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ABSTRACT

EVALUATION OF PHYSIOLOGICAL STATUS OF POTATO TUBERS USING SPECTROSCOPIC AND
HYPSESPECTRAL IMAGING SYSTEMS

By
Ahmed Mustafa Rady

Potato is a major crop around the world with special importance given in developed countries to the French frying, and
chipping industries. Quality attributes of potatoes dramatically influence final product conditions and consequently affect product
marketability. Many research studies have been conducted to investigate the feasibility of measuring quality attributes and
external and internal defects of potato tubers using rapid and/or noninvasive methods (spectroscopic, vison, and sonic). An
extensive review has been conducted of nondestructive techniques that have been studied for assessing quality attributes of raw
potatoes as well as chips and French fries. Such factors included specific gravity, dry matter, water content, carbohydrates,
protein, defects, and diseases. In addition, systems for sorting tubers based on various quality characteristics have been discussed
in detail. Also, commercial systems are available in the market for sorting and grading tubers based on different quality factors.
However, more deep studies are needed to enhance rapid measurement performance and investigate more attributes that are
important to growers and industry. The main objectives of this study were to investigate the potential of using spectroscopic as
well as hyperspectral systems to evaluate processing-related constituents and parameters of two common potato cultivars, Frito
Lay 1879 (FL) and Russet Norkotah (RN), using partial least squares regression (PLSR), and several types of artificial neural
network (ANN) along with wavelengths selection techniques being interval partial least squares (IPLS), and genetic algorithm
(GA). In addition, classification of tubers based on sugar levels has been conducted using linear discriminant analysis (LDA)
functions, k-nearest neighbor (Knn), partial least squares discriminant analysis (PLSDA), feed forward artificial neural network
(FFNN), and classifier fusion. The first study in the 2008 season was conducted to evaluate five constituents for both FL and RN
using NIR transmittance, and VIS/NIR interactance modes as well as VIS/NIR hyperspectral systems for 0.5 (12.7 mm) sliced
samples and whole tubers. Results showed that the interactance mode yielded most of the best PLSR results. For primordium leaf
counts, glucose, sucrose, specific gravity, and soluble solids, the optimum prediction models obtained from the interactance mode
resulted in R (RPD) values of 0.95 (3.29), 0.90 (2.14), 0.81(1.63), 0.61(1.27), and 0.55(1.18) respectively for FL. For RN, the
R(RPD) values were 0.90 (2.19), 0.95 (3.12), 0.63(1.30), 0.59(1.22), and 0.37(1.08) respectively. Slightly lower performance was
achieved for whole tubers with optimal R(RPD) values FL in the case of primordium leaf counts, glucose, sucrose, and specific
gravity of 0.89(2.22), 0.88(1.78), 0.81(1.64), and 0.37(1.06) respectively. The R(RPD) values for RN were 0.77(1.50),
0.79(1.60), 0.43(1.10), and 0.51(1.08) for primordium leaf counts, glucose, sucrose, and specific gravity. Soluble solids for whole

tubers showed weaker correlation than above constituents.



Following preliminary results in the 2008 season, more concentration was given to glucose and sucrose as they
significantly affect chip and French fry products quality. Also, based on preliminary results, transmittance mode was replaced by
NIR reflectance mode. The second study was conducted in the 2009 and 2011 seasons using interactance, reflectance, and

hyperspectral systems on the same cultivars and also using 0.5°*(12.7 mm) sliced samples and whole tubers.

Results of prediction models using PLSR and ANN along with models using IPLS and GA as wavelength selection
techniques demonstrated strong correlation for VIS/NIR hyperspectral systems in which only sliced samples were used. For
glucose prediction models, R(RPD) values were as high as 0.81(1.70) and 0.97(3.66) for FL and RN and those values for the best
sucrose prediction models were 0.58(1.23) and 0.38(1.0) for FL and RN. For VIS/NIR interactance mode, promising results for
glucose prediction were shown for FL and RN. FL and RN yielded R(RPD) values of 0.92(2.35) and 0.95(3.02) respectively for
sliced samples, and 0.85(1.92) for FL and 0.97(4.16) for RN in the case of whole tubers. Sucrose prediction models resulted in
strong correlation with R(RPD) values as high as 0.95(3.29) and 0.78(1.57) for FL and RN for sliced samples, and 0.94(3.01) for
FL and 0.94(2.82) for RN in the case of whole tubers. NIR reflectance showed auspicious performance for both cultivars. The
best glucose prediction models yielded R(RPD) values for FL and RN as high as 0.96(3.47) and 0.97(4.21) in the case of sliced
samples, and 0.82(1.78) and 0.98(4.84) for FL and RN in the case of whole tubers. Sucrose also showed high correlation for
sliced samples with R(RPD) values of 0.96(3.89) and 0.97(3.92) for FL and RN, and those values for the whole tubers were
0.96(3.80) and 0.97(3.78) for FL and RN. In general, prediction models based on selected wavelengths showed similar or better
performance compared to full wavelengths models, and it is worth stating that GA yielded higher numbers of selected variables

(wavelengths) than IPLS; thus, the latter method was preferred as it often produced similar results compared to GA models.

Classification of potatoes based on sugar levels associated with the frying process showed encouraging results with the
lowest classification error values of FL and RN obtained for glucose being 16% and 13%, for sliced samples, and 18% and 0%
for whole tubers. In the case of sucrose models, error values in the case of sliced samples were 23% and 18%, and those values
for whole tubers were 26% and 18% for FL and RN respectively. Such classification results for whole tubers demonstrated the
feasibility of explaining more variation between samples when the data from interactance and reflectance modes was used, in the
listed wavelengths ranges, and consequently applying both modes in an on-line system has the potential to enhance the sorting of

tubers based on sugar levels.

This research demonstrated the feasibility of hyperspectral imaging systems as well as spectroscopic systems, in
reflectance and interactance modes, in rapidly and accurately measuring some important constituents for potato growers and
processing industries. Such results, especially for whole tubers, proved that there is a possibility for conducting an on-line sorting
system based on sugar levels, or a hand-held device for rapid evaluation of quality either in field or during storage, to maintain

potato tubers quality and accurately estimate the suitable time for harvesting or processing.
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CHAPTER 1 INTRODUCTION

1.1 Economic Importance of Potatoes

Potatoes (Solanum tuberosum) rank as the fifth highest produced commodity used for
human consumption (after: sugar cane, maize, wheat, rice), with the world production of 324.2
million metric ton (FAOSTAT, 2012). Potato is a common source of carbohydrate with a diverse
set of uses. In North America, Europe, and Australia, the majority of potatoes are processed as
chips (crisps), French fries, dehydrated, canned, mashed, diced, etc. For example, in U.S.A,
which produces 18.3 million metric ton, only one-third is consumed as fresh product;
approximately, 60% is consumed as processed products, and 6% is used as seeds (FAOSTAT,
2012). However, other countries, especially the developing ones, consume the majority of
potatoes as fresh due to the living and income style. The modern life style promotes high quality
foodstuff products in either home-prepared or fast food which increases the need for efficient,
rapid, cost effective and easy to use devices and systems to assure that final product, processed
or fresh, meets the required quality. There has been a considerable change in the trend of potato
product consumption in the US since 1960. Almost 38.10 Kg per capita fresh tuber was
consumed in 1960, and that number decreased to 19.05 Kg per capita by 2005. However, frozen
potato fries and chips consumption increased from 8.16 to 31.75 Kg per capita from 1960 to
2005. Moreover, the value of US exports of chips and frozen French fries increased from $610
million in 2006 to more $810 million in 2010 (Bohl and Johnson, 2010). On the other hand, the
USA was the highest country outside the European Union in importing French fries with a
quantitative increase of 28% from 2000 to 2010. Other developed countries such as: Japan,

Canada, and Australia also showed a considerable increase in imports of French fries in the same
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time span of 22%, 435%, and 558% respectively. A similar trend was noticed for some of the
developing countries such as Brazil (229 %), Mexico (177%), and China (241%) (Faulkner,
2012). Given the previous statistics, one can conclude that there is a tremendous growth of
processed potato products in many countries (developed and developing) that requires reliable,
accurate, rapid, and reproducible systems to maintain quality aspects of tubers and final products.
The more importance given to preserving the high quality of potatoes before processing, the
higher marketability of products, and consequently more benefit for growers, processors, and

consumers.

Potato global trade has shown increase through the last three decades. International
potato trade has doubled from 1986 (<10 MT) to 2006 with a quadrupled value in the same time
range reaching $9.6 billion in 2007 with majority of which being processed (Chrome et al, 2010).
Moreover, In USA, $9 billion was spent on potato chips in 2011. Such statistics show the

economic value of potato products in US as well as in the world.

Some chemical constituents and physical properties in potato tubers determine their end
use for either the processed industry or as fresh, or prevent the use of tubers if the levels of these
parameters are beyond the suggested thresholds. These constituents are, but not limited to,
specific gravity, carbohydrate, protein, vitamins, glycoalkaloids, minerals, flesh and skin color,
carotenoids, and anthocyanins. Other aspects which determine quality and potential use are the
external or internal defects such as greening, bruises, enzymatic browning, non-enzymatic
browning, and other physiological disorders, (Storey, 2007). Additionally, the accurate
estimation of optimal harvest time is critical for potato tubers as it strongly affects quality of the

harvested tubers.



1.2 Morphological Description of Potato Tuber

A potato tuber is a modified stem with leaves and axillary buds that are reduced and
poorly developed. In addition, a potato tuber has shortened internodes and a stem axis that
expands radially. The end of the tuber attached to the stolon is called the heel, or stem end, while
the other end is called the rose end or stolon apex. A potato tuber is considered a third type of
stem in a potato plant as there are the regular above-ground stems, and the stolon which is the
under-ground stem. Moreover, potato tubers are considered as the swollen parts of the stolon
which is the rhizome of the potato plant. Stolons are diageotropic shoots or stems with elongated
internodes and rudimentary leaves. Stolons are grown from the basal stem nodes below the soil
surface. Stolonization mostly starts after 15 days from planting and at the nodes closer to the
seed tuber and then progress acropetally. Earlier stolons grow faster and become longer than
later ones and the number of stolons increases with time. Tuber formation can be thought as of
the result of two operations: stolon formation, or stolonization, and tuberization of the stolon tip.
Tubers are formed after 25 days from planting in most potato cultivars. Tuberization starts before
all stolons are formed, and it occurs first in the lower stolons and results in dominant tubers in
terms of weight over those formed later. Sugar in potato tubers are either monosaccharaides
(glucose and fructose) with portions in the tuber of 0.15-1.5% of FWT for either sugar, or
disaccharides that is the sucrose sugar and its levels are 0.4-6.6%. Sugar levels depend on

cultivar, preharvest treatments, storage temperature and period.

1.3 Overview

In this study, the experiments were conducted on three seasons. In the first season, 2008,
VIS/NIR spectroscopic system in the interactance mode, NIR transmittance, and VIS/NIR

hyperspectral imaging were used to study the prediction of glucose, sucrose, specific gravity,

3



soluble solids, and primordial leaf count for Frito Lay 1879, and Russet Norkotah potato
cultivars. Whole tubers and 0.5’ (12.7 mm) sliced samples were tested to build calibration and
prediction models using PLSR. Based on the results obtained in the 2008 season, electronic
measurements were narrowed to glucose and sucrose in the 2009 and 2011 seasons. Moreover,
the transmittance mode has been replaced by the reflectance mode in the same wavelength range.
Additionally, in the 2009 and 2011 seasons, an artificial neural network (ANN) technique was
also used for building prediction models, and the most influential wavelengths were identified
using IPLS and GA. Finally, the classification of potato tubers and sliced samples has been

studied based on glucose and sucrose.

1.4 Objectives

This research was conducted to study the feasibility of using spectroscopic and
hyperspectral imaging systems to evaluate some constituents of potato tubers for some cultivars
used in processing, table, or seed industries. Consequently, the particular objectives of work
were:

1) Determine calibration and prediction models for glucose and sucrose for potato tubers
using different regression methods on spectroscopic and hyperspectral imaging data
against traditional chemistry-based measurements.

2) Identify the most effective wavelengths related to glucose and sucrose prediction in
potato tubers.

3) Determine whether combined data from different spectroscopic and hyperspectral
systems (sensor fusion) can improve prediction models of glucose and sucrose for

potato tubers.



4) Study the potential of using spectroscopic and hyperspectral imaging systems in

potato classification based on sugar levels associated with frying.



CHAPTER 2 RAPID AND/OR NON-DESTRUCTIVE METHODS FOR QUALITY
EVALUATION OF POTATOES: A REVIEW

(Rady, A.M., Guyer, D.E. 2014. Rapid and/or Non-Destructive Quality Evaluation Methods for
Potatoes: A Review. Computers and Electronics in Agriculture (in review))

There are many rapid techniques which have been used in attempts to evaluate the
physiological status of potato tubers as well as to test the quality attributes of finished potato
products. These systems range in basic operation theory and they include: traditional imaging
systems (CCD cameras, multispectral imaging, X-ray, magnetic resonance imaging (MRI)),
spectroscopic systems (UV, visual, near, and mid infra-red systems), hyperspectral imaging
systems, and ultrasonic systems. The applications of such systems for raw tubers include
predicting of chemical constituents and physical characteristics (dry matter, specific gravity,
carbohydrate, and water content), detecting of defects and diseases, and electronic-based sorting.
Other applications address automated quality evaluation of potato products (chips, French fries).
While there have been a significant number of studies regarding the application of rapid
estimation of quality attributes of raw potato tubers and processed products, no study was
conducted to summarize such different approaches. In addition to discussing the above systems
overall, this review aims to present some of the commercial systems that exist for the potato
industry. Fig.2.1 depicts the applications of non-destructive methods for postharvest potatoes and

potato products reviewed in this study.
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Figure 2.1. Breakdown of reviewed technology used in potato postharvest and quality assurance of some potato
products.

2.1 Applications Related to Raw Tubers

These applications vary based on the material being tested: whole tubers, sliced samples,
or any other non-cooked forms. The applications are mostly related to measuring quality
assurance attributes right before harvesting, after harvest, or in the storage facilities, and the use

of such tubers might be fresh, or preparing for processing.
2.1.1 Specific Gravity, Dry Matter, and Water Content

Being one of the most important factors for assessing potato tubers for processing,
specific gravity (SG) is strongly affected by: environmental factors (weather, soil type), variety,
and production operations: seed management, plant density, nutrient management, irrigation,

tuber growth period, disease management, vine killing, and harvest management (Stark and



Love, 2003). Higher SG results in more output of chip, French fry, and dehydrated products.
Levels for SG in potato tubers are crucial for processing. A SG level of 1.08 or higher is
preferred for chipping (Gould, 1995a; Stark et al., 2003). Literature confirmed the positive
correlation, with linear relationship, between SG and dry matter (DM) with many equations
found to obtain the SG from dry matter (Woodbury and Weinheimer, 1964; Houghland, 1966;
Agle and Woobery, 1968; Willson and Lindsay, 1969; Schippers, 1976; Simmonds, 1977).
Therefore, the SG is generally and extensively used as a stick measure of dry matter and to
estimate the suitability of tubers destined to processing. Moreover, DM is commonly correlated
to the texture quality of raw and cooked tubers which is evaluated by sensory-related tests (Tarn
et al., 1992). DM content is about 18 to 26% for most potato cultivars dedicated for commercial
use (Burton, 1989). Desirable levels of DM for processing depend on the use of potatoes. DM
ratios of 20-24%, 22-24, and >21% are preferred for French fries, chipping and dehydrated

industries respectively.

DM distribution inside tubers was studied by many researchers (Glynne and Jackson,
1919; Johnston et al., 1968; Pritchard and Scanlon, 1997; Gaze et al., 1998). It was shown that
DM is more concentrated in the storage parenchyma between the cortex and the vascular ring,
and longitudinally decreases in towards the pith. There have been two common methods to
estimate specific gravity, the first one based on the weight in air vs. weight in water relationship,
and the other is using a hydrometer. Both methods, however, are time consuming, depend on

human proficiency level, and do not cope with on-line sorting applications based on SG.

Therefore, several rapid techniques, most of which are spectroscopic-based systems, have
been tested to estimate either the specific gravity or dry matter as illustrated in table 2.1. Model

accuracy for spectroscopic systems is usually judged using root mean error of calibration



(RMSEC), root mean error of calibration using cross validation (RMSECcv), or prediction
(RMSEP), coefficient of correlation (R), and/or the ratio of the standard deviation of reference
variable to RMSEP or RMSEC which is abbreviated as RPD. Values of R for prediction or
validation models, and RMSEP or RMSECcv are listed in this review study; otherwise R values
for calibration models are listed. The sign (?) was used in table 2.1 and subsequent tables in the
case of the non-availability of model strength descriptive values. Among the varying types of
electronic systems used for the evaluation of DM in potatoes and applied on various sampling
techniques, studies conducted by Hartmann and Blining-Bfaue, 1998; Haase (2004 and 2011), on
homogenized, mashed, and ground samples, respectively, NIR or VIS/NIR reflectance (1100-
2500 nm, 300-2500 nm, and 850-2500 nm) yielded the best prediction performance (RMSEP=
0.19%, 0.568%, and 0.42%). Generally, it was shown that NIR radiation intensity inside fruit
tissue decreases in an exponential trend with depth (Lammertyn et al., 2000; Fraser et al., 2000).
Consequently, having relatively lower performance for whole tubers, and slices, for estimating
chemical constituents can be understandable. Moreover, skin is a factor resulting in dispersing,
interfering, and weakening of detected signals, and mostly yields lower correlation between
spectra and chemical compounds inside the tissue (Fraser et al., 2003). Therefore, and based on
the DM distribution inside potato tubers, reflectance and interactance modes generally yielded
better correlation than transmittance mode. However, sampling methods applied on such studies
are not suitable for on-line sorting. SG prediction models showed the same performance as DM,
between the three spectroscopic modes, which probably is a result of the fact that SG is a direct

indication of DM or the solids inside the tuber.

Water content (WC) is also an important factor of potato tubers as it is inversely

proportional with DM, SG, and starch content. Thus, it’s desirable to keep WC in potato tubers at



levels that protect tubers from water loss and shrinkage without any excess that reduces tubers’
suitability for processing. Water absorption peaks in the NIR range are located at 970, 1200, and
1450 nm (Workman, and Weyer, 2008). In some cases, however, some interfering might occur
between water and other constituents’ absorption when using a broad wavelength range.
Consequently, table 2.1 shows that relatively low RMSEP values were obtained for WC
estimation when using narrower wavelength range as conducted by Qiao et al., 2005 (RMSEP=
0.14%) compared with RMSEP values of 6.414%, 4.791%, 1.761%, and 0.387% obtained by

Singh et al., 2004.

Table 2.1. Reported electronic techniques to estimate specific gravity, dry matter and water content for raw and non-

processed potatoes.

Mode(spectral range) Parameter Tested material R%(RMSEP) Reference
NIR transmittance (800-1000 nm) DM Whole tubers 92(1.52%) (no test set) (Dull et al., 1989)
Thin slices(2.54 cm) 97(?)
Thick slices(4-6 cm) 95(1.69%)
NIR reflectance (1100-2500 nm) DM Homogenized 97(0.19%) (no test set) (Hartmann and
Bining-Pfaue, 1998)
NIR reflectance (770-2498 nm) SG Cylindrical 87(0.007) Scanlon et al., 1999)
DM 88(1.3%)
NMR (low field) DM Slices 2(?) (Thybo et al., 2000)
Raw 2(?)
Boiled 2(?)
NMR (low field) DM Slices 2(?) (Thygesen et al., 2001)
VIS/NIR transmittance (530-1100) SG Whole tubers 85(0.002) (Kang et al., 2003)
Punctured tubers 82(0.002)
NMR (low field)/ MRI DM Slice 2(?) (Thybo et al., 2003)
Cylindrical 2(?)
VIS/NIR reflectance (400-2500 nm) DM Mashed 98(0.533%) (Haase, 2004)
VIS/NIR reflectance (300-2500 nm) wC slab samples (6x4x0.3 (Singh et al., 2004)
cm3) 99(6.414%)
Without skin(400-1750) 99(4.791%)
Without skin(700-
900,1000-1100,1250-1600) | 99(1.761%)
With skin(400-1750) 99(0.387%)
With skin(850-900,1100-
1200,1400-1500)
NIR transmittance DM Whole tuber 79(1.04%) (no test set) (Walsh et al., 2004)
VIS/NIR interactance (400-1100 nm) | SG Whole tubers 90(0.004) (no test set) (Chen et al., 2005)
Hyperspectral imaging (934-997 nm) WC Whole tuber 88(0.014%) (Qiao et al., 2005)
NIR interactance (750-950 nm) DM Peeled 95(1.13%) (Subedi and Walsh,
Slices 93(1.08%) 2009)
Slices(moving) 90(1.08%)
NIR reflectance (850-2500 nm) DM Ground samples 99(0.42%) (Haase, 2011)
1 D VIS/NIR interactance (449-1040 DM Whole tubers (unpeeled) 97(0.91%) (no test set) (Helgerud et al., 2012)
nm) 91(1.68%)
2 D NIR interactance (760-1040 nm)

10




2.1.2 Carbohydrates and Protein Content

Potato is known as a good source of carbohydrates in comparison with grains.
Carbohydrate concentrations, as well as chemical constituents, depend on variety, soil type,
cultural practice, maturity stage, diseases, and storage conditions (Rama, and Narasimham,
2003). Total carbohydrates significantly differs between the raw potato (18.5% FW), and dried
potato (74.3% weight) which exceeds or is close to the same value for other carbohydrate
sources: rice (80.2% FW), wheat (70.9% FW), sweet potato (27.4% FW), yam (24.2% FW), and
cassava (35.2% FW) (Woolfe, 1987). McCay et al. (1975), stated that the number of calories
obtained from one medium size potato tuber is the same as that obtained from an apple or a
banana. Carbohydrates in potato tubers include: starch, sugars, cellulose, hemicellulose, and
other polysaccharides. Starch is the major component in potato carbohydrates accounting for 60-
80% of the dry matter (Kadam, et al.,1991). There are two main types of starch in potato tubers:
amylose (linear chain of glucose molecules linked by 1,4-glycosidic bonds) that account for 20%
of the tuber starch and the rest is amylopectin in which the glucose chains are also branched by

1,6 glycosidic bonds (Storey, 2007).

Starch concentration in potato tubers starts with low levels after tuber initiation with an
increase during buckling, and reaches its maximum value at the start of the senescence process.
Starch then decreases with the time of vine killing in a similar trend to the specific gravity
accumulation process (Stark and Love, 2003). Starch is shown to positively correlate with
specific gravity and dry matter. Tubers with starch content of 13% or higher are acceptable for
processing (Stark et al., 2003). The common method to determine total starch in potato tubers is
the enzymatic hydrolysis in which the starch is completely converted into D-glucose using

specific enzymes. In addition of being a destructive method requiring preparation time, the
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enzymatic method has some possible drawbacks including the interfering of other enzymes that

leads to higher or lower total starch levels than the actual content (BeMiller, 2003).

Monitoring starch content in potatoes, as shown in table 2.2, using spectroscopic systems
was feasible with most of tests conducted on mashed or ground tubers, and resulting in relatively
low RMSEP values (0.651%, and 0.740% by Haase 2004; and Haase, 2011) compared to limits
recommended for tuber processing. The relatively high content of starch in potatoes, compared
to other constituents, and the broad distribution inside the tuber (in cortex, vascular ring, and
parenchyma) resulted in strong correlation with NIR, or VIS/NIR spectroscopic systems. Some
studies showed standard error of prediction (SEP) rather than RMSEP. Studies with a separate
test set (Haase, 2004; Haase, 2006; and Haase, 2011) resulted in higher error values than that

with only validation set which is statistically expectable (Hartmann and Biining-Pfaue, 1998).

The main reducing sugars in potato tubers are: glucose (0.15-1.5%FW), and fructose
(0.15-1.5%FW) which are reducing sugars, and sucrose (0.4-6.6%FW), (Storey, 2007). Sugar
level varies with variety, and low sugar varieties are usually dedicated for processing (Liu et al.,
2009). There are different scenarios for sugar formation in potato tubers; sucrose is usually
formed during the photosynthesis process, it then is enzymatically divided into glucose and
fructose. Fructose is converted into glucose and the glucose forms the starch molecules (Stark
and Love, 2003). Traditional methods of sugar measurement include: HPLC (high performance
liquid chromatography), HPAEC (high performance anion chromatography), gas-liquid
chromatography, and the YSI Analyzer invented by Yellow Springs Instruments (Yellow Springs
Instrument, Yellow Springs, Ohio, USA). While these techniques are shown to be accurate and
used for quality assurance in processing facilities, they are still destructive, time consuming, and

cannot cope with in-line sorting applications. The levels of sugars in potato tubers are very
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critical for estimating the viability of processing, especially chipping, and French frying.
According to Stark and Love (2003), the recommended thresholds of glucose at either harvest
time or during storage are 0.035% (FW) for potatoes destined to chips and 0.12% (FW) for
potatoes used for French fries. Sucrose thresholds are 0.15% (FW) at harvest and 0.10% (FW)
during storage for chipping tubers, whereas those values were 0.15% (FW) at harvest or during
storage for tubers dedicated to French fries use. Higher levels of reducing sugars cause a dark
browning color resulting from the non-enzymatic reaction, known as the Maillard reaction,
between reducing sugars and the amino acid asparagine (Storey and Davies, 1992). In addition,
sweetening flavor found in potato chips, and French fries is due to the increase of sucrose
content as a result of storing tubers at low temperatures (< 4 °C) (Storey, 2007). Thus,
monitoring sugars in potato tubers before, and during, storage becomes a basic quality practice in

the frying industry.

Some studies of electronically assessing sugar content of potato tubers yielded relatively
low values of RMSEP (Mehrubeoglu and Cote, 1997; Hartmann and Buning-Pfaue, 1998; Haase,
2011; Rady et al.,, 2014) that are lower than the threshold listed for processing. Other
experiments conducted on whole tubers, however, either resulted in higher RMSEP values
(Yaptenco et al., 2000, Rady et al., 2014) or did not include independent prediction sets (Chen et
al., 2010). Such lower performance is mainly due to the skin effect that is cultivar dependent.
Consequently, sorting potato tubers based on sugar content is a more challenging task than
assessing sugars in ground, homogenized, or even sliced samples. Classifying tubers with respect
to their sugar content reduces the variation of sugars between them and helps improve frying
quality and consistency. Moreover, tubers with higher sugar content than the processing

thresholds may be reconditioned by storing at elevated temperatures for 2-6 weeks (Storey, and
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Davies, 1992). More research regarding the on-line sorting of potato tubers based on sugar

content is still needed for enhancing the quality of both fried products, and fresh tubers.

Potato does not contain considerable amounts of proteins, 1.7-2.1 g per 100 FW,
compared to eggs, fish, and dairy products. However, in countries with high potato consumption,
potato significantly contributes to human diet. Moreover, the high quality of potato protein
within 100 g of boiled potato supplies the portion of Recommended Daily Allowance (RDA) of
8-13% for children, 6-7% for adults (Storey, 2007; Storey and Davies, 1992). Burton (1989),
also stated that potatoes yields more protein per hectare than major cereal crops. Other uses of
potato protein include cattle and pig feed, as well as some other applications including treatments
for weight loss, peri-anal dermatitis, thrombotic disease, and cancer (Karenlampi and White,
2009). Therefore, estimating protein content in potatoes in a rapid way can help assess the
viability of tubers for industry. The Kjeldahl procedure is the traditional method for estimating
protein in food products, and it is a destructive technique requiring enough time for digestion,
neutralization, and titration steps (Chang, 2010). NIR diffuse reflectance (1100-2500 nm) was
successfully used by Hartmann and Buining-Bfaue (1998), to estimate protein content of potatoes
with R(RMSEP) values of 0.86(0.06%), which was more accurate than results achieved by Haase
(2006), using VIS/NIR reflectance (400-2500 nm) with R(RPD) values being 0.79(0.205%FW)
which refers to the advantage of choosing narrower wavelength bands in the former study so that

interference from other chemical compounds was reduced.

14



Table 2.2. Reported electronic methods to estimate carbohydrates (starch, sugars), and protein content for raw and

non-processed potatoes.

Mode(spectral range)

Parameter

Tested material

R%(RMSEP, %FW)

Reference

NIR transmittance (2050-2400 nm)

Total reducing sugars

Sliced samples
Russet variety
Chipping variety
Both

98(0.0671) (no test set)
81(0.0224)
51(0.0600)

(Mehrubeoglu and

Cote, 1997)

NIR reflectance (1100-2500 nm) Fructose Homogenized 89(0.028) (no test set) (Hartmann and
Glucose samples 70(0.041) Bining-Pfaue, 1998)
Sucrose 62(0.037)
Total reducing sugars 82(0.061)
Starch 93(0.028)
Crude protein 86(0.06)
VIS/NIR interactance (400-1100 Glucose Whole tubers 83(0.087) (no test set) (Yaptenco et al.,
nm) Fructose 95(0.101) 2000)
Sucrose 95(0.341)
Reducing sugars 93(0.204)
Total sugars 95(0.598)
NMR (low field) Starch Raw (slices) ?2(?) (Thygesen et al.,
2001)
VIS/NIR reflectance (400-2500 Starch Mashed tubers 98(0.651) (Haase, 2004)
nm)
NIR interactance (700-1100 nm) Carbohydrates Whole tubers 93(0.98) (Chen et al., 2004)
Opto-electric system Starch (using density) Whole tuber 2(?) (Hoffmann et al.,
2005)
VIS/NIR reflectance (400-2500 Starch Mashed tubers 95(0.740) (Haase, 2006)
nm) Protein 79(0.205)
Coagulable protein 50(0.093)
VIS/NIR interactance (400-1100 Glucose Whole tubers 0.65(0.046) (no test set) (Chen et al., 2010)
nm) Fructose 0.71(0.026)

NIR interactance (850-2500 nm) Starch (incremental) Ground samples 98(0.50) (Haase, 2011)

Starch (retrospective) 98(0.47)

Reducing sugars (incremental) 57(0.00483)

Reducing sugars (retrospective) 66(0.00389)

Sucrose (incremental) 77(0.0106)

Sucrose ( retrospective) 84(0.00969)

Total sugars (incremental) 73(0.0156)

Total sugars (retrospective) 81(0.0135)

Vis/NIR interactance (446-1125)

Vis/NIR hyperspectral reflectance

(400-1000 nm)

NIR transmittance (900-1685 nm)

Glucose

Sucrose

Glucose

Sucrose

Glucose

Sucrose

Sliced samples &
Whole tubers
(Chipping-table
use)

Only sliced
samples

90-95 (0.0515-0.0786) &
88-79(0.0620-1529)

81-50(0.0439-1.0273) &
81-26(0.0436-0.2051)

64-74 (0.0880-0.1643) &
38-52 (0.0681-0.3259)

62-57(0.0580-0.1533) &
14-43 (0.0702-0.1805)

66-87 (0.0515-0.1921)&

57-63 (0.0582-0.8962)

(Rady et al., 2014)

2.1.3 Defects and Diseases Detection of Potato Tubers

Mechanical damage and disease management are probably the most critical postharvest

issues that face growers and processors. Negative consequences occur for potato products when

there are inappropriate harvest and handling operations. The study of mechanical damage in

potatoes was among the earliest postharvest problems addressed and presented in literature

(Klapp, 1945; Hopkins, 1953; Nylund, and Hempkill, 1955; Volbracht, and Kuhnke, 1956;
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Lamp, 1960; Ophuis et. al, 1958; Zahara et. al, 1961; Parke, 1963; Loow, 1964; Kunkel, and
Gardner, 1965; Johnston et. al, 1968; Gray and Hughes, 1978; Hyde et. al, 1979; Balls et. al,
1982; Mohsenin, 1986; Burton, 1989; Kleinschmidt and Thronton, 1991; Baritelle et. al, 1998;
Baritelle and Hyde, 1999; Thronton and Bohl, 2000; Hemmat and Taki, 2001; Rady, 2006; Rady
and Soliman, 2013). Dean (1996), stated that the brown or black discoloration seen in tubers
after impacts is caused by both enzymatic and non-enzymatic oxidation of phenolic substances.
The enzyme called polyphenoloxidase (PPO) results in the formation of melanin pigments.
According to Storey and Davies (1992), mechanical damage of potato tubers may be divided,
based on the form of damage, into two groups: external or internal damage. External damage
includes skin scuffing, cuts or gouges, crushing, which are apparent by inspection, and leads to
direct losses when grading or preparation for consumption or processing. It also causes an
increase in weight loss during storage and allows for the ingression of disease pathogens. The
second type is internal damage, which includes internal shattering or cracking and black spots. In
some cases, internal damages may be visible under the skin of the tuber, but in most instances it

IS not apparent until tubers are cut or peeled.

Defects and diseases were also some of the first postharvest problems that received much
investigation into noninvasive and/or electronic techniques. These disorders usually result in
change in shape, tissue color, or moisture content that can be detected using non-invasive
techniques. This domain became an open field for research using rapid and/or electronic methods
which led to systems already available to the industry to help sort non-desirable tubers or potato
products. The reason of this early importance is the severe economic impact of such problems in
either fresh or processed forms. There are many electronic-based rapid techniques applied to

potato to assess defects including traditional machine vision, spectroscopic, and ultrasonic.
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Application of such methods on raw potato tubers along with performance are discussed in
sections 2.1.3.1.-2.1.3.3. Various electronic methods used for defect detection of potato tubers

are shown in table 2.3.

2.1.3.1 Spectroscopic-based methods

Spectroscopic techniques have been used in many quality evaluation applications
including detecting defects for fruits, vegetables, grains, and meat. Detection of potato defects
using spectroscopic systems depends on variation of absorbance between sound and damaged

tissues that is usually used to classify tubers into different categories.

Hollow heart (HH) was one of the earliest defects to be studied using noninvasive
techniques possibly because it is a major internal physiological disorder that significantly affects
tubers dedicated for processing. Due to the fact that HH usually develops as an irregular cavity in
the pith area (Watts and Russel, 1985), the transmittance mode was probably the appropriate
technique for detecting such defect. Several factors, however, resulted in somewhat low
classification rates of HH (83-98% for Birth 1960; and 83% for Kang et al., 2008) using
spectroscopic methods as noted in table 2.3. The most influencing factor for such results is the
similarity of absorption characteristics between skin and damaged tissue (Birth, 1960).
Consequently, some small tubers were classified as false-positive as a result of the fact that the
proportion of path length through the skin with respect to the total path length is higher for small

tubers than larger tubers. Other internal defects (black spot) followed the same results as for HH.

