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ABSTRACT

ON THE GENUS FIELD AND ITS

APPLICATIONS TO FOUR PROBLEMS

IN ALGEBRAIC NUMBER THEORY

BY

Thomas Randle Butts

The genus field of an algebraic number field K, denoted

by GSF(K), is the maximal unramified extension of K of

the form AK where A/Q is abelian.

In this dissertation I first construct the genus field

of most algebraic number fields. This construction and the

theory underlying it are then applied to two recent problems:

(1) (MacCluer) For which normal extensions K/Q does

the multiplicative group “I”K generated by the

absolute norms of all fractional ideals of K

coincide with the group HHHK of absolute norms

of all principal fractional ideals of K?

(2) (Burgess) If f is a polynomial with rational

integral coefficients, let Vf be the multiplicative

group generated by the non-zero values of f for

integral values of the variable. Does Vf consist
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of all rational numbers not excluded by obvious

algebraic conditions?

and to two classical problems:

(3) Which abelian groups occur as ideal class groups of

algebraic number fields?

(4) Construct the Hilbert class field of an algebraic

number field.

A sampling of the results obtained involving these problems

is:

(1) HIHK = HHHK <==e K = GSF(K) = ZCF(K) where ZCF(K)

is the central class field of K.

(2) GSF(K) # K ==€> Vf # HIKH, meaning the answer to

(2) is usually ”no".

(3) Every abelian group occurs as a subgroup of the ideal

class group of infinitely many a) abelian b) non-

abelian and c) non-normal algebraic number fields.

(4) If the exponent of the ideal class group of a

quadratic number field K divides 12, the Hilbert

class field of K is constructed.

Many examples are given to illustrate the constructions and

theorems.
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INTRODUCTION

The value group V of a polynomial f(x) in z[x]
f

is defined by V = <f(n)|n.€z>. At the 1969 AMS Number

f

Theory Conference, two problems concerning the value group

of a polynomial were posed:

Problem 1. (Stolarsky) Let f(x) = x4+x3+x2+x+l. If

p a 1 mod 10. does pEVf?

Problem 1a. (Burgess) If f(x)€Ez[x], does Vf contain

all rational numbers not excluded by obvious algebraic

conditions?

If HIKH denotes the group generated by the absolute

norms of all fractional ideals of an algebraic number field K

and ”HKH denotes the group generated by the absolute norms of

all principalfractional ideals of K, then Vf C HHKH C HIKH

where K is the splitting field of f. This observation

gives rise to a stronger version of Problem 1, namely,

Problem 1'. If f(x)<Ez[x] is irreducible with splitting

field K, when does V N?f = HIK

We are also led to consider the simpler

Prdblem 2. (MacCluer) For which normal extensions K/Q

does HIKII = ”an?



Attempts to solve these problems led to consideration of

the Hilbert class field (HCF). the central class field (ZCF)

and the genus field (GSF) of K as evidenced in the Artin

diagram: (C. is the ideal class group of K)

 

 

Vf

HCF(F) 1

I I
ZCF(K) --- [c.r] —— HHKH

1“. -14..

l I
K a -—-———— HIKII

| I
Q 1‘

This diagram also brings to mind two classical problems:

Problem 3: Which abelian groups occur as ideal class

groups?

Problem 4. Construct the Hilbert class field of an

algebraic number field.

In this dissertation I focus on the genus field and its

application to these four problems. Because the genus field,

unlike the central class field or the Hilbert class field, can

generally be computed, it can be considered a meaningful

unifying concept.



Chapter I is devoted to the derivation of the group-field

structure of the Artin diagram. This complements the work of

Frohlich [4], [6], [7], FUruta [9], and others.

The construction of the genus field is carried out in

Chapter II. Several references on genus fields are given.

Necessary and/or sufficient conditions involving Problem 2

are discussed in Chapter III with the general result being that

the equality HIKH = “HRH, or equivalently ZCF(K) = GSF(K) = K,

occurs infrequently. No generally necessary and sufficient

condition seems possible so some special cases are considered.

The results of Chapter III imply the answer to Problem la

is generally negative. Discussion of this problem consititues

Chapter IV.

In Chapter V the results of Madan [20], [21] and Ishida

[15] are generalized to show that every abelian group occurs as

a subgroup of the class group of infinitely many a) abelian

b) non-abelian c) non-normal algebraic number fields.

.A compilatiom.of many known results concerning the con-

struction of Hilbert class fields is given in Chapter VI. The

contribution of the genus field is emphasized. Class number

tables are from Borevich and Shafarevich [2]. The results of

§5 and §6 are due to Herz [13], however the proofs are original.



CHAPTER I

PRELIMINARIES

1. SOME HILBERT THEORY

Throughout this section let K be a finite

galois extension of the number field k with galois

group G of order n. Let R and S denote the rings

of algebraic integers in k and K respectively. Suppose

$ is a prime of K. (For most applications in the

dissertation, only the case k = Q, R = Z is necessary.)

Definition A: The subset Z($) = [o e G|o($) = m]

of G is called the decomposition group of m

over k. The subfield E of K corresponding

to Z($) is called the decomposition field of
 

‘13 over k.

Definition B: The subset T($) = [o E G|(x) a x

mod P’ for all x in S} of G is the inertia

grggp of T over ‘k. The subfield J of K

corresponding to T($) is called the inertia

field of T over k.



It is easy to verify that Z($) is a subgroup

of G and that T($) is a normal subgroup of 2(3)

Suppose p = T n k and p = (Bl...$g)e in K where

T1 = T . Then since G acts transitively on the

primes $1,...Bg , it follows that the index [G:Z] = 9

so Z($) has order n/g

Definition C: The sequence of groups

G D Z 3 T 3 l

is called the short Hilbert sequence of
 

T over k .

One important property of the Hilbert sequence

is expressed in the following:

Result I: Foreach prime T of K ,

2(1)) / TM!)

is naturally isomorphic to

G(S/‘D | R/p) .

the galois group of the finite field extension

S/fi over R/p .

Result II: T is of degree 1 and ramification

index e over its inertia field J(B) . The

prime TT of J($) below T is of degree

f and ramification index 1 over the
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decomposition field E (T) . Moreover

[K=J($)] = [T($)=l] = e

[J(T):a (3)] = [Z(T):T(T)] = f

and

[E(T)=k] = [G=Z($)] = 9

An Artin diagram illustrating Result II is

  

  

 

13 in K --—— 1

e |
$T in J(T) -—-- T(T)

I f

152 in E (‘13) —— Z(‘B)

l | g
p in k G

Now suppose T is unramified over k , so

T(T) = l and

ZW) 1- 6(8/15 / R/p)

But R/p = GF(Hka) and s/T = GF(HpH:) where

”ka is the absolute norm of p . Thus G(S/T / R/p)



is cyclic and generated by the map

 

Hnllk

X > x .

Hence we can choose a generator 0 of Z(T) so that

I Ilplk

0(x) a x mod ‘13

for all x 6 S . This unique element of Z(T) is

called the Frobenius Automorphism of T over k .

Q
The symbol [ T J = O is called the Frobenius symbol

 

of T over k .

Remark: The Frobenius automorphisms of the

prime factors of p are conjugate under G .

PROOF: Note that for T E G , x E S ,

0(T_1X) E (T-lx)”””k a T-1(annk) mod $

80 that

TOT-1(X) E prHk mod (Tfi)

Hence

[“3] = TF-‘fll -TT

The conjugacy class formed by the Frobenius

Symbols of the factor of p,<1fa prime unramified in K ,
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is called the Artin symbol of p and is denoted by

K k . . .

K—é;j . As is the common practice for abelian

extensions, the Artin symbol will be thought of as

element valued.

2;? HILBERT CLASS FIELDS

Let K be an algebraic number field and let I

denote the group of fractional ideals of K . I is

free on the prime ideals of K . Let H denote the

subgroup of I consisting of all principal fractional

ideals of K . Then

I/H = a

is called the ideal class group of K and

h = [I:H] = \I/H]

is called the class number of K .

The fact that relations existed between the ideal

class group of a number field K and its abelian exten—

sion fields was first observed toward the end of the

nineteenth century. Hilbert defined the class field

of K as that extension field of K where exactly

the prime ideals in the unit class split completely.
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He conjectured that the galois group of the class

field of K with respect to K was isomorphic to

the ideal class group of K . Furtwangler (1907)

was the first to verify his conjecture. During the

next twenty years, Artin (and Takagi) constructed

general class field theory and gave another proof of

Hilbert's conjecture based on the Artin symbol defined

in §1. He noted that the Artin symbol associates

to each prime ideal T of K an element in the

galois group of every abelian extension of K in

which T is unramified. Artin's formulation of

Hilbert's class field is

Definition D: The Hilbert class field of an

algebraic number field of K , denoted by

HCF(K) , is the maximal abelian unramified

extension of K .

Most of the properties of the Hilbert class

field of K are summarized in the

Artin Reciprocity Theorem: The homomorphism
f

defined by linearly extending the map

'13 __> K HCF(:)ZK )

to all of I is surjective with kernel H .
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Thus the galois group of HCF(K)/K is canonically

isomorphic to the class group G, of K , that is

Arfiiq—

l

is short exact where G is the galois group of

HCF(K)/K .

That the Artin map from I into G is surjective

even on the primes of K is seen via the Cebotarev

density theorem. The deep insight afforded by the

Reciprocity Theorem is that the kernel is H , that is

HCF(K21K

K T ) = l e T E 1 mod H .

