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ABSTRACT

ADAPTIVE CONTROL OF NONLINEAR SYSTEMS

USING NEURAL NETWORKS

By

Fu-Chuang Chen

Layered neural networks are used in the adaptive control of nonlinear discrete-time

systems. The control algorithm is described and two convergence results are provided.

The first result shows that the plant output converges to zero in the adaptive

regulation system. The second result shows that the error between the plant output

and the reference command converges to a bounded ball in the adaptive tracking

system. Computer simulations verify the theoretical results at the end of this thesis.
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1 Introduction

Linearization by feedback [15] is a promising approach to the control of nonlinear

systems. The essence of the idea is to transform a state space model of the plant into

new coordinates where nonlinearities can be canceled (fully or partially) by feedback.

The major challenge in performing such cancellation is the need to know precise

models of the nonlinearities. One approach to address this challenge is to use adaptive

control where the controller learns the nonlinearities on line. This idea has been

investigated for continuous-time systems [17,18] assuming that the nonlinearities can

be parametrized linearly in some unknown parameters. In this thesis we investigate a

similar scheme for discrete-time systems, but we do not assume that the nonlinearities

depend linearly on unknown parameters. Instead, we explore the use of layered

neural networks to model the nonlinearities. In the discrete-time self-tuning adaptive

control scheme, the linearizing control is generated from the information provided by

the neural network. Then, the observed error is used to train the neural network

to improve its approximation of the unknown nonlinear plant. A review of neural

network research is given in sections 1.1 and 1.2 in chapter 1. Section 1.3 provides

some background for feedback linearization.

In chapter 2 we derive output feedback linearizing control for a discrete-time non-

linear system represented by an input-output model. The relative degree of the system

could be higher than one. In chapter 3, a neural network architecture is suggested

for modeling nonlinear systems. We will describe two different methods for apply-

ing layered neural networks to adaptive control problems and provide the associated

learning rules. The theoretical results of this research are presented in chapters 4

and 5. In these two chapters, we show local convergence properties based on differ-

ent network models and different learning rules. Simulation results are provided in
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chapter 6. Chapter 7 is the conclusion.

1.1 Neural Computing Research

Theoretical brain research has been published in the contexts of theoretical biology,

mathematical psychology, cybernetics, pattern recognition, the theories of adaptive

systems, and others. Recently the terms “neural computing” and “neural networks”

have been adopted to address more practical issues such as vision, sensory-motor

control, associative memory, supervised learning, unsupervised learning, robotics,

etc. Although these studies have rather diverse origins, they often have one common

objective : to implement new types of computers.

Traditional digital computers do very well on tasks which we know how to proceed

to solve. However, it is very difficult to program a digital computer to solve problems

such as vision and speech recognition. The reasons are: first, we do not have enough

information about how these tasks are actually done in the brain; second, even if suf-

ficient knowledge is available about the function of the brain, it may be incomputable

by digital computers. The result of decades of research in artificial intelligence may

justify the arguments above. The most successful subfield in A1 is expert system. Ex-

pert systems are programs whichsolve specific problems using information collected

from domain experts. In contrast, the results are much more limited when applying

AI techniques to vision and language understanding problems.

Artificial neural networks are networks of processing elements (i.e., “neurons”)

that are interconnected. Each neuron can have multiple input signals, but only one

output signal. Different interconnection topologies and learning rules determine dif-

ferent neural network paradigms. Artificial neural networks are considered models of

the brain, and they are intended to interact with the real world in the same way as

the biological nervous systems do (at least for the original purpose). Most existing
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neural network architectures are constructed to reproduce specific brain functions.

Since our knowledge about how brain functions is still very limited, existing artificial

neural networks may be too simple compared with their biological counterpart. How-

ever, as our knowledge and experience increase, new and more sophisticated neural

network models will replace the old ones.

“Neural computing” became a very hot research area starting from the mid 80’s.

Not all research efforts in this field are biologically motivated. In particular, in engi-

neering applications, artificial neural networks can be viewed as some new tools which

seem able to attack traditionally difficult problems.

Historical reviews and current developments in neural computing can be found in

[20,21,22].

1.2 Neural Networks in Control

 
Figure 1.1 A layered neural network with

two nonlinear hidden layers
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In this section we concentrate on the discussion of layered neural networks, since they

are the most prevailing network architecture studied for identification and control ap-

plications. A layered neural network, shown in Figure 1.1, consists of an input layer,

an output layer, and at least one layer of nonlinear neurons. The nonlinear neu-

rons sum incoming signals and generate output signals according to some predefined

functions. The neurons are interconnected layer by layer. The output of one neuron

multiplied by a weight becomes the input of adjacent neurons of next layer.

Layered neural networks have good potentials for control applications because

they can approximate nonlinear functions. it was noted more than two decades ago

by Minsky and Papert [23] that by inserting “nonlinear hidden neurons” between the

input layer and the output layer, the XOR mapping (which is a nonlinear mapping)

can be represented by the network. Recently, it is shown by Funahashi [24], Cybenko

[25], Hornik et a1. [26], and Hecht-Nielson [3], using different techniques, that layered

neural networks can approximate any “well-behaved” nonlinear function to any de-

sired accuracy. The theorem shown by Funahashi is quoted here.

Theorem

Let ¢(:r) be a nonconstant, bounded and monotonically increasing continuous func-

tion. Let K be a compact subset of R" and f(:c1, . . . ,mn) be a real valued continuous

function on K. Then for any 6 > 0, there exists an integer N and real constants Cg,

0,-(i=1,...,N), w,j(i= 1,...,N,j = 1,...,n) such that

N n

f(xl,...,xn) = gagging-x,- —o,-) (1)

i=1 j=l

<6.

 
satisfies maxzex |f(:r:1, . . . , xn) - flxl, . . . , at“)

In other words, given any function f(1:1, . . . , it“) and any arbitrary e > 0, there exists

a three-layer network f(:r:1,. . . ,2") with linear input and output layers and with a

hidden layer whose output functions are 49(2), such that
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maxzex ]f(a:1, . . . ,zn) — f(xl, . . . , :rn)] < 6. Similar result for neural networks with

more than one hidden layer can be derived from the theorem above or be shown

from scratch [24]. Notice that the theorem is an existence result. It does not give

an estimate of the number of neurons needed to approximate a nonlinear function

given a specified error bound, nor does it say how to choose the weights. In control

applications some ad hoc procedures are used to determine a suitable size of the

network.

The next crucial issue is to train the network to approximate a given function. The

back propagation algorithm [1] is a widely accepted method to train a neural network

to approximate a function. If there is difference between the function output and the

network output for the same input, the difference can be used in the back propagation

algorithm to adjust the weights in the neural network in order to reduce the error.

The training is usually a time consuming process, and researchers are suggesting

modifications to the original back propagation algorithm to increase the learning

speed [32,33]. There is no theoretical result available yet about the convergence of

the training. However, many applications reported in the literature have confirmed

the value of applying layered neural networks to various problems, e.g. [1 - 14].

Some recent papers on the application of neural networks to control and identifi-

cation problems are reviewed in the following examples.

Example 1.1 : [4,5,6]

If the input vector U(k) of a nonlinear system can be uniquely determined by its

output vector Y(k) through a static mapping

U(k) = f(Y(k)),

then layered neural networks can be used to learn this mapping and generate controls.
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For example, the dynamical equations of robotics can be rearranged into

UUC) = f(q(k),€l(k),<i(k)),

where U(k) is the vector of the joint torques and q(k) is the vector of the joint

angles. The neural network can be trained to approximate the inverted mapping as

shown in Figure 1.2(a) and then be used as a feedforward compensator in Figure

1.2(b). On line learning can be carried out as illustrated in Figure 1.2(c), where

two identical neural networks are used. The neural network in the feedback loop

identifies the inverted plant on line and its updated weights are copied to the second

neural network in the feedforward path. Simulation results have been presented in

the referenced papers. D

 

 

   

  
 

  
  

‘ Neural \Net

xi

 

(a)

  

 
—9‘Tralned Net ‘ Plant r—->

    
  

(b)

 

 

“—3 Neural Net

K
I

  

      

 

 

  
  
 

—_—————-—————— \

Figure 1.2 See Example 1.1 of Section 1.2 for description.
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Example 1.2 : [7]

Consider a dynamical system

$(k +1) = f1(x(k),U(k))-

Assume that the order of the plant (i.e., the number of the states) is known, say n,

and that the states are physically measurable. The states at k + 2 are

9506+?) = f1($(k+1),U(k+1)) = f1(f1($(k),U(k)),U(k+1)) = f2($'(k),U(k),U(k+1))-

Repeating the process, one concludes that the states at time k + n is determined by

the state at time k and the controls from time k to (k + n — 1), i.e.,

$(k + n) = fn(1‘(k),U), (2)

where

U = [u(k),u(k +1),...,u(k + n —1)]T.

Assume that equation (2) is uniquely invertible for U. Then U can be solved as

 

  
 

U = 902(k), 2(k + n))- (3)

x(kl E II, Uc

Neural, Net ———>
___) I

X(k+nl j

u—uc

Figure 1.3 See Example 1.2 of Section 1.2 for description

A layered neural network, as shown in Figure 1.3, can be used to approximate (3).

U. = éizik), mu: + n). W)

At each time step k the training of the neural network can be described as follows:
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0 Input the states :c(k — n) and :c(n) to the neural network.

0 The error (U — Uc) is used to update the weights of the neural network.

It was suggested to implement this learning and control scheme on line. C)

Example 1.3 : [8,9]

Dynamical Systems Identification. Layered neural networks can be used to iden-
 

tify a class of unknown nonlinear functions

y(k+ 1) = f(y(k)vy(k_1)1°"3y(k_n+1)au(k)au(k —1),...,u(k—m+ 1))3

where n _>_ m. As depicted in Figure 1.4(a), this is essentially a function approxima-

tion problem. At each time step k, the control u(k) as well as all of the relevant past

inputs and outputs are applied to the neural network input layer. The error between

the output of the neural network and the plant output y(k + l) is used to train the

network.

 

  

   

   

   

  

 

  

   

 

   

 
   

   

      

u(k) ' (k)

Neural Network

7% +

(a)

Ym
Model

[9‘ "l' 9 e

N Neural Net (N) : C>————>°

i it? +

U +

Controller Plant y

  

  
 

(b)

FigLre 1.4 See Example 1.3 of Section 1.2 for description.
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Adaptive Control. For a special class of nonlinear unknown systems such as
 

y(k+1) = f(y(k),y(k-1),-u,y(k-n+1))+9(y(k),y(k-1),.-.,y(k-n+1))u(k).

where the control u(k) appears linearly, layered neural networks can be used in the

Self-Tuning framework (Figure 1.4(b), with the Model block as l) or in the Model

Reference framework (Figure 1.4(b)) to adaptively control the system. The neural

network is used to learn the characteristics of the plant on line and generate appro-

priate controls to be applied to the plant in order to cancel the plant (self-tuning)

or control the closed-loop system to follow the output of a desired model (model

reference). Details about neural-network-based self-tuning adaptive control will be

provided in chapter 3. D

There are other approaches suggested in recent papers. In [10] and [2], neural nets

are used directly as controllers, but this approach bears a less direct connection to

traditional control design methods. Other works include the application of the CMAC

neural networks to robotics control problems [11] and the Reinforcement Learning

Problems [12]. Favorable simulation results related to these techniques are available

in the references listed.

The research in applying neural networks to control problems is still at the stage of

proposing ways to incorporate neural networks into control systems. Few theoretical

results are available to date, although there have some attempts to obtain theoretical

results [13,14].