Some defects have internal breakdown of the tissue extending to the surface (bacterial
soft rot, dry rot, late blight, gangrene) and were also classified using spectroscopic methods

resulting in comparable performance to that of HH, and black spot (Muir et al., 1982).

17



In general, internal defects were much more successfully detected using different
spectroscopic systems than external defects due to specular reflectance and interference from
tuber skin in the latter type. Moreover, external defects are usually not completely distributed
over the tuber surface which requires scanning of the whole surface to obtain accurate

description of tuber status and consequently a high classification rate.

2.1.3.2 Imaging-based methods

Applications of computer vision systems on detecting physiological disorders,
mechanical damage, and other internal or external defects of potato tubers were studied to
evaluate the potential of using such techniques for sorting tubers dedicated for either fresh use or
processing. Hollow heart, bruises, greening, scab infection, and blemishes are probably the most
frequent imperfections that received consideration of imaging-based methods as shown in table

2.3.

As a result of its efficient use in medical diagnostics, Xx-ray imaging systems were
dominating computer vision research studies in the agriculture domain since the 1930’s. X-ray is
a short-wave electromagnetic spectrum (0.002-100 nm) that interacts with specimen tissue and
the intensity of detected signals mainly depends on incident intensity, absorption coefficient,
product density, and sample thickness (Butz et al., 2005; Abbott, 1999). Studying the detection
of hollow heart in potatoes was the first application of x-ray in quality measurements for
perishable produce (Abbott, 1999; Nylund, and Lutz, 1950; Harvey, 1937). Experiments
conducted by Nylund, and Lutz (1950), Finney and Norris (1973 and 1978), resulted in

classification rates of 84.1, 100, and 100% respectively for defected tubers.
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Some challenges still restrict the application of x-ray imaging systems in the domain of
food products. Such restraints include the limitation of detection to density-changing tissues and
not chemical composition or mechanical damage forms, the high cost of x-ray inspection

systems, and low operational speed (Mathanker et al., 2013; Butz et al., 2005; Chen et al., 2002).

Rapid development of imaging hardware and computers resulted in the application of
color cameras on tracking quality attributes of food products. Images resulting from color
cameras show useful information about both internal and external status of samples. Obtained
information includes color, shape, textures, disease, and defects. With the decreased cost, and
increasing computing speeds, image analysis was made possible for building commercial grading

systems for fruits, and vegetables (Chen and Sun, 1991).

Several studies were conducted to investigate the potential use of color cameras, along
with other imaging systems for defect detection of potatoes. Surface defects (skin cutting, shatter
bruise, common scab, greening, cracks, etc.) were successfully evaluated for whole tubers using
color cameras with classification rates higher than 95% (Hasankhani et al., 2012; Samanta et al.,
2012). Other internal or sub-surface defects were also studied using RGB, and multispectral
cameras, or hyperspectral imaging systems. Results of classifying common scab defected tubers
and healthy tubers using NIR hyperspectral imaging by Dacal-Nieto et al. (2012), showed
promising performance with classification rates of healthy and defected tubers of 94.0%, and
98.6% respectively. It is worth stating that hyperspectral imaging systems are not suitable for on-
line sorting purposes because the relatively long acquisition time needed to acquire each image.
They can be effectively used to provide the most influencing wavelengths associated with the
high classification rates, and those wavelengths can be utilized by multispectral imaging systems

(Chen et al., 2002).
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Several techniques were noted above for effectively monitoring different external and
internal disorders in potato tubers with various degrees of efficiency. Imaging systems were
noted to present the best performance of tracking the presence of defects and damage compared
to other systems, especially for internal defects. Although acquiring and analyzing spectroscopic
signals is less time consuming than for imaging systems, the use of spectroscopic systems for
detecting internal defects, that are not visible by human labor, did not yield acceptable

performance for the industry.

2.1.3.3 Sonic-based methods

Ultrasound technology (UT) is known for its successful use in medical diagnosis, and
manufacturing applications. UT usually works under either of two modes; the pulse-echo mode
which is simply a reflectance mode in which one transducer is used for emitting and receiving
the reflected signals. In the second mode, known as the through-transmission mode, one
transducer works as a transmitter and the second one as a receiver. Evaluation of tested material
using UT comes from both attenuated signals and the propagation speed as both parameters vary
with the change of tissue nature or the presence of defects (Mizrach, 2012; Mizrach, 2008).
Unlike solids, liquids, and human tissues, fruits and vegetables are very attenuating materials due
to their scattering effect when applying the frequencies used for medical and industrial
applications (0.5-30MHz) (Mizrach, 2008). More studies by Sarkar and Wolfe (1983), reported
that lower frequencies (100-500 KHz) and higher acoustic power might be more effective for

quality applications of fruits, and vegetables.

As presented in table 2.3, ultrasound technology was generally applied for potatoes on
detection of hollow heart as this physiological disorder tends to have distinguished wave
attenuation characteristics compared with healthy tissue and generally, defective tubers had less
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signal amplitude and intensity than the healthy tubers. Most studies were conducted in the
frequency range of 50-200 KHz. Success in hollow heart detection was demonstrated with a
classification rate as high as 100% (Ha et al., 1991; Cheng and Haugh, 1994). Such results
showed the advantage of using ultrasound techniques for detecting hollow heart and possibly
other diseases and damage in potato tubers. Limitation of tuber defects that can be effectively
tracked using UT, however, restricted the application of UT to hollow heart only which is not
economically valuable with the many diseases and disorders infecting potatoes in the postharvest

stage as mentioned earlier.
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Table 2.3. Reported spectroscopic, imaging, and sonic methods to detect defects, and diseases for potato raw and

non-processed potatoes.

Mode(spectral range)

Defect/disease

Classification rate (%)

Reference

Transmittance (540-910nm) Hollow heart 83-98 (Birth, 1960)
Greening 50
Decay 50
Black spot 88
VIS/NIR diffuse reflectance (590-2030 nm) Defected tubers 79 (Porteous et al., 1981)
Sound tubers 82
VIS/NIR diffuse reflectance (570-870 nm) Gangrene (control) 98 (Muir et al., 1982)
Gangrene (diseased) 77
Dry rot (control) 93
Dry rot (diseased) 72
VIS/NIR diffuse reflectance Surface & subsurface ? (Muir et al., 1999)
defects
UV to NIR (250-1750 nm) reflectance Surface bruise (Evans and Muir, 1999)
uv Unpeeled 455
Peeled 79.5
VIS Unpeeled 55.1
Peeled 57.1
NIR Unpeeled 65.9
Peeled 55.8
VIS/NIR transmittance (530 — 1100 nm) Hollow heart 83 (Kang et al., 2008)
VIS/NIR time resolved reflectance (540-900 nm) Internal brown spot 81 (Vanoli et al., 2012)
X-ray Hollow heart ? (Harvey, 1937)
X-ray Hollow heart 84.1 (Nylund and Lutz, 1950)
X-ray Hollow heart 100 (Finney and Norris, 1973)
X-ray Hollow heart 100 (Finney and Norris, 1978)
CCD color camera Greening 74.0 (Deck et al., 1995)
Shatter bruise 76.7
CCD color camera Greening 90.0 (Tao et al., 1995a)
Multispectral camera (400-2000 nm) Surface & subsurface ? (Muir et al., 1999)
defects
Color camera Colored bruises & ? (Marique et al., 2005)
greening
CCD color camera Good potato 100 (Jin et al., 2009)
Potato with defects 100
CCD color camera Blemishes (Barnes et al., 2010)
White cultivar 89.6
Red cultivar 89.5
NIR Hyperspectral Healthy tubers 94.0 (Dacal-Nieto et al., 2011)
900-1700 nm Common scab 98.6
CCD camera Greening 94.7 (Ebrahimi et al., 2011)
CCD color camera Healthy 100 (Hasankhani et al., 2012)
Crack 100
Greening 100
Fetidness 86.0
Skin cutting 100
Other defects 100
CCD color camera Defected tubers 95.0 (Razmjooy et al., 2012a)
RGB camera Scab disease 97.5 (Samanta et al., 2012)
Ultrasound attenuation at 175 KHz Hollow heart ? (Watts, and Russell, 1985)
Ultrasound attenuation at 50, 100 KHz Data collection ? (Mizrah, 1989)
Ultrasound attenuation at 50 KHz- 1 MHz Hollow heart 100 (Haetal., 1991)
> -
Ultrasound attenuation at Hollow heart ’ (Mizrach, etal., 1992).
Ultrasound attenuation at 250 KHz Hollow heart 100 (Cheng and Haugh, 1994)
Ultrasound attenuation at 50,100,150 KHz Hollow heart 98 (Jivanuwong, 1998)
Acoustic impact Hollow heart 98 (Elbatawi, 2008)
Ultrasound attenuation at 2, 32.8, 40 and 50 KHz Mechanical damage 83-95 (Esehaghbeygi et al., 2011)

(pressure, and impact)

22




2.1.4 Systems for Non Destructive Sorting of Raw Potato Tubers

Elimination of tubers with surface defects, physiological disorders, and/or internal
drawback that don’t meet quality requirements is a necessary process during preparing potatoes
for fresh market or processing. US Standards for Grades of Potatoes restrict potato growers with
limits for defects, size, weight, maturity, and shape uniformity with tolerances either in the
shipping or destination points with different grades including US. No.1, U.S. Commercial, and
U.S. No. 2 (National Agricultural Statistics Service, USDA, 2012). Although there are regulation
tolerances, proper considerations should be taken at sorting stations and packing houses to ensure

higher product marketability and more benefits for producers.

The use of human labor for sorting and grading of agricultural products is the traditional
technique especially in developing counties as the labor is much cheaper than in developed
countries. Some disadvantages, however, are usually related to manual sorting including low
sorting rate, inability to sort internally defected samples, degradation of performance with time,
and the high cost and problems associated with immigrant workers in developed countries. Such
drawbacks resulted in extensive research for developing techniques for detecting defects and
physiological disorders in a noninvasive manner, as shown in section 2.1.3, and quantitatively
and qualitatively improving the output of sorting stations. Sorting potato tubers, as well as other
perishable products, is more complicated than the prediction of a single or multiple constituents
or the detection of one or more defects. In designing any sorting system, one should consider not
only important factors stated in section 2.1.3, but also other foreign materials that need to be
discarded such as vine, stones, soil, etc. Moreover, a sorting process includes eliminating
samples that don’t match size, appearance, and shape standards. Also, productivity of the sorting

system (ton/hr) is a crucial factor to estimate its practicality, and marketability.
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In the case of potatoes, several operations are conducted on the harvested crop including
removal of any remaining soil, clods, haulm, and stones, grading of tubers into several sub-
grades, and removing any tubers that do not meet requirements for local market (Pringle et al.,
2009). Table 2.4 shows the different reported studies for sorting potato tubers using several

techniques (spectroscopic, imaging, ultrasonic, vibrational response characteristics).

Spectroscopic methods are known to be rapid techniques for monitoring quality attributes
for potatoes as shown in sections 2.1.1, 2.1.2, and 2.1.3. With the relatively low integration time,
i.e. high acquisition speed, for the developed diode array-based NIR spectrometers, in addition to
the powerful multivariate regression methods, i.e. PLSR, it was feasible to build online
spectroscopic sorting systems (Nicolai et al., 2007). The most crucial factor affecting the
performance of such a sorting system is the prediction model robustness that includes the ability
to precisely predict quality attributes for samples that were not used to build the calibration
model. The calibration models should be based on large datasets obtained from different

destinations, growing conditions, and operational conditions (Nicolai et al., 2007).
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Table 2.4. Reported electronic methods for sorting potato raw potato tubers using different g

uality attributes.

Method/ Mode Sorting criteria R(RMSEP) or Performance Reference
classification rate
(%)
VIS/NIR diffuse reflectance Reflectance characteristics 100(for potatoes) 292320 (Story and Raghavan, 1971)
(600-1300 & 1500-2200 nm) objects/hr
NIR diffuse reflectance Reflectance characteristics ?(?) ? (Story, 1973)
VIS/NIR transmittance Dry matter 80.0(0.67 %) ? (Kang et al., 2008)
(530 — 1100 nm) Specific gravity 83.0(0.005)
NIR diffuse reflectance Dry matter 97.0(0.47%) ? (Brunt and Drost, 2010)
(1100-2500 nm) Starch 92.0(0.63%)
Coagulating protein 92.0(0.06%)
X ray absorption and scatter Absorption and scattering ? ? (Slight, 1966)
TV camera Size and shape 100.0 40 tubers/sec (Marchant et al., 1990)
CCD color camera Color ? (Tao etal., 1995a)
Green tubers 90.0
Good tubers 100.0
CCD color camera Shape 89.2 ? (Tao et al., 1995b)
CCD video camera Shape and size 3 tubers/min (Heinemann et al., 1996)
Moving tubers 88.0
Stationary tubers 98.0
CCD video camera Weight 91.2 50 potato (Zhou et al., 1998)
Shape 89.1 images/sec
Size 85.5
Color (greening) 78.0
Overall 87.0
CCD color camera Color (greening) 88.1 50 tubers/sec ( Noordam et al., 2000)
Shape 99.2 12 ton/hr
Surface crack 100.0
Rhizoctonia 100.0
Shape ? (Al-Mallahi et al., 2008a)
RGB camera Clods (with wet, dry tubers) 944,754
Wet tubers, dry tubers 91.2,714
Hyperspectral imaging (321-1044 nm) Clods (with wet, dry tubers) 99.8,974
Wet tubers, dry tubers 100, 76.8
Color ? (Al-Mallahi et al., 2008b)
UV CCD camera (300-380 nm) Clods 71.2-100
Tubers 94.5-100
CCD color camera Defects & color ? (Dacal-Nieto et al., 2009)
Good 86.6
Rotten 88.7
Green 86.2
Firewire camera Shape 93.8 ? (Rios-Cabrera et al.,2009)
UV CCD camera (300-420 nm) Color ? (Al-Mallahi et al., 2010a)
Clods 100
Tubers 100
UV CCD camera (300-420nm) Color ? (Al-Mallahi et al., 2010b)
Clods 98.3
Tubers 98.8
CCD camera Size (minor and major axis) ? ? (Chenglong et al., 2011)
CD color camera Shape ? (ElMasry et al., 2012)
Regular tubers 98.8
Misshapen tubers 75
CCD color camera Shape ? (Hasankhani and Navid,
Accepted tubers 91.8-100 2012)
Rejected tubers 100
CCD color camera Shape 96.9 ? (Razmjooy et al., 2012)
Defects 95.0
Vibrational response characteristics Vibrational response (clods) ? ? (Miller and Stephenson,
1971)
Vibrational response characteristics Vibrational response (Stephenson et al., 1979)
Clods (static tests) 100 4-5 Pocket/sec
Clods (moving objects) 90-100
Impact acoustic signals (up to 100 KHz) Impact acoustic response 20 ton/hour (Hosainpour et al., 2010)
Off-line Tubers 97.3
Clods 97.6
On-line Tubers 97.2
Clods 97.5
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Review of literature showed that sorting potato tubers from stones, clods, and other
foreign materials was not effectively studied using spectroscopic systems except in two
references in which VIS/NIR, and NIR diffuse reflectance characteristics of potato tubers,
stones, and clods were studied by Story (1973), and Story and Raghavan (1971), respectively.
Both investigated the difference of diffuse reflectance properties between tubers and other
foreign materials. Although the classification rate in the former study for potato tubers was
100%, the authors stated several problems that could reduce system performance including the
detector balance and the heating transistor. Moreover, it is important to state that results of such
study were not confirmed by further research or applied on different cultivars. The possible
reasons for no further advancement in this area includes the deficiency of spectroscopic systems
in grading tubers based on size, and shape. On the other side, the rapid improvement of imaging

hardware resulted in fast and accurate identification of size, and shape of different objects.

As shown in sections 2.1.1, and 2.1.2, spectroscopic systems have been studied to
estimate different quality attributes of potatoes. Studies were conducted in an attempt toward
developing an on-line sorting system for potato tubers based on quality parameters that are
associated with processing. Dry matter (DM) and specific gravity (SG) were studied as sorting
criteria by Kang et al. (2008), using VIS/NIR transmittance (650-1000 nm) with R(RMSEP)
values for the prediction set of 0.83(0.0050), and 0.80(0.0067) for SG, and DM respectively.
NIR diffuse reflectance (1100-2500 nm) was also used by Brunt and Drost (2010), for obtaining
prediction models of dry mater, starch, and coagulation protein for potatoes in an off-line mode
in an attempt to build a sorting system. Values of R(RMSEP) of prediction models were
0.97(0.47%), 0.92(0.63%), and 0.92(0.06%) for dry mater, starch, and coagulation protein

respectively.
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Machine vision applications in grading and sorting of vegetables and fruits based on size,
color, weight, and defects were stated in the literature (Mahendran et al., 2012; Vibhute and
Bodhe, 2012; Chen et al., 2002; Abbott, 1999; Chen and Sun, 1991). In the case of potatoes,
there is a considerable variation of size, shape, and color of the cultivars available in the local
market which adds difficulty for building a robust, yet universal sorting machine that can tolerate
such changes. Several studies were conducted to build systems able to sort tubers based on

different quality attributes using computer vision techniques as illustrated in table 2.4.

Experiments on sorting potato tubers using imaging methods started as early as 1966 by
Slight in which x-ray scattering and absorption characteristics were studied under low energy (40
KeV) to differentiate between tubers and rocks. While absorption coefficient values for potato
tissue were less than those for other materials which gave a possibility for sorting potatoes from
rocks, no further studies were conducted to enhance the results with a possible reason being the
rapid development of imaging hardware, especially CCD-based cameras. Thereafter, studying
the potential use of imaging systems in potato sorting and grading were extensively accelerated.
Greening, as an external defect, was successfully detected based on tuber surface color by Tao et
al., (1995); Zhou et al., (1998); Noordam et al., (2000); and Dacal- Nieto et al., (2009), with
classification rate of defected tubers of 90%, 78.0%, 88.1%, and 86.2% respectively. Sorting and
grading tubers could be a difficult mission with the singulation problem as a result of the
possible interference between different touching objects (Al- Mallahi et el., 2010a; Marchant et
al, 1990). It was possible, however, to build grading systems for tubers based on size by
developing several separating techniques, applied on the captured images, such as the blob
splitting algorithm (Marchant et al., 1990), the 8-neighbor labeling algorithm (Al- Mallahi et al.,

2010a), or based on intensity threshold (Dacal-Nieto et al., 2009). Consequently, grading tubers
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into several standard grades, and eliminating misshapen tubers, was successfully conducted by
Marchant et al., 1990; Noordam et al., 2000, and El Masry et al., 2012, with classification rates
of 100%, 99.23%, and 98.8% respectively. Separating clods, stones and other foreign materials is
another application studied by imaging systems. Achieving high detection rate of clods was
possible using hyperspectral imaging (321-1044 nm) by Al- Mallahi et al. (2008a), in which the
rate was 99.8%, 97.4% in the wet, and dry conditions, or UV camera (300-420 nm) by Al-
Mallahi et al. (2010a), with the rate of 100%. The application of imaging systems for sorting
potatoes based on external defects was also investigated by Noordam et al., (2000); Dacal-Nieto
et al., (2009); and Razmjooy et al., (2012), with classification rates of the defected tubers being

88.7%-100%.

Applying vibrational response characteristics on sorting potato tubers from clods, stones,
or defects was initially studied by Miller and Stephenson (1971), by exciting a mixture of potato
tubers, clods, and stones using either electromechanical or sonic techniques in the range of 20 to
2 KHz. Results showed differences of vibrational response between the three objects. Additional
study by Stephenson et al. (1979), assessed resonant frequencies of several perishable products
among which potatoes show a frequency band of 400-600 Hz to yield the best detection of clods

and stones (100% in static mode, and 90-100% in moving mode).

2.2 Applications of Non Destructive and/or Rapid Methods on Quality Evaluation for

Potato Products

Processed potato products are more consumed in developed countries compared to table
use in developing countries. However, noticeable changes are occurring in the developing
countries toward consuming processed products. With advances in frozen French fry
manufacturing facilities since the 1950s and the increase in fast food chains, processed potatoes
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contributed to 64% of the total US potato use in the 2000s with 39 pounds per capita compared
to 19 Kg per capita for fresh tubers (Economic Research Service (ERS), 2012). Moreover,
according to a NASS 2013 report, US potato utilization included 61.2% of the total 2012 crop
production directed to processing, 25.6% sold as fresh tubers, and 5.8% used as seed. Among the
processed tubers, frozen French fries contribute to 51.1%, and 20% for chips and shoestrings.
Moreover, in 2012, French fries, and chips contributed to 74% (> $1 billion) of the total US
potato exports to the global market (2013 potato statistical yearbook). Thus, in this section the
application of rapid and/or nondestructive methods on assessing quality attributes of processed

potato will be limited to these two products.

During the frying process, a significantly different microstructure, compared to the raw
tuber, is derived. Formed after the frying process, the surface of a chip or French fry becomes
dry, crispy and oily. However, the inner part is moist and cooked with less oil content than the
external surface. Moreover, the oil content in the potato chip and French fry is around 38%, and
the moisture content is 1.8 and 15% respectively (Pedreschi, 2009). However, in the case of raw
tubers, the moisture, and fat contents are 77%, and 0.5% respectively (Kadam et al., 1991). Also,
processed products are in general more uniform and controlled in shape and dimensions
compared to raw tubers. Thus, it can be concluded that quality assurance strategies for French

fries and chips are significantly different from raw tubers.

Frozen French fries and chip marketability is extremely affected by the appearance which
is the first factor influencing customer evaluation for the final product. Thus, quality assurance
requires French fries and chip color to follow standards established by USDA, and other
governmental and/or industry-related organizations. Frying color is affected by many factors

including cultivar, maturity, stress during growth, storage period temperatures, handling
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practices, fertilization application, slice thickness, frying parameters, and moisture content of the

final product (Gould, 1995b).

The capability of spectroscopic systems to assess and identify many chemical and
nutritional compounds using their specific absorption signature at definite wavelengths has
resulted in extensive research for quality monitoring of French fries and chips. Table 2.5 shows
the reported spectroscopic methods for studying several quality attributes of French fries and

chips.

To assess French fry color, visible diffuse reflectance (400-700 nm) was utilized by
Panigrahi et al. (1996), and extracted features included color and reflectance properties. By
applying linear discriminant analysis (LDA), classification accuracy was as high as 86, 86, and

100% for dark, normal, and light groups respectively.

A potato chip is very thin (1.27-1.78 mm) and several quality attributes are important to
monitor throughout production. Dry matter is an effective factor in frying oil consumption and
dehydration during frying (Storey and Davis, 1992). Fat content in fried products is an important
concern for consumers as healthy food is a major target in the current human diet around the
world (Pedreschi, 2009). Although the Maillard reaction is known for formation of browning
color during the frying process, another component is also formed, which is acrylamide,
discovered by the Swedish National Food Authority in 2002 (Mottram et al., 2002; Stadler et al.,
2002). The acrylamide single unit (monomer) is toxic to the nervous system, a carcinogen in
laboratory animals and a possible carcinogen in humans. French fries, and chips contain fat
concentrations of 424 ug/kg, and 1739 pg/kg and these are considered relatively high ratios
(Pedreschi, 2009). Spectroscopic systems are known for their efficacy to qualitatively and

quantitatively monitor chemical components in food products. Consequently, several research
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studies were conducted to assess these quality attributes. Prediction of acrylamide in potato chips
was successfully conducted using VIS/NIR diffuse reflectance (400-2500 nm) by Segtnan et al.
(2006). Results showed high performance for prediction models with R (RMSEP) of 0.95(246.8
Ha/kg). Such results were better than those obtained by Pedreschi (2010b), (460-740 nm & 760-
1040 nm) which is possibly due to the extended range of wavelengths used in the former study.
Fat and moisture contents in potato chips were also evaluated by Shiroma and Rodriguez (2007),
using NIR and MIR spectroscopy (1052-2000 nm and 2500-13333 nm) and best results showed
R(RMSEP) values of 0.97(0.3%), and 0.96(1.29%) respectively. Pedreschi (2010b), was able to
assess fat and dry matter contents with prediction models having R(RMSEP) values of
0.99(0.99%) and 0.97(0.84%) respectively. Evaluation of quality attributes of French fries and
potato chips using spectroscopic systems, as mentioned above, presented a potential for building
sorting systems, or handheld tools for rapid assessment of both products after frying and before

packing which increases the final product grade and also presents healthier food for consumers.

Imaging systems are extensively used for color-based sorting and defect detection for
multiple food products for their efficiency in detecting color differences using inexpensive
cameras. Moreover, considering color as the most apparent, yet crucial quality aspect for both
French fries and chips, much attention was carried out toward studying the potential
establishment of cost-effective sorting imaging systems for these two potato products as shown

in table 2.5.
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Table 2.5. Reported spectroscopic and imaging methods for assessing quality attributes for frozen French fries and

potato chips.

Method/ Mode

Product

R(RMSEP) or classification rate

Reference

Visible diffuse reflectance

French fries/ reflectance properties

(Panigrahi et al., 1996)

Moisture content

96(1.65 %)

(400-700 nm) Overall 91%

Light 100%

Normal 86%

Dark 86%
VIS/NIR diffuse reflectance | Potato chips (Segtnan et al., 2006)
(400-2500 nm) acrylamide content 95(246.8 pg/kg)

Potato chips (Shiroma and Rodriguez-
NIR(1052-2000 nm) Fat 97(0.3%) Saona, 2007)

Moisture content 96(1.29 %)
MID-IR (2500-13333 nm) Fat 97(0.3%)

VIS/NIR Inductance

Potato chips

(Pedreschi et al., 2010b)

(460-740 nm & 760-1040 Fat 99(0.99%)
nm) Dry matter 97(0.84%)

Acrylamide 83(266 pg/kg)
Video camera Potato chips (color measurement) 99 (Coles et al., 1993)
Video camera Potato chips (color measurement) 94 (Scanlon et al., 1994)
Video camera Potato chips (color defects) ? (Segnini et al., 1999)
Digital color camera Potato chips (color defects) 90 (Marique et al., 2003)
Multispectral (400-900 nm) French fries (defects) 87.90-99.25 (Noordam et al., 2004)
CCD color camera 69.3-93.9
Digital color camera Potato chips (color) 90-100 (Pedreschi et al., 2004)
Digital color camera French fries (Yin and Panigrahi, 2004)

Internal hollowness 100

Normal 100

Total 100
Digital color camera Potato chips (color & frying temperatures) | ? (Pedreschi et al., 2006)
Digital color camera Potato chips (color and texture) 90 (Mendoza et al., 2007)
Flatbed scanner Potato chips (color defects) 98 (Romani et al., 2009)
Digital color camera Potato chips (color) (Pedreschi et al., 2010a)

Smooth chips 97

Chips with ruffles 82

Most studies of investigating chip color using imaging techniques were conducted using
either digital or video cameras as they are relatively inexpensive, and at the same time can
efficiently detect color differences. Correlation between color features, especially in the L*a*b
space that is more human-related and less dependent on illumination (Segnini et al., 1999), and
measured color of chips were extensively conducted to evaluate external quality and estimate the
presence of any undesirable dark color spots. Romani et al. (2009); Marique et al. (2003); and
Scanlon et al. (1994), applied such techniques with R values of 0.98, 0.90, and 0.94. Surface
shape of chips was proven to reduce such correlation as shown by Pedreschi (2010a), in which
the R values were 0.97 and 0.82 for smooth and undulated chips. Mendoza et al. (2007), found
that texture-based features (energy, entropy, contrast, and homogeneity) yielded Dbetter
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classification rates (90%) than using color-based features. A combination of color and texture
features was selected using Fisher linear discriminant functions and resulted in high accuracy

(90-100%) for classifying chips into different classes based on frying parameters.

The application of imaging systems on French fries was restricted to the area of defect
detection. Multispectral imaging (MI) (400-900 nm) showed higher classification rate (87.90-
99.25%) than RGB color (69.3- 93.3%) for assessing several defects (damage, greening, external
rot, and browning). The possible reason for such a trend was the ability for Ml to identify some
defects not shown in RGB images (i.e. greening). Texture features were also utilized for
detecting hollowness in French fries using an RGB camera (Yin and Panigrahi, 2004). Ideal
classification (100%) was obtained for normal, and defected strings using features obtained from
gray level images along with a co-occurrence algorithm for feature calculation. However,
computation time, as a crucial factor to assess the applicability of such a method for developing

on-line sorting system, was not addressed in this study and needed further investigation.

2.3 Commercial Sorting Systems for Potato Tubers, French Fries and Chips

During the last three decades, nondestructive systems for sorting perishable products
were successfully transferred from research labs into fields, packing houses and processing
plants. Potatoes were one of the most applicable commodities to receive attention to apply rapid
and noninvasive technology to discard internally or externally defected, misshapen and non-
suitable sized tubers. Also potato chips and French fries were classified using systems available
commercially. Table 2.6 shows commercial sorting systems available in the market for whole

potato tubers, French fries and chips.
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Table 2. 6. Commercial sorting and quality monitoring systems for raw potato tubers, French fries and chips.

Company/model Effective sorting base / and sorted Discarded materials Notes
material
Odenberg/ FPS Multispectral NIR color cameras/ Soil clods, stones, foreign materials, and 15-70 ton/hr

1200,1400,1800

unwashed potatoes (red, brown, and white
skin)

rotten potatoes

Key Technology/Optyx® Laser and high performance color Foreign materials, and rework potatoes 45 ton/hr
WPS cameras/unwashed whole tubers
Key Technology/Optyx® Multiple laser and cameras (VIS/IR, UV, Color, shape, texture, and defects 6-12 ton/hr
or tri chromatic detection bands)
configuration with LED, HID, or UV
lighting /Whole tubers, chips, French fries,
diced potato, wedged, and sliced
Compac/InVision 9000 Vision system/ washed red and white External defects (marks, stains, insect 3.5 ton/hr/lane

blemish

tubers)

damage, bruises, cuts, punctures), size,
weight, color, and shape

Taste Tech/T1 NIR diffuse reflectance, NIR Internal defects (hollow heart, black spot,
transmittance/whole tubers, and chips internal browning, sugar, and Zebra chips
concentration)
VISAR/VACS 20.0 Color imagery system/whole tubers Non uniform shapes, greening, surface

(adopted from carrot
grading system)

defects (rot, cracks, dark spots)

Herbert Engineering/DDS
1200S Auto sort

Three CCD color cameras/whole tubers

Shape, size, defects: greening, rot, spots,
cuts, skin discoloration.

Upto 6 ton/hr
(20-40 mm size)

Oculus/ 1300 and 2000

Infrared and digital cameras/whole tubers

Defects: bruises, greening, cracks, black
spots, Rhizoctonia, sliver scurf, rot, skin spot
and foreign materials

25 and 37 ton/hr

Odenberg/Titan I Infrared and digital cameras/whole tubers | Defects: bruises, greening, blemishes. Color, | 11-50 ton/hr
and size and foreign materials
Odenberg/Halo LED, CCD camera, and NIR Defects: bruises, greening, blemishes. Color, | 14-70 ton/hr
sensors/whole tubers (skin on or peeled) size and foreign materials
Odenberg/ Sentinel Color cameras and NIR sensors/whole Shape, size, surface discoloration, defects 30-50 ton/hr

tubers

and foreign materials

Best/ Genius Optical
sorter

Cameras (monochromatic, color), laser
(fluorescence, SWIR, or Detox) with LED,
UV or IR lighting / French fry, and chip

Detects defects based on color, shape,
structure, fluorescence and biological
characteristics

Best/POM/DYN size
analyzer

Color camera with LED illumination
source / French fry

Detect defects based on shape, size, and
color

Up to 60 Kg/hr

General components of electronic sorters are: feeding unit which is usually a movable

conveyor passing objects into the examining unit that contains the vision or optical system

located in a closed box, the separating unit which is responsible for classifying different objects

into the required classes, and the software that manages the sorting process. As objects move,

they are scanned, often multiple times. Based on the adjusted thresholds, a decision is taken to

discard foreign materials as well as samples that do not meet the set configurations. Finally,

rejected objects are separated from the desired samples using either pneumatic-based or electro-

mechanical fingers. Many of the sorting systems combine color cameras with spectroscopic

sensors with proper use of lighting source. These systems help detect external defects (greening,
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cuts, bruises, surface physiological disorders), misshapen tubers, foreign materials (clods, stones,
soil pieces, vines, etc.) as well as internal defects (hollow heart, black spot, brown spot, etc.).
Cameras are usually positioned at different locations around the moving belt, thus, when the
tubers fall or are projected in free air while passing detectors a complete visualization of each
object can be obtained. The combination of sensors yields a decision about the object status
whether to be rejected or accepted. Spectroscopic sensors used in raw potato tuber or processed
product sorting systems are either NIR or laser with a note that most defects of French fries and
chips are external. Laser light sources are known for their concentrated, purity, high intensity,
coherent, and narrow bandwidth. Laser (light amplification by simulated emission of radiation) is
also distinguished for its ability to detect extensively small concentrations of species in the
atmosphere. Consequently, many applications of laser were already in place in various medical,
communication, and industrial areas (Friedman and Miller, 2003; Skoog et al., 2007).
Agricultural applications of laser started in surveying and currently detection of defects in fresh
produce is possible using sorting systems that integrate laser with other spectroscopic and/or

image systems.

Although there has been success in manufacturing commercial sorting systems for potato
tubers and products, constituent-based sorting is still a moving research area. Processing potato
tubers for chipping or French frying requires continuous monitoring of sugars to assure high
quality final product. Consequently, sorting based on defects is not enough to maintain such

quality and a need for robust internal composition separation continues to increase.

2.4 Future Research

Monitoring processing-related constituents of potato tubers is an important task for

storage managers to accurately track concentration of such compounds and parameters. Although
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other accurate methods exists for measuring sugar content, i,e. HPLC or GC-MS, there is need
for a handheld device that can be calibrated for measuring chemical (glucose and sucrose), and
physical (dry matter, specific gravity) quality attributes. Recent research studies regarding the
use spectroscopic systems showed that such a device can work with whole tubers or sliced
samples, thus, it requires low preparation time and implements an integration time of less than
100 ms. Consequently, rapid measurement is feasible especially if the device is calibrated to
work with multiple cultivars and different shapes, and by using large data sets and appropriate
preprocessing techniques (Nicolai et al., 2007). The success of inventing a portable device would
also benefit potato growers to estimate the suitable time for harvest based on monitoring
different quality attributes, such as dry matter and sugar content, which are significantly affected

by the pre-harvest practices as well as storage conditions.