When K/Q is a normal extension, HCF(K)/Q is also

normal since it is unique. Thus if F denotes the

galois group of HCF(K)/Q , we have the following

Artin diagram denoting the galois correspondence:

HCF(K)

K

0

 l

C;

T

3. BETWEEN K AND HCF(K)

Of the fields between K and HCF(K) for K

an algebraic number field, two are of interest in

this dissertation:
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Definition E: The genus field (Geschlecter-

k6rper) of an algebraic number field K ,

denoted by GSF(K) , is the maximal unramified

extension of K of the form AK where

'A/Q is a finite abelian extension.

In fact A/Q is the maximal abelian extension of

Q contained in HCF(K)/Q . Notice that the genus

field is defined even for non-normal extensions of Q .

Definition F: For a normal algebraic number
 

field K/Q , the central class field (Zentralen

Klassenkdrper) of K , denoted by ZCF(K) ,

is the maximal abelian unramified extension

of K normal over Q such that the galois

group of ZCF(K)/K is contained in the center

of the galois group of ZCF(K)/Q

If t denotes the galois group of HCF(K)/Q ,

then it is clear that the genus field. GSF(K) corres-

ponds to 6'0 F, under the Galois correspondence.

If N is the normal subgroup of F corresponding

to ZCF(K) under the Galois correspondence, G/N

is contained in the center of r/N . But for any

I

normal subgroup B of P contained in GI .
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a/B c 2(r/B) e B :> [6.1“]

where [6,F] is the group generated by all

commutators c-ly-lcy where c E G and y E F

Thus N = [6,F] and [6,FJ czc.fl F1 An Artin

diagram illustrating these relationships when K/Q

is normal is,

 

HCF (K) 1

|
ZCF (K) [(5. I‘]

l
GSF(K) 0 0 F'

l
K c

i r

4. AN EXAMPLE: K = Q(\/-44fl

In this example h(K) = 20 , 6' is cyclic, and

so |r] = 40 . The Sylow S-subgroup C5 is normal

in F , so I‘/C5 is either abelian (A) , dihedral

(D4) , or quaternion (2) . Let L denote the

subfield of HCF(K) with galois group I‘/C5 . If

1"/C5 = A or 2. , then every subgroup of 1"/CS is

normal. Thus the inertia fields over Q of all prime
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divisors in L of 2 or 449 , the only primes

ramifying in K , coincide. Since L/K is unramified,

the ramification indices of 2 and 449 are 2

in L/Q . Then the intersection of the inertia fields

J(2) n J(449) is an unramified extension of degree

at least 2 over Q which contradicts the Dedekind-

Minkowski Theorem that there are no unramified exten-

sions of Q . Hence I‘/C5 = D
4

Since C Q P and (5,8) = l , F is a semi-

5

direct product of C5 and D4 . These groups are

determined by the homomorphisms e of D4 into

Aut C5 = C4 . Now [ker 9] ¥ 2 since the only normal

subgroup of order 2 in D4 is contained in the cyclic

2 4 -l

subgroup of order 4 . D4 = <a = b = l,aba =

and there are three alternatives: (1) ker e = D4 ,

(2) ker e = <b> , (3) ker e = <a,b2> . Alternative

(3) is impossible since this group contains no cyclic

subgroup of order 20 so two possibilities remain:

(l) I‘ = C5 9 D4 and (2) I‘ = D20 . In (1),

D4 4 T , so there exists an abelian subfield M/Q

of HCF(K)/Q of degree 5 . But M/Q must contain

a prime of ramification index 5 over Q contra-

dicting the fact that HCF(K)/K is unramified. Thus

2 20 -1

we finally obtain that F = D20 = <x = y = l, xyx

-l

>
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. -l -1 -2

Now [F'] = 10 Since xyx y = y has order

10 so that GSF(K)/Q has degree 4 . The only

normal subgroup of F properly contained in F' is

c5 . but |z(1“/c5) | = 2 , so ZCF(K) = GSF(K) = Q(¢C449,i)

as can be shown. We have the lattice of fields

 

 

 
 

HCF(K) 1

lo

egg/4449.1) = GSF(K) = ZCF(K) — D'zo = [Czo'D 20]

2 l
05/4149) = K c20

2 |
Q D20

Now take K = Q(v/:ZZ9,i) . In this case

h(K) = 10 and the group-field structure is the same

as before. We note GSF(K) = K and since

]Z(D4)l = 2 , ZCF(K)/K has degree 2 . It can

be shown that ZCF(K) = K(va) where g is a funda-

mental unit of Q(v/ZZ§) , giving the lattice of

fields:

 

HCF(K) l

ZCF(K) = K(\/—§I)_C5 = [ClO'DZO]

GSF(K) = K = Q(V’-44 ,1) D'20 = C10

Q D20

 

 



CHAPTER II

GENUS FIELDS

Let K be an algebraic number field and GSF(K) be

its genus field. In this chapter I give a construction of

GSF(K) when K/Q is normal and determine a formula for

the genus number of K,

g(K) = [GSF (K) :K].

In addition, the genus field of a non-normal extension is

discussed briefly.

In order to understand this construction, it is necessary

to extend our knowledge of the way a rational prime ramifies

in a normal extension K/Q, so we develop

§l More Hilbert Theory

Throughout this section K/Q is a normal extension

with galois group G and ring of integers S. If T is

a prime ideal of K, then e denotes the ramification index

of T over Q, f denotes the degree of T over Q,

Z(T) denotes the decomposition group of T over Q and

T(T) denotes the inertia group of T over Q.

15
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Definition A: The subgroup Vn(T) of T(T) defined

n+1 .

by Vn(T) = [O 6 G]O(x) E x mod T for all x in S}

is called the nth ramification group of T over Q.
 

As is well known, the higher ramification groups of

T over Q form a finite strictly decreasing normal series,

UWDTW)D%W)D~-DL

Definition B: The sequence of groups

G 3 z D T 3 V1 3 --- D l

is called the long Hilbert sequence of T over Q.
 

As is well known,

Result I: T(T)/V1(T) is cyclic with

order dividing pf-l. Vi(T)/Vi+l(T) are elementary

abelian p-groups where (p) = T n Q.

00

Note that e = Z)(V.:V. ).

O

For abelian extensions, there is the not so well known

delicate result of Speiser [22].
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Result II: If Z(T) is abelian, then

[T(T):V1(®)]\p-l-

If (p,e) = l, T is said to be tamely ramified and it

is clear that

V1(T) = V2(T) = --- = 1.

Thus in this case Results I and II become

Result III: If T is tamely ramified over Q,

T(T) is cyclic and ]T(T)]‘pf-1. Furthermore if

Z(T) is abelian, then IT(T)]'p-l.

If we localize at a prime T of K, then E(T)‘B = KT

becomes the decomposition field of T and the galois group

of KT/Qp 3(T) is Z(T). The long Hilbert sequence for

/ . T/Qp

K.13 Qp is

Z 3 T D‘vl D --- = l

and all global results are also local results.

§2 Construction of the Genus Field

Recall that the genus field GSF(K) of an algebraic

number field K is the maximal unramified extension of K
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of the form AK where A/Q is a finite abelian extension

and the genus number of K, g(K) = [GSF(K):K].

The genus field and consequently the genus number of

K will be determined in steps when (A) K/Q is abelian,

(B) K/Q is non-abelian, and then when (C) K/Q is non-

normal.

(A) If K/Q is abelian, GSF(K) becomes the maximal

unramified extension of K which is abelian over Q. As it

turns out, it suffices to consider abelian extensions of

degree pa because of the following

Lemma A: If Kl/Q and KZ/Q are finite

and normal, then GSF(KlKZ) 2 GSF(K1)'GSF(K2).

239g: GSF(KlKZ)

l
/:§F(K1)GSF(K2)

\
GSF(K1)K2 /GSF(K2)K1

111Kl = GSF (K1) K1K2 GSF(KZ) = A2K2

/

K

1 2

\

\ / \

\/
Q
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By tracing through this Artin diagram applying the results

(1) M/N unramified = MK/NK is unramified

(2) M/k, N/k abelian (unramified) =MN/k is

abelian (unramified),

we see that A1A2K1K2 = GSF(K1)'GSF(K2) lS unramified over

K1K2 and therefore is contained in the maximal unramified

extension of Kle of the form AKlK2 where A/Q is abelian.

Consequently let K/Q be abelian of degree pa. We

show that GSF(K) is a certain subfield of the minimal

cyclotomic field containing K guaranteed by the famous

Kronecker-weber Theorem: Every abelian extension

of Q is contained in a cyclotomic field.

Specifically I prove,

Proposition: Let K/Q be abelian of degree pa
 

with finite ramified primes {pj]:=l' p = p5.

having ramification indices (e. i=1 over Q.

3

Then GSF(K) is the inertia field of p0° in

s

[1 Lj over K where p is any one of the

j=1 °°
infinite primes of K and where Lj is the

subfield of Q(gp ) of degree ej over Q,

j

1 3.3 S s-l, and LS is the subfield of Q(g Y+1)

of degree pY over Q where eS = pY if p

is odd: or either Q(g Y+l) or the maximal real

2
. _ Y . _

subfield of Q(C2(42)‘where eS — 2 , if p — 2.
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Moreover

s

H e

.=1 5

g(K) = 3—

p05
Q

where

s

2 if p ramifies in n L./K
a: .‘l j

j—

5 =

1 otherwise

5

We observe that the Proposition implies that p0] H ej.

j=1

As well as being a step in the proof)this fact is of independent

interest, so we state it as

Lemma B: If K/Q is abelian of degree n with

finite ramified primes [pj): having ramification

indices [ej}: , then

0 mod n.

ll
:
2
1
m

(
D

Il
l

1 3

Lemma B can then be used to show equality holds in Lemma A.

