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ABSTRACT 

 
HIERARCHICAL EXTENSIONS OF BAYESIAN PARAMETRIC MODELS FOR 

WHOLE GENOME PREDICTION 
 

By 
 

Wenzhao Yang 
 

 Whole genome prediction (WGP) is increasingly used to predict breeding values 

(BV) of plants and animals based on the use of single nucleotide polymorphism (SNP) 

marker panels.  Two particularly popular WGP models, labeled BayesA and BayesB, are 

based on specifying all SNP-associated effects to be independent of each other. In this 

dissertation, we further extend these two models to allow for greater flexibility to infer 

upon BV and SNP effects in three different frameworks: 1) allowing for correlated SNP 

effects, 2) reaction norm modeling of genotype by environment interaction (G×E) and 3) 

bivariate WGP models.  We complement these efforts with focusing on strategies to infer 

upon key hyperparameters that anchor some of these specifications.  

 Based on a first order nonstationary antedependence specification, we extended 

BayesA and BayesB to account for spatial correlation between SNP effects due to the 

proximal QTL; we label the corresponding extensions as ante-BayesA and ante-BayesB 

respectively. Using simulation studies and application to the publicly available 

heterogeneous stock mice data and other provided benchmark data, we determined that 

antedependence models had significantly higher WGP accuracies compared to their 

conventional counterparts, especially at higher LD levels. Subsequently, we extended 

reaction norm (RN) and random regression (RR) models to account for G×E.  Several 

 

 



specifications on the SNP-specific variance-covariance matrices (VCV) of intercept and 

slope effects were considered using independent inverted Wishart (IW) prior densities 

(IW-BayesA, IW-BayesB and IW-BayesC).  Two potentially more flexible RR/RN 

models using square root free Cholesky decomposition (CD) were proposed (CD-BayesA 

and CD-BayesB).  Based on a RN simulation study and a RR data analysis in pigs, 

RR/RN WGP models provided greater WGP accuracies compared to conventional WGP 

models although differences were not substantial between the competing IW- vs CD- 

based methods except with simpler genetic architectures (i.e., low number of QTL). We 

also developed bivariate WGP models based on more or less the same specifications for 

SNP-specific VCV in RR/RN models (i.e., IW-BayesA, CD-BayesA and CD-BayesB) 

comparing them to the more conventional bivariate genomic BLUP (bGBLUP) model. 

Using a LD simulation study, the three bivariate trait models generally demonstrated 

higher WGP accuracy than univariate BayesA or BayesB when the number of pleiotropic 

QTL was relatively large and the heritability of the trait was low.  Furthermore, in an 

application to data from pine trees, CD-BayesB exhibited higher predictive ability 

compared to other competing models. Comparisons between competing WGP models 

require appropriate tuning of key hyperparameters. Hence we also studied three 

alternative Metropolis-Hastings (MH) sampling strategies to infer upon key 

hyperparameters in BayesA and BayesB. Both simulation studies and application to the 

heterogeneous stock mice data, strategies that were more heavily based on Metropolis 

Hastings sampling of key hyperparameters demonstrated significantly greater 

computational efficiencies compared to strategies that deferred to usage of Gibbs 

sampling.  
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Chapter 1 Introduction 

 
 

High throughput genotyping technologies such as single nucleotide 

polymorphisms (SNP) have slowly redefined genetic evaluation systems for livestock by 

augmenting phenotype and pedigree information with rich genomic information on 

economically important traits.  This has been particularly true in the dairy industry 

(Wiggans, VanRaden et al. 2011).  This process has come to be known as whole genome 

prediction (WGP) or genomic selection based on the seminal work of Meuwissen et al. 

(2001).  The idea of using whole genome SNP markers in WGP has been introduced to 

predict phenotypes for complex traits in human genetics (Lee, van der Werf et al. 2008; 

de los Campos, Gianola et al. 2010). In a human skin cancer study, joint analyses of SNP 

markers in WGP have been demonstrated to improve prediction accuracy of genetic risk 

(Vazquez, de los Campos et al. 2012). Next generation sequencing technologies will only 

further make SNP genotyping more cost effective and hence more dense (De Donato, 

Peters et al. 2013), thereby creating more opportunities for researchers to identify and 

exploit the use of genes or quantitative trait loci (QTL) that are in potentially high linkage 

disequilibrium (LD) with SNP and meaningfully influence economically important traits 

and disease incidence rates in various populations.  

There are several statistical inferential issues associated with WGP.  Firstly, the 

number of available markers (m) is typically much greater than that of animals having 

phenotypic records (n) such that least-squares or likelihood-based approaches are not 

practical without first imposing some model selection strategy for deleting markers until 

m<n.   After all, it is widely believed that only a small unknown proportion of markers 
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are associated with non-zero genetic effects (Meuwissen, Hayes et al. 2001). There have 

been a number of different modeling approaches to specify the distribution of these 

effects; thus far, almost all such approaches have been based on these effects being 

independent of each other. Gianola et al. (2003) anticipated that some adjacent SNP 

markers within a chromosome might have dependencies among their estimated effects. In 

addition, SNP marker effects might have nonstationary spatial correlations within a 

chromosome given their proximity to the major QTL.  

The most common approach used in current WGP evaluations (VanRaden 2008; 

Daetwyler 2009; Misztal, Legarra et al. 2009; Misztal, Aggrey et al. 2013) is based on the 

use of Genomic Best Linear Unbiased Prediction or GBLUP (HENDERSON 1976) 

whereby all marker effects are assumed to be normally, identically and independently 

distributed (NIID)  random draws. This specification helps resolve the m >> n issue since 

the specification of random effects facilitates a borrowing of information across markers.  

However, it has been speculated that the distributional assumptions in GBLUP may be 

too strong, depending upon the genetic architecture of the trait; i.e., the distribution of the 

QTL effects themselves, often believed to be non-normal (HAYES and GODDARD 2001) or 

the relative number of QTL to number of markers.   

Meuwissen et al. (2001) introduced parametric Bayesian models labeled “BayesA” 

and “BayesB” to provide additional distributional flexibility, with  both approaches often 

demonstrating better fit for WGP compared to GBLUP (Meuwissen, Hayes et al. 2001; 

Habier, Fernando et al. 2007; Hayes, Bowman et al. 2009). The “BayesA” model 

specifies marker specific genetic effects to be normally distributed with mean 0 and 

marker specific variances being independent random draws from a scaled inverted chi-
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square distribution; in essence, the genetic effects are marginally specified to be IID 

Student t distributed (de los Campos, Hickey et al. 2012). The “BayesB” model uses this 

same distributional assumption as one component of a mixture distribution, the other 

component being a point spike at 0; i.e., no effects for those markers belonging to that 

component.  Since then, several other “Bayesian alphabet” models have been developed 

as well (de los Campos, Naya et al. 2009; Verbyla, Hayes et al. 2009; Habier, Fernando 

et al. 2011; Wang, Ding et al. 2013);nevertheless, it has been duly noted that these 

developments and any such comparisons involving new models might be tainted by mis-

specification or inappropriate tuning of key hyperparameters that anchor their 

corresponding distributional specifications (GIANOLA 2013).  

SNP effects have been jointly analyzed under a multivariate WGP framework 

across heterogeneous environments (Burgueno, de los Campos et al. 2012) or multiple 

traits (CALUS and VEERKAMP 2011). For heterogeneous environments in WGP, genotype 

by environment interaction (G×E) can be detected by modeling SNP specific intercept 

and slope effects of environmental covariates (Lillehammer, Hayes et al. 2009) in random 

regression (RR) and reaction norm (RN) models (Berry, Buckley et al. 2003; Cardoso 

and Tempelman 2012). For multiple traits in WGP, pleiotropic regions on the genome 

can be detected by modeling SNP specific pleiotropic effects in multivariate trait models 

(van Binsbergen, Veerkamp et al. 2012). In RR/RN models and bivariate trait models, the 

same prior densities can be specified on the genetic variance-covariance matrices (VCV) 

of the SNP specific effects. Calus and Veerkamp (2011) proposed a multiple trait BayesA 

model with a conjugate inverted Wishart (IW) prior on VCV. It has potential inflexibility 

since uncertainty in all elements of a VCV is based on a single degrees of freedom 
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parameter (MUNILLA and CANTET 2012). Bello et al. (2010) suggested that the square 

root free Cholesky decomposition (CD) of the VCV in bivariate mixed models might 

allow greater flexibility as uncertainty can be differentially expressed on each element of 

a VCV using such a parameterization.  

There are three overarching goals in this dissertation as it pertains to meaningfully 

developing WGP models with improved accuracies.  Firstly, one objective was to help 

potentially improve WGP accuracy by extending existing models to account for potential 

spatially-induced correlations between SNP effects due to the proximity of QTL (Chapter 

2) as originally anticipated by Gianola et al. (2003). A second objective was to 

investigate computational strategies that one might use to be reasonably able to infer 

upon all key hyperparameters that underlie these and other more conventional WGP 

models in Chapter 3, including an assessment of the implications of hyperparameter 

misspecification. Finally, I deemed it imperative to provide greater flexibility in bivariate 

SNP effects modeling than currently developed for WGP models, whether for inferring 

upon genotype by environment interactions from a reaction norm perspective (Chapter 4) 

or to provide for bivariate trait WGP models (Chapter 5).  I conclude this dissertation 

with some further concluding thoughts and areas for future research in Chapter 6.  
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Chapter 2 A Bayesian antedependence model for whole genome prediction 

 
 

2.1  Background 

 Whole genome prediction (WGP) using commercially available medium to high 

density (>50,000) single nucleotide polymorphism (SNP) panels have transformed 

livestock and plant breeding. Typically, the allelic substitution effects of all SNP markers 

are jointly estimated in WGP evaluation models assuming additive inheritance and 

summed to predict breeding values of each individual animal based on its SNP genotypes 

(Meuwissen, Hayes et al. 2001). This technology will not only lead to dramatically 

increased rates of genetic improvement for economically important traits such as meat 

and milk production in livestock (Wiggans, VanRaden et al. 2011) or crop production 

(Lorenz, Chao et al. 2011), but would also improve predictions of genetic predisposition 

to human diseases for personalized medicine (de los Campos, Gianola et al. 2010). 

Currently, the number (m) of available SNP markers is typically much greater 

than the number (n) of animals having phenotypic records.  Hence, hierarchical mixed 

model or Bayesian approaches have been generally adopted in WGP to efficiently borrow 

information across these many markers by specifying their corresponding effects to be 

random.  Following MEUWISSEN et al. (2001), these effects are typically specified to be 

either Gaussian or Student t-distributed (BayesA), or a mixture of either of these two 

densities with a point mass on zero (BayesB).  When these effects are specified to be 

Gaussian, then best linear unbiased prediction of these effects is typically pursued 

because of computational tractability (VanRaden 2008; Hayes, Bowman et al. 2009); 

applied to WGP, this procedure is often known as GBLUP.  Thus far, the distributional 
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specifications for these various hierarchical modeling approaches have been based on a 

prior assumption of independence between all such effects.   

GIANOLA et al. (2003) anticipated that some of these effects might be spatially correlated 

within chromosomes such that greater inference efficiency might be provided by 

modeling these effects as correlated.  Their proposed specifications required either 

equally spaced markers and/or within-chromosome correlations depending strictly on 

physical/linkage map distance between markers.  However, the equally spaced 

assumption is rather tenuous for most currently available SNP marker panels.  Even more 

importantly, the inferred correlation structure is likely to be nonstationary given that it 

should be primarily driven by the proximity of SNP markers to quantitative trait loci 

(QTL) of major effects.  In other words, we anticipate that the correlation between the 

inferred effects of adjacent SNPs distal to major QTL would be substantially smaller than 

those proximal to these QTL.     

Antedependence models have been increasingly advocated for the analysis of 

repeated measures data (ZIMMERMAN and NÚÑEZ-ANTÓN 2010) to parsimoniously 

account for nonstationary correlations between repeated measurements over time.  In this 

paper, we develop first-order antedependence counterparts to BayesA and BayesB. 

Through simulation, a cross-validation study involving the publicly available 

heterogeneous stock mixture data (Valdar, Solberg et al. 2006; Valdar, Solberg et al. 

2006) and journal-provided reference data (HICKEY and GORJANC 2012) to benchmark 

our proposed methods against others, we demonstrate that, compared to their 

conventional counterparts, these antedependence-based WGP models improve the 
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accuracy of genomic merit prediction as well as potentially increase the sensitivity of 

QTL detection, which is the key objective of genome wide association studies (GWAS). 

2.2  Materials and Methods 

2.2.1  Conventional WGP model 

The base linear mixed model used for WGP is generally written as follows: 

            y Xβ Zg Wu e= + + +  [1] 

Here, { } 1
y n

i i
y

=
=  is a n x 1 vector of phenotypes, β  is an p x 1 unknown vector of fixed 

effects connected to y via a known n x p incidence or covariate matrix X (e.g., 

environmental effects), { }
1

g
m

j j
g

=
=  is an m x 1 vector of random SNP effects connected 

to y via a known n x m matrix of SNP genotypes coded as 0, 1, or 2 copies of the minor 

allele for each SNP (column) and animal (row) in Z.   Furthermore, { } 1
u q

k k
u

=
=  is a q x 1 

vector of random polygenic effects connected to y via a known n x q incidence matrix W, 

and { } 1
e n

i i
e

=
=  is the residual vector.   We assume that 2~ (0, )uu N As , where A denotes 

the pedigree-derived numerator relationship matrix (HENDERSON 1976), and is often 

included in WGP models due to insufficient genome coverage by Z (CALUS and 

VEERKAMP 2007).  Furthermore, we specify ( )~ 0, gg ΣN  where ( )2
gΣ jgdiag s=  and 

2~ ( , )e 0 I eN s .  From a Bayesian perspective, a subjective prior may be also specified on 

β  using ( )0~ , ββ β VN  with 0β and βV  taken as known (SORENSEN and GIANOLA 2002).   
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Now the distinction between GBLUP, BayesA, and BayesB in MEUWISSEN et al. (2001) 

depends upon the characterization of gΣ .  If 2
g gΣ Is=  (i.e., 2 2

gjg js s= ∀ ), then the model 

is defined to be GBLUP.  If, instead, the diagonal elements of gΣ  are independent 

random draws from an scaled inverted chi-square distribution, i.e., ( )2 2 2~ ,g g gjg ss χ ν ν−  

such that ( )
2

2E
2

g g

g
jg

sν
s

ν
=

−
, then the model is said to be BayesA such that marginally gj is 

a random draw from a Student t distribution with mean 0, degrees of freedom gν  and 

scale parameter 2
gs  (de los Campos, Naya et al. 2009; Gianola, de los Campos et al. 2009).   

Now BayesB further extends BayesA by including a two-component mixture with one 

component being ( )2 2,g g gsχ ν ν−  and the other component being a spike or point mass at 0; 

i.e.,  

2 2
2 2

0              with probability 
| ,

  ~ ( , )     with probability (1- )j

g
g g g

g g g g
s

s
π

s ν
χ ν ν π−

=



           [2] 

That is, gπ  ( 0 1gπ< < ) represents the proportion of SNP markers having no associated 

genetic effects on the trait of interest.  

  Clear warnings have been provided on how sensitive inferences using BayesA or 

BayesB may be to specification of the hyperparameters (de los Campos, Naya et al. 2009; 

Gianola, de los Campos et al. 2009).  It has not been widely appreciated that gν  and 2
gs  are 

estimable; this recognition is critical as both hyperparameters help define the genetic 

architecture in BayesA and BayesB.   That is, gν  characterizes the variability of 2
jgs
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about a typical variance component of 2
gs .  Details on how to estimate gν  and 2

gs  in the 

context of BayesA were previously provided by YI and XU (2008).  Furthermore, gπ  is 

estimable in BayesB.  For both BayesA and BayesB, we specify the prior distribution 

( ) ( ) 2
~ 1g g gpν ν ν

−
∝ + , similar to what we have previously adopted in other applications 

(Kizilkaya and Tempelman 2005; Bello, Steibel et al. 2010).  Furthermore, we specify 

( ) ( )~ | , ,g gp Betaπ π π ππ π α β α β=  for BayesB, with values of πα and πβ  chosen to reflect 

prior uncertainty on gπ .  We also specify a proper conjugate prior on 2
gs  in BayesB;  i.e., 

( )2 2~ | ,g g g gs p s α β  ( , )s sGamma α β=  recognizing that the specifications on gα and gβ  

become increasingly influential as gπ  →  1.    

  Finally, we specify noninformative priors ( )2 2~ 1,0es χ − −   and ( )2 2~ 1,0us χ − −

which are congruent with specifying uniform priors on es  and us , respectively, and in 

line with recommendations for variance components by GELMAN (2006).  We similarly 

and confidently specify ( )2 2~ 1,0gs χ − −  in BayesA, given that m is generally large enough 

for stable inference on 2
gs  without the need for more informative priors.   

2.2.2  Antedependence extensions of WGP models   

We propose a nonstationary first-order antedependence correlation structure for g 

based on the relative physical location of SNP markers along the chromosome(s):  

1

, 1 1

                           1
    +               2j

j j j j

if j
g

t g if j m
δ

δ− −

=
=  ≤ ≤  

[3] 
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Here ( )2~ 0,
jj NID δδ s , 1,...,j m=  whereas , 1j jt −  is the marker interval specific 

antedependence parameter (ZIMMERMAN and NÚÑEZ-ANTÓN 2010) of jg  on 1jg −  in the 

specified order.  We can rewrite the recursive expression in [3] in matrix notation: 

 g=Tg+δ  [4] 

where { }
1

( )δ I T g
m

j j
δ

=
= = −  for I being a m x m identity matrix, and  T having all null 

values except for elements tj,,j-1 at the corresponding subscript addresses.  It can be readily 

seen using Equation [4] that ( ) ( )1 1var( ) 'gg Σ I T Δ I T− −= = − −  where ( ) 1−−I T  is a 

lower triangular matrix with diagonal elements equal to 1 and { }2

1
Δ

j

m

j
diag δs

=
= .  As 

further illustrated in File S1 from the Supporting Information, ( ) ( )1 1
gΣ I T Δ I T− −′= − −  is 

a readily determined tri-diagonal matrix (ZIMMERMAN and NÚÑEZ-ANTÓN 2010) which is 

important as it facilitates inference on g.  

Some of the other developments closely follow the BayesA and BayesB models 

of MEUWISSEN et al. (2001).  That is, we specify ( )2 2 2~ ,
j

sδ δ δ δs χ ν ν−  in a model which 

we label ante-BayesA.  Similarly, we propose an ante-BayesB model whereby we specify 

a mixture similar to Equation [2] except that it is specified on 2
jδs ; i.e., a mixture of point 

mass on zero with probability δπ  and scaled inverted chi-square prior ( )2 2, sδ δ δχ ν ν−  with 

probability (1- δπ ).   As we suggested earlier for gπ , we believe that δπ  is estimable such 
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that ante-BayesA is merely a special case of ante-BayesB.   In turn, BayesA is merely a 

special case of ante-BayesA, as is BayesB of ante-BayesB, when T 0= ; i.e., tj,,j-1 = 0 j∀ . 

These antedependence extensions, nevertheless, do require inference on the 

unknown m-1 non-zero elements { }, 1 2

m

j j j
t − =

of T.  Borrowing from DANIELS and 

POURAHMADI  (2002) and BELLO et al. (2010), we specify 2
, 1 ~ ( , )j j t tt N m s−  as a 

conjugate prior in both ante-BayesA and ante-BayesB, thereby allowing flexible 

inference on the nonstationary correlation structure in gΣ .  However, it should be further 

noted that if interval j,j-1 specifies that between the last SNP of one particular linkage 

group or chromosome and the first SNP in the arbitrarily subsequent linkage group, then 

we set the corresponding , 1 0j jt − = .  The remaining prior specifications are specified on 

the hyperparameters that essentially characterize the hypothesized genetic architecture of 

the trait and are virtually identical to those previously prescribed for BayesA and BayesB; 

i.e., ( ) 2
1δ δν ν

−
∝ + , 2 ~ ( , )s ss Gammaδ α β , ( )~ ,Betaδ π ππ α β  with πα , πβ sα  and sβ   again all 

specified as known.  Similarly, we also estimate tm and 2
ts  by placing subjective priors, 

( )2
0 0~ ,t t tN sm m  and ( )2 2 2~ ,t t t tss χ ν ν−  on these key hyperparameters, where 2

0 0,t tsm , 

2and  t tsν are specified to be known. 

As in MEUWISSEN et al. (2001) and subsequent work, our implementation strategy 

is based on the use of Markov Chain Monte Carlo (MCMC) methods; however, we also 

additionally infer key hyperparameters;  i.e., ( )g δν ν , ( )2 2
gs sδ , and ( )g δπ π  that characterize 

the genetic architecture of the trait, as alluded to earlier.  Further details on the full 
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conditional densities and any necessary Metropolis Hastings strategies to sample from the 

joint posterior density of all unknown parameters using MCMC are provided in Appendix 

A1.  

2.2.3  Simulation study  

 We compare the performance of BayesA and BayesB with their antedependence 

counterparts, ante-BayesA and ante-BayesB, in a simulation study.  Twenty replicated 

datasets were each generated from a base population containing 50 unrelated males and 

50 unrelated females. Each dataset underwent random mating while maintaining constant 

population size for 6001 generations beyond the base population. The entire genome was 

composed of one chromosome of length 1 Morgan. All of 20,001 potential SNP markers 

were equally spaced on this genome with a potential QTL placed directly in the middle of 

each interval of adjacent markers.  In the base population, all 20,000 QTL and 20,001 

SNP marker alleles were coded as monomorphic.  The number of simulated crossover 

events per meiosis was generated from a Poisson (mean = 1) distribution with the 

location of the crossover events uniformly distributed throughout the chromosome in 

accordance with the Haldane mapping function. The mutation rate for both QTL and SNP 

markers was specified to be 10-4 per locus per generation and to be recurrent, that is, 

switching between one of two alternative allelic states 0 and 1 whenever mutation 

occurred so as to ensure biallelic loci (Coster, Bastiaansen et al. 2010; Daetwyler, Pong-

Wong et al. 2010).   

 In Generation 6001, all SNP markers and QTL with a minor allele frequency 

(MAF) less than 0.05 were discarded.  We then randomly selected only 30 of the 
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remaining QTL and their corresponding allelic substitution effects.  For each of these 

k=1,2,…,30 QTL, an allelic substitution effect ( kα ) was drawn from a reflected gamma 

distribution with shape parameter 0.4 and scale parameter 1.66, with a positive or 

negative sign on kα  sampled with equal probability.   The genetic variance at QTL k was 

determined to be ( ) 22 1k k kp p α− , where kp  is the MAF at QTL k .   The total genetic 

variance was subsequently determined to be the summation of these terms across the 30 

selected QTLs;  i.e., as ( )
30

2

1
2 1k k k

k
p p α

=

−∑ .  Now the true breeding values (TBV) were 

defined to be a genotype-based linear function of the 30 generated QTL effects which, 

because these QTL were located between various SNP, are not subsets of g.   These TBV 

were further scaled such that the total genetic variance was 1 as per MEUWISSEN and 

GODDARD (2010).  Residual effects were, in turn, sampled from a standard normal 

distribution, such that the heritability was 0.50.  That is, each phenotypic record was 

generated by adding the TBV for that animal plus its corresponding residual.  Hence, 100 

animals with known phenotypes and genotypes in Generation 6001 were simulated for 

inferring upon the SNP effects, using each of the competing methods.  Genotypes and the 

TBV for each of 100 offspring were also generated in Generation 6002, based on 

randomly mating animals in Generation 6001.   

 For each of the 20 replicated datasets, the effect of 6 different marker densities on 

the comparison between the competing methods were investigated by selecting every 1, 4, 

7, 10, 15,  and 20 SNP markers from those with MAF>0.05.  That is, the datasets were 

used as a blocking factor in comparing different marker densities for the accuracy of 

predicting genetic merit in Generation 6002, using each of the four different methods: 
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BayesA, BayesB, ante-BayesA and ante-BayesB.  Accuracy was defined as the 

correlation between estimated breeding values (EBV) for Generation 6002, using just 

Generation 6001 phenotypes and genotypes data, and the corresponding TBV of 

Generation 6002.   These EBV are based on the posterior mean ( g ) of g; i.e., EBV are 

elements of Zg .  Comparisons were also drawn between the BayesA/BayesB procedures 

and their antedependence counterparts for inference on the key hyperparameters that 

characterize genetic architecture.  This was conducted using multifactorial ANOVA on 

the posterior means using replicate as the blocking factor for assessing the importance of 

model and marker density and their interaction across the 20 replicates.   Furthermore, an 

assessment of the relative ability of ante-BayesB compared to BayesB to identify the top 

QTL by genetic variance was based on the difference in posterior probabilities of jδ  and 

jg , respectively, of adjacent SNP markers being non-zero.  As QTLs were placed 

between SNP markers and never on top of SNP markers, we calculated this probability of 

association by determining the proportion of MCMC cycles that either or both of the two 

markers adjacent to the known QTL were chosen to be non-zero within each analysis.    

 All comparisons were based on the linear mixed model in Equation [2] with X 

being a column vector of ones, except that polygenic effects (u) were ignored for 

simplicity and computational tractability.  

2.2.4  Application to Heterogeneous Stock Mice Dataset 

We used a dataset publicly available from the Wellcome Trust 

(http://gscan.well.ox.ac.uk/) which includes phenotypic records on 2,296 mice, each 

genotyped for 12,147 SNP markers.  This data resource, which also includes pedigree 
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information, was based on an advanced intercross mating among 8 inbred strains after 50 

generations of random mating (Valdar, Solberg et al. 2006).  The average linkage 

disequilibrium (LD), as measured by r2 between adjacent markers is 0.62 (Legarra, 

Robert-Granie et al. 2008), which is high compared to commonly used SNP panels 

available for livestock populations. For example, the average r2 between adjacent markers 

in most commercially available livestock SNP panels ranges from 0.10 to 0.37 for 

markers that are generally around 100kb apart (Du, Clutter et al. 2007; De Roos, Hayes et 

al. 2008; Abasht, Sandford et al. 2009; Jarmila, Sargolzaei et al. 2010).  

Given this high pairwise LD, we considered only a random subset of all markers 

from this dataset to ensure adjacent marker LD levels that are representative of livestock 

populations.  We first excluded SNP markers if the percentage of missing genotypes 

across samples was greater than 10% or if the MAF was less than 2.5%. We also 

discarded animals having greater than 20% missing SNP genotypes.  We then randomly 

selected 50 SNP markers from each of the 19 autosomes, leading to an average LD of r2 

of 0.35 between adjacent markers.   The resulting dataset then involved records on 1917 

animals with genotypes on 950 SNPs.    

As in LEGARRA et al. (2008), we also added the random effect of cage in the WGP 

model of [2]; i.e., y Xβ Zg Wu Sc e= + + + +  where 2~ ( , )c 0 I cN s  and S  is the 

corresponding incidence matrix with all other terms defined as before.  Furthermore, we 

specified GELMAN’s prior ( )2 2~ 1,0cs χ − −  on 2
cs  in addition to all previously provided 

prior specifications.  Also, as per LEGARRA et al. (2008),we chose to use the data 

provided on body weight at 6 weeks that was already pre-corrected for fixed effects such 
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that X  was a column vector of ones and β  consisted of just an overall mean.  Missing 

SNP genotypes were simply imputed from binary distributions based on their 

corresponding allelic frequencies in the dataset following LEGARRA et al. (2008).  We 

adopted the same within-family cross validation technique as described in LEGARRA et al. 

(2008) by randomly partitioning each family into two.  This partitioning was replicated 

20 times to obtain 20 different nearly equal sized partitions of training and validation data 

subsets.  Also, as in LEGARRA et al. (2008), we compared the various methods using 

predictive abilities, defined as the correlation between phenotypes in the validation subset 

and their corresponding predictions based on their inferences from the training data 

subset.  

2.2.5  Application on Simulated Genomic Data from Hickey and Gorjanc 

To provide a benchmark comparison of our proposed methods with competing 

methods in other papers in this issue, we analyze simulated datasets provided by and 

described in detail by Hickey and Gorjanc (2012).  They generated 10 replicated datasets 

for each of four different traits whereby 9000 QTL effects were generated for Trait 1 and 

900 QTL effects were generated for Trait 2.  Traits 3 and 4 mirrored Traits 1 and 2, 

respectively, with the further requirement that the MAF for these QTL was less than 0.30.  

Since we were permitted to simultaneously run 144 jobs on the High Performance 

Computing Cluster at MSU (hpcc.msu.edu), we chose to compare the four methods for 

each of the four traits on each of the first nine datasets (4x4x9=144).   For all analyses, 

training data were based on 2000 animals in Generations 4 and 5 whereas TBV were 

provided on 500 animals within each Generation 6, 8 and 10.  To facilitate computing 

tractability, we saved every tenth SNP marker that had a MAF > 0.20.   This led to a 
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range of 2884 to 2952 SNP markers and an average LD between adjacent markers from 

0.16 to 0.17 across the nine replicates.   All four models also included polygenic effects.  

Antedependence methods were directly compared with their classical counterparts for 

accuracy (correlation of EBV with TBV) and bias (deviation of slope from 1 from 

regressing TBV on EBV) in these latter validation generations using a Wilcoxon signed 

rank test. 

2.2.6  Bayesian inference 

For each of the four methods, BayesA, BayesB, ante-BayesA and ante-BayesB in 

both our simulation study and the heterogeneous stock mice application,  we ran MCMC 

for 50,000 cycles of burn-in followed by an additional 300,000 cycles; for the benchmark 

data from Hickey and Gorjanc (2012), the corresponding numbers were 80,000 and 

1,000,000, respectively.  Every tenth MCMC cycle was subsequently saved for inference 

post burn-in.  We monitored MCMC convergence via inspection of trace plots and 

determined the effective sample size (ESS) for number of random draws from the joint 

posterior density for all key hyperparameters using the R package CODA  (Plummer, 

Best et al. 2006).  The larger number of MCMC cycles for the Hickey-Gorjanc data were 

based on ensuring that ESS for all hyperparameters at least exceeded 100.  Inferences 

were primarily based on the posterior means and posterior standard deviations for key 

parameters, including those hyperparameters that characterize genetic architecture.  

2.2.7  Prior specifications 

For all analyses in this paper, we chose 10πα =  and 1πβ =   in both BayesB and 

ante-BayesB to reflect the prior belief that most of the markers will not be associated 
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with any genetic effects; however, the dispersion of this corresponding beta distribution 

is still large enough such that values of gπ  ( δπ ) close to 0.70 are plausible.  Based on 

preliminary runs, we also found that this prior specification led to superior mixing 

properties of the MCMC chains over a naïve Uniform(0,1) prior, yet facilitated 

domination of data over prior information since π πα β+ << m.    

For BayesB and ante-BayesB, we always specified 0.1s sα β= =  for the Gamma 

prior on 2
gs  ( 2sδ ).  For the antedependence based models, we specified 0 0tm = , 2

0 1ts = , 

 tν =
 
-1, and 2

ts =   0; i.e., a standard normal prior on tm and GELMAN’s prior on 2
ts .  We 

also always specified a flat prior on β  by defining 1
βV− =  0.  Prior specifications for all 

other parameters (e.g., variance components) were based on those previously 

recommended in this paper. 

2.3  Results 

2.3.1  Simulation Study 

 For the six different marker densities, the average distances between adjacent 

markers ranged from 0.046 to 0.918 cM over the 20 replicates whereas the average LD 

between adjacent markers, measured by r2 values, ranged from 0.15 to 0.31, as shown in 

Table 2.1.  Among the 30 chosen QTLs within each of the 20 replicates, anywhere 

between 6 to 11 of the QTLs had variances greater than 2% of the total genetic variance.  
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Table 2.1: Summary statistics for 6 different marker densities in the simulation study over 
20 replicates 

Marker 
density 
level† 

Average 
number of 

markers per 
replicate 

Average distance 
between adjacent marker 

loci (cM) per replicate 

Average r2 
between 

adjacent marker 
loci per replicate 

1 108 0.918 0.15 

2 145 0.689 0.18 

3 217 0.459 0.21 

4 311 0.321 0.24 

5 545 0.184 0.27 

6 2182 0.046 0.31 

†Marker density levels 1 through 6 pertain to saving every 20th, 15th, 10th, 7th, 4th, and 
every single SNP marker from a single 1M chromosome within each data replicate. 

 

It is important to recognize that none of the modeling assumptions behind BayesA, 

BayesB, ante-BayesA, or ante-BayesB truly match the data generation model based on 

thousands of generations of LD created between markers and QTLs, even for simulated 

data.   This goes beyond the fact that the QTL effects were drawn from reflected Gamma 

distributions in our simulation study as typically done (e.g., Meuwissen, Hayes et al. 