Based on information available in literature and in the market and industry, online sorting
of potatoes was mostly conducted based on eliminating foreign materials, misshapen, and defects
tubers. Sorting tubers with respect to chemical constituents, and more specifically sugars, is not
adequately studied. The importance of sorting tubers based on sugar content raises when potatoes
from different destinations and growing conditions are stored together. Negative consequences
occur, as mentioned in 2.1.2, with higher sugar concentrations when fried, thus requiring more
attention in eliminating tubers with unacceptable sugar content so that they can potentially be
reconditioned. Although constituent-based sorting has been used for several fruits if the target is
to obtain much sweeter packed samples, however resulting in higher packing costs; in the case of
potatoes, sorting based on sugar content is not only important for enhancing flavor and color

quality of fries products, but it also helps provide healthier food for consumers to avoid any
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subsequent problems due to acrylamide content. Thus, in the future, it may be feasible to see

bags of raw potatoes in the local market marked with a “sugar-based sorted” label.

Hyperspectral imaging (HI) is also an advancing technology that has already been applied
in remote sensing and precision agriculture and currently there is considerable research to apply
this technology in food quality assurance. There have been few studies on assessing quality
attributes of potatoes, and its fried products using HI as clarified in sections 2.1.2, 2.1.3, and
2.1.4. While this method still cannot compete with other traditional vision or spectroscopic
systems in speed, it has the advantages of combined spectroscopy and imaging techniques which
can work in sorting of internal or external defects as well as chemical composition.
Hyperspectral systems can, however, be used as a tool to estimate optimal spectral bands for
sorting based on specific criteria which can be applied in an on-line way using multispectral

systems that can provide appropriate speed for commercial use (Chen et al., 2002).

There are other nondestructive techniques having feasible potential for use in quality
assurance of potatoes. Magnetic resonance imaging (MRI) depends on the response of some
nuclei, especially hydrogen in the case of agricultural crops, to an applied pulse of
radiofrequency (RF). Images created by MRI can provide effective detection for defects resulting
from watercore, bruising, or core breakdown (Abbott, 1999). Thus, MRI has been successfully
applied for defect detection in apple and peaches (Barreiro et al., 1998), tomato (Milczarek et al.,
2009), and pears (Hernandez-Sanchez et al.,, 2007). X-ray computed tomography (CT),
commonly used in medical applications, apply the traditional x-ray technique but over several
non-parallel paths through the objects and yields a 3D projection that results in slices of such
projection (Abbott, 1999). X-ray CT was used for assessing tomato maturity (Brecht et al.,

1991), defects in chestnuts (Donis-Gonzélez et al., 2012); and several agricultural commodities

37



(Donis-Gonzalez et al., 2014) which gives a possible chance for external and internal defect
detection in potatoes. Moreover, the application of x-ray CT imaging in French fries, and chips
microstructure is feasible as the same technique was successfully applied on studying the woolly
breakdown in nectarines (Sonego et al., 1995). Despite the relatively higher cost for establishing
sorting systems based on NMR or x-ray CT systems, compared to spectroscopic and other vision
systems, building small scale systems for grading, sorting, and quality assurance can possibly be
achievable. Such possibility is due to the proven efficacy for NMR or x-ray CT systems in

quality evaluation for fruits and vegetables.

2.5 Summary

Demand for processed and fast food has been showing significant increase in both
developed and developing countries over the last three decades. Potato is a major crop in the
food industry with various consumption forms compared with grain crops, fruits and vegetables.
Potato, as other perishable commodities, is always susceptible to external and or internal damage
during pre-harvest, harvesting, handling, and storage operations. Non-destructive, and/or rapid
techniques of detecting defects and monitoring quality for raw tubers and processed potato
products were studied first using machine vision systems with x-ray and later using

spectroscopic systems.

With the advancement in vision and electronic hardware accuracy, resolution, robustness,
reproducibility, and the tremendous jump in computing speed in the last decade, it has been
possible to build commercial sorting systems efficient enough to eliminate external defects
(physiological and mechanical) and sort tubers based on size and shape so clods, stones, and

remaining vines are discarded and different tuber grades could be obtained.
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The commercial use of spectroscopic systems either individually or integrated with vision
systems resulted in the ability to detect and eliminate internally damaged tubers in different
conditions (peeled or with skin on) which is a very important factor in assuring the quality of
chips and French fries. Monitoring potato tubers for processing (chip or French fry) after harvest
is crucial to allow for recovering from the increase of sugars and assure the suitability for
processing by storing at appropriate temperatures. The future of sorting tubers based on internal
chemical composition is growing in research and possible commercial systems might be
available with the advancement on spectroscopic hardware (light sources, spectrophotometers)
and pattern recognition methods (SIMA or soft independent modeling of class analogy, K-
nearest neighbor or Knn, artificial neural network or ANN, support vector machines or SVM,
decision trees) and finally with the appropriate arrangement of samples, light sources, detectors.
Unlike other agricultural commodities (apple, pear, cucumber, etc.), the quite broad variation of
shapes, sizes, and diverse uses of potato tubers, presents challenges for rapid and/or non-
destructive technology application at points right after harvesting, handling, storage, or even
after processing operations. The huge economic value associated with the potato industry
obligates more research to develop cost effective, yet highly accurate, monitoring systems based
on the current or future technologies to enhance food quality, safety, and human nutrition

attributes.
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CHAPTER 3 THE POTENTIAL USE OF VISIBLE/NEAR INFRARED
SPECTROSCOPY AND HYPERSPECTRAL IMAGING TO PROCESSING-RELATED
CONSTITUENTS OF POTATO TUBERS

(Rady, A.M., Guyer, D.E., Kirk, W., Donis-Gonzélez, I.R. 2014. The potential use of visible/near
infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of
potatoes. Journal of Food Engineering, Vol. 135: 11-25)

3.1 Introduction

In processing, tubers require a consistent internal composition that is maintained and
achieved by monitoring important internal or external constituents that are strongly related,
directly or indirectly, with product quality. For processing applications, dry matter which
accounts for 18 to 26% of the tuber weight has an effect on frying process efficiency, product
yield and oil absorption (Burton, 1989). Specific gravity is one of the most important physical
properties of potato tubers and is strongly associated with dry matter content, which in turn is
correlated with the yield of processed products, e.g. French Fries, chips, and dehydrated products
(Kadam, 1991). Glucose is responsible for the undesirable browning color that follows the frying
process and it dramatically affects the marketability of chips and other fried potato products.
Such color is a result of the Maillard reaction which includes the interaction between an amino
acid (asparagine) and the reducing sugars, glucose and fructose, (Mottram and Wedzicha, 2002).
Moreover, acrylamide, discovered by the Swedish National Food Authority in 2002, (Zyzak et
al., 2003; Stadler et al., 2002; Mottram and Wedzicha, 2002) is also formed during the frying
process. The acrylamide single unit (monomer) is toxic to the nervous system, a carcinogen in
laboratory animals and a possible carcinogen in humans. Consequently, monitoring glucose
levels during storage is important to provide healthy, and high quality French fries, and chips.
Sucrose level in potato tubers dedicated for processing is critical as it causes the unacceptable
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sweetening flavor. The high level of sucrose is more likely to happen after the storage period,
though this increase is cultivar-dependent. Soluble solids content is an important factor of the
level of dissolved sugar in samples which indicates the ability of tubers to go to processing for
chipping or French fry products. Although measuring this factor is relatively easy to perform

using a refractometer, it is still an invasive method.

Primordial leaf count is an indication of the ability of tubers to grow and yield sprouts
which is an important factor affecting the total crop yield. The leaf count is also an indication of
the physiological status of a potato tuber which is important to monitor for seed potatoes (Kirk et
al., 1985). The number of sprouts per seed tuber is determined by the size of tubers as well as the
storage conditions (Allen et al., 1992). No significant work in the area of non-destructive

evaluation of leaf count for potato tubers was found in the literature.

The importance of each of these constituents to food products, combined with the desire
for highly correlated automated measurements, suggests the need for developing a rapid yet
accurate, and possibly non-invasive, system that can be used as a trusted technique to monitor

and help detect the postharvest properties of potato tubers.

Near infrared (NIR) spectroscopy has been known as a fast and non-destructive method
to evaluate the internal and external quality factors for food products (Dufour, 2009; McClure,
2007; Shenk et al., 2001; Barton and Kays, 2001). Sukwon, et al. (2003), used NIR technology to
develop a calibration model by which both percentage of dry matter and specific gravity of
potato tubers can be calculated. The coefficient of determination of the specific gravity model
was 0.87 with a correlation coefficient of 0.85; for dry matter percentage, the correlation
coefficient was 0.82. Subedi, and Walsh (2009), demonstrated the advantage of using short-

wavelength near-infrared spectroscopy (over the wavelength region 750-950 nm) to measure the
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dry matter concentration of potato tubers; the correlation coefficient for the whole tubers was
0.85, the value increased to 0.95 for sliced tubers. NIR technology was also used for potatoes by
Jeong et al. (2008), to estimate the sprouting capacity of tubers. Using the modified partial least
square method (MPLS), the values of R ranged from 0.87 to 0.97 for the calibration models, and
the values were 0.72 to 0.90 for the validation models. Hartmann, and Buning-Pfaue (1998),
studied the use of NIR spectroscopy in measuring some constituents of peeled potato tubers. The
diffuse reflectance mode was used in the wavelength range of 1100-2500 nm. Dry matter, starch,
fructose, glucose, and sucrose were all measured using standard methods and the MPLS
regression was used to build the models. The validation model had standard errors of 0.041%,
0.028%, and 0.037% with R? values of 0.70, 0.89, and 0.62 for glucose, fructose, and sucrose

respectively.

Hyperspectral imaging systems (HIS) have been used in agriculture for two decades. HIS
have several advantages, for example: (1) images the scene in hundreds of co-registered bands,
(2) spectral resolution 10 X the order of multi spectral images (MSI), and (3) HIS have spectral
bands that are contiguous and regularly spaced leading to continuous spectrum measured for
each pixel (Kerekes and Schott, 2007). In addition, ElI Masry and Sun (2010), noted that HIS
require minimal sample preparation; including non-destructive nature, and fast acquisition times
with the capability of visualizing the spatial distribution of desirable constituents. HIS were
studied in the area of defect detection and sorting operations as well as estimation of internal
constituents in food materials (Molto et al., 2010; El Masry and Sun, 2010; Chao, 2010;
Menesatti et al., 2010; Wang and EI Marsy, 2010). Jun Qiao et al. (2005), studied the application
of the hyperspectral imaging technique to estimate both the water content and the weight of

potato tubers. The system was used to extract morphological features and spectral responses on
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water content in tubers simultaneously. The wavelength range of 934-997 nm was found to be
sensitive to the absorption band for predicting the water content in potato tubers. Results showed
that the coefficient of correlation between the predicted and actual values of water content was
0.93 and 0.77 for training and validation, respectively. Lu and Peng (2006), used a hyperspectral
imaging system to study hyperspectral scattering to estimate peach firmness; the Lorentzian
distribution function was used to model the scattering profile, then multi-linear regression
(MLR) along with cross-validation were used to build the calibration model which was then

applied to a different validation set of data with coefficient of determination (R?) of 0.67 to 0.77.

This research studies the objective of determining the potential of using VIS/NIR
spectroscopy and hyperspectral imaging systems to estimate constituents in potato tubers that are

important to the processing and seed industries.

3.2 Materials and Methods
3.2.1 Sample Collection, Handling, and Treatments

Two common cultivars of potatoes were used in the experiments; Frito Lay 1879 (FL)
which is used in the chipping or crisping industry, and Russet Norkotah (RN), which is usually
used as table-stock or ware for baking and boiling. The samples were obtained from commercial
production fields in Southwest Michigan, USA. During September, 2008, there were two vine
killing dates followed by two respective harvesting times for each cultivar, early and late, in an
effort to obtain an extensive range of physiological characteristics. Tubers were cleaned and
defective samples discarded, then all samples were stored at 7 °C for 3-4 weeks for initial curing
and the first sampling was conducted at the end of this period. The samples were then stored in

three temperatures; 7, 10, and 15 °C. Tubers were sampled after 20, 80, and 130 days of storage
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to additionally aid in developing a strong and broad sample set. The experimental design and

approach is depicted in Fig. 3.1

Commercial Field, Southwest Michigan
200 samples for each cultivar
- Frito Lay 1879, and n=400
- Russet Norkotah
Two harvesting dates: early, and late
|
Storage at 7 °C for 3-4 weeks Measurement at 0 days
n=40
Storage at 7°C Storage at 10°C n= 360 Storage at 15°C
n=120 -
n=120 n=120
n= 40 n=40 n=40
Measurement, Measurement, Measurement,
after 20 davs after 80 days after 130 days
=10/culti
n=10/cultivar Early harvest Late harvest n=10/cultivar
Whole tuber electronic measurements:
- Interactance
- Hyperspectral
Primordial leaf count sampling
Soluble solids
Slicing
Primordial leaf count
Sliced samples electronic measurements:
Glucose
- Interactance
- Hyperspectral
- Transmittance Sucrose
Specific gravity

Wet chemistry experiments/ leaf count

Figure 3.1. Flow chart of the experimental design to assess physiological status of potato tubers using visible/near
infrared spectroscopy and hyperspectral imaging for Frito Lay 1879 and Russet Norkotah cultivars.
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3.2.2 Electronic Measurement

3.2.2.1 Sample preparation

Either one or two types of samples were utilized for the rapid measurements of NIR
transmittance, visible/NIR interactance, and visible/NIR hyperspectral reflectance. First, whole
tubers, in which the sample was placed such that the light was directed to the middle area of the
tuber, and the second type of sample comprised a 12.7 mm tuber slice obtained by cutting the
tuber three times perpendicular to the longitudinal axis, starting from the stem end of the tuber.
The measured slice was the third slice in the cutting routine and both sides of the slice were
tested. Both the whole tuber and the sliced samples were used in the case of visible/NIR
interactance and visible/NIR hyperspectral scattering modes, however, just the sliced samples

were used in case of the NIR transmittance mode.

3.2.2.2 VIS/NIR interactance mode

In the interactance mode, light photons illuminated the sample by a probe with a
concentric outer ring of illumination and an inner receptor (Fig. 3.2). In this case, the overall
probe was in contact with the sample surface, and a foam-sealing ring separated the ring of light
and the detector, so only the light interacting within the sample was measured. The system used
for interaction experiments contained an Ocean Optics fiber optic spectrometer (model No. USB
4000, Ocean Optics, Inc., Dunedin, FL, USA) with an optical resolution of 0.3 nm (FWHM), and
with a 200 um diameter fiber optic, Oriel radiometric power supply with a maximum power of
250 watt (model N0.68931, Oriel Inst., Irvine, CA, USA), and Oriel light source (model No.
66881, Oriel Inst., Irvine, CA, USA) with the same maximum power and the wavelength
measurement range between 446 to 1125 nm, covering both visible and NIR fields. With this

configuration, the incident light represented a circle with a diameter of 24.7 mm. The
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interactance experiment was conducted on both sliced and whole samples. The interactance for

each sample was normalized using Teflon® as a reference material, and the relative interactance
was calculated using equation 3.1 as follows:

intensity of sample interactance — intensity of background interactance (3 1)
intensity of reference interactance — intensity of background interactance '

Relative Interactance =

a Light source Radiometric power
supply

Incident Q
light S
l /

Spectrometer

Foam ring

?

Incident light

: Detector (center)
Foam ring

Incident light

Detected light

Figure 3.2, a. Schematic representation of VIS/NIR interactance mode used to predict constituents for two potato
cultivars, b. Light path representation, c. End view of probe.
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3.2.2.3 VIS/NIR hyperspectral mode

The hyperspectral system in this project was used to capture diffuse scattered light from
both the whole and sliced samples in the range of 400 to 1000 nm, thus covering visible and near
NIR bands. The system used to study the samples under hyperspectral reflectance mode
contained a Hamamatsu dual mode cooled CCD camera (model No.C4880, Hamamatsu
Photonics, Hamamatsu, Japan) along with an Oriel power supply (model N0.69931, Oriel Inst.,
Irvine, CA, USA), an Oriel digital exposure controller (timer) (model No0.68945, Oriel Inst.,
Irvine, CA, USA), Agilent DC power supply (model No.65423A, Agilent Tech., Santa Clara,
CA, USA), and Oriel light source (model No. 66881, Oriel Inst., Irvine, CA, USA) that
contained a quartz tungsten halogen lamp. (Fig. 3.3a). The imaging spectrograph acquired
spectral information by working in the point scan mode where the columinated light was
dispersed from the sample into different wavelengths by a prism-grating-prism configuration
while keeping spatial information at the same time. The CCD camera detected the dispersed light
signals and created a 2-D image, 256 X 256 pixels, with the horizontal axis representing the
spatial values and the wavelength values were recorded on the vertical axis. The sample holder
was moved with a motor controlled stage and allowed consistent height between sample and
detector/light source and for multiple scanning points for each sample. The distance between two
successive scans was adjusted at 1 mm, and a total number of 10 images (scans) were acquired
for each sample. Thus a set of images was a data-cube, representing spectral information of a 9
mm longitudinal distance along the sample. The scattering behavior of light in a sample was
shown in Fig. 3.3b. Light radiation penetrated the sample surface and scattered outward through
the tissue, and the diffuse reflected light was captured by the CCD camera and spectrograph as a

line scan. The scanning line was 1.5 mm apart from the incidence center. Fig. 3.4, a. shows a
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sample of the 2-D image resulting from one scan of the sample, and fig. 3.4 b, and ¢ show

examples of spectral profiles from different spatial locations and at different wavelengths.

PC

CCD camera head

Imaging

Optic

spectrograph
fiber
Focusing Lamp
Zooming housin
lenses lens 9
incident
light
Diffuse :
captured light
D
f=2]
5]
w
o
8
=
>
Sample

Horizontal stage

Incident

To CCD camera light

Incident focused light area (1.5 mm dia.) ~ Scattering area

"""""" Scanning line 1.5 mm
4 \ off incident center

0.5” /\ < g”\
PR

Figure 3.3, a. Schematic representation of VIS/NIR hyperspectral reflectance mode used to predict constituents for
two potato cultivars, b. Light scattering in sample and scanning configuration.
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Figure 3.4, a. Hyperspectral scattering image, with different colors representing light intensity of a potato slice, b.
Spectral profiles from different spatial locations represented by different colors, c. Spectral profiles from different
wavelengths represented by different colors.
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3.2.2.4 NIR transmittance mode

In the transmittance mode, the incident light vertically penetrates the sample surface and
a portion of the incident light passes through the sample tissue to the other side with information
about the internal composition of tubers (Chen, 1978). Both the light source probe tip and the

detector tip were approximately 3 cm from the sample lower and upper surfaces respectively.

An InGaAs spectrometer (model No. NIR512L-1.7T1, Control Development, Inc., South
Bend, IN, USA) with spectral resolution of 3.25 nm FWHM and linear dispersion of 1.625
nm/pixel was used in the transmittance mode along with an Oriel radiometric power supply with
a 300 watt maximum power (model No0.68931, Oriel Inst., Irvine, CA, USA), and an Oriel light
source (model No. 66881, Oriel Inst., Irvine, CA, USA) that has 250 watt maximum power, and
with a quartz tungsten halogen lamp. Only the sliced samples, with 0.5°" (12.7 mm) thickness
each, were used in the transmittance experiments with the sample area covered by the detector
having a diameter of 1°" (25.4 mm). The calculation of the relative transmittance was done over
the NIR wavelength range between 900-1685 nm in the same way as in the calculation of relative
interactance. A schematic diagram of the transmittance system used in the experiment was

represented in Fig. 3.5.
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Figure 3.5, a. Schematic representation of NIR transmittance mode configuration and system components, b. Light
path representation with scattering in the sample and the detected transmitting light.

3.2.3 Constituent (Reference) Measurement
3.2.3.1 Measurement of glucose and sucrose
3.2.3.1.1 Extraction of juice

The objective of this destructive process was to provide a validation/reference for the
amount of sucrose and glucose in the tuber or piece of tuber that was subjected to the electronic
measurements. The standard method used to estimate glucose and sucrose is the enzymatic
method, using glucose oxidase and paraoxidase enzymes. Directly after conducting the electronic
measurements for each whole tuber, and then for the sliced sample, the sample was put in a
labeled plastic bag, and stored in a foam box containing ice to maintain the tubers in a fresh state
and minimize any chemical changes during the performing of the electronic measurements for
the additional samples. Each tuber was then put in a Juicerator 6001, 500 watt (ACME Supreme,

New Hartford, CT., USA) to extract the juice from the tuber by centrifugal force at 3600 RPM
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and using a paper filter that was placed around the inner surface of the Juicerator. The juice was
transferred with a pipette to a polystyrene tube with cap and then stored at -20 °C to reduce any

variation of constituents and allow subsequent use and analysis of the juice at a later time.

3.2.3.1.2 Chemical estimation of glucose and sucrose

Using the Megazyme sucrose/D-glucose assay procedure (Megazyme International
Ireland Ltd, Wicklow, Ireland), the ratio of each of glucose and sucrose, gram per 100 gram fresh
tuber weight, was measured. Tubes containing frozen juice sample were thawed at 18 °C. As the
concentration of both glucose and sucrose for RN was higher than for FL, 100 pL of juice was
transferred to each of four glass test tubes from the FL samples, whereas for RN, the 100 pL
volume consisted of 10 pL juice diluted by 90 uL of distilled water. To estimate the glucose
ratio, 100 pL of sodium acetate buffer, 2M, was added to two tubes, and to estimate sucrose ratio
100 uL of B-fructosidase (invertase) diluted by sodium acetate buffer was added to the other two
tubes. The tubes were incubated in a water bath set at 50 °C for 20 minutes, then 1500 pL of
glucose determination reagent (GOPOD reagent) was added and the samples were incubated
under the same conditions in the water bath for 20 minutes. The content of each tube was
transferred to a 96 well (200 pL) ELISA plate and the absorbance of the solution was measured
at 510 nm in a spectrophotometer against both the blank sample of 100 uL distilled water which
was prepared using the same procedure and the control sample of 50 uL of D-glucose standard +
50 uL distilled water. The D-glucose, or dextrose, and sucrose concentrations were then

calculated using equation 3.2 and 3.3 respectively:

D-glucose (g/g fresh weight) = AA x F x 0.005 x 1/10 (3.2)

Sucrose (g/g fresh weight) = (AB-AA) x F x Dilution x 0.0095 x 1/10 (3.3)
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Where:
AA: represents the GOPOD absorbance for D-glucose
AB: represents the GOPOD absorbance for sucrose

F: is a factor used to convert from absorbance to pg for 100 pg of D-glucose (100/absorbance

for 100 pg D-glucose); and

Dilution: 1 in case of Frito Lay 1879 and 10 in case of Russet Norkotah

0.1: Unit conversion factor to convert from g/L into g/100g or % fresh weight
3.2.3.2 Measurement of soluble solids

The soluble solid content is the concentration of the solid particles in a solution and it
usually refers to the sugar concentration but without expressing the sugar type, Thus, one can’t
depend only on the soluble solids as an indication of sugar concentration though the advantage of
rapid assessment of such constituent exists using modern digital refractometers with the Brix
unit. Soluble solids concentration was measured using a Palette digital refractometer (model No.
PR-101, ATAGO Co. LTD, Bellevue, Washington, USA) by dripping juice on the device prism

and reading the displayed Brix units.
3.2.3.3 Measurement of specific gravity

The specific gravity was indirectly measured using the relationship with the dry matter

mentioned by Kellock (1995). Such relationship is as follows:

SG=0.0053 * DM+0.960574 (3.4)
Where:
SG: is the specific gravity, g/cm®; and
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DM: is the percentage dry matter (dry matter weight divided by the total tuber weight X 100)

After juicing, the filter-collected solids from the samples were placed inside a drying
oven at 100 °C for 24 hours and weighed to calculate dry matter (DM) and the SG was calculated

using equation 3.4.

3.2.3.4 Measurement of primordial leaf count

The number of leaf primordia within the developing sprouts gives an indirect
measurement of tuber maturity or physiological age (Kirk et al., 1985). Counts of leaf primordia
were conducted by taking samples of eyes from each tuber (n=3) before juicing the tuber for
future estimation of glucose and sucrose. The samples were chosen from the apical end of the
tuber. Briefly, the sprouts were stored in 5 ml Eppindorf tubes in an ethanol:acetone solution
(1:1) until used. Sprouts were mounted on slides and examined at 10x magnification under a
dissecting Olympus microscope (model No. ZT40, Olympus Corp., Tokyo, Japan). Leaf initials
were removed sequentially from the outside to inside of the sprout using a scalpel until the apical
dome was exposed. Leaf primordium counts were obtained for the three eyes and then the

average was taken and considered the primordial leaf count per tuber.

3.2.4 Partial Least Squares Regression (PLSR)

Partial least squares regression (PLSR), also called projection to latent structures by
means of partial least squares, is a powerful linear regression method that is insensitive to

collinear variables and tolerant to large numbers of variables (Varmuza and Filzmoser, 2009).
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3.2.4.1 Pretreatment of the spectra data

When the signals are acquired from a set of samples it may be necessary to pretreat data
before building the calibration model (Christy and Kvalhiem, 2007). This is because the original
data sometimes contains unwanted spectral variation and baseline shifts that may be a result of
light scattering from samples, the poor reproducibility of NIR spectra due to path length
variation, variation of the sample conditions (temperature, particles’ sizes), and various noise
resulting from detector, A/D convertor, and other electric components in the system.
Preprocessing methods depend either on abstractly mathematical concepts, or previous
knowledge of the chemical-physical background of the data and the discussed problem

(Varmuza and Filzmoser, 2009).

The sequence of processing was in two stages for the spectra data. The first stage was a
primary processing method that may be in addition to the option of non-preprocessing. This
stage included absolute value, autoscaling, baseline, weighted baseline, smoothing with first
derivative, smoothing with second derivative, normalization, generalized least squares
weighting, standard normal deviate (SNV) correction, multiplicative signal correction (MSC),
group scale, and median center. The second stage of preprocessing, that treats the first stage
treated data, is the one included in the PLSR algorithm that is conducted by Eigenvector
(Eigenvector Research, Inc. WA, USA) using the platform of Matlab® software (version
7.5.0.342, MathWorks, Natick, MA, USA) and that is either the mean center method,
multiplicative scattering correction (msc), or orthogonal signal correction (osc) (Wise et al.,
2006). A flow chart of the preprocessing steps conducted for the spectra data was shown in Fig.

3.6a.
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3.2.4.2 Pretreatment of the reference data

Transformation of the reference data (the dependent variable in the regression model)
was conducted with the aim to get the constituents’ distribution as uniform as possible. Such
transformation includes the log and power transformation, with 2.0 as the exponent, in addition
to using the non-transformed data to study the effect of constituents’ values transformation. The

preprocessing steps for reference data were clarified in Fig. 3.6b.

Calibration and validation sets of data were formed such that the calibration set contained 75%
of the data and the validation set contained 25% of the data. The cross validation technique
(leave-one-out) was used to get the best calibration model based on the minimum mean square of
error for calibration for cross validation (RMSECcv) and the calibration model was subsequently

applied to the validation or prediction set.

The results presented later are the best from the different preprocessing methods based on
the correlation coefficient (R), root mean square error of prediction for validation set (RMSEP),
and the RPD value (the standard deviation of the reference data divided by the RMSEP). In
general, root mean square error, either for calibration or validation, is calculated using the

following equation:

RMSE = [wrz (3.5)
Where:

N: number of samples

Y;: actual value of reference (constituent) for sample i ; and

Y;: predicted value of reference (constituent) for sample i
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Also, coefficient of correlation (R) is calculated using equation 3.6 as follows:

R= — 20— 5)
JZ%\L1(Xi_)_()2\/ZiI\I=1(Yi—?)2

Where:
X;: Relative intensity value for sample i

X : Average of relative intensities for data set; and

Y : Average of reference values for data set
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a Spectra matrix b Reference matrix

Xin Yin

First stage preprocessing: Reference preprocessing
Xouﬂ: f(Xln) Youtzz(Yin)
f() refers to: @( ) refers to:

Non preprocessing, fo( ) e Non preprocessing, @ 0()
Absolute value, f;() e Log transformation (base 10), @;()

Autoscaling, fa() e Power transformation (power = 2), @,()
Baseline, f3()

Weighted baseline, f4()

Smoothing with first derivative, fs()
Smoothing with second derivative, fs()
Normalization, f;()

Generalized least squares weighting, fs()
Standard normal deviate (SNV) correction, fq()
Multiplicative signal correction (MSC), fio()
Group scale, fj;() and

Median center, f15()

/ Second stage preprocessing:

Koutz = g(xouu)

g() refers to:

e Mean center, gi()
e orthogonal signal correction (osc), gs()

\_ v

Figure 3.6. Flow chart of preprocessing methods used to pretreat spectra, a, and reference, b, data before building
calibration and then prediction models using PLSR with cross validation to predict constituents for two potato
cultivars.
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3.3 Results

3.3.1 Constituents’ Distributions

The results of reference analysis, after discarding the logical outliers for each constituent
that are located outside the expected range, based on literature (Storey, and Davis, 1992), are
shown in Fig. 3.7a to 3.7e (n=200/cultivar). Some figures also show statistical outliers such as:
glucose, sucrose, and primordial leaf count. Following the fact that RN has higher sugars levels
(glucose, and sucrose) than FL 1879, it’s clear from Fig. 3.7. a, and b the difference between the
two cultivars in these sugars. However, for specific gravity, primordial leaf count, and soluble

solids there was no significant difference between the two cultivars.

3.3.2 Spectra for Different Modes

3.3.2.1 Interactance mode

The mean signals acquired from interactance mode, for sliced samples in the case of
glucose and sucrose in two ranges for both cultivars, were shown in Fig. 3.8a-d. The thresholds
were chosen as the median value. For FL, the thresholds for glucose, and sucrose were 0.02%,
and 0.05 % respectively, whereas those values for RN were 0.2%, and 0.07% respectively. For
FL, there was no clear difference between the mean spectra in both glucose and sucrose.
However, the difference was more evident in the case of RN for both sugars which is a result of
the higher levels of sugars in the case of RN compared with FL. The same trend of mean spectra
was found for whole tubers (Fig. 3.9) although there was a slight difference for FL in the case of

glucose compared with sliced samples.
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Figure 3.8. Mean relative interactance for two sugar groupings for sliced samples, a. Frito Lay 1879: glucose, b.

Russet Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.
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Figure 3.9. Mean relative interactance for two sugar groupings for whole tubers, a. Frito Lay 1879: glucose, b.
Russet Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.
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3.3.2.2 Hyperspectral imaging mode

The mean reflectance spectra for the hyperspectral data were collected for sliced and
whole samples for both cultivars. To extract the mean reflectance for each image, all
wavelengths in the range 400 to 1000 nm were used. The spectra were normalized by the
Teflon® reference average reflectance spectra. The mean reflectance spectra for two ranges for
glucose for both cultivars in the case of sliced samples were shown in Fig. 3.10a, and b. Both
cultivars had an absorption band at 837 nm which is likely related to the hydrocarbon group C-H,
aliphatic with another one at 880 which is possibly due to aromatic associated C-H group
(Workman and Weyer, 2008). Moreover, difference between the two sugar classes is higher in
RN than FL for glucose. For sucrose, the same absorption band was yielded while the difference
between two classes in the case of FL is higher than RN. In the case of whole tubers, no
significance difference between the two sugar groups was found except in the case of sucrose for
FL (Fig. 3.11). In general, the mean relative reflectance overall is less for the whole tubers than
for the sliced samples for both cultivars with the note that the skin effect is more obvious for RN

than FL in the case of whole tubers due to the thicker skin for RN compared with FL.
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Figure 3.10. Mean relative reflectance for two sugar groupings for sliced samples, a. Frito Lay 1879: glucose, b.
Russet Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.
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Figure 3.11. Mean relative reflectance for two groupings for whole tubers, a. Frito Lay 1879: glucose, b. Russet
Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.
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3.3.2.3 Transmittance mode

The mean relative transmittance signals acquired from both cultivars for sliced samples is
shown in Fig. 3.12 for the wavelength range of 900 to 1685 nm, for two ranges of glucose and
sucrose as explained in section 3.3.2.1. There are peaks at 1200 nm and 1430 nm, in all cases
that are suspected as systematic error from instrumentation because of their consistency and
repeatability. Slight differences were observed between the mean spectra of the different ranges
for the glucose and sucrose for FL, whereas, the difference is more visible for RN, and again the

possible reason for this is the higher levels of sugars for RN.

The spectral plots for each electronic mode helped to interpret the performance of
prediction models yielded from PLSR based on the idea that if the optical mode is capable of
acquiring different values of chemical constituents in differentiating between samples (the
difference between the two classes of curves), there will be more likelihood to obtain high

prediction models. Other constituents’ plots (not shown) resulted in similar findings.
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Figure 3.12. Relative transmittance for two sugar groupings for sliced samples, a. Frito Lay 1879: glucose, b. Russet
Norkotah: glucose, c. Frito Lay 1879: sucrose, and d. Russet Norkotah: sucrose.
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3.3.3 Partial Least Squares (PLSR) Results

3.3.3.1 Results for interactance mode

The responses for the interactance mode for sliced samples for each potato constituent are
shown, with the best preprocessing sequence for spectra and for the reference data, in Table 3.1.
The leaf primordial count prediction model for FL yielded R and RPD values of 0.95 and 3.29
respectively. The same model values for RN were 0.90 and 2.19 respectively. The glucose
prediction model also had strong correlation for RN with R and RPD values of 0.95 and 3.12 and
FL glucose values of 0.90 and 2.14 respectively. The sucrose prediction models were somewhat
weaker than glucose for FL with correlations of R and RPD of 0.81 and 1.63 in contrast to RN
for such which were much lower at 0.50 and 1.13 respectively. The other two constituents,
specific gravity and soluble solids, did not yield as encouraging correlations as did the other

three constituents.

In most constituents, correlation for whole tubers was less than that for sliced samples for
interactance mode. For glucose, R and RPD values for FL of 0.88 and 1.78 respectively and 0.79,
and 1.60 for RN (Table 3.2). Correlation for leaf count was found to be less than that for sliced
samples for FL with values for R and RPD of 0.89 and 2.22 and 0.77 and 1.50 for RN
respectively. Sucrose prediction for FL was somewhat stronger than for sliced samples with
correlation metrics R and RPD values of 0.81 and 1.64 in contrast to RN that yielded weaker
performance than sliced samples. Specific gravity prediction models for both cultivars showed
less correlation than leaf count and glucose with best results obtained for sliced samples with R
and RPD values of 0.37 and 1.06 for FL and 0.51 and 1.08 for RN. Other constituents showed

poorer correlation which was the same trend as with sliced samples.
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Table 3.1. PLSR results for predicting some potato constituents using VIS/NIR interactance (sliced samples) for
Frito Lay 1879 and Russet Norkotah cultivars.