By putting everything together we will obtain the main

Theorem 1: Let K/Q be abelian of degree

m a.

n = n qil with finite ramified primes {pj}:=l

i=1



having ram

where K =

Moreover

where 6

a:

21

ification indices [ej

m

GSF(K) = n GSF(K.)
. i

i=1

m

H K, and [K.:Q] =

i=1 1 l

s

H ej

n6
:9

2 if 5 = 2 for

I 1 otherwise

Now for the proofs.

PROOF (Lemma B): The inertia fields of

s

I. over Then

3 1 Q'

(7,.

l

q . o

l

the prime divisors

in K of any ramified prime in Q are conjugate. Thus if

K/Q is abelian, the inertia fields of these divisors are

equal, so we speak of the inertia field of p.

K Let J, denote the inertia field of pl so that

l e
1 . . .

Tl [K.J1] — e1. Let 45 be the inertia field of p2

I

J2 e2 45 and define recursively Jj as the inertia field

I

: of . in J. settin e! = J.:J. . Since

~ P3 3-1' 9 J [ 3 3‘1]

there are no unramified extensions of Q by the

I

Q Dedekind-Minkowski Theorem, Js = Q so that

s

H e! a 0 mod n. But e{]e. for all j, so

j=1 J 3

in



22

s

H e. E 0 mod n completing the proof.

PROOF: (Proposition) The portions of this proof which are

identical with the steps in Speiser's [22] proof of the

Kronecker-Weber Theorem will only be sketched. For an

elementary proof of the Kronecker—Weber Theorem see

Zassenhaus [26].

By Result III (Speiser), eIIpl-l. Now Q(gp ) contains

1

a unique subfield of degree el which we will denote by L

1

Let M1 be the inertia field of pl in the abelian extension

KLl/Q, an extension of pth power degree.

K M1 L1

d /////

P\\\\ I el

Q

Because pl is tamely ramified in KLl' its inertia

group is a cyclic subgroup of G(KLl/Q) and of order divisible

by e1. But by Galois theory, G(KLl/Q) is isomorphic to

a subgroup of the external direct product

G(K/Q) s G(Ll/Q) .

an abelian p—group together with a cyclic p-group of order

e1. Consequently
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el = KLl/Ml

  

that is the index 9; ramification 9f, pl in KLl/Q is still

e1! Moreover since pl is totally ramified in L1 yet

unramified in M1,

and so

[M1L1=Q] = [MleIILl=Q] = [Ml=Q]el = [Klee]

that is

KL = M L

and so a fortiori

K c MlLl°

Thus Ml/Q is abelian of degree p6 with finite ramified

primes p2,p3,...,ps where ej = ej(Ml/Q) for j = 2,3,...,s.

Because pj is unramified in Ll/Q, it is also unramified

in LlMl/Ml and KLl/K. This caistruction, then, effectively

isolates the ramification of pl in the field Ll' while

not disturbing the ramification of the other primes.

Applying this argument s-2 more times, we obtain a

sequence of fields Ll'L2'°°°'Ls-l where Lj is the subfield

th

of the pj roots of unity Q(gp ) of degree ej over Q.

j

Then K c M L ...L where M = M is abelian of

5-1 1 s-l s-l

degree pY over Q where only p and possibly the infinite

prime ramify.
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As usual the cases p odd and p = 2 must be considered

separately with p = 2 being the more difficult.

(1) When p is odd, M turns out to be the subfield

of Q(Q Y+1) of degree pY over Q. Setting M = LS, we

5

see that L = H Lj is an abelian extension of Q of degree

i=15

H e, since Li H Lj = Q for all i,j as different primes

'_ J
j—l

ramify totally in each Li' Furthermore L/K is unramified

s

}l

and ej(L/Q) = ej(K/Q) for all j. As p is odd, the

since [pj are the only finite primes ramifying in L/Q

infinite prime is also unramified since normal extensions of

odd degree are real. Thus L c:GSF(K) implying

s s

H e.][GSF(K):Q]. But by Lemma B, [GSF(K):Q]] H e. so

j=1 3 j=1 3

GSF(K) = L and the description of GSF(K) is valid. Since

IGSF(K):QI

[K:Q] '

thus completing the proof of the Proposition when p is odd.

[GSF(K):K] = the formula for g(K) is also clear

(2) When p = 2, M = L is either Q(g ) on the

S 2y+1

maximal real subfield of Q(g Y+2) if y 2_2. If y = 2,

2

then LS is Q(i), Q(VWZ), or Q(VLZ). Arguing as in (l),

s s

we see that L = H Lj is abelian over Q. [L:Q] = H e., and

j=l j=1

L/K is unramified at all finite primes. If the infinite

prime (in Q) ramifies in K, then L/K is unramified and

L = GSF(K) as in (1). If however the infinite primes of

K ramify in L, then GSF(K) is their inertia field in L.

The description of GSF(K) and the validity of the formula
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for g(K) are now clear in this case, so the proof of the

Proposition is complete.

The proof of Theorem 1 now follows trivially from the

Proposition and the two lemmas.

 

Example 1. K = Q(gm) —-i> GSF(K) = K. Since

Q(gm) = n Q(g 0) where m = n pa and p is

pIm p pIm

the only ramified prime in Q(Q a) and p ramifies

P

totally. Thus GSF(Q(g a)) = Q(Q a) and the conclusion

P P

follows from Theorem 1.

Example 2. K = Q(V/BO), 2,3,5 are finite ramified

primes, p is unramified in K.

m

Ste 1 . L1 = Q(V/S) since 5 e 1 mod 4

so M1 = Q(V/6).

Qgflm.¢%) ow%,¢%m

/|\ /|\
e(./ 30) Q(\/ 6) Q(\/ 5) Q(J6) QM —2) e(\/ -3)

\\\\ | //// \\\\ l ///

Q a

(l) (2)

Ste 2 . L2 = Q(V/-3) since 3 a 3 mod 4 so

M2 = Q(V/-2). Thus L = Q(v/3o. V/6, V/-3). p
a:
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ramifies in L/K, so GSF(K) = Q(V/BO, V/6) = Q(V/S, V/6)

which is HCF(K) since h(K) = 2.

Example 3. K = Q(\/66). 2.3.11 are the finite
 

ramified primes, p is unramified in K. Analogous

Q

reasoning to Example 2 shows L = Q(v/66, V/-3, V/-ll)

so GSF(K) = Q(./66. ./33) = Q(x/Z. ./33).

Example 4. K = Q(\/ 231). 2.3.7.11 are the finite

ramified primes. pan is unramified in K. Analogous

reasoning shows L = Q(V/23l, V/-3, v/'7v V/-ll) so

GSF(K) = «ah/231, \/21, ./33) = Q(\/21. (M3. ¢11) =

Q(JB. ./7. ./11).
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(B) To recapitulate. the genus field of an abelian extension

K/Q with finite ramified primes [pj}i with ramification

indices [ej1i is determined by constructing an abelian exten-

sion .31 Lj/Q having the same ramification as K/Q at all

finitg—primes and then making allowance for the infinite primes.

In fact Lj is the compositum of the subfield of Q(gp ) of

3

degree e5 over Q and the subfield of Q(gp aj+1) of degree

a. J

p.3 over Q (with suitable modifications for p = 2) where
J aj

e. = e1 . , t, . = 1.

J 3P3 (e3 p3)

To determine the genus field of K where K/Q is not

necessarily abelian, we seek to construct a maximal abelian

extension A/Q such that AK/K is unramified. This extension

should have the same "abelian ramification" as K/Q, an idea

I will now make precise.

Let pj denote any finite ramified prime of the non-

abelian extension K/Q and let Tl resp. Tb denote any

prime divisor of pj in K resp. A. Then ej is the

ramification index of pj in the local field K . Let ej

”1

denote the ramification index of pj in A .

$2

Kh Ah

/ \

$l\\\ ///'AT2

KBI1A

1 T2

Qp

K



28

Then the "abelian ramification" e3 of pj in K is

the ramification index of pj in K H A /Qp, that is the

”l ”2

ramification index of p. in the maximal abelian subfield of

a.

- 3 _
K /Q . Now if e1 = e? . (e? .) — 1. then e? .-l

‘31 p 3 3p] ' J'pJ J|p3

applying the local version of Result II. Let then Lj denote

the compositum of the subfield of Q(Qp ) of degree e3 over

j a.

Q and the subfield of Q(gp aj+l) of degree pjJ over Q

j

(or if pj = 2, either Q(Q2a+l) or the maximal real subfield

s

of Q(Q2a+2) as the case may be). If L = H Lj, LK/K is

j=l

unramified at all finite primes and it is again a question of

the ramification of the infinite primes of K in LK/K. Thus

GSF(K) is the inertia field of the infinite primes of K

in LK/K so GSF(K) has the form AK where A = L if K is

imaginary and A is the inertia field of the infinite rational

prime in L if K is real.

We observe that A contains K0 and GSF(KO) where

KO/Q is the maximal abelian subfield of K/Q and that

A n K = KO. Thus

l
l
z
n
m

e!

900 = [GSF(K):K] = ——'—‘ = . - .
6m [KO.Q]6co [KO.Q]5m

since Lj n Li = Q for all i,j since different primes ramify

totally in each extension.
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Thus we have constructed the genus field of any normal

extension K/Q. We summarize this construction in the following

theorem which, of course, contains Theorem 1 as a special case.