2001; Meuwissen and Goddard 2010).  That is, the process of recombination over 

thousands of generations in terms of how it generates LD between QTL and SNP markers 

is not explicitly captured in any known WGP model, including any of the competing 

models, especially when the effects of neighboring SNP markers rather than the causal 
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QTL effects are being estimated.   Hence, there is no way to surmise the “true” values of 

key hyperparameters, whether for 2
gs , gν , or gπ  in BayesA or BayesB or for 2sδ , δν , δπ  , tm

or 2
ts  in ante-BayesA or ante-BayesB.  However, one should anticipate that estimates of 

2
gs  or 2sδ  should be inversely related to marker density, since they closely represent the 

mean value of the variance components  { }2

1j

m

g j
s

=
 or { }2

1j

m

jδs
=

, respectively, accounted for 

by each SNP.  Indeed, we observe this phenomena in the comparison between BayesA 

and ante-BayesA in Figure 2.1A.   We also note a similar comparison between 2sδ  and 2
gs  

for BayesB versus ante-BayesB in Figure 2.1B, but further recognize that the 

corresponding estimates of 2
gs  and  

2sδ  are roughly one order of magnitude greater than 

those seen in Figure 2.1A.  That is,  2
gs  and  

2sδ  specify a typical value for 2
igs  and 2

iδs  , 

respectively, over many more loci in (ante)BayesA than their (ante)BayesB counterparts.  

In spite of the lower values observed in Figure 2.1A, however, there was a significant 

difference (P<0.01) between 2
gs  and  

2sδ  when r2 ≥ 0.21. 
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Figure 2.1: Average posterior means of 2
gs  (BayesA, BayesB) and 2sδ  (ante-BayesA, 

ante-BayesB) across 20 replicates for six different levels of LD comparing BayesA and 
ante-BayesA in (A) and BayesB versus ante-BayesB in (B).  Significant differences in 

posterior means between competing methods at each LD level are indicated by 
*(P<0.01), **(P <0.001), or ***(P <0.0001). 
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As marker density increased, we also expected that the estimates of gπ  or δπ  

should increase as well; that is, it becomes increasingly unlikely that individual SNP 

markers become associated with a particular QTL with greater marker density.  Indeed 

we observed this in Figure 2.2.   It was particularly interesting that the posterior means of 

δπ  were generally lower than that of gπ , with differences widening with increasing 

marker density (i.e., LD level) such that the differences were significant beyond r2=0.24 

(P<0.01).   Note the subtle difference in interpretation between gπ  and  δπ  as gπ  pertains 

to the probability of non-association for the corresponding SNP whereas δπ  pertains to 

the probability of non-association conditional on a neighboring SNP.   

 

Figure 2.2: Average posterior means of gπ  (BayesB) versus δπ (ante-BayesB) across 20 
replicates as a function of six different LD levels.   Significant differences in posterior 
means between competing methods at each LD level are indicated by *(P<0.01), **(P 

<0.001), or ***(P <0.0001). 
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The estimates of gν  and δν  also changed as a function of marker density for ante-

BayesA versus BayesA in Figure 2.3A and for ante-BayesB versus BayesB in Figure 

2.3B.  Specifically, the posterior means of gν  and particularly of δν  both decrease with 

increasing marker intensity.   Since these parameters, respectively, characterize the 

heterogeneity of 2
jgs and  2

jδs  across SNP or, alternatively, the heaviness of the tails for 

the resulting marginal Student t distribution on jg and  jδ
 
across SNP, our results imply 

that these hierarchical methods, and particularly those based on nonstationary first order 

antedependence correlation structures, identify SNP with large effects as being more 

outlying relative to a normal distribution when marker density increases.  However, these 

differences between gν  and δν  were not seen to be statistically significant at any marker 

density. 
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Figure 2.3: Average posterior means of gv  (BayesA, BayesB) and vδ  (ante-BayesA, 
ante-BayesB) across 20 replicates for six different levels of LD comparing BayesA and 
ante-BayesA in (A) and BayesB versus ante-BayesB in (B).  No significant differences 

(P>.01) were determined between the two sets of competing procedures at each LD level. 
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 Figure A2.1 and A2.2 (see Appendix A2) show, respectively, the average 

posterior means for tm  and 2
ts against LD level across the 20 replicates under both ante-

BayesA and ante-BayesB.   There was no evidence (P>0.01) across these 20 replicates 

that the posterior means of tm  were different from zero at any LD levels;  however, at 

higher LD levels, the posterior means tended to converge to zero as anticipated.   

Similarly, Figure A2.2 showed that the posterior estimates for 2
ts  were also lower at 

higher LD levels.  Again, this was somewhat anticipated since there should be less 

disparity in different values of the antedependence parameters ( , 1j jt − ) between adjacent 

markers with increasing marker intensity.  

The average accuracies of the EBV over the 20 replicated datasets are plotted as a 

function of the average r2 (i.e., the different marker densities) between adjacent markers 

for the four different methods in Figure 2.4.   As anticipated, given the simulated genetic 

architecture of few QTL, the accuracies for the BayesB methods were consistently 

greater than their corresponding BayesA counterparts at all marker densities.  Also, ante-

BayesA and ante-BayesB outperformed their classical counterparts with differences 

increasing with LD level.   Specifically, ante-BayesA had significantly greater accuracies 

compared to conventional BayesA, as did ante-BayesB compared to BayesB (P<0.01), 

when average LD levels exceeded r2 = 0.24.  
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Figure 2.4: Average accuracies of estimated breeding value across 20 replicates for 
analyses based on each of six LD levels.  Differences in accuracy between BayesA and 
ante-BayesA (bottom symbols) and between BayesB with ante-BayesB (top symbols) 

indicated as significant by *(P<.01) (*) or **( P<.001)  

 

 We anticipated that the antedependence parameters , 1j jt − 's  would have greater 

importance at higher marker densities.  To demonstrate this, we standardized the 

posterior means of these parameters as a ratio over their posterior standard deviations, i.e., 
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 whose absolute value exceeded an arbitrary value of 2 for each data replicate and 
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marker density analysis to indicate the relative importance of these antedependence 

parameters.   We present boxplots of these proportions across the 20 replicates for ante-

BayesA and for ante-BayesB in Figure A2.3 (see Appendix A2). We anticipated and 

noted that a higher proportion of , 1j jt −
 exceeded 2 in datasets characterized by higher 

marker densities, thereby indicating that, in general, nonstationary serial correlation 

between adjacent markers becomes increasingly more important with higher levels of LD.  

We believe this phenomenon is responsible for driving the differences in accuracies 

between ante-BayesA (ante-BayesB) and BayesA (BayesB) with increasing LD levels as 

seen earlier in Figure 2.4.  

Hierarchical methods that are similar to BayesB, in that they jointly infer upon all 

SNP effects, have been increasingly advocated as tools for GWAS (Hoggart, Whittaker et 

al. 2008; Lee, van der Werf et al. 2008; Logsdon, Hoffman et al. 2010).  Figure A2.4 (see 

Appendix A2) shows the average (across 20 replicates) posterior mean probabilities of 

identifying the largest QTL by genetic variance within each replicate using BayesB and 

ante-BayesB, respectively.   These estimated posterior probabilities increased with LD 

level for both models but were significantly greater for ante-BayesB than for BayesB 

with statistical significance also increasing with LD or marker density.   That is, the 

precision for detecting QTL was increasingly greater for ante-BayesB compared to 

BayesB at higher LD levels.   We observed this consistently across data replicates with 

the ability of ante-BayesB to better track causal variants increasing with marker density 

(see Appendix A2, Figure A2.5).  
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2.3.2  Application to Heterogeneous Stock Mice data 

 We summarize posterior inferences of key parameters using BayesA and BayesB 

in Table A2.1 and for their antedependence counterparts in Table A2.2 (see Appendix A2) 

for the heterogeneous stock mice data.   Inferences on 2
us , 2

cs , and 2
es were consistent 

with results previously reported by LEGARRA et al. (2008).  As expected from our 

simulation study, the estimates for gν  
( δν ) and 2

gs ( 2sδ ) were substantially greater for 

BayesB (ante-BayesB) than for BayesA (ante-BayesA).   Although the posterior mean for 

gπ  of 0.81 (BayesB) was only slightly larger than δπ = 0.80 (ante-BayesB), the posterior 

mean of 2sδ  was substantially larger in ante-BayesB compared to 2
gs  in BayesB. The 

average estimates ± empirical standard errors of predictive ability correlations over the 20 

cross validation partitions of training and validation data subsets were 0.57±0.01, 

0.62±0.01, 0.60±0.01 and 0.66±0.01 for BayesA, BayesB, ante-BayesA and ante-BayesB, 

respectively.   The differences between BayesA with ante-BayesA and BayesB with ante-

BayesB were both determined to be statistically significant (P<0.005), indicating the 

relative advantage of the antedependence methods.  Furthermore, BayesB and ante-

BayesB had significantly greater predictive abilities than BayesA and ante-BayesA, 

respectively (P<.001).   

2.3.3  Application to Hickey and Gorjanc Data 

 Average posterior means for key hyperparameters for each of the four methods 

across the nine replicates are provided in Table A2.3, whereas the corresponding average 

ESS are provided in Table A2.4 (see Appendix A2).   Estimates of gπ ( δπ ) and 2
gs  (

2sδ ) 
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were lower whereas estimates of gν ( δν ) are higher for traits with higher numbers of QTL 

(Traits 1 and 3) compared to those with lower numbers of QTL (Traits 2 and 4), relative 

to the same number of markers.   

 A side-by-side comparison of the accuracies of the four methods across the 

validation generations (6, 8, and 10) is provided in Figure 2.5.  It is remarkable to note 

that ante-BayesA had generally significantly greater accuracies than BayesA for Traits 1 

and 3 (larger numbers of QTL) that was still maintained until Generation 10, whereas 

ante-BayesB had generally significantly greater accuracies than BayesB for Traits 2 and 4 

(lower numbers of QTL) but only in Generations 6 and 8.   An assessment of bias of the 

four procedures based on regressing TBV on EBV is provided in Figure A2.6 (see 

Appendix A2).  For all traits, all four methods had some significant bias in Generation 6 

but not in later generations. 

 

Figure 2.5: Boxplots of average accuracies of estimated breeding value across 9 
replicates for four traits in Generations 6, 8 and 10 for benchmark data from Hickey and 
Gorjanc (2012). Differences in accuracy between anteBayesB (black) and BayesB (dark 
gray) and between anteBayesA (light gray) with BayesA (white) indicated as significant 

by *(0.05<P<.10), **( 0.01<P<.05) or ***( P<.01).  
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2.4  Discussion and Conclusion 

 In this paper, we extend two very popular Bayesian methods, BayesA and BayesB, 

for WGP to model potential nonstationary correlations between SNP effects in close 

proximity to QTL.    We demonstrated using a small-scale simulation study that the 

accuracies of our proposed first order antedependence extensions, labeled ante-BayesA 

and ante-BayesB, were greater than their classical counterparts with differences 

increasing with marker density.   This result was anticipated given that the magnitude and 

importance of the antedependence parameters { }, 1 2

m

j j j
t − =

in T should increase as marker 

densities increase.  To further illustrate the importance of modeling nonstationary 

correlations, rather than basing correlations between SNP effects purely as a function of 

distance (Gianola, Perez-Enciso et al. 2003), we observed the magnitude of the posterior 

means of { }, 1 2

m

j j j
t − =

at the various locations through the chromosome for the first four 

replicates using ante-BayesA and ante-BayesB  (see Figure A2.7).  These posterior means 

tended to be rather large in absolute value in the general vicinity of the major QTL.  This 

result was anticipated since each QTL is likely tracked by several SNP, each in 

incomplete LD with the QTL (GODDARD and HAYES 2009). Interestingly, there appeared 

to be a greater spread in these posterior means around a greater number of QTL using 

ante-BayesB compared to ante-BayesA.    

 We realize that the order in which Equation [3] is specified for the 

antedependence methods is rather arbitrary; i.e., one might specify Equation [3] from the 

end of the p-arm to the end of the q-arm of a chromosome or vice-versa.  For instance, 

instead of specifying Equation [3] from 1,2,...,j m= , we might have also modeled 
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antedependence in the opposite direction; i.e., from , 1,...,1j m m= − .  It has been 

demonstrated by ZIMMERMAN and NÚÑEZ-ANTÓN (2010)  in the context of longitudinal 

data analysis that the (co)variances based on a first order antedependence model are 

invariant to directionality as long as the relative order is correctly specified.  To illustrate 

this, we re-analyzed the first four replicates based on the highest average marker density 

(r2 = 0.31), again using ante-BayesA and ante-BayesB but this time specifying Equation 

[3] in the opposite direction from what was used previously.  We plotted the posterior 

means ( g ) of g based on the analysis in the original direction again the same estimates 

based on the analysis in the opposite direction (Figure A2.8), further demonstrating that 

inferences on EBV are invariant to direction.   Noting that the EBV are linear functions 

of g , i.e., Z g ,  we noted even greater consistency for EBV between the two directions 

for these same four replicates in Figure A2.9 (see Appendix A2). 

 Given that the accuracy of EBV was greater using the antedependence-based 

procedures compared to their classical counterparts, we examined the elements of g  for 

each marker between the two different classes of models within each of the first four 

replicates and the highest average marker density (Figure A2.10).  It was interesting to 

note that these elements were more shrunk to zero using the antedependence-based 

procedures compared to the conventional counterparts.     Given the specification of 

nonstationary correlations between effects of adjacent SNP markers, the effective number 

of SNP may be considered to be somewhat lower using the antedependence based 

procedures, particularly in regions containing a major QTL.   That is, larger elements of 

g  using the antedependence-based models will tend to be more highly correlated and 
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hence shrunk closer to zero compared to elements of g  derived from their conventional 

counterparts. GODDARD et al. (2009) have previously described the optimal statistical 

properties of g  when g is specified as a set of “random effects” having an exchangeable 

distribution, such as the normal or Student t.   However, these properties are better 

realized when a more appropriate correlation structure is specified; as would be true, for 

example, modeling polygenic effects with a classical animal model (HENDERSON 1984).   

The more optimal properties of g  using the antedependence based models was also 

partly reflected in the earlier EBV comparisons with their classical counterparts. 

 In spite of the limited scale of our simulation studies, it has been demonstrated 

that inferences on accuracy based on 100 individuals and a genome length of 1 M is 

roughly equivalent to inferences derived from 3000 individuals and a genome length of 

30 M (MEUWISSEN and GODDARD 2010), the latter of which might depict a more 

common scenario in livestock populations. We also based all of our simulation work on a 

heritability of 50%; for situations with lower or higher heritabilities, we would naturally 

expect the accuracies to respectively, decrease or increase accordingly in concert with 

previous simulation results (CALUS and VEERKAMP 2007) and/or analytical derivations 

(MEUWISSEN and GODDARD 2010); however, we believe that there is no reason to believe 

that the antedependence methods would not outperform the conventional Bayesian WGP 

methods in these situations as well; this was further substantiated by our analyses of the 

data from Hickey and Gorjanc (2012) which was based on a heritability of 25%.  In our  

own simulation study, there were around 2200 markers per the single 1M chromosome 

using the highest average LD level of r2= 0.31, whereas there were around 100 markers 

per the single chromosome with the lowest average LD level of r2= 0.15.  Using 

32 

 



Meuwissen and Goddard (2010), these two specifications are, respectively, analogous to 

a panel of 60,000 SNP markers and to a panel of 3,000 SNP markers for a 30 M genome; 

commercially developed panels having roughly these same numbers of SNP markers are 

now widely available for cattle (Wiggans, VanRaden et al. 2011).  Based on the results of 

our work, we anticipate that the antedependence-based methods, compared to their 

classical counterparts, would lead to even greater accuracies with higher density SNP 

marker panels (m>500,000) that are being developed for livestock or for situations where 

there is sequence data (MEUWISSEN and GODDARD 2010).    Along those lines, we 

anticipate that these methods would also perform better in populations where LD is 

greater between markers due to other phenomena; e.g., selection history.    

 Our simulation studies were also based on a particular genetic architecture; i.e. 30 

QTL that were randomly distributed throughout a 1 M chromosome (or equivalently, 900 

QTL for a 30 M genome).   Although this is not the focus of our paper, we realize that 

genetic architecture (i.e., number of QTL, average QTL substitution effect, marker 

density, etc.) can impact the relative merit of BayesA, BayesB, and GBLUP based on 

other studies where key hyperparameters such as gπ , gν  and 2
gs  are arbitrarily specified to 

be known (Daetwyler, Pong-Wong et al. 2010; Meuwissen and Goddard 2010).   That is, 

the greater the number of QTL, each with small effects, relative to the number of SNP 

markers, the more likely the genetic architecture reflects the GBLUP assumptions ( 1gπ = , 

gν → ∞  such that 2 2
jg gs js = ∀  ).  Conversely, BayesB would be favored in the situation 

where SNP marker density is high relative to the number of QTL ( 1gπ < ).  However, we 

believe that formal comparisons in data fit between BayesA, BayesB, and GBLUP, along 
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with ante-BayesA and ante-BayesB, are not entirely necessary since ante-BayesB 

represents the most general model.    As previously noted, ante-BayesA is a special case 

of BayesA, as is ante-BayesB of BayesB, when T = 0 such that then gδπ π= , gδν ν= , and 

2 2
gs sδ = .   Furthermore, BayesB becomes BayesA as 1gπ → , whereas BayesA becomes 

GBLUP as gν → ∞ .   Nevertheless, our claim that one only needs to fit ante-BayesB, 

rather than any of the other three competing submodels, vitally depends upon reliable 

inferences being provided on these key hyperparameters defining genetic architecture, 

rather than arbitrarily specifying them (Daetwyler, Pong-Wong et al. 2010; Meuwissen 

and Goddard 2010) or estimating a subset thereof (Habier, Fernando et al. 2011).  We 

provide details on MCMC inference strategies on these and other unknown parameters in 

Appendix A1.    We are currently pursuing more suitable inferential strategies for 

variable selection  (O'HARA and SILLANPAA 2009) when inferring upon gπ   or  δπ .   Also, 

although our proposed antedependence methods seem to work well under additive 

genetic model assumptions, it is not clear how well they may perform in the presence, for 

example, of extensive non-additive gene action where nonparametric approaches may be 

warranted (Gianola, Wu et al. 2010). Nevertheless, even in the extensive presence of such 

phenomena, genetic variance is still considered to be primarily additive (Hill, Goddard et 

al. 2008).  

 Although the scope of this work was focused on the potential merit of these 

antedependence models for WGP, we suggested earlier that there may be also merit for 

using these models in GWAS in both livestock and human populations.   It has become 

increasingly recognized that GWAS procedures based on joint analyses of all SNP 
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markers are more powerful than the conventional series of single SNP analyses.   Our 

results suggest that modeling nonstationary correlations between SNP effects will further 

augment this power.   At any rate, we recognize that for reasonably accurate GWAS, that 

a greater marker density (m) per chromosome and sample size (n) should be considered 

(e.g., MEUWISSEN and GODDARD 2010) than those studied in this paper; i.e., most of the 

posterior probabilities reported in Appendix Figure A2.4 and Figure A2.5 are too low to 

be of practical benefit in current applications. 

 We also acknowledge that our ante-BayesA and ante-BayesB models increase the 

computational load relative to their conventional counterparts.   Since m is typically large, 

the computing time for the proposed antedependence models is bottlenecked primarily by 

the m elements of δ , the m diagonal elements of ∆  and the m-1 non-zero elements of T.   

Similarly, computing time for the two conventional methods, BayesA and BayesB, is 

primarily restricted by the dimension of δ  and ∆ ; i.e., roughly 2/3 as many variables for 

the antedependence-based models, ignoring the remaining parameters such as variance 

components and hyperparameters. Hence, the computing time for the antedependence 

based procedures should be somewhat less than 1/3 greater than for their conventional 

counterparts.  Indeed, we discovered from our simulation study that computing time for 

all four competing models were linear in m with the antedependence based models taking 

less than 30% greater computing time compared to the conventional counterparts for the 

wide range of values of m considered in this paper.   We recognize for much larger 

number of SNP markers, than those pursued in this study, that alternative algorithmic 

adaptations already developed for models similar to conventional BayesA or BayesB, 
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such as those based on the EM algorithm (Shepherd, Meuwissen et al. 2010) or 

variational Bayes  (Logsdon, Hoffman et al. 2010), would be worth exploring.  

We believe the proposed antedependence models provide opportunities for further 

study and extension.    For example, it has been previously recognized that basing 

inferences on allelic effects on the use of multiple marker haplotypes rather than single 

markers increases accuracy of WGP (Calus, Meuwissen et al. 2008; Villumsen, Janss et 

al. 2008) or GWAS (Grapes, Dekkers et al. 2004).  Given the difficulty in how to 

appropriately specify these haplotypes, we believe our antedependence-based methods 

may help bridge these two different strategies as the effects of adjacent SNP markers 

connected by large values of , 1j jt −  may somewhat determine “effective haplotype” 

effects.    We also think that our antedependence specifications might facilitate multiple 

breed inference if, for example, genomic effect differences between breeds is primarily 

due to differences in SNP associations with QTL, as partly manifested in T  
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Chapter 3 Improving the computational efficiency of fully Bayes inference and 

assessing the effect of misspecification on hyperparameters in whole genome 
prediction model 

 
 

3.1  Introduction  

Genomic predictions based on high density single nucleotide polymorphisms 

(SNP) markers distributed over the whole genome have become increasingly adopted for 

animal and plant breeding.  Parametric Bayesian methods have been particularly popular, 

most notably BayesA and BayesB as first presented by MEUWISSEN et al. (2001). BayesB 

specifies a mixture prior on the SNP specific effects having point mass at zero with 

probability π or randomly drawn, with probability (1- π), from a Student t distribution 

with degrees of freedom v and scale parameter s2;  BayesA is BayesB with π = 0.   Hence 

π is typically believed to be the proportion of SNPs that are not associated or in linkage 

disequilibrium (LD) with causal variants although this interpretation is somewhat 

complicated by the existence of LD.  These hyperparameters (v, s2 and π) are relevant in 

that they partly determine the genetic architecture of traits and can be further shown to 

depend upon SNP marker densities used in the analyses (YANG and TEMPELMAN 2012) .   

Now inference in BayesA/B like models is conducted using either Markov Chain 

Monte Carlo (MCMC) methods for fully Bayesian inference or faster albeit approximate 

methods based on the use of the expectation maximization (EM) algorithm or its various 

derivatives (Shepherd, Meuwissen et al. 2010).  Unfortunately, it has not been readily 

established how to properly infer upon these hyperparameters in the EM based methods 

such that they are often arbitrarily “tuned” or specified (KARKKAINEN and SILLANPAA 

2012).   Furthermore, although it is possible to infer upon these same hyperparameters 
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using MCMC, the poor efficiency and speed of these implementations have seemingly 

discouraged this practice (de los Campos, Hickey et al. 2013). In particular, it has been 

noted that the correlation between v and s2 across MCMC cycles is generally so large that 

these two hyperparameters are nearly non-identifiable from each other (Habier, Fernando 

et al. 2011; de los Campos, Hickey et al. 2013).  This particular MCMC analysis was 

based on a strategy first presented by Yi and Xu (2008) that invokes a Gibbs update for 

the full conditional density (FCD) on s2, as it is conditionally conjugate with a Gamma 

prior, whereas a Metropolis Hastings (MH) update was used on sampling from the FCD 

of v since it is not recognizable (YI and XU 2008). We label this particular algorithm as 

DFMH (i.e., sampling v using MH) and it is the control or reference strategy for this 

paper. 

Now computational efficiency in MCMC schemes is related to the degree of 

mixing or autocorrelation between subsequent samples of the same parameter.  The most 

popular metric for inferring the degree of mixing or autocorrelation for a fixed number of 

MCMC cycles is the effective sample size (ESS), which can be readily computed using 

software packages like CODA (Plummer, Best et al. 2006).  The ESS determines the 

effective number of independent draws such that a greater degree of autocorrelation 

between subsequent samples for the same parameter would lead to a smaller ESS and 

hence poorer computational efficiency.   Now, although there are clear exceptions, 

MCMC sampling strategies that lead to a greater ESS for a certain total number of 

MCMC cycles tend to have greater computational cost per cycle. This realization is 

reflected in other recent quantitative genetics applications (Shariati and Sorensen 2008; 
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Waagepetersen, Ibanez-Escriche et al. 2008) who derived various metrics to integrate 

together these two components of computational efficiency.   

We surmised that there may be a number of strategies that could improve the 

computational efficiency of inferring upon key hyperparameters in a BayesA/B WGP 

model compared to DFMH. Furthermore, the efficiency of any such strategy could 

markedly depend on the use of an appropriate scale. For example, a highly nonlinear 

relationship between two variables can be rendered somewhat linear by transforming 

either one or both of the corresponding parameters. When v and s2 are both log-

transformed, the resulting scatterplot of the transformed variables against each other 

tends to demonstrate a more linear relationship.  Hence this change of variable might 

facilitate potentially more efficient MCMC sampling strategies based on multivariate 

proposal densities, for example. 

Specification of key hyperparameters in a BayesA/B WGP model has been treated 

arbitrarily in a wide selection of genomic selection topics. Meuwissen et al. (2001) chose 

4.2 as v and 0.04 as s2 for BayesB model based on population genetics arguments in a 

simulation study. Daetwyler et al. (2010) set both v and s2 to 1 under their BayesB model 

analyses across all simulation scenarios. In various simulation scenarios, it seems 

reasonable to choose different specifications on the key hyperparameters as their 

estimates were dependent on many factors such as marker density in the simulation study 

(YANG and TEMPELMAN 2012).    

There were two primary objectives in this study. First, we wanted to explore 

alternative strategies to improve the computational efficiency of estimating 
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hyperparameters in BayesA/B WGP models.   Secondly given the prevalent practice of 

specifying rather than estimating these hyperparameters, we wanted to assess the impact 

of misspecifying these hyperparameters on accuracy of breeding value prediction.  

3.2  Materials and Methods 

3.2.1  WGP Model 

   The WGP model used for comparison of the various computational strategies 

and/or hyperparameter specifications can be denoted as follows: 

            '

1

x β
=

= + +∑
m

i i ij j i
j

y z g e  [1] 

Here iy  is the phenotype for ith animal (i=1,2,…,n),  β is a vector of fixed effects such 

that 'xi is the known incidence row vector connecting yi to β, ijz  is the genotype covariate 

for SNP j on animal i coded as either 0, 1, or 2 copies of a reference allele for SNP j on 

animal i, jg  is the random effect for SNP j, and ie  is the residual.  The WGP model in 

matrix algebra notation can be written as: 

            y Xβ Zg e= + +  [2] 

Where  { }'
1

X x
n

i i=
= , { }Z ijz= , { } ( )1

~ , gg 0 Σ
m

j j
g N

=
=  with variance-covariance matrix 

( )2G
jgdiag s=  and residual vector { } 2

1
~ ( , )e= 0 In

i ei
e N s

=
.   

      We compared three sampling strategies under BayesA and BayesB specifications 

(Meuwissen, Hayes et al. 2001) on 2
jgs  in WGP model.  In BayesB, 2

jgs  has a mixture 
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prior of two components: a scaled inverted chi-square distribution with ( )2 2 2~ ,
jg ss χ ν ν−

with probability π and a spike at 0 with probability ( )1 π− .  Here π loosely represents 

the proportion of SNP markers having associated genetic effects on the phenotype.  

BayesA is a special case of BayesB when π = 1.  Following Yang and Tempelman 

(2012), we specify the following prior distributions on the hyperparameters as: 

( ) ( ) 2~ 1pν ν ν −∝ +  and the Gelman prior ( )2 2~ 1,0s χ − −  (GELMAN 2006) for BayesA, a 

proper conjugate prior  ( )2 ~ 0.1,0.1s Gamma  and
 ( ) ( )~ | , 1, 8p Betaπ π π ππ π α β α β= = =  for 

BayesB.   For all three computational strategies that we subsequently describe, we adapt 

the same commonly used MCMC strategies for sampling from all parameters/random 

variables, other than ν , 2s , and π , as outlined by Meuwissen et al. (2001) for example.  

We now describe each of the three computational strategies in turn.  

 3.2.2  Univariate Metropolis Hastings sampling on ν  and Gibbs update on 2s  

(DFMH)   

 This strategy, which we designate as DFMH, closely follows Yi and Xu (2008).  

The FCD of ν  does not have a recognizable form; hence sampling from this FCD 

requires a strategy other than a Gibbs step.   Here, we used the MH algorithm to sample 

from the FCD of ν  drawing from our experiences in various other applications 

(Kizilkaya, Carnier et al. 2003; Kizilkaya and Tempelman 2005; Bello, Steibel et al. 2010; 

Yang and Tempelman 2012).  More specifically, we generate from the FCD of 

log( )ξ ν= , ensuring that the FCD of ξ  takes into account the Jacobian of the 

transformation from ν to ξ  (see Appendix B1.1).   Since ξ  can conceptually be defined 
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anywhere on the continuous real line, we believe this transformation better justifies the 

use of a Gaussian proposal density centered on the value of ξ  from the previous MCMC 

cycle;  i.e., a random walk MH step (CHIB and GREENBERG 1995); alternatively, a 

heavier-tailed Student t proposal density  (CHIB and GREENBERG 1995) could be used as 

well.  During the first half of burn-in, we adaptively tune the variance of this proposal 

density such that the MH acceptance ratios are intermediate (i.e., 25-75%) adapting the 

strategy described by Muller (1991) and in accordance with standard recommendations 

(Gelman, Carlin et al. 2003; Carlin and Louis 2008).  This proposal density variance was 

then fixed for the last half of burn-in in order to ensure a proper convergent MCMC 

algorithm.  Yi and Xu (2008) demonstrated that the FCD of 2s  is Gamma, provided that a 

conditionally conjugate Gamma or noninformative prior is used. Using the Gelman prior 

(GELMAN 2006) for 2s as we have previously advocated for BayesA (YANG and 

TEMPELMAN 2012), the FCD of 2s can be shown to be Gamma with shape ( )0.5 1ν +m  

and scale 2
1

0.5
m

g jj
sν

=
∑ .  Hence, for DFMH, we sampled  ν  using the described MH update 

and 2s  with a Gibbs update.  In DFMH, we sampled 10 MH samples per MCMC cycle 

for ν .  

3.2.3  Univariate Metropolis Hastings sampling for each of ν  and 2s  (UNIMH) 

 Metropolis Hastings sampling, if properly tuned with good proposal densities and 

intermediate acceptance rates, can often lead to faster mixing and hence greater MCMC 

efficiency relative to Gibbs sampling.  This is because MH sampling typically proposes 

bigger jumps throughout the posterior density compared to the use of Gibbs sampling.   
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Hence, we propose a second strategy, UNIMH, whereby we again use MH to sample 

from ν  but also use MH to sample from 2s .  As with ν  in DFMH, we sample 2s  by first 

a change of variable to its logarithm (i.e., ( )2log sψ = ) and use a random walk MH 

algorithm based on a Gaussian proposal density for ψ .   Similar to what was done for ν , 

the variance of this proposal density was only tuned for intermediate acceptance rates 

during the first half of burn-in to ensure a properly convergent MCMC chain.  In UNIMH, 

10 MH samples per MCMC cycle were specified for sampling ν and 2s . Details on this 

strategy are further provided in Appendix B1.2. 

3.2.4  Bivariate Metropolis Hastings sampling on ν  and 2s  (BIVMH) 

  As previously noted, the posterior correlation between ν and 2s  can be high; 

hence, it might be advantageous to jointly sample both parameters together with a 

bivariate random walk MH sampler as demonstrated with another application by 

Ntzoufras (2011).   Hence, we propose a third sampling algorithm that we label BIVMH.  

Here, we divided the burn-in period for this strategy into four stages of equal lengths with 

respect to the number of MCMC cycles; arguably, a more efficient implementation might 

be possible given that these stages may not necessarily need to be of the same length.  In 

Stage 1, we sampled log(ν ) and log( 2s )  from their respective FCD using the UNIMH 

strategy previously described, fine-tuning the variances of the two separate Gaussian 

proposal densities to ensure MH acceptance rates falling between 25% and 75%.  In 

Stage 2, we sampled log(ν ) and log( 2s ) using UNIMH, fixing the variances of their 

respective proposal densities to those values tuned at the end of Stage 1 while computing 
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the empirical correlation between the samples of log(ν ) and log( 2s ) drawn within the 

same cycle.   In Stage 3, log(ν ) and log( 2s ) were jointly sampled together using a 

bivariate Gaussian proposal density with variances based on those tuned at the end of 

Stage 1 and a covariance based on the correlation computed from Stage 2.  During Stage 

3, we further fine-tuned the proposal variances to ensure intermediate acceptance rates 

for joint samples of log(ν ) and log( 2s ) with the proposal covariance based on the same 

correlation derived in Stage 3.   In Stage 4, we drew samples using the same joint MH 

random walk from the newly tuned bivariate Gaussian proposal density in Stage 3 but 

without further tuning in order to ensure a proper convergent MCMC chain.  Upon the 

end of Stage 4, and hence burn-in, we saved samples for the hyperparameters of ν and 2s  

(i.e., back-transformed) for MCMC-based fully Bayesian inference.  Ten MH samples 

per MCMC cycle for ν and 2s  were drawn at each Stage.  Details on this strategy are 

further provided in Appendix B1.3. 

3.2.5  Simulation Study 

 In order to compare the efficiency of the three sampling strategies, DFMH, 

UNIMH and BIVMH under BayesA and BayesB modeling specifications, we simulated 

15 replicated datasets using the HaploSim package in R (Coster, Bastiaansen et al. 2010).  