1.3 Feedback Linearization of Minimum-Phase Nonlinear

Discrete Time Systems

The concept of zero dynamics and the minimum phase property for nonlinear continuous-

time systems were introduced by Isidori and coworkers [15]. They were adapted

to the discrete-time case by Monaco and Normand-Cyrot [16]. Consider a single-
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input/single-output system of the form:

$(k+1) = f($(k),U(k)) (4)

3106) = h(3:06))

with x(k) E R", u(k) E R, y(k) E R, and f and h analytic functions on their domains.

Denoting by fo the undriven state dynamics f(-,0) and by f3 the j-times iterated

composition of f0. The system is said to be of relative degree d if

6h 0 f: o f(:r,u)

Bu

 50 OSk<d—1

and

3h 0 fig“ 0 f(:r,u)

Bu

y(d) is the first output affected by the input u(0). Let r 6 R be an external control.

750 a.e. in R“1 

A nonlinear static state feedback control is denoted by

u = 7(1', 1‘) (5)

If g} ¢ 0, the feedback law (5) is said to be nonsingular.

Suppose the system (4) is of relative degree d. Solve the state equation of (4)

recursively to express y(k + d) in the form

yUc + d) = F(1300,1100)

An important assumption about the system (4) is that

0 E Range(F(a:,o)) Va: (6)

It also follows from the definition of relative degree d that

6F(:c,u)

‘79..— t 0
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Therefore, the implicit function theorem can be used to show the following theorem.

Theorem [16]

Assuming (6) is satisfied and d < 00, then there exists a nonsingular feedback con-

trol law of the form (5) such that the closed-loop system, after a suitable change of

coordinates z = T(:r), is described by the equations

21(k +1) = Azl(k) + Br(k)

22(k +1) = F(210$),22(k)»7‘(l°)) (7)

We) = 031(k)

Where dim 21 = d and (A, B, C) is a controllable-observable triple. D

A very informative proof is available in [16]. From (7) we see that if d < n, the

22 component of the state will be strongly unobservable in the closed-loop system,

because 22 has no effect on the plant output; if d = n the system is fully linearizable.

If system (7) starts from 21(0) = 0 and r E 0, then 21 E 0 and the plant output

stays at zero. The motion of the system is determined by the dynamics of 22, which

gives rise to the notion of zero dynamics.

Definition

The Zero Dynamics of system (7) are defined to be

2206 +1) = F“), 22(k),0). D (8)

The system is said to be minimum phase if the zero dynamics have an asymptotically

stable equilibrium at the origin.
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2 Linearizing Feedback Control

Many interesting systems can be described by a nonlinear model in which the con-

trol appears linearly. We are interested in the single-input/single—output nonlinear

discrete-time system:

ilk-H = fo(yk, yk—1,-- - : ilk—n+1, “Mk-d, uk—d-la - - - , uk-d-m+l) (9)

+ 90(yk, yk—i , - - ~ , Elk-n+1, Uk—d, Uk—d-1,--o, Uk—d—m+1)uk-d+1 a

where m S n, y is the output, it is the input, (1 is the relative degree of the system,

and go is bounded away from zero. The arguments of f0 and g0 are real variables.

Compared with the deterministic autoregressive moving average (DARMA) model

"-1 m-l

yk+1 = 2 dry)...- + Z biuk—d-l-l—i (10)

i=0 i=0

71-1 m-l

= [Z aiyk-i + z biuk_d+1_g] + bouk_d_1

i=0 {:1

[2:53ang + 22:1 bguk-d+1-.~] is a special case of f0 and ho is a special case of go.

The functions f0 and go are unknown. The objective is to design a self-tuning

control system using neural networks so that the output of the plant will asymptoti-

cally track the command. Two obvious difficulties show up immediately. First, even

if f0 and go were known, the control law cannot simply be

fo(°) r(k)

alt-”+1 : -.90(’) .900),

because this control is noncausal when d > 1. Second, since f0 and go depend on

 

past inputs, the system may become internally unstable after the feedback control,

if it exists, cancels the plant dynamics. These two issues are well known for linear

discrete-time systems [19,27]. Especially it is shown in [27] that the system (10) can

be Converted into

13-] m+d—l

yk+d = Zaiyk—i‘l' 2 dark-.- i (11)

i=0 i=0
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11-1 m+d-1

= [Z aiyk—i + Z fltuk—i] + flour:

i=0 {:1

Then the control uk in (11) can be determined in terms of past inputs and past

outputs to cancel the plant dynamics, and the effect of the control uk will show up at

the plant output d steps later. The purpose of this section is to derive the nonlinear

counterpart of (11) for the nonlinear system (9) and to define the zero dynamics

associated with (9).

The work of Monaco and Normand-Cyrot [16] suggests that important properties

of system (9) may be revealed if the system is put into state space form and some

suitable coordinate transformation is performed on the model. We select the state

variables as the current output and all past inputs and outputs up to the most delayed

input or output on the right—hand side of (9), i.e.,

171(k) = Inc-n+1

$n-l(k) = yk-l

311(k) = yk

tin-HUB) = uk—d-m+l

$n+m+1(k) = Uk-d+1

zn+m+d-l(k) = uk-l:

Let x(k) be the state vector. A state space model of (9) is constructed accordingly

as

131(19‘1’1) = 332(k)
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x..-,(k+1) = 2:..(k) (12)

xn(k+1) = f0(xn(k)axn-l(k)v”'731(k):xn+m(k)axn+m-l(k)a'°-axn+l(k))

+go($n(k),---,$1(k),xn+m(k),---,xn+1(k))$n+m+1(k)

= f0(xl(k)a”"xn+m(k))+90(x1(k)i'°-a$n+m(k))$n+m+l(k)

xn+1(k+1) = $n+2(k)

$n+m+l(k+1) : xn+m+2(k)

$n+m+d-l(k+l) = "4:

3106) 2.06)-

There are (n + m + d — 1) states. The state space representation (12) is, in general,

a nonminimal realization. However, no difficulty arises from working with this non-

minimal realization since the redundant dynamics are stable (for linear systems the

uncontrollable/unobservable eigenvalues are at the origin). In the following we derive

a transformation that transformssystem (12) into the form ( 7).

zn(k+2) = y(k+2)

:: fo($1(k+l),...,$n(k+1),c-o,xn+m(k+1)) (13)

+go(a:i(k +1)....,x.(k +1),-..,zn+m(k +1))xn+m+1(k +1)-

After substituting (12) into (13), we have

:rn(k + 2) y(k + 2)

= fl($1(k)a ° - - a3n+m+l(k)) '1' 910510;), ' ° ° i xn+m+l(k))$n+m+2(k)°
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By applying the same technique recursively, one gets

15

a0: + 3) = f2($1(k)7°-°a$n+m+2(k))+g2($1(k)a°°-axn+m+2(k))xfl+m+3(k)'

$n(k+d"1) = fd-2(xl(k):°-°ixn+m+d-2(k))

+ 9d-2(371(k)a - - - a $n+m+d—2(k))$n+m+d—1(k).

Then the following state transformation is suggested,

211(k)

21,..(k)

zl,n+1(k)

zik) = a

zl,n+d-l(k)

221(k)

 L 2%n(k)

1

 .l

P

 

31(k)

xn(k)

$n(k+1)

xn(k+d-l)

$n+1(k)

$n+m(k)

fo(°) + go(-)$n+m+1(k)

v-20) + g.-2i-)x..-+.-.<k)

After this transformation, (12) becomes

211(k +1)

Zln(l€ + 1)

zl,n+1(k + 1)

212(k)

Zl.n+1(k)

Zl,n+2(k)

 
milk)

zn(k)

$n+l(k)

2...“)  

= T(x(k))
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zl.n+d-1(k +1) = fd-1(X(k)) + gd-1(X(k))$n+m+d—1(k + 1)

= fd-1(T'1(Z(k)))+ 9d-1(T'1(Z(k)))uk

= F(Z(’€)) + C(Z(k))uk (15)

221(k+1) = 222(k)

22,m-1(k+1) = 22m(k)

22m(k+1) = uk_d+1 (16)

900 = 21710:):

Two interesting points about this transformed model can be discussed.

0 If F(o) and C(0) in (15) were known, the control u(k) could be defined as

—F(z(k)) + r(k)

C(Z(k))

 

u(k) -—- (17)

and r(k) will appear as the desired output d steps later.

0 The past control u(k — d + 1) appears in (16). Notice that

u(k—d+1) = ‘—F(z(k;(:(-lI-€1_))d++r];c)—d+l) (18)

—fd_1(T"‘(z(k — d +1)))+ r(k — d +1)

 

 

 

 

 

:
gd-1(T'l(

z(k—d+1))
)

(19)

_ —f“"l(x(
k—d+l))+

r(k-d+1)
(20)

_
94-1(x(k—

d+ 1))

_ -fo(x(k)) + r(k _ d +1)

_ go(X(k))
(21)

= —f°(T—l(z(k)
)) + r(lc — d +1)

(22)

90(T"(Z(k)))

Thus, (22) can be substituted into (16). This makes the right hand side of the

transformed model a function of the state z(k) and the input r(k). Similar to

the definition given in Monaco and Normand-Cyrot [16], we say that the system
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(9) is Minimum-Phase if the strongly unobservable part

221(k+1) = 222(k)

Z2,m—1(k +1) : z2m(k)

-fo(T_1(Z(k))) + TU“ — d +1)

90(T'1(Z(’€)))

has an asymptotically stable equilibrium at the origin when 211 = 212 = =

Z2m(k+1) =
 

21,, = 0 and r = 0, i.e., when the plant output and the reference command are

restricted to be zero.

Example 2.1

This example is used to illustrate the transformation process. For n = m = d = 2,

the system is

yk+l : f0(yka ilk-1a ale-2, alt—3)

+ 90(yka ilk-1 ) “ls—2, uk-3)uk-l -

Weselectn+m+d—l=5statesas

- 551(k) = ilk—1

372(k) = 311:

x3(k) = uk_3

x4(k) = uh;

z5(lc) = uh-“

and the state space model is

$1(’C+ 1) $206)

$20: + 1) = f0(32(k)izl(k)934(k)a333(k)) +
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go($2(k)a$1(k),$4(k),33(k))$5(k)

= f0($1(k)a ' ° ° 317400) '1' 90013100, ° ' ' a 34(k))$5(k)

2:3(k+1) = $4(k)

x4(k + 1) = 2:50“)

275(k+1) = u),

WC) = $206)-

The purpose of the next step is to bring out the control u(k) explicitly.

32(1‘7 ‘1' 2) = fo(32(k + 1)1$1(k ‘1‘ ”13340“ + ”133““ '1' 1)) +

go(a:2(k +1),z1(k +1),x,(k +1),;.:3(k +1)):r5(k +1)

= fo(fo(2=1(k),-~,a=4(k))+ go(x1(k) ..... 24(k))xs(k),

x2(k),x5(k), x4(k)) +

go(fo(xi(k), - . - ,x4(k)) + go(x1(k), - - - ,x4(k))xs(k),

32(k),zs(k),xi(k))u(k)

= f1(:cl(k), . . . ,25(k)) + g1(a:1(k), . . . ,x5(k))u(k).

