
‘
n
.

:
7
:

7
»

;

"
"
}
\
u
’
r
'
B
a
r
r
-
K
L
-

,
.
v
:

*
7
.
.
.

6.1;. 4" V .71-. -A , .WVW‘

‘ {‘Lg“?
.. u - ‘ fl 7 g‘nél‘ $11,:

7 -’

J'f .L. f ‘ ' 1" y :{t- u I ' j , 1!".‘w 7 .‘ ‘

9 ‘ Y o ‘I '35- . . . .

' 9‘if'ilzgj‘: ‘ . ‘,,‘ . n,-

‘
,
I
d

4
J

.
9
W
4
?
"

A

' ... ‘ .

a ’t.‘ “)2,

‘ al‘ 1-1/‘4‘ I

I-“"' I ‘1’

.

l

371w; ”PM:
\ 'L V-‘k, 1‘

i a J‘ A] ,5‘

u 1;: .

A n u
o
V
‘
i
}

J
3
0
.
"

'
4

.

d
'
u
"

R

w'

. I '_”‘.',,’"J

3336* W

.' é",
.’ .9

V... r

15“ . :
y: m.
‘T u.

v
. .‘,;,_ V

~ 1-1. _

Wad“ “ > n :’ . . 2 .\ . ‘ ..{:,' .-. .fij' "‘z'J't'y’r‘. ‘ . ., 3 ‘..: .. 5 . > . ‘9

. fl: -. v‘v
4L '2 't. ’ . Q,.',_. 1: . A "I; t ‘

""‘ ‘Y'
“Ham": . «Kai-u-

, ‘1; 2" airway, p,c.¢.. 'fil‘ . » u , fl ' ' ”Huh!“ 1,,

":30. Msm- ’ ' ‘ . -‘.¥ 2; mm; . ~
I‘ "’1‘ (avg...

.5"

‘ ' .
,,1

an. ",:.a, 'C‘

, a;
'2;

‘ "c

1" Afi‘l‘lz'J- ,4

-‘K' {NJ k 6., k?"

.h‘ .. “f .t'
. . '--J. I’rr

V
" ‘ ”~11. {‘1‘4 . __ .- _ « . V .. ,l'A..: ,T' pat/‘3

.- x5! r;:-‘.n-f,$'“.’rt . .v; f n. _ 3”. ,r. .1, u”. 1,135.3; 4314;?“

g; -"‘-2'féf<él(’" ' ‘ ‘ -:‘1‘ "7739'," ‘4“: ' 7X34;

( flan-1 f' Q?! (~‘ ,' 4""VI'

1’", (- ‘ I:

I r.. ,.

VIE; "x-i‘
‘ If?”

"a. '3‘

332%;

“1...?  

I

wife?
art

A . v"!

1’: ' _

P "'~ ‘ ‘ ‘4 . . ‘ u ,- '1'
. n" X ' nu" “ 121' -"‘ w in“; i

47'
‘w

,I

r

«
t
a

.
\

‘

f

flaws"; , f ,. \ ‘ 1—: ”it ‘4-

’. ‘
I ; t .

‘ _ ’

{-nw‘v _ . ._ .5. ,,» . - .‘, _ ‘ . ‘. .f...}‘ . ' J"

-' _ «a» « .J. . r a Hwy- . ...
‘ ' 15" fi'!

"454-: a.
wrv’)‘ at;

y.

mi“: ".- j’atfi‘figgééu gn-

' I

I

. '4‘

.. 4-. 1..

:7

1M“‘1‘ .

"'4' v I
,‘ Qv'.‘ ' lav" 1 . J

{-5 HMQEW A .
.. “

 
.’,.’;l

f .21- . “v

’ fir’rw‘h'fir~.\ v )

(gym; ‘5.

":41 ,

I I; ‘I‘ ‘1 '4‘!" 'l , -" ‘ ,n. I I .. -Afifl'g“ #4

'i" '4 A- -_.
. f A Ti, ‘3».‘7‘3 ’fi‘ ,) '

, P ~ v: -- '- ” 4 izazzflnrzflaéég’w 9%; an: ( 5% «.
— - ' I ' ' ' > ‘ . ‘ arndct’: 5'32; .éfi.”;’ffi}v},¢(m§g§

ifinr ' 3 - .
V I

~-‘lu.'u.-<\.\'.u 



WU/JIO‘K'

UNIVERS|T
Y LIBRARVES

WL\1‘!WWWWWWWWWW

 

 
LIERARY

Michigan State

 

This is to certify that the

dissertation entitled

The Theory and Implementation of Computer Graphic

Drawing Algorithms and Routing Tools in a VLSI

Design Environment

presented by

YU-TSE CHEN

has been accepted towards fulfillment

of the requirements for

Ph . D. degree in Electrical Engineering

Major professor

Datem

MSU I: an Affirmative Action/Equal Opportunity Institution 0-12771

i University
 
 

I
I

 

 



PLACE N RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before duo due.

DATE DUE DATE DUE DATE DUE

  

 

  
 

 

  
 

 

   

     

    
  
 

 

 
  

 
     

 
 

 

 

MSU Is An Affirmative Action/Equal Opportunity Institution ._..___ _ __—_ _._. _

 

 



THE THEORY AND IMPLEMENTATION OF COMPUTER GRAPHIC DRAWING

ALGORITHMS AND ROUTING TOOLS IN A VLSI DESIGN ENVIRONMENT

By

Yu-Tse Chen

A DISSERTATION

submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1989



0
0
0
1
b
\
0

ABSTRACT

THE THEORY AND IMPLEMENTATION OF COMPUTER GRAPHIC DRAWING

ALGORITHMS AND ROUTING TOOLS IN A VLSI DESIGN ENVIRONMENT

By

Yu-Tse Chen

Exploiting VLSI technology for electronic designs can greatly increase product per-

formance, but several design processes must be executed efficiently in order to produce a

successful integrated circuit in a timely manner. In this research, we investigate two

VLSI design related areas: the mapping of algorithms to architectures and the transform—

ing of a netlist to a physical layout. Our goal is to apply VLSI technology to circuit

design in order to efficiently increase product speed and reduce product area.

In the algorithm mapping investigation, we focus on developing an antialiased

drawing engine. Three processes are needed in order to produce this high performance

engine, i.e., algorithm development, architecture implementation, and performance esti-

mation. By adopting operating concepts from both the incremental drawing technique

and the area-antialiasing technique, an efficient antialiased drawing algorithm was

developed. As a result, this algorithm produces realistic images faster than those of exist-

ing algorithms. According to the data flow of this algorithm, an architecture was imple-

mented using fixed-point binary arithmetic. To estimate the performance of this engine,

we constructed a delay model for the cells and implemented a prototype line-drawing

engine assuming a 3 pm CMOS technology. The tinting estimation result shows that our

antialiased drawing engine has a critical path delay of only 80 nanoseconds, which is

much better than that of using printed-circuit board implementation.



In the VLSI design tools investigation, we focus on channel routing and mask gen-

eration problems in the standard~cell (or gate-array) implementation. The objective here

is to develop an alternative channel routing approach which can produce acceptable rout-

ing results much more efficiently than those of existing routing approaches. We investi-

gated a bottom-up routing approach which combines routing and mask generation. A

numerical tiling method with several design rules was used in developing our mask gen-

erator. In conjunction with this mask generator, three efficient routers were developed

using a heuristic approach and several effective processes to optimize routing parameters

for three different routing cases, respectively. According to the results from several test-

runs and comparisons, these routers as well as the mask generator are shown to be rela-

tively efficient and flexible.
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CHAPTER 1

INTRODUCTION

VLSI (Very Large Scale Integration) design holds the promise of reducing product

area while increasing product execution speed. Basically, there are three principal tasks

involved in VLSI design, i.e., develop the necessary algorithm, develop the architecture

that implements this algorithm, and, finally physically implement this architecture in

hardware/firmwarc/software. In order to generate successful products, designers have to

correctly design their products at each task. But, the most important VLSI design step is

the algorithmic level since a trivial design error at this level would require that the entire

design to be redone. The main task at the algorithmic level is to develop an efficient

algorithm to solve the given problem statement so that the ‘algorithm can be easily

mapped into an architecture. The design objective at the architectural level is to construct

an architecture which performs the same function as the given data flow of the algorithm.

This architecture is represented as a block diagram using a combination of functional

cells. Finally, at the physical implementation level, designers need to translate the archi-

tecture into mask data for chip fabrication. The Y-chart is a very useful graph for

expressing the relations among these three different design steps. Figure 1-1 illustrates

the use of the Y-chart to represent the flow of VLSI design activity.

In order to reduce the design errors and the design time of the generated products,

designers use VLSI automation processes linking powerful design strategies that can be

executed automatically. VLSI automation processes at the physical design level typically

use several layout tools to perform cell placement, routing of cell interconnections, and

mask generation for the given architecture.



 

Problem Specification

Structural Behavioral

Macro-cell Algorithm

\{W81
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Gate or Register Transfer
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Note that each axis in the Y-chart reprents the design representation;

-> means mapping from one representation to another

Figure 1-1. Use of the Y—chart to represent the flow of the VLSI design process



In this research, we focus on two VLSI related design problems: VLSI implementa-'

tion of computer graphic drawing engines at the algorithmic and architectural design lev-

els and channel routing with mask generation tools for VLSI automation at the physical

design level.

1.1 Problem Statement

The objective of computer graphic drawing operations is to generate realistic

images on raster displays at a very high drawing speed. There are two major computer

graphic drawing techniques, parametric and nonparametric. In general, the parametric

curve-drawing technique [1] is very flexible in representing a curve by setting a parame-

ter. This parameter is used to generate the corresponding coordinate data. But one major

disadvantage of this technique is its relatively high computational complexity since

multi-valued calculations must be performed. The non-parametric curve-drawing tech-

nique [2] is very attractive for digital generation. It uses a decision-making process to

generate approximate curves. With some numerical manipulation, this technique can be

applied to scan line conversions used to generate pixels incrementally; i.e., the current

drawing position can be determined by using its past drawing information. But this tech-

nique has a drawback, too; namely, it is relatively difficult to provide high order curve-

drawings. By using some mathematical operations, both curve-drawing techniques can be

represented by piecewise lines; thus, the performance of a drawing engine depends on the

performance of the scan-converting lines in most raster systems. Thus, it is important to

find out the suitable scan-converting line algorithm before constructing the drawing

engine.

Although both curve-drawing techniques are useful for drawing operations, they

tend to produce aliasing images while rendering geometric objects in computer graphics

applications. Basically, aliasing is a display degradation problem resulting from



inaccurate digital sampling and filtering of the generated images. The result is known as

"jaggy" or "staircase" appearance of lines on a raster display, as illustrated in Figure 1—2.

Antialiasing methods use filtering techniques to solve the problem, and the com-

puter graphic system performs the required operations by processing multiple—intensity

levels. The existing antialiasing methods differ in their operating speed and display qual—

ity, i.e., realism. Pixel averaging [3], a window-averaging method, is used to produce a

pixel in a low-resolution image by averaging several pixels in a high-resolution image.

This technique can achieve realistic antialiasing results but needs a very long processing

time to manipulate the whole image buffer. Area antialiasing is another simple heuristic

technique. It assigns an intensity to each pixel according to the area intersected by the

image. Several existing approaches [47], which differ in their algorithmic complexities,

use the idea of area antialiasing. The flexibility of selecting different display qualities at

an acceptable operating speed, however, is the major problem in these antialiasing algo-

rithms. Furthermore, when implemented in VLSI circuits, these existing graphic draw-

ings, with or without antialiasing algorithms, need a lot of modifications or are impracti-

cal because their algorithmic structurcs are too complicated.

Another aspect of this research deals with VLSI automation at the physical design

level. Although this automation should involve several different processes, i.e., place-

ment, routing and mask generation, we limit our attention to the routing and mask gen-

eration of regular VLSI structures. These regular VLSI structures are standard-cell and

gate-array structures, which are known to have a low design-time and high regularity. In

general, two-layer channel routing is one of the major routing methods for these regular

VLSI structures, and the goal is to find the optimal solution for the given netlist in each

channel. The establishment of an optimal result for the two-layer channel routing prob-

lem has been shown to be NP-complete. There exists several two-layer channel routers

that use heuristic approaches to generate Optimal or near optimal routing results. Due to
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Note that each "*" represents the pixel center;

each unit square in the columns represents the area of each pixel.

Figure 1-2. Examples of a straight line display on the pixel plane: (a) the ideal line;

(b) the rasterized line.



different construction strategies of standard-cell and gate-array structures, several dif—

ferent channel routing cases can be found during the routing. These are: routing without

vertical constraints, without doglegs, with restricted doglegs, and with unrestricted

doglegs. The "left edge" channel router [8] attempts to minimize the placement of hor-

izontal segments in each track. This algorithm can find a good solution if there are no

vertical constraints, but it can not generate an optimal total wiring length for the given

netlist. Several other existing methods, with or without doglegs, can be used to solve

routings with vertical consu'aints. Basically, the use of graph theory to minimize the

number of tracks has proven to be a very effective method [9-10]. It constructs the links

and nodes of the graph according to the vertical sequence of given nets. Both dogleg and

non-dogleg approaches can be applied to this method and can generate a reasonable

result for the given routing with vertical constraint problems. The execution speed and

the weighting assignment to each net, however, are the major problems with this method.

Shin and Reed described a method which uses maze routing as well as rip-up and reroute

approaches to reduce both the number of tracks and vias in the channel [1 1-12]. This

method can generally be used in two—dimensional channel routing. It basically uses the

dogleg approach to solve the vertical constraint problem but needs the correct weighting

parameters set in order to find an optimal result. The main deficiencies of these methods

are that they have long execution times and are inflexible for mixed-mode routing opera-

tions.

Finally, most channel routers use symbolic arrays to represent their routing results,

and then use a mask generator to translate the symbolic arrays into mask results. Basi-

cally, the mask generator [13-14] uses the same method in generating functional com-

ponents as well as wirings; it has to examine the symbolic array of the routing several

times in order to generate the correct wiring masks. Thus, the whole execution time of

this approach is relatively long, and it is difficult to verify the correctness of the mask



results unless the simulation tools are applied to the final layout.

1.2 Research Goals and Objectives

The goal of this research is to apply VLSI technology to circuit design in order to

increase product speed while reducing product area. To achieve this goal, we focus on

the mapping of algorithms to architectures for graphic drawing engines and on the layout

tools design for VLSI automation at the physical level. Our first research objective is to

provide the user a high performance graphic drawing engine for quickly generating real-

istic drawings in a raster system. The second research objective is to provide the VLSI

designer useful design tools to deal with VLSI layout problems at the physical level. Of

course, these layout tools can be used to implement our drawing engine for translating its

architecture to the physical layout. To achieve these two objectives, several related tasks

have to be met.

1.2.1 The High Performance Graphic Engine

In an advanced computer graphics system, the implementation of useful functional

blocks in hardware can generally be used to improve the system performance. The

efficient utilization of VLSI design methodologies can reduce the area and increase the

execution speed of the product over that of the traditional printed-circuit board design.

For developing a high performance drawing engine, the VLSI design methodology

should be used throughout the entire design process. Therefore, our first task was to iden-

tify and investigate the suitability of using alternative drawing and antialiasing tech—

niques. The intent here was to identify those algorithms, or portions of algorithms that

could be best candidates for being efficiently and effectively mapped into VLSI architec-

tures. In order to construct the drawing engine for a raster system, the architecture of the



raster system must also be investigated. Since the deve10ped drawing engine should have

the ability to quickly generate very realistic images, our second task was to develop a

flexible antialiased drawing algorithm and its architecture. And, finally, our third task

was to develop a technique for estimating the performance of the design. The approach

used to realize these task objectives is described in the related chapters which follow.

1.2.2 Efficient VLSI Layout Tools

In order to create an acceptable layout with a fast execution speed, VLSI layout

tools are usually used in the physical implementation. Without considering the placement

in the regular VLSI structural layout, we limited out attention to the two-layer channel

routing with the mask generator problem. As stated previously, four routing cases can be

obtained from the routing operation. Thus, our immediate objective was to develop

several two-layer channel routers which can be used to deal with the different routing

cases. Although our results should be general, our primary intent is to apply these tools to

the physical implementation of our drawing engine.

Three tasks were defined to achieve this objective. We first identified and investi-

gated the most promising set of routing and mask generation concepts from existing

algorithms, which led to development of a much better router. A bottom-up layout

approach was used in order to produce the testability feature for the routers. Our strategy

was to first develop a powerful mask generator and then the routers. Thus, our second

task was to develop the powerful mask generator, which provides a simple and clear

interface with the routing operation. And, finally, our third task was to develop efficient

two-layer channel routers to efficiently handle various routing cases. In this task, several

useful channel-routing techniques were developed and refined. The approaches used to

achieve these tasks are described in later chapters.



1.3 Thesis Overview

Consistent with the stated objectives and tasks, this thesis is organized as follows:

Chapter 2 provides an overview of the basic drawing methods, as well as several

antialiasing techniques. It also presents several hardware organizations of raster systems.

Chapter 3 presents a new approach in computer graphic drawing with antialiasing; it

preserves the incremental drawing feature, while improving the display quality and exe—

cuting speed of the developed antialiasing algorithm. Several comparisons of the

developed antialiasing algorithm and the existing algorithms are also provided in Chapter

3. In addition, it contains a VLSI architectural design of this antialiasing algorithm and

one generic VLSI implementation of the line-drawing algorithm. Chapter 4 provides the

background information for several existing two-layer channel routers and mask genera-

tors. Chapter 5 describes the tiling mask generator and three efficient two-layer channel

routers. It also includes the verification of the correctness of routing results and the

evaluation of the performance of the routers by using several examples. Chapter 6 con-

tains a summary of this research work and some recommendations for future research

directions.



CHAPTER 2

EXISTING COMPUTER GRAPHIC DRAWING

AND ANTIALIASING ALGORITHMS

The beginning of modern interactive graphics may be traced to Sutherland’s work

in 1963 [15]. At the same time, many engineering disciplines recognized the enormous

potential for automating drafting and drawing activities in computer-aided design (CAD)

and computer-aided manufacturing (CAM). By using the basic idea from television, the

raster display is one of the important display components in interactive graphics systems.

The image is formed fiom the raster, which is a set of horizontal lines each made up of

individual light spots known as pixels. Thus, the raster is simply a matrix of pixels cover-

ing the entire screen area. The development of inexpensive solid-state memory made ras-

ter graphics feasible because they provide refresh buffers considerably larger and faster

than those of decade ago. Thus, with these attractive features, raster graphics systems are

widely used in today’s computer applications.

In this chapter, we investigate several alternative architectures for the raster system

in order to identify the functionality of our drawing engine. This functionality should be

specified before proceeding with architectural and layout design phases. So, this chapter

presents the interfaces of our drawing engine with both the frame buffer and curve-

drawing operations in a suggested raster system architecture. In addition, in order to gen-

erate a high-performance drawing engine, this chapter outlines the approaches to identify

suitable drawing and antialiasing techniques. Although most existing drawing algorithms

can be used to generate aliased or antialiased results, their algorithmic complexities and

display qualities are quite different. Thus, a reduction method is applied to the whole

drawing algorithmic domain for selecting the suitable drawing technique and useful

10
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drawing concepts. This selected drawing technique should have the operational flexibility

to be capable of generating accurate antialiasing data with a high execution speed.

Therefore, the most important features of a high-performance graphic drawing

engine are high drawing speed, antialiasing and extensibility. This drawing engine should

be designed to draw display primitives in a relatively high speed in order to support the

requirement of the high-resolution display. Since the line-drawing is the fundamental

drawing primitive in a raster system, the line-drawing technique is the key topic of our

entire investigation. By using either the piecewise or scan-converting curve methods, this

line-drawing engine can be applied to curve-drawing operations. Therefore, this chapter

includes the discussion of these approximated curve-drawing methods. Finally, in order

to identify the suitable antialiasing technique, this chapter also presents two major

antialiasing techniques, i.e. the window averaging technique and the area antialiasing

technique.

In order to identify those useful drawing and antialiasing techniques, this chapter is

organized as follows: Section 2.1 provides an overview of the functional model of a

high-performance raster system. It includes the discussion of several functional represen-

tations and processing elements from the graphics applicational level to the final physical

display level. Section 2.2 presents several line-drawing algorithms and two useful curve

approximation techniques. It includes the identification of useful line-drawing concepts

for our drawing engine. In addition, Section 2.2 also presents the interface between the

line-drawing and complicated curve—drawing operations. In Section 2.3, we present a sur-

vey of useful antialiasing algorithms. These can be used to identify the best candidate for

our development the antialiasing engine.
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2.1 A High Performance Raster System Overview

The design of graphics systems has been a challenging topic of study for several

decades; the demand of ever-increasing performance has always pushed the available

technology to its limits. Based on the different design emphases and strategies to organ-

ize the systems, several existing architectures [16-20] have been implemented in today’s

raster graphics systems. Although their input formats and output performances are quite

different, the fundamental functional models of these systems are similar. This section

includes a discussion of a basic functional model for raster systems as they related to

existing architectures.

Figure 2-1 illustrates a basic functional model of high-performance raster systems

[27]. This model can be treated as a generalized functional model of modern raster sys-

tems. The functionality of those representations and processing elements are as follows:

0 The AM (the application model) contains a description of both the graphical and non-

graphical properties of an object in a format determined by the application program

and/or modeling package.

0 The DFC (the display file compiler) is the part of the application program that con-

tains the model traverser and calls to the graphics package for mapping the AM to the

SDF. '

O The SDF (the structured display file) contains a description of the graphical represen-

tation of the object.

O The DPU (the display processing unit) contains several drawing primitives used to

map SDF to BM.
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O The BM (the bit map) holds the scan-converted images and can be transformed to the

display screen.

0 The IDS (image display system) reads both bit maps and color-table maps and

translates them into display monitor signals.

AM DFC SDF DPU BM IDS

Note that means the reprenetation;
.........

    

     

             
 

 
 

 
 

means the processing element.

   

Figure 2-1. Functional model of a high-performance raster system: -

AM - Application Model; DFC - Display File Compiler; SDF - Structured

Display File; DPU - Display Processing Unit; BM - Bit Map; IDS - Image

Display System.

Usually, the AM and DFC are prepared and processed in the high computational

unit such as a host computer because they require a high computational power to process

all the possible objects. The SDF is generated after the execution of the DFC in the host

computer. A portion of the memory in the raster system is always used for storing the

SDF in order to provide related instructions to the DPU.