The simulated genome was composed of one chromosome of length 1 Morgan consisting 

of 100,000 equally spaced loci.  For each of the 100 animals in the base population, every 

5th locus on this chromosome was heterozygous (i.e., for a total of 20,000 such loci) 

whereas the remaining 80,000 loci were completely monomorphic, similar to that in 

Coster et al. (2010).   Individuals were randomly mated to generate 100 animals within 
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each of 6000 subsequent generations in order to generate LD between loci. The number 

of recombinations per each meiosis event was drawn from a Poisson(1) distribution with 

the position of each recombination being randomly drawn from a uniform distribution on 

the chromosome (i.e., no interference). Furthermore, we specified the recurrent mutation 

rate to be 10-5 per locus per generation.  

 After Generation 6000, random matings were used to augment the population size 

to 1000 individuals in Generation 6001.  In Generation 6001, we deleted loci with a 

minor allele frequency (MAF) less than 0.05 and randomly selected 30 from the 

remaining loci to be quantitative trait loci (QTL).  Following Meuwissen et al. (2001), we 

simulated substitution effects α  for these 30 QTL from a reflected gamma distribution 

with shape parameter 0.4 and scale parameter 1.66 such that the true breeding values 

(TBV) were genotype-based linear combinations of α .  Phenotypes for animals in 

generation 6001 were generated based on heritability of 50%; i.e., such that 2
es  = 

var(TBV).   Additionally, genotypes for 1000 offspring in generation 6002 were based on 

random matings of individuals in Generation 6001.  Again, TBV were based on linear 

combinations of α  based on QTL genotypes inherited from Generation 6001.  

      After discarding SNP with MAF< 0.05, we then selected every 1st, 4th and 10th 

SNP markers for inclusion in analyses in order to consider the effect of different marker 

densities; i.e., high (around 2394 SNPs), medium (around 598 SNPs), and low (around 

239 SNPs).  We compared the computational efficiency of inferring on key 

hyperparameters (e.g., v and s2) for genetic architecture under these three different 

marker densities.  We ignored fitting polygenic effects for all comparisons in the 
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simulation study to facilitate further computational feasibility, recognizing that the 

relative efficiency of each strategy should not differ otherwise.  

  We compared the computational efficiencies of the three MCMC strategies on 

each replicated dataset, considering each of three different marker densities.  Now 

computational efficiency, as it pertains to a particular hyperparameter, was defined as the 

effective sample size (ESS) for the post-burn-in MCMC cycles divided by total CPU time; 

i.e. ESS/CPU recorded in #/seconds.  That is, the greater ESS/CPU, the greater the 

computational efficiency for inferring the posterior density of that particular 

hyperparameter.   

Given that many researchers do not infer upon some or even all hyperparameters 

in WGP models because of perceived inferential challenges, we thought it important to 

assess the impact of their misspecification on the accuracy of genomic prediction.   Using 

the same simulated data as described previously, we focused on five different scenarios, 

all at the medium marker density (selecting every 4th marker).  Each scenario was based 

on setting s2 to be an arbitrary multiplicative constant of the average posterior mean at the 

medium marker density ( 2
meds  ) based on the complete (BayesA or BayesB) model that 

was used to infer upon the other hyperparameters (ν  and π  where applicable) as well.   

These five scenarios were to set 1) s2 = 2
meds , 2) s2 = 0.1 2

meds , 3) s2 = 0.01 2
meds , 4) s2 = 10

2
meds , and 5) s2 = 100 2

meds .   Note that the specification of 2
meds  depended upon which 

model (BayesA or BayesB) was employed, as described later. 

 We also wondered if one could roughly specify a good working value for s2 by 

merely basing it on an estimate derived from, say, analysis of the same phenotype but 
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based on a SNP panel with a different marker density.  As s2 represents a typical value for 

the SNP-specific variances 2
jgs  , then its value should be inversely related to the number 

of SNP markers as we have observed previously (YANG and TEMPELMAN 2012).  For 

example, given that there were four times as many markers at the high marker density as 

there were at the medium marker density in the simulation study, an initial specification 

for s2 at the high marker density is to use s2
  = 0.25 2

meds .  Similarly, since there were half 

as many SNP markers for the low marker density specification, an initial specification in 

that case might be s2
  = 2 2

meds .  These specifications for s2 were compared for their effect 

on accuracy of breeding value prediction relative to the situation where s2 is inferred 

upon along with all other hyperparameters under both BayesA and BayesB for all 15 

replicated datasets. 

 In all cases, accuracy was defined as correlation between estimated breeding 

values (EBV) and TBV where EBV =Z g  for g  is the posterior mean of g and TBV is 

defined as before. 

3.2.6  Data Application: Assessment of computational efficiency comparisons 

 In this dataset, 2,296 mice were genotyped for 12,147 SNP markers with a high 

pairwise LD of r2=0.6 (Legarra, Robert-Granie et al. 2008). After data cleaning on 

genotypes (YANG and TEMPELMAN 2012), there were 1940 animals with 10,467 SNP 

markers. We selected 50, 100 and 200 SNP markers from each of the 19 autosomes to 

create three different marker densities using pre-corrected body weight at 6 weeks as our 

phenotypes. As in Yang and Tempelman (2012), we also modeled the random effects of 

cage in addition to SNP effects and polygenic effects in the WGP model using the 
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Gelman prior (GELMAN 2006) specified on the cage 2
cs  and the polygenic variance 2

us .    

After merging phenotypes with the genotypes, we were left with 1917 animals with 

complete phenotypes and genotypes on 950, 1900 and 3800 SNP markers across the 19 

autosomes. 

3.3  Results 

3.3.1  Simulation Study 

 By selecting every single, 4th and 10th SNP markers for inclusion, the average r2 

between adjacent SNPs, was 0.17, 0.24 and 0.32 for the three marker densities over the 

15 replicated datasets.  Inferences on s2 in the three sampling strategies DFMH, UNIMH 

and BIVMH were compared under both BayesA (Appendix Figure B2.1A) and BayesB 

(Appendix Figure B2.1B) specifications.  We observed estimates (posterior means) of s2 

decreased as the marker density increased and that estimates derived from BayesB were 

generally one order of magnitude greater than those in BayesA. Furthermore, estimates of 

π  generally increased (Appendix Figure B2.2) whereas estimates of v  generally 

decreased as marker density increased (Appendix Figure B2.3).  All of these results are 

consistent with our previous work (YANG and TEMPELMAN 2012). 

 For quality control, we checked to see that the estimates for the key 

hyperparameters should be the same between the three computational strategies within 

each replicated dataset under the same model, allowing for Monte Carlo error.  Pairwise 

scatterplots of the estimates of s2  under the three different strategies for each of the three 

different marker densities in BayesA (Appendix Figure B2.4) and in BayesB (Appendix 

Figure B2.5) indicated generally good agreement as did for π  using BayesB (Appendix 
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Figure B2.6) and for ν  under BayesA (Appendix Figure B2.7) and BayesB (Appendix 

Figure B2.8). The greatest differences between DFMH and UNIMH or between DFMH 

and BIVMH were found in estimating ν  under BayesB (Appendix Figure B2.8).  

Figure 3.1 and 3.2 illustrate side-by-side boxplots of ESS/CPU for each of the 

three strategies under each of the three marker densities for v  and 2s , respectively, under 

the BayesA model.  In all cases, ESS/CPU were higher for BIVMH and UNIMH 

compared to DFMH (P<0.05). For v  at high marker density (r2=0.32), BIVMH had 

higher ESS/CPU than UNIMH (P<0.0001). For 2s at high and median marker densities 

(r2=0.32 and 0.24), ESS/CPU were higher for BIVMH than UNIMH (P<0.0001).  

Interestingly, the differences in efficiencies between the three strategies widened as 

marker density increased.   Efficiencies for the three alternative sampling strategies were 

also compared under BayesB model for v  (Figure 3.3), 2s  (Figure 3.4), and π  (Figure 

3.5).  We found that UNIMH and BIVMH had significantly greater computational 

efficiencies compared to DFMH for all three hyperparameters (P<0.05). For v , UNIMH 

had significantly higher ESS/CPU compared to BIVMH at low marker density (P<0.05). 

For 2s , UNIMH had significantly greater computational efficiencies compared to BIVMH 

at median marker density whereas BIVMH had higher ESS/CPU than UNIMH at low 

marker density (P<0.05).  For π , BIVMH had higher ESS/CPU compared to UNIMH at 

high and median marker densities (P<0.05). 
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Figure 3.1: Boxplots of effective sample size for v divided by total CPU time in seconds 
across 15 replicates for three different levels of LD comparing DFMH, UNIMH and 

BIVMH under BayesA model. Different letters indicate significant difference with P < 
0.05.  

 

 

Figure 3.2: Boxplots of effective sample size for 2s divided by total computational time 
in seconds across 15 replicates for three different levels of LD comparing DFMH, 
UNIMH and BIVMH under BayesA model.  Different letters indicate significant 

difference with P< 0.05.  
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Figure 3.3: Boxplots of effective sample size for v divided by total computational time in 
seconds across 15 replicates for three different levels of LD comparing DFMH, UNIMH 
and BIVMH under BayesB model.  Different letters indicate significant difference with P 

< 0.05.  

 

 

Figure 3.4: Boxplots of effective sample size for 2s divided by total computational time 
in seconds across 15 replicates for three different levels of LD comparing DFMH, 
UNIMH and BIVMH under BayesB model.  Different letters indicate significant 

difference with P < 0.05.  
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Figure 3.5: Boxplots of effective sample size for π  divided by total computational time 
in seconds across 15 replicates for three different levels of LD comparing DFMH, 
UNIMH and BIVMH under BayesB model.  Different letters indicate significant 

difference with P< 0.05.  

 

We also separately looked at the components of computational efficiency; i.e., 

ESS and CPU/cycle in seconds for each parameter in both models and under all three 

strategies.  As anticipated, DFMH was computationally less expensive in terms of 

CPU/cycle compared to the proposed strategies UNIMH and BIVMH; however, the ESS 

for the 40,000 MCMC cycles that were drawn in each analyses were such that UNIMH 

and BIVMH generally far exceeded that of DFMH.  What was particularly ominous was 

how quickly the ESS measures degraded with increasing marker densities thereby 

suggesting that high density marker panels lead to analyses that require not only greater 

CPU/cycle but also a greater number of MCMC cycles to ensure that ESS values are 

sufficiently great enough to ensure reliable inference. 

We were interested as to whether accuracy of breeding value prediction might 

depend on misspecification of hyperparameters, say, 2s . We assessed the impact on 

52 

 



accuracy of breeding value predictions based on setting 2s  to a wide range of values 

based on various multiples (0.01x to 100x) of the average posterior mean ( 2
meds =7x10-4 

for BayesA, 2
meds =4x10-2 for BayesB) across the 15 replicates under the medium marker 

density.   For BayesA (Figure 3.6) we determined no significant difference in accuracies 

when s2 was understated (i.e., 2s = 0.1 2
meds  and 2s = 0.01 2

meds ); however, breeding value 

accuracies were significantly compromised when 2s  was overstated (P<0.01), particularly 

at s2 = 100 2
meds  (P<0.0001).  For BayesB (Figure 3.7), we did not see any significant 

differences in accuracy of prediction between the various scenarios.  
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Figure 3.6: Boxplots of accuracies of breeding value predictions under BayesA model 
across 15 replicates at medium marker density (pairwise r2=0.24) for 2s  set equal to 
different multiples of average posterior mean of 2s  ( 2

meds =7x10-4) in a fully Bayes 
analysis. Significant differences with 1 2

meds  are indicated by *(P <0.01), ***(P <0.0001) . 

 

Figure 3.7: Boxplots of accuracies of breeding value predictions under BayesB model 
across 15 replicates at medium marker density (pairwise r2=0.24) for 2s set equal to 
different multiples of average posterior mean of 2s  ( 2

meds =4x10-2) in a fully Bayes 
analysis.  Significant differences with 1 2

meds  are indicated by *(P <0.01), ***(P <0.0001). 
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We wondered if some of the non-significant differences in these comparisons 

could be partly attributed to a compensation in the inferences on other hyperparameters, 

specifically v  and π  (in BayesB).  Indeed we noted that as the specification on 2s  

increased from 0.01 2
meds  to 100 2

meds , the posterior means of v  also increased under both 

BayesA (Figure 3.8) and BayesB (Figure 3.9).  This was somewhat anticipated given the 

high posterior correlation attributed between these two hyperparameters.  Note from the 

prior specification on { }2

1j

m

g j
s

=
 that ( )

2
2 2E | 0

2j jg g
sνs s

ν
> =

−
 ; that is, the average values of 

the MCMC draws of { }2

1j

m

g j
s

=
will be somewhat constrained by 

2

2
sν

ν −
.   So if 2s  is 

understated, the estimate of v  ( v  > 2) should decrease accordingly to compensate such 

that there is a good deal of flexibility in maintaining the value of 
2

2
sν

ν −
.  However, if 2s  is 

overstated, then there is very little flexibility to accordingly bring down 
2

2
sν

ν −
with an 

increased value of v  since 
2

2
sν

ν −
 can never be less than 2s .   We believe this is the reason 

why understating the value of 2s  is less serious than overstating it, at least for BayesA, as 

further indicated by our results.  The misspecification also impacts estimates of π  in a 

BayesB as further illustrated in Figure 3.10.  This provides BayesB even more flexibility 

than BayesA for misspecification of 2s ; that is, overstated values of 2s  merely distribute 

the number of non-zero { }
1

m

j j
g

=
over a few number of markers as indicated by higher 

values of π . This may be a key reason why we noticed non-significant differences for 

accuracy of breeding value prediction in BayesB between various specifications of s2 in 
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Figure 3.7.  Misspecification of hyperparameters could then be another reason why 

BayesB often outperforms BayesA in many other comparisons. 

 

Figure 3.8: Boxplots of posterior mean and median for v under BayesA model across 15 

replicates at medium marker density (pairwise r2=0.24) for 2s  set equal to different 
multiples of average posterior mean of 2s ( 2

meds =7x10-4) in a fully Bayes analysis. 
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Figure 3.9: Boxplots of posterior mean and median for v  under BayesB model across 15 

replicates at medium marker density (pairwise r2=0.24) for 2s  set equal to different 

multiples of average posterior mean of 2s ( 2
meds =4x10-2) in a fully Bayes analysis. 

 

Figure 3.10: Boxplots of posterior mean and median for π under BayesB model across 
15 replicates at medium marker density (pairwise r2=0.24) for 2s  set equal to different 

multiples of average posterior mean of 2s ( 2
meds =4x10-2) in a fully Bayes analysis. 
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We also wondered if estimates of 2s  based on analysis derived from certain 

marker densities could be extrapolated to other marker densities for analysis of the same 

phenotypes.  Recall that 2
meds =7x10-4 for BayesA, 2

meds =4x10-2 for BayesB with the 

medium marker density panel.  For the high marker density involving 4 times as many 

markers, we specified s2 = 4 2
meds whereas for the low marker density panel which had half 

as many markers, we specified s2 = 0.5 2
meds . We found no significant differences in 

accuracies in any case (see Figures 3.11 and 3.12) except for a significant lower accuracy 

for extrapolation on 2s  at the higher marker density using BayesA (P=0.04). 
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Figure 3.11: Accuracy of breeding value predictions under BayesA model across 15 
replicates at high and low marker densities (pairwise LD r2=0.32 and 0.17) using DFMH 

(red), DFMH with fixed scale 2s =7x10-4/4=1.75x10-4 (green)  at  high marker density 
and DFMH with fixed scale 2s =7x10-4 x 2.5=1.75x10-3 (blue) at low marker density. 

Significant difference in accuracy between DFMH (red) and DFMH with 2s =1.75x10-4 
(green) was found at P< 0.05. 

 

Figure 3.12: Accuracy of breeding value predictions under BayesB model across 15 
replicates at high and low marker densities (pairwise LD r2=0.32 and 0.17) using DFMH 

(red), DFMH with fixed scale 2s =0.04/4=0.01 (green)  at  high marker density and 
DFMH with fixed scale 2s =0.04 x 2.5=0.1 (blue) at low marker density. No significant 

differences in accuracy among each pair of methods were found.  
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 3.3.2  Application to Heterogeneous Stock Mice data 

 We summarize posterior inferences for the key hyperparameters under BayesA 

and BayesB analyses of the heterogeneous stock mice data in Appendix Table B2.1, 

Table B2.2 and Table B2.3 for the three marker densities: 950, 1900 and 3800 SNP.   For 

the 950 SNP marker analysis (Appendix Table B2.1), posterior means of parameters were 

close to estimates previously provided for this same data by Yang and Tempelman (2012). 

For all analyses, the number of MCMC cycles post burn-in was the same.  Under the 

BayesA model, the ESS for 2s  was twice as large using UNIMH and BIVMH compared 

to DFMH, while the ESS for v  was four times larger in UNIMH and BIVMH compared 

to DFMH; the ESS for 2s  and for v  were similar between UNIMH and BIVMH.  Under 

the BayesB model, the ESS for v  using UNIMH and BIVMH was 7-8 times greater for ν 

and 2 times greater for and π  than that for DFMH.   For the 1900 marker panel 

(Appendix Table B2.2), the ESS for UNIMH and BIVMH compared to DFMH were 

between 10-14 times greater for v  and were both around 3 times greater for 2s  under 

BayesA than for BayesB model, these ratios were respectively between 10 and 15 for v , 

and close to 2 for 2s  and π .   For the 3800 marker panel (Appendix Table B2.3), these 

respective ratios were between 12 and 13 for v  and around 4 for 2s  using BayesA, 

whereas they were between 10 and 15 for v , about 3 for 2s  and about 4 for π  using 

BayesB. 

3.4  Discussion 

 Most researchers don’t typically infer upon key hyperparameters (i.e., v , 2s  and π ) 

that partly determine the genetic architecture in BayesA/B WGP models.  This is in part 
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due to the high posterior correlation that exists between some of these hyperparameters, 

in particular, v  and 2s (Habier, Fernando et al. 2011; de los Campos, Hickey et al. 2013).   

Nevertheless, some (Riedelsheimer, Technow et al. 2012; Technow, Riedelsheimer et al. 

2012; Technow and Melchinger 2013) have been successful in using techniques 

previously presented by Yi and Xu (2008) and Yang and Tempelman (2012) to infer 

upon these hyperparameters, and which closely mirrors that labeled DFMH as described 

in this paper.   

 We considered two alternative sampling strategies to DFMH, each involving the 

use of MH, in an attempt to improve the computational efficiency of WGP models as 

measured by the ratio ESS/CPU.   Using simulation studies and empirical data analyses, 

we demonstrated that strategies borrowing more heavily on MH sampling had better 

computational efficiencies compared to DFMH.  Simple modifications such as sampling 

2s  with a MH rather than a Gibbs step (UNIMH) or joint sampling of 2s  and v  with a 

bivariate MH step (BIVMH) lead to substantial improvements in ESS/CPU. We concede 

that our investigation is not exhaustive with respect to assessing all possible strategies to 

improve computational efficiency in these models; in fact, there may be a hybrid 

involving some or all of the three presented sampling strategies that might be 

computationally more efficient.   Deviations of MH sampling such as Langevin-Hastings 

could also have been explored and assessed here as well although its advantage relative to 

MH sampling has not been too convincing in other animal breeding models (Shariati and 

Sorensen 2008; Waagepetersen, Ibanez-Escriche et al. 2008).  In other work that we do 

not report here, we attempted to base the covariance matrix for the proposal density in 

BIVMH on the negative Hessian of the joint FCD of log( v ) and log( 2s ).    However, we 
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determined this matrix to be positive definite generally only when v < 50, thereby 

negating its use in this way.  Recently, non-MCMC (i.e. expectation-maximization) 

schemes have been increasingly popular; however, it is often not straightforward how to 

estimate key hyperparameters in these implementations (KARKKAINEN and SILLANPAA 

2012). In any case, we encourage further development and work in this area including the 

Bayesian LASSO model (de los Campos, Naya et al. 2009).   

 We have previously demonstrated that it may be advantageous to specify non-

stationary correlation structures between adjacent SNP using a first-order antedependence 

specification (YANG and TEMPELMAN 2012).  In work not reported here, we also 

evaluated the three alternative sampling strategies in the context of antedependence 

versions of BayesA and BayesB and drew conclusions virtually identical to what we 

draw here. 

 Overspecifying 2s  appeared to have deleterious effects on accuracy of genomic 

selection using BayesA models although no such effect was observed in BayesB models 

likely due to the counteracting influence of π .  It appeared that underspecification of 2s  

lead to more robust genomic predictions as there is greater flexibility for inference on π  

and 2s to compensate for this.  We also determined that it may be reasonable to consider 

specifying values for 2s  for one marker density based on a previous estimate from 

another marker density by taking into account the direct inverse relationship between 2s

and marker density.   

 At any rate, it should be fully appreciated that these hyperparameters should not 

be arbitrarily specified in BayesA models.  We anticipate that these issues are also 
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pertinent to determining tuning parameters for various nonparametric approaches as well.   

We do recognize however computational challenges may be formidable for marker 

density panels that far exceed those that we considered in this paper.  At the very least 

then, some hyperparameters should be estimated based on simple model-based 

approximations; for example, 2s  in BayesA should not be much different in magnitude 

from the variance component for SNP effects in a GBLUP (Meuwissen, Hayes et al. 

2001)analysis; hence, a REML-like estimator could be used to provide a reasonable 

specification.  If this is deemed to be computationally intractable relative to the marker 

density, then extrapolations based on analyses based on lower marker densities might be 

pursued similar to those presented in this paper.    

3.5  Conclusions 

 In WGP Bayesian hierarchical models, log transformation and jointly drawing  v  

and 2s  can improve MCMC efficiency for inference on all hyperparameters. Even 

separate univariate MH draws on v  and 2s is substantially more efficient than Gibbs 

sampling of 2s . Overspecification of key hyperparameters 2s  can reduce accuracy of 

breeding value prediction under BayesA model. BayesB model is more robust to 

misspecification of 2s  due to inference on association probability π .  However, it’s 

important to estimate all hyperparameters since misspecification of 2s  can lead to poor 

inference on v  and π . 
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Chapter 4 Random regression and reaction norm extensions of whole genome 

prediction models to account for genotype by environment interaction 
 
 

4.1  Introduction 

 Whole genome prediction (WGP) has become a revolutionary process for 

selecting animals and plants for genetic merit on economically important traits using high 

density single nucleotide polymorphism (SNP) markers (Meuwissen, Hayes et al. 2001).  

Many WGP methods have been investigated to improve accuracy of breeding value (BV) 

prediction (de los Campos, Hickey et al. 2013). Meuwissen et al. (2001) proposed two 

hierarchical Bayesian methods, i.e. scaled-t density prior with and without point mass at 

zero, namely BayesB and BayesA, respectively. To infer upon key hyperparameters, fully 

hierarchical Bayesian WGP approaches based on BayesA have been developed and 

applied in many studies (Yi and Xu 2008; Jia and Jannink 2012; Yang and Tempelman 

2012). 

 Genotype by environment (G×E) interaction refers to how genotypes influence 

phenotypes differentially in different environments (FALCONER 1952). That is to say, the 

genetic merit, even ranking, of animals for certain quantitative traits could be 

substantially different across different environments.  The existence of G×E has been 

found for various traits in various livestock and plant species (Deeb and Cahaner 2001; 

Berry, Buckley et al. 2003; Beerda, Ouweltjes et al. 2007; Bohmanova, Misztal et al. 

2008; Knap and Su 2008; Hadjipavlou and Bishop 2009; Lillehammer, Hayes et al. 2009).  

Recently, it has been determined that some SNP and hence quantitative trait loci (QTL) 

effects are different across environments  (Lillehammer, Arnyasi et al. 2007; 
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Lillehammer, Odegard et al. 2007; Lillehammer, Goddard et al. 2008; Lillehammer, 

Hayes et al. 2009).  In fact, Lillehammer et al. (2007) determined in their analyses that 

some QTL may not have been otherwise inferred without allowing for G×E.  However, 

little work has been considered to jointly model SNP effects across different 

environments under a WGP framework (Burgueno, de los Campos et al. 2012).  

Burgueno et al. (2012) adopted factor analytic models to account for G×E based on SNP 

and/or pedigree derived relationships. Their model did not consider information due to 

environmental covariates that might potentially drive G×E.  If G×E is present, but is not 

considered in WGP models, then selection of animals for certain environments could be 

suboptimal. The existence of G×E further complicates the process of WGP validation; 

that is, sometimes the effects of markers estimated under one population (i.e., training set) 

are retested in another population or environment (i.e. validation set) (Daetwyler, Calus 

et al. 2013); a clear example is the use of parental genotypes and data as training data 

with progeny genotypes and data used as validation within the context of future 

environments as validation.  If G×E effects are important, then this validation strategy 

may not work as intended.  

 Random regression (RR) and reaction norm (RN) models have played an 

important role in detecting G×E of a linear or even higher order nature (Calus, Groen et 

al. 2002; Berry, Buckley et al. 2003; Calus and Veerkamp 2003; Mattar, Silva et al. 2011; 

Cardoso and Tempelman 2012; Streit, Reinhardt et al. 2012).  RR models have been 

typically used for modeling genetic merit of traits with repeated measurements over time 

(Berry, Buckley et al. 2003) whereas RN models have been applied to quantitative traits 

where genetic merit is typically modeled as a function of key environmental covariate(s) 
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(Streit, Reinhardt et al. 2012). For both RR and RN models, BV can be modeled as 

function of an intercept, reflecting an average environment, and a  linear function of a  

key environmental covariate (Calus, Groen et al. 2002).  In QTL mapping studies, the 

QTL specific intercept and slope effects of environmental covariates have been modeled 

to account for G×E (Lillehammer, Arnyasi et al. 2007; Lillehammer, Odegard et al. 2007; 

Lillehammer, Goddard et al. 2008). In a genome wide association study (GWAS) 

focusing on the detection of G×E, SNP specific intercept and slope effects of 

environmental covariates have been modeled (Lillehammer, Hayes et al. 2009). With 

increasing availability of high marker densities in WGP, we develop genomic RR/RN 

models by specifying SNP substitution effects as random intercept and linear functions of 

age or environmental covariates in a manner similar to Streit et al. (2013).  

 In “Bayesian alphabet” WGP models like BayesA or BayesB (MEUWISSEN and 

GODDARD 2010), SNP specific genetic variances are modeled.  These variances are of no 

inherent interest but are used to specify a distribution for the SNP effects that are heavier 

tailed (e.g. Student t) than Gaussian. For RR/RN models used to specify G×E in WGP, 

2x2 genetic variance-covariance matrices (VCV) of the SNP-specific intercepts and 

slopes are modeled. Conjugate priors on these trait-specific VCV, such as independent 

inverted Wishart (IW) densities, have been used for bivariate genomic analyses (CALUS 

and VEERKAMP 2011), thereby rendering marginal distributions on SNP intercept and 

slope effects as bivariate Student t.  An alternative specification, the square root free 

Cholesky decomposition (CD) of the VCV, has been applied in bivariate trait analyses to 

model random and residual variance-covariance matrices (Bello, Steibel et al. 2010).  The 

CD specification re-parameterizes VCV into generalized autoregressive parameters 
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(GARP) and innovation variances to provide potentially greater flexibility relative to IW 

based specifications (POURAHMADI 1999).  

 In this paper, we develop and test five possible RR/RN models based on IW or 

CD based specifications. The objectives of this study were to compare these five models 

to two conventional BayesA and BayesB models for assessing the accuracy of BV 

prediction in WGP, and to compare the five RR/RN models in the ability to detect G×E 

of a linear nature.   

4.2  Materials and Methods 

4.2.1  Random regression and reaction norm models 

 The random regression (RR) model for WGP can be denoted as follows:  

 ( )1 2 ,x β z g gik i i ik i iky = + d a e′ ′ + + +  [1] 

where iky  is the kth phenotype record for ith animal (k=1,2,…,t; i =1,2,…,ni); β is the 

vector of fixed effects, xi′  is the incidence row vector connecting elements of β to animal 

i; [ ]1 2 3zi i i i imz z z z′ =    is the vector of genotypes coded as 0, 1, or 2 copies of the 

minor allele on SNPs for animal i; { }1 1 1
g

m

j j
g

=
=  is the vector of SNP-specific intercept 

effects; { }2 2 1
g

m

j j
g

=
=  is the vector of SNP-specific temporal slope effects; ikd  is the  

environmental covariate for record k on animal i and ike  is the random residual.  Finally, 

ak is the random effect of animal characterized by a variance component 2
as .  This 

particular random effect may be either a specification on residual polygenic or permanent 

environmental effects or both; nevertheless, it is particularly required in addition to the 
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other terms when there are repeated records per animal.  The environmental covariates 

ikd  are assumed to be known without error. In Equation [1], one could write the total 

breeding value (BV) for animal i in an environment characterized by covariate dik as 

( )1 2z g gi ikd′ + which, in turn, is a function of the intercept BV 1z gi′  and the slope BV 

2z gi′ .  One could then think of 1z gi′ as being a measure of overall genetic merit (if dik is 

recentered to an average of 0) for animal i whereas 2z gi′ is a the genetic merit of that 

same animal’s environmental sensitivity; i.e., the greater the value of  | 2z gi′ |, the greater 

the sensitivity of that animal’s genetic merit to different environments as represented by 

different values of dik. 

 We further write the RR-WGP model in matrix notation as follows:  

 1 2y=Xβ Zg DZg Wa e,+ + + +  [2] 

where { }e ike= , D  is a nt by nt diagonal matrix with the environmental covariates { }ikd  

along the diagonal, { }1 1
X x 1 n

i tx i=
=

′ ⊗ , and { }1 1
Z z 1 n

i tx i=
′= ⊗ with ⊗ denoting the 

Kronecker product.  We assume 2~ ( , )e 0 R I eN s=  in this paper although generalizations 

to heterogeneous residual variances over time would be possible too.  Also, we might 

specify arbitrarily informative or diffuse priors ( )βp  on “fixed effects” β , ( )2
ep s  on 2

es  

and ( )2
ap s  on 2

as . 

 Reaction norm (RN) models could somewhat be considered simplifications of RR 

models whereby typically only one phenotypic record ( iy ) is observed per animal, 

although the environmental covariate ( id ) unique to animal i may vary across animals 
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(i.e., t = 1). Sometimes these covariates need to also be inferred (Su, Madsen et al. 2006) 

but for the purposes of this study we’ll also consider id as known. The RN model can 

then be written as:  

 ( )1 2 ,x β z g g′ ′ + +i i i i iy = + d e  [3] 

As with the RR model in Equations [1] and [2], we could add an effect for animal, or 

equivalently, residual polygenic effects based on a known correlation (i.e., numerator 

relationship) matrix, A, between animals if the number of SNP is not considered to be 

large enough to model genetic variability. 

4.2.2  Conventional BayesA and BayesB (BayesA\BayesB) 

 In conventional WGP models, all elements of 2g  are zero. BayesB specifies a 

mixture prior of a point mass at zero with non-association probability (1 )π− and a 

Student-t density with degrees of freedom v  and scale parameter 2s with association 

probabilityπ . BayesA is a special case of BayesB when 1π = (Meuwissen, Hayes et al. 

2001).  Priors such as ( )p ν , ( )2p s , and/or ( )p π  can be specified on these 

hyperparameters for BayesA or BayesB in order to properly “tune” them or account for 

their uncertainty as we and others have done previously (Yi and Xu 2008; Technow, 

Riedelsheimer et al. 2012; Yang and Tempelman 2012) or strongly advocated (JIA and 

JANNINK 2012).  

4.2.3  Bivariate Normality (IW-BayesC) 

 The simplest specification for SNP-effects and slopes might be based on 

multivariate normality. Suppose we reorder [ ]1 2' ' 'g = g g  instead as
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[ ] [ ]11 21 12 22 1 2 .1 .2 .... ' ' ' ... 'g*       g g gm m mg g g g g g= =   where g.j represents the random 

intercept and slope effects of SNP j.  Here g.j are all specified to be independently 

multivariate normal with null mean vector and common variance covariate matrix Σg 

where 

 1 1 2

1 2 2

2

2
g g g

g
g g g

s s
s s

 
=  

 
Σ  [4] 

This specification, more or less, represents a bivariate extension of what Habier et al. 

(2011) describes as BayesCπ when π = 0 where π defines the probability of non-

association. However, as we illustrate later, this is effectively equivalent to a classical 

mixed model analysis.  One can specify a conjugate Inverted Wishart prior on gΣ  with 

0 0~ ( , )IW vgΣ Σ , and we denote this extension as IW-BayesC.   

4.2.4  Bivariate Student t and Variable Selection (IW-BayesA\IW-BayesB) 

 We consider an extension to IW-BayesC, whereby intercept and slope effects are 

specified to have heterogeneous variance-covariance matrices across SNP.  For SNP j, we 

specify .g j  to be conditionally bivariate normal; i.e., 

1 1 2

1 2 2

2

. 2 1 2
j j j

j j j

g g g
j j

g g g

s s

s s×

  
  
    

g N 0 , G = .   [5] 

We then specify all jG  to have independent conjugate inverted Wishart prior densities; 

i.e. ~ IW( , )j vg gG Σ  characterized by a degrees of freedom parameter gv  and scale matrix 

1 1 2

1 2 2

2

2
g g g

g
g g g

s s
s s

 
=  

 
Σ .  We denote this specification as IW-BayesA, noting the obvious 
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bivariate extension to BayesA as first proposed by Meuwissen et al. (Meuwissen, Hayes 

et al. 2001).   Note that as gv →∞,  j g j= ∀G Σ  such that IW-BayesA reverts back to IW-

BayesC.   We specify a prior ( )gp v  on gv  and a conjugate Wishart prior 0 0~ ( , )g SW vΣ  

on gΣ .  As alluded to by Munilla and Cantet  (2012) and Bello et al. (2010), the 

variability of the three components (i.e., 2 SNP-specific variances and a SNP-specific 

covariance) of jG using IW-BayesA/B is primarily controlled by one hyperparameter: gv .  

