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ABSTRACT

LAMINAR FLOW SEPARATION IN A CONSTRICTED CHANNEL

By

Najdat Nashat Abdulla

The two-dimensional, incompressible, laminar flow in the

enxtrance region of a channel with and without constrictions (in the

form of forward, backward and finite steps) has been analyzed

runnerically for various step-to-channel height ratios, step lengths

axui step positions for Reynolds numbers up to 2000, based on the

Channel height.

A stream function-vorticity formulation is used in conjunction

xvith a finite-difference, over-relaxation method utilizing

accelerating parameters to solve the full Navier-Stokes equations

'which.describe the steady flow. The power of the method is contained

in the structure of the finite-difference equations, which, for all

Reynolds numbers, yields a diagonally dominant system of linear,

algebraic equations. This avoids the numerical instability of the

finite-difference equations at high Reynolds numbers.

The stream function, vorticity, streamwise velocity and

pressure are reported at each grid point. The inviscid-core region

and profile-development region, which form the entrance length, are

identified for various Reynolds numbers and inlet velocity profiles.

In addition, separation and reattachment points are obtained for

various step-to-channel height ratios, step lengths and positions for

‘flm constricted channel. Furthermore, the convergence domain for the

mmcessive over-relaxation method and the optimum values of
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accelerating parameters, which minimize the computing time, are

obtained.

The centerline velocity and entrance length for the channel

without a constriction are compared with the results obtained by

approximate techniques. Also, the separation and reattachment points

for a constricted channel are compared with both numerical and

experimental results.
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CHAPTER 1

INTRODUCTION

1.1W

The study of incompressible fluid flow through an entrance

region of a pipe or a duct and through constricted channels is of

considerable practical significance. The applications of such flows

are quite numerous; they include fluid flows found in physiology (flow

through blood vessels and lung airways, flow separation due to build-

up of deposits on artery walls, and measurements of blood pressure

using a cuff on the arm), and in machinery (flow in the vicinity of

junctions and valves).

The Navier-Stokes equations, which are considered to describe

the fluid motion of interest, are nonlinear. Because of this

nonlinearity, some difficulties have arisen in numerical as well as in

analytical studies. One of the greatest difficulties with the

numerical studies is the problem of divergence of the iterative

methods at high Reynolds numbers. Since an analytical solution of the

actual problem is extremely difficult, if not impossible, a number of

assumptions together with a numerical solution may be employed to

obtain approximate results.

Since the pioneering work of Prandtl early in this century,

boundary-layer theory has provided the principal basis for the

theoretical analysis of laminar flow phenomena near solid boundaries.
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It is now possible to conduct a more rigorous analysis of laminar

flow; the development of high-speed computers and sophisticated

numerical techniques permit the solution of the complete set of field

equations describing a particular fluid motion.

1.2 Ent ance e ion 0 a Channe

In the entrance region of a channel, our primary concern is

with changes in the streamwise velocity component. The entrance

region extends a considerable distance downstream and may be quite

significant in high Reynolds number flows. It may take up to 100 gap

widths before a fully developed flow is produced. So, in any study of

a high Reynolds number channel flow, the assumption of a fully

developed velocity profile implicitly assumes a substantial length of

entrance flow that must be accounted for. Many channels, ducts, or

pipes are not sufficiently long to allow developed flow to occur. A

variety of methods have been employed for the determination of the

flow characteristics in the entrance region as reported in the large

number of references in the literature.

1.3 Methods of Solving the Entrance Flow Problem

In general, four different methods have been applied to solve

the entrance flow. These methods will be outlined in this section.

1.3.1 The Integral Method

An early analysis of the entrance region in a tube was

presented by Schiller [l]. The entrance region was considered to be

composed of two zones: a boundary layer developing on the wall and an

inviscid core. The core flow terminated as the boundary layers merged

resulting in a fully-developed parabolic profile. Subsequent
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3

modifications to this integral method have been presented elsewhere

[2,3].

Mohanty and Asthano [4] investigated the flow in the entrance

region of a pipe. They solved the boundary-layer equations in the

inlet region and the Navier-Stokes equations, with order—of-magnitude

analysis, in the "filled region" using a fourth-degree velocity

profile. This work was the first to recognize that the core region

terminated with a non-parabolic profile; a "filled region" separated

the core region from the developed flow region.

1.3.2 Axially Patched Solutions

In this method, initially used by Schlichting [5,6], the

entrance region is divided into two regions. Near the entrance a

boundary layer model is used and an approximate solution is obtained

in terms of a perturbation of the Blasius boundary layer solution. In

the region where the flow is nearly fully developed, the velocity

profile is approximated in terms of a small perturbation to the fully

developed parabolic profile. The two solutions are then matched at

some approximate streamwise location.

Van Dyke [7] improved Schlichting's solution near the entrance

by an upstream expansion whose first approximation is the leading edge

solution for a semi-infinite plate, which had been presented by Davis

[8]. The displacement effect of the boundary layer on the inviscid

core is accounted for in this higher order approximation.

1.3.3 Linearigation 9f the Momentum Equation

The nonlinear inertia terms in the x-component Navier-Stokes

equations were linearized and the solution to the resulting equation

found in a method proposed by Langhaar [9]. Sparrow, et.al. [10], who
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4

followed the linearization method of Langhaar, solved both channel and

circular pipe flow.

Lundgren [ll] employed the linearized equations of motion to

predict the incremental pressure drop due to the entrance region for

ducts of arbitrary cross-section.

Morihara and Cheng [12] investigated the entrance flow in a

channel between semi-infinite parallel plates using a quasi-

linearization method.

Recent work by Du Plessis [13], who followed the linearization

method of Lungren [ll], solved a channel flow with an arbitrary inlet

velocity profile.

1.3.4 Finite Difference Methods

The Navier-Stokes equations have been solved by finite

difference methods for flow inside circular pipes and for parallel

plate channels. In these solutions, the assumptions inherent in

boundary-layer theory have been used; that is, both the streamwise

velocity derivative azu/ax2 and the pressure gradient 6p/6y normal to

the plate have been neglected.

In a pipe flow, Christiansen and Lemmon [14] numerically

studied the flow in the entrance region of a circular pipe with a

‘uniform inlet velocity profile. They solved boundary layer equations

‘near the entrance and restricted the equations of motion in

cylindrical coordinates to conditions such that the flow is

iruiependent of time, the radial component of the equations of motion

is negligible, any angular motion is negligible, and the flow is

irudependent of any existing body force field far from the entrance.

Robert W. Hornbeck [15] analyzed the laminar flow of an

incompressible fluid in the inletof a pipe up to Reynolds number of
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5

0.9. He solved an approximate form of the governing differential

equations by neglecting the axial molecular transport of momentum.

This is accomplished numerically by means of a finite-difference

marching procedure in which the velocities and pressure at any axial

position in the pipe are determined by using values upstream from the

point.

In a channel flow, Hwang and Fan [16] investigated a laminar

magneto-hydrodynamic flow in the entrance region of a flat rectangular

duct. They assumed that the duct walls are electrically non-

conducting, with a uniform magnetic field imposed perpendicular to the

duct walls. They employed a finite—difference method to solve the

usual boundary-layer equations.

Bodia and Osterle [17] investigated the flow in the inlet

region of a straight channel. They used finite-difference techniques

to solve an approximate form of the governing differential equation by

neglecting the axial diffusion of vorticity.

Several publications have described the use of finite

difference methods to solve the full Navier-Stokes equations,

maintaining the axial transport of vorticity terms as well as the

pressure gradient terms in the radial direction; these however, have

‘been.limited to relatively low Reynolds numbers.

Vrentas, Duda and Bargeron [18] analyzed the development of

the steady, laminar flow of an incompressible Newtonian fluid in the

eurtrance of a circular tube at a Reynold number of 250. The circular

conduit is considered to be infinite in extent with a fully developed

parabolic velocity profile existing far downstream from the entrance.

13me3r numerically studied the effect of axial diffusion of vorticity on

flow development in circular conduits, by solving the boundary-layer

equations and the complete equations of motion.
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Friedman, Gillis, and Liron [19] solved the complete Navier-

Stokes equations for the steady-state, axisymmetric flow in the inlet

region of a straight circular pipe at low and moderate Reynolds

numbers.

Wang and Longwell [20] studied laminar flow in the inlet

section of parallel plates at a Reynolds number of 300. They solved

the complete Navier-Stokes equations. A transformation from x to a

new independent variable 0 to make the boundaries finite and an

exponential solution are used for a numerical treatment of the

problem.

1.4 Se arated ow

There have been numerous computational studies made of the

Navier-Stokes equations for laminar flow involving separation. These

have been two-dimensional or axisymmetric steady flows in both

external and internal flow situations at Reynolds numbers such that

laminar flow exists. For constricted flows, constriction was always

placed in the fully-developed flow region with an initial parabolic

velocity profile upstream of the constriction.

In external flows, the most classical type of such problems

concerns the fluid motion past a bluff body. For incompressible

fluids, numerical solutions for the flow around bluff bodies have been

(flatained by many authors, over various ranges of Reynolds numbers.

In constricted flows, such as flow through a channel, the

near-field motions due to a constriction or an enlargement of the

channel resulting in a separated flow are of particular interest.

An understanding of laminar separation in a channel or pipe

flow is incomplete at this time. Approximations have resulted in

significant errors in the predicted flows.
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1.5 Me d o v n the Constricted Flow Problem

Generally, three methods have been utilized to obtain

predictions for the separated streamline shape and for the separation

and reattachment points. Each method is discussed in the following

sections.

1.5.1 Matched Asymptotic Expansions

Using the method of matched asymptotic expansions (MAX), two

limits of the solutions to the Navier-Stokes equations may be

considered as the Reynolds number becomes large while still remaining

laminar. The outer solution describes the inviscid core flow, while

the inner solution satisfies the surface boundary conditions and is

valid near the wall. These two solutions are then matched in an

intermediate range.

Using MAX, Smith [21] studied the influence of the uniform

entrance conditions on a steady, laminar flow through a constricted

tube for large Reynolds numbers. A linearized asymptotic solution of

the governing equations of the inviscid core flow and the two viscous

boundary layers is used to determine the influence of the size and

position of the constriction. Effects of the constriction's position

on the boundary layers were described.

In another study, Smith [22] constructed a triple-deck

structure in the vicinity of the separation point for a laminar flow

(Jf an incompressible fluid streaming past a smooth surface. A finite-

<iifference approach was used to solve the boundary layer equations

saith an elliptic relation between the unknown pressure and streamline

displacement within the triple-deck structure. Comparisons with the

separating fluid motion in a similarly constricted flow, determined

numerically from an approximate form of the Navier-Stokes equations by
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Dennis and Chang [23], and obtained experimentally by Dimopoulos and

Hanratty [24], give some support to the triple-deck description.

In still another study, Smith [25] described the effects on

the otherwise unidirectional flow field within a long, straight,

rigid-wall channel suffering a severe asymmetric constriction at some

downstream station. The flow is considered to be laminar, steady, and

fully-developed with a large Reynolds number. A numerical approach,

similar to that used by Smith and Stewartson [26], is adopted for the

boundary layer equations which describe the nonlinear flow of the

lower and upper viscous zones. Free streamline theory is used for the

inviscid portion of the flow. Both upstream and downstream separation

regions were found. The upstream separation point was found to move

further upstream as the upstream slope of the constriction was

increased.

In a fourth study, Smith [27], using free-stream theory,

located the separation point in the axisymmetric flow of an

incompressible fluid through a pipe suffering a severe constriction,

with incoming Poiseuille flow. The upstream viscous separation, the

downstream eddy, and the drag on the constriction were considered for

the very severe constriction. The limiting solution in the upstream

region was found using a numerical solution of Euler's equations of

Inotion. Qualitatively, all the flow patterns given by the approximate

solutions and the experimental data tend to support the limiting

solution.

Smith and Duck [28] extended the study of laminar flow in a

ccnastricted channel by utilizing free streamline theory to describe

separation and reattachment of a steady, plane flow at high Reynolds

numbers through a channel suffering a severe non-symmetric

constriction. A numerical approach is used to solve the non-linear



  

a

a

r

    

J D

at,

l

1.
..I f-

: 1
1%.?

(1

 



9

equations, using a Runge-Kutta scheme, for the positions of the

separation and reattachment points. The upstream separation takes

place asymptotically far ahead of the constriction. The separation on

the constriction is described by Smith's [22] triple-deck structure.

The first reattachment, described by an inviscid process near the

constriction surface, induces only small reversed velocities; the

second reattachment takes place at a large distance downstream of the

constriction. Discrepancies between these predictions and the

measurements of Blowers [29] are noted.

1.5.2 Numerieal Methods

On the numerical side, the Navier-Stokes equations have been

used to describe the constricted flow, and have been solved

approximately using numerical methods. Dennis and Smith [30] solved

the Navier-Stokes equations numerically for the flow of a two-

dimensional, laminar flow through a channel suffering an asymmetric

abrupt decrease of its width in the form of a semi-infinite step, for

Reynolds numbers up to 2000. Poiseuille flow is assumed far upstream

and far downstream of the step. In the numerical technique, the

Navier-Stokes equations are separated into two equations; by suitable

exponential expansions, an approximate value for stream function and

'vorticity is obtained at internal grid points. Good agreement was

(Retained for the upstream separation and the wall vorticity with the

analytical solutions of Smith [27].

Hung and Macagno [31] have obtained a finite-difference

sciLution of the Navier-Stokes equations for flow in a channel with a

symmetric sudden expansion. The velocity profile upstream of the

expansion is taken to be parabolic. They found that the point of

reattachment and the distance of the center of the eddy measured from
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the expansion are linear with Reynolds number. Results obtained by

Morihara [32] for the above problem also show a linear trend.

Hurd and Peters [33] numerically studied the motion through a

right-angle bend in a channel. They assumed an approximate solution

for the Navier-Stokes equations.

A numerical investigation of separated flow in a channel with

a backstep, or with single or multiple obstructions, has been carried

out by Nallasamy [34].

Ralph [35] solved the Navier-Stokes equations using the

finite-element method for a two-dimensional fluid flow in a straight

channel for various contraction ratios up to Reynolds number of 100.

An unsteady, quasi-linear approach is used to circumvent the

difficulties associated with the nonlinearity of the governing

equations. A steady-state solution is assumed when the time-dependent

solution becomes convergent. The flow patterns and separation regions

are detailed for a wide range of Reynolds numbers. Reasonable

agreement with the results of Lee and Fung [36], who used a method

which combines conformal mapping with a finite-difference technique,

was obtained.

Deshpande, Giddens and Mabon [37] numerically solved the case

of steady flow through a localized axisymmetric constriction in a

‘rigid tube for Reynolds numbers up to 200. The continuity and Navier-

Stokes equations, in cylindrical coordinates, are taken as the

governing relations. The numerical scheme employed closely follows

tflmat of Gosman [38] with modifications to treat the curved boundaries;

a (monstriction similar to that employed in the experimental study by

‘Youung and Tsai [39] is used. Separation regions were detailed up to a

Reynolds number of 100. The results agreed well with those determined

experimentally by Young and Tsai [39] for the separation location and





ll

pressure drop across the constriction. The reattachment prediction

was not in good agreement.

A more accurate solution of the Navier-Stokes equations is

given by Greenspan [40] who numerically investigated a two-

dimensional, laminar flow through a channel with a constriction formed

by a finite step on one wall. Boundary conditions consisted of a

parabolic velocity profile upstream, and a horizontal flow and

constant pressure downstream. Upstream and downstream separation

regions were detailed up to a Reynolds number of 1000. In this study,

a coarse mesh size is used and consequently an upstream vortex for

Reynolds numbers less than 200 was not observed. The problem is

modified by eliminating the downstream step to reduce computing time.

Friedman [41] studied the same problem of Greenspan [40] but

with a corrected sign in the downstream boundary condition. A

numerical approach, similar to that developed by Greenspan [40], is

used for the small Reynolds number analysis, and a linearized

numerical technique for moderate and high Reynolds numbers reduces the

computing time needed for convergence. A fine mesh size is used and

the upstream vortex is detailed up to a Reynolds number of 500.

Andreas and Mark [42] examined the sudden expansion

(symmetric) of a laminar flow in a two-dimensional channel in the

limit of large Reynolds number. Boundary layer equations are solved

‘numerically using a finite-difference technique for selected values of

A, the ratio of the upstream channel half-width to the step height.

‘Velocity profiles, the streamline pattern and the wake length are

ftnxnd for values of A in the range of (0.3-19) when the inlet velocity

profile is parabolic.

Taylor and Ndefo [43] studied the viscous incompressible flow

it! a two-dimensional channel with a backstep (asymmetric) for Reynolds
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numbers up to 100 using a splitting method. In this technique, the

two-dimensional, unsteady Navier-Stokes equations are reduced to a

coupled set of one-dimensional, unsteady flow equations. Velocity

profiles, streamline patterns, the pressure gradient and separation

and reattachment points are obtained for the range of Reynolds numbers

considered. The results show that separation occurs at about 2/3 the

step height.

Roache and Mueller [44] obtained solutions for both

incompressible and compressible laminar separated flows using time-

dependent finite-difference equations. These include backstep flow

with and without splitter plates, and flow over square cavities up to

a Reynolds number of 100. The results indicate that the separation

point moves down from the conjectured limit position at the sharp

corner toward a Stokes flow limit as the Reynolds number is decreased.

Kitchens [45] solved the steady-state, Navier-Stokes equations

and described the flow field near a square, two-dimensional

protuberance immersed in a plane Couette flow. Numerical results have

been obtained for Reynolds numbers between 1 and 200 based on plate

velocity and protuberance height. The downstream separation region is

detailed up to a Reynolds number of 200. The reattachment length and

the distance of the center of the eddy from the protuberance vary

linearly with the Reynolds number.