Then, after the state transformation

zl(k)
Z(lc) = [ 22(k) =

we get

211(k +1)

212(k +1)

2130C +1)

    

"as "“83212 $2 T1(X(k))

2.30:) = x2(k+1) =[ x ]
221(k) 23“,) T2( (kl)

. 222(k) .. _ 124(k)

= 212(k)

= 213(k)

= f1(X(k)) + 91(X(k)):1=s(k +1)

= F(2(k))+G(2(k))u(k)
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221(k) + 1)

222(k +1)

222(k)

u(k — 1)

212(k). D

19

Before concluding this chapter, it remains to show that the inverse of the trans-

formation (14), i.e. x(k) = T’1(z(k)), exists. It suffices to show that the partial

o o 82

derivative 8):

dz

fix

is nonsingular.
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*
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(23)

where g,- 75 0,0 S i S d — 2. The matrix in (23) is nonsingular, since, after some row

interchange, it becomes

D
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l
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U
O
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O
O
O
O
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O
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O
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0
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3 Adaptive Control using Neural Networks

The purpose of this chapter is to introduce the adaptive control system. Convergence

results will be provided in chapters 4 and 5. Two different methods for applying

neural networks to adaptive control of unknown nonlinear systems will be described

in sections 3.1 and 3.2, respectively. In 3.1 the neural network is used to model

the plant, and it needs to go through the same transformation described in chapter

2 in order to bring out the control. In 3.2 the neural network is used to model the

transformed plant directly. A comparison of these two approaches will be given in

section 3.3.

Although neural networks can model any nonlinear function to any desired accu-

racy (see section 1.2), there is no result about how many neurons should be used to

achieve that accuracy. In practice, given a nonlinear plant, some identification process

is needed to determine a suitable neural network size for modeling the plant. The size

of the error between the plant and the network model may also be available from the

identification process (see section 6.1). In chapter 4, we are going to assume that the

nonlinear plant can be exactly modeled by a multi-layer neural network. However, in

chapter 5, some error between the plant and the model is allowed. Thus, the analysis

in chapter 5 incorporates a robustness result.

3.1 1 Method 1

Rewrite the system

yk+l = f0(yka Elk—1, ° ° - , git-n+1) uk-d: uk-d—lt ‘ ' ' ) uk—d—m+l)

+ 90(yln yk—lv ° ° ° 1 Elk—n+1, "Ir—d, uk-d—la ° ° ' 9 uk—d-m+l)uk—d+l

yk-H = f0($1(k)i ° ° - a xn+m(k)) + 9003100: ° ° ° : xn+m(k))uk-d+l (24)
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We propose to use a layered neural network

37k+1 = fo(x(k), W) + 900‘“): V)“k-d+1 (25)

to model the system (24), where w and v are vectors containing variable weights in

the neural network. The neural network can have as many nonlinear hidden layers as

desired.

 
Figure 3.1 The neural network model

Figure 3.1 shows the architecture of a neural network model with one hidden layer

in f0 and go. The neurons labeled “L” are linear ones which can scale or shift the

sum of incoming signals. The nonlinear neurons, which are labeled “H”, employ the

Hyperbolic Tangent Function h,

h(iv) = (6’ - 6’”)/(8’ + e").
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as their transfer function. The mathematical descriptions of f0 and go with one hidden

 

 

layer are

k 621:1 wi,$y(k)+w.~ __ 6-2:?“ w.'1x,(k)+u‘;,

(’(x w " .. 26

() “0::
'(3 1:1 w'1x’(k)+wi + 6-21:1 woulHi-m

( )

and

621:1". v.“,'2,'(k)+fi,- _ 6-21:1," ”i131(k)+fii

0(X k), v' n m
n m ‘

27

() z; 62):! ”'131(k)+”1 +
6-21:1 ”i131(k)+vi

( )

The weights 1221, . . . , iv? andv1, . . . , vq in (26) and (27), which are not shown in Figure

3.1, are the bias weights, each attached to a corresponding nonlinear neuron. A

neural network with any number of hidden layers can be described mathematically

by iterative substitution from the output layer toward the input layer, although the

final expression can be very complex.

Let 9 = [w v]. At time step k, the neural network weights are denoted by 0(k)

and the estimated output is

yin = fo(X(k),W(k)) + §o(X(k),V(k))Uk-d+1 (28)

The control algorithm is described as follows.

At each time step,

1. Calculate the control from the current states of the model (28), and apply it to

the plant (24) and the model (28). Section 3.1.1 describes how to calculate the

control.

2. Update the parameters 0(k) using the error between the plant output (24) and

the model output (28). The updating rule is provided in section 3.1.2.

If there are parameter errors, the output error may be observed. The output error is

then used to reduce the parameter errors in order to produce better controls. This is

a recursive process.
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3.1.1 Control Law for Method 1

The general procedure for calculating the control is given in chapter 2, where the

transformation is performed on the plant. In the adaptive control system, the trans-

formation is performed on the model, which is a neural network. Next example shows

how to use the neural network model to generate controls.

Example 3.1

Let us revisit Example 2.1. The unknown plant is

yk+1 = fo($1(k)a - - - a 934(k))

+ g0(:r1(k), . . . , x4(k))uk_1.

The neural network model of the plant is

31124—1 = ltd-771(k), ° ° ° 1 234(k), W(k))

+ go(a:1(k), . . . , 2:4(k), v(k))uk_l.

which is shown in Figure 3.2.

 
Figure 3.2 The neural network model (see example 3.1)

In order to bring out u, the following transformation is performed.

311.»: = f},(§:2(k +1),='=1(k +1),4¢4(k +1),a¢3(1c +1),W(k))
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+ §o(:i:g(k +1),2:1(k +1), 2:4(k +1),x3(k +1),v(k)):c5(k +1)

= fo(fo(x1(k),.--134(k),W(k))+§o(x1(k),.--,:r4(k),V(k))xs(k), (29)

x2(k),zs(k),24(k),W(k)) +

90(f0($1(k)1~-134(k)iw(k)) + §o(x1(k),- . . .x.(k),v(k))x5<ki,

32(k),ws(k)i34(k),V(k))ui.

= f1($1(k),-.-,xs(k),9(k))+§1($1(k),---,xs(k),9(k))uk-

where 0(k) = [w(k) v(k)] and 5:2(k + 1) is the estimation of 232(k + 1).

 
Figure 3.3 See example 3.1 for description

Notice that at the second equality of (29), the output of the network becomes one

of its inputs. Therefore, the transformation process can be realized by duplicating and

reconnecting the neural network model. Figure 3.3 shows the idea. The functions f1
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and g, are available from the network in Figure 3.3, and the control can be generated

to be

u. : —f.(-)+r(k>

£710)

The procedure used in Example 3.1 can be generalized to the general case. The cal-

Cl 

culation of the transformation can be a time consuming task for digital computers.

It has been observed that the digital computer is a serious bottleneck when applying

computed-torque techniques to robotics control [30]. On the other hand, neural net-

works, with its massive parallel computing capability, should be able to handle the

computation efficiently, provided adequate hardware implementations are available.

3.1.2 Updating Rule for Method 1

Define the cost function to be

Jk = (yin - n+1)2

The effect of adjusting weights on the cost function can be revealed by the following

gradient:

3w(k)

8§o(x(k),v(k)) ’

( Uk—d+1
8v(k)

(ar‘ogxgk),wgk)))'

V9(k)Jk = 2(y;+1-yk+1)

The weights are updated as follows:

9(k +1) = 0(lc) — Lvmpk (30)
21‘]:

8w(k)

(8§o]x]k),v]k)]

(afogxgk),w(kn)l

I

6V(k) ) uk—d+1

= 9(k)-:-k(yi+1 - n+1) [

where p is a positive constant and
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3.2 Method 2

In chapter 2 the plant

yk+1 = f0($1(k)a - - - r$n+m(k)) + 9003109)» ~ - - i$n+m(k))uk-d+1(k)

is transformed into

yk-i-d = fd-1($1(k)a - - - a$n+m+d—1(k)) + 9d-1($1(k)a - - - a$n+m+d—1(k))uk (31)

Here the transformed plant is modeled by the neural network

37k+d = fd-1(zl(k)7 ' ' ' a $n+m+d-l(k)i W) + gd—l($1(k))‘ ' ° 7 xn+m+d-l(k)a v)uk (32)

which is shown in Figure 3.4.

  

   

' l

i l

I | :

i i i

l l l

l l I

I g l

' " Q Q 0 '
v . ' ooooooooooooooo '

l | I

I I |

i - l l w i

l I . mt '

I V l l l

I " V | , 1 2 n+m+d-t ,

' W‘ ' I e oooooooo e '

l l l l

| nHM-d-t l | .

1 lo 2 ........ o I | |

l l I l

l ' | x1 X2 xmmd—t l

l 1 I _____________________ I

l '- R

' X1 X2 xmm—1:‘\ \ A
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\A ( ) fd-1<. )

0

9.1—1

Figure 3.4 The neural network model for the transformed plant

Similar to the control algorithm in Method 1, at each time step a control is applied

to the plant and the model. Then the network weights are updated according to the
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observed error. However, the control law and the updating rule are slightly different

as explained next.

3.2.1 Control Law for Method 2

At each time step the estimate of the transformed plant is

y;+d = fd-1($l(k)’ ' ' ° 3 xn+m+d-l(k)vw(k)) + Sci-“31(19): ' ' ° 3 $n+m+d—l(k)i v(k))uk

 

(33)

The control is defined straightforwardly from (33) as

m. = ‘fd‘,‘(') + Tm (34)

9d-1(’)

3.2.2 Updating Rule for Method 2

Rewrite (31) and (32) as

yk+1 = fd—1($1(k " d '1' 1), - ~ - axn+m+d-l(k " d '1' 1))

+ §d_1($1(k — d +1), . . . ,$n+m+d_1(k — d + 1))Uk_d+1 (35)

and

ilk-+1 = fd-l($l(k — (1+1), ° ° ' a$n+m+d—l(k — d+ 1), W)

+ §d_1($1(k — d +1), . . . , $n+m+d—l(k — d +1), v)uk-d+1 (36)

Calculate the estimated plant output using current network weights as

11;... = f.-1(x1(k—d+1)....,x..m..-1(k—d+1).w(k>)

+ §d—1($1(k - d '1’ 1)1- . - izn+m+d-1(k — d '1' 1)»V(k))uk—d+1 (37)

Define the cost function to be

Jh = (y;+1 " tile-H)2
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The effect of adjusting weights on the cost function can be revealed by the following

 

 

 

 

gradient:

Bid—1(X(k-d+l).W(k)))’

Voka = 2(9):“ ’ yk-l-l) . aw“) I
(194-1(xch-(gl).v(kn) uk—d+1

The weights are updated as follows:

0(k +1) = 6(k) — Zfi-Vaiim. (38)
7'1:

’1 8fd_,(x(k-d+1),w(k)) ’

= 90“) " —(y;+l " yin) , 8w(k)

n. (69.1.. (xgkv-(fillwlklly 11M“

where p is a positive constant and

] (erases-nuns») [2
8w(k)

 

= 1

r), + aid—1(X(k-d+1)vVLkD)'

6V(k) “ls-(1+1  

3.3 Comparison between Method 1 and Method 2

Method 2 is simpler and more direct compared with Method 1. In Method 2, Only one

neural network architecture is needed for generating controls and updating weights.

In Method 1, two networks are needed: one for updating weights and the other for

generating controls. For relative degree one system, Method 1 and Method 2 are the

same.

The two methods introduced here have been standard algorithms for linear sys-

tems. The first method is described in [19] and the second method appears in [27].
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4 Convergence Result : Part One

The adaptive control systems and the related algorithms have been introduced in

chapter 3. Two different convergence results based on different assumptions will be

shown in this and next chapters. In this chapter we consider adaptive regulation

problem for a single—input/single—output relative-degreeone system

yk+l : f0(yk9yk-la°Hiyk—n-l-liuk—lauk-2a'°'iuk-m) (39)

+ 90(yka Elk—1, - ° ' wills-n+1) uk—la ”Ir—2a ' ' ' a uk-m)uk

Important assumptions about the system are listed here.