CUMtiVarcomituent Preprocessing ® Calibration Prediction
Recal RMSECcy LVs Rored RMSEP RPD

FlgL As B1; C; 0.93 0.0553 10 0.90 0.0515 2.14
FL.c Ao, Bi; Cy 0.96 0.1979 13 0.95 0.2212 3.29
Flsc A12,B1;,Co 0.68 0.0099 12 0.61 0.0119 1.27
FLss As, B1; Co 0.67 0.4378 10 0.55 0.4006 1.18
FLsy As, By; Co 0.86 0.0490 10 0.81 0.0439 1.63
RNgL A, B; C; 0.96 0.0858 15 0.95 0.0786 3.12
RN, c A, Byi; C, 0.94 0.1625 13 0.90 0.1632 2.19
RNsg Ao, Bs; Co 0.73 0.0090 10 0.54 0.0083 1.15
RNss Aug, Bs; Co 0.37 0.3970 4 0.37 0.3191 1.08
RNsu A7, Bs; Cy 0.79 0.9792 2 0.50 1.0273 1.13

a

A First stage spectra preprocessing. B,: Second stage spectra preprocessing.

Ao: No preprocessing. B1: Mean center.

Aq: Absolute value. B,: Orthogonal signal correction.

A, Autoscaling. Cy: Reference data preprocessing.

Ag: Baseline. Co: No reference transformation.

A4 Weighted baseline. C1: Log reference transformation.

As: 1% derivative. C,: Power reference transformation.

As: 2™ derivative.

Az Normalization.

As: Generalized least square weighting.

Aq: Standard normal variate (SNV).

Aqo: Multiplicative signal correction (MSC).
Ayi: Group scale.

As2: Median center.

Table 3.2. PLSR results for predicting some potato constituents using VIS/NIR interactance (whole tubers) for Frito
Lay 1879 and Russet Norkotah cultivars.

CUltiVar consitent Preprocessing * Calibration Prediction

u Real RMSECcy LVs Rpred RMSEP RPD
FleL A4, B1; C; 0.96 0.0636 12 0.88 0.0620 1.78
FL.c As, By Cy 0.99 0.3055 18 0.89 0.3285 2.22
FlLsc Ao,B1;Co 0.45 0.0109 6 0.37 0.0143 1.06
Flss Auo, Bi; Co 0.19 0.4812 1 0.04 0.4834 0.98
FLsy A, Bi; Co 0.89 0.0501 6 0.81 0.0436 1.64
RN Ay, B1; C; 0.88 0.1410 10 0.79 0.1529 1.60
RN c A4, Bi; Co 0.91 0.4183 18 0.77 0.3560 1.50
RNsc A, Bi; Co 0.72 0.0105 11 0.51 0.0089 1.08
RNss Ao, Bs; Co 0.46 0.4146 6 0.25 0.3431 1.01
RNsy Ay, B1; Co 0.71 0.1642 11 0.26 0.2051 0.97

# See table 3.1 footnote.
3.3.3.2 Results for hyperspectral reflectance mode

The results of PLSR for hyperspectral reflectance for sliced samples showed strong
correlation only for FL in the case of leaf count with R and RPD values of 0.94 and 2.92
respectively (Table 3.3). However, RN showed less correlation than interactance mode with R
and RPD values of 0.70 and 1.41. Both cultivars showed less correlation for glucose prediction

model with R and RPD values of 0.64 and 1.25 respectively for FL, and 0.74 and 1.49 for RN.
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PLSR model results for hyperspectral reflectance for the whole tubers demonstrated
significant lower correlation than the sliced samples for leaf count for both cultivars with R and
RPD values of 0.47 and 1.14 respectively for FL and 0.43 and 1.10 respectively for RN (Table
3.4). The glucose model for RN also demonstrated low correlation with R, and RPD values of:
0.38 and 0.93 respectively, and 0.52 and 1.19 for FL. Sucrose, specific gravity and soluble solid

content prediction models also showed weak correlations.

Table 3.3. PLSR results for predicting some potato constituents using VIS/NIR hyperspectral imaging (sliced
samples) for Frito Lay 1879 and Russet Norkotah cultivars.

Cultivarcosien Preprocessing ® Calibration Prediction

Real RMSECcy LVs Rpred RMSEP RPD
FloL A, Bi; C; 0.87 0.1024 6 0.64 0.0880 1.25
FL.c Ay, Bi; Cy 0.96 0.3256 4 0.94 0.2492 2.92
FlLsc Ay, B1; Co 0.27 0.0112 2 0.26 0.0146 1.04
FLss As, B1; Co 0.36 0.4702 4 0.14 0.4804 0.99
FLsy As, By; Co 0.78 0.0636 12 0.62 0.0580 1.23
RNgL Ay, By C, 0.78 0.1557 4 0.74 0.1643 149
RN c As, Bs; C, 0.77 0.2956 2 0.70 0.2540 141
RNsc Ao, B1; Co 0.45 0.0107 4 0.26 0.0097 0.99
RNss As, B1; Co 0.46 0.3755 4 0.36 0.3234 1.07
RNsy As, By; C; 0.64 0.1404 6 0.57 0.1533 1.21

2 See table 3.1 footnote.

Table 3.4. PLSR results for predicting some potato constituents using VIS/NIR hyperspectral imaging (whole
tubers) for Frito Lay 1879 and Russet Norkotah cultivars.

CUMtVAr consiten Preprocessing ® Calibration Prediction

Real RMSECcy LVs Rpred RMSEP RPD
FLoL Ay, B1; Co 0.77 0.0770 4 0.38 0.0681 0.93
FL.c A, B1; Co 0.49 13.124 7 0.47 11.7014 1.14
FlLsc Ay, B1; Co 0.22 0.0112 2 0.19 0.0148 1.02
FLss As, By; Co 0.34 0.4629 2 0.24 0.4602 1.03
FLsy Ay, B1; Co 0.18 0.0817 1 0.14 0.0702 1.02
RN A4, By Co 0.75 0.3669 4 0.52 0.3259 1.19
RN, c As, By; Co 0.78 9.5766 5 0.43 7.8047 1.10
RNsc A4, Bi; Co 0.30 0.0107 2 0.20 0.0095 1.01
RNss As, Bs; Co 0.55 0.4242 9 0.29 0.4277 0.81
RNsy As, Bs; Co 0.44 0.1879 2 0.43 0.1805 1.10

2 See table 3.1 footnote.

3.3.3.3 Results for transmittance mode

Taking into account both R and RPD values, the transmittance mode yielded strong
correlations for leaf counts in the case of FL with R and RPD values of 0.87 and 1.94 and for RN
the values were 0.81 and 1.54 respectively (Table 3.5). The glucose prediction model for RN

also showed close correlation performance to the interactance mode with sliced samples with R
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and RPD vales of 0.87 and 2.01, but lower correlation was obtained for FL with R and RPD
values of 0.66 and 1.23. The sucrose model for RN yielded comparable results to those obtained
using interactance mode with sliced samples with the values of R and RPD as of 0.63 and 1.30
and for FL, the values were 0.57 and 1.23. Prediction models for specific gravity and soluble

solids didn’t show as high correlation performance as other three constituents.

Table 3.5. PLSR results for predicting some potato constituents using NIR transmittance (sliced samples) for Frito
Lay 1879 and Russet Norkotah cultivars.

Cultivarcosien Preprocessing ® Calibration Prediction

Real RMSECcy LVs Rpred RMSEP RPD
FloL Ay, By; Cy 0.90 0.0750 9 0.66 0.0515 1.23
FL.c As Bi; Co 0.97 0.2788 20 0.87 0.2587 1.94
FlLsc Ao,B3Co 0.66 0.0033 1 0.56 0.0036 1.22
Flss Az, B3 Co 0.40 0.5335 1 0.30 0.4509 1.05
FLsy As,By; Co 0.60 0.0782 10 0.57 0.0582 1.23
RNgL A, B1 Co 0.96 0.2319 9 0.87 0.1921 2.01
RN c As, B1 Cy 0.90 0.3383 13 0.81 0.3453 1.54
RNsc Az, Bi; Co 0.69 0.0101 6 0.59 0.0079 1.22
RNss A4, Bs; Co 0.87 0.6281 3 0.23 0.5938 0.58
RNsy As, B1 Cy 0.73 0.8555 10 1.07 0.63 1.30

2 See table 3.1 footnote.

3.4 Discussion

The results indicate three modes (interactance, transmittance and hyperspectral) used to
build prediction models for some constituents in potato tubers have dependable results for leaf
primordium leaf counts (comparable to the work conducted by Jeong et al. (2008), and glucose
and sucrose (comparable to the work conducted by Mehrubeoglu and Cote (1997); and Hartman
and Buning-Pfaue (1998)). The transmittance mode was inferior in performance for these three
constituents. A note to make is that for the interactance mode, the whole tubers yielded similar
performance for the prediction models of leaf count and glucose for FL compared with the sliced
samples which is important as it could save processing time in terms of measurement and
sampling for commercial application, and is nondestructive. In general, specific gravity, which is
strongly related to dry matter, and soluble solids were not well predicted using the systems and
models presented here which contrasts with some other research in the literature (Hartman and
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Buning-Pfaue, 1998; Haase, 2004; Dull et al., 1989; Subedi and Walsh, 2009; Chen et al., 2005;
Scanlon et al., 1999). This study presents the application of spectroscopic and hyperspectral
imaging technologies, plus modeling, toward addressing a significant issue of rapid detection of
reducing sugars, that are very critical to the frying industry, which does not currently exist in the

market for the purpose of quality management and potato industry profitability.

3.5 Conclusions

NIR transmittance in the range of 900-1685 nm, visible/near infrared interactance
spectroscopy in the range of 503-1047 nm, and hyperspectral reflectance, in the range of 400-
1000 nm, were used to build prediction models to measure constituents in potato tubers that are
important to chipping and seed potato industries. Two cultivars were used to conduct the study,
FL and RN. The study showed that the prediction of leaf count and glucose, and somewhat lesser
for sucrose, was possible using interactance, in both sliced samples and whole tubers, and in less
degree using hyperspectral reflectance and transmittance systems, for sliced samples, for FL.
However, interactance and transmittance, for sliced samples in both modes, showed possible
reliable prediction for RN. It is worth to note that both cultivars showed strong correlation for the
sliced samples and the whole tubers only in the case of interactance mode. Specific gravity and
soluble solids prediction models are weak and further improvement is necessary to obtain
reliable models. Thus, while previous studies of the application of visible/NIR techniques to
estimate sugars demonstrated good results, it should be noted that they were conducted on
homogenized samples (Hartmann and Buning-Pfaue, 1998) or without validation on different
sets of data (Mehrubeoglu and Cote, 1997). Also, results for leaf counts prediction using NIR

conducted by Jeong et al., (2008) did not include confirmation. This study included validation
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data sets and measurements of intact potato tubers or slices thus leading to more confident results

and more direct practical industry applicability.
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CHAPTER 4 EVALUATION OF SUGAR CONTENT OF POTATOES USING
HYPERSPECTRAL IMAGING SYSTEMS

(Rady, A.M., Guyer, D.E., Lu, R. 2014. Evaluation of sugar content of potatoes using
hyperspectral imaging. Journal of Food Bioprocess and Technology (in review and initially
accepted))

4.1 Introduction

Hyperspectral imaging (HI) for agricultural applications has been studied for two
decades. The technique requires minimal sample preparation and is non-destructive with the
capability of visualizing the spatial distribution of desirable constituents (EI Masry and Sun,
2010a). It was used for detection of defects and surface contaminants and estimation of internal
constituents in food (Lawrence et al., 2001; Qin and Lu, 2007; Molto et al., 2010; El Masry and
Sun, 2010b; Chao, 2010; Menesatti et al. 2010; Wang and El Marsy, 2010). Qiao et al. (2005),
studied hyperspectral imaging to estimate both the water content and the weight of potato tubers.
The system was used to extract morphological features and spectral responses to the water
content in tubers simultaneously. The wavelength range of 934-997 nm was found to be useful
for predicting the water content in potato tubers. Results showed that the coefficient of
correlation between the predicted and actual values of water content was 0.93 and 0.77 for
training and validation, respectively. Water content is an important factor for potato tubers as it
is positively proportional to the yield and consequently the total profit for the grower. Singh et al.
(2004), developed a partial least squares model, using a spectroradiometer, for prediction of the
potato tuber water content with the correlation coefficient being as high as 0.99.

Lu and Peng (2006), developed a hyperspectral imaging-based spectral scattering

technique to estimate peach firmness. A Lorentzian distribution function was used to model the
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scattering profiles and multi-linear regression (MLR) was then applied to build the calibration

model, which resulted in coefficients of determination (R?) of 0.67 to 0.77 for the validation

data. Mehl et al. (2002), developed a hyperspectral imaging system (HIS) for detection of
various apple defects, including bruises and diseases. They selected three best wave bands for
classification of apple defects with the classification rates being 100%, 63%, and 70% for ‘Gala’,

‘Delicious’, and ‘Golden Delicious’, respectively, for the normal samples, and 100%, 63%, and

68% for the defected samples. The advantages of HI as an accurate technique of non-destructive

defect evaluation of food products and more importantly obtaining few wavelengths that are

strongly associated with high classification rate, encourages the application of HI in constituents
evaluations. However, studying HI systems in constituent prediction alone is insufficient.
Consequently, the combination of constituent-sorting with the traditional damage-based
sorting can be more reliable, cost and time effective and robust than using multi-stage sorting
systems or combining vision and spectroscopic systems together to achieve the goal of
monitoring tuber quality from different perspectives. The objectives of this study were:

1. Determine the potential of hyperspectral imaging systems for quantifying the levels of sucrose
and glucose in potato sliced samples for two different-use cultivars.

2. Develop prediction models for estimating the amount of sucrose and glucose in potato tubers
covering levels used to asses suitability of tubers for processing which are important for potato
growers and processors.

3. Develop classification models for potato tubers of both Frito Lay1879 and Russet Burbank

based on sugar levels and using multiple methods.
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4.2 Materials and Methods

4.2.1 Raw Material and Experimental Design

Experiments were conducted in 2009 and 2011, and in both seasons, two common
cultivars were used in the experiments, Frito Lay 1879 (FL) which is a chipping cultivar, and
Russet Norkotah (RN) which is usually used fresh for baking and boiling. The experimental
setup and design for the 2009 and 2011 seasons are shown in Fig. 4.1 and Fig. 4.2 respectively.
In the 2009 season, the RN cultivar was hand-harvested from a research farm at Montcalm, MI.
(sandy soil). There were two vine killing treatments (0 and 7 days from Aug. 13™), with each
followed by three harvesting periods (7, 14, and 21 days following the vine killing). The FL
cultivar was harvested from two different farms: the Montcalm research farm, in which there
were two vine Killing dates each followed by three harvesting dates as with RN, and the MSU
Muck experimental farm (muck soil), Bath, MI in which there were six vine killing treatments
(0, 7, 14, 21, 28, and 35 days from Aug. 13™) followed by three harvesting periods for each vine
kill. Samples were stored in three temperatures of 4, 7, and 10°C. Tubers were then monthly
sampled for experimentation starting in November, 2009 until April, 2010 (except at March)
with a total number of 540 tubers from FL and 180 tubers from RN tested through the 2009
experiments. The sampling procedure was designed to obtain a broad range of sugar content

samples.
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Figure 4.1. Flow chart of the experimental design to assess physiological status of potato tubers using VIS/NIR
hyperspectral imaging for Frito Lay 1879 and Russet Norkotah cultivars in the 2009 season.
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In the 2011 season, both cultivars were obtained from a commercial production field
(sandy soil) in Southwest Michigan. Samples were hand-harvested on only one date in
September, 2011. Two more storage temperatures were added in order to obtain more uniform
sugar distribution and simulate the various uses of potato tubers. In general, lower storage
temperature is desired for cultivars that are used as seeds or for cooking, while higher
temperatures are used for chip cultivars. Tubers were first stored at 4 °C for three weeks and an
initial electronic measurement was conducted. Tubers were then distributed over five different
cold storage rooms with the following temperatures: 1, 4, 7, 10, and 13 °C. They were then
sampled for experimentation starting in November 2011, and each month until May 2012 (except
at April) with a total number of 195 tubers from FL, and 75 tubers from RN. In both seasons,

tubers were cleaned prior to the imaging, and any defective samples were discarded.

It is important to emphasize that the main target of collecting samples from different
locations and storing at different temperatures was to obtain broad, and uniform, sugar
distribution, rather than evaluating the growing condition, and other pre- and post-harvest
practices that were conducted on tubers. Consequently, results representing different locations

for Frito Lay1879 were not separately analyzed and compared.
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Figure 4.2. Flow chart of the experimental design to assess physiological status of potato tubers using VIS/NIR
hyperspectral imaging for Frito Lay 1879 and Russet Norkotah cultivars in the 2011 season.
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4.2.2. Constituent Measurement

4.2.2.1 Potato sample preparation

Sample slices were used for VIS/NIR hyperspectral reflectance imaging. Each slice was
0.5 inch (12.7 mm) thick and it was obtained by cutting the tuber three times in a direction that is
perpendicular to its longitudinal axis, starting from the stem end of the tuber. The tested slice

was the third slice in the cutting routine.

4.2.2.2 Wet chemistry basis measurements

This destructive process was to provide a basis for the amount of sucrose and glucose in
the tuber or piece of tuber that has been subjected to the electronic measurements. The standard
method used to estimate glucose and sucrose is the enzymatic method, using the glucose oxidase

and paraoxidase enzymes.

4.2.2.2.1 Extraction of juice

Immediately after the electronic measurement, each slice was put in a plastic bag and
stored in a foam box contacting ice to maintain the sample in a fresh state and minimize any
chemical changes during the period of performing electronic measurements for other samples.
To ensure consistency between the slice electronic and wet chemistry measurements, a sufficient
amount of potato tuber juice from the specific areas that had already been electronically tested
was obtained by using a 1 inch (25.4 mm) cylindrical metal core borer to extract tissue primarily
from the middle of the slice. This tissue was then put in a pre-sterilized 7 oz Whirl-Pak filter bag,
9.5 x 18 cm (Nasco, Fort Atkinson, Wisconsin, USA). The bag was then hammered by hand
using a 2 Ib weight for juicing and then homogenized using a stomacher for 1 min. The juice was

filtered by the Whirl-Pak filter bag and transferred with a pipette to a polystyrene tube with cap.
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This juice was stored at -20 °C to reduce any variation of constituents and allow subsequent use

and analysis of the juice at a later time.
4.2.2.2.2 Performing the chemical estimation of glucose and sucrose

Using the Megazyme sucrose/D-glucose assay procedure (Megazyme International
Ireland Ltd), the ratio of each of glucose and sucrose, gram per gram fresh tuber weight, was

measured and calculated using the same approach noted in section 3.2.3.1.2.

4.2.3 VIS/NIR hyperspectral imaging systems

Two hyperspectral imaging systems were used in this project and both detected the
diffuse reflected light from the sliced samples. The first system used in the 2009 season was the

same as noted and described in section 3.2.2.3.

In 2011, a different hyperspectral imaging system was used for the experiment, because
the system used in 2009 was no longer available for the research. Although the two systems were
quite similar in measurement principle, they were dissimilar enough that the models of both
seasons were separated and no combining of data was conducted. The 2011 system, the Optical
Properties Analyzer or OPA, was developed at the postharvest engineering lab of USDA-ARS

(Cen, and Lu, 2009).

The OPA system consists of: a high performance 14-bit electron-multiplying CCD
camera (Luca ™ R604, ANDOR™ Technology, South Windsor, Connecticut, USA) covering
the wavelengths of 400-1000 nm; a monochrome megapixel frame transfer sensor with
1004x1002 pixels of 8x8 um, thermoelectrically cooled to -20°C; and an enhanced imaging
spectrograph (ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland) directly connected to the

CCD camera. Point scan mode was used in the experiments and was conducted using a prime
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lens (Xenoplan 1.9/35-0901, Schnider Optics, Hauppauge, NY, USA). The light source used was
a tungsten halogen light bulb with 20 W output power (HL-2000-HP, Ocean Optics, Dunedin,
FL, USA) connected to a DC regulated controller chip (PT6201N, 12, Texas Instruments Inc.,
Dallas, Texas, USA) to provide point light. The light beam at the focal point was 1 mm diameter
provided by an optical fiber coupled with a focusing lens. The incident light is 1.6 mm away
from the scanning line and is 15° to the vertical axis (Cen and Lu, 2009). During the scanning
process, 11 images were acquired along a movement distance of 5 mm of the horizontal stage
with a resultant image size of 251x 250 pixels with a spatial resolution of 0.21 mm/pixel. A close
view of the system clarifying the sample holder that slides horizontally using the stepping motor
is shown in Fig. 4.3a, and a schematic configuration of the 2011 hyperspectral system is shown

in Fig. 4.3b.

CCD Camera head ———

= Inagingsecrogaph ligh soce
Zooring lenses 15 degres on vertical
Prime lens
Diffused reflected ight —~| It g
Sagk Sampl hode(vertical sage)

Hortzontal stage

Figure 4.3, a. Hyperspectral imaging Optical Properties Analyzer (OPA) used in the 2011 season. b, Schematic of
OPA.
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The light scattering behavior inside the sample subjected to incident light is shown in Fig.
3.3.b. The light radiation beam penetrated the sample surface and scattered outward through the
tissue, and the backscattered light was captured by the hyperspectral imaging system in line
scanning mode. The primary difference between the 2009 and 2011 measurements was that the
light radiation beam had a diameter of 1.5 mm at the focal point for the 2009 season and 1 mm
for 2011 season. The raw output of both systems was the same as in Fig. 3.4. It should be noted
that both sides of each slice were tested and consequently the total number of samples was 1080
for FL and 360 for RN in the 2009 season. In the 2011 season, there were 390, and 150 sliced

samples for FL, and RN respectively.

4.2.4 Data Analysis Discussion and Approach

In this section, feature extraction, and methods of building calibration and prediction
models are explained in detail. Several analysis methods were also added in this chapter in
comparison to chapter 3. In addition to mean reflectance spectra, curve fitting parameters were
also extracted using an exponential model. Several types of artificial neural network were used to
build training and testing models for sugar prediction. Moreover, wavelength selection
techniques (interval partial least squares and genetic algorithm) were also added to detect the
most influencing variables associated with yielding strong correlation between optical
measurements and sugar concentrations. Finally, classification of potato tubers of both FL and

RN based on sugar levels was conducted using multiple common classification techniques.

4.2.4.1 Definition and development of descriptive variables
4.2.4.1.1 Extracted mean spectra
The average reflectance spectra for the hyperspectral data were obtained for the sliced

samples in the case of both cultivars. To extract the average reflectance for each image, all
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wavelengths from 400.9 to 1000.1 nm were considered as shown in Fig. 4.4a. At each
wavelength, the arithmetic mean of intensity values of the spectra, as shown in Fig. 4.4b, was
calculated. Finally, a 1*256 vector array for the 2009 season as shown in Fig. 4.4c or 1*250 for
the 2011 season is obtained from each image. The same process is repeated for each of the 10
images per sample and the average is calculated to represent one sliced sample. All mean
reflectance spectra is divided by the equivalent spectra of standard Teflon® resulting in a relative

mean reflectance spectrum for each sample.
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Figure 4.4, a. An example of an image obtained for each slice sample, b. Sample of spectra at different wavelengths,
c. Sample of average spectrum for one image.
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4.2.4.1.2 Describing scattering profiles

In addition to the mean reflectance spectra extracted data (section 4.2.4.1.1), describing
or fitting scattering profiles (or original reflectance curves) was conducted on the relative
reflectance curves to obtain more information about sample behavior under the studied
hyperspectral systems. The approach of modeling scattering profiles was successfully applied on
apple (Peng and Lu, 2005; Peng and Lu, 2007a; Peng and Lu, 2004; Peng and Lu, 2007b) and on
peach (Lu and Peng, 2006). In such approach, the scattering profile is described using Lorentzian
distribution, exponential distribution, or Gaussian distribution with different numbers of
parameters for each model. In the current study, all three distributions were applied. A
preliminary, exponential distribution with two parameters was found to be the best model to
simulate scattering profiles for potato slice samples in the 2009 and 2011 seasons with the

following equation describing the exponential model:

X

— |_F
[w= ay, el ™i

(4.1)

Where 1, is the light intensity at wavelength w; in CCD counts; x is the scattering
distance measured from the beam (mm); ay; represents the intensity peak value in CCD counts
for the scattering profile when x=0; and by, is the scattering width, in mm, at half (0.37) of the
intensity peak value; and the subscript w; is the wavelength in the range 400-1000 nm with i =1,
2,...., n where n is the total wavelengths used. Both sides of each spectral profile were averaged
before conducting the curve fitting. Scattering profiles used in curve fitting parameters were
covering a spatial scattering distance of 8 mm (or 42 pixels) for 2009 season and 4 mm (or 22
pixels) for 2011 season. Choosing both distances was to avoid using noisy areas that might affect

the accuracy of calculating curve fitting parameters. To estimate a,i, and by, a nonlinear
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regression technique was applied for each scattering profile in the considered wavelength range
for each season using the curve fitting tool box in Matlab® software (version 7.5.0.342,

MathWorks, Natick, MA, USA).
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Figure 4.5. Decaying portion of original spatial scattering profiles for selected sliced samples of Frito Lay 1879
cultivar at 698.7 nm in the 2009 season.

4.2.4.2 Partial least squares regression (PLSR)

A complete description of PLSR used in this research along with pretreatment for either
spectra or reference values is covered in section 3.2.4. It should be noted that three types of data
sets were used: only the mean spectra, the two curve fitting parameters (awi, bwi) concatenated to
each other, and finally combining all mean and curve fitting parameters.

It is worth stating that according to William (2007), correlation coefficient (R) value was
used to evaluate prediction model efficacy. Values of R of 0.81-0.90 can be used for screening
and approximate calibration. Whereas, R values of 0.91-0.95 may be carefully used for most

applications. The prediction models with R values above 0.95 are appropriate for quality
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assurance. RPD values of 1.5-2.0 are capable to differentiate between high and low constituent
values, while values of RPD in the range of 2.0-2.5 means a possibility of coarse prediction of
reference values. Values of RPD of 2.5-3.0 or higher can be used for good and excellence

prediction, respectively (Nicolai et al., 2007).

4.2.4.3 Artificial neural network (ANN)

ANN, which are broadly used in classification tasks, are computational algorithms that
may be used to gain an understanding of biological systems. An artificial neural network is a
machine that is designed to mimic the method of that of the brain when it conducts a certain task
(Haykin, 2009). From the regression side, PLSR is a technique that depends on building
calibration models using linear combination of independent variables and other coefficients that
are determined during a training (or calibration) process. ANN, however, depend on training the
data in a non-linear mapping from the independent variables into another stage or layer (called
hidden layer) followed by a linear mapping from the hidden space to the output space that just
contains the reference value (glucose or sucrose concentration). Two types of ANN were used to
obtain prediction models for each constituent of interest: the radial basis functions neural
networks (RBFNN) and the feed forward neural network (FFNN). The RBFNN consisting of
choosing a function F(x;) that satisfies the following constrain:

F(x)=y fori=1,2,3,....,n

Where n refers to sample size, x refers to a vector of independent variables (wavelengths). In

RBFNN, F(x;) is chosen as follows:

F(x) = Xty 01 ¢ (IIx=xil) (4.2)
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Where o is a weight vector, ¢ (||x — x;||) is a set of nonlinear functions known as radial basis
functions, ||.|| denotes a norm that’s the Euclidean distance, and x; is a point located in the center
of the radial basis function. Equation 4.2 can be rewritten in the matrix form as follow:

dPW=y (4.3)

n
Where ¢ = {d)ij}ij:l is an N by N matrix with elements @i, W an N by 1 vector containing

weights, and y is N by 1 vector containing reference values. Then W can be found as ¢ is a non-

singular matrix. RBFFNN consists, as shown in Fig. 4.6, of the following layers:

1. Input layer: consists of m variables each representing one of the extracted features (mean

reflectance, concatenated ay;, and by, and concatenated mean spectra, ayi, and by;).

2. Hidden layer: consists of a certain number of neurons, the radial basis functions were in this

case chosen as a Gaussian function as follow:

6,0 = o (lx—xl) = ez =123 n (4.4)
Where o is the spread or width that was chosen as 3. The number of neurons was chosen as 1000
units.

3. Output layer: This represents the predictor variable that is in fact the glucose or sucrose

concentration. The allowable mean square of error (MSE) was selected as 0.0001.
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Input layer Hidden layer Output layer

Figure 4.6. Schematic representation of RBFNN (after Haykin, 2009).

Another sub type is an exact design RBFNN (RBFNNE) in which the network is able to
produce a zero-error training vector containing as many neurons in the hidden layer as the
number of independent variables (wavelengths). The spread was chosen as in the regular
RBFNN, 3.

The last type of the radial basis function neural networks is the generalized RBNN
(NEWGRN) contains four layers. The first layer contains the input values (mean reflectance,
concatenated ayi, and by, and concatenated mean spectra, awi, and by;), the second layer is a
hidden layer including as many neurons as the number of wavelengths. The third layer also
includes as many neurons as the number of wavelengths but with different bias weight set to the
target (sugar concentration). The final layer contains glucose or sucrose concentration.

The data was randomly divided into 75% for training the network, and 25% for testing

the network and creating the prediction model. The training set was then divided into four sub

sets, and then a four-fold cross validation technique was used to obtain the best training model
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based on the root mean square of error of cross validation of the training set (SeCVsain). The
predicted reference values were obtained from the testing spectral data when substituted into the
best trained model and then they were compared with the actual reference values, both
correlation coefficient (Rest) and root mean square error (Segst) Were then calculated.

The second type of artificial neural network used in obtaining the prediction models was
feed forward with back propagation network (FFNN) also known as multilayer perceptron. In
this network type, first, N linear combinations of the x-variables (spectra) are built as in the

following equation:
Vj = agj +aiX; +aX; + azxg ++ apXy forj=1, ... , N (4.5)

And then a nonlinear function, called the activation function, usually a sigmoid type is applied as

follows:

forj=1,...... ,N (4.6)

Finally, the predicted output, ¥, is calculated as a linear combination of the values from

different neurons as follows:
5\7 = bO + b1Z1 + bZZZ + b3Z + -+ bNZN

Where a,, b, are called bias and assumed to be equal to 1. aj, ay,...., an, and by, ba,...., by
are weights determined during the training process. The back propagation algorithm is a common
technique in training FFNN and it’s an extension of least mean squares algorithm and is based on

gradient descent in error and consequently weights updating.

In this research, FFNN consists of an input layer which represents the mean relative
reflectance spectra, concatenated a,;, and by, or concatenated mean spectra, awi, and by, for each

sample. The number of neurons in the hidden layer contained several trials including 50, 100,
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150, 200, 250 and 300 neurons, and the output layer contained one neuron which is the real value
of reference (constituent). The transfer function for the hidden layer is the tan-sigmoid function,
and for the output layer is a linear transfer function. The training style was chosen to be the

scaled conjugate gradient method. A schematic view of the FFNN is shown in Fig. 4.7.

Input variables Hidden layer Output variable

Figure 4.7. Schematic representation of FFNN (after Varmuza and Flizmoser, 2007).

In the FFNN method used in this research, the data was randomly divided into three
groups: the first one is used to train the network and it was around 60% of the samples. The
second group represented about 20% of the samples and it was used to validate the built network
and four-fold cross validation technique was used to obtain the best calibration model. The third
group is an independent set to test the network. The predicted values of reference were compared
with the actual values and then both the correlation coefficient and the root mean square error
were calculated. The stopping rule in this case is when the mean square error (mse) of the

validation set of data reaches a minimum or sequential number of iterations is reached.
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4.2.4.4. Wavelength selection

Variable selection techniques help identify subsets of variables (wavelengths) for a given
problem which yield the most powerful and accurate model. In multivariate analysis, using all
variables may produce a better fit for building calibration models as a higher number of variables
may yield smaller residuals and consequently a better R value. However, the more important
goal is to optimize the prediction model performance for the validation set of data. Reducing the
number of regressors can overcome potential problems of overfitting (Varmuza and Filzomoser,
2008). Moreover, measuring certain variables can be difficult and/or other variables may contain
noise or signals which interfere with the signals which are valuable for compound detection.
Two methods of variable (wavelength) selection were used in this research; the interval partial
least squares (IPLS) and genetic algorithm (GA). Configurations of both IPLS and GA were
based on preliminary analysis that led to using the following parameters based on the
performance of PLSR and ANN prediction models. The IPLS method is a known variable
selection method for spectroscopic data and for optimizing the performance of PLSR models.
IPLS uses sequential and exhaustive methods of search for the best subset of variables in either a
forward or a backward direction and different window width values (number of variables per
window). In this research, forward mode, windows of 1, 2, and 3 variables, with number of latent

variable for the PLSR model being 15, were used.

The genetic algorithm mainly depends on randomly selecting different subsets of
variables called chromosomes or individuals and in each chromosome some variables (genes) are
selected or active, denoted by 1, and others are not selected, denoted by 0. With the use of cross
validation, each individual prediction model will have its fitness (commonly root mean square

error of cross validation (RMSEcy)). Based on the fitness threshold, some chromosomes are
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discarded and others, the remaining individuals, are used to build new chromosomes by using
crossover and mutation methods. Finally, the process of evaluation and forming new
chromosomes is repeated until a highest fitness, i.e. lowest RMSEcy, chromosome is obtained. In
the current study, window width values of 1, 2, 3, double crossover, maximum number of
generations of 300, maximum number of partial least squares latent variables of 20, and three
iterations were used in the forming of genetic algorithm. After reviewing PLSR and ANN
prediction models for both seasons in the case of FL and RN cultivars and observing that there
was close prediction results between mean, curve fitting parameters, and combined mean and

curve fitting parameters, only mean reflectance spectra were used for variable selection.