The design of the DPU is an important task since the quality and the speed of

displayed images are heavily dependent on the design of the DPU. The use of built-in

functional calls is a traditional method to implement the function of graphics primitives

in the DPU. For example, Intel’s 82720 [16] and 82786 and TI’s 34010 [18] are imple-
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mented by adopting this method. These graphics engines show a flexible feature in han-

dling the display primitives and in linking with the host computer. However, because

they do not contain the dedicated hardware for drawing primitives and antialiasing opera-

tions, their main deficiencies are low drawing speeds and poor realism results. Another

useful method to implement the DPU is through the use of dedicated hardware for

accelerating the speed of drawing operations. The SEILLAC-7 [19] utilizes a custom

ECL DDA chip to achieve a high line drawing rate. This is a typical example of using the

dedicated hardware to implement a drawing engine. Since a matrix encoder is included in

the DDA circuit design, this chip can be used to alleviate the staircasing effects in draw-

ing a line-segment. This design can only provide a small number of intensity levels for a

line—drawing antialiasing operation. In addition, it can not provide various line-width

options for users. Thus, the lack of good quality and flexibility of generated images are

the main deficiencies of this DDA implementation. However, this method provides a use-

ful concept for designing low-level functions, while all the geometric drawing functions

are handled at the high level.

The design of the BM and IDS are much simpler than that of in the DPU. Basically,

they are used to translate the images from the pixel—plane to raster displays. Their tasks

include bit-map and color-map managements and the interfacing logic design. Typical

examples of the BM and IDS designs can be found in the SEILLAC-7 [19] and

MEGATEK’s 7200 [20]. According to their design, the image translated from the frame

buffer to a display is fast enough to provide a high resolution display.

Our research emphasizes the development of a crucial drawing element in order to

provide a high-performance drawing engine. Actually, the functionality of this drawing

element is to perform a low-level drawing operation of the DPU and to translate its

results to the BM. Therefore, by following the similar architectural approach of the

SEILLAC-7, our design focuses on the improvement of its short-comings in drawing
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with the incorporation of antialiasing. Figure 2-2 illustrates our research focus in a com-

plete raster system organization. The following two sections present a survey of existing

line-drawing algorithms and antialiasing algorithms. In addition, in order to provide the

useful extensions of the line-drawing design, the next section also presents several useful

curve-drawing approximations.

2.2 Graphic Drawing Algorithms

Since the 1960’s, several curve drawing algorithms have been developed for draw-

ing the geometric images on raster displays. Basically, two kinds of curve—drawing tech-

niques are used to generate the graphic drawings, i.e., the parametric and non-parametric

drawing techniques. By adopting these two techniques, several existing curve-drawing

algorithms can be used to generate curves. But, they are different in the suitable applica-

tion level, the algorithmic complexity and the execution speed. Because our attention is

on the development of a high speed drawing engine, the survey of existing curve-drawing

algorithms focuses on their adaptabilities with a basic. drawing primitive.

In an advanced computer graphics system, a high speed drawing engine is always

required for quickly displaying the images, and its fundamental drawing primitive is the

line-drawing. Basically, this line-drawing element not only can be used to generate lines

in the raster displays but also can be applied to other peripheral devices, such as digital

plotters, etc.. Therefore, in Section 2.2.1, we provide a detail investigation of existing

line-drawing algorithms, especially scan-converting line algorithms. And, Section 2.2.2

contains a general discussion of useful curve-drawing algorithms for the raster display in

both parametric and non-parametric drawing techniques. It also provides several curve-

drawing approximations useful for us to consider their interfaces with a basic line-

drawing primitive.
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Figure 2-2. Our research focus in a complete raster system organization.
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2.2.1 Existing Line-Drawing Algorithms

Since a cathode ray tube (CRT) raster display can be considered a matrix of discrete

cells (pixels), it is not possible to directly draw a straight line from one point to another.

The rasterization is a determination of which pixels will provide the best approximation

to the desired drawing on a raster. The traditional line-drawing algorithms used in the

line rasterization are digital differential analyzer (DDA) [21], the Bresenham line-

drawing algorithm [22] and its extensions [4]. In order to increase the speed of the line-

drawing, several alternative methods [23-25] have been developed by using memory

mapping methods.

(1). The digital differential analyzer (DDA) algorithm:

The DDA is a technique uses a numerical method to solve the differential equations

in order to obtain a rasterized straight line. For a straight line illustrated in Figure 2-3, its

line-slope can be stated as:

_ _ 2— 1

,. - a — air

The rasterized solution of this line is

yin = y.- + dy;

y.“ =y. + 973—1, dz, (2.1)

where xl,yl and x2,y2 are the endpoints of the line, 05m $1, and y.- and ym are the

current and the next values of y at any given step. For at: =1, Equation 2.1 can be rewrit-

ten as

yr+r = y.- + m. (2.2)

In fact, Equation 2.2 shows a recursion relation of successive values of y along the

straight line. According to this method, the selected pixel-coordinates are represented in



(
1
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Note that each "*" represents the pixel center;

each unit square represents the area of the pixel.

Figure 2-3. Example of a straight line mapped onto a pixel plane.
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a non-integer format. Therefore, to find the closest integer value of the selected coordi-

nate, a rounding operation is used by adding 0.5 to its original value and then processed

by a truncation function. The listing of this simple DDA algorithm can be found in

Roger’s book [26].

Four different drawing cases need to be considered in the DDA, i.e. m > 1, 1 2 m 2 0,

0 2 m 2 -l and m < —1. According to Equation 2.2, the calculation of finding y,“ involves a

floating-point operation because the maximum value of y can be 21°, for a screen with

1024X1024 pixels. Because floating-point is a relatively slow process, several

modifications are necessary in order to provide a fast rasterized line-drawing speed. A

revised algorithm of this DDA, the Bresenham line-drawing algorithm, is a very efficient

and popular for drawing line segments with integral endpoints.

(2). The Bresenham line-drawing algorithm:

Although originally developed for digital plotters, Bresenham’s algorithm [22] is

equally suitable for use with CRT raster devices. With the same four operational cases

described above, the Bresenham line-drawing algorithm uses integral arithmetic to incre-

mentally generate the pixels needed to approximate a straight line. Except for this, the

main difference between the DDA and Bresenham algorithms is in their initial phases.

During the initialization phase of the Bresenham algorithm, the x-axis is used as the

major incremental axis if dz is larger than dy. Whereas, the y-axis is used as the major

incremental axis if dy is larger than dx. Note that we also use notations of the DDA algo-

rithm in the discussion of the Bresenham algorithm. This algorithm can be classified as a

two-point method because it uses a difference between 3 and r to select the pixel, where s

and r are the distances from the lower and upper pixels to the straight line respectively.

By using the same line example from the discussion of the DDA algorithm, Figure 2-3

also shows the relation of these two parameters with a line. Thus, a decision variable d,- is
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used to select the pixels of the approximated line, where d,- = dx(s - 1). Assume the opera-

tion is derived under the 0 s m s 1 case. Then, the initial value of d.- is

d1=dx(m - (1 -m))

= dx(2m - l)

=2dy -dx. (2.3)

The relationship between two consecutive decision variables is determined by two cases;

i.e., d.- 2 0 and d.- < 0. Ifd.- 2 0, then the upper pixel is selected, and

am =d.~ +2(dy -dx). (2.4)

If d.- < 0, then the lower pixel is selected, and

4m =4 +Zdy. (2.5)

The complete listing of Bresenham’s line-drawing algorithm can be found in Foley

and Van Dam [27]. Since the algorithm only requires integral additions and subtractions,

its execution speed is relatively fast when compared with other approaches. But the main

disadvantage of using the Bresenham line-drawing algorithm is the lack of antialiasing in

the generated lines.

(3). The extension to the Bresenham line-drawing algorithm:

Pitteway and Watkinson [4] have developed an efficient extension to Bresenham’s

line—drawing algorithm, i.e., the PW algorithm. This algorithm can be used to reduce the

aliasing and jagging effect on the edge of a polygon of the raster display. Basically, it

uses the sign of the difference between the mid-point of two pixels to the straight to

select pixels of the rasterized line. Therefore, this algorithm can be classified as a mid-

point method. In addition to using a decision variable, d.- , this method utilizes a reference,

a, where

r

l-m ifOSmSl;

-4 l-(l/m) ifm >1;

a— 1+»: if—15m<0;

1+(1/m) if m <—1.

(2.6)

 k
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At the initialization of the algorithm, do is set to 1/2, i.e., the half scale of the dis-

tance between two consecutive pixels. With the consideration under the Osmsl case, the

processes used to determine two consecutive decision variables are listed below. If d.- < a ,

then

d,” = d.-+m , (2.7)

and the lower pixel is selected. If d.- 2 a, then

dm = d, — a , (2.8)

and the upper pixel is selected.

Note that the value of d, is controlled between -1 and 1. Basically, the structure of

this PW algorithm is similar to that of the Bresenham line-drawing algorithm. But,

because the decision variable is a constant at the initial phase of the PW algorithm, the

initial calculating time of it is less than that of the Bresenham line-drawing algorithm.

However, according to Equations 2.7 and 2.8, non-integral operations are required in the

algorithm because at is a non-integer number and the value of d.- is used for edge-

antialiasing. Section 2.3 provides the detail discussion of this PW algorithm applied to

antialiasing operations.

(4). Alternative line-drawing algorithms:

Bresenham proposed an incremental line compaction method [23]. This method

represents a line by using both the run length and the repeated pattern encoding tech-

niques. By using several mapping tables, it can simultaneously generate multiple pixels

in each decision cycle. But, this line compaction method needs several memory tables

and techniques to send the various lengths of results to frame buffer. Therefore, the line

compaction method may be fast in a long line, but for a short line, the method is slower

than the incremental Bresenham line—drawing algorithm.
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Sproull [24] uses program transformations to derive line-drawing algorithms. Basi-

cally, this transformation technique is similar to the translation of the DDA algorithm to

the Bresenham line-drawing algorithm. This technique uses the n-step parallel incremen-

tal line-drawing operation for generating multiple pixels in one step. Thus, this transfor-

mation technique is useful in a multi-processing environment to generate several pixels

in each execution cycle. The initialization times for all the processes, however, are totally

different since different number of loops are used for calculating initial values of several

variables. Also, the maximum deviation of a given result to an optimal line may be

greater than one pixel. In addition, the line may have gaps or nonmonotonicities results

while using this technique for drawing stroke patterns.

Wu and Rokne [25] introduced a technique used for a double-step incremental line-

drawing generation. Basically, this technique uses basic concepts from both the Bresen-

ham line—drawing algorithm and the memory mapping method to generate two consecu-

tive pixels in each drawing step. But, in 05m $1 operating condition, this algorithm

needs to further separate the lines into two cases, i.e., m < 1/2 and m 21/2. There are four

fixed patterns of pixels and each of them contains two consecutive selected pixels. Once

these four patterns of pixels are stored, this double-step incremental line-drawing algo-

rithm can be executed faster than that of the Bresenham line-drawing algorithm. The irre-

gularity of processing and the use of more registers than that of the Bresenham line-

drawing algorithm are the main deficiencies of this algorithm. This double-step algorithm

also uses three fixed intensity levels for solving aliasing problem of the line-drawing. As

a result, poor realism of images may be generated by using this algorithm.

2.2.2 The Curve-Drawing Technique

There are three methods that can be used to generate rasterized curves. Pixel map-
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ping is the simplest method used to find all the related pixels of a curve according to the

' solution of its curve-equations. Since this method is mathematically impractical, this sec-

tion does not include the discussion of this method. The piecewise linear approach is

another method used to generate a number of key points on a curve. A rasterized curve is

formed by connecting these points with related line-segments. By using this method,

several useful curve-drawing algorithms can be implemented at the high drawing level of

the DPU in order to generate approximated curves. A scan-curve conversion method is

also useful for generating rasterized curves for raster systems. With the same operational

strategies as that of the scan-line conversion, this scan-curve conversion is the most

efficient curve-drawing method. According to the result of decision variables, it can

incrementally generate pixels of a curve. In the next two sub-sections, we present several

existing curve-drawing algorithms which use the scan-curve conversion and the piece-

wise approximation methods.

2.2.2.l Sean-Converting Curves

Usually, the scan-curve conversion method is applied to the non-parametric curve-

drawing algorithms to generate rasterized curves. For example, the Bresenham circle-

drawing algorithm [28] is one of the most efficient and easiest algorithm of the circle-

drawing algorithms. Because of symmetry, this algorithm only needs to find pixels of a

circle in the second octant, i.e., a circle in y 2x 20 region as shown in Figure 2-4. The

rest of pixels can be generated by adding constant data to those pixels in the second

octant of the circle. Thus, during the processing of the Bresenham circle-drawing algo-

rithm, the x-axis is treated as an incremental axis, and it increments from x = 0 to x =

R/fi with step-size 1. Then, the y-axis is the decremental axis, and it decreases from y =

R to RN2- by l or 0 each step. For simplicity, the center (x,y) of a circle is transformed to

the origin (0,0). By using a similar decision variable d.- of the Bresenham line-drawing
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Y-axis

l
l

X-axis

  
Note that the circle-center is (0, 0) and circle-radius is R;

(x, y) is any random point in the second octant of the circle.

Figure 2-4. Symmetrical property of a circle.
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algorithm, this circle algorithm also uses the sign of d.- to choose pixels. The initial value

of d.- is derived as below:

d1=[(xo+l)2+y3]-R2+[(xo+ 1)2+ (y()—1)2]-R2

= 3 - 2R, (2.9)

where (xo,yo) is equal (O,R). The relationship between two consecutive decision variables

is determined by two case, d.- 2 0 and d, < 0. If 4.- 2 0, then the y-coordinate of the selected

pixel is decreased by 1, and

dr+1= [(xr-r + 2)2 + 07-: - 1)’l -R2

+ [(Xr-r + 2)2 + (ya-1‘ 2?] -R2

= d,- + «rm.l - y;-1)+ 10. (2.10)

If d.- < 0, then the y-coordinate of the selected pixel is unchanged, and

dr+r= [(xa-r + 2)2 + (Yr-rm - 32

+ [(12-1 + 2)2 + (ya--1 — 1)’] -R2

= d.- +4x,-1 +6. (2.11)

The complete listing of Bresenham’s circledrawing algorithm can be found in Foley and

Van Dam [27]. Because this algorithm uses integral addition, subtraction and shifting

operations to generate eight pixels each step, its execution speed is relatively fast. The

main difference between Bresenham’s circle and line algorithms is that an additional fac-

tor added to d.- is a variable in the Bresenham circle-drawing algorithm.

Jordan, et a1. [2] developed a generalized curve-drawing technique directly from the

non-parametric representation of the curve, i.e., f(x,y) = 0. Their method uses continuous

derivatives of the function, f(x,y), and a direction variable to determine next selected

point. While used for drawing circles, the Bresenham circle-drawing algorithm is faster

than the generalized curve-drawing technique.

An efficient non-parametric curve—drawing technique [29] uses the mid-point
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method to incrementally generate lines, circles, ellipses, parabolas and hyperbolas. This

technique is much simpler and efficient than those of curve-drawing algorithms described

above.

One main disadvantage of these scan-curve conversion algorithms is that the curve

equation used is limited to second-order curves, and it is very difficult to extend them to

much high order curves. In next section, we present a useful piecewise approximation

method. This method can be used to generate much high order curves.

2.2.2.2 Piecewise Curves

The recursive and interpolating techniques are two major methods used to generate

piecewise curves. Both techniques are usually applied to the parametric curve-drawing

algorithms since they can easily manipulate the parameters for generating the related

points of the curve.

(1). The recursive technique:

The recursive technique uses a constant increment of the selected coordinate to gen-

erated several approximated points of a curve, where the number of points is defined by

users. Basically, the next generated point and the current point are related by a function,

i.e.,

n+1 = f(x;,y.-);

ya: = g(::.-, yr). (2.12)

where f, g are functions of both x and y. The use of the recursive technique for the

circle-drawing is discussed below.

Assume a circle is described in polar coordinates, i.e, the circle parameters in angle

6 and radius r. The equations for circle are
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x = r c050 + xc;

y =r sin0+yc, (2-13)

where Jrc and yc are the coordinates of the circle-center. For the simplicity, the coordi»

nates of the center are set to the origin (0,0). If we choose (x.-, y,-) as a starting point of a

circle. With an increment angle 89, the coordinates of the next point are

xm = recs (6.- + 59);

)‘m = rsin (9.- + 80).

Double-angle trigonometric formulas expand the right hand side to

xm = r (cos 9.- cosSO - sine.- sin50);

ym = r(cos 0.- sin56 + sine.- cos56).

Since 2:; = r cost); and y.- = r sine.- , the above equations can be rewritten as

xm =x.- c0350- y.- sin80; (2.14)

)‘m = xi W+ y.- cos56. (2.15)

Therefore, according to Equations 2.14 and 2.15, n points are generated from the entire

operation, where n is a number defined by the user, and the value of 50 is equal to 2n/n.

After connecting these sequentially generafid points with line-segments, we have an

approximate circle. As a result, the larger the n is assigned, the smoother the circle can be

generated. Dewey [30] contains the subroutine of this circle-drawing algorithm and its

extension to other curve-drawing operations.

(2). The interpolating technique:

The interpolating technique is another method that can be applied to generate piece-

wise curves. It uses a constant increment of a parameter to calculate several blending

functions. These blending functions are used for curve interpolation. The number of

blending functions and the number of generated points are also defined by the user. The
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basic idea of this technique is to approximate a portion of an unknown curve by filling it

with pieces of known curves which pass through the nearby sample points.

Suppose a curve is expressed in the parametric form:

x =fx(u);

y =fy(u). (2.16)

where f is the curve function and u is a parameter. Assume this curve passes through m

sample points, i.e.,

(X1. Y1). (Ian). (mem-

Then the curve can be approximated by using blending functions, 8,-(u), i.e.,

x =f.(u) =2; £8.04);

y =f,(u) = ; rill-(u). (2.17)

For each value of u, these blending functions determine how much the ith sample point

affects the position of the curve. In order to make the selection of blending functions

simpler, the value of the first blending function is defined as:

Bl=1,ifu=—l;

B; = 0, ifu = 0,1, 2...., (In-1). (2.18)

Therefore, the equation of the first blending function can be written as:

(2.19)

 

The use of general expressions of this method is so called Lagrange interpolation. Four of

consecutive sample points are considered for constructing the approximated curve; thus,

four blending functions are required for interpolation. For m = 4, equations of these four

blending functions are written as:

WWW (31=1.ifu =—1);
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“WPW (B;=1,ifu=0);

Bg(u)=W (Bg=1,ifu=l);

sweating? (B.=ufu=2>. (2.20)

By using these functions and four sample points, a curve may be approximated. The

equations of this curve are

x =x181(u)+x382(u)+x383(u)+x4u4; (2.21)

y =y181(u)+y282(u)+yaBa(u) +y4u4. (2.22)

Given four sample points, a region of this curve is approximated by using Equations 2.21

and 2.22. The approaches to find the good approximation of a curve are described below.

The closest portion of this approximated curve lies between the second and third sample

points, i.e., the value of u is between 0 and 1. Given four sample points (1, 2, 3, 4), the

curve between middle two points (2, 3) is approximated by using n line segments, where

n is defined by the user. Thus, we can get n consecutive sets of blending functions and

points by applying different values of parameter u to the equations, where u = l/n, 2/n,

3/n, 1.

The curve approximation in the first region (1, 2) is treated a little different than that

in the region (2, 3). Now, the value of u is between -1 and 0, instead of 0 an 1. The calcu-

lation of the rest regions of the curve follows the same method of approximating region

(2, 3). The only difference is it uses different sets of those four sample points. For exam-

ple, to approximate the curve at region (3, 4), those given sample points will become (2,

3, 4, 5), and so on. The curve approximation in the final region (m-l, m) uses the similar

method as in the first region, where m is the last sample point. Now, the value of u is

between 1 and 2, instead of -1 and 0, and those given sample points become (m-3, m-2,

m-l, m).
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The algorithm mentioned above provides only the basic idea of interpolation by

using blending functions. It does not consider the first-order continuity at all endpoints

and the unity of blending functions, 28;(u)=l. Several adjustments of the algorithm are

introduced by Harrington [31] in order to provide better curve approximations. Instead

of using approximated points, B splines uses several control points and a new set of

blending functions to provide the unity of blending functions and both the first and the

second—order continuities at all the generated endpoints. Another interpolation method is

provided in Bezier curves [32]. It uses four control points and the approximated deriva-

tives to generate all the endpoints with the first-order continuity feature and the approxi-

mated curve with a convex hull feature.

Therefore, the quality of the generated curve depends on the algorithm and the

number of iterations we used. Because the line—drawing algorithm is used to connect

those generated endpoints, the jaggy and staircase appearances still exist in the approxi-

mated curves. In order to improve this short-coming, several existing antialiasing algo-

rithms are investigated in the next section.

2.3 Existing Antialiasing Techniques

Fundamentally, the appearance of aliasing effects is due to the fact that geometric

drawings are continuous, whereas a raster device is discrete. Antialiasing techniques are

generally used to reduce these display degradations generated from using the drawing

operations. The simplest method is to increase the resolution of the raster to achieve the

antialiasing. However, there is a limitation to the ability of CRT raster scan devices to

display very fine tasters; presently, the practical limitation is about 2000 pixels per scan

line. In addition to this method, two major antialiasing techniques are used for image

antialiasing during or after executing a drawing operation. Section 2.3.1 presents the
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window-averaging technique. It uses the post-filtering approach to apply a filtering func-

tion to the image after the image are drawn. Section 2.3.2 presents the area-antialiasing

technique. It uses the pre-filtering approach to apply a filtering function to the image dur-

ing the drawing operation.

2.3.1 The Window-Averaging Technique

The basic idea of the window-averaging is derived from increasing the sampling

rate of the raster, and this technique is also called pixel averaging. It applies some types

of averaging functions to the image at high resolution and obtains pixel attributes of this

image at lower resolution [3, 33].

Basically, a window is similar to a filtering function during the averaging operation.

In order to derive this window averaging technique, we list a two-dimensional expression

of the discrete convolution below:

D(i,j)=ki ;F(k,m)H(i-k,j-m), (2.23)

where D represents the filtered scene produced by convolving the scene F with the filter

H; i and j are coordinates at the raster; I: and m are parameters used for representing all

the convolved area of the given point of an image. Since filtering operations in both the x

and y directions are independent, this expression can be rewritten as

00,1) = 1:. ”2.17%, m)H,-(i—k) ”jg—m), (2.24)

where H.- and H,- are the filter functions at the x and y directions.

If each point of the image is approximated by a rectangular block, then the function

F over any such block becomes constant. Thus, the function D can be simplified, and

becomes
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8

1304):; 3; C1 H,(i-k)H,-(i—m)+....:zp 2; C.H,(i—Ic)H,(,'-m), (2.25)
k mar.

where [pm q..] and [rm 5.] represent the bounds of a given rectangular block of intensity

C... n such blocks give the approximation to the filtered scene at point (i, j).

If filter functions are considered separately for a given rectangular block, then the

expression of the convolution can be rearranged as

D(i, j) = c1 1:, man-k) .2; HjU-m) + ....C.. 1:, H,(i—k) .2; HjO-m). (2.26)

Therefore, by making the rectangular blocks arbitrarily small, we can obtain an arbi-

trarily good approximation to D .