Recently, Frank and Andreas [46] studied steady, laminar flow

past a sudden channel expansion at large Reynolds number. A global

Newton's method was used to obtain accurate finite-difference

scilutions for uniform inflow to several sudden expansion geometries.

Eddy shapes and length, the pressure gradient and streamline contours

were obtained. The results suggest that for uniform inflows and

snualler values of the expansion ratio, the eddy length will no longer



13

increase linearly with Reynolds number when the latter is sufficiently

large.

Kwon and Pletcher [47] studied the laminar and turbulent

incompressible flow in a two-dimensional channel with a sudden

expansion by using viscous-inviscid iteration techniques. The viscous

flow solutions are obtained by solving the boundary-layer equations

using a finite-difference scheme; the inviscid flow is computed by

numerically solving the Laplace equation for the stream function using

an Alternating-Direction Implicit Method (ADI). The viscous and

inviscid solutions are matched interatively along displacement

surfaces. The flow fields were detailed up to a Reynolds number of

500 and for a ratio of step height to channel inlet height of 0.0664.

1.5.3 Experiments; Methode

On the experimental side, various experimental investigations

were performed in a wind tunnel to obtain a better understanding of

fluid flow following separation including reattachment and the

redevelopment of the flow following reattachment in this regime.

Several experimental investigations for the laminar separating flow

over back steps have been reported.

Mueller and O'Leary [48] have done an experimental as well as

a numerical study in a channel with a back step up to a Reynolds

‘number of 200. Their results show that for Reynolds numbers in the

range of 50 to 200, the reattachment length and the distance of the

center of the eddy from the step vary linearly with the Reynolds

ruxmber, confirming the numerical results presented earlier.

Goldstein, et.a1., [49] investigated the flow over a back step

with a laminar free shear layer until reattachment. The experiments

iru31ude visual observations of smoke filaments. Velocity profiles,
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reattachment points, and the momentum thickness are reported over a

range of ratio of the step height to the wind tunnel height of 0.023

to 0.0625.

Honji [50] investigated the incompressible starting flow past

a back step at Reynolds numbers less than 500 by means of flow

visualization techniques. The distance between the step and the point

of reattachment on the downstream wall was found to increase linearly

with time at intermediate stages of the flow development.

Leal and Crivos [51] investigated the effect of base bleed on

a recirculating wake behind a bluff body under conditions of a laminar

shear layer at the separation point and a steady flow field. The

streamline pattern in the wake region was observed photographically by

means of a bubble-tracer technique; in addition, a number of

quantities, such as the physical dimensions of the wake region, were

measured.

Sinha, et.a1., [52] investigated the incompressible laminar

flow over back steps by flow visualization over a range of step to

channel height ratios of 0.02 to 0.08. The flow fields were detailed

up to a Reynolds number of 1000. The experimental results indicate

that the reattachment length increases linearly with Reynolds number

as long as the reattachment is laminar.

1.6 so i on of the Present Work

The influence of a non-parabolic upstream velocity profile on

time fluid motion in the vicinity of a step may be considerable in high

Reynolds number motion. In many cases of high Reynolds number channel

or: pipe flow, the upstream assumption of a fully-developed velocity

profile demands a substantial length and may render the study

inapplicable in practice. In seeking to understand realistic
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situations there arose a need, therefore, for an investigation of the

effects that the entrance conditions may have on the flow in the

vicinity of a constriction.

In the entrance region the derivative 82u/8x2 is small

relative to azu/ay2 but it may influence the solution; the pressure

gradient in the y-direction is also small but the y-component momentum

equation may not be negligible. The solution of the complete set of

the Navier-Stokes equations, without any simplifying assumption is

desirable in the solution of the entrance flow problem.

The purposes of the present work are first, to numerically

investigate the steady, two-dimensional, Newtonian, incompressible

laminar flow in the entrance region of a channel using the full

Navier-Stokes equations. The two regions making up the entrance

region are to be quantified; these include the inviscid-core region,

in which a viscous layer is assumed to exist on the wall, and the

profile-geveiopmene :egien, in which viscous effects completely

dominate the channel, as shown in Figure 1. Second, a constriction in

the form of a step, will be positioned in the inviscid core, in the

profile-development region, and in the fully developed region of the

channel flow, as shown in Figures 2 & 3. Both a finite step and a

semi-infinite step will be considered. The resulting flow will be

investigated numerically to identify the separation and reattachment

points using the full Navier-Stokes equations. Various degrees of

severity will be considered by using different heights for the step.

A wide range of Reynolds numbers will be considered. The full Navier-

Stokes equations will be expressed in terms of a stream function and

the vorticity and solved by a finite-difference scheme. A numerical

solution will be utilized which does not invoke the boundary-layer

assumptions and therefore will represent an exact solution in the
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sense that no terms in the x- and y-momentum equations will be

neglected. Also, no approximations or exponential solutions for the

governing equations are assumed. A vorticity-stream function scheme,

which utilizes a finite-difference approximation to the Navier-Stokes

equations and has second-order accuracy in the whole flow field,

possessing conservative and transportive properties and utilizing

upwind differencing for advection terms, avoids the numerical

instability of an iterative solution at high Reynolds numbers. Third,

optimum over-relaxation values and the weighting factors for stream

function and vorticity values will be determined; these factors

minimize the spectral radius of the over-relaxation iteration matrix

and thereby maximize the rate of convergence of the method.
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CHAPTER 2

MATHEMATICAL FORMULATION

2.1 r ma ow

For duct flows, which are completely bounded by solid

surfaces, the flow is assumed to be uniform at the duct entrance with

average velocity U0. Because of the no-slip condition, the velocity

at the wall must be zero along the entire length of the duct. A

boundary layer develops along the walls of the channel due to the

retarding shear force of the solid surface on the flow; thus, the

speed of the fluid in the neighborhood of the surface is reduced. At

successive sections along the pipe the viscous effects of the solid

surface diffuse farther and farther out into the flow.

Eventually, the viscous effects dominate the entire flow

thereby terminating the inviscid core region. Viscous effects finally

result in a fully developed velocity profile: a parabolic velocity

profile in a pipe or a wide channel. This defines the end of the

entrance region.

The velocity profiles of a laminar flow in a channel entrance,

0!: in a channel with a constriction in the form of a step, undergo a

change from an assumed uniform profile at the inlet to that of a

fiillyudeveloped, parabolic profile at a location far downstream. Both

a.:fi111te step (sudden contraction followed by a sudden expansion) and

a semi-infinite step (sudden contraction or a sudden expansion) are

17
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considered. The straight two-dimensional channel, and a channel with

semi-infinite and finite steps, are shown in Figures 1, 2 and 3.

In the case of a sudden contraction, the flow separates

upstream for sufficiently large Reynolds numbers. Flow separation

occurs in the case of a sudden enlargement on the downstream side,

while in the case of a finite step it may occur upstream as well as

downstream. Basically, the size of the separation region depends on

the Reynolds number Re, step height a, length w and position L.

2.2 Gover n uations

For the entrance configuration described above we consider the

steady state, two-dimensional, incompressible, laminar flow of a

Newtonian fluid with constant physical properties.

The dimensionless streamwise and normal velocity components

(u,v) are referenced to the average velocity Uo at the inlet, pk is

the dimensionless kinetic pressure referenced to pUg/Z, where p is the

fluid density, and the streamwise and normal dimensionless coordinates

(x,y) are normalized with H, the height of the channel. The

dimensionless Navier-Stokes equations are

8p 2 2

ufl+v§i1___k+1_i_u+u (2.2.1)

6x 6y 6x Re a 2 2
x 8y

6p 2 2

uiY+VQY___1S+L§_l+M (2.2.2)
ax 6y 8y Re ax2 ay2

where the Reynolds number is represented by

0

Re - “‘ (2.2.3)
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In addition, the pressure term includes the body force term; that is

(2.2.4)

where b is a dimensionless vertical coordinate. The quantity (gH/Ug)

will not play a role in this problem since there are no pressure

boundary conditions that would demand the imposition of Eq. (2.2.4).

The continuity equation is

5; 8y (2.2.5)

Since it proves to be more convenient to work in terms of a stream

function and vorticity, the dimensionless stream function ¢(x,y) is

introduced in the usual manner:

u - 6y (2.2.6)

v - - ax (2.2.7)

It is evident from Eqs. (2.2.6) and (2.2.7) that the stream function

satisfies the continuity equation identically. Furthermore, for this

plane flow field, the only non-zero component of the vorticity is

w - 6x - (2.2.8)

Combining the definition of vorticity and the velocity components in

terms of the stream function, and cross-differentiating the Navier-

Stokes equations to reduce the number of equations and eliminate the
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pressure terms, a new set of equations is obtained with independent

variables p and w:

32! 52!

+ - - w (2.2.9)

2 2
6x 6y

sz Q29 fie aw 6Q Qw
+ + Re - ] - 0 (2.2.10)

ax2 ay2 6x 6y 8y 8x

Equation (2.2.9) is a Poisson equation, an elliptic, partial

differential equation. Equation (2.2.10), which represents the steady

Navier-Stokes equations, is also an elliptic partial differential

equation in terms of w if the stream function terms are assumed to be

known coefficients. The numerical solution technique selected treats

the equations such that the stream function derivatives in Eq.

(2.2.10) are known; hence, this equation will be considered to be

elliptic in the vorticity w. These two equations are to be solved in

a given region subject to the condition that the values of the stream

function and the vorticity, or their derivatives, are prescribed on

the boundary of the domain.

2.3 Bounda Cond tions

2.3.1 The Qhehhei Ehtgance with no Constriction

The boundary condition for the two-dimensional channel, shown

in Figure l, are stated in the following:

1. The no-slip condition is applicable at the walls:

lower wall AB: u(x,0) - 0, v(x,0) - 0 (2.3.1.1)

upper wall CD: u(x,l) e 0, v(x,l) - 0 (2.3.1.2)
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2. Two cases for the entrance velocity distribution are considered:

a) Uniform velocity profile:

u(0,y) - l, v(0,y) - 0 (2.3.1.3)

b) Actual velocity profile:

u(0,y) - f(y). V(0.y) - 0 (2.3.1.4)

where f(y) is specified from actual data, as given in

Table l.

3. The flow approaches the fully-developed parabolic channel flow far

downstream (x>LE):

u(x,y) - 6y - 6y2, v(x,y) = 0 (2.3.1.5)

For the problem under consideration to be completely

specified, the stream function and the vorticity must now be specified

on all boundaries. For the channel with and without a constriction, a

vorticity condition at the solid boundaries (AB, CD in Figure l and

AB, BC, CD, DE, EF and GH in Figures 2 and 3) is determined by using a

method presented by Thom [53]: if the subscript "0" represents a mesh

point on a boundary and "1" represents a neighboring mesh point on the

inward normal to "0" we expand in a Taylor series as
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21 1 2 33g 1 3 gig
¢ - p + h + - h + r h (2.3.1.6)
l 0 6y 0 2 a 2 6 a 3

y o y o

neglecting terms of higher order. But,

ii -[3y 0 - u 0 (2.3.1.7)

According to Eq. (2.2.9),

2

6.12 Q. fill:

y o

Differentiating once again results in

3 6w w - w
0[2.g _ _ 5;. : - l 1 h 0] (2.3.1.9)

8y 0

It follows from Eqs. (2.3.1.6), (2.3.1.8), and (2.3.1.9) that at the

boundary, the vorticity is related to the stream function by

301’ - 1b ) w
0 l l
 

where h is the mesh size equal in both the x- and y-directions.

In terms of the stream function and vorticity, the boundary

conditions used to solve Eqs. (2.2.9) and (2.2.10) are:

entrance AD: gf(o,y) - o, Qf(0.y) - 1. u(0,y) - y.

w(0,y) — o (2.3.1.11)
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lower wall AB: %£(x,0) - o, fi$(x,0) - o, ¢(x,0) - o,

 

2

 

w(x,0) - 2 - (2.3.1.12)

h

upper wall on: %£(x,1) — o, fi$(x,l) — o, u(x,1) — 1,

3(¢ - ¢ ) w

w(x,l) - 0 2 1 - 2; (2.3.1.13)

h

exit BC: ¢(x,y) - 3y2 - 2y3, w(x,y) - 12y 6 for x 2 LE (2.3.1.14)

2.3.2. Ihe Channel Entrance With a Constriction

The boundary conditions, in terms of the stream function and

vorticity for the two-dimensional channel with a constriction in the

form of both a finite step (sudden contraction and expansion) and a

semi-finite step as shown in Figures 2 and 3, which are used to solve

Eqs. (2.2.9) and (2.2.10) are:

entrance AG:

uniform flow ¢(O,y) — y

w(0,y) - 0 (2.3.2.1)

2 3
parabolic flow u(0,y) - 3y - 2y

w(0.y)

ll 12y - 6 (2.3.2.2)
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lower walls AB, BC, CF, %f(x,0) - 0

FE, EF, GH:

a1
8y(x’0) - 0 (2.3.2.3)

v(x.0> = 0

w(x,0) - - “—

h2 2

upper wall GH: %£(x,l) - 0

%$(x,l) - 0 (2.3.2.4)

¢(X.1) - 1

3<¢0 - 11) ”1
w(x,l) - - ‘-

h2 2

. 2 3

exit FG. u(x,y) - 3y - 2y for x 2 LE

(2.3.2.5)

w(x,y) - 12y - 6 for x 2 LE





CHAPTER 3

NUMERICAL METHODS

3-1 lnEIQQBEELQQ

Numerical methods have been developed to handle problems

involving nonlinearities in the describing equations, or complex

geometries involving complicated boundary conditions. A finite-

difference method is commonly used to solve either ordinary or partial

differential equations. The describing differential equations and the

necessary boundary conditions form a boundary value problem.

Any finite-difference method, used to solve a boundary value

problem, leads to a system of simultaneous algebraic, difference

equations. Their number, however, depends on the number of nodal

points which is generally very large and, for this reason, the

solution becomes a major problem.

The matrices associated with the difference equations,

approximating the partial differential equations, are either banded or

not banded. Banded matrices (the coefficient matrix is dense) are

Inatrices with non-zero elements lying between two sub-diagonals

parallel to the main diagonal. Non-banded matrices (the coefficient

lnatxix is sparse) are matrices in which the number of zero elements in

tflme matrix is much greater than the number of non-zero elements.

The two commonly used methods of solving simultaneous

algebraic equations include the direct method, that makes use of the

25
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Gauss elimination or Gauss-Jordan elimination procedure, and the

iterative method, that makes use of the Gauss-Seidel iteration or a

successive over-relaxation procedure to solve the equations. These

two methods will now be discussed in some detail.

3.1.1 Direct methods

Direct methods are used to solve the system of equations in a

known number of arithmetic Operations. The most elementary methods of

solving simultaneous linear algebraic equations are Cramer's rule and

the various forms of Gaussian elimination.

3.1.1.1 Crameg's Rule

This is one of the most elementary methods. Unfortunately the

algorithm is immensely time consuming, the number of operations being

approximately proportional to (N+1)!, where N is the number of

unknowns. A number of horror stories have been told about the large

computation time required to solve systems of equations by Cramer's

rule. Even if time were available, the accuracy would be unacceptable

due to round-off error.

3.1.1.2 Gaussian Elimination

This method is a very efficient tool for solving many systems

of algebraic equations, particularly for the special case of a

tridiagonal system of equations. However, the method is not as fast

as: some others to be considered for more general systems of algebraic

equations. Approximately N3 multiplications are required in solving N

equations. Also, round-off errors, which can accumulate through the

lnangr algebraic operations, sometimes cause deterioration of accuracy

vflueri DJ is large. Actually the accuracy of a method depends on the
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specific system of equations and the matter is too complex to resolve

by a simple general statement.

Rearranging the equations to the extent possible, in order to

locate the coefficients which are largest in magnitude on the main

diagonal, will tend to improve accuracy; this is known as "pivoting".

For a matrix that is not banded, standard Gaussian elimination is

inefficient in that the band is filled with non-zero numbers that have

to be stored in the computer and used at subsequent stages of the

elimination process.

3.1.2 itegative Methods

When large sets of equations with sparse, non-banded

coefficient matrices are to be solved and if computer storage is

critical, it is desirable to use a method that does not require a

large storage capacity. An iterative method is suitable for such

purposes. In this method an initial guess at the solution is improved

with a second approximation, which in turn is improved with a third

approximation, and so on. The iterative procedure is said to be

convergent when the differences between the successive approximations

tend to zero as the number of iterations increase. In general, the

exact solution is never obtained in a finite number of steps, but this

does not matter. What is important is that the successive iterations

«conwerge fairly rapidly to values that are within specified accuracy.

With iterative methods, however, no manipulations are

associated with zero coefficients so considerably fewer numbers have

to be stored in the computer memory. As a consequence, they can be

used to solve systems of equations that require matrices which are too

large when direct methods are used. Programming and data handling are

also much simpler using iterative methods than when using direct
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methods, especially in the solution of sets of nonlinear equations.

The efficient use of iterative methods is very dependent, however,

upon the direct calculation or estimation of the value (or values) of

some numerical parameter called an acceleration parameter, and upon

the coefficient matrix being well-conditioned; otherwise, convergence

will be slow and the volume of computations enormous. With optimum

acceleration parameters the volume of computations, when using an

iterative method with large sets of equations, may actually be less

than the computations involved when using a direct method. Iterative

methods need or require approximately N2 operations. In addition, the

coefficient matrix of the system which results from the finite

difference approximation has many strategically placed zeroes.

However, no special account of these zeroes is taken in most direct

methods. It is reasonable to expect that a particular method,

designed in accordance with the general structure of the coefficient

matrix, could further reduce the number of operations. Many such

special iteration schemes have been devised and conditions on the

coefficient matrix have been established, which are sufficient to

insure the convergence to an acceptable solution. However, there is

no general procedure available to determine which of the many possible

methods is "best” in a given case.