4.2.4.5 Classification of potatoes based on sugar levels

Sorting tubers based on sugar levels was conducted using two common techniques K
nearest neighbor (Knn) and partial least squares discriminant analysis (PLSDA). As a
nonparametric classification method, Knn requires no model to fit or classify the point (sample).
However, the distance, usually Euclidean, between the point and the selected neighbors (K) is
calculated. The sample is then classified to the nearest class or to the class having the majority
vote (Varmuza, and Filzmoser, 2007; Wise et al., 2006; Bishop, 2006; Duda et al., 2001). In this
study, the k values were selected as 3, and 5. PLSDA is a linear regression classification-based
method that is similar to linear discriminant analysis (LDA) with the advantage of noise
reduction and latent variable selection being in PLSDA (Wise et al., 2006). In this study, spectra
data and reference variables were preprocessed as mentioned in section 2.4.2, with 10-fold cross
validation used to increase the robustness of the training models for both methods. Samples were
divided into two classes based on sugar values with cut-off values of glucose for FL and RN as

of 0.035 and 0.035% respectively, whereas the values for sucrose were 0.03 and 0.10%. Cut-off
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levels were adopted from recommended thresholds listed by Stark and Love, (2003), for both
sugars except for the sucrose level for FL which was chosen to create two balanced classes. Only
mean reflectance spectra (MRS) data was used for samples classification with the note that
selected wavelengths using IPLS were applied to MRS data and the results were used in
classification tasks. Data was divided into training (75%) and testing sets (25%). Classification
of sugars was conducted using the classification toolbox for Matlab created by Davide Ballabio
(Milano Chemometrics and QSAR Research Group, University of Milano - Bicocca, Milan -
Italy) and the PLS routine used to compute PLSDA was written by Frans W.J. van den Berg
(Quality & Technology group, section Spectroscopy and Chemometrics, Department of Food

Science, University of Copenhagen).
4.3. Results and Discussions

4.3.1 Distribution of Glucose and Sucrose

Table 4.1 shows the statistics of glucose and sucrose for all samples (reference variables)
based on wet chemistry analysis, after eliminating outlier values which were considered results
of experimental error. Outliers were values > 1.5%, in the case of glucose, and > 2.0% in the
case of sucrose as these are the limits of both sugars in almost all potato cultivars (Storey, 2007).
Mean and standard deviation values are higher in the 2011 season than 2009 season which is a
result of lower temperature (1°C) and the fewer number of samples. Moreover, skewness resulted
in both seasons especially in the case of sucrose even though the experiment was designed to
minimize such. Maximum values of glucose and sucrose obtained from the 2011 season were
higher than values in 2009 which is a direct result of the lower temperature (1°C) added to the

2011 season.
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Table 4.1. Statistical summary of reference analysis resulted from wet chemistry for Frito Lay 1879 and Russet
Norkotah cultivars.

2009 Season 2011 Season

Statistics FL RN FL RN
GL (%) SU (%) GL (%) SU (%) GL (%) SU (%) GL (%) SU (%)
Minimum 0.0028 9.1e-5 0.0031 0.0045 0.0229 0.0031 0.1719 0.0111
Maximum 0.1514 0.1607 0.3574 0.4205 0.2618 0.2999 1.1663 2.2271
Mean 0.0457 0.0330 0.0591 0.10253 0.1016 0.0729 0.5454 0.2904
Median 0.0391 0.0275 0.0338 0.0836 0.0893 0.0611 0.5528 0.1674
Standard Deviation 0.0281 0.0239 0.0688 0.0806 0.0536 0.0560 0.1895 0.3361
Skewness 1.4003 2.819 2.0412 1.2472 0.9401 1.5135 0.2741 2.2217
Kurtosis 6.1725 17.1841 6.0141 4.6476 3.3262 5.6421 3.0054 9.8636

4.3.2 Mean Reflectance Spectra (MRYS)

Fig. 4.8 shows the mean reflectance spectra for the sample set of both cultivars at the
wavelength range of 400-1000 nm for the 2009 season and 457-973 nm (216 wavelengths) for
the 2011 season. The amplitude and shape of the relative mean reflectance for both cultivars are
similar with absorption in the visible range at 570 nm possibly due to the yellow color (Penner,
2003). Another absorption peak in the NIR range, around 876 nm, is possibly occurring due to

C-H fundamental bands or their combination (Workman and Weyer, 2008).

Similar trend was noted within the 2011 season except for a considerable change being
the absorption peaks were shifted from the 2009 season case, and located at 540 nm, and 920 nm.
Also, amplitude values for the mean reflectance in 2011 is less than for the 2009 season which

can be explained by variations in performance of differing systems.
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Figure 4.8. Relative mean reflectance for a. Frito Lay 1879, b. Russet Norkotah, for the 2009 season, and relative
mean reflectance for c. Frito Lay 1879, and d. Russet Norkotah, for the 2011 season.

4.3.3 Curve Fitting Parameters

Using the exponential model, curve-fitting parameter a,;, which represents the maximum
intensity value, was estimated and normalized using Teflon material. In the 2009 season, only
the wavelength range 550-1000 nm (192 wavelengths) was considered as shown in Fig. 4.9a-b;
and that range was 493-973 nm (201 wavelengths) for the 2011 season as shown in Fig. 4.9¢c-d,
because signals beyond these spectral ranges were too noisy. For the 2009 season, an absorption

peak was observed at 876 nm with apparent trend as in the mean reflectance spectra explained
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before. However, for the 2011 season, FL and RN showed similar trend for a,; with several
samples in both cultivars showing two reflectance peaks at 560, and 900 nm with no obvious

absorption peaks.

186 T T T T T T T T 18

Relative max reflectance or paramter aw (%)
Relative max reflectance or paramter aw (%)

550 600 650 700 750 800 850 900 950 1000 250 600 650 700 750 800 850 900 950 1000
Wavelength, (nm) Wavelength, (nm)

08r H 08F .

Relative max reflectance or paramter aw (%)
Relative max reflectance or paramter aw (%)

0500 550 600 650 700 750 800 850 900 950 1000 0500 550 600 650 700 750 800 850 900 950 1000
Wavelength, {nm) Wavelength, (nm)

Figure 4.9. Relative parameter a,; for a. Frito Lay 1879, b. Russet Norkotah, for the 2009 season, and relative
parameter a,; for c. Frito Lay 1879, and d. Russet Norkotah, for the 2011 season.

In the case of the full width at half maximum (FWHM) of intensity, or by, plots are

shown at Fig. 4-10a-d for the 2009 season at 586-1000 nm (177 wavelengths) and the 2011
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season at 493-973 nm (201 wavelengths). In Fig. 10a-b, there was a peak at 876 nm that showed
the maximum value of FWHM for both cultivars for the 2009 season. For the 2011 season, a
growing behavior of by; was observed with absorption peaks at 560 nm and 920 nm with

apparent similar trends as in mean reflectance spectra.
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Figure 4.10. Relative parameter b,; for a. Frito Lay 1879, b. Russet Norkotah, for the 2009 season, and relative
parameter b,,; for c. Frito Lay 1879, and d. Russet Norkotah, for the 2011 season.
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4.3.4 Note About Performance of the Hyperspectral System Used in 2011 the Season

After reviewing the difference between the two systems used in the 2009 and 2011
seasons, it was concluded that the results of data obtained in the 2011 season were not accurate
and were concerning compared with that in 2009 season as in the latter system, the results are
very similar to those obtained from the study in chapter 3. Thus, no further analysis of the
previous features was conducted for the 2011 season, and consequently only results of the 2009

are shown.

4.3.5 Partial Least Squares Regression (PLSR) Results

The best results of PLSR for both potato cultivars in the case of mean reflectance spectra
(MRS) and combined parameters (concatenated a,; with by,;; concatenated MRS, a,;, and b,;) for
the 2009 season are shown in table 4.2. Results were close between all three data sets (MRS; awj,
and byi; MRS, ayi, and by;). For glucose prediction, RN had stronger correlation than FL with
R(RPD) values of 0.96(3.29) for RN and 0.81(1.70) for FL using the MRS, a;, and by, combined
data set in both cases. For sucrose, however, FL had stronger prediction models than RN with
best performance obtained having R(RPD) values as of 0.58(1.23) for FL and 0.30(0.98) for RN
and using the a,; and by; combined data set in both cases. The relationship between measured
(actual) and PLSR predicted glucose concentrations, in g/100g of fresh tuber weight, obtained

from prediction models for FL and RN is shown in Fig. 4.11.
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Table 4.2. PLSR results of predicting glucose and sucrose using VIS/NIR hyperspectral imaging for sliced potato
samples in the 2009 season using Frito Lay 1879 and Russet Norkotah cultivars.

Descriptive variable Cultivarconstituent Preprocessing ? Calibration model Validation model

Reca | RMSEC | RMSEC,, | LVSs | Rpred RMSEP RPD
(%) (%)

MRS FLoL A10,B3,Co 0.86 0.0158 0.0204 13 0.80 0.0184 1.67
FLsy A10,B1,Co 0.71 | 0.0239 0.0280 10 | 0.53 0.0282 1.17
RNgL Ao,B1,Co 0.97 0.0229 0.0266 10 0.96 0.0289 3.21
RNsy Ay,B1,Co 0.41 | 0.0788 0.0860 5 0.27 0.0694 0.97
awi, buwi FLoL Ao,B3,Co 0.81 | 0.0182 0.0202 19 | 0.78 0.0192 1.60
FLsy Ao,B1,Co 0.68 0.0248 0.0269 15 0.58 0.0268 1.23
RNgL A,B1,Co 0.97 | 0.0235 0.0285 19 | 0.96 0.0285 3.26
RNsy Ao,B1,Co 0.41 0.0790 0.0855 7 0.30 0.0686 0.98
MRS, aui, bui FLoL Ay,B1,Co 0.85 | 0.0166 0.0195 20 | 081 0.0181 1.70
FLsy Ao,B1,Co 0.70 0.0241 0.0278 12 0.56 0.0274 121
RNgL Ao,B1,Co 0.97 0.0233 0.0269 11 0.96 0.0282 3.29
RNsy As,Bs,Co 0.39 | 0.0798 0.0843 5 0.30 0.0684 0.98

2 See table 3.1 footnote.

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet
Norkotah glucose, RNSU: Russet Norkotah, sucrose.
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Figure 4.11. Relationship between measured and predicted glucose values for sliced samples using full wavelengths
for a) Frito Lay1879 and b) Russet Norkotah cultivars in the 2009 season using PLSR as indicated in table 4.2.

4.3.6 Artificial Neural Network (ANN) Results

The results of artificial neural network used to predict glucose and sucrose sugars for the
2009 season are shown in table 4.3. Compared with PLSR results, lower performance was
achieved except for glucose prediction models for RN. FFNN yielded the best prediction models

for glucose in the 2009 season with R(RPD) values as high as 0.96(3.05) obtained from
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combined ay; and by, data. Also FL glucose prediction models showed values of R(RPD) as high
as 0.74(1.48) obtained from combining MRS, ai, and by;. Sucrose prediction models showed
slightly less performance compared with PLSR models with values of R(RPD) of 0.51(1.11)
using FFNN for FL and 0.18(0.65) for RN resulted from combined a,; and b,; data using
RBFNN. Fig. 4.12 shows correlation between measured and ANN-predicted glucose

concentrations using the test set of data for both FL and RN.

Table 4.3. Results of prediction models to predict glucose and sucrose for sliced potato samples tested by VIS/NIR

hyperspectral imaging and using RBFNN, RBFNNE, and FFNN in the 2009 season.

Descriptive variable Cultivarconstituent ANN type, Training Testing
characteristics Rirain | SeCVirain (%0) RPD Reest | Sepest (%) | RPD

MRS FLgL FENN, 100 0.75 0.0212 1.37 0.73 0.0212 1.46
FLsy FFNN, 100 0.37 0.0261 1.05 0.30 0.0284 0.99

RNgL FFNN, 300 0.96 0.0296 3.38 0.94 0.0348 2.56

RNsy RBFNN 0.32 0.1098 0.72 0.18 0.1083 0.65

awi, bui FlgL FFNN, 250 0.75 0.0212 1.37 0.72 0.0216 143
FLsuy FFNN, 50 0.53 0.0288 1.17 0.51 0.0261 1.11

RNgL FFENN, 200 0.97 0.0262 3.83 0.96 0.0291 3.05

RNsy RBFNN 0.32 0.1098 0.72 0.18 0.1083 0.65

MRS, aui, bui FLgL FENN, 250 0.79 0.0179 1.63 0.74 0.0209 1.48
FLsy FFENN, 200 0.39 0.0265 1.04 0.30 0.0277 1.02

RNgL FENN, 200 0.95 0.0318 3.15 0.94 0.0328 2.71

RNsy RBFNN 0.30 0.1060 0.77 0.13 0.1057 0.63

2 See table 3.1 footnote.

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet
Norkotah glucose, RNSU: Russet Norkotah, sucrose.
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Figure 4.12. Relationship between measured and predicted glucose values for sliced samples using full wavelengths
for a) Frito Lay1879 and b) Russet Norkotah in the 2009 season using ANN as indicated in table 4.3.

101



4.3.7 Variable Selection Results

After observing the closeness between the results obtained by the three data sets used for
building prediction models using PLSR and ANN, wavelength selection using IPLS and GA
techniques was only based on MRS data. The number of the most effective wavelengths were
obtained as shown in table 4.4, both PLSR and ANN were then applied on the selected

wavelengths to build prediction models and compared with the full variables models.

Table 4.4. Wavelength selection results using IPLS and GA in the case of glucose and sucrose for potato sliced
samples tested VIS/NIR by hyperspectral imaging and in the 2009 season for Frito Lay 1879 and Russet Norkotah.

Selection method Cultivar consituent No. of selected wavelengths in VIS range No. of selected wavelengths in NIR range
IPLS FLgL 21 19

FLsy 10 0

RNgL 9 3

RNsy 7 0
GA FLgL 82 44

FLsuy 78 51

RNgL 75 39

RNsy 61 30

In the case of PLSR for 2009 samples as presented in table 4.5, for FL glucose prediction
models, R(RPD) were 0.80(1.68) for FL and 0.97(3.66) for RN using IPLS and GA respectively.
Sucrose prediction models showed R(RPD) values of 0.54(1.17) and 0.38(1.00) for RN using
GA and IPLS respectively. Such results for the 2009 season are similar or slightly better
compared with full variables results which indicates the effectiveness of the detected
wavelengths clarified in table 4.4. It should be noted that IPLS results in less selected variables

than GA which gives it the priority of selection over GA.

102



Table 4.5. PLSR results for predicting glucose and sucrose using VIS/NIR hyperspectral imaging and selected
wavelengths obtained by IPLS and GA for sliced samples in the 2009 season for Frito Lay 1879 and Russet
Norkotah cultivars.

Variable selection method | Cultivarconsiwe:r | Preprocessing ? Calibration model Validation model
Real RMSEC | RMSEC,, | LVs | Rpreda | RMSEP | RPD
FlLoL Ag,B1,Co 0.82 | 0.0176 0.0190 19 0.80 | 0.0183 1.68
IPLS FLsy Ao,B1,Co 0.58 0.0233 0.0251 18 0.52 0.0258 1.16
RNgL Ao,B1,Co 0.98 | 0.0221 0.0260 20 0.96 | 0.0261 3.56
RNsy Ao,B1,Co 0.46 0.0769 0.0823 5 0.38 0.0668 1.00
FlLoL Ao,B1,Co 0.82 | 0.0176 0.0196 14 0.79 | 0.0190 1.62
GA FLsy Ao,B1,Co 0.72 | 0.0234 0.0269 14 0.54 | 0.0281 1.17
RNgL Ao,B1,Co 0.98 0.0209 0.0255 14 0.97 0.0254 3.66
RNgy Ao,B1,Co 0.41 | 0.0789 0.0835 5 0.33 | 0.0676 0.99

2 See table 3.1 footnote.

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet
Norkotah glucose, RNSU: Russet Norkotah, sucrose.

Results of artificial neural network prediction models after applying variable selection
using IPLS and GA for the 2009 season are shown in table 4.6. For FL glucose prediction, values
of R(RPD) for RN were as high as 0.96(3.04) and for FL the values were 0.73(1.46) obtained
from FFNN using GA in both cases. In the case of sucrose prediction for FL, there was no
improvement of correlation compared with PLSR or ANN for full models. FFNN was proven to
produce such performance in both cases. In general, the number of selected variables using GA
is more than IPLS with close results between the prediction models performance using ANN.
Thus, based on computation times, IPLS showed more efficiency than GA in the prediction of

glucose and sucrose.

Table 4.6. Artificial neural network results for predicting glucose and sucrose using VIS/NIR hyperspectral imaging
and selected wavelengths obtained by IPLS and GA for sliced samples in the 2009 season for Frito Lay 1879 and
Russet Norkotah cultivars.

o I . L Training Testing
Descriptive variable Cultivarcnsitient | ANN type, characteristics Roam SeCVyan (%) | RPD | Req | SeCVitwy (%) | RPD
FlLoL FFNN, 100 0.75 0.0190 1.53 0.70 0.0221 1.40
IPLS FLsy FFNN, 50 0.26 0.0295 1.14 0.23 0.0290 1.00
RNgL FFNN, 50 0.96 0.0284 3.53 0.95 0.0325 2.73
RNsuy FENN, 50 0.24 0.0689 1.15 0.13 0.0701 1.00
FlLgL FENN, 50 0.79 0.0170 171 0.73 0.0196 1.46
GA FLsy FFNN, 50 0.26 0.0296 1.14 0.25 0.0294 0.98
RNgL FFENN, 150 0.97 0.0250 401 | 0.96 | 0.0293 3.04
RNsy RBFNN 0.21 0.1192 0.67 0.20 0.1041 0.67

MRS: mean reflectance spectra, FLGL: Frito Lay 1879, glucose, FLSU: Frito Lay 1879, sucrose, RNGL: Russet
Norkotah glucose, RNSU: Russet Norkotah, sucrose.4
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4.3.8 Potatoes Classification Based on Sugar Levels

The numbers of samples in class 1(less than threshold) and class 2 (above threshold) for glucose

and sucrose in the case of both cultivars are shown in table 4.7.

Table 4.7. Numbers of samples in each class based on glucose and sucrose levels for the 2009 season in the case of
Frito Lay1879 and Russet Norkotah cultivars.

Cultivarconstituent Class 1 (less than threshold) Class 2 (above threshold)
Floo 453 618
FLsy 393 980
RNgL 188 169
RNsy 198 160

Results of sugar classification of potato sliced samples using Knn and PLSDA for FL and
RN are shown in table 4.8. Classification error for the training group based on cross validation
(training error) and testing error showed that PLSDA resulted in better performance than Knn
with the possible reason being the suitability of PLSDA to cope with colinearity. Testing error
for glucose classification for FL and RN were 19% and 18% respectively, whereas for sucrose
the values were 34% and 38%. Classification results somewhat match with prediction
performance as shown in previous sections in which glucose prediction models resulted in better

results than sucrose for both cultivars.

Table 4.8. Classification results of sliced samples based on glucose and sucrose levels for the 2009 season using
VIS/NIR hyperspectral imaging for Frito Lay1879 and Russet Norkotah cultivars.

Cultivar constituent Preprocessing for Knn ; PLSDA # Training error (%) Testing error (%)
Knn PLSDA Knn PLSDA
FLgL As,Co ; As,Co 19 16 22 19
FLsy Ao,Cq ; As,Co 39 32 42 34
RNgL A7,Co; Ag,Co 20 16 22 18
RNSU Ae,Cu ) A5,Cu 41 36 44 38

2 See table 3.1 footnote.
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4.4 Conclusions

Partial least squares regression (PLSR) and artificial neural network (ANN) were used to
obtain prediction models for glucose and sucrose sugars in 12.7 mm sliced samples, obtained
from Frito Lay1879 (FL) and Russet Norkotah (RN) cultivars, using a hyperspectral imaging
system in the reflectance mode in the wavelength range of 400-1000 nm. Prediction models
based on mean reflectance spectra (MRS) were shown to be more efficient than models based on
spectral curve fitting parameters due to similar performance, and fewer variables contained in
MRS. PLSR showed similar performance to ANN for both cultivars with R values being as high
as 0.81 and 0.97 for FL and RN in the case of glucose. However, weaker performance was
achieved for sucrose, compared to glucose, with R values of 0.58 and 0.27. In general, FL as a
chipping cultivar with lower glucose than in RN, yielded weaker prediction models for glucose
than RN. Prediction models built using selected wavelengths, by interval partial least squares
(IPLS), showed similar performance as the full wavelengths’ models for both cultivars for
glucose with a slight improvement for sucrose prediction with R values of 0.60, and 0.38 for FL
and RN. The selected wavelengths results, which are unique in the study of predicting sugars
content of potatoes, demonstrate the possibility of reducing data dimensionality and potentially
enhancing prediction results. With broader selection of window size, cross validation, mutation
rate, cross over breeding, replicate runs, or step size so that more effective wavelengths are
selected, the potential exists for improved results. Moreover, prediction models of sucrose did
not result in reliable performance and they are not suitable for industrial applications.
Consequently, such models need improvement, which can be achieved by increasing the number

of samples and/or using several storage temperatures to obtain broader sugar distribution.
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Being a novel application of hyperspectral imaging to build prediction and classification
models based on sugars in potatoes, this study in general presented a promising application for
constituent monitoring of potatoes that are destined to products sensitive to excessive sugar
content (chipping and French fries). With further study of extending this approach to intact
whole tubers and with the improvement of hardware components in the hyperspectral system, the
on-line sorting for potato tubers is a realistic target. Moreover, it is worth stating that, in the
meantime and with the available components in the market, it is possible to benefit from the
selected wavelengths for building a multispectral system to overcome the problem of relatively

extensive time required for image acquisition related to hyperspectral imaging.
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CHAPTER 5 UTILIZATION OF VISIBLE/NEAR-INFRARED
SPECTROSCOPIC AND WAVELENGTH SELECTION METHODS IN SUGAR
PREDICTION AND POTATOES CLASSIFICATION

(Expanded from Rady, A.M., Guyer, D.E. 2014. Utilization of visible/near-infrared spectroscopic
and wavelength selection methods in sugar prediction and potatoes classification. Journal of Food
Measurement and Characterization, in press)

5.1 Introduction

Near-infrared (NIR) is becoming a promising technology that could be extensively used
in quality control and monitoring for chemical, petrochemical, pharmaceutical, agricultural, and
food industries. As rapid, and/or noninvasive methods, NIR techniques are suitable for on-line
applications which are less time consuming, more robust, more reproducible, and more cost
effective than human labor or other laboratory methods used in quality assurance. Fruits and
vegetables, as high moisture products and having a relatively big size, were not traditionally
suitable for NIR applications. However, with development of high performance hardware, intact
fruits and vegetable quality measurements using NIR have become feasible using interactance
and transmission modes (Kawano, 2002). NIR interactance mode was developed in a USDA
laboratory at Beltsville by Conway et al., 1984 to measure human body fat. Later, the practice of
NIR interactance in the field of agriculture became more intensive. Sugar accumulation in potato
tubers showed that sugar content in potatoes is influenced by storage conditions (temperature,
period), and reconditioning more than pre-harvest practices (soil composition, fertilization,

environment, irrigation) (Burton et al., 1992).

This study is initial work toward developing a rapid hand-held device that can be used to

assess some constituents in potato tubers which will potentially benefit people working in the
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potato industry starting from grower and ending with customer. In the current chapter, three data
sets were obtained from the VIS/NIR interactance system; full wavelengths, sampled
wavelengths, and selected wavelengths using IPLS and GA. The analysis of such data sets
included building prediction models for glucose and sucrose, and classification of sliced samples

and whole tubers using various techniques.

The short and long term objectives of this research are:

1. Determine the potential of VIS/NIR interactance spectroscopy for quantifying the level
of sucrose and glucose levels in potato tubers.

2. Development of a reliable prediction models that may be used to detect the amount of
sucrose and glucose in potato tubers at levels which are important for potato growers and
processors.

3. Detect the most effective wavelengths related to glucose and sucrose absorption.

4. Study the potential of classifying potatoes based on sugar levels associated with the

frying industry using several classifiers as well as classifier fusion.

5.2 Materials and Methods

5.2.1 Raw Material and Experimental Design

The samples used to conduct experiments in this study were the same as those used in

section 4.2.1 as well as the experimental design for both the 2009 and 2011 seasons.
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5.2.2 Constituent Measurement
5.2.2.1 Potato sample preparation

In addition to the sliced samples prepared as noted in section 4.2.2.1, whole tubers were
also used in electronic measurements. The scan position for the whole tuber was chosen such that
the incident light penetrates the area above the tissue extracted for juicing, and located in the
middle of both axes. Regarding the spatial variation of a potato surface, the electronic
measurements were made such that the area receiving the incident light, for sliced samples and
whole tubers, is as uniform as possible for all samples. Consequently, the yielded variation will
be due to the differences between samples in light absorption under the surface and not due to

the spatial variation of the tuber surface.

5.2.2.2 Wet chemistry basis measurements

The procedure used in juice extraction from sliced samples was the same as that used in
section 4.2.2.2.1. Also, wet chemistry steps conducted to evaluate glucose and sucrose
concentrations were the same as mentioned in section 4.2.2.2 and using equations 3.2 and 3.3

respectively.

5.2.3 VIS/NIR Interactance System

The system used in this study had the same components and configurations as that used
in section 3.2.2.4. A standard Teflon® as a reference material and then equation 3.1 was applied

to obtain the relative absorption.
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5.2.4 Data Analysis Discussion and Approach

5.2.4.1 Data handling

Various scenarios of handling and statistically analyzing the relative absorption data
extracted from the interactance experiments were conducted. Fig. 5.1 shows the sequence of data
handling and methods used to build prediction models. First, the signals resulting from
measurements were reduced from 3648 to 2701 wavelengths (from 446-1125 nm to 501-1004
nm) based on visual evaluations. Next, two modes of data were tested, the data containing full
2701 wavelengths, and sampling at every 7 wavelengths resulting in 386-variable matrices.
Finally, data from the 2009 and 2011 seasons were combined for both the full and the sampled
variables. Both PLSR and ANN were applied to each data set to obtain prediction models for

both glucose and sucrose.

5.2.4.2 Partial least squares regression (PLSR)
A complete description of PLSR used in this research along with pretreatment for either

spectra or reference values is listed in section 3.2.4.

5.2.4.3 Artificial neural network (ANN)
The same artificial neural network types, and configuration applied in this study were the

same as that used in section 4.2.4.3.

5.2.4.4 Wavelength selection

A complete description of interval partial least squares (IPLS) and genetic algorithm
(GA) used in this research was listed in section 4.2.4.5. Variable selection techniques for

interactance data were only applied on the sampled data (386) as the number of full variables
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(wavelengths) is 2701 and it’s not possible to conduct variable selection on this case using either

IPLS or GA.

VIS/NIR interactance
446 - 1125 nm
(3648 wavelengths)

!

Effective signal

501 - 1004 nm
(2701 wavelengths)

Analysis using sampled
wavelengths

Analysis using all effective
wavelengths

(2701 wavelengths) (386 wavelengths)
Building prediction models Applying variable selection
techniques

P
PLSR I
| |

[ Interval partial least squares ] [ Genetic algorithm ]

——  ANN (IPLS) (GA)
|
R !
] ANN

S Classification

Figure 5.1. A schematic diagram of data handling and analysis for data obtained using VIS/NIR interactance
spectroscopy to obtain prediction models of glucose and sucrose and for classification of Frito Lay1879 and Russet
Norkotah based on sugar levels.
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5.2.4.5 Classification of potatoes based on sugar levels

Classification of whole tubers and sliced samples based on glucose and sucrose levels
was conducted as described in section 4.2.4.6. Moreover, several techniques were applied to
enhance classification accuracy. In addition to Knn and PLSDA, linear discriminant analysis
(LDA), and artificial neural network (ANN) were also used for the classification. In discriminant
analysis, each sample is assigned to a class. For LDA, the decision boundary is a hyper plane that
separates the two classes (Bishop, 2007; Duda, et. al., 2001). In the current study, Euclidean, as
well as Mahanalobis, distances were applied for assigning each sample to the appropriate class.
Only principal components (20 components that were responsible for >99% of the total variance)
were used for LDA as they overcome the problem of colinearity associated with spectroscopic

measurements.

ANN classification was based on FFNN that consisted of an input layer containing the
pretreated spectra data, a hidden layer with 50 neurons, and an output layer that contained the
assigned class. Transfer functions were chosen as log-sigmoid, and scaled conjugate gradient
back propagation for hidden and output layers respectively. Samples in both seasons were
divided into two classes based on the cut-off glucose values in the 2009 season of 0.035% for
both FL and RN, whereas the values for sucrose were 0.03% and 0.10%. In the 2011 season, and
based on sugar distribution, the threshold values for glucose were 0.09% and 0.5% for FL and
RN, while the values for sucrose were 0.08% and 0.15%. Cut-off levels were adopted from
recommended thresholds listed by Stark and Love (2003), for both sugars except for the glucose
level for RN which was chosen to create two balanced classes. Classification of sugars was

conducted using the Matlab® statistical toolbox for LDA, and ANN.
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Classifier fusion was also conducted to increase the overall classification accuracy.
Weighted majority voting was used for setting each sample in the correct class. In majority
voting, and based on results obtained from individual classifiers, PLSDA was given the highest
weight of 0.40, and weights of 0.20, 0.10, and 0.15 were given to LDA, and Knn, and ANN
respectively. Each sample was assigned to the class having the higher total voting resulted from

all classifiers.

5.3 Results and Discussions

5.3.1 Constituents Distribution

The basic statistics for both glucose and sucrose over the 2009 and 2011 data were shown
in table 4.1. Moreover, sample distributions of glucose and sucrose from wet chemistry for FL
and RN in the 2009 and 2011 seasons are shown in Fig. 5.2, with a broader range of both

constituents in the 2011 season due to more storage temperatures utilized.

5.3.2 Spectra for Sliced Samples and Whole Tubers

The signals extracted from the VIS/NIR interactance measurement experiments for both
cultivars for sliced and whole samples in the range 501-1004 nm, extracted from the original
wavelengths signal (446-1125 nm), are shown in Figs 5.3, and 5.4 for the 2009 and 2011
seasons. In general, the signals from whole samples appear less scattered than with sliced
samples with peak values of relative interactance being one third of the peak value for the sliced
samples indicating the effect of sample preparation (i.e. skin effect) on interactance. In the 2011
season, the same trend was obtained for both cultivars in the case of sliced samples or whole

tubers with more condensed signals for whole tubers.
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Figure 5.2. Distribution of glucose and sucrose (%FW) for Frito Lay 1879 and Russet Norkotah from wet

chemistry in a) 2009, and b) 2011 seasons. Note: scale change on RN glucose for display purpose.
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Figure 5.3. Relative interactance of the 2009 season data for sliced samples a. Frito Lay 1879, b. Russet Norkotah,
and relative interactance for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah.
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Figure 5.4. Relative interactance of the 2011 season data for sliced samples a. Frito Lay 1879, b. Russet Norkotah,
and relative interactance for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah.

To obtain more information about the trend of sliced samples and whole tubers under the
applied interactance experiments, the mean spectra of log(1/interactance) was calculated and

plotted in Fig. 5.5a-b for the 2009 season, where A is the relative interactance. In the case of
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sliced samples, FL and RN showed similar trend in both visible and near-infrared regions with an
absorption peak at round 960 nm that is related to OH-water overtone (Chen et al., 2004;
Helgerud et al., 2012). For whole tubers, while both cultivars showed similar trends to sliced
samples in the NIR region, different behavior in the visible region was observed. Such variation
is due to color differences and non-uniformity of the skin surface between FL and RN. An
absorption band was noted for RN at 550-600 nm which possibly refers to the absorption of
green (490-580 nm), and yellow (580-600 nm) colors, and a slight peak around 650 nm which
possibly refers to the absorption of orange (600-650 nm) color. While FL showed two small
absorption peaks around 550 nm (green color), and 650 nm (orange color) which also refers to
the absorption of the green and orange colors respectively (Giambattista et al., 2007). In the 2011
season (figures are not shown), the same trend was obtained for both cultivars in the case of both

sample types.
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Figure 5.5. Mean of log (1/relative interactance) of the 2009 season data for Frito Lay 1879 and Russet Norkotah
for: a. Sliced samples, b. Whole tubers.

5.3.3 Partial Least Squares Regression (PLSR) Results
5.3.3.1 Full and sampled wavelengths models

Results for calibration and prediction models of glucose and sucrose for both Frito
Lay1879 (FL) and Russet Norkotah (RN) cultivars in the case of the 2009 and 2011 seasons are
shown in table 5.1. In the 2009 season, and based on full wavelengths models, for glucose
prediction models, RN yielded strong correlation with R(RPD) values of 0.94(2.85) for sliced
samples and 0.97(4.16) for whole tubers. Compared to glucose models, weaker correlation was
obtained for sucrose with R(RPD) values of 0.53(1.18) and 0.53(1.16) for sliced samples and
whole tubers respectively. In the case of FL, whole tubers yielded glucose prediction models
with R(RPD) values of 0.79(1.62) and those values were slightly better than sliced samples

models of 0.76(1.53). However, sucrose prediction models had values of R(RPD) of 0.30(1.04),
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and 0.33(1.05) of sliced samples and whole tubers respectively. For the prediction models
obtained from sampled wavelengths, glucose prediction models of Frito Lay 1879 in the case of
whole tubers showed higher correlation than full wavelengths models with R(RPD) values of
0.85(1.92). Other constituents showed similar performance to the full wavelengths models for
both cultivars in the case of both glucose and sucrose which generally clarifies the advantage of

reducing data dimension using sampling.