Basically, there are two types of the averaging, uniform and weighted. A uniform

averaging operation assigns a constant, such as l/n, to all the items of the filtering func-

tions in the pixel-intensity expression given above, and each display pixel D(i, j) is deter-

mined by a summation of that expression. For example, by applying a 2X2 uniform win-

dow averaging operation to a image, the intensity of a pixel (i, j) is expressed as

 

D (i,j) = (C1+ C2}C3 + C4) ’ (2.27)

where CH are the intensities of its surrounding sub-pixels.

The weighted averaging operation uses a distribution function to assign weights to

the surrounding pixels according to their distance to the assigned pixel-center. The closer

the pixel is to this assigned pixel-center, the higher the weight it is assigned. Thus, the

values of each filtering function is approximated to the assigned weights divided by a

summation of all the weights. For example, by applying a 3X3 weighted window averag-

ing operation to a image, the intensity of a pixel (i, j) can be expressed as

D(i.j)= (4C1+2C2+2C3+2C441'62C5+C5+ C7+C3+C9)’ (228)
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where C] is the center pixel; CH are the pixels next to the center pixel; CH are the pixels

next to the center pixel in a diagonal direction. The result of using this weighted averag-

ing operation is illustrated by Crow [3]. It shows that the use of the window averaging

technique can produce very realistic images.

Since both the uniform and weighted averaging operations need to process the

entire image by a window, a lot of computations are required for their usage. Therefore,

the use of this window averaging technique is at a lower operational level than that of the

drawing operations in the raster system. In the next section, we present a much faster

antialiasing technique for use in drawing operations.

2.3.2 The Area-Antialiasing Technique

The area antialiasing technique uses a concept that the intensity of a pixel is pr0por-

tional to the area of that pixel intersected by the image. It assumes a pixel has a non-zero

area instead of being merely a mathematical point. Due to different assumptions on

pixel-shapes and filtering functions, there are several area antialiasing algorithms used to

calculate the intensity of each pixel along edges or lines of the image. In this section, we

discuss several useful area antialiasing algorithms such as the PW algorithm, the GS

algorithm, and several alternative algorithms.

(1). The PW algorithm:

As stated, Pitteway and Watkinson (PW) introduced an extension to the Bresenham

line-drawing algorithm. This algorithm can also be used to incrementally generate the

intensity of a selected pixel along a polygon edge for edge-antialiasing.

Basically, according to the mechanism of a CRT, the luminance of each pixel gen-

erated by the beam is a Gaussian distribution. Because overlappings exist among all the
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near-by pixels, a column of pixels produce a relatively smooth luminous across a group

of raster lines [34]. Based on this result, the PW algorithm uses the assumption of a

square pixel and an uniform distribution of the pixel-intensity of each pixel for achieving

its operation.

As stated, the decision variable d is used to select pixels. In addition, the value of

this variable is proportional to the area intersected by a polygon edge. In a pixel-selecting

calculation,

8A = mi + c + 1/2 - j,

where M is the intersected area of a pixel (i, j) below the line y =mx + c. And, it is the

same value as 4 generated at that location. The above statement is true only when a line

is intersected by the two vertical edges of a pixel. When a line intersection is at the upper

boundary of a pixel, two pixels should be shaded, and the summation of their pixel-

intensities should be equal to the value of d . But, according to the algorithm, only one

pixel is shaded, and its pixel-intensity is the same as the value of d. Figure 2-5 illustrates

these two pixel-shading cases. Thus, the PW algorithm neglects a portion of area covered

by another pixel. The value of d is always between -1 and 1, and the maximum intensity

of a pixel is assigned to 1, i.e., the area of a pixel is equal to 1. Therefore, during the

incremental pixel-selecting calculation, the generated value of d each step is approxi-

mated by the intensity of that pixel.

The main advantage of using this algorithm is its simplistic since it uses only one

decision variable to generate both the pixel-selection and pixel-intensity signals. We also

use this useful concept in developing our drawing with antialiasing algorithm. According

to its pixel-intensity calculation, only the polygon edge antialiasing is achieved by using

the PW algorithm. Thus, it needs to execute the algorithm three times with different ini-

tializations in order to generate a unit-width antialiasing line-drawing. In addition to

these inefficiencies, the inaccuracy of the generated pixel-intensity is also a key problem
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of using the PW algorithm. In the next chapter, we present a general discussion of the

performance of this algorithm and our developed antialiasing algorithm.

(2). The GS algorithm:

Gupta and Sproull (GS) [5] suggested treating the pixel as a cone with this pixel’s

intensity being proportional to the volume of the cone intersected by the line. This GS

algorithm uses the distance between the pixel center and the line center and look-up

tables to find the intensity of that pixel. Basically, this algorithm is also a variant of the

Bresenham algorithm. It can incrementally update the distance variable p, similar to the

decision variable d used in the Bresenham algorithm. By inputing this generated p and a

line-slope m data, we can fetch the corresponding pixel’s intensity from look-up tables.

Of course, a pre-calculation process is needed to generate the intensity data and store it in

these look-up tables. Thus, according to the GS algorithm, it is possible to assign intensi-

ties to several shaded pixels each step with a given line-width input. For example, there

are three pixels are shaded each step for the line-width = l, and one pixel is shaded for

applying the algorithm to the polygon edge antialiasing.

With the initial value of p = 0, the the recursive process to generate p is stated

below.

If (p 2 s), then the upper pixel is selected as the next center pixel and

p =12 + (tn-1W; (2.29)

else the lower pixel is selected as the next center pixel and

10 =10 + We . (2.30)

where c =1N1+ m2 is a factor. This factor is calculated from the perpendicular distance

between the line—center and the pixel-center instead of the vertical distance used in

Bresenham-like algorithms. And, s = (0.5-m)"'c is a constant used to decide which value is

selected for incrementing the distance variable.
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The main advantage of using the GS algorithm is that it provides great flexibility in

applying its antialiasing process to polygon edges, various line-thicknesses and line end-

points. However, in order to support this flexibility and good antialiasing results, the size

of look-up tables is relatively large. Furthermore, by comparing the structure of both the

PW and GS algorithm, the GS algorithm requires more arithmetic operations than that of

the PW algorithm. Also, in the next chapter, we present several result comparisons of

using the GS, the PW and our algorithm.

(3). Alternative algorithms:

Fujimoto and Iwata [6] present another area antialiasing technique which uses a tri-

angular intensity distribution of a pixel intersected by a line. Without using any look-up

table, this algorithm incrementally generates intensities for up to three pixels each step.

This algorithm uses an additional input parameter to assign ‘the maximum intensity for

each pixel-column. In addition, it has deficiencies of using several non-integral computa-

tions and of the limited line-widths option.

Turkowski [7] uses the coordinate transformation method to generate the effective

convolution in terms of point-line distance for geometric antialiasings. The algorithm

uses a non-incremental operation. This is quite different from those algorithms listed

above. Basically, it assigns a Gaussian disuibution to the pixel-intensity for convoluting

with the line and polyon edge. And, these convolutions need a lot of numerical integra-

tions. The major entries of the convolutions are the point-line distance and point-segment

distance. Turkowski investigates several mathematical algorithms in order to provide the

fastest calculation method for generating these two distances. As a result, the use of the

Coordinate Rotation Digital Computer (CORDIC) rotation algorithm is suggested for cal-

culating the point-line and point-segment distances. This algorithm can provide a very

realistic result of the image. However, in order to increase the computing speed of the
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algorithm. this algorithm must use the special-purposed hardware because several

CORDIC iterations are used while calculating point-line or point-segment distances.

In this chapter, we described several existing drawing and antialiasing algorithms

and several architectures for implementing these algorithms in raster systems. In sum-

mary, by comparing several different architectures for a high-performance raster system,

we proposed the outline of our research focus, i.e., to develop a high-performance draw-

ing engine by using a dedicated hardware approach. Criteria used for evaluating altema-

tive drawing engines are realism, execution speed, operational flexibility, and VLSI

implementation suitability.

According to the discussion of traditional line-drawing algorithms, we realize that

the incremental and integral operation concepts are useful for developing a fast drawing

algorithm The other line-drawing algorithms are not suitable for developing our drawing

engine because they have deficiencies in linking with the antialiasing operation. They

also need a lot of extra memory and computational processes in order to provide fast

line-drawing operations. In addition, we investigate the scan-curve conversion and piece-

wise curve-drawing methods which can be used to define the functionality of our drawing

engine, i.e., line-drawing and curve-drawing functions.

Because it is fast, the area-antialiasing technique has the potential for generating

pixels in real time; thus, it is much more useful than the window-averaging technique

when speed is required. According to the discussion of existing area-antialiasing algo-

rithms, we know that the PW and GS algorithms use the incremental pixel-intensity gen-

eration concept. This concept is useful for developing our drawing engine to construct

simultaneously both the line-drawing and antialiasing operations. To have less algo-

ritlunic complexity is our main reason for selecting these two algorithms over that of

alternative algorithms. But, trade-offs between the PW algorithm and the GS algorithm

are the speed of execution, the flexibility to provide various functions, and the quality of
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results, i.e., realism of the display. Our goal is to optimize the graphic engine design by

treating these trade-offs as parameters in our investigation of alternative algorithms and

architectures.



CHAPTER 3

THE CF ANTIALIASED DRAWING ENGINE

This chapter presents the development of our drawing engine, which is known as

the CF engine. This development includes the functional implementation, the structural

implementation, and the performance estimation of the CF engine. In the functional

implementation, we concentrate more on developing the antialiasing algorithm than on

developing the line-drawing algorithm. This is because the algorithmic structure of the

line-drawing algorithm is similar to those of the traditional scan-converting line algo-

rithms. We will demonstrate that our antialiasing algorithm is superior to alternative

algorithms by a virtue of its operational flexibility and display quality. In the structural

implementation of the CF engine, we adopt both parallel and pipeline architectures in our

design. In this implementation, we also consider the maximum adaptability of this draw-

ing engine to general curve-drawing operations. Finally, we use a suitable performance

estimation technique to evaluate the performance of the CF engine. This technique is also

useful for evaluating most VLSI implementations which use the standard-cell or custom

designed cell approaches. Both the estimating and testing procedures are described in this

chapter in order to verify the correctness of the timing model of basic cells and the tim-

ing estimation technique which we employed.

40
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3.1 The Algorithmic Development

There are two kinds of interfaces for the CF engine to work with high-level curve-

drawing functions. The most general one is its interface with piecewise curve-drawing

functions. Because these functions are used to generate coordinates of several consecu-

tive line-segments, inputs of the CF engine are simply specifications of line-segments.

Thus, in this case, the CF engine is operated in its normal operational mode, i.e., line-

drawing with antialiasing. Another interfacing of the CF engine is with scan-converting

curve functions for quickly generating approximated curves. Because these functions

provide pixel-selection signals, we can combine this information with our antialiasing

results to generate realistic curves. Thus, in this case, the CF engine works as an

antialiasing engine. In order to provide those required functions for the CF engine, we

concentrate on the functional development of the CF engine in this section. It includes

the line-drawing algorithm, the antialiasing algorithm, and the entire drawing algorithm

of the CF engine. In addition, we compare our antialiasing results with those of other

existing area-antialiasing algorithms.

3.1.1 The Line-Drawing Approach

The line—drawing operation is a fundamental drawing primitive in the CF engine. In

order to provide the fastest possible execution speed and the greatest possible extensibil-

ity to the antialiasing operation, we use the midpoint pixel-decision method. The mid-

point method uses the sign of a vector from the actual line to related midpoints to select

pixels of the rasterized line. The PW algorithm uses this midpoint method; thus, we use it

as a basic building block and adopt it to fit our overall design criteria In order to increase

the execution speed of the line-drawing algorithm, we apply a replacement process to the

PW algorithm. Thus, several major parameters and expressions of the algorithm are
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changed and become more effective than the original ones. With those adjustments, the

initial condition of d, becomes

(11: 0.5 - (l—m)

= m - 0.5, (3.1)

and the reference a is now set to 0. Under the 05m 51 case, the consecutive decision

variable is determined by using the following expressions. If d,- < 0, then the lower pixel

is selected, and

dg+1 = d; + m .

Otherwise, if d.- 2 0, then the upper pixel is selected, and

d3.” = d.-+(1-m).' (3.2)

Note that we use the line-slope m in our line-drawing operation. The main reason

for this is that m is an important factor for use in developing our antialiasing operation.

By comparing the algorithmic structure of the two algorithms, we see that the use of this

modified algorithm is faster than the original PW algorithm. This line-drawing operation

is used as a decision element in the CF engine. Basically, the CF engine is constructed by

both the line-drawing and antialiasing operations. Thus, we need a suitable antialiasing

approach to link with this line-drawing operation in order to provide antialiased drawing

features. In the next section, we present our antialiasing approach, which is known as the

CFO antialiasing approach.

3.1.2 The CFO Antialiasing Approach

According to the conclusion of Chapter 2, the area-antialiasing appears to be the

most suitable technique for developing our antialiasing algorithm. This is because the use

of this technique can provide a fast execution speed and much realistic images, and it is
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suitable for VLSI implementation. Thus, we must define two important factors in order to

adopt this technique, i.e., the disuibution of the pixel-intensity and the shape of a pixel

on the raster. In the CFO antialiasing approach, the distribution of the pixel-intensity is

assumed to be unweighted and uniform, and, a pixel is treated as a 1x1 square area on the

raster. In addition, we need to construct the incremental process and exact pixel-intensity

model for developing the CFO antialiasing algorithm. According to the given line-width

Wd and line-slope m inputs, we first define several parameters for our CFO antialiasing

algorithm as follows:

(1) Ar represents the whole intersected area of a line with each pixel-column, where

At = Wd “' il-t-mz. (3.3)

Since the area of each pixel-column intersected by a line depends only on the given Wd

and m, A: is a constant for each pixel-column of the given line-segment. It is also a verti-

cal distance between two line—edges of the line. i

(2) Wx represents a factor to calculate the amount of pixels to be shaded in each pixel-

column, where

W): = [fig—J +1. (3.4)

By using geometric calculations, we can determine that number of shaded pixels is equal

to 2*Wx + 1. Also, Wx is a constant in the antialiased line-drawing operation. In addition,

we can determine coordinates of the shaded pixels in each pixel-column by using this W1:

and the pixel-decision signal.

(3) There exist two error parameters, i.e., {1- and £2. ET represents a vector from the

upper pixel-midpoint to the upper line-edge in each pixel-column. If the direction of this

vector is upward, then its value is positive; otherwise, its value is negative. e—2 represents

another vector from the lower pixel-midpoint to the lower line-edge in each pixel-

column. If the direction of this vector is downward, then its value is positive; otherwise,
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its value is negative. Thus, el and e2 are variables, and their values can be updated each

step. By using geometric calculations, we express the initial values of :1 and e 2 as

lee-lérj -i- (3.5)

Figure 3-1 illustrates the geometrical relationships among Ar, Wx, e_1 and {2' correspond-

ing to a line with the starting central pixel (i, j), line-slope m and line-width Wd. Note that

all of the definitions listed above are based on the line-drawing under the 05m $1 case.

Their extensions to other cases are the same as we described in Section 2.2.1 with the

related values of m , i.e.,

f

m if 05»: SI;

(l/m) if m >1;

m =1 -m if -1$m < o; (3.6)

-(1/m) if m <-1

 
It is obviouis that the midpoint method is used for our calculating el and :2. So, the

calculation of consecutive values of :1 and :2 can be executed incrementally:

If the upper pixel is selected, then

i e 1m = e1; -(1-m);

e 2.41 = e2,.+(1-m). (3.7)

Otherwise, if the lower pixel is selected, then

elm=elg +m;

e2.-+1=e2; -m. (3.8)

The use of the uniform area antialiasing concept provides a direct and effective

intensity calculation. By using this concept, we form an exact intensity solution

expressed in terms of the enor parameter e,-, where i = l or 2. Note that this antialiasing

operation is also considered under the 0911 $1 case. Thus, there exists three possible

cases for a line-edge intersected by a column of pixels, i.e., e,- > m/2,-m/2 s e,- s m/2 and

e,- < -m/2. The value two is the maximum number of pixels to be intersected by a line-
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edge, and Areal and Areaz represent the shaded area for each of these two pixels. Figure

3-2 illustrates results of Areal and Area2 with three cases of £5. Note, if any shaded-area

result is equal to 0, then there is no pixel-intensity of that pixel. And, if it is equal to 1,

then the pixel is at its full intensity. By using the geometric calculations, we express the

shaded-area solution as:

e,- ife; 2171/2;

Areal: m/8+e,-,2+e,3/2m if—m/2<e; <m/2;

O ife; S—m/2.

And

1 “mama;

Area2= l-m/8+e.-/2-e.3/2m if-m/2<e.- <m/2;

1+3; ife.-S-m12.

Note that

-lSe.- <1,

05m 5 l,

and

c.3f2m « l,if-m/4 <e.- < m/4.

(3.9)

And, e; can be :1 or :2. Thus, we can eliminate the complicated terms in the exact

shaded area solutions in order to save its computational time. Also, to reduce the error

generated from this elimination, a shifting process is applied to these shaded-area expres-

sions. By applying both eliminating and shifting operations to the original solution, we

can express the new shaded-area solution as:

e; ife; 2171/4;

Areal = m/8+ em if-m/4 < e,- < m/4;

0 ife; S-m/4.

And,

1 ifei 2m/4;

Area2= 1—m/8+ei/2 if-m/4<ei <m/4;

1+er' ifei S-m/4.

(3.10)
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// * * Areal

/ , ,

m r//////.’///// Areal m 1 er/ I Areal / =0

\§ / \ ei\ m

‘ /

=1 Area2 Area2

ei>ml2 -m/2 <ei<m/2 ei<-m/2

Note that each "*" represents the pixel center;

m represents the slope of the line;

each unit square in the columns represents the area of each pixel.

Figure 3-2. Shaded-area results for three cases of ei.



48

The maximum error of this solution is determined by calculating the difference between

the approximated result and the exact result. We find this error is only 1/32, i.e., 3.125%.

Note that inputs of this CFO algorithm are only the line-slope m and the line-width

Wd. These two parameters are useful for calculating the initial value of all the parame-

ters. In the CFO algorithm, the values of all the parameters are restricted to the range [-1,

1], and each generated pixel-intensity value is restricted to the range [0, 1]. These

features are useful in the structural implementation of the CF engine. From the structure

of the CFO algorithm, we know this algorithm has both incremental operation and multi-

ple shaded-pixels generation features. Also, the CFO algorithm allows any positive real

number used as the line-width input. Thus, the use of the CFO algorithm can provide

various line-width options to users.

A comparison of various line antialiasing results is provided by Pitteway [35]. It

contains the related pixel-intensity results of the idea calculation, the GS [5] and the PW

[4] algorithms for a line with the line-width Wd =1 and drawn from (0,0) to (7,5). With

the same condition, we use our CFO algorithm to calculate the related pixel-intensities.

These antialiasing results of the ideal, CFO, PW and GS thin-cone algorithms are illus-

trated in Table 3-1. It shows that pixel-intensity results of our algorithm is more accurate

than those of alternative area-antialiasing algorithms. In addition, because we use a con-

stant intensity parameter At in our algorithm, results of using our antialiased line-drawing

operation do not have non-constant line thickness problems, which occurs in the GS

algorithm. Furthermore, in order to compare the maximum error of using our algorithm

with that of the PW algorithm, Figure 3-3 illustrates their shaded area results correspond-

ing to an error parameter c,- . It shows that the maximum area error of PW implementation

is m/8; however, the maximum area of CFO implementation is only m/32. Thus, the use of

the CFO algorithm generates much more accurate pixel-intensity results for antialiasing

operations.
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Location GS thin-cone result PW result CFO result Ideal result

U1 0.126 0.114 0.147 0.156

Bl 0.958 1.000 0.936 0.918

L1 0.126 0.114 0.147 0.156

U2 0.010 0.000 0.004 0.024

B2 0.833 0.829 0.825 0.805

L2 0.386 0.400 0.400 0.400

U3 0.550 0.543 0.543 0.543

B3 0.705 0.686 0.686 0.685

L3 0.000 0.000 0.000 0.001

U4 0.240 0.257 0.257 0.264

B4 0.924 0.972 0.897 0.889

L4 0.049 0.000 0.075 0.076

U5 0.049 0.000 0.075 0.076

B5 0.924 0.972 0.897 0.889

L5 0.240 0.257 0.257 0.264

U6 0.000 0.000 0.000 0.001

B6 0.705 0.686 0.686 0.685

L6 0.550 0.543 0.543 0.543

U7 0.386 0.400 0.400 0.400

B7 0.833 0.829 0.825 0.805

L7 0.010 0.000 0.004 0.024

U8 0.126 0.114 0.147 0.156

B8 0.958 1.000 0.936 0.918

L8 0.156 0.114 0.147 0.156

 

Note that the location of the pixel, GS and PW indicated here are the same as the

definitions in [35].

Table 3-1. Area result comaprison of the ideal, CFO, PW and GS thin-cone algorithms

from (0,0) to (7,5) with Wd = 1 pixel.
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Area result

‘1
   

m/Z

 

 

Note:

is the exact result;

is PW’s result;

is CFO’s result.

 

Figure 3-3. Comparison graph of shaded area results.
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3.1.3 Implementation of the CF algorithm

During the development of our antialiasing algorithm, we recognized that only the

pixel-decision signal was missing to fulfill the entire drawing operation. Thus, both the

line-drawing and the antialiasing algorithms should be link together in order to construct

the CF algorithm. In the CFO algorithm, the operation of the error parameter c,- is similar

to that of the decision variable d in the line-drawing operation. Thus, we can simply use

the error parameter c; to decide which pixel is to be selected. The procedure is described

as follows: IF e.- 2 0, then select the upper pixel; else, select the lower pixel. The incre-

mental calculation of e,- is the same as we described in the previous section. This concept

is useful in the line-drawings. with non-integral endpoints because it is not necessary for

e,- to equal 1/2 at the starting and ending points of the line-drawing operation. However,

there are two error parameters in our antialiasing algorithm, and both can be used to gen-

erate difl'erent pixel selection signals. For example, by using e1, we select the upper

pixel; whereas, we may select the lower or upper pixels by using l-e 2. Both results are

correct because they use two different pixel-midpoints as their bases. Therefore, we still

use a line-drawing algorithm described in Section 3.1.1 to generate our pixel-decision

signal and to construct the entire drawing algorithm. Figure 3-4 illustrates the basic

configuration of the CF algorithm, where a1 and a2 represent pixel-intensities of two pix-

els at the upper line-edge. a3 and 04 represent pixel-intensities of two pixels at the lower

line-edge. And, Assign_area represents a subroutine used to generate two pixel-intensities

according to the value of the error parameter input.

In order to verify the correctness of the CF algorithm, Chen and Fisher [36] illus-

trate image results by applying the algorithm to several examples. Basically, we use a

concept similar to Thacker and Smith [37] to verify the algorithm. This testing concept

applies several possible patterns of an image as input databases to the algorithms and

then to evaluate their performance by inspecting their visual results.