Theorem 2: Let K/Q be a normal extension with finite

ramified primes [pj}:_l. Let e5 denote the rami-

fication index of pj in the maximal abelian subfield

C1 .

of the local field K /Q and let e[ = e?p. J

Bj P 3 J 3

where (e3,pj)= 1. Then GSF(K) is the inertia

field of the infinite primes ofI(in LK/K where

s

L = H L. with L. being the compositum of the

j=1 3 J

subfield of Q(Cp )/Q of degree e3 and the subfield

j a.

of Q(gqu+1)/Q of degree pj J (or if pj = 2

3

either Q(g2a+l) or the maximal real subfield of

Q(C2d+2))o

Moreover e'

II
:
1
0
)

l
—
"

g(K) = ,
[KO.Q]6co
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where KO/Q is maximal abelian subfield of K/Q

2 if the infinite primes of K ramify LK/K

and 5 =

m 1 otherwise

Example 5: Let K be the Kummer extension
 

K = Q(Q/a, cn), n > 2, a ¥‘: 1 is square-free and odd.

The primes divisors of lcm(a,n) are the finite ramified

primes of K. Suppose pl.p2.....pm divide n and pm+1....,pS

. . a . _
diVide TETHY° Then Lj c:Q(gn) for j — l,2,...,m. For

Pm+1.....ps. Lj is the subfield of Q(gp )/Q of degree

(n,pj-1), since the maximal abelian subfield of the local

. n . t

field Qp(\/a, gn) over Qp is Qp(./a) where t = (n,pj-l)

s

and p. is totally ramified in Q (E/a). Then L = H L. so

3 p j=m+l j

GSF(K) = K(9m+1....,98) where ej is a primitive element for

Lj/Q, j = m+1,...,s. Since K0 = Q(gn),

 

s m s

H e! H e! o n e5 3

'=1 j=l j=m+1

K = - = 1 . , .-1 = , -1 .9( ) JERRY—I ¢Kn) j=£+l(n P ) g (n P )

p a,n

(C) The genus field, unlike the central class field,

is defined for non-normal extensions. In this case we Obtain

Theorem 3: If K/Q is a non-normal algebraic number
 

field and K/Q is its normal closure, then GSF(K)

is the maximal unramified extension of K contained

in AK where GSF(K) = AK.
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PROOF: A prime unramified in K is unramified in K, so

the same primes ramify in both K and K. Thus

GSF(K) 9 AK and the conclusion is immediate.

I have not investigated conditions for equality of

GSF(K) and AK except for the following

Example 6: K = Q(nV/a), (a,n) = l, a ¥ i l is square-
 

free and odd

GSF(K) = AK

/' ‘ /.K

   

)3

1, of an are the finite ramifiedThe prime divisors [p.

primes of K. Let [pj): denote divisors of a and

)3

. denote divisors of n.

j t+l
{p

_ _ t _

From Example 5. GSF(K) = AK = ( n Lj)K where Lj/Q

i=1

is the subfield of Q(gp )/Q of degree (n,pj-l). Now

3 _ _ _

pj,j = l,2,...,t, is unramified in K/K. Since AK/K is also

unramified, prime divisors of pj in K are unramified

AK/K. For ,k=t+l,...,s, is unramified in A and

Pk pk
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hence unramified in AK/K. Therefore AK/K is unramified and

by Theorem 3 GSF(K) = AK = K(el,...,9t) where ej is a

primitive element for Lj.

To my knowledge the connection between the genus field

and the Kronecker-Weber Theorem has not been noted in literature.

Furuta [8] has computed a formula for a general genus number

g(K/k), where k is any algebraic number field, using class

field theory and idele class groups. Special cases of the genus

number formula have been proved in similar fashion by Yokoi [24]

and Iyanga-Tamagawa [l6]. Hasse [12] and Leopoldt [19] have

discussed genus fields using character theory. Frahlich [4]

has computed the genus number using rational congruence groups.

It appears that he is responsible for the definition of genus

field used here. For cyclic extensions of prime degree,

Herz [13] has constructed the genus field using a different

technique. Historically the primary interest has been in genus

fields of quadratic fields looked at in terms of quadratic forms.



CHAPTER III

NORM GROUPS

1. Recall that for K/k a finite separable extension,

k a number field, the (relative)pp£m NK/k(T) of a prime

ideal T in K is defined to be the ideal pf in k

where p = T O k is the prime ideal of k lying below

T and f is the degree of T over k . This map is

extended to IK , the group of fractional ideals of K ,

by multiplicavity. NK/Q(T) then is a principal ideal

in Z generated by its least positive integral element,

f

P , where p is the rational prime lying below T in

. f .

Q . The integer P is called the absolute norm of the
 

prime ideal T and, in deference to the analysts, will

be denoted by HTHK , or simply “T” where only one

field is being discussed. An alternative characterization

of HTHK is the order of the residue class ring S/T

where S is the ring of integers of K .

Since the absolute norm inherits the multiplicative

property, fl 4 ”mHK is a group homomorphism from I

K

into the multiplicative group of positive rationals.

33
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The image group HIKH is therefore generated by the

absolute norms of (integral) prime ideals of K

Similarly if HK denotes the subgroup of principal

fractional ideals, then the homomorphic image HHKH

is generated by the absolute norms of the principal integral

ideals of K .

In this chapter, I will investigate necessary and

sufficient conditions for HIKH = HHKH where K/Q is

normal.

2. Let K be a finite galois extension of Q with

galois group G of order n and ideal class group O

of order h . We first check that HIKH and HHKH

uniquely determine K by proving the

Proposition: Assume K/Q and L/Q are normal.

Then

(1) if HIKH ”IL” , then K = L and

L .(2) if IIHKII HHLH . then K

This Proposition is a consequence of:

Bauer's Theorem (1916) [ 1]: Let K/k be normal

and L/k be finite. Let SK denote the set of

all prime ideals of k which split completely in K

Then SK c SL , if and only if L c K .
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Proof: Since a prime splitting completely in L also

splits completely in L , the galois closure of L ,

we may assume that L/k is also normal.

Since a prime ideal splitting completely

in two extensions of a field k also

.///KL\\\\

K L

.\\\\ ,//// splits completely in their compositum

k

SKL = SK fl SL SO that SKL = SK

For a normal extension M/k , the Dirichlet density of

1 1 l

M [M:k] ' thus [K:k] = [KL:k]

 
 

or KL = K implying

Note that Bauer's Theorem is true under the weaker

hypothesis that the Dirichlet density of SK - SL is zero.

. . . f

Proof of PropOSition: (l) HIKH is generated by all p

where f is the degree of each prime divisor of p in K

Therefore p E HIKH if and only if ;p splits completely

in K . Thus if HIKH = “IL“ then SK = SL . so K = L

follows by letting k = Q in Bauer's Theorem. (2) If

K T L , then by Bauer's Theorem there exists rational

prime p such that p E S and p $ SL . For T ,
K

a prime divisor of p in K , there exists an integral

ideal m in K with (T,fl) = 1 such that
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f

1 mod HK . Thus HToflHK = pHWHK E HHKH . But p ,T'3

f > 1 , is the minimal power of p which could occur as a

factor of an integer in HHLH since L/Q is normal. Thus

K D L . Exchanging the roles of K and L yields the

 

proposition.

To prove “I” = ”H“ then, it suffices to prove pf E ”H”

for every rational prime p . This observation leads trivially

to one class of fields for which “I“ = “H” , namely

Theorem I: If (h,n) = l , then “I“ = ”H“ whether

or not K/Q is normal. (h denotes the class number

of K .)

Proof: Let p denote an arbitrary positive rational prime

and T a prime divisor of p in K of degree f . Since

(h,n) = l , there exist positive integers x and y such

hx hx fhx
f

that hx - ny = 1. Then “2—E5'6 H and H-ELE;M = nfy = P

(p) (p) p

completing the proof.

This proof, however, sheds no light on the general

problem. ”I“ = “H” means that for every rational prime

p : there exists in K a prime divisor T of p ,

a principal ideal (B) , and an ideal u , such that
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T = (B)u where HUHK = l and hence HTHK = “(B)H}(= Pf

Such ideals u will be called unitary ideals, that is

Definition: An ideal u in a finite extension

K/Q for which HuHK = 1 is called a unitary

ideal

Since the absolute norm is multiplicative, the

unitary ideals form a subgroup of the group of fractional

ideals IK which will be denoted by UK . The subgroup

UK/HK of the class group CK w111 be denoted by uK .

subscripts will be omitted when the meaning is clear.

The problem then can be reformulated as:

(1) For which finite galois extensions K/Q does

IK = HKUK ? or

(2) For which finite galois extensions K/Q does CK = UK ?

I will consider formulation (2) since it is a problem

involving finite, rather than infinite, groups.

Now U is an infinite abelian group generated by

unitary ideals of the form T-10(T) where T is a prime

divisor of p in K . Thus, Since prime ideals are

equidistributed among all ideal classes, u is a finite

abelian group generated by unitary ideal classes of the
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form c-lo(c) where c ranges over 0 and G ranges

over G .

The converse of Theorem 1 is true for quadratic fields

K , for primes splitting completely in K factor as

(p) = T T so that Tan a (T—l)2 mod H . Thus for

12 12 1

-1 -l . . .

every c 6 6.. c 0(c) = (c )2 implying u is generated

by the squares of elements of 6.. But A2 = A only in

abelian groups A of odd order, hence u = c. only when

h is odd.

Sadly, however, the converse is false as evidenced in

the following interesting

3 —— . . .

Example 1. K = Q(~/ll, w) , w a primitive cube root of unity.

If k/Q is a non-normal cubic extension and k is

the normal closure of k , then h(k) is either h2(k) or

h2(k)/3 (cf. [14]). Since h(Q({/Il)) = 2 , we have

h(K) = 4 . Let 0 denote an automorphism in G(K/Q) = S3

of order 3 . Then as C. is C4 (cyclic group of order 4 )

or V4 (Klein four group), 0 either fixes every element

in c. or permutes the three non-identity elements. The

latter alternative insures that u = c. as the map c 4 c-lo(c)

is an isomorphism. The impossibility of the former is
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guaranteed by

Lemma B: Let K/k be galois of degree m ,

(p,m) = l . Then the p-class group of k

coincides with the p-class group of K iff

G(K/k) fixes the p—class group of K

elementwise.

