 
Method/ Mode Sorting criteria R(RMSEP) or 

classification rate 

(%) 

Performance Reference 

VIS/NIR diffuse reflectance 

(600-1300 & 1500-2200 nm) 

Reflectance characteristics   100(for potatoes) 292320 

objects/hr 

(Story and Raghavan, 1971) 

NIR diffuse reflectance Reflectance characteristics   ?(?) ? (Story, 1973) 

VIS/NIR transmittance 

(530 – 1100 nm) 

Dry matter 

Specific gravity 

80.0(0.67 %) 

83.0(0.005) 

? (Kang et al., 2008) 

NIR diffuse reflectance 
(1100-2500 nm) 

Dry matter 
Starch 

Coagulating protein 

97.0(0.47%) 
92.0(0.63%) 

92.0(0.06%) 

? (Brunt and Drost, 2010) 

X ray absorption and scatter  Absorption and scattering  ? ? (Slight, 1966) 

TV camera Size and  shape 100.0 40 tubers/sec (Marchant et al., 1990) 

CCD color camera Color 

Green tubers 

Good tubers 

 

90.0 

100.0 

? (Tao et al., 1995a) 

CCD color camera Shape 89.2 ? (Tao et al., 1995b) 

CCD video camera 

Moving tubers 

Stationary tubers 

Shape and size 

 

 

88.0 

98.0 

3 tubers/min (Heinemann et al., 1996) 

CCD video camera 

 

Weight 

Shape 

Size 

Color (greening) 

Overall 

91.2 

89.1 

85.5 

78.0 

87.0 

50 potato 

images/sec 

(Zhou et al., 1998) 

CCD color camera 
 

Color (greening) 
Shape 

Surface crack 

Rhizoctonia  

88.1 
99.2 

100.0 

100.0 

50 tubers/sec 
12 ton/hr 

( Noordam et al., 2000) 

 

RGB camera 

 

 

Hyperspectral imaging (321-1044 nm) 

Shape 

Clods (with wet, dry tubers) 

Wet tubers, dry tubers 

 

Clods (with wet, dry tubers) 

Wet tubers, dry tubers 

 

94.4, 75.4 

91.2, 71.4 

 

99.8, 97.4 

100, 76.8 

? (Al-Mallahi et al., 2008a) 

UV CCD camera (300-380 nm) 
Color 
Clods 

Tubers 

 
71.2-100 

94.5-100 

? (Al-Mallahi et al., 2008b) 

CCD color camera Defects & color 

Good 

Rotten 

Green 

 

86.6 

88.7 

86.2 

? (Dacal-Nieto et al., 2009) 

Firewire camera Shape 93.8 ? (Rios-Cabrera et al.,2009) 

UV CCD camera (300-420 nm) Color  

Clods  

Tubers 

 

100 

100 

? (Al-Mallahi et al., 2010a) 

UV CCD camera (300-420nm) Color 

Clods 

Tubers 

 

98.3 

98.8 

? (Al-Mallahi et al., 2010b) 

CCD camera Size (minor and major axis) ? ? (Chenglong et al., 2011) 

CD color camera Shape 
Regular tubers 

Misshapen tubers 

 
98.8 

75 

? (ElMasry et al., 2012) 

CCD color camera Shape 

Accepted tubers 

Rejected tubers 

 

91.8-100 

100 

? (Hasankhani and Navid, 

2012) 

CCD color camera 

 

Shape 

Defects 

96.9 

95.0 

? (Razmjooy et al., 2012) 

Vibrational response characteristics Vibrational response (clods) ? ? (Miller and Stephenson, 

1971) 

Vibrational response characteristics  Vibrational response  

Clods (static tests) 

Clods (moving objects) 

 

100 

90-100 

 

4-5 Pocket/sec 

(Stephenson et al., 1979) 

Impact acoustic signals (up to 100 KHz)  

Off-line 
 

 

On-line 

 

Impact acoustic response 

Tubers 
Clods 

 

Tubers 

Clods 

 

97.3 
97.6 

 

97.2 

97.5 

20 ton/hour (Hosainpour et al., 2010) 
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Review of literature showed that sorting potato tubers from stones, clods, and other 

foreign materials was not effectively studied using spectroscopic systems except in two 

references in which VIS/NIR, and NIR diffuse reflectance characteristics of potato tubers, 

stones, and clods were studied by Story (1973), and Story and Raghavan (1971), respectively. 

Both investigated the difference of diffuse reflectance properties between tubers and other 

foreign materials. Although the classification rate in the former study for potato tubers was 

100%, the authors stated several problems that could reduce system performance including the 

detector balance and the heating transistor. Moreover, it is important to state that results of such 

study were not confirmed by further research or applied on different cultivars. The possible 

reasons for no further advancement in this area includes the deficiency of spectroscopic systems 

in grading tubers based on size, and shape. On the other side, the rapid improvement of imaging 

hardware resulted in fast and accurate identification of size, and shape of different objects. 

 As shown in sections 2.1.1, and 2.1.2, spectroscopic systems have been studied to 

estimate different quality attributes of potatoes. Studies were conducted in an attempt toward 

developing an on-line sorting system for potato tubers based on quality parameters that are 

associated with processing. Dry matter (DM) and specific gravity (SG) were studied as sorting 

criteria by Kang et al. (2008), using VIS/NIR transmittance (650-1000 nm) with R(RMSEP) 

values for the prediction set of 0.83(0.0050), and 0.80(0.0067) for SG, and DM respectively. 

NIR diffuse reflectance (1100-2500 nm) was also used by Brunt and Drost (2010), for obtaining 

prediction models of dry mater, starch, and coagulation protein for potatoes in an off-line mode 

in an attempt to build a sorting system. Values of R(RMSEP) of prediction models were 

0.97(0.47%), 0.92(0.63%), and 0.92(0.06%) for dry mater, starch, and coagulation protein 

respectively.  
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 Machine vision applications in grading and sorting of vegetables and fruits based on size, 

color, weight, and defects were stated in the literature (Mahendran et al., 2012; Vibhute and 

Bodhe, 2012; Chen et al., 2002; Abbott, 1999; Chen and Sun, 1991). In the case of potatoes, 

there is a considerable variation of size, shape, and color of the cultivars available in the local 

market which adds difficulty for building a robust, yet universal sorting machine that can tolerate 

such changes. Several studies were conducted to build systems able to sort tubers based on 

different quality attributes using computer vision techniques as illustrated in table 2.4. 

 Experiments on sorting potato tubers using imaging methods started as early as 1966 by 

Slight in which x-ray scattering and absorption characteristics were studied under low energy (40 

KeV) to differentiate between tubers and rocks. While absorption coefficient values for potato 

tissue were less than those for other materials which gave a possibility for sorting potatoes from 

rocks, no further studies were conducted to enhance the results with a possible reason being the 

rapid development of imaging hardware, especially CCD-based cameras. Thereafter, studying 

the potential use of imaging systems in potato sorting and grading were extensively accelerated. 

Greening, as an external defect, was successfully detected based on tuber surface color by Tao et 

al., (1995); Zhou et al., (1998); Noordam et al., (2000); and Dacal- Nieto et al., (2009), with 

classification rate of defected tubers of 90%, 78.0%, 88.1%, and 86.2% respectively. Sorting and 

grading tubers could be a difficult mission with the singulation problem as a result of the 

possible interference between different touching objects (Al- Mallahi et el., 2010a; Marchant et 

al, 1990). It was possible, however, to build grading systems for tubers based on size by 

developing several separating techniques, applied on the captured images, such as the blob 

splitting algorithm (Marchant et al., 1990), the 8-neighbor labeling algorithm (Al- Mallahi et al., 

2010a), or based on intensity threshold (Dacal-Nieto et al., 2009). Consequently, grading tubers 
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into several standard grades, and eliminating misshapen tubers, was successfully conducted by 

Marchant et al., 1990; Noordam et al., 2000, and El Masry et al., 2012, with classification rates 

of 100%, 99.23%, and 98.8% respectively. Separating clods, stones and other foreign materials is 

another application studied by imaging systems. Achieving high detection rate of clods was 

possible using hyperspectral imaging (321-1044 nm) by Al- Mallahi et al. (2008a), in which the 

rate was 99.8%, 97.4% in the wet, and dry conditions, or UV camera (300-420 nm) by Al- 

Mallahi et al. (2010a), with the rate of 100%. The application of imaging systems for sorting 

potatoes based on external defects was also investigated by Noordam et al., (2000); Dacal-Nieto 

et al., (2009); and Razmjooy et al., (2012), with classification rates of the defected tubers being 

88.7%-100%.     

 Applying vibrational response characteristics on sorting potato tubers from clods, stones, 

or defects was initially studied by Miller and Stephenson (1971), by exciting a mixture of potato 

tubers, clods, and stones using either electromechanical or sonic techniques in the range of 20 to 

2 KHz. Results showed differences of vibrational response between the three objects. Additional 

study by Stephenson et al. (1979), assessed resonant frequencies of several perishable products 

among which potatoes show a frequency band of 400-600 Hz to yield the best detection of clods 

and stones (100% in static mode, and 90-100% in moving mode). 

2.2 Applications of Non Destructive and/or Rapid Methods on Quality Evaluation for 

Potato Products 

Processed potato products are more consumed in developed countries compared to table 

use in developing countries. However, noticeable changes are occurring in the developing 

countries toward consuming processed products. With advances in frozen French fry 

manufacturing facilities since the 1950s and the increase in fast food chains, processed potatoes 
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contributed to 64% of the total US potato use in the 2000s with 39 pounds per capita compared 

to 19 Kg per capita for fresh tubers (Economic Research Service (ERS), 2012). Moreover, 

according to a NASS 2013 report, US potato utilization included 61.2% of the total 2012 crop 

production directed to processing, 25.6% sold as fresh tubers, and 5.8% used as seed. Among the 

processed tubers, frozen French fries contribute to 51.1%, and 20% for chips and shoestrings. 

Moreover, in 2012, French fries, and chips contributed to 74% (> $1 billion) of the total US 

potato exports to the global market (2013 potato statistical yearbook). Thus, in this section the 

application of rapid and/or nondestructive methods on assessing quality attributes of processed 

potato will be limited to these two products.   

During the frying process, a significantly different microstructure, compared to the raw 

tuber, is derived. Formed after the frying process, the surface of a chip or French fry becomes 

dry, crispy and oily. However, the inner part is moist and cooked with less oil content than the 

external surface. Moreover, the oil content in the potato chip and French fry is around 38%, and 

the moisture content is 1.8 and 15% respectively (Pedreschi, 2009). However, in the case of raw 

tubers, the moisture, and fat contents are 77%, and 0.5% respectively (Kadam et al., 1991). Also, 

processed products are in general more uniform and controlled in shape and dimensions 

compared to raw tubers. Thus, it can be concluded that quality assurance strategies for French 

fries and chips are significantly different from raw tubers.  

Frozen French fries and chip marketability is extremely affected by the appearance which 

is the first factor influencing customer evaluation for the final product. Thus, quality assurance 

requires French fries and chip color to follow standards established by USDA, and other 

governmental and/or industry-related organizations. Frying color is affected by many factors 

including cultivar, maturity, stress during growth, storage period temperatures, handling 
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practices, fertilization application, slice thickness, frying parameters, and moisture content of the 

final product (Gould, 1995b).       

The capability of spectroscopic systems to assess and identify many chemical and 

nutritional compounds using their specific absorption signature at definite wavelengths has 

resulted in extensive research for quality monitoring of French fries and chips. Table 2.5 shows 

the reported spectroscopic methods for studying several quality attributes of French fries and 

chips. 

 To assess French fry color, visible diffuse reflectance (400-700 nm) was utilized by 

Panigrahi et al. (1996), and extracted features included color and reflectance properties. By 

applying linear discriminant analysis (LDA), classification accuracy was as high as 86, 86, and 

100% for dark, normal, and light groups respectively.  

 A potato chip is very thin (1.27-1.78 mm) and several quality attributes are important to 

monitor throughout production. Dry matter is an effective factor in frying oil consumption and 

dehydration during frying (Storey and Davis, 1992). Fat content in fried products is an important 

concern for consumers as healthy food is a major target in the current human diet around the 

world (Pedreschi, 2009). Although the Maillard reaction is known for formation of browning 

color during the frying process, another component is also formed, which is acrylamide, 

discovered by the Swedish National Food Authority in 2002 (Mottram et al., 2002; Stadler et al., 

2002). The acrylamide single unit (monomer) is toxic to the nervous system, a carcinogen in 

laboratory animals and a possible carcinogen in humans. French fries, and chips contain fat 

concentrations of 424 µg/kg, and 1739 µg/kg and these are considered relatively high ratios 

(Pedreschi, 2009). Spectroscopic systems are known for their efficacy to qualitatively and 

quantitatively monitor chemical components in food products. Consequently, several research 
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studies were conducted to assess these quality attributes. Prediction of acrylamide in potato chips 

was successfully conducted using VIS/NIR diffuse reflectance (400-2500 nm) by Segtnan et al. 

(2006). Results showed high performance for prediction models with R (RMSEP) of 0.95(246.8 

µg/kg). Such results were better than those obtained by Pedreschi (2010b), (460-740 nm & 760-

1040 nm) which is possibly due to the extended range of wavelengths used in the former study. 

Fat and moisture contents in potato chips were also evaluated by Shiroma and Rodriguez (2007), 

using NIR and MIR spectroscopy (1052-2000 nm and 2500-13333 nm) and best results showed 

R(RMSEP) values of 0.97(0.3%), and 0.96(1.29%) respectively. Pedreschi (2010b), was able to 

assess fat and dry matter contents with prediction models having R(RMSEP) values of 

0.99(0.99%) and 0.97(0.84%) respectively. Evaluation of quality attributes of French fries and 

potato chips using spectroscopic systems, as mentioned above, presented a potential for building 

sorting systems, or handheld tools for rapid assessment of both products after frying and before 

packing which increases the final product grade and also presents healthier food for consumers.               

Imaging systems are extensively used for color-based sorting and defect detection for 

multiple food products for their efficiency in detecting color differences using inexpensive 

cameras. Moreover, considering color as the most apparent, yet crucial quality aspect for both 

French fries and chips, much attention was carried out toward studying the potential 

establishment of cost-effective sorting imaging systems for these two potato products as shown 

in table 2.5.          
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Table 2.5. Reported spectroscopic and imaging methods for assessing quality attributes for frozen French fries and 

potato chips. 
Method/ Mode Product R(RMSEP) or classification rate Reference 

Visible diffuse reflectance 
(400-700 nm) 

French fries/ reflectance properties 
Overall  

Light 

Normal 
Dark 

 
91% 

100% 

86% 
86% 

(Panigrahi et al., 1996) 

VIS/NIR diffuse reflectance 

(400-2500 nm) 

Potato chips  

acrylamide content  

 

95(246.8 µg/kg) 

(Segtnan et al., 2006) 

NIR(1052-2000 nm) 

 

MID-IR (2500-13333 nm) 

Potato chips 
Fat 

Moisture content 

Fat 
Moisture content 

 
97(0.3%) 

96(1.29 %) 

97(0.3%) 
96(1.65 %) 

(Shiroma and Rodriguez-
Saona, 2007) 

VIS/NIR Inductance 

(460-740 nm & 760-1040 
nm) 

Potato chips 

Fat 
Dry matter 

Acrylamide 

 

99(0.99%) 
97(0.84%) 

83(266 µg/kg) 

(Pedreschi et al., 2010b) 

Video camera Potato chips (color measurement) 99 (Coles et al., 1993) 

Video camera Potato chips (color measurement) 94 (Scanlon et al., 1994) 

Video  camera Potato chips (color defects) ? (Segnini et al., 1999) 

Digital color camera Potato chips (color defects) 90 (Marique et al., 2003) 

Multispectral (400-900 nm) 

CCD color camera 

French fries (defects) 

 

87.90-99.25 

69.3-93.9 

(Noordam et al., 2004) 

Digital color camera Potato chips (color) 90-100 (Pedreschi et al., 2004) 

Digital color camera French fries  

Internal hollowness 

Normal 
Total 

 

100 

100 
100 

(Yin and Panigrahi, 2004) 

Digital color camera Potato chips (color & frying temperatures) ? (Pedreschi et al., 2006) 

Digital color camera Potato chips (color and texture) 90 (Mendoza et al., 2007) 

Flatbed scanner Potato chips (color defects) 98 (Romani et al., 2009) 

Digital color camera  Potato chips (color) 
Smooth chips 

Chips with ruffles 

 
97 

82 

(Pedreschi et al., 2010a) 

 

Most studies of investigating chip color using imaging techniques were conducted using 

either digital or video cameras as they are relatively inexpensive, and at the same time can 

efficiently detect color differences. Correlation between color features, especially in the L*a*b 

space that is more human-related and less dependent on illumination (Segnini et al., 1999), and 

measured color of chips were extensively conducted to evaluate external quality and estimate the 

presence of any undesirable dark color spots. Romani et al. (2009); Marique et al. (2003); and 

Scanlon et al. (1994), applied such techniques with R values of 0.98, 0.90, and 0.94. Surface 

shape of chips was proven to reduce such correlation as shown by Pedreschi (2010a), in which 

the R values were 0.97 and 0.82 for smooth and undulated chips. Mendoza et al. (2007), found 

that texture-based features (energy, entropy, contrast, and homogeneity) yielded better 
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classification rates (90%) than using color-based features. A combination of color and texture 

features was selected using Fisher linear discriminant functions and resulted in high accuracy 

(90-100%) for classifying chips into different classes based on frying parameters. 

The application of imaging systems on French fries was restricted to the area of defect 

detection. Multispectral imaging (MI) (400-900 nm) showed higher classification rate (87.90-

99.25%) than RGB color (69.3- 93.3%) for assessing several defects (damage, greening, external 

rot, and browning). The possible reason for such a trend was the ability for MI to identify some 

defects not shown in RGB images (i.e. greening). Texture features were also utilized for 

detecting hollowness in French fries using an RGB camera (Yin and Panigrahi, 2004). Ideal 

classification (100%) was obtained for normal, and defected strings using features obtained from 

gray level images along with a co-occurrence algorithm for feature calculation. However, 

computation time, as a crucial factor to assess the applicability of such a method for developing 

on-line sorting system, was not addressed in this study and needed further investigation.   

2.3 Commercial Sorting Systems for Potato Tubers, French Fries and Chips  

During the last three decades, nondestructive systems for sorting perishable products 

were successfully transferred from research labs into fields, packing houses and processing 

plants. Potatoes were one of the most applicable commodities to receive attention to apply rapid 

and noninvasive technology to discard internally or externally defected, misshapen and non-

suitable sized tubers. Also potato chips and French fries were classified using systems available 

commercially. Table 2.6 shows commercial sorting systems available in the market for whole 

potato tubers, French fries and chips. 
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Table 2. 6. Commercial sorting and quality monitoring systems for raw potato tubers, French fries and chips.     
Company/model Effective sorting base / and sorted 

material 

Discarded materials Notes 

Odenberg/ FPS 

1200,1400,1800 

Multispectral NIR color cameras/ 

unwashed potatoes (red, brown, and white 

skin) 

Soil clods, stones, foreign materials, and 

rotten potatoes 

15-70 ton/hr 

Key Technology/Optyx® 
WPS 

Laser and high performance color 
cameras/unwashed whole tubers 

Foreign materials, and rework potatoes 45 ton/hr 

Key Technology/Optyx® Multiple laser and cameras (VIS/IR, UV, 

or tri chromatic detection bands)  
configuration with LED, HID, or UV 

lighting /Whole tubers, chips, French fries, 

diced potato, wedged, and sliced 

Color, shape, texture, and defects 6-12 ton/hr 

Compac/InVision 9000 
blemish  

Vision system/ washed red and white 
tubers)   

External defects (marks, stains, insect 
damage, bruises, cuts, punctures), size, 

weight, color, and shape 

3.5 ton/hr/lane 

Taste Tech/T1 NIR diffuse reflectance, NIR 
transmittance/whole tubers, and chips 

Internal defects (hollow heart, black spot, 
internal browning, sugar, and Zebra chips 

concentration) 

 

VISAR/VACS 20.0 

(adopted from carrot 
grading system) 

Color imagery system/whole tubers Non uniform shapes, greening, surface 

defects (rot, cracks, dark spots) 

 

Herbert Engineering/DDS 

1200S Auto sort 

Three CCD color cameras/whole tubers Shape, size, defects: greening, rot, spots, 

cuts, skin discoloration.  

Up to 6  ton/hr 

(20-40 mm size) 

Oculus/ 1300 and 2000  Infrared  and digital cameras/whole tubers Defects: bruises, greening, cracks, black 
spots, Rhizoctonia, sliver scurf, rot, skin spot 

and foreign materials 

25 and 37 ton/hr 

Odenberg/Titan II Infrared  and digital cameras/whole tubers Defects: bruises, greening, blemishes. Color, 
and size and foreign materials 

11-50 ton/hr 

Odenberg/Halo LED, CCD camera, and NIR 

sensors/whole tubers (skin on or peeled) 

Defects: bruises, greening, blemishes. Color, 

size and foreign materials 

14-70 ton/hr 

Odenberg/ Sentinel  Color cameras and NIR sensors/whole 
tubers 

Shape, size, surface discoloration, defects 
and foreign materials 

30-50 ton/hr 

Best/ Genius Optical 

sorter   

Cameras (monochromatic,  color), laser 

(fluorescence, SWIR, or Detox) with LED, 
UV or IR lighting / French fry, and chip 

Detects defects based on color, shape, 

structure, fluorescence and biological 
characteristics 

 

Best/POM/DYN size 

analyzer  

Color camera with LED illumination 

source / French fry 

Detect defects based on shape, size, and 

color 

Up to 60 Kg/hr 

 

General components of electronic sorters are: feeding unit which is usually a movable 

conveyor passing objects into the examining unit that contains the vision or optical system 

located in a closed box, the separating unit which is responsible for classifying different objects 

into the required classes, and the software that manages the sorting process. As objects move, 

they are scanned, often multiple times. Based on the adjusted thresholds, a decision is taken to 

discard foreign materials as well as samples that do not meet the set configurations. Finally, 

rejected objects are separated from the desired samples using either pneumatic-based or electro-

mechanical fingers. Many of the sorting systems combine color cameras with spectroscopic 

sensors with proper use of lighting source. These systems help detect external defects (greening, 
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cuts, bruises, surface physiological disorders), misshapen tubers, foreign materials (clods, stones, 

soil pieces, vines, etc.) as well as internal defects (hollow heart, black spot, brown spot, etc.). 

Cameras are usually positioned at different locations around the moving belt, thus, when the 

tubers fall or are projected in free air while passing detectors a complete visualization of each 

object can be obtained. The combination of sensors yields a decision about the object status 

whether to be rejected or accepted. Spectroscopic sensors used in raw potato tuber or processed 

product sorting systems are either NIR or laser with a note that most defects of French fries and 

chips are external. Laser light sources are known for their concentrated, purity, high intensity, 

coherent, and narrow bandwidth. Laser (light amplification by simulated emission of radiation) is 

also distinguished for its ability to detect extensively small concentrations of species in the 

atmosphere. Consequently, many applications of laser were already in place in various medical, 

communication, and industrial areas (Friedman and Miller, 2003; Skoog et al., 2007). 

Agricultural applications of laser started in surveying and currently detection of defects in fresh 

produce is possible using sorting systems that integrate laser with other spectroscopic and/or 

image systems.     

  Although there has been success in manufacturing commercial sorting systems for potato 

tubers and products, constituent-based sorting is still a moving research area. Processing potato 

tubers for chipping or French frying requires continuous monitoring of sugars to assure high 

quality final product. Consequently, sorting based on defects is not enough to maintain such 

quality and a need for robust internal composition separation continues to increase. 

2.4 Future Research 

 Monitoring processing-related constituents of potato tubers is an important task for 

storage managers to accurately track concentration of such compounds and parameters. Although 
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other accurate methods exists for measuring sugar content, i,e. HPLC or GC-MS, there is need 

for a handheld device that can be calibrated for measuring chemical (glucose and sucrose), and 

physical (dry matter, specific gravity) quality attributes. Recent research studies regarding the 

use spectroscopic systems showed that such a device can work with whole tubers or sliced 

samples, thus, it requires low preparation time and implements an integration time of less than 

100 ms. Consequently, rapid measurement is feasible especially if the device is calibrated to 

work with multiple cultivars and different shapes, and by using large data sets and appropriate 

preprocessing techniques (Nicolai et al., 2007). The success of inventing a portable device would 

also benefit potato growers to estimate the suitable time for harvest based on monitoring 

different quality attributes, such as dry matter and sugar content, which are significantly affected 

by the pre-harvest practices as well as storage conditions.      

 Based on information available in literature and in the market and industry, online sorting 

of potatoes was mostly conducted based on eliminating foreign materials, misshapen, and defects 

tubers. Sorting tubers with respect to chemical constituents, and more specifically sugars, is not 

adequately studied. The importance of sorting tubers based on sugar content raises when potatoes 

from different destinations and growing conditions are stored together. Negative consequences 

occur, as mentioned in 2.1.2, with higher sugar concentrations when fried, thus requiring more 

attention in eliminating tubers with unacceptable sugar content so that they can potentially be 

reconditioned. Although constituent-based sorting has been used for several fruits if the target is 

to obtain much sweeter packed samples, however resulting in higher packing costs; in the case of 

potatoes, sorting based on sugar content is not only important for enhancing flavor and color 

quality of fries products, but it also helps provide healthier food for consumers to avoid any 
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subsequent problems due to acrylamide content. Thus, in the future, it may be feasible to see 

bags of raw potatoes in the local market marked with a “sugar-based sorted” label.                 

Hyperspectral imaging (HI) is also an advancing technology that has already been applied 

in remote sensing and precision agriculture and currently there is considerable research to apply 

this technology in food quality assurance. There have been few studies on assessing quality 

attributes of potatoes, and its fried products using HI as clarified in sections 2.1.2, 2.1.3, and 

2.1.4. While this method still cannot compete with other traditional vision or spectroscopic 

systems in speed, it has the advantages of combined spectroscopy and imaging techniques which 

can work in sorting of internal or external defects as well as chemical composition. 

Hyperspectral systems can, however, be used as a tool to estimate optimal spectral bands for 

sorting based on specific criteria which can be applied in an on-line way using multispectral 

systems that can provide appropriate speed for commercial use (Chen et al., 2002). 

There are other nondestructive techniques having feasible potential for use in quality 

assurance of potatoes. Magnetic resonance imaging (MRI) depends on the response of some 

nuclei, especially hydrogen in the case of agricultural crops, to an applied pulse of 

radiofrequency (RF). Images created by MRI can provide effective detection for defects resulting 

from watercore, bruising, or core breakdown (Abbott, 1999). Thus, MRI has been successfully 

applied for defect detection in apple and peaches (Barreiro et al., 1998), tomato (Milczarek et al., 

2009), and pears (Hernández-Sánchez et al., 2007). X-ray computed tomography (CT), 

commonly used in medical applications, apply the traditional x-ray technique but over several 

non-parallel paths through the objects and yields a 3D projection that results in slices of such 

projection (Abbott, 1999). X-ray CT was used for assessing tomato maturity (Brecht et al., 

1991), defects in chestnuts (Donis-González et al., 2012); and several agricultural commodities 
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(Donis-González et al., 2014) which gives a possible chance for external and internal defect 

detection in potatoes. Moreover, the application of x-ray CT imaging in French fries, and chips 

microstructure is feasible as the same technique was successfully applied on studying the woolly 

breakdown in nectarines (Sonego et al., 1995). Despite the relatively higher cost for establishing 

sorting systems based on NMR or x-ray CT systems, compared to spectroscopic and other vision 

systems, building small scale systems for grading, sorting, and quality assurance can possibly be 

achievable. Such possibility is due to the proven efficacy for NMR or x-ray CT systems in 

quality evaluation for fruits and vegetables.   

2.5 Summary 

Demand for processed and fast food has been showing significant increase in both 

developed and developing countries over the last three decades. Potato is a major crop in the 

food industry with various consumption forms compared with grain crops, fruits and vegetables. 

Potato, as other perishable commodities, is always susceptible to external and or internal damage 

during pre-harvest, harvesting, handling, and storage operations. Non-destructive, and/or rapid 

techniques of detecting defects and monitoring quality for raw tubers and processed potato 

products were studied first using machine vision systems with x-ray and later using 

spectroscopic systems. 

 With the advancement in vision and electronic hardware accuracy, resolution, robustness, 

reproducibility, and the tremendous jump in computing speed in the last decade, it has been 

possible to build commercial sorting systems efficient enough to eliminate external defects 

(physiological and mechanical) and sort tubers based on size and shape so clods, stones, and 

remaining vines are discarded and different tuber grades could be obtained.     
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 The commercial use of spectroscopic systems either individually or integrated with vision 

systems resulted in the ability to detect and eliminate internally damaged tubers in different 

conditions (peeled or with skin on) which is a very important factor in assuring the quality of 

chips and French fries. Monitoring potato tubers for processing (chip or French fry) after harvest 

is crucial to allow for recovering from the increase of sugars and assure the suitability for 

processing by storing at appropriate temperatures. The future of sorting tubers based on internal 

chemical composition is growing in research and possible commercial systems might be 

available with the advancement on spectroscopic hardware (light sources, spectrophotometers) 

and pattern recognition methods (SIMA or soft independent modeling of class analogy, K-

nearest neighbor or Knn, artificial neural network or ANN, support vector machines or SVM, 

decision trees) and finally with the appropriate arrangement of samples, light sources, detectors. 