52'

LineAnt( x1, y1, x2, y2, Wd)

{m= (y2 -y1)/(x2 -x1);

w=1-m; .2

At: Wd*SQRT( I + m);

Wx = Mt/2J+ I;

d = 1/2 - w;

el = At/Z - LA:/2_|- 1/2;

e2 = e1;

x = x1;

for(i= I;i< (x2 -x1) +2; i++)

{ Assign__area( el, al, a2);

Assign_area( e2, 03, 04);

if( Wx > I)

{for0'=y1 -Wx+2;j<y1 + Wx-I;j++)

displafl x. j, I);

display( x, y] + Wx - 1, a2);

display(x, yI - Wx + 1, a4);

}

else display( x, yI,At-a1 -a3);

display( x, y] + Wx, a1);

display( x, y] - Wx, a3);

if(d< 0)

{ s=0; d=d+m;

eI=eI +m; e2: e2 -m,'}

else{ 3:1; d=d-w;

e1=eI-w; e2=eZ+w;}

x=x+1;

yI =y1 +s;

Assign_area( ei, ail, aiZ)

{ if( ei >= m/4)

{ ail = ei; ai2 = 1;}

else if( ei >= (-m/4))

{ ail = m/8 + ei/Z; (112 = I - m/8 + ei/2;}

else{ ail = 0; ai2 = I + ei;}

}

Figure 3-4. CF algorithm with various line thickness.
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In addition to evaluating the correctness and realism of the CF algorithm, we com-

pare its execution speed with that of alternative algorithms. The GS algorithm not only

needs to calculate a distance variable each cycle but also needs a large amount of

memory to store all the related pixel—intensities. The algorithmic complexity of the GS

algorithm is similar to that of ours, but, the execution time of the GS algorithm requires

additional time for fetching the related pixel-intensities from a memory look-up table.

Thus, the execution speed of the CF algorithm is faster than that of the GS algorithm.

The PW algorithm is the simplest antialiasing algorithm, and it is useful for edge

antialiasing. This algorithm must be operated three times and needs different initializa-

tions while being used for the antialiased line-drawing. We also modified the original CF

algorithm in order to increase its execution speed. But, we accomplished this by

sacrificing some realism. The pixel-intensity resulting from this modified algorithm is the

same as that of the PW algorithm. This modified algorithm has the same structure as that

shown in Figure 3-4, only the pixel-intensity assignment subroutine is changed to

ludyLamaGLaLam

{30:20)

“(3:20)

{dt=€n02=l:}

else

{a1=0;a2=1+e.-;}

} (3.11)

We used several representative drawing examples to evaluate the execution speeds of the

PW algorithm, our original algorithm, and the modified CF algorithm. A comparison of

these results is provided in Figure 3-15. From this figure, we see that our original CF

algorithm is faster than the PW algorithm, and the modified algorithm is the fastest one

among all three algorithms.

If the CF algorithm is used in conjunction with piecewise curve operations, then the

algorithm is operated in its normal mode. So, it is used to draw the given line-segments

with an antialiasing feature. In conjunction with scan-curve conversion operations, the
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Note:

represents PW’s result;

""""" represents CFO’s result;

— represents modified CFO’s result;

all timing results are measured in CPU second on SUN-3;

x2 - x1 is equal to 800.

Figure 3-5. Comparison of the execution speed of the PW, CF and

modified CF algorithms.
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CF algorithm is operated in its antialiasing mode. It is used to generate pixel-intensities

for antialiased curve-drawings. The information used here are the curvature of a curve

and the pixel decision signal. For this case, the line-slope m and the constant intensity A:

in the algorithm should be replaced by two incremental variables. Figure 3-6 lists a typi-

cal antialiased circle-drawing algorithm with line—width Wd =1. It combines both the

Bresenham circle-drawing algorithm and our CFO antialiasing algorithm. Furthermore,

by replacing the incremental line-slope with the exact one in each drawing cycle, we can

derive an improved CF algorithm. This algorithm can be used to generate much more

realistic circles. However, we need more complicated computations in the algorithm than

that of the nominal algorithm. Chen and Fisher [36] demonstrated the results of using the

aliased algorithm, the nominal algorithm and the improved CF circle-drawing algo-

rithms.

By combining both the line-drawing and CFO antialiasing algorithms, we con-

structed the CF algorithm. From the comparisons and demonstrations listed above, the

CF algorithm is the greatest in its execution speed, operational flexibility and realism

among all the algorithms.

3.2 The Architectural Implementation

According to the data flow of the CF algorithm, we can easily identify three main

parallel processes. These are the processes of the pixel decision variable d,- , and two error

parameters el and e2. The process of variable d,- is used to generate a pixel decision sig-

nal for determining the minor axis address and increments in both el and e2 operations.

The processes of el and e2 are used to generate intensities of the shaded pixels around

the upper and lower line-edges of a line. Thus, for each clock cycle, two identical pixel

intensity generators with inputs e l and e 2 produce four pixel-intensities.
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CircleAnt( x1, y], R)

{

y1 = y] + R;

xx = 0;

W = R:

m = 0;

w = I;

mstep = 1.414 /R;

At = I;

Atstep = 0.414 * 1.414 /R;

d = 3 - 2 * R;

e1 = 0;

e2 = e];

while ( xx <= yy)

{

Assign_area( e1, 01, a2);

Assign_area( e2, a3, a4);

display( x1, y], A: - aI - a3);

display( x1, y1 - 1, a1);

display( x1,y1 + 1, a3);

m = m + mstep;

W = w - mstep;

At = A: + Atstep;

el = At/2 - 1/2;

e2 = e1;

if ( d < 0)

s=0; d=d+4*xx+6;

e1 =e1 +m; e2 =e2-m;

s=1; d=d+4*(xx-yy)+10;

e1 =e1 -w,' e2=e2+w;

x1-x1+1; xx=xx+1;

y1=yI-s: yy=yy-s;

}

}

Figure 3-6. CF circle algorithm with Wd = 1 pixel in octant y >= x >= 0.
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Since the values of all the parameters in the CF algorithm are restricted to the range

[-1, 1], we use a fixed-point representation for all the parameters in our design. Also, we

utilize two’s complement arithmetic to calculate the consecutive values of these parame-

ters. In our algorithm, m and l-m are the two increments used in the processes of d.-, e1.

Because m is equal to a two’s complement form of l—m, we use only m as our fixed

increment. Also, in the process of e2, we use :3 as our fixed increment because the one’s

complement form of if is equal to the two’s complement form of l-m . For example, if

m = .01002, i.e., .2510, and d.- = .10002, i.e., .510, then the next decision variable is expressed as

di+1= di " (I'm)

= .5 - (1 - .25)

=-.25 (3.12)

According to our drawing algorithm, the next decision variable is equal to

dm= .1000, + .01002

=.11002 (3.13)

Because no carry-out is generated in Equation (3.13), the final value of d,” should be

treated as a negative value. According to two’s complement arithmetic, Equation (3.13)

can be interpreted as

an, =-.m112+-.(XX)12=-.01(X)2=-.2510 (3.14)

Therefore, we can use integral computations to implement the CF engine; but, the

precision of results depends on the number of bits used. Figure 3-7 illustrates the block .

diagrams of incremental processes of (1,, el and e2. These three processes must be syn-

chronized by a same clock signal (CK). Each clock cycle, they generate new pixel selec-

tion and intensity calculation signals. The pixel selection signal is used to determine the

coordinates of the shaded pixels and the sign-bits of el and e2. Both error parameters are

used for calculating the shaded pixel-intensities. By using either e1 or e2 as its input, Fig-
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A and B represent the X-bit binary data input of the adder;

Cin represents l-bit carry-in of the adder;

C represents X-bit binary data output of the adder;

Cout represents l-bit carry-out of the adder.

Note:

 

Figure 3-7. Block diagram of three incremental processes: (a) the decision variable d,

(b) the upper error parameter el, and (c) the error parameter e2.
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represents a n-brt Shlft operation of the data-bus.
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‘

X represents a data for 11 most significant bits.

Figure 3-8. Block diagram of the pixel-intensity generator.

r represents a n-bit combination operation of the data-bus;
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ure 3-8 illustrates the block diagram of the intensity generator. Note that outputs of the

multiplexer are A 1 and A 2, where

ei if (Sign (ei ) AND Sign (ei -m /4)) = l,

A1= ei/2 + m/8 if (Sign (ei)XOR Sign (ei-m/4)) = 1;

0 if (Sign (ei) NOR Sign (ei —m /4)) = 1

And,

1 if (Sign (ei ) AND Sign (ei -m /4)) = 1;

A 2 = ei/2 - m/8 if (Sign (ei) XOR Sign (ei -m /4)) = 1; (3.15)

ei if (Sign (ei ) NOR Sign (ei -m /4)) = 1.

Figure 3-9 illustrates the part of intensity generator used to determine the intensity of the

central-pixel each cycle under the Wx s 1 case.

In Figures 3-7 to 3-9, we use three different sizes of adders, i.e., the n-bit adder, the

(m+n)-bit adder and the m-bit adder. This is because we want to minimize rounding

errors in the CF engine. For example, if a screen-size is less than 1024x1024 pixel, then

we can assign the minimal number 10 to n. Thus, the lO-bit adders are used in the deci-

sion variable operation. In addition, if the required number of intensity level is less than

16, we can assign the minimal number 4 to 111. Thus, the l4—bit adders are used in error

parameter operations, and the 4-bit adders are used in pixel-intensity generators. The

critical path of this circuit is in the process of :2 because it uses the largest size of adders.

With the same calculation in Table 3-1, Table 3-2 illustrates results of using the CF

engine with mm = 8 and m = 5. It shows that main operations of the CF engine are exe-

cuted in parallel and pipeline fashion. Multiple pixel-intensities can be generated in each

drawing cycle. Because we only use S-bit operations, the intensity results in Table 3-2

are less accurate than those in Table 3-1.

Figures 3-7 to 3-9 illustrate the main building blocks of the CF engine. Several sup-

plementary designs must be implemented in order to produce a powerful and complete

drawing engine. The extension to the curve-antialiasing operations is achieved by chang-
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At

‘9
A1(e1) I

m

A1(e2) 74  

 

Note:

A1(e1) represents the result of A1 from executing the intensity generator with e1 input;

A1(e1) represents the result of A1 from executing the intensity generator with e1 input;

Ac represents the intensity of the center pixel.

Figure 3-9. Block diagram of the Ac generator under Wx<=1 case.
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clock #0 clock #1 clock #2 clock #3 clock #4

d1 X(10000000) 1(00110110) 0(11101100) 1(10100010) 1(01011000)

=05 =0.211 =-0.078 =0.633 =0.344

e1 1(00011101) 0(11010011) 1(10001001) 1(00111111)

X =0.113 =—0.176 =0.535 =0.246

1(01100111) 0(10110001) 0(11111011)

‘32 X same as cl =0.402 =0.309 =-0.020

(00100) (00000) (10001)

Au“) X X =0.125 =0 =0.531

same“ (01100) (00000000)
X xA1(e2) A1(e1) =03” =0

Ac x x (11111) (11011) (10110)

=O.969 =O.844 =O.688

clock #5 clock #6 clock #7 clock #8 clock #9

di 1(00001110) 0(11000100) 1(01111010) x x

=0.055 =-0.234 =0.477

e1 0(11110101) 0(10101011) 1(01100001) 1(00010111) x

=0.043 =0332 =0.379 =0.090

62 1(01000101) 1(10001111) 0(11011001) 1(00100011) x

=0.270 =0.559 =-0.152 =0.137

A1(el) (00111) (00010) (00000) (01100) (00100)

=0.;19 =0.063 =0 =0.375 =0.12;

“(32) (00010) (01000) (10001) (00000) (00100)

=0.063 =0.250 =0.531 =0 =0.125

Ac (11110) (11101) (10110) (11011) (11111)

=0.938 =0.906 =O.688 =0.844 =O.969  
 

Note that all the output data of di, el and e2 are represented in a 8-bit binary format;

all the output data of A1(e1), A1(e2) and Ac are represented in a 5-bit binary format.

X means donot care data.

Table 3-2. Simulation results of using the CF engine to draw a line from (0,0) to (7,5)

with Wd = 1.
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ing the fixed line-slope structure to an incremental one. Thus, users can select 0 or a con-

stant as the increment data for the line-slope calculation each step. The control logic

design of the CF engine is similar to that of the line-drawing engine. We will describe

this in the next section. The design of the address generator depends on the structure of

the frame buffers. We can use counters and adders to construct the basic parallel struc-

ture for this address generator. Figure 3-10 shows a basic block diagram of this address

generator for generating addresses of the shaded pixels. The generation of the full-

intensity pixels can be achieved by using a filling process in the high drawing level or a

dedicated filling hardware which is synchronized by the CF engine.

In this section, we presented a structural implementation of the CF engine.

Although truncation is used in our approximated integral operations, the results, of using

the CF engine are still very accurate. Because pixel-intensities are represented in binary,

users can flexibly select a different number of intensity levels depending upon the appli-

cation. If the user selects the It most significant bits of intensity outputs of the CF engine,

then 2" is the number of distinct intensity levels available. For example, if we use a 4-bit

operation in the pixel-intensity generator, there are 2, 4, 8 and 16 intensity levels are

available for antialiasing operations.

3.3 Estimating the Performance of the CF Engine

Speed of operation and area required to implement the algorithm are two important

parameters for evaluating the performance of an integrated circuit. Basically, the use of

different technologies can greatly affect these performance results. For example, the

result of using 1.5 pm CMOS for implementing a given circuit is faster and smaller in

design than those of using 3.0 pm CMOS for implementing the same circuit. Thus, we

use a fixed technology in our discussion of the performance estimation technique.
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Note that X1 represents the X-coordinate of the starting point;

Y1 represents the Y-coordinate of the starting point;

Yc represents the Y-coordinate of the central-pixel each cycle;

Sign(d) is the sign bit generated from the decision operation;

the value of x is proportional to the possible maximum input value of Wd.

Figure 3-10. Block diagram of the address generator.
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Because the accuracy of area estimation of a circuit heavily depends on the placement

and routing approaches used, we only consider the timing here.

3.3.1 A Timing Estimation Technique

Heinbuch [38] provides several different timing equations for each cell in a CMOS

311m cell library. These equations can be used to estimate timing delays of a cell in vari-

ous operational conditions. Our timing estimation technique utilizes this concept to esti-

mate the timing delay of a given circuit in VLSI physical implementation. In general, the

entire chip is hierarchically constructed by several functional blocks (cells), and several

interconnection wires are used to connect these blocks (cells). We usually use the place-

ment and routing tools to determine physical locations of these cells and wires. In order

to reduce the overall timing estimation time, fast placement and routing tools must be

used for circuit layout operation.

Thus, according to the interconnection and fan-out information from the circuit lay-

out, we can determine output loadings for all of the cells in an integrated circuit. These

output loadings can be applied to the related timing equations of a cell for calculating its

timing delay. For example, in Figure 3-11, we use the given timing equations and loading

data to calculate the timing delay of a simple cell. Thus, the estimated timing result of the

circuit can be determined by summing-up the timing delays of all the cells in the critical

path. Note, the critical path of a circuit can be found by applying a switch-level timing

simulator to the layout of that circuit. For example, we can use Crystal for estimating

timing delays of CMOS circuits [39]. Now, we can estimate the timing result of a circuit

if the timing equations of all the cells are available. However, if the timing equations of

the required cells are not available, then we have to construct approximate timing equa-

tions for these cells.
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Tr = 20 ns

74M 7%}

Cint Cs = 1.25 pF

=0.25 pF

(a)

 

 

 
 

Output delay:

Pd (0 -1)= Pdc (0 - 1)+ 0.13 (Tr/f- 10) + 0.66 Rs CL

Pd (1 - 0) = Pdc (1 - 0) + 0.22 (T r/f — 10) + 0.65 Rs CL

Output rise time / fall time:

Tr = Trc + 0.19 (Tr/f- 10) + 2.52 Rs CL

Tf = ch + 0.19 (Tr/f - 10) + 2.53 Rs CL

Basic timing equations:

Pdc (0- 1)=2.04CL+2.9

Pdc (l - 0) = 2.08 CL + 3.96

Trc = 7.36 CL+ 3.08

ch = 7.32 CL + 2.76

(b)

CL = Cint + Cs =0.25 +1.25 =1.5 PF

ch = 7.32 * 1.5 + 2.76 = 13.74 ns

Pdc (1 - O) = 2.08 * 1.5 + 3.96 = 7.08 ns

Tf= 13.74 + 0.19 (20 - 10) + 2.53 * 1 * 1.5 = 19.43 ns

Pd (1 - O) = 7.08 + 0.22 (20 -10) + 0.65 * 1 * 1.5 = 10.25 ns

(C)

Note that Cint represents the interconnection capacitance;

Cs represents the input capacitance of gate B;

Rs represents overall series resistance.

Figure 3-11. Illustrate of a method to determine the timing delay for a cell:

(a) given Cil'CIlit diagram; (b) performance equations;

(c) tinting delay results for gate A.
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SPICE is a simulation tool used at the transistor level to identify the timing data of a

circuit by specifying its input timing specifications and output loads. Because SPICE is

very time consuming, we usually apply it to circuits less than a couple hundred transis-

tors. Therefore, SPICE can be applied to all the standard-cells and custom designed cells

if they contain a reasonable number of transistors. A complete SPICE deck includes

transistor models, an extracted circuit information, and the user-specified input data.

Basically, silicon foundries will provide SPICE transistor models for a user-specified

technology. Figure 3-12 shows a procedure to generate a SPICE deck. It starts with

Magic [40] for mask editing a circuit, through several transformation and combination

processes, and generates a SPICE deck of that circuit. The important input data that

affects the timing characterization of a cell are the rise time and its output loading. Figure

3-13 illustrates the procedure for constructing the timing equations of a circuit. By utiliz-

ing this procedure, we can form the approximated timing equations of all the cells used in

a given circuit.

In this section, we stated our timing estimation technique. We will evaluate this

technique by comparing the timing estimation result with the test result of a line-drawing

chip. If the difference between both results are small, then we believe this estimation

technique is correct; otherwise, we need to adjust the loading calculations and redo the

simulation process.

3.3.2 A Generic VLSI Implementation of the Line-Drawing Algorithm

The basic line-drawing algorithm used here is a modified PW algorithm, which in

turn is a modification of the Bresenham line-drawing algorithm. In order to have an

integral computation, all the parameters used in the algorithm are multiplied by a main-

axis factor. In addition, we also use the replacement process to change expressions of
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Magic

   

.mag

 

extract

(in Magic)   

.ext

 V 

ext2sim

   

.sirn

V  

sim25pice

   

.spice

 1
Combine .spice with transistor models

and input timing specifications into a file

 

  

a SPICE deck

Note that D represents processes for Magic [40];

.mag, .ext, .sim, .spice are files generated from those related processes.

Figure 3-12. Procedure for generating a SPICE deck from a magic file.
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Step 1. The construction of basic delay equations.

a. Form input specifications:

1. 3 =10 ns; RS = 0.2 k9; CL =1.5 pF;

2. fl = 10 ns; RS = 0.2 kn; CL = 4.0 pF;

where Temperature = 25°, 950 or 125°.

b. List equations (one set for each temperature (1’)):

Trc = x1*CL + x2

ch = x3*CL + x4

Pdc(0-1) = x5*CL + x6

Pdc(1-0) = x7*CL + x8

c. Use the input specifications listed above to form two SPICE decks for each T.

After each SPICE run, we can determine Trc, ch, Pdc(0-1) and Pdc(1-0).

Therefore, we can use these two SPICE results to solve for each pair of

parameters in the equations.

Step 2. The construction of output delay equations.

a. Form input specifications:

1. I;=30ns; RS =0.2k.Q,CL=1.5pF;

2. I; = 30 ns; R8 = 0.2 k0, CL = 4.0 pF; where Temperature = 125°.

b. List output equations:

Tr = Trc + y1*('_l‘_rfll_’ - 10) + y2*RS*CL

Tf = ch + y3*(11flf - 10) + y4*RS*CL

Pd(0-l) = Pdc(0-1) + y5*(Irflf - 10) + y6*RS*CL

Pd(1-0) = Pdc(1-0) + y7*(Irlf - 10) + y8*RS*CL

c. By using the same concept as outlined in Step 1, we can solve for the parameters

in these equations.

We use the input specifications listed in Step 2(a) to form the related SPICE decks.

The values of Trc, ch, Pd(0-1) and Pdc(1-0) come from the SPICE results of Step 1.

Note that X] to x8 and yl to y8 are parameters of the given equations.

Tr and Tf are the rise time and fall time, respectively;

Pdc (0-1) and Pdc(1-0) are the propagation delays from 0 to l and from 1 to 0.

Figure 3-13. Procedure for constructing the timing equations of a circuit.
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parameters in order to save the execution time of the algorithm. Parameters of the

modified algorithm are listed below:

(1) The initial value of the decision variable d.- becomes

d,: .1111: - (l-m)dx;

=@—%a, (1w)

where dx is assumed as the main-axis distance factor for the line-drawing operation.

(2) The constant value of the reference 0 becomes 0.

(3) For the 0 s m 51 case, the calculation of the next consecutive decision variable is as

follows:

Ifd; < 0, then

ei.-+1 = d.- + dy .

and the lower pixel is selected. If d, 2 0, then

d.-+1= d; - (l-m)dx,

= 4,. + dy—dx, (3.17)

and the upper pixel is selected.

From all the expressions listed above, the modified line-drawing algorithm uses

only integral addition and subtraction operations to incrementally generate pixels for the

rasterized line. Thus, this algorithm not only preserves the basic incremental process of

the line-drawing but also has a much simpler computational complexity than that of alter-

native algorithms.

The structural implementation of this line-drawing algorithm follows the same

approach as that of the CF engine. Figure 3-14 is a block diagram of this line-drawing

engine. It includes both the data flow and the control flow of the line-drawing engine.

Also, noted on the diagram is the critical path of this engine. In this implementation, we
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OB S<0.. 15>

  
IBUS<0..15>
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CLK
NI.

  Timing

Sequencer

      Start

Note: -> represents data flow; .....,.. represents control flow;

W‘ and ~""‘"" represent the critical path of the circuit.

 

 

' ireset

data Reg. __> <—O ‘—

_,E output (“1th 0-13/F data

clock
‘— +—

f GNP“t —-j clock
  

output enable

Figure 3-14. Block diagram of the line-drawing engine.