For a proof of Lemma B, cf. [25]. In this

example let K = Q(i/Il,w) , k = Q(w) , p:= 2 and

hence |G(K/k)] = 3 . Since h(Q(w)) = 1 , the 2-class

group of k cannot coincide with that of K .

To reiterate we have an example of a galois field K

where (h,n) = 2 , yet ”I” = ”H“ .

Remark: It is worth noting that if K/Q is a

normal extension of degree n and (hK,n) = 1 ,

then at least one prime divisor of n must divide

[Aut C] .

Proof: If not, then every 0 E G(K/Q) must fix all

elements in c. so that u = 1 contradicting Theorem 1.

This means, for example, that there are no normal

extensions K/Q of degree p with hK = q if p X (q-l) .
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Examination of class number tables shows that normal

extensions where (h,n) = 1 occur far less frequently than

those where (h,n) # 1. This seems attributable to the

limited number of ways G(K/Q) can be embedded in Aut G

for (h,n) = l to be true.

3. The notation remains in effect for the remainder

of this chapter: K/Q is a finite normal extension of degree

n with galois group G, ideal class group C, class number h,

unitary ideal group u, genus field GSF(K), Hilbert class

field HCF(K), and central class field ZCF(K).

We first show how our problem of when HIKH = HHKH fits

into the general setting of Chapter 1. Recall the Artin diagram

HCF(K) — 1

I I
ZCF(K) —- [0.1“]

GSl!‘(K) —-—— 0'0 1"

I I

K ————- C

I I
Q --—- P

Lemma C: u = [a,P]. Thus in the galois correspondence,

the unitary group and the central class field correspond!
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PROOF: By the Artin Reciprocity Theorem, C. is canonically

isomorphic to G(HCF(K)/K) under the map c F—> (EQEéELAK)

where T is any prime ideal in c since

(flgEfileK> = <§Q§é§L15> ¢=é m a 8 mod H

for any integral ideals fl and 8. Since F/C E G, for

any 0 E G we have 0 = yc for some Y E F, Y cut back

to K is O. But

any prime ideal T in K so that

C-lO(c) c-1(yc) h_> C-1<HCFig)gK>

_ , - -1 __ C lYKHCFgQéK>Y l = C WY 1

completing the proof.

Thus the following statements are equivalent:

NH”

(2) UH = I

(1) IIIII

(3) u = c

(4) 6:001“ =[o.1‘]

(5) K = GSF(K) = ZCF(K).
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4. Sufficient Conditions

In this section II give some sufficient conditions for

u = Cw By Theorem I, (h,n) = l is always a sufficient

condition.~

When F is a semi-direct product of G and a, we

show F' n G): u and hence, in this situation, the condition

GSF(K) = K is also sufficient.

Lemma D: If F is a semi-direct product of G and

c. then I" no: u.

PRQQE: It suffices to show F' n c): u. If (O,C) denotes

an arbitrary element in T. a semi-direct product of G and

Cu then multiplication is defined by (O,c)(T.d) = (OToT(C)d)

where T represents both an element of G and its image in

Aut c. Any element in P' n c. then has the form

x = (O,c)(T,d)(O-l,O-l(c-l))(T-l,T-l(d-1)) where O and T

commute. Thus

(ow.w(c)d>(o'l.o‘l<c'1>)(T‘l.w‘l<d‘l))X

(Tog-1(T(C)d)O-1(C-l))(T-lcT—1(d—l))

= (T.o”1(c"lf<c))o”l<d>)(T‘1.T‘1<d“l))

l

(1o(0T)-1(C-1T(C)) T’ (d‘lo'l(d))

which belongs to u thus completing the proof.
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From the lemma easily follows

Theorem II: If r is a semi-direct product of G

and c. and GSF(K) = K, then u = 6.

Example 2: K = Q(i/ll,w).

Here G = S3, 6': V4. Since Aut V4 = S3, F is

a semi—direct product. GSF(K) = K since 11 remains

prime in Q(w), so u = a. for this field.

Generalizing from Example 2, we make the sometimes useful

Remark: If Aut G, is non-trivial and is isomorphic

to a direct factor of G, then P is a semi-direct

product of G and a.

No other general sufficient conditions seems possible,

so we explore some special cases.

When K/Q is cyclic the necessary condition GSF(K) = K

is also sufficient as shown by

Theorem III: If K/Q is cyclic, then

ZCF(K) = GSF(K).

PROOF: We show that if T/G' is cyclic, then F/[C.F] is

abelian: whence [c.r] = F' and the conclusion is clear.

So suppose F/c. is cyclic. Then for every Yl' y2 in F,
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k k . .

yzc — ylc so that y2 — czylcl. Now F/[G,P] is abelian

. -l -l -
iff y2 Y1 YZYl belongs to [6,?) for all yl,y2 in F-

-1 -1 -l -k -1 -l k -l -k -l k -l -k k
But = c c

Y2 Y1 Y2Y1 1 Y1 Cl Yl C2 y1Y1 Y1 C2Y1C1Yl2 Y1 CZYlClYl ‘

-1 -l -k k

= c Y1 cy] ‘where c = c . Now c E C. since 016 P

and the proof is complete.

5. Necessary conditions

The most obvious necessary condition for u = c. is

GSF(K) = K. In view of the construction of genus fields in

Chapter 2 and the Kronecker-Weber Theorem, we have

Theorem IV: If K/Q is abelian, then

GSF(K) = K é=€> K = H Kj

where either

a.

(l) K. : Q(g a.) for any prime power p.3

3 Pj J J

or

(2) Kj is a real field of degree 2a over Q

which has exactly two ramified primes ql, q2

such that the subfield of the cyclotomic

field of degree e(q2) over Q where only

q2 ramifies is imaginary

and Ki n Kj = Q for all i,j.

PROOF: Contemplation
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Examples of fields of type (2) are Q(V/pq), p = 2 or

p a 3 mod 4, q a 3 mod 4 and Q(V/p, V/q), p = 2 or

p a 1 mod 4, q a 3 mod 4, where p > 0, q > O in both cases.

Example 3. Q(Qm) = H Q(g ) where m = H pa.
 

pIm p” pIm

Example 4. Quadratic fields K/Q for which GSF(K) = K

are

(l) K=Q(\/p). palmod4

(2) K = Q(v/pq), p a q a 3 mod 4. p > 0. q > O

(3) K = Q(v/ZP), p a 3 mod 4, p > O.

The construction in (2), for instance, is

L1 = Q(v/-p) since p E 3 mod 4, so M1 = Q(v/-q)

Q(V/qu v/TP)

/ ] \

Q(x/ Pq) Q(J -q) Q(\/ 19)

\I/

Thus L = Q(V’pq, v/—p) but the infinite primes of

K ramify in L/K, and their inertia field is Q(\/pq).

Since u = c.=€> (h,n) = 1 for quadratic fields, we

remark that the fields of (l), (2), and (3) are precisely

the quadratic fields with odd class number.
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It is clear, then, how to construct abelian fields K/Q

for which GSF(K) = K. However given an arbitrary abelian

field L/Q, much computation may be required to determine

whether or not GSF(L) = L.

The non-abelian case seems even more intractible. One

obvious criterion which follows from the construction of

genus fields for non-abelian fields (Theorem 2, Chapter 2) is

Theorem V: Suppose K/Q is non-abelian and KO/Q

is the maximal abelian subfield of K/Q. Then

GSF K = K 4:; GSF K ) = K and e! = e.(K /Q)( ) ( O O 3 J O

for all ramified primes [pj}:_l of K where

e! is the ramification index of pj in the

maximal abelian subfield of K /Q .

’“j pj

The application of this criterion can, again, lead to

extensive computation.

9 9

Example 5: K1 — Q( V/s. g9). K2 — Q( V/7. g9).

[K1:Q] = [K2:Q] = 54. Now KO = Q(gg) in both cases

and GSF(KO) = KO. By the formula for g(K) of

Example 5, Chapter 2, we see g(Kl) = (9,4) = 1 and

g(KZ) = (9,6) = 3. Thus GSF(Kl) = Kl while

'i ) since e' = 3 and

c7 7

Q(g7 +‘i ) is the subfield of Q(g7) of degree 3 over Q.

7

GSF(KZ) = K2(g7 +
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Salvaging what we can, we state the sometimes useful

Corollary: Suppose K/Q is non-abelian and KO/Q

is its maximal abelian subfield. Then

GSF(K) = K 4:? GSF(KO) = K0 and every prime ramifying

in K either ramifies totally or remains prime

in K .

O

PROOF: In both cases, for any ramified prime p,

Kfi/Qp = K/Q so e; = ep(KO/o).

Example 6. K Q(Pv’a, gp), p odd prime, a square-free

and odd. with (a,p) = l.

GSF(K) = K é=§ every prime factor of a is a primitive

root modulo p.

The case a = 11, p = 3 is Example 2.

It appears difficult to determine when GSF(K) = ZCF(K)

for an arbitrary normal extension K/Q. But we do note that

[ZCF(K):GSF(K)] is divisible by only primes dividing n, for

Lemma E: Let c be any ideal class in c. If

(|c|, n) = 1, then c 6 u.

PROOF: Let T be any prime divisor of p of degree 1 over

Q in c. Since (]c], n) = 1, there exist positive integers

|c‘x

x and y such that Ic]x - ny = -1. Then T e 2L———9 mod H and

(pi,



48

fl
-

O

lflL—-_‘H = p]c]x+l ny = 1. So c E u completing the proof.
Y .

(p)

We now turn to p—extensions and Show that (h,p) = l

is a necessary as well as sufficient condition.