Unlike other agricultural commodities (apple, pear, cucumber, etc.), the quite broad variation of 

shapes, sizes, and diverse uses of potato tubers, presents challenges for rapid and/or non-

destructive technology application at points right after harvesting, handling, storage, or even 

after processing operations. The huge economic value associated with the potato industry 

obligates more research to develop cost effective, yet highly accurate, monitoring systems based 

on the current or future technologies to enhance food quality, safety, and human nutrition 

attributes.      
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CHAPTER 3   THE POTENTIAL USE OF VISIBLE/NEAR INFRARED 

SPECTROSCOPY AND HYPERSPECTRAL IMAGING TO PROCESSING-RELATED 

CONSTITUENTS OF POTATO TUBERS 

 

(Rady, A.M., Guyer, D.E., Kirk, W., Donis-González, I.R. 2014. The potential use of visible/near 

infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of 

potatoes. Journal of Food Engineering, Vol. 135: 11-25) 

 

3.1 Introduction 

In processing, tubers require a consistent internal composition that is maintained and 

achieved by monitoring important internal or external constituents that are strongly related, 

directly or indirectly, with product quality. For processing applications, dry matter which 

accounts for 18 to 26% of the tuber weight has an effect on frying process efficiency, product 

yield and oil absorption (Burton, 1989). Specific gravity is one of the most important physical 

properties of potato tubers and is strongly associated with dry matter content, which in turn is 

correlated with the yield of processed products, e.g. French Fries, chips, and dehydrated products 

(Kadam, 1991). Glucose is responsible for the undesirable browning color that follows the frying 

process and it dramatically affects the marketability of chips and other fried potato products. 

Such color is a result of the Maillard reaction which includes the interaction between an amino 

acid (asparagine) and the reducing sugars, glucose and fructose, (Mottram and Wedzicha, 2002). 

Moreover, acrylamide, discovered by the Swedish National Food Authority in 2002, (Zyzak et 

al., 2003; Stadler et al., 2002; Mottram and Wedzicha, 2002) is also formed during the frying 

process. The acrylamide single unit (monomer) is toxic to the nervous system, a carcinogen in 

laboratory animals and a possible carcinogen in humans. Consequently, monitoring glucose 

levels during storage is important to provide healthy, and high quality French fries, and chips. 

Sucrose level in potato tubers dedicated for processing is critical as it causes the unacceptable 



 

41 
 

sweetening flavor. The high level of sucrose is more likely to happen after the storage period, 

though this increase is cultivar-dependent. Soluble solids content is an important factor of the 

level of dissolved sugar in samples which indicates the ability of tubers to go to processing for 

chipping or French fry products. Although measuring this factor is relatively easy to perform 

using a refractometer, it is still an invasive method.  

Primordial leaf count is an indication of the ability of tubers to grow and yield sprouts 

which is an important factor affecting the total crop yield. The leaf count is also an indication of 

the physiological status of a potato tuber which is important to monitor for seed potatoes (Kirk et 

al., 1985). The number of sprouts per seed tuber is determined by the size of tubers as well as the 

storage conditions (Allen et al., 1992). No significant work in the area of non-destructive 

evaluation of leaf count for potato tubers was found in the literature.  

The importance of each of these constituents to food products, combined with the desire 

for highly correlated automated measurements, suggests the need for developing a rapid yet 

accurate, and possibly non-invasive, system that can be used as a trusted technique to monitor 

and help detect the postharvest properties of potato tubers.  

Near infrared (NIR) spectroscopy has been known as a fast and non-destructive method 

to evaluate the internal and external quality factors for food products (Dufour, 2009; McClure, 

2007; Shenk et al., 2001; Barton and Kays, 2001). Sukwon, et al. (2003), used NIR technology to 

develop a calibration model by which both percentage of dry matter and specific gravity of 

potato tubers can be calculated. The coefficient of determination of the specific gravity model 

was 0.87 with a correlation coefficient of 0.85; for dry matter percentage, the correlation 

coefficient was 0.82. Subedi, and Walsh (2009), demonstrated the advantage of using short-

wavelength near-infrared spectroscopy (over the wavelength region 750–950 nm) to measure the 



 

42 
 

dry matter concentration of potato tubers; the correlation coefficient for the whole tubers was 

0.85, the value increased to 0.95 for sliced tubers. NIR technology was also used for potatoes by 

Jeong et al. (2008), to estimate the sprouting capacity of tubers. Using the modified partial least 

square method (MPLS), the values of R
 
ranged from 0.87 to 0.97 for the calibration models, and 

the values were 0.72 to 0.90 for the validation models. Hartmann, and Buning-Pfaue (1998), 

studied the use of NIR spectroscopy in measuring some constituents of peeled potato tubers. The 

diffuse reflectance mode was used in the wavelength range of 1100-2500 nm. Dry matter, starch, 

fructose, glucose, and sucrose were all measured using standard methods and the MPLS 

regression was used to build the models. The validation model had standard errors of 0.041%, 

0.028%, and 0.037% with R
2
 values of 0.70, 0.89, and 0.62 for glucose, fructose, and sucrose 

respectively.      

Hyperspectral imaging systems (HIS) have been used in agriculture for two decades. HIS 

have several advantages, for example: (1) images the scene in hundreds of co-registered bands, 

(2) spectral resolution 10 X the order of multi spectral images (MSI), and (3) HIS have spectral 

bands that are contiguous and regularly spaced leading to continuous spectrum measured for 

each pixel (Kerekes and Schott, 2007). In addition, El Masry and Sun (2010), noted that HIS 

require minimal sample preparation; including non-destructive nature, and fast acquisition times 

with the capability of visualizing the spatial distribution of desirable constituents. HIS were 

studied in the area of defect detection and sorting operations as well as estimation of internal 

constituents in food materials (Molto et al., 2010; El Masry and Sun, 2010; Chao, 2010; 

Menesatti et al., 2010; Wang and El Marsy, 2010). Jun Qiao et al. (2005), studied the application 

of the hyperspectral imaging technique to estimate both the water content and the weight of 

potato tubers. The system was used to extract morphological features and spectral responses on 



 

43 
 

water content in tubers simultaneously. The wavelength range of 934-997 nm was found to be 

sensitive to the absorption band for predicting the water content in potato tubers. Results showed 

that the coefficient of correlation between the predicted and actual values of water content was 

0.93 and 0.77 for training and validation, respectively. Lu and Peng (2006), used a hyperspectral 

imaging system to study hyperspectral scattering to estimate peach firmness; the Lorentzian 

distribution function was used to model the scattering profile, then multi-linear regression 

(MLR) along with cross-validation were used to build the calibration model which was then 

applied to a different validation set of data with coefficient of determination (R
2
) of 0.67 to 0.77.  

This research studies the objective of determining the potential of using VIS/NIR 

spectroscopy and hyperspectral imaging systems to estimate constituents in potato tubers that are 

important to the processing and seed industries. 

3.2 Materials and Methods 

3.2.1 Sample Collection, Handling, and Treatments 

Two common cultivars of potatoes were used in the experiments; Frito Lay 1879 (FL) 

which is used in the chipping or crisping industry, and Russet Norkotah (RN), which is usually 

used as table-stock or ware for baking and boiling. The samples were obtained from commercial 

production fields in Southwest Michigan, USA. During September, 2008, there were two vine 

killing dates followed by two respective harvesting times for each cultivar, early and late, in an 

effort to obtain an extensive range of physiological characteristics. Tubers were cleaned and 

defective samples discarded, then all samples were stored at 7 °C for 3-4 weeks for initial curing 

and the first sampling was conducted at the end of this period. The samples were then stored in 

three temperatures; 7, 10, and 15 °C. Tubers were sampled after 20, 80, and 130 days of storage 
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to additionally aid in developing a strong and broad sample set. The experimental design and 

approach is depicted in Fig. 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Flow chart of the experimental design to assess physiological status of potato tubers using visible/near 

infrared spectroscopy and hyperspectral imaging for Frito Lay 1879 and Russet Norkotah cultivars. 
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3.2.2 Electronic Measurement 

3.2.2.1 Sample preparation 

Either one or two types of samples were utilized for the rapid measurements of NIR 

transmittance, visible/NIR interactance, and visible/NIR hyperspectral reflectance. First, whole 

tubers, in which the sample was placed such that the light was directed to the middle area of the 

tuber, and the second type of sample comprised a 12.7 mm tuber slice obtained by cutting the 

tuber three times perpendicular to the longitudinal axis, starting from the stem end of the tuber. 

The measured slice was the third slice in the cutting routine and both sides of the slice were 

tested. Both the whole tuber and the sliced samples were used in the case of visible/NIR 

interactance and visible/NIR hyperspectral scattering modes, however, just the sliced samples 

were used in case of the NIR transmittance mode.  

3.2.2.2 VIS/NIR interactance mode 

 

In the interactance mode, light photons illuminated the sample by a probe with a 

concentric outer ring of illumination and an inner receptor (Fig. 3.2). In this case, the overall 

probe was in contact with the sample surface, and a foam-sealing ring separated the ring of light 

and the detector, so only the light interacting within the sample was measured. The system used 

for interaction experiments contained an Ocean Optics fiber optic spectrometer (model No. USB 

4000, Ocean Optics, Inc., Dunedin, FL, USA) with an optical resolution of 0.3 nm (FWHM), and 

with a 200 μm diameter fiber optic, Oriel radiometric power supply with a maximum power of 

250 watt (model No.68931, Oriel Inst., Irvine, CA, USA), and Oriel light source (model No. 

66881, Oriel Inst., Irvine, CA, USA) with the same maximum power and the wavelength 

measurement range between 446 to 1125 nm, covering both visible and NIR fields. With this 

configuration, the incident light represented a circle with a diameter of 24.7 mm. The 
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interactance experiment was conducted on both sliced and whole samples. The interactance for 

each sample was normalized using Teflon
® 

as a reference material, and the relative interactance 

was calculated using equation 3.1 as follows: 

Relative Interactance =  
intensity of sample interactance − intensity of background interactance

intensity of reference interactance − intensity of background interactance
     (3.1)                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2, a. Schematic representation of VIS/NIR interactance mode used to predict constituents for two potato 

cultivars, b. Light path representation, c. End view of probe. 
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3.2.2.3 VIS/NIR hyperspectral mode 

 

The hyperspectral system in this project was used to capture diffuse scattered light from 

both the whole and sliced samples in the range of 400 to 1000 nm, thus covering visible and near 

NIR bands. The system used to study the samples under hyperspectral reflectance mode 

contained a Hamamatsu dual mode cooled CCD camera (model No.C4880, Hamamatsu 

Photonics, Hamamatsu, Japan) along with an Oriel power supply (model No.69931, Oriel Inst., 

Irvine, CA, USA), an Oriel digital exposure controller (timer) (model No.68945, Oriel Inst., 

Irvine, CA, USA), Agilent DC power supply (model No.65423A, Agilent Tech., Santa Clara, 

CA, USA), and Oriel light source (model No. 66881, Oriel Inst., Irvine, CA, USA) that 

contained a quartz tungsten halogen lamp. (Fig. 3.3a). The imaging spectrograph acquired 

spectral information by working in the point scan mode where the columinated light was 

dispersed from the sample into different wavelengths by a prism-grating-prism configuration 

while keeping spatial information at the same time. The CCD camera detected the dispersed light 

signals and created a 2-D image, 256 X 256 pixels, with the horizontal axis representing the 

spatial values and the wavelength values were recorded on the vertical axis. The sample holder 

was moved with a motor controlled stage and allowed consistent height between sample and 

detector/light source and for multiple scanning points for each sample. The distance between two 

successive scans was adjusted at 1 mm, and a total number of 10 images (scans) were acquired 

for each sample. Thus a set of images was a data-cube, representing spectral information of a 9 

mm longitudinal distance along the sample. The scattering behavior of light in a sample was 

shown in Fig. 3.3b. Light radiation penetrated the sample surface and scattered outward through 

the tissue, and the diffuse reflected light was captured by the CCD camera and spectrograph as a 

line scan. The scanning line was 1.5 mm apart from the incidence center.  Fig. 3.4, a. shows a 
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sample of the 2-D image resulting from one scan of the sample, and fig. 3.4 b, and c show 

examples of spectral profiles from different spatial locations and at different wavelengths.                                  
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Figure 3.3, a. Schematic representation of VIS/NIR hyperspectral reflectance mode used to predict constituents for 

two potato cultivars, b. Light scattering in sample and scanning configuration.  
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Figure 3.4, a. Hyperspectral scattering image, with different colors representing light intensity of a potato slice, b. 

Spectral profiles from different spatial locations represented by different colors, c. Spectral profiles from different 

wavelengths represented by different colors.  
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3.2.2.4 NIR transmittance mode  

 

In the transmittance mode, the incident light vertically penetrates the sample surface and 

a portion of the incident light passes through the sample tissue to the other side with information 

about the internal composition of tubers (Chen, 1978). Both the light source probe tip and the 

detector tip were approximately 3 cm from the sample lower and upper surfaces respectively.  

An InGaAs spectrometer (model No. NIR512L-1.7T1, Control Development, Inc., South 

Bend, IN, USA) with spectral resolution of 3.25 nm FWHM and linear dispersion of 1.625 

nm/pixel was used in the transmittance mode along with an Oriel radiometric power supply with 

a 300 watt maximum power (model No.68931, Oriel Inst., Irvine, CA, USA), and an Oriel light 

source (model No. 66881, Oriel Inst., Irvine, CA, USA) that has 250 watt maximum power, and 

with a quartz tungsten halogen lamp. Only the sliced samples, with 0.5ʹʹ (12.7 mm) thickness 

each, were used in the transmittance experiments with the sample area covered by the detector 

having a diameter of 1ʹʹ (25.4 mm). The calculation of the relative transmittance was done over 

the NIR wavelength range between 900-1685 nm in the same way as in the calculation of relative 

interactance. A schematic diagram of the transmittance system used in the experiment was 

represented in Fig. 3.5. 
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Figure 3.5, a. Schematic representation of NIR transmittance mode configuration and system components, b. Light 

path representation with scattering in the sample and the detected transmitting light. 
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and using a paper filter that was placed around the inner surface of the Juicerator. The juice was 

transferred with a pipette to a polystyrene tube with cap and then stored at -20 °C to reduce any 

variation of constituents and allow subsequent use and analysis of the juice at a later time. 

3.2.3.1.2 Chemical estimation of glucose and sucrose 

 

Using the Megazyme sucrose/D-glucose assay procedure (Megazyme International 

Ireland Ltd, Wicklow, Ireland), the ratio of each of glucose and sucrose, gram per 100 gram fresh 

tuber weight, was measured. Tubes containing frozen juice sample were thawed at 18 °C. As the 

concentration of both glucose and sucrose for RN was higher than for FL, 100 µL of juice was 

transferred to each of four glass test tubes from the FL samples, whereas for RN, the 100 µL 

volume consisted of 10 µL juice diluted by 90 µL of distilled water. To estimate the glucose 

ratio, 100 µL of sodium acetate buffer, 2M, was added to two tubes, and to estimate sucrose ratio 

100 µL of β-fructosidase (invertase) diluted by sodium acetate buffer was added to the other two 

tubes. The tubes were incubated in a water bath set at 50 °C for 20 minutes, then 1500 µL of 

glucose determination reagent (GOPOD reagent) was added and the samples were incubated 

under the same conditions in the water bath for 20 minutes. The content of each tube was 

transferred to a 96 well (200 µL) ELISA plate and the absorbance of the solution was measured 

at 510 nm in a spectrophotometer against both the blank sample of 100 µL distilled water which 

was prepared using the same procedure and the control sample of 50 µL of D-glucose standard + 

50 µL distilled water. The D-glucose, or dextrose, and sucrose concentrations were then 

calculated using equation 3.2 and 3.3 respectively: 

D-glucose (g/g fresh weight) = ΔA x F x 0.005 x 1/10                                        (3.2)                                                        

Sucrose (g/g fresh weight) = (ΔB-ΔA) x F x Dilution x 0.0095 x 1/10                  (3.3) 
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Where:  

ΔA: represents the GOPOD absorbance for D-glucose 

ΔB: represents the GOPOD absorbance for sucrose 

F: is a factor used to convert from absorbance to µg for 100 µg of D-glucose (100/absorbance 

for 100 µg D-glucose); and 

Dilution: 1 in case of Frito Lay 1879 and 10 in case of Russet Norkotah  

0.1: Unit conversion factor to convert from g/L into g/100g or % fresh weight 

3.2.3.2 Measurement of soluble solids   

 

The soluble solid content is the concentration of the solid particles in a solution and it 

usually refers to the sugar concentration but without expressing the sugar type, Thus, one can’t 

depend only on the soluble solids as an indication of sugar concentration though the advantage of 

rapid assessment of such constituent exists using modern digital refractometers with the Brix 

unit. Soluble solids concentration was measured using a Palette digital refractometer (model No. 

PR-101, ATAGO Co. LTD, Bellevue, Washington, USA) by dripping juice on the device prism 

and reading the displayed Brix units.  

3.2.3.3 Measurement of specific gravity 

 

The specific gravity was indirectly measured using the relationship with the dry matter 

mentioned by Kellock (1995). Such relationship is as follows:  

SG= 0.0053 * DM+0.960574                                                                                     (3.4)            

Where: 

SG: is the specific gravity, g/cm
3 

; and
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DM: is the percentage dry matter (dry matter weight divided by the total tuber weight X 100) 

After juicing, the filter-collected solids from the samples were placed inside a drying 

oven at 100 °C for 24 hours and weighed to calculate dry matter (DM) and the SG was calculated 

using equation 3.4. 

3.2.3.4 Measurement of primordial leaf count  

 

The number of leaf primordia within the developing sprouts gives an indirect 

measurement of tuber maturity or physiological age (Kirk et al., 1985). Counts of leaf primordia 

were conducted by taking samples of eyes from each tuber (n=3) before juicing the tuber for 

future estimation of glucose and sucrose. The samples were chosen from the apical end of the 

tuber. Briefly, the sprouts were stored in 5 ml Eppindorf tubes in an ethanol:acetone solution 

(1:1) until used. Sprouts were mounted on slides and examined at 10x magnification under a 

dissecting Olympus microscope (model No. ZT40, Olympus Corp., Tokyo, Japan). Leaf initials 

were removed sequentially from the outside to inside of the sprout using a scalpel until the apical 

dome was exposed. Leaf primordium counts were obtained for the three eyes and then the 

average was taken and considered the primordial leaf count per tuber.   

3.2.4 Partial Least Squares Regression (PLSR) 

 

Partial least squares regression (PLSR), also called projection to latent structures by 

means of partial least squares, is a powerful linear regression method that is insensitive to 

collinear variables and tolerant to large numbers of variables (Varmuza and Filzmoser, 2009).       
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3.2.4.1 Pretreatment of the spectra data  

 When the signals are acquired from a set of samples it may be necessary to pretreat data 

before building the calibration model (Christy and Kvalhiem, 2007). This is because the original 

data sometimes contains unwanted spectral variation and baseline shifts that may be a result of 

light scattering from samples, the poor reproducibility of NIR spectra due to path length 

variation, variation of the sample conditions (temperature, particles’ sizes), and various noise 

resulting from detector, A/D convertor, and other electric components in the system. 

Preprocessing methods depend either on abstractly mathematical concepts, or previous 

knowledge of the chemical–physical background of the data and the discussed problem 

(Varmuza and Filzmoser, 2009).  

The sequence of processing was in two stages for the spectra data. The first stage was a 

primary processing method that may be in addition to the option of non-preprocessing. This 

stage included absolute value, autoscaling, baseline, weighted baseline, smoothing with first 

derivative, smoothing with second derivative, normalization, generalized least squares 

weighting, standard normal deviate (SNV) correction, multiplicative signal correction (MSC), 

group scale, and median center. The second stage of preprocessing, that treats the first stage 

treated data, is the one included in the PLSR algorithm that is conducted by Eigenvector 

(Eigenvector Research, Inc. WA, USA) using the platform of Matlab
®
 software (version 

7.5.0.342, MathWorks, Natick, MA, USA) and that is either the mean center method, 

multiplicative scattering correction (msc), or orthogonal signal correction (osc) (Wise et al., 

2006). A flow chart of the preprocessing steps conducted for the spectra data was shown in Fig. 

3.6a. 
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3.2.4.2 Pretreatment of the reference data  

 

Transformation of the reference data (the dependent variable in the regression model) 

was conducted with the aim to get the constituents’ distribution as uniform as possible. Such 

transformation includes the log and power transformation, with 2.0 as the exponent, in addition 

to using the non-transformed data to study the effect of constituents’ values transformation. The 

preprocessing steps for reference data were clarified in Fig. 3.6b. 

Calibration and validation sets of data were formed such that the calibration set contained 75% 

of the data and the validation set contained 25% of the data. The cross validation technique 

(leave-one-out) was used to get the best calibration model based on the minimum mean square of 

error for calibration for cross validation (RMSECcv) and the calibration model was subsequently 

applied to the validation or prediction set.  

The results presented later are the best from the different preprocessing methods based on 

the correlation coefficient (R), root mean square error of prediction for validation set (RMSEP), 

and the RPD value (the standard deviation of the reference data divided by the RMSEP). In 

general, root mean square error, either for calibration or validation, is calculated using the 

following equation: 

RMSE = [
∑ (Yi−Ŷi)N

i=1

N
]

1/2

                                                                                 (3.5)        

Where: 

N: number of samples 

Yi: actual value of reference (constituent) for sample i ; and 

Ŷi: predicted value of reference (constituent) for sample i 
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Also, coefficient of correlation (R) is calculated using equation 3.6 as follows: 

R =  
∑ (Xi−X̅)(Yi−Y̅)N

i=1

√∑ (Xi−X̅)2N
i=1 √∑ (Yi−Y̅)2N

i=1

                                                                                             (3.6) 

Where: 

Xi: Relative intensity value for sample i 

X̅ : Average of relative intensities for data set; and 

Y̅ : Average of reference values for data set 
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Figure 3.6. Flow chart of preprocessing methods used to pretreat spectra, a, and reference, b, data before building 

calibration and then prediction models using PLSR with cross validation to predict constituents for two potato 

cultivars. 
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 Standard normal deviate (SNV) correction, f9( ) 

 Multiplicative signal correction (MSC), f10( ) 

 Group scale, f11( ) and 

 Median center, f12( )  

 

 

 

Reference matrix 

Yin 

Reference preprocessing 

Yout=Ø(Yin) 

Ø( ) refers to: 

 Non preprocessing, Ø 0( ) 

 Log transformation (base 10), Ø1( )   

 Power transformation (power = 2), Ø2( ) 
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3.3 Results  

3.3.1 Constituents’ Distributions 

 

The results of reference analysis, after discarding the logical outliers for each constituent 

that are located outside the expected range, based on literature (Storey, and Davis, 1992), are 

shown in Fig. 3.7a to 3.7e (n=200/cultivar). Some figures also show statistical outliers such as: 

glucose, sucrose, and primordial leaf count. Following the fact that RN has higher sugars levels 

(glucose, and sucrose) than FL 1879, it’s clear from Fig. 3.7. a, and b the difference between the 

two cultivars in these sugars. However, for specific gravity, primordial leaf count, and soluble 

solids there was no significant difference between the two cultivars.  

3.3.2 Spectra for Different  Modes 

 

3.3.2.1 Interactance mode  

 

The mean signals acquired from interactance mode, for sliced samples in the case of 

glucose and sucrose in two ranges for both cultivars, were shown in Fig. 3.8a-d. The thresholds 

were chosen as the median value. For FL, the thresholds for glucose, and sucrose were 0.02%, 

and 0.05 % respectively, whereas those values for RN were 0.2%, and 0.07% respectively. For 

FL, there was no clear difference between the mean spectra in both glucose and sucrose. 

However, the difference was more evident in the case of RN for both sugars which is a result of 

the higher levels of sugars in the case of RN compared with FL. The same trend of mean spectra 

was found for whole tubers (Fig. 3.9) although there was a slight difference for FL in the case of 

glucose compared with sliced samples. 
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Figure 3.7. Data distributions of the physiological variables measured; a. Glucose concentration % (note change in 

range of the values for the two cultivar types), b. Sucrose concentration (%), Primordial leaf count (number of leaves 

per sprout), d. Specific gravity (g/cm
3
), e. Soluble solids (Brix scale). 

b a 

d c 

e 
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Figure 3.8. Mean relative interactance for two sugar groupings for sliced samples, a. Frito Lay 1879: glucose, b. 

Russet Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.   

d 

b a 

c 
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Figure 3.9. Mean relative interactance for two sugar groupings for whole tubers, a. Frito Lay 1879: glucose, b. 

Russet Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose. 

 

 

 

 

 

b a 

d c 
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3.3.2.2 Hyperspectral imaging mode  

 

The mean reflectance spectra for the hyperspectral data were collected for sliced and 

whole samples for both cultivars. To extract the mean reflectance for each image, all 

wavelengths in the range 400 to 1000 nm were used. The spectra were normalized by the 

Teflon
®
 reference average reflectance spectra. The mean reflectance spectra for two ranges for 

glucose for both cultivars in the case of sliced samples were shown in Fig. 3.10a, and b. Both 

cultivars had an absorption band at 837 nm which is likely related to the hydrocarbon group C-H, 

aliphatic with another one at 880 which is possibly due to aromatic associated C-H group 

(Workman and Weyer, 2008). Moreover, difference between the two sugar classes is higher in 

RN than FL for glucose. For sucrose, the same absorption band was yielded while the difference 

between two classes in the case of FL is higher than RN. In the case of whole tubers, no 

significance difference between the two sugar groups was found except in the case of sucrose for 

FL (Fig. 3.11). In general, the mean relative reflectance overall is less for the whole tubers than 

for the sliced samples for both cultivars with the note that the skin effect is more obvious for RN 

than FL in the case of whole tubers due to the thicker skin for RN compared with FL. 
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Figure 3.10. Mean relative reflectance for two sugar groupings for sliced samples, a. Frito Lay 1879: glucose, b. 

Russet Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose. 

 

 

b a 

c d 



 

65 
 

 

 

 

Figure 3.11. Mean relative reflectance for two groupings for whole tubers, a. Frito Lay 1879: glucose, b. Russet 

Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.  

 

 

a b 

d c 
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3.3.2.3 Transmittance mode 

 

The mean relative transmittance signals acquired from both cultivars for sliced samples is 

shown in Fig. 3.12 for the wavelength range of 900 to 1685 nm, for two ranges of glucose and 

sucrose as explained in section 3.3.2.1. There are peaks at 1200 nm and 1430 nm, in all cases 

that are suspected as systematic error from instrumentation because of their consistency and 

repeatability. Slight differences were observed between the mean spectra of the different ranges 

for the glucose and sucrose for FL, whereas, the difference is more visible for RN, and again the 

possible reason for this is the higher levels of sugars for RN. 

The spectral plots for each electronic mode helped to interpret the performance of 

prediction models yielded from PLSR based on the idea that if the optical mode is capable of 

acquiring different values of chemical constituents in differentiating between samples (the 

difference between the two classes of curves), there will be more likelihood to obtain high 

prediction models. Other constituents’ plots (not shown) resulted in similar findings. 
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Figure 3.12. Relative transmittance for two sugar groupings for sliced samples, a. Frito Lay 1879: glucose, b. Russet 

Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose. 

 

 

 

 

c d 

a b 
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3.3.3 Partial Least Squares (PLSR) Results 

 

3.3.3.1 Results for interactance mode  

 

The responses for the interactance mode for sliced samples for each potato constituent are 

shown, with the best preprocessing sequence for spectra and for the reference data, in Table 3.1. 

The leaf primordial count prediction model for FL yielded R and RPD values of 0.95 and 3.29 

respectively. The same model values for RN were 0.90 and 2.19 respectively. The glucose 

prediction model also had strong correlation for RN with R and RPD values of 0.95 and 3.12 and 

FL glucose values of 0.90 and 2.14 respectively. The sucrose prediction models were somewhat 

weaker than glucose for FL with correlations of R and RPD of 0.81 and 1.63 in contrast to RN 

for such which were much lower at 0.50 and 1.13 respectively. The other two constituents, 

specific gravity and soluble solids, did not yield as encouraging correlations as did the other 

three constituents.  

In most constituents, correlation for whole tubers was less than that for sliced samples for 

interactance mode. For glucose, R and RPD values for FL of 0.88 and 1.78 respectively and 0.79, 

and 1.60 for RN (Table 3.2). Correlation for leaf count was found to be less than that for sliced 

samples for FL with values for R and RPD of 0.89 and 2.22 and 0.77 and 1.50 for RN 

respectively. Sucrose prediction for FL was somewhat stronger than for sliced samples with 

correlation metrics R and RPD values of 0.81 and 1.64 in contrast to RN that yielded weaker 

performance than sliced samples. Specific gravity prediction models for both cultivars showed 

less correlation than leaf count and glucose with best results obtained for sliced samples with R 

and RPD values of 0.37 and 1.06 for FL and 0.51 and 1.08 for RN. Other constituents showed 

poorer correlation which was the same trend as with sliced samples. 
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Table 3.1. PLSR results for predicting some potato constituents using VIS/NIR interactance (sliced samples) for 

Frito Lay 1879 and Russet Norkotah cultivars.    