72

adopt both design flexibility and testability concepts. In order to achieve design testabil-

ity, the internal bus of the architecture is controllable and observable, i.e., the internal

data flow can be set and fetched by users during the output phase. Both the input bus and

the internal bus of this architecture use the same I/O pins. Thus, its internal operation and

output operation can be executed in parallel during the output phase. The design flexibil-

ity of this engine is achieved by using variable operating sizes to generate suitable output

data. A shorter execution time in using this engine can be achieved when it is operated in

a low-resolution as opposed to a high-resolution display. The user can select 4, 8,

12, and l6«bit operating sizes by using the input switches WS<0..1>. These switches are

used to control the data flow in the bus interface and 4-to-1 multiplexer. Figure 3-15 pro-

duces block diagrams of the bus interface and multiplexer.

The timing sequencer is the central part of this circuit. It determines the execution

sequence of all the cells in the line-drawing operation. At the beginning of the loading

phase, the first output signal and the increment term are generated simultaneously. Then,

operations required to generate each output signal and to perform the next computation

are executed in a pipeline fashion. Figure 3-16 illustrates the block diagram of this con-

trol flow generator and the entire system timing chart.

At the physical level, the layout of a static D-F/F, a 4-bit static carry look-ahead

adder and several gates are used as the basic cells for hierarchically organizing the entire

circuit. The functional correctness and the timing data of these cells were verified and

characterized using SPICE. Since all of the loading data of those cells can be fetched

directly from the mask editing results, we only need one SPICE run to get the approxi-

mate timing data. The estimated timing delay of this line-drawing engine uses the sum of

the timing delay of all cells in the critical path. Final chip layout of our line-drawing

engine is shown in Figure 3-17. This 40-pin chip uses the CMOS 311m technology and

occupies an area of 4600 pm by 6800 11m. Actually, only 25 pin-outs are needed to
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Note: Afirm OE represents output enable;

3.. [fix—mum: If ((8 =O>&&<0E=1»

‘ then Output = A;

S OE Else if ((S = 1) && (OE = 1))

then Output = B.

(a)

WS<0..1>

[ Note:

" r016 If S<0>=l&& S<1>=1

4-to-l SIW O _) 16' (W ))

Output _. (:12 en utput - c ,

"“MUX ‘H If ((WS<0> = 0) && (WS<1> = 1))

—-‘- c8 then Output = c12;

‘— l I c4 If ((WS<0> = l) && (WS<1> = 0))

(b)

then Output = c8;

If ((WS<0> = 0) && (WS<1> = 0))

then Output = 04;

Figure 3-15. Block diagram of (a) the bus interface and (b) the 4-to-1 multiplexer.
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Note: I#n represents the input data with a sequence number n;

O#n represents the output data with a sequence number 11.

Figure 3-16. Block diagram of the timing sequencer and the entire system timing chart.
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Figure 3-17. Chip layout of the line-drawing engine.
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implement the entire design; the extra pins are used for testing.

3.3.3 Evaluating the Fabricated Chip

Our test goal is to evaluate the actual performance of the CF engine. Specifically,

our objectives were to verify the functional correctness of the line-drawing engine and to

evaluate the correctness of our timing estimation technique. This section presents the test

procedure and test results of our line-drawing chip. By comparing the estimated results

with the test results, we can determine the actual timing and loading data for the cells.

Then, we can use these data and the timing technique to estimate the timing results of the

CF engine.

We used the Topaz system [41] to test our line-drawing chip. The Topaz system

verifies the conformance of a VLSI circuit to design characteristics dynamically by

applying a set of digital stimulus vectors to input pins of the device. Resultant device out-

put vectors are captured for analysis or compared directly in real time with expected

response vectors. The stimulus and expected response vectors are created by reading a

sequence of pattern words from Topaz memory. The original source of the pattern words

is most often a vector file created by the device simulator used during the VLSI develop-

ment to simulate the device.

A device has three general categories of signal pins, i.e., input pins, output pins, and

input/output (I/O) pins. In order for'the Topaz system to test a device, a Topaz channel

must be connected to each device pin involved in the verification, and that channel must

be set up to function as an input, output, or NO channel as appropriate.

The Topaz system operates in conjunction with an IBM PC/AT or compatible per-

sonal computer. The user can prepare the desired test patterns and timing delays by

filling in the related on-screen data charts. These data are used to set up the test
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configuration of the Topaz system. During the testing phase, the user can issue the test

runs from the computer. The resultant data will be generated and evaluated in the test

unit. Then, these resultant data and the related message will be sent to the computer for

display.

A typical test procedure is as follows:

Step 1:

Step 2:

Allocate and set up Topaz channel, delay, and power sources. This is a plan-

ning and initialization step. A Topaz channel must be assigned to each dev-

ice signal pin involved in the verification. Note that each channel contains

two bytes, and these two bytes can be controlled separately. But, all the bits

in each byte must have the same data type. For example, if the most

significant byte is used as input, the least significant byte can be used as out-

put. A Topaz power supply must be assigned to satisfy the power require-

ment of the tested device. Topaz delays must be assigned to meet the various

timing requirement of the testing. For example, the power source of the

tested chip is set to 5 V. We assign the least significant byte of channel E as

input, which contains input signals fl‘START, ICEN, and WS<0..1> of the

line-drawing engine in Figure 3—14. The input timing delay of this least

significant byte is set to 20 ns. This means when the system clock is

activated, the related input data will be sent to the chip with a 20 ns delay.

Enter the test pattern sequence. Both the input data and expected data output

sequences need to be created and stored in the Topaz system memory. Each

pattern bit must be stored in the channel bit position and assigned to the dev-

ice pin with which that pattern bit is associated. Each pattern word must con-

tain data appropriate for a particular clock period of the sequence. For exam-

ple, Figure 3-18 illustrates all the input and output test vectors of the line-
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CLK

frSTART:

ICEN:

WS<1>:

WS<0>:

Noun

I/O BUS<0>:

I/O BUS<1>:

I/O BUS<2>:

I/O BUS<3>:

I/O BUS<4>:

I/O BUS<5>:

I/O BUS<6>:

I/O BUS<7>:

I/O BUS<8>:

I/O BUS<9>:

I/O BUS<10>:

I/O BUS<11>:

I/O BUS<12>:

I/O BUS<13>:

I/O BUS<14>:

I/O BUS<15>:

OUT

Note that all the symbols listed above are the same as those shown in Figure 3-16;
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010101010101010101

100111111111111111

111111000000000111

111111111111111111

111111111111111111

000000111111111111

xx0011x10011001111

xx0011x00011110000

xx1100x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000x10011000000

xx0000011001111111

"x" represents a tri-state data;

"0" and "1" represent the binary data.

<-- input

<-- input delay 20 ns

<-- input delay 20 ns

input

input

input

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

input/output

output

Figure 3-18 . Input and output test vectors of the linedrawing engine

under a 16-bit operation case.
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Swp4:

Step 5:

Step 6:
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drawing engine under a 16-bit operation case. These input and resultant vec-

tors are used and generated from the functional simulation of our line-

drawing engine at the physical implementation level. Thus, we can enter

these vectors as test vectors in the Topaz system.

Wire the test board. In this step, the user connects the pins of the tested chip

to the related channel on the test board as he planned in Step 1.

Install the test board.

Plug in the device.

Run and evaluate the tests. We can use single-step operations to check the

funcrional correctness of the chip, and use real-time operations to find the

timing results of the chip. In the single-step operation, if the input data is

applied to the input pins in the current step, then the related output data will

be displayed in the next step. The duration of each step is controlled by the

user. By comparing the single-step results with the expected output data, we

can verify the functional correctness of the tested chip. In the real-time

operation, both the test and comparison operations can be performed simul-

taneously. The comparison operation is used to detect the errors by compar-

ing the generated results with the expected data. If there exists any error, the

location of that error will be reported. In addition, in order to detect the

maximum clock rate of the chip, we must apply several different internal

clock rates to the Topaz system and do the test several times. This maximum

clock rate is the highest clock rate used for producing the correct outputs of

the tested chip.



80

By following this test procedure and using the same data in Figure 3-18, we deter-

mined that all of the internal blocks of the line-drawing engine were functioning

correctly. In our test, only the I/O pad drive presents an abnormal operation, which is

latched in its output mode all the time. This can be fixed by replacing it with the correct

I/O pad. Also, by applying several different internal clocks, we measured that the peak

throughput of this engine is about 12.5-M pixels per second. This is close to our timing

estimated result of the line-drawing engine, i.e., its critical path delay is about 80 ns.

Thus, our timing estimation model is very realistic.



CHAPTER 4

EXISTING TWO-LAYER CHANNEL ROUTING APPROACHES

Another aspect of the research described here deals with two-layer channel routing

and mask generation in the VLSI physical implementation. The immediate goal here is to

develop fast routers for use in the physical layout of the CF antialiased drawing engine.

Also, these routers can be applied to standard-cell and gate-array designs for solving their

embedded channel routing problem.

Because the two-layer channel routing problem is NP-complete [43], several exist-

ing routing algorithms use different heuristic approaches. In addition, most existing chan-

nel routers use a symbolic routing method to generate their routing results in terms of

symbols. According to these symbolic data, the traditional mask generator is used for

producing the related routing masks. In this chapter, we investigate existing two-layer

channel routing and mask generation algorithms in order to identify useful routing and

mask generation concepts. These concepts will steer the development of improved two-

layer channel routing algorithms.

The minimal routing area, minimal total wiring length, and minimal required vias

are three important performance data used to evaluate channel routers. Also, the com-

plexity of their routing algorithms is another factor used to identify the useful routers in

the investigation. In the evaluation of the traditional mask generator, we emphasize its

ability to verify the correctness of the routing masks as well as its operational flexibility

for integrated routing systems.

81
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4.1 Problem Formulation

The basic terms used to define the channel routing problem are stated as follows.

The rectangular region between two parallel rows of cells is called a channel, and it is

used for connections among the cells. One channel may consist of several tracks, and

each track may consist of a row of horizontal grid line segments. The pins are located on

the top and bottom edges aligned on the grid of the channel. Figure 4-1 illustrates an

example of a channel and its related features. A net is a set of pins to be electrically con-

nected, and we usually assign a positive integer number to the pins of each net. If a zero

is assigned to a pin, then no net will be connected to this pin. In the channel, if the max-

imum assigned number is n, then It is also the maximum number of nets to be routed.

Therefore, the channel routing problem can be stated as a netlist. It gives the net

numbers to be connected to the related top and bottom pins from left to right. For exam-

ple, Figure 4-2 is a netlist which consists of twelve columns and seven nets.

Usually, two layers are used to complete all of the routing paths, and one layer (e.g.,

metal_l) is used for horizontal segments and another layer (e.g., metal_2) is used for

vertical segments. A connection between these two layers uses a via. The horizontal seg-

ment of a net is determined by its leftmost and rightmost pin connections. Let S(i) be the

set of nets whose horizontal segments intersect column i. The number of elements in

each S(i) is called the local density of column i. The channel density is the largest

number of elements among all of the local densities within a channel. This number is also

equal to the minimum number of tracks necessary to route a channel. For example, in

Figure 42, 8(1): {1, 2}, 8(2) = {1, 2, 3}, and 8(3) = {1, 2, 3, 4}, etc.. So, the local den-

sity of column 1 is equal to 2, and the local density of column 2 is equal to 3, and so on.

By examining all of the local densities, we find that the channel density of this channel is

. equal to 4.
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track

channel ?

                

        

Note that the crossing of two dash lines represents a symbolic grid point;

cells A-K represent standard cells;

each I represents a pin in the channel.

Figure 4—1. Example of a channel and its related features.

Top: 313005603000

Bottom: 124241570760

Note that all pins with the same assigned number belong to the same net.

Figure 4-2. Example of a netlist.
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In most of existing two-layer channel routing algorithms, several definitions are

used to deal with channel routing problems. They are listed as follows.

0 horizontal constraint: A constraint that exists when two nets cross the same column.

0 horizontal constraint graph: A graph in which each node represents a net. An edge

between node i and node j represents these two nets have a horizontal constraint. For

example, Figure 4-3(a) illustrates a horizontal constraint graph of the netlist given in

Figure 4-2. It shows that net 1 and net 2 are connected by an edge because they cross

the same columns 2, 3, and 4.

0 zone representation: Another graphical representation of horizontal constraints in a

channel. It uses one column to represent a zone and each horizontal line segment to

represent a net. Each zone represents the maximal set S(i). So, a net may cross

several zones and a zone may consist of several nets. For example, Figure 4-3(b)

illustrates a zone representation of the netlist given in Figure 4-2. It shows that zone 1

consists of nets 1, 2, 3, and 4 because S(3) = {1, 2, 3, 4} and S(3) is the maximal set

among five consecutive S(i)s, where i = l, 2, 3, 4, and 5.

0 vertical constraint: A constraint that exists when two nets consist of a pin in the

same column. The net connected to the top pin must have its horizontal segment

above that of the net connected to the bottom pin in that column.

0 vertical constraint graph: A graph in which each node represents a horizontal seg-

ment or net. A directed vector from node i to node j means that horizontal segment i

must be placed above horizontal segment j because of a vertical constraint. For exam-

ple, Figure 4-4 illustrates a vertical constraint graph of the netlist given in Figure 4-2.

According to the leftmost column of the netlist, net 3 should be placed above net 1.

This is the reason why a vector is drawn from net 3 to net 1 in this vertical constraint
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2 1 zone: #1 -#2 #3 '1#4
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__Z_4

3

4

6 6

, 7_.

7

(a) . (b)

Note that each number represents a net.

Figure 4-3. Illustration of (a) the horizontal constraint graph, and

(b) the zone representation for the netlist given in Figure 4-2.

Note that ® represents net 11;

—> represents a vector.

Figure 4-4. Illustration of the vertical constraint graph for the netlist given in Figure 4-2.
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graph-

0 cyclic vertical constraint: A loop shown in the vertical constraint graph. For exam-

ple, Figure 4-5(a) shows a given cyclic netlist, and Figure 4—5(b) is the vertical con-

straint graph of this problem.

0 doglegging: A solution to the cyclic vertical constraint case. It is also useful to

reduce the number of tracks. For example, Figure 4—5(c) shows a solution using

doglegs to solve the given cycle problem in a channel.

0 wrong way horizontal segment: A wire segment which uses the metal_2 layer

instead of the original metal_l layer. It can be used to reduce the number of required

tracks for routing and/or to eliminate cycle vertical constraints. For example, Figure

4-6 illustrates the use of a wrong way horizontal segment to reduce the number of

wiring tracks from 3 to 2. However, most of the routers avoid using this wrong way

routing since it induces the wire capacitance in the overlapped area of both layers.

Except for the wrong way routing, four channel routing cases can be found, i.e.,

routing without vertical constraints, without doglegs, with restricted doglegs, and with

. unrestricted doglegs. A restricted dogleg is a dogleg which can only be used in columns

that contains a pin of the selected net. Whereas, an unrestricted dogleg is a dogleg which

can be used in any free space in the channel. Figure 4-7 illustrates the example of these

four routing cases. The differences among these four routing cases are on their require

ment of the routing area, total wiring length, and number of vias.

The goal of the channel router is to obtain the minimal routing area, minimal total

wiring length, and minimal required vias in the routing result. The execution speed and

memory requirement are two other factors used to evaluate routers. In the next section,

we discuss several existing routing strategies and their trade-offs.
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1 1 2

track 3

1 1 2 track 2

2 0 l

(a) (b) (C)

Note: -—- represents a vertical wire segment in the first layer;

- represents a horizontal wire segment in the second layer;

0 represents a via (contact).

Figure 4-5. Examples of a cyclic routing cases: (a) given netlist,

(b) vertical constraint graph, and (c) the routing solution.

 

 

 

 
 

 

      

L 1 2 3 0 0 0

track 3

L a wrong way

track 2 —o track 2 ——9 horizontal

segmnet

track 1 t I track 1 j

0 0 0 3 2 1 0 0 0 3 2 1

Figure 4-6. Illustration of the use of a wrong way horizontal segment:

(a) before the operation; (b) after the operation.
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Figure 4-7. Examples of four different routing cases: (a) without vertical constraints;

(b) without doglegs; (c) with restricted doglegs; (d) with unrestricted doglegs.



89

4.2 Existing Two-Layer Channel Routing Algorithms

(1) The left-edge algorithm:

Hashimoto and Stevens [8] attempted to maximize the placement of horizontal seg-

ments in each track. The edges by the left endpoint of each segment are sorted. For

example, the sorted list of the netlist in Figure 4-2 is

1 3 2 4 5 6 7.

The algorithm selects the first edge, 1, and places it in the first track of the routing region.

Net 1 is deleted from the sorted list. By scanning the remaining sorted list from left to

right, the algorithm then assigns the next suitable net to track 1. This selected net should

not have any horizontal constraint with net 1. According to the zone representation given

in Figure 4-3(b), this selected net is net 6. The above process is repeated until no more

nets can be placed on track 1. The algorithm starts again using the remaining nets in the

sorted list and filling track 2, and so on. The final net assignment made by the left-edge

algorithm is shown in Figure 4-8.

One serious problem of this routing solution is that the algorithm does not consider

any vertical constraints. For example, in Figure 4-8, net 3 and net 4 will be shorted at the

third column if we connect the pins of net 3 and the pins of net 4. However, this left-edge

algorithm finds a channel density solution if there are no vertical constraints. Note that

this channel density result is the minimal number of tracks one can get in any two-layer

channel routing operation. Thus, the basic routing concept of this algorithm is useful for

the routing without the vertical constraints case. Because the left-edge algorithm uses this

"from left to right" placing rule, the use of this algorithm may not generate an optimal

total vertical length for a given routing problem. This is the main disadvantage of the

left-edge algorithm.



track 4

track 3

track 2

track 1

Note that the netlist used here is the same as that in Figure 4-2.
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Figure 48. Left-edge net assignment result.
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(2) The constrained left—edge algorithm:

By using the same routing concept of the left-edge algorithm, Perskey, et al. [44]

suggested a constrained left-edge algorithm. In addition to the left-edge algorithm, this

algorithm is realized by using a vertical constraint graph. In this graph, the nets have no

descendants and meet the left-edge selection requirements are the best candidates for the

net assignment operation. If this algorithm is applied to the netlist in Figure 4-2, its final

net assignment result is illustrated in Figure 4-9. Although the generated number of

tracks is equal to the channel density plus one, it is still an optimal solution. Thus, this

constrained left-edge algorithm can be applied to route the routing without doglegs case.

However, this algorithm can not be used for cycle vertical constraint routings. In addi-

tion, this algorithm has the same problem as that of the original left-edge algorithm.

(3) The dogleg algorithm:

The dogleg algorithm proposed by Deutsch [45] uses doglegging to avoid vertical

constraint loops and to decrease the density of the channel. This algorithm breaks each

multiple-pin net into several individual horizontal segments. Each break is a possible

candidate to form a restricted dogleg in the channel. By using a realized vertical con-

straint graph, the algorithm first selects suitable horizontal segments for the bottom track.

These suitable segments are the nodes without any descendants in the graph. The routing

strategy used here is similar to that of the restricted left-edge algorithm. Then, the dogleg

algorithm selects another suitable horizontal segments for the top track. These horizontal

segments are the nodes without any ancestors in the graph. Now, it uses a reverse res—

tricted left-edge operation, which places horizontal segments from right to left. Then, the

algorithm processes the second-from-the-bottom track; and son on, until all segments are

placed. This dogleg algorithm can be used to produce less tracks results than that of the

constrained left-edge algorithm. However, the use of the dogleg algorithm will generate
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Note that the netlist used here is the same as that in Figure 4-2.

Figure 4-9. Constrained left-edge net assignment result.
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much more vias.

(4) Three efficient channel routers:

Two algorithms by Yoshimura and Kuh [9] and one algorithm by Yoshimura [10]

are used to provide alternative net assignment strategies for the channel routing. The first

Y&K algorithm uses both the zone representation and vertical construction graph to

minimize the longest path in the vertical constraint graph. In order to minimize the long-

est path, the algorithm utilizes a merging process. Starting from the first zone, this merg-

ing process is operated between two consecutive zones. Its basic operational concept is

that if two net have no horizontal or vertical constraints, then they can be merged, i.e.,

these two nets can be placed on the same track. The result of each merging is an update

of the zone representation and vertical constraint graphs. This process is finished when

no further merging takes place. For example, Figure 4—10 illustrates the merging opera-

tions of a given zone representation and vertical constraint graph. A cost function is setup

in order to find the suitable two nets for each merging operation.

Since the first Y&K algorithm uses the sequential update operation, a merging of

two nets may block subsequent mergings. The second Y&K algorithm attempts to pro-

vide a better merging process than the first algorithm. It uses a bipartite graph G), , where

a node represents a net and an edge between two nets signifies they can be merged. A

merging is expressed by a matching on the graph, and it can be updated dynamically.

This matching process is also operated one zone at a time. But, several possible pairs of

nets are considered for merging. During each matching operation, the algorithm detects

and deletes the infeasible edges in the graph 6).. These infeasible edges contains pairs of

acts which may violate the vertical constraint graph in the matching operation. The max-

imum matching for each net is determined by using the same cost function defined in the

first algorithm. Finally, two nodes are matched in the graph when both nets are ter-
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(a)

  
VG for zone 1 VG for zone 2 and zone 3

 

VG for zone 4 and the final track assignment

(b)

Note: VG represents the vertical constraint graph.

Figure 4-10. Illustration of the merging operations:

(a) given zone representation and vertical constraint graph;

(b) merging operations.
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minated. For example, Figure 4-11 shows the matching operations using the same zone

representation and vertical constraint graph given in Figure 4-10. It shows that the use of

the second Y&K algorithm can generate better routing results than that of the first algo-

rithm. However, this second algorithm needs a large amount of CPU time and memory

space for checking several possible merging paths.

The Yoshimura efficient algorithm [10] attempts to reduce the total number of

tracks by maximizing the net assignment. It constructs both the zone representation and

vertical constraint graphs. In addition, it uses a weighting function to assign net weights.

A set of nets are called the available nets if they have no ancestors in the vertical con-

straint graph. A net assignment algorithm is used to process these available nets for cal-

culating the longest path length. This algorithm uses a path graph which shows the rela-

tionship between the zone representation and the available nets. In this graph, a longest

path is formed by selecting the nets with the highest combination of weights. This net

assignment algorithm is listed in Figure 4-12. By applying this algorithm to an example,

its related net assignment operations and results are shown in Figure 413. The entire

algorithm is based on a row by row approach. Thus, the net weight assignment process is

crucial because it greatly affects the final location of the nets. Despite this net weight

assignment process, the third algorithm is the fastest algorithm among all three efficient

algorithms.

By dealing with the nets or the subnets, these three algorithms can be used for the

without doglegs routing or with restricted doglegs routing. All of these algorithms use

heuristic weighting or cost functions to assign net weights. So, they are heavily depend

on the weights in order to generate good results. Actually, for a given netlist, these three

efficient routers generate similar routing results.
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Gh for zone 2 Oh for zone 3 Oh for zone 4

(step 1) (step 2) (step 3)

VG for the final track assignment

(final result)

Note: VG represents the vertical constraint graph; Gh represents a bipartite graph;

— represents the possible merge; — represents a maximum matching.