Theorem VI: If K/Q has degree pa, then

U=G<—_—> (hop) =1

2399:: Only (=€fl need be proved. Suppose p]h. Let

HCFp(K) denote the p-class field of K, that is the field

corresponding to the Sylow p-subgroup of G. HCFP(K)/Q is

then normal and we let Pp = G(HCFp(K)/Q). Thus we have

the Artin diagram

 

 

HCF K 1. p( )

K = GSF(K) = ZCF(K) -——— c.= [c.rp] = 6.0 T;

Q Pp

But if c.= [c.r]. the descending central series of Pp

must break off at a. contradicting the nilpotence of pp.

Thus th and the theorem is proved.

Frohlich [ 7] has determined those abelian extensions

K/Q of degree pa which have (h,p) = 1. Though Frohlich's
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theorem is expressed in a way I cannot completely interpret,

the gist of the theorem seems to be:

If K/Q is abelian of degree pa, p odd, then

(h,p) = 1 if and only if

(1) K has exactly one ramified prime.

(2) K = K1 K2 where each Ki has exactly one ramified

prime one of which remains prime in the other

extension.

(3) K = KleK3 where each Ki has exactly one ramified

prime and ( ?)

Every extension K/Q with four or more ramified primes has

(h.P) > 1-

Conditions (1) and (2) follow from

Lemma F: Suppose K/k is normal with exactly one

ramified prime. If p]h(K), then p|h(k).

2399:: Let T be a prime divisor of the ramified

K HCFP(K) prime of k in HCFp(K) and let T(T)

\ i be its inertia group. Then since G(HCFp(K)/k)

is a p-group, T(T) is contained in a maximal

normal subgroup N of G(HCFp(K)/k) of

index p. It is easy to see that the inertia groups of the

other prime divisors of the ramified prime are also contained
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in N. Let F be the intermediate field of HCFp(K)/k

corresponding to N. Then F is an abelian, unramified

extension of degree p over k, and the theorem follows.

In (1), if p]h(K), then p|h(Q) = 1, a contradiction.

In (2), suppose q1 ramifies in K, and remains prime

in K2. Then Kl/KZ has exactly one ramified prime, so if

p|h(Kl), then p|h(K2) contradicting (1).

For (3) I have been unable to construct an example. I

suspect the condition is vacuous since if K = K1K2K3 then

K contains a subfield L such that more than one prime

ramifies in L and K/L is not cyclic. Thus g + l for

all primes in L contradicting the necessary condition that

9 = l for the ramified primes in order for the method of (l)

and (2) to apply.

Since the direct product of nilpotent groups is nilpotent,

one attempts to extend Theorem VI to the compositum of

O'..

l

p-extensions. However if K = HKi and [Ki : Q] = pi , then

HCF(K) D nHCF(Ki) where equality seldom obtains. Thus a

general necessary and sufficient condition for an arbitrary

extension K/Q seems hopeless. Summarizing those fields

for which a necessary and sufficient condition does exist,

we note for
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p-extensions: u c.<:=%> (h,p) = l

cyclic extensions: u G <=> GSF(K)

extensions where

r is semi-direct

product of G

and Ca u G €==€> GSF(K)



CHAPTER IV

THE BURGESS PROBLEM

In this chapter we examine the problem, now almost forgotten,

which prompted the investigation of the genus field and the

central class field.

Suppose r(x) isa polynomial with rational integral.

coefficients. The value group of r(x), Vr' is the

multiplicative group generated by the non-zero values of

r(x) as x ranges over the integers. There are many

unsolved problems concerning value groups of polynomials. Two

of these which were posed at the 1969 AMS Number Theory

Institute at Stony Brook, New'York are:

Problem 1: (Kenneth Stolarsky) If r(x) = x4+x3+x2+x+l

does p 6 Vr if p E 1 mod 10?

Prgplem 2: (D. A. Burgess) For any polynomial r(x)

with rational integral coefficients, does Vr consist

of all rational numbers not excluded by obvious

algebraic conditions?

We show that the answer to Problem 2, is a mild-to-emphatic

"no" depending on one's definition of "obvious". We then

52
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indicate a more reasonable problem of which Problem 1 is a

special case.

For simplicity, let r(x) E Z[x] be armnxu: irreducible

polynomial over Q and let K denote the splitting field

of r(x). Then K = Q(e) where e is a primitive element

n

for K and r(x) = iHl(x-Oi(e)) where 01 = l, 02, ..., on

are the elements of the galois group G(K/Q). For any rational

n

integer a, r(a) = H (a—Oi(e)) is within a Sign the absolute

i=1

norm of the principal ideal (a-e). Thus Vr is a subgroup

of HHK“ and HIKH. Since HIKH is generated by the rational

integers ipf where f is the degree of any prime divisor

of p in K over Q, it is clear that Vr t Q because not

every prime splits completely in K. Suppose we ask the more

plausible question: Does p 6 Vr if p splits completely

in K? We see that this, too, is clearly impossible unless

HIKH = ”HRH or CK = uK, which as we saw in Chapter 3

occurs very infrequently.

Hence we modify Problem 2 and pose the more reasonable

Problgm 3: Suppose r(x) is a monic irreducible

polynomial with rational integral coefficients and

splitting field K. If GSF(K) = ZCF(K) = K, does Vr

contain all primes p splitting completely in K

or, stronger, does Vr = HIKH?
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Since Q(QS) is the splitting field for

r(x) = x4 + x3 + x2 + x + l and primes p splitting completely

in Q(QS) are precisely those p a 1 mod 10, we see that

Problem 1 is indeed a special case of Problem 3.

As a first case we consider quadratic polynomials

r(x) = x2 - m so that K = Q(v/m). Vr can contain all

primes splitting completely in K only if h(K) is odd.

For some of those fields, the following ad hoc technique

can be used; though it cannot be generalized to fields with

degree greater than 2.

Example: r(x) = x2 - 21 so K = Q(v/Zl)

h(K) = 1 so GSF(K) = ZCF(K) = K. Only 3 and 7

2 2

ramify in K and -3 =';§—:—;l' and 7 = 13—2—gl .

5 - 21 5 — 21

5 and 17 split completely in K and

-5 = 42 - 21, -17 = 22 - 21. 2, 11, 13, and 19

remain prime in K. Thus for every prime p,

Ip] < 21 splitting completely in K, either i p

belongs to Vr' Let p1,p2,...,pn,... denote the

primes which split completely (or ramify) in K.

Then p1 = 3, p2 = 5, p3 = 7, p4 = 17, etc. Suppose

p1,...,pn_l belong the Vr for n 2_5. Then Since

pn splits completely, the congruence x2 e 21 mod pn

p -1

has a solution xO with Ixo] g n2 . Thus
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p -l

(I; )2 - 21 Zapn for some positive integer a

or

2
- —1Dn 21>n __i a

4p p '2
n n

or

P

75-8-

But every prime divisor of a splits completely

or ramifies in K and, by the induction hypothesis,

xi-Zl

belongs to V . Thus p = -——-—‘ also belongs to V

r n a r

completing the proof.

A similar technique is valid for polynomials of the form

r(x) = x2 + ax + b. We remark that Vr contains all primes

splitting completely in the splitting fields of r(x) = x2 + l

and r(x) = x2 + x + l which indicates the origin of Problem 1.

Numerical evidence supports the conjecture that all

primes splitting completely in a quadratic field K of

odd class number belong to Vr where r(x) is any quadratic

polynomial whose splitting field is K. In fact I conjecture

that for r(x) = x2 - m, each prime p splitting completely

2

in K satisfies tp = xz-m for some integers x and y.

y-m

 



CHAPTER V

IDEAL CLASS GROUPS

A classical problem of algebraic number theory is the

determination of all abelian groups which occur as ideal

class groups of algebraic number fields. While not attempting

to solve this general problem, I can show that every abelian

group occurs as a subgroup of infinitely many abelian, non-

abelian, and non-normal algebraic number fields, by showing

every abelian group 4' is isomorphic to G(GSF(K)/K) for

infinitely many number fields K. This result contains

recent ones of Madan [20], [21] and Ishida [15].

I begin by proving

Lemma: For every finite abelian p-group 9 of

exponent pe, p prime, there exist infinitely many

abelian number fields L/Q of degree pe whose ideal

class group contains a subgroup isomorphic

to 9.

n o

PROOF: Let 9 = H Pi be the decomposition of 9 into a

i=1

ei
product of cyclic subgroups with 'Pi‘ = p , ei‘g e. By

56
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Dirichlet's Theorem on the infinitude of primes in an arithmetic

progression, there exist infinitely many primes qi, qi # q.

3
e.

satisfying qi e 1 mod p 1, eO = e, i = O,l,2,...,n. Let Ki/Q

denote the unique cyclic subfield of Q(gq ) of degree

e i
' n

p 1, i=O,l,...,n. Then K = H Ki is a field for which

i=0

GSF(K) = K. We Show how to determine a subfield L/Q of

degree pe in which all the qi, i=O,l,...,n ramify with

e .

e(qi) = p 1. Then GSF(L) = K and G(GSF(L)/L) e 0.

Let now G(Ki/Q) = <0i>. i=o.1. Let Mi denote the cyclic

-1

subfield of K0 Kl/Q with G(Ml/Q) = (0001 >. Then it follows

easily that

deg Ml/Q = pe and
///¥OK1

K M]\K KOKl = MlK = MlKl .