CultivarConstituent Preprocessing a 
Calibration Prediction 

Rcal RMSECCV LVs Rpred RMSEP RPD 

FLGL A6, B1; C2 0.93 0.0553 10 0.90 0.0515 2.14 

FLLC A0, B1; C1 0.96 0.1979 13 0.95 0.2212 3.29 

FLSG A12,B1;C0 0.68 0.0099 12 0.61 0.0119 1.27 

FLSS A6, B1; C0 0.67 0.4378 10 0.55 0.4006 1.18 

FLSU A5, B1; C0 0.86 0.0490 10 0.81 0.0439 1.63 

RNGL A7, B1; C2 0.96 0.0858 15 0.95 0.0786 3.12 

RNLC A7, B1; C2 0.94 0.1625 13 0.90 0.1632 2.19 

RNSG A0, B3; C0 0.73 0.0090 10 0.54 0.0083 1.15 

RNSS A10, B3; C0 0.37 0.3970 4 0.37 0.3191 1.08 

RNSU A7, B3; C1 0.79 0.9792 2 0.50 1.0273 1.13 

a 

Ax: First stage spectra preprocessing.                 Bx: Second stage spectra preprocessing. 
 A0: No preprocessing.                                               B1: Mean center.  
 A1: Absolute value.                                                   B2: Orthogonal signal correction. 

 A2: Autoscaling.                                                   Cx: Reference data preprocessing.   

 A3: Baseline.                                                            C0: No reference transformation. 
 A4: Weighted baseline.                                             C1: Log reference transformation. 

 A5: 1
st derivative.                                                     C2: Power reference transformation. 

 A6: 2
nd derivative.              

 A7: Normalization.                                                                                                           

 A8: Generalized least square weighting. 

 A9: Standard normal variate (SNV). 
 A10: Multiplicative signal correction (MSC). 

 A11: Group scale. 

A12: Median center. 

 

Table 3.2. PLSR results for predicting some potato constituents using VIS/NIR interactance (whole tubers) for Frito 

Lay 1879 and Russet Norkotah cultivars. 

CultivarConstituent Preprocessing a 
Calibration Prediction 

Rcal RMSECCV LVs Rpred RMSEP RPD 

FLGL A4, B1; C2 0.96 0.0636 12 0.88 0.0620 1.78 

FLLC A7, B1; C1 0.99 0.3055 18 0.89 0.3285 2.22 

FLSG A0,B1;C0 0.45 0.0109 6 0.37 0.0143 1.06 

FLSS A10, B1; C0 0.19 0.4812 1 0.04 0.4834 0.98 

FLSU A12, B1; C0 0.89 0.0501 6 0.81 0.0436 1.64 

RNGL A9, B1; C2 0.88 0.1410 10 0.79 0.1529 1.60 

RNLC A4, B1; C0 0.91 0.4183 18 0.77 0.3560 1.50 

RNSG A12, B1; C0 0.72 0.0105 11 0.51 0.0089 1.08 

RNSS A0, B3; C0 0.46 0.4146 6 0.25 0.3431 1.01 

RNSU A4, B1; C0 0.71 0.1642 11 0.26 0.2051 0.97 
a
 See table 3.1 footnote.  

3.3.3.2 Results for hyperspectral reflectance mode 

The results of PLSR for hyperspectral reflectance for sliced samples showed strong 

correlation only for FL in the case of leaf count with R and RPD values of 0.94 and 2.92 

respectively (Table 3.3). However, RN showed less correlation than interactance mode with R 

and RPD values of 0.70 and 1.41. Both cultivars showed less correlation for glucose prediction 

model with R and RPD values of 0.64 and 1.25 respectively for FL, and 0.74 and 1.49 for RN.  
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PLSR model results for hyperspectral reflectance for the whole tubers demonstrated 

significant lower correlation than the sliced samples for leaf count for both cultivars with R and 

RPD values of 0.47 and 1.14 respectively for FL and 0.43 and 1.10 respectively for RN (Table 

3.4). The glucose model for RN also demonstrated low correlation with R, and RPD values of: 

0.38 and 0.93 respectively, and 0.52 and 1.19 for FL. Sucrose, specific gravity and soluble solid 

content prediction models also showed weak correlations.        

Table 3.3. PLSR results for predicting some potato constituents using VIS/NIR hyperspectral imaging (sliced 

samples) for Frito Lay 1879 and Russet Norkotah cultivars.   

CultivarConstituent Preprocessing a 
Calibration Prediction 

Rcal RMSECCV LVs Rpred RMSEP RPD 

FLGL A12, B1; C2 0.87 0.1024 6 0.64 0.0880 1.25 

FLLC A9, B1; C1 0.96 0.3256 4 0.94 0.2492 2.92 

FLSG A9, B1; C0 0.27 0.0112 2 0.26 0.0146 1.04 

FLSS A5, B1; C0 0.36 0.4702 4 0.14 0.4804 0.99 

FLSU A5, B1; C0 0.78 0.0636 12 0.62 0.0580 1.23 

RNGL A1, B1; C2 0.78 0.1557 4 0.74 0.1643 1.49 

RNLC A6, B3; C2 0.77 0.2956 2 0.70 0.2540 1.41 

RNSG A0, B1; C0 0.45 0.0107 4 0.26 0.0097 0.99 

RNSS A6, B1; C0 0.46 0.3755 4 0.36 0.3234 1.07 

RNSU A5, B1; C2 0.64 0.1404 6 0.57 0.1533 1.21 
a
 See table 3.1 footnote.  

Table 3.4. PLSR results for predicting some potato constituents using VIS/NIR hyperspectral imaging (whole 

tubers) for Frito Lay 1879 and Russet Norkotah cultivars.    

CultivarConstituent Preprocessing a 
Calibration Prediction 

Rcal RMSECCV LVs Rpred RMSEP RPD 

FLGL A9, B1; C0 0.77 0.0770 4 0.38 0.0681 0.93 

FLLC A6, B1; C0 0.49 13.124 7 0.47 11.7014 1.14 

FLSG A0, B1; C0 0.22 0.0112 2 0.19 0.0148 1.02 

FLSS A5, B1; C0 0.34 0.4629 2 0.24 0.4602 1.03 

FLSU A9, B1; C0 0.18 0.0817 1 0.14 0.0702 1.02 

RNGL A4, B1; C0 0.75 0.3669 4 0.52 0.3259 1.19 

RNLC A7, B1; C0 0.78 9.5766 5 0.43 7.8047 1.10 

RNSG A4, B1; C0 0.30 0.0107 2 0.20 0.0095 1.01 

RNSS A5, B3; C0 0.55 0.4242 9 0.29 0.4277 0.81 

RNSU A5, B3; C0 0.44 0.1879 2 0.43 0.1805 1.10 
a
 See table 3.1 footnote.  

3.3.3.3 Results for transmittance mode  

Taking into account both R and RPD values, the transmittance mode yielded strong 

correlations for leaf counts in the case of FL with R and RPD values of 0.87 and 1.94 and for RN 

the values were 0.81 and 1.54 respectively (Table 3.5). The glucose prediction model for RN 

also showed close correlation performance to the interactance mode with sliced samples with R 
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and RPD vales of 0.87 and 2.01, but lower correlation was obtained for FL with R and RPD 

values of 0.66 and 1.23. The sucrose model for RN yielded comparable results to those obtained 

using interactance mode with sliced samples with the values of R and RPD as of 0.63 and 1.30 

and for FL, the values were 0.57 and 1.23. Prediction models for specific gravity and soluble 

solids didn’t show as high correlation performance as other three constituents.   

Table 3.5. PLSR results for predicting some potato constituents using NIR transmittance (sliced samples) for Frito 

Lay 1879 and Russet Norkotah cultivars.   

CultivarConstituent Preprocessing a 
Calibration Prediction 

Rcal RMSECCV LVs Rpred RMSEP RPD 

FLGL A0, B1; C1 0.90 0.0750 9 0.66 0.0515 1.23 

FLLC A6 B1; C2 0.97 0.2788 20 0.87 0.2587 1.94 

FLSG A0,B3C0 0.66 0.0033 1 0.56 0.0036 1.22 

FLSS A7, B3 C0 0.40 0.5335 1 0.30 0.4509 1.05 

FLSU A5,B1; C0 0.60 0.0782 10 0.57 0.0582 1.23 

RNGL A12, B1 C0 0.96 0.2319 9 0.87 0.1921 2.01 

RNLC A5, B1 C1 0.90 0.3383 13 0.81 0.3453 1.54 

RNSG A7, B1; C0 0.69 0.0101 6 0.59 0.0079 1.22 

RNSS A4, B3; C0 0.87 0.6281 3 0.23 0.5938 0.58 

RNSU A5, B1 C1 0.73 0.8555 10 1.07 0.63 1.30 
a
 See table 3.1 footnote.  

 

3.4 Discussion 

The results indicate three modes (interactance, transmittance and hyperspectral) used to 

build prediction models for some constituents in potato tubers have dependable results for leaf 

primordium leaf counts (comparable to the work conducted by Jeong et al. (2008), and glucose 

and sucrose (comparable to the work conducted by Mehrubeoglu and Cote (1997); and Hartman 

and Buning-Pfaue (1998)). The transmittance mode was inferior in performance for these three 

constituents. A note to make is that for the interactance mode, the whole tubers yielded similar 

performance for the prediction models of leaf count and glucose for FL compared with the sliced 

samples which is important as it could save processing time in terms of measurement and 

sampling for commercial application, and is nondestructive. In general, specific gravity, which is 

strongly related to dry matter, and soluble solids were not well predicted using the systems and 

models presented here which contrasts with some other research in the literature (Hartman and 
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Buning-Pfaue, 1998; Haase, 2004; Dull et al., 1989; Subedi and Walsh, 2009; Chen et al., 2005; 

Scanlon et al., 1999). This study presents the application of spectroscopic and hyperspectral 

imaging technologies, plus modeling, toward addressing a significant issue of rapid detection of 

reducing sugars, that are very critical to the frying industry, which does not currently exist in the 

market for the purpose of quality management and potato industry profitability. 

3.5 Conclusions  

 

NIR transmittance in the range of 900-1685 nm, visible/near infrared interactance 

spectroscopy in the range of 503-1047 nm, and hyperspectral reflectance, in the range of 400-

1000 nm, were used to build prediction models to measure constituents in potato tubers that are 

important to chipping and seed potato industries. Two cultivars were used to conduct the study, 

FL and RN. The study showed that the prediction of leaf count and glucose, and somewhat lesser 

for sucrose, was possible using interactance, in both sliced samples and whole tubers, and in less 

degree using hyperspectral reflectance and transmittance systems, for sliced samples, for FL. 

However, interactance and transmittance, for sliced samples in both modes, showed possible 

reliable prediction for RN. It is worth to note that both cultivars showed strong correlation for the 

sliced samples and the whole tubers only in the case of interactance mode. Specific gravity and 

soluble solids prediction models are weak and further improvement is necessary to obtain 

reliable models. Thus, while previous studies of the application of visible/NIR techniques to 

estimate sugars demonstrated good results, it should be noted that they were conducted on 

homogenized samples (Hartmann and Buning-Pfaue, 1998) or without validation on different 

sets of data (Mehrubeoglu and Cote, 1997). Also, results for leaf counts prediction using NIR 

conducted by Jeong et al., (2008) did not include confirmation. This study included validation 
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data sets and measurements of intact potato tubers or slices thus leading to more confident results 

and more direct practical industry applicability.         
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 CHAPTER 4   EVALUATION OF SUGAR CONTENT OF POTATOES USING 

HYPERSPECTRAL IMAGING SYSTEMS 

 

(Rady, A.M., Guyer, D.E., Lu, R. 2014. Evaluation of sugar content of potatoes using 

hyperspectral imaging. Journal of Food Bioprocess and Technology (in review and initially 

accepted)) 
 

4.1 Introduction 

Hyperspectral imaging (HI) for agricultural applications has been studied for two 

decades. The technique requires minimal sample preparation and is non-destructive with the 

capability of visualizing the spatial distribution of desirable constituents (El Masry and Sun, 

2010a). It was used for detection of defects and surface contaminants and estimation of internal 

constituents in food (Lawrence et al., 2001; Qin and Lu, 2007; Molto et al., 2010; El Masry and 

Sun, 2010b; Chao, 2010; Menesatti et al. 2010; Wang and El Marsy, 2010). Qiao et al. (2005), 

studied hyperspectral imaging to estimate both the water content and the weight of potato tubers. 

The system was used to extract morphological features and spectral responses to the water 

content in tubers simultaneously. The wavelength range of 934-997 nm was found to be useful 

for predicting the water content in potato tubers. Results showed that the coefficient of 

correlation between the predicted and actual values of water content was 0.93 and 0.77 for 

training and validation, respectively. Water content is an important factor for potato tubers as it 

is positively proportional to the yield and consequently the total profit for the grower. Singh et al. 

(2004), developed a partial least squares model, using a spectroradiometer, for prediction of the 

potato tuber water content with the correlation coefficient being as high as 0.99.  

Lu and Peng (2006), developed a hyperspectral imaging-based spectral scattering 

technique to estimate peach firmness. A Lorentzian distribution function was used to model the 
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scattering profiles and multi-linear regression (MLR) was then applied to build the calibration 

model, which resulted in coefficients of determination (R
2
) of 0.67 to 0.77 for the validation 

data. Mehl et al. (2002), developed a hyperspectral imaging system (HIS) for detection of 

various apple defects, including bruises and diseases. They selected three best wave bands for 

classification of apple defects with the classification rates being 100%, 63%, and 70% for ‘Gala’, 

‘Delicious’, and ‘Golden Delicious’, respectively, for the normal samples, and 100%, 63%, and 

68% for the defected samples. The advantages of HI as an accurate technique of non-destructive 

defect evaluation of food products and more importantly obtaining few wavelengths that are 

strongly associated with high classification rate, encourages the application of HI in constituents 

evaluations. However, studying HI systems in constituent prediction alone is insufficient. 

 Consequently, the combination of constituent-sorting with the traditional damage-based 

sorting can be more reliable, cost and time effective and robust than using multi-stage sorting 

systems or combining vision and spectroscopic systems together to achieve the goal of 

monitoring tuber quality from different perspectives. The objectives of this study were: 

1. Determine the potential of hyperspectral imaging systems for quantifying the levels of sucrose 

and glucose in potato sliced samples for two different-use cultivars.  

2. Develop prediction models for estimating the amount of sucrose and glucose in potato tubers 

covering levels used to asses suitability of tubers for processing which are important for potato 

growers and processors. 

3. Develop classification models for potato tubers of both Frito Lay1879 and Russet Burbank 

based on sugar levels and using multiple methods.  
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4.2 Materials and Methods 

4.2.1 Raw Material and Experimental Design 

  Experiments were conducted in 2009 and 2011, and in both seasons, two common 

cultivars were used in the experiments, Frito Lay 1879 (FL) which is a chipping cultivar, and 

Russet Norkotah (RN) which is usually used fresh for baking and boiling. The experimental 

setup and design for the 2009 and 2011 seasons are shown in Fig. 4.1 and Fig. 4.2 respectively. 

In the 2009 season, the RN cultivar was hand-harvested from a research farm at Montcalm, MI. 

(sandy soil). There were two vine killing treatments (0 and 7 days from Aug. 13
th

), with each 

followed by three harvesting periods (7, 14, and 21 days following the vine killing). The FL 

cultivar was harvested from two different farms: the Montcalm research farm, in which there 

were two vine killing dates each followed by three harvesting dates as with RN, and the MSU 

Muck experimental farm (muck soil), Bath, MI in which there were six vine killing treatments 

(0, 7, 14, 21, 28, and 35 days from Aug. 13
th

) followed by three harvesting periods for each vine 

kill. Samples were stored in three temperatures of 4, 7, and 10
o
C. Tubers were then monthly 

sampled for experimentation starting in November, 2009 until April, 2010 (except at March) 

with a total number of 540 tubers from FL and 180 tubers from RN tested through the 2009 

experiments. The sampling procedure was designed to obtain a broad range of sugar content 

samples. 
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Figure 4.1. Flow chart of the experimental design to assess physiological status of potato tubers using VIS/NIR 

hyperspectral imaging for Frito Lay 1879 and Russet Norkotah cultivars in the 2009 season. 

 

 

 Frito Lay 1879 (NFL=540 tubers) 

 MSU Research Farm, Montcalm, MI 

 Two vine kill dates 

 Three harvesting dates/kill date   

 MSU Muck Exp. Farm, Bath, MI 

  Six vine killing dates 

 Three harvesting dates/kill date 

 

 

 Russet Norkotah (NRN = 180 tubers) 

 MSU Research Farm, Montcalm, MI 

 Two vine kill dates 

 Three harvesting dates/kill date   

          

 

Storage at 7
o
C 

NFL=180 tubers 

NRN = 60 tubers 

 

Storage at 10
o
C 

NFL=180 tubers 

NRN = 60 tubers 

 

Storage at 4
o
C 

NFL=180 tubers 

NRN = 60 tubers 

Monthly measurement November 2009-April 2010 (except March) 

 

Sliced samples electronic measurements in hyperspectral mode 

 

 

NFL=36 

NRN=12  

 

Wet chemistry experiments: D-Glucose & Sucrose 
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In the 2011 season, both cultivars were obtained from a commercial production field 

(sandy soil) in Southwest Michigan. Samples were hand-harvested on only one date in 

September, 2011. Two more storage temperatures were added in order to obtain more uniform 

sugar distribution and simulate the various uses of potato tubers. In general, lower storage 

temperature is desired for cultivars that are used as seeds or for cooking, while higher 

temperatures are used for chip cultivars. Tubers were first stored at 4 
o
C for three weeks and an 

initial electronic measurement was conducted. Tubers were then distributed over five different 

cold storage rooms with the following temperatures: 1, 4, 7, 10, and 13 
o
C. They were then 

sampled for experimentation starting in November 2011, and each month until May 2012 (except 

at April) with a total number of 195 tubers from FL, and 75 tubers from RN. In both seasons, 

tubers were cleaned prior to the imaging, and any defective samples were discarded.  

It is important to emphasize that the main target of collecting samples from different 

locations and storing at different temperatures was to obtain broad, and uniform, sugar 

distribution, rather than evaluating the growing condition, and other pre- and post-harvest 

practices that were conducted on tubers. Consequently, results representing different locations 

for Frito Lay1879 were not separately analyzed and compared.  

 

 

 

 

 

  



 

79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Flow chart of the experimental design to assess physiological status of potato tubers using VIS/NIR 

hyperspectral imaging for Frito Lay 1879 and Russet Norkotah cultivars in the 2011 season. 

Sliced samples electronic measurements in hyperspectral mode 

 

 

 Hand harvested from a commercial production field, Southwest Michigan. 

 Frito Lay 1879 (NFL=195 tubers) 

 Russet Norkotah (NRN = 75 tubers) 

 September, 2011 

 

Storage at 4 
o
C for three weeks 

1
st
 measurement, Oct., 2011 

 

NFL=15 

NRN=15  

 

Monthly measurement November 2011- May 2012 (except April) 

 

Storage at  

1 
o
C  

 

Storage at  

4 
o
C  

 

Storage at  

10 
o
C  

 

Storage at  

13 
o
C  

 

Storage at  

7 
o
C  

 

Wet chemistry experiments 

D-Glucose 

Sucrose 

 

 

 

NFL=30 

NRN=10  
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4.2.2. Constituent Measurement 

4.2.2.1 Potato sample preparation 

 Sample slices were used for VIS/NIR hyperspectral reflectance imaging. Each slice was 

0.5 inch (12.7 mm) thick and it was obtained by cutting the tuber three times in a direction that is 

perpendicular to its longitudinal axis, starting from the stem end of the tuber. The tested slice 

was the third slice in the cutting routine.  

4.2.2.2 Wet chemistry basis measurements 

This destructive process was to provide a basis for the amount of sucrose and glucose in 

the tuber or piece of tuber that has been subjected to the electronic measurements. The standard 

method used to estimate glucose and sucrose is the enzymatic method, using the glucose oxidase 

and paraoxidase enzymes. 

4.2.2.2.1 Extraction of juice  

Immediately after the electronic measurement, each slice was put in a plastic bag and 

stored in a foam box contacting ice to maintain the sample in a fresh state and minimize any 

chemical changes during the period of performing electronic measurements for other samples. 

To ensure consistency between the slice electronic and wet chemistry measurements, a sufficient 

amount of potato tuber juice from the specific areas that had already been electronically tested 

was obtained by using a 1 inch (25.4 mm) cylindrical metal core borer to extract tissue primarily 

from the middle of the slice. This tissue was then put in a pre-sterilized 7 oz Whirl-Pak filter bag, 

9.5 x 18 cm (Nasco, Fort Atkinson, Wisconsin, USA). The bag was then hammered by hand 

using a 2 lb weight for juicing and then homogenized using a stomacher for 1 min. The juice was 

filtered by the Whirl-Pak filter bag and transferred with a pipette to a polystyrene tube with cap. 
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This juice was stored at -20 
o
C to reduce any variation of constituents and allow subsequent use 

and analysis of the juice at a later time. 

4.2.2.2.2 Performing the chemical estimation of glucose and sucrose 

Using the Megazyme sucrose/D-glucose assay procedure (Megazyme International 

Ireland Ltd), the ratio of each of glucose and sucrose, gram per gram fresh tuber weight, was 

measured and calculated using the same approach noted in section 3.2.3.1.2.  

4.2.3 VIS/NIR hyperspectral imaging systems 

Two hyperspectral imaging systems were used in this project and both detected the 

diffuse reflected light from the sliced samples. The first system used in the 2009 season was the 

same as noted and described in section 3.2.2.3. 

In 2011, a different hyperspectral imaging system was used for the experiment, because 

the system used in 2009 was no longer available for the research. Although the two systems were 

quite similar in measurement principle, they were dissimilar enough that the models of both 

seasons were separated and no combining of data was conducted. The 2011 system, the Optical 

Properties Analyzer or OPA, was developed at the postharvest engineering lab of USDA-ARS 

(Cen, and Lu, 2009).  

The OPA system consists of: a high performance 14-bit electron-multiplying CCD 

camera (Luca 
EM

 R604, ANDOR
TM

 Technology, South Windsor, Connecticut, USA) covering 

the wavelengths of 400-1000 nm; a monochrome megapixel frame transfer sensor with 

1004x1002 pixels of 8x8 μm, thermoelectrically cooled to -20
o
C; and an enhanced imaging 

spectrograph (ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland) directly connected to the 

CCD camera. Point scan mode was used in the experiments and was conducted using a prime 
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lens (Xenoplan 1.9/35-0901, Schnider Optics, Hauppauge, NY, USA). The light source used was 

a tungsten halogen light bulb with 20 W output power (HL-2000-HP, Ocean Optics, Dunedin, 

FL, USA) connected to a DC regulated controller chip (PT6201N, 12, Texas Instruments Inc., 

Dallas, Texas, USA) to provide point light. The light beam at the focal point was 1 mm diameter 

provided by an optical fiber coupled with a focusing lens. The incident light is 1.6 mm away 

from the scanning line and is 15
o
 to the vertical axis (Cen and Lu, 2009). During the scanning 

process, 11 images were acquired along a movement distance of 5 mm of the horizontal stage 

with a resultant image size of 251x 250 pixels with a spatial resolution of 0.21 mm/pixel. A close 

view of the system clarifying the sample holder that slides horizontally using the stepping motor 

is shown in Fig. 4.3a, and a schematic configuration of the 2011 hyperspectral system is shown 

in Fig. 4.3b.  

 

             

   Figure 4.3, a. Hyperspectral imaging Optical Properties Analyzer (OPA) used in the 2011 season. b, Schematic of 

OPA.  

b a 
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The light scattering behavior inside the sample subjected to incident light is shown in Fig. 

3.3.b. The light radiation beam penetrated the sample surface and scattered outward through the 

tissue, and the backscattered light was captured by the hyperspectral imaging system in line 

scanning mode. The primary difference between the 2009 and 2011 measurements was that the 

light radiation beam had a diameter of 1.5 mm at the focal point for the 2009 season and 1 mm 

for 2011 season. The raw output of both systems was the same as in Fig. 3.4. It should be noted 

that both sides of each slice were tested and consequently the total number of samples was 1080 

for FL and 360 for RN in the 2009 season. In the 2011 season, there were 390, and 150 sliced 

samples for FL, and RN respectively.    

4.2.4 Data Analysis Discussion and Approach 

 In this section, feature extraction, and methods of building calibration and prediction 

models are explained in detail. Several analysis methods were also added in this chapter in 

comparison to chapter 3. In addition to mean reflectance spectra, curve fitting parameters were 

also extracted using an exponential model. Several types of artificial neural network were used to 

build training and testing models for sugar prediction. Moreover, wavelength selection 

techniques (interval partial least squares and genetic algorithm) were also added to detect the 

most influencing variables associated with yielding strong correlation between optical 

measurements and sugar concentrations. Finally, classification of potato tubers of both FL and 

RN based on sugar levels was conducted using multiple common classification techniques.       

4.2.4.1 Definition and development of descriptive variables 

4.2.4.1.1 Extracted mean spectra  

The average reflectance spectra for the hyperspectral data were obtained for the sliced 

samples in the case of both cultivars. To extract the average reflectance for each image, all 



 

84 
 

wavelengths from 400.9 to 1000.1 nm were considered as shown in Fig. 4.4a. At each 

wavelength, the arithmetic mean of intensity values of the spectra, as shown in Fig. 4.4b, was 

calculated. Finally, a 1*256 vector array for the 2009 season as shown in Fig. 4.4c or 1*250 for 

the 2011 season is obtained from each image. The same process is repeated for each of the 10 

images per sample and the average is calculated to represent one sliced sample. All mean 

reflectance spectra is divided by the equivalent spectra of standard Teflon
®

 resulting in a relative 

mean reflectance spectrum for each sample. 

 

Figure 4.4, a. An example of an image obtained for each slice sample, b. Sample of spectra at different wavelengths, 

c. Sample of average spectrum for one image.  
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4.2.4.1.2 Describing scattering profiles 

In addition to the mean reflectance spectra extracted data (section 4.2.4.1.1), describing 

or fitting scattering profiles (or original reflectance curves) was conducted on the relative 

reflectance curves to obtain more information about sample behavior under the studied 

hyperspectral systems. The approach of modeling scattering profiles was successfully applied on 

apple (Peng and Lu, 2005; Peng and Lu, 2007a; Peng and Lu, 2004; Peng and Lu, 2007b) and on 

peach (Lu and Peng, 2006). In such approach, the scattering profile is described using Lorentzian 

distribution, exponential distribution, or Gaussian distribution with different numbers of 

parameters for each model. In the current study, all three distributions were applied. A 

preliminary, exponential distribution with two parameters was found to be the best model to 

simulate scattering profiles for potato slice samples in the 2009 and 2011 seasons with the 

following equation describing the exponential model: 

               Iw =   awi
 e

|−
x

bwi
|
                                                                         (4.1) 

                                                                                                     

Where Iw is the light intensity at wavelength wi in CCD counts; x is the scattering 

distance measured from the beam (mm); awi represents the intensity peak value in CCD counts 

for the scattering profile when x=0; and bwi is the scattering width, in mm, at half (0.37) of the 

intensity peak value; and the subscript wi is the wavelength in the range 400-1000 nm with i = 1, 

2,…., n where n is the total wavelengths used. Both sides of each spectral profile were averaged 

before conducting the curve fitting. Scattering profiles used in curve fitting parameters were 

covering a spatial scattering distance of 8 mm (or 42 pixels) for 2009 season and 4 mm (or 22 

pixels) for 2011 season. Choosing both distances was to avoid using noisy areas that might affect 

the accuracy of calculating curve fitting parameters. To estimate awi, and bwi, a nonlinear 



 

86 
 

regression technique was applied for each scattering profile in the considered wavelength range 

for each season using the curve fitting tool box in Matlab
®
 software (version 7.5.0.342, 

MathWorks, Natick, MA, USA).  

 

Figure 4.5. Decaying portion of original spatial scattering profiles for selected sliced samples of Frito Lay 1879 

cultivar at 698.7 nm in the 2009 season.   

 

4.2.4.2 Partial least squares regression (PLSR)  

A complete description of PLSR used in this research along with pretreatment for either 

spectra or reference values is covered in section 3.2.4. It should be noted that three types of data 

sets were used: only the mean spectra, the two curve fitting parameters (awi, bwi) concatenated to 

each other, and finally combining all mean and curve fitting parameters.  

It is worth stating that according to William (2007), correlation coefficient (R) value was 

used to evaluate prediction model efficacy. Values of R of 0.81-0.90 can be used for screening 

and approximate calibration. Whereas, R values of 0.91-0.95 may be carefully used for most 

applications. The prediction models with R values above 0.95 are appropriate for quality 

Portion of curve used to 
assess awi and bwi  
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assurance. RPD values of 1.5-2.0 are capable to differentiate between high and low constituent 

values, while values of RPD in the range of 2.0-2.5 means a possibility of coarse prediction of 

reference values. Values of RPD of 2.5-3.0 or higher can be used for good and excellence 

prediction, respectively (Nicolai et al., 2007).   