The most frequently used iterative method is the Gauss-Seidel

iteration. One difficulty with the Gauss-Seidel method is that

(convergence is relatively slow. Convergence is improved when a

successive over-relaxation method is used.

3. 1.2.1 us -Seide Iteratio

Although many different iterative methods have been suggested

over the years, Gauss-Seidel iteration (often called Liebmann
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iteration when applied to the algebraic equations that results from

the differencing of an elliptic, partial differential equation) is one

of the most efficient and useful point-iterative procedures for large

systems of equations. The method is extremely simple but converges

only under certain conditions related to ”diagonal dominance" of the

matrix of coefficients. The method makes explicit use of the

sparseness of the coefficient matrix.

3.1.2.2 §hccessive Over-Relaxation Method

Successive over-relaxation (SOR) is a technique which can be

used in an attempt to accelerate any iterative procedure. Often, the

number of iterations required to reduce the error, of an initial

estimate of the solution of a system of equations, by a predetermined

factor can be substantially reduced by a process of extrapolation from

previous iterations of the Gauss-Seidel method. Actually, the

solution of a system of simultaneous algebraic equations by Gauss-

Seidel iteration requires numerous recalculation, or iterations before

convergence to an acceptable solution is achieved. During this

process there are changes in the values of the unknowns at each mesh

point between two successive iterations; a correction of the values in

the anticipated direction before the next iteration is necessary to

accelerate convergence. The parameter which is used to accelerate the

convergence is known as a relaxation factor. If the Optimum

relaxation factor is found, it is apparently possible to reduce the

«commutation time in some problems by a factor of up to 30. It is

(flyviously very important to find this optimum factor. Occasionally,

Stuzcessive over-relaxation may not be of much help in accelerating

convergence, but it should be considered and evaluated. The potential

for savings in computation time is simply too great to ignore.
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3-2W

Because of the simplicity and effectiveness of an iterative

technique in solving large sets of equations with sparse coefficient

matrices, which result from the finite-difference approximations of

the governing equations, an over-relaxation technique is used to solve

the full Navier-Stokes equations which describe the steady flow.

In terms of the stream function p and the vorticity w, the two

dimensional, steady state Navier-Stokes equations are

2 2

L15 + L? - - (0 (3.2.1)

6x ay

1352,53,], [flig-fli@]-o 322
2 2 eaxay ayax (..)

It will be convenient to approximate these coupled equations by

linear, elliptic difference equations; the numerical solution of such

equations is well understood.

A square computational grid of size Ax - Ay - h is selected,

with a grid lines parallel to the x and y axes such that the grid fits

exactly the geometry of the channel with and without a constriction.

Around a typical internal grid point (x,y) we adopt the convention

that quantities at (x,y), (x+h,y), (x,y+h), (x-h,y) and (x,y-h) are

[denoted by the subscripts l, 2, 3, 4, 5, respectively, as shown in

jFigmre 4.

Equation (3.2.1) which is an elliptic, partial differential

equation is to be solved simultaneously with the nonlinear, partial

differential equation (3.2.2) in a rectangular region subject to the

condition that the values of the stream function and vorticity are

prescribed on the boundary of that domain.
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Eq. (3.2.1) can be approximated using central-difference at

the representative interior point (x,y) by

 
2

M 1.
2 - 2 [$2 + $4 - 2¢1] (3.2.3)

ax h

' 351 L.

1 6y h

with an error 0(h2). Thus, Eq. (3.2.1) can be written for the square

mesh as

 

¢1-%[¢2+¢3+¢4+¢15]+%h2w1 (3.2.5)

We could also use a central—difference formulation for Eq. (3.2.2),

but we anticipate that the problem will need to be solved for

] reasonably high values of Reynolds number; it is known that such a

formulation may not be satisfactory owing to the loss of diagonal

dominance in the sets of difference equations, with resulting

difficulties in convergence when using an iterative procedure.

Eq. (3.2.2) can be approximated by a difference equation,

using central-differences for the second derivatives and a forward-

difference for the first derivatives; there results

+ w + w + w(-4w + w

1 2 3 a 5)

¢ - ¢ w - w ¢ - u w - w

+ Re [ 2h . 2h - 2h . 2h ] - 0 (3'2'6)

or , equivalently ,
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.13.. k

'4“1 + [1 ' 48 ($3 ‘ *5’] “2 + [1 + 4 ($2 ' $4)] “3

+ [1 + %9 (¢3 — ¢5)] wa + [1 - %§ (¢2 - ¢4)] wS = 0 (3.2.7)

Eqs. (3.2.5) and (3.2.7) with the appropriate boundary

conditions can be solved using the Gauss-Seidel scheme. The numerical

solution for the stream function and the vorticity will be denoted by

¢k+1 and wk+1, where k is the number of iterations. This solution 
£ works relatively well but diverges for Reynolds numbers greater than

250 and h - 1/40. The reason for this divergence is that, for high

Reynolds numbers, the terms Re(¢3 - ¢S)/4 and Re(¢2 - ¢4)/4 in Eq.

(3.2.7) become so large that the matrix of the resulting system loses

its diagonal dominance.

A forward-backward technique can be introduced to maintain the

diagonal dominance coefficient of ml in Eq. (3.2.2) which determines

the main diagonal elements of the resulting linear system; this

technique is outlined as follows:

Set

a - $2 - $4 (3.2.8)

3 _ $3 - ¢5 (3.2.9)

Innen approximate Eq. (3.2.2) by

_ 2 s_@_fl_§_2=
4w1 + w + w + w + w + h Re [ 6y 2h 8x] 0 (3.2.10)

2 3 4 5 2h

lflonr , if
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ee : ”3 ' “1
a a 0, 6y h

(0'0)

0 < o, g? 2 1 h 5 (3.2.11)

If

em : “2 ' “4

fl 2 0’ 8x h

‘0‘“)

p < o, 3% 2 4 h 2 (3.2.12)

To assure the diagonal dominance of the coefficient matrix for ml,

which depends on the sign of a and 6, Eq. (3.2.2) is expressed in the

following difference forms:

+ [1 + 9%9] w3 + [1 - QBE] wh + ws - o (a 2 o, a z 0) (3.2.13)
2

['4 ’ 222 + £32] ”1 + [1 ' £32] ”2

+ [1 + 9%£} w3 + wa + ws - o (a z o, a < 0) (3.2.14)

['4 ’ g2g ' £37] “1 + “2 + “3

4- [1 + 5%2] wh + [1 - 959] ws - o (a < o, 5 a 0) (3.2.15)
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+ + w + [1 - 9%g] ws - o (a < o, 5 < 0) (3.2.16)
”3 a

It has been found that the new equations result in convergence

for o 5 Re 5 105, h - 1/15 but diverge for h < 1/15.

Weighted averages can be introduced to avoid any possible

divergence. A smoothing formula results which corrects the value of

the vorticity in the interior region; that is, the vorticity is

assumed to be

w* - xv wk + (1 - KV) wk+1 (3.2.17)

and the stream function

¢* - KS wk + (1 - KS) ¢k+1 (3.2.18)

where wk+1 and ¢k+1 are the calculated vorticity and stream function.

The values of the weighted averages KS and KV are within the range of

0 to l and their determination will be discussed in more detail in the

next chapter.

An over-relaxation technique can be applied to accelerate the

convergence of Eqs. (3.2.5) and (3.2.13-3.2.l6); the expressions are

used in this technique presented in the following:

For'Poisson's equation

¢§+1 = (1 - F8) wf

£3 2

+4 (¢2+¢3+¢4+¢5+hw1)
(3.2.19)
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For the vorticity equations

wllfil - (1 - FV)w1{+ FV{[w2 + [l + (1112 - 1,1119%] (03

+[1+(¢3'¢5)§—e]w4+w5]/[AI-($2-504)?

+ (153 - 36912351} (or Z 0, fl 2 0) (3.2.20)

w§+1 - <1 - FV) w: + Fv {[11 - (v3 - ¢5) %21 w,

+ [1 + ($2 - o4) §91 w3 + ma + ws] /

is; 3.9.
[4 + (¢2 - ‘54) 2 + “)3 - m5) 2 ]} a _>_ 0, fl < 0 (3.2.21)

wllc+1-(l-FV)w1{+FV{[w2-+w3+[1+(¢3-¢5)%‘§]w4

+ [1 - (w, - $4) %2] “5] / [a - (e, - ¢,) %Q

+ (¢3 - ¢S)%§]} (a < o, 5 2 0) (3.2.22)

”1+1 ' (1 ' FV) ”1 + FV {[[l ' ($3 ' $5) 37] “2 + ”3 + “a

+ [1 - <¢2 - 14) fig] w5] / [a - <¢2 - v4) %Q

+ (e3 - ¢5)%§]}- (a < o, s < 0) (3.2.23)

In the above equations FS and FV are the relaxation factors for the

stream function and vorticity, respectively. The values of these
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relaxation factors are in the range of 0 to 2 and the determination of

their optimum values will be discussed in the next chapter.

A numerical solution of Eqs. (3.2.19-3.2.23) is carried out be

an iterative procedure according to the following steps:

(1) Initial values of wi j and $1 j are assumed at all mesh

points. Here w. represents the vorticity at x = ih and
1,j

y - jh.

(2) Calculate the values of the vorticity on the boundary

using Eq. (2.3.1.10).

(3) Successively calculate for every mesh point:

a. the values of the stream function and vorticity

from Eqs. (3.2.19) and (3.2.20-3.2.23).

b. corrected the values pi’j using Eq. (3.2.18).

c. corrected the values w. using Eq. (3.2.17).

1.]

(4) Except for the points where w - 0, continue the

1.1“ $1.1

iteration until the following error criterion is

satisfied:

fk+1 _ f1; -6

I-171k:1—_‘i| s 10 (3.2.24)

f

1.

Here fi,j represents either wi,j or ¢i,j' When the above

is satisfied the iteration is terminated, k being the

number of iterations. If this relation is not satisfied
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for some preselected maximum number of iterations, then

return to step (2) and repeat the process.

The computer time is significantly reduced by using the optimal over-

relaxation factors.



 

 

CHAPTER 4

CONVERGENCE CRITERIA AND THE NAVIER-STOKES EQUATIONS

4.1 ih§;oductiom

The numerical solution of boundary value problems for partial

differential equations usually requires the solution of large systems

of linear algebraic equations. The order N of such systems is

generally equal to the number of mesh points in the domain under

consideration. Since direct inversion procedures require the order of

N3 operations they are not practical, even when using high speed

digital computers, for reasonable mesh size in two dimensions. Thus,

iterative methods for solving linear systems are of interest as they

usually require an order of N2 operations. In addition, the

coefficient matrix of the system, which results from the finite

difference approximations, has many strategically placed zeroes.

However, no special account of these zeroes is taken in most direct

inversions. It is reasonable to expect that a particular method,

(designed in accordance with the general structure of the coefficient

nuatrix, could further reduce the number of operations. Because of

simnplicity and effectiveness, the successive over-relaxation method

has been the most popular of the iterative methods for solving a large

system of linear algebraic equations possessing a sparse, non—banded

coefficient matrix .

38
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In this chapter, our main objective is to determine optimum

values of the over-relaxation and weighting factors that maximize the

rate of convergence of the successive over-relaxation method.

4.2 The Pgoblem Under Censideration

The two-dimensional, incompressible, laminar flow in the

entrance region of a channel is investigated numerically. The non-

dimensional Navier-Stokes equations in terms of a stream function u

and vorticity w as the governing equations are

2 2

fi-i + fl-i - - w (4.2.1)
6 2 2
x 6y

2 2

M+M+Re MQ‘B_@§£BO (422)

ax2 ay2 ax 6y 8y 8x ' '

In a finite-difference form, using over-relaxation factors, the

equations take the forms

¢E+1 - (1-FS) ¢§ + gfi (d2 + $3 + $4 + ms + hzwi) (4.2.3)

w§+1 - (1-FV) w: + Z— {[1 - %9 (¢3 - ¢S)] w2 +

[1+%§(¢2'¢4)] w3+[1+%§(¢3'¢5)] (04+

1 BE[ _ 4 (¢2 - ¢4)] “5} (4.2.4)

Using smoothing formulas they become

¢* - KS ek + (1 - KS) ekil o 5 KS 5 1 (4.2.5)
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w* - xv wk + (1 - KV) wk+l (o s xv I
A

1) (4.2.6)

where FS and FV are optimum over-relaxation factors for Poisson's and

the vorticity equations, respectively; KS and KV are weighted averages

for the stream function and vorticity, respectively.

With rectangular field boundaries represented by i - 0, I + l,

and j - 0, J + 1, each of these difference Eqs. (4.2.3) and (4.2.4)

represents a set of J x J equations, so that there are 2I x J

algebraic equations to be solved simultaneously.

4.3 Qomvergence Conditions

The question of stability and convergence of any iterative

procedure can only be answered completely by a consideration of Eqs.

(4.2.3) and (4.2.4), one of which is nonlinear. However, Poisson's

equation is known to have excellent convergence properties when solved

along. Therefore, it is reasonable to assume that the convergence of

the simultaneous solution of the nonlinear vorticity Eq. (4.2.4) and

the Poisson Eq. (4.2.3), for the stream function will be most affected

by the convergence properties of the nonlinear equation. Since

equations (4.2.3) and (4.2.4) are coupled in e and w, the accelerating

parameters, which are optimum for the Poisson's Eq. (4.2.3) when

solved alone with m constant during the iteration, may not accelerate

the convergence of the simultaneous solution of Eqs. (4.2.3) and

(4.2.4).

For the general solution of the simultaneous Eqs. (4.2.3) and

(4.2.4), the iteration will be continued until the relative error

criterion



 

 

 

 

is satisfied. Here, f1 j represents either wi j or mi j and k will be

the number of iterations.

4.3.1 Smfficient Conditions for Convergence of the Succeeeive Over-

Relamation Method

The general linear algebraic system of N equations in the N

unknowns $1, $2,..., ¢N or wl, w2,..., wN can be written in the form

a11¢1 + a12¢2 + a13¢3 + '°' + a1N"’N ' b1

a214’1 + a22¢2 + a23¢3 + °'° + a2N¢N ‘ b2

aNl¢l + aN2¢2 + aN3¢3 + ... + aNNwN - bN (4.3.1.1)

If the matrices m, b and A are defined by

      

r a r 1 r \

$1 b1 a11 a12 8111

m b a a ... a

w - .2 , b - .2 , A - .21 .22 .2” (4.3.1.2)

LIN, LPN] [8N1 aN2 aNN,

Then

A¢ - b (4.3.1.3)

jLet: us assume that A is nonsingular so that for a given A and b, m

eximsts and is unique. In order to provide a compact notation, we will
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order the equations, if possible, so that the coefficient largest in

magnitude in each row is on the diagonal. Then if the system is

irreducible (cannot be arranged so that some of the unknowns can be

determined by solving less than N equations) and if

N

Iaiil a} Iaijl (4.3.1.4)

j-l

j¢i

for all i and if for at least one i,

N

Iaiil >§ Iaijl (4.3.1.5)

j-l

jei

then the over-relaxation iteration will converge. This is a

sufficient condition which means that convergence may sometimes be

observed when the above condition is not met. A necessary condition

can be stated but it is impractical to evaluate.

The sufficient condition can be interpreted as requiring for

each equation that the magnitude of the coefficient on the diagonal be

greater than or equal to the sum of the magnitudes of the other

coefficients in the equation with the "greater than" holding for at

least one (usually corresponding to a point near a boundary for a

physical problem) equation. The matrix which satisfies this condition

is called a diagonal dominant matrix. Therefore, for convergence, the

lnatrix of the resulting system must be diagonally dominant.

Perhaps we should relate the above iterative convergence

crdjzeria to the system of equations which results from a finite-

difference approximation of Poisson's and the vorticity equations.
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Consider that at any point in our iteration our intermediate

values of stream function p's and vorticity w's are the exact solution

+ e;plus some tolerance e, i.e., $1 - ($1) + e and wl - (wl)
exact exact

then our condition of diagonal dominance is forcing the e's to become

smaller and smaller as the iteration is repeated cyclically.

For a general system of equations, the multiplications per

iteration could be as great as N2 but could be much less if the matrix

is sparse. This is the case in our system of equations.

4.4 Accelerating Parametere

For different flow situations (i.e., different Reynolds

numbers) and mesh size h, the values of FS, FV, KS and KV in Eqs.

(4.2.3-4.2.6) have a significant effect on the convergence of the

solution as well as the computing time. These parameters are called

accelerating factors and they play an important role in the solution.

The successive over-relaxation (SOR) method can be used in an

attempt to accelerate any iterative procedure but we will propose it

here primarily as a refinement to the Gauss-Seidel method

(unaccelerated method). With the determination of optimized

accelerating parameters, it is possible to reduce the required number

of overall iterations in the solution by more than an order of

magnitude from that required by Gauss-Seidel iteration; in addition,

‘we may remove the restriction placed on the maximum size of the space

step imposed by the Gauss-Seidel technique. The general idea of

.accelerating the solution is well known; however, the determination of

the optimum acceleration parameter for, and the application to, this

nonlinear set of simultaneous equations has not heretofore been given.

Therefore, a search must be made for the optimum acceleration

parameters .
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The optimum value of the over-relaxation factor F8 for the

Poisson equation depends on the mesh size, the shape of domain, and

the boundary conditions. For the problem in a rectangular domain of

size (I-1)Ax by (J-1)Ay with constant Ax and Ay, it has been shown

[54] that

FS - gift”: (4.4.1)

‘7

with 1 - cos(«/M) + cos(n/N), where M and N are, respectively, the

total number of increments into which the horizontal and vertical

sides of the rectangular region are divided.