 Mirroring the extension of BayesA to BayesB by Meuwissen et al. (2001), we 

also further modified IW-BayesA by specifying a mixture prior on jG  such that 

2 2j x=G 0  with probability (1 )π−  and ~ IW( , )j vg gG Σ  with probability π .  We name 

this procedure IW-BayesB specifying a prior ( )p π  on π . This specification is perhaps 

more dubious than IW-BayesA, given its all or none assumption with respect to SNP 

effects on both intercept and slope, whereas IW-BayesA likely has more flexibility to 

specify large SNP effects for, say, the intercept, but near-zero for slope.  

4.2.5  Cholesky decomposition specifications (CD-BayesA\CD-BayesB) 

 Based on our previous experiences, e.g. (Bello, Steibel et al. 2010), we 

conjectured that specification of inverted Wishart prior densities on jG  might be rather 

inflexible as such specifications either imply that all SNP have either non-zero effects for 

both intercept and slope (IW-BayesA, IW-BayesC) or, if they don’t, both effects are 0 

(i.e., IW-BayesB), thereby not allowing for the possibility that some SNP effects are 

overall important (i.e. non-zero intercept) but environmentally robust (i.e., zero slope).   
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Furthermore, these IW specifications are additionally inflexible in that the heterogeneity 

of each single component of jG  is controlled by a single parameter gv .   

 We subsequently developed an alternative parameterization based on the square 

root free Cholesky decomposition (CD) of jG  as based on our previous work (Bello, 

Steibel et al. 2010). The CD parameterization provides potentially greater flexibility by 

modeling the following relationship between 2g and 1g :   

 2 1 2|1g Ψg g= +  [6] 

Here { }2|1 2|1,g jg=  is the vector of SNP-specific slope effects conditional on intercept 

effects whereas { } 1
Ψ φ

=
=

m

j j
diag  represents a diagonal matrix of SNP-specific 

associations between intercept and slope effects.  Hence, we can re-write the RN/RR 

model [2] as: 

( )1 1 2|1y=Xβ Zg DZ Ψg g e,+ + + +  [7a] 

or 

 ( ) 1 2|1y=Xβ Z+DZΨ g DZg e.+ + +  [7b] 

Note for SNP j that if φj ≈ 0, intercept effects are independent of slope effects.  If 2|1, 0jg ≈  

and φj ≠ 0 then intercept and slope effects are perfectly correlated.  If 2|1, 0jg ≈  and φj ≈ 0, 

then the SNP is said to be environmentally robust (i.e., 2 0jg ≈ ).   

 For SNP j, we specify 
1

2
1 ~ (0, )

jj gg N s  with ( )2 2
1 1 11

2 ~ ,
jg v v sχs − whereas 

2|1

2
2|1, ~ (0, )

jj gg N s  with ( )2 2
2 2 22|1

2 ~ ,
jg v v sχs − .  In essence, these two mixtures specify 
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two separate univariate Student t densities for elements of 1g  and 2|1g .   Furthermore, we 

specify independent normal priors on SNP-specific association parameters between 

intercept and slope effects; i.e., 2~ ( , )j N jφ φφ m s ∀ .   We label this model as CD-BayesA. 

Alternatively, let’s consider a variable selection extension of CD-BayesA such that
1

2s
jg  

and 
2|1

2s
jg  have these same respective inverted chi-square priors but with corresponding 

probabilities 1π  and 2π  such that  
1

2s
jg = 0 and 

2|1

2s
jg =0 with probabilities ( )11 π−  and 

( )21 π− .  For obvious reasons, we then label this model then as CD-BayesB.  For both 

models, we specify diffuse or informative priors on φm  and on 2
φs .  

4.2.6  Bayesian inference 

 In order to conduct fully Bayesian inference using Markov Chain Monte Carlo 

methods, it is necessary to derive the full conditional densities (FCD) for each unknown 

parameter to be inferred.  For each of the aforementioned RN/RR models, we present 

these FCD in Appendix C1. 

4.2.7  Simulation Study 

 In order to discern the ability of the various models to differentially fit various 

naively defined genetic architectures, we conducted a simple simulation study.  We 

targeted six specific scenarios as outlined in Table 4.1.  Key specifications were based on 

an overall or average genetic correlation (
1 2g gρ ) between intercept and slope, as further 

described and defined in Appendix C1.3, targeting values of 
1 2g gρ = 0, 

1 2g gρ = 0.5, and 

1 2g gρ = 0.8.  We also investigated the effects of the number of QTL influencing both 
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intercept and slope (Mboth = 20, 50, or 100), the number of QTL influencing the intercept 

only (Mint = 20, 50) and the heritability (h2 = 0.20 or 0.50).  One may think of Mint as the 

number of environmentally robust QTL (i.e., consistent genetic effects across 

environments) whereas Mboth denotes the number of environmentally sensitive QTL; i.e. 

QTL whose effects are influenced by environmental effects. 

Table 4.1: Summary of six scenarios in LD simulation 

Scenario Number of QTLs 

for both intercept 

and slope 

( Mboth ) 

Number of QTLs 

for intercept only 

( Mint ) 

Overall genetic 

correlation
1 2

( )g gρ  

[and range across 

replicates] 

Average 

heritability
2( )h  

1 100 0 0    [-0.07, 0.07] 0.5 
2 100 0 0.5 [0.39, 0.61] 0.5 
3 100 0 0.8 [0.68, 0.85] 0.5 
4  50 50 0.5 [0.40, 0.66] 0.5 
5 50 50 0.5 [0.40, 0.66] 0.2 
6 20 20 0.5 [0.37, 0.71] 0.5 
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 The first three scenarios (Scenarios 1-3) all entailed Mboth = 100 and h2 = 0.50 and 

characterized situations that seemingly best agreed with an IW-BayesB or a CD-BayesB 

situation i.e., Mint = 0.  The only differences between each of these three scenarios were 

differences in 
1 2g gρ .  Scenarios 4-6 seemingly best agreed with the CD-BayesB 

specifications (i.e., Mint ≠ 0) and were studied in order to assess the effect of h2 (0.5 vs 0.2 

for Scenarios 4 vs. 5) and Mint (50 versus 20 for Scenarios 4 vs. 6). 

 Twenty replicated datasets were generated under each of the six different 

scenarios.  For each replicate, we used the R package HaploSim (Coster, Bastiaansen et 

al. 2010) to generate 6000 historical generations based on a constant population size of 

100 animals as based on 200 unique haplotypes in the base generation.  For all cases, the 

genome was originally composed of one chromosome with 1 Morgan in length and 

having 100,000 loci.  For 20,000 of these loci, the biallelic minor allele frequency was 

0.5 whereas the remaining loci (i.e., 80,000) were specified to be monomorphic in the 

base population.  The number of recombinations for each meiosis event was drawn from 

a Poisson(1) distribution with genomic positions for recombination randomly chosen 

from a uniform distribution. For the 6000 historical generations, we specified the 

recurrent mutation rate for all loci as 10-5 per locus per generation. After 6000 

generations, two additional Generations 6001 and 6002 were generated to expanded to 

randomly mated population sizes of n = 2000 animals each.  

 For each replicate, we deleted SNP with minor allele frequency (MAF) < 0.05 in 

Generation 6001. Around 2200 SNPs remained after data editing. The genotype matrix Z 

was then based on the number of minor alleles (0, 1 or 2) at each locus for each animal. 
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We randomly chose Mboth + Mint  of these SNP to be QTL.  Variances for QTL-specific 

intercept effects 
1

2
jgs were drawn from scaled inverted chi-square distributions with scale 

2
1s = 2 and degrees of freedom 1ν  = 5. Variances for any QTL-specific slope effects 

conditional on intercept effects,  (i.e., 
2|1

2
jgs ) for each of Mboth QTL, were also drawn 

from scaled inverted chi-square densities always with 2ν  = 5 and with 2
2s = 2 (

1 2g gρ = 0),  

2
2s  =1.5 (

1 2g gρ = 0.5),  or  2
2s  = 0.72 (

1 2g gρ = 0.8).  QTL effects for intercepts 

{ },1 1

both intj M M

QTL j j
g

= +

=
and conditional slopes { },2|1 1

bothj M

QTL j j
g

=

=
were then independently 

generated from normal distributions with null means and their corresponding variances 

1
2

jgs  and 
2|1

2
jgs .  Hence, QTL effects for { },1 1

both intj M M

QTL j j
g

= +

=
and { },2|1 1

bothj M

QTL j j
g

=

=
were each 

Student t-distributed. 

 The association parameters { }, 1

bothj M

QTL j j
φ

=

=
 between intercept and slope for each of 

Mboth QTL were generated from independent normal distributions, always with variance 

2
,QTL φs  = 0.05 and with mean ,QTL φm = 0, for 

1 2g gρ = 0, ,QTL φm =0.5, for 
1 2g gρ = 0.5, and 

,QTL φm =0.8, for 
1 2g gρ = 0.8.  Subsequently, the effect for slope for QTL j was determined 

to be ,2 ,1 , ,2|1QTL j QTL j QTL j QTL jg g gφ= + ; j=1,2,…,Mboth.   An environmental covariate, id , 

unique to each animal, was randomly drawn from Ν(0,0.36).  Writing ZQTL,int  as the 

subset of the n x Mint  SNP genotypes in Z that are designated to be QTL for intercepts 

only and ZQTL,both  as the subset of the n x Mboth SNP genotypes in Z that are designated to 

be QTL for both intercepts and slopes, the true breeding values { } 1

i n

i
TBV =

=  in each of 
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Generations 6001 and 6002 were generated using 

{ } { } { } ( ) { }int

, ,1 ,int ,1 , ,21 1 1 1
Z + Z Zboth both both

both

j M j M M j Mi n
i QTL both QTL j QTL QTL j i QTL both QTL ji j j M j

TBV g g diag d g
= = + ==

= = = + =
= +

 

   [8] 

Residuals ( ie ) were generated for the record on each animal were drawn from a normal 

distribution with null mean and variance ( 2
es ) as dependent upon h2; i.e 

 
{ }( )( )2

12
2

var 1i n
i i

e

TBV h

h
s

=

=
−

=   [9] 

Hence, phenotypic records were generated as i i iy TBV e= + . 

 Since the existence of GxE would imply that we select for genetic merit tailored 

for specific environments, we compared the accuracy of predicting TBV among the five 

aforementioned RN methods as well the two conventional methods (BayesA, BayesB) at 

three environmental covariate values:  d = -1.2,  d = 0.0 and d = 1.2 representing -2, 0 and 

+ 2 standard deviations, respectively, for d.   Accuracy for a particular value of d  was 

defined as the correlation between { }, 1

i n
i d i

TBV
=

=
 and { }, 1

i n
i d i

EBV
=

=
 where { },i dTBV for 

Generation 6002 animals is based on Equation [8] but with all id d=  whereas 

' '
, * 1 2ˆ ˆi d i iEBV d= +z g z g  for 'zi  being the SNP genotypes for animal i in Generation 6002 

were based on estimated effects using only Generation 6001 data; i.e., ˆ 1g  and 2ĝ  are the 

respective posterior means for SNP-specific intercepts and slopes.   For each of the 5 

RR/RN models, we also assessed the relative accuracy of predicting the components of 
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the BV due to intercept and slope separately in all six scenarios among the five methods. 

Intercept BV accuracy was determined as the correlation between true intercept BV (first 

two expressions on right side of Equation 8) and estimated intercept BV ( 1ˆZg ) whereas 

slope BV accuracy was determined as the correlation between true slope BV 

( { }, ,2 1
Z bothj M

QTL both QTL j j
g

=

=
) and estimated slope BV ( 2ˆZg ).  We compared prediction 

accuracy of BV using a Wilcoxon signed rank test between each pair of the RR/RN and 

conventional methods.  

4.2.8  MSU Pig Resource Population data 

 The genotypes used for this analysis were based on a commercial platform for 

low density genotyping (8434 SNP) in swine marketed as the Neogen Porcine GeneSeek 

Genomic Profiler LD (version 1) (GeneSeek, a Neogen Company, Lincoln, NE)  (Badke, 

Bates et al. 2013).  We received complete phenotypes and genotypes information on 928 

F2 animals derived from a Duroc × Pietrain resource population at Michigan State 

University (Edwards, Ernst et al. 2008; Choi, Steibel et al. 2010). Any SNP with MAF < 

0.01 were deleted.  For adjacent SNP in complete LD with pairwise r2=1, we deleted one 

SNP at random from each pair. Then we excluded SNPs having P-value < 10-4 for the 

Hardy Weinberg equilibrium test.  Genotypes for the remaining 5271 SNPs were 

standardized using ( ) ( )2 2 1ij j j jz p p p− −  where ijz  is genotype of jth SNP on ith 

animal and jp  is allele frequency of the reference (“0”) allele for jth SNP (de los Campos, 

Hickey et al. 2013).  Pedigree information was available for the 928 F2 animals including 

their parents and grandparents. There were 140 unique full-sib families in total among the 
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928 F2 animals. The average full-sib family size was around 6. Map information was 

available on SNPs for each of the 18 autosomes from Duarte et al. (Duarte, Bates et al. 

2013).  

 We focused on back fat thickness as our response variable.  Back fat thickness 

was measured at the 10th rib by B-mode ultrasound at weeks 10, 13, 16, 19 and 22 

(Edwards et al. 2008).  We used the following RR model for data analysis:  

 
( )

( )

4 4

1 1

1 2 1 2            z g g

ijkl i j j i

k l i l l i ijkl

y = d sex sex d

litter u d u d +e

ω ω
ω ω

ω ω

m β β
= =

+ + + ×

′+ + + + +

∑ ∑
. [10] 

Here, m is the overall mean; idω  is the  ωth order power or polynomial  (ω =1,2,3,4) on 

week i with βω being the corresponding partial regression coefficient, jsex is the fixed 

effect of sex of animal j, ( )j i j
sex dω

ωβ× is the fixed effect of the interaction between idω  

and jsex , klitter  is random effect for litter k, 1lu  is permanent environmental intercept 

effect for animal l, 2lu  is the permanent environmental slope effect for animal l, 

[ ]1 2 3z′ = l l l l lmz z z z  is the vector of genotypes on animal l, 1g  is the vector of SNP-

specific intercept effects; 2g  is the vector of SNP-specific slope effects; id  is the recoded 

covariate for week i; ijkle  is the residual effect on ijkly .  We further rescaled id  as -1, -0.5, 

0, 0.5 and 1 for weeks 10, 13, 16, 19 and 22.   

 Random effect specifications were as follows.  Litter effects were presumed to be 

normally and independently distributed with null mean and variance component 2
litters . 

We decided not to fit polygenic effects since they are strongly confounded with both litter 
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effects, permanent environment effects and SNP effects and hence would severely 

impede MCMC performance. The permanent environmental effects [ ]1 2' ' 'u u u=  for 

{ }1 1u lu= and { }2 2u lu= were assumed to be multivariate normal with null mean vector 

and variance-covariance matrix I Σ⊗  where I is the identity matrix and Σ  is the 2 x 2 

unstructured covariance matrix between permanent environmental intercept and slope.   

 With availability of pedigree information, we also applied a conventional 

polygenic model (RR-BLUP) as a control-based comparison for the genomic (i.e., SNP) 

based RR models.  Fixed effects, random litter effects and permanent environmental 

effects were defined the same as in Equation [10], except that we replaced SNP effects by 

polygenic effects for both intercept and slope as following:     

( )
4 4

1 1

1 2 1 2            

ijkl i j j i

k l i l l i l ijkl

y = d sex sex d

litter u d u a d a +e

ω ω
ω ω

ω ω

m β β
= =

+ + + ×

+ + + + +

∑ ∑
. [11] 

We assumed that the polygenic effects [ ]1 2' ' 'a a a=  for intercept { }1 1a la= and slope

{ }2 2a la= have a joint multivariate normal distribution with null mean vector and 

variance-covariance matrix aA Σ⊗ , where A is the numerator relationship matrix and 

aΣ  is the 2 x 2 unstructured covariance matrix between polygenic intercept and slope 

effects.   

 All of the five aforementioned RR models along with RR-BLUP were compared 

to conventional WGP specifications (i.e. BayesA and BayesB) based on 20 random 

across litter cross validation splits of the data using Wilcoxon signed rank test.  That is, 

for each split, data on all individuals from 126 (90%) litters were randomly chosen as the 
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training data whereas the data on all subjects in the remaining 14 (10%) litters were 

chosen to be validation data.   In this cross validation, hyperparameters and variance 

components were fixed to estimates derived from analyses of the entire data.   In all cases, 

except for RR-BLUP, inferences were based on posterior means of the MCMC samples 

from the posterior distributions.  To expedite analyses under RR-BLUP model, we used 

ASReml 3.0 to provide analytical BLUP solutions rather than using MCMC, noting that 

conditionally on variance components, these MCMC and BLUP inferences are identical.  

For all eight models, the Pearson correlation between these predictions and the actual 

training data was used as a measure of performance of the competing methods.  

4.2.9  Priors used for data analyses 

 For all analyses in this paper, we specified a vaguely informative prior 

( ) ( ) 2~ 1pν ν ν −∝ +  and Gelman’s prior ( )2 2 1,0s χ − −  , which is also informative 

when bounded, for conventional BayesA as we’ve done previously (YANG and 

TEMPELMAN 2012).  For conventional BayesB, proper conjugate priors 

( )2 0.1,0.1s Gamma  and
 ( ) ( )~ | , 1, 8p Betaπ π π ππ π α β α β= = =  were used. For IW-

BayesC, a conjugate inverted Wishart prior was specified on scale matrix gΣ  with

0 0 2 2~ ( 3, )g S 0IW v ×= − =Σ . For IW-BayesA and IW-BayesB, we specified a prior on gv  

such that ( ) ( ) 2
1g g

−
∝ +p v v and a conjugate Wishart prior; i.e., 0 0~ ( , )g SW vΣ  on the scale 

matrix gΣ .  As in conventional BayesB, the same proper prior was specified on π , i.e.

( )~ 1, 8Beta π ππ α β= =  in IW-BayesB.   
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 In CD-BayesA and CD-BayesB, we used the same non-informative priors

( ) ( ) 2
1 1 1p ν ν −∝ + and  ( ) ( ) 2

2 2 1p ν ν −∝ + for intercept and conditional slope effects.  In 

addition, Gelman’s prior ( )2 2
1 1,0s χ − −  and ( )2 2

2 1,0s χ − −  were used in CD-BayesA, 

while 2
1 (0.1,  0.1)s Gamma  and 2

2 (0.1,  0.1)s Gamma  were specified in CD-BayesB.  

For CD-BayesB, we specified the proper priors ( )1 1 1~ 1, 8Beta π ππ α β= =  and 

( )2 2 2~ 1, 8Beta π ππ α β= = .  For both CD-BayesA and CD-BayesB, mean of SNP specific 

association parameters between intercept and slope φm  was specified using 

2( ) ( 0, 1)p Nφm τ ζ= = = , and variance for association parameters 2
φs  was specified with 

Gelman’s prior ( ) ( )2 2 1,0p φs χ −= − .  

4.3  Results 

4.3.1  Simulation Study 

 In Figure 4.1, we illustrate comparisons of the accuracies for each of the seven 

competing models at each of three different environmental covariate values: d = -1.2, 0 

and 1.2 for each of the six scenarios as previously described in Table 4.1. Again, these 

results were based on 20 replicated datasets for each scenario.  We focus first on the 

comparisons in Scenarios 1-3 where the simulated genetic architecture seemed more 

congruent with an IW-BayesA or CD-BayesA like specification (i.e., Mint = 0).  When 

1 2g gρ = 0 in Scenario 1 (Figure 4.1(1)), there were significant (P<0.05) differences in 

accuracy of nearly 30 percentage points (i.e., >84% vs. <56% at d = -1.2, >82% vs. <52% 

at d = 1.2) in favor of each the five RN models over the two conventional models 
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(BayesA/BayesB).  Such differences were also significant when 
1 2g gρ = 0.5 (Scenario 2 in 

Figure 4.1(2)) and when 
1 2g gρ = 0.8 (Scenario 3 in Figure 4.1(3)) although these 

differences became increasingly asymmetric between d = -1.2 (i.e., progressively larger) 

and d = 1.2 (i.e., progressively smaller). For each of these three scenarios, IW-BayesA 

had the highest accuracy relative to all other models in d = -1.2 and 1.2 (P<0.05) whereas 

it did not appear to be different from either of the CD models when d = 0.   Furthermore, 

the differences between all of the competing models were trivial (<2-3%) between all RN 

and conventional models at d = 0 such that IW-BayesB and IW-BayesC were not even 

judged to be different from BayesA and BayesB.   

 We further compared accuracies at d = -1.2, 0 and 1.2 in three other scenarios (4, 

5, and 6) where the simulated genetic architecture seemed more congruent with a CD-

BayesB like specification (i.e., Mint>0) based on 
1 2g gρ  = 0.5.  In Scenario 4 (Figure 4.1(4)) 

where Mboth = Mint = 50 and h2=0.5, both conventional BayesA and BayesB were inferior 

(P<0.05) to all RN models at both d = -1.2 and 1.2 as expected.  However, IW-BayesA 

surprisingly outperformed (P<0.05) all other RN methods at both d = -1.2 and 1.2, 

although such differences were small (i.e., <2-3%).  Differences between all models were 

even smaller at d = 0 (i.e., <1-2%).  The specifications for Scenario 5 (Figure 4.1(5)) 

differed only from Scenario 4 with a lower h2 = 0.2.  In that case, IW-BayesA also had 

significantly (P<0.05) higher accuracy compared to other RN models at d =-1.2 and 

d=+1.2 except for CD-BayesB at d = +1.2.  At d = 0, CD-BayesB (P<0.05) outperformed 

other models although all differences were very small.  The final Scenario 6 (Figure 

4.1(6)) differed only from Scenario 4 by lower numbers of QTL (i.e. Mboth = Mint = 20).   

Not only was IW-BayesC significantly much lower in accuracy compared to all other RN 
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models at all three values of d, it was even lower in accuracy compared to conventional 

(i.e., BayesA and BayesB) models at d = 0.  CD-BayesB had the highest accuracy among 

the five RN methods at each value of d although that difference was not significant 

compared to IW-BayesA and IW-BayesB at d = -1.2. 

 

 

Figure 4.1: Average accuracy of breeding value prediction for seven methods 
(BayesA\BayesB\IW-BayesA\IW-BayesB\IW-BayesC\CD-BayesA\CD-BayesB) at three 
environmental covariates in six scenarios, i.e. (1) both = 100M , int = 0M , 

1 2
= 0g gρ , 

2 = 0.5h ; (2) both = 100M , int = 0M , 
1 2

= 0.5g gρ , 2 = 0.5h ; (3) both = 100M , int = 0M , 

1 2
= 0.8g gρ , 2 = 0.5h ; (4) both = 50M , int = 50M , 

1 2
= 0.5g gρ , 2 = 0.5h ; (5) both = 50M , 

int = 50M , 
1 2

= 0.5g gρ , 2 = 0.2h ; (6) both = 20M , int = 20M , 
1 2

= 0.5g gρ , 2 = 0.5h ;                              
Different letters indicate significant difference at P<0.05. 
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 We attempted to better understand these results by focusing on which of the RN 

methods performed best for inferring upon the intercept component of the BV and the 

slope component of the BV.  For all six simulation scenarios, we found that CD-BayesB 

always had the significantly highest accuracy for intercept BV compared to all other RN 

models (Figure 4.2A) whereas IW-BayesC and IW-BayesB were generally amongst the 

worst.  For slope BV accuracy, there was no evidence of differences between any of the 

models at the low heritability Scenario 5 (Figure 4.2B).  However, IW-BayesA did 

outperform other RN methods in Scenarios 1-4 except for Scenario 3 where CD-BayesB 

was not found to be inferior to IW-BayesA.  In Scenario 6, IW-BayesA only 

outperformed IW-BayesC.  IW-BayesC and IW-BayesB had generally among the lowest 

slope BV accuracy although CD-BayesA was poorest in Scenario 4. Hence the general 

advantages for predicting environment-specific BV for CD-BayesB appeared to accrue 

from its greater accuracy on inferring intercept components of genetic merit whereas that 

for IW-BayesA appeared to accrue from inferring the slope components. 
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Figure 4.2: Accuracy of intercept (A) and slope (B) breeding value prediction for five RN 
methods (IW-BayesA\IW-BayesB\IW-BayesC\CD-BayesA\CD-BayesB) under six 
scenarios: i.e. (1) both = 100M , int = 0M , 

1 2
= 0g gρ , 2 = 0.5h ; (2) both = 100M , int = 0M , 

1 2
= 0.5g gρ , 2 = 0.5h ; (3) both = 100M , int = 0M , 

1 2
= 0.8g gρ , 2 = 0.5h ; (4) both = 50M , 

int = 50M , 
1 2

= 0.5g gρ , 2 = 0.5h ; (5) both = 50M , int = 50M , 
1 2

= 0.5g gρ , 2 = 0.2h ; (6)

both = 20M , int = 20M , 
1 2

= 0.5g gρ , 2 = 0.5h ; Different letters indicate significant 
difference at P<0.05.  
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4.3.2  MSU Pig Resource Population data 

 Predictive ability was calculated as the correlation between observed phenotypes 

ijkly  in the validation dataset and their predicted values based on inferences from the 

training dataset.  The predictive abilities for each of the eight models for each of the 20 

different cross-validation sets are illustrated in Figure 4.3.  The five RR Bayesian 

methods had ~2.5% higher (P<0.0001) predictive ability than the two conventional 

methods and RR-BLUP model. In addition, no significant differences in predictive ability 

were found among the five SNP effects based RR methods.  

 

Figure 4.3: Predictive ability for eight methods (BayesA\BayesB\RR-BLUP\IW-
BayesA\IW-BayesB\IW-BayesC\CD-BayesA\CD-BayesB) from cross-validation 
analysis using back fat thickness in MSU Pig Resource Population data. Different letters 
indicate significant difference at P<0.0001.   
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 In an attempt to better understand these results, we focused on the non-mixture 

methods (conventional BayesA, IW-BayesA and CD-BayesA) for estimated intercept BV 

and slope BV respectively. Based on estimated intercept BV using the complete final 

analyses data, Figure 4.4 showed a relatively high correlation (~0.9996) between the two 

RR methods IW-BayesA and CD-BayesA.  In contrast, low correlations were determined 

between conventional BayesA and IW-BayesA (~0.8606) and between conventional 

BayesA and CD-BayesA(~0.8589).   As conventional BayesA does not model genomic 

effects for slope on weeks of age, we can only compare IW-BayesA and CD-BayesA for 

the estimated slope BV.  Figure 4.5 demonstrated that there was a high correlation 

(~0.9845) between IW-BayesA and CD-BayesA for the estimated slope component of 

BV.  
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Figure 4.4: Estimated intercept breeding values from conventional BayesA, IW-BayesA 
and CD-BayesA using the complete final analyses data on back fat thickness in MSU Pig 

Resource Population. Reference line is y=x.  

 

Figure 4.5: Estimated slope breeding values from IW-BayesA and CD-BayesA using the 
complete final analyses data on back fat thickness in MSU Pig Resource Population. 
Reference line is y=x. 
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 To further investigate the difference in detecting QTLs, we computed the absolute 

values of posterior means of SNP effects at three different ages (10, 16 and 22 weeks) for 

these same three methods in Figures 4.6-4.8.  In the conventional BayesA model, the 

SNP effects by necessity are estimated to be the same at any age and hence only one plot 

was provided; this plot demonstrated that three chromosomes (2, 6, and 11) had some 

relatively large SNP peaks.  IW-BayesA (Figure 4.7) and CD-BayesA (Figure 4.8) also 

demonstrated peaks in these and other chromosomes at all three ages.  However, as might 

be anticipated, SNP effects under these RR models tended to increase with increasing 

ages.  On chromosome 6, we found two relatively large SNP peaks with IW-BayesA and 

CD-BayesA, respectively. With estimated SNP intercept and slope effects from IW-

BayesA and CD-BayesA, we can further demonstrate regression lines of estimated SNP 

effects on rescaled weeks of age (-1, -0.5, 0, 0.5, 1) for the two SNP markers (Appendix 

Figure C2.1).    
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Figure 4.6: Estimated SNP effects from conventional BayesA against marker position 
using the complete final analyses data on back fat thickness in MSU Pig Resource 
Population. 
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Figure 4.7: Estimated SNP effects from IW-BayesA against marker position using the 
complete final analyses data on back fat thickness in MSU Pig Resource Population when 
A) at week 10, B) at week 16, C) at week 22. 
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Figure 4.8: Estimated SNP effects from CD-BayesA against marker position using the 
complete final analyses data on back fat thickness in MSU Pig Resource Population when 
A) at week 10, B) at week 16, C) at week 22. 
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4.4  Discussion 

 Although RR and RN models have been extensively used for modeling GxE in 

classical polygenic models (CARDOSO and TEMPELMAN 2012), they have not been as 

extensively adapted for WGP models.  Several efforts have been made to infer upon G×E 

using RN models in QTL mapping and GWAS studies (Lillehammer, Arnyasi et al. 2007; 

Lillehammer, Odegard et al. 2007; Lillehammer, Goddard et al. 2008; Lillehammer, 

Hayes et al. 2009). To improve power of QTL detection, Lillehammer et al. (2007) 

proposed RN models to estimate the QTL intercept and slope effects based on haplotypes 

with identity by descent (IBD) information. They applied their models to a Norwegian 

Red cattle population using herd-year mean estimates as environmental covariates 

(Lillehammer, Arnyasi et al. 2007; Lillehammer, Goddard et al. 2008) which is typical of 

RN models. Lillehammer et al. (2009) compared their models with and without pedigree 

information in an Australian dairy bull population to scan one SNP at a time based on 

genotypes.  WGP models (i.e., joint analysis of all SNP) have been advocated to be very 

important for conducting GWAS (Wang, Misztal et al. 2012); hence, we explored and 

compared the alternative WGP RR alternatives for that purpose as well.  

 We consider both RR and RN WGP models in this paper since the modeling 

issues are almost identical, albeit the circumstances are rather different.  RN models are 

intended for those situations where there is typically one measure per animal and 

environmental effects and animal BV might be characterized by linear functions of these 

covariates, (DE JONG 1995). RR models are intended for longitudinal data collection in 

the sense that there are repeated measurements for each animal over time, such as back 

fat thickness in pigs as analyzed in this paper. Because of this repeated measures dynamic, 
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it becomes even more imperative to model animal effects (i.e. additive genetics and/or 

permanent environmental effects) in RR genomic models relative to RN models.   

Alternative strategies for modeling GxE might be pursued based on, for example, factor 

analysis, when environments cannot be classified by linear functions of covariates 

(Burgueno, de los Campos et al. 2012).   

 The simplest RN/RR specification that we considered was IW-BayesC, being 

essentially identical to a classical mixed model specification.  Unlike any of the other 

four RR/RN specifications, IW-BayesC assumes all pairs of SNP-specific intercept and 

slope effects to be normally distributed whereas each of the other methods specify either 

t-distributed or null effects.  Furthermore, being simpler, the only hyperparameters 

requiring inference in IW-BayesC are variance components to estimate; this is not trivial 

given the difficulty for inferring upon degrees of freedom, for example, in heavier tailed 

specifications (Habier, Fernando et al. 2011). In fact, IW-BayesC is identical in principle 

to a classical RR or RN approach for mixed effects modeling. That is, we can set up the 

mixed model equations from the RR/RN-WGP model [2] as follows:  

( ) ( ) ( ) ( )

1 1 1 1

1 1 11 1 12 1
1

1 1 12 1 22 1
2

ˆ' ' ' '
ˆ' ' ' '
ˆ' ' ' '

X R X X R Z X R DZ β X R y
Z R X Z R Z I Z R DZ I g Z R y

DZ R X DZ R Z I DZ R DZ I g DZ R y
g g

g g

− − − −

− − − −

− − − −

    
    + + =    
    + +    

 

   [11] 

where 
11 12

1
12 22

Σg
g g
g g

− 
= 

 
 whereby one could readily base 2

es  and Σg on their REML 

estimates. Of course, it might also be necessary to further specify polygenic effects 

and/or permanent environmental effects in [11], particularly for the RR case.  In the 

strictest sense, this computational approach is not exactly equivalent to IW-BayesC, 
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which is a fully Bayes procedure that would take into account uncertainty in 2
es  and Σg . 

Nevertheless, based on experiences with our simulation study (not reported), inferences 

on variance components, SNP effects, and, hence, BV are effectively the same, provided 

that relatively diffuse priors on 2
es  and Σg are specified in IW-BayesC.  Furthermore, 

this mixed model/REML approach is computationally far more efficient compared to 

having to conduct MCMC on IW-BayesC. 