In the 2011 season, general lower correlation was achieved of both sugars in the case of
both cultivars than in the 2009 season. Values of R(RPD) for FL in the case of glucose were
0.59(1.17) and those values for RN were 0.53(1.15). For sucrose, R(RPD) values for FL were
0.56(1.16) and 0.33(1.02) for RN. For whole tubers, glucose prediction resulted in R(RPD)
values of 0.36(1.08) for FL and 0.62(0.70) for RN, and these values were 0.21(0.98) for FL and
0.45(1.12) for RN in the case of sucrose prediction models. The reduced (sampled) data yielded
weaker performance than full wavelengths except for sucrose prediction models for RN with

R(RPD) values of 0.69 (1.41) for sliced which is even better than 2009 results indicated before.
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Table 5.1. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR interactance and using full (2701) and sampled
wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season Wavelengths Sample type Cultivar onstituent Preprocessing ? Calibration model Validation model
Recal RMSEC RMSEC,, LVs Rpred RMSEP RPD
(%) (%)
2009 Slice FloL A7,B1,Co 0.77 0.0178 0.0187 14 0.76 0.0181 1.53
Full FLsy As,B1,Cy 0.33 0.7988 0.8241 13 0.30 0.8167 1.04
RNgL Ag,B1,C, 0.95 0.0341 0.0364 8 0.94 0.0387 2.85
RNsy As,B1,Co 0.64 0.0613 0.0781 18 0.53 0.0682 1.18
Whole Floo Au,B1,Co 0.85 0.0149 0.0195 20 0.79 0.0172 1.62
FLsy As,B1,Cy 0.37 0.7873 0.8239 15 0.33 0.8082 1.05
RNgL A7,B5,Co 0.99 0.0093 0.0263 2 0.97 0.0179 4.16
RNsy A;7,B3,Co 0.72 0.0555 0.0753 6 0.53 0.0698 1.16
Sampled Slice FlgL Ao.B1,Co 0.78 0.0171 0.0180 20 0.76 0.0178 1.53
FLsy Ay,B1,Cy 0.37 0.7883 0.8252 17 0.29 0.8197 1.04
RNgL A7,B1,C, 0.95 0.0335 0.0371 18 0.93 0.0421 2.61
RNsy A4,B;5,Co 0.67 0.0591 0.0788 20 0.52 0.0692 117
Whole FloL A7,B5,Co 0.89 0.0126 0.0158 4 0.85 0.0142 1.92
FLsy A4,B3,Cy 0.53 0.7176 0.8115 17 0.35 0.8111 1.05
RNgL Ag,B1,Co 0.97 0.0153 0.0194 20 0.95 0.0241 3.11
RNsy A7,B;,Cy 0.74 0.6256 0.9006 8 0.45 0.8745 1.06
2011 Full Slice FlLgo A7,B1,C, 0.79 0.0517 0.0746 11 0.59 0.0710 1.17
FLsy As,B1,Co 0.73 0.0476 0.0660 10 0.56 0.0533 1.16
RNgL A,Bs,Co 0.87 0.0489 0.0867 7 0.53 0.0914 1.15
RNsuy Ao,B1,Cy 0.54 0.9976 1.1514 5 0.33 1.0488 1.02
Whole FlgL Ao.B1,Cy 0.41 0.4985 0.5280 5 0.36 0.4789 1.08
FLsy A10,B1,Cy 0.42 0.6954 0.7714 6 0.21 0.6813 0.98
RNgL As,B3,Cy 0.98 0.0628 0.2875 8 0.62 0.5865 0.70
RNsy Ay,B1,Cy 0.46 0.7909 0.9258 4 0.45 0.8862 1.12
Sampled Slice Flol As,B1,Co 0.48 0.5025 0.5655 10 0.47 0.4939 114
FLsy As,B1,C, 0.39 0.1050 0.1145 8 0.26 0.1108 1.03
RNgL A4B1,Cy 0.43 0.3784 0.4041 3 0.20 0.4567 1.01
RNsy Ay,B1,Cy 0.36 1.1128 1.1837 3 0.31 1.0131 1.05
Whole FlgL A1,B1,Cy 0.48 0.4790 0.5309 5 0.37 0.4849 1.07
FLsy Ay,B3,Cy 0.36 0.6906 0.7818 1 0.28 0.6131 1.04
RNgL Ao,B3,Co 0.66 0.1362 0.2345 1 0.39 0.1803 1.02
RNsu A7,B1,Cy 0.70 0.1219 0.1518 5 0.69 0.1406 141

2 See table 3.1 footnote.
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5.3.3.2 Selected variables-PLSR models

Prediction models for glucose and sucrose in the case of Frito Lay 1879 and RN using
PLSR and based on selected variables from both IPLS and GA are shown in table 5.2 for the
2009 and 2011 seasons with the number of selected wavelengths in table 5.3. Comparing
between PLSR results for selected-variables models with those obtained from full or sampled
wavelengths and for 2009 showed that selected wavelengths-prediction models yielded the same
correlation performance, or slightly better, as full wavelengths as well as sampled wavelengths
models. Slightly better performance was obtained for FL glucose prediction models for sliced
samples and whole tubers with R(RPD) values of 0.79(1.61) and 0.81(1.72) using IPLS.
Moreover, an improvement in sucrose prediction models for RN in the case of sliced samples
and whole tubers with R(RPD) values of 0.55(1.18) and 0.64(1.30) were obtained from GA and

IPLS respectively.

For the 2011 season, significant improvements were obtained compared with full or
sampled wavelengths models. For sliced samples, glucose prediction models for FL and RN
showed R(RPD) values as high as 0.74(1.49) and 0.88(2.12), obtained from IPLS and GA
respectively. Sucrose prediction models also were improved for both cultivars and yielded
prediction models with R(RPD) values of 0.81(1.70) for FL using GA and 0.71(1.32) for RN
using IPLS. Whole tubers also showed considerable improvements with R(RPD) values for
glucose models as high as 0.71(1.32) 0.91(2.08) for FL and RN respectively and using IPLS as a
wavelength selection technique in both cases. In the case of sucrose, R(RPD) values were
0.80(1.64) and 0.94(2.82) for FL and RN respectively using IPLS. In general, IPLS yielded
better PLSR prediction models, using different window sizes, than GA, that has window size of

1, for both cultivars in 2009 and 2011 data sets
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with some exceptions shown in table 5.2. The best PLSR prediction models representing the
relationship between measured and predicted values of glucose and sucrose for the 2009 season

for are shown in Fig. 5.6.
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Table 5.2. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from
sampled wavelengths) and VIS/NIR interactance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season Wavelength selection Sample type | Cultivarconsiwent | Preprocessing® | Window Width Calibration model Validation model
technique Real RMSEC RMSEC. | LVS | Rprea | RMSEP RPD
(%) (%)

2009 IPLS Slice FloL Ag,B1,Co W1 0.79 0.0166 0.0177 8 0.78 | 0.0162 1.61
FLsy Ay,B1,Co w1 0.42 0.0726 0.0764 19 0.40 | 0.0760 1.09
RNgL A7,B3,Co W1 0.97 0.0174 0.0228 16 0.95 | 0.0247 3.02
RNsy A,B1,Co w1 0.69 0.0572 0.0692 20 0.64 | 0.0621 1.30
Whole Floo A,B1,Co w1 0.83 0.0150 0.0169 20 0.81 | 0.0151 1.72
FLsy Ao,B1,C, W1 0.51 0.7292 0.7793 20 043 | 0.7772 1.10
RNgL A,B1,Co w1 0.98 0.0129 0.0189 20 0.97 | 0.0192 3.89
RNsy Av,B1,C, W1 0.63 0.0941 0.1103 19 0.51 | 0.1052 1.15
GA Slice FlLgo Ag,B1,Co 0.79 0.0174 0.0183 13 0.78 | 0.0175 1.59
FLsy As,B1,Co 0.36 0.0234 0.0239 5 0.34 | 0.0247 1.07
RNgL A7,B1,Co 0.95 0.0215 0.0237 13 0.94 | 0.0263 2.83
RNsy Ay,B1,Co 0.61 0.0626 0.0722 17 0.49 | 0.0703 1.15
Whole FloL A1,B1,Co 0.84 0.0151 0.0183 20 0.80 | 0.0167 1.66
FLsy A7,B1,Cy 0.52 0.7235 0.7975 20 0.43 | 0.7715 1.10
RNgL Ao,B1,Co 0.98 0.0121 0.0209 20 0.97 | 0.0204 3.66
RNsy As,B1,Co 0.71 0.0557 0.0733 20 0.55 | 0.0684 1.18
2011 IPLS Slice FlgL Ao,B1,Co W2 0.80 0.0281 0.0374 19 0.68 | 0.0362 1.30
FLsy A7,B1,Co W1 0.74 0.0470 0.0571 20 0.71 | 0.0436 1.43
RNgL A7,B2,C w1 0.94 0.0326 0.0652 20 0.88 | 0.0497 212
RNsy A4B2,Cy W3 0.81 0.1235 0.2131 20 0.78 | 0.1267 1.57
Whole FlgL Ao,B2,Co W3 0.91 0.0213 0.0426 20 0.71 | 0.0397 1.32
FLsy Ao,Bs,Co W2 0.84 0.0320 0.0472 19 0.80 | 0.0384 1.64
RNgL Ay,B1,C w1 0.95 0.0251 0.0625 20 0.91 | 0.0453 2.08
RNsy Ay,B1,Co w1 0.95 0.0830 0.1565 6 0.94 | 0.1081 2.82
GA Slice Flol A7,B5,Co 0.78 0.0337 0.0414 20 0.74 | 0.0363 1.49
FLsy A7,B1,Co 0.89 0.0285 0.0440 20 0.81 | 0.0391 1.70
RNgL As,B3,C, 0.92 0.0391 0.0635 20 0.84 | 0.0516 1.87
RNsy A7,B1,C, 0.61 0.1656 0.2028 6 0.41 | 0.1843 1.08
Whole FlgL A4,B1,Cy 0.48 0.4802 0.5320 6 041 | 0.4673 111
FLsy As,B1,Cy 0.22 0.7480 0.7593 1 0.21 | 0.6494 1.03
RNgL Ay,B1,Co 0.95 0.0257 0.0696 13 0.71 | 0.0672 1.40
RNsy Ag,B3,Co 0.82 0.1325 0.2612 5 0.77 | 0.1916 1.56

2 See table 3.1 footnote.

123



o
i
o
S

* FL
RFLGL=O.78 * RN
Rrne=0.95

« FL
RFLGL=0-81 * RN
RrneL=0.97 . |

o

>

o

>
T

0.2 B

Predicted glucose concentration, (%FWVV)
Predicted glucose concentration, (%FVV)

0.1 0.2 0.3 04 0 0.1 0.2 0.3 04
Chemically measured glucose concentration, (%FW) Chemically measured glucose concentration, (%FW)

.+ FL

RFL5U=0.81 . RN
RRNSU:O-78

+ FL

RFLSU:O.BO . RN
Rrnsu=0.94

—y
T
°
1
—y
T

0.5r * )

0 E | |

-
i o
1 0“‘ i L
0 05 1 0 05 1 15

Chemically measured sucrose concentration, (%FW) Chemically measured sucrose concentration, (%FW)

Predicted sucrose concentration, (%FWV)
Predicted sucrose concentration, (% FWW)

_..
o

Nomenclature: Ryc

R= correlation coefficient of prediction model

V= Cultivar (Frito Lay 1879 (FL), or Russet Norkotah (RN).
C= Constituent (glucose (GL), or sucrose (SU)).

Figure 5.6. Best relationships between wet chemistry based and PLSR predicted constituents for Frito Lay 1879 and
Russet Norkotah in the 2009 season for a) Glucose for sliced samples, b) Glucose for whole tubers, ¢) Sucrose for
sliced samples, and d) Sucrose for whole tubers.

Table 5.3 shows the number of selected wavelengths from VIS/NIR interactance data for
potato tubers in the case of both sugars, for FL and RN cultivars, and for the 2009 and 2011
seasons. GA produces more selected wavelengths than IPLS in both visual and near-infrared
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regions which explains the better performance of prediction models based on GA than IPLS.

However, in practical applications, and in the case of closer performance between the two

methods, IPLS is preferred as it needs less time for prediction than GA.

Table 5.3. Selected wavelengths for predicting glucose and sucrose for sliced samples and whole tubers using IPLS
and GA methods (from sampled wavelengths) and VIS/NIR interactance in the 2009 and 2011 seasons for Frito Lay
1879 and Russet Norkotah cultivars.

Season | Wavelength | Sample Cultivarconstituent Window Total no. of No. of wavelengths in No. of wavelengths
selection type width wavelengths VIS region in NIR region
technique
2009 IPLS Slice FloL w=1 29 15 14
FLsy W=1 20 11 9
RNgL W=1 56 27 29
RNsy w=1 68 32 36
Whole FlgL Ww=1 75 35 40
FLsy w=1 21 5 16
RNgL w=1 49 27 22
RNsy w=1 33 18 15
GA Slice FLcL w=1 165 108 57
FLsy Ww=1 202 120 82
RNgL W=1 202 116 86
RNsy w=1 165 116 49
Whole FLgL Ww=1 184 97 87
FLsy w=1 193 116 77
RNgL Ww=1 217 118 99
RNsy w=1 182 94 88
2011 IPLS Slice FlLgL W=2 11 11 0
FLsy w=1 19 19 0
RNgL w=1 14 14 0
RNSU W=3 18 16 2
Whole FlgL W=3 24 18 6
FLsy W=2 20 18 2
RNgL w=1 37 35 2
RNsy Ww=1 24 18 6
GA Slice FlgL W=1 229 133 96
FLsy Ww=1 247 149 98
RNgL W=1 239 136 103
RNsy W=1 228 130 102
Whole FlLgL W=1 214 146 68
FLsu Ww=1 228 138 90
RNgL Ww=1 207 123 84
RNsu Ww=1 229 136 93

As can be noted from Fig 5.6, there were common wavelengths between the two seasons.

Due to the different number of samples used in each season, variation between samples, and

more storage conditions used in the 2011 season, there were some differences in the number of

selected wavelengths. In general, the selected wavelengths in the 2011 season seemed more
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efficient in yielding prediction models. With further studies, it is feasible to test the selected

wavelengths and evaluate the efficacy of them to produce more robust results.
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Nomenclature: VCSY

V= Cultivar (Frito Lay 1879 (FL), or Russet Norkotah (RN).

C= Constituent (glucose (GL), or sucrose (SU)).

S= Sample type (slice (S), or whole tube (W)).

Y= Season (2009 (09), or 2011 (11)).

Figure 5.7. Schematic representation of the selected wavelengths, using VIS/NIR interactance mode and IPLS,
associated with the best PLSR models of glucose and sucrose in the 2009 and 2011 seasons for sliced samples and
whole tubers for a) Frito Lay 1879, b) Russet Norkotah.

5.3.4 Artificial Neural Network (ANN) Results

5.3.4.1 Full and sampled variables models

Results for prediction models of glucose and sucrose for FL and RN using different types
of artificial neural network for full and sampled wavelengths for are shown in table 5.4. For
models based on full wavelengths, sliced samples in the 2009 season showed slightly less
performance than PLSR for full wavelengths. Values of R(RPD) for glucose prediction models

were 0.89(2.24) for FL using RBFNN and 0.86(1.91) for RN using FFNN. For sucrose models,
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the values were 0.58(1.15) for FL using NEWGRNN and 0.27(0.97) for RN using FFNN. For
whole tubers, correlation performance was close to PLSR results with R(RPD) values of
0.77(1.44) for FL using RBFNNE and 0.95(3.09) for RN in the case of glucose using RBFNN.
For the sucrose models, R(RPD) values were 0.46(1.01) for FL obtained using RBFNN and
0.63(1.28) for RN using RBFNNE. Results for the 2011 season showed improvement in both
sugars’ correlation for sliced samples. Glucose prediction models showed R(RPD) values as of
0.92(2.35) for FL obtained using RFBNNE and 0.94(2.97) for RN obtained using RBFNN.
Sucrose prediction models showed R(RPD) values as high as 0.82(1.67) and 0.36(1.08) for RN
using FFNN in both cases. Models for whole samples or whole tubers showed weak correlation

performance.

Results of prediction models obtained using sampled wavelengths mostly showed the
same results as the same models using full wavelengths for both seasons using ANN. As an
exception, in the 2009 season, an improvement in RN sucrose prediction resulted for sliced
samples with R(RPD) values as of 0.52(1.15) using NEWGRNN. Similar performance to the
2701 (full) wavelengths was achieved for both glucose and sucrose in the case of whole tubers.
In the 2011 season, also the same performance was achieved for glucose and sucrose prediction
models in the case of both cultivars. Consequently, using sampled wavelengths yielded same

performance for both seasons and it reduced computation time.
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Table 5.4. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR interactance and using full (2701) and sampled
wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season | Wavelengths utilized Sample type Cultivar constituent ANN type, Training Testing
CharaCteriStiCS Rtrain SecVtrain (%) RPD Rtest Septest (%) RPD
2009 Full Slice FlgL RBFNN 0.89 0.01 2.16 0.89 0.0121 2.24
FLsy NEWGRNN 0.65 0.02 1.38 0.58 0.0199 1.15
RNgL FENN, 1500 0.91 0.03 2.17 0.86 0.0324 1.91
RNsy FFNN, 1000 0.36 0.07 1.02 0.27 0.0721 0.97
Whole FlgL RBFNNE 0.78 0.0172 1.55 0.77 0.0182 1.44
FLsy RBFNN 0.55 0.02 1.13 0.46 0.0225 1.01
RNgL RBFNN 0.96 0.0224 2.51 0.95 0.0208 3.09
RNsuy RBFNNE 0.75 0.06 121 0.63 0.0547 1.28
Sampled Slice FLgL RBFNN 0.90 0.0120 2.28 0.90 0.0118 2.29
FLsy RBFNN 0.64 0.0189 1.35 0.57 0.0204 1.12
RNgL FFNN, 1000 0.89 0.0343 1.95 0.86 0.0315 1.96
RNsy NEWGRNN 0.58 0.0636 1.15 0.52 0.0608 1.15
Whole FLgL RBFNN 0.77 0.0181 1.56 0.76 0.0189 144
FLsuy RBFNNE 0.55 0.0226 1.13 0.45 0.0226 1.01
RNgL RBFNN 0.97 0.0178 3.34 0.94 0.0226 2.89
RNsy RBFNNE 0.75 0.0603 1.21 0.63 0.0547 1.28
2011 Full Slice FlgL RBFNNE 0.93 0.0206 2.70 0.92 0.0222 2.35
FLsy FFNN, 500 0.84 0.0359 1.70 0.82 0.0394 1.67
RNgL RBFNN 0.97 0.0157 3.31 0.94 0.0170 2.97
RNsuy FFNN, 1500 0.34 0.2221 1.71 0.36 0.4323 1.08
Whole FLgL FFNN, 1500 0.42 0.0465 111 0.36 0.0510 1.07
FLsy FFENN, 1000 0.35 0.0523 0.99 0.28 0.0498 1.01
RNGL FFNN, 500 0.37 0.2365 0.88 0.29 0.1878 0.83
RNsu FFNN, 1000 0.39 0.1698 1.06 0.31 0.2381 1.05
Sampled Slice FlgL RBFNN 0.92 0.0222 2.51 0.90 0.0244 2.14
FLsy RBFNN 0.96 0.0182 3.34 0.95 0.0200 3.29
RNgL FFNN, 1000 0.56 0.1567 1.22 0.37 0.1895 1.06
RNsy FENN, 1500 0.17 0.4167 0.80 0.14 0.5356 0.84
Whole FlgL FFNN, 1000 0.36 0.0593 0.87 0.33 0.0515 1.06
FLsy RBFNN 0.96 0.0150 3.45 0.94 0.0168 3.01
RNgL NEWGRNN 0.46 0.2092 1.09 0.17 0.2412 0.63
RNsy FFNN, 1500 0.51 0.2170 1.14 0.45 0.3221 111
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5.3.4.2 Selected variables- ANN models

Results of ANN prediction models based on variable selection techniques, IPLS and GA
in the case of the 2009 and 2011 seasons are shown in table 5.5. In the 2009 season, for sliced
samples, FL and RN glucose prediction models using IPLS showed R(RPD) values of 0.67(1.35)
obtained using FFNN and 0.95(3.16) using RBFNN respectively which is slightly better, for RN,
than the values obtained using full 2701 wavelengths or sampled ones. Sucrose prediction
models, however, showed less performance for RN compared with full or sampled wavelengths
models with R(RPD) values of 0.56(1.09) using RBFNN and 0.20(0.99) using FFNN for FL and

RN respectively.

Whole tubers’ prediction models using selected wavelengths showed almost the same
performance for glucose prediction compared to full or sampled wavelengths models with
R(RPD) values of 0.77(1.49) for FL and 0.95(3.21) for RN using RBFNN in both cases. Sucrose
prediction models for FL and RN, however, showed less correlation statistics, for RN, compared
to those for full or sampled wavelengths models with R(RPD) values, obtained from GA, of
0.46(1.01) and 0.16(0.99) using RBFNN and NEWGRNN respectively. Results also showed that
both IPLS and GA resulted in similar performance for glucose and sucrose prediction models in

the case of both cultivars in 2009 season.

For selected wavelengths prediction models in the 2011 season using ANN as shown in
table 5.5, generally considerably lower correlation was obtained compared with full or samples
wavelengths models in contrast to the results achieved in the case of PLSR with an exception of
the glucose prediction model for sliced samples for FL in which R(RPD) values were 0.91(2.25)

obtained using GA and RBFNN. Such results give priority to the PLSR prediction method over
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ANN for the application of variable selection on achieving the same or even better efficiency in

predicting glucose and sucrose for potato tubers using the VIS/NIR interactance technique.
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Table 5.5. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from
sampled wavelengths) and VIS/NIR interactance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season | Wavelength selection technique Sample Cultivar constituent ANN type, Training Testing
type characteristics Rirain SeCVirain (%0) RPD Riest SePrest (%0) RPD
2009 IPLS Slice FLoL FFNN, 150 0.73 0.0197 143 0.67 0.0202 1.35
FLsy RBFNN 0.53 0.0250 1.03 0.54 0.0227 1.00
RNgL RBFNN 0.97 0.0177 3.79 0.95 0.0196 3.16
RNsy FFNN, 500 0.16 0.0657 1.08 0.15 0.0812 1.00
Whole FLoL RBFNN 0.80 0.0163 1.64 0.77 0.0175 1.49
FLsy RBFNN 0.55 0.0225 1.14 0.45 0.0224 1.02
RNgL RBFNN 0.96 0.0220 2.56 0.95 0.0201 3.21
RNsy FFNN, 1000 0.21 0.0691 1.02 0.12 0.0845 0.96
GA Slice FLgL FFNN, 1000 0.72 0.0190 1.41 0.71 0.0184 142
FLsy FFNN, 500 0.62 0.0201 1.28 0.56 0.0210 1.09
RNgL RBFNN 0.96 0.0195 344 0.95 0.0190 3.25
RNsy FFNN, 300 0.30 0.0728 1.00 0.20 0.0711 0.99
Whole FLgL RBFNN 0.78 0.0168 1.59 0.77 0.0174 1.50
FLsuy RBFNN 0.49 0.0227 1.13 0.46 0.0226 1.01
RNgL RBFNN 0.96 0.0219 2.57 0.95 0.0210 3.06
RNsy NEWGRNN 0.29 0.0728 1.00 0.16 0.0712 0.99
2011 IPLS Slice FlgL RBFNN 0.92 0.0216 2.58 0.90 0.0239 2.18
FLsy FFNN, 500 0.34 0.0573 1.06 0.25 0.0636 1.03
RNgL FFENN, 500 0.51 0.1588 1.15 0.48 0.1714 1.14
RNsy FFNN, 50 0.36 0.2593 1.37 0.35 0.4327 1.05
Whole FLoL FFNN, 500 0.36 0.0536 0.96 0.19 0.0546 1.00
FLsy FFNN, 1000 0.53 0.0510 1.10 0.30 0.0705 1.03
RNgL FFNN, 50 0.65 0.1703 0.94 0.40 0.1600 1.08
RNsy FFNN, 1000 0.58 0.2044 1.08 0.50 0.2572 1.10
GA Slice FlgL RBFNN 0.92 0.0222 2.50 0.91 0.0231 2.25
FLsy FENN, 50 0.24 0.0596 1.02 0.22 0.06 1.02
RNgL FFNN, 150 0.44 0.1735 1.06 0.30 0.1918 1.02
RNsy FFNN, 50 0.36 0.2360 1.61 0.21 0.4769 0.98
Whole FlgL FFNN, 300 0.23 0.3252 1.03 0.16 0.4466 1.01
FLsy FFNN, 150 0.40 0.0557 0.93 0.34 0.0475 1.06
RNgL FFNN, 300 0.33 0.1876 1.10 0.24 0.1658 0.94
RNsy FFENN, 50 0.53 0.2072 1.20 0.54 0.3008 1.19
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5.3.5 Results of Potatoes Classification Based on Sugar Levels and Selected Wavelengths

Based on glucose and sucrose thresholds as described in section 5.3.3, data was divided
into two classes for sliced samples and whole tubers for the 2009 and 2011 seasons as presented
in table 5.6 with outliers removed. Classification error for training, using cross validation, and
testing groups for both seasons is shown in table 5.7 with the lowest classification error in each

case marked with bold font.

Table 5.6. Number of samples in each class based on glucose and sucrose levels, obtained from wet chemistry, for
sliced samples and whole tubers in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season Sample Cultivar constituent Class 1 (less than threshold) Class 2 (above threshold)

2009 Slice FlaL 445 562
FLsu 523 458

RNgL 177 159

RNsu 195 139

Whole FlLoL 222 281

FLsu 266 229

RN 88 79

RNsu 87 68

2011 Slice FlLoL 204 186
FLsu 218 146

RNgL 66 84

RNsy 58 82

Whole FlLoL 136 57

FLsu 122 71

RNgL 31 44

RNsy 26 48

In both seasons, classification performance generally followed the PLSR trend explained
in section 5.3.3. For the 2009 season, classification error values of glucose-based models (16%
and 13% for FL and RN in the case of sliced samples, and 18%, and 13% in the case of whole
tubers) were much lower than those for sucrose-based models (35%, and 36% for FL and RN in
the case of sliced samples and 34%, and 38% for FL and RN in the case of whole tubers).
However, results for 2011 indicated better performance for sucrose-based classification.
Classification errors based on glucose were 21%, and 23% for FL and RN in the case of sliced
samples and 23%, and 0% for FL and RN in the case of whole tubers. While for sucrose-based

models, error values were 23%, and 18% for FL and RN in the case of slice samples and 26%,
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and 14% for FL and RN in the case of whole tubers. Results for 2011 showed the advantage of
obtaining broader sugar distribution, especially for sucrose, which was confirmed by PLSR

prediction outputs.

As noted from table 5.7, PLSDA generally presented the least classification error,
especially for the 2011 season, followed by LDA models. Knn and ANN, however, did not yield
as powerful performance as the former methods. Additionally, classifier fusion models showed
similar results to PLSDA in many cases, with the lowest error obtained for RN using glucose
levels in the 2011 season for whole tubers. Consequently, combining classifier outputs did

improve classification results in certain cases.

Classification results obtained in this study show the potential of sorting potato tubers
based on glucose or sucrose levels associated with, and of importance to, processing for each
sugar, which has not been addressed before using any non-destructive method. Such sorting is
important for the frying industry and can help decrease the losses during storage by identifying
tubers with excessive sugar levels such that the possibility exists for reversing sugar levels to
normal levels using the recommended temperatures for a certain period in a process called

reconditioning (Sowokinos, 2007).
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Table 5.7. Classification results of sliced samples and whole tubers of Frito Lay 1879 and Russet Norkotah cultivars based on glucose and sucrose levels and
using multiple classification techniques and VIS/NIR interactance in the 2009 and 2011 seasons.

Season | Sample type Cultivarconsituent Preprocessing for LDA; Knn; PLSDA; ANN; Training error (%) Testing error (%)

combined classifier * LDA | Knn | PLSDA | ANN | LDA [ Knn | PLSDA | ANN | Combined
classifiers

2009 Slice FleL Az Ag; As; AsAq 19 22 16 21 17 22 16 20 16

FLsy As; Ag; A, AsiAr 36 43 35 38 35 44 38 41 38

RNoL Az Ag; As; AAs 16 19 13 18 15 24 13 15 13

RNsy As; As; Ao, AviAo 34 41 26 40 42 36 41 38 41

Whole FlgL Ao; As; Asz; AsAo 21 25 13 28 21 24 18 25 19

Flsy Ao, As; Ary AgiAs 36 44 35 45 34 35 35 47 35

RNcL Az, Ag; As; AP 17 25 7 19 13 28 18 51 18

RNsy Asz; Ao; As; AviAs 28 39 24 40 44 41 38 38 38

2011 Slice FlgL A7 A A AnAr 24 42 16 36 31 32 21 33 21

FLsu Ao; Asz; As; AsiAo 29 43 2 30 38 40 23 40 33

RNeL Ao; Ao; As; Ao,As 25 41 2 33 30 40 23 40 23

RNsy As; Ao; Awz; AviAs 23 34 18 29 43 39 18 32 18

Whole FLoL Ay Ag; As; AgAs 28 44 22 23 28 29 23 29 23

FLsu As; As; Ar; AsiAs 25 41 26 26 39 29 26 34 32

RNoL As; Ag; Aoy AsiAs 9 23 0 29 21 39 7 29 0

RNsy Ag; Az As; A As 7 30 0 14 36 29 14 21 14

2 See table 3.1 footnote.
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5.3.6 Results for 2009-2011 Combined Data

Results of combining data from the 2009 and 2011 seasons for building prediction
models for glucose and sucrose using PLSR are shown in table 5.8. Results obtained of both
sugars for FL and RN showed similar results compared to those obtained from the 2009 season
in the case of sliced samples and whole tubers. Consequently, combining data from both seasons
didn’t show significant improvement for prediction models compared to results conducted from

the 2009 season using PLSR.

Table 5.8. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR
interactance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data.

Sample type Cultivar onstituent Preprocessing ? Calibration model Validation model
Rca | RMSEC | RMSEC,, | LVS | Rpred | RMSEP RPD
Slice FlgL Ao,B1,Cy 0.79 0.4499 0.4855 20 | 0.78 0.4638 1.58
FLsy A12,B5,Co 0.70 0.0325 0.0378 20 | 054 0.0408 1.18
RNgL A7,B1,C, 0.98 0.0447 0.0564 20 | 0.96 0.0584 3.82
RNsy A7,B3,Co 0.77 0.1354 0.2305 1] 044 0.1940 1.03
Whole FLoL Ay,B1,Cy 0.83 0.3980 0.4809 20 | 0.78 0.4412 1.58
FLsy Ay,B1,Co 0.55 0.0306 0.0318 10 | 051 0.0321 1.16
RNgL Ao,B1,C 0.98 0.0377 0.0563 18 | 0.96 0.0571 3.42
RNsy Ag,B3,Co 0.47 0.1372 0.1443 3] 046 0.1584 1.13

& See table 3.1 footnote.

ANN prediction results obtained from combined data of 2009 and 2011 seasons are
shown in table 5.9. No improvement in glucose and sucrose prediction performance was
observed for either cultivar which, in addition to the previous PLSR results, gives a note that
combing data from the two seasons is negatively affected by the variation in samples, and
reference (glucose and sucrose) distribution that was affected by adding another storing

temperature (1°C) to the experiments in the 2011 season.
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Table 5.9. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using VIS/NIR
interactance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data.

Sample Type Cultivarconstituent ANN type, Training Testing
characteristics Rirain SeCVirain (%0) RPD Riest SePrest (%0) RPD
Slice FLoL FFNN, 1500 0.71 0.0296 1.34 0.69 0.0302 1.38
FLsy FFNN, 1000 0.46 0.0420 1.06 0.45 0.0403 1.12
RNgL FFNN, 500 0.87 0.1246 2.01 0.85 0.1294 1.85
RNsy FFNN, 500 0.46 0.1625 1.68 0.40 0.1597 0.83
Whole FLoL NEWGRNN 0.61 0.0294 144 0.58 0.0326 1.22
FLsy FFNN, 500 0.31 0.0424 0.84 0.26 0.0357 0.96
RNgL RBFNNE 0.75 0.1219 1.78 0.72 0.1527 1.36
RNsy FFNN, 500 0.54 0.1172 1.32 0.46 0.1380 1.13

5.4 Conclusion

VIS/NIR interactance signals in the range of 501-1004 nm of potato sliced samples and
whole tubers were extracted from the original wavelengths range (446-1125 nm) and used to
build prediction models using partial least squares regression and different types of artificial
neural network for glucose and sucrose sugars. IPLS and GA as wavelength selection
techniques were applied on a sampled set of signals acquired from the VIS/NIR interactance
measurements (446-1125 nm) for Frito Lay 1879 and Russet Norkotah potato cultivars. All
electronic measurements were compared against glucose and sucrose that were measured using
the enzymatic approach. PLSR and ANN were used to build calibration and prediction models
for glucose and sucrose in the case of 0.5°” (12.7 mm) sliced samples and whole tubers.
Selected wavelengths were found to have strong correlation performance with RMSEP of
0.0162%, and 0.0247% for FL and RN for sliced samples in the case of glucose. In the case of
sucrose, the best models had RMSEP values of 0.0227% and 0.0621% for FL and RN
respectively. Whole tubers yielded even better performance than sliced samples with RMSEP
values of 0.0151, and 0.0192% for FL and RN in the case of glucose, while those values for
sucrose were 0.0241% and 0.1052% for FL and RN. Such levels of accuracy are suitable for
monitoring sugar levels especially for whole tubers which is crucial practice during storage, and
prior to processing.
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Classification of tubers based on sugar levels important to the frying industry was shown
to have feasible application for sorting, especially in the case of glucose in which the error
values for testing sets were as low as 18%, and 0% for FL, and RN, and those values were 26%,
and 14% for sucrose. Classification performance can likely be improved with broader and more
uniform distribution of sugars, and scanning the whole tuber in more than one point on the tuber
surface so that more robust prediction and classification is feasible. Moreover, to simulate real
sorting conditions, it is important to conduct more experiments on moving tubers mixed with

clods, and using tubers that have soil attached to their surfaces.
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CHAPTER 6 RAPID EVALUATION OF PHYSIOLOGICAL STATUS OF POTATO
TUBERS USING NEAR-INFRARED REFLECTANCE SPECTROSCOPIC METHODS

(Expanded from: Rady, A.M., Guyer, D.E. 2014. Evaluation of sugar content in potatoes using nir
reflectance and wavelength selection techniques. Postharvest Biology and Technology (in review))

6.1 Introduction

Near-infrared (NIR) reflectance is the most extensively-studied phenomenon explained
using physics laws for the interaction between light and matter in the NIR region (Dahm and
Dahm, 2001; Olinger et al., 2001). When NIR light interacts with a biological object, a portion of
the light is reflected from the surface, yet holding limited information about the chemical
composition of the object. Another portion of the incident light, however, penetrates the surface,
scatters, is adsorbed by different molecules, is transmitted through the object to the other side,
and/or is reflected again from the surface and holding significant of information of the object
components which is known as the diffuse reflected light. Diffuse reflectance observations have
been studied and many mathematical models were developed in attempts to model it starting

from Lambert law. It is also strongly affected by the general radiation transfer equation.

In general, NIR diffuse reflectance became the base for most commercially-built NIR
instrumentations (Shenk et al., 2001). In the agriculture and food industry fields, NIR diffuse
reflectance was applied by Gera and Norris (1968), to rapidly detect moisture and protein for
grains, and protein, oil, and moisture content for soybeans. Later, Shenk et al. (1977a, 1977b),
studied the application of NIR diffuse reflectance on forage quality. Since then, the investigation
of applying NIR diffuse reflectance techniques on monitoring quality parameters for fruits and

vegetables has continued.
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Potato tuber, as a major crop around the world, with its importance for human diet, and
with numerous industries that aim to provide high quality fresh or processed products, results in
the need for rapid, yet accurate tools by which quality characteristics monitoring could be
conducted either on line for the raw tubers during harvesting, sorting, storage, and/or even after
processing. Sugar content in potato tubers is very critical in determining the suitability for
processing as French fry or chip, so the establishment of a device to easily, accurately and cost
effectively monitor sugar levels is needed and beneficial for growers to estimate best time for
harvest, and for quality control specialists in processing plants to confirm the status of tubers. In
the current chapter, three data sets were obtained from the NIR reflectance system; full
wavelengths, sampled wavelengths, and selected wavelengths using IPLS and GA. The analysis
of such data sets included building prediction models for glucose and sucrose, and classification

of sliced samples and whole tubers using various techniques.