4.2.4.3 Artificial neural network (ANN)  

ANN, which are broadly used in classification tasks, are computational algorithms that 

may be used to gain an understanding of biological systems. An artificial neural network is a 

machine that is designed to mimic the method of that of the brain when it conducts a certain task 

(Haykin, 2009). From the regression side, PLSR is a technique that depends on building 

calibration models using linear combination of independent variables and other coefficients that 

are determined during a training (or calibration) process. ANN, however, depend on training the 

data in a non-linear mapping from the independent variables into another stage or layer (called 

hidden layer) followed by a linear mapping from the hidden space to the output space that just 

contains the reference value (glucose or sucrose concentration). Two types of ANN were used to 

obtain prediction models for each constituent of interest: the radial basis functions neural 

networks (RBFNN) and the feed forward neural network (FFNN). The RBFNN consisting of 

choosing a function F(xi) that satisfies the following constrain: 

F(xi)= y  for i = 1,2,3,….,n 

Where n refers to sample size, x refers to a vector of independent variables (wavelengths). In 

RBFNN, F(xi) is chosen as follows: 

F(x) =   ∑ ωiφ(‖x − xi‖)n
i=1                (4.2) 
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Where ω is a weight vector, φ(‖x − xi‖) is a set of nonlinear functions known as radial basis 

functions, ||.|| denotes a norm that’s the Euclidean distance, and xi is a point located in the center 

of the radial basis function. Equation 4.2 can be rewritten in the matrix form as follow: 

 ɸ W = y                            (4.3)                                                                        

Where ɸ =  {φij}
i,j=1

n

  is an N by N matrix with elements φij, W an N by 1 vector containing 

weights, and y is N by 1 vector containing reference values. Then W can be found as ɸ is a non-

singular matrix. RBFFNN consists, as shown in Fig. 4.6, of the following layers:  

1. Input layer: consists of m variables each representing one of the extracted features (mean 

reflectance, concatenated awi, and bwi, and concatenated mean spectra, awi, and bwi). 

2.  Hidden layer: consists of a certain number of neurons, the radial basis functions were in this 

case chosen as a Gaussian function as follow: 

φi(x) =φ(‖x − xi‖) =  e
−

1

2σ2‖x−xi‖2

  , i = 1,2,3,….., n                                        (4.4) 

Where σ is the spread or width that was chosen as 3. The number of neurons was chosen as 1000 

units.  

3. Output layer: This represents the predictor variable that is in fact the glucose or sucrose 

concentration. The allowable mean square of error (MSE) was selected as 0.0001. 
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Figure 4.6. Schematic representation of RBFNN (after Haykin, 2009). 

Another sub type is an exact design RBFNN (RBFNNE) in which the network is able to 

produce a zero-error training vector containing as many neurons in the hidden layer as the 

number of independent variables (wavelengths). The spread was chosen as in the regular 

RBFNN, 3. 

 The last type of the radial basis function neural networks is the generalized RBNN 

(NEWGRN) contains four layers. The first layer contains the input values (mean reflectance, 

concatenated awi, and bwi, and concatenated mean spectra, awi, and bwi), the second layer is a 

hidden layer including as many neurons as the number of wavelengths. The third layer also 

includes as many neurons as the number of wavelengths but with different bias weight set to the 

target (sugar concentration). The final layer contains glucose or sucrose concentration.     

The data was randomly divided into 75% for training the network, and 25% for testing 

the network and creating the prediction model. The training set was then divided into four sub 

sets, and then a four-fold cross validation technique was used to obtain the best training model 

Output layer Hidden layer Input layer 
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based on the root mean square of error of cross validation of the training set (SeCVtrain). The 

predicted reference values were obtained from the testing spectral data when substituted into the 

best trained model and then they were compared with the actual reference values, both 

correlation coefficient (Rtest) and root mean square error (Setest) were then calculated. 

The second type of artificial neural network used in obtaining the prediction models was 

feed forward with back propagation network (FFNN) also known as multilayer perceptron. In 

this network type, first, N linear combinations of the x-variables (spectra) are built as in the 

following equation: 

vj = a0j + a1x1 + a2x2 +  a3x3 + ⋯ +  amxm  for j = 1, ……, N               (4.5)                                                                       

And then a nonlinear function, called the activation function, usually a sigmoid type is applied as 

follows: 

zj = f(vj) =  
1

1+exp (−vj)
, for j = 1, ……, N                                                (4.6)                                                                                             

Finally, the predicted output, ŷ, is calculated as a linear combination of the values from 

different neurons as follows: 

ŷ = b0 +  b1z1 +  b2z2 + b3z + ⋯ +  bNzN 

Where ao, bo are called bias and assumed to be equal to 1. a1, a2,…., aN, and b1, b2,…., bN 

are weights determined during the training process. The back propagation algorithm is a common 

technique in training FFNN and it’s an extension of least mean squares algorithm and is based on 

gradient descent in error and consequently weights updating.   

 In this research, FFNN consists of an input layer which represents the mean relative 

reflectance spectra, concatenated awi, and bwi, or concatenated mean spectra, awi, and bwi for each 

sample. The number of neurons in the hidden layer contained several trials including 50, 100, 



 

91 
 

150, 200, 250 and 300 neurons, and the output layer contained one neuron which is the real value 

of reference (constituent). The transfer function for the hidden layer is the tan-sigmoid function, 

and for the output layer is a linear transfer function. The training style was chosen to be the 

scaled conjugate gradient method. A schematic view of the FFNN is shown in Fig. 4.7. 

  

Figure 4.7. Schematic representation of FFNN (after Varmuza and Flizmoser, 2007). 

In the FFNN method used in this research, the data was randomly divided into three 

groups: the first one is used to train the network and it was around 60% of the samples. The 

second group represented about 20% of the samples and it was used to validate the built network 

and four-fold cross validation technique was used to obtain the best calibration model. The third 

group is an independent set to test the network. The predicted values of reference were compared 

with the actual values and then both the correlation coefficient and the root mean square error 

were calculated. The stopping rule in this case is when the mean square error (mse) of the 

validation set of data reaches a minimum or sequential number of iterations is reached.  
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4.2.4.4. Wavelength selection  

 Variable selection techniques help identify subsets of variables (wavelengths) for a given 

problem which yield the most powerful and accurate model. In multivariate analysis, using all 

variables may produce a better fit for building calibration models as a higher number of variables 

may yield smaller residuals and consequently a better R value. However, the more important 

goal is to optimize the prediction model performance for the validation set of data. Reducing the 

number of regressors can overcome potential problems of overfitting (Varmuza and Filzomoser, 

2008). Moreover, measuring certain variables can be difficult and/or other variables may contain 

noise or signals which interfere with the signals which are valuable for compound detection. 

Two methods of variable (wavelength) selection were used in this research; the interval partial 

least squares (IPLS) and genetic algorithm (GA). Configurations of both IPLS and GA were 

based on preliminary analysis that led to using the following parameters based on the 

performance of PLSR and ANN prediction models. The IPLS method is a known variable 

selection method for spectroscopic data and for optimizing the performance of PLSR models. 

IPLS uses sequential and exhaustive methods of search for the best subset of variables in either a 

forward or a backward direction and different window width values (number of variables per 

window). In this research, forward mode, windows of 1, 2, and 3 variables, with number of latent 

variable for the PLSR model being 15, were used.  

The genetic algorithm mainly depends on randomly selecting different subsets of 

variables called chromosomes or individuals and in each chromosome some variables (genes) are 

selected or active, denoted by 1, and others are not selected, denoted by 0. With the use of cross 

validation, each individual prediction model will have its fitness (commonly root mean square 

error of cross validation (RMSECV)). Based on the fitness threshold, some chromosomes are 



 

93 
 

discarded and others, the remaining individuals, are used to build new chromosomes by using 

crossover and mutation methods. Finally, the process of evaluation and forming new 

chromosomes is repeated until a highest fitness, i.e. lowest RMSECV, chromosome is obtained. In 

the current study, window width values of 1, 2, 3, double crossover, maximum number of 

generations of 300, maximum number of partial least squares latent variables of 20, and three 

iterations were used in the forming of genetic algorithm. After reviewing PLSR and ANN 

prediction models for both seasons in the case of FL and RN cultivars and observing that there 

was close prediction results between mean, curve fitting parameters, and combined mean and 

curve fitting parameters, only mean reflectance spectra were used for variable selection. 

4.2.4.5 Classification of potatoes based on sugar levels 

Sorting tubers based on sugar levels was conducted using two common techniques K 

nearest neighbor (Knn) and partial least squares discriminant analysis (PLSDA). As a 

nonparametric classification method, Knn requires no model to fit or classify the point (sample). 

However, the distance, usually Euclidean, between the point and the selected neighbors (k) is 

calculated. The sample is then classified to the nearest class or to the class having the majority 

vote (Varmuza, and Filzmoser, 2007; Wise et al., 2006; Bishop, 2006; Duda et al., 2001). In this 

study, the k values were selected as 3, and 5. PLSDA is a linear regression classification-based 

method that is similar to linear discriminant analysis (LDA) with the advantage of noise 

reduction and latent variable selection being in PLSDA (Wise et al., 2006). In this study, spectra 

data and reference variables were preprocessed as mentioned in section 2.4.2, with 10-fold cross 

validation used to increase the robustness of the training models for both methods. Samples were 

divided into two classes based on sugar values with cut-off values of glucose for FL and RN as 

of 0.035 and 0.035% respectively, whereas the values for sucrose were 0.03 and 0.10%. Cut-off 
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levels were adopted from recommended thresholds listed by Stark and Love, (2003), for both 

sugars except for the sucrose level for FL which was chosen to create two balanced classes. Only 

mean reflectance spectra (MRS) data was used for samples classification with the note that 

selected wavelengths using IPLS were applied to MRS data and the results were used in 

classification tasks. Data was divided into training (75%) and testing sets (25%). Classification 

of sugars was conducted using the classification toolbox for Matlab created by Davide Ballabio 

(Milano Chemometrics and QSAR Research Group, University of Milano - Bicocca, Milan - 

Italy) and the PLS routine used to compute PLSDA was written by Frans W.J. van den Berg 

(Quality & Technology group, section Spectroscopy and Chemometrics, Department of Food 

Science, University of Copenhagen).        

4.3. Results and Discussions 

4.3.1 Distribution of Glucose and Sucrose 

Table 4.1 shows the statistics of glucose and sucrose for all samples (reference variables) 

based on wet chemistry analysis, after eliminating outlier values which were considered results 

of experimental error. Outliers were values > 1.5%, in the case of glucose, and > 2.0% in the 

case of sucrose as these are the limits of both sugars in almost all potato cultivars (Storey, 2007). 

Mean and standard deviation values are higher in the 2011 season than 2009 season which is a 

result of lower temperature (1
o
C) and the fewer number of samples. Moreover, skewness resulted 

in both seasons especially in the case of sucrose even though the experiment was designed to 

minimize such. Maximum values of glucose and sucrose obtained from the 2011 season were 

higher than values in 2009 which is a direct result of the lower temperature (1
o
C) added to the 

2011 season.  

http://www.models.life.ku.dk/users/frans/
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Table 4.1. Statistical summary of reference analysis resulted from wet chemistry for Frito Lay 1879 and Russet 

Norkotah cultivars. 

Statistics 

2009 Season 2011 Season 

FL RN FL RN 

GL (%) SU (%) GL (%) SU (%) GL (%) SU (%) GL (%) SU (%) 

Minimum 0.0028 9.1e-5 0.0031 0.0045 0.0229 0.0031 0.1719 0.0111 

Maximum 0.1514 0.1607 0.3574 0.4205 0.2618 0.2999 1.1663 2.2271 

Mean 0.0457 0.0330 0.0591 0.10253 0.1016 0.0729 0.5454 0.2904 

Median 0.0391 0.0275 0.0338 0.0836 0.0893 0.0611 0.5528 0.1674 

Standard Deviation 0.0281 0.0239 0.0688 0.0806 0.0536 0.0560 0.1895 0.3361 

Skewness 1.4003 2.819 2.0412 1.2472 0.9401 1.5135 0.2741 2.2217 

Kurtosis 6.1725 17.1841 6.0141 4.6476 3.3262 5.6421 3.0054 9.8636 

 

4.3.2 Mean Reflectance Spectra (MRS) 

Fig. 4.8 shows the mean reflectance spectra for the sample set of both cultivars at the 

wavelength range of 400-1000 nm for the 2009 season and 457-973 nm (216 wavelengths) for 

the 2011 season. The amplitude and shape of the relative mean reflectance for both cultivars are 

similar with absorption in the visible range at 570 nm possibly due to the yellow color (Penner, 

2003). Another absorption peak in the NIR range, around 876 nm, is possibly occurring due to 

C-H fundamental bands or their combination (Workman and Weyer, 2008).    

Similar trend was noted within the 2011 season except for a considerable change being 

the absorption peaks were shifted from the 2009 season case, and located at 540 nm, and 920 nm. 

Also, amplitude values for the mean reflectance in 2011 is less than for the 2009 season which 

can be explained by variations in performance of differing systems.      
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Figure 4.8. Relative mean reflectance for a. Frito Lay 1879, b. Russet Norkotah, for the 2009 season, and relative 

mean reflectance for c. Frito Lay 1879, and d. Russet Norkotah, for the 2011 season. 

 

4.3.3 Curve Fitting Parameters 

Using the exponential model, curve-fitting parameter awi, which represents the maximum 

intensity value, was estimated and normalized using Teflon material. In the 2009 season, only 

the wavelength range 550-1000 nm (192 wavelengths) was considered as shown in Fig. 4.9a-b; 

and that range was 493-973 nm (201 wavelengths) for the 2011 season as shown in Fig. 4.9c-d, 

because signals beyond these spectral ranges were too noisy. For the 2009 season, an absorption 

peak was observed at 876 nm with apparent trend as in the mean reflectance spectra explained 

a b 

c d 
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before. However, for the 2011 season, FL and RN showed similar trend for awi with several 

samples in both cultivars showing two reflectance peaks at 560, and 900 nm with no obvious 

absorption peaks. 

 

    

  
Figure 4.9. Relative parameter awi for a. Frito Lay 1879, b. Russet Norkotah, for the 2009 season, and relative 

parameter awi for c. Frito Lay 1879, and d. Russet Norkotah, for the 2011 season. 

 

  

In the case of the full width at half maximum (FWHM) of intensity, or bwi, plots are 

shown at Fig. 4-10a-d for the 2009 season at 586-1000 nm (177 wavelengths) and the 2011 

a b 

c d 
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season at 493-973 nm (201 wavelengths). In Fig. 10a-b, there was a peak at 876 nm that showed 

the maximum value of FWHM for both cultivars for the 2009 season. For the 2011 season, a 

growing behavior of bwi was observed with absorption peaks at 560 nm and 920 nm with 

apparent similar trends as in mean reflectance spectra.  

 

 

   

  

Figure 4.10. Relative parameter bwi for a. Frito Lay 1879, b. Russet Norkotah, for the 2009 season, and relative 

parameter bwi for c. Frito Lay 1879, and d. Russet Norkotah, for the 2011 season. 

 

 

 

c d 

b a 
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4.3.4 Note About Performance of the Hyperspectral System Used in 2011 the Season 

After reviewing the difference between the two systems used in the 2009 and 2011 

seasons, it was concluded that the results of data obtained in the 2011 season were not accurate 

and were concerning compared with that in 2009 season as in the latter system, the results are 

very similar to those obtained from the study in chapter 3. Thus, no further analysis of the 

previous features was conducted for the 2011 season, and consequently only results of the 2009 

are shown.        

4.3.5 Partial Least Squares Regression (PLSR) Results  

The best results of PLSR for both potato cultivars in the case of mean reflectance spectra 

(MRS) and combined parameters (concatenated awi with bwi; concatenated MRS, awi, and bwi) for 

the 2009 season are shown in table 4.2. Results were close between all three data sets (MRS; awi, 

and bwi; MRS, awi, and bwi). For glucose prediction, RN had stronger correlation than FL with 

R(RPD) values of 0.96(3.29) for RN and 0.81(1.70) for FL using the MRS, awi, and bwi combined 

data set in both cases. For sucrose, however, FL had stronger prediction models than RN with 

best performance obtained having R(RPD) values as of 0.58(1.23) for FL and 0.30(0.98) for RN 

and using the awi and bwi combined data set in both cases. The relationship between measured 

(actual) and PLSR predicted glucose concentrations, in g/100g of fresh tuber weight, obtained 

from prediction models for FL and RN is shown in Fig. 4.11.  
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Table 4.2. PLSR results of predicting glucose and sucrose using VIS/NIR hyperspectral imaging for sliced potato 

samples in the 2009 season using Frito Lay 1879 and Russet Norkotah cultivars. 
Descriptive variable CultivarConstituent Preprocessing a Calibration model Validation model 

Rcal RMSEC RMSECcv 

(%) 

LVs Rpred RMSEP 

(%) 

RPD 

MRS FLGL A10,B3,C0 0.86 0.0158 0.0204 13 0.80 0.0184 1.67 

FLSU A10,B1,C0 0.71 0.0239 0.0280 10 0.53 0.0282 1.17 

RNGL A0,B1,C0 0.97 0.0229 0.0266 10 0.96 0.0289 3.21 

RNSU A0,B1,C0 0.41 0.0788 0.0860 5 0.27 0.0694 0.97 

awi, bwi 

 

FLGL A.0,B3,C0 0.81 0.0182 0.0202 19 0.78 0.0192 1.60 

FLSU A0,B1,C0 0.68 0.0248 0.0269 15 0.58 0.0268 1.23 

RNGL A0,B1,C0 0.97 0.0235 0.0285 19 0.96 0.0285 3.26 

RNSU A0,B1,C0 0.41 0.0790 0.0855 7 0.30 0.0686 0.98 

MRS, awi, bwi FLGL A0,B1,C0 0.85 0.0166 0.0195 20 0.81 0.0181 1.70 

FLSU A0,B1,C0 0.70 0.0241 0.0278 12 0.56 0.0274 1.21 

RNGL A0,B1,C0 0.97 0.0233 0.0269 11 0.96 0.0282 3.29 

RNSU A6,B3,C0 0.39 0.0798 0.0843 5 0.30 0.0684 0.98 
a
 See table 3.1 footnote.  

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet 

Norkotah glucose, RNSU: Russet Norkotah, sucrose. 

 

                 

 
 

Figure 4.11. Relationship between measured and predicted glucose values for sliced samples using full wavelengths 

for a) Frito Lay1879 and b) Russet Norkotah cultivars in the 2009 season using PLSR as indicated in table 4.2. 

 

4.3.6 Artificial Neural Network (ANN) Results 

The results of artificial neural network used to predict glucose and sucrose sugars for the 

2009 season are shown in table 4.3. Compared with PLSR results, lower performance was 

achieved except for glucose prediction models for RN. FFNN yielded the best prediction models 

for glucose in the 2009 season with R(RPD) values as high as 0.96(3.05) obtained from 

a b 
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combined awi and bwi data. Also FL glucose prediction models showed values of R(RPD) as high 

as 0.74(1.48) obtained from combining MRS, awi, and bwi. Sucrose prediction models showed 

slightly less performance compared with PLSR models with values of R(RPD) of 0.51(1.11) 

using FFNN for FL and 0.18(0.65) for RN resulted from combined awi and bwi data using 

RBFNN. Fig. 4.12 shows correlation between measured and ANN-predicted glucose 

concentrations using the test set of data for both FL and RN.  

Table 4.3. Results of prediction models to predict glucose and sucrose for sliced potato samples tested by VIS/NIR 

hyperspectral imaging and using RBFNN, RBFNNE, and FFNN in the 2009 season. 
Descriptive variable CultivarConstituent ANN type, 

characteristics 

Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

MRS FLGL FFNN, 100 0.75 0.0212 1.37 0.73 0.0212 1.46 

FLSU FFNN, 100 0.37 0.0261 1.05 0.30 0.0284 0.99 

RNGL FFNN, 300 0.96 0.0296 3.38 0.94 0.0348 2.56 

RNSU RBFNN 0.32 0.1098 0.72 0.18 0.1083 0.65 

awi, bwi FLGL FFNN, 250 0.75 0.0212 1.37 0.72 0.0216 1.43 

FLSU FFNN, 50 0.53 0.0288 1.17 0.51 0.0261 1.11 

RNGL FFNN, 200 0.97 0.0262 3.83 0.96 0.0291 3.05 

RNSU RBFNN 0.32 0.1098 0.72 0.18 0.1083 0.65 

MRS, awi, bwi FLGL FFNN, 250 0.79 0.0179 1.63 0.74 0.0209 1.48 

FLSU FFNN, 200 0.39 0.0265 1.04 0.30 0.0277 1.02 

RNGL FFNN, 200 0.95 0.0318 3.15 0.94 0.0328 2.71 

RNSU RBFNN 0.30 0.1060 0.77 0.13 0.1057 0.63 
a
 See table 3.1 footnote.  

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet 

Norkotah glucose, RNSU: Russet Norkotah, sucrose. 

 

   

Figure 4.12. Relationship between measured and predicted glucose values for sliced samples using full wavelengths 

for a) Frito Lay1879 and b) Russet Norkotah in the 2009 season using ANN as indicated in table 4.3. 

a b 
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4.3.7 Variable Selection Results 

After observing the closeness between the results obtained by the three data sets used for 

building prediction models using PLSR and ANN, wavelength selection using IPLS and GA 

techniques was only based on MRS data. The number of the most effective wavelengths were 

obtained as shown in table 4.4, both PLSR and ANN were then applied on the selected 

wavelengths to build prediction models and compared with the full variables models.  

Table 4.4. Wavelength selection results using IPLS and GA in the case of glucose and sucrose for potato sliced 

samples tested VIS/NIR by hyperspectral imaging and in the 2009 season for Frito Lay 1879 and Russet Norkotah.  
Selection method CultivarConstituent No. of selected wavelengths in VIS range No. of selected wavelengths in NIR range 

IPLS FLGL 21 19 

FLSU 10 0 

RNGL 9 3 

RNSU 7 0 

GA FLGL 82 44 

FLSU 78 51 

RNGL 75 39 

RNSU 61 30 

 

In the case of PLSR for 2009 samples as presented in table 4.5, for FL glucose prediction 

models, R(RPD) were 0.80(1.68) for FL and 0.97(3.66) for RN using IPLS and GA respectively. 

Sucrose prediction models showed R(RPD) values of 0.54(1.17) and 0.38(1.00) for RN using 

GA and IPLS respectively. Such results for the 2009 season are similar or slightly better 

compared with full variables results which indicates the effectiveness of the detected 

wavelengths clarified in table 4.4. It should be noted that IPLS results in less selected variables 

than GA which gives it the priority of selection over GA. 
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Table 4.5. PLSR results for predicting glucose and sucrose using VIS/NIR hyperspectral imaging and selected 

wavelengths obtained by IPLS and GA for sliced samples in the 2009 season for Frito Lay 1879 and Russet 

Norkotah cultivars. 

Variable selection method Cultivarconstituet   Preprocessing a  
Calibration model Validation model 

Rcal RMSEC RMSECcv LVs Rpred RMSEP RPD 

IPLS 

FLGL A9,B1,C0 0.82 0.0176 0.0190 19 0.80 0.0183 1.68 

FLSU A0,B1,C0 0.58 0.0233 0.0251 18 0.52 0.0258 1.16 

RNGL A0,B1,C0 0.98 0.0221 0.0260 20 0.96 0.0261 3.56 

RNSU A0,B1,C0 0.46 0.0769 0.0823 5 0.38 0.0668 1.00 

GA 

FLGL A0,B1,C0 0.82 0.0176 0.0196 14 0.79 0.0190 1.62 

FLSU A0,B1,C0 0.72 0.0234 0.0269 14 0.54 0.0281 1.17 

RNGL A0,B1,C0 0.98 0.0209 0.0255 14 0.97 0.0254 3.66 

RNSU A0,B1,C0 0.41 0.0789 0.0835 5 0.33 0.0676 0.99 
a
 See table 3.1 footnote.  

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet 

Norkotah glucose, RNSU: Russet Norkotah, sucrose. 

 

 Results of artificial neural network prediction models after applying variable selection 

using IPLS and GA for the 2009 season are shown in table 4.6. For FL glucose prediction, values 

of R(RPD) for RN were as high as 0.96(3.04) and for FL the values were 0.73(1.46) obtained 

from FFNN using GA in both cases. In the case of sucrose prediction for FL, there was no 

improvement of correlation compared with PLSR or ANN for full models. FFNN was proven to 

produce such performance in both cases. In general, the number of selected variables using GA 

is more than IPLS with close results between the prediction models performance using ANN. 

Thus, based on computation times, IPLS showed more efficiency than GA in the prediction of 

glucose and sucrose.   

Table 4.6. Artificial neural network results for predicting glucose and sucrose using VIS/NIR hyperspectral imaging 

and selected wavelengths obtained by IPLS and GA for sliced samples in the 2009 season for Frito Lay 1879 and 

Russet Norkotah cultivars. 

Descriptive variable Cultivarconstituent   ANN type, characteristics  
Training Testing 

Rtrain SeCVtrain (%) RPD Rtest SeCVtest  (%) RPD 

IPLS 

FLGL FFNN, 100 0.75 0.0190 1.53 0.70 0.0221 1.40 

FLSU FFNN, 50 0.26 0.0295 1.14 0.23 0.0290 1.00 

RNGL FFNN, 50 0.96 0.0284 3.53 0.95 0.0325 2.73 

RNSU FFNN, 50 0.24 0.0689 1.15 0.13 0.0701 1.00 

GA 

FLGL FFNN, 50 0.79 0.0170 1.71 0.73 0.0196 1.46 

FLSU FFNN, 50 0.26 0.0296 1.14 0.25 0.0294 0.98 

RNGL FFNN, 150 0.97 0.0250 4.01 0.96 0.0293 3.04 

RNSU RBFNN 0.21 0.1192 0.67 0.20 0.1041 0.67 

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet    

Norkotah glucose, RNSU: Russet Norkotah, sucrose.4 
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4.3.8 Potatoes Classification Based on Sugar Levels 

The numbers of samples in class 1(less than threshold) and class 2 (above threshold) for glucose 

and sucrose in the case of both cultivars are shown in table 4.7. 

Table 4.7. Numbers of samples in each class based on glucose and sucrose levels for the 2009 season in the case of 

Frito Lay1879 and Russet Norkotah cultivars.  
Cultivarconstituent Class 1 (less than threshold) Class 2 (above threshold) 

FLGL 453 618 

FLSU 393 980 

RNGL 188 169 

RNSU 198 160 

 

Results of sugar classification of potato sliced samples using Knn and PLSDA for FL and 

RN are shown in table 4.8. Classification error for the training group based on cross validation 

(training error) and testing error showed that PLSDA resulted in better performance than Knn 

with the possible reason being the suitability of PLSDA to cope with colinearity. Testing error 

for glucose classification for FL and RN were 19% and 18% respectively, whereas for sucrose 

the values were 34% and 38%. Classification results somewhat match with prediction 

performance as shown in previous sections in which glucose prediction models resulted in better 

results than sucrose for both cultivars.    

Table 4.8. Classification results of sliced samples based on glucose and sucrose levels for the 2009 season using 

VIS/NIR hyperspectral imaging for Frito Lay1879 and Russet Norkotah cultivars.  
CultivarConstituent Preprocessing for Knn ; PLSDA a Training error (%) Testing error (%) 

Knn PLSDA Knn PLSDA 

FLGL A6,C0 ; A4,C0 19 16 22 19 

FLSU A0,C0 ; A5,C0 39 32 42 34 

RNGL A7,C0 ; A9,C0 20 16 22 18 

RNSU A6,C0 ; A5,C0 41 36 44 38 
 a
 See table 3.1 footnote.  
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4.4 Conclusions 

Partial least squares regression (PLSR) and artificial neural network (ANN) were used to 

obtain prediction models for glucose and sucrose sugars in 12.7 mm sliced samples, obtained 

from Frito Lay1879 (FL) and Russet Norkotah (RN) cultivars, using a hyperspectral imaging 

system in the reflectance mode in the wavelength range of 400-1000 nm. Prediction models 

based on mean reflectance spectra (MRS) were shown to be more efficient than models based on 

spectral curve fitting parameters due to similar performance, and fewer variables contained in 

MRS. PLSR showed similar performance to ANN for both cultivars with R values being as high 

as 0.81 and 0.97 for FL and RN in the case of glucose. However, weaker performance was 

achieved for sucrose, compared to glucose, with R values of 0.58 and 0.27. In general, FL as a 

chipping cultivar with lower glucose than in RN, yielded weaker prediction models for glucose 

than RN. Prediction models built using selected wavelengths, by interval partial least squares 

(IPLS), showed similar performance as the full wavelengths’ models for both cultivars for 

glucose with a slight improvement for sucrose prediction with R values of 0.60, and 0.38 for FL 

and RN. The selected wavelengths results, which are unique in the study of predicting sugars 

content of potatoes, demonstrate the possibility of reducing data dimensionality and potentially 

enhancing prediction results. With broader selection of window size, cross validation, mutation 

rate, cross over breeding, replicate runs, or step size so that more effective wavelengths are 

selected, the potential exists for improved results. Moreover, prediction models of sucrose did 

not result in reliable performance and they are not suitable for industrial applications. 

Consequently, such models need improvement, which can be achieved by increasing the number 

of samples and/or using several storage temperatures to obtain broader sugar distribution.    
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Being a novel application of hyperspectral imaging to build prediction and classification 

models based on sugars in potatoes, this study in general presented a promising application for 

constituent monitoring of potatoes that are destined to products sensitive to excessive sugar 

content (chipping and French fries). With further study of extending this approach to intact 

whole tubers and with the improvement of hardware components in the hyperspectral system, the 

on-line sorting for potato tubers is a realistic target. Moreover, it is worth stating that, in the 

meantime and with the available components in the market, it is possible to benefit from the 

selected wavelengths for building a multispectral system to overcome the problem of relatively 

extensive time required for image acquisition related to hyperspectral imaging.  
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CHAPTER 5 UTILIZATION OF VISIBLE/NEAR-INFRARED 

SPECTROSCOPIC AND WAVELENGTH SELECTION METHODS IN SUGAR 

PREDICTION AND POTATOES CLASSIFICATION 
 

(Expanded from Rady, A.M., Guyer, D.E. 2014. Utilization of visible/near-infrared spectroscopic 

and wavelength selection methods in sugar prediction and potatoes classification. Journal of Food 

Measurement and Characterization, in press) 

 

5.1 Introduction 

 Near-infrared (NIR) is becoming a promising technology that could be extensively used 

in quality control and monitoring for chemical, petrochemical, pharmaceutical, agricultural, and 

food industries. As rapid, and/or noninvasive methods, NIR techniques are suitable for on-line 

applications which are less time consuming, more robust, more reproducible, and more cost 

effective than human labor or other laboratory methods used in quality assurance. Fruits and 

vegetables, as high moisture products and having a relatively big size, were not traditionally 

suitable for NIR applications. However, with development of high performance hardware, intact 

fruits and vegetable quality measurements using NIR have become feasible using interactance 

and transmission modes (Kawano, 2002). NIR interactance mode was developed in a USDA 

laboratory at Beltsville by Conway et al., 1984 to measure human body fat. Later, the practice of 

NIR interactance in the field of agriculture became more intensive. Sugar accumulation in potato 

tubers showed that sugar content in potatoes is influenced by storage conditions (temperature, 

period), and reconditioning more than pre-harvest practices (soil composition, fertilization, 

environment, irrigation) (Burton et al., 1992). 