Assumptions

1. f0 vanishes at the origin, i.e., f0 = 0 when the arguments of f0 are all zeros.

2. go is bounded away from zero.

3. This system is minimum phase. By that we mean the zero dynamics

221(k+1) = 222(k)

22,m-j(k +1) = 22m(lc)

F(0,Zg(k),W)

Z2m(k '1' 1) - C(0,Zz(k),V)

 

has an globally exponentially stable equilibrium point at the origin, and there

exists a Lyapunov function V2(m(k)) such that

 

c1 lz2(k)|25V2(zz(k)) S 02 122(kllza (40)

V2(Zz(k+1))-V2(zz(k)) S —0|22(k)lzaand (41)

31/200

] ax s lel- (42)
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4. The nonlinear functions f0 can be exactly represented by a multi-layer neural

network f0 which does not have bias weights. In the case of a three-layer neural

network,

m+n

fofx(kl): fo(X =ngH(Z: wij$jl (43)

i=1

where H is the hyperbolic tangent function.

5. The function go can be exactly represented by a multi-layer neural network

without bias weights connected to nonlinear neurons. However, there is a bias

weight added to the linear neuron at the output layer. In the case of a three—

layer neural network,

m+n

90(X(k)) = 90X((k) —v0 + Zv.H(Z viflj) (44)

The W and v in (43) and (44) are vectors containing variable weights in the

neural networks. Now the plant (39) can be written as

gm = fo(X(k),W) + ioixik).v)ui (45)

The estimate of the plant is

via = fo(x(k),W(k)) + §o(X(k),V(/€))Uk (46)

There is no theoretical evidence about how good three-layer neural networks without

bias weights can approximate nonlinear functions. But it is for sure that they can

deal with certain classes of systems. Some evidence from simulation will be provided

in chapter 6. The Method 1 and Method 2 described in chapter 3 are the same

for relativedegree—one systems. After the transformation described in chapter 2, the

plant (39) becomes
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211(k+1) = 212(k)

zln(k '1' 1) : f0(x(k)7w) + SOOKUCL")3’3n+m(lC '1' 1)

= F(Z(k).W)+G(Z(k),V)u(k) (47)

221(k+1) = 222(k)

22,m_1(k+1) = 22m(k)

22m(k+1) = u(k) (48)

We) 21,,(k).

It is convenient to recall that (see chapter 2)

21,,(k) = y(k), ...... , 211(k) = y(lc — n +1),

22m(k) = u(k -1), ...... , 221(k) = u(k — m).

The purpose of the control is to regulate the plant output to zero asymptotically.

At each time step, the control

F(ZUC),W(1€))
 

“" = " Gizik).v(k)) “”

is applied to the plant. Then the weights are updated.

0a +1) - 0(1) "i ' 3;: 3;“F(if)I: I- - ; yk+l " yk+1) (ago x k ’v k )Iuk (50)

- 3"(k)

Notice that 31;“ in (50) equals zero, because the control (49), which is calculated

from the model, can exactly cancel the model dynamics. Therefore, the updating

rule is rewritten as

8xkvk (51)

(3fo]X]k[..Wik;[)uk]

3V“)

906 +1)— 9(k)+ -yi.+1 ](( 8"“)
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Next a local convergence result is provided.

Theorem 1 Under the gradient-descent updating rule (51) and the assumptions 1 -

5, given any initial condition x(0), there exists a positive constant R such that

if

then

yk will asymptotically converge to zero.

Proof:

step 1. The closed-loop control system.

Substituting uk defined in (49) and uk_d+1 into (39) and (47), one gets

211(k +1) = 212(k)

F(Z(k),W(k))

G(Z(k),V(k)) ) ‘5”l

21,,(k +1) = F(z(k),w) + G(z(k),v)(— 

221(k+1) = 222(k)

z2,m-1(k+1) : 22m(k)

_F(21(k)122(k)aw(k))

G(21(k)azz(l€),v(k))

We) = 21,,(k).

22m(k +1)
 

The functions F and G in (52) and their derivatives are continuously differentiable

infinitely many times. The term [0]] vanishes when 0(k) = 0 and the derivative of

Wwith respect to 0 is zero when z(lc) = 0. Using these properties, we have

F(Z(k),W(k)))l

C(ZUCLVUCD 1

F(Z(k),W(k)))'

G(Z(’¢),V(k))

 

['11 = F(Z(’C).W)+G(Z(k),V)(-

 

  
= F(z(k),W) + G(z(k),v)(-
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— [F(z(k),w) + Gizik),v)(-%(§[—’;)—’§)l)]

_ Fizik),w) _ Fizik).w(k))

‘ (MW) [C(2(k).v) Gizik),v(k))l

= Gizik),o)9— [——————F(z(")’wl]

 

(9(k) - 9)

9+(1-()(9(k)-9)
89 G(z(k),v)  

where the last equality follows from the Mean Value Theorem [28].

Therefore

ll . LI 3 in law] - izik), where éik) = 0(1) — o (53)

step 2. To choose a Lyapunov function associated with zl.

P0 1 0']

0 0 0 1 0

21(k+1)=Azl(k)+ i [0]1, where/1: - -

  L
A is a stable matrix (since all eigenvalues are at the origin). => Given any symmetric

Q > 0, 3 a symmetric P > 0 such that A’PA —- P = —Q [31]. Choose the Lyapunov

function

V1(Z1(k)) = z’,(k)le(k),

Then, using (53),

0

V1(21(k+1))-1601106)) = -Z’1(k)in(k)+2zi(k)’A’P E ['11

1

0

+l-lil0---1]P 2 (54)

1

s —z;(k)oz.(k) + k. lav] |2(k)l2 + k. |é(k)|” 121k)? .
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step 3. To choose a Lyapunov function associated with 22.

The plant dynamics associated with 22 is

221(k+1) = 222(k)

Z2.m-l(k+1) = Z2m(k)

—F(z,(k),z2(k),w(k))

G(zl(k))22(k)$v(k))

-F(0i 22(k),W(k))

G(0122(l€)aV(l€))

—F(Zl(k),22(k),W(k)) _ —F(O,Zg(k),W(k))]

G(ZINC),Z'2(k)i"(l€)) G(Oazz(k),v(k)) a

—F(0,Zg(k),W)

G(0,Zg(k),V)

P-F(zl(k),22(k)»w(k)) _ -F(0izz(k)aw(k))]

. G(21(16)122(k),v(k)) G(0,22(l€),"(l€)) a

+ ”Fio,zz(k).w(k)) _ —F(0,22(k),W)]
_G(0,zz(k),v(k)) G(0,zz(k),v) b

 

22m(k +1) =

 

  

 

+  

 
 

 

By using similar techniques in showing (53), we can arrive at

 

ll - LI 5 ea lzi(k)| (55)

and

n.1,) g c, [é(k)| . [22(k)|. (56)

Let

2 k ,W I

ii
and

Q): = [0, . - - ,0, [o]. + I'lbl'

Applying (55), (56), (41), and (42), we have

V2(zz(k +1))— V2(22(l€)) = V2(5k + Qk) — V2(zz(k))
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[V2(3k) — V2(Z2(k))l + V2(5k + Qk) - V2(Sk)

S —k5 |22(l€)l2 + ’2 I451. + (1 — ()le ' lel

S -k5 1220012 +1}! 151:] ' lQicl‘l‘lWlCilkl2

S -l€s |22(l€)|2 + k6 |Z1(k)l - 122(k)| + k7 [2103)]2

+ c’1|22(k)|2|8(k)|+ calzl(k)l - l22(k)| 1%)]

+ 63|22(k)|2|5(k)l2

|
/
\

475 [220012 + k6 |21(k)l ' 122(k)] + k7 [2103)]2

+ k11|Z(l~‘)|2|9~(k)| + 16121201?)|2l"§(l€)l2 (57)

step 4. To combine step 3 and step 4.

Let V(z(k)) = V1(zl(k)) + flV2(zg(k)). Then, from (54) and (57),

V(2(k + 1)) — V(2(k)) s —z;(k)cz.(k) + k3 |é<k)| |2(k)l2 + k. |é<k>|2 |2(k)l2

-flks |22(k)|2 + We |21(k)| |22(k)| + flkr lzi(l€)|2

+flku|2(k)|’|5(k)| + 51612|2(k)|2|5(k)l2

|
/
\

l(-k10 + M70121? — 51651220012 ‘1' 51% 121(k)] 122(k)”

we. + an.) |é(k)| l2(k)|2 + (k. + flk12)]5(k)I2 |2(k)|2

5 —k1' l2(k)|2 + k; [506)] izik)? + k; Incl” 120012. (58)

The last inequality is true if 3 is small enough.

step 5. A Lyapunov-type function related to weight convergence.

Rewrite the updating rule (51) as

0(k +1) = We) + f—At
k

(8fo]x]k),w(k)))’

A): = yk+1 8w“)
8§oxk,vk

(4W1:)“*

where
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Define 9(k)= 0(k)— 0, then

~ _ ~ 11
0(lc +1) — 0(k) + :Ah

I:

and the inner product of ék+1 by itself is

7 I7 7 I7 2/1 7 I #2 I

0(k + 1) 0(k +1) = 0(k) 8(k) + 719nm). + 3AA). (59)

k 1:

Notice that r

yk+1 = fo(x(k)1w) + fio(x(k),V)uk (60) ‘

and t

0 = foixik).w(k)) + ioixik),v(k))u. (61)

After subtracting (61) from (60), yk+1 can be rewritten as

, 8

11...: -éik) 3;; (62)
I“(1‘)=9+(1-C)(19(’€)--19)

Now let us investigate the term fi(lc)’Ak, in (59). It can be quickly verified that

7 I 7 I O

0(1) A), = 0(1) ”8;“ yk+1

00:)

Then, making use of (62), we have

7 I _ 7 I alilk+l

90‘) A): - 90°) 39 yk+1

- 0(k)

" ayk-l-l ~ a1111111 ayk+1

00:) 11.1 + [our— —é(k)'— y)...
00 I‘Uc) 60 “my 80 I‘Uc)

= ‘11:.” + 500), 'afifl " 50‘), gfl H1] yk+1 (63)

. ‘99 9(k) 3” rik)

" - are are ) P W (51h 6f. )2
= ‘1! ‘1' wt — — + —k-l-l 32:; (611),- 00¢) 6w.- 1‘(k) 2 gm” 6ng 9(k) 6ng 1‘01)

ago _390 q m“.-. ( 090 ago ) } ]

+ v — v,-- — uk yk+l

{if (6—v; 9(k) —6v.- rug) g 12:31 1 av.)- 9(lc) 6% rug)
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The functions and parameters used at the last equality of (63) are defined in (43) and

(44). By virtue of special property of the hyperbolic tangent function, each

~ 2211 .215. ~ @112

“’(W 9(k) 3*” I‘m) °rv(3v

@211
9(k) — 8v ) term is of the order Iti(k)]2 - |z(k)|.

  I‘0!)

Moreover, the control uk, as defined in (49), is of the order |z(k)] and yk+1 is of the

order [6(1)] . |z(k)| (see (53)).

So,

01km. s 53... + k' I19(k)l3(|2(k)|2 + 126613); (64)

Next check about ngLAk in (59).

2 (6F(T(x(k)).w(k)) ’
2

iu , ll awik) 2
—A A = — .

7'13 k k r (aéirixiknwikn) u yk“
8V(k) 1‘

R
'
N

Define

(aririxikvmiki) '
8w(k)

7‘ = 1 + .

" (30(T(X(k)).V(k))) u
3V(k) *

Then

2 ‘ 2

" A’A " 2_ < _ .