 This efficiency can be further enhanced when the number of markers well exceeds 

the number of animals for which genomic BV are estimated.  That is, one can design a set 

of mixed model equations equivalent to [11] but with potentially much smaller 

dimensionality by directly solving for genomic intercept and slope BV in a genomic 

animal model rather explicitly modeling SNP-specific effects (Habier, Fernando et al. 

2007; Strandén and Garrick 2009). Extending Stranden and Garrick (2009) further and 

assuming, say, one record per genotyped animal in a RN-like situation we can 

reparameterize Equation [11] as follows  

 ( ) ( )
( ) ( )

1 12 11 2 12
1

1 12 11 2 22
2

ˆ' ' ' '
ˆ
ˆ ''

e e

e e

X X X X D β X y
X I ZZ D ZZ u y

u D yD X D ZZ D ZZ

g g

g g

s s

s s

− −

− −

          ′ ′+ + =          ′ ′  + +    

 [12] 

where 1 1u =Zg  and 2 2u =Zg . Extensions by Misztal et al. (Misztal, Legarra et al. 2009) to 

RR and RN models where records from genotyped and ungenotyped animals are 

combined into the analysis would be relatively straightforward as well.   

 One objective of this paper was to develop and compare five alternative RR/RN 

models against each other and two conventional WGP models BayesA and BayesB.  In 

the simulation study, we first investigated the effect of an “average” genetic correlation 
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(
1 2g gρ ) between intercept and slope.  In Scenarios 1-3 of the simulation study, each 

mimicking a CD BayesA-like or even IW-BayesA-like process (because ν1 = ν2) , we 

considered three different levels of 
1 2g gρ  representing low, median and high positive 

genetic correlations between traits. We compared accuracy of genomic prediction in 

environments characterized by low, average and high values. We found significantly 

higher accuracies for the five RR/RN methods compared to the two conventional WGP 

methods at the extreme environments (d=-1.2 and d =1.2) at all specifications of
1 2g gρ .  

We found the difference in accuracies between the RN versus the conventional models 

became greater with increasing 
1 2g gρ at d = -1.2 whereas, curiously, we found the 

converse trends at d = 1.2.   This result might be due to the fact that the intercept is 

defined at d = 0.  Hence, positive genetic correlations between intercept and slope would 

build positive associations between genomic evaluations at d = 0 with those genomic 

evaluations based on d ≥ 0, but negative associations between genomic evaluations at d = 

0 and those genomic evaluations based on d appreciably less than 0; i.e, where SNP or 

animal-specific reaction norms start to “crisscross” each other.  In other words, if we had 

specified 
1 2g gρ  to be negative, we would have found the opposite trends. 

 We found that IW-BayesA tended to have significantly greater accuracies in 

Scenarios 1-3 than all other RN models at d=1.2 and d=-1.2. This was initially surprising 

to us; however, we would note two considerations.  Firstly, the degrees of freedom 

specification were the same for QTL effects for both intercept and in slope, i.e., ν1 = ν2.  

Hence, CD-BayesA might confer little or no advantage to IW-BayesA then because of 

the greater parsimony of a single degrees of freedom specification of the latter.  Secondly, 
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with data simulated based on LD, one might anticipate that the assumption of 

independence between effects of adjacent SNP markers is somewhat distorted (YANG and 

TEMPELMAN 2012), although independence is specified for every model in this study. 

Subsequently it may be rather difficult to predict the relative performance of WGP 

models under LD, since the true model cannot be specified parametrically under LD, 

even when QTL effects are generated from known distributions.  In fact, we conducted a 

separate simulation study (results not shown) whereby the data generation strategy 

exactly match the assumptions of either of the two models, CD-BayesA and IW-BayesA; 

but based on an assumption of linkage equilibrium between SNP markers.  In those 

comparisons, CD-BayesA did outperform IW-BayesA when the data generation model 

was based on a CD-BayesA model and vice versa.   Similar conclusions have been 

recently drawn by Wimmer et al. (2013) who found that the presence of high levels of 

LD, high levels of complexity ( (Mboth + Mint)/m) of genetic architecture, and low levels 

of determinedness (n/m) will tend to mute differences in performance between various 

Bayesian alphabet models.   

 At an average level of performance (d=0), there appeared to be very little 

difference between any of the models, including the two conventional models not based 

on any RN specification whatsoever.  This was not surprising since one would expect that 

conventional WGP models would, by default, predict to an average environment.  

 Scenarios 4-6 in the simulation study were intended to mimic a CD-BayesB like 

process whereby only a fraction of the QTL effects having general performance effects 

(i.e. intercept) also showed environmental sensitivity (i.e., non-zero slope effects). 

Scenario 4 (heritability = 0.5) and Scenario 5 (heritability = 0.2) were the same in that 
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half of the 100 QTL were environmentally sensitive. As expected, all RN models had 

lower accuracy in Scenario 5 compared to Scenario 4 because of the lower heritability, 

although somewhat surprisingly IW-BayesA generally maintained its advantage over all 

models.  

 Realizing that the total number of QTL have also been known to influence 

prediction accuracy comparisons between conventional BayesA and BayesB 

(MEUWISSEN and GODDARD 2010), we considered Scenario 6 which involved a total of 

40 QTL, Mint = 20 environmentally robust QTL and Mboth = 20 environmentally sensitive 

QTL, 2/5 of what was specified in Scenario 4 with everything else being the same. As 

anticipated, CD-BayesB finally started to emerge as the most accurate of the 4 RN 

methods particularly at d = 0 and d = 1.2.   Again, these results are in agreement with 

Wimmer et al (2013) who determined that variable selection methods (like BayesB or 

CD-BayesB here), perform best under genetic architectures with low complexities.  

Conversely, it was this scenario where the performance of IW-BayesC started to plummet, 

even being inferior to conventional BayesA/BayesB analyses at d = 0. Of course, we 

should be quick to note that QTL effects were simulated from heavy-tailed t-distributions, 

perhaps thereby stacking the odds against IW-BayesC. 

 A particularly odd result was that the comparisons on accuracies did not 

necessarily match up with estimated accuracies of predicting their components, i.e. 

intercept and slope BV.  That is, CD-BayesB was among the best for inferring upon 

intercept BV in Figure 4.2A, whereas IW-BayesA was typically among the best for 

inferring upon slope BV.  Nevertheless, this does help explain why IW-BayesA was often 
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the best for inferring upon genomic BV at d = -1.2 and d = 1.2, whereas CD-BayesB 

generally dominated at d = 0.    

 Our simulation study was based on arbitrary specifications of genetic architecture 

based on (Mboth + Mint) QTL randomly located on a 1M chromosome; based on arguments 

provided by Meuwissen and Goddard (2010), one might readily extrapolate these 

simulation results to the case of nchr*(Mboth + Mint) QTL for a nchr M genome based on nchr 

chromosomes. We realize that other determinants such as marker density can also 

influence the comparisons among the five RN WGP models.  Furthermore, if we had 

specified even greater Mboth + Mint QTL, the more complex genetic architecture might 

then more likely reflect the IW-BayesC assumptions ( 1gπ = , gν → ∞  such that 

gj j= ∀Σ Σ  ).   

 Given our simulation results then, it perhaps was not too surprising that we did 

not observe any meaningful differences between the various models with an application 

to data from a pig resource population.   Firstly, the model applied was a RR, rather than 

a RN model, implying that there is greater phenotypic information provided by the 

repeated records in a RR context thereby potentially muting any real differences between 

the various candidate models.  Furthermore, the genetic architecture of the trait analyzed 

was presumably far more complex and the level of determinedness far less than anything 

considered in the simulation study. 

 Based on an analysis using microsatellite markers in the MSU pig resource 

population, Choi et al. (2010) found highly significant QTL for back fat thickness at 

week of age 10, 13, 16, 19 and 22 on chromosome 6 using a QTL mapping approach 

without considering G×E.  Our results based on a RR WGP analysis using a low density 
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SNP chip also indicated potential QTL on chromosome 6.  Nevertheless, the RR WGP 

specifications allowed us to explicitly model these potential QTL effects as a function of 

age.   

4.5  Conclusions 

 Five RR/RN methods have been developed in this paper under the frame work of 

WGP. Based on a RN simulation study and a RR data analysis in pigs, RR/RN WGP 

models provide greater accuracies in genomic evaluations compared to more 

conventional WGP models. We believe that it’s important to account for SNP specific 

intercept and slope effects in RN or RR data situations where SNP genotypes are 

available.  Nevertheless, differences in predictive performance between the various 

RR/RN WGP models were not overwhelming such that simpler specifications such as 

IW-BayesA may be suitable for analyses that involve high degrees of genetic complexity 

or low levels of determinedness as previously mentioned by Wimmer et al (2013).  

Conversely, based on our simulation results, we anticipate that CD-BayesB might show 

greater promise when marker density is large relative to the number of QTL; i.e., low 

degree of complexity.  It is important that efficient software and/or algorithms be 

developed for these models in order to allow for meaningful comparisons in these 

situations.   
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Chapter 5 Exploring alternative specifications for bivariate trait whole genome 

prediction models 
 
 

5.1 Introduction 

With the advent of genotyping and sequencing technologies, whole genome 

prediction (WGP) has become commonly used for genetically selecting animals and 

plants for economically important traits (de los Campos, Hickey et al. 2013).  Numerous 

approaches, including non-parametric methods (Gianola, Wu et al. 2010), Bayesian 

parametric “alphabet” methods (Meuwissen, Hayes et al. 2001; Gianola, de los Campos 

et al. 2009; Habier, Fernando et al. 2011), and generalized expectation-maximization 

methods (KARKKAINEN and SILLANPAA 2012) for single trait analyses have been 

developed. There may be, however, other untapped opportunities to improve prediction 

accuracy in WGP.  It is well known, for example, that many economically important 

traits are genetically correlated.  Multiple trait analyses have been recently used to 

account for correlations among traits due to specific genes in genome wide association 

studies (ZHU and ZHANG 2009), including for differential mapping of pleiotropic versus 

non-pleiotropic QTLs (Banerjee, Yandell et al. 2008).  

A large number of genetic evaluation methods have been developed and applied 

to jointly analyze correlated traits in livestock (Gianola and Sorensen 2004; Banerjee, 

Yandell et al. 2008). Some of these methods involve independent analyses on sets of 

transformed variables using techniques based on, for example, factor analysis, principal 

component analysis, canonical analysis and cluster analysis (Weller, Wiggans et al. 1996; 

Musani, Zhang et al. 2006; de los Campos and Gianola 2007; Vichi and Saporta 2009). 
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For quantitative genetic analysis, these methods generally require a two-step approach of 

reducing either number of traits and/or number of genetic effects.  Another approach to 

multiple trait modeling is to model the linear regression relationships among traits in a 

multilayer system, namely structural equation models (SEM) or path coefficient models 

(GIANOLA and SORENSEN 2004) although this might seem rather complex with large 

numbers of SNPs. Banerjee et al. (2008) used seeming unrelated regression (SUR) to 

identify pleiotropic QTL for multiple traits. This method allows each trait to have a 

separate set of QTL or trait specific QTL and facilitates a computational efficient 

sampling algorithm. However, their method models trait correlations due to residuals 

rather than due to QTL, thereby providing no information on genetic correlation between 

traits.    

In order to further improve WGP accuracy, several efforts have been made to 

develop Bayesian approaches in multiple trait models (CALUS and VEERKAMP 2011; JIA 

and JANNINK 2012). Calus and Veerkamp (2011) demonstrated that, for traits having a 

high genetic correlation with each other, multiple trait WGP model analyses lead to 

higher WGP accuracies compared to single trait analyses, particularly for the lower 

heritability trait. Among multiple trait WGP models investigated by Calus and Veerkamp 

(2011), BayesSSVS, a variable selection method with a spike and slab prior on the SNP 

effects, outperformed other models that assumed a normal density on all SNP. Jia and 

Jannink (2012) further confirmed that the advantage of multiple trait WGP models over 

single trait counterparts was greatly influenced by several factors, i.e. heritabilities and 

genetic correlations between traits as well as the number of QTLs. 
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 BayesA and BayesB are popular “Bayesian alphabet” models used for single trait 

WGP.  BayesA specifies a scaled-t prior on SNP effects and is a special case of BayesB 

which, similar to BayesSSVS, specifies a mixture prior of point mass at zero and scaled-t 

density (Meuwissen, Hayes et al. 2001).  These specifications often have higher WGP 

prediction accuracies compared to procedures based on Gaussian distribution 

assumptions (e.g. ridge regression or GBLUP) if SNP effects deviate substantially from 

normality.  Calus and Veerkamp (2011) recently extended BayesA for use in multiple 

trait analyses and determined similar advantages over multiple trait GBLUP predictions. 

By estimating SNP-specific pleiotropic effects for multiple traits, we may infer 

upon the most important pleiotropic regions in the genome given the relative locations of 

SNP markers (van Binsbergen, Veerkamp et al. 2012). However, the assumption of a 

multiple trait BayesA model, derived from conjugate inverted Wishart (IW) prior 

densities on the SNP specific variance-covariance matrices (VCV), might be potentially 

inflexible since the uncertainty in all elements of a VCV is based on a single degrees of 

freedom parameter (MUNILLA and CANTET 2012). An alternative parameterization on 

VCV for random and residual effects was proposed by Bello et al. (2010) who suggested 

that the square root free Cholesky decomposition (CD) of the VCV in bivariate mixed 

models might allow greater flexibility as uncertainty can be differentially expressed on 

each element of a VCV using such a parameterization.  

In this study, our objectives were: 1) To reaffirm the greater accuracies of 

prediction provided by bivariate trait models relative to single trait conventional WGP 

approaches and 2) To assess whether there may be greater flexibility, and hence greater 
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WGP accuracy, using CD-based parameterizations compared to IW based specifications 

on SNP-specific variance-covariance matrices.  

5.2  Methods and Materials 

5.2.1  Whole genome prediction models 

In a bivariate trait WGP model, SNP substitution effects are estimated for two 

traits simultaneously. The general bivariate trait WGP model can be denoted by the 

following:  

' ,x β z gij ij j i j ijy = + +e′   [1] 

where ijy  is the phenotype record for ith animal on jth trait (i =1,2,…,n; j=1,2); β j is the 

vector of fixed effects on trait j, xij′  is the incidence row vector connecting elements of β j

to animal i; [ ]1 2 3zi i i i imz z z z′ =    is the vector of genotypes coded as 0, 1, or 2 

copies of the minor allele on SNPs for animal i; { } 1
g

m

j jk k
g

=
=  is the vector of SNP 

substitution effects on trait j; ije  is the random residual for ith animal on jth trait. We can 

rewrite Equation [1] using matrix notation as:    

1 1 1 1 1

2 2 2 2 2

,
y X 0 β g eZ 0

=
y 0 X β g e0 Z

          
+ +          

          
  [2] 

where { }
1

y
n

i ij i
y

=
=  { }'

1
X x

n

i ij i=
= , and { }'

1
Z z

n

i i=
= .  The animals’ genomic merit for the two 

traits can be subsequently represented as 1 1u Zg=  and 2 2u Zg= , respectively. For the 

various bivariate trait WGP models investigated, we assumed that pairs of residuals on 

105 

 



animal i; i.e. [ ]. 1 2 'ei i ie e= , i=1,2,…,n, follow independent bivariate normal densities 

with a vector null mean and a common variance covariance matrix 1 1 2

1 2 2

2

2
Σ e e e

e
e e e

s s

s s

 
=  

  
. 

Similarly, effects of SNP k on the two traits follow independent bivariate normal 

densities with a vector null mean and a common variance covariance matrix 

1 1 2

1 2 2

2

2
Σ g g g

g
g g g

s s

s s

 
=  

  
. Diffuse proper Gaussian or flat priors are typically specified on 1β

and 2β (SORENSEN and GIANOLA 2002). For the residual variance covariance matrix Σe , 

we might typically specify a conjugate inverted Wishart prior with degrees of freedom 0v  

and scale matrix 0Σ .   

5.2.2  Univariate BayesA and BayesB (uBayesA\uBayesB) 

 We re-label conventional single trait BayesA and BayesB models as uBayesA and 

uBayesB, respectively to indicate the emphasis on univariate analysis.  We infer upon 

key hyperparameters in this model using prior specifications and strategies previously 

outlined by Yang and Tempelman (2012). 

5.2.3  Bivariate Ridge regression (bGBLUP) 

 Outside of some strategies for rescaling, we specify the realized relationship 

matrix based on the unscaled genotype matrix for SNPs derived as G=ZZ′ in a bivariate 

mixed effects model that we label as bivariate genomic BLUP or bGBLUP.  In the 

bGBLUP model, we specified multivariate normal distributions having null means for 

each of [ ]1 2' ' 'u u u= and [ ]1 2' ' 'e e e=  such that ( ) ( )( )var u ZZ' Σg= ⊗  and 
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( ) ( )2 2var e I Σx e= ⊗ . Based on these specifications we use ASReml 3.0 (Gilmour, Gogel 

et al. 2009) to provide REML estimates of Σg and Σe in order to compute the BLUP û of u 

and hence ĝ of g as necessary.  

5.2.4  Bivariate Student-t (IWBayesA) 

A convenient and previously used extension for bivariate trait WGP model is to 

apply a conjugate inverted Wishart prior on heterogeneous SNP-specific variance-

covariance matrices. This specification represents a multivariate extension of BayesA 

(CALUS and VEERKAMP 2011) that we label as IWBayesA. For the joint effects of SNP k 

on the two traits, we can specify a bivariate normal density conditionally as follows:  

1 1 2

1 2 2

2

. 2 1 2
k k k

k k k

g g g
k k

g g g

s s

s s×

  
  
    

g N 0 , G =
                          [4] 

where kG is the SNP-specific variance-covariance matrix for the two traits and is 

regarded as a random draw from a conjugate Inverted Wishart prior with degrees of 

freedom gv and scale matrix 1 1 2

1 2 2

2

2
g g g

g
g g g

s s
s s

 
=  

 
Σ .  For a fully hierarchical Bayesian model 

as developed in Yang and Tempelman (2012), we inferred upon hyperparameters after 

specifying a prior ( )gp v  on gv , and also a conjugate Wishart prior 0 0~ ( , )g SW vΣ  on gΣ . 

Note that the uncertainty of IWBayesA is only controlled by one scalar gv (MUNILLA and 

CANTET 2012).  Furthermore, IWBayesA assumes that every single SNP is pleiotropic.  

Conceptually, IWBayesA is not much different from that developed (with the same label) 

for reaction norm modeling in Chapter 4. 
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5.2.5  Cholesky decomposition specifications (CDBayesA\CDBayesB) 

In order to address the potential inflexibility in IWBayesA, we developed an 

alternative approach based on the square root free Cholesky decomposition (CD) of kG .  

We have previously shown that the CD parameterization can provide greater flexibility 

for modeling variance-covariance matrices (Bello, Steibel et al. 2010).  Based on a 

particular order for two traits, we can write the SNP effects on the second trait 2g as a 

linear regression of SNP effects on the first trait 1g : 

2 1 2|1g Ψg g= +                                   [5] 

Hence we can re-write the general bivariate trait WGP model [2] as: 

11 1 1 1

1 2|12 2 2 2

gy X 0 β eZ 0
=

Ψg gy 0 X β e0 Z
         

+ +          +         
 [6] 

where { }2|1 2|1, 1
g

m

k k
g

=
=  is the vector of SNP effects on the second trait conditional on the 

first trait, and { } 1
Ψ m

k kdiag φ
=

=  is a diagonal matrix of SNP-specific association effects 

between SNP effects on the two traits.  

Suppose we specify 
1

2
1 ~ (0, )

kk gg N ks ∀  with ( )2 2
1 1 11

2 ~ ,
kg v v s kχs − ∀  for SNP 

effects and their respective variances on Trait 1. Similarly, we specify 

2|1

2
2|1, ~ (0, )

kk gg N ks ∀  with ( )2 2
2|1 2|1 2|12|1

2 ~ ,
kg v v s kχs − ∀  for SNP effects and variances on 

Trait 2 conditional on Trait 1.  We label this model as CDBayesA given its CD-based 

multivariate extension of BayesA; conceptually, it is very similar to the model of the 

same name used in Chapter 4 for reaction norm modeling.  For the SNP specific 
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association effects between the two traits, we specify independent normal priors 

2~ ( , )k N kφ φφ m s ∀ .  Key hyperparameters, namely the degrees of freedom ( 1v , 2|1v ) and 

scale ( 2
1s , 2

2|1s ) parameters, can be inferred upon in CDBayesA using prior specifications 

similar to those in the conventional uBayesA model.    

Here, the SNP-specific variance-covariance matrices kG are still specified very 

generally by three parameters, as with IWBayesA, but expressed by an alternative 

parameterization; i.e. 

1 1

1 1 2|1

2 2

2 2 2 2
k k

k k k

g g k
k

g k g k g

s s φ

s φ s φ s

 
 

+  
G =  

However, unlike IWBayesA whereby the uncertainty on kG  is essentially controlled by 

one degrees of freedom parameter, the uncertainty on kG  in CDBayesA is controlled by 

three such parameters: the two different degrees of freedom terms 1v  and 2|1v as well as 

the variance component 2
φs .  Nevertheless, CDBayesA, as does IWBayesA, assumes that 

every SNP has a pleiotropic effect.  

In an attempt to provide even greater flexibility than CDBayesA; i.e., to allow not 

only pleiotropic effects but also non-pleiotropic effects and/or potentially null effects for 

each SNP on both traits, we developed a variable selection approach analogous to a 

BayesB type of specification which we naturally label as CDBayesB.  Let 
1

2
kgs  have a 

mixture prior of point mass at zero with probability ( )11 π−  or randomly drawn from 
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( )2 2
1 1 1,v v sχ −  with probability 1π  for k=1,2,…,m. Similarly, 

2|1
2

kgs  has a mixture prior of 

point mass at zero with probability ( )2|11 π−  or randomly drawn from ( )2 2
2|1 2|1 2|1,v v sχ −  

with probability 2|1π  for k=1,2,…,m. For the association effects, kφ  between the two 

traits at each SNP k=1,2,…,m, we specify a mixture prior of point mass at zero with non-

association probability ( )1 φπ−  or randomly drawn from 2( , )N φ φm s  with association 

probability φπ .  Hence, in CDBayesB, we could infer upon SNP effects that are non-zero 

and trait-specific (i.e., non-pleiotropic).  For Trait 1, this would occur when 1 0kg ≠  with 

0kφ = and 2|1 0kg =  whereas for Trait 2 this would entail 1 0kg =  and 2|1 0kg ≠  regardless 

of the value of kφ .   Pleiotropic effects will be inferred if 1 0kg ≠  and 0kφ ≠ regardless of 

the value of 2|1kg  although a value of 2|1kg = 0 would then imply a situation of “perfect” 

pleiotropy between the two traits (i.e., a SNP-specific genetic correlation equal to ±1).  

Using prior specifications similar to those in CDBayesA, we could infer upon the key 

hyperparameters, i.e. degrees of freedom ( 1v , 2|1v ) and scale parameters ( 2
1s , 2

2|1s ). 

Furthermore, we could specify informative or diffuse priors ( )1p π , ( )2|1p π , ( )p φπ , ( )p φm , 

and ( )2p φs   on 1π , 2|1π , φπ , φm  and 2
φs , respectively.  This model is somewhat analogous 

to the same named model for reaction norms in Chapter 4 except that here we specify 

three mixture rather than two mixture distributions to provide even greater flexibility. 
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5.2.6  Bayesian inference 

 For fully Bayesian inference using Markov Chain Monte Carlo (MCMC) methods, 

we require strategies for drawing random draws from the full conditional densities (FCD) 

of each unknown parameter (or blocks thereof) under all models. FCD for uBayesA\ 

uBayesB have been illustrated in our previous work (YANG and TEMPELMAN 2012). In 

this paper, we present FCD for three bivariate trait WGP models (IWBayesA, CDBayesA, 

CDBayesB) in Appendix D1. The fourth bivariate WGP model was analyzed using 

classical REML and BLUP for computational expedience although we determined that 

these inferences weren’t practically different from MCMC based inferences (results not 

shown).  

5.2.7  Simulation studies 

We designed a naive small-scale simulation study involving independent markers 

(i.e., not in LD) using a response surface design (Table D2.1 in Appendix D2) based on 

five factors that we thought might be particularly important for influencing the WGP 

accuracies on the trait with the lower heritability between two rather different models: 

IWBayesA versus CD-BayesB.  These five factors included the number (n) of animals, 

the number (M1) of QTL controlling Trait 1 (h2 = 0.8), the number (M2) of QTL 

controlling Trait 2 (h2 = 0.1), the number (M12) of QTL pleiotropically controlling both 

traits and the variability ( 2
,QTL φs ) of the associations between the two traits across QTL. 

Among all five factors considered, only M12 had a significant interaction with model; i.e., 

the difference between IWBayesA and CDBayesB for WGP accuracy on Trait 2 

depended on M12 (P<0.0001) as further noted in Table D2.2 of Appendix D2. We used 
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this knowledge to design a more focused LD simulation study to compare the WGP 

accuracies for bivariate trait analyses involving six different models (uBayesA, uBayesB, 

bGBLUP, IWBayesA, CDBayesA, CDBayesB).  Two populations were targeted, 

differing only in the number of pleiotropic QTL influencing both traits (M12=10 versus 

M12=30), with all the other specifications being the same as indicated in Table 5.1. 

Table 5.1: Summary of two different populations compared in a LD simulation study. 

Factors Population 1 Population 2 

Constant  

 Heritability of Trait 1 0.5 0.5 

 Heritability of Trait 2 0.1 0.1 

 Residual covariance between two traits 0 0 

 Number of SNPs 2000 2000 

 Number of animals 500 500 

 Mean on association parameters (mφ) 0.8 0.8 

 Variance on association parameters 
(s2

φ) 
0.05 0.05 

 Number of QTLs for Trait 1(M1) 10 10 

 Number of QTLs for Trait 2(M2) 10 10 

Of Interest  

 Number of QTLs for both traits (M12) 10 30 
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 For each of the two populations or scenarios, we generated 20 replicates based on 

a constant population size of 100 for 6000 generations of random mating using the 

hypred package in R (TECHNOW 2012). For each replicate, we defined the genome as 

composed of one chromosome of length 1 Morgan having 20,000 SNP loci; i.e., the 

number of recombinations for each meiosis event was drawn from a Poisson(1) 

distribution with crossing over locations drawn from a uniform distribution.  In the base 

population, all loci were monomorphic with polymorphisms created by a recurrent 

mutation rate of 2.5×10-4 per locus per generation for each of the first 6000 generations. 

After 6000 generations, two additional generations (6001 and 6002) were created with 

expanded population sizes of 500 animals each. In Generation 6001, we excluded SNP 

with a minor allele frequency (MAF) < 0.1.  We defined genotype dosages (i.e., genotype 

matrix) in Generation 6001 and 6002 as counts (0, 1, 2) of the minor allele for all the 

remaining SNPs.  We randomly selected 2000 SNPs plus an additional M1 + M2 + M12 

SNPs to be QTLs in Generation 6001.  

 Now M1=10, M2=10, M12=10 in Population 1 whereas M1=10, M2=10, M12=30 in 

Population 2. We generated QTL effects { } 1 12

,1 1

j M M

QTL j j
g

= +

=
for Trait 1 from a reflected 

gamma distribution with shape=0.4 and scale=2.24. QTL effects { } 1 12 2

1
,2|1 1

j M M M

QTL j j M
g

= + +

= +
for 

Trait 2, conditional on Trait 1 were also generated from a reflected gamma distribution 

with shape=0.4 and scale = 1.34.  The association variables between Trait 1 and Trait 2 

(i.e. { } 1 12

1
, 1

j M M

QTL j j M
φ

= +

= +
) were simulated from a N( ,QTL φm =0.8, 2

,QTL φs =0.05). The effect for 

QTL j on Trait 2 was thereby determined as ,2 ,1 , ,2|1QTL j QTL j QTL j QTL jg g gφ= + ; j=1, 2,…,M1 + 
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M12 + M2 noting that { } 2

, 1
0

j M

QTL j j
φ

=

=
= , { } 1 12 2

1 12
, 1

0
j M M M

QTL j j M M
φ

= + +

= + +
= , { } 1 12 2

1 12
,1 1

j M M M

QTL j j M M
g

= + +

= + +
= 0, 

and { } 1

,2|1 1

j M

QTL j j
g

=

=
= 0.  Hence pleiotropic QTL effects were generated from a complex 

bivariate distribution. If we define ZQTL,1  as the subset of the n x M1 SNP genotypes in Z 

that are designated to be QTL for Trait 1 only and ZQTL,12  as the subset of the n x M12 

SNP genotypes in Z that are designated to be QTL for both traits, the true breeding 

values { }1 1

i n
i i

TBV =

=  for Trait 1 in each of Generations 6001 and 6002 were generated using 

{ } { } { }12 12 1

12
1 ,12 ,1 ,1 ,11 1 1

Z + Z
j M j M Mi n

i QTL QTL j QTL QTL ji j j M
TBV g g

= = +=

= = = +
=     [7a]    

 Similarly, if we define ZQTL,2  as the subset of the n x M2 SNP genotypes in Z that 

are designated to be QTL for Trait 2 only, the true breeding values { }2 1

i n
i i

TBV =

=  for Trait 2 

in each of Generations 6001 and 6002 were generated using 

{ } { } { }12 12 2

12
2 ,12 ,2 ,2 ,21 1 1

Z + Z
j M j M Mi n

i QTL QTL j QTL QTL ji j j M
TBV g g

= = +=

= = = +
=   [7b] 

 Based on heritabilities 2
1 0.5h =  and 2

2 0.1h =  for Trait 1 and Trait 2, respectively, 

we generated the pair of residuals for each of the two traits on each animal from a 

bivariate normal distribution with null mean and variance covariance matrix eΣ , i.e. 

{ }( ) ( )
{ }( ) ( )

2 2
1 1 11

2 2
2 2 21

var 1 0

0 var 1
e

i n
i i

i n
i i

TBV h h

TBV h h

=

=

=

=

 −
 =  −  

Σ   [8] 

In other words, residuals were specified to be uncorrelated as it has been determined 

previously by Jia and Jannink (2012) that the nature of residual correlation between two 
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traits is inconsequential to the accuracy of WGP prediction in bivariate models.  

Phenotypic records for two traits were then generated as 1 1 1i i iy TBV e= +  and 

2 2 2i i iy TBV e= + . Prediction accuracies of breeding values for the two traits in Generation 

6002 were defined as correlation between { }1 1

i n
i iTBV =

=  and { }1 1

i n
i i

EBV =

=  for Trait 1, and 

correlation between { }2 1

i n
i i

TBV =

=  and { }2 1

i n
i i

EBV =

=  for Trait 2. The factor M12, of interest, 

here influences the overall genetic correlation (
1 2g gρ ) between the two traits, which we 

determined as the correlation between { }1 1

i n
i i

TBV =

=  and { }2 1

i n
i i

TBV =

=  in Generation 6001.  

5.2.8  Pine data analyses 

 Resende et al. (2012) provide a data set of loblolly pine phenotypes and genotypes 

for demonstration of WGP methods which has been previously used by Jia and Jannink 

(2012). The original data set had genotypes on 4854 SNPs and 926 individuals. After we 

excluded SNPs with MAF<0.05 and with P<10-4 in HWE test, 2684 SNPs remained. 

Using de los Campos et al. (2013), we standardized the genotype matrix based 

( ) ( )2 2 1ij j j jz p p p− − , where ijz  is genotype of jth SNP (minor allele dosage of 0, 1, 

or 2) on ith animal and jp  is allele frequency of one allele for jth SNP. Although raw 

phenotypes were not publicly available, the authors provided deregressed EBVs for 17 

traits.  Following Jia and Jannink (2012), we fitted deregressed EBVs as response 

variables to compare the various WGP models. We selected two disease resistance traits, 

i.e. Rust gall volume (RGV) with heritability of 0.12 and presence or absence of rust 

(RBIN) with heritability of 0.21. After merging deregressed EBVs for the two traits and 
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SNP genotypes, 807 individuals with deregressed EBVs on both traits and each 

genotyped with 2684 SNPs remained in the final data set.  

 Hyperparameters for each of the six models (uBayesA/uBayesB, bGBLUP, 

IWBayesA, CDBayesA, CDBayesB) were estimated.  Bayesian inference was based on 

600,000 MCMC iterations with a burn-in period of 50,000 cycles for uBayesA, uBayesB 

and IWBayesA. However, we found MCMC samples of hyperparameters using the 

CDBayesA and CDBayesB models were mixing very slowly,  particularly for 

hyperparameters like scale ( 2
1s , 2

2|1s ) and degrees of freedom ( 1v , 2|1v ). To alleviate this 

problem, we arbitrarily specified the degrees of freedom ( 1v , 2|1v ) to be 4 for both traits in 

the CDBayesA model since its specification didn’t influence the WGP accuracy of BV as 

we found in Chapter 3. We fixed the scale parameters ( 2
1s , 2

2|1s ) in CDBayesA model 

unique to each trait to their corresponding REML estimates in a bBLUP model as based 

on the Cholesky decomposition of Σg.  Nevertheless, we still estimated the mean and 

variance of the association parameters (i.e., φm  and 2
φs ) in CDBayesA model using 

MCMC. For CDBayesB model, we fixed the degrees of freedom ( 1v , 2|1v ) to 5. We also 

fixed scale parameters ( 2
1s , 2

2|1s ) and probabilities ( 1π , 2|1π ) unique to each trait based on 

their corresponding estimates using uBayesB.  Other hyperparameters ( φπ , φm  and 2
φs ) 

in CDBayesB were estimated using MCMC.   