Figure 4-11. Illustration of the matching operations for the given zone representaion

and vertical constraint graph in Figure 4-10.
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Definition:

ZS(N) : leftmost zone of net N

ZE(N) : rightmost zone of net N

W(N) : net weight

ZN(Z) : set of available nets whose left ends are in zone Z

ZP(Z) : zone potential

ZA(Z) : list of current selected net in zone 2

#Z : number of zones

Phase 1:

begin

ZP(O) = 0;

ZA(O) = 0;

for I = 1 to #2 do

bcgin

ZP(I) = ZP(I-l);

ZA(I) = ZA(I-l);

forN 6 ZN(I) do

begin

P = ZP(ZS(N)) + W(N);

if P 2 DO) then

begin

2P0) = P;

ZA(I) = N;

end

end

end end

Phase 2:

begin

Na = l};

N = ZA(#Z);

whileN ¥0do

begin

Na=Na U {N};

N = ZA(ZS(N));

end

end

Note that the final selected nets for assignment are in Na.

Figure 4—12. Yoshimura net assignment algorithm.
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Available nets : l, 2, 3, 4, 5, 6.

Net weights: W(l) = 2, W(2) = 3, W(3) = 2, W(4) = 2, W(S) = 2, W(6) = 1.

Zone representation:

2 I 5
 

 

 

 

 
 

 

      

5(2) Note:

E represents zone n;

X(Y) represents net X

with weight Y.

 

 

 

 

 

 

(b)

Initialdata:

£11,332:
2 |0|1I2l3l4|5l6|7

ZE(N) 246577 zWW)l0|1|0|2|4|3|5.6

Phase 1:

Z |0|1l2|3|4|5|6|7

ZP(Z)|0|:|2I2|3|5l5|
7

ZA(Z)011243.5

Phase 2:

Na = { 5, 4, 2}

(C)

Note that all the notations used here have the same definitions as in Figure 4-11.

Figure 4.13. Illustration of the Yoshimura net assignment algorithm:

(a) given net information; (b) path graph; (0) related operations and results.
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(5) The Greedy channel router:

Rivest and Fiduccia [46] proposed a column by column approach to route a channel

instead of using the traditional row by row approach. The operation starts from the left

side of the channel. In each column, the router tries to maximize the number of tracks

available in the next vertical column by using a sequence of heuristics. According to the

pin locations of the routed nets, these routing strategies are used to determine the best

wiring patterns for the nets at each column.

The Greedy router uses a jog to provide an additional track while a net tries to move

closer to its next pin location. So, for using this router, the user needs to specify the value

of the minimum jog length for each given netlist. No jogs are made when the flu vertical

wiring distances are shorter than this minimum jog length. A higher value of minimum

jog length reduces the number of vias, and a lower value minimizes the number of tracks

in the routing. It is obvious that this router can be used for the routing with unrestricted

doglegs case. For the given same netlist as in Figure 4-2, Figure 4-14 illustrates the final

routing result by using the Greedy router. It shows that the use of this router generates the

same number of tracks as those of the previous algorithms. However, this router uses

more vias and total wiring length than those of the previous algorithms. In addition, the

number of tracks used for routing must be defined before the routing operation starts. The

operation is failure if the provided routing space is no enough. For this case, the router

must be re-executed again with an increased number of tracks.

(6) The hierarchical channel router:

Burstein [47] proposed a divide and conquer approach to reduce the channel routing

problem to the case of a (Zn) grid, where n is the number of columns in a channel. Con-

sider the generalized problem for a (an) grid. Partition the grid into two parts: ((m/2)Xn)

and ((m/2)Xn) sub grids. This router treats each part as a (1101) grid; so, the problem is
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Note that the netlist used here is the same as that in Figure 4-2.

Figure 4—14. Greedy routing result with the minimum jog length = l.
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reduced to the case of the (2x11) grid.

Initially, the router needs to set the costs of crossing all of the horizontal and verti-

cal boundaries in the realized (2m) grid. It routes one net at a time, and this net can be

selected randomly. A wiring path of a net is selected if its overall cost is the cheapest one

among those of all the possible paths. Then, the costs of boundaries in the (2xn) grid is

updated according to the path of this routed net. Figure 4-15 illustrates the operations and

result of the hierarchical router for a given netlist. It shows that the hierarchical router

can be used for the routing with unresuicted cases. In addition, With a good cost assign-

ment, this router can generate an optimal tracks results. However, the hierarchical router

uses a large number of vias; and, its algorithm complexity can be very high, i.e., the

upper bound is (anogyn), where N is the number of nets and m is the number of tracks

used.

(7). The YACR2 router:

Reed, et al. suggested a new symbolic router: YACR2 [11]. This router can route

channels with cyclic constraints and uses a virtual grid. Basically, it uses one layer for

vertical interconnections and the other layer for horizontal interconnections as other

channel routers mentioned previously. However, YACR2 uses the wrong way horizontal

segments to reduce the number of routing tracks.

The router first selects and assigns all the nets to the suitable tracks, which is related

the first, second, and third phases of the algorithm. Then, it uses the simplified maze

routers to complete the routing, which is related to the fourth phase of the algorithm.

Note that a cost matrix is used to determine which net is selected, and which track is

assigned. In order to support these operations, this router adopted both the left-edge and

maze routing strategies. It modifies the left-edge algorithm in order to reduce the overall

vertical constraint violations and to be easy for maze router operations. At the final rout- -
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Note: C] represents one grid; ....... represents the assigned connection;

0 represents a turning point or a pin.

Figure 4-15. Illustration of the hierarchical routing: (a) first partition;

(b) second partition, and (c) third partition and final result.



103

ing phase, the nets and their pins without vertical violations will be routed first. Then,

three types of maze routers are used to connect the rest of the nets and pins with vertical

violations. These three types of maze routers are mazel, maze2, and maze3. Note that

mazel does not introduce any vias per violation, maze2 introduces at most two additional

vias per violation, and maze3 introduces at most four additional vias per violation. Figure

4-16 illustrates the application of these three maze routers. If all of three maze routers

can not route any of the given net, then one additional row will be added, and the entire

algorithm may need to be applied again. Once all the nets and pins are connected, the

router terminates.

As a result, the use of the YACR2 router can generate a small number of vias and

tracks for a given netlist. Also, with an enough routing space, the execution speed of the

YACR2 router is faster than that of the hierarchical router. However, the execution speed

will be slow down if the routing should be re-operated again, or the cost matrix used for

both net selections and net assignments is improperly set.

(8). The Mighty switch-box router:

Since the use of switch-box router can generally solve the two—dimensional routing

problem, it can also solve the two-layer channel routing problem. Shin and Sangiovanni-

Vincentelli [12] proposed a routing technique to complete the routing within a switch-

box. This technique uses the pre-defined costs of each wire and via to select the best path

for routing. It also uses the wrong way horizontal segments for constructing the shortest

path for the routed nets. In addition, it allows modifications and rip-ups of nets when an

existing shortest path is not optimal or when no path exists.

Four main processes are used in the Mighty router: path finder, path conformer,

weak modifier, and strong modifier. A path finder searches for a minimum-cost path

among all available pins. A maze router finds this minimum-cost path. When all the nets



Net 1

Net 2

Net 3

Net 4

 

   

104

 

Net 1
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Net 3

Net 4

0 3 2 1

(1) before operation

(b)

0 0 2 3

Net 1

W

Net 2 7////////////////. 3

Net 3 7/////////////////////////////

0 0 0 1

(i) before operation

(C)

Note:

I represents a via (contact).

 

Net 1

Net 2

Net 3

Net 4

 

Net 1

Net 2

Net 3

Net 4

 

0 0 o 1

(ii) after operation

represents the first layer, represents the second layer,

Figure 4-16. Examples of (a) mazerl routing, (b) mazerZ routing, and (3) maze3 routing.
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have been processed by the path finder, the path conformer takes over. If the path can be

routed without any violations, the path is implemented. Otherwise, the path finder is

invoked again to find a new path. If a costly path needs to be routed, the modifiers are

used. First, the weak modifier is used to push the existing paths or vias in all of the possi-

ble directions. This may create free spaces for routing the current path. When weak

modification fails to find a path, then strong modification is called. During a strong

modification, part of existing connections are removed so that the blocked net can be

connected. After the path is connected, all the nets disconnected during the rip-up pro-

cess are re-scheduled and re-connected. If the strong modification also fails to find a path,

then the router reports failure and exits. Figure 4—17 illustrates some examples of opera-

tions of weak and strong modifications.

As a result, the use of the Mighty router can find a small number of total wiring

length and tracks for most of the routing cases. However, the computational complexity

of this router is 00:3an ), where k is number of nets, p is the number of pins, n is the

number of columns, L = O(mn ), and m is the number rows. This is much higher than that

of any one of the channel routers described previously. In addition, a failure condition

may occur when the user selects a bad cost for input.

In summary, we have identified several useful routing concepts fiom the existing

channel routing algorithms described in this section. The left-edge algorithm provides a

fast and complete operational concept to deal with the routing without the vertical con-

straints case. The Yoshimura efficient algorithm provides an efficient routing strategy to

deal with routingwith vertical constraints case. It can generate a better routing result than

that of the constrained left-edge algorithm. Also, this efficient algorithm is faster than

that of the first Y&K algorithm and the second Y&K algorithm. In order to generate a

much compact routing result, the routers must use the unrestricted doglegging strategy.

In this case, the maze routing concept of the YACR2 and Mighty routers is superior to



 
(i) before operation (ii) after operation

(C)

Figure 4-17. Examples of weak and strong modifications: (a) unit-push (down);

(b) jump-push (down); (c) rip-up and reroute.
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both the partitioning method of the hierarchical router and jogging method of the Greedy

router. However, the use of maze routing usually requires a much longer execution time

and also requires the wrong-way routing capability. Therefore, in the development of the

routers, we focus on the routing without vertical constraints, routing without doglegs, and

routing with restricted doglegs.

4.3 Existing Mask Generators

We now turn our attention to the problem of mask generation. Our goal is to use

our knowledge about channel routing to generate a powerful and efficient design automa-

tion tool which fully integrates the routing and mask generation tasks.

The basic symbolic layout technique uses a set of symbols to construct design topo-

logical layout schematic. Each layout can be mapped into specific geometrical shapes.

These shapes can be defined by sizing data and subsequently subjected to appropriate

modification, depending on contextual relationships with the adjacent orthogonal and

diagonal layout symbols. Larsen [5] suggested several symbol-to-geometrical mappings

which can be easily comprehended by device designers and the requisite algorithms are

amenable to computer implementation. In addition, Rogers, et a1. [6] developed an

integrated symbolic design system. This system provides several useful features: technol-

ogy independent layout tools, scale independent circuit designs, fast layout debugging

using symbolic level circuit simulation, and fully automated mask generation and

automated chip assembly.

A subset of this symbolic-to-mask operation can be applied to the routing mask gen-

eration. According to the given symbolic routing data and sizes of the wires and via

(contact), a routing mask generator is used to produce its related routing masks. These

masks are represented by the mask generation statement, and it can be used in the chip
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fabrication. By realizing the traditional mask generation operation, Figure 4—18 shows the

example of the symbolic routing, mask generation statement, and related mask result.

Note that the sizes of the wires and via are set without violating any design rules.

According to the traditional approach, a symbolic array is used in both the routing

operation and the mask generation. Once the symbolic array is formed, there is no way to

detect routing errors in the array unless we simulate the entire circuit. Thus, the main

disadvantage of using this approach is that it is hard to detect any routing violations in

the generated masks. In addition, when used in the interactive mask editing system, this

approach can be difficult to perform mixed-mode routing operations. Mixed-mode rout-

ing is a combination of automatic routing and user-defined with the latter usually used to

reduce the total wiring length of a specified net.

In the next chapter, we will present a new routing approach which is used for

integrating both the router and the mask generator. In addition to improving the routing

performance, we also adopt the mixed-mode routing operation and the routing

verification concepts in our development.
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Figure 4—18. Examples of traditional symbolic routing and mask generation:

(a) symbolic routing; (b) mask generation statement; (c) final mask result.



CHAPTER 5

THE CF TWO-LAYER CHANNEL ROUTING APPROACH

This chapter presents our two-layer channel routing approach. The objective here is

to efficiently generate the acceptable routing masks for the given channel. Two major

operations are involved in the routing approach, i.e., the intermediate routing operation

and the mask generation. The intermediate routing operation is used to produce a

sequence of intermediate routing result according to the given netlist. Based on different

routing cases, we develop three different routing strategies. These routers can be readily

applied to the mixed-mode operation for minimizing the wiring length of the user-

specified net. In addition, they can generate optimal or near optimal routing results for

several well-known examples.

The mask generator translates the intermediate routing data into masks. It utilizes a

tiling technique and several operating rules for reducing the number of vias and verifying

the correctness of the routing result. Also, a routing performance measurement process is

used to determine the number of vias and total wiring length in the routing result. The

routing verification process is implemented in the mask generation level in order to

detect all the possible routing errors resulting fi'om the routers.

110
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5.1 The CF Mask Generator

In this section, we present several important data structures and processes in order

to construct the CF mask generator. These data structures and processes are listed as fol-

lows: (1) the intermediate routing data, (2) the tiling assignment, (3) the tiling construc-

tion rules, (4) the routing violation detection rules, (5) the vias minimization, and (6) the

performance data generation.

(1) Intermediate routing data:

We define the format of the intermediate routing data so that the interface between

the high level routing process and the low level mask generation can be simplified. An

intermediate routing data is defined as (x1, y1, x2, y;, r), where (x1, y;) and (12, yz)

represent the starting and ending coordinates of a wiring path in a grid-based channel,

respectively. And, 1 represents the assigned track number for this wiring path. For exam-

ple, the intermediate routing data, (1, 5, 4, l, 3), means a wiring path which starts from

grid (1, 5) and ends at grid (4, 1) by passing through track 3. Figure 5-1 shows three wir-

ing paths used to construct the mask result for a given channel, and their related inter-

mediate routing data are (l, 5, 4, 1, 3), (4, 1, 7, 5, 3), and (3, 5, 3, l, 0), respectively. Note

that coordinate (1, l) is the base coordinate of the bottom-left grid in the channel, and r =

0, means that the related wiring path' is a straight wire. An important feature of this inter-

mediate routing format is that it can be readily used for mixed-mode operations. The user

can specify the wiring path of any two points by editing the related routing data interac-

tively.

(2) Tiling assignment:

In Figure 5-1, the entire routing mask is partitioned into several small blocks. Each

block of the mask is called a tile, and each coordinate (grid) in the channel is related to
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Note:

Each block represents a tile;

§ represents Metal 1 layer;

represents Metal 2 layer;

represents a via (contact).

 

Figure 5-1. Tiling mask result for a given channel.
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only one tile. The array structure of the tiles in the channel is called a tiling array. This

tiling array can be used as a cell in the final layout of a circuit. We assume that the rout-

ing operation follows the traditional strategy in using layers, i.e., one layer for the hor-

izontal wires and the other layer for the vertical wires. Based on this assumption, we can

pick up several outstanding tiles from the mask result as our basic tiles. For example, in

Figure 5-1, the mask result consists of 35 tiles, where it only needs 7 basic tiles to

represent its mask result. Except for the wrong way routing, we evaluate the masks in

most of the routing results and determine all the possible basic tiles. As a result, thirteen

basic tiles are selected and can be used to construct most of the mask results. Figure 5-

2(a) shows these basic tiles along with their temporary assigned symbols. Basically, we

assign a normalized wire-size to all of the wires and vias in the tiles, and it is based on a

3-um technology.

For the routing without vertical constraints and without dogleg cases, six equations

are used to determine the relationships among these thirteen basic tiles. These equations

are established by following a from left-to-right and flora top-to-bottom wiring construc-

tion sequence. Figure 5-2(b) shows these six tiling construction equations. By solving

these equations, thirteen numbers, from 0 to 12, are assigned to symbols of these tiles,

respectively. Note that tile number 0 represents an empty tile. These basic tiles are

separated into two groups, i.e., the simple tile group and the constructed tile group. Each

tile in the constructed tile group is combined by two or more tiles from the simple tile

group. Figure 5-3 illustrates thirteen basic tiles with the assigned numbers, and they are

separated into the simple tile group and the constructed tile group. Note that the spaces

inside each tile are used to avoid the design rule violations. This tiling assignment is

correct because the constructed equations listed in Figure 5-3 match the symbolic equa-

tions listed in Figure 5-2.
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For the with doglegs routing cases, we still use these thirteen tiles; however, some

constraints must be set for their tiling construction operations. Also, the number of tiles

must be increased when we use vias minimization operations.

(3) Tiling construction rules:

For a given channel, we need to determine which tile should be used at any of

specified locations. The tiling construction rules are used to determine the files along a

wiring path; one wiring path corresponds to one intermediate routing datum. Three types

of tiles are used in tiling construction operations, i.e., resulting tile, desired tile, and

existing tile. The resulting tile number, T(i,j), is determined by the desired tile number,

D(ij), and the existing tile number, E(i,j). Note that (i,j) can be any coordinate in the til-

ing array. The desired tile number is a tile number used to represent one of the grids

along the wiring path, and it is determined without considering the content of the tiling

array. The existing tile number is a tile number of a grid, which already exists in the til-

ing array. Initially, all the existing tile numbers are set to 0.

For the routing without dogleg case, two tiling construction rules are established,

which are derived directly fiom the six construction equations listed in Figure 5-2(b).

C_Rule 1.1: If E(i,j) = D(ij) or E(i,j) = 10, then T(i,j) = E(i,j).

C_Rule 1.2: Except for C_Rule 1.1, T(i,j) = D(i,j) + E(i,j).

The processing sequence for each the wiring path is the same as the input sequence of the

intermediate routing data. According to each intermediate routing data input, we form a

set of tiles for the related wiring path. Figure 5-4 illustrates an example using these con-

struction rules. In each processing step, the tiling array is efficiently filled with one set of

tiles for each wiring path. The final tiling array can be directly mapped to the same rout-

ing mask result as shown in Figure .5-1.
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Figure 5-4. Example of using C_Rules 1.1 and 1.2 to construct the tiling array:

' (a) given intermediate routing data; (b) tiling array constructions.
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For the routing with dogleg case, the tiling construction rules are more complicated

than those of the routing without dogleg case. This is because that the subnets of each net

can be assigned with different tracks for routing with dogleg operations. These construc-

tion rules are described as follows:

C_Rule 2.1: If E(i,j) + D(i,j) = 13 and (E(i,j) = 11 or E(i,j) = 2), then T(i,j) = 6.

C_Rule 2.2: If E(i,j) + D(i,j) = 7 and (D(i,j) = 2 or D(i,j) = 5), then T(i,j) = 3.

C_Rule 2.3: If E(i,j) = D(i,j) or E(i,j) = 10, then T(i,j) = E(i,j).

C_Rule 2.4: Except for C_Rules 2.1 to 2.3, T(i,j) = D(i,j) + E(i,j).

Note that C_Rule 2.3 is the same as C_Rule 1.1, and C_Rule 2.4 is the same as C_Rule

1.2. Thus, C_Rules 2.1 to 2.4 are the generalized tiling construction rules for most of the

routing cases. Figure 5-5 illustrates an example using these construction rules. It also

shows the final routing mask for this given routing with dogleg channel.

(4) Routing violation detection rules:

Basically, for any two different nets, if the horizontal (vertical) wires of their wiring

paths are overlapped, then these two wiring paths consist of horizontal (vertical) viola-

tions. During each of the tiling construction process, the CF mask generator can detect

the horizontal and vertical routing violations using several rules. In order to determine

these routing violation detection rules, we first establish all the possible horizontal and

vertical routing violation cases. Figure 5-6 shows these cases, which include two hor-

izontal violation cases and eight vertical violation cases. Then, according to the relation-

ships among the tiles in each of these cases, we form the violation detection rules below:

HD_Rule: If E(i,j) <> 2 and E(i,j) <> 0, then the routing has horizontal violations,

where (i,j) is one of the coordinates along the horizontal wire of the

current wiring path.
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Win 1: (1’ 59 4919 2)

Wire 2: (4, 1, 5, 5, 3)

Wire 3: (5. 5. 7. 1. 2)
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Figure 5-5. Example of using C_Rules 2.1 to 2.4 to construct the tiling array:

(a) given intermediate routing data; (b) tiling array construction;

(c) routing mask result.
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Note that each circle represents the place where the violation occurs;

................ represents the first win (Wire 1);

— represents the second wire (Wire 2).

Figure 5-6. Illustrations of the routing violation cases: (a) two horizontal violation cases;

(b) eight vertical violation cases.
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VD_Rule 1: If E(i,j) = 2, then Left_count = Left_count + l, where (i,j) is a coordinate

of the left comer of the current wiring path.

VD_Rule 2: If E(i,j) = 2, then Right_count = Right_count + 1, where (i,j) is a coordi-

nate of the right comer of the current wiring path.

VD_RuIe 3: If E(i,j) = 1 or 4 or 5, or 11, then Left_count + l, where (i,j) is one of the

coordinates along the left-vertical wire of the current wiring path.

VD_Rule 4: If E(i,j) = 1 or 4 or 5, or 11, then Right_count + 1, where (i,j) is one of the

coordinates along the right-vertical wire of the current wiring path.

VD_Rule 5: If Left_count = 2 or Right_count = 2, then the routing consists of vertical

violations. Note that this rule is used to check the value of Left_count and

Right_count attire end of each wiring path. Initially, both Left_count and

Right_count are set to 0.

Figure 5-7 illustrates three examples using these rules to detect their horizontal and verti-

cal routing violations. It shows that we not only can detect any routing violations but also

can easily identify the locations of routing violations. These outstanding features will

lead us to verify the correctness of the routing result. Also, we can quickly adjust the

routing process if the CF mask generator locates a routing error.

(5) Vias minimization:

In order to reduce the number of vias in the routing result, we apply a vias minimi-

zation process to the tiling array. This process tries to change the layer used for horizon-

tal wires into another layer used for the vertical wires if no errors exist. Figure 5-8 illus-

trates two examples using vias minimization operations. It shows that the number of vias

can be reduced by one or two vias for each of the successful wires. One deficiency of

using this vias minimization technique is that we need to use some new tiles. Also, we

need two supplementary tiles for connecting the I/O pins of cells with the tiling masks.
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(i) given intermediate data (ii) Wire 1 construction (iii) Wire 2 construction

_Rule)

(41)
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3 2 0 0 0 3 © 0

Wire 1: (1,4,4,1,2)

Wire 2: (1,1,3’4’3) 2 5 8 8 11 2 G 8 8 11
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1 2 3 4 l 2 3 4

(i) given intermediate data (ii) Wire 1 construction (ii) Wire 2 construction

_’ Left_count = 2

(b) (VD_Rules 1, 3, and 5)

4 2 0 O O 4 2 O O

3 5 8 8 11 3 5 8 8 6)

WT“ 1‘ (1’4’4’1’3) 2 0 0 0 2 2 0 1 8 .. G
Wrre 2: (2,1,4,4,2)

1 O O O 2 1 0 2 O 2

1 2 3 4 1 2 3 4

(i) given intermediate data (ii) Wire 1 construction (ii) Wire 2 construction

—'* Right_count = 2

(c) (VD_Rules 2, 4, and 5)

Note: 0 represents the place where the violation occurs;

“- represents the expected wiring path.