O l////1

Q

Now q0 is unramified in Kl/Q and hence in

K1M1/QM1 = KOKl/Ml. Similarly ql is unramified in

MlKo/M1 = KOKl/Ml' thus KOKl/Ml is unramified. Applying

this construction to M1 and K2, we obtain a field Mz/Q

of degree pe where KOKle/M2 is unramified. Continuing

in this manner, we Obtain a sequence of fields M3, M4, ...,Mn

such that deg Mj/Q = pe and KOKl...Kj/Mj is unramified for

j=3,...,n.
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Then L = n is the desired field for which deg L/Q = pe

n

GSF(L) = n Ki = K and hence G(GSF(L)/L) e 9 completing

i=1

the proof.

From the Lemma we now obtain

Theorem 1: For every finite abelian group d’ of order

a and exponent m, there exist infinitely many abelian

number fields of degree m whose ideal class group

contains a subgroup isomorphic to d.

9i be the decomposition

n o

PROOF: Let m = n pil and a’=
““" = 11 i ll

:
3
5

of 4’ into direct product of its Sylow p-subgroups. For

each 9i, we obtain, by the Lemma, infinitely many abelian

fields Li/Q of degree p:i whose ideal class group has 0i

as a subgroup. Then, as (deg Li/Q, deg LjflQ) = l for all i,j,

it follows that for any set of fields L1,L2,...,Ln so obtained,

n

L = H Li is an abelian field of degree m over Q whose

i=1

ideal class group contains a subgroup isomorphic to 0. thereby

completing the proof.

The non-abelian and non-normal cases can be proved by

simply reconsidering two examples from Chapter 2. Specifically,

we have,
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Theorem 2: For every finite abelian group d’ of order

a and exponent m, there exist infinitely many non-abelian

number fields of degree m m (m) and non-normal

number fields of degree m whose ideal class group

contains a subgroup isomorphic to d.

e

PROOF: Let [prs} denote the invariants of d. Dirichlet's

Theorem again insures that there are infinitely many primes

e

I I S

qrs satisfying (qr ,m) — l and qrs = 1 mod pr ,

es+l es

1 .qrsfi mod pr for every pr For each set {quI so

determined, let K = Q(my/ H q ) and then K = K(g ) Clearly

r's rs m

K/Q is non-normal and K/Q is non-abelian of degrees m

and m T (m) respectively. Then as (m,qu-l) = prs, it

follows from Examples 5 and 6 of Chapter 2 that

G(GSF (K) /K) e- G(GSF(K)/K) e- a

completing the proof.



CHAPTER VI

CONSTRUCTION OF HILBERT CLASS FIELDS

In one of his typical understatements Serge Lang [18]

remarks, "It becomes a problem to exhibit the Hilbert class

field explicitly".I will examine the tip of this iceberg in

this chapter.

The algebraic number fields K for which HCF(K) is

most easily determined are those where HCF(K) = GSF(K).

After considering several classes of such fields, I conclude

by examining the simplest class of fields for which

GSF(K) ¥ HCF(K). Specifically I give a method to construct

an unramified extension of a quadratic number field of degree

3 or 4. Thus if the exponent of the ideal class group of a

quadratic number field divides 12, its Hilbert class field

can be constructed.

§l Quadratic Fields: Q(v/m)

From the examples of genus fields of quadratic number

fields computed earlier, the general method is apparent. Thus

the known cases of quadratic fields K for which GSF(K) = HCF(K)

are merely listed in tabular form.

60
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Table - Hilbert Class Fields for Certain Quadratic Fields Q(V/m)

 

 

Q(./-pqr../p*.v€l*o\/r*) 3

21./p../-q../-r../-s1 0(3)

Q(x/Pox/qH/rIs/‘S) 0(1)

Q<./p../q../-r../-s) 0(1)

—2pqr p.q.r¥2

_pqrs pal mod 4,q§rE-SE3 mOd 4

-pqu peqsral mod 4,sa3‘mod 4

m Conditions h HCF(Qv/m=GSF(Q(v/m)) fiiineggg

—p pal mod 4 2 Q(V/+p,i) 3

-2p pal mod 4 2 Q(v/p,V/-2) 2

-2p pe-3 mod 4 2 06/ -p.\/ 2) 2

-pq p53 mod 4. gal mod 4 2 QM -p,\/q) ll

Pq pal mod 4 2 Q(v/PQV/Q) 73

pqr pal mod 4, r,qél mod 4 2 Q(\/ pn/ qr) 3O

2pq qu53 mod 4 2 Q(v/PQov/Z) 15

—pq paqs3 mod 4 4 o(./ -p../ -q.i) ‘ 7

-pq psqsl mod 4 4 Q(\/ pM/q, i) l

-2pq p.q¥2 4 QM ‘Zqu\/P*o\/Q*) 7

-pqr pqrE3 mod 4 4 22M -pqrn/p*n/q*) 3

pqr p.q.r#2 4 o(\/ Pa\/q0\/r) 11

2pqr pel mod 4, qarEB mod 4 4 Q(v/p,v/qr,v/2) 3

2pqr peqel mod 4. re3 mod 4 4 Q(\/ p,\/q,\/2r) l

pqrs peqal mod 4, r5553 mod 4 4 Q(V/r,s,v/p,v/q) O

-pqr pal mod 4. qEr—='3 mod 4 8 Q(\/ p.¢pq.¢r.i) 6

8

8

8

8     -pqu peqel mod 4, r5353 mod 4

p,q,r,s represent distinct primes; 2 is possible unless in-

1 mod 4dicated otherwise. p if p

P* =

-p if p _ 3 mod 4.

The numbers in parentheses in the last column indicate the

number of known quadratic fields with ‘m] < 500 satisfying

the given conditions.
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I do not know whether there exist any real quadratic

fields K with h(K) = 2t. t 2_3, and GSF(K) = HCF(K).

The problem is unsolved for arbitrary t.

Chowla [ 3] proved in 1934 that there are only a finite

number of imaginary quadratic fields K where HCF(K) = GSF(K).

An old conjecture is that there are 65 such fields which are,

in addition to those indicated in Table l:

K Q(VLm), h(K) = 4: m = 555. 595. 715. 795. 1435

K Q(v/-m), h(K) = 8: m = 1155. 1365, 1995. 3003. 3315.

Selfridge showed that these are the only such fields for

m < 2-3-5-7~11-l3-44,838. For a complete account of this

problem see Grosswald [ll].

§2 Compositums of Quadratic Fields

Let K , K1 2,...,Km be quadratic extensions of Q.

Suppose these fields are indgpendent, that is the degree of

m

K = H K. is 2m over Q. Then the galois group of K/Q

. 1
i=1

is an elementary abelian 2-group and there are t = 2m-l

different quadratic subfields of K denoted by K ,K ,...,K .

l 2 t

Let hi and ti denote the class number and unit group

of K. Then it is known (cf.[l7]) that:

1 t t

H ='—;[E: Hei] Hhi

2 i=1 i=1
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m(2m-l-1) if K is real

(m-l)(2m-2-l) + 2m—l—l if K is imaginary

where v =

If GSF(Ki) = HCF(Ki) for all i and GSF(K) = HCF(K)

then of course, the Hilbert class field of K is determined.

When K is imaginary, this occurs only a few times. For

example if K is imaginary biquadratic, a necessary condition

that GSF(K) = HCF(K) is that exactly two primes ramify in K

as I shall now show. K = Q(V/-ml, V/-m2) has three quadratic

subfields Kl = Q(v/-ml), K2 = Q(v/-m2), and K3 = Q(V/m1m2)°

The ramified primes of K are the prime divisors of mlmz,

say pl,p2,...,pk, and each pi ramifies in two of the three

quadratic subfields. If GSF(Ki) = HCF(Ki), then

r.-l

2 J

hj = (5 where rj is the number of primes ramifying in
 

Ki and 5a is as defined in the genus-number formula. It

 

3 3

can be shown that [E: u 6.] = H 5 so that

. i , w

1=1 i=1

3 r -l r -l r -l

I H 5 )2 1 2 2 2 3
4

i=1 °
rl+r2+r3- 2k-4

H 2-—— 3 = 2 = 2 . However

2( H 6”)

i=1

g(K) = Zk-z. so if GSF(K) = HCF(K). then 22k"4 = 2k-2

implying k = 2.
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Example 1: K = Q(v’-2,V/—6). Here Kl Q(V/-2),

=Q(\/-6), K3=Q(\/3) and hl=h3=l, h2=2,

H=2.

GSF(K) = HCF(K) = Q(\/ 2,\/3,i)

I
=-@(\/2

//K ‘ \m/GSF(KZ) =@(\/--.3/2)

=9(./—-2) K3 =Q(./3) K2 =9(./--6)

\I/

Since there are only 9 imaginary quadratic fields with

h = 1 and either 47 or 48 with h = 2, the number of

compositums K of imaginary quadratic fields with

GSF(K) = HCF(K) can be completely determined.

More examples of compositums K of real quadratic fields

for which GSF(K) = HCF(K) exist. I have not attempted

to completely Solve this problem, though I suspect only the

cases H = 2 and H = 4 are possible. Two examples will

illustrate the situation.

Example 2: K = Q(v/BOA/35).

Here Kl = Q(\/30), K2 = Q((/35). K3 = Q(\/42) and
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GSF(K) = HCF(K) = Q(\/2. ./3. ./5. \/7)

I
GSF(K1)=Q((/5.\/6) GSF(KZ) =.0\/2\/2/l)Q(x/30, \/35) GSF(K/3) =Q(\/5. (/7)

I
Kl = Q(/30) =(IN/J42)

Q

Example 3: K = Q(v/Zov/15ov/21)-

K3 = {ah/35)

The seven quadratic subfields are Q(v/Z). Q(v/lS),

Ink/21). o<¢30). o(./35). egg/42). rah/70). H = 4

and a diagram like that of Example 2 shows

HCF(K) = GSF(K) = 0(./2.¢3../5../7).