The optimum value of the over-relaxation factor FV for the

vorticity equation depends on the Reynolds number, which identifies

the coefficient of the matrix which results from the finite-difference

form of the governing equations; the mesh size also plays a role.

In addition, the values of the weighting factor KS for the

stream function and RV or the vorticity are determined by

experimentation; the values that fall within the range of 0 to 1 will

accelerate the convergence of the solution; this results due to the

different percent of the old and the new values of stream function and

vorticity used during the matrix iteration.

The main idea behind the convergence of the solution is that

the matrix that results from the finite-difference equations must be

diagonally dominant; this is the case for low Reynolds number flows.

.For'high Reynolds number flows, the matrix of the resulting system

loses its diagonal dominance. A forward-backward technique can be

introduced to maintain the diagonal dominance and, consequently,

(cornvergence will also be maintained. Actually, the optimum value of
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FV minimizes the spectral radius (i.e., results in the smallest

magnitude of the maximum eigenvalue of matrix A, Eq. (4.3.1.3)) of the

over-relaxation iteration matrix and thereby maximizes the rate of

convergence of the method.



 

  
 

  

CHAPTER 5

RESULTS, DISCUSSION AND CONCLUSIONS

5.1 Mackgremhe

The numerical solution of the full Navier-Stokes equations,

for the entrance flow and constricted flow problems, has been obtained

using a successive over-relaxation technique. In the development of a

numerical scheme, one is never sure of the accuracy of the numerical

solution obtained. At times, convergence in an iterative procedure

may not mean that the solution is convergent to the solution of the

differential equations. Comparing the numerical results with a known

analytical solution is one possibility, but on the other hand,

analytical solutions that are available use either simplified Navier-

Stokes equations or an assumption is made concerning the approximate

form of the solution. Alternatives are to compare the results with

other numerical or experimental studies and to perform a grid-

independency test for confidence in the numerical results.

Numerous solutions to the entrance flow problem have been

reported in the literature. All of those available, both analytical

and.numerical, report methods that solve boundary-layer equations or

Simplified versions of the Navier-Stokes equations (for Reynolds

numbers up to 2000), or full Navier-Stokes equations with a

trarjsformation and an exponential solution for numerical treatment

(fkrr Reynolds numbers up to 300). Solutions to the full Navier-Stokes

46
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equations in the entrance region, with and without constrictions for

Reynolds numbers based on the channel height up to 2000, have not been

presented in the literature.

The laminar incompressible flow in the entrance region of a

high aspect-ratio, plane channel with and without constriction in the

form of a step (forward, backward, and finite) has been analyzed using

the full Navier-Stokes equations.

The stream function, vorticity, and streamwise velocity are

reported at each grid point for Reynolds numbers up to 2000 for

various step-to-channel height ratios and step lengths for the

constricted channel. In addition, separation and reattachment points

are obtained by fitting a polynomial to the separated streamline

coordinates. An actual profile, obtained by fitting a polynomial near

the wall to a uniform central section, using velocity measurements

from a hot wire annometer, as shown in Table 1, is also used.

The convergence domain for the successive over-relaxation

method and the optimum values of over-relaxation and weighting

factors, often referred to as accelerating parameters, required by the

numerical scheme, are utilized to maximize the rate of convergence

thereby minimizing the computing time.

The first case solved is for a Reynolds number of 20, based on

channel height, with a mesh size of 0.091 by 0.091, eleven elements

normal to the flow and a sufficient number of elements in the flow

direction to allow a fully-developed flow to occur. Several other

Reynolds numbers are used up to 2000, the limit for laminar flows of

interest. In order to improve the accuracy of the solution and to

.avoid excessive computing time, a mesh size of 0.05 by 0.05 is used

for subsequent cases. Using the 0.05 mesh size, the majority of the

calculations are performed by the VAX-ll/750 VMS 4 computer. In
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addition, however, mesh sizes in the range of 0.02 to 0.1 are used at

selected Reynolds numbers to check the validity of the numerical work,

i.e., that the solution is independent of the mesh size.

 

5.2 Beem1§s fie; ehe Qhannei Entrance with no Constriction

Table 2 summarizes the cases considered providing each

Reynolds number, inlet condition, mesh size, number of iterations, and

the time needed for convergence.

The velocity profiles for the cases Re-20, 200, 500, and 2000

are shown in Figures 5-8, assuming a uniform velocity inlet profile.

It is noted that for only very small X, in fact, at only the first X-

step, the velocity profiles include a minimum on the axis and

symmetrically located maxima on either side of the centerline, where

the maximum velocity is 0.05% higher than that at the centerline.

This contradicts the results obtained by other authors [12, 55, 56],

in which these local maxima are much more pronounced over significant

downstream distances.

The centerline velocity for Reynolds numbers of 200 and 2000

is shown in Figure 9 along with those obtained by other researchers

[6, 12, 56, 63]. Their values are generally smaller than those

obtained in the present study; however the velocity distributions are

similar in shape.

Near the entrance where the velocity gradients are large near

the wall, large viscous stresses develop. Therefore, the streamwise

pressure gradient dp/dx is largest near the entrance. Also, the

thermal pressure gradient dp/dy, neglected in other studies, is quite

significant near the wall for small X. These characteristics are more

pronounced for the high Reynolds number cases. A typical normalized

pressure gradient, for Reynolds number 20 and 200, is plotted versus
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X/Re in Figures 10 and 11, respectively. It approaches unity

asymptotically as X/Re become large.

The streamwise pressure gradient along the wall and centerline

is always negative and [-(dp/dx)(Re/12)] is large near the entrance

and decreases asymptotically to unity. This contradicts the result

obtained by Morihara and Cheng [12], in which a localized adverse

pressure gradient resulted due to the maximas in the velocity profile.

This is undoubtedly due to the approximate form of the governing

equations used in the solution.

The entrance length LE, which is defined as the distance from

the inlet to the point where the centerline velocity reaches 99% of

the parabolic centerline velocity, is calculated using both the

uniform profile and the actual profile. The velocity profiles that

develop from an actual inlet profile are shown in Figures 12 and 13.

The entrance length is found to be insensitive to the inlet velocity

distribution, as shown in Table 3. It is noted that the entrance

length increases slightly as the inlet velocity gradient at the wall

decreases.

The entrance length calculated in this study is compared with

that of other researchers [6, 12, 16, 17, 55, 57] in the Table 4. No

significant difference is noted.

The entrance region in a channel is analyzed suggesting the

existence of two distinct regions: the inviscid-core region and the

profile-development region. The lengths of these regions and their

ratios are obtained for various Reynolds numbers as presented in Table

5.

The end of the inviscid-core region occurs when the boundary

layer thickness becomes equal to half of the channel height. This is

determined numerically to occur when the velocity at the centerline
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exceeded the velocity at the first node above the centerline. The

inviscid-core region is observed to be approximately one-fifth of the

entrance length, a much shorter length than has been reported by

Mohanty and Asthana [58] for a pipe flow.

Finally, the vorticity distribution in the entrance region of

a straight channel at different locations X/Re for Reynolds number

200, is given in Table 6.

5.3 Resulte for she Channei Entrance with e Conetriction

5.3.1 Eogmagd Step

Solutions of the finite-difference equations are obtained for

flow through a channel whose width is altered sharply, asymmetrically

and by a finite amount of 0.4 of the channel height (a forward step).

This step is positioned at various locations in the entrance region,

and Reynolds numbers based on the channel height up to 2000 are

considered. Table 7 summarizes the cases considered and their

Reynolds number, step height and position, computational domain,

purpose and computing time. Streamlines in the vicinity of the step

are shown in Figures l4-16 for Reynolds numbers (Re)H-20, 200, and

2000, for a step located in the profile-development region. Also, the

Y-values for selected streamlines for the entire flow field are given

in Tables 8-10 for (Re)H-20, 200, and 2000, respectively. The

streamline plots give a qualitative picture of the flow solutions;

quantitative information is presented in Figures 17-23. The numerical

results show that there is a detectable eddy of recirculating fluid

upstream of the step for Re-50; as the Reynolds number increases the

size of the eddy increases. The step's position has no observable

effect on the reattachment point, as shown in Figures 17 and 18.
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Increasing the height of the step forces the separation point further

upstream and reattachment point upward in a linear nature as shown in

Figures 19 and 20 for (Re)H-200 and 1000, respectively. The

streamline separates ahead of the step at a distance approximated by

0.0215 (Re)'4319 and reattaches to the vertical face of the step at a

height of 0.0282 (Re)'2572. This separation of the streamline is

observed at Re-50, while, in Greenspan's study [40], it is observed at

Re-2000, due to a coarse mesh size used. Figures 21-23 show the

separation and reattachment points as a function of step height and

Reynolds number.

The separation point, which is predicted as Xs-0.0215

(Re)'2572 in this study, is compared in Figure 24 with that found in

Smith's asymptotic theory [27] for a channel with an asymmetric

constriction in the form of a semi-infinite step and Dennis and

Smith's numerical solution [30] for a channel with a symmetric

contraction. The trend of the results is consistent with Dennis and

Smith [30] for low Reynolds numbers and with Smith [27] for high

Reynolds numbers. Also, the reattachment point is compared with

Dennis and Smith [30] in Figure 25. Their values are relatively

higher than the present work, however, the trends are the same.

On the qualitative side, asymmetric or symmetric constrictions

produce a sizeable upstream adjustment of the flow when the Reynolds

number is large. As the Reynolds number increases, the size of the

separation region grows. Also, the dividing streamline upstream,

reported by Greenspan [40] and Smith [27], exhibits the concave-

upwards behavior for all values of Reynolds numbers, in agreement with

the results displayed in Figure 17 for low Reynolds number and Figure

18 for high Reynolds number.
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5.3.2 Eachmerg Etep

In this section, the numerical results for incompressible flow

past a backward step will be presented and discussed. The ratio of

step height to channel downstream height is 0.2. The step is

positioned at various locations in the entrance region and Reynolds

numbers (Re)H, based on the downstream channel height, up to 2000 are

considered. The presence of the step is observed to induce a

noticeable acceleration in the flow near the step. The general

features of the flow are separation of a shear layer from the vertical

face of the step and its reattachment to the surface of the downstream

lower wall, resulting in the formation of a separation region

immediately behind the step.

The cases are summarized in Table 11; their Reynolds numbers,

step height, position, computational domain, purpose and computing

time are listed.

The numerical results show that the step's position has little

effect on the separation point; it is more pronounced for a high step—

to-channel ratio and high Reynolds number, as shown in Figures 26-30.

Although, the reattachment points are different for the step in the

different positions, the trend of the results is the same. Therefore,

the streamline patterns are shown for selected positions. In Figures

31-33 the streamline patterns are shown for Reynolds numbers (Re)H-20,

200 and 2000, for flow in the vicinity of a backward step located in

the profile-development region. Also, the Y-values are given for

selected streamlines for the entire flow field, in Tables 12-14.

Figures 34-36 show the effect of step height on the separation

region for (Re)H-20, 200 and 500 for a step located in the inviscid-

core region. The results show both separation and reattachment points

are sensitive to the step height. The separation point moves upward
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as the step height increases in a nonlinear manner and approaches the

top of the step for high step height and Reynolds number as shown in

Figure 37. In addition, the step height has significant effect on the

reattachment point; as the step height increases, the reattachment

point moves further downstream in a linear fashion, as shown in Figure

38, for Reynolds numbers 20, 200 and 500.

Increasing Reynolds number (Re)H forces the separation point

further upward, as shown in Figure 39 for the step height 0.3H and

Reynolds numbers up to 500, and in Figure 40 for the step height of

0.2M and Reynolds numbers up to 2000, for the step in the inviscid-

core region.

The location of the separation point, Ys/a, for the step

height 0.2H, is plotted versus Reynolds numbers in Figure 41. The

separation point does not show the linear variation with Reynolds

numbers as found by Kawaguti [59] and by Macagno and Hung [60] in

channels with a sudden expansion. It approaches asymptotically to

unity (i.e., the top of the step) as Reynolds number becomes large.

The present nonlinear trend is probably due to the influence of the

upper wall. A similar nonlinear trend is found by Roache and Mueller

[44] for a backward step.

To compare the numerical results of this study with the

theoretical and experimental results of others, the Reynolds number

(Re)ais based on the step height "a" rather than the channel

downstream height.

The numerical results indicate separation occurring at about

2/3 the step height for low step height and Reynolds number. This is

consistent with the numerical results obtained by Taylor [43] for low

Reynolds number [(Re)a-4]; it is not a constant value for Reynolds

ruunfl5ers higher than 4, as Taylor [43] claimed. For Reynolds numbers



54

in the range of 20 to 40, separation occurs in the range of 90% to 95%

of the step height, which is found to be consistent with the numerical

results of Roache and Mueller [44], Kitchens [45] and Mueller and

O'Leary [48]. For high Reynolds numbers (Re)a of 100 to 400 the

streamline separates at the top of the step. A similar trend is

clearly seen for large Reynolds numbers in an experimental study by

Honji [50] for the backward step, and in a numerical study by Kummar

and Yajnih [61] for a sudden expansion in a channel flow.

The numerical results also show that, for low Reynolds numbers

[(Re)a below 100], the reattachment point is a nonlinear function of

Reynolds number, while, for high Reynolds numbers [(Re)a 100 to 400],

it is a linearly increasing function of Reynolds number.

Convergence could not be obtained using the iterative

procedure as reported by Kitchens [45] for Reynolds number higher than

200. This is probably caused by the local mesh size and related to

the numerical stability problems encountered by Macagno and Hung [60].

Nonconvergence is also noted by Mueller and O'Leary [48] and Roache

and Mueller [44] for Reynolds number higher than 100 (based on step

height and free stream velocity). In this work, convergence is

obtained for mesh sizes of 0.05 and 0.07 for all Reynolds numbers (up

to 400); this is because upwind differencing is used for the advection

terms in the Navier-Stokes equations. This avoids the numerical

instability of an iterative solution at high Reynolds numbers; in

addition, optimum accelerating parameters are used to accelerate the

solution.

For low Reynolds number range, the reattachment points compare

:faNorably with the theoretical results obtained by Roache and Mueller

[44] and Mueller and O'Leary [48], as Shown in Figure 42. Also, the

reattachment points for high Reynolds numbers in the range of 100 to
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400, are in good agreement with experimental data obtained by Sinha,

et.al. [52], Leal and Acrivos [51], and Goldstein [49] as shown in

Figure 43. Furthermore, the trend of the results is consistent with

the numerical results of Kumar and Yajnih [61], Andreas and Mark [42]

and Schrader [62] for flow through a sudden expansion at large

Reynolds numbers.

5.3-3 MED

The numerical results of the steady-state, Navier-Stokes

equations for the flow field near a finite step immersed in a two-

dimensional channel entrance region are described in this section.

The qualitative features of the separation phenomena induced by the

finite step are expected to be similar to those found in the forward

and backward step cases. The cases are summarized in Table 15 by

listing the Reynolds number, step height, length and position,

computational domain, purpose and computing time. Numerical results

are obtained for Reynolds numbers between 20 and 1300 based on the

channel height and average velocity.

The numerical solutions for a finite step immersed in the

channel entrance flow show a very small separated flow region upstream

of the step, with separation region length and height almost

independent of Reynolds number, for (Re)H between 200 and 1300.

Recall that for the same range of Reynolds numbers, a significant

Iapstream separation region is found for the forward step case. A

simdlar upstream influence of the finite step is reported by Kitchens

[115] and Greenspan [40]. Obviously, the downstream region is

significantly influencing the upstream separation region.

On the other hand, the numerical results show that the

downstream separation region introduced by the backward step, extends
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further downstream than that associated with the finite step; this

effect increases as the Reynolds number increases.

The numerical results show that channel length downstream of

the step, the step length, and the position of the step have an

insignificant effect on the downstream separation region for the cases

considered, as given in Tables 16-20 and shown in Figures 44 and 45.

Therefore, the streamline patterns are shown for a selected position

of the finite step.

Streamlines in the vicinity of the finite step are shown in

Figures 46-48 for (Re)H of 20, 200 and 1300, for a step in the

profile-development region. The Y-values for selected streamlines for

the entire flow field are given in Tables 21-23 for various Reynolds

numbers.

The effect of the step height on the downstream separation

region is shown in Figures 49 and 50. As in a backward step, the

downstream separation point moves upward toward the top of the step as

the step height increases, in a nonlinear manner, and approaches the

top of the step for high step height and Reynolds numbers as shown in

Figure 51. Also, as the step height increases, the downstream

reattachment point moves further downstream in a linear fashion, as

shown in Figure 52, for (Re)H-20 and 200. The locations of the

downstream separation point and reattachment point with (Re)H are

shown in Figure 53 for the step located in the inviscid-core region,

with height of 0.3H and (Re)H up to 1300. The linear relationship of

the downstream reattachment point as a function of Reynolds numbers

laased on the step height, in.the range of 60 up to 390 is shown in

Figure 54. A similar trend was obtained numerically by Kitchens [45]

‘for flow past square protuberance.
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As a special case, a finite step with one mesh size (0.05) of

length (called a single step) is investigated up to (Re)H-SOO. The

cases are summarized in Table 24. As in a finite step, a single step

causes a very small separated flow region upstream of the step for

high Reynolds number. The numerical results show that for low (Re)H

up to 20, the step position has a significant effect on the downstream

separation region due to the short distance of the inviscid-core

region, as shown in Figure 55. This effect is diminished as the

Reynolds number increases, as shown in Figure 56.