 This study is initial work toward developing a rapid hand-held device that can be used to 

assess some constituents in potato tubers which will potentially benefit people working in the 
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potato industry starting from grower and ending with customer. In the current chapter, three data 

sets were obtained from the VIS/NIR interactance system; full wavelengths, sampled 

wavelengths, and selected wavelengths using IPLS and GA. The analysis of such data sets 

included building prediction models for glucose and sucrose, and classification of sliced samples 

and whole tubers using various techniques.     

The short and long term objectives of this research are: 

1. Determine the potential of VIS/NIR interactance spectroscopy for quantifying the level 

of sucrose and glucose levels in potato tubers. 

2. Development of a reliable prediction models that may be used to detect the amount of 

sucrose and glucose in potato tubers at levels which are important for potato growers and 

processors. 

3. Detect the most effective wavelengths related to glucose and sucrose absorption.   

4. Study the potential of classifying potatoes based on sugar levels associated with the 

frying industry using several classifiers as well as classifier fusion. 

5.2 Materials and Methods 

5.2.1 Raw Material and Experimental Design 

The samples used to conduct experiments in this study were the same as those used in 

section 4.2.1 as well as the experimental design for both the 2009 and 2011 seasons. 
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5.2.2 Constituent Measurement 

5.2.2.1 Potato sample preparation 

In addition to the sliced samples prepared as noted in section 4.2.2.1, whole tubers were 

also used in electronic measurements. The scan position for the whole tuber was chosen such that 

the incident light penetrates the area above the tissue extracted for juicing, and located in the 

middle of both axes. Regarding the spatial variation of a potato surface, the electronic 

measurements were made such that the area receiving the incident light, for sliced samples and 

whole tubers, is as uniform as possible for all samples. Consequently, the yielded variation will 

be due to the differences between samples in light absorption under the surface and not due to 

the spatial variation of the tuber surface.   

5.2.2.2 Wet chemistry basis measurements 

 The procedure used in juice extraction from sliced samples was the same as that used in 

section 4.2.2.2.1. Also, wet chemistry steps conducted to evaluate glucose and sucrose 

concentrations were the same as mentioned in section 4.2.2.2 and using equations 3.2 and 3.3 

respectively.  

5.2.3 VIS/NIR Interactance System 

 The system used in this study had the same components and configurations as that used 

in section 3.2.2.4. A standard Teflon
® 

as a reference material and then equation 3.1 was applied 

to obtain the relative absorption. 
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5.2.4 Data Analysis Discussion and Approach 

5.2.4.1 Data handling 

  Various scenarios of handling and statistically analyzing the relative absorption data 

extracted from the interactance experiments were conducted. Fig. 5.1 shows the sequence of data 

handling and methods used to build prediction models. First, the signals resulting from 

measurements were reduced from 3648 to 2701 wavelengths (from 446-1125 nm to 501-1004 

nm) based on visual evaluations. Next, two modes of data were tested, the data containing full 

2701 wavelengths, and sampling at every 7 wavelengths resulting in 386-variable matrices. 

Finally, data from the 2009 and 2011 seasons were combined for both the full and the sampled 

variables. Both PLSR and ANN were applied to each data set to obtain prediction models for 

both glucose and sucrose. 

5.2.4.2 Partial least squares regression (PLSR) 

A complete description of PLSR used in this research along with pretreatment for either 

spectra or reference values is listed in section 3.2.4.  

5.2.4.3 Artificial neural network (ANN) 

 The same artificial neural network types, and configuration applied in this study were the 

same as that used in section 4.2.4.3. 

5.2.4.4 Wavelength selection  

A complete description of interval partial least squares (IPLS) and genetic algorithm 

(GA) used in this research was listed in section 4.2.4.5. Variable selection techniques for 

interactance data were only applied on the sampled data (386) as the number of full variables 
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(wavelengths) is 2701 and it’s not possible to conduct variable selection on this case using either 

IPLS or GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. A schematic diagram of data handling and analysis for data obtained using VIS/NIR interactance 

spectroscopy to obtain prediction models of glucose and sucrose and for classification of Frito Lay1879 and Russet 

Norkotah based on sugar levels. 
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5.2.4.5 Classification of potatoes based on sugar levels 

 Classification of whole tubers and sliced samples based on glucose and sucrose levels 

was conducted as described in section 4.2.4.6. Moreover, several techniques were applied to 

enhance classification accuracy. In addition to Knn and PLSDA, linear discriminant analysis 

(LDA), and artificial neural network (ANN) were also used for the classification. In discriminant 

analysis, each sample is assigned to a class. For LDA, the decision boundary is a hyper plane that 

separates the two classes (Bishop, 2007; Duda, et. al., 2001). In the current study, Euclidean, as 

well as Mahanalobis, distances were applied for assigning each sample to the appropriate class. 

Only principal components (20 components that were responsible for >99% of the total variance) 

were used for LDA as they overcome the problem of colinearity associated with spectroscopic 

measurements.  

ANN classification was based on FFNN that consisted of an input layer containing the 

pretreated spectra data, a hidden layer with 50 neurons, and an output layer that contained the 

assigned class. Transfer functions were chosen as log-sigmoid, and scaled conjugate gradient 

back propagation for hidden and output layers respectively. Samples in both seasons were 

divided into two classes based on the cut-off glucose values in the 2009 season of 0.035% for 

both FL and RN, whereas the values for sucrose were 0.03% and 0.10%. In the 2011 season, and 

based on sugar distribution, the threshold values for glucose were 0.09% and 0.5% for FL and 

RN, while the values for sucrose were 0.08% and 0.15%. Cut-off levels were adopted from 

recommended thresholds listed by Stark and Love (2003), for both sugars except for the glucose 

level for RN which was chosen to create two balanced classes. Classification of sugars was 

conducted using the Matlab
®
 statistical toolbox for LDA, and ANN. 



 

113 
 

Classifier fusion was also conducted to increase the overall classification accuracy. 

Weighted majority voting was used for setting each sample in the correct class. In majority 

voting, and based on results obtained from individual classifiers, PLSDA was given the highest 

weight of 0.40, and weights of 0.20, 0.10, and 0.15 were given to LDA, and Knn, and ANN 

respectively. Each sample was assigned to the class having the higher total voting resulted from 

all classifiers. 

5.3 Results and Discussions 

5.3.1 Constituents Distribution 

 The basic statistics for both glucose and sucrose over the 2009 and 2011 data were shown 

in table 4.1. Moreover, sample distributions of glucose and sucrose from wet chemistry for FL 

and RN in the 2009 and 2011 seasons are shown in Fig. 5.2, with a broader range of both 

constituents in the 2011 season due to more storage temperatures utilized. 

5.3.2 Spectra for Sliced Samples and Whole Tubers  

The signals extracted from the VIS/NIR interactance measurement experiments for both 

cultivars for sliced and whole samples in the range 501-1004 nm, extracted from the original 

wavelengths signal (446-1125 nm), are shown in Figs 5.3, and 5.4 for the 2009 and 2011 

seasons. In general, the signals from whole samples appear less scattered than with sliced 

samples with peak values of relative interactance being one third of the peak value for the sliced 

samples indicating the effect of sample preparation (i.e. skin effect) on interactance. In the 2011 

season, the same trend was obtained for both cultivars in the case of sliced samples or whole 

tubers with more condensed signals for whole tubers. 
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   Figure 5.2. Distribution of glucose and sucrose (%FW) for Frito Lay 1879 and Russet Norkotah from wet 

chemistry in a) 2009, and b) 2011 seasons. Note: scale change on RN glucose for display purpose. 

 

 

 

 

a 
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Figure 5.3. Relative interactance of the 2009 season data for sliced samples a. Frito Lay 1879, b. Russet Norkotah, 

and relative  interactance for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah. 

 

 

 

 

a b 
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Figure 5.4. Relative interactance of the 2011 season data for sliced samples a. Frito Lay 1879, b. Russet Norkotah, 

and relative  interactance for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah. 

 

To obtain more information about the trend of sliced samples and whole tubers under the 

applied interactance experiments, the mean spectra of log(1/interactance) was calculated and 

plotted in Fig. 5.5a-b for the 2009 season, where A is the relative interactance. In the case of 

a b 

c d 
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sliced samples, FL and RN showed similar trend in both visible and near-infrared regions with an 

absorption peak at round 960 nm that is related to OH-water overtone (Chen et al., 2004; 

Helgerud et al., 2012). For whole tubers, while both cultivars showed similar trends to sliced 

samples in the NIR region, different behavior in the visible region was observed. Such variation 

is due to color differences and non-uniformity of the skin surface between FL and RN. An 

absorption band was noted for RN at 550-600 nm which possibly refers to the absorption of 

green (490-580 nm), and yellow (580-600 nm) colors, and a slight peak around 650 nm which 

possibly refers to the absorption of orange (600-650 nm) color. While FL showed two small 

absorption peaks around 550 nm (green color), and 650 nm (orange color) which also refers to 

the absorption of the green and orange colors respectively (Giambattista et al., 2007). In the 2011 

season (figures are not shown), the same trend was obtained for both cultivars in the case of both 

sample types. 
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   Figure 5.5. Mean of log (1/relative interactance) of the 2009 season data for Frito Lay 1879 and Russet Norkotah 

for: a. Sliced samples, b. Whole tubers. 

 

5.3.3 Partial Least Squares Regression (PLSR) Results 

5.3.3.1 Full and sampled wavelengths models 

 Results for calibration and prediction models of glucose and sucrose for both Frito 

Lay1879 (FL) and Russet Norkotah (RN) cultivars in the case of the 2009 and 2011 seasons are 

shown in table 5.1. In the 2009 season, and based on full wavelengths models, for glucose 

prediction models, RN yielded strong correlation with R(RPD) values of 0.94(2.85) for sliced 

samples and 0.97(4.16) for whole tubers. Compared to glucose models, weaker correlation was 

obtained for sucrose with R(RPD) values of 0.53(1.18) and 0.53(1.16) for sliced samples and 

whole tubers respectively. In the case of FL, whole tubers yielded glucose prediction models 

with R(RPD) values of 0.79(1.62) and those values were slightly better than sliced samples 

models of 0.76(1.53). However, sucrose prediction models had values of R(RPD) of 0.30(1.04), 

a b 
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and 0.33(1.05) of sliced samples and whole tubers respectively. For the prediction models 

obtained from sampled wavelengths, glucose prediction models of Frito Lay 1879 in the case of 

whole tubers showed higher correlation than full wavelengths models with R(RPD) values of 

0.85(1.92). Other constituents showed similar performance to the full wavelengths models for 

both cultivars in the case of both glucose and sucrose which generally clarifies the advantage of 

reducing data dimension using sampling.  

In the 2011 season, general lower correlation was achieved of both sugars in the case of 

both cultivars than in the 2009 season. Values of R(RPD) for FL in the case of glucose were 

0.59(1.17) and those values for RN were 0.53(1.15). For sucrose, R(RPD) values for FL were 

0.56(1.16) and 0.33(1.02) for RN. For whole tubers, glucose prediction resulted in R(RPD) 

values of 0.36(1.08) for FL and 0.62(0.70) for RN, and these values were 0.21(0.98) for FL and 

0.45(1.12) for RN in the case of sucrose prediction models. The reduced (sampled) data yielded 

weaker performance than full wavelengths except for sucrose prediction models for RN with 

R(RPD) values of 0.69 (1.41) for sliced which is even better than 2009 results indicated before. 
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Table 5.1. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR interactance and using full (2701) and sampled 

wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelengths Sample type Cultivarconstituent Preprocessing a Calibration model Validation model 

Rcal RMSEC RMSECcv 

(%) 

LVs Rpred RMSEP 

(%) 

RPD 

2009 

Full 

Slice FLGL A7,B1,C0 0.77 0.0178 0.0187 14 0.76 0.0181 1.53 

FLSU A6,B1,C1 0.33 0.7988 0.8241 13 0.30 0.8167 1.04 

RNGL A9,B1,C2 0.95 0.0341 0.0364 8 0.94 0.0387 2.85 

RNSU A9,B1,C0 0.64 0.0613 0.0781 18 0.53 0.0682 1.18 

Whole FLGL A0,B1,C0 0.85 0.0149 0.0195 20 0.79 0.0172 1.62 

FLSU A5,B1,C1 0.37 0.7873 0.8239 15 0.33 0.8082 1.05 

RNGL A7,B3,C0 0.99 0.0093 0.0263 2 0.97 0.0179 4.16 

RNSU A7,B3,C0 0.72 0.0555 0.0753 6 0.53 0.0698 1.16 

Sampled Slice FLGL A0,B1,C0 0.78 0.0171 0.0180 20 0.76 0.0178 1.53 

FLSU A0,B1,C1 0.37 0.7883 0.8252 17 0.29 0.8197 1.04 

RNGL A7,B1,C2 0.95 0.0335 0.0371 18 0.93 0.0421 2.61 

RNSU A4,B3,C0 0.67 0.0591 0.0788 20 0.52 0.0692 1.17 

Whole FLGL A7,B3,C0 0.89 0.0126 0.0158 4 0.85 0.0142 1.92 

FLSU A4,B3,C1 0.53 0.7176 0.8115 17 0.35 0.8111 1.05 

RNGL A0,B1,C0 0.97 0.0153 0.0194 20 0.95 0.0241 3.11 

RNSU A7,B3,C1 0.74 0.6256 0.9006 8 0.45 0.8745 1.06 

2011 Full Slice FLGL A7,B1,C2 0.79 0.0517 0.0746 11 0.59 0.0710 1.17 

FLSU A9,B1,C0 0.73 0.0476 0.0660 10 0.56 0.0533 1.16 

RNGL A0,B3,C2 0.87 0.0489 0.0867 7 0.53 0.0914 1.15 

RNSU A0,B1,C1 0.54 0.9976 1.1514 5 0.33 1.0488 1.02 

Whole FLGL A0,B1,C1 0.41 0.4985 0.5280 5 0.36 0.4789 1.08 

FLSU A10,B1,C1 0.42 0.6954 0.7714 6 0.21 0.6813 0.98 

RNGL A6,B3,C1 0.98 0.0628 0.2875 8 0.62 0.5865 0.70 

RNSU A0,B1,C1 0.46 0.7909 0.9258 4 0.45 0.8862 1.12 

Sampled Slice FLGL A5,B1,C0 0.48 0.5025 0.5655 10 0.47 0.4939 1.14 

FLSU A6,B1,C2 0.39 0.1050 0.1145 8 0.26 0.1108 1.03 

RNGL A4,B1,C1 0.43 0.3784 0.4041 3 0.20 0.4567 1.01 

RNSU A0,B1,C1 0.36 1.1128 1.1837 3 0.31 1.0131 1.05 

Whole FLGL A1,B1,C1 0.48 0.4790 0.5309 5 0.37 0.4849 1.07 

FLSU A1,B3,C1 0.36 0.6906 0.7818 1 0.28 0.6131 1.04 

RNGL A0,B3,C0 0.66 0.1362 0.2345 1 0.39 0.1803 1.02 

RNSU A7,B1,C2 0.70 0.1219 0.1518 5 0.69 0.1406 1.41 
a
 See table 3.1 footnote.  
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5.3.3.2 Selected variables-PLSR models 

 Prediction models for glucose and sucrose in the case of Frito Lay 1879 and RN using 

PLSR and based on selected variables from both IPLS and GA are shown in table 5.2 for the 

2009 and 2011 seasons with the number of selected wavelengths in table 5.3. Comparing 

between PLSR results for selected-variables models with those obtained from full or sampled 

wavelengths and for 2009 showed that selected wavelengths-prediction models yielded the same 

correlation performance, or slightly better, as full wavelengths as well as sampled wavelengths 

models. Slightly better performance was obtained for FL glucose prediction models for sliced 

samples and whole tubers with R(RPD) values of 0.79(1.61) and 0.81(1.72) using IPLS. 

Moreover, an improvement in sucrose prediction models for RN in the case of sliced samples 

and whole tubers with R(RPD) values of 0.55(1.18) and 0.64(1.30) were obtained from GA and 

IPLS respectively. 

 For the 2011 season, significant improvements were obtained compared with full or 

sampled wavelengths models. For sliced samples, glucose prediction models for FL and RN 

showed R(RPD) values as high as 0.74(1.49) and 0.88(2.12), obtained from IPLS and GA 

respectively. Sucrose prediction models also were improved for both cultivars and yielded 

prediction models with R(RPD) values of 0.81(1.70) for FL using GA and 0.71(1.32) for RN 

using IPLS. Whole tubers also showed considerable improvements with R(RPD) values for 

glucose models as high as 0.71(1.32) 0.91(2.08) for FL and RN respectively and using IPLS as a 

wavelength selection technique in both cases. In the case of sucrose, R(RPD) values were 

0.80(1.64) and 0.94(2.82) for FL and RN respectively using IPLS. In general, IPLS yielded 

better PLSR prediction models, using different window sizes, than GA, that has window size of 

1, for both cultivars in 2009 and 2011 data sets  
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with some exceptions shown in table 5.2. The best PLSR prediction models representing the 

relationship between measured and predicted values of glucose and sucrose for the 2009 season 

for are shown in Fig. 5.6. 
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Table 5.2. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from 

sampled wavelengths) and VIS/NIR interactance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelength selection 

technique 

Sample type Cultivarconstituent Preprocessing a Window Width Calibration model Validation model 

Rcal RMSEC RMSECcv 

(%) 

LVs Rpred RMSEP 

(%) 

RPD 

2009 IPLS Slice FLGL A0,B1,C0 W1 0.79 0.0166 0.0177 8 0.78 0.0162 1.61 

FLSU A0,B1,C2 W1 0.42 0.0726 0.0764 19 0.40 0.0760 1.09 

RNGL A7,B3,C0 W1 0.97 0.0174 0.0228 16 0.95 0.0247 3.02 

RNSU A0,B1,C0 W1 0.69 0.0572 0.0692 20 0.64 0.0621 1.30 

Whole FLGL A0,B1,C0 W1 0.83 0.0150 0.0169 20 0.81 0.0151 1.72 

FLSU A0,B1,C2 W1 0.51 0.7292 0.7793 20 0.43 0.7772 1.10 

RNGL A0,B1,C0 W1 0.98 0.0129 0.0189 20 0.97 0.0192 3.89 

RNSU A0,B1,C2 W1 0.63 0.0941 0.1103 19 0.51 0.1052 1.15 

GA Slice FLGL A9,B1,C0  0.79 0.0174 0.0183 13 0.78 0.0175 1.59 

FLSU A9,B1,C0  0.36 0.0234 0.0239 5 0.34 0.0247 1.07 

RNGL A7,B1,C0  0.95 0.0215 0.0237 13 0.94 0.0263 2.83 

RNSU A0,B1,C0  0.61 0.0626 0.0722 17 0.49 0.0703 1.15 

Whole FLGL A1,B1,C0  0.84 0.0151 0.0183 20 0.80 0.0167 1.66 

FLSU A7,B1,C1  0.52 0.7235 0.7975 20 0.43 0.7715 1.10 

RNGL A0,B1,C0  0.98 0.0121 0.0209 20 0.97 0.0204 3.66 

RNSU A9,B1,C0  0.71 0.0557 0.0733 20 0.55 0.0684 1.18 

2011 IPLS Slice FLGL A0,B1,C0 W2 0.80 0.0281 0.0374 19 0.68 0.0362 1.30 

FLSU A7,B1,C0 W1 0.74 0.0470 0.0571 20 0.71 0.0436 1.43 

RNGL A7,B2,C2 W1 0.94 0.0326 0.0652 20 0.88 0.0497 2.12 

RNSU A4,B2,C2 W3 0.81 0.1235 0.2131 20 0.78 0.1267 1.57 

Whole FLGL A0,B2,C0 W3 0.91 0.0213 0.0426 20 0.71 0.0397 1.32 

FLSU A0,B3,C0 W2 0.84 0.0320 0.0472 19 0.80 0.0384 1.64 

RNGL A0,B1,C2 W1 0.95 0.0251 0.0625 20 0.91 0.0453 2.08 

RNSU A0,B1,C0 W1 0.95 0.0830 0.1565 6 0.94 0.1081 2.82 

GA Slice FLGL A7,B3,C0  0.78 0.0337 0.0414 20 0.74 0.0363 1.49 

FLSU A7,B1,C0  0.89 0.0285 0.0440 20 0.81 0.0391 1.70 

RNGL A5,B3,C2  0.92 0.0391 0.0635 20 0.84 0.0516 1.87 

RNSU A7,B1,C2  0.61 0.1656 0.2028 6 0.41 0.1843 1.08 

Whole FLGL A4,B1,C1  0.48 0.4802 0.5320 6 0.41 0.4673 1.11 

FLSU A6,B1,C1  0.22 0.7480 0.7593 1 0.21 0.6494 1.03 

RNGL A0,B1,C2  0.95 0.0257 0.0696 13 0.71 0.0672 1.40 

RNSU A0,B3,C0  0.82 0.1325 0.2612 5 0.77 0.1916 1.56 
a
 See table 3.1 footnote.  
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Nomenclature: RVC 

R= correlation coefficient of prediction model 

V= Cultivar (Frito Lay 1879 (FL), or Russet Norkotah (RN). 

C= Constituent (glucose (GL), or sucrose (SU)). 

Figure 5.6. Best relationships between wet chemistry based and PLSR predicted constituents for Frito Lay 1879 and 

Russet Norkotah in the 2009 season for a) Glucose for sliced samples, b) Glucose for whole tubers, c) Sucrose for 

sliced samples, and d) Sucrose for whole tubers. 

 

 Table 5.3 shows the number of selected wavelengths from VIS/NIR interactance data for 

potato tubers in the case of both sugars, for FL and RN cultivars, and for the 2009 and 2011 

seasons. GA produces more selected wavelengths than IPLS in both visual and near-infrared 
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regions which explains the better performance of prediction models based on GA than IPLS. 

However, in practical applications, and in the case of closer performance between the two 

methods, IPLS is preferred as it needs less time for prediction than GA. 

Table 5.3. Selected wavelengths for predicting glucose and sucrose for sliced samples and whole tubers using IPLS 

and GA methods (from sampled wavelengths) and VIS/NIR interactance in the 2009 and 2011 seasons for Frito Lay 

1879 and Russet Norkotah cultivars. 
Season Wavelength 

selection 

technique 

Sample 

type 

Cultivarconstituent Window 

width 

Total no. of 

wavelengths 

No. of wavelengths in 

VIS region 

No. of wavelengths 

in NIR region 

2009 IPLS Slice FLGL W=1 29 15 14 

FLSU W=1 20 11 9 

RNGL W=1 56 27 29 

RNSU W=1 68 32 36 

Whole FLGL W=1 75 35 40 

FLSU W=1 21 5 16 

RNGL W=1 49 27 22 

RNSU W=1 33 18 15 

GA Slice FLGL W=1 165 108 57 

FLSU W=1 202 120 82 

RNGL W=1 202 116 86 

RNSU W=1 165 116 49 

Whole FLGL W=1 184 97 87 

FLSU W=1 193 116 77 

RNGL W=1 217 118 99 

RNSU W=1 182 94 88 

2011 IPLS Slice FLGL W=2 11 11 0 

FLSU W=1 19 19 0 

RNGL W=1 14 14 0 

RNSU W=3 18 16 2 

Whole FLGL W=3 24 18 6 

FLSU W=2 20 18 2 

RNGL W=1 37 35 2 

RNSU W=1 24 18 6 

GA Slice FLGL W=1 229 133 96 

FLSU W=1 247 149 98 

RNGL W=1 239 136 103 

RNSU W=1 228 130 102 

Whole FLGL W=1 214 146 68 

FLSU W=1 228 138 90 

RNGL W=1 207 123 84 

RNSU W=1 229 136 93 

      

 As can be noted from Fig 5.6, there were common wavelengths between the two seasons. 

Due to the different number of samples used in each season, variation between samples, and 

more storage conditions used in the 2011 season, there were some differences in the number of 

selected wavelengths. In general, the selected wavelengths in the 2011 season seemed more 
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efficient in yielding prediction models. With further studies, it is feasible to test the selected 

wavelengths and evaluate the efficacy of them to produce more robust results.    

 

     

Nomenclature: VCSY 

V= Cultivar (Frito Lay 1879 (FL), or Russet Norkotah (RN). 

C= Constituent (glucose (GL), or sucrose (SU)). 

S= Sample type (slice (S), or whole tube (W)). 

Y= Season (2009 (09), or 2011 (11)). 

Figure 5.7. Schematic representation of the selected wavelengths, using VIS/NIR interactance mode and IPLS, 

associated with the best PLSR models of glucose and sucrose in the 2009 and 2011 seasons for sliced samples and 

whole tubers for a) Frito Lay 1879, b) Russet Norkotah. 

 

5.3.4 Artificial Neural Network (ANN) Results  

5.3.4.1 Full and sampled variables models 

 Results for prediction models of glucose and sucrose for FL and RN using different types 

of artificial neural network for full and sampled wavelengths for are shown in table 5.4. For 

models based on full wavelengths, sliced samples in the 2009 season showed slightly less 

performance than PLSR for full wavelengths. Values of R(RPD) for glucose prediction models 

were 0.89(2.24) for FL using RBFNN and 0.86(1.91) for RN using FFNN. For sucrose models, 
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the values were 0.58(1.15) for FL using NEWGRNN and 0.27(0.97) for RN using FFNN. For 

whole tubers, correlation performance was close to PLSR results with R(RPD) values of 

0.77(1.44) for FL using RBFNNE and 0.95(3.09) for RN in the case of glucose using RBFNN.  

For the sucrose models, R(RPD) values were 0.46(1.01) for FL obtained using RBFNN and 

0.63(1.28) for RN using RBFNNE. Results for the 2011 season showed improvement in both 

sugars’ correlation for sliced samples. Glucose prediction models showed R(RPD) values as of 

0.92(2.35) for FL obtained using RFBNNE and 0.94(2.97) for RN obtained using RBFNN. 

Sucrose prediction models showed R(RPD) values as high as 0.82(1.67) and 0.36(1.08) for RN 

using FFNN in both cases. Models for whole samples or whole tubers showed weak correlation 

performance.    

Results of prediction models obtained using sampled wavelengths mostly showed the 

same results as the same models using full wavelengths for both seasons using ANN. As an 

exception, in the 2009 season, an improvement in RN sucrose prediction resulted for sliced 

samples with R(RPD) values as of 0.52(1.15) using NEWGRNN. Similar performance to the 

2701 (full) wavelengths was achieved for both glucose and sucrose in the case of whole tubers. 