7‘)”: k k 1"" mp“

It can be shown that rk is bounded. Then, setting ,u = 1, the equation (59) becomes

to: +1)’é(k + 1) — 5(k)'i)'(k) 3 481,3“ + k9 [13(1)]3 (12(5))2 + |z(k)|3). (65)

Final step. A Lyapunov function for the overall system.

Choose the Lyapunov function

V(k) = 5(k)’5(k) + 7’V(z(k)).

By (58) and (65),

170: + 1) — V(k) 3 485,21, + k9 [é'(ic)|3 02(1))” + |z(k)|3) (66)

5’ (-1; Iz(k)l2 + Ic:’1]l?'(k)||z(k)|2 + k: limf lz("112) °
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Suppose [2(0)] S K. Then, by (40) and the definition of V(z(k)), there exists a

constant d1 such that

V(z(0)) s dlK".

S=[(g)|é’é+7zvgc2],

It can be verified that if 7 is chosen to be

Consider the set

C

7: I(\/2—dl_, (67)

then

[3(0)] S 5.5 and [2(0)] S K => ( 3E3; ) E 5.

Next, we show that if c is chosen small enough, then the set S is an invariant set.

ZUC)
For any (301:) ) E S,

[506)] _<_ c, and (68)

I V(z(k))] 3 KM.

Again, by (40) and the definition of V(z(k)), there exists a constant d2 such that

|z(lc)] Sdz

 
V(z(k))] s M 2111 (69)

Substituting (67), (68) and (69) into (66), one gets

kic2

K2(2d1)

[1 — EU“; + kgc + 2153118111 + 2d, k9K3d2‘/2d1)].

1

1706 +1)- Wk) S —ksyl+1 - IZ(k)|2
 

(70)

It is obvious that there exists a co such that if c 5 co, then (68) can be rewritten as

Wk + 1) - 1706) S -ksyi+1 - l; |2(k)|2, (71)
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. . . . 2(0) 2
and the set S 18 an invariant set. Since ( 5(0) ) e S, ( (5

Finally, (71) implies that

V(k)-—rl7 ask—+00,

and therefore

gig—+0 ask——+oo. D

(k)

06)

)ES ‘v’kZO.

39

(73)



40

5 Convergence Result: Part Two

In this section we consider adaptive tracking problem for a single-input/single-output

relative—degree-d system

yk+l = f0(yka ilk-1, ’ ° ° :yk—n-i-la uk-d) uk—d-la ° ° ' a uk—d-m+l) (74)

"l" 90(3/111 ilk—1, ° ° ° , ilk—n+11uk-d1 uk-d-la ' ° ° 3 uk—d-m+l)uk—d+l

After the transformation described in section 2, the plant (74) becomes

211(k+1) = 212(k)

z1n(k+1) = 21.n+1(k)

Zl,n+d—1(k) = fd-1(X(l€)) + gd-1(X(k))$n+m+d-1(k + 1)

= fd-1(T-l(z(k))) + 9d-1(T_1(Z(k)))uk

= F(z(k)) + G(Z(k))uk (75)

221(k'l‘1) = 222(k)

22,..-10: +1) = emu)

22m(l¢+1) = uk-d-l-l

-fo(T"(Z(k))) + We — d + 1)
90(T71(z(k)))

 

y(k) = 2111“?)-

Some assumptions about the plant are made here:

Assumption 1.

9.1-1 (x(lc)) is bounded away from zero over any compact set. More precisely,

lgd-1(x(k))| 2 B > 0, Vx(k) E E (77)
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Where B is a known constant and E is a compact subset of Rm+”+“’1.

Assumption 2. The system is minimum phase.

Setting 21(k) and r(k — d+ 1) in (76) to be zero, the dynamics associated with 22(16)

 

become

221(k +1) = 222(k)

Z2,m-l(k +1) = z2m(k)

-fo(T71(0122(k))) .-

32 ( ) 90(T"(0,22(k))) (‘ l

have equilibrium at C, where C = [c, . . . , c]’, then

C = —fo(T-1(o.0))

go(T"(0,C))
 

After the state shift

621' = 221' - C,

(78) is transformed into

621(k+1) = 622(k)

€2,m-l(k+1) = e2m(k)

-fo(T"(0,ez(l€) + C))

82”“ +1) go(T-1(0.e2(k)+0)) “C
 

(79)

The dynamics (79) are called the zero dynamics. By assuming that the system is

minimum phase, we mean the zero dynamics have an asymptotically stable equilib-

rium point at the originand that there exists a Lyapunov function V2(e2(k)) such

that

6119209)]2 S 17203200) S 021820012, (80)
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V2(e2(k +1))- V2(82(k)) S -0 I92(l€)|2a and

[81/200
< .

8x _ L lxl
 

Rewrite the plant (75) in an input-output form as

yk+d = fd-1(X(k)) + 9d-1(X(k))uk

The plant (83) is modeled by the neural network

9k+d = fd_1(x(k),w) + gd_1(x(k),v)uk

In the case that (84) is a three-layer neural network, then

 
Figure 5.1 The neural network model for the transformed plant

m+n+d-l

fd_1(X(k),W) = iw;H( Z wax,- + ‘11).)

8:] '=1

(83)

(84)
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and

m+n+d-1

éd—1(X(k),V) = :51“ 2:1 ‘01'1'331' + a.) (86) ‘

The function H in (85) and (86) is the hyperbolic tangent function. The three-layer

neural network model is shown in Figure 5.1.

Assumption 3.

Assume that there exist w and v such that fad and an, can approximate fd_1 and

gd_1, which are continuous functions, to within 6 accuracy over the compact set E,

i.e.,

3w,v 3.1. max [fd_1(x(k),w)—fd_1(x(k))] g e, Vx(k) e: (87)

and max [gd_1(x(k),v) —gd_1(x(k))| S c, Vx(k) E E (88)

The weights w and v are unknown. w(k) and v(lc) represent the estimates of w and

v. Let 9 = [w v] and define the parameter error as

6(1) = 9(k) — a (89)

We are going to employ a dead-zone algorithm for updating the weights which has

been adapted from [29]. At each time step, if the error between the plant output

and the model output is larger than a certain threshold, the weights are updated.

Otherwise, the weights are not changed. In order to better define the error, rewrite

(83) and (84) as

yk+1 = fd-1(x(k - d + 1)) + 91-1(x(k - d +1))uk-d+1 (90)

and

1;... = fd-1(X(k — d +1).w)+ 13.1-1641: — d +1),v)u.-..1 (91)

The estimated plant output is

1):... = 5-16:0: - d + 1),w(k)) + 51-1w - 4+ 1),v(k))u1-.i.1 (92)
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The error ck.“ is defined as

624.1 = yin - yk+1 (93)

This error is applied as input to a dead-zone function D(e) which is depicted in Figure

5.2.

D(e): e—do ife>do (94)

6 + do If 8 < —do

The output of the dead-zone function is used in the updating rule.

{ 0 2if lel S do

D(e)

 

 
Figure 5.2 The deadzone function

Updating Rule

 

 

 

 

1 3f4-1(X(al::k+)1)iw(k)) '

9k1=9k——D'— 95( +) I) n (11114-1 11114-1) (gg-l(x(k—d+1),v(k)))’u ( )

8v(k) k-cH-l

1

= 9(k)‘;;D(ek+1)Jk-d+1

where 2

ai4-a;(k-d+u.wik)) '

7‘11 = 1 + . aw“) = 1 ‘1' Ji-d+1Jk-d+l

(Elie-1(Xgrv-(gllfl(k)))' ui-1+1
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This updating rule is similar to that of Method 2 described in chapter 3, except that

ck.” in (38) is replaced by D(ek+1).

The control law is specified next.

Control Law

“k : —fd—1(X(k),W(k)) + We)

44-1(X(k),V(k))

Where r(k) is the reference command satisfying |r(lc)| < d1, d1 being a positive con-

 

(96)

stant.

Now, based on the assumptions made above, a local convergence result is given.

Theorem 2

Given any initial condition x(0) and any small constant do, if the initial parameter

error 9(0) (see (8.9)) and the modeling error is (see (87)) are small enough (depending

on do), then

1. l9(k)] will be monotonically nonincreasing, and 9(lc) will converge to a constant

vector.

2. The tracking error between the plant output and the reference command will

converge to a bounded ball centered at the origin and has radius do.

Emit

step 1: State transformation.

The dynamics associated with 21 is

2,101“) = 212(k)

zln(k+1) = zl,n+1(k)
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21.n+d-1(k) = F(Z(k)) + G(z(k))uk (97)

The last equation can be rewritten as

Zl.n+d—1(k + 1) = F(Z(k)) + G(Z(k))uk

= F(z(k),w) + G(z(k),v)uk

+ {F(Z(k)) - I31(Z(l€))W)+ [C(Z(k)) - G(Z(k),V)luz=}1

= 1E‘(Z(l€)aW) + C(ZUCLVWI + {°}1 (98)

where P(z(k),w) = fd_1(T‘1(z(k)),w) and G(z(k),v) = gd_1(T‘l(z(k)),v). Plug-

ging uk into (98), we have

 

 

  

 

_ ~z w -F(2(k)W(k))+ r(k) ,
21....-iiic) — F( (k), )+G( (1), v) [mm('0) +1 )1

. - -F(zk() W(k))++r(k)
= F2 16 ,w Oz 16 ,v(()A )+ H) ) CW)(,0)

-F(z(k),w)+rik)_—Fizik)wwk)+r() ,

+( Gizik).v) G(2(k,)V) ll+{}‘

= rik)+ifiizik).w)—r(k)+é(z(k),v)( ”(15:1)(:]]c;’"“°))i

— 1E‘(Z(lc),w(k))+ Pizarwik» + {-1.

= "(k)+{'}1

+ {F(z(k),w) 4- Fizik).w(k)) + ié(z(k).v) — Gizik),vik))iu1)2

= r(k)+{-}1+{-}2 (99)

Define

61(k) = 211(k) — T‘(l€ — n — d + 2)

(100)

€1.n+d—1(k) = Zl,n+d—1(l€)‘r(k)

In other words,

121(k) = z,(k) —- 11(1)
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Then (97) can be represented in new state variables e1 as

e1(k+1) = 82067)

en(k+1) = en+1(k)

en+d-l(k) = {'ll + {'}2 (101)

With the transformation

62.- = 22.- - c, (102)

the dynamics associated with z; is transformed into

621(k-l-1) = e22(k)

62,m_1(k +1) = 62m(k) (103)

€2m(k +1) = uk—d-H — C

Thus, (101) and (103) together is the new state space representation of the closed-

loop system.

Step 2: To show that l9(k)| will decrease and converge, and 9(k) will converge if the

states of the system stay in a compact set.

Consider the sets -

Ie = {( 2: ) I le1| S #nlezl S #2} (104)

and

Io = {5 I I5] S 5} (105)

In the forth coming analysis we will assume that e(k) stays in Ie for all k 2 0 and

investigate how 9(k) will behave in that situation. Later on, we will show that, under

certain conditions, e(lc) indeed stays in Ie.
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From the facts that

Z(k) = e(k) + [11(k) Cl’

and

We) = T“(z(k)).

it is clear that if e(k) stays in 19, then x(k) is bounded for all 1:.