 To further compare the six models by cross-validation, we randomly split the data 

20 different times into a training subset with 726 individuals (90%) and a validation 

subset with the remaining 81 individuals (10%), thereby leading to 20 cross-validation 

replicates. In order to investigate the influence of the specification of trait order in 
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CDBayesA and CDBayesB, we first analyzed the training data by setting RBIN as Trait 1 

and RGV as Trait 2, labeling the two models as CDBayesA1 and CDBayesB1. Then, we 

switched the order of the two traits and labeled the two models as CDBayesA2 and 

CDBayesB2. For the seven methods, we predicted the deregressed EBVs in the validation 

dataset based on posterior mean estimates of SNP effects for the two traits from the 

training dataset. Performance of the seven models, namely cross-validation predictive 

ability, was evaluated by Pearson correlation between the predicted and fitted deregressed 

EBVs in the validation data. In cross-validation, we expected to see more differences in 

predictive ability comparing the seven models on the low heritability trait RGV than on 

RBIN. For each of the models on trait RGV, we also assessed inferences on effects on the 

various SNPs to see if there might be any meaningful differences between the various 

models in this respect.  

5.2.9  Priors used for data analyses 

 In the simulation study, we specified a non-informative prior ( ) ( ) 21ν ν −∝ +p  

and Gelman’s prior ( )2 2 1,0χ − −s  for uBayesA as we’ve done previously (YANG and 

TEMPELMAN 2012). We specified a non-informative prior ( ) ( ) 21ν ν −∝ +p , a proper 

conjugate prior 2 (0.1,  0.1)s Gamma  and
 ( )~ 1, 8Beta π ππ α β= =  in uBayesB. For 

IWBayesA, we specified a proper conjugate prior 0 0( ) W( , )gΣp v∝ Σ  where 0v  is 4 and 

0Σ is a 2 by 2 identity matrix.  For CDBayesA, we specified the same non-informative 

prior on degree of freedom ( 1ν , 2|1ν ) and Gelman’s prior on scale parameters ( 2
1s , 2

2|1s ) as 

in uBayesA.  Priors ( ) N(0,1)p φm ∝  and ( ) ( )2 2 1,0p φs χ −∝ −  were specified on mean and 

117 

 



variance of association parameters in CDBayesA. For CDBayesB, we specified the same 

prior on degree of freedom ( 1ν , 2|1ν ), scale parameters ( 2
1s , 2

2|1s ) and probabilities ( 1π , 2|1π ) 

as in uBayesB.  We specified the same priors on φm  and 2
φs  as in CD-BayesA. For φπ , 

we specified proper prior ( )~ 1, 8Betaφ π ππ α β= = .   

 For the analysis of the pine data, we used the same priors on hyperparameters in 

uBayesA and uBayesB. For IWBayesA, we specified proper conjugate prior 

0 0( ) W( , )gΣp v∝ Σ  where 0v  is 2 and 0Σ is a 2 by 2 diagonal matrix. The first and 

second diagonal elements in 0Σ  were specified to be the estimates of scale on RGV and 

RBIN using uBayesA, i.e. 1.323e-05 and 3.215e-05. For CDBayesA and CDBayesB, we 

fixed the degrees of freedom and scale parameters to estimates from the corresponding 

univariate analyses (uBayesA and uBayesB) because of slow mixing as previously noted. 

We used the same priors on φm , 2
φs , and φπ for CDBayesA and CDBayesB as specified in 

the simulation study.  

5.3  Results 

5.3.1  Simulation Studies 

In the simulation study, the overall genetic correlation (
1 2g gρ ) between two traits 

was 0.48 and 0.63, respectively, for Populations 1 and 2 over the 20 replicates per 

population. Population 2 had a much smaller between replicate standard deviation (~0.13) 

for 
1 2g gρ  compared to Population 1 (~0.29).   
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Figure 5.1 illustrates the average WGP accuracy of predicting breeding values 

(BV) in Generation 6002 for the two traits over the 20 replicates for each of Populations 

1 (Figure 5.1A) and 2 (Figure 5.2A).  For Trait 1 (h2 = 0.5) in Population 1, bGBLUP 

had >5% lower (P<0.05) average accuracy compared to IWBayesA, while IWBayesA 

had ~2% lower (P<0.05) accuracy compared to the four models (uBayesA\uBayesB\CD-

BayesA\CDBayesB), including two based on univariate WGP analyses. For Trait 2 

(h2=0.1) in Population 1, bGBLUP and uBayesA had ~8% and ~3% lower (P<0.05) 

average accuracy respectively compared to the other four models 

(BayesB\IWBayesA\CDBayesA\CDBayesB). No significant difference was found 

between uBayesB and the three bivariate models (IWBayesA\CDBayesA\CDBayesB) for 

Trait 2 in Population 1.   

For Trait 1 in Population 2 (Figure 5.1B), we found that both bGBLUP and 

IWBayesA had ~2% lower (P<0.05) average accuracy than the other four models 

(uBayesA\uBayesB\CDBayesA\CDBayesB). For Trait 2 in Population 2, the three 

bivariate trait models (IWBayesA\CDBayesA\CDBayesB) outperformed bGBLUP (~3%), 

while bGBLUP had ~5% higher (P<0.05) accuracy than the uBayesA and uBayesB. No 

significant difference was found among the three Bayesian bivariate trait models 

(IWBayesA\CDBayesA\CDBayesB) for Trait 2 in Population 2. 
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Figure 5.1: Accuracy of breeding value prediction for six methods 
(uBayesA\uBayesB\bGBLUP\IWBayesA\CDBayesA\CDBayesB) in two scenarios: A) 
number of QTLs for both traits = 10; B) number of QTLs for both traits = 30. Different 
letters indicate significant difference with P<0.05. 
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5.3.2  Pine data analyses 

The average predictive abilities for the eight different models over the 20 different 

replicates in the cross validation are summarized in Figure 5.2.  

For the lower heritability trait RGV, we found that CDBayesB1 and CDBayesB2 

had ~5% greater (P<0.05) predictive accuracy compared to the other six models, whereas  

bGBLUP, CDBayesA1 and CDBayesA2 had lower (P<0.05) predictive accuracies (~6% 

and ~9%) compared to the other three bivariate trait models. There was no evidence that 

IWBayesA had different predictive accuracies for RGV compared to uBayesA and 

uBayesB.  However, four of the models (uBayesA\uBayesB\IWBayesA\CDBayesA1) 

including the two univariate models outperformed bGBLUP (~4% - 6%) for RGV. 

For the higher heritability trait RBIN, we found that bGBLUP, CDBayesA1 and 

CD-BayesA2 had lower (P<0.05) predictive accuracies (~6% and ~9%) compared to the 

other three bivariate trait models.  Furthermore, there was no evidence of a difference 

among uBayesA and uBayesB and three of the bivariate trait models 

(IWBayesA\CDBayesB1\CDBayesB2). 

Across each of the cross validation replicates, the estimated SNP effects for either 

trait using either the two specifications for order of traits using CDBayesB agreed rather 

well (refer to panels A and B of Figure D2.1 in Appendix D2). However, in contrast with 

CD-BayesB, there was less agreement between the two different trait orders using 

CDBayesA (refer to panels C and D of Figure D2.1 in Appendix D2).  To further 

demonstrate the difference among three methods (uBayesA, IWBayesA and CDBayesB1), 

Figure 5.3 shows the absolute values of estimated SNP effects on RGV against SNP 
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index using all of the data. IWBayesA (Figure 5.3B) detected the same number of 

extreme large SNP effects as uBayesA (Figure 5.3A).  However, compared to IWBayesA 

and uBayesA, there were larger SNP effects inferred in CDBayesB1 (Figure 5.3C) for 

RGV, which might partially explain the higher predictive accuracy for RGV in cross-

validation for that particular model. 

 

Figure 5.2: Average predictive ability from cross-validation using the loblolly pine data 
set for eight methods (uBayesA\uBayesB\bGBLUP\IWBayesA\CDBayesA1\CDBayesB1 
\CDBayesA2\CDBayesB2), where CDBayesA1 and CDBayesB1 were using RBIN as the 
first trait and RGV as the second trait; CDBayesA2 and CDBayesB2 were using RGV as 
the first trait and RBIN as the second trait; Different letters indicate means are different 

(P<0.05) from each other. 
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Figure 5.3: Estimated SNP effects for RGV from using 807 individuals and 2684 SNPs in 
Pine data set using three methods: A) uBayesA; B) IWBayesA; C) CDBayesB1. 
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5.4  Discussion 

Multiple trait extensions to WGP have been developed to improve prediction 

accuracy by accounting for genetic correlations between traits (CALUS and VEERKAMP 

2011; JIA and JANNINK 2012). Many studies have shown the advantage of multiple trait 

models compared to their univariate counterparts especially for lower heritability traits. 

For multiple trait models, variable selection methods such as BayesSSVS have shown 

some advantage in prediction accuracy over models based on no such mixtures and/or 

normality (CALUS and VEERKAMP 2011).  Nevertheless, in Jia and Jannink (2012), a 

variable selection method BayesCπ, based on normality for one of the mixtures, 

demonstrated advantages over bivariate BayesA, which is similar to our IW-BayesA, and 

GBLUP.  A Gaussian prior on SNP effects might not be an ideal specification for genetic 

architectures characterized by few large QTL effects.  Furthermore, heavy-tailed variable 

selection methods like BayesB popularized for univariate WGP analyses have not yet 

been considered in multiple trait analysis. In this study, we developed multiple trait WGP 

models based on the two univariate methods BayesA and BayesB.   We did not, however, 

pursue a variable selection of IWBayesA, analogous to IWBayesB developed in the 

previous chapter, as we believed it to be dubious to attempt to fit a model where SNP 

effects were either both zero or both non-zero for different traits. 

In univariate trait WGP analyses, many factors, e.g. number of animals, number 

of SNP markers, number of QTLs and heritability for the trait, could influence prediction 

accuracy (MEUWISSEN and GODDARD 2010). According to Jia and Jannink (2012) factors 

such as number of QTLs, genetic correlation and heritabilities for the two traits could 

influence the prediction accuracy in bivariate trait WGP analyses,. They pursued “change 
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one factor at a time” techniques for their simulation study experimental design, which 

reduced the total number of simulated replicates to be generated and analyzed by various 

competing WGP models compared to a full factorial design. Conversely, we used a 

response surface design to quickly pinpoint factors that might be particularly important 

for influencing differences in accuracy between CDBayesB and IWBayesA for WGP 

prediction leading us to focus in on M12, the number of pleiotropic loci. 

In previously developed bivariate trait WGP simulations as well as distributional 

assumptions for various modeling, QTLs have been generally assumed to be always 

pleiotropic, often to the point that the genetic correlation between two traits is uniform 

throughout the genome (CALUS and VEERKAMP 2011; JIA and JANNINK 2012). Under 

such scenarios, these investigators generally found greater advantages for bivariate trait 

compared to univariate trait WGP models.  Conversely, we considered a situation 

whereby QTL may be either pleiotropic or non-pleiotropic in their effects between the 

two traits.  We specifically defined three categories for QTLs, where M1 and M2 was the 

number of non-pleiotropic QTLs for each of the two respective traits, while M12 

represented the number of pleiotropic QTLs. We further allowed for the fact, in both our 

simulations and some of our models (e.g., IWBayesA, CDBayesA, and CDBayesB) that 

the nature of the strength of association (i.e., genetic correlation) might be rather 

heterogeneous across pleiotropic QTL as association variables (φj) between two traits for 

the M12 QTL were drawn from a normal distribution.   

In a focused LD simulation study, the only difference between two competing 

scenarios was M12 (M12 = 10 in Scenario 1, M12 = 30 in Scenario 2). We found that 

bivariate trait models improved accuracy of WGP compared to univariate BayesB for the 
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lower heritability trait in Scenario 2 but not in Scenario 1.  That is, increasing M12 seemed 

to provide more power to detect pleiotropic effects in bivariate trait models. However, we 

did not detect any difference in WGP accuracy between CDBayesB and IWBayesA in 

Scenario 2, even though CDBayesB, unlike IWBayesA, implicitly distinguishes between 

pleiotropic versus non-pleitropic QTL.  

Although IWBayesA is a convenient choice for bivariate trait WGP modeling and 

closely mirrors the multivariate BayesA procedure previously developed by Calus and 

Veerkamp (2011), it is imperative that hyperparameters like degrees of freedom and scale 

parameters are properly “tuned” or inferred upon rather than set to arbitrary values; 

otherwise, WGP accuracies can be badly compromised (JIA and JANNINK 2012).  In this 

study, we inferred upon hyperparameters based on the specification of diffuse prior 

distributions.   However, we also recognized in this study that mixing problems can arise 

with real data applications such that it might be necessary to tune these hyperparameters 

somewhat on univariate analyses. 

In our LD simulation study, we found that IWBayesA has much lower accuracy 

compared to other competing methods for the higher heritability trait. Conversely, in Jia 

and Jannink (2012), IWBayesA outperformed uBayesA in their default simulation 

scenario. The reason for the different results might be how QTL were differently 

generated between our two studies.  IWBayesA assumes that every SNP has a pleiotropic 

effect, which partly agrees with the specifications in Jia and Jannink’s simulation study.  

However, we also specified a substantial proportion of QTL in our study to be non-

pleiotropic (i.e., trait-specific).  This may have resulted in the IWBayesA being rather 
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inflexible relative to other competing models, including even univariate WGP models, for 

the higher heritability trait. 

In our simulation study, bGBLUP performed poorly compared to IWBayesA and 

even to univariate WGP models (uBayesA\uBayesB) for Trait 1 (high heritability trait) 

under both Scenarios 1 and 2. The assumption of bGBLUP states that SNP effects for 

bivariate traits follows a light tail (multivariate normal) distribution, which is often 

violated when there are only a few QTL that underly both traits.  Our simulation study 

and the analysis of the pine data indicated that bGBLUP had lower WGP accuracy 

compared to IWBayesA which effectively assumes that SNP effects follow a heavier 

tailed multivariate t distribution. This is also consistent with conclusions drawn by Jia 

and Jannink (2012).  

We found CDBayesB had much higher predictive ability in cross validation on 

RGV in the pine data analysis.  Jia and Jannink (2012) studied the same dataset in their 

comparisons. However, they didn’t find any significant difference in cross-validation 

performance between bivariate and univariate WGP trait models (except for the situation 

when they assumed some missing values for one trait). With the ability to differentially 

infer upon both pleiotropic and non-pleiotropic effects, we believe that CDBayesB offers 

more flexibility compared to other competing models, including those previously tested 

by Jia and Jannink (2012) and Calus and Veerkamp (2011). 

CDBayesA model is a special case of CDBayesB with probabilities of nonzero 

effects on both traits and associations set to 1. Unlike IWBayesA, it is necessary to 

specify an order for the two traits for both CD models. In LD simulation, we analyzed the 
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data under the two models, using the same order of traits we simulated. However, it 

might not be obvious whether the order of traits specified is important in actual 

applications. We initially used the higher heritability trait (RBIN) as the first trait and the 

lower heritability trait (RGV) as the second trait for both CD models. After switching 

orders for these two traits, we found that predictive ability was unaffected for both 

CDBayesA and CD-BayesB.  One possible reason for this is that these two models might 

be far more flexible than IWBayesA for distinguishing between pleiotropic versus non-

pleitropic QTL.  

5.5  Conclusions 

Alternative Cholesky-based parameterizations (CDBayesA\CDBayesB) and 

inverted Wishart specification on VCVs (IWBayesA) for bivariate trait WGP models 

were investigated for their advantage in prediction accuracy compared to bivariate ridge 

regression (bGBLUP) and univariate WGP models (uBayesA\uBayesB). With both non-

pleiotropic and pleiotropic QTLs specified in two scenarios of LD simulation, the three 

bivariate trait WGP models had higher accuracy than the two univariate trait models 

(~8%) when the number of pleiotropic QTLs was relatively large. For the low heritability 

trait in the two scenarios, the three Bayesian bivariate trait WGP models outperformed 

bGBLUP (P<0.05). However, we didn’t find any significant difference among the three 

Bayesian bivariate trait WGP models in both scenarios. Jointly accounting for pleiotropic 

and non-pleiotropic SNP effects in CDBayesB is obviously more flexible compared to 

bivariate models (CDBayesA and IWBayesA) assuming all SNP are pleiotropic. Due to 

its flexibility, CDBayesB had higher predictive ability (~5%) compared to other 

competing models regardless of the order on the two traits in application to pine data.  
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Chapter 6 Discussion, Conclusions and Future Work 

 
 

This dissertation has focused on extending statistical models and developing 

computing strategies to better conduct whole genome prediction (WGP) for selection of 

breeding stock for economically important traits based on high density single nucleotide 

polymorphisms (SNP) marker panels.   The primary intent of this work was to develop 

greater flexibility of WGP models in a number of potentially different ways. One key 

enhancement was to model potential spatial correlation between SNP effects due to the 

presence of QTL (Chapter 2).  Another was to allow for potentially different modes of 

genetic action (i.e., pleiotropic versus trait-specific), whether for reaction norm models 

that account for a specific form of genotype by environment interaction (Chapter 4) or for 

bivariate trait analysis (Chapter 5).  Additional hybrid models that combine the features 

of various WGP models in this dissertation (e.g., bivariate antedependence models) could 

be conceptually derived and tested in future work as well. 

Some researchers might be rather critical of these efforts, recognizing that this 

dissertation has only added further to the “Bayesian alphabet” (Gianola, de los Campos et 

al. 2009; Gianola 2013) given proposed model labels such as “ante-BayesA” or “CD-

BayesB”, for example.  This criticism is certainly warranted if key hyperparameters are 

not properly tuned, since improper tuning would only distort comparisons between the 

models proposed in this dissertation and more conventional models used in current WGP 

implementations.  Hence this work has been prepared with this issue keenly in mind, 

presenting fully Bayesian inferential strategies to infer upon these key hyperparameters in 

every instance whenever possible.  In fact, an entire chapter (Chapter 3) addresses 

129 

 



computational efficiencies for alternative strategies and the impact of hyperparameter 

misspecification in WGP models.   

However, we recognize that there is much more work that needs to be done on 

this front, particularly as the applications in this dissertation were smaller in scale,  i.e., 

with respect to number of genotypes m and number of phenotypes n, compared to many 

current applications. Even in those cases, some difficulties were encountered.   For 

example, we resorted to inferring upon some key hyperparameters using conventional 

univariate models before properly tuning the key bivariate hyperparameters for some of 

the bivariate genomic analyses in Chapter 5. 

Some of the models developed in this dissertation did not always perform better 

than more conventional specifications; indeed, this was contrary to our expectations 

based on simulated genetic architectures.  We realize that all of the simulation studies and 

applications considered in this dissertation are, by no means, exhaustive; nevertheless we 

do, for example, note the following.  Antedependence specifications (ante-BayesA/ ante-

BayesB) seemed to show particular advantages when linkage disequilibrium was 

substantial (Chapter 2) whereas finely constructed bivariate genomic models such as CD-

BayesB which differentially model pleiotropic from non-pleiotropic QTL did particularly 

well when the genetic architecture was simple (Chapter 5); i.e., low numbers (mQTL) of 

QTL relative to the number of SNP markers (m).  However, on nearly just as many 

occasions, we did not detect meaningful differences in WGP accuracy between seemingly 

disparate model specifications.  For example, results were often counterinituitive with our 

reaction norm model work (Chapter 4) in that sometimes IW-BayesA, a model that 

assumes complete pleiotropy throughout the genome, did better than CD-BayesB which 
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was constructed to loosen that requirement.  Recent work from Wimmer et al. (2013) 

might be particularly enlightening in that regard; that is, they concluded that Bayesian 

variable selection models are not likely to confer substantial advantages over simpler 

GBLUP specifications when the heritability is low, the level of determinedness (n/m), is 

low, the model complexity (mQTL/n) is high and/or the LD is high.   This may partially 

explain why some of the proposed variable selection methods in this dissertation (e.g. 

CD-BayesB) did not confer substantial advantages for some of the smaller scale 

examples considered.   

Nevertheless, these rules do not necessarily apply to looking at different 

distributional forms, e.g., Student t versus normal, with extensions to various bivariate 

forms, e.g. based on inverted Wishart specifications versus more flexible specifications 

based on the Cholesky decomposition, especially if model complexity is high.  

Furthermore, the level of determinedness is increasing so fast in some populations, e.g. 

Holsteins, that now n > m (LEGARRA and DUCROCQ 2012) such that it might become 

increasingly more feasible to develop more comprehensive WGP models.  This might 

become particularly true for GWAS types of analyses where it has been noted in this 

dissertation that inferences on individual SNP effects may be sensitive to model 

specification.   Furthermore although m and pairwise LD will admittedly increase with 

sequencing technologies and thereby limit the effectiveness of more elaborate WGP 

model specifications, it is also then more likely that future WGP models might be based 

on haplotypes of SNP rather than single SNP per se, thereby further distorting the issue of 

WGP model fit and choice relative to work by, e.g., Wimmer et al. (2013).  Hence, this 

continues to be a promising and exciting area of research.      
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There are certainly other strong limitations to the work in this dissertation that 

may further distort the comparisons between the various WGP models, particularly for 

analyses that involve real data.   Firstly, we assumed genetic effects to be strictly additive, 

such that it is unpredictable what the effects of non-additive gene action might be 

(Gianola, Wu et al. 2010) on our comparisons.  Certainly, there may be other 

nonlinearities that might not have been accounted for in our work as well.  Plasmode-

based simulations may represent a more effective way of reassessing the relative 

performance of WGP models (Vaughan, Divers et al. 2009).  

We have already mentioned the computational limitations of some of our 

proposed models, particularly when hyperparameters need to be estimated.  Animal 

breeders have been reticent, at best, to attempt to infer upon or properly tune these 

hyperparameters for good reason; it has been rather difficult to do so except, perhaps, 

based on some method of moments based determinations (de los Campos, Hickey et al. 

2013).  Although the toolkit in this dissertation was based on MCMC, it might be prudent 

to pursue other computationally feasible analytical approximations based on, for example, 

variational Bayes (Logsdon, Hoffman et al. 2010) or expectation-maximization like 

methods (KARKKAINEN and SILLANPAA 2012).   A similar argument also applies to 

hyperparameter estimation.  For example, in ridge regression or GBLUP like models, 

REML could be used to estimate the key “hyperparameters” like the common SNP 

variance component and the residual variance for example; certainly something similar 

could be done for Student t (e.g. Bayes A) implementations as well; e.g. (Pinheiro, Liu et 

al. 2001). This should be another fruitful area for future research. 
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APPENDIX A: Chapter 2 

A1  Markov Chain Monte Carlo Implementation Strategy for Ante-BayesA and 
Ante-BayesB 

In order to conduct MCMC, it is necessary to first specify the joint posterior 

density of all unknown parameters (SORENSEN and GIANOLA 2002).  To do this, we 

interchangeably reparameterize the joint density of the data y and the random SNP effects, 

using g for ante-BayesA and δ for ante-BayesB in order to exploit algorithmic 

efficiencies that are unique to either model.  For instance with ante-BayesA, we write 

  ( ) ( ) ( )2 2| , , , , | , , , | ,δ δy,g β u σ t y β u g g σ te ep p p=s s                                           [A1] 

Note the component ( ) ( )2 2| , , , ,y β u g Xβ Zg Wu Ie ep N= + +s s  is based on Equation [1] 

whereas ( ) ( )~ | , ,δ gg g σ t 0 Σp N=  with ( ) ( )1 1
gΣ I T Δ I T− − ′= − −  are defined by 

elements in 
1 2 3

2 2 2 2
δσ m

 =  δ δ δ δs s s s  specified along the diagonal of ∆, and by  

2,1 3,2 , 1, ,..., 't m mt t t − =    specified just below the diagonal elements in T as previously 

indicated.  For ante-BayesB, we reparameterize [A1] differently: 

 ( ) ( ) ( )2 2| , , , , | , , , |δ δy,δ β u σ t y β δ t δ σe ep p p=s s                                           [A2] 

recognizing that ( )δ I T g= −  such that [A2] represents a linear transformation of [A1].  

That is, the first component of [A2] is based on 

( ) ( )( )12 2| , , , ,y β δ t Xβ Z I T δ Wu Ie ep N −= + − +s s  whereas ( ) ( )2

1

| 0,δδ σ
j

m

j

p N
=

= ∏ δs .  

We’ll subsequently represent [A1] and [A2] together as ( )( )2 2| , , , , , ,δy,g δ β u σ t e t tp s m s
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to recognize the interchangeability between g and δ when conditioning on t. The joint 

posterior density of all unknown parameters can be written as products of specifications 

provided previously: 

 

( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

2 2 2
, 1

2

2 2 2 2 2

1

2 2 2 2
0 0

, , , , , , , , , |

| , , , , , , | ,

| , , | , , | ,

| , | , | , | ,

δ

δ

β g u σ t y

y,g δ β u σ t β

j

e t t

m

e t t j j t t
j

m

u u u e e e
j

s s t t t t t t

p s

p p p t

p s p s p S p

p s p s p v s p

−
=

=

∝

 
 
 

 
 
 

∏

∏

δ δ

δ δ δ δ δ

δ δ pp

s m s ν

s m s m s

s ν p s ν s ν ν

α β m m s p α β

                                 

[A3] 

From the paper, ( ) ( ), ββ β Vp N=  ,  ( ) ( )2 2
, 1 | , ,j j t t t tp t N− =m s m s , ( ) ( )2 2 2 2| , ,u u u u u up s s−=s ν χ ν ν ,

( ) ( )2 2 2 2| , ,e e e e e ep s s−=s ν χ ν ν  , ( ) ( )2 | , ,s s s sp s Gamma=δ α β α β , ( ) ( )2 2
0 0 0 0| , ,t t t t tp s N s=m m m ,  

( ) ( )2 2 2 2| , ,t t t t t tp v s v v s−=s χ  , and ( ) ( )| , ,p Beta=δ π π π ππ α β α β .  Furthermore,  

( )2 2| , ,
j

p sδ δ δ δs ν π is a mixture analogous to Equation [2] for ante-BayesB whereas 

( ) ( )2 2 2 2| , , 1 ,
j

p s s−= =δ δ δ δ δ δ δs ν π χ ν ν  for ante-BayesA as described in the paper.   For some 

parameters, we subsequently derive and present FCD separately for ante-BayesA ( δπ  = 1) 

from ante-BayesB ( δπ  < 1) as some MCMC sampling strategies appear to be simpler or 

more computationally efficient for one or the other model.   Now MCMC requires 

random draws from the full conditional densities of each unknown parameter (or blocks 

thereof) conditional on all other parameters and the data (SORENSEN and GIANOLA 2002).  

These full conditional densities are provided below for various classes of these unknown 

parameters. 
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To sample all fixed and random effects in ante-BayesA, write [ ]' ' 'θ β g' u=  as 

the (p+m+q) vector of fixed and random effects,  [ ]Q X Z W=    as the n x (p+m+q)  

overall model incidence matrix with ( )1 1 1 2
β gΣ V Σ A udiag s− − − − −=  as a block diagonal 

matrix with the corresponding listed components as the various blocks.  It can be readily 

demonstrated (SORENSEN and GIANOLA 2002) that the FCD of θ is  

 ( )ˆ| ~ ,θ y, θ CELSE N                                                                                      [A4]
 

where  ELSE denotes all other  parameters in [A3] other than θ and 

1
0 1 ( )

ˆ ' ' 'βθ CQ y+ β V 0 x m q
−

+ =   for  ( ) 1 2'C Q Q e

−−= + Σ s .  Note that with a typical “flat” 

prior for β is defined by 1
βV 0− =   such that ˆ 'θ CQ y= .  Also, note that univariate or 

multivariate block FCD subsets of θ could also be partitioned and sampled using [A4] 

based on results from Wang and Gianola (1994) . The structure of { }1 '
g gΣ Σ jj− =  

contained within Σ− is a simple tri-diagonal matrix: using ZIMMERMAN and NÚÑEZ-

ANTÓN (2010), the diagonal elements are 
1

2 2 2
1,gΣ j j

jj
j jt

+

− −
+= +δ δs s   for j = 1,2,….,m-1 with  

2
gΣ m

mm −= δs
 
whereas the elements adjacent to the diagonal are 

1, 1

, 1 1, 2
g gΣ Σ

j j j

j j j j t
+ +

+ + −= = − δs . 

To sample marker-specific variances in ante-BayesA: Consider now the FCD for 

2
jδs , j=1,2,…,m: 

 ( ) ( ) ( )1 2 3

2 2 2 2 2 2 2
21 32 , 1| | , ,..., , , , ,..., | ,y g

j m jm mp ,ELSE p t t t p s−∝δ δ δ δ δ δ δ δs s s s s s ν       [A5] 
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We use Chan and Jeliazkov (2009, pg 461) to simplify the first component of [A5] as 

follows: 

( )
( ) ( ) ( ) ( )

( )

1 2 3

2 2 2 2
21 32 , 1

1/2 1/21 1 1 1

21/21/21 1 2
2

1

| , ,..., , , , ,...,

1 1exp ' ' exp ' '
2 2

1 1exp ' exp
2 2

g

g

G g Σ g I T Δ I T g I T Δ I T g

Δ δ Δ δ

G

j

j

G G

G
j

j

p t t t −

− − − −

−
− −

=

   ∝ − = − − − − −   
   

  ∝ − ∝ −       
∏

δ δ δ δ

δ
δ

s s s s

δ
s

s

 [A6]  

Using the component in [A6] pertaining to 2
jδs  in [A5] and 

( )
2

21 22 2 2 2| , j

j j

s

p s e
  −− + 
 ∝

δ δ
δ

δ

νν
s

δ δ δ δs ν s  then 

 
( ) ( )

( ) ( )

2

2

2 2

2 11/2 22 2 2 2
2

2 21 1
2 2

2

21| exp
2

2

1exp
2

y j

j j j

j

j

j

s

j

j

s

p ,ELSE e

s

  −− +−  
 

+ − + 
 

 
     ∝∝ −

     Γ 
 

 +
 ∝ −
 
 

δ

δ δ
δ

δ

δ

ν

δ δ νν
s

δ δ δ
δδ

ν
δ δ

δ
δ

ν
δ

s s s
νs

δ ν
s

s

      [A7]
 

i.e. ( ) ( )2 2 2 2| , 1,y
j jp ELSE s−= + +δ δ δ δs χ ν δ ν .   As a sidenote, elements of δ can be 

recursively derived from g: 

  ( )

11

21 2 21 12

32 3 32 23

, 1 , 1 1

1 0 0 0
1 0 0

0 0 0
1 0

0 0 1

δ I T g

m m m m m mm

gg
t g t gg

t g t gg

t g t gg





 

− − −

    
    − −    
    − −= − = =
    
    
    − −    

       [A8] 

137 

 



To sample fixed and random effects other than SNP effects in ante-BayesB, here 

we deem it computationally tractable to sample the rest of the location parameters 

separately from g.   We again use Equation [A4] except that now we define [ ]' ' 'θ β u=  

as a (p+ q)x1 vector of fixed and random polygenic effects with  [ ]Q X W=   being the 

corresponding n x (p+ q) submodel incidence matrix and ( )1 2Σ 0 Apxp udiag− − −= s  being 

the corresponding block diagonal matrix. We then sample using Equation [A4] and  

( ) 1
0 1

ˆ ' ' 'βθ CQ y-Zg + β V 0 xq
− =   for  ( ) 1 2'C Q Q e

−−= + Σ s .  

To sample random SNP effects and variances in ante-BayesB, we consider the 

collapsed sampling strategy (Liu 1994) for jointly sampling 2
jδs and δj  as previously 

adapted for Bayes B in Meuwissen et al. (2001).  Consider the previously described 

mixture prior on the conditional variances 

( ) ( )
2 2

2 2

0
| , ,

,

   

   1-j

with probability
p v s

v v s with probability
δ

δ δ δ δ
δ δ δ δ

π
s π

χ π−

= 
                               [A9]

 

We jointly sample 2
jδs and δj  from ( )2 , | ,y

j jp ELSEδs δ ,  by sampling first from 

( )2 | , excepty  
j jp ELSEδs δ  and then from ( )| ,yjp ELSEδ .  The first component of [A2] 

implies the following linear model: 

 y Xβ Hδ Wu e= + + +                                                                             [A10] 
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where ( ) 1H Z I T −= − .  Let’s further partition H into the jth column, hj, and other 

remaining columns H j− ; similarly, we represent δ j−  as all elements of δ other than jδ . 

Then we further rewrite [A10] as follows: 

 y Xβ H δ h Wu ej j j j− −= + + + +δ                                                                 [A11] 

It can be readily demonstrated, following similar developments for BayesB provided by 

Meuwissen et al. (2001), that: 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2

2 2 2 2

2 2 * * 2
2 2

1/22 2 * 1 *

| , except , | ,

| , , , , | | , ,

1 1| , , exp ' exp
2 2

1| , , exp '
2

y  y

y β δ u t

y h y h

V y V y

j j

j

j j

j

j

jj

j

j j

e j j

j j j j j j j j
e

j j j j

p ELSE p ELSE

p p p s d

p s d

p s
− −

=

∝

  
 ∝ − − − −      

 ∝ −
 

∫

∫

∫

δ δ
δ

δ δ δ δ
δ

δ δ δ
δδ

δ δ δ

s δ s δ

s δ s s ν π δ

s ν π δ δ δ δ
s s

s ν π 

 

[A12]

 
where  *y y Xβ H δ Wuj j j−= − − −  and ' 2 2V h h I

jj j j e= +δs s

 

.   