Streamlines in the vicinity of the single step, located in the

inviscid-core region, are shown in Figures 57 and 58 for (Re)-20 and

200. The Y-values for selected streamlines for the entire flow field

are given in Tables 25 and 26 for (Re)H-20 and 200, respectively. For

(Re)H greater than 20, the streamlines separate from the top of the

single step, as shown in Figures 59 and 60. The step height, for

(Re)H greater than 20, has no effect on the downstream separation

points; however, it does effect the downstream reattachment point

which increases linearly with step height, as shown in Figure 61.

Furthermore, as (Re)H increases, the downstream reattachment point

moves further downstream and increases almost linearly with Reynolds

number, as shown in Figure 62. A similar trend is also shown for flow

past a square protuberance in a Couette flow studied by Kitchens [45].

The downstream reattachment points for the flow past a finite

and a single step, are compared with the numerical results of Kitchens

[45] for a square protuberance in Figure 63. His values are

relatively higher than the present work. However, the trends are

similar. In addition, the comparison of downstream separation and

reattachment points for different steps located in the inviscid-core

region, and for the Reynolds numbers considered, are shown in Figures



 

58

64 and 65. The trend of the downstream separation and reattachment

points is similar for the different steps.

5.4 Qpeimmm Qger-Relamatioh end Weighting Factors

The starting point of the numerical analysis is the

consideration of the full Navier-Stokes equations and Poisson equation

in the entrance region of the unconstricted channel. The rate of

convergence to the solution of the above equations, using a finite-

difference scheme, can be significantly increased by using the optimum

values of the over-relaxation factors (FV) for the Navier-Stokes

equations and (F8) for the Poisson equation, and the optimum values of

the weighting factors (KS) for the stream function and (KV) for the

vorticity.

The purpose of this section is to report the optimum values of

the over-relaxation and weighting factors, often referred to as

accelerating parameters. These parameters depend on the mesh size and

the Reynolds number and significantly minimize the computing time for

the simultaneous solution of Eqs. (4.2.3) and (4.2.4). They are

determined primarily by computer experimentation.

A large number of combinations for Reynolds numbers and mesh

sizes are attempted using different values for the accelerating

parameters (1 to 1.9 for F8 and FV and 0 to l for KS and KV).

Convergent results are obtained with a relative error criterion of

e-10'6, for (Re)H-20, 50, 100, 200, 500, 1000 and 2000 with a mesh

size of h-l/lS and h-l/20. Tables 27 and 28 give the computing time

required for convergence for the range of the Reynolds numbers and

different mesh sizes considered over a range of values of F8. The

mannerical results show that the optimum value of FS depend on the mesh

size (assumed equal in the X- and Y-direction) of the computational
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domain. It is noted that the computing time decreases as FS increases

until a minimum computing time is achieved; further increases in the

value of FS result in an increase in the computing time. At the

minimum computing time, FS represents the optimum value. The

variation in computing time is more pronounced for high Reynolds

numbers, as shown in Tables 27 and 28.

Reduction in computing time, at least by factor of 2, is

obtained by using the optimum value of the over-relaxation factor FS.

Reducing FS below unity significantly increases the computing time.

It is also found that the results converge most rapidly when FS is

given by Eq. (4.4.1).

Tables 29 and 30 show the effect of the relaxation factor FV

on the computing time for various Reynolds numbers and mesh sizes. It

is noted that as FV increases for a certain value of Reynolds number,

the computing time decreases until a minimum computing time is reached

at the optimum FV value; further increases in the FV value cause the

computing time to increase for low Reynolds numbers of 100 or below.

However, the value of FV is equal to unity for Reynolds numbers of 200

or higher; the numerical solution does not converge for values of FV

slightly greater than unity.

The influence of the weighting factors KS and KV, defined in

Eqs. (4.2.5) and (4.2.6), respectively, which allow for a different

percent of the old and the new values of the stream function and

'vorticity during the matrix iteration, are given in Tables 31-34 for

'various Reynolds numbers and mesh sizes. It is noted that the

computing time decreases as KS decreases to zero for low Reynolds

rnnmbers (Re-20, 50 and 100). It has a value in the range of 0.1 to

0.13 for Reynolds numbers in the range of 200 to 2000 for minimum

computing time. Also, as the value of RV increases, the computing
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time decreases until a minimum computing time is obtained at an

optimum value of KV; further increases in the value of KV beyond this

optimum value result in an increase in the computing time, as shown in

Tables 33 and 34. A reduction in computing time by a factor of 2 to 4

is possible using the optimum values of the weighting factors KS and

KV.

Finally, for each Reynolds number and mesh size there is an

optimum combination of the values for F8, FV, KS and KV to minimize

computing time. The optimum values, as a function of Reynolds number,

are shown in Figures 66 and 67 for the two different mesh sizes

considered. It may be noted that the optimum value of FS increases as

Reynolds number increases up to 50 for h-l/20 and 500 for h-l/lS; for

higher Reynolds numbers, it approaches a constant value of 1.8, as

shown in Figure 68. On the other hand, the optimum value of FV is

large at low Reynolds number and decreases asymptotically to unity for

high Reynolds numbers, for both mesh sizes, as shown. The optimum

values of KS is nearly zero for Reynolds numbers up to 100 and

increases as Re increases.

The Figures also show that the optimum value of the weighting

factor KV increases as the Reynolds number increases for the range of

the Reynolds numbers considered. For the range of the mesh size

considered, it is noted that for low Reynolds numbers, the over-

relaxation factors FS and FV are a function of Re, while they approach

(constant values of 1.8 and 1, respectively, for high Re as shown in

iFigure 68. Furthermore, the weighting factors KS and KV have

relatively high values for the smaller mesh grid than larger grid as

shown in Figure 69. This Figure also shows that KV has a constant

‘vaJJae for high Re, while KS has a constant value for IOW'Re.
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For a channel with a constriction in the form of a step

(forward, backward and finite) several runs are also performed using

different values of the accelerating parameters. The numerical

results show that the optimum values of the accelerating parameters,

which are used to reduce the computing time for the channel flow

without a constriction, also represent the optimum values for the

channel flow with a constriction in the form of a step.

In summary, a reduction in computing time, by factors of 1.5

to 4 for mesh size h-1/15 and factors of 2 to 6.6 for h-l/20, is

obtained.by using the optimum values of the accelerating parameters

FS, FV, KS and KV as compared with the unaccelerated case (FS-FV-l and

KS-KV-O); this is shown in Table 35.

5.5 Qanclusiess

A successive over-relaxation method, utilizing optimum

accelerating parameters, is numerically stable for all Reynolds

numbers, step-to-channel ratios and mesh sizes considered. The

entrance region in a rectangular channel with and without a

constriction has been studied using a grid size of 0.05 by 0.05. The

following conclusions are based on the results presented earlier.

Ch e an e Re on

1. By solving the full Navier-Stokes equations, it is found that the

local maxima in the velocity profiles are essentially non-

existent; they are apparently the result of solving modified

Navier-Stokes equations with certain terms neglected or they are

a manifestation of the numerical algorithms.
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The results show that an actual inlet profile with velocity

gradients near the two walls does not influence the flow in the

entrance region significantly.

The inviscid-core region for the channel flow is approximately

one-fifth of the entrance length, substantially shorter than that

reported for pipe flow. The profile-development region makes up

the remaining four-fifths of the entrance region.

Forwerd Shep

For the downstream region of the step, at least 0.55 of the

channel height is needed using the selected algorithm to satisfy

the fully-developed flow downstream boundary conditions for the

stream function and vorticity. This is true for all Reynolds

numbers considered. Therefore, a step height of 0.4 is used for

the analysis of the flow.

Separation occurs for Reynolds numbers greater than 20; no

separation occurs for a step height of 0.2 of the channel height

for the range of Reynolds numbers considered.

No separation of the fluid downstream of the step is observed at

any Reynolds number; use of very fine grids would be necessary to

obtain this separation and recover the true flow situation in the

region immediately downstream of the step.
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l. The location of the separation point from the vertical face is a

nonlinear function of step height. The location of the

reattachment point on the lower surface is a linear function of

the step height.

2. The step location has negligible effect on the separation point,

however, it does effect the reattachment point and is more

pronounced for high step-to-channel ratios and Reynolds numbers.

 For example, for Re-400 (based on step height), the reattachment

point for the step located in the profile-development region is

further downstream than the reattachment point for the step in the

inviscid-core region by 42.5% and 8% further downstream than the

reattachment point for the step in the fully-developed region.

3. The separation point approaches the top of the step for high

Reynolds numbers.

4. The reattachment point is a nonlinear function of Reynolds numbers

(based on the step height) up to 100 and a linear function for

high Reynolds number of 100 to 400.

F te te

1. Both the finite and single step possess a very small upstream

separated region, with length and height almost independent of

Reynolds number, quite unlike the forward step.
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2. The finite step position and length, and the length of the channel

downstream of the step have negligible effect on the downstream

separation region.

3. The location of the downstream separation point is a nonlinear

function of the finite step height and a constant value for the

single step. The downstream reattachment point is a linear

function of step height for both finite and single steps.

4. For a single step, the streamlines separate from the top of the

step for all Reynolds numbers (based on the downstream channel

height) greater than 20. This is not the case for backward and

finite steps.

5. The location of the downstream reattachment point is a nonlinear

function of Reynolds numbers, based on the step height, up to 60

for a finite step and 15 for a single step, and a linear function

of Reynolds number for higher values.

6. Generally, the upstream and downstream separation regions

introduced by the finite step are smaller than those associated

with the forward and the backward step cases.

Optimmm Accelerating Parameters

1. Generally, for a uniform grid size in a rectangular domain, the

iterated results converge most rapidly when FS is defined by Eq.

(4.4.1) for the range of Reynolds numbers considered. For fine
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mesh, or high Reynolds number, FS is constant and equal to 1.808

as predicted by Eq. (4.4.1).

The fastest rate of convergence of the Navier-Stokes equations is

obtained when FV-l, for high Reynolds number (200 or greater), and

in the range of 1.1 to 1.5 for low Reynolds number.

The values of weighting factors KS and KV for mesh size h-l/20 are

slightly greater than for mesh size h-l/15.

Using optimum values of the accelerating parameters, the maximum

reduction in computing time is a factor of 4 for h-l/lS and a

factor of 6.6 for h-l/20.

The optimum values of the accelerating parameters FS, FV, KS and

KV, which are found in this study for the channel flow without a

constriction, are also applicable for a channel flow with a

constriction in the form of a step.

The optimum values of the four accelerating parameters should

serve as a guide to reduce the computing time for other flow

situations which use this system of equations.
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Table 1. Actual inlet velocity profile

 

 

 

 

Normal distance Velocity Stream function

Y u/UO m

0.00 0.000 0.0000

0.05 0.725 0.0300

0.10 0.875 0.0725

0.15 0.975 0.1175

0.20 1.075 0.1700

0.25 1.100 0.2250

0.30 1.100 0.2800

0.35 1.100 0.3350

0.40 1.100 0.3900

0.45 1.100 0.4450

0.50 1.100 0.5000

0.55 1.100 0.5550

0.66 1.100 0.6100

0.65 1.100 0.6650

0.70 1.100 0.7200

0.75 1.100 0.7750

0.80 1.075 0.8300

0.85 0.975 0.8825

0.90 0.875 0.9275

0.95 0.725 0.9700

1.00 0.000 1.0000
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Table 2. Summary of entrance flow problems studied

(Re)H Inlet velocity Mesh No. of CPU

profile size iterations time

5 Uniform velocity 0.0833 44 0 00:02:35.19

20 Uniform velocity 0.0500 75 0 00:06:10.17

20 Actual velocity 0.0500 64 0 00:05:42.03

50 Uniform velocity 0.0500 96 0 00:20:03.55

50 Actual velocity 0.0500 94 0 00:19:48.42

100 Uniform velocity 0.0500 131 0 00:27:10.24

100 Actual velocity 0.0500 118 0 00:22:03.35

200 Uniform velocity 0.0500 143 0 01:20:13.69

200 Actual velocity 0.0500 136 0 01:13:43.36

500 Uniform velocity 0.0500 210 0 04:46:31.47

500 Actual velocity 0.0500 190 0 04:04:14.62

1000 Uniform velocity 0.0500 233 0 10:50:31.09

2000 Uniform velocity 0.0500 592 l 05:54:53.35
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Table 3. Entrance length LE

 

 

 

 

 

 

 

 

 

(Re)H Inlet velocity profile LE LE/H Re

5 Uniform velocity 0.83 0.1666

20 Uniform velocity 0.90 0.0450

20 Actual velocity 1.05 0.0525

50 Uniform velocity 2.20 0.0440

50 Actual velocity 2.40 0.0480

100 Uniform velocity 4.40 0.0440

100 Actual velocity 4.60 0.0460

200 Uniform velocity 8.85 0.0442

200 Actual velocity 9.10 0.0455

500 Uniform velocity 22.15 0.0443

500 Actual velocity 22.55 0.0451

1000 Uniform velocity 44.25 0.0442

2000 Uniform velocity 88.55 0.0443

 

L is the distance at which the velocity at the centerline

reaches 99 percent of the fully developed value.
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Table 4. Comparison of 2LE/H and LE/H Re with other researchers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2LE/H

(Re)H Morihara Schlichting Gillis, et a1. Present work

& Cheng

5 0.33

20 2.24 1.60 2.26 1.80

50 4.40

100 8.80

200 18.06 16.00 18.23 17.70

500 44.30

1000 88.50

2000 171.60 160.00 177.10

LE/H Re

5 0.1666

20 0.0559 0.0400 0.0565 0.0450

50 0.0400 0.0440

100 0.0400 0.0440

200 0.0452 0.0400 0.0456 0.0442

500 0.0400 0.0443

1000 0.0400 0.0442

2000 0.0429 0.0400 0.0443

At large Re limit

Researcher LE/H Re

Present work 0.0443

Schlichting 0.0400

Hwang and Fan 0.0422

Morihara and Cheng 0.0423

Bodoia and Osterle 0.0440

Gillis, et a1. 0.0442

Roidt and Cess 0.0454
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Table 5. The inviscid-core length, the profile-development length,

and the entrance length for various Reynolds numbers

 

 

 

 

 

 

 

 

Re Li Ld LE LE/H Re Li/H Re Ld/H Re Li/LE

20 0.18 0.72 0.9 0.0450 0.0090 0.0360 0.200

50 0.44 1.76 2.2 0.0440 0.0088 0.0352 0.1999

100 0.88 3.52 4.4 0.0440 0.0088 0.0352 0.2000

200 1.75 7.1 8.85 0.0442 0.0087 0.0355 0.1977

500 4.43 17.72 22.15 0.0443 0.0088 0.0354 0.2000

1000 8.8 35.45 44.25 0.0442 0.0088 0 0354 0.1990

2000 17.5 71.05 88.55 0.0447 0 0087 0 0355 0.1978

 

L - Inviscid-core length

Ld - Profile-development length

LE - Entrance length

3
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Table 6. Vorticity values in the entrance region of a straight

channel, Re-200

 

 

\ lee

Y \ 0.00025 0.005 ’ 0.00875 0.02 0.05

0.00 -43.814 -13.967 -13.316 -11.633 -11 470

0.05 - 9.629 - 6.574 - 6.233 - 5.507 - 5.435

0.10 - 2.635 - 5.608 - 5.295 - 4.861 - 4.820

0.15 - 0.683 - 4.336 - 4.263 - 4.207 - 4.202

0.20 - 0.164 - 2.903 - 3.172 - 3.550 - 3.583

0.25 - 0.036 - 1.664 - 2.137 - 2.896 - 2.965

0.30 - 0.007 - 0.819 - 1.288 - 2.259 - 2.354

0.35 - 0.001 - 0.348 - 0.690 - 1.650 - 1.751

0.40 - 0.000 - 0.127 - 0.325 - 1.074 - 1.159

0.45 0.000 - 0.038 - 0.122 - 0.528 - 0.576

0.50 0 000 0 000 0.000 0.000 0 000

0.55 0.000 0.038 0.122 0.528 0.576

0.60 0.000 0.127 0.325 1.074 1.159

0.65 0 001 0 348 0 690 1.650 1.751

0.70 0.007 0 819 1.288 2.259 2.354

0.75 0 036 1.664 2.137 2.896 2.965

0.80 0.164 2 903 3.172 3 550 3.583

0.85 0.683 4.336 4.263 4.207 4.202

0.90 2.635 5 608 5.295 4.861 4.820

0.95 9.629 6.574 6.233 5.507 5.435

1.00 43.814 13.967 13.316 11.633 11.470

 

I



 

72

 

 