93.1111

If e and 6 are small enough, then, for all (e(k),9(k)) 6 I8 x 19, gd_1(x(k),v(k)) is

bounded away from zero.

m (please refer to Assumption 1, Assumption 3 and Control Law for some

of the constant variables used here)

|§d-1(X(k),V(k))-gd-1(X(k))| S |§d-1(X(k),V(k))-§d-1(X(k),V)|

+ lid—1(X(k),V) - 9d—1(x(k))l

S c1|v(k)| + c S c16 + e. (106)

If c115 + c < B/2, then

lid—1(X(l€)1V(k))| > 13/2 0:. (107)

Claim 1 ensures that the control u). is uniformly bounded for all (e(k), 9(k)) E Ie x 19.

The input-output form of the system is

yk+1 = fd-1(x(k " d + 1)) '1' 9d-1(x(k — d ‘1' 1))uk-d+1

As long as (e(lc),9(lc)) E L, x 19, all previous controls are bounded and, by the

assumptions (87) and (88), we have

yk+1 = fd—1(X(k - ‘1 +1))+ 94-1(X(k — ‘1 +1))uk-d+1

= fd_,(x(k — d + 1),w) + ~c‘i.,i..1(x(lc — d + 1),V)uk—d+1

+ [fa—104k - d+1))—f1-1(x(k — d +1),w)i
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+ [(gd—1(X(k — ‘1 +1)) — 94-1041“ — ‘1 +1),V))uk-d+1]

= fd-l(x(k 7' d +1),W)+ Sd-1(x(k — d +1)1v)uk-d+l + 0(5) (108)

The weights w and v in (108) are unknown. The estimate of the plant output is

an =f1-1(x(k — «1 +1).w(k))+ 5.1—locus — «1 +1),v(k))u1-d+1 (109)

The error between the neural network output and the plant output is

e2“ 2 III-H — yk+1

= fd-1(X(k — d+1),w(k))—f1-1(x(k — d +1),w)

+ [5.1-104k — ‘1 +1)1V(k))- Sid-104k " ‘1 +1)1V)luk—d+1 + 0(6)

anew-Hume» '

= 51' 8W) 0 8k 2 o
( ) ] (854—1(x(k-d+l)iv(k)))’u ] + (I ( )l )+ (C)8V(k) k-d+1

= é(l€)’Jk—d+1 + ”(k)

Since the states x(lc) and all previous controls are bounded, there exist 0; and c8

(depending on p1 and 112) such that

ltl(l€)| S Cr|12(k)l'2 + 036

Assume that 6 and e are small enough such that

ln(k)| S M < do (110)

(do defined in (94)). Next, some analysis related to the deadzone function is provided.

0 If [6,3,] 3 do, then D(e;+1) = 0.

o If 6;“ > do, i.e., 9(k)’Jk_d+1 + 17(k) > do, then 9(lc)'Jk-d+1 > 0, since |n(lc)| <

do.

D(CIH-I) = 5(kl’Jk-di-l ‘1‘ 170“) ’ d0 < 5(klljk—d-H + do — do

= D(e;+,) < have,“
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o If 5714-1 < —d0, i.e., 9(lc)’Jk_d+1 + 17(lc) < —do, then 9(k)’Jk_d+1 < 0, since

l’7(k)l < do-

men.) = have... + We) + do > Ami—1+1 — do + do

= D(e;+l) > é(k)’Jk—d+l

Thus in all cases we can represent D(e;+1) as

D(€i+1) = a(k)9(k)'Jk_d+1 (111)

where 0 S a(k) _<_ 1. Plug (111) into the updating rule (95). we get

~

(9(kl'Jk-d+1)Jk—d+1
 

 

  

  

  

9 k +1 = 9 k — k 112( ) ( ) ai ) 1+ 5-1.1.1 ( )

Subtracting 9 from both sides of (112), it becomes

.. ~ (5(k)’Jk—d+l)Jk-d+l

9 k + 1 = 9 k — k 113( ) ( ) a( ) 1 + .11-...JW ( )

Then,

9(k +1)'é(k + 1) — 9(k)’9(k)

= _Mk) (Aryans)? +We)(Awarerunner“

1 + Jk_d+1Jk-d+l (1 + Jk-d+le—d+1)

(6(k)’Jk-d+1)2 2 (5(k)’Jie—a+1)’
< —2 k k 114

— a( )1+Ji—d+1Jk-d+1 a ( )1+Ji—d+1Jk-d+1 ( )

5(k)’Jk—d+l)2 (éU‘VYJk-dan)2
< — 2 k ( - 2 k —2 2 k_ C!( )1+Ji’._d+1Ji.-.i+1 ( Cr( ) a( ))1 + 112-1+1 Jk-d-H

7 I 2

S —a”(k) (0(lik-d'l-1)
(115) 

1 + Ji—d+1Jk—d+1

=> 9(k)'9(lc) is monotonically decreasing and 9(k)'9(lc) —r C; as k ——1 00

(116)

where C; is a constant. This shows that the norm of parameter errors will converge.

Then, (116) implies that

éUCy-Ik-d-l-l

00¢)
fi‘l' Ji-d+1JIc-d+1

—-+0ask—>oo (117)
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= 9(k+1)—9(k)——>0 ask—+00 (118)

=> 9(k) ——-> C; as k ——+ 00 (119)

==> 9(k) —* 02 + 9 as k —1 00 (120)

where C; is a constant vector. The result (118) can be verified by rewriting (113) as

(é(k)'Jk—d+1) Jk-d+1

\[1 + JL—d‘Fle‘dH \[1 + JI’c—d+1Jk-d+1

It is shown in (120) that the weights in the neural network model will converge.

9(k+ 1) =9(k) —a(k) (121)

Step 3: To show that |e1(k)| is uniformly bounded by #1 if e and 6 are small enough.

Rewrite the dynamics associated with e1 as

  

0 1 . 01

0 0 1 0

e<k+1>=Ae<k>+ s {-11, whereA= 2 s .

1 0 - 0 1

1.0 .1

and

['11 =1 {‘}1+{°}2

S c36+c4e (122)

The constants c3 and c4 in (122) depend on p1 and #2.

A is a stable matrix (since all eigenvalues are at the origin). => Given any symmetric

Q > 0, 3 a symmetric P > 0 such that

A'PA -— P = —Q.

Choose the Lyapunov function

V1(8(k)) == e'(k)Pe(k),

Then,

V1(e(k +1))— V1(e(k)) = —e’(k)Qe(k) + 2e(k)’A’P 2 {-1l
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0

+[.]';’[0---1]P

1

S -8'(k)Qe(’€) + (c3|9(k)| + 646) |e(k)| + (031506” + 6402

S —)\,,,,-,,(Q)|e(lc)|2 + (C36 + c4c)|e(k)l + (C36 + 646)2

S —’\min(Q)le(k)l2 + C11(C3‘S ‘1'” C45)2

S —)\V1(e(k)) + c11(c36 + c4e)2, where A = AWAQ)

Amu(P)

=> The R.H.S. will be negative

whenever 14(e(k)) > 5%1-(c36 + C46)2 (123)

The conclusion from (123) is that, given any #3 > 0, if 6 and e are small enough such

that

-CIT1(C36 + c4e)2 < #3 (124)

then

{V1(e) 5 #3} is an invariant set, i.e.,

V1(e(0)) S #3 => V1(e(k)) _<_ #3, V k 2 0.

#3 ‘ (‘3

le(0)l _<_ m= leUcll S l/AminU’)’ Vk Z 0.

Hence, m in (104) can be chosen to be Mm, where as is chosen large enough so

that |e(0)| S «m. Notice also that |e(k)| will decrease toward a ball of radius

0(c36 + C46).

It follows that

 

step 4: To show that the dynamics associated with e; are bounded.

The dynamics associated with e; is

621(k+1) = 822(k)
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e2,m—l(k‘l‘1) = e2m(k)

62m(k +1) = Uk—aH-l - C

where

uk—d+1

_ -13"(e1(k—d+1)+II(k—d+1),e2(k—d+1)+C,w(k—d+1))+r(k-d+ 1)

_ G(e1(k—d+1)+H(k—d+1),e2(k—d+1)+C,v(k—d+1))

—F(0,e2(k -d+ 1) + C)

G(0,e2(k—d+ 1) + C)

(—F(e1(k—d+ 1)+II(k—d+ 1),e2(k—d+ 1) +C,w(k—d+ 1))

 

 
A

G(e1(k—d+1)+H(k—d+1),e2(k—d+1)+C,v(k—d+ 1))

_ -F(0,e2(k — d+ 1) + 0))

C(0,62(k - d+ 1) + C)

 

+ .. r(k—d+l)

G(e1(lc— d+ 1) + H(k—d+1),e2(k — d+ 1) + C,v(k -d+1))

—fo(T"(0,e2(k)+C))

go(T-‘(0,e2(k)+0))

+ ([—13"(e,(k —d+ 1) + II(k — d+1),e2(k —d+ 1) + C,w(lc - d+1))

G(e1(k —d+ 1) + 11(k- d+ 1),e2(k -d+ 1) + C,v(k — d+1))

_ -13‘(0,e2(lc—d+1)+C,w(k—d+1))

G(e1(k —d+ 1) + II(k — d+1),e2(k — d+ 1) + C,v(k — d+1))l

 

 

 

 

+ [ . —F(O,e2(k—d+l)+C,w(k—d+1))

G(e1(k — d+ 1) +110: — d+1),e2(k — d+ 1) + C,v(k -— d+1))

_ —F(o,e,(k — d + 1) + C,w)

G(e1(k—d+1)+n(k—d+1),e,(k—d+1)+c,v)l

+ [ . —F(0,e2(k—d+ 1) + C,w)

G(e1(Ic—d+l)+II(k-d+1),e2(k—d+l)+C,v)

__ -F(O,e2(k-d+l)+C) )

G(0,e2(k—d+1)+C)

+0(H(k—d+1))

-fo(T"(0, e2(k) + 0))

90(T'1(0,e2(k) + 0))

+[0(9(lc—d+1))+0(e1(k-d+1))+0(H(k—d+1))+O(c)]2

 

 

 

 

 

Since all the states are bounded, [a]; is bounded by a constant.
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Let

 

—f0(T-1(0182(kl + Cl) _ c ISI: = 622(k), . . . , 62m, 90(T’1(0192(k) + Cl)

and

Q. = [0,...,0, [o]2]’

Using the V2(e2(k)) described in (80) as a Lyapunov function candidate, we obtain

V2(92(k +1))— V2(ez(kll V2(5k + Q1) — V2(82(k))

= 115(5):) — V2(82(k))l ‘1' 151(5): + Qk) — V2(Sk)

s -1, Ie2(k)l2 + 121(5). + (1 — <1le - IQ.)

S "ks 182(kll2 +111 lskl ' lel + kleklz

5 451941012 + k61e2(k)l+ 1... (125)

Thus, if p; is chosen large enough, there is an invariant set {e2(k) | V2(e2(k)) S cm}

inside (e; I |e2| S 112}.

We summarize the results from Step 2,‘ Step 3 and Step 4 here: Given any initial

condition, if m and a; are chosen large enough, and 6 and e are small enough, then

1. (e(k),9(k)) E 1., x 19, V k 2 0.

2. l9(k)| will be monotonically nonincreasing, and 9(k) will converge to a constant

vector.

Step 5: To show that the plant output will eventually track the reference command

with an error less than do.

Since x(k) and u), are bounded for all Is, it can be verified that Jk_d+1 is bounded.