In the 2011 season, also the same performance was achieved for glucose and sucrose prediction 

models in the case of both cultivars. Consequently, using sampled wavelengths yielded same 

performance for both seasons and it reduced computation time.   
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Table 5.4. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR interactance and using full (2701) and sampled 

wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelengths utilized Sample type CultivarConstituent ANN type,  

characteristics 

Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

2009 Full Slice FLGL RBFNN 0.89 0.01 2.16 0.89 0.0121 2.24 

FLSU NEWGRNN 0.65 0.02 1.38 0.58 0.0199 1.15 

RNGL FFNN, 1500 0.91 0.03 2.17 0.86 0.0324 1.91 

RNSU FFNN, 1000 0.36 0.07 1.02 0.27 0.0721 0.97 

Whole FLGL RBFNNE 0.78 0.0172 1.55 0.77 0.0182 1.44 

FLSU RBFNN 0.55 0.02 1.13 0.46 0.0225 1.01 

RNGL RBFNN 0.96 0.0224 2.51 0.95 0.0208 3.09 

RNSU RBFNNE 0.75 0.06 1.21 0.63 0.0547 1.28 

Sampled Slice FLGL RBFNN 0.90 0.0120 2.28 0.90 0.0118 2.29 

FLSU RBFNN 0.64 0.0189 1.35 0.57 0.0204 1.12 

RNGL FFNN, 1000 0.89 0.0343 1.95 0.86 0.0315 1.96 

RNSU NEWGRNN 0.58 0.0636 1.15 0.52 0.0608 1.15 

Whole FLGL RBFNN 0.77 0.0181 1.56 0.76 0.0189 1.44 

FLSU RBFNNE 0.55 0.0226 1.13 0.45 0.0226 1.01 

RNGL RBFNN 0.97 0.0178 3.34 0.94 0.0226 2.89 

RNSU RBFNNE 0.75 0.0603 1.21 0.63 0.0547 1.28 

2011 Full Slice FLGL RBFNNE 0.93 0.0206 2.70 0.92 0.0222 2.35 

FLSU FFNN, 500 0.84 0.0359 1.70 0.82 0.0394 1.67 

RNGL RBFNN 0.97 0.0157 3.31 0.94 0.0170 2.97 

RNSU FFNN, 1500 0.34 0.2221 1.71 0.36 0.4323 1.08 

Whole FLGL FFNN, 1500 0.42 0.0465 1.11 0.36 0.0510 1.07 

FLSU FFNN, 1000 0.35 0.0523 0.99 0.28 0.0498 1.01 

RNGL FFNN, 500 0.37 0.2365 0.88 0.29 0.1878 0.83 

RNSU FFNN, 1000 0.39 0.1698 1.06 0.31 0.2381 1.05 

Sampled Slice FLGL RBFNN 0.92 0.0222 2.51 0.90 0.0244 2.14 

FLSU RBFNN 0.96 0.0182 3.34 0.95 0.0200 3.29 

RNGL FFNN, 1000 0.56 0.1567 1.22 0.37 0.1895 1.06 

RNSU FFNN, 1500 0.17 0.4167 0.80 0.14 0.5356 0.84 

Whole FLGL FFNN, 1000 0.36 0.0593 0.87 0.33 0.0515 1.06 

FLSU RBFNN 0.96 0.0150 3.45 0.94 0.0168 3.01 

RNGL NEWGRNN 0.46 0.2092 1.09 0.17 0.2412 0.63 

RNSU FFNN, 1500 0.51 0.2170 1.14 0.45 0.3221 1.11 
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5.3.4.2 Selected variables- ANN models 

 Results of ANN prediction models based on variable selection techniques, IPLS and GA 

in the case of the 2009 and 2011 seasons are shown in table 5.5. In the 2009 season, for sliced 

samples, FL and RN glucose prediction models using IPLS showed R(RPD) values of 0.67(1.35) 

obtained using FFNN and 0.95(3.16) using RBFNN respectively which is slightly better, for RN, 

than the values obtained using full 2701 wavelengths or sampled ones. Sucrose prediction 

models, however, showed less performance for RN compared with full or sampled wavelengths 

models with R(RPD) values of 0.56(1.09) using RBFNN and 0.20(0.99) using FFNN for FL and 

RN respectively.  

Whole tubers’ prediction models using selected wavelengths showed almost the same 

performance for glucose prediction compared to full or sampled wavelengths models with 

R(RPD) values of 0.77(1.49) for FL and 0.95(3.21) for RN using RBFNN in both cases. Sucrose 

prediction models for FL and RN, however, showed less correlation statistics, for RN, compared 

to those for full or sampled wavelengths models with R(RPD) values, obtained from GA, of 

0.46(1.01) and 0.16(0.99) using RBFNN and NEWGRNN respectively. Results also showed that 

both IPLS and GA resulted in similar performance for glucose and sucrose prediction models in 

the case of both cultivars in 2009 season. 

For selected wavelengths prediction models in the 2011 season using ANN as shown in 

table 5.5, generally considerably lower correlation was obtained compared with full or samples 

wavelengths models in contrast to the results achieved in the case of PLSR with an exception of 

the glucose prediction model for sliced samples for FL in which R(RPD) values were 0.91(2.25) 

obtained using GA and RBFNN. Such results give priority to the PLSR prediction method over 
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ANN for the application of variable selection on achieving the same or even better efficiency in 

predicting glucose and sucrose for potato tubers using the VIS/NIR interactance technique.
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Table 5.5. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from 

sampled wavelengths) and VIS/NIR interactance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelength selection technique Sample 

type 

CultivarConstituent ANN type,  

characteristics 

Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

2009 IPLS Slice FLGL FFNN, 150 0.73 0.0197 1.43 0.67 0.0202 1.35 

FLSU RBFNN 0.53 0.0250 1.03 0.54 0.0227 1.00 

RNGL RBFNN 0.97 0.0177 3.79 0.95 0.0196 3.16 

RNSU FFNN, 500 0.16 0.0657 1.08 0.15 0.0812 1.00 

Whole FLGL RBFNN 0.80 0.0163 1.64 0.77 0.0175 1.49 

FLSU RBFNN 0.55 0.0225 1.14 0.45 0.0224 1.02 

RNGL RBFNN 0.96 0.0220 2.56 0.95 0.0201 3.21 

RNSU FFNN, 1000 0.21 0.0691 1.02 0.12 0.0845 0.96 

GA Slice FLGL FFNN, 1000 0.72 0.0190 1.41 0.71 0.0184 1.42 

FLSU FFNN, 500 0.62 0.0201 1.28 0.56 0.0210 1.09 

RNGL RBFNN 0.96 0.0195 3.44 0.95 0.0190 3.25 

RNSU FFNN, 300 0.30 0.0728 1.00 0.20 0.0711 0.99 

Whole FLGL RBFNN 0.78 0.0168 1.59 0.77 0.0174 1.50 

FLSU RBFNN 0.49 0.0227 1.13 0.46 0.0226 1.01 

RNGL RBFNN 0.96 0.0219 2.57 0.95 0.0210 3.06 

RNSU NEWGRNN 0.29 0.0728 1.00 0.16 0.0712 0.99 

2011 IPLS Slice FLGL RBFNN 0.92 0.0216 2.58 0.90 0.0239 2.18 

FLSU FFNN, 500 0.34 0.0573 1.06 0.25 0.0636 1.03 

RNGL FFNN, 500 0.51 0.1588 1.15 0.48 0.1714 1.14 

RNSU FFNN, 50 0.36 0.2593 1.37 0.35 0.4327 1.05 

Whole FLGL FFNN, 500 0.36 0.0536 0.96 0.19 0.0546 1.00 

FLSU FFNN, 1000 0.53 0.0510 1.10 0.30 0.0705 1.03 

RNGL FFNN, 50 0.65 0.1703 0.94 0.40 0.1600 1.08 

RNSU FFNN, 1000 0.58 0.2044 1.08 0.50 0.2572 1.10 

GA Slice FLGL RBFNN 0.92 0.0222 2.50 0.91 0.0231 2.25 

FLSU FFNN, 50 0.24 0.0596 1.02 0.22 0.06 1.02 

RNGL FFNN, 150 0.44 0.1735 1.06 0.30 0.1918 1.02 

RNSU FFNN, 50 0.36 0.2360 1.61 0.21 0.4769 0.98 

Whole FLGL FFNN, 300 0.23 0.3252 1.03 0.16 0.4466 1.01 

FLSU FFNN, 150 0.40 0.0557 0.93 0.34 0.0475 1.06 

RNGL FFNN, 300 0.33 0.1876 1.10 0.24 0.1658 0.94 

RNSU FFNN, 50 0.53 0.2072 1.20 0.54 0.3008 1.19 
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5.3.5 Results of Potatoes Classification Based on Sugar Levels and Selected Wavelengths 

  Based on glucose and sucrose thresholds as described in section 5.3.3, data was divided 

into two classes for sliced samples and whole tubers for the 2009 and 2011 seasons as presented 

in table 5.6 with outliers removed. Classification error for training, using cross validation, and 

testing groups for both seasons is shown in table 5.7 with the lowest classification error in each 

case marked with bold font.  

Table 5.6. Number of samples in each class based on glucose and sucrose levels, obtained from wet chemistry, for 

sliced samples and whole tubers in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Sample CultivarConstituent  Class 1 (less than threshold) Class 2 (above threshold) 

2009 Slice FLGL 445 562 

FLSU 523 458 

RNGL 177 159 

RNSU 195 139 

Whole FLGL 222 281 

FLSU 266 229 

RNGL 88 79 

RNSU 87 68 

2011 Slice FLGL 204 186 

FLSU 218 146 

RNGL 66 84 

RNSU 58 82 

Whole FLGL 136 57 

FLSU 122 71 

RNGL 31 44 

RNSU 26 48 

 

In both seasons, classification performance generally followed the PLSR trend explained 

in section 5.3.3. For the 2009 season, classification error values of glucose-based models (16% 

and 13% for FL and RN in the case of sliced samples, and 18%, and 13% in the case of whole 

tubers) were much lower than those for sucrose-based models (35%, and 36% for FL and RN in 

the case of sliced samples and 34%, and 38% for FL and RN in the case of whole tubers). 

However, results for 2011 indicated better performance for sucrose-based classification. 

Classification errors based on glucose were 21%, and 23% for FL and RN in the case of sliced 

samples and 23%, and 0% for FL and RN in the case of whole tubers. While for sucrose-based 

models, error values were 23%, and 18% for FL and RN in the case of slice samples and 26%, 
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and 14% for FL and RN in the case of whole tubers. Results for 2011 showed the advantage of 

obtaining broader sugar distribution, especially for sucrose, which was confirmed by PLSR 

prediction outputs.  

As noted from table 5.7, PLSDA generally presented the least classification error, 

especially for the 2011 season, followed by LDA models. Knn and ANN, however, did not yield 

as powerful performance as the former methods. Additionally, classifier fusion models showed 

similar results to PLSDA in many cases, with the lowest error obtained for RN using glucose 

levels in the 2011 season for whole tubers. Consequently, combining classifier outputs did 

improve classification results in certain cases.  

 Classification results obtained in this study show the potential of sorting potato tubers 

based on glucose or sucrose levels associated with, and of importance to, processing for each 

sugar, which has not been addressed before using any non-destructive method. Such sorting is 

important for the frying industry and can help decrease the losses during storage by identifying 

tubers with excessive sugar levels such that the possibility exists for reversing sugar levels to 

normal levels using the recommended temperatures for a certain period in a process called 

reconditioning (Sowokinos, 2007).    
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Table 5.7. Classification results of sliced samples and whole tubers of Frito Lay 1879 and Russet Norkotah cultivars based on glucose and sucrose levels and 

using multiple classification techniques and VIS/NIR interactance in the 2009 and 2011 seasons. 
Season Sample type CultivarConstituent Preprocessing for LDA; Knn; PLSDA; ANN; 

combined classifier a 

Training error (%) Testing error (%) 

LDA Knn PLSDA ANN LDA Knn PLSDA ANN Combined 

classifiers 

2009 Slice FLGL A7; A9; A6; A4;A4 19 22 16 21 17 22 16 20 16 

FLSU A4; A0; A7; A6;A7 36 43 35 38 35 44 38 41 38 

RNGL A7; A9; A5; A7;A5 16 19 13 18 15 24 13 15 13 

RNSU A9; A5; A0; A0;A0 34 41 26 40 42 36 41 38 41 

Whole FLGL A0; A6; A12; A4;A0 21 25 13 28 21 24 18 25 19 

FLSU A9; A4; A7; A9;A4 36 44 35 45 34 35 35 47 35 

RNGL A7; A9; A5; A0;A9 17 25 7 19 13 28 18 51 18 

RNSU A12; A0; A4; A0;A4 28 39 24 40 44 41 38 38 38 

2011 Slice FLGL A7; A7; A7; A7;A7 24 42 16 36 31 32 21 33 21 

FLSU A0; A12; A6; A6;A0 29 43 2 30 38 40 23 40 33 

RNGL A0; A0; A6; A0;A6 25 41 2 33 30 40 23 40 23 

RNSU A6; A0; A12; A0;A5 23 34 18 29 43 39 18 32 18 

Whole FLGL A4; A0; A5; A0;A5 28 44 22 23 28 29 23 29 23 

FLSU A4; A4; A7; A6;A6 25 41 26 26 39 29 26 34 32 

RNGL A5; A0; A9; A4;A4 9 23 0 29 21 39 7 29 0 

RNSU A0; A12; A4; A0;A4 7 30 0 14 36 29 14 21 14 
a
 See table 3.1 footnote.  
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5.3.6 Results for 2009-2011 Combined Data 

Results of combining data from the 2009 and 2011 seasons for building prediction 

models for glucose and sucrose using PLSR are shown in table 5.8. Results obtained of both 

sugars for FL and RN showed similar results compared to those obtained from the 2009 season 

in the case of sliced samples and whole tubers. Consequently, combining data from both seasons 

didn’t show significant improvement for prediction models compared to results conducted from 

the 2009 season using PLSR.    

Table 5.8. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR 

interactance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data. 
Sample type Cultivarconstituent Preprocessing a Calibration model Validation model 

Rcal RMSEC RMSECcv LVs Rpred RMSEP RPD 

Slice FLGL A0,B1,C1 0.79 0.4499 0.4855 20 0.78 0.4638 1.58 

FLSU A12,B3,C0 0.70 0.0325 0.0378 20 0.54 0.0408 1.18 

RNGL A7,B1,C2 0.98 0.0447 0.0564 20 0.96 0.0584 3.82 

RNSU A7,B3,C0 0.77 0.1354 0.2305 1 0.44 0.1940 1.03 

Whole FLGL A0,B1,C1 0.83 0.3980 0.4809 20 0.78 0.4412 1.58 

FLSU A0,B1,C0 0.55 0.0306 0.0318 10 0.51 0.0321 1.16 

RNGL A0,B1,C2 0.98 0.0377 0.0563 18 0.96 0.0571 3.42 

RNSU A0,B3,C0 0.47 0.1372 0.1443 3 0.46 0.1584 1.13 
a
 See table 3.1 footnote.  

ANN prediction results obtained from combined data of 2009 and 2011 seasons are 

shown in table 5.9. No improvement in glucose and sucrose prediction performance was 

observed for either cultivar which, in addition to the previous PLSR results, gives a note that 

combing data from the two seasons is negatively affected by the variation in samples, and 

reference (glucose and sucrose) distribution that was affected by adding another storing 

temperature (1
o
C) to the experiments in the 2011 season.   
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Table 5.9. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR 

interactance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data. 
Sample Type CultivarConstituent ANN type,  

characteristics 

Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

Slice FLGL FFNN, 1500 0.71 0.0296 1.34 0.69 0.0302 1.38 

FLSU FFNN, 1000 0.46 0.0420 1.06 0.45 0.0403 1.12 

RNGL FFNN, 500 0.87 0.1246 2.01 0.85 0.1294 1.85 

RNSU FFNN, 500 0.46 0.1625 1.68 0.40 0.1597 0.83 

Whole FLGL NEWGRNN 0.61 0.0294 1.44 0.58 0.0326 1.22 

FLSU FFNN, 500 0.31 0.0424 0.84 0.26 0.0357 0.96 

RNGL RBFNNE 0.75 0.1219 1.78 0.72 0.1527 1.36 

RNSU FFNN, 500 0.54 0.1172 1.32 0.46 0.1380 1.13 

 

5.4 Conclusion 

 

VIS/NIR interactance signals in the range of 501-1004 nm of potato sliced samples and 

whole tubers were extracted from the original wavelengths range (446-1125 nm) and used to 

build prediction models using partial least squares regression and different types of artificial 

neural network for glucose and sucrose sugars. IPLS and GA as wavelength selection 

techniques were applied on a sampled set of signals acquired from the VIS/NIR interactance 

measurements (446-1125 nm) for Frito Lay 1879 and Russet Norkotah potato cultivars.  All 

electronic measurements were compared against glucose and sucrose that were measured using 

the enzymatic approach. PLSR and ANN were used to build calibration and prediction models 

for glucose and sucrose in the case of 0.5’’ (12.7 mm) sliced samples and whole tubers. 

Selected wavelengths were found to have strong correlation performance with RMSEP of 

0.0162%, and 0.0247% for FL and RN for sliced samples in the case of glucose. In the case of 

sucrose, the best models had RMSEP values of 0.0227% and 0.0621% for FL and RN 

respectively. Whole tubers yielded even better performance than sliced samples with RMSEP 

values of 0.0151, and 0.0192% for FL and RN in the case of glucose, while those values for 

sucrose were 0.0241% and 0.1052% for FL and RN. Such levels of accuracy are suitable for 

monitoring sugar levels especially for whole tubers which is crucial practice during storage, and 

prior to processing.  
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Classification of tubers based on sugar levels important to the frying industry was shown 

to have feasible application for sorting, especially in the case of glucose in which the error 

values for testing sets were as low as 18%, and 0% for FL, and RN, and those values were 26%, 

and 14% for sucrose. Classification performance can likely be improved with broader and more 

uniform distribution of sugars, and scanning the whole tuber in more than one point on the tuber 

surface so that more robust prediction and classification is feasible. Moreover, to simulate real 

sorting conditions, it is important to conduct more experiments on moving tubers mixed with 

clods, and using tubers that have soil attached to their surfaces.     
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CHAPTER 6   RAPID EVALUATION OF PHYSIOLOGICAL STATUS OF POTATO 

TUBERS USING NEAR-INFRARED REFLECTANCE SPECTROSCOPIC METHODS 

 

(Expanded from: Rady, A.M., Guyer, D.E. 2014. Evaluation of sugar content in potatoes using nir 

reflectance and wavelength selection techniques. Postharvest Biology and Technology (in review)) 

 

6.1 Introduction 

 Near-infrared (NIR) reflectance is the most extensively-studied phenomenon explained 

using physics laws for the interaction between light and matter in the NIR region (Dahm and 

Dahm, 2001; Olinger et al., 2001). When NIR light interacts with a biological object, a portion of 

the light is reflected from the surface, yet holding limited information about the chemical 

composition of the object. Another portion of the incident light, however, penetrates the surface, 

scatters, is adsorbed by different molecules, is transmitted through the object to the other side, 

and/or is reflected again from the surface and holding significant of information of the object 

components which is known as the diffuse reflected light. Diffuse reflectance observations have 

been studied and many mathematical models were developed in attempts to model it starting 

from Lambert law. It is also strongly affected by the general radiation transfer equation. 

 In general, NIR diffuse reflectance became the base for most commercially-built NIR 

instrumentations (Shenk et al., 2001). In the agriculture and food industry fields, NIR diffuse 

reflectance was applied by Gera and Norris (1968), to rapidly detect moisture and protein for 

grains, and protein, oil, and moisture content for soybeans. Later, Shenk et al. (1977a, 1977b), 

studied the application of NIR diffuse reflectance on forage quality. Since then, the investigation 

of applying NIR diffuse reflectance techniques on monitoring quality parameters for fruits and 

vegetables has continued.  
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Potato tuber, as a major crop around the world, with its importance for human diet, and 

with numerous industries that aim to provide high quality fresh or processed products, results in 

the need for rapid, yet accurate tools by which quality characteristics monitoring could be 

conducted either on line for the raw tubers during harvesting, sorting, storage, and/or even after 

processing. Sugar content in potato tubers is very critical in determining the suitability for 

processing as French fry or chip, so the establishment of a device to easily, accurately and cost 

effectively monitor sugar levels is needed and beneficial for growers to estimate best time for 

harvest, and for quality control specialists in processing plants to confirm the status of tubers. In 

the current chapter, three data sets were obtained from the NIR reflectance system; full 

wavelengths, sampled wavelengths, and selected wavelengths using IPLS and GA. The analysis 

of such data sets included building prediction models for glucose and sucrose, and classification 

of sliced samples and whole tubers using various techniques.  

Based on the above noted considerations, the objectives of this study were: 

1. Determine the potential of NIR diffuse reflectance spectroscopy for quantifying the 

level of sucrose and glucose levels in potato tubers. 

2. Development of a reliable prediction models that may be used to detect the amount of 

sucrose and glucose in potato tubers at levels which are important for potato growers and 

processors. 

3. Detect the most effective wavelengths related to glucose and sucrose absorption based 

on NIR diffuse reflectance measurements and variable selection techniques. 

4. Study the potential of using NIR reflectance measurements of potatoes along with 

wavelength selection techniques to classify whole tubers and 0.5’’ (12.7 mm) sliced samples 

according to sugar levels related to the frying process.  
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6.2 Material and Methods 

6.2.1 Constituent Measurement 

6.2.1.1 Potato sample preparation 

The sample preparation technique for the reflectance measurements followed the same 

routine as illustrated in section 4.2.2.1. Additionally, whole tubers were also used in electronic 

measurements. Whole tubers were placed on the sample holder such that the middle area of the 

longitudinal axis was penetrated by incident light. 

6.2.1.2 Wet chemistry basis measurements 

 The procedure used in juice extraction from sliced samples was the same as was used in 

section 5.2.2.1. Also, wet chemistry steps conducted to evaluate glucose and sucrose 

concentrations were the same as mentioned in section 4.2.2.2 and using equations 3.2 and 3.3 

respectively.  

6.2.2 NIR Reflectance System 

According to Burn and Ciurczak (2001), the use of NIR diffuse reflection for quantitative 

analysis of biological products is widely applicable. In the reflectance mode, the incident light 

penetrates the sample surface and a portion of such light passes within the sample tissue and is 

then reflected back, known as diffuse reflectance, and detected with information about the 

internal composition of the tubers (Chen, 1978). The light source probe tip and the detector tip 

were approximately 3 cm from the sample upper surface. . An InGaAs spectrometer (model No. 

NIR512L-1.7T1, Control Development, Inc., South Bend, IN, USA) with spectral resolution of 

3.25 nm FWHM and linear dispersion of 1.625 nm/pixel was used in the reflectance mode, in the 
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wavelength range of 900-1685 nm along with an Oriel radiometric power supply with a 300 watt 

maximum power (model No.68931, Oriel Inst., Irvine, CA, USA), and an Oriel light source 

(model No. 66881, Oriel Inst., Irvine, CA, USA) having 250 watt maximum power, and with a 

quartz tungsten halogen lamp. In the diffuse reflectance experiments, the sample area covered by 

the light source had a diameter of 25.5 mm. The integration time was set as 4 ms, and each 

measurement is the average of four individual measurements. The incident light was directed on 

the middle area of the cut side of the slice. For the whole tubers, the light was directed on the 

surface approximately in the center area where the longitudinal, and perpendicular axes intersect. 

The detector covers an area on the sample surface of 12.7 mm diameter. A schematic diagram of 

the reflectance system used in the experiment is represented in Fig. 6.1. The relative reflectance 

was calculated using equation 3.1.  
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Figure.6.1. Schematic representation of NIR diffuse reflectance mode and a clearer view of sample setting. 

 

6.2.3 Data analysis Discussion and Approach 

6.2.3.1 Data handling 

  Various scenarios of handling and consequently statistical analysis were applied for the 

relative reflectance data extracted from reflectance experiments. Fig. 6.2 shows the sequence of 

data handling and methods used to build prediction models. First the signals resulted from 

measurements were visually checked for noise and consequently no reduction on number of 

Incident light 

Diffuse reflected light 
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wavelengths was conducted. Next, two modes of data were tested, the data containing full 784 

wavelengths, and data sampled at every 3 wavelengths resulting in a 262- variable matrix.     

Additionally, data from the 2009 and 2011 seasons were mixed together in both the full and 

selected wavelengths models and PLSR and ANN analysis were conducted to obtain prediction 

models for both glucose and sucrose on all data sets.      

6.2.3.2 Partial least squares regression (PLSR) 

A complete description of PLSR used in this research along with pretreatment for either 

spectra or reference values is described in section 3.2.4.  

6.2.3.3 Artificial neural network (ANN) 

 The same artificial neural network types, and configuration applied in this study were the 

same as that used in section 4.2.4.3. 

6.2.3.4 Wavelength selection  

A complete description of interval partial least squares (IPLS) and genetic algorithm 

(GA) used in this research was listed in section 4.2.4.5.  

6.2.3.5 Classification of potatoes based on sugar levels 

 A complete description of the techniques used in potatoes classification based on selected 

wavelengths is stated in section 5.2.4.5. 
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Figure 6.2. A schematic diagram of data handling and analysis for NIR reflectance experiments to obtain prediction 

models of glucose and sucrose for two potato cultivars. 
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6.3 Results and Discussions 

6.3.1 Constituents Distribution 

 The basic statistics for both glucose and sucrose over the 2009 and 2011 data were shown 

in table 4.1. 

6.3.2 Spectra for Sliced Samples and Whole Tubers 

The relative values of absorbance or log(1/reflectance) resulting from the NIR 

experiments through the 2009 and 2011 seasons are shown in figures 6.3 and 6.4 respectively for 

both Frito Lay 1879 and Russet Norkotah cultivars in the case of sliced samples and whole 

tubers. Signals of whole tubers in both seasons appear to be more condensed than signals of 

sliced samples especially in the 2011 season with an exception of RN for the whole tubers. 

Russet Norkotah showed more spread in signals than in Frito Lay1879 and the possible 

explanation for this is that the FL periderm is thinner and easier to get scraped, in the case of 

whole tuber measurement, than in RN giving the chance to sometimes expose the periderm layer, 

which is different in color, to the incident light than the outer layer thus yielding different 

reflectance values. Whereas in the case of RN, the outer layer is stronger, more difficult to get 

scraped during handling, and consequently, the variability in surface reflectance is less. 

Moreover, for the sliced samples, similar trend of signals for FL and RN was observed with 

multiple water absorption peaks around 970, 1200, and 1450 nm (Workman and Weyer, 2008). 

Additionally, another absorption peak, in both cultivars, is noted at 1530 in the 2009 sliced data 

nm which is a possible indication of an OH polymeric group located in starch (Workman and 

Weyer, 2008). In general, signals collected from whole tubers showed less absorption than sliced 

samples especially for RN which yielded more condensed response than FL. The possible 

explanation for such result is the thicker periderm layer of RN that reduces the captured diffuse 
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reflectance signals. It is worth stating that the absorption peaks for sliced samples (around 970, 

1200, and 1450 nm) were noted in the whole tubers in both cultivars with more clarification in 

FL. Another effect of the thick skin for RN was the absence of the apportion peak at 1530 nm 

and the relatively slight presence, compared to sliced samples, of the same peak in FL samples in 

the 2009 data.  

 

 

 

   

  
 
Figure 6.3. Signals of absorbance (log(1/relative reflectance)) for the 2009 season data for sliced samples a. Frito 

Lay 1879, b. Russet Norkotah, and for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah. 

 

a b 

c d 
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Figure 6.4. Signals of absorbance (log(1/relative reflectance)) for the 2011 season data for sliced samples a. Frito 

Lay 1879, b. Russet Norkotah, and for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah. 

 

 

6.3.3 Partial Least Squares Regression (PLSR) Results 

6.3.3.1 Full and sampled variables models 

 Results for calibration and prediction models of glucose and sucrose using full 

wavelengths for both Frito Lay1879 (FL) and Russet Norkotah (RN) cultivars in the case of the 

2009 and 2011 seasons are shown in table 6.1. In the 2009 season, and based on full wavelengths 

a b 

c d 
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models, for glucose prediction models, FL yielded strong correlation with R(RPD) values of 

0.74(1.47) for sliced samples and 0.76(1.53) for whole tubers. Compared to glucose models, 

weaker correlation was obtained for sucrose with R(RPD) values of 0.36(1.06) for sliced samples 

and 0.40(1.05) for whole tubers. In the case of RN, better glucose prediction was obtained than 

with FL. Sliced samples yielded glucose prediction models with R(RPD) values of as high as 

0.95(3.11) and those values were 0.98(4.24) for whole tubers. Whereas, again weaker correlation 

was obtained for sucrose prediction models with R(RPD) values of 0.65(1.31) for sliced samples, 

and 0.57(1.18) for whole tubers. For the prediction models obtained from sampled wavelengths, 

slightly less performance, compared to the full wavelengths’ models, was obtained for both 

cultivars in the case of both glucose and sucrose which clarifies the advantage of reducing data 

dimension using sampling.  

In the 2011 season, using the full wavelength range showed general higher correlation 

than in the 2009 season. Glucose prediction models showed R(RPD) values as high as 0.83(1.78) 

for sliced samples and 0.71(1.28) for whole tubers. Sucrose prediction models showed R(RPD) 

values of 0.61(1.26) for sliced samples and 0.65(1.33) for whole tubers. Higher prediction of 

sugars, than FL, was obtained for RN with R(RPD) of glucose models as of 0.97(4.21) for sliced 

samples and 0.98(4.84) for whole tubers. In the case of sucrose, R(RPD) values were 0.55(1.18) 

for sliced samples, and 0.75(1.52) for whole tubers. 

Performance of prediction models for glucose models based on sampled wavelengths was 

similar to full wavelengths models in both cultivars and both sliced samples and whole tubers 

except in the case of sliced samples for FL in which lower correlation was obtained. Sucrose 

prediction models also showed similar correlation for FL compared to full wavelengths’ models. 