Based on the above noted considerations, the objectives of this study were:

1. Determine the potential of NIR diffuse reflectance spectroscopy for quantifying the
level of sucrose and glucose levels in potato tubers.

2. Development of a reliable prediction models that may be used to detect the amount of
sucrose and glucose in potato tubers at levels which are important for potato growers and
processors.

3. Detect the most effective wavelengths related to glucose and sucrose absorption based

on NIR diffuse reflectance measurements and variable selection techniques.

4. Study the potential of using NIR reflectance measurements of potatoes along with
wavelength selection techniques to classify whole tubers and 0.5’ (12.7 mm) sliced samples

according to sugar levels related to the frying process.
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6.2 Material and Methods

6.2.1 Constituent Measurement

6.2.1.1 Potato sample preparation

The sample preparation technique for the reflectance measurements followed the same
routine as illustrated in section 4.2.2.1. Additionally, whole tubers were also used in electronic
measurements. Whole tubers were placed on the sample holder such that the middle area of the

longitudinal axis was penetrated by incident light.

6.2.1.2 Wet chemistry basis measurements

The procedure used in juice extraction from sliced samples was the same as was used in
section 5.2.2.1. Also, wet chemistry steps conducted to evaluate glucose and sucrose
concentrations were the same as mentioned in section 4.2.2.2 and using equations 3.2 and 3.3

respectively.

6.2.2 NIR Reflectance System

According to Burn and Ciurczak (2001), the use of NIR diffuse reflection for quantitative
analysis of biological products is widely applicable. In the reflectance mode, the incident light
penetrates the sample surface and a portion of such light passes within the sample tissue and is
then reflected back, known as diffuse reflectance, and detected with information about the
internal composition of the tubers (Chen, 1978). The light source probe tip and the detector tip
were approximately 3 cm from the sample upper surface. . An InGaAs spectrometer (model No.
NIR512L-1.7T1, Control Development, Inc., South Bend, IN, USA) with spectral resolution of

3.25 nm FWHM and linear dispersion of 1.625 nm/pixel was used in the reflectance mode, in the

140



wavelength range of 900-1685 nm along with an Oriel radiometric power supply with a 300 watt
maximum power (model No0.68931, Oriel Inst., Irvine, CA, USA), and an Oriel light source
(model No. 66881, Oriel Inst., Irvine, CA, USA) having 250 watt maximum power, and with a
quartz tungsten halogen lamp. In the diffuse reflectance experiments, the sample area covered by
the light source had a diameter of 25.5 mm. The integration time was set as 4 ms, and each
measurement is the average of four individual measurements. The incident light was directed on
the middle area of the cut side of the slice. For the whole tubers, the light was directed on the
surface approximately in the center area where the longitudinal, and perpendicular axes intersect.
The detector covers an area on the sample surface of 12.7 mm diameter. A schematic diagram of
the reflectance system used in the experiment is represented in Fig. 6.1. The relative reflectance

was calculated using equation 3.1.
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Figure.6.1. Schematic representation of NIR diffuse reflectance mode and a clearer view of sample setting.

6.2.3 Data analysis Discussion and Approach

6.2.3.1 Data handling

Various scenarios of handling and consequently statistical analysis were applied for the
relative reflectance data extracted from reflectance experiments. Fig. 6.2 shows the sequence of
data handling and methods used to build prediction models. First the signals resulted from

measurements were visually checked for noise and consequently no reduction on number of
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wavelengths was conducted. Next, two modes of data were tested, the data containing full 784
wavelengths, and data sampled at every 3 wavelengths resulting in a 262- variable matrix.
Additionally, data from the 2009 and 2011 seasons were mixed together in both the full and
selected wavelengths models and PLSR and ANN analysis were conducted to obtain prediction

models for both glucose and sucrose on all data sets.

6.2.3.2 Partial least squares regression (PLSR)
A complete description of PLSR used in this research along with pretreatment for either

spectra or reference values is described in section 3.2.4.

6.2.3.3 Artificial neural network (ANN)
The same artificial neural network types, and configuration applied in this study were the

same as that used in section 4.2.4.3.

6.2.3.4 Wavelength selection

A complete description of interval partial least squares (IPLS) and genetic algorithm

(GA) used in this research was listed in section 4.2.4.5.

6.2.3.5 Classification of potatoes based on sugar levels

A complete description of the techniques used in potatoes classification based on selected

wavelengths is stated in section 5.2.4.5.
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Figure 6.2. A schematic diagram of data handling and analysis for NIR reflectance experiments to obtain prediction
models of glucose and sucrose for two potato cultivars.
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6.3 Results and Discussions

6.3.1 Constituents Distribution

The basic statistics for both glucose and sucrose over the 2009 and 2011 data were shown

in table 4.1.

6.3.2 Spectra for Sliced Samples and Whole Tubers

The relative values of absorbance or log(1/reflectance) resulting from the NIR
experiments through the 2009 and 2011 seasons are shown in figures 6.3 and 6.4 respectively for
both Frito Lay 1879 and Russet Norkotah cultivars in the case of sliced samples and whole
tubers. Signals of whole tubers in both seasons appear to be more condensed than signals of
sliced samples especially in the 2011 season with an exception of RN for the whole tubers.
Russet Norkotah showed more spread in signals than in Frito Layl879 and the possible
explanation for this is that the FL periderm is thinner and easier to get scraped, in the case of
whole tuber measurement, than in RN giving the chance to sometimes expose the periderm layer,
which is different in color, to the incident light than the outer layer thus yielding different
reflectance values. Whereas in the case of RN, the outer layer is stronger, more difficult to get
scraped during handling, and consequently, the variability in surface reflectance is less.
Moreover, for the sliced samples, similar trend of signals for FL and RN was observed with
multiple water absorption peaks around 970, 1200, and 1450 nm (Workman and Weyer, 2008).
Additionally, another absorption peak, in both cultivars, is noted at 1530 in the 2009 sliced data
nm which is a possible indication of an OH polymeric group located in starch (Workman and
Weyer, 2008). In general, signals collected from whole tubers showed less absorption than sliced
samples especially for RN which yielded more condensed response than FL. The possible

explanation for such result is the thicker periderm layer of RN that reduces the captured diffuse
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reflectance signals. It is worth stating that the absorption peaks for sliced samples (around 970,
1200, and 1450 nm) were noted in the whole tubers in both cultivars with more clarification in
FL. Another effect of the thick skin for RN was the absence of the apportion peak at 1530 nm

and the relatively slight presence, compared to sliced samples, of the same peak in FL samples in

the 2009 data.
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Figure 6.3. Signals of absorbance (log(1/relative reflectance)) for the 2009 season data for sliced samples a. Frito
Lay 1879, b. Russet Norkotah, and for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah.
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Figure 6.4. Signals of absorbance (log(1/relative reflectance)) for the 2011 season data for sliced samples a. Frito
Lay 1879, b. Russet Norkotah, and for whole tubers for c. Frito Lay 1879, and d. Russet Norkotah.

6.3.3 Partial Least Squares Regression (PLSR) Results
6.3.3.1 Full and sampled variables models

Results for calibration and prediction models of glucose and sucrose using full
wavelengths for both Frito Lay1879 (FL) and Russet Norkotah (RN) cultivars in the case of the

2009 and 2011 seasons are shown in table 6.1. In the 2009 season, and based on full wavelengths
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models, for glucose prediction models, FL yielded strong correlation with R(RPD) values of
0.74(1.47) for sliced samples and 0.76(1.53) for whole tubers. Compared to glucose models,
weaker correlation was obtained for sucrose with R(RPD) values of 0.36(1.06) for sliced samples
and 0.40(1.05) for whole tubers. In the case of RN, better glucose prediction was obtained than
with FL. Sliced samples yielded glucose prediction models with R(RPD) values of as high as
0.95(3.11) and those values were 0.98(4.24) for whole tubers. Whereas, again weaker correlation
was obtained for sucrose prediction models with R(RPD) values of 0.65(1.31) for sliced samples,
and 0.57(1.18) for whole tubers. For the prediction models obtained from sampled wavelengths,
slightly less performance, compared to the full wavelengths’ models, was obtained for both
cultivars in the case of both glucose and sucrose which clarifies the advantage of reducing data

dimension using sampling.

In the 2011 season, using the full wavelength range showed general higher correlation
than in the 2009 season. Glucose prediction models showed R(RPD) values as high as 0.83(1.78)
for sliced samples and 0.71(1.28) for whole tubers. Sucrose prediction models showed R(RPD)
values of 0.61(1.26) for sliced samples and 0.65(1.33) for whole tubers. Higher prediction of
sugars, than FL, was obtained for RN with R(RPD) of glucose models as of 0.97(4.21) for sliced
samples and 0.98(4.84) for whole tubers. In the case of sucrose, R(RPD) values were 0.55(1.18)

for sliced samples, and 0.75(1.52) for whole tubers.

Performance of prediction models for glucose models based on sampled wavelengths was
similar to full wavelengths models in both cultivars and both sliced samples and whole tubers
except in the case of sliced samples for FL in which lower correlation was obtained. Sucrose
prediction models also showed similar correlation for FL compared to full wavelengths’ models.

However, RN showed slightly less correlation compared with full wavelengths’ models.
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Table 6.1. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using NIR reflectance and using full (784) and sampled
wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season Wavelengths utilized Sample type Cultivar onstituent Preprocessing ? Calibration model Validation model
Real RMSEC RMSEC,, LVs Ropred RMSEP RPD
(%) (%)
2009 Full Slice FloL Ag,B1,Co 0.77 0.0476 0.0533 20 0.74 0.0509 1.47
FLsy As,B1,Co 0.51 0.0290 0.0311 18 0.36 0.0311 1.06
RNgL A12,B5C, 0.97 0.0321 0.0550 16 0.95 0.0419 3.11
RNsy A1,B5,C, 0.82 0.0708 0.1155 9 0.65 0.0922 131
Whole Floo A1,B5,C, 0.80 0.0446 0.0525 20 0.76 0.0492 1.53
FLsy A12,B5,Co 0.64 0.0242 0.0286 20 0.40 0.0298 1.05
RNgL A7,B5,Co 0.99 0.0109 0.0428 19 0.98 0.0228 4.24
RNsy A4,B3,Co 0.77 0.0524 0.0732 3 0.57 0.0687 1.18
Sampled Slice FlgL A12,B3,Co 0.77 0.0480 0.0538 18 0.73 0.0512 1.46
FLsy A7,B1,Co 0.49 0.0274 0.0293 17 0.37 0.0294 1.07
RNeL A12,B5,Co 0.96 0.0374 0.0560 17 0.93 0.0468 2.78
RNsy A12,B1,C, 0.67 0.0614 0.0776 19 0.55 0.0687 1.18
Whole FlLgL A7,B3,Co 0.74 0.0195 0.0242 19 0.71 0.0204 1.41
FLsy A12,B5,Co 0.58 0.0255 0.0292 20 041 0.0291 1.08
RNgL A4,B3,Co 0.99 0.0152 0.0590 9 0.96 0.0356 3.69
RNsy A7,B5,Co 0.76 0.0537 0.0731 4 0.57 0.0690 1.18
2011 Full Slice FlgL A12,B5,C; 0.91 0.0319 0.0568 20 0.83 0.0435 1.78
FLsy As,B3,Co 0.62 0.0544 0.0630 12 0.61 0.0494 1.26
RNgL A4,B1,Co 0.99 0.0295 0.0973 20 0.97 0.0468 4.21
RNsuy A12,B1,Co 0.67 0.0614 0.0776 19 0.55 0.0687 1.18
Whole FlgL A7,B3,Co 0.97 0.0146 0.0452 19 0.71 0.0441 1.28
FLsy As,B3,Co 0.67 0.0437 0.0526 12 0.65 0.0475 1.33
RNgL A,B1,Co 0.99 0.0290 0.0881 18 0.98 0.0387 4.84
RNsy As,B1,Co 0.76 0.1060 0.1700 7 0.75 0.1324 152
Sampled Slice Flol A4,B1,Co 0.77 0.0503 0.0616 15 0.72 0.0534 1.45
FLsy As,B1,Co 0.67 0.0478 0.0531 20 0.59 0.0484 1.20
RNgL A4,B3,Cy 0.99 0.0655 0.1855 20 0.97 0.0976 4.20
RNsy A,B1,Cy 0.71 0.1477 0.1963 8 0.38 0.2049 0.97
Whole FlLgo A12,B1,Co 0.91 0.0245 0.0465 19 0.71 0.0445 1.27
FLsy Ag,Bs,Co 0.63 0.0454 0.0543 10 0.62 0.0491 1.29
RNgL A4,B1,Co 0.99 0.0310 0.1017 17 0.98 0.0402 4.65
RNsy As,B3,C, 0.87 0.0809 0.1836 15 0.67 0.1459 1.38

2 See table 3.1 footnote.
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6.3.3.2 Selected variables- PLSR models

Prediction models for glucose and sucrose in the case of Frito Lay 1879 and Russet
Norkotah using PLSR based on selected wavelengths from IPLS and GA for the 2009 and 2011
seasons are shown in tables 6.2 and the clarification of selected wavelengths is shown in table
6.3. In general, IPLS-based prediction models yielded better performance than GA-based
models. Thus, the results for IPLS will be stated here. Glucose prediction models for sliced
samples yielded R(RPD) values of 0.76(1.54) for FL and 0.94(2.73) for RN. The values for
whole tubers were 0.72(1.44) for FL, and 0.95(3.05) for RN. In the case of sucrose prediction
models for sliced samples, R(RPD) values were 0.50(1.15) for FL, and 0.35(1.04) for RN. The
values for whole tubers were 0.45(1.12) for FL, and 0.56(1.19) for RN. By comparing the results
obtained from selected wavelengths to those obtained from full wavelengths, some notes should
be listed. In general, IPLS is preferable over GA as it yielded higher correlation and less selected
wavelengths. Performance of prediction models obtained from IPLS was closer to, or better than,
full models for both sliced samples or whole tubers with an exception of the sucrose model of
RN in the case of sliced samples in which significantly lower performance was achieved. For the
2011 season, a significant improvement was achieved in the prediction performance for both
sugars in the case of FL and RN and for both sliced samples and whole tubers with an exception
being the glucose prediction model for FL in the case of sliced samples. Again, only results
obtained using IPLS will be noted here as they showed better performance than GA models.
Glucose prediction models for sliced samples showed R(RPD) values of 0.74(1.48) for FL and
0.97(4.07) for RN. The values for whole tubers were 0.82(1.78) for FL and 0.98(4.57) for RN. In

the case of sucrose prediction models for sliced samples, R(RPD) values were 0.74(1.41) for FL
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and 0.81(1.66) for RN. For the whole tubers, R(RPD) values were 0.73(1.46) for FL and

0.93(2.77) for RN.

Most results obtained from IPLS, table 6.2, were based on window width of two (w=2).
GA selected variables were all with window width of one. As mentioned before, IPLS showed
less number of selected variables compared to GA for 2009 and 2011 as shown in table 6.3.
Moreover, all of the selected wavelengths’ ranges showed a domination of the wavelengths in
the range 900-1160 nm which supports that the effective wavelengths in the NIR region
associated with high correlation is located within this range. The best relationships between the
measured, and predicted sugar values for FL, and RN for sliced samples and whole tubers in the
2011 season is shown in Fig. 6.4.

The improvement of results for whole tubers compared to sliced samples, especially for
sucrose models in the 2011 season, is possibly a result of the sugar distribution inside tubers.
According to Kumar and Ezekiel (2004); and Rastovski et al. (1987), sugars inside potato tubers
tend to concentrate more on the vascular ring than on other tuber parts. Consequently, the diffuse

reflected light is expected to hold information of the tissue closer to the skin than to the pith.

Results also showed that prediction models of glucose and sucrose obtained using IPLS
yielded better performance than GA models for both cultivars, and also table 6.3 indicates that
the selected wavelengths using IPLS were less than GA in all models. Possible reasons for such
results include the more likelihood for over fitting to occur in GA than IPLS in the case of fewer
number of samples than variables which was noted in the 2011 season compared to 2009 season
(Wise et al., 2006). Due to the lower sugar concentration for FL than RN, results showed less

correlation of prediction models for FL than RN in the case of glucose and sucrose as the
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detection of certain chemical substance using spectroscopic systems increase with the

concentration.

It is worth stating that the prediction of glucose and sucrose for potatoes using selected
wavelengths and NIR diffuse reflectance was not previously published and the prediction results
obtained in this study by PLSR are comparable with others reported by Hartmann and Biining-
Pfaue (1998), on homogenized samples (RMSEP= 0.041% and 0.037% for glucose and sucrose);
Yaptenco et al. (2000), on whole tubers (RMSEP= 0.087% and 1.473% for glucose and sucrose);
or Haase (2011), on aliquots samples (SEP=0.0389%, and 0.0966% for reducing sugars and
sucrose). Sampling times in this study are significantly lower than that for all previous studies
except for Yaptenco et al. (2000), which did not include a separate prediction data set. This study
is also confirms the results obtained by Rady et al. (2014), in which a potential investigation of
measuring glucose and sucrose of potatoes was shown using different techniques and strong
correlation for glucose was achieved for sliced samples (RMSEP= 0.0515%, and 0.0786% for
FL, and RN), and whole tubers (RMSEP= 0.0620%, and 0.1529% for FL, and RN) using

VIS/NIR interactance spectroscopy. However, no variable selection was applied.
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Table 6.2. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from
sampled wavelengths) and NIR reflectance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season | Variable selection technique | Sample type | Cultivarconstituent Preprocessing ® | Window Width Calibration model Validation model
Rea RMSEC | RMSEC. | LVs | Rpea | RMSEP RPD
(%) (%) (%)

FlgL Ao,B1,C W1 0.78 | 0.0466 0.0497 20 0.76 | 0.0489 1.54
Slice FLsy A7,B1,Co W2 0.58 | 0.0277 0.0306 19 0.50 | 0.0286 1.15
RNgL Ao,B1,Co W1 0.96 | 0.0229 0.0332 20 0.94 | 0.0353 2.73
IPLS RNsy As,B1,Cy w1 0.54 | 0.7831 0.9260 20 0.35 | 0.9150 1.04
[ Ao,Bs3,C; W2 0.73 | 0.0520 0.0553 20 0.72 | 0.0524 1.44
Whole FLsy Ao,B1,Co W2 0.52 | 0.0289 0.0305 20 0.45 | 0.0295 1.12
RNgL A7,B;,Co W2 0.96 | 0.0360 0.0471 20 0.95 | 0.0432 3.05
2009 RNsy Ao,B1,Co W1 0.69 | 0.0593 0.0665 20 0.56 | 0.0681 1.19
FlgL A12,B5,C; 0.71 | 0.0536 0.0596 9 0.70 | 0.0541 1.39
Slice FLsy As,B1,Co 0.44 | 0.0303 0.0319 13 0.36 | 0.0307 1.07
RNgL A7,B1,C, 0.93 | 0.0442 0.0609 13 0.87 | 0.0644 2.04
GA RNsy As,B1,C, 0.44 | 0.1119 0.1238 11 0.26 | 0.1179 0.99
FlgL A4,B3,Cs 0.75 | 0.0499 0.0592 18 0.71 | 0.0530 1.42
Whole FLsu A7,B1,Co 0.51 | 0.0290 0.0324 18 0.36 | 0.0312 1.06
RNgL A7,B3,Co 0.97 | 0.0264 0.0542 18 0.94 | 0.0326 2.85
RNsy A4,B3,Co 0.77 | 0.0529 0.0734 3 0.57 | 0.0690 1.18
FlgL A7,B3,Co W3 0.86 | 0.0310 0.0425 17 0.74 | 0.0403 1.48
Slice FLsy A7,B1,Co W1 0.90 | 0.0277 0.0344 20 0.74 | 0.0411 141
RNgL Ao,Bo,Co W2 0.98 | 0.0400 0.0601 20 0.97 | 0.0483 4.07
IPLS RNsy Ao,B3,Co W2 0.98 | 0.0645 0.2791 20 0.81 | 0.2296 1.66
FlgL As,B1,Co Wi 0.87 | 0.0281 0.0387 19 0.82 | 0.0318 1.78
Whole FLsy Ao,B1,Co W2 0.87 | 0.0246 0.0385 20 0.73 | 0.0359 1.46
RNg. Ao,B1,Co W2 0.99 | 0.0312 0.0674 20 0.98 | 0.0409 4.57
2011 RNsy A12,B1,Co W3 0.96 | 0.0688 0.2085 20 0.93 | 0.1128 2.77
FlgL Ag,B1,C 0.82 | 0.0447 0.0583 19 0.77 | 0.0491 0.82
Slice FLsu Ao,B1,Co 0.76 | 0.0452 0.0607 19 0.56 | 0.0554 1.12
RNgL A7,B1,Cy 0.89 | 0.1951 0.2762 11 0.87 | 0.2013 2.03
GA RNsy Ag,B1,Cy 0.65 | 0.9061 1.1459 6 0.44 | 0.9785 1.09
FlgL A7,B1,Co 0.74 | 0.0389 0.0481 10 0.72 | 0.0386 1.46
Whole FLsy Ao,B1,Co 0.66 | 0.0440 0.0533 10 0.57 | 0.0513 1.23
RNgL Ao,B1,Co 0.96 | 0.0547 0.1045 13 0.93 | 0.0692 2.70
RNsy As,B1,Co 0.81 | 0.1578 0.2148 16 0.77 | 0.1836 1.52

2 See table 3.1 footnote.
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Table 6.3. Selected wavelengths for predicting glucose and sucrose for sliced samples and whole tubers using IPLS
and GA methods (from sampled wavelengths) and NIR reflectance in the 2009 and 2011 seasons for Frito Lay 1879
and Russet Norkotah cultivars.

Season Wavelength selection Sample type | Cultivarconsitent | Window | Total no. of Minimum Maximum
technique width wavelengths | value (nm) value (nm)

2009 IPLS Slice FLoL w=1 66 903 1160

FLsu W=1 20 900 1156

RNgL w=1 67 900 1131

RNsy W=2 12 942 1111

Whole FLoL W=1 66 900 1157

FLsy wW=2 56 916 1159

RNgL W=1 58 902 1153

RNsy w=1 12 992 1157

GA Slice FLoL W=1 161 900 1158

FLsy w=1 147 902 1161

RNgL w=1 176 901 1161

RNsy W=1 147 900 1160

Whole FLoL w=1 171 900 1159

FLsu W=1 136 900 1160

RNgL w=1 182 900 1160

RNsy W=1 151 900 1157

2011 IPLS Slice FLoL w=1 27 900 1159

FLsy Ww=1 21 900 1143

RNgL W=2 54 904 1157

RNsy W=2 14 906 1155

Whole FLoL w=1 16 900 1063

FLsy w=1 16 900 1156

RNgL Ww=1 30 900 1161

RNsy w=1 8 900 910

GA Slice FlgL w=1 136 904 1160

FLsy W=1 148 902 1161

RNgL Ww=1 153 900 1157

RNsy Ww=1 140 900 1160

Whole FLgL W=1 120 900 1161

FLsy Ww=1 132 901 1156

RNgL w=1 27 900 1159

RNsy Ww=1 21 900 1143
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Figure 6.4. Best prediction models based on selected wavelengths and PLSR predicted constituents in the 2011
season for Frito Lay 1879 and Russet Norkotah cultivars for a) Glucose for sliced samples, b) Glucose for whole

tubers, ¢) Sucrose for sliced samples, and d) Sucrose for whole tubers.

6.3.4 Artificial Neural Network (ANN) Results

6.3.4.1 Full and sampled variables models

Results for prediction models of glucose and sucrose for Frito Layl879 and Russet

Norkotah using different types of artificial neural network and full and sampled wavelengths in
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the case of the 2009 and 2011 seasons are shown in table 6.4. In the 2009 season, sliced samples
glucose prediction models showed R(RPD) values as high as 0.96(3.47) for FL and 0.93(2.86)
for RN. Whole tubers showed values of 0.75(1.42) for FL and 0.95(3.29) for RN. Sucrose
prediction models of sliced samples showed R(RPD) values of 0.72(1.30) for FL and 0.96(3.73)
for RN. However, the values of whole tubers were 0.68(1.31) for FL and 0.68(1.32) for RN.
Prediction models obtained from 2011 for sliced samples showed lower performance than 2009
season except in the case of sucrose model for FL that showed significant improvement with
R(RPD) values of 0.95(3.39). For the whole tubers, lower performance was obtained for glucose
prediction models. However, sucrose models showed an improvement for both cultivars with
R(RPD) values of 0.96(3.80) for FL and 0.97(3.78) for RN. Most of the prediction models in
table 6.4 were obtained using either RBFNN or RBFNNE except with two models in which

FFNN was implemented.

Results of using ANN in models based on sampled wavelengths in the 2009 season for
sliced samples showed similar correlation performance for glucose prediction models compared
to full wavelength models except in the case of sucrose prediction models for FL that showed
less correlation statistics. In the case of whole tubers, similar correlation was obtained for both
sugars and cultivars compared to results based on all variables. In the case of the 2011 season,
sliced samples showed improvement of glucose prediction for FL with R(RPD) values of
0.69(1.35). For whole tubers, glucose prediction models showed similar correlation to full-
wavelength models, whereas sucrose prediction models showed better performance than the full-

wavelength models.
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Table 6.4. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using NIR reflectance and using full (784) and sampled

wavelengths in the 2009 and 2011 seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season Wavelengths Sample type Cultivar constituent ANN type, characteristics Training Testing
Rtrain Secvtrain (%) RPD Rtest Septest (%) RPD
2009 All Slice FlgL RBFNNE 0.96 0.01 3.55 0.96 0.0086 3.47
FLsy RBFNNE 0.78 0.02 1.42 0.72 0.0220 1.30
RNg. RBFNNE 0.93 0.03 2.72 0.93 0.0290 2.86
RNsy RBFNN 0.97 0.02 3.85 0.96 0.0202 3.73
Whole FloL RBFNNE 0.79 0.0183 1.59 0.75 0.0201 142
FLsu RBFNNE 0.70 0.02 1.46 0.68 0.0219 1.31
RNg. RBFNN 0.97 0.02 3.94 0.95 0.0252 3.29
RNsy RBFNNE 0.78 0.06 1.57 0.68 0.0570 1.32
Sampled Slice FlgL RBFNNE 0.96 0.0078 3.70 0.95 0.0086 3.47
FLsu RBFNNE 0.70 0.0276 1.12 0.63 0.0261 1.09
RNgL RBFNNE 0.94 0.0330 2.88 0.93 0.0317 2.62
RNsy RFBNN 0.97 0.0232 3.97 0.97 0.0192 3.92
Whole FlLgL RBFNN 0.78 0.02 1.57 0.73 0.0205 1.39
FLsy RBFNNE 0.70 0.0212 1.46 0.68 0.0219 1.31
RN RBFNN 0.96 0.02 3.66 0.95 0.0213 3.64
RNsy RBFNNE 0.78 0.0586 1.57 0.68 0.0570 1.32
2011 All Slice FlLgo RBFNN 0.45 0.0737 0.85 0.47 0.0754 0.77
FlLsu RBFNN 0.96 0.0185 3.35 0.95 0.0180 3.39
RNgL RBFNNE 0.74 0.1401 1.31 0.61 0.2171 0.90
RNsy FFNN, 1000 0.40 0.2645 1.34 0.24 0.4844 0.94
Whole FlgL RBFNN 0.55 0.0585 0.88 0.34 0.0988 0.55
FLsy RBFNNE 0.97 0.0142 3.64 0.96 0.0163 3.80
RN FFNN, 1000 0.31 0.1556 1.05 0.27 0.2010 0.86
RNsy RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78
Sampled Slice Flol RBFNN 0.48 0.0741 0.85 0.37 0.0809 0.72
FLsy RBFNN 0.96 0.0185 3.35 0.95 0.0191 3.20
RNgL RBFNNE 0.70 0.1459 1.26 0.69 0.1446 1.35
RNsy FENN, 500 0.49 0.2047 1.74 0.13 0.4661 0.98
Whole FlgL RBFNN 0.56 0.0591 0.87 0.48 0.0610 0.89
FLsu RBFNN 0.96 0.0158 3.28 0.95 0.0192 3.23
RNgL RBFNN 0.71 0.1275 1.26 0.63 0.1707 1.01
RNsu RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78
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6.3.4.2 Selected variables- ANN models

Results of ANN prediction models based on variable selection techniques, IPLS and GA,
for the 2009 and 2011 seasons are shown in tables 6.5. In the 2009 season, models for sliced
samples using either IPLS or GA showed close correlation performance compared to full
wavelengths results for glucose prediction of RN and sucrose prediction of FL. Other models
showed less correlation statistics. Whole tuber FL and RN glucose prediction models showed
close correlation performance compared to full wavelengths’ models.

The IPLS and GA variable selection prediction models for the 2011 season generally
resulted in better performance than full-wavelength models in the case of sliced samples for
glucose prediction with values of R(RPD) were 0.72(1.20) for FL and 0.75(1.20) for RN using
IPLS for both models. Sucrose prediction models, however, showed similar correlation to that
obtained using full wavelengths. Prediction models obtained using GA showed similar
performance to the full wavelengths models with an improvement in glucose prediction for RN

that resulted R(RPD) values of 0.62(0.77).

Generally, ANN results showed that both IPLS and GA resulted in similar performance
for glucose and sucrose prediction models in the case of both cultivars for sliced samples and
whole tubers, with some exceptions as mentioned in the case of whole tubers for 2011 season.
Thus, preference for IPLS is given as it showed a general trend for fewer selected variables and

comparable or better correlation as GA.
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Table 6.5. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using selected wavelengths obtained by IPLS and GA (from
sampled wavelengths) and NIR reflectance in the 2009 and 2011seasons for Frito Lay 1879 and Russet Norkotah cultivars.

Season | Wavelength selection technique Sample type Cultivar constituent ANN type, Training Testing
characteristics Rirain SeCVirain (%0) RPD Riest SePrest (%0) RPD
2009 IPLS Slice Floo FFNN, 150 0.96 0.0078 371 0.96 0.0086 3.47
FLsu RBFNNE 0.67 0.0264 1.17 0.62 0.0273 1.05
RNgL RBFNN 0.83 0.0552 1.64 0.71 0.0715 1.08
RNsy RBFNNE 0.97 0.0229 4.02 0.96 0.0171 4.40
Whole FloL RBFNN 0.79 0.0191 1.52 0.78 0.0190 1.58
FLsy RBFNN 0.65 0.0225 1.38 0.62 0.0232 1.23
RNgL RBFNNE 0.94 0.0358 2.80 0.90 0.0408 2.18
RNsy RBFNNE 0.78 0.0586 1.57 0.68 0.0570 1.32
GA Slice FlgL FFNN, 150 0.41 0.0268 1.08 0.36 0.0290 1.06
FLsy RBFNN 0.54 0.0339 0.91 0.57 0.0354 0.81
RNgL RBFNN 0.88 0.0452 2.00 0.78 0.0672 1.15
RNsy RBFNN 0.97 0.0232 3.97 0.96 0.0183 4.11
Whole FlLgL RBFNNE 0.78 0.0197 1.48 0.75 0.0201 142
FLsy RBFNNE 0.70 0.0212 1.46 0.68 0.0219 131
RNgL RBFNN 0.96 0.0244 3.70 0.96 0.0208 3.72
RNsy RBFNNE 0.78 0.0586 1.57 0.68 0.0570 1.32
2011 IPLS Slice FlLgo RBFNNE 0.73 0.1508 1.22 0.72 0.1626 1.20
FlLsu RBFNNE 0.97 0.0166 3.73 0.96 0.0157 3.89
RNgL RBFNNE 0.73 0.1508 1.22 0.75 0.1626 1.20
RNsy FFNN,150 0.34 0.2125 1.79 0.23 0.4503 1.04
Whole FlgL RBFNN 0.60 0.0593 0.87 0.39 0.0883 0.62
FLsy FFNN, 50 0.34 0.0491 1.05 0.25 0.0598 1.04
RNgL RBFNNE 0.79 0.1434 1.12 0.55 0.1722 1.00
RNsy RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78
GA Slice Flol FFENN, 1000 0.28 0.0950 0.60 0.27 0.1116 0.46
FLsy RBFNN 0.96 0.0181 3.42 0.96 0.0167 3.66
RNgL RBFNNE 0.77 0.1308 1.40 0.68 0.1499 1.30
RNsy FENN, 500 0.25 0.3025 1.26 0.23 0.4591 1.02
Whole FlgL FFNN, 100 0.33 0.0490 1.05 0.31 0.0513 1.06
FLsu RBFNN 0.96 0.0163 3.17 0.95 0.0189 3.28
RNgL RBFNNE 0.64 0.2074 0.82 0.62 0.2291 0.77
RNsu RBFNNE 0.98 0.0525 4.92 0.97 0.0830 3.78
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6.3.5 Results of Potatoes Classification Based on Sugar Levels and Selected Wavelengths

The highest classification rate values of training and testing groups obtained for slice
samples and whole potato tubers of FL and RN cultivars based on glucose and sucrose
concentrations for both seasons are shown in table 6.6 with the number of class 1 (sugar level <
the threshold) or class 2 (sugar level > the threshold). Classification performance generally
followed the PLSR trend stated in section 6.3.3. For the 2009 season, classification error values
of glucose-based models for the sliced samples (17% and 19% for FL and RN), were similar to
values obtained for whole tubers (19%, and 17% for FL and RN). Sucrose-based classification
models, however, yielded lower performance for sliced samples (37% and 32% for FL and RN),
and whole tubers (38% and 31% for FL and RN). Classification results for glucose in 2011
showed similar, or lightly lower performance compared to 2009 results for the sliced samples
(18% and 23% for FL and RN) and better results in the case of whole tubers especially for RN
(23% and 0% for FL and RN). Moreover, significantly enhanced classification rates were
obtained for sucrose models in the case of sliced samples (25% and 18% for FL and RN), and

whole tubers (29%, and 21%).