Hence, (117) implies that

a(k)9(k)Jk_d+1 —) 0 as k —+ 00 (126)

= D(ek+1) ——§ 0 as k -—i 00 (127)
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=> l€k+1l<do ask—+00

==> |y2+1 - yk+1| < do as k —* 00

Recall that

an = f1-1(x(k).w<k + d -1))+ 91-1(x(k).v<k + d -— 11m

While the control 11;, is generated from

§k+d = fd_1(x(k),w(k)) + §d_1(x(k),v(lc))uk

Then

lyli+d - 91ml S lfd-1(X(k),w(k + 0' —1))-fd-1(X(k),w(k))|

+ lDd-1(X(k),V(k + d -1))- éd-1(X(k),V(k))lukl

K|9(k-d+1)—9(lc)|——>0, ask—+00.|
/
\

2 lgk+d " yk+dl < do as k —+ 00

(130)

(131)
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6 Simulation

This section is divided into several subsections, with each subsection dealing with a

specific issue. Some issues are directly related to the results presented in the previous

chapters, while others are not, as will be described at the beginning of each subsec-

tion. All the simulation programs are written in Microsoft C and run on a IBM PC

compatible machine. The plants under consideration are of the general form

yk+1 = fo(yk, Slit-1"”, Elk—n+1, uk-d, Uk—d—u - - - , uk—d-m+1) + gouk—d+l (136)

which is a relative degree d system, with go being a constant. We will simulate on

relative-degree-one and relative-degree-two systems only.

 
" x 1(k) Xm,(kl

Figure 6.1 The neural network model

The neural network architecture which will be used for the rest of this chapter is
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shown in Figure 6.1 and denoted by NN(m, n), where m and n are the number of the

hidden neurons used in the first and the second hidden layers (the first hidden layer

is the one close to the inputs).

We look at identification problem first in section 6.1, and study various control

issues in subsequent sections.

6.1 Identification

We start with identification problems, although identification is not directly related

to the results presented in the previous chapters. There are several reasons to pursue

identification first:

1. To demonstrate that layered neural networks can learn to approximate nonlinear

functions.

2. To get some insight about how to choose a suitable neural network size to handle

our current control problems.

3. Before the neural networks are applied to control problems, some “pretraining”

may be needed.

It is worth while trying to clearly describe the training process here. Neural networks

of the form in Figure 6.1 will be trained to approximate the system

1-5ykyk—1

1 ‘1‘ 312 + 3113-1

 

yk+1 = “l" 0.7sin[0.5(yk + yk_1)] ° cos[0.5(yk + yk_1))] + 1.221.); (137)

Several network sizes will be used to develop some feeling about how to choose a

suitable neural network size. Each nonlinear neuron in the neural network has a bias

weight attached to it, though the bias weight is not shown in Figure 6.1. In order to

focus on the effect of the number of nonlinear hidden neurons on the identification

process, the weight between uk and the output neuron in Figure 6.1 (i.e., go) is fixed

to be 1.2 (the same as the plant).
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At each time step, the control 21), is randomly selected from the interval [~1.7, 1.7].

The inputs uk, 3],, and yk-1 are applied to the plant and the neural network model.

The error between the plant and the model is used to train the neural network. We

use standard back-propagation algorithm [1] to update the weights. The algorithm is

described here.

The plant is

yk+1 = f0(yk, 311-1) '1' L211]:

The model is

yZ+1 = fo(yk,yk-1, Wk) + 1.2111:

Define the error to be J)c = (y):+1 — yk+1)2. The weights are updated as follows:

Wk+l = Wk—flkvwkjk

 

. a” , - ,W ’
Wk — flk(yk+1 — yk-H) [ f0(ykai;kl kl]

where aj°(”"é‘£',‘,;"w“) is calculated by the back-propagation algorithm. The learning

rate pk used in this simulation is

0.2, k g 1000

0.45, 1000 < k g 5000

_ 0.25, 5000 < k 5 10000

”" ‘ 0.15, 10000 < k 3 20000

0.1, 20000 < k 3 30000

0.5, 30000 < Is

Our experiences suggest that using smaller learning rate at the early stage of training

can avoid large oscillation which may cause instability. The learning rate is increased

and then gradually decreased for better convergence. The initial weights of the neural

networks are selected randomly between -0.1 and 0.1. In the rest of this chapter,

the initial weights of the neural networks are always selected this way. Small initial

weights can reduce the chance of saturating the nonlinear neurons.
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In all of the figures shown in this subsection, each data point represents the error

between fo(yk, yk-1) and fo(yk, yk_.1, Wk) averaged over 1000 time steps.

Figure 6.2 shows the training results for the first 30 thousand time steps. The net-

work NN(2,2) does not contain enough hidden neurons, so it is incapable of bringing

the error down. It is also apparent from Figure 6.2 that NN(4,4) learns to approxi-

mate f(yk, yk_1) faster than NN(6, 6), and NN(6, 6) faster than NN(12, 12). For these

three neural networks, errors are reduced to about 0.033 at the end of 30 thousand

training. It seems that NN(4,4), NN(6, 6) and NN(12, 12) result in similar errors, but

next figure will provide more insight.

Figure 6.3 shows the training of NN(4,4), NN(6, 6) and NN(12,12) from 30 to 200

thousand time steps. It is obvious that NN(4,4) is leveling off, while NN(12,12) is

reducing the error at a much faster pace. NN(12,12) pushes the error to 0.012 at the

end of 200 thousand training.

Figure 6.4 shows the result of the same identification problem using NN(25,25).

Compared with NN(12,12), NN(25,25) takes much longer time to reduce the error

significantly.

We conclude that neural networks of sizes between NN(6, 6) and NN(12,12) are

adequate to be used in the adaptive control of the system (137), in terms of the speed

they can learn to approximate the plant and the accuracy they can achieve.
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6.2 Regulation using Neural Networks without Bias Weights

Part 1:

The simulation here corresponds to the result in Chapter 4. The neural network

NN(7, 7) is used in the control system to model and regulate the output of the plant

(138) to zero.

1-5ykyk-l

1 + y: '1' 3113—1

The plant satisfies the assumption that fo(X(k)) = 0 when X(k) = 0.

 
yk+1 = + 0.7sin[0.5(yk + 3/)C_1)]-cos[0.5(y1c + yk-1)] + 1.211,c (138)

The neural network contains no bias weights as it has been assumed in chapter 4 so

that fo(X(k),Wk) = 0 when X(k)=0. Before the neural network is used for control

purpose, it may go through similar identification process as in 6.1 using standard

back propagation algorithm. But this time the weight 530 is not fixed. When the

neural network is used in feedback regulation, the updating rule is switched to (45)

described in chapter 4, where p is set to be one. Simulation results are provided

next to show how different amount of training on the neural network NN(7, 7) would

affect the performance of closed-loop regulation. From the experience of 6.1, it is

expected that as a neural network receives more training cycles, it should have better

approximation of the plant and should perform better in feedback regulation.

In this simulation, the weights of the neural networks after the training (or iden-

tification) process become the initial weights of the neural networks in the control

system. The initial condition of the plant is

(y01y-l) = (‘1-5, —1.5)

Figure 6.5 compares the plant outputs resulted from three neural network controllers;

one received no training, while the other two received 7000 and 14000 training cycles,

respectively, before being used to regulate the plant output. It confirms the expecta-

tion that better trained neural networks should perform better in the control system.
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However, an important message from Figure 6.5 is that the plant output is regulated

to zero even when the neural network is not pretrained.

Part 2:

Figure 6.6 shows the result when the same neural network is used to regulate the

plant

1-5ykyk—1

1 ‘1' 3113 ‘1' 3112—1

 ka = + 0.3cos[y)c + yk_1] + 1.211,c (139)

Large oscillations appear again and again when the plant output is close to zero. The

problem is that the neural network fo(yk,yk-1, Wk) vanishes at the origin (since it

contains no bias weights), but fo(yk,yk_1) is nonzero when y. = yk._1 = 0. There-

fore, it is impossible for the neural network to model the plant well and generate

satisfactory controls.

To solve the problem, we want to use the idea of dead-zone described in chapter

5. The cosine term in (139) can be treated as the error between the plant and the

best approximation which the neural network can achieve. The maximum magnitude

of 0.3cos[yk + yk-1] is 0.3, so it is intuitive to specify [—0.3,0.3] as the dead zone

region (i.e., setting do = 0.3) to cover the dynamics which can not be modeled by

the neural network. The simulation with do = 0.3 is shown in Figure 6.7, where the

plant output converges to the dead zone (more precisely, converges to [—0.1,0.3]).

Figure 6.8 shows the result when do is set to be 0.15. Figure 6.8 (do = 0.15) exhibits

worse transient behavior than that of Figure 6.7 (do = 0.3), and the region the plant

output converges to in Figure 6.8 is of the same size as that of Figure 6.7. These are

evidences that do = 0.15 is not a good choice. How about if do > 0.3? Figure 6.9

gives the plant output when do = 0.4. After a quick initial shift, the plant output

converges to 0.4. This suggests that a good choice of do may be somewhere between

0.3 and 0.4.

Although the plant output converges to a point within the specified dead zone
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when do = 0.4, it just happens to be the case. We did not provide theoretical results

that guarantee the convergence of plant output to a fixed point within the dead zone.
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6.3 Regulation using Neural Networks with Bias Weights

Part 1:

In section 3.2 part 2, a layered neural network without bias weights is unable to

model and regulate the system

1.5ykyk_1

1 + 311;: '1' 3113-1

 

yk+1 = + 0.3cos[y;c + yk_1] + 1.211;c (140)

and the idea of dead zone is tried to confine the plant output to a bounded area. Here

we apply the neural network NN(7, 7) with bias weights to model and regulate the

system (140). Figure 6.10 shows the plant output when NN(7, 7), which receives no

pretraining, is used in the control system. No dead zone is specified in the learning

rule (92) (do = 0), because the plant output can be regulated to zero perfectly.

Part 2:

In this thesis it is assumed that the nonlinearities of the plant are unknown but can

be modeled by neural networks. There may be cases when the nonlinear functions

of the plant are known, but the coefficients attached to these nonlinear functions are

unknown. The second situation has been considered recently in the continuous-time

setup by Sastry and Isidori [18]. We are going to refer to the second situation as

the analytic approach. The purpose of this part of simulation is to compare the

robustness properties of the neural network method and the analytic method.

Suppose the plant is

1-5ykyk—1

1 + y: ‘1' 3113—1

 

yk+1 = + 1.211;c (141)

In the neural network method, (141) is modeled by NN(7, 7). In the analytic method,

(141) is modeled by

 

1.5yky _

yk.“ = a(lc)1+ 112F115 1 + b(k)uk (142)
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where a(k) and b(lc) are unknown coefficients. Both the neural net model and the

analytic model are trained to approximate (142) well before they are applied to reg-

ulation problems. However, the actual plant to be controlled is

1-5ykyk-1

1 + y: + 3113-1

 

yk+1 = + w - cos[y)c + yk_1] + 1.211;c (143)

Figure 6.11 through Figure 6.14 compare the plant outputs resulted from the neural

network controller and the analytic controller when w = 0.0, 0.1, 0.4, and 0.7,

respectively. The neural network control can always bring the plant output to zero in

all of these cases, while errors, which are roughly proportional to the magnitude of w,

are observed when the analytic controller is used. The neural networks are universal

approximators in the sense that they can accommodate variations in the part of the

plant.
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6.4 Tracking : 1. The Plant is Stable

The neural network NN(10,10) is used in the adaptive tracking problem to control

the plant

1-5ykyk—1

1 + 103 + 3113-1

 yk+1 = + 0.7sin[0.5(yk + yk_1)] -cos[0.5(y;c + yk_1))] + 1.211)‘ (144)

to track a reference command. Since the nonlinear function fo(yk,yk_1) in (144) is

bounded uniformly over R2, the plant is stable in the sense that given any sequence

of bounded control {111‘}, the plant output is bounded. This means that the neural

network will have plenty of time to learn to approximate the plant and generate ade-

quate controls without the fear that the closed-loop system may blow out. Therefore,

in this part of simulation, the neural network NN(10, 10) is directly applied to the

control of the plant without any pretraining. From the data shown in Figure 6.15 to

Figure 6.20, it is observed that the neural network can reduce the tracking error sig-

nificantly during the early stage of the control process. But it takes much longer time

to achieve “perfect” control. The same fact is also observed in section 6.1, where the

neural networks can reduce 85of error. Letting the neural networks go through some

identification process will definitely help a lot when they are used in the control sys-

tem. It is clear from Figure 6.15-to Figure 6.20 that certain part of reference signals

cause persisting errors at the plant output. The neural networks may be pretrained

intensively around these corners in order to achieve quick convergence in the control

process.
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6.5 Tracking : 2. The Plant is Unstable

The plant used in this part of simulation is

yk+1 = 0.23): + 0.2yk-1 + 0.4sin[0.5(yk + yk_1)] - cos[0.5(yic + yk_1))] + 1.211,c (145)

The plant (145) is unstable in the sense that given a sequence of uniformly bounded

controls {11).}, the plant output may diverge. An example is shown in Figure 6.21,

where the plant output runs away after the step input a). = 0.9, V k 2 0 is applied

to the plant.