However, RN showed slightly less correlation compared with full wavelengths’ models.    
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Table 6.1. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using NIR reflectance and using full (784) and sampled 

wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelengths utilized  Sample type Cultivarconstituent Preprocessing a Calibration model Validation model 

Rcal RMSEC RMSECcv 

(%) 

LVs Rpred RMSEP 

(%) 

RPD 

2009 Full Slice FLGL A0,B1,C0 0.77 0.0476 0.0533 20 0.74 0.0509 1.47 

FLSU A5,B1,C0 0.51 0.0290 0.0311 18 0.36 0.0311 1.06 

RNGL A12,B3,C2 0.97 0.0321 0.0550 16 0.95 0.0419 3.11 

RNSU A12,B3,C2 0.82 0.0708 0.1155 9 0.65 0.0922 1.31 

Whole FLGL A12,B3,C2 0.80 0.0446 0.0525 20 0.76 0.0492 1.53 

FLSU A12,B3,C0 0.64 0.0242 0.0286 20 0.40 0.0298 1.05 

RNGL A7,B3,C0 0.99 0.0109 0.0428 19 0.98 0.0228 4.24 

RNSU A4,B3,C0 0.77 0.0524 0.0732 3 0.57 0.0687 1.18 

Sampled Slice FLGL A12,B3,C0 0.77 0.0480 0.0538 18 0.73 0.0512 1.46 

FLSU A7,B1,C0 0.49 0.0274 0.0293 17 0.37 0.0294 1.07 

RNGL A12,B3,C2 0.96 0.0374 0.0560 17 0.93 0.0468 2.78 

RNSU A12,B1,C2 0.67 0.0614 0.0776 19 0.55 0.0687 1.18 

Whole FLGL A7,B3,C0 0.74 0.0195 0.0242 19 0.71 0.0204 1.41 

FLSU A12,B3,C0 0.58 0.0255 0.0292 20 0.41 0.0291 1.08 

RNGL A4,B3,C2 0.99 0.0152 0.0590 9 0.96 0.0356 3.69 

RNSU A7,B3,C0 0.76 0.0537 0.0731 4 0.57 0.0690 1.18 

2011 Full Slice FLGL A12,B3,C2 0.91 0.0319 0.0568 20 0.83 0.0435 1.78 

FLSU A6,B3,C0 0.62 0.0544 0.0630 12 0.61 0.0494 1.26 

RNGL A4,B1,C0 0.99 0.0295 0.0973 20 0.97 0.0468 4.21 

RNSU A12,B1,C0 0.67 0.0614 0.0776 19 0.55 0.0687 1.18 

Whole FLGL A7,B3,C0 0.97 0.0146 0.0452 19 0.71 0.0441 1.28 

FLSU A5,B3,C0 0.67 0.0437 0.0526 12 0.65 0.0475 1.33 

RNGL A0,B1,C0 0.99 0.0290 0.0881 18 0.98 0.0387 4.84 

RNSU A9,B1,C2 0.76 0.1060 0.1700 7 0.75 0.1324 1.52 

Sampled Slice FLGL A4,B1,C2 0.77 0.0503 0.0616 15 0.72 0.0534 1.45 

FLSU A5,B1,C0 0.67 0.0478 0.0531 20 0.59 0.0484 1.20 

RNGL A4,B3,C1 0.99 0.0655 0.1855 20 0.97 0.0976 4.20 

RNSU A0,B1,C2 0.71 0.1477 0.1963 8 0.38 0.2049 0.97 

Whole FLGL A12,B1,C0 0.91 0.0245 0.0465 19 0.71 0.0445 1.27 

FLSU A6,B3,C0 0.63 0.0454 0.0543 10 0.62 0.0491 1.29 

RNGL A4,B1,C0 0.99 0.0310 0.1017 17 0.98 0.0402 4.65 

RNSU A5,B3,C2 0.87 0.0809 0.1836 15 0.67 0.1459 1.38 
a
 See table 3.1 footnote.  



 

150 
 

6.3.3.2 Selected variables- PLSR models 

Prediction models for glucose and sucrose in the case of Frito Lay 1879 and Russet 

Norkotah using PLSR based on selected wavelengths from IPLS and GA for the 2009 and 2011 

seasons are shown in tables 6.2 and the clarification of selected wavelengths is shown in table 

6.3. In general, IPLS-based prediction models yielded better performance than GA-based 

models. Thus, the results for IPLS will be stated here. Glucose prediction models for sliced 

samples yielded R(RPD) values of 0.76(1.54) for FL and 0.94(2.73) for RN. The values for 

whole tubers were 0.72(1.44) for FL, and 0.95(3.05) for RN. In the case of sucrose prediction 

models for sliced samples, R(RPD) values were 0.50(1.15) for FL, and 0.35(1.04) for RN. The 

values for whole tubers were 0.45(1.12) for FL, and 0.56(1.19) for RN. By comparing the results 

obtained from selected wavelengths to those obtained from full wavelengths, some notes should 

be listed. In general, IPLS is preferable over GA as it yielded higher correlation and less selected 

wavelengths. Performance of prediction models obtained from IPLS was closer to, or better than, 

full models for both sliced samples or whole tubers with an exception of the sucrose model of 

RN in the case of sliced samples in which significantly lower performance was achieved. For the 

2011 season, a significant improvement was achieved in the prediction performance for both 

sugars in the case of FL and RN and for both sliced samples and whole tubers with an exception 

being the glucose prediction model for FL in the case of sliced samples. Again, only results 

obtained using IPLS will be noted here as they showed better performance than GA models. 

Glucose prediction models for sliced samples showed R(RPD) values of  0.74(1.48) for FL and 

0.97(4.07) for RN. The values for whole tubers were 0.82(1.78) for FL and 0.98(4.57) for RN. In 

the case of sucrose prediction models for sliced samples, R(RPD) values were 0.74(1.41) for FL 
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and 0.81(1.66) for RN. For the whole tubers, R(RPD) values were 0.73(1.46) for FL and 

0.93(2.77) for RN.  

Most results obtained from IPLS, table 6.2, were based on window width of two (w=2). 

GA selected variables were all with window width of one. As mentioned before, IPLS showed 

less number of selected variables compared to GA for 2009 and 2011 as shown in table 6.3. 

Moreover, all of the selected wavelengths’ ranges showed a domination of the wavelengths in 

the range 900-1160 nm which supports that the effective wavelengths in the NIR region 

associated with high correlation is located within this range. The best relationships between the 

measured, and predicted sugar values for FL, and RN for sliced samples and whole tubers in the 

2011 season is shown in Fig. 6.4.    

The improvement of results for whole tubers compared to sliced samples, especially for 

sucrose models in the 2011 season, is possibly a result of the sugar distribution inside tubers. 

According to Kumar and Ezekiel (2004); and Rastovski et al. (1987), sugars inside potato tubers 

tend to concentrate more on the vascular ring than on other tuber parts. Consequently, the diffuse 

reflected light is expected to hold information of the tissue closer to the skin than to the pith.   

Results also showed that prediction models of glucose and sucrose obtained using IPLS 

yielded better performance than GA models for both cultivars, and also table 6.3 indicates that 

the selected wavelengths using IPLS were less than GA in all models. Possible reasons for such 

results include the more likelihood for over fitting to occur in GA than IPLS in the case of fewer 

number of samples than variables which was noted in the 2011 season compared to 2009 season 

(Wise et al., 2006). Due to the lower sugar concentration for FL than RN, results showed less 

correlation of prediction models for FL than RN in the case of glucose and sucrose as the 
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detection of certain chemical substance using spectroscopic systems increase with the 

concentration.     

It is worth stating that the prediction of glucose and sucrose for potatoes using selected 

wavelengths and NIR diffuse reflectance was not previously published and the prediction results 

obtained in this study by PLSR are comparable with others reported by Hartmann and Büning-

Pfaue (1998), on homogenized samples (RMSEP= 0.041% and 0.037% for glucose and sucrose); 

Yaptenco et al. (2000), on whole tubers (RMSEP= 0.087% and 1.473% for glucose and sucrose); 

or Haase (2011), on aliquots samples (SEP=0.0389%, and 0.0966% for reducing sugars and 

sucrose). Sampling times in this study are significantly lower than that for all previous studies 

except for Yaptenco et al. (2000), which did not include a separate prediction data set. This study 

is also confirms the results obtained by Rady et al. (2014), in which a potential investigation of 

measuring glucose and sucrose of potatoes was shown using different techniques and strong 

correlation for glucose was achieved for sliced samples (RMSEP= 0.0515%, and 0.0786% for 

FL, and RN), and whole tubers (RMSEP= 0.0620%, and 0.1529% for FL, and RN) using 

VIS/NIR interactance spectroscopy. However, no variable selection was applied.     
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Table 6.2. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from 

sampled wavelengths) and NIR reflectance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Variable selection technique Sample type Cultivarconstituent Preprocessing a Window Width Calibration model Validation model 

Rcal RMSEC 

(%) 

RMSECcv 

(%) 

LVs Rpred RMSEP 

(%) 

RPD 

2009 

IPLS 

Slice 

FLGL A0,B1,C2 W1 0.78 0.0466 0.0497 20 0.76 0.0489 1.54 

FLSU A7,B1,C0 W2 0.58 0.0277 0.0306 19 0.50 0.0286 1.15 

RNGL A0,B1,C0 W1 0.96 0.0229 0.0332 20 0.94 0.0353 2.73 

RNSU A5,B1,C1 W1 0.54 0.7831 0.9260 20 0.35 0.9150 1.04 

Whole 

FLGL A0,B3,C2 W2 0.73 0.0520 0.0553 20 0.72 0.0524 1.44 

FLSU A0,B1,C0 W2 0.52 0.0289 0.0305 20 0.45 0.0295 1.12 

RNGL A7,B3,C2 W2 0.96 0.0360 0.0471 20 0.95 0.0432 3.05 

RNSU A0,B1,C0 W1 0.69 0.0593 0.0665 20 0.56 0.0681 1.19 

GA 

Slice 

FLGL A12,B3,C2  0.71 0.0536 0.0596 9 0.70 0.0541 1.39 

FLSU A6,B1,C0  0.44 0.0303 0.0319 13 0.36 0.0307 1.07 

RNGL A7,B1,C2  0.93 0.0442 0.0609 13 0.87 0.0644 2.04 

RNSU A6,B1,C2  0.44 0.1119 0.1238 11 0.26 0.1179 0.99 

Whole 

FLGL A4,B3,C2  0.75 0.0499 0.0592 18 0.71 0.0530 1.42 

FLSU A7,B1,C0  0.51 0.0290 0.0324 18 0.36 0.0312 1.06 

RNGL A7,B3,C0  0.97 0.0264 0.0542 18 0.94 0.0326 2.85 

RNSU A4,B3,C0  0.77 0.0529 0.0734 3 0.57 0.0690 1.18 

2011 

IPLS 

Slice 

FLGL A7,B3,C0 W3 0.86 0.0310 0.0425 17 0.74 0.0403 1.48 

FLSU A7,B1,C0 W1 0.90 0.0277 0.0344 20 0.74 0.0411 1.41 

RNGL A0,B0,C0 W2 0.98 0.0400 0.0601 20 0.97 0.0483 4.07 

RNSU A0,B3,C0 W2 0.98 0.0645 0.2791 20 0.81 0.2296 1.66 

Whole 

FLGL A6,B1,C0 W1 0.87 0.0281 0.0387 19 0.82 0.0318 1.78 

FLSU A0,B1,C0 W2 0.87 0.0246 0.0385 20 0.73 0.0359 1.46 

RNGL A0,B1,C0 W2 0.99 0.0312 0.0674 20 0.98 0.0409 4.57 

RNSU A12,B1,C0 W3 0.96 0.0688 0.2085 20 0.93 0.1128 2.77 

GA 

Slice 

FLGL A9,B1,C2  0.82 0.0447 0.0583 19 0.77 0.0491 0.82 

FLSU A0,B1,C0  0.76 0.0452 0.0607 19 0.56 0.0554 1.12 

RNGL A7,B1,C1  0.89 0.1951 0.2762 11 0.87 0.2013 2.03 

RNSU A9,B1,C1  0.65 0.9061 1.1459 6 0.44 0.9785 1.09 

Whole 

FLGL A7,B1,C0  0.74 0.0389 0.0481 10 0.72 0.0386 1.46 

FLSU A0,B1,C0  0.66 0.0440 0.0533 10 0.57 0.0513 1.23 

RNGL A0,B1,C0  0.96 0.0547 0.1045 13 0.93 0.0692 2.70 

RNSU A5,B1,C0  0.81 0.1578 0.2148 16 0.77 0.1836 1.52 
a
 See table 3.1 footnote.  
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Table 6.3. Selected wavelengths for predicting glucose and sucrose for sliced samples and whole tubers using IPLS 

and GA methods (from sampled wavelengths) and NIR reflectance in the 2009 and 2011 seasons for Frito Lay 1879 

and Russet Norkotah cultivars.  
Season Wavelength selection 

technique 

Sample type Cultivarconstituent Window 

width 

Total no. of 

wavelengths 

Minimum 

value (nm) 

Maximum 

value (nm) 

2009 IPLS Slice FLGL W=1 66 903 1160 

FLSU W=1 20 900 1156 

RNGL W=1 67 900 1131 

RNSU W=2 12 942 1111 

Whole FLGL W=1 66 900 1157 

FLSU W=2 56 916 1159 

RNGL W=1 58 902 1153 

RNSU W=1 12 992 1157 

GA Slice FLGL W=1 161 900 1158 

FLSU W=1 147 902 1161 

RNGL W=1 176 901 1161 

RNSU W=1 147 900 1160 

Whole FLGL W=1 171 900 1159 

FLSU W=1 136 900 1160 

RNGL W=1 182 900 1160 

RNSU W=1 151 900 1157 

2011 IPLS Slice FLGL W=1 27 900 1159 

FLSU W=1 21 900 1143 

RNGL W=2 54 904 1157 

RNSU W=2 14 906 1155 

Whole FLGL W=1 16 900 1063 

FLSU W=1 16 900 1156 

RNGL W=1 30 900 1161 

RNSU W=1 8 900 910 

GA Slice FLGL W=1 136 904 1160 

FLSU W=1 148 902 1161 

RNGL W=1 153 900 1157 

RNSU W=1 140 900 1160 

Whole FLGL W=1 120 900 1161 

FLSU W=1 132 901 1156 

RNGL W=1 27 900 1159 

RNSU W=1 21 900 1143 
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Figure 6.4. Best prediction models based on selected wavelengths and PLSR predicted constituents in the 2011 

season for Frito Lay 1879 and Russet Norkotah cultivars for a) Glucose for sliced samples, b) Glucose for whole 

tubers, c) Sucrose for sliced samples, and d) Sucrose for whole tubers. 

 

6.3.4 Artificial Neural Network (ANN) Results 

6.3.4.1 Full and sampled variables models 

 Results for prediction models of glucose and sucrose for Frito Lay1879 and Russet 

Norkotah using different types of artificial neural network and full and sampled wavelengths in 

a b 

c d 
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the case of the 2009 and 2011 seasons are shown in table 6.4. In the 2009 season, sliced samples 

glucose prediction models showed R(RPD) values as high as 0.96(3.47)  for FL and 0.93(2.86) 

for RN. Whole tubers showed values of 0.75(1.42) for FL and 0.95(3.29) for RN. Sucrose 

prediction models of sliced samples showed R(RPD) values of 0.72(1.30) for FL and 0.96(3.73) 

for RN. However, the values of whole tubers were 0.68(1.31) for FL and 0.68(1.32) for RN. 

Prediction models obtained from 2011 for sliced samples showed lower performance than 2009 

season except in the case of sucrose model for FL that showed significant improvement with 

R(RPD) values of 0.95(3.39). For the whole tubers, lower performance was obtained for glucose 

prediction models. However, sucrose models showed an improvement for both cultivars with 

R(RPD) values of 0.96(3.80) for FL and 0.97(3.78) for RN. Most of the prediction models in 

table 6.4 were obtained using either RBFNN or RBFNNE except with two models in which 

FFNN was implemented. 

Results of using ANN in models based on sampled wavelengths in the 2009 season for 

sliced samples showed similar correlation performance for glucose prediction models compared 

to full wavelength models except in the case of sucrose prediction models for FL that showed 

less correlation statistics. In the case of whole tubers, similar correlation was obtained for both 

sugars and cultivars compared to results based on all variables. In the case of the 2011 season, 

sliced samples showed improvement of glucose prediction for FL with R(RPD) values of 

0.69(1.35). For whole tubers, glucose prediction models showed similar correlation to full-

wavelength models, whereas sucrose prediction models showed better performance than the full-

wavelength models. 
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Table 6.4. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using NIR reflectance and using full (784) and sampled 

wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelengths Sample type CultivarConstituent ANN type,  characteristics Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

2009 All Slice FLGL RBFNNE 0.96 0.01 3.55 0.96 0.0086 3.47 

FLSU RBFNNE 0.78 0.02 1.42 0.72 0.0220 1.30 

RNGL RBFNNE 0.93 0.03 2.72 0.93 0.0290 2.86 

RNSU RBFNN 0.97 0.02 3.85 0.96 0.0202 3.73 

Whole FLGL RBFNNE 0.79 0.0183 1.59 0.75 0.0201 1.42 

FLSU RBFNNE 0.70 0.02 1.46 0.68 0.0219 1.31 

RNGL RBFNN 0.97 0.02 3.94 0.95 0.0252 3.29 

RNSU RBFNNE 0.78 0.06 1.57 0.68 0.0570 1.32 

Sampled Slice FLGL RBFNNE 0.96 0.0078 3.70 0.95 0.0086 3.47 

FLSU RBFNNE 0.70 0.0276 1.12 0.63 0.0261 1.09 

RNGL RBFNNE 0.94 0.0330 2.88 0.93 0.0317 2.62 

RNSU RFBNN 0.97 0.0232 3.97 0.97 0.0192 3.92 

Whole FLGL RBFNN 0.78 0.02 1.57 0.73 0.0205 1.39 

FLSU RBFNNE 0.70 0.0212 1.46 0.68 0.0219 1.31 

RNGL RBFNN 0.96 0.02 3.66 0.95 0.0213 3.64 

RNSU RBFNNE 0.78 0.0586 1.57 0.68 0.0570 1.32 

2011 All Slice FLGL RBFNN 0.45 0.0737 0.85 0.47 0.0754 0.77 

FLSU RBFNN 0.96 0.0185 3.35 0.95 0.0180 3.39 

RNGL RBFNNE 0.74 0.1401 1.31 0.61 0.2171 0.90 

RNSU FFNN, 1000 0.40 0.2645 1.34 0.24 0.4844 0.94 

Whole FLGL RBFNN 0.55 0.0585 0.88 0.34 0.0988 0.55 

FLSU RBFNNE 0.97 0.0142 3.64 0.96 0.0163 3.80 

RNGL FFNN, 1000 0.31 0.1556 1.05 0.27 0.2010 0.86 

RNSU RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78 

Sampled 

 

Slice FLGL RBFNN 0.48 0.0741 0.85 0.37 0.0809 0.72 

FLSU RBFNN 0.96 0.0185 3.35 0.95 0.0191 3.20 

RNGL RBFNNE 0.70 0.1459 1.26 0.69 0.1446 1.35 

RNSU FFNN, 500 0.49 0.2047 1.74 0.13 0.4661 0.98 

Whole FLGL RBFNN 0.56 0.0591 0.87 0.48 0.0610 0.89 

FLSU RBFNN 0.96 0.0158 3.28 0.95 0.0192 3.23 

RNGL RBFNN 0.71 0.1275 1.26 0.63 0.1707 1.01 

RNSU RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78 
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6.3.4.2 Selected variables- ANN models 

 Results of ANN prediction models based on variable selection techniques, IPLS and GA, 

for the 2009 and 2011 seasons are shown in tables 6.5. In the 2009 season, models for sliced 

samples using either IPLS or GA showed close correlation performance compared to full 

wavelengths results for glucose prediction of RN and sucrose prediction of FL. Other models 

showed less correlation statistics. Whole tuber FL and RN glucose prediction models showed 

close correlation performance compared to full wavelengths’ models. 

The IPLS and GA variable selection prediction models for the 2011 season generally 

resulted in better performance than full-wavelength models in the case of sliced samples for 

glucose prediction with values of R(RPD) were 0.72(1.20) for FL and 0.75(1.20) for RN using 

IPLS for both models. Sucrose prediction models, however, showed similar correlation to that 

obtained using full wavelengths. Prediction models obtained using GA showed similar 

performance to the full wavelengths models with an improvement in glucose prediction for RN 

that resulted R(RPD) values of 0.62(0.77).      

Generally, ANN results showed that both IPLS and GA resulted in similar performance 

for glucose and sucrose prediction models in the case of both cultivars for sliced samples and 

whole tubers, with some exceptions as mentioned in the case of whole tubers for 2011 season. 

Thus, preference for IPLS is given as it showed a general trend for fewer selected variables and 

comparable or better correlation as GA. 
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Table 6.5. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from 

sampled wavelengths) and NIR reflectance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars. 
Season Wavelength selection technique Sample type CultivarConstituent ANN type,  

characteristics 

Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

2009 IPLS Slice FLGL FFNN, 150 0.96 0.0078 3.71 0.96 0.0086 3.47 

FLSU RBFNNE 0.67 0.0264 1.17 0.62 0.0273 1.05 

RNGL RBFNN 0.83 0.0552 1.64 0.71 0.0715 1.08 

RNSU RBFNNE 0.97 0.0229 4.02 0.96 0.0171 4.40 

Whole FLGL RBFNN 0.79 0.0191 1.52 0.78 0.0190 1.58 

FLSU RBFNN 0.65 0.0225 1.38 0.62 0.0232 1.23 

RNGL RBFNNE 0.94 0.0358 2.80 0.90 0.0408 2.18 

RNSU RBFNNE 0.78 0.0586 1.57 0.68 0.0570 1.32 

GA Slice FLGL FFNN, 150 0.41 0.0268 1.08 0.36 0.0290 1.06 

FLSU RBFNN 0.54 0.0339 0.91 0.57 0.0354 0.81 

RNGL RBFNN 0.88 0.0452 2.00 0.78 0.0672 1.15 

RNSU RBFNN 0.97 0.0232 3.97 0.96 0.0183 4.11 

Whole FLGL RBFNNE 0.78 0.0197 1.48 0.75 0.0201 1.42 

FLSU RBFNNE 0.70 0.0212 1.46 0.68 0.0219 1.31 

RNGL RBFNN 0.96 0.0244 3.70 0.96 0.0208 3.72 

RNSU RBFNNE 0.78 0.0586 1.57 0.68 0.0570 1.32 

2011 IPLS Slice FLGL RBFNNE 0.73 0.1508 1.22 0.72 0.1626 1.20 

FLSU RBFNNE 0.97 0.0166 3.73 0.96 0.0157 3.89 

RNGL RBFNNE 0.73 0.1508 1.22 0.75 0.1626 1.20 

RNSU FFNN,150 0.34 0.2125 1.79 0.23 0.4503 1.04 

Whole FLGL RBFNN 0.60 0.0593 0.87 0.39 0.0883 0.62 

FLSU FFNN, 50 0.34 0.0491 1.05 0.25 0.0598 1.04 

RNGL RBFNNE 0.79 0.1434 1.12 0.55 0.1722 1.00 

RNSU RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78 

GA Slice FLGL FFNN, 1000 0.28 0.0950 0.60 0.27 0.1116 0.46 

FLSU RBFNN 0.96 0.0181 3.42 0.96 0.0167 3.66 

RNGL RBFNNE 0.77 0.1308 1.40 0.68 0.1499 1.30 

RNSU FFNN, 500 0.25 0.3025 1.26 0.23 0.4591 1.02 

Whole FLGL FFNN, 100 0.33 0.0490 1.05 0.31 0.0513 1.06 

FLSU RBFNN 0.96 0.0163 3.17 0.95 0.0189 3.28 

RNGL RBFNNE 0.64 0.2074 0.82 0.62 0.2291 0.77 

RNSU RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78 
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6.3.5 Results of Potatoes Classification Based on Sugar Levels and Selected Wavelengths 

The highest classification rate values of training and testing groups obtained for slice 

samples and whole potato tubers of FL and RN cultivars based on glucose and sucrose 

concentrations for both seasons are shown in table 6.6 with the number of class 1 (sugar level < 

the threshold) or class 2 (sugar level > the threshold). Classification performance generally 

followed the PLSR trend stated in section 6.3.3. For the 2009 season, classification error values 

of glucose-based models for the sliced samples (17% and 19% for FL and RN), were similar to 

values obtained for whole tubers (19%, and 17% for FL and RN). Sucrose-based classification 

models, however, yielded lower performance for sliced samples (37% and 32% for FL and RN), 

and whole tubers (38% and 31% for FL and RN). Classification results for glucose in 2011 

showed similar, or lightly lower performance compared to 2009 results for the sliced samples 

(18% and 23% for FL and RN) and better results in the case of whole tubers especially for RN 

(23% and 0% for FL and RN). Moreover, significantly enhanced classification rates were 

obtained for sucrose models in the case of sliced samples (25% and 18% for FL and RN), and 

whole tubers (29%, and 21%).    

 In general, LDA, PLSDA, and classifier fusion yielded better classification results than 

other techniques (Knn, and ANN). Such trend is a result of the capability of PLSDA technique, 

as illustrated in section 2.4.3, for treating data with colinearity problem, and the application of 

PCA analysis on spectra data prior to performing classification using LDA. Combined classifiers 

also resulted in better classification than Knn, and ANN classifiers, and slightly similar to results 

obtained by PLSDA, and LDA.          

 Sugar distribution in the 2011 season resulted in better classification results, compared 

with the 2009 season, especially for sucrose which follows the same trend obtained in PLSR.  
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Classification of potatoes based on sugar levels and using noninvasive measurements was 

not addressed before and results showed the potential for classifying tubers with sugar content 

that is not suitable for frying such that they can potentially be reconditioned to reduce sugar 

content (Sowokinos, 2007). Enhancing classification outputs beyond those obtained in this study 

is feasible by developing broader sugar distribution, increasing the number of samples, and using 

kernel-based classification methods (i.e. soft independent modeling of class analogy or SIMCA, 

Gaussian mixture models, and support vector machines or SVM). 
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Table 6.6. Classification results of sliced samples and whole tubers of Frito Lay 1879 and Russet Norkotah cultivars based on glucose and sucrose levels and 

using multiple classification techniques and NIR reflectance in the 2009 and 2011 seasons. 
eason Sample 

type 

Number of samples Cultivarconstituent  Preprocessing for 

LDA; Knn; PLSDA; 

ANN; combined 

classifier a 

Training error (%) Testing error (%) 

Class 1 Class 2 LDA Knn PLSDA ANN LDA Knn PLSDA ANN Combined 

classifiers 

2009 Slice 445 445 FLGL A9; A5; A4; A12;A7 21 34 18 22 17 26 21 26 20 
523 523 FLSU A7; A7; A6; A9;A12 37 45 34 44 37 43 38 40 38 
177 177 RNGL A4; A4; A0; A7;A10 16 38 6 29 19 25 19 25 21 
195 195 RNSU A6; A6; A10; A0;A10 32 47 33 44 35 44 35 42 32 

Whole 222 222 FLGL A7; A7; A12; A9;A7 28 30 19 24 27 26 20 26 19 
266 266 FLSU A0; A5; A13; A0;A12 35 43 30 43 43 39 39 45 38 
88 88 RNGL A0; A5; A0; A9;A7 12 25 12 25 17 19 19 19 19 
87 87 RNSU A6; A0; A7; A0;A7 31 36 31 46 37 31 31 42 31 

2011 Slice 204 204 FLGL A7; A9; A0; A9;A0 27 34 12 34 29 26 18 28 18 
218 218 FLSU A7; A4; A7; A0;A4 31 45 15 36 25 40 33 38 33 
66 66 RNGL A12; A9; A7; A12;A7 19 35 13 30 40 33 23 33 23 
58 58 RNSU A12; A4; A0; A4;A0 20 36 11 36 43 32 18 29 18 

Whole 136 136 FLGL A12; A0; A0; A0;A0 19 43 3 26 23 34 23 37 23 
122 122 FLSU A9; A0; A9; A9;A7 17 46 21 31 29 32 29 39 37 
31 31 RNGL A0; A0; A4; A9;A0 2 40 0 27 27 20 0 27 0 
26 26 RNSU A0; A12; A7; A0;A7 8 29 27 27 21 43 21 43 21 

a
 See table 3.1 footnote.  
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6.3.6 Results for 2009-2011 Combined Data 

Results of combining data from the 2009 and 2011 seasons for building prediction 

models using NIR reflectance measurements for glucose and sucrose using PLSR are shown in 

table 6.7. Correlation performance was not significantly improved using combined data 

compared to either the 2009 or 2011 results.  

Table 6.7. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using NIR 

reflectance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data. 
Sample type Cultivarconstituent Preprocessing a Calibration model Validation model 

Rcal RMSEC 

(%) 

RMSECcv 

(%) 

LVs Rpred RMSEP 

(%) 

RPD 

Slice FLGL A0,B1,C1 0.78 0.4603 0.5298 18 0.77 0.4674 1.56 

FLSU A7,B1,C0 0.60 0.0374 0.0411 14 0.53 0.0415 1.18 

RNGL A10,B1,C2 0.98 0.0478 0.0763 20 0.95 0.0693 3.20 

RNSU A4,B1,C1 0.78 0.6808 0.9203 20 0.63 0.8173 1.27 

Whole FLGL A0,B1,C2 0.79 0.0512 0.0622 20 0.74 0.0571 1.48 

FLSU A4,B3,C0 0.70 0.0284 0.0334 19 0.55 0.0325 1.17 

RNGL A4,B3,C2 0.99 0.0197 0.0781 7 0.95 0.0594 3.33 

RNSU A0,B1,C0 0.76 0.0968 0.1238 20 0.71 0.1155 1.42 
a
 See table 3.1 footnote.  

 

For ANN results obtained from combined data and shown in table 6.8, lower 

performance was obtained when both seasons’ data was combined. Results obtained from ANN 

in addition to the previous PLSR results gives a note that combing data from the two seasons is 

negatively affected by variation in samples and reference (glucose and sucrose) distribution that 

was broader in 2011 than in 2009 caused by adding another storage temperature (1
o
C) to the 

experiments in the 2011 season. 