Figure 5-7. Examples of using routing violation detecting rules to detect errors:

(a) for a horizontal violation; (b) for a left vertical violation;

(c) for a right vertical violation.
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2 2

1 1

1 2 3 4 5 l 2 3 4 5

(i) before the vias minimization (ii) after the vias minimization
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1 1

1 2 3 4 5 l 2 3 4 5

(i) before the vias minimization (ii) after the vias minimization

(b)

Figure 5-8. Examples of using the vias minimization: (a) for two vias reductions;

(b) for one via reduction.
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Figure 5-9 shows these additional tiles with assigned numbers. Also, in Figure 5-10, we

list the vias minimization algorithm.

(6) Performance data generation:

The generation of the routing performance data can lead to the selection of accept-

able routing processes and results. Two important routing performance parameters are

extracted from the constructed tiling array, i.e., total number of vias and total wiring

length. These two parameters can be easily detected by summing up the related perfor-

mance data embedded in all of the tiles in the tiling array. Figure 5-11 is the algorithm

used to calculate the total wiring length of the routing result, and Frgure 5-12 is the algo-

rithm used to calculate the total number of vias of the routing result.

Finally, in Figure 5-13, we list the processing sequence of all the processes in the

CF mask generator. The input of the CF mask generator requires a file with intermediate

routing data and the maximum assigned track number. The final output process is used to

put all the tiles from the tiling array to a file, and currently this file can be directly

accessed by Magic [40]. The program implementing the CF mask generator consists of

about 355 lines of C. When applied to the Deutsch difficult example, this program gen-

erates the routing masks in about 1.87 seconds CPU time on a VAX 8600 under the

UNIX operating system. The distribution of this CPU time for the related processes is

also shown in Figure 5-13. The input data used here is generated from a router that will

be presented in the next section. Each of these algorithms have the same computational

complexity, i.e. 0(mn ), where n is the number of columns and m is the number of rows

of a given channel. Thus, the computational complexity of the entire CF mask generation

algorithm is also bounded by 0(mn ).
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Figure 59. Additional tiles with assigned numbers: (a) for top and bottom pin

connections; (b) for vias minirnizations.
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for (y = l; y < max_track + 1; y++)

{

flag = O;

for (x = 1; x < max_column + l; x++)

{

/* Set conditions to determine the starting point for vias minimizations */

if ( TlXHy] = 5 '1 T1X][Y] = 1 '1 TIXHy] = 3 || TIXHY] = 7 ll

{ TIXHYJ == 9 '1 T1X][y] = 12)

St = x;

flag = l;

}

else if (T[x][y] != 8)

flag = O;

/* Check the rest successful tiles in the horizontal direction, and replace the tiles*/

i[f ((TIXHYJ =3 4 '1 TIXHYJ = 11 '1 TIXHYI = 6) && flag = 1)

if (Tlelyl = 4) TIXlly] = 16;

if ('I'IXHY] = 11) T1XHY] = 17;

if (TIXJIYJ == 6) TIXlly] = 18;

if (Tlstlb'l = 5) Tlstlly] = 19;

if ('l'IstHy] = 1) Tlstllyl = 20;

if ('l'lstlb'] = 3) Tlstlb'] = 21;

if (Tlstl [y] = 9) Tlst11y] = 22;

if (Tlstlb'l = 12) Tlstlly] = 23;

if (Tlst] [Y1 = 7) TistHyl = 24;

for(i=st+1;i<x;i-H~)

} Tlilly} = 15;

if ((TIXHYI = 9 ll T[X][)'] = 12 '1 T[X][)'] == 7) && (flag = 1) &&

{ (TlstHyl = 5 ll Tlstllfl == 1 '1 Tistlly] = 3))

if ('r[x] [y] = 9) T[x] [y] = 25;

if (TIXJIyl = 12) TIXHy] = 26;

if (T[x}[y] = 7) T1X] [y] = 27;

if (Tlstllyl = 5) Tlst][y] = 19;

if (ITStHyl = 1) T18tlly] = 20;

if (TIStlIyl = 3) 'ITSIHy] = 21;

for ( i = st + 1; i < x; i++) T[i][y] = 15;

Figure 5-10. Vias minimization algorithm.
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/* Initialization */

Total_length = O;

/* Examine the tiling array to accumulate the total wiring length */

for (x = l; x < max_column + 1; x++)

{

for (y = 1; y < max_track +1; y++)

1

/* Add the related wire length for the tiles in the top and the bottom tracks */

if(y =1|Iy = max_track)

1

if (T[x][Y] != 8 && T[XHY] != 0)

Total_length = Total_length + 0.5;

}

/* Add the related wire length for the rest of tiles */

if (T[x] [y] = 10) Total_length = Total_length + 2;

if (T[x] [y] = 7 ) Total_length = Total_length + 2;

if (T[XIIyl == 6 || 'ITXJIy] = 3) .

Total_length = Total_length + 1.5;

if (T[Klly] = 9 "T[x][Y] a 12)

Total_length = Total_length + 1.5;

if (TIXHYI = 1 || T[X][y] = 4 1' T[XHY] == 5 '1 T[XHYI == 11)

Total_length = Total_length + 1;

if (T[x] [y] -----= 2) Total_length = Total_length + 1;

if (T[x] [y] = 8) Total_length = Total_length + 1;

Figure 5-11. The algorithm used to calculate the total wiring length.

/* Initialization */

Total_vias = 0;

/* Examine the tiling array to accumulate the number of vias */

for (x = 1; x < max_column + l; x++)

1

for(y= 1; y<max_track+ 1; y++)

{

if (T[x][y] != 8 && T[x][y] != O && T[x][y] != 10 && T[x][y] 1= 2 &&

T[x][y] != 15 && T[x][y] != 16 && T[x][y] != 17 && T[x][y] != 18 &&

T[x][y] != 19 && T[x][y] != 21 && T[x][y] != 21)

Total_vias = Total_vias + 1;

Figure 5-12. Algorithm used to calculate the number of vias.
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0.29 seconds (15.51%)

0.06 seconds (3.21%)

0.12 seconds (6.42%)

0.04 seconds (2.14%)

+ 1.36 seconds (72.73%)

 

Total = 1.87 seconds (100%).

Figure 5-13. Processing sequence of all processes in the CF mask generator.

(including their realed CPU time results for the Deutsch example)
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5.2 Three Efficient Routers

In this section, we present the development of three routers for the routing without

vertical constraint, routing without dogleg, and routing with dogleg cases, respectively.

These routers are used in conjunction with the CF mask generator to generate the routing

masks for a given netlist. The notation used throughout this section is the same as that

used in Section 4.1.

The input of these routers is a netlist, and the output of the routers are the intermedi-

ate routing data and the maximum assigned track number. The number of tracks, the

number of vias, and the total wiring length are three important factors in our router

development. Because there exists some trade-offs among these factors, each of the

routers will emphasize the minimization of one or two factors in the routing result. Also,

the router will try to reduce the rest of the factors as small as possible. In addition, by

using a special net-weight assignment, all of these routers can easily achieve the mixed-

mode routing operation. Finally, we will use the CF mask generator to verify the correct-

ness of the routers and to evaluate the performance of their routing results.

5.2.1 The CF_l Router

The channel routing problem can be simplified if there exists no vertical constraints

in the channel. This without dogleg routing case can be found in a restricted standard-cell

approach, such as the cell structure suggested by Jennings [48]. In this standard-cell

approach, the region between two neighbor pins of a channel is equal to one wiring

space. Then, the channel without vertical constraints is formed by shifting all the bottom

cells tothe right-hand side with one half of the wiring space. The most important feature

of this routing environment is that both the non-cyclic and the cyclic routing cases will

be treated equally by the router. In addition, their routing results are always equal to the
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channel densities for the given netlists. For example, Figure 5-14 illustrates the example

of the I/O pin assignment for a restricted standard-cell and the routing results for the

cyclic and non-cyclic netlists.

The left-edge algorithm [8] is the simplest method used to deal with the routing

without vertical constraints. It can generate the number of tracks equal to the channel

density for a given netlist. However, the total wiring length of its routing result may not

be minimized. For example, Figure 5-15 is a comparison of the left-edge routing result

and the optimal routing result for a given netlist. It shows that the total wiring length in

the left-edge routing result is much larger than that of the best routing result. Thus, we

present an improved router to deal with the routing without vertical constraint, which is

known as the CF_l channel router. In order to take advantage of this given routing

environment, the CF_l router does not use any doglegs. Thus, this router tries to minim-

ize the total wiring length after the resulting number of tracks and vias have been minim-

ized.

Basically, the CF_l router uses a zone representation technique to identify the out-

standing zones for net assignments. It also uses a new net-weight assignment process to

reduce the total wiring length and to achieve mixed-mode routing operations. Overall,

the CF_l router includes the following processes: (1) input the netlist, (2) generate the

zone representation, (3) identify the best outstanding zone, (4) assign the nets, (5) output

the intermediate routing data.

(1) Input the netlist:

The router sequentially reads the original netlist and forms a new net list by insert-

ing two zeros for each pair of input pins. Each pair of input pins is determined by one pin

in the top netlist and the related pin in the bottom netlist. For example, the original netlist

is shown as
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__l

Standard-cell

:1_.
1/2 D ID 1/2 D

 

  

Note that "D" represents the unit of a wiring space;

I represent I/O pin of the stand-cell.

(1)

Top netlisc 1 3 l 2 3 4 Topnetlist: 1 2 1 3 4 4

B0110111 116111811 2 1 2 3 4 4 Bottom netlist: 2 1 2 4 3 1

 

 

  
 

  

 

(ii) (iii)

Figure 5-14. Illustration of the routing without vertical constraints:

(i) I/O pin assignment for a restricted standard—cell;

(ii) given a non-cyclic netlist and its routing result;

(iii) given cyclic netlist and its routing result.
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Total wiring length = 9.5 + 27 = 36.5 D.

(i)

 

 

 

 

Total wiring length = 9.5 + 21 = 30.5 D.

(ii)

Note:

"D" represents one unit of the wiring space in both vertical and horizontal directions.

Figure 5-15. Comparison of two no—dogleg routing results for a given netlist:

(i) left-edge routing result; (ii) optimal routing result.
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12345

23451.

Then, the new netlist becomes

1020304050

0203040501.

Note that this is a key operation to construct a channel without vertical constraints. In

addition, during the netlist input, several important pieces of information are generated.

They are the starting column, start [i], the ending column, end [i], the total number of the

tOp pins, n__top [i], and the total number of the bottom pins, n__bot:om [i], where i represents

the net number. The start [i] and end [i ] are used to determine the number of zones covered

by net i, and the n_rop [i] and n_bottom[i] are used to determine the weight for net i, w[i],

where

w [i] = n_t0p [i] - n_bottom [i 1.

Therefore, a positive large value of w [1'] means that net i should be placed close to the top

track in order to reduce its wiring length. For' the mixed-mode routing operation, the

user-specified net is assigned with a new net-weight. According to the value of wU], we

define the new net-weight, w’ [i], as follows.

Iwa] 20,w’[j] =INF.

Else, w’ Li ] = —INF .

Where net j is the user-specified net, and [NF = 2 * (the maximum column number in the

channel). In other words, the user-specified net will be placed close to the top track if the

number of its top pins larger that of its bottom pins. Otherwise, this net will be placed

close to the bottom track.
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(2) Generate the zone representation:

The generation of the zone representation uses the same zone-construction concept

as described in Section 4.1. Two operations are involved in this generation, i.e., the zone

formation and the zone compaction. In zone formation, each column in the channel

represents one zone, and each zone consists of one set of nets which intersect this

column. Also, the maximum assigned track number is determined in this operation, and it

is equal to the channel density for the given netlist. The zone compaction operation is

used to identify the outstanding columns (zones) which consist of an unique set of nets in

the channel. All of these zones will be used for net assignment operations later. Also, the

zone-weight for each outstanding zone is determined by summing up all of its net-

weights.

(3) Identify the best outstanding zone:

The zone-weight information of all the outstanding zones is used to identity the best

outstanding zone as the first zone for processing in the net assignment. This best out-

standing zone is determined by having the highest zone-weight among all of the out-

standing zones.

(4) Assign the nets:

The net assignment process is used to assign tracks to the nets in each of the out-

standing zones. It starts from the best outstanding zone and moving toward both channel

ends. In order to identify the net assignment sequence, all the nets in each outstanding

zone are sorted according to the values of their net-weights. The higher the value of the

net-weight is, the closer the net is placed to the top track. Basically, the CF_l router will

assign a suitable track to a feasible net at each processing step. The feasible net is a net

which has not been assigned a track in the current zone. The suitable track is a track

which is used for the net assignment without causing any horizontal violations. The net
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assignment process includes two phrases, i.e. the top net. assignment phrase and the bot-

tom net assignment phrase. In the tOp net assignment phrase, the operating sequence to

determine the suitable track and the feasible net is from the top to the bottom tracks and

from the highest-weight to the lowest-weight nets, respectively. Whereas, it is from the

bottom to the top tracks and from the lowest-weight to the highest-weight nets in the bot-

tom net assignment phrase.

(5) Output the intermediate routing data:

The output process is used to construct all the intermediate routing data. Each inter-

mediate routing data is a description of the wiring path of a subnet, which includes the

locations of the starting and ending pins and the assigned track number. The track

number assigned to a subnet is the same as the track number assigned to its original net.

The locations of the starting and ending pins for the subnet can be determined by match-

ing the current processed net number with the numbers in the netlist.

Figure 5-16 lists the CF_l routing algorithm and includes all of the processes

described above. It shows that the computational complexity of the net assignment pro-

cess is the highest one among all of the processes in the algorithm. Therefore, the compu-

tational complexity of the CF_l routing algorithm is bounded by O(mNz), where m is the

number of rows, N is the number of nets and z is the number of zones in a given channel.

The program implementing the CF_l router consists of about 500 lines of C. Three net-

lists from Yoshimura and Kuh [9] and one netlist from Deutsch [45] are used to test this

router, which are denoted as the YK_a, YK_b, YK_c and Deutsch net lists. Table 5-1

illustrates the test results of both the CF_l router and the Left-edge router for these net-

lists. Note that the implementation of this left-edge router uses the same I/O processes as

in the CF_l router. According to this table, the number of vias and tracks resulting from

both routers are very close. It also shows that the run time of the left-edge router is faster
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CF_l algorithmO

/* Input netlist */

while (1: EOF)

{ insert OS to the neighbors of the top and bottom pins; /* for no vertical constraints */

construct net information; ]

for all of the nets {construct net-weights; ]

/* Form the zones (each column represents one zone) */

processing all the columns in the channel from left to right

[ construct one set of zone-nets, {Z(i)} , which cross the current column 1;

determine the maximum track number. }

/* Compact the zones */

all the columns in the channel from left to right (initially, i = l & j = 2)

{ if {20)} C(20)]

{ {2(1)} = 120]:

{2(1)} = 120+l)l; }

if {20)} 3120)}

1 {20)} = [20+l)}; }

else

[ accept {26)} as one of the outstanding zones;

construct the zone-weight of {2(1)};

1 =1; 1' = 1+1; 1

] ,

f‘ Find the starting zone location: ZS*/

processing all the outstanding zone

{ find ZS which has the largest zone-weight among all of the outstanding zones; }

/"' Assign the nets */

from ZS to the right-end of the channel and from (ZS-1) to the left-end of the channel

[ Sort the nets with their net-weight in the current zone from the largest to the smallest one;

P Top net assignment ( for the nets with net-weights _>_ 0) */

from the net with the highest net-weight down to the last net with 0 net-weight

{ from 1 tothemaximumtracknumber

assign a suitable track to the current net; ]

P Bottom net assignment ( for the nets with net-weights < 0) */

hunt the net with the smallest net-weight up to the last net with 0 net-weight

[ from the maximum track number to 1

assign a suitable track to the current net; 1

l

/* Output intermediate routing data */

processing all the nets

{ examine the netlist from the starting column to the ending column of the current net

{construct the intermediate routing data for each of the subnets in this net; ]

}

Figure 5-16. CF_l routing algorithm.
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Router Problem (CD) #Tracks #Vias Total wiring length (D) Run time (see)

LF YK_a (15) 15 117 2655.5 01

CF_l 15 115 2449.5 0.3

LF YK_b (17) 17 122 2928 0.16

CF_1 17 122 2777.5 0-35

LF YK_c (18) 18 149 3934.5 0.22

CF_l 18 139 3604 0.45

LF Deutsch (19) 19 285 8018 0.42

CF..1 19 285 7547 1.0       
 

Note that "LF" represents the left-edge routing algorithm [8];

"CD" represents the channel density of the given netlist;

"D" represents the wiring length unit.

Table 5-1. Test results of both the left-edge router and the CF_l router.
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than that of the CF_1 router. However, the total wiring length results of the CF_1 router

are much less than those of the left-edge router.

5.2.2 The CF_2 Router

For the normal Standard-cell approach, the router needs to deal with vertical con-

straints in the channel. Thus, our second router, which is known as the CF_2 router, is

used for the routing with vertical constraints but without doglegs. The objective of this

router is to minimize the maximum output track number after the number of vias has

been minimized.

The processes used to construct the CF_2 router are: (1) input the netlist, (2) gen-

erate the net-weights, (3) assign the nets, and (4) output the intermediate routing data.

Except for forming the new netlist, the CF_2 router uses the similar input and output

processes as those of the CF_1 router. In addition, a vertical constraint graph is con-

structed during the input process, and it is used to determine one of the weighting data,

ten [i]. In the graph, [an [i] represents the from-top-level-to-bottom-level count for net i.

Also, another weighting data is d[i], which represents the distance between the starting

and the ending pins of net i. The net-weight for net i is defined as

w[i]=d[i]+len[i].

Let net j be a user-specified net in the mixed-mode routing operation, then we define the

net-weight for net j as follows.

If (n__top [j ] - n_bottom U1) 2 0, then w’ [j] = INF.

Else, w’[j] = 1,

where n_top [j], n_bottom Li] and INF have the same definitions as used in the CF_1 router.

The qualified nets for each net assignment process are the nets without any descen-
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. dants in the vertical constraint graph. By using the information of the qualified nets, the

CF_2 router generates several required data for the net assignment process. The number

of total points, K, is equal to twice the number of the qualified nets, and each point is

related to the location of the starting pin or ending pin of the nets. These points are sorted

according to their related locations from the lowest to the highest. Then, the router

assigns a point-weight to each of the points. The point-weight for point i is denoted as

ZW[i], where ZW(i)=0 if point i is a point related to the location of any starting pins.

Else, ZW(i ) =w[j] if point i is a point related to the location of the ending pin of net j.

Also, the related net number is assigned to a point-net, ZN(i). For example, if 2 and 7 are

related to the starting and ending pin locations of a qualified net, net 5, and w[5] = 15.

Then,ZW(2) =0, ZW(7)= 15,ZN(2) =5, andZN(7)=5.

The CF_2 router uses a net assignment algorithm similar to that of the Yoshimura

router [10]. Instead of using the zone representation technique, the CF_2 router directly

uses the related starting and ending pins of the qualified nets to determine the maximum

net-weight path. Since any two pins of the qualified nets will not occupy the same loca-

tion, the construction of the maximum net-weight path becomes straightforward. After

processing each net assignment, all the nets in the maximum net-weight path will be

assigned with a same track number. Note that the router sequentially produces one new

track for each net assignment run from the top track to the bottom track. Then, the CF_2

router deletes these nets from the vertical constraint graph. Thus, a new set of the

qualified nets become available for the next net assignment operation. Figure 5-17 lists

this net assignment algorithm. The computational complexity of this algorithm is only

bounded by O(N), where N is the number of nets in a given channel.

Overall, the computational complexity of the CF_2 routing algorithm is bounded by

O(mNIogzN), where m is the number of rows and N is the number of nets in a given chan-

nel. This is also the computation complexity of the sorting algorithm used in the main net
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Definition:

K : number of total points in the path = 2*number of qualified nets.

ZW(i) .' weight at point i, where 0 < i < K.

IfZW(i) = 0, it means point i is the starting point of a net;

else, it mean point i is the ending point of a net.

ZN(i) ; point-net which is a net with starting or ending pins located at point i.

ZP(i) ,- point potential (the largest accumulated weights at point 1').

211(1) ; current selected net at point 1'.

ST(j) .' starting point of net j.

Temp_we : current weight.

Phase 1:

ZP(O) = 0;

ZA(O) = 0;

for (i = I; i< K+I; i++)

{

if (ZW(i) == 0)

{ ZP(I’) = ZP(i-I); ZA(i) = ZA(i-I); }

else /* find a net in the path */

{ SP = .S'1'(ZN(i)); /* determine the starting point of ZN(i) */

if(ZW(i) + ZP(SP) > ZP(i-I))

{ ZP(i) = ZW(i) + ZP(SP); /* accumulate weights */

211(1) = ZN(SP); }

else l" give up this net in the path */

{ ”(U = ZP(i-I);

240') = ZA(i-I); }

}

1

Phase 2:

{

Temp_we = ZP(K);

while (Temp_we != 0)

{

for (i = K; i > 0; i—-)

{ if (ZP(i) == Temp_we)

{ assign the current track to the selected net, ZA(i);

delete net ZA(i) from the vertical constraint graph;

Temp_we = ZP(i) - ZW(i); ]

Figure 5-17. CF_2 net assignment algorithm.
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assignment loop. The program implementing the CF_2 router consists of about 400 lines

of code written in the C programming language. The test results of this router for the

YK_a, YK_b, YK_c, and Deutsch netlists are listed in Table 5-2. It includes the number

of tracks resulting from the Y&K routers and the left-edge router. Table 5-2 also shows

that the CF_2 router can generate the optimal or near optimal routing results in a very

fast execution speed. The limitation of using these non—doglegging routers is that it can

only be applied to the non-cyclic routing operations. Also, they generate a larger number

of tracks than the channel density for the given netlist. For example, for the Deutsch net-

list, the CF_2 router generates 28 tracks which is close to the optimal solution of using

the non-doglegging routing; however, the channel density for the Deutsch example is

only 19 tracks.

5.2.3 The CF_3 Router

Basically, the use of doglegs can reduce the maximum track number in the routing

result. Also, it can reduce the possibility to encounter the cyclic routing problem. For

example, the netlist in Figure 5-18 is the cyclic routing case if the non-doglegging router

is used to solve for its routing result. However, it becomes a non-cyclic routing case if

the doglegging router is used. Thus, in this section, we presents a doglegging channel

router which is known as the CF_3 router.