Table 7. Summary of cases studied for forward step

Step Step Computational CPU

(Re)H height position domain purpose time

20 0.40H Inviscid-core 1.5H 0 00:01:40 27

20 0.40H Profile-dev 2.0H 0 00:02:55.10

20 0.40H Fully-dev 2.5H Effect 0 00:05:37.22

50 0.40H Inviscid-core 3.0H of O 00:12:57.57

50 0.40H Profile-dev 4.0H step 0 00:15:26.18

50 0.40H Fully-dev 6.0H position 0 00:14:17.52

200 0.40H Inviscid-core 10.5H on the 0 00:13:16.79

200 0.40H Profile-dev 15.0H separation 0 00:30:21.31

200 0.40H Fully-dev 12.0H region 0 01:09:14.29

2000 0.40H Inviscid 110.0H 0 08:25:49.09

2000 0.40H Profile-dev 130.0H 0 10:32:07.14

2000 0.40H Fully-dev 110.0H l 07:03:24.28

200 0.45H Inviscid-core 10.5H 0 01:52:25.10

200 0.40H Inviscid-core 10.5H 0 00:13:16.79

200 0.35H Inviscid-core 10.5H 0 00:14:06.21

200 0.30H Inviscid-core 10.5H Effect 0 00:14:42.46

200 0.25H Inviscid-core 10.5H of 0 00:15:10.48

200 0.20H Inviscid-core 10.5H step 0 00:15:58.90

1000 0.45H Inviscid-core 60.0H height 0 15:20:42.20

1000 0.40H Inviscid-core 60.0H on the 0 05:01:07.95

1000 0.35H Inviscid-core 60.0H separation 0 04:59:12.72

1000 0.30H Inviscid-core 60.0H region 0 04:51:41.50

1000 0.25H Inviscid-core 60.0H 0 04:20:55.28

1000 0.20H Inviscid-core 60.0H 0 04:01 11.37

50 0.40H Inviscid-core 3.0H 0 00:12:57.57

100 0.40H Inviscid-core 6.5H 0 00:06:55.01

200 0.40H Inviscid-core 10.5H 0 00:13:16.79

500 0.40H Inviscid-core 32.5H 0 01:42:27.66

1000 0.40H Inviscid-core 60.0H 0 05:01:07.95

2000 0.40H Inviscid-core 110.0H 0 08:25:49.09

50 0.40H Profile-dev 4.0H Effect 0 00:15:26.18

100 0.40H Profile-dev 8.0H of O 00:11:44.22

200 0.40H Profile-dev 15.0H Reynolds 0 00:30:21.31

500 0.40H Profile-dev 38.5H number 0 02:08:35.41

1000 0.40H Profile-dev 70.0H on 0 08:58:23.21

2000 0.40H Profile-dev 130.0H separation 0 10:32:07.14

50 0.40H Fully-dev 6.0H region 0 00:14:17.52

100 0.40H Fully-dev 12.0H 0 00:53:59.04

200 0.40H Fully-dev 20.0H 0 01:09:14.29

500 0.40H Fully-dev 50.0H 0 05:27:02.47

1000 0.40H Fully-dev 100.0H l 01:25:49.72

2000 0.40H Fully-dev 110.0H l 07:03:24.28
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Table 8. The Y-values for selected streamlines for the flow past a

forward step located in the profile-development region,

(Re)H-20

 

X W - 0.005 W - 0.1 u - 0.2 p - 0.5 W - 0.7 w - 0.8

 

0.05 .0090 .1320 .2370 .5312 .7106 .8000

0.10 .0160 .1643 .2754 .5585 .7196 .8000

0.15 .0280 .1986 .3158 .5824 .7280 .8000

0.20 .0470 .2365 .3584 .6040 .7363 .8010

0.25 .0591 .2821 .4030 .6233 .7446 .8056

0.30 .0807 .3385 .4467 .6408 .7528 .8106

0.35 .1208 .4016 .4843 .6564 .7607 .8157

0.40 .2130 .4650 .5153 .6698 .7680 .8206

0.45 .4050 .4811 .5380 .6809 .7744 .8250

0.50 .4080 .4996 .5535 .6898 .7794 .8317

0.55 .4111 .5090 .5635 .6966 .7838 .8340

0.60 .4130 .5153 .5703 .7018 .7870 .8355

0.65 .4142 .5190 .5748 .7054 .7893 .8360

0.70 .4147 .5212 .5776 .7079 .7903 .8365

0.75 .4148 .5223 .5792 .7093 .7916 .837

0.80 .4147 .5227 .5798 .7100 .7918 .8371

0.85 .4146 .5226 .5800 .7101 .7918 .8369

0.90 .4144 .5222 .5796 .7099 .7914 .8364

0.95 .4142 .5217 .5790 .7093 .7908 .8359

1.00 .4140 .5210 .5783 .7086 .7901 .8352

1.10 .4138 .5203 .5775 .7077 .7893 .8345

1.15 .4136 .5197 .5767 .7068 .7885 .8338

1.20 .4135 .5191 .5759 .7060 .7877 .8324

1.25 .4132 .5180 .5745 .7043 .7864 .8319

1.30 .4131 .5176 .5739 .7036 .7857 .8315

1.35 .4130 .5171 .5733 .7029 .7851 .8311

1.40 .4128 .5167 .5728 .7024 .7847 .8308

1.45 .4127 .5163 .5722 .7018 .7843 .8305

1.50 .4124 .5158 .5716 .7014 .7841 .8302

1.55 .4122 .5151 .5710 .7010 .7840 .8302

1.60 .4120 .5144 .5704 .7000 .7839 .8302

1.65 .4120 .5142 .5703 .7000 .7839 .8302

l .70 .4120 .5142 .5703 .7000 .7839 .8302

 

l
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Table 9. The Y-values for selected streamlines for the flow past a

forward step located in the profile-development region,

(Re)H- 200

X ¢ - 0.005 ¢ - 0.1 ¢ - 0.2 ¢ - 0.5 w - 0.6 ¢ - 0.8

0.05 .0070 .1169 .2110 .5000 .5960 .7880

0.20 .0190 .1486 .2363 .5000 .5888 .7637

0.30 .0240 .1591 .2461 .5000 .5852 .7539

0.50 .0270 .1691 .2570 .5000 .5802 .7430

0.75 .0280 .1742 .2618 .5000 .5785 .7374

1.00 .0280 .1767 .2660 .5000 .5770 .7342

1.50 .0290 .1803 .2703 .5000 .5754 .7303

2.00 .0302 .1830 .2740 .5000 .5742 .7270

2.50 .0316 .1866 .2770 .5020 .5740 .7262

3.00 .0330 .1907 .2820 .5059 .5760 .7264

3.20 .0341 .1930 .2846 .5070 .5779 .7277

3.40 .0357 .1964 .2882 .5102 .5807 .7299

3.60 .0384 .2008 .2932 .5149 .5850 .7333

3.80 .0417 .2065 .3005 .5218 .5915 .7385

4.00 .0480 .2150 .3104 .5320 .6010 .7460

4.20 .0527 .2283 .3256 .5476 .6158 .7583

4.40 .0595 .2511 .3502 .5705 .6371 .7751

4.60 .0670 .2660 .3893 .6040 .6512 .7850

4.80 .0130 .3660 .4000 .6480 .7040 .8212

4.90 .2240 .4410 .5090 .6710 .7230 .8322

4.95 .4041 .4730 .5300 .6812 .7312 .8366

5.05 .4105 .5040 .5570 .6975 .7445 .8360

5.15 .4166 .5174 .5714 .7084 .7535 .8490

5.25 .4190 .5240 .5790 .7150 .7590 .8510

5.35 .4190 .5274 .5835 .7185 .7619 .8527

5.45 .4180 .5280 .5855 .7190 .7630 .8520

5.55 .4169 .5276 .5819 .7195 .7622 .8508

5.65 .4159 .5260 .5840 .7180 .7614 .8490

5.75 .4151 .5248 .5826 .7171 .7593 .8472

5.85 .4142 .5230 .5812 .7150 .7572 .8450

5.95 .4140 .5219 .5798 .7139 .7558 .8434

6.05 .4136 .5210 .5785 .7120 .7540 .8420

6.25 .4132 .5190 .5764 .7099 .7514 .8391

6.55 .4129 .5175 .5745 .7062 .7485 .8363

6.75 .4128 .5169 .5738 .7054 .7472 .8351

6.95 .4127 .5167 .5732 .7050 .7453 .8342

7.25 .4127 .5167 .5730 .7050 .7434 .8332

7.75 .4127 .5167 .5730 .7050 .7435 .8310

8.05 .4127 .5167 .5730 .7030 .7435 .8310

9.05 .4127 .5167 .5730 .7030 .7435 .8310

113.05 .4127 .5167 .5730 .7030 .7435 .8310

11.05 .4127 .5167 .5730 .7030 .7435 .8310

12.05 .4127 .5167 .5730 .7030 .7435 .8310

13.05 .4127 .5167 .5730 .7030 .7435 .8310

14.05 .4127 .5167 .5730 .7030 .7435 .8310

14. 95 .4127 .5167 .5730 .7030 .7435 .8310

 





75

 

 

Table 10 . The Y-values for selected streamlines for the flow past a

forward step located in the profile-development region,

(Re)H - 2000

X ¢-0.005 w—0.1 ¢-0.2 w—0.5 w—0.6 ¢-0.8

0.05 .0230 .1600 .2482 .5000 .5831 .7520

2.00 .0242 .1639 .2518 .5000 .5826 .7482

4.00 .0247 .1672 .2557 .5000 .5811 .7443

6.00 .0256 .1702 .2590 .5000 .5798 .7410

8.00 .0264 .1727 .2618 .5000 .5786 .7382

10.00 .0271 .1748 .2642 .5000 .5776 .7358

12.00 .0277 .1767 .2664 .5000 .5767 .7336

14.00 .0283 .1783 .2681 .5000 .5759 .7319

16.00 .0288 .1798 .2698 .5000 .5751 .7302

18.00 .0292 .1811 .2713 .5000 .5745 .7288

20.00 .0298 .1826 .2729 .5004 .5743 .7279

22.00 .0324 .1868 .2773 .5038 .5770 .7298

23.00 .0399 .1967 .2875 .5134 .5861 .7378

23.25 .0448 .2017 .2929 .5186 .5899 .7421

23.50 .0507 .2082 .3006 .5260 .5981 .7482

23.75 .0544 .2156 .3086 .5341 .6083 .7572

24.00 .0606 .2324 .3265 .5517 .6227 .7697

24.20 .0700 .2506 .3449 .5688 .6388 .7829

24.40 .0906 .2739 .3703 .5923 .6604 .7990

24.60 .1187 .3122 .4093 .6243 .6890 .8205

24.70 .1470 .3407 .4367 .6439 .7058 .8317

24.80 .1787 .3815 .4724 .6651 .7235 .8427

24.90 .2473 .4450 .5149 .6861 .7405 .8531

24.95 .4042 .4762 .5354 .6957 .7483 .8579

25.05 .4115 .5073 .5625 .7118 .7616 .8659

25.15 .4225 .5229 .5787 .7236 .7716 .8719

25.25 .4347 .5329 .5891 .7316 .7785 .8760

25.35 .4449 .5394 .5958 .7368 .7829 .8785

25.45 .4500 .5432 .5999 .7400 .7856 .8799

25.55 .4470 .5451 .6017 .7416 .7869 .8805

25.75 .4388 .5456 .6022 .7414 .7865 .8796

25.95 .4325 .5423 .5994 .7388 .7839 .8776

26.25 .4257 .5367 .5934 .7340 .7796 .8740

26.55 .4220 .5313 .5884 .7363 .7764 .8718

26.75 .4205 .5290 .5865 .7289 .7751 .8709

27.05 .4192 .5275 .5853 .7279 .7741 .8700

27.55 .4181 .5268 .5848 .7271 .7733 .8689

28.05 .4172 .5263 .5844 .7266 .7726 .8679

29.05 .4161 .5254 .5836 .7252 .7709 .8658

i30.05 .4149 .5213 .5788 .7211 .7670 .8622

4().00 .4087 .5005 .5559 .7028 .7500 .8618

5C).00 .4080 .5000 .5500 .7000 .7500 .8616

6C).00 .4077 .5000 .5500 .7000 .7500 .8612

70. 00 .4072 .5000 .5500 .7000 . 7500 .8608

90 . 00 . 4050 . 5000 . 5500 . 7000 . 7500 . 8600

1 10 . 00 . 4050 . 5000 . 5500 . 7000 . 7500 . 8600

130 . 00 . 4050 . 5000 . 5500 . 7000 . 7500 . 8600
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Table 11. Summary of cases studied for backward step

Step Step Computational CPU

(Re)H height position domain purpose time

20 0.2H Inviscid-core 2.2H 0 00:04:43.21

20 0.2H Profile-dev 2.6H 0 00:10:08.95

20 0.28 Fully—dev 2.2H 0 00:08:10.08

20 0.3H Inviscid-core 2.2H Effect 0 00:07:45.44

20 0.3H Profile-dev 2.6H of 0 00:18:20.34

20 0.3H Fully-dev 2.2H step 0 00:18:19.98

20 0.4K Inviscid-core 2.2H position 0 00:09:07.74

20 0.4H Profile-dev 2.6H on 0 00:14:48.01

20 0.4H Fully-dev 2.2H separation 0 00:12:50.17

200 0.4H Inviscid-core 11.0H region 0 02:40:35.81

200 0.4H Profile-dev 14.0H 0 04:59:37.56

200 0.4a Fully-dev 12.0H 0 03:12:28.17

2000 0.2H Inviscid-core 110.0H l 20:21:31.61

2000 0.2H Profile-dev 130.0H 4 06:51:40.12

2000 0.2H Fully-dev 110.0H 2 23:32:51.82

20 0.2H Inviscid-core 2.2H 0 00:04:43.21

20 0.3H Inviscid-core 2.28 0 00:07:45.44

20 0.4H Inviscid-core 2.2H Effect 0 00:09:07.74

20 0.5H Inviscid-core 2.2H of 0 00:10:47.43

200 0.2H Inviscid-core 11.0H step 0 00:49:04.14

200 0.3H Inviscid-core 11.0H height 0 01:15:36.18

200 0.4H Inviscid-core 11.0H on 0 02:40:35.81

200 0.5H Inviscid-core 11.0H separation 0 04:10:14.78

500 0.2H Inviscid-core 32.5H region 0 06:26:52.48

500 0.3H Inviscid-core 32.58 0 10:47:03.67

500 0.4H Inviscid-core 32.53 1 03:50:45.79

20 0.3H Fully-dev 2.2H Effect of 0 00:18:19.98

50 0.3H Fully-dev 4.0H Reynolds 0 00:44:33.64

100 0.3H Fully-dev 8.0H number on 0 00:24:51.98

200 0.3H Fully-dev 12.0H separation 0 02:08:35.05

500 0.3H Fully-dev 32.5H region 0 10:47:03.67

20 0.2H Inviscid-core 2.2H 0 00:04:43.21

50 0.2H Inviscid-core 3.4H 0 00:11:00.81

100 0.2H Inviscid-core 6.5H 0 00:31:52.23

200 0.2H Inviscid-core 11.0H Effect 0 00:49:04.14

500 0.2H Inviscid-core 32.5H of 0 06:26:52.48

1000 0.2H Inviscid-core 55.0H Reynolds 0 12:52:31.50

2000 0.2H Inviscid-core 110.0H number on 1 20:21:31.61

20 0.23 Profile-dev 2.2H separation 0 00:08:10.08

50 0.2H Profile-dev 6.08 and 0 00:35:28.24

100 0.2H Profile-dev 8.5K reattachment 0 01:01:18.85

200 0.2H Profile-dev 14.0H points 0 02:02:19.48

500 0.2H Profile-dev 38.5H 0 09:35:33.49

1000 0.2H Profile-dev 70.0H 1 01:05:31.14

2000 0.2H Profile-dev 130.0H 4 06:51:40.12



 

 

Table 11 (cont'd.)

20

50

100

200

500

1000

2000 O
O
O
O
O
O
O

.2H

.2H

.2H

.2H

.2H

.2H

.2H

Fully-dev

Fully-dev

Fully-dev

Fully-dev

Fully-dev

Fully-dev

Fully-dev

12.

32.

55.

110.

77

.2H

.0H

.5H

0H

5H

0H

0H N
O
O
O
O
O
O

00:

00:

00:

01:

06:

14:

23:

08

29

24:

36:

32

:10.

13: .

52:20.

:09.

38.

38.