In general, LDA, PLSDA, and classifier fusion yielded better classification results than
other techniques (Knn, and ANN). Such trend is a result of the capability of PLSDA technique,
as illustrated in section 2.4.3, for treating data with colinearity problem, and the application of
PCA analysis on spectra data prior to performing classification using LDA. Combined classifiers
also resulted in better classification than Knn, and ANN classifiers, and slightly similar to results

obtained by PLSDA, and LDA.

Sugar distribution in the 2011 season resulted in better classification results, compared

with the 2009 season, especially for sucrose which follows the same trend obtained in PLSR.
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Classification of potatoes based on sugar levels and using noninvasive measurements was
not addressed before and results showed the potential for classifying tubers with sugar content
that is not suitable for frying such that they can potentially be reconditioned to reduce sugar
content (Sowokinos, 2007). Enhancing classification outputs beyond those obtained in this study
is feasible by developing broader sugar distribution, increasing the number of samples, and using
kernel-based classification methods (i.e. soft independent modeling of class analogy or SIMCA,

Gaussian mixture models, and support vector machines or SVM).
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Table 6.6. Classification results of sliced samples and whole tubers of Frito Lay 1879 and Russet Norkotah cultivars based on glucose and sucrose levels and
using multiple classification techniques and NIR reflectance in the 2009 and 2011 seasons.

eason Sample Number of samples | Cultivarconstituent Preprocessing for Training error (%) Testing error (%)
type Class1 [ Class2 LDA; Knn; PLSDA; LDA | Knn | PLSDA ANN LDA | Knn [ PLSDA ANN Combined
ANN; combined e
o classifiers
classifier

2009 Slice 445 445 FLoL Ag; As; As; A Ay 21 34 18 22 17 26 21 26 20
523 523 FLsy Ar; A As; AgiAr 37 45 34 44 37 43 38 40 38

177 177 RNgL As; Ag; Aoy Az A 16 38 6 29 19 25 19 25 21

195 195 RNsy As; As; Aro; AoAro 32 47 33 44 35 44 35 42 32

Whole 222 222 FLoL Ar; A A AgiAr 28 30 19 24 27 26 20 26 19

266 266 FLsy Ao; As; Ass; AgArz 35 43 30 43 43 39 39 45 38

88 88 RNgL Ao; As; Ag; AgiAr 12 25 12 25 17 19 19 19 19

87 87 RNsy As; Ao; A7, AgiA 31 36 31 46 37 31 31 42 31

2011 Slice 204 204 FLoL Az; As; Ag; AgiAo 27 34 12 34 29 26 18 28 18
218 218 FLsy Az, Ag; Az, Ao A 31 45 15 36 25 40 33 38 33

66 66 RNgL An; As; A7, AiAr 19 35 13 30 40 33 23 33 23

58 58 RNsy Az As; Ao AsAg 20 36 11 36 43 32 18 29 18

Whole 136 136 FLoL Aw; Ao; Ag; Ag;Ao 19 43 3 26 23 34 23 37 23

122 122 FLsy Ag; Ao; Ag; AgAr 17 46 21 31 29 32 29 39 37

31 31 RNoL Ao, Ag, As; A Ao 2 40 0 27 27 20 0 27 0

26 26 RNsu Ao, A, Az, AgiAr 8 29 27 27 21 43 21 43 21

% See table 3.1 footnote.
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6.3.6 Results for 2009-2011 Combined Data

Results of combining data from the 2009 and 2011 seasons for building prediction
models using NIR reflectance measurements for glucose and sucrose using PLSR are shown in
table 6.7. Correlation performance was not significantly improved using combined data

compared to either the 2009 or 2011 results.

Table 6.7. PLSR results for predicting glucose and sucrose for sliced samples and whole tubers using NIR
reflectance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data.

Sample type Cultivarconstituent Preprocessing 2 Calibration model Validation model
Rea | RMSEC | RMSEC, | LVS | Rpred RMSEP RPD
(%) (%) (%)

Slice FLoL Ag,B1,Cy 0.78 0.4603 0.5298 18 | 0.77 0.4674 1.56
FLsu A7,B1,Co 0.60 0.0374 0.0411 14 | 0.53 0.0415 1.18

RNgL Ai10,B1,C, 0.98 0.0478 0.0763 20 | 0.95 0.0693 3.20

RNsuy A4B1,Cy 0.78 0.6808 0.9203 20 | 0.63 0.8173 1.27

Whole FLoL Ag,B1,Cy 0.79 0.0512 0.0622 20 | 0.74 0.0571 1.48
FLsu A4,B3,Co 0.70 0.0284 0.0334 19 | 0.55 0.0325 1.17

RNsL A4B3,Co 0.99 0.0197 0.0781 7| 095 0.0594 3.33

RNsy Ao,B1,Co 0.76 0.0968 0.1238 20 | 0.71 0.1155 1.42

2 See table 3.1 footnote.

For ANN results obtained from combined data and shown in table 6.8, lower
performance was obtained when both seasons’ data was combined. Results obtained from ANN
in addition to the previous PLSR results gives a note that combing data from the two seasons is
negatively affected by variation in samples and reference (glucose and sucrose) distribution that
was broader in 2011 than in 2009 caused by adding another storage temperature (1°C) to the

experiments in the 2011 season.

Table 6.8. ANN results for predicting glucose and sucrose for sliced samples and whole tubers using NIR
reflectance for Frito Lay 1879 and Russet Norkotah cultivars using 2009 and 2011 combined data.

Sample type | Cultivarconsitent | ANN type, characteristics Training Testing
Rirain SeCVirain (%) RPD Riest SepPrest (%) RPD
Slice FLoL FFNN, 50 0.58 0.0404 121 0.55 0.0370 1.20
FLsuy FFNN, 50 0.39 0.0455 1.06 0.29 0.0425 1.04
RNgL RBFNN 0.84 0.1424 1.65 0.84 0.1596 147
RNsy NEWGRNN 0.41 0.2700 0.48 0.35 0.2680 0.83
Whole FLeL RBFNN 0.68 0.0296 1.13 0.64 0.0301 121
FLsuy RBFNNE 0.77 0.0258 1.45 0.75 0.0258 1.42
RNgL RBFNN 0.92 0.0844 2.46 0.82 0.1154 157
RNsy RBFNNE 0.84 0.0842 1.76 0.83 0.0877 1.64
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6.4 Conclusions

NIR reflectance in the range of 900-1685 nm was used to build prediction models using
PLSR and different types of artificial neural network for glucose and sucrose sugars in potato
tubers that affect quality of French fries and chips. Two cultivars were used to conduct the study,
Frito Lay1879 and Russet Norkotah. The study showed promising correlation for both glucose
and sucrose using either PLSR or ANN. It should be noted that ANN prediction models were
more powerful for sucrose prediction than PLSR, while both methods yielded close results for
glucose prediction in the case of Frito Lay 1879 and Russet Norkotah. In general, design radial
basis function neural networks (RBFNN) and exact design radial basis function neural networks
(RBFNNE) yielded better correlations than feed forward neural networks as the latter type is
distinguished for classification and not regression. Sampled wavelengths demonstrated close
results to those obtained using full wavelengths and that efficiently reduces the time for data
analysis if there is an on-line sorting based on sugars levels. Also, using IPLS and GA as
variable selection methods yielded close results to both PLSR and ANN for both cultivars and
sugars. However, taking into account that IPLS yielded less variables and yet the same or better
performance than GA, and consequently using IPLS saves computation time, and results in a

preference of IPLS over GA for variable selection.

Results showed that the classification error obtained from PLSDA models was minimal for FL
and RN for glucose more than for sucrose which confirms the prediction results obtained using
PLSR as PLSDA is considered the classification tool of PLSR. Whole tubers yielded close
classification results compared to sliced samples. In general, Russet Norkotah yielded better
correlation than Frito Lay1879 which is possibly due to the fact that RN has higher sugar content

than FL as the latter is usually used for processing.
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CHAPTER 7 INTEGRATING NIR REFLECTANCE AND VIS/NIR
INTERACTANCE SPECTROSCOPIC SYSTEMS DATA (SENSOR FUSION) TO
EVALUATE THE PHYSIOLOGICAL STATUS OF POTATO TUBERS

7.1 Introduction

Quality of food products is an important factor by which customers use as a measuring
stick to decide which product brand to buy or place from which to get fast food. Chips, French
fries, dehydrated, diced and canned potatoes are among the most common products extracted

from potatoes.

Near-Infrared (NIR) technology is a rapid, yet accurate technique that has been used to
predict quality attributes of agricultural products in sorting, grading, processing, and quality
assurance operations of foods. Commercial implementation of NIR spectroscopic systems has
been successful in achieving high classification rates for multiple perishable and processed
products as shown in section 2.3.3. It was shown in chapters 3-6 that glucose prediction models

generally yielded higher correlation statistics than sucrose.

The objective of this study is to investigate the feasibility to integrate data from NIR
reflectance and VIS/NIR interactance to predict glucose and sucrose for potato tubers and also
classify tubers based on either sugar levels and compare the performance of such fusion with that

of the individual modes, i.e. the VIS/NIR interactance and NIR reflectance.

7.2 Materials and Methods

7.2.1 Raw Materials

Two cultivars were chosen to conduct the experiments as discussed in detail in chapter 4.
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7.2.2 Data Handling and Analysis

7.2.2.1 Data fusion

Spectroscopic systems are known to be faster in signal acquisition than traditional
imaging. Data for this analysis includes relative VIS/NIR interactance data (900-1685 nm) and
relative NIR reflectance values (504.8-1004.4 nm). Teflon was used as a reference for the two
systems to calculate the relative signals. Interactance and reflectance data were concatenated and
each column was then normalized (i.e. each value in a column was divided by the maximum
value in the column). It is important to note that only selected wavelengths acquired from the

two systems where combined.

7.2.2.2 Data analysis

7.2.2.2.1 Partial least squares regression (PLSR)

A complete description of PLSR used in this research along with pretreatment for either

spectra or reference values is listed in section 3.2.4.

7.2.2.2.2 Artificial neural network (ANN)

The ANN types, and configurations applied in this study were the same as that used in

section 4.2.4.3.

7.2.2.2.3 Classification of potatoes based on sugar levels

A complete description of the techniques used in potatoes classification based on selected

wavelengths is stated in section 5.2.4.5.
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7.3 Results and Discussion

7.3.1 Partial Least Squares Regression (PLSR) Results

Results for PLSR for interactance and reflectance combined data from the 2009 and 2011
seasons are shown in table 7.2 with the best prediction results for each season using PLSR shown
in table 7.1 which was obtained from chapters 5 and 6 for the interactance and reflectance data
sets respectively. For sliced samples, FL best glucose prediction was obtained from the
reflectance mode with R(RPD) values of 0.83(1.78) using 2011 season data whereas those values
for interactance and reflectance combined data were as close as 0.94(2.84) obtained also from the
2011 season data. However, the best glucose prediction model obtained for RN from reflectance
with R(RPD) values of 0.97(4.21) from the 2011 season data did not show an improvement for
interactance and reflectance combined data in which R(RPD) values were 0.98(4.97). The best
sucrose prediction model for FL was obtained from interactance mode with R(RPD) values of
0.81 (1.70) for 2009 season, while these values for interactance and reflectance combined data
were as weaker as 0.62(1.17). Moreover, for RN, the best sucrose prediction model was obtained
from reflectance mode with R(RPD) values of 0.81(1.66) from 2011 season data. Such

performance was not conducted using the two modes mix data.

In the case of whole tubers, the best glucose prediction model for FL was obtained from
interactance data with R(RPD) values of 0.85(1.92) from 2009 season data. Such prediction was
weaker using interactance and reflectance data mix with R(RPD) values of 0.67(1.35) from 2011
season data. For RN, R(RPD) values were 0.98(4.84) obtained from reflectance data in the 2011
season. These values were slightly improved using interactance and reflectance mix for the 2011
season with R(RPD) values of 0.98(5.64). For best sucrose prediction model, results for FL

showed R(RPD) values of 0.80(1.64) using 2009 interactance data. With the two modes mix data
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these values improved to 0.93(2.80) obtained from the 2011 season. For RN, the best sucrose
prediction model was obtained from 2011 reflectance mode with R(RPD) values of 0.93(2.77).

Using the two modes data mix for 2011 season data the latter values improved to 0.97(4.23).

Table 7.1. Summary of the best prediction models using PLSR for glucose and sucrose using VIS/NIR interactance
and NIR reflectance individual modes for sliced samples and whole tubers for Frito Lay 1879 and Russet Norkotah
cultivars.

Sample type Cultivar onstituent Mode Validation model
Ropred RMSEP RPD
Slice FloL Reflectance 0.83 0.0435 1.78
FLsy Interactance 0.81 0.0391 1.70
RN, Reflectance 0.97 0.0468 4.21
RNsy Reflectance 0.81 0.2296 1.66
Whole FLoL Interactance 0.85 0.0142 1.92
FLsy Interactance 0.80 0.0384 1.64
RN Reflectance 0.98 0.0387 4.84
RNsy Reflectance 0.93 0.1128 2.77

Table 7.2. PLSR results for predicting glucose and sucrose using fused data from VIS/NIR interactance and NIR
reflectance systems for sliced samples and whole tubers for Frito Lay 1879 and Russet Norkotah cultivars in the
2009 and 2011 seasons.

Season Sample type Cultivarconstituent Preprocessing * Calibration model Validation model
Real RMSEC | RMSEC | LVs | Ryred | RMSEP RPD
2009 Slice FlLoL A4,B3,Cy 0.68 0.4874 0.5715 2| 0.65 0.5014 | 1.32
FLsy A4,B3,C, 0.54 0.0676 0.0743 6 | 0.46 0.0722 1.12
RNgL A12,B3,C; 0.99 0.0116 0.0493 2| 0.98 0.0194 | 4.97
RNsy Ao,B1,Co 0.65 0.0628 0.0696 20 | 0.58 0.0664 | 1.22
Whole FlLoL Ao,B3,Co 0.70 0.0186 0.0210 20 | 0.67 0.0200 | 1.35
FLsy A;,B3,C, 0.64 0.0554 0.0674 17 | 057 0.0610 1.22
RNgL Ao,B1,Co 0.94 0.0325 0.0397 20 | 0.93 0.0355 | 2.66
RNsy Ao,B1,Co 0.64 0.0631 0.0697 20 | 058 0.0668 | 1.22
2011 Slice FlgL A12,B5,C, 0.98 0.0150 0.0582 8 | 0.94 0.0272 | 2.84
FLsy Ao,B1,Co 0.83 0.0359 0.0437 20 | 0.62 0.0497 | 1.17
RN A7,B1,Co 0.97 0.0121 0.0156 20 | 0.88 0.0291 | 2.00
RNsu Ao,Bs3,C, 0.92 0.0843 0.1189 20 | 0.62 0.1978 | 1.00
Whole FlLoL A4,B3,Co 0.41 0.0504 0.0550 6 | 0.28 0.0560 | 1.04
FLsy A7,B1,Co 0.96 0.0154 0.0418 20 | 0.93 0.0214 | 2.80
RN Ao,B1,Co 0.99 0.0257 0.0790 20 | 0.98 0.0332 | 5.64
RNsy Ay,B1,Cy 0.98 0.1651 0.7644 16 | 0.97 0.2200 4.23

2 See table 3.1 footnote.

168



7.3.2 Artificial Neural Network (ANN) Results

Results of best prediction models of glucose and sucrose, for FL and RN, obtained from
VIS/NIR interactance or NIR reflectance modes using ANN are shown in table 7.3 and obtained
from chapter 5 and 6 respectively. Moreover, the results for ANN models resulted from
interactance and reflectance data mix for 2009 and 2011 seasons are shown in table 7.4. By
comparing equivalent values of R(RPD) in tables 7.3 and 7.4, a general note of a significant
decrease of the performance of models for mixed data compared to individual modes with few
exceptions in which close results between the two cases was achieved. Glucose prediction
models for RN in sliced samples and whole tubers from mixed (fused) data showed R(RPD)
values of 0.92(2.246) and 0.98(6.73) obtained from the 2011 season. Such values are close to or
better than the values for individual best models. A possible reason for performance decline in
ANN using mixed data is the relatively high number of variables (3485) compared to individual

mode data.

Table 7.3. Summary of the best prediction models using ANN for glucose and sucrose using VIS/NIR interactance
and NIR reflectance individual modes for sliced samples and whole tubers for Frito Lay 1879 and Russet Norkotah
cultivars

Sample type Cultivarconstituent Mode Testing
Riest SePiest (%0) RPD
Slice FloL Reflectance 0.96 0.0086 3.47
FLsy Reflectance 0.96 0.0157 3.89
RNgL Interactance 0.95 0.0190 3.25
RNsy Reflectance 0.97 0.0192 3.92
Whole FloL Reflectance 0.78 0.0190 1.58
FLsy Reflectance 0.96 0.0163 3.80
RNgL Reflectance 0.96 0.0208 3.72
RNsy Reflectance 0.97 0.0830 3.78
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Table 7.4. ANN results for predicting glucose and sucrose using fused data from VIS/NIR interactance and NIR reflectance systems for sliced samples and whole
tubers for Frito Lay 1879 and Russet Norkotah cultivars in the 2009 and 2011 seasons.

Season Sample type Cultivar constituent ANN type, characteristics Training Testing
Rtrain SecVtrain (%) RPD Rtest Septest (%) RPD
2009 Slice FlgL FENN, 1000 0.55 0.02 1.26 0.52 0.0231 1.18
FLsy RBFNNE 0.43 0.02 0.99 0.38 0.0229 1.04
RNgL FFNN, 300 0.84 0.03 1.74 0.81 0.0303 1.68
RNsuy RFBNNE 0.67 0.07 1.29 0.52 0.0575 1.18
Whole FLaL RBFNNE 0.75 0.02 1.80 0.67 0.0205 1.35
FLsu RBFNNE 0.20 0.02 2.04 0.06 0.0740 1.00
RNgL RBFNNE 0.77 0.04 1.32 0.56 0.0403 1.19
RNsy RBFNNE 0.18 0.05 1.31 0.19 0.0622 0.98
2011 Slice FLgL RBFNNE 0.77 0.02 1.52 0.75 0.0200 1.50
FLsy RBFNN 0.56 0.03 0.93 0.42 0.0306 0.96
RN RBFNNE 0.96 0.03 3.28 0.92 0.0338 2.46
RNsy RBFNNE 0.78 0.05 1.48 0.65 0.0636 1.31
Whole FLoL FENN, 1000 0.15 0.05 1.04 0.06 0.0642 0.99
FLsy RBFNNE 0.39 0.05 1.07 0.27 0.0602 1.03
RNgL RBFNN 0.98 0.04 4.96 0.98 0.0281 6.73
RNsy RBFNNE 0.75 0.04 1.30 0.67 0.0459 1.35
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7.3.3 Results for Classification of Potatoes Based on Sugar Levels

Classification for sliced samples and whole tubers was conducted using interactance and
reflectance combined data and the results are shown in table 7.6 with the best classification
results using individual modes, obtained from chapter 5 and 6 respectively, shown in table 7.5. In
the case of sliced samples, classification using fused data based on glucose resulted in an error of
24% for FL and 22% for RN which are higher than the lowest error obtained using individual
modes (16%). Sucrose-based classification, however, yielded lower errors than glucose as of

14% for FL and 12% for RN.

Classification results obtained for whole tubers is slightly lower or is similar to the lowest
errors obtained from individual modes with error values of 0% for both cultivars based on
glucose being 19% and 0% for FL and RN. In the case of sucrose, the error values were 29% for
FL and 21% for RN. The above results clarify the advantage of combining data from interactance
and reflectance modes and the error values can be enhanced by using broader sugar distribution

and higher number of samples, especially in the case of glucose.

Table 7.5. Summary of the best classification results based on glucose and sucrose levels using VIS/NIR
interactance and NIR reflectance individual modes for sliced samples and whole tubers for Frito Lay 1879 and
Russet Norkotah cultivars.

Sample type Cultivar constituent Mode/ classifier Testing error (%)

Slice FloL Interactance /PLSDA 16
FLsy Interactance / PLSDA 23

RN Interactance / PLSDA 13

RNsy Interactance / PLSDA 18

Whole FloL Interactance / PLSDA 18
FLsy Interactance / PLSDA 26

RNgL Interactance / PLSDA 0

RNsy Reflectance/ LDA 18
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Table 7.6. Classification results of sliced samples and whole tubers based on glucose and sucrose levels for Frito Lay 1879 and Russet Norkotah cultivars using
multiple classification techniques and VIS/NIR interactance and NIR reflectance combined data sets in the 2009 and 2011 seasons.

Season | Sample type Cultivar constituent Preprocessing ? Training error (%) Testing error (%)
LDA Knn PLSDA ANN LDA Knn PLSDA ANN Combined classifiers

2009 Slice FlLoL Az Ao, Ar; AgAg 32 32 29 31 35 43 34 36 35
FLsy Ao, Ao, Ao, AvsAg 39 37 35 36 43 55 36 43 43

RNgL A; Ao; As; AigiArg 23 23 17 27 23 37 22 23 27

RNsy Az, Ar; Aw; ArAo 35 45 31 14 18 13 12 18 13

Whole FlLoL A Az, Ay AsAr 28 29 19 31 27 24 20 21 19

FlLsy Ao; Ag; Ag; As; A 35 47 30 41 43 39 41 44 38

RNgL Ao; As; Ao; As A 12 25 20 25 18 19 18 19 19

RNsy Ag; Ao, Az, Ao Ar 31 36 31 46 37 31 31 42 31

2011 Slice FLoo Az Az, Ao, Ar, AL 25 18 7 36 24 26 36 24 31
FLsy Ao; Ao; Ao; Aso;Aro 30 26 11 29 21 72 14 21 24

RNeL Aoy Aoy A7y A Ag 15 47 13 33 43 30 23 33 33

RNsy As; Aoy Ay AsiAo 19 21 10 16 20 23 16 20 23

Whole FloL Aw; Ao, Ag; AoAo 19 43 3 26 23 34 23 37 23

FLsy Ao; Ag; Ag; Awo;Ag 20 46 21 31 29 32 29 39 29

RNgL Ag; Ag; As; AgAg 2 26 0 27 27 33 0 27 7

RNsuy Ao; Ag; Az, AgAr 8 45 27 27 21 29 21 43 21

2 See table 3.1 footnote.
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7.4 Conclusions

The use of interactance and reflectance combined data for either Frito Lay1879 or Russet
Norkotah resulted in an improvement of prediction performance using PLSR of glucose in the
case of sliced samples for both cultivars, especially FL. For whole tubers, both cultivars
benefited from combining interactance and reflectance data. An improvement in prediction
performance for both sugars was achieved especially for sucrose. Results for whole tubers
enhance the chances of applying the technique for quality monitoring in industry applications.
ANN results for combining modes were not as promising as PLSR which is a consequence from
the ability of PLSR to handle collinear data and the factors that need to be adjusted in ANN (i.e.
number of neurons in the hidden layer, transfer functions, spread value). The use of combined
data in building classification based on sugar levels yielded outstanding results for whole tubers
with classification error ranging from 0%-4% for both cultivars and based on glucose and
sucrose. Such results followed the prediction models obtained from PLSR especially for RN.
Moreover, with the reasonable classification performance achieved for whole tubers, there is a
potential for combining the two modes in one system for online sorting of potato tubers based on
glucose for RN. However, such a target requires improving the classification rates based on
glucose for FL, and based on sucrose for both cultivars. Moreover, more training is needed on
different cultivars and various sugar thresholds to obtain a robust, yet accurate sorter that meets

industry demands.
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CHAPTER 8 OVERALL CONCLUSIONS AND FUTURE WORK

This dissertation research made notable improvement in building prediction and
classification models for crucial constituents and physical characteristics of potatoes for growers
and processing quality managers. Different spectroscopic systems were used including VIS/NIR
interactance (446-1125 nm), NIR transmittance (900-1685 nm), and NIR reflectance (900-1685
nm) as well as VIS/NIR hyperspectral imaging system (400-1000 nm). Experiments were
utilized for two cultivars Frito Lay1879 (FL) which is a common chipping cultivar and Russet

Norkotah (RN) that is used as a fresh or table cultivar.

Experiments were established over three seasons, 2008 which was aimed to be a
preliminary study to investigate the potential of using NIR transmittance, VIS/NIR interactance,
and VIS/NIR hyperspectral imaging systems to predict glucose, sucrose, primordium leaf counts,
specific gravity and soluble solids using partial least squares regression (PLSR). Another two
seasons, 2009 and 2011, only focused on research for measuring glucose and sucrose as those are
specifically important in frying process quality. Sampling techniques in the three seasons

included 0.5’ (12.7 mm) slices, and whole tubers.

Relative interactance values were calculated for VIS/NIR interactance, and relative
reflectance and transmission values were calculated for NIR reflectance and NIR transmittance
respectively. Finally, relative values of mean reflectance and curve fitting parameters, extracted
from an exponentially decaying curve fitting model, were calculated for the VIS/NIR
hyperspectral imaging systems. To extract the most effective wavelengths associated with the

prediction of glucose and sucrose for 2009 and 2011 seasons, interval partial least squares (IPLS)
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and genetic algorithm (GA) techniques were applied. Calibration and prediction methods were
then built using PLSR, and artificial neural network (ANN) that included regular radial basis
function neural networks (RBFNN), exact design radial basis function neural networks
(RBFNNE), generalized radial basis function neural networks (NEWGRNN), and feed forward

neural networks with back propagation (FFNN).

Classification of whole tubers and sliced samples, based on thresholds associated with
processing applications, was conducted on the data obtained from the 2009 and 2011 seasons.
Classification techniques included linear discriminant analysis (LDA), K-nearest neighbors
(Knn), partial least squares discriminant analysis (PLSDA), feed forward artificial neural

network, and classifier fusion.
The following main conclusions were deduced from this research:

1) A comprehensive study was conducted to review the studies for non-destructive and/or
rapid measurements of constituents related to the frying industry, and external and
internal quality of fresh tubers. In addition, the most common commercial systems were
described and compared from the theory of operations and performance prospective.
Application of sorting potato tubers based on constituents levels and/or internal and
external defects are feasible with the increasing demand of high quality yet healthy
processed foods, and the accelerated developed technology that can maintain fast
measurements, durable performance, and high accuracy. A brief view was discussed of
the possible future trends in quality evaluation of potato tubers and fried products using
noninvasive electronic measurements.

2) In the 2008 season, interactance mode demonstrated the best performance for most

constituents for FL and RN. PLSR calibration and prediction models showed outstanding
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3)

performance in the case of sliced samples for primordium leaf counts with R value of
0.95 for FL and 0.90 for RN and for glucose with R values being as high as 0.90 for FL
and 0.95 for RN. Sucrose optimum prediction models had less correlation for both
cultivars (R=0.81 for FL and 0.63 for RN). Specific gravity showed R values as high as
0.61 for FL and 0.59 for RN. Soluble solids content, however, was the least correlated
constituent with maximum values of R of 0.55 for FL and 0.37 for RN. Whole tubers
showed general decrease in correlation compared against the sliced samples, especially
for RN which brought a conclusion that more studies are required in which broader
constituents’ distribution exists. In general, results achieved in this study are novel for
primordium leaf count that was not achieved before using any spectroscopic system.

VIS/NIR hyperspectral imaging was used in the 2009 and 2011 seasons to measure
glucose and sucrose for sliced samples only as whole tubers yielded low correlation
results from preliminary results in the 2008 season. To obtain broad sugar distribution,
different soil types, and more storage temperatures were used than in the 2008 season.
Glucose and sucrose measurements were conducted by juicing only the tuber tissue
penetrated by light in contrast to the 2008 season in which the whole tuber was juiced.
Strongly correlated models were obtained for glucose of FL with R values as high as 0.80
and 0.96 for FL and RN. Sucrose prediction however, did not show such high correlation
for both cultivars with R values of 0.58 for FL and 0.30 for RN. Selected wavelengths
using IPLS and GA showed similar correlation performance compared to the full
wavelength models for glucose that yielded to R values up to 0.80 for FL and 0.97 for
RN. For sucrose, the R values were as high as 0.54 for FL and 0.38 for RN. Most of best

prediction models for both cultivars and for glucose and sucrose were obtained using the
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mean reflectance signal and IPLS as the wavelength selection technique. Classification of
sliced samples based on glucose or sucrose levels was possible with errors of 19% and
18% for FL and RN using glucose thresholds. Classification errors based on sucrose
models (34% and 38 for FL and RN) were higher than errors obtained for glucose which
followed the same results achieved by PLSR. Prediction and classification results can be
improved using broader sugar distribution, using other classifiers such as artificial neural
network, and majority voting classification techniques. Selected wavelengths used to
build classification results for glucose could be further applied in a multispectral sorting
system that may be combined with a computer vision system to obtain multi-tasking
sorting for defect detection and also sugar-based sorting.

VIS/NIR interactance was used in the 2009 and 2011 seasons to study the rapid and/or
non-destructive determination of glucose and sucrose for potato tubers for Frito Lay 1879
and Russet Norkotah. Non-noisy wavelengths (2107) and sampled (386) were used to
build prediction models using PLSR and ANN. Also IPLS and GA were applied to
extract the wavelengths related to best prediction models for both sugars. Encouraging
correlation was achieved for FL and RN for both sugars with R values for sliced samples
being as high as 0.92 and 0.94 for FL and RN in the case of glucose and 0.82, and 53 for
FL and RN in the case of sucrose. Whole tubers prediction models also yielded R values
of 0.85 and 0.97 for FL and RN for glucose, and 0.46 and 0.63 for FL and RN for
sucrose. General improvement of correlation for sucrose was obtained using selected
variable models with R values reaching 0.81 and 0.78 for FL and RN for sliced samples,
and 0.80 and 0.94 for RN for whole tubers. Glucose prediction models based on selected

variables showed similar performance compared to full wavelength models. The IPLS
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5)

method resulted in less number of wavelengths (11-68) for sliced samples, and 20-75 for
whole tubers. Whereas GA resulted in significantly higher number of wavelengths of
165-247 for sliced samples, and 182-229 for whole tubers. Consequently, using IPLS in
wavelengths selection is much more efficient and less time consuming than GA if they
both produce the same performance. In general, a reduction of the number of
wavelengths to 0.5-3% of the full wavelengths (2107) was achieved using either IPLS or
GA. Classification of whole tubers based on glucose levels yielded errors of 18% and 0%
for FL and RN. Whereas the values were 16% and 13% for FL and RN for sliced
samples. Classification based on sucrose was weaker, for FL, and classification errors of
26% and 14% for FL and RN were achieved for whole tubers which were similar to the
values obtained for sliced samples (23% and 18% for FL and RN).

NIR diffuse reflectance was utilized on both sliced samples and whole tubers for both the
2009 and 2011 seasons. PLSR and ANN were applied on full (784), sampled (262), and
selected wavelengths using IPLS and GA. Prediction results were promising for both
sugars in which the R values for sliced samples reached as high as 0.96 and 0.97 for FL
and RN for glucose, and for sucrose the values were 0.95 for FL and 0.97 for RN. For
whole tubers, R values for glucose prediction models were as high as 0.76 and 0.98 for
FL and RN. Moreover, sucrose prediction models also showed high correlation with R
values of 0.96 and 0.97 for FL and RN. Prediction results based on sampled wavelengths
showed similar performance in most cases compared to full wavelengths models. In
addition, using IPLS and GA, similar or better correlation performance, compared to the
full wavelength models, was achieved for both sugars and cultivars which indeed clarifies

the strength and efficiency of the selected wavelengths in holding sufficient information

178



6)

about glucose and sucrose. Tubers and sliced samples classification based on sugar levels
was not as powerful as prediction models. Whole tubers showed classification error of
19% and 0% for FL and RN based on glucose, and 31% and 21% based on sucrose.
Sliced samples showed classification error of 17% and 17% based on glucose and 25%
and 18% based on sucrose. Some of the classification results still do not meet industry
requirements and performance enhancement can likely be achieved by increasing the
number of samples, obtaining broader sugar distribution, and using other classification
techniques such as support vector machines (SVM).

Data combined/fused from VIS/NIR interactance and NIR reflectance resulted in
improvement in the case of sliced samples for the prediction of glucose for FL and RN
with R values reaching 0.94 and 0.98 respectively. Whole tubers also showed significant
improvement in the performance of sucrose prediction with R values as high as 0.93 and
0.97 for FL and RN. Similar performance of classification results, compared to individual
modes, was obtained for whole tuber glucose-based models. However, significant
improvement was achieved in the case of sucrose-based models for sliced samples with
error values of 14% and 12% for FL and RN. Such results indicate that combining data
from both modes can lead to more valuable information to explain the variation between

samples and enhance classification as well as prediction performance.

This research in general resulted in a promising prediction performance of glucose,

sucrose, and primordium leaf counts using different regression techniques, and it represents a
basic study that indeed is comparable in performance to previous studies conducted to measure
sugars in potato tubers (Dull et al., 1989; Mehrubeoglu and Cote, 1997; Hartman and Buning-

Pfaue, 1998; Scanlon et al., 1999; Yaptenco et al., 2000; Haase, 2004; Chen et al., 2005; Subedi
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and Walsh, 2009). Moreover, classification of sliced samples based on sucrose showed lower

error than the results obtained from individual modes.

However, to obtain more reliable results that tightly relate this study to the practical

field, several recommendations can be drawn for future research as follows:

1)

2)

This study was designed to be a foundation for establishing a handheld device that
works with either sliced samples or whole tubers. Another long-term target was also
contributing toward the design of on-line sorting systems for potato tubers. Testing
tubers under actual field conditions, however, is more difficult than testing in the lab
as there is a possibility for having factors such as clay particles and/or moisture on
tuber surface that reduce, or even suppress, signal acquired form tubers. If the sorting
system is used after harvesting to eliminate or separate tubers with undesired levels of
sugars for further reconditioning, there is a need to tackle the presence of clods,
rocks, and vine parts in the flow of tubers either by adding a computer vision system
to eliminate foreign materials and then following such by the constituent-based
sorting mechanism.

An on-line system or sorting requires working with movable objects, and under such
circumstances, a possible reduction of signal quality (signal to noise ratio) acquired
from tubers is likely to occur, and consequently lower the performance of constituent
prediction-based sorting. Thus, proper choice of the optical components should be

taken into account to obtain commercially-accepted functionality and productivity.

Prediction models for glucose, sucrose, and primordium counts obtained from different

systems in this study, especially VIS/NIR interactance, and NIR reflectance, or merged data

between the interactance and reflectance modes were encouraging. However, the change in
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spatial distribution of some constituents over the storage period obligates conducting more
experiments with different cultivars, growing and storage conditions to confirm the obtained
prediction and classification models so that more robust, reproducible, and stable performance

can be later applied on commercial systems.
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