Table 6.8. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using NIR 

reflectance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data. 
Sample type CultivarConstituent ANN type, characteristics Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

Slice FLGL FFNN, 50 0.58 0.0404 1.21 0.55 0.0370 1.20 

FLSU FFNN, 50 0.39 0.0455 1.06 0.29 0.0425 1.04 

RNGL RBFNN 0.84 0.1424 1.65 0.84 0.1596 1.47 

RNSU NEWGRNN 0.41 0.2700 0.48 0.35 0.2680 0.83 

Whole FLGL RBFNN 0.68 0.0296 1.13 0.64 0.0301 1.21 

FLSU RBFNNE 0.77 0.0258 1.45 0.75 0.0258 1.42 

RNGL RBFNN 0.92 0.0844 2.46 0.82 0.1154 1.57 

RNSU RBFNNE 0.84 0.0842 1.76 0.83 0.0877 1.64 
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6.4 Conclusions 

 

NIR reflectance in the range of 900-1685 nm was used to build prediction models using 

PLSR and different types of artificial neural network for glucose and sucrose sugars in potato 

tubers that affect quality of French fries and chips. Two cultivars were used to conduct the study, 

Frito Lay1879 and Russet Norkotah. The study showed promising correlation for both glucose 

and sucrose using either PLSR or ANN. It should be noted that ANN prediction models were 

more powerful for sucrose prediction than PLSR, while both methods yielded close results for 

glucose prediction in the case of Frito Lay 1879 and Russet Norkotah. In general, design radial 

basis function neural networks (RBFNN) and exact design radial basis function neural networks 

(RBFNNE) yielded better correlations than feed forward neural networks as the latter type is 

distinguished for classification and not regression. Sampled wavelengths demonstrated close 

results to those obtained using full wavelengths and that efficiently reduces the time for data 

analysis if there is an on-line sorting based on sugars levels. Also, using IPLS and GA as 

variable selection methods yielded close results to both PLSR and ANN for both cultivars and 

sugars. However, taking into account that IPLS yielded less variables and yet the same or better 

performance than GA, and consequently using IPLS saves computation time, and results in a 

preference of IPLS over GA for variable selection.  

Results showed that the classification error obtained from PLSDA models was minimal for FL 

and RN for glucose more than for sucrose which confirms the prediction results obtained using 

PLSR as PLSDA is considered the classification tool of PLSR. Whole tubers yielded close 

classification results compared to sliced samples. In general, Russet Norkotah yielded better 

correlation than Frito Lay1879 which is possibly due to the fact that RN has higher sugar content 

than FL as the latter is usually used for processing. 
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CHAPTER 7 INTEGRATING NIR REFLECTANCE AND VIS/NIR 

INTERACTANCE SPECTROSCOPIC SYSTEMS DATA (SENSOR FUSION) TO 

EVALUATE THE PHYSIOLOGICAL STATUS OF POTATO TUBERS 

 

7.1 Introduction 

Quality of food products is an important factor by which customers use as a measuring 

stick to decide which product brand to buy or place from which to get fast food. Chips, French 

fries, dehydrated, diced and canned potatoes are among the most common products extracted 

from potatoes. 

Near-Infrared (NIR) technology is a rapid, yet accurate technique that has been used to 

predict quality attributes of agricultural products in sorting, grading, processing, and quality 

assurance operations of foods. Commercial implementation of NIR spectroscopic systems has 

been successful in achieving high classification rates for multiple perishable and processed 

products as shown in section 2.3.3. It was shown in chapters 3-6 that glucose prediction models 

generally yielded higher correlation statistics than sucrose.   

The objective of this study is to investigate the feasibility to integrate data from NIR 

reflectance and VIS/NIR interactance to predict glucose and sucrose for potato tubers and also 

classify tubers based on either sugar levels and compare the performance of such fusion with that 

of the individual modes, i.e. the VIS/NIR interactance and NIR reflectance. 

7.2 Materials and Methods 

7.2.1 Raw Materials  

Two cultivars were chosen to conduct the experiments as discussed in detail in chapter 4. 
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7.2.2 Data Handling and Analysis 

7.2.2.1 Data fusion 

Spectroscopic systems are known to be faster in signal acquisition than traditional 

imaging. Data for this analysis includes relative VIS/NIR interactance data (900-1685 nm) and 

relative NIR reflectance values (504.8-1004.4 nm). Teflon was used as a reference for the two 

systems to calculate the relative signals. Interactance and reflectance data were concatenated and 

each column was then normalized (i.e. each value in a column was divided by the maximum 

value in the column). It is important to note that only selected wavelengths acquired from the 

two systems where combined.   

7.2.2.2 Data analysis 

7.2.2.2.1 Partial least squares regression (PLSR) 

 A complete description of PLSR used in this research along with pretreatment for either 

spectra or reference values is listed in section 3.2.4.  

7.2.2.2.2 Artificial neural network (ANN) 

 The ANN types, and configurations applied in this study were the same as that used in 

section 4.2.4.3. 

7.2.2.2.3 Classification of potatoes based on sugar levels 

 A complete description of the techniques used in potatoes classification based on selected 

wavelengths is stated in section 5.2.4.5. 
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7.3 Results and Discussion 

7.3.1 Partial Least Squares Regression (PLSR) Results    

Results for PLSR for interactance and reflectance combined data from the 2009 and 2011 

seasons are shown in table 7.2 with the best prediction results for each season using PLSR shown 

in table 7.1 which was obtained from chapters 5 and 6 for the interactance and reflectance data 

sets respectively. For sliced samples, FL best glucose prediction was obtained from the 

reflectance mode with R(RPD) values of 0.83(1.78) using 2011 season data whereas those values 

for interactance and reflectance combined data were as close as 0.94(2.84) obtained also from the 

2011 season data. However, the best glucose prediction model obtained for RN from reflectance 

with R(RPD) values of 0.97(4.21) from the 2011 season data did not show an improvement for 

interactance and reflectance combined data in which R(RPD) values were 0.98(4.97). The best 

sucrose prediction model for FL was obtained from interactance mode with R(RPD) values of 

0.81 (1.70) for 2009 season, while these values for interactance and reflectance combined data 

were as weaker as 0.62(1.17). Moreover, for RN, the best sucrose prediction model was obtained 

from reflectance mode with R(RPD) values of 0.81(1.66) from 2011 season data. Such 

performance was not conducted using the two modes mix data.  

In the case of whole tubers, the best glucose prediction model for FL was obtained from 

interactance data with R(RPD) values of 0.85(1.92) from 2009 season data. Such prediction was 

weaker using interactance and reflectance data mix with R(RPD) values of 0.67(1.35) from 2011 

season data. For RN, R(RPD) values were 0.98(4.84) obtained from reflectance data in the 2011 

season. These values were slightly improved using interactance and reflectance mix for the 2011 

season with R(RPD) values of 0.98(5.64). For best sucrose prediction model, results for FL 

showed R(RPD) values of 0.80(1.64) using 2009 interactance data. With the two modes mix data 



 

168 
 

these values improved to 0.93(2.80) obtained from the 2011 season. For RN, the best sucrose 

prediction model was obtained from 2011 reflectance mode with R(RPD) values of 0.93(2.77). 

Using the two modes data mix for 2011 season data the latter values improved to 0.97(4.23). 

Table 7.1. Summary of the best prediction models using PLSR for glucose and sucrose using VIS/NIR interactance 

and NIR reflectance individual modes for sliced samples and whole tubers for Frito Lay 1879 and Russet Norkotah 

cultivars. 
Sample type Cultivarconstituent Mode Validation model 

Rpred RMSEP RPD 

Slice FLGL Reflectance 0.83 0.0435 1.78 

FLSU Interactance 0.81 0.0391 1.70 

RNGL Reflectance 0.97 0.0468 4.21 

RNSU Reflectance 0.81 0.2296 1.66 

Whole FLGL Interactance 0.85 0.0142 1.92 

FLSU Interactance 0.80 0.0384 1.64 

RNGL Reflectance 0.98 0.0387 4.84 

RNSU Reflectance 0.93 0.1128 2.77 

 

Table 7.2. PLSR results for predicting glucose and sucrose using fused data from VIS/NIR interactance and NIR 

reflectance systems for sliced samples and whole tubers for Frito Lay 1879 and Russet Norkotah cultivars in the 

2009 and 2011 seasons. 
Season Sample type Cultivarconstituent Preprocessing a Calibration model Validation model 

Rcal RMSEC RMSECcv LVs Rpred RMSEP RPD 

2009 Slice FLGL A4,B3,C1 0.68 0.4874 0.5715 2 0.65 0.5014 1.32 

FLSU A4,B3,C2 0.54 0.0676 0.0743 6 0.46 0.0722 1.12 

RNGL A12,B3,C2 0.99 0.0116 0.0493 2 0.98 0.0194 4.97 

RNSU A0,B1,C0 0.65 0.0628 0.0696 20 0.58 0.0664 1.22 

Whole FLGL A0,B3,C0 0.70 0.0186 0.0210 20 0.67 0.0200 1.35 

FLSU A7,B3,C2 0.64 0.0554 0.0674 17 0.57 0.0610 1.22 

RNGL A0,B1,C0 0.94 0.0325 0.0397 20 0.93 0.0355 2.66 

RNSU A0,B1,C0 0.64 0.0631 0.0697 20 0.58 0.0668 1.22 

2011 Slice FLGL A12,B3,C2 0.98 0.0150 0.0582 8 0.94 0.0272 2.84 

FLSU A0,B1,C0 0.83 0.0359 0.0437 20 0.62 0.0497 1.17 

RNGL A7,B1,C0 0.97 0.0121 0.0156 20 0.88 0.0291 2.00 

RNSU A0,B3,C2 0.92 0.0843 0.1189 20 0.62 0.1978 1.00 

Whole FLGL A4,B3,C0 0.41 0.0504 0.0550 6 0.28 0.0560 1.04 

FLSU A7,B1,C0 0.96 0.0154 0.0418 20 0.93 0.0214 2.80 

RNGL A0,B1,C0 0.99 0.0257 0.0790 20 0.98 0.0332 5.64 

RNSU A0,B1,C1 0.98 0.1651 0.7644 16 0.97 0.2200 4.23 
a
 See table 3.1 footnote.  
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7.3.2 Artificial Neural Network (ANN) Results  

Results of best prediction models of glucose and sucrose, for FL and RN, obtained from 

VIS/NIR interactance or NIR reflectance modes using ANN are shown in table 7.3 and obtained 

from chapter 5 and 6 respectively. Moreover, the results for ANN models resulted from 

interactance and reflectance data mix for 2009 and 2011 seasons are shown in table 7.4. By 

comparing equivalent values of R(RPD) in tables 7.3 and 7.4, a general note of a significant 

decrease of the performance of models for mixed data compared to individual modes with few 

exceptions in which close results between the two cases was achieved. Glucose prediction 

models for RN in sliced samples and whole tubers from mixed (fused) data showed R(RPD) 

values of 0.92(2.246) and 0.98(6.73) obtained from the 2011 season. Such values are close to or 

better than the values for individual best models. A possible reason for performance decline in 

ANN using mixed data is the relatively high number of variables (3485) compared to individual 

mode data.      

Table 7.3. Summary of the best prediction models using ANN for glucose and sucrose using VIS/NIR interactance 

and NIR reflectance individual modes for sliced samples and whole tubers for Frito Lay 1879 and Russet Norkotah 

cultivars 
Sample type Cultivarconstituent Mode Testing 

Rtest Septest (%) RPD 

Slice FLGL Reflectance 0.96 0.0086 3.47 

FLSU Reflectance 0.96 0.0157 3.89 

RNGL Interactance 0.95 0.0190 3.25 

RNSU Reflectance 0.97 0.0192 3.92 

Whole FLGL Reflectance 0.78 0.0190 1.58 

FLSU Reflectance 0.96 0.0163 3.80 

RNGL Reflectance 0.96 0.0208 3.72 

RNSU Reflectance 0.97 0.0830 3.78 
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Table 7.4. ANN results for predicting glucose and sucrose using fused data from VIS/NIR interactance and NIR reflectance systems for sliced samples and whole 

tubers for Frito Lay 1879 and Russet Norkotah cultivars in the 2009 and 2011 seasons. 
Season Sample type CultivarConstituent ANN type,  characteristics Training Testing 

Rtrain SeCVtrain (%) RPD Rtest Septest (%) RPD 

2009 Slice FLGL FFNN, 1000 0.55 0.02 1.26 0.52 0.0231 1.18 

FLSU RBFNNE 0.43 0.02 0.99 0.38 0.0229 1.04 

RNGL FFNN, 300 0.84 0.03 1.74 0.81 0.0303 1.68 

RNSU RFBNNE 0.67 0.07 1.29 0.52 0.0575 1.18 

Whole FLGL RBFNNE 0.75 0.02 1.80 0.67 0.0205 1.35 

FLSU RBFNNE 0.20 0.02 2.04 0.06 0.0740 1.00 

RNGL RBFNNE 0.77 0.04 1.32 0.56 0.0403 1.19 

RNSU RBFNNE 0.18 0.05 1.31 0.19 0.0622 0.98 

2011 Slice FLGL RBFNNE 0.77 0.02 1.52 0.75 0.0200 1.50 

FLSU RBFNN 0.56 0.03 0.93 0.42 0.0306 0.96 

RNGL RBFNNE 0.96 0.03 3.28 0.92 0.0338 2.46 

RNSU RBFNNE 0.78 0.05 1.48 0.65 0.0636 1.31 

Whole FLGL FFNN, 1000 0.15 0.05 1.04 0.06 0.0642 0.99 

FLSU RBFNNE 0.39 0.05 1.07 0.27 0.0602 1.03 

RNGL RBFNN 0.98 0.04 4.96 0.98 0.0281 6.73 

RNSU RBFNNE 0.75 0.04 1.30 0.67 0.0459 1.35 
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7.3.3 Results for Classification of Potatoes Based on Sugar Levels  

Classification for sliced samples and whole tubers was conducted using interactance and 

reflectance combined data and the results are shown in table 7.6 with the best classification 

results using individual modes, obtained from chapter 5 and 6 respectively, shown in table 7.5. In 

the case of sliced samples, classification using fused data based on glucose resulted in an error of 

24% for FL and 22% for RN which are higher than the lowest error obtained using individual 

modes (16%). Sucrose-based classification, however, yielded lower errors than glucose as of 

14% for FL and 12% for RN.  

Classification results obtained for whole tubers is slightly lower or is similar to the lowest 

errors obtained from individual modes with error values of 0% for both cultivars based on 

glucose being 19% and 0% for FL and RN. In the case of sucrose, the error values were 29% for 

FL and 21% for RN. The above results clarify the advantage of combining data from interactance 

and reflectance modes and the error values can be enhanced by using broader sugar distribution 

and higher number of samples, especially in the case of glucose.  

Table 7.5. Summary of the best classification results based on glucose and sucrose levels using VIS/NIR 

interactance and NIR reflectance individual modes for sliced samples and whole tubers for Frito Lay 1879 and 

Russet Norkotah cultivars. 
Sample type CultivarConstituent Mode/ classifier Testing error (%) 

Slice FLGL Interactance /PLSDA 16 

FLSU Interactance / PLSDA 23 

RNGL Interactance / PLSDA 13 

RNSU Interactance / PLSDA 18 

Whole FLGL Interactance / PLSDA 18 

FLSU Interactance / PLSDA 26 

RNGL Interactance / PLSDA 0 

RNSU Reflectance/ LDA 18 
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Table 7.6. Classification results of sliced samples and whole tubers based on glucose and sucrose levels for Frito Lay 1879 and Russet Norkotah cultivars using 

multiple classification techniques and VIS/NIR interactance and NIR reflectance combined data sets in the 2009 and 2011 seasons. 
Season Sample type CultivarConstituent Preprocessing a Training error (%) Testing error (%) 

LDA Knn PLSDA ANN LDA Knn PLSDA ANN Combined classifiers 

2009 Slice FLGL A12; A0; A7; A9;A0 32 32 29 31 35 43 34 36 35 

FLSU A0; A0; A0; A0;A4 39 37 35 36 43 55 36 43 43 

RNGL A12; A0; A5; A12;A10 23 23 17 27 23 37 22 23 27 

RNSU A7; A7; A10; A7;A0 35 45 31 14 18 13 12 18 13 

Whole FLGL A7; A7; A12; A4;A7 28 29 19 31 27 24 20 21 19 

FLSU A0; A0; A0; A5;A12 35 47 30 41 43 39 41 44 38 

RNGL A0; A5; A0; A9;A7 12 25 20 25 18 19 18 19 19 

RNSU A6; A0; A7; A0;A7 31 36 31 46 37 31 31 42 31 

2011 Slice FLGL A7; A7; A9; A7;A1 25 18 7 36 24 26 36 24 31 

FLSU A0; A0; A0; A10;A10 30 26 11 29 21 72 14 21 24 

RNGL A0; A10; A7; A7;A4 15 47 13 33 43 30 23 33 33 

RNSU A6; A0; A9; A6;A0 19 21 10 16 20 23 16 20 23 

Whole FLGL A12; A0; A0; A0;A0 19 43 3 26 23 34 23 37 23 

FLSU A0; A0; A9; A10;A9 20 46 21 31 29 32 29 39 29 

RNGL A0; A9; A4; A9;A0 2 26 0 27 27 33 0 27 7 

RNSU A0; A9; A7; A0;A7 8 45 27 27 21 29 21 43 21 
a
 See table 3.1 footnote.  
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7.4 Conclusions 

The use of interactance and reflectance combined data for either Frito Lay1879 or Russet 

Norkotah resulted in an improvement of prediction performance using PLSR of glucose in the 

case of sliced samples for both cultivars, especially FL. For whole tubers, both cultivars 

benefited from combining interactance and reflectance data. An improvement in prediction 

performance for both sugars was achieved especially for sucrose. Results for whole tubers 

enhance the chances of applying the technique for quality monitoring in industry applications. 

ANN results for combining modes were not as promising as PLSR which is a consequence from 

the ability of PLSR to handle collinear data and the factors that need to be adjusted in ANN (i.e. 

number of neurons in the hidden layer, transfer functions, spread value). The use of combined 

data in building classification based on sugar levels yielded outstanding results for whole tubers 

with classification error ranging from 0%-4% for both cultivars and based on glucose and 

sucrose. Such results followed the prediction models obtained from PLSR especially for RN. 

Moreover, with the reasonable classification performance achieved for whole tubers, there is a 

potential for combining the two modes in one system for online sorting of potato tubers based on 

glucose for RN. However, such a target requires improving the classification rates based on 

glucose for FL, and based on sucrose for both cultivars. Moreover, more training is needed on 

different cultivars and various sugar thresholds to obtain a robust, yet accurate sorter that meets 

industry demands.  
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CHAPTER 8   OVERALL CONCLUSIONS AND FUTURE WORK 

 This dissertation research made notable improvement in building prediction and 

classification models for crucial constituents and physical characteristics of potatoes for growers 

and processing quality managers. Different spectroscopic systems were used including VIS/NIR 

interactance (446-1125 nm), NIR transmittance (900-1685 nm), and NIR reflectance (900-1685 

nm) as well as VIS/NIR hyperspectral imaging system (400-1000 nm). Experiments were 

utilized for two cultivars Frito Lay1879 (FL) which is a common chipping cultivar and Russet 

Norkotah (RN) that is used as a fresh or table cultivar.  

Experiments were established over three seasons, 2008 which was aimed to be a 

preliminary study to investigate the potential of using NIR transmittance, VIS/NIR interactance, 

and VIS/NIR hyperspectral imaging systems to predict glucose, sucrose, primordium leaf counts, 

specific gravity and soluble solids using partial least squares regression (PLSR). Another two 

seasons, 2009 and 2011, only focused on research for measuring glucose and sucrose as those are 

specifically important in frying process quality. Sampling techniques in the three seasons 

included 0.5’’ (12.7 mm) slices, and whole tubers.  

Relative interactance values were calculated for VIS/NIR interactance, and relative 

reflectance and transmission values were calculated for NIR reflectance and NIR transmittance 

respectively. Finally, relative values of mean reflectance and curve fitting parameters, extracted 

from an exponentially decaying curve fitting model, were calculated for the VIS/NIR 

hyperspectral imaging systems. To extract the most effective wavelengths associated with the 

prediction of glucose and sucrose for 2009 and 2011 seasons, interval partial least squares (IPLS) 
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and genetic algorithm (GA) techniques were applied. Calibration and prediction methods were 

then built using PLSR, and artificial neural network (ANN) that included regular radial basis 

function neural networks (RBFNN), exact design radial basis function neural networks 

(RBFNNE), generalized radial basis function neural networks (NEWGRNN), and feed forward 

neural networks with back propagation (FFNN).    

Classification of whole tubers and sliced samples, based on thresholds associated with 

processing applications, was conducted on the data obtained from the 2009 and 2011 seasons. 

Classification techniques included linear discriminant analysis (LDA), K-nearest neighbors 

(Knn), partial least squares discriminant analysis (PLSDA), feed forward artificial neural 

network, and classifier fusion.     

The following main conclusions were deduced from this research: 

1) A comprehensive study was conducted to review the studies for non-destructive and/or 

rapid measurements of constituents related to the frying industry, and external and 

internal quality of fresh tubers. In addition, the most common commercial systems were 

described and compared from the theory of operations and performance prospective. 

Application of sorting potato tubers based on constituents levels and/or internal and 

external defects are feasible with the increasing demand of high quality yet healthy 

processed foods, and the accelerated developed technology that can maintain fast 

measurements, durable performance, and high accuracy. A brief view was discussed of 

the possible future trends in quality evaluation of potato tubers and fried products using 

noninvasive electronic measurements.       

2) In the 2008 season, interactance mode demonstrated the best performance for most 

constituents for FL and RN. PLSR calibration and prediction models showed outstanding 
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performance in the case of sliced samples for primordium leaf counts with R value of 

0.95 for FL and 0.90 for RN and for glucose with R values being as high as 0.90 for FL 

and 0.95 for RN. Sucrose optimum prediction models had less correlation for both 

cultivars (R=0.81 for FL and 0.63 for RN). Specific gravity showed R values as high as 

0.61 for FL and 0.59 for RN. Soluble solids content, however, was the least correlated 

constituent with maximum values of R of 0.55 for FL and 0.37 for RN. Whole tubers 

showed general decrease in correlation compared against the sliced samples, especially 

for RN which brought a conclusion that more studies are required in which broader 

constituents’ distribution exists. In general, results achieved in this study are novel for 

primordium leaf count that was not achieved before using any spectroscopic system. 

3) VIS/NIR hyperspectral imaging was used in the 2009 and 2011 seasons to measure 

glucose and sucrose for sliced samples only as whole tubers yielded low correlation 

results from preliminary results in the 2008 season. To obtain broad sugar distribution, 

different soil types, and more storage temperatures were used than in the 2008 season. 

Glucose and sucrose measurements were conducted by juicing only the tuber tissue 

penetrated by light in contrast to the 2008 season in which the whole tuber was juiced. 

Strongly correlated models were obtained for glucose of FL with R values as high as 0.80 

and 0.96 for FL and RN. Sucrose prediction however, did not show such high correlation 

for both cultivars with R values of 0.58 for FL and 0.30 for RN.  Selected wavelengths 

using IPLS and GA showed similar correlation performance compared to the full 

wavelength models for glucose that yielded to R values up to 0.80 for FL and 0.97 for 

RN. For sucrose, the R values were as high as 0.54 for FL and 0.38 for RN. Most of best 

prediction models for both cultivars and for glucose and sucrose were obtained using the 
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mean reflectance signal and IPLS as the wavelength selection technique. Classification of 

sliced samples based on glucose or sucrose levels was possible with errors of 19% and 

18% for FL and RN using glucose thresholds. Classification errors based on sucrose 

models (34% and 38 for FL and RN) were higher than errors obtained for glucose which 

followed the same results achieved by PLSR. Prediction and classification results can be 

improved using broader sugar distribution, using other classifiers such as artificial neural 

network, and majority voting classification techniques. Selected wavelengths used to 

build classification results for glucose could be further applied in a multispectral sorting 

system that may be combined with a computer vision system to obtain multi-tasking 

sorting for defect detection and also sugar-based sorting.  

4) VIS/NIR interactance was used in the 2009 and 2011 seasons to study the rapid and/or 

non-destructive determination of glucose and sucrose for potato tubers for Frito Lay 1879 

and Russet Norkotah. Non-noisy wavelengths (2107) and sampled (386) were used to 

build prediction models using PLSR and ANN. Also IPLS and GA were applied to 

extract the wavelengths related to best prediction models for both sugars. Encouraging 

correlation was achieved for FL and RN for both sugars with R values for sliced samples 

being as high as 0.92 and 0.94 for FL and RN in the case of glucose and 0.82, and 53 for 

FL and RN in the case of sucrose. Whole tubers prediction models also yielded R values 

of 0.85 and 0.97 for FL and RN for glucose, and 0.46 and 0.63 for FL and RN for 

sucrose. General improvement of correlation for sucrose was obtained using selected 

variable models with R values reaching 0.81 and 0.78 for FL and RN for sliced samples, 

and 0.80 and 0.94 for RN for whole tubers. Glucose prediction models based on selected 

variables showed similar performance compared to full wavelength models. The IPLS 
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method resulted in less number of wavelengths (11-68) for sliced samples, and 20-75 for 

whole tubers. Whereas GA resulted in significantly higher number of wavelengths of 

165-247 for sliced samples, and 182-229 for whole tubers. Consequently, using IPLS in 

wavelengths selection is much more efficient and less time consuming than GA if they 

both produce the same performance. In general, a reduction of the number of 

wavelengths to 0.5-3% of the full wavelengths (2107) was achieved using either IPLS or 

GA. Classification of whole tubers based on glucose levels yielded errors of 18% and 0% 

for FL and RN. Whereas the values were 16% and 13% for FL and RN for sliced 

samples. Classification based on sucrose was weaker, for FL, and classification errors of 

26% and 14% for FL and RN were achieved for whole tubers which were similar to the 

values obtained for sliced samples (23% and 18% for FL and RN).                   

5) NIR diffuse reflectance was utilized on both sliced samples and whole tubers for both the 

2009 and 2011 seasons. PLSR and ANN were applied on full (784), sampled (262), and  

selected wavelengths using IPLS and GA. Prediction results were promising for both 

sugars in which the R values for sliced samples reached as high as 0.96 and 0.97 for FL 

and RN for glucose, and for sucrose the values were 0.95 for FL and 0.97 for RN. For 

whole tubers, R values for glucose prediction models were as high as 0.76 and 0.98 for 

FL and RN. Moreover, sucrose prediction models also showed high correlation with R 

values of 0.96 and 0.97 for FL and RN. Prediction results based on sampled wavelengths 

showed similar performance in most cases compared to full wavelengths models. In 

addition, using IPLS and GA, similar or better correlation performance, compared to the 

full wavelength models, was achieved for both sugars and cultivars which indeed clarifies 

the strength and efficiency of the selected wavelengths in holding sufficient information 
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about glucose and sucrose. Tubers and sliced samples classification based on sugar levels 

was not as powerful as prediction models. Whole tubers showed classification error of 

19% and 0% for FL and RN based on glucose, and 31% and 21% based on sucrose. 

Sliced samples showed classification error of 17% and 17% based on glucose and 25% 

and 18% based on sucrose. Some of the classification results still do not meet industry 

requirements and performance enhancement can likely be achieved by increasing the 

number of samples, obtaining broader sugar distribution, and using other classification 

techniques such as support vector machines (SVM).   

6) Data combined/fused from VIS/NIR interactance and NIR reflectance resulted in 

improvement in the case of sliced samples for the prediction of glucose for FL and RN 

with R values reaching 0.94 and 0.98 respectively. Whole tubers also showed significant 

improvement in the performance of sucrose prediction with R values as high as 0.93 and 

0.97 for FL and RN. Similar performance of classification results, compared to individual 

modes, was obtained for whole tuber glucose-based models. However, significant 

improvement was achieved in the case of sucrose-based models for sliced samples with 

error values of 14% and 12% for FL and RN. Such results indicate that combining data 

from both modes can lead to more valuable information to explain the variation between 

samples and enhance classification as well as prediction performance.     

This research in general resulted in a promising prediction performance of glucose, 

sucrose, and primordium leaf counts using different regression techniques, and it represents a 

basic study that indeed is comparable in performance to previous studies conducted to measure 

sugars in potato tubers (Dull et al., 1989; Mehrubeoglu and Cote, 1997; Hartman and Buning-

Pfaue, 1998; Scanlon et al., 1999; Yaptenco et al., 2000; Haase, 2004; Chen et al., 2005; Subedi 
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and Walsh, 2009). Moreover, classification of sliced samples based on sucrose showed lower 

error than the results obtained from individual modes.  

 However, to obtain more reliable results that tightly relate this study to the practical 

field, several recommendations can be drawn for future research as follows:  

1) This study was designed to be a foundation for establishing a handheld device that 

works with either sliced samples or whole tubers. Another long-term target was also 

contributing toward the design of on-line sorting systems for potato tubers. Testing 

tubers under actual field conditions, however, is more difficult than testing in the lab 

as there is a possibility for having factors such as clay particles and/or moisture on 

tuber surface that reduce, or even suppress, signal acquired form tubers. If the sorting 

system is used after harvesting to eliminate or separate tubers with undesired levels of 

sugars for further reconditioning, there is a need to tackle the presence of clods, 

rocks, and vine parts in the flow of tubers either by adding a computer vision system 

to eliminate foreign materials and then following such by the constituent-based 

sorting mechanism. 

2) An on-line system or sorting requires working with movable objects, and under such 

circumstances, a possible reduction of signal quality (signal to noise ratio) acquired 

from tubers is likely to occur, and consequently lower the performance of constituent 

prediction-based sorting. Thus, proper choice of the optical components should be 

taken into account to obtain commercially-accepted functionality and productivity. 

Prediction models for glucose, sucrose, and primordium counts obtained from different 

systems in this study, especially VIS/NIR interactance, and NIR reflectance, or merged data 

between the interactance and reflectance modes were encouraging. However, the change in 
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spatial distribution of some constituents over the storage period obligates conducting more 

experiments with different cultivars, growing and storage conditions to confirm the obtained 

prediction and classification models so that more robust, reproducible, and stable performance 

can be later applied on commercial systems.  
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