If K/Q is a cyclic extension of degree p with

h(K) = p, then HCF(K)/Q is abelian since all groups of

order p2 are abelian. Thus HCF(K) = GSF(K) and the Hilbert

class field of K is determined.

There are only eight cyclic cubic fields of class number

3 with discriminant A < 20,000, two each with
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Example 4: K = Q(e), e3 - 219 - 35 = o.

2 1
[\(K) = 63 and HCF(K) = GSF(K) = K(g7 + ?)where

7
th

C is a primitive 7 root of unity.

7

§4 Pure Cubic Fields: K = Q(3V/a).

In Example 6 of Chapter 2, the genus field of the pure

. n .

field K = Q( v/a) (n,a) = l, a # i l is square-free and odd

was determined. In that case g(K) = H (n,p-l) so for

pIa

n = 3, HCF(K) = GSF(K) if h(K) = 3t where t is the number

of primes p e 1 mod 3 dividing a. Known examples (with small

discriminants) are:

Example 5: K = Q(3\/a), h(K) = 3, a = 7, 13, 19,

21. 35. 37. HCF(K) = GSF(K) = K(9) where e

is a primitive element for the subfield of Q(Qp)/Q

of degree 3 where p]a and p a 1 mod 3.

Example 6: K = Q(3v/9l), h(K) 9, GSF(K) = HCF(K) =

K(61,92) (6i determined as in Example 5).

§5 Quadratic fields K = Q(v/m) where 3|h.

The genus field is the "easy part" of the Hilbert class

field of an algebraic number field K. To complete the

construction of HCF(K) it is necessary to construct abelian

unramified extensions of K. In general, this is very difficult
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so I will focus on two cases: constructing unramified extensions

of degree 3 and 4 of quadratic fields.

Let K = Q(V/m) with 3]h(K). There exists, then, a

field L such that L/K is unramified of degree 3. Suppose, in

addition, that L/Q is normal (which occurs if 3Hh for example).

Since the galois group of L/Q is S L is the splitting3.

field for a cubic polynomial f(x) = x3 - ax - b whose dis-

criminant A = mkz. We seek to determine a and b so

that K(e)/K is unramified where 63 - a9 — b = 0. Now

(*) A = 4a3 - 27b2 = mk2

9tl if 31m

Set a = 3t, b = St, k =

3tl if 3|m

Then (*) becomes

(**) 4t - s2 = .m, 2

Suppose first that m < 0, set m = -m. Then t is a

norm from Q(\/ 3m) (or Q \/ g!) . SO taking t = i l. we can

determine 3 and t by finding the fundamental unit 3

of Q(x/3m) (or OMB-B). that is e = S - “23m 1

{m

s- 3 l . .

). Now K(e)/K can ramify only at primes(or 2

dividing 3 in K.

Case 1: t = 1, 31m, (the most frequent case).

Since 3Xm, K(e)/K is unramified 4:; 3 is unramified

in Q(e)/Q. But in this case
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f(x) = x3 - 3x - s and A = 27(4-52)

so 3 is unramified in Q(e), 93 - 3e - s = O 4:?

s a i 2 mod 27.

Example 7: K = Q(V/-23), h = 3.

25 - 30/69
GSF (K) = K and e = 2

So HCF(K) = Q(V/’23o e) where e3 - 38 - 25 = 0.

Example 8: K = Q(V/-38), h = 6.

2050 - l9gg/ll4
GSF(K) = Q(V/l9, V/-2) and c 2

So HCF(K) = Q(V/l9, v/‘Zv e) where e3 - 363- 2050 =

Case 2: 't = i 1, 3|nh

K(e)/K will be unramified 4:; (3) = pfpz where pl

and 92 are prime ideals in Q(e) of degree 1 over

In this case f(x) = x3 i 3x i S. To check the rami-

fication of 3 in Q(e), 93 i 39 i s = 0, we apply

Newton's polygon (see Weiss [23]).

(}.w) Newton's polygon for

' (3,5)

(2 1) x3 i 3x i s.

I

 

 

Q.

B] Newton's polygon (3) = pfpz in Q(e) if s a 0 mod 9.
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Example 9: k = {QM-231). h = 12.

9+ 77

GSF(K) = Q(\/-3, \/-7. \/—11) and c = 2

so HCF(K) = Q(\/-3, \/-7. \/-11. e) where

3

8 - 36- 9 = 0.

Case 3: t = -1. Then 3]m for in any quadratic field

Q(V/d) if d is divisible by a prime p a 3 mod 4, then

N(e) = +1. Again K(e)/K is unramified <=? (3) = pipz in

Q(e). Now f(x) = x3 + 3x + S so applying Newton's polygon

directly for s i 0 mod 9 is futile. However

 

f(x+l) = x3 + 3x2 + 6x + (s+4)

and f(x+2) = x3 + 6x2 + 15x + (s+l4)

so if s+4 sOmod9 or s+l4 es+5 '=‘0mod9, (3) =p21p2

in 0(6). 93 + 39 + s = 0 so that K(e)/K is unramified.

Example lg) K = Q(‘/ -87), h = 6

GSF(K) = Q(\/29,\/—3) and e = 5+229

so HCF(K) = 0(./29../-3.e) where ‘ e3 + 39 + 5 = 0

Summarizing these cases is

Egopogition: Let K = Q(v/-m) be an imaginary

quadratic field with class number h. For Kl = Q(v/3m),

let 6 denote the fundamental unit of K1, t the norm

of e, and s the trace of S.

Then 3]h if
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(1) t = l s e i 2 mod 27

(2) t = i l s e 0 mod 9

(3) t = -l s a i 4 mod 9.

K(e)/K is unramified of degree 3 where

93-3te-st=0.

Unfortunately all cases are not covered by the Proposition.

Example 11: K = Q(\/687), h = 6

15 + .1229

GSF(K) = Q(¢-3.¢229) and e = 3

Unhappily x3 + 3x + 15 is Eisenstein, so 3 ramifies

totally in Q(9)/Q where Q3 + 39 + 15 = 0. If, however,

we can find s,t so that s - 0 mod 9, t E 0 mod 3,

Newton's polygon can then be applied to x3 - 3tx - st

as in Example 7. Since 27 is the first odd multiple

of 9 greater than 15, we consider 6 + 6. Now

272 - 229

5

where 93 - 3-1256 - 27:125 = 0 so that

”6 + a” = = 125. S0 (3) = 1.2102 in gum/0

HCF(K) = Q(./-3, \/229. e).

A similar analysis can be applied to any imaginary

quadratic field not satisfying the conditions of the Proposition.

For real quadratic fields, an analogous strategy can be

employed.

Example 12.. K = 05/ 79). h = 3.

For real quadratic fields, (**) becomes

 



m

_ sz+3ml2 3

Since 3179, we mimic Case (1) of the Proposition

by seeking integers s and t such that

2 2

t = 8 +237 1 and S2
4 4t mod 27.

One solution is s = 2, t = 2134 so that

HCF(K) = Q(V/79, e) where 93 - 3:21349 - 2-2134 = O.

This method appears capable of generalization to the

construction of an unramified extension of degree p over

some quadratic fields by considering f(x) = xp - ax - b

P

with discriminant A = (-l)2)[(p-1)P’1ap-pphp'l]. This idea

will not be pursued here.

§6 Quadratic fields K = Q(V/m) where 4|h.

Let K = Q(\/m) with 4]h(K) and GSF(K) #HCF(K).

There exists then a field L such that L/K is unramified

of degree 4. Suppose, in addition, that L/Q is normal (which

occurs if 4Hh for example). Since the galois group G of

L/Q is non-abelian of order 8, ‘6'] = 2. So g(K) 2,2

and by the discussion in Chapter 2 there exists a subfield

of GSF(K)/Q of the form M = Q(V/a,v/b) where a = -l or

a e 1 mod 4 and b = 2 or is a positive prime p a 1 mod 4.

Thus h(Q(v/b)) is odd and hence ”IHQ(v/b) = ”HHQ(V/b) by
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Theorem 1 of Chapter 3. By examining the various cases it

can be shown that a belongs to HI”Q(V/b) and thus the

equation a = x2 - by2 has a solution where x and y are

rational. Consequently M(\/a)/M where a = x + be is

unramified since it is clearly unramified at all prime divisors

of p in M and since a = -l or a a 1 mod 4, it is also

unramified at prime divisors of 2. Hence L = K(v/b, v/a)

is an unramified extension of K = Q(V/m) of degree 4.

Example 13: K = Q(¢-142) h = 4.

a = -71' b 2,a=l+6\/2

Q(\/ -71, ¢ 2. (/ 1+6z7i')So HCF(K)

Example 14: K = Q(v/l45), h = 4.

a= 5. b= 29. a: 11+2/29

or a: 29. 10: 5. a: 7+2¢5.

So HCF(K) = Q((/ 5. ./29. ¢ll+2./"2"‘9) = Q(\/ 5. ¢29. 7+2./'5')

Example 15: (am-65). h = 8.

Here Q(V/5,i) is a subfield of GSF(K) = Q(V/5,~/13,i)

Thus a=-1,b=5, 0.=./5. so

HCF(K) = 06/5. ./13. i. ./2 f5).

fixamplggl6: K = Q(v/-89), h = 12.

GSF(K) = Q(\/ 89,i) so extensions of degree 3 and 4

must be determined. For 4, a = -l b = 89 so a
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is the fundamental unit of Q(V/89),

1000 + 106 1/ 89
 

 

a = 2 = 500 + 53/89

2 2

Now 3189, so 1 = S 2:7 l . So 5 is determined

by the fundamental unit of Q(V/267).

 

Thus HCF(K) = Q(/89,i,./ soo+53(/"8'9'. e) where

93 - 39 - s = O
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