:51.
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Table 12. The Y-values for selected streamlines for the flow past a

backward step in the profile-development region, (Re)H-20

 

 

X ¢-0.05 ¢-0.1 ¢-0.2 ¢-0.5 ¢-0.7 ¢-0.8

0.00 .2050 .3000 .3750 .5985 .7475 .8220

0.05 .2066 .3011 .3760 .5976 .7463 .8210

0.10 .2100 .3156 .3882 .5954 .7350 .8058

0.15 .2130 .3254 .3969 .5934 .7258 .7940

0.20 .2154 .3317 .4027 .5914 .7184 .7850

0.25 .2166 .3355 .4060 .5892 .7123 .7779

0.30 .2169 .3371 .4074 .5869 .7072 .7723

0.35 .2163 .3366 .4071 .5843 .7027 .7675

0.40 .2143 .3340 .4053 .5814 .6986 .7634

0.45 .2111 .3291 .4019 .5782 .6949 .7597

0.50 .1812 .3217 .3969 .5746 .6914 .7562

0.55 .1529 .3125 .3903 .5706 .6879 .7528

0.60 .1206 .3025 .3828 .5663 .6843 .7500

0.65 .1017 .2900 .3746 .5617 .6808 .7466

0.70 .0795 .2776 .3663 .5569 .6771 .7438

0.75 .0672 .2664 .3581 .5520 .6734 .7409

0.80 .0649 .2565 .3502 .5471 .6699 .7381

0.85 .0558 .2473 .3417 .5422 .6664 .7353

0.90 .0528 .2381 .3340 .5375 .6629 .7326

0.95 .0508 .2304 .3271 .5329 .6596 .7300

1.00 .0479 .2241 .3209 .5287 .6564 .7276

1.05 .0447 .2188 .3155 .5247 .6534 .7253

1.10 .0423 .2144 .3108 .5210 .6506 .7232

1.15 .0404 .2108 .3067 .5176 .6482 .7213

1.20 .0389 .2077 .3031 .5145 .6460 .7195

1.25 .0378 .2052 .3001 .5118 .6440 .7179

1.30 .0369 .2031 .2972 .5093 .6423 .7165

1.35 .0361 .2014 .2947 .5072 .6408 .7153

1.40 .0356 .2000 .2926 .5054 .6394 .7143

1.45 .0351 .1985 .2909 .5037 .6383 .7134

1.50 .0348 .1974 .2895 .5024 .6373 .7126

1.55 .0345 .1964 .2883 .5012 .6365 .7120

1.60 .0343 .1957 .2874 .5002 .6359 .7116

1.65 .0342 .1951 .2866 .5000 .6354 .7112

1.70 .0340 .1947 .2860 .4988 .6350 .7109

1.75 .0340 .1943 .2856 .4984 .6347 .7108

1.80 .0340 .1941 .2853 .4980 .6346 .7107

1.85 .0340 .1939 .2850 .4978 .6345 .7107

1.90 .0340 .1938 .2848 .4976 .6344 .7107

1.95 .0340 .1938 .2848 .4975 .6344 .7107

2.00 .0340 .1938 .2848 .4975 .6344 .7107

2.05 .0340 .1938 .2848 .4975 .6344 .7107

2.11) .0340 .1938 .2848 .4975 .6344 .7107

2.315 .0340 .1938 .2848 .4975 .6344 .7107

2.20 .0340 .1938 .2848 .4975 .6344 .7107

2. 25 .0340 .1938 .2848 .4975 .6344 .7107

2.30 .0340 .1938 .2848 .4975 .6344 .7107

2.135 .0340 .1938 .2848 .4975 .6344 .7107

 



  

i
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Table 13. The Y—values for selected streamlines for the flow past a

backward step in the inviscid core region, (Re)H-200

X ¢'0-005 w—0.1 ¢-0.2 ¢—0.5 ¢-0.7 ¢-0.8

0.05 .2119 .3222 .3930 .6000 .7380 .8065

0.20 .2139 .3232 .3940 .6000 .7378 .8059

0.40 .2178 .3357 .4063 .6000 .7286 .7936

0.80 .2184 .3420 .4133 .6000 .7230 .7866

1.20 .2189 .3449 .4164 .6000 .7203 .7835

1.80 .2196 .3480 .4196 .5998 .7173 .7800

2.40 .2201 .3500 .4216 .5994 .7146 .7773

3.00 .2201 .3503 .4219 .5979 .7119 .7742

3.50 .2191 .3477 .4190 .5933 .7049 .7692

3.60 .2187 .3464 .4177 .5916 .7033 .7669

3.70 .2180 .3445 .4158 .5894 .7017 .7646

3.80 .2171 .3419 .4133 .5867 .7001 .7623

3.90 .2152 .3380 .4098 .5834 .6968 .7599

3.95 .2134 .3353 .4077 .5815 .6951 .7582

4.00 .2085 .3320 .4052 .5794 .6932 .7564

4.05 .2039 .3285 .4025 .5771 .6913 .7545

4.10 .2000 .3245 .3994 .5747 .6892 .7525

4.15 .1867 .3204 .3958 .5721 .6870 .7503

4.20 .1771 .3160 .3920 .5713 .6877 .7482

4.25 .1683 .3116 .3881 .5666 .6823 .7461

4.30 .1603 .3071 .3840 .5637 .6799 .7441

4.35 .1529 .3025 .3800 .5607 .6773 .7420

4.40 .1403 .2974 .3759 .5577 .6748 .7398

4.45 .1268 .2917 .3718 .5547 .6722 .7375

4.50 .1165 .2862 .3677 .5516 .6696 .7354

4.60 .1017 .2758 .3598 .5456 .6644 .7311

4.70 .0814 .2665 .3524 .5397 .6593 .7269

4.80 .0693 .2581 .3447 .5341 .6545 .7227

4.90 .0623 .2507 .3375 .5289 .6500 .7185

5.00 .0577 .2427 .3311 .5242 .6463 .7153

5.20 .0524 .2299 .3205 .5161 .6395 .7090

5.40 .0489 .2210 .3125 .5098 .6355 .7050

5.60 .0443 .2148 .3066 .5056 .6315 .7023

5.80 .0417 .2105 .3024 .5023 .6293 .7009

6.00 .0402 .2076 .2995 .5001 .6277 .6993

6.40 .0386 .2044 .2952 .4988 .6273 .6998

6.80 .0378 .2029 .2940 .4985 .6283 .7016

7.40 .0375 .2018 .2932 .5000 .6305 .7040

7.60 .0371 .2012 .2929 .5000 .6317 .7053

8.20 .0368 .2006 .2921 .5000 .6326 .7066

8.60 .0364 .2001 .2913 .5000 .6334 .7080

9.20 .0360 .1992 .2903 .5000 .6342 .7096

10.00 .0357 .1982 .2894 .5000 .6350 .7107

1!).60 .0357 .1976 .2892 .5000 .6356 .7113

311.20 .0357 .1976 .2892 .5000 .6350 .7116

12 . 20 .0357 .1976 .2892 .5000 .6350 .7121

12 . 80 .0357 .1976 .2892 .5000 .6350 .7121

13 .40 .0357 .1976 .2892 .5000 .6350 .7121

14. 00 .0357 .1976 .2892 .5000 .6350 .7121
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Table 14. The Y-values for selected streamlines for the flow past a

backward step in the profile-development region, (Re)H-2000

X ¢-0.005 ¢-0.1 ¢-0.2 ¢'0-5 ¢-0.7 w-0.8

0.00 .2220 .3310 .4000 .6000 .7330 .7991

0.55 .2200 .3320 .4019 .6000 .7320 .7981

1.05 .2173 .3324 .4030 .6000 .7310 .7970

1.55 .2162 .3326 .4034 .6000 .7308 .7967

2.05 .2162 .3329 .4040 .6000 .7302 .7959

4.05 .2167 .3360 .4074 .6000 .7276 .7925

6.05 .2173 .3385 .4100 .5998 .7253 .7897

8.05 .2174 .3399 .4114 .5989 .7225 .7865

9.05 .2168 .3388 .4103 .5955 .7193 .7833

9.55 .2157 .3365 .4080 .5933 .7156 .7796

9.65 .2154 .3356 .4072 .5922 .7145 .7785

9.75 .2150 .3346 .4062 .5910 .7132 .7773

9.85 .2145 .3334 .4050 .5896 .7117 .7758

9.95 .2137 .3318 .4035 .5879 .7100 .7742

10.00 .2133 .3309 .4026 .5870 .7091 .7733

10.10 .2122 .3287 .4006 .5850 .7070 .7714

10.20 .2096 .3260 .3982 .5827 .7049 .7692

10.30 .2064 .3230 .3953 .5801 .7022 .7668

10.40 .2032 .3197 .3921 .5773 .6995 .7642

10.50 .2005 .3160 .3881 .5742 .6966 .7614

10.60 .1921 .3122 .3849 .5710 .6935 .7584

10.80 .1768 .3039 .3769 .5639 .6869 .7518

11.20 .1528 .2833 .3597 .5484 .6725 .7385

11.40 .1330 .2730 .3509 .5405 .6651 .7316

11.60 .1161 .2633 .3416 .5327 .6578 .7249

11.80 .1040 .2544 .3329 .5254 .6508 .7185

12.00 .0859 .2455 .3251 .5186 .6445 .7125

12.50 .0604 .2270 .3099 .5051 .6322 .7004

13.00 .0528 .2166 .3008 .4969 .6277 .6938

13.50 .0502 .2117 .2961 .4932 .6216 .6912

14.00 .0492 .2100 .2948 .4927 .6216 .6916

14.50 .0494 .2102 .2953 .4950 .6232 .6935

15.00 .0497 .2105 .2964 .4955 .6252 .6958

15.50 .0497 .2110 .2974 .4970 .6268 .6978

16.00 .0492 .2116 .2980 .4982 .6285 .6995

16.50 .0483 .2109 .2980 .4987 .6292 .7005

17.00 .0472 .2105 .2981 .4993 .6300 .7016

18.00 .0451 .2092 .2973 .4994 .6306 .7026

19.00 .0433 .2079 .2963 .4996 .6308 .7032

20.00 .0422 .2067 .2955 .4998 .6310 .7038

25.00 .0380 .2030 .2925 .5000 .6320 .7058

.30.00 .0370 .2007 .2910 .5000 .6320 .7078

40.00 .0360 .1984 .2895 .5000 .6320 .7090

50.00 .0350 .1975 .2881 .5000 .6320 .7100

60.00 .0350 .1965 .2878 .5000 .6320 .7100

70.00 .0348 .1962 .2876 .5000 .6320 .7100

8C).00 .0347 .1959 .2872 .5000 .6320 .7100

9C).00 .0346 .1959 .2868 .5000 .6320 .7100
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Table 15. Summary of cases studied for a finite step

Step Step Step Computational CPU

(Re)H height position length domain purpose time

20 0.38 Fully-dev 1.8 2.98 Effect of 0 00:32:27.79

20 0.38 Fully-dev 1.8 4.48 downstream 0 01:04:01.78

200 0.38 Inviscid-core 1.8 15.58 length on 0 02:39.36.21

200 0.38 Inviscid-core 1.8 18.08 separation 0 03:25:55.59

region

20 0.38 Fully-dev 2.8 3.98 Effect of 0 00:27:14 46

20 0.38 Fully-dev 1.8 2.98 step 0 00:22:45.18

200 0.38 Inviscid-core 1.8 15.58 length on 0 02:39:36.21

200 0.38 Inviscid-core 2.8 16.58 separation 0 02:47'54.68

200 0.38 Inviscid-core 4.8 18.58 region 0 03:40 00 39

20 0.38 Inviscid-core 1.8 2.68 0 00:16:34.08

20 0.38 Profile-dev 1.8 3.18 0 00:22:45.18

20 0.38 Fully-dev 1.8 2.98 Effect of 0 00:32:27.79

200 0.38 Inviscid-core 1.8 15.58 step 0 02:39:36.21

200 0.38 Profile-dev 1.8 17.28 position 0 03:08:48.26

200 0.38 Fully-dev 1.8 16.28 on 0 04:02:22 66

500 0.38 Inviscid-core 1.8 36.58 separation 0 11:36:29 60

500 0.38 Profile-dev 1.8 45.08 region 0 13:17:28.62

500 0.38 Fully-dev 1.8 39.08 0 18 30:30.93

20 0.28 Inviscid-core 1.8 2.68 0 00:15:33.99

20 0.38 Inviscid-core 1.8 2.68 0 00:16:34.08

20 0.48 Inviscid-core 1.8 2.68 0 00:18:41.81

20 0.58 Inviscid-core 1.8 2.68 Effect of 0 00:23:12.63

200 0.28 Inviscid-core 1.8 15.58 step 0 03:43:51.59

200 0.38 Inviscid-core 1.8 15.58 height 0 02:39:36.21

200 0.48 Inviscid-core 1.8 15.58 on 0 08:51:26 13

200 0.58 Inviscid-core 1.8 15.58 separation 0 14:42:32.75

500 0.28 Inviscid-core 1.8 36.58 region 0 17:22:51.43

500 0.38 Inviscid-core 1.8 36.58 0 11:36:29.60

500 0.48 Inviscid-core 1.8 36.58 1 06:12:04.45

20 0.38 Inviscid-core 1.8 2.68 0 00:16:34.08

50 0.38 Inviscid-core 1.8 4.88 0 00:53:41.08

100 0.38 Inviscid-core 1.8 8.48 0 02:23:27.22

200 0.38 Inviscid-core 1.8 15.58 0 02:39:36.21

500 0.38 Inviscid-core 1.8 36.58 0 11:36:29.60

1000 0.38 Inviscid-core 1.8 72.58 Effect of 2 01:37:59.41

1300 0.38 Inviscid-core 1.8 88.58 Reynolds 3 02:49:26 68

20 0.38 Profile-dev 1.8 2.98 number 0 00:22:45.18

50 0.38 Profile-dev 1.8 5.88 on 0 01:06:13.55

100 0.38 Profile-dev 1.8 10.18 separation 0 02:44:28.51

200 0.38 Profile-dev 1.8 17.28 region 0 03:08:48.26

500 0.38 Profile-dev 1.8 45.08 0 13:17:28.62

1000 0.38 Profile-dev 1.8 87.28 2 11:06:04.09

1300 0.38 Profile-dev 1.8 103.58 3 14:56:18.6?



 

Table 15 (cont'd.)

20

50

100

200

500

1000

1300 0
0
0
6
6
0
0

.38

.38

.38

.38

.38

.38

.38

Fully-dev

Fully-dev

Fully-dev

Fully-dev

Fully-dev

Fully-dev

Fully-dev H
H
H
H
H
I
—
‘
H

2
2
2
2
2
2
2

82

16

77

.98

.38

.68

.28

39. 08

.28

88. 9
&
0
0
0
0
0
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Table 16. Effect of downstream length on the downstream separation

streamline Y-coordinate for the finite step of 0.38 located

in the fully-developed region, (Re)H - 20

X Length-1.358 Length=2.858

0.00 0.2200 (Ys) 0.2200 (Ys)

0.05 0.2190 0.2190

0.10 0.2021 0.2020

0.15 0.1665 0.1664

0.20 0.1284 0.1283

0.25 0.0774 0.0771

0.26 (Xr) 0.0000 0.0000

Table 17. Effect of downstream length on the downstream separation

streamline Y-coordinate for the finite step of 0.38 located

in the inviscid-core region, (Re)H - 200

X length-13.258 length-17.758

Y Y

0.00 0.2788 (Ys) 0.2788 (Ys)

0.05 0.2785 0.2785

0.15 0.2769 0.2768

0.25 0.2692 0.2692

0.35 0.2594 0.2593

0.45 0.2471 0.2471

0.55 0.2257 0.2257

0.65 0.2078 0.2077

0.75 0.1825 0.1825

0.85 0.1575 0.1574

0.95 0.1212 0.1211

1.05 0.0813 0.0812

1.21 (Xr) 0.0000 0.0000
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Table 18. Effect of step length on the downstream separation

streamline Y-coordinate for the finite step of height of

0.38 located in the inviscid-core region, (Re)H-20

 

 

Step length-28 Step lengthan

X Y Y

0.00 0.2205 (Ys) 0.2202 (Ys)

0.05 0.2203 0.2190

0.10 0.2029 0.2019

0.15 0.1685 0.1656

0.20 0.1325 0.1284

0.25 0.0844 0.0791

0.26 (Xr) 0.0000 0.0000

 

Table 19. Effect of step position on the downstream separation

streamline Y-coordinate for the finite step of height 0.38,

 

(Re)H-20

Inviscid—core Profile-development Fully-developed

X Y Y Y

0.00 0.2200 (Ys) 0.2200 (Ys) 0.2200 (Ys)

0.05 0.2190 0.2192 0.2191

0.10 0.2019 0.2020 0.2019

0.15 0.1665 0.1666 0.1665

0.20 0.1284 0.1285 0.1284

0.25 0.0771 0.0772 0.0771

0.26 (Xr) 0.0000 0.0000 0.0000
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Table 20. Effect of step position on the downstream separation

streamlines Y-coordinate for the finite step of height 0.38,

 

 

(Re)H-200

X Inviscid-core Profile-development Fully-developed

0.00 0.2800 (Ys) 0.2805 (Ys) 0.2810 (Ys)

0.05 0.2794 0.2797 0.2794

0.15 0.2780 0.2789 0.2781

0.25 0.2705 0.2707 0.2706

0.35 0.2608 0.2610 0.2609

0.45 0.2500 0.2508 0.2502

0.55 0.2286 0.2291 0.2287

0.65 0.2100 0.2109 0.2105

0.75 0.1872 0.1880 0.1878

0.85 0.1611 0.1613 0.1612

0.95 0.1279 0.1284 0.1282

1.05 0.1001 0.1010 0.1006

1.15 0.0508 0.0520 0.0516

1.30 X(r) 0.0000 0.0000 0.0000
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Table 21. The Y-values for selected streamlines for the flow past a

finite step located in the profile-development region,

 

 