In this section we are going to use the neural network NN(10,10) to control the

unstable plant to track a bounded reference command. Figure 6.22 shows the result

when NN(10,10) is applied to control (145) without being pretrained. The plant

output runs away in the first 10 time steps. Since the initial weights of the neural

network, including 60(0) are chosen small (between —0.1 and 0.1) as mentioned in

section 6.1, the magnitude of the control 11),, which is defined as W,can be

very large initially, forcing the plant output to grow larger and larger. Hence, the

system blows out before the neural network has a chance to learn to approximate the

the plant.

As a remedy to the situation above, the neural network is trained for 2000 cycles

in the hope that go may come close to 1.2 after the training. During the training

process, 11), is selected randomly from the interval [-1.2, 1.2]. The results of applying

the partially trained neural network to control the the plant are shown in Figures

6.23 to 6.25. It seems that good control is not achieved at the beginning of the step

reference command. The plant response when controlled by a neural network which

is pretrained for 10000 cycles is presented in Figure 6.26.

 



1
5
0
0

1
1
8
0

8
6
0

emliufiew

5
4
0

2
2
0

-
1
0
0

—
-

P
l
a
n
t

O
u
t
p
u
t

F
i
g
u
r
e

6
.
2
1

T
h
e

u
n
s
t
a
b
l
e

p
l
a
n
t

t
h
e

p
l
a
n
t

r
e
s
p
o
n
s
e

o
f

a
s
t
e
p

i
n
p
u
t

 

  
 
 

T
i
m
e

S
t
e
p
s

 6 SIMULATION 86



F
i
g
u
r
e

6
.
2
2

T
r
a
c
k
i
n
g
:

u
n
s
t
a
b
l
e

p
l
a
n
t

—
-

P
l
a
n
t

O
u
t
p
u
t

T
h
e

n
e
u
a
l

n
e
t
w
o
r
k

i
s

n
o
t

p
r
e
t
r
a
i
n
e
d

-
-
-
-

R
e
f
e
r
e
n
c
e

C
o
m
m
a
n
d

 

1
2
0
0

9
4
0

"

6
8
0

"

4
2
0

"

sphiiufiew

1
6
0

“'

  
 
 

—
1
0
0

‘

T
i
m
e

S
t
e
p
s

 6 SIMULATION 87



epniiufiew

F
i
g
u
r
e

6
.
2
3

T
r
a
c
k
i
n
g
:

u
n
s
t
a
b
l
e

p
l
a
n
t

T
h
e

n
e
u
a
l

n
e
t
w
o
r
k

i
s

p
r
e
t
r
a
i
n
e
d

—
-
-
—

P
l
a
n
t

-
-
-
-

R
e
f
e
r
e
n
c
e

O
u
t
p
u
t

C
o
m
m
a
n
d

 

1
.
5
0

6 SIMULATION

0
.
9
0

 
0
.
3
0

 
 

-
0
.
3
0

-
0
.
9
0

 
 

B
.
)
 

 
 

  
_
1
5
0

l
l

L
l

0
8
0

1
6
0

2
4
0

3
2
0

4
0
0

T
i
m
e

S
t
e
p
s

 88



F
i
g
u
r
e

6
.
2
4

T
r
a
c
k
i
n
g
:

u
n
s
t
a
b
l
e

p
l
a
n
t

T
h
e

n
e
u
a
l

n
e
t
w
o
r
k

i
s

p
r
e
t
r
a
i
n
e
d

-
—

P
l
a
n
t

-
-
-
-

R
e
f
e
r
e
n
c
e

O
u
t
p
u
t

C
o
m
m
a
n
d

 
1
.
5
0

 

0
.
9
0

”

0
.
3
0

 
 

epmiufiew

-
0
.
3
0

 
-
0
.
9
0

"
.,

l
—

\

 
 

  
 
 

_
1
5
O

1
J

I
l

0
8
0

1
6
0

2
4
0

3
2
0

(
8
0
0
0
+

)
T
i
m
e

S
t
e
p
s

4
0
0

 6 SIMULATION
89



epniiufiew

1
.
5
0

0
.
9
0

0
.
3
0

-
0
.
3
0

-
0
.
9
0

-
1
.
5
0

F
i
g
u
r
e

6
.
2
5

T
r
a
c
k
i
n
g
:

u
n
s
t
a
b
l
e

p
l
a
n
t

T
h
e

n
e
u
a
l

n
e
t
w
o
r
k

i
s

p
r
e
t
r
a
i
n
e
d

—
—

P
l
a
n
t

-
-
-
-

R
e
f
e
r
e
n
c
e

O
u
t
p
u
t

C
o
m
m
a
n
d

 

 

 

 

 
 

_
1
)
.
—
J

 
l

l
J

J

 
 
 

0
8
0

1
6
0

2
4
0

3
2
0

(
2
8
0
0
0
+

)
T
i
m
e

S
t
e
p
s

4
0
0

 6 SIMULATION 90



1
.
5
0

0
.
9
0

0
.
3
0

epniiufiew

-
0
.
3
0

-
0
.
9
0

—
1
.
5
0

F
i
g
u
r
e

6
.
2
6

T
r
a
c
k
i
n
g
:

u
n
s
t
a
b
l
e

p
l
a
n
t

T
h
e
W

p
r
e
t
r
a
i
n
e
d

f
o
r

1
0
0
0
0

c
y
c
l
e
s

—
.
—

P
l
a
n
t

-
-
-
-

R
e
f
e
r
e
n
c
e

O
u
t
p
u
t

C
o
m
m
a
n
d

 

 

 

 

  
 

 
l

l
l

l

  
 
 

0
8
0

1
6
0

2
4
0

3
2
0

T
i
m
e

S
t
e
p
s

4
0
0

 6 SIMULATION 91



6 SIMULATION 92

6.6 Controlling a RelativeDegree—Two System: 1. the Pen-

dulum

In this section we are going to apply the neural network to control a pendulum (Figure

6.27).

   
/.,

Suppose that the equation of motion of the pendulum is

0(1) + (in) + sin(9(t)) = 0(1) (146)

To discretize the system equation, let T be the sampling period. Then (146) is

discretized (using Euler’s Rule) as

0);.“ = (2 — T)0k + (T — 1)0k—l — T281n(0k-1) + T2Uk_1 (147)

It is verified through simulation that we can set T = 0.3 for the discretized model to be

a good approximation of (146). In order to define the control, the same transformation

as described in chapter 2 is performed.

0k+2 = (2 - T)9;¢+1 + (T — I)“; — Tzsin(9k) + Tzuk

= (2 - T)[(2 - T)9k + (T - 1)9k_1 — Tzsin(9k-1)
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+ Tz‘uk_1] + (T - 1)0k — Tzsin(9k) + T211};

= [(2 — T)2 + (T — 1)]01 + (2 — T)(T —1)0,,_l — Tzsin(9k)

— T2(2 — T)sin(0k_1) + T2(2 — T)Uk_1 + T211]; (148)

which is modeled by the neural network

ék+2 = f(6ka 016-1) uk-la Wk) + {11111: (149)

Since the control u,c is multiplied by T2, it is difficult to reduce T from 0.3 to 0.2

in the simulation. At each time step, the control u;c is generated from (149). The

updating of the weights is based on the error between 9k+1 and

61.1 = f(01_1, 01-2, 24.2. wt) + an.-. (150)

Figure 6.28 shows the result of using the neural network NN(10, 10) to control the

pendulum to track a sinusoidal reference command. Since the pendulum is stable

around the origin, the neural network is not trained before being used in the control

system. The pendulum angle tracks the reference command quickly, although slight

errors are still observed at the end of 1200 time steps. Figure 6.29 shows that even

at 10000 time steps, the errors are still detectable.
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6.7 Controlling a RelativeDegree-Two System: 2. the In-

verted Pendulum

The pendulum equation has been described in (146).

Let

y=9—7r

to be the output of the system. The system equation is rewritten in terms of the new

variable as

37(1) + 110) - 8in(y(t)) = “(1) (151)

which becomes

yk+1 = (2 — T)yk + (T — 1)y1_1 + T23ifl(yk-1)+ T2uk-1 (152)

after being discretized.

The simulation setup is very similar to that of section 6.6, except that the origin

is unstable. The simulations presented'in Figures 6.30 to 6.35 are conducted under

the assumption that the coefficient associated with uk, i.e. T2, is known. Otherwise

it is very difficult to produce any reasonable result. Any small error in the estimation

of T2 can produce large error in the control, driving the plant output from the origin

which is already an unstable equilibrium point. It is obvious that controlling the

inverted pendulum is much more difficult.
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7 Conclusion

In this research, layered neural networks are applied to the adaptive control of single-

input/single-output nonlinear systems. Under different assumptions, two local con-

vergence results are shown in chapter 4 and chapter 5. The simulation results in

chapter 6 suggest that neural networks can be powerful tools for practical identifica-

tion and control problems.

The advantage of using neural networks in identification and adaptive control

problems is that neural networks are universal approximators. The neural networks

can learn to approximate various nonlinear functions as long as they contain enough

nonlinear hidden neurons.

The disadvantage is that the learning of neural networks to approximate nonlinear

functions is a very time-consuming process. In the case that the plant is stable and

nicely behaved, the neural network controller usually can achieve satisfying control.

In the case that the plant is unstable, the neural network may need to be trained

before being applied to the control system. Otherwise, the performance of the closed-

loop system can be very bad because the neural network may not learn quickly enough

on line to produce suitable controls.

The speed of “learning ” in the part of the neural network is the bottleneck of

the control system. Slow learning of neural networks can limit the usefulness of their

applications to real world control problems. How to improve the learning speed is an

important issue to look at.

Another interesting issue is to generalize the current control scheme to multi-

input / multi-output setup. Many important systems are highly coupled multi-input

/ multi-output systems, e.g. robotics. . The control problem for MIMO systems is

more involved. The neural network architecture needs also be reconstructed to ac-



7 CONCLUSION 101

commodate MIMO systems.

In my point of view, there are two research directions in applying neural networks

to control problems. One is to combine neural networks with analytic control algo-

rithms. This thesis is an example of this approach. In addition to layered neural

networks, other neural network paradigms may directly or indirectly help to solve

control problems. The other research direction is to use neural networks to reproduce

biological control system, which is usually called sensory-motor control. This is a

relatively new research area for control engineers. Since we can control our hands

and fingers easily, it is very logical to try to understand how those excellent controls

are accomplished.
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