Because it uses doglegs, the CF_3 router consists of three principal tasks, i.e., the

formation of subnets, the subnet-weight assignment, and the wire compaction. The for-

mation of subnets is used to construct the vertical constraint relationships among all the

subnets. The subnet-weight assignment uses a heuristic method to determine all the

subnet-weights. The wire compaction process is used as a final refinement operation to

reduce the total wiring length for the given channel. Overall, the CF_3 router consists of
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Router Problem(col., net) #Tracks LVias Total wiring length (D) Run time (sec.)

CF.2 YK_a (76, 45) 15* 114 1646.5 0.07

CF_2 YK_b (74, 47) 18 118 1889 0.06

CF_2 YK_c (103,54) 18* 146 2404 0.10

CF_2 Deutsch (175, 72) 28* 276 6281.5 0.15      
Note that "'1'" represents using the reversed netlist

(the top and bottom netlists are switched);

"D" has the same definition as in Figure 5-15.

 

 

 

 

 

(i) .

Router Problem (CD) #Tracks

CF_2 YK_a (15) 15

Y&K_l 15

Y&K_2 15

J
18

CF_2 YK_b (17) 18

Y&K_l 17

Y&K_2 17

1,}: :z()

CF_2 YK_c (18) 18

Y&K_l 18

Y&K_2 18

_LF 19

CF_2 Deutsch (19) 28

Y&K_l 30

Y&K_2 28

LF 39    
 

Note that "Y&K_l" represents the first Yoshimura and Kuh routing algorithm [9];

"Y&K_2" represents the second Yoshimura and Kuh routing algorithm [9];

"LF" represents the left-edge routing algorithm [8];

"CD" represents the channel density of the given netlist.

(ii)

Table 5-2. Demonstration of the CF_2 routing results: (i) results for several netlists;

(ii) result comparison table.
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Topnetlist: 12 3 2 4

Bottom netlist: 2 4 1 3 l

(i)

 

 

 

  
(iii)

Note that subnets 1_a and 1_b are related to net 1;

subnets 2_a and 2_b are related to net 2;

subnet 3_a is related to net 3; subnet 4_a is related to net 4.

Figure 5-18. Illustrate of doglegging operation for solving a given cyclic case:

(i) given netlist; (ii) cyclic vertical constraint graph for non-doglegging operation;

(iii) related subnets and non-cyclic vertical constraint graph for doglegging operation.
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the following processes: (1) input the net list, (2) generate the local densities, (3) assign

the subnet-weights, (4) assign the subnets, (5) the wire compaction, (6) output the inter-

mediate routing data.

(1) Input the netlist:

According to the given netlist, this process is used to consu'uct the subnet informa-

tion. It includes the starting and ending pin locations, and the originated net number for

each subnet. Three subnet groups are constructed during the input process, i.e., the

upper-subnet group, the middle-subnet group, and the lower-subnet group. A upper-

subnet is formed by having two top pins, one top pin and one bottom pin with a zero in

the same column, or two bottom pins with both zeros in the columns. A middle-subnet is

formed by having one t0p pin and one bottom, or two bottom pins with a zero in one of

the columns. A lower-subnet is formed by two bottom pins without any zeros in their

columns of the netlist. Figure 5-19 shows some examples of the upper subnets, the

middle-subnets, and the lower-subnets. This formation of the subnets is a realization of

the vertical constraint. For example, none of the upper-subnets will have ancestors in the

vertical constraint graph, and none of the lower-subnets will have descendants in the

vertical constraint graph. All of the middle-subnets represent the intermediate nodes in

the vertical constraint graph.

(2) Generate the local densities:

The local density of a subnet is one of the factors used to determine its subnet-

weight. We first calculate the number of subnets cross each column of the subnet. Then,

the largest number among all of the results is the local density for this subnet. Figure

5-20 lists the algorithm to generate the local densities for all the subnets.
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Topnetlist: 1210010

Bottomnetlist: 2 3 22131

(i)

 

 

  

 

 

1_a

1_b

2_a 1 c

2_b

— 2_c 4_a 4_b

3_a
 

  

(ii)

Upper-subnets : 1_a, 1_b, 1_c, 1_d, and 4_a.

Middle-subnets : 2_a, 2_b, and 2_c.

Lower-subnets : 3.21.

Note that subnet 4_b is a straight connection, so it need not be classified.

(iii)

Figure 5-19. Example of the subnet construction: (i) given netlist;

(ii) formation of subnets; (iii) classification of the subnets.
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Local_density generationO

{

for (i = I; i < K+I; i++)

{

/* Select the subnets */

determine UP, which is the number of upper-subnets cross column 1';

put these upper subnets in [UP__N ];

determine MD, which is the number of middle-subnets cross column 1';

put these middle subnets in {MD_N};

determine LO, which is the number of lower-subnets cross column 1';

put these lower subnets in {LO_N};

TL = UP + MD + LO;

/"‘ Update local densities of the selected subnets */

for (jé {UP_N} U {MD_N} U {LO_N})

1

1r (zoom < TL)

1

}

106‘le = TL;

Note that K represents the maximum column number in the channel;

loclj] represents the local density of subnet 1'.

Figure 5-20. Local-density generation algorithm.
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(3) Assign the subnet-weights:

The weighting data for each subnet is used to determine the priority of assigning a

track to the subnet. Since the dogleg channel routing is a NP-complete problem [43], the

CF_3 router presents a new heuristic approach for the subnet-weight assignment. Let

subneti be an upper-subnet, then we define its subnet-weight as follows.

w.[i]=2"' loc[i]+ or * dish],

where loc[i] represents the local density for subnet i, and dis[i] represents the distance

between the starting pin and the ending pin for subnet i. Also, at is an integer number

between 1 and the channel density. Usually, the acceptable result is generated when or is

set about one half of the channel density. Let subnet j be a middle-subnet or a lower-

subnet, then we define its subnet-weight as follows.

wnJUl=locU]+ a * disjj].

For the mixed-mode routing operation, we define the new subnet-weight as follows.

If subnet k is a subnet in the upper-subnet group, then w.) [k] = INF.

Else, if subnet It is a subnet in the lower-subnet group, then w...)'[k] = 1.

Note that subnet It is a user-specified net, and INF = (or + 2 * (channel density» * (the

maximum column number in the channel). Thus, each of subnets in the user-specified net

has a highest priority to be selected in the subnet assignments.

(4) Assign the subnets:

The subnet assignment algorithm is similar to the net assignment algorithm as used

in the CF_2 router. However, the CF_3 router uses the qualified subnets instead of the

qualified nets, and all the subnets in the upper-subnet group are the qualified subnets. The

result of this subnet assignment is a set of accepted subnets with a highest accumulated

weight among all of the possible net-weight combinations. These subnets are assigned
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with a current available track number. Then, the router deletes these accepted subnets

from the upper-subnet group and rearranges the related subnets in the subnet groups.

Each related subnet is a subnet that has at least one pin located at the same column as

that of one of the accepted subnets. These related subnets will be moved from the

middle-subnet group to the upper-subnet group, or fi'om the lower-subnet group to the

middle-subnet group. The subnet assignment process will be continued until no more

subnets is left in the upper-subnet group. Finally, if there still exists the unassigned sub-

nets in either the middle-subnet group or the lower-subnet group, then it means that the

given netlist has a cyclic routing problem. We will discuss this problem in the next

chapter.

(5) Wire compaction:

If the CF_3 router only uses this row-by-row subnet assignment, then its total wir-

ing length result may not be reduced. Therefore, a wire compaction process is used to

minimize the total wiring length result. This process tries to push all of the lower-subnets

as close to the bottom track as possible without overlapping any horizontal wires. Note

that this bottom track number is resulting fiom the previous subnet assignment process.

Figure 5-21 lists this wire compaction algorithm.

(6) Output the intermediate routing data:

During the input process, the information of all the subnets have been stored. Also,

the assigned track number for each subnet is determined after we execute the wire com-

paction process. Thus, the intermediate routing data can be easily constructed by combin-

ing these given subnet information.

The CF_3 router and Yoshimura efficient router [10] are similar; however, the CF_3

router uses a much simpler algorithm to assign subnet-weights and subnets than those of

the Yoshimura router. The computational complexity of the CF_3 routing algorithm is
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Wire compactionO

{ for (i = max_track; i > 1; i--)

{ for (j = i-1;j > 0:1")

I for (x E {T_LO_NU] };

{ if (put x in {T_TL_N[i]} that will not generate any horizontal violations)

{ delete x from {T_LO_N[i] };

insert x to {T_LO_N[i]};

}

l

1

Final intermediate routing data are in {T_TL_N[i] } , where i = 1 to max_track.

Note:

Max_track represents the maximum track number resulting from the previous processes;

{T_LO_N[i]] represents a set of lower subnets with the same assigned track number;

{T_MD_N[i]] represents a set of middle subnets with the same assigned track number,

{T_UP_N[i]} represents a set of upper subnets with the same assigned track number;

{T_TL_N[i]} = [T_UP_N[i]] U {T_MD_N[i]] U {T_LO_N[i]}.

Figure 5-21. Wire compaction algorithm.
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similar to that of the CF_2 routing algorithm. However, instead of using the number of

nets, the CF_3 router uses the total number of subnets in a given channel. The computa-

tional complexity of the CF_3 routing algorithm is bounded by O(liogzM), where m is

the number of rows and M is the total number of subnets in the channel. The program

implementing the CF_3 router consists of about 750 lines of C. For several routing exam-

ples, Figure 5-22 illustrates the CF_3 routing results corresponding to different values of

0t. If we define the acceptable track result is about 110% of the channel density for the

given netlist, then the value of on is close to one half of the channel density. The best test

results of this router for the YK_a, YK_b, YK_c, and Deutsch netlists are listed in Table

5-3. Also, Table 5-3 lists the result comparisons of the CF_3 router and other existing

routers for the same the YK_c and Deutsch netlists. It shows that the CF_3 router gen:

erates a little more vias than those of the routers; however, the CF_3 router can produce

much less total wiring length than those of most of the routers. Figure 5-23 is the mask

result for the 169-column Deutsch example routed by the CF_3 router. The total CPU

time is about 3.2 seconds on a VAX 8600 under the UNIX operating system, which

includes the execution time for both the CF_3 router and the CF mask generator.

In this chapter, we have presented three efficient routers and a powerful mask gen-

erator. These routers can be used for mixed-mode routing operations. The CF_1 router is

used to deal with channel routing problems in the restricted standard-cell approach. It can

generate the minimum number of tracks and vias by using the without doglegging and

without vertical constraint operations. The total wiring length of the routing result is

reduced because the CF_1 router used an effective weight assignment process. Both the

CF_2 router and the CF_3 router can be used to deal with channel routing problems in

the normal standard-cell approach. The execution speed of the CF_2 router is the fastest

one among all of these three routers. The CF_2 router can generate the minimum number

of vias by using a without doglegging operation. Also, It utilized an improved net-
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Note:

0 represents the place where 0t 5 1/2 * the channel density of the given netlist;

represents the place where or = the channel density of the given netlist.

a is a user-defined factor in the weighting fuction.

Figure 5-22. Sensitivity of oz to the CF_3 routing results.
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Router Problem(col., net) #Tracks] #Vias Total wiring length (D) CPU time (sec.)

CF_3 YK_a (76. 45) 16 129 1594 0.25

CF_3 YK_b (74, 47) 17 135 1870.5 0.24

CF_3 YK_c (103, 54) 18 164 2423.5 0.38

CF_3 Deutsch (175, 72) 20 350 5233.5 1.35

CF_3 Deutsch (169,72) 20 335 4924 1.33     
 

Note that "D" has the same definition as shown in Figure 5-15.

(1)

 

Total wiring lenfl (D)
 

   

Router Problem(col., net) #Track #Vias

CF_3 YK_c (103, 54) 18 164 2423.5

YACR2 18 "' 152 2448

   
 

Note: "*" means that one more track was required for the automatic execution.

 

 

 

Router Problem(col., net) #Track #Vias Total wiring length (D)

CF_3 Deutsch (169.72) 20 335 4924

Y&K [9] 20 308 5075

Hierarchical [46] 19 354 5023

YACR2 [11] 19 287 5020

Mighty [12] 19 301 4812     
 

Note that Hierarchical, YACR2, and Mighty routers use the unrestricted doglegging;

YACR2 and Mighty use the wrong way routing approach.

(ii)

Table 5-3. Demonstration of the CF_3 routing results: (i) best results of the

CF_3 router; (ii) two result comparison tables.
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assignment algorithm to reduce both the number of tracks and the total wiring length

results. Basically, the CF_3 router is a restricted doglegging router, and it used several

new processes in the routing operation, i.e., the formation of the subnet groups, the

assignment of subnet-weights, and the compaction of wires. By selecting a good parame-

ter in the subnet-weight assignment, CF_3 router can generate much less tracks and total

wiring length results than those of the CF_2 router and the CF_1 router. However, the

CF_3 router will generate more vias than those of these two routers. From several routing

result comparisons, we see that all three routers can efficiently generate optimal or near

I optimal results, respectively.

The CF mask generator used a tiling technique to efficiently generate the final rout-

ing masks for the given intermediate routing data. In addition to producing the routing

performance data, it also used several error-detection and via-minimization rules to

evaluate and improve the routing result of each router. All of three routers have been

tested by the CF mask generator on several well-known routing examples including a

benchmark example. As a result, these routers are proven to be correct.

. Possible extensions of our routing approach will be discussed in the next chapter.

These extensions involve methods to deal with the cyclic vertical constraint routing,

irregular-channel routing, variable wire-widths routing, and mask output reduction.



CHAPTER 6

SUMMARY AND CONCLUSIONS

Two VLSI design related areas were investigated in this research: the mapping of

algorithms to architectures and the transforming of netlists into physical layouts. Our

goal is to apply VLSI technology to circuit design in order to efficiently increase product

execution speed and reduce product area.

A computer graphics drawing engine was chosen for our algorithm mapping investi-

gation because VLSI technology has the potential to greatly increase the computer draw-

ing ability for advanced computer graphics systems. The objective here was to develop a

high-performance antialiased drawing engine. To achieve this objective, we developed

an efficient drawing algorithm and mapped it to an architecture that is well suited for

VLSI implementation. In addition, we estimated the performance of this antialiased

drawing engine in order to provide a specific performance index for the designer.

In the VLSI automation tools investigation, we focused on the regularity issue of the

VLSI physical implementation because it can lead to highly testable and compact

integrated circuits. Based on this requirement, the designer usually selects the standard-

cell and/or gate-array implementation. Without considering the floor-plan and cell place-

ment problems in the implementation, we investigated the integration of embedded chan-

nel routing and mask generation. Thus, the objective of this investigation was to develop

an efficient channel routing approach to facilitate the routing process for a given netlist.

This approach can not only be used to implement our drawing engine but also can be

applied to most channel routing applications.

155
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6.1 Summary

For developing a graphics drawing engine, we evaluated existing line-drawing and

antialiasing algorithms to determine the fastest drawing techniques which possessed

antialiasing capabilities. The non-parametric line-drawing technique is suitable for use in

the hardware implementation because it provides a faster execution speed than that of the

parametric one. A typical algorithm, which uses this technique, is the Bresenham line-

drawing algorithm. With some modifications of the Bresenham line-drawing algorithm,

an efficient and flexible line-drawing algorithm was developed. This algorithm uses

several simplified operating parameters to rapidly generate the decision results for a

given line. In addition, it can easily be used in conjunction with an antialiasing algorithm

for generating realistic lines and curves.

The area-antialiasing technique can eliminate the aliasing appearance of the draw-

ings on a raster display more quickly than other antialiasing techniques. Based on a

square pixel-shape and uniform distribution of the pixel-intensity assumption for screen

pixels, we established an exact area-antialiasing model. It defines the relationship

between the values of the decision parameter and the output intensities. To increase the

execution speed, the CFO antialiasing algorithm was developed by using a simplified

area-antialiasing model. As a result, the maximum error of its intensity result is only

3.125%. The CF antialiased drawing algorithm was constructed by combining the line-

drawing algorithm and the CFO antialiasing algorithm. According to the results from

several comparisons and demonstrations described in Chapter 3, this algorithm is the best

because of its execution speed, operational flexibility, and realism.

Based on the data flow of the CF algorithm, we implemented an antialiased line-

drawing architecture, i.e., the CF drawing engine. This drawing engine consists of both

pipeline and parallel processing features, and it generates a realized line with adjustable
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line-widths and intensity-levels. According to the resulting block diagram of the CF

drawing engine, each block can be viewed as a cell which can be a custom-designed, a

standard-cell, or a gate. This simplifies the process for physically implementing the CF

drawing engine.

To estimate the performance of this design, we developed a cell-delay model for all

of the constructed cells assuming a 3-um CMOS technology. These constructed cells

were used in a prototype line-drawing engine implementation; they can also be applied to

implement the CF drawing engine. The objective of this line-drawing engine implemen-

tation is to set up an accurate delay data for all of the cells. Furthermore, the interconnec-

tion wire delay was determined by extracting the loading data from the actual circuit lay-

out. Therefore, by using all of the cell-delay and the interconnection loading data, we

were able to estimate the performance of the circuit The timing delay of the CF drawing

engine was found to be close to that of the line—drawing engine, i.e., the critical path

delay is about 80 nanoseconds. Thus, the throughput of the CF drawing engine can be

12.51“ -M pixels per second, where P is the number of pixels to be assigned with intensi-

ties at each drawing step.

With respect to channel routing problems, we evaluated existing routing and mask

generation algorithms to identify the useful routing algorithms. As a result, the left-edge

routing algorithm [8] and Yoshimura routing algorithm [10] were selected as good candi-

dates in dealing with channel routing problems. We also constructed a systematic method

for developing several routers as well as a mask generator, i.e., the CF routing approach.

First, a clear routing interface was defined between the routers and the mask generator

thereby providing an entry point for mixed-mode routing operations. This interface

includes a set of intermediate routing data, and each data represents a wiring path. The

CF mask generator was developed to produce the correct mask result for a given set of

intermediate routing data. By utilizing a tiling approach and several design rules, the CF
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mask generator consists of several efficient processes, i.e., a routing error detection pro-

cess, a via minimization process, and a routing performance data generator. The use of

these processes can lead us to produce a simple and highly testable routing mask result.

Overall, the computational complexity of the CF mask generator is only bounded by the

area of a given channel, i.e., O(mn), where m represents the number of rows and n

represents the number of columns in the channel.

To deal with different routing cases, we developed three efficient routers, i.e., the

CF_1 router, the CF_2 router, and the CF_3 router. The CF_1 router is used in the res-

tricted standard-cell environment, where the routing is done without vertical constraints.

The CF_2 router is used in the normal standard-cell environment where the routing is

done with vertical constraints but without doglegs. The CF_3 router is used in the normal

standard-cell (or gate-array) environment where the routing is done with both vertical

constraints and doglegs.

Since we adopted a heuristic approach for developing these routing algorithms,

several weighting functions are used to determine their best net assignment sequences. In

addition to using the intermediate routing data, the use of this net-weight assignment

method gives us another entry point for mixed-mode routing operations. Several efficient

processes were included in these routers, i.e., the modified left-edge process, the new

net-weight assignment process, the modified net assignment process, and the wire-

compaction process. These are used to improve the routing speed, number of vias,

number of tracks, and total wiring length results.

In Table 6-1, we summarize the routing results of these routers for a benchmark

example and list the computational complexities of their routing algorithms. The CF_1

router can generate the smallest number of tracks and a relatively small number of vias,

and this router can guarantee a 100% routing completion rate. However, because the

CF_1 router uses a without vertical constraint approach, its total wiring length result is
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. T tal ' 1 Run time Al orithmic
Router Problem (CD) #TrackstVras O (“6? ength (seconds) cogrplexity

CF_1 Deutsch (19) 19 285 7547 1.0 O(mNz)

CF_2 Deutsch (19) 28 276 6281.5 0.15 O(leogZN)

CF_3 5233.5 1.35 O(liogZM)

 
Deutsch (19)] 20 350

    
 

Note that "CD" represents the channel density of the given net list;

"D" represents the wiring length unit;

m represents the number of rows in a channel;

N represents the number of nets in a channel;

2 represents the number of zones in a channel;

M represents the number of subnets in a channel.

Table 61. Result comparison of the CF_1 router, the CF_2 router,

and the CF_3 router .
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the largest among those of the routers. Due to using the without dogleg approach, the

CF_2 router can generate a minimum number of vias for normal standard-cell routing

operations. The CF_2 router is also the fastest router among all of these routers. But, its

total wiring length result is larger than that of the CF_3 router. The CF_3 router can gen-

erate the smallest wiring length result; however, its vias result is larger than that of the

CF_2 router. Both the CF_2 router and the CF_3 router have a 100% success rate for

non—cyclic routings. However, the routing completion rate of the CF_3 router is much

higher than that of the CF_3 router for the given random netlists. This is because the

CF_3 router uses a restricted doglegging operation to avoid most of the cyclic routing

problems. Overall, according to several routing result comparisons from Chapter 5, the

CF routing approach is the most effective in dealing with channel routing problems on

the point of trade-off between the execution speed and performance.

To conclude, the CF drawing algorithm and architecture provide the quick, realism

and flexible features in generating computer graphics drawings. Also, the method to map

its algorithm to an architecture is very useful for use in VLSI applications. Furthermore,

the CF routing approach provides the designer an efficient and flexible way to deal with

two-layer channel routing and mask generating problems in VLSI design.

6.2 Future Research and Development

In the computer graphics drawing area, we developed a high performance

antialiased drawing engine to improve the performance of the traditional graphics sys-

tem. Other processing units may become the new bottle-necks of the computer graphics

system. Thus, further research should be focused on utilizing the VLSI technology to

increase the performance of the frame buffer and/or high—level graphics drawing facili-

ties.
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In the area of VLSI design automation, future research should be focused on several

possible extensions of the CF routing approach. To achieve unrestricted doglegging

operations, we may utilize the unassigned pins and possible empty spaces in a channel.

This routing strategy can be combined in the CF routing approach to solve for cyclic

routing cases. By using a suitable weighting data in the constructed irregular channel,

one can easily apply the CF routing approach to the irregular-channel routing. To provide

the adjustable wire-widths routing, one needs to modify both the format of intermediate

routing data and the CF mask generator. Based on these modifications, the mask genera-

tor can easily adjust the wire-widths inside of the tiles in a tiling array. Also, the mask

output process (see Fig. 5-13) occupies a high percentage of CPU time (72.73%) of the

entire CF mask generation operation. This can be reduced by using the collection of the

masks for all of the horizontal wires, vertical wires and contacts in the tiling array. In

addition to reducing the CPU time of mask generation, this entire operation can also

minimize the size of the memory occupied by the resulting masks.

In Chapter 3, we proposed a timing estimation method which required a rough lay—

out of the circuit. Thus, future research should also be focused on utilizing this method to

produce an efficient timing estimator for a given VLSI design. Simple and accurate

models for both the interconnection loading data and the cell timing delay data should be

the main focus of this research.
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