Since [A12 ] is not a recognizable distributional form, a Metropolis Hastings step is 

required.  We adapt the independence chains implementation (CHIB and GREENBERG 

1995) as also adapted by Meuwissen et al. (2001) using the prior ( )2 2| , ,
j

p sδ δ δ δs ν π  as the 

candidate density.   That is, at MCMC cycle [k], one samples a candidate, say, 2[*]
jδs ,  

from ( )2 2| , ,
j

p sδ δ δ δs ν π
 
conditioned upon the updated values for 2, sδ δν  and δπ .  One 
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accepts 
[ ] *

2 2
j k j

=δ δs s  as the value for in cycle [k] with probability based on the Metropolis-

Hastings acceptance ratio 
[ ]( )*1

2 2 :
jj k

q
−

→δ δs s  

 

[ ]( )
( ) [ ]( )

[ ]( ) ( )
* 1

*1 *1

2 2 2

2 2 2 2 2

| , except | , ,
min ,1

;| , except | , ,

1,

y  

y  

j j k

jj k jj k

j

j

p ELSE p s

q p ELSE p s

otherwise

−

−
−

  
  
  → =   

 


δ δ δ δ

δ δ δ δ δ δ

s δ s ν π

s s s δ s ν π

 

[A13] 

If the proposal 
*

2
jδs is rejected, then set 

[ ] [ 1]

2 2
j k j k−

=δ δs s  ; i.e., the value of 2
jδs in the 

previous MCMC cycle.   It can be demonstrated that using Meuwissen et al. (2001) that 

[A13] is further equal to: 

 

[ ]( ) [ ] [ ]( )*1

1/2* * 1

2 2 11/21 1

1exp *' *
2min ,1

1exp *' *
2

1,

V y V y

V y V yjj k

j j

t t
j j

q

otherwise

−

− −

−−− −

   −      → =    −     


δ δs s

 

[A14] 

Note that neither the determinant V j  nor the inverse 1V j
− are trivial computations since 

m is typically large.    Adapting a development from Rohan Fernando (personal 

communication) for BayesB, it can be readily shown that [A14] further simplifies: 
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[ ]( )
( ) ( )

( ) ( )*1

2*
1/2*

*

2 2 2*
1/2[ 1]

[ 1]

'1exp
2

min ,1
'1exp

2

1,

h y

h yjj k

j j
j

j

j jt
j t

j

v
v

q
v

v

otherwise

−

−

−+
+

   
   −   

     → =  
   −      



δ δs s   

 

[A15] 

where ( ) ( )2* 2 2
*' 'h h h h

jj j j j j ev = +δs s  and  ( ) ( )
[ 1]

2[ 1] 2 2' 'h h h h
j k

k
j j j j j ev

−

− = +δs s .  Once 

2
jδs  is sampled, one could immediately draw  from ( )| ,yjp ELSEδ  readily seen to be 

( )
' * 2

' 2 ' 2| , ,
h y

y
h h h h

j j

j j e
j

j j j j

p ELSE N − −

 
 =
 + + δ δ

sδ
s s

 [A16] 

in order to complete the joint collapsed sampler draw from ( )2 , | ,y
j jp ELSEδs δ .  One 

could demonstrate the following backward recursive relationship 1 , 1 1h h zj j j j jt− − −= + ,  j = 

m, m -2,….,2 with zj denoting column j of Z and hm= zm.  Hence for computational 

tractability, one could use this relationship in sampling pairs from ( )2 , | ,y
j jp ELSEδs δ  

starting with j = m and working recursively backwards to j=1. 

To sample proportion of SNP markers associated with zero-effects in Ante-

BayesB, the FCD of πδ is based on the following: 

( ) ( ) ( )2 2

1
| , | , , | ,y

j

m

j
p ELSE p s pδ δ δ δ δ δ δ δπ s ν π π α β

=

∝ ∏  [A17] 

jδ
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where ( ) ( )| , ,p Betaδ δ δ δ δπ α β α β= .  Let ( )2
1

1
0

j

m

j
m I δs

=

= =∑  denote the number of 

zero-valued elements sampled in δσ  for a particular MCMC cycle where I(.) denotes the 

indicator function.  Then it can be readily demonstrated that Equation [A17] is simply 

( ) ( )1 1| , ,yp ELSE Beta m m mδ δ δπ α β= + + − . 

To sample antedependence parameters and their corresponding hyperparameters, 

consider now deriving the joint FCD of 2,1 3,2 , 1, ,..., 't m mt t t − =   : 

  

( )

( ) ( )
1 2 3

2 2 2 2 2
2,1 3,2 , 1 , 1

2

|

| , ,..., , , , ,..., | ,

t y

g
G

m

m m j j t t
j

p ,ELSE

p t t t p t− −
=

 
∝  

 
∏δ δ δ δs s s s m s  [A18] 

Borrowing developments, again from Chan and Jeliakov (2009, pg 462), the first 

component of [A18] can be rewritten as: 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )( )

1 2 3

2 3

2 2 2 2
21 32 , 1

1/21 1

222
, 1 13 32 22 21 1

2 2 2

1
1 1 1

| , ,..., , , , ,...,

1' exp ' '
2

1 1 1xp exp exp
2 2 2

1exp '
2

g

I T Δ I T g I T Δ I T g

g t Δ g t

m

m

m m

m m m m

p t t t

g t gg t gg t g


δ δ δ δ

δ δ δ

s s s s

s s s

−

− −

− −

−
− − −

 ∝ − − − − − 
 

    −−−    ∝ − − −
          
 ∝ − − Ψ − Ψ





 [A19] 
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saving only terms that are functions of t  with ( )1 2, 1, ..., mdiag g g g −Ψ =  being a diagonal 

m-1 x m-1 matrix with the listed elements, ( ) 2 31 'g  mg g g− =    , and 

( )2 3

2 2 2
( 1) , ...,

m
diag δ δ δs s s−∆ =  being a diagonal m-1 x m-1 matrix with the listed elements.   

Hence,  [A18] can be rewritten as follows: 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

2
1 1

1
1 1 1 2

1

| | , | ,

1 1exp ' exp '
2 2

1 ˆ ˆexp '
2

t y, g t Δ t 1 I

g t Δ g t t 1 t 1

t t Σ t t

t t

t t
t

t

p ELSE p p− −

−
− − −

−

∝

   ∝ − − Ψ − Ψ − − −       
  ∝ − − −    

m s

m m
s

 
[A20]

 

where 

 ( )( ) 1
1 2
1

ˆ 'Σ Δ It t

−
− −
−= Ψ Ψ + s  [A21] 

and 

 ( )( ) ( ) ( )( )1
1 2 1 2
1 1 1

ˆ ' 't Δ I Δ g 1t t t

−
− − − −
− − −= Ψ Ψ + Ψ +s s m   [A22]

 

Note that ( )
1 2
1'Δ I t

− −
−Ψ Ψ + s  is diagonal with elements ( )

1

2 2 2
jj tg
+

− −+δs s ,  j = 1,2,…,m-1, 

whereas element j of  1 2'Δ g 1 t t
− −Ψ + s m   is 

1

2 2
1 jj j t tg g

+

− −
+ +δs s m , j = 1,2,…,m-1.  In other 

words, the FCD of 1,j jt +  is  ( )( )2
1, 1, 1,

ˆ ˆ| , ~ ,yj j j j t j jt ELSE N t+ + +s   where  

( )
1

1

2 2
1

1, 2 2 2
ˆ j

j

j j t t
j j

j t

g g
t

g
+

+

− −
+

+ − −

+
=

+

δ

δ

s s m

s s
 [A23] 
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and  

( )
2

1,ˆ t j j+s  = ( )( )1

12 2 2
jj tg
+

−
− −+δs s   [A24] 

Note further that 1,
ˆ

j jt + can be written as a weighted average: 

( )
( )

( ) ( )
1 1

1 1 1

22 2 2 2
1 1

1, 2 2 22 2 2 2 2 2
ˆ j j

j j j

j j t t j j t
j j t

jj t j t j t

g g g g
t

gg g g
+ +

+ + +

− − − −
+ +

+ − − − − − −

+
= = +

+ + +

δ δ

δ δ δ

s s m s s m
s s s s s s

 [A25]

 

Now with 0jg = , as one might anticipate occasionally with ante-BayesB with markers 

defined at the beginning of a linkage group, 1,
ˆ

j j tt + = m  and  ( )
2 2

1,ˆ tt j j+ =s s  such that one 

draws 1,j jt +  from its prior density based on updated values of tm  and 2
ts .  For the much 

more common situation in ante-BayesB (assuming large δπ ) where gj ≠ 0 but 
1

2
j+δs  = 0, 

the FCD of 1,j jt +  can be shown to be a normal with mean 1
1,

ˆ j
j j

j

g
t

g
+

+ =  and variance 

( )
2 2

1,ˆ tt j j+ =s s . 

With ( )tp m  specified to be normal with prior mean mt0 and prior variance s2
t0 then 

Gibbs sampling can be used for the corresponding parameters.   

( ) ( )2,| ,y,ELSEt t tp N=  m m s  [A26] 

where 

144 

 



 
02 2

0

2 2
0

1 1

1 1

t
t t

t

t t

m t
s

m
s

−
+

=
−

+


m
sm

s  

 

[A27]

 

for 
, 1

2

1

m

j jt
t

m

−

=
−

∑
  and 

  
1

2
2 2
0

1 1
t

t t

m
s

−
 −

= + 
 

s
s  [A28] 

The FCD of 2
ts  given that the prior ( )2 2| ,t t tp ss ν is scaled inverted chi-square 

with known hyperparameters tν and 2
ts  can be derived as follows: 

( )

( ) ( )

( ) ( )

( ) ( )

2

2

2

2 2 2
, 1

2

1( 1)/2 2 22 2 2
, 12

2

1 1 22 22
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m s s ν

πs m s
s

s m ν
s

−
=

  −− +− −  
 

−
=

+ − − + 
 

−
=

 
∝  

 

  
∝ − −     

   
∝ − − +        

∏

∑

∑

t tt

t

t

t

m

j j t t t t t
j

smm

t j j t t
jt

m m

t j j t t t
jt

p ELSE

p t p s

t e

t s
 

[A29] 

That is, ( ) ( )22 2 2
, 1

2
,| , ,y

m

t t j j t t t
j

p ELSE m t s−
−

=

 
= + − + 

 
∑s χ ν m ν  .  Note that we advocate 

the non-informative specifications 1t = −ν
 
and 2 0ts =  in the paper. 
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To sample the scale parameter for the random SNP effects, borrowing results 

from Yi and Xu (2008),  the FCD for 2sδ  based on the specification of a conjugate prior 

( )2 | ,s sp sδ α β  = Gamma ( ),s sα β  can be written as follows:  

 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2

2 2

1

2 2 2 2 2

1

2 2

1 122 2 22
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1 12 2 2 22

1

| , 0 | , | ,
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j

p s ELSE I p s p s

s

I e s e

s s I

=

  −− + −  − 

=

+
+ − −

=

 
∝ > 

 
 

  
   = > 

Γ  Γ    
 

∝ − > +

∏

∏

∑

δ

δ δ
δ

δ δ

δ

δ δ δ δ δ δ

ν

δ δ ν αν
αs β

δ δ δ
δ

ν
α δ

δ δ δ δ

s s ν α β

ν
β

s s
ν α

ν s s βs

  
     

 [A30] 

i.e., a Gamma distribution with parameters 1 1
2s

m
+

+
α δν

 and  ( )2 2

1
0

2 j j

m

s
j

I −

=

> +∑δ
δ δ

ν s s β .  

To sample the degrees of freedom parameter for the random SNP effects, simple 

Metropolis updates could be used for sampling δν . For an arbitrary prior ( )p δν , the 

corresponding FCD is as follows:  

( ) ( ) ( ) ( )

( ) ( )
2

2

2 2 2

1

2 2

1 22 2 2

1

| 0 | ,

2
0

2

j j
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p ELSE I p s p
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 
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∝ > 

 
 
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 
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ν s s ν ν

ν

s s ν
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 [A31] 
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Details on how to δν can be based on a random walk Metropolis Hastings step; we have 

provided details on this in other non-genomic applications involving the sampling of 

degrees of freedom parameters  (Kizilkaya and Tempelman 2005; Bello, Steibel et al. 

2010). 

To sample the residual variance, given a specified scaled inverted chi-square prior 

( ) ( )2 2 2 2,| , ,e e e e e ep s s−=s α χ α α  , the corresponding FCD of 2
es can be written as follows:
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( )( ) ( ) ( )

( ) ( )( )
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2
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ν
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πs s
s

s ν
s

[A32]

 

In other words, [A32] is ( ) ( )( )2 2, 'y-Xβ Zg Wu y-Xβ Zg Wue e en s− + − − − − +χ ν ν .  Note 

that we advocate the non-informative specifications 1e = −ν
 
and 2 0es =  in the paper. 

To sample the polygenic variance, given a conjugate scaled inverted-chi square 

prior ( ) ( )2 2 2 2,| , ,u u u u u up s s−=s α χ α α , the FCD of 2
es is classically given as follows:  

 

( ) ( ) ( )2
12 2 2

2

1| exp
2
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In other words, [A33] is ( )2 2, -1u A uu u uq s− ′+ +χ ν ν .  Note that we advocate the non-

informative specifications 1u = −ν
 
and 2 0us =  in the paper.  
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A2  Supplementary Figures and Tables 

 

 

Figure A2.1: Average posterior means of tm  and empirical standard errors across 20 
replicates for each of six different LD levels using ante-BayesA and ante-BayesB.   No 

significant differences (P>0.01) were determined between the competing procedures with 
each other or from zero at each LD level.  
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Figure A2.2: Average posterior means of 2
ts  and empirical standard errors across 20 

replicates for each of six different LD levels using ante-BayesA and ante-BayesB.  No 
significant differences (P>.01) were determined between the two sets of competing 

procedures at each LD level.   
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Figure A2.3: Box-plot of proportions of the absolute posterior means of elements of 

{ }, 1 2

m

j j j
t − =

 divided by their respective posterior standard deviations that exceeded 2 across 

all 20 replicates for each of six different levels of LD using ante-BayesA (A) and ante-
BayesB (B).  
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Figure A2.4: Average posterior probabilities of association for the top QTL within each 
of 20 replicates using BayesB and ante-BayesB for each of six different LD levels. LD-
specific differences between the two methods declared significant by *(P<0.01), **( P 

<0.001), or ***(P<0.0001).   
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Figure A2.5: Bar plots of posterior probabilities of association of  either or both of two 
bracketing SNP to each of the six largest QTL effects within each of the first four 

replicates (A,B,C,D) at the highest (r2=0.31), medium (r2=0.24) and lowest (r2=0.15) 
average LD levels.  Posterior probabilities using BayesB and ante-BayesB are 

represented by green and black bars, respectively, whereas gray bars represent the 
proportion of the genetic variance accounted for by the corresponding QTL. QTL 

location is labeled on x-axis for each replicate.  
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Figure A2.6: Boxplots of estimated slopes for within-replicate regressions of true 
breeding values on estimated breeding values across 9 replicates for four traits in 

Generations 6, 8 and 10 from benchmark data of Hickey and Gorjanc (2011) using ante-
BayesB (black), BayesB (dark gray), anteBayesA (light gray) and BayesA (white). 

Differences from unity indicated as significant by *(0.05<P<.10), **( 0.01<P<.05) or 
***( P<.01).  
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FIGURE A2.7: Posterior means of antedependence parameters { }, 1 2

m

j j j
t − =

 versus 

corresponding SNP bracket location based on anteBayesA (left column) and anteBayesB 
(right column) for each of the first four replicates (rows 1 through 4) based on analyses 
using highest average marker density (r2 = 0.31)   Arrows denote the position for any 

QTL that accounted for greater than 2% of the total variance in each replicate.    
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FIGURE A2.8: Posterior means of g using ante-BayesA (left-column) and ante-BayesB 
(right-column) based on specifying antedependence in one direction along the 

chromosome against corresponding posterior means based on the same analyses but 
specifying antedependence in the opposite direction for each of the first four replicates 

(rows 1 through 4) and the highest average marker density (r2 = 0.31). Reference lines of 
intercept 0 and slope 1 are superimposed.  
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FIGURE A2.9: Posterior means of EBV using ante-BayesA (left-column) and ante-BayesB 
(right-column) based on specifying antedependence in one direction along the 

chromosome against corresponding posterior means based on the same analyses but 
specifying antedependence in the opposite direction for each of the first four replicates 

(rows 1 through 4) and the highest average marker density (r2 = 0.31). Reference lines of 
intercept 0 and slope 1 are superimposed.  
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FIGURE A2.10. Posterior means of g based on ante-BayesA versus BayesA (left-column) 
and ante-BayesB versus BayesB (right-column) for each of the first four replicates (rows 
1 through 4) and the highest marker density (r2 = 0.31). Reference lines of intercept 0 and 

slope 1 are superimposed.  
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Table A2.1: Average posterior means (PMEAN), posterior standard deviations (PSD), 
posterior medians (PMED), and effective sample size (ESS) for residual variance ( 2

es  ), 

cage variance ( 2
cs  ), polygenic variance (  ) and key hyperparameters ( , , and ) 

based on BayesA and BayesB analyses of training data subsets derived from 20 different 
partitions of the heterogeneous stock mice dataset. Empirical standard deviations across 

the 20 partitions are provided in parentheses. 

Parameter PMEAN PSD PMED ESS 
BayesA      

 0.32(0.05) 0.15(0.003) 0.31(0.05) 6126(283) 

 2.08(0.13) 0.31(0.014) 2.05(0.12) 6048(247) 

 3.21(0.15) 0.49(0.018) 3.18(0.13) 5728(213)  

 16.12(1.83) 23.11(2.72) 7.62(0.56) 285(20) 

 0.002(0.00014) 0.0007(0.0001) 0.002(0.00014) 266(17) 

BayesB     
 0.34(0.04) 0.13(0.002) 0.34(0.04) 12745(1213)  

 2.03(0.12) 0.35(0.011) 2.04(0.13) 11642(1086)  

 3.25(0.17) 0.53(0.021) 3.25(0.16) 9892(924) 

 19.31(1.03) 24.14(1.09) 9.47(0.68) 536(65)    

 0.02(0.003) 0.0006(0.003) 0.02(0.0004) 493(48)    

 0.81(0.03) 0.01(0.004) 0.81(0.03) 517(61) 
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Table A2.2: Average posterior means (PMEAN), posterior standard deviations (PSD), 
posterior medians (PMED), and effective sample size (ESS) for residual variance (  ), 
cage variance (  ), polygenic variance (  ) and key hyperparameters ( , , ,

and ) based on ante-BayesA and ante-BayesB analyses of training data subsets 
derived from 20 different partitions of the heterogeneous stock mice dataset. Empirical 

standard deviations across the 20 partitions are provided in parentheses. 

Parameter PMEAN PSD PMED ESS 
Ante-

BayesA  
    

 0.32(0.04) 0.14(0.002) 0.32(0.03) 2517(134) 

 2.01(0.13) 0.34(0.012) 2.02(0.13) 2483(128) 

 3.22(0.14) 0.53(0.03) 3.21(0.14) 2357(122) 

 15.54(1.32) 21.23(1.54) 7.27(0.46) 185(26) 

 0.001(0.0004) 0.0006(0.00005) 0.001(0.0004) 144(20) 

 0.030(0.002) 0.0139(0.004) 0.030(0.001) 2561(52) 

 0.037(0.004) 0.010(0.0003) 0.034(0.004) 986(43) 
Ante-

BayesB 
    

 0.34(0.04) 0.15(0.004) 0.33(0.04) 9512(765) 

 2.02(0.12) 0.39(0.017) 2.01(0.10) 9134(726) 

 3.23(0.15) 0.52(0.03) 3.22(0.14) 9038(689) 

 18.21(1.04) 22.46(1.22) 9.26(0.74) 376(33) 

 0.14(0.05) 0.32(0.18) 0.07(0.15) 259(21) 

 0.80(0.04) 0.01(0.004) 0.79(0.03) 343(32) 

 0.02(0.003) 0.011(0.002) 0.02(0.004) 1480(49) 

 0.032(3e-3) 0.05(2e-4) 0.031(3e-3) 638(41) 
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Table A2.3: Average posterior means for residual variance (  ), polygenic variance 

(  ),  key hyperparameters ( , , and ) based on BayesA and BayesB analyses and 

key hyperparameters ( , , , and )  based on ante-BayesB and ante-BayesA 
analyses for 4 different traits using Hickey and Gorjanc (2011) benchmark data. 
Empirical standard deviations across 9 replicates are provided in parentheses. 

 Trait 1 Trait 2 Trait 3 Trait 4 
anteBayesB     

 0.834(0.019) 1.348(0.125) 0.593(0.015) 0.939(0.038) 

 0.131(0.017) 0.161(0.033) 0.101(0.010) 0.144(0.020) 

 28.043(1.841) 15.707(2.430) 22.941(2.158) 17.792(2.953) 

 7.13e-4(4.63e-5) 1.34e-3(1.74e-4) 4.40e-4(5.30e-5) 9.14e-4(8.21e-5) 

 0.789(0.016) 0.834(0.015) 0.771(0.017) 0.826(0.019) 

 0.032(0.011) 0.033(0.009) 0.011(0.015) 0.013(0.016) 

 0.038(0.002) 0.034(0.001) 0.031(0.006) 0.046(0.009) 
BayesB     

 0.833(0.020) 1.339(0.123) 0.591(0.015) 0.937(0.040) 

 0.108(0.017) 0.141(0.034) 0.085(0.010) 0.114(0.012) 

 31.643(1.623) 23.475(3.750) 33.536(2.501) 27.203(3.674) 

 8.23e-4(5.60e-5) 1.97e-3(3.21e-4) 5.31e-4(6.75e-5) 4.91e-3(3.71e-3) 

 0.826(0.011) 0.861(0.015) 0.823(0.017) 0.871(0.020) 
anteBayesA     

 0.827(0.020) 1.339(0.124) 0.590(0.015) 0.935(0.040) 

 0.157(0.030) 0.208(0.051) 0.143(0.018) 0.169(0.030) 

 22.556(1.192) 12.501(2.840) 20.909(1.194) 14.941(3.003) 

 6.40e-5(1.45e-5) 6.84e-5(1.91e-5) 2.22e-5(1.06e-5) 4.85e-5(1.81e-5) 

 0.021(0.013) 0.007(0.020) 0.002(0.016) 0.021(0.025) 

 0.035(0.003) 0.022(0.005) 0.032(0.002) 0.027(0.004) 
BayesA     

 0.829(0.019) 1.338(0.124) 0.592(0.015) 0.939(0.040) 

 0.099(0.015) 0.123(0.034) 0.071(0.009) 0.097(0.012) 

 23.871(2.033) 14.639(3.147) 23.032(2.832) 15.882(3.812) 

 1.05e-4(8.70e-6) 1.22e-4(1.68e-5) 6.33e-5(7.23e-6) 8.30e-5(1.61e-5) 
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Table A2.4: Average effective sample size for residual variance ( ), polygenic variance 

(  ), key hyperparameters ( , , and ) based on BayesA and BayesB analyses and 

key hyperparameters ( , , , and )  based on ante-BayesB and ante-BayesA 
analyses for 4 different traits using Hickey and Gorjanc (2011) benchmark data. 
Empirical standard deviations across 9 replicates are provided in parentheses. 

 Trait 1 Trait 2 Trait 3 Trait 4 
anteBayesB     

 4910(879) 4883(757) 6139(1065) 4163(599) 

 1423(317) 905(131) 1164(174) 961(177) 

 136(12) 157(25) 125(10) 146(24) 

 108(7) 111(9) 113(12) 121(19) 

 216(19) 236(24) 210(20) 249(25) 

 168(29) 184(35) 150(26) 132(27) 

 241(46) 302(63) 207(45) 225(53) 
BayesB     

 3058(541) 4814(1181) 3462(555) 3354(344) 

 1056(238) 968(284) 993(154) 836(85) 

 137(6) 162(18) 127(5) 128(13) 

 138(4) 122(28) 119(16) 126(16) 

 264(36) 347(41) 297(26) 275(39) 
anteBayesA     

 4887(1131) 6352(1900) 9318(1823) 5667(1638) 

 426(64) 1429(1026) 782(225) 810(321) 

 105(4) 164(48) 101(8) 122(25) 

 114(9) 120(34) 107(20) 118(24) 

 137(10) 110(4) 101(18) 107(10) 

 191(25) 273(66) 201(25) 259(51) 
BayesA     

 2794(342) 4212(1053) 2986(402) 2541(200) 

 677(93) 566(111) 642(77) 494(38) 

 114(6) 211(69) 123(4) 229(65) 

 150(14) 187(58) 145(11) 183(42) 
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APPENDIX B: Chapter 3 

B1  Description of three sampling strategies 

B1.1 Sampling strategy for DFMH 

To sample the degrees of freedom parameter for the random SNP effects, we used 

a proper prior   corresponding to a Uniform(0,1) prior on . The 

FCD for  is as follows: 

 

As this FCD is not recognizable, we could use a random walk normal MH step on 

.  Note that the Jacobian from  to  is . The corresponding FCD for  

is as follows:    

 

Where , hence  
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Suppose the value of  in the current cycle i is , we could propose a random walk 

value for  in the next cycle from a Gaussian distribution:  

  

That is equivalent to generate a random variable, say  from N(0, ) and add it to  

to propose . To determine the odds ratio , we evaluated 

this ratio as: 

 

To implement this Metropolis sampling strategy, we first generated  from a 

Uniform(0,1) distribution.  Then, 1) If , accept ;  2) If , accept 

; 3) If , then set . The following tuning procedure is to 

determine :  

1) For the last 10 cycles, the rate of acceptance is greater than 80%, increase by a 

factor of 1.2. 
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2) For the last 10 cycles, the rate of acceptance is less than 20%, decrease  by a factor 

of 0.7. 

3) After the burn-in, keep  constant and monitor subsequent acceptance rates to ensure 

that they fall within 25 to 75%. 

To sample the scale parameter for the random SNP effects, borrowing results 

from Yi and Xu (2008),  the FCD for  based on the specification of a conjugate prior 

 = Gamma  can be written as follows:   

  

i.e., a Gamma distribution with parameters  and .  

B1.2 Sampling strategy for UNIMH 

To sample the degrees of freedom parameter for the random SNP effects, the FCD 

for sampling  is as follows:  
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As this FCD is not recognizable, we could use a random walk normal MH step on 

.  Note that the Jacobian from  to  is . The corresponding FCD for  

is as follows:    

 

Where , hence  

 

Suppose the value of  in the current cycle i is , we could propose a random walk 

value for  in the next cycle from a Gaussian distribution:  
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That is equivalent to generate a random variable, say  from N(0, ) and add it to  

to propose . To determine the odds ratio , we evaluated 

this ratio as: 

 

To implement this Metropolis sampling strategy, we first generated  from a 

Uniform(0,1) distribution.  Then, 1) If , accept ;  2) If , accept 

; 3) If , then set . The following tuning procedure is to 

determine :  

1) For the last 10 cycles, the rate of acceptance is greater than 70%, increase by a 

factor of 1.2. 

2) For the last 10 cycles, the rate of acceptance is less than 20%, decrease  by a factor 

of 0.7. 

3) After the burn-in, keep  constant and monitor subsequent acceptance rates to ensure 

that they fall within 25 to 75%. 
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To sample the scale parameter for the random SNP effects, the FCD for sampling 

 is as follows:  

 

Even if this FCD is recognizable, we could use a random walk normal MH step on 

.  Note that the Jacobian from  to  is . The corresponding FCD for 

 is as follows:    

 

Where , hence  
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Suppose the value of  in the current cycle i is , we could propose a random walk 

value for  in the next cycle from a Gaussian distribution:  

  

That is equivalent to generate a random variable, say  from and add it to  

to propose . To determine the odds ratio , we evaluated 

this ratio as: 

 

To implement this Metropolis sampling strategy, we first generated  from a 

Uniform(0,1) distribution.  Then, 1) If , accept ;  2) If , accept 

; 3) If , then set . The following tuning procedure is to 

determine :  

1) For the last 10 cycles, the rate of acceptance is greater than 70%, increase by a 

factor of 1.2. 
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2) For the last 10 cycles, the rate of acceptance is less than 20%, decrease  by a factor 

of 0.7. 

3) After the burn-in, keep  constant and monitor subsequent acceptance rates to ensure 

that they fall within 25 to 75%. 

B1.3 Sampling strategy for BIVMH 

To sample the degrees of freedom and scale parameters for the random SNP 

effects, we divided burn-in into four stages with equal length as follows:  

In stage 1, we sample  and  using UNIMH (see sampling strategy 2) with 

fine-tuning procedure on  and  , which are also the variances for the two separate 

Gaussian proposal densities; 

In stage 2, we sample  and  using UNIMH with fixing  and to the 

values tuned from the last cycle in stage 1 and compute correlation  between samples of 

 and  within stage 2;  

In stage 3, we jointly sample  and  using a bivariate Gaussian proposal 

density with variances  and  based on those tuned at the end of Stage 1 and a 

covariance based on the correlation computed from Stage 2. Joint density for  and is 

as follows:  
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As this density is not recognizable, we could use a random walk normal MH step on 

 and .  Note that the Jacobian from  to  is . Note that the 

Jacobian from  to  is . The corresponding joint density for  and  is as 

follows:    

 

Where , hence  
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Suppose the value of  in the current cycle i is , we could propose a random 

walk value for  in the next cycle from a bivariate Gaussian distribution:  

  

That is equivalent to generate a random variable, say  from N(0, ) and add it to  

to propose , where ,  and  were fixed value 

from last cycle in stage 1, correlation  between samples of  and  

computed from stage 2.  

To determine the odds ratio , we evaluated this ratio as: 

 

To implement this Metropolis sampling strategy, we first generated  from a 

Uniform(0,1) distribution.  Then, 1) If , accept ;  2) If , accept 

; 3) If , then set . The following tuning procedure is to 

determine :  

1) For the last 10 cycles, the rate of acceptance is greater than 60%, increase by a 

factor of 1.2. 
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2) For the last 10 cycles, the rate of acceptance is less than 10%, decrease  by a factor 

of 0.7. 

3) After the burn-in, keep  constant and monitor subsequent acceptance rates to ensure 

that they fall within 25 to 75%. 

In stage 4, we jointly sample  and  using a bivariate Gaussian proposal 

density with fixing value of  at the end of stage 3. After burn-in, we started to save all 

samples on  and using MH with the bivariate Gaussian proposal density.   

2cη

2cη

log( )ν 2log( )s

2cη

ν 2s

174 

 



B2  Supplementary tables and figures 

 

Table B2.1: Average posterior means (PMEAN), posterior standard deviations (PSD), 
posterior medians (PMED), and effective sample size (ESS) for residual variance (  ), 

cage variance (  ), polygenic variance (  ) and key hyperparameters ( , , and ) 
based on BayesA and BayesB analyses of subsets with 950 SNPs from the heterogeneous 

stock mice dataset.  

 DFMH UNIMH BIVMH 
Parameter PMEAN PSD ESS PMEAN PSD ESS PMEAN PSD ESS 
BayesA           

 0.16 0.09 2964 0.16 0.08 3218 0.16 0.09 3240 
 2.02 0.21 2515 2.02 0.21 2797 2.02 0.21 2757 
 4.02 0.36 2295 3.98 0.36 2602 3.98 0.36 2690 
 18.60 47.26 291 22.28 61.07 856 24.49 64.30 1092 
 2e-3 6e-4 279 2e-3 6e-4 498 2e-3 6e-4 504 

BayesB          
 0.16 0.06 4918 0.16 0.06 6171 0.16 0.06 6283 
 1.94 0.21 4301 1.91 0.21 5441 1.91 0.21 5466 
 3.92 0.32 4113 3.91 0.30 5280 3.91 0.30 5274 
 29.16 65.25 395 30.61 72.58 2346 35.80 81.36 2957 
 0.02 5e-3 314   0.02 5e-3 782 0.02 5e-3 813 
 0.83 0.10 391 0.83 0.10 619 0.83 0.10 639 
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Table B2.2: Average posterior means (PMEAN), posterior standard deviations (PSD), 
posterior medians (PMED), and effective sample size (ESS) for residual variance (  ), 

cage variance (  ), polygenic variance (  ) and key hyperparameters ( , , and ) 
based on BayesA and BayesB analyses of subsets with 1900 SNPs from the 

heterogeneous stock mice dataset.  

 DFMH UNIMH BIVMH 

Parameters PMEAN PSD ESS PMEAN PSD ESS PMEAN PSD ESS 

BayesA           
 0.16 0.08 1648 0.16 0.07 2228 0.16 0.07 3195 
 2.03 0.21 1515 2.00 0.20 2016 2.00 0.21 2786 
 3.80 0.39 1314 3.80 0.38 1983 3.80 0.39 2238 
 14.82 36.03 121 19.96 55.46 1075 22.75 61.18 1425 
 8e-4 3e-4 109 8e-4 3e-4 303 8e-4 3e-4 315 

BayesB          
 0.16 0.07 4228  0.16 0.07 5210 0.16 0.07 6185 
 1.98 0.19 4037  1.98 0.19 4468 1.98 0.19 5891 
 3.68 0.35 3971 3.68 0.36 4300 3.68 0.34 5284 
 23.57 52.94 215  30.50 72.51 2474 33.75 81.49 2948 
 2e-3 1e-3 194   2e-3 1e-3 475 2e-3 1e-3 542 
 0.85 0.09 208 0.85 0.08 424 0.85 0.09 594 
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Table B2.3: Average posterior means (PMEAN), posterior standard deviations (PSD), 
posterior medians (PMED), and effective sample size (ESS) for residual variance (  ), 

cage variance (  ), polygenic variance (  ) and key hyperparameters ( , , and ) 
based on BayesA and BayesB analyses of subsets with 3800 SNPs from the 

heterogeneous stock mice dataset.  

              DFMH UNIMH BIVMH 
Parameters PMEAN PSD ESS PMEAN PSD ESS PMEAN PSD ESS 

BayesA           
 0.16 0.07 1030 0.16 0.07 1792 0.16 0.07 2962 
 2.01 0.20 1011 2.01 0.20 1565 2.01 0.20 2537 
 3.43 0.33 827 3.43 0.34 1529 3.43 0.34 1968 
 3.14 0.88 111 3.14 2.05 1280 3.24 1.50 1339 
 5e-4 2e-4 103 5e-4 2e-4 407 5e-4 2e-4 456 

BayesB          
 0.16 0.07 3579  0.16 0.07 4198 0.16 0.07 5230 
 1.96 0.19 3134  1.96 0.19 3986 1.96 0.19 4273 
 3.27 0.32 2896 3.27 0.33 3761 3.27 0.31 4158 
 6.95 27.24 198  6.71 20.79 2513 9.05 30.10 3127 
 1e-3 9e-4 163   1e-3 9e-4 419 1e-3 9e-4 489 
 0.88 0.10 194 0.88 0.09 405 0.88 0.09 512 
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Figure B2.1: Average posterior means of  (BayesA, BayesB) using DFMH, UNIMH 
and BIVMH across 15 replicates at LD level of 0.17, 0.24 and 0.32 comparing DFMH, 

UNIMH and BIVMH using BayesA model in (A) and using BayesB model in (B).   

  

2s

178 

 



 

 

Figure B2.2: Average posterior means of using BayesB model across 15 replicates as 
a function of LD levels 0.17, 0.24 and 0.32 comparing DFMH, UNIMH and BIVMH. 

  

π

179 

 



 

 

Figure B2.3: Average posterior means of  (BayesA, BayesB) across 15 replicates for 
three different levels of LD comparing DFMH, UNIMH and BIVMH in BayesA model 

(A) and in BayesB model (B).   
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Figure B2.4: Average posterior means of  in BayesA model using DFMH, UNIMH 
and BIVMH across 15 replicates for three LD levels of 0.17 (bottom), 0.24(middle) and 

0.32 (top) comparing DFMH, UNIMH and BIVMH. 

 

 

Figure B2.5: Average posterior means of  in BayesB model using DFMH, UNIMH 
and BIVMH across 15 replicates for three LD levels of 0.17 (bottom), 0.24(middle) and 

0.32 (top) comparing DFMH, UNIMH and BIVMH. 
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Figure B2.6: Average posterior means of  using BayesB model across 15 replicates at 
three LD levels of 0.17 (bottom), 0.24(middle) and 0.32 (top) comparing DFMH, 

UNIMH and BIVMH.   

 

 

Figure B2.7: Average posterior means of across 15 replicates for three LD levels of 
0.17 (bottom), 0.24(middle) and 0.32 (top) comparing DFMH, UNIMH and BIVMH in 

BayesA model. 
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Figure B2.8: Average posterior means of across 15 replicates for three LD levels of 
0.17 (bottom), 0.24(middle) and 0.32 (top) comparing DFMH, UNIMH and BIVMH in 

BayesB model. 
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APPENDIX C: Chapter 4 

C1  Markov Chain Monte Carlo (MCMC) Implementation Strategy for all methods 

C1.1 MCMC Implementation Strategy for IW-BayesB/IW-BayesA /IW-BayesC  

For the RR/RN WGP model, we know that y is the n x 1 vector of phenotypes for 

animals, β is the q x 1 vector of fixed effects, g1 represents the m x 1 vector of SNP 

specific random intercept effects, g2 represents the m x 1 vector of SNP specific random 

slope effects, X is the n x q design matrix for fixed effect, Z is a m x m genotype matrix, 

D is the n x n diagonal matrix with the environmental covariates on the diagonal.  

 

To sample location parameters β, g1, g2 computationally efficient, we adopted a Gauss-

Seidel updating algorithm in MCMC implementation strategy (LEGARRA and MISZTAL 

2008). To sample the random effects more efficiently in order to facilitate MCMC mixing, 

we block sampled random intercept and slope effects one SNP at a time, such that we 

define a vector  where  are random 

intercept and slope effects for SNP j.  Based on the description of priors for the three 

models in materials and methods, we can write the joint posterior density for all unknown 

parameters as following:  

1 2y=Xβ Zg DZg e+ + +

11 21 1 2 1 2, ,..., , ,..., ,g ′ =  j j m mg g g g g g 1 2,g ′ =  j j jg g
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where is a 2 x 2 genetic variance-covariance matrix and is a 2 x 2 scale matrix for 

random intercept and slope effects.  In IW-BayesB ( ), has a mixture prior of point 

mass at a 2 x 2 matrix of 0’s with probability and Inverted Wishart distribution with 

degrees of freedom and scale matrix with probability . In IW-BayesA ( ),

has an Inverted Wishart prior of degree freedom and scale matrix . In IW-BayesC 

(  and ) , all SNPs share a common genetic variance-covariance matrix .  

To sample fixed effects in IW-BayesA/IW-BayesB/IW-BayesC, FCD for the kth 

element of β is as follows: 

   where 
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Immediately after sampling , we update the residual by , 

where  is the sampled value at cycle [t+1]  and  is the sampled value at 

cycle [t].  

To sample random intercept and slope effects in IW-BayesA, FCD for the jth 

element of g is as follows: 

    

Where 

    

and   

After sampling , we update residual by , 

where ,  are the sampled , value at cycle [t+1]  and ,  are 

the sampled , value at cycle [t]. 
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To sampling genetic variance-covariance matrices for random effects in IW-

BayesA, given the specified inverted Wishart prior , the 

FCD for can be written as follows:   

 

Hence,   

To sample random effects and genetic variance-covariance matrices in IW-

BayesB, according to the collapsed sampling strategy (Liu 1994), we jointly sampled 

and  as adapted in Bayes B (Meuwissen et al. 2001). We first sample from  
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Since the above FCD is not recognizable, we need to adopt Metropolis-Hastings (MH) 

algorithm using the mixture prior  as the candidate density. At MCMC 

cycle [t], we sample a candidate  from the candidate density conditional on updated 

values for hyperparameters. We accept  with the probability based on the MH 

acceptance ratio of , where  is the value at MCMC cycle [t-1]. 

Adapting Meuwissen et al. (2001), the MH ratio looks as follows: 

 

If the candidate  is rejected, we can then set .  The MH ratio can be further 

derived as:  

 

It can be demonstrated that this MH ratio can be written as: 
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where  

  

and 

  

If a non-zero matrix for  is sampled, then one can draw samples of using the same 

full conditionals as with IW-BayesA.  If either one of , , ,  are non-

zero, we need to update residual   immediately 

after sampling , where ,  are the sampled , value at cycle [t+1]  and 

,  are the sampled , value at cycle [t].       

To sample proportion of SNP markers associated with non-zero effects in IW-

BayesB, with specified prior , the FCD of  is based on the 
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Let  denote the number of non-zero vectors sampled in at a 

particular MCMC cycle where I(.) denotes the indicator function.  Then we can write  

. 

To sample scale matrix for genetic variance-covariance matrices in IW-

BayesA/IW-BayesB, given the specified Wishart prior for scale matrix 

, we can write FCD for as the following, 

Hence,  

To sample the degrees of freedom for genetic variance-covariance matrices in 

IW-BayesB/IW-BayesA, with a specified non-informative prior for degrees of freedom

, we can write the FCD for as the following, 
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We sampled  using a random walk Metropolis Hastings algorithm, which was 

described in other non-genomic applications involving the sampling of degrees of 

freedom parameter (Kizilkaya and Tempelman 2005; Bello, Steibel et al. 2010) .  

To sample random intercept and slope effects in IW-BayesC, FCD for the jth 

element of g is as follows: 

  

Where 

 

and   

After sampling , we update residual by , 

where ,  are the sampled , value at cycle [t+1]  and ,  are 

the sampled , value at cycle [t].                                      
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To sample genetic variance-covariance matrix for random effects in IW-BayesC, 

from the joint posterior density, we can derive FCD for , which has an inverted 

Wishart prior . 

 

where  

i.e.  

To sample residual variance in IW-BayesA/IW-BayesB/IW-BayesC, given a 

specified scaled inverted Chi-square prior , we can write 

the FCD for  as follows, 
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C1.2  MCMC Implementation Strategy for CD-BayesB/CD-BayesA 

As presented in the Materials and Methods, a square root free Cholesky 

decomposition can be applied to the genetic variance-covariance matrix.  Let

 where  is the vector of SNP specific environmental slope effects 

conditional on intercept effects and  represents a diagonal matrix of SNP-

specific associations between intercept and slope effects. The RR/RN WGP model can be 

rewritten as:  

 

Based on the description of priors for the two CD models in materials and methods, we 

can write down the joint posterior density for all unknown parameters:  
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parameters between intercept and slope.  In CD-BayesB (  and ), ( ) 

has a mixture prior of point mass at zero with probability ( ) and scaled 

inverted Chi-square distribution of degree freedom ( ) and scale parameter ( ) 

with probability ( ). In CD-BayesA (  and ), ( ) has a scaled 

inverted Chi-square distribution of degree freedom ( ) and scale parameter ( ).   

To sample all fixed effects in CD-BayesA/CD-BayesB, FCD for the kth element of 

β is as follows: 

  

with
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To sample random intercept effects in CD-BayesA, with specified prior on , 

let’s define  is 

column j of . The FCD can be written as follows:  

 

where 

  

and   
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where 

  

and   

 Immediately after sampling , we update the residual by 

, where  is the sampled  value at cycle [t+1]  

and  is the sampled value at cycle [t].  

To sample variances of SNP intercept effects in CD-BayesA, given the previously 

specified prior , we can derive FCD as follows:  
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That is,  

To sample variances of SNP slope effects conditional on intercept in CD-BayesA, 

given the previously specified prior , we can derive FCD 

as follows:   

 

That is,  

To sample variances and effects of SNP intercepts in CD-BayesB, according to 

the collapsed sampling strategy (Liu 1994), we jointly sampled and  as adapted 

in Bayes B (Meuwissen et al. 2001). Let’s define 

 is the jth column of 

. We first sample from  

( ) ( ) ( )

( )
1 1 1

1

1 1

1 1

1

1

1

2 2 2 2
1 1 1

2 211/2 12 2 2 1 1
2 2

( 1) 2 2
1

1 1 12 2
2

| , else | | ,

2 exp exp
2 2

exp
2

y

ν

ν

s s s ν

ν
πs s

s s

ν
s

s

− +−

+
− +

 
 
 

 
 
 

∝

∝ − −

+
∝ −

   
      
   
 
  
 

j j j

j j

j j

j

j

g j g g

j
g g

g g

j
g

g

p p g p s

g s

s g

( )
1

2 2 2 2
1 1 1 1| , 1,ys χ − = + = +

jg jelse df v scale g v s

2|1

2 2 2 2
2 2 2 2 2( | , ) ( , )s χ −=

jgp v s v v s

( ) ( ) ( )

( )
2|1 2|1 2|1

2

2|1 2|1

2|1 2|1

2

2|1

2|1

2 2 2 2
2|1 2 2

2 211/2 2|12 2 2 2 2
2 2

( 1) 2 2
1

2 2 2|12 2
2

| , else | | ,

2 exp exp
2 2

exp
2

y

ν

ν

s s s ν

ν
πs s

s s

ν
s

s

− +−

+
− +

 
 
 

 
 
 

∝

∝ − −

+
∝ −

   
      
   
 
  
 

j j j

j j

j j

j

j

g j g g

j
g g

g g

j
g

g

p p g p s

g s

s g

( )
2|1

2 2 2 2
2 2|1 2 2| , 1,ys χ − = + = +

jg jelse df v scale g v s

1g j 1

2s
jg

( ) ( ) ( ) ( )
1

*
. 1 1 2 2 3 31 1 1 1z φ φ φ φ ′ = + + + + 

jg j j j j j j nj n jz d z d z d z d

Z DZ+ Ψ

197 

 



 

 

where   and 

 

.   

Using that expression, the random walk Metropolis-Hastings acceptance ratio for 

sampling from at MCMC cycle [t] based on using 

as the candidate density looks as follows: 

 
which can be demonstrated (Meuwissen et al. (2001)), to be equal to: 

 

and further simplified as follows:
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where  

  

and 

  

If a non-zero value for  is sampled, then one can draw samples of using the same 

full conditionals as with CD-BayesA. If either  or   are nonzero, the residual 

needs to be updated as  immediately thereafter.  

To sample variances and effects of SNP slopes conditional on intercepts in CD-

BayesB, we jointly sampled and  as adapted in Bayes B (Meuwissen et al. 
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where   and 

 

.   

Using that expression, the random walk Metropolis-Hastings acceptance ratio for 

sampling from at MCMC cycle [t] based on using 

as the candidate density looks as follows: 

 
According to Meuwissen et al. (2001), this ratio is further equal to: 

 

and can be further simplified as:
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where  

  

and 

  

If a non-zero value for  is sampled, then one can draw samples of using the 

same full conditionals as with CD-BayesA. If either  or   are nonzero, the 

residual needs to be updated as  immediately thereafter.  

To sample proportion of SNP markers associated with non-zero intercept effects 

in CD-BayesB, with specified prior , the FCD of  is 

based on the following, 
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Let  denote the number of non-zero values sampled in  at a 

particular MCMC cycle where I(.) denotes the indicator function.  Then we can write  

.          

To sample proportion of SNP markers associated with non-zero slope effects 

conditional on intercept in CD-BayesB, with specified prior 

, the FCD of  is based on the following, 

 

Let  denote the number of non-zero values sampled in  at a 

particular MCMC cycle where I(.) denotes the indicator function.  Then we can write  

.                                
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where 

 

and

 

 

Immediately after sampling , we update the residual by , where 

 is the sampled  value at cycle [t+1]  and  is the sampled value at cycle [t].  

To sampling mean for association parameters in CD-BayesA/CD-BayesB, given a 

specified prior , FCD for  can be written as follows, 
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Where  for 
  
and   

i.e.     

To sampling variance of association parameters in CD-BayesA/CD-BayesB, with 

a specified prior , FCD for  can be written as follows, 

 

That is,  . 
 

To sample scale parameter for SNP intercepts in CD-BayesA/CD-BayesB, with a 

specified prior for scale parameter , we can write FCD as 

follows:  
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That is, a gamma distribution with parameters  and .  

To sample scale parameter for SNP slopes conditional on intercept in CD-

BayesA/CD-BayesB, with a specified prior for scale parameter

, we can write FCD as follows, 

 

That is, a gamma distribution with parameters  and .  
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To sampling degrees of freedom for SNP intercept effects in CD-BayesA/CD-

BayesB, with a specified non-informative prior for degrees of freedom , 

we can write FCD for as follows:  

 

We sampled  using a random walk Metropolis Hastings algorithm, which was 

described in other non-genomic applications involving the sampling of degrees of 

freedom parameter (Kizilkaya & Tempelman 2005; Bello 2010).  

To sample degrees of freedom for SNP slopes conditional on intercepts in CD-

BayesA/CD-BayesB, with a specified non-informative prior for degrees of freedom

, we can write FCD for as follows: 
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We sampled  using a random walk Metropolis Hastings algorithm, which was 

described in other non-genomic applications involving the sampling of degrees of 

freedom parameter (Kizilkaya & Tempelman 2005; Bello 2010).  

To sample residual variance in CD-BayesA/CD-BayesB, given a specified scaled 

inverted Chi-square prior , we can write the FCD for  as 

follows, 

 

where  

i.e. 
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C1.3  Derivation for overall genetic correlation between intercept and slope 

The RR/RN WGP model can be written as follows,  

 

Then, the genetic variance at environmental covariate for animal i with genotype  at 

locus j can be defined as,  

 

Thus, for any environment d, we can define the genetic variance as follows,  

 

Using de los Campos et al. (2012), we can compute the overall genetic variance across all 

animals as follows: 
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where is the overall genetic variance for intercept across animals,  

 is the overall genetic variance for slope across animals and 

 is the overall genetic covariance between intercept and slope across 

animals. Therefore, the overall genetic correlation between intercept and slope can 

be written as,  
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C2  Supplementary tables and figures 

 

Figure C2.1: Estimated SNP effects with Environmental (rescaled weeks of age 10, 13, 
16, 19 and 22) dependence on back fat thickness for two SNP markers (solid line and 

dash line) using the complete final analyses data in MSU Pig Resource Population under 
model A) IW-BayesA, B) CD-BayesA. 
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APPENDIX D: Chapter 5 

D1  Markov Chain Monte Carlo (MCMC) Implementation Strategy for Bayesian 
hierarchical methods 

D1.1 MCMC Implementation Strategy for IWBayesA 

 To sample location parameters computationally efficiently, we adopted Gauss-

Seidel updating algorithm in MCMC implementation strategy (Legarra and Misztal, 

2008). In the bivariate trait WGP model, y1 is the n x 1 vector of phenotypes for animals 

on trait 1, y2 is the n x 1 vector of phenotypes for animals on trait 2, β1 (β2) is the q x 1 

vector of fixed effects on trait 1 (trait 2), g1 (g2) represents the m x 1 vector of SNP 

substitution effects on trait 1 (trait 2), X1 (X2) is the n x q design matrix for fixed effect β1 

(β2),  Z is the m x m genotype matrix.  

  [1] 

To estimate the random SNP effects more efficiently, we block sampling trait specific 

effects by SNP, such that we have a vector  where 

 is random SNP effects on trait 1 and trait 2 for kth SNP. Let 

and , based on the description of priors for IWBayesA in methods, we can 

write the joint posterior density for all unknown parameters as follows:  
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           [2] 

where is a 2m x 2m genetic variance-covariance matrix and is a 2 x 2 scale matrix 

for trait specific random SNP effects. We assume that has an Inverted Wishart (IW) 

prior of degree freedom and scale matrix .  Residuals for the two traits  

were assumed to have a bivariate normal distribution with null mean and variance-

covariance matrix . Thus, we know the inverse of the residual 

variance-covariance matrix is  where .  

To sample fixed effects on trait 1, FCD for lth element of β1 can be written as 

follows:

    with 

( )
( ) ( )

( ) ( ) ( )0 0
1 1

, |

| ,

( | ) | , ( | , )

g g e

g g e

g g g g e

β,g,G, ,Σ Σ y

y β,g,G, ,Σ Σ β

g G G Σ Σ Σ
m m

k k k
k k

p v

p v p

p p v p v p v p
= =

  
  
  

∝

Σ∏ ∏

G gΣ

G

gv gΣ [ ]1 2e ee ′=

1 1 2

1 2 2

2

2

I I
R

I I
e e e

e e e

s s
s s

 
=  

 

11 12
1

12 22

I I
R

I I
r r
r r

−  
=  

 
1 1 2

1 2 2

1211 12

212 22
e e e

e e e

r r
r r

s s
s s

−
  

=   
   

( )1 1 1 2 1 1| , , , , , ~ ,y β g g G Σl l e l lN vββ β−




212 

 



 

and   

Immediately after sampling , we update the first trait residual using

, where  is the covariate/dummy variable values for fixed 

effect variable l on trait 1,  is the sampled value at cycle [t+1]  and  is the 

sampled value at cycle [t].  

To sample fixed effects on trait 2, FCD for lth element of β2 can be written as 

follows:
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and   

Immediately after sampling , we update the second trait residual using 

, where  is the covariate/dummy variable values for fixed 

effect variable l on trait 2,   is the sampled value at cycle [t+1] and  is the 

sampled value at cycle [t].  

To sample trait specific random SNP effects, FCD for kth element of g can be 

written as follows: 
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and  

 
 

Immediately after sampling , we update the first trait residual using 

 and update the second trait residual using 

, where ( ) is the sampled ( ) value at 

cycle [t+1] and ( ) is the sampled ( ) value at cycle [t].  

To sample genetic variance-covariance matrix for random SNP effects, given the 

specified conjugate prior on genetic variance-covariance matrix

 for kth SNP, FCD of  can be written as follows: 
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To sample scale matrix for genetic variance-covariance matrices, given a 

conjugate Wishart prior for scale matrix , FCD of can be 

written as follows:  

 

 

Hence,  

To sample degrees of freedom for genetic variance-covariance matrices, given a 

“non-informative” prior on degrees of freedom , we can write FCD 

for as follows:  

where   

The FCD for  is not recognizable and so a sampling strategy for nonstandard 

distributions is required. In order to use proposal densities, especially in a random walk 

Metropolis implementation, it may be more appropriate to change the variable such that 
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its parameter space is defined on the real line. Using , the relevant FCD in 

this case is: 

   

Hence,  

 

We sampled  using a random walk Metropolis Hastings algorithm, which was 

described in other non-genomic applications involving the sampling of degrees of 

freedom parameter (Kizilkaya & Tempelman 2005; Bello 2010). Suppose the value of ζ 

in the current cycle i is ζ[i].  Then generate a random variable, say δ from N(0,c2) and add 

it to ζ[i] to propose ζ* = ζ[i] + δ.  Determine the following odds ratio:

. For numerical stability, it is perhaps much wiser to 

evaluate this ratio as: . To implement this 

Metropolis (within Gibbs) scheme, one would first generate U from a Uniform(0, 1) 

distribution.  If  1) α > 1, accept ζ[i+1] = ζ* ;  2) If α > U, accept ζ[i+1] = ζ* ; 3) If α < U, 

then set ζ[i+1] = ζ[i]. 
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To sample residual variance-covariance matrix, given a specified Inverted 

Wishart prior , we can write the FCD for  as follows, 

 

where  

Hence,   
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D1.2  MCMC Implementation Strategy for CD-BayesA/CD-BayesB 

As defined in the methods, a square root free Cholesky decomposition (CD) can 

be applied to the genetic variance-covariance matrices. Thereby, if let  

where   is the vector of SNP substitution effects for trait 2 conditional on trait 1 and 

 represents a diagonal matrix of SNP-specific associations between two 

traits. Based on the description of priors for the two CD models in methods, we can write 

down the joint posterior density for all unknown parameters:  

Where  is a vector of SNP specific variances for trait 1, 

 is a vector of SNP specific variances for trait 2 

conditional on trait 1,  is a vector of SNP specific association 

parameters between two traits.  In CDBayesB ( ,  and ), ( ) 

has a mixture prior of point mass at zero with probability ( ) and scaled 
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scaled inverted Chi-square distribution of degree freedom ( ) and scale parameter 

( ).  To sample location parameters computationally efficiently, we again adopted 

Gauss-Seidel updating algorithm in MCMC implementation strategy (Legarra and 

Misztal, 2008). 

To sample fixed effects on trait 1 in CDBayesA\CDBayesB, FCD for lth element 

of β1 can be written as follows:

  

with

 

 

and   

Immediately after sampling , we update the first trait residual using

, where  is the covariate/dummy variable values for fixed 
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effect variable l on trait 1,  is the sampled value at cycle [t+1]  and  is the 

sampled value at cycle [t].  

To sample fixed effects on trait 2 in CDBayesA\CDBayesB, FCD for lth element 

of β2 can be written as follows:

  

Where 

 

and   

Immediately after sampling , we update the second trait residual using 

, where  is the covariate/dummy variable values for fixed 

effect variable l on trait 2,   is the sampled value at cycle [t+1] and  is the 

sampled value at cycle [t].  
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To sample random SNP effects for trait 1 in CDBayesA, FCD for kth element of 

g1 can be written as follows:  

 

Where 

 

and  

 

Immediately after sampling , we update the first trait residual using 
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and update the second trait residual using 

, where  is the sampled  value at cycle [t+1] and 

 is the sampled  value at cycle [t].  

To sample random SNP effects for trait 2 conditional on trait 1 in CDBayesA, 

FCD for kth element of g2|1 can be written as follows:  

 

where 

 

and  
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Immediately after sampling , we update the second trait residual using

, where  is the sampled  value at cycle [t+1] and 

 is the sampled  value at cycle [t].  

To sample random association parameters in CDBayesA, FCD for  

(k=1,2,…,m) can be written as follows:  

 

with 

 

and 

 

2kg

( )[ 1] [ ]
2 2 . 2|1 2|1e e z t t

k k kg g+= − − [ 1]
2|1

t
kg +

2|1kg

[ ]
2|1

t
kg 2|1kg

kφ

{ } { } ( )1 2|1

2 2
1 2|1 1 1

| , , , , , , , ~ ,y β g g
k k

mm

k g g e k k kk k
N vφφ s s φ−= =

Σ 

φ

( )( )

( )

( )

2

2

2 2

2 2

2

2 2
. 2 2|1 .

2 2
. .

2 2 2 2
. 2 . . 2 . .

2 2 2 2
. . . .

22 2 2
1 2 1

1 1

1

'

'

' ' '
' '

+z y -Xβ Zg +z

z z

+z e z +z e +z z
z z z z

+

g g
e k k k

k g g
k k e

g g g g g
e k k j e k k k k

g g g g
k k e k k e

n n

e k ik j k ik k
i i

k

g z e g z

g

φ φ

φ

φ φ φ φ

φ φ

φ φ

s s m φ
φ

s s

s s m φ s s m φ
s s s s

s s m φ

−

−

− −

− −

−

= =

−
=

+

+
= =

+ +

 +  
 =

∑ ∑



( )
2

22 2 2

1

n

ik e
i

z φs s −

=

  + 
 

∑

( )

2

1
22

1
1 2

2

n

k jk
j

k
e

g z
vφ φs

s

−

= −

  
  
  = + 
  
 

∑


224 

 



Immediately after sampling , we update the second trait residual using

, where ,  is the sampled  value at cycle 

[t+1] and  is the sampled  value at cycle [t].  

To sampling SNP specific variances on trait 1 in CDBayesA,  

given that the prior density is scaled inverted chi-square:  , FCD 

for (k=1,2,…,m) can be derived as follows:  

 

Thus,  

To sample SNP specific variances on trait 2 conditional on trait 1 in CDBayesA, given 

that the prior density is scaled inverted chi-square:  , FCD 
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Thus,  

To sample random SNP effects and variances for trait 1 in CDBayesB, according 

to the collapsed sampling strategy (Liu 1994), we jointly sampled and  as 

adapted in Bayes B (Meuwissen et al. 2001). Let’s first sample from  

 

where , , 

  and  

Using that expression, the random walk Metropolis-Hastings acceptance ratio for 

sampling from at MCMC cycle [t] based on using 

as the candidate density looks as follows: 
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According to Meuwissen et al. (2001), this ratio is further equal to: 

 

Using results from Rohan Fernando, we could simplify the Metropolis acceptance ratio 

for sampling SNP specific variance for trait 1 further as follows: 
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If a non-zero value for  is sampled, then one can draw samples of using the same 

full conditionals as with CD-BayesA. If either  or   are nonzero, residual for 

trait 1 needs to be updated as  and residual for trait 2 also 

needs to be updated as 
 
immediately thereafter.  

To sample random SNP effects and variances for trait 2 conditional on trait 1 in 

CDBayesB, according to the collapsed sampling strategy (Liu 1994), we jointly sampled 

and  as adapted in Bayes B (Meuwissen et al. 2001). Let’s first sample from  
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Using that expression, the random walk Metropolis-Hastings acceptance ratio for 

sampling from at MCMC cycle [t] based on using 

as the candidate density looks as follows: 

 

According to Meuwissen et al. (2001), this ratio is further equal to: 

 

Using results from Rohan Fernando, we could simplify the Metropolis acceptance ratio 

for sampling SNP specific variance for trait 1 further as follows: 
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and 

 

If a non-zero value for  is sampled, then one can draw samples of using the 

same full conditionals as with CDBayesA. If either  or   are nonzero, residual 

for trait 2 also needs to be updated as 
 
immediately 

thereafter.  

To sample random association parameters  (k=1,2,…,m) in CDBayesB, given 

the specified prior distribution, i.e. ,  FCD on  can be 

derived following Geweke (1994):  
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, the value of the kernel is:  . Conditional on , the 

corresponding kernel density is: 

 

where 

   and     

To remove the conditioning on  or on , it is necessary to further integrate 

this expression over .  This integration yields: 
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To draw  from its conditional distribution, the conditional posterior probability that 

 is computed from the conditional Bayes factor (BF) is . 

Based on a comparison of this probability with a drawing from a Uniform(0,1), the 

choice  or  is made. If , then a draw  is made from a  

distribution.  Immediately after sampling , if either  or   are nonzero, we 

update residual for the second trait using .  

To sample proportion of SNP markers associated with non-zero SNP effects for 

trait 1 in CDBayesB, given a specified prior , the FCD of 

 is based on the following, 

 

Let  denote the number of non-zero values sampled in  at a 

particular MCMC cycle where I(.) denotes the indicator function.  Then we can write  
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To sample proportion of SNP markers associated with non-zero SNP effects for 

trait 2 conditional on trait 1 in CDBayesB, given a specified prior 

, the FCD of  is based on the following, 

 

Let  denote the number of non-zero values sampled in  at a 

particular MCMC cycle where I(.) denotes the indicator function.  Then we can write  

.                 

To sample proportion of non-zero association parameters between two traits in 

CDBayesB, given a specified prior , the FCD of  is 

based on the following, 
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To sample scale parameter  for random SNP effects for trait 1 in 

CDBayesA\CDBayesB, given a specified prior for scale parameter

, we can write FCD as follows: 

 

 

 

That is, a gamma distribution with parameters  and .  

To sample scale parameter  for random SNP effects for trait 2 conditional on 

trait 1 in CDBayesA\CDBayesB, given a specified prior for scale parameter

, we can write FCD as follows:  
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That is, a gamma distribution with parameters  and 

.  

To sample degrees of freedom for SNP effects on trait 1 in 

CDBayesA/CDBayesB, with a specified non-informative prior for degrees of freedom

, we can write FCD for as follows, 

 

We sampled  using a random walk Metropolis Hastings algorithm, which was 

described in other non-genomic applications involving the sampling of degrees of 

freedom parameter (Kizilkaya & Tempelman 2005; Bello 2010).  
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To sample degrees of freedom for SNP effects on trait 2 conditional on trait 1 in 

CDBayesA/CDBayesB, with a specified non-informative prior for degrees of freedom

, we can write FCD for as the following, 

 

We sampled  using a random walk Metropolis Hastings algorithm, which was 

described in other non-genomic applications involving the sampling of degrees of 

freedom parameter (Kizilkaya & Tempelman 2005; Bello 2010).  

To sample mean for association parameters between two traits in CDBayesA/CD-

BayesB, given a specified prior , FCD can be written as the following, 
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   for   
  
   and    

Hence,  

To sample variance for association parameters between two traits in 

CDBayesA/CDBayesB, given a specified prior , FCD for  can be 

written as follows, 

 

Hence,  

To sample residual variance-covariance matrix in CDBayesA\CDBayesB, given a 

specified Inverted Wishart prior , we can write the FCD for 

 as follows, 
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where  

Hence,  
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D2  Supplementary tables and figures 

Table D2.1: Summary of Responsible surface designs (RSD) in LE simulation. 

Factors RSD 

Controlling   

 Heritability on Trait 1 0.8 

 Heritability on Trait 2 0.1 

 Residual covariance between two traits 0 

 Number of SNPs 2000 

 Mean on association parameters 0.8 

Investigating   

 Number of animals 2000,4000,6000 

 Variance on association parameters 2e-3,1.001,2 

 Number of QTLs on Trait 1 20,310,600 

 Number of QTLs on Trait 2 20,310,600 

 Number of QTLs on both traits 20,310,600 

 

Table D2.2: P values for the fixed effects by fitting accuracy on the lower heritability trait 
as response variable in LE simulation under RSD. 

Fixed effects P-value 

Number of animals (n) <0.0001 

Number of QTL on Trait 2 (M2) <0.0001 

Number of QTL on both traits (M12) <0.0001 

Variance on association parameters ( ) 0.0005 

M2*M12 <0.0001 

M12*M12 <0.0001 

M12*Method <0.0001 

M12*M12*Method 0.0038 
  

2
φs
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Figure D2.1: Estimated SNP effects for Rust_gall_vol and Rust_bin against SNP index  
using whole Pine data set comparing CDBayesA1 and CDBayesA2, CDBayesB1 and 

CDBayesB2.  A) and C) were for Rust_gall_vol,  B) and D) were for Rust_bin.  
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