(Re)H-20

}( $—0.005 ¢-0.l ¢-0.2 ¢-0.5 w-0.7 ¢-0.8

().05 .0101 .1627 .2411 .5387 .7008 .7801

().10 .0159 .1800 .2847 .5594 .7054 .7820

(3.20 .0413 .2182 .3278 .5706 .7124 .7833

().25 .0552 .2532 .3597 .5843 .7169 .7843

().30 .0708 .2919 .3905 .5971 .7218 .7863

0.35 .1067 .3336 .4186 .6086 .7268 .7890

0.40 .1766 .3700 .4430 .6189 .7318 .7919

0.45 .3061 .3971 .4619 .6279 .7364 .7948

().50 .3099 .4126 .4757 .6355 .7406 .7975

0.55 .3130 .4214 .4848 .6414 .7438 .7987

0.60 .3162 .4298 .4935 .6467 .7470 .8020

0.65 .3173 .4341 .4982 .6504 .7488 .8032

(){70 .3185 .4377 .5025 .6534 .7510 .8049

(3.75 .3187 .4391 .5044 .6551 .7518 .8057

(3.80 .3189 .4407 .5060 .6565 .7528 .8060

().85 .3188 .4409 .5062 .6569 .7537 .8059

(3.90 .3187 .4410 .5066 .6571 .7538 .8057

().95 .3185 .4405 .5061 .6564 .7524 .8051

1.00 .3183 .4398 .5056 .6560 .7514 .8043

1. 20 .3168 .4348 .5004 .6500 .7459 .7990

1.4L) .3137 .4248 .4886 .6390 .7370 .7915

1.50 .3009 .4134 .4778 .6308 .7304 .7862

11.55 .2718 .4044 .4703 .6259 .7266 .7831

11.60 .2429 .3915 .4616 .6203 .7224 .7797

11.65 .2112 .3763 .4518 .6142 .7179 .7761

l. 70 .1807 .3613 .4400 .6077 .7130 .7722

21.75 .1538 .3459 .4277 .6007 .7078 .7680

1. 80 .1221 .3283 .4155 .5934 .7024 .7637

1. 85 .1029 .3127 .4037 .5859 .6970 .7592

1 . 90 .0828 .2986 .3910 .5785 .6918 .7546

1. 95 .0702 .2830 .3787 .5711 .6866 .7501

2.00 .0627 .2699 .3675 .5638 .6814 .7461

2.11) .0545 .2500 .3478 .5501 .6715 .7386

2.20 .0503 .2313 .3303 .5377 .6626 .7317

2 . 30 .0440 .2190 .3170 .5273 .0548 .7258

2.40 .0399 .2106 .3072 .5188 .6485 .7210

4. 50 .0374 .2048 . 3000 .5142 .6438 .7205

2 . 60 .0358 .2024 .2950 .5120 .6412 .7190

2 . 80 .0356 .2000 .2900 .5100 .6400 .7180

3 . 00 .0356 .2000 .2900 .5100 .6400 .7180
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Table 22. The Y-values for selected streamlines for the flow past a

finite step located in the profile-development region,

(Re) -200

8

X ¢-0.05 ¢-0.1 ¢-0.2 t—O.5 ¢-0.7 ¢-0.8

0.05 .0677 .1170 .2116 .5001 .6931 .7885

0.25 .1048 .1549 .2422 .5006 .6735 .7587

0.55 .1172 .1738 .2596 .5013 .6618 .7427

0.75 .1198 .1756 .2644 .5020 .6590 .7391

1.05 .1225 .1798 .2695 .5037 .6575 .7368

1.25 .1245 .1825 .2727 .5054 .6576 .7365

1.55 .1283 .1876 .2787 .5094 .6594 .7375

1.75 .1320 .1925 .2841 .5138 .6623 .7397

2.05 .1411 .2032 .2966 .5248 .6705 .7465

2.55 .1768 .2459 .3438 .5664 .7028 .7740

2.75 .2207 .2921 .3876 .5961 .7237 .7904

2.85 .2706 .3352 .4197 .6126 .7344 .7985

2.95 .3509 .3875 .4531 .6281 .7427 .8061

3.00 .3655 .4036 .4656 .6349 .7485 .8095

3.05 .3753 .4139 .4755 .6409 .7524 .8124

3.15 .3883 .4272 .4894 .6503 .7586 .8169

3.25 .3957 .4348 .4979 .6565 .7627 .8196

3.35 .3990 .4387 .5024 .6601 .7647 .8208

3.45 .3997 .4401 .5043 .6616 .7652 .8205

3.55 .3985 .4397 .5045 .6615 .7643 .8192

3.65 .3963 .4382 .5034 .6601 .7623 .8170

3.75 .3934 .4356 .5013 .6577 .7595 .8140

3.85 .3898 .4323 .4980 .6543 .7558 .8105

3.95 .3849 .4277 .4934 .6501 .7515 .8062

4.05 .3772 .4213 .4875 .6450 .7466 .8013

4.15 .3680 .4136 .4805 .6391 .7412 .7963

4.35 .3481 .3948 .4639 .6254 .7289 .7853

4.55 .3203 .3710 .4447 .6098 .7150 .7729

4.65 .3075 .3594 .4338 .6015 .7076 .7663

4.85 .2773 .3336 .4124 .5845 .6928 .7525

5.05 .2507 .3091 .4022 .5681 .6789 .7402

5.15 .2352 .2981 .3913 .5603 .6722 .7345

5.45 .2019 .2658 .3808 .5395 .6543 .7192

5.75 .1758 .2437 .3547 .5238 .6414 .7076

6.25 .1562 .2209 .3337 .5084 .6297 .6978

6.75 .1489 .2120 .3133 .5025 .6265 .6965

7.05 .1465 .2095 .3045 .5015 .6269 .6977

8.05 .1429 .2060 .2999 .5021 .6311 .7039

9.05 .1403 .2034 .2956 .5024 .6338 .7080

10 . 05 . 1382 . 2012 . 2930 . 5020 . 6350 . 7099

11.05 .1367 .1996 .2911 .5015 .6357 .7111

12.05 .1357 .1983 .2987 .5011 .6362 .7118

13.05 .1350 .1976 .2888 .5009 .6365 .7123

14. 05 .1346 .1970 .2881 .5006 .6366 .7127

15.05 .1340 .1963 .2877 .5000 .6367 .7129

16. 05 .1339 .1960 .2874 .5000 .6368 .7130

17. 25 .1338 .1955 .2868 .5000 .6369 .7132
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Table 23. The Y-values for selected streamlines for the flow past a

finite step located in the profile-development region,

(Re)H-l300

 

X H.05 xiv-0.1 \6-0.2 $0.5 $0.7 \b-0.8

 

0.05 .0658 .1146 .2095 .5000 .6943 .7904

0.55 .1117 .1620 .2485 .5000 .6679 .7579

1.05 .1126 - .1646 .2520 .5000 .6651 .7480

1.55 .1123 .1652 .2531 .5000 .6643 .7470

2.05 .1128 .1663 .2545 .5001 .6634 .7457

4.05 .1165 .1717 .2607 .5013 .6607 .7417

6.05 .1319 .1904 .2809 .5176 .6723 .7512

7.05 .1945 .2585 .3539 .5815 .7232 .7951

7.15 .2114 .2765 .3720 .5950 .7328 .8029

7.25 .2363 .3032 .3961 .6100 .7429 .8112

7.35 .2780 .3406 .4250 .6255 .7530 .8190

7.45 .3509 .3884 .4561 .6402 .7620 .8261

7.50 .3666 .4023 .4683 .6467 .7666 .8292

7.60 .3840 .4249 .4861 .6575 .7735 .8342

7.70 .3964 .4341 .4976 .6652 .7783 .8376

7.80 .4026 .4411 .5045 .6702 .7812 .8392

8.00 .4057 .4463 .5095 .6737 .7822 .8385

8.20 .4033 .4441 .5082 .6717 .7788 .8343

8.40 .3977 .4385 .5037 .6669 .7733 .8284

8.50 .3932 .4350 .5008 .6638 .7700 .8252

8.55 .3908 .4334 .4991 .6622 .7683 .8235

8.65 .3860 .4292 .4954 .6587 .7646 .8200

8.75 .3810 .4250 .4914 .6550 .7610 .8164

8.85 .3760 .4206 .4871 .6511 .7572 .8126

8.95 .3709 .4160 .4827 .6471 .7532 .8088

9.05 .3658 .4114 .4782 .6430 .7492 .8049

9.15 .3608 .4067 .4736 .6387 .7451 .8008

9.25 .3558 .4019 .4688 .6343 .7410 .7969

9.45 .3438 .3900 .4592 .6254 .7326 .7892

9.65 .3300 .3780 .4506 .6161 .7239 .7812

9.85 .3175 .3665 .4380 .6066 .7150 .7729

10.05 .3057 .3552 .4273 .5969 .7058 .7643

10.55 .2723 .3250 .3995 .5722 .6829 .7426

11.15 .2307 .2850 .3665 .5443 .6570 .7189

12.05 .1882 .2497 .3316 .5147 .6302 .6935

13.05 .1693 .2316 .3173 .5035 .6209 .6860

14.05 .1676 .2306 .3176 .5061 .6250 .6911

15.05 .1678 .2312 .3197 .5104 .6239 .6973

16 . 05 . 1659 . 2302 . 3194 . 5119 . 6230 . 7005

17.05 .1626 .2269 .3171 .5112 .6224 .7015

18.05 .1594 .2235 .3144 .5099 .6219 .7017

20.05 .1549 .2185 .3103 .5081 .6212 .7026

30 . 05 . 1434 . 2066 . 2995 . 5044 . 6192 . 7076

40.05 .1386 .2017 .2937 .5026 .6180 .7103

50.05 .1363 .2008 .2906 .5016 .6171 . 7117

60.05 .1351 .2000 .2889 .5010 .6165 . 7125

70.05 .1350 .2000 .2889 .5010 .6165 . 7124

78.45 .1350 .2000 .2889 .5010 .6165 .7124
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Table 24. Summary of cases studied for a single step

 

 

Step Step Step Computational CPU

(Re)H height position length domain purpose time

20 0.38 Inviscid-core 0.058 1.78 Effect 0 00:11:

20 0.38 Profile-dev 0.058 2.08 of step 0 00:13:

20 0.38 Fully-dev 0.058 3.08 position on 0 00:30:

200 0.38 Invisicid-core 0.058 14.68 separation 0 02:45:

200 0.38 Profile-dev 0.058 15.68 region 0 05:16:

200 0.38 Fully-dev 0.058 14.68 0 04:51:

200 0.18 Inviscid-core 0.058 14.68 Effect 0 01:07:

200 0.28 Inviscid-core 0.058 14.68 of step 0 01:24:

200 0.38 Inviscid-core 0.058 14.68 height on 0 02:45:

200 0.48 Inviscid-core 0.058 14.68 separation 0 05:45:

200 0.58 Inviscid-core 0.058 14.68 region 0 09:54:

20 0.38 Inviscid-core 0.058 1.78 Effect 0 00:11:

50 0.38 Inviscid-core 0.058 3.98 of Reynolds 0 00:39:

100 0.38 Inviscid-core 0.058 7.58 number on 0 02:06:

200 0.38 Inviscid-core 0.058 14.68 separation 0 02:45:

500 0.38 Inviscid-core 0.058 36.38 region 0 20:00:
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Table 25. The Y-values for selected streamlines for the flow past a

single step located in the inviscid core region, (Re)H-20

 

X ¢-0.05 ¢-0.1 w—0.2 ¢-0.5 ¢-0.7 ¢-0.8

 

0.05 .0988 .1802 .3139 .5637 .7231 .8046

0.10 .2430 .3206 .4032 .6036 .7385 .8084

0.15 .3497 .3867 .4531 .6299 .7492 .8119

0.20 .3757 .4177 .4828 .6477 .7570 .8151

0.25 .3975 .4377 .5026 .6596 .7625 .8176

0.30 .4079 .4509 .5141 .6673 .7660 .8192

0.35 .4127 .4562 .5204 .6716 .7679 .8199

0.40 .4128 .4573 .5224 .6733 .7682 .8196

0.45 .4089 .4547 .5211 .6728 .7671 .8184

0.50 .4020 .4489 .5170 .6704 .7649 .8164

0.55 .3896 .4389 .5107 .6665 .7616 .8133

0.60 .3748 .4271 .5027 .6613 .7573 .8096

0.65 .3594 .4142 .4921 .6549 .7523 .8052

0.70 .3412 .4006 .4801 .6477 .7467 .8002

0.75 .3206 .3831 .4677 .6396 .7408 .7954

0.80 .3020 .3664 .4550 .6310 .7344 .7904

0.85 .2695 .3406 .4310 .6220 .7278 .7850

0.90 .2501 .3170 .4100 .6080 .7209 .7795

1.00 .2237 .3000 .4002 .5943 .7067 .7680

1.10 .1973 .2716 .3737 .5761 .6930 .7565

1.20 .1754 .2503 .3521 .5593 .6804 .7460

1.30 .1613 .2316 .3327 .5440 .6689 .7370

1.40 .1518 .2183 .3174 .5307 .6587 .7291

1.50 .1437 .2086 .3055 .5192 .6498 .7225

1.60 .1377 .2015 .2954 .5092 .6429 .7172

1.80 .1370 .2013 .2951 .5090 .6423 .7169

2 .00 .1370 .2013 .2951 .5090 .6423 .7169
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Table 26. The Y-values for selected streamlines for the flow past a

single step located in the inviscid-core region, (Re)H=200

 

 

X ¢-0.05 ¢-0.1 ¢-0.2 ¢=0.5 ¢—0.7 ¢=0.8

0.05 .0688 .1189 .2144 .5036 .6963 .7913

0.20 .1058 .1574 .2479 .5137 .6891 .7745

0.40 .1286 .1855 .2772 .5273 .6893 .7690

0.60 .1382 .1979 .3020 .5439 .6974 .7737

0.80 .1690 .2201 .3317 .5662 .7111 .7836

1.00 .2140 .2830 .3789 .5955 .7288 .7963

1.10 .2644 .3279 .4025 .6112 .7379 .8028

1.15 .3081 .3570 .4299 .6187 .7421 .8058

1.20 .3452 .3809 .4457 .6256 .7460 .8087

1.25 .3579 .3948 .4575 .6317 .7494 .8111

1.30 .3657 .4046 .4664 .6369 .7524 .8131

1.40 .3766 .4161 .4785 .6446 .7568 .8159

1.50 .3826 .4220 .4849 .6489 .7589 .8169

1.60 .3839 .4236 .4872 .6500 .7588 .8162

1.70 .3811 .4218 .4862 .6492 .7569 .8139

1.80 .3753 .4172 .4824 .6460 .7533 .8102

1.90 .3671 .4103 .4765 .6412 .7484 .8053

2.00 .3574 .4018 .4689 .6350 .7426 .7995

2.20 .3298 .3774 .4503 .6196 .7286 .7869

2.40 .3006 .3518 .4268 .6019 .7127 .7727

2.60 .2657 .3223 .4038 .5834 .6962 .7578

2.80 .2342 .2967 .3806 .5658 .6811 .7438

3.00 .2079 .2719 .3608 .5500 .6675 .7321

3.50 .1654 .2167 .3249 .5217 .6432 .7111

4.00 .1509 .2146 .3079 .5083 .6329 .7024

4.50 .1448 .2082 .3012 .5036 .6305 .7015

5.00 .1426 .2058 .2986 .5034 .6315 .7038

6.00 .1405 .2036 .2960 .5033 .6345 .7084

7.00 .1385 .2016 .2936 .5030 .6359 .7107

8.00 .1369 .2002 .2918 .5023 .6364 .7117

9.00 .1359 .1989 .2901 .5017 .6367 .7123

10.00 .1352 .1976 .2894 .5013 .6368 .7127

11.00 .1347 .1972 .2884 .5009 .6369 .7129

12.00 .1343 .1962 .2875 .5007 .6370 .7131

13.00 .1341 .1962 .2866 .5005 .6370 .7130

14.00 .1339 .1960 .2857 .5000 .6370 .7130

15.00 .1339 .1960 .2857 .5000 .6370 .7130

 

4
'



fl

4

“Ct
l

6'

ca»

\

.a'ble

inm‘

a
n

L
.
)

,
_
»
4
c
u
m

-
-
1
1
H
m

\
I
’
"
‘

r
*

0
3

(
I
)

‘
5
"

3
.

(
"
3
;

,
4
"

(
:
3
(
a

:
5

.
n

.
5

\
r
v

,
1
.

r
-
-
o
n

m
.

o
.

m
1131

‘
f

_
_

.
_

‘
.

.
.

-
.

~
.

_
.

.
.

c
-

.
.

.
.

.
.

c
2
:

r
-
4

r
4

r
-
C

.
-
4

.
—
—
¢
.
4
H

'
7
4
H

.
4

.
_
.
.

.
-
—
-
o

.
.
.
.

"
I
!
)

i
f
:

r
-
4

v
—
4

r
—
4

r
—
I

'
'
4

r
—
J
"
4

F
4

'
4
H
H

F
”

"
Y



92

 

 

 

 

 

Table 27. Relaxation factor (ES) vs. computing time*, h-l/lS

Relaxation Reynolds number

factor 20 50 100 200 500 1000 2000

0.90 2.20 16.90 16.90 49.10 98.40 + +

1.00 1.90 13.71 14.30 40.72 78.00 + +

1.10 1.75 11.23 13.19 33.81 75.00 + +

1.20 1.64 10.55 12.17 29.20 72.00 + +

1.30 1.60 9.92 10.78 27.50 69.00 333.60 +

1.40 1.51 9.43 9.62 24.90 64.80 283.80 +

1.50 1.44 8.53 8.30 22.03 63.60 235.20 1087.20

1.60 1.40 8.35 7.91 19.38 60.60 192.00 909.60

1.65 1.28 8.14 7.10 16.97 56.40 175.20 806.40

1.70 1.37 7.40 7.06 16.76 55.20 163.20 774.00

1.75 1.40 7.48 7.30 16.90 54.60 150.60 582.60

1.80 1.44 7.60 7.50 17.48 79.20 144.00 381.60

1.85 1.50 8.92 8.20 22.82 86.40 157.80 418.80

1.90 1.60 10.10 8.60 25.05 100.20 177.00 490.80

Table 28. Relaxation factor (FS) vs. computing time*, h-1/20

Relaxation Reynolds number

factor 20 50 100 200 500 1000 2000

0.90 9.96 45.00 74.60 186.60 + + +

1.00 7.97 39.85 62.16 164.40 + + +

1.10 7.47 38.50 54.18 159.60 + + +

1.20 7.09 37.74 50.73 150.00 + + +

1.30 6.64 35.05 45.63 135.00 625.80 + +

1.40 6.20 32.30 39.35 120.00 529.20 904.80 +

1.50 5.91 30.29 34.61 112.80 439.80 792.60 3314.40

1.60 5.40 29.50 31.96 93.60 372.00 688.80 2529.00

1.65 5.22 29.00 29.03 85.20 336.00 620.40 2012.00

1.70 5.11 28.24 28.70 79.80 303.00 577.80 1870.80

1.75 5.05 27.05 28.05 76.20 283.20 541.80 1716.00

1.80 5.30 31.50 27.40 72.00 252.60 504.00 1530.00

1.85 5.50 32.80 29.70 97.20 269.40 513.00 1752.60

1.90 5.90 36.20 32.20 112.80 326.40 528.00 2206.80

 

‘* Computing time is measured in minutes.

-+ The run wasn't attempted, because the trend was obvious.
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Table 29. Relaxation factor (FV) vs. computing time*, h-1/15

Relaxation Reynolds number

factor 20 50 100 200 500 1000 2000

0.90 1.70 16.90 9.30 37.00 76.80 228.00 442.80

1.00 1.30 13.00 7.13 16.60 61.80 144.00 381.60

1.05 1.20 8.22 6.06 17.12 + + +

1.10 1.11 5.80 4.12 17.76 + + +

1.15 1.04 5.03 6.72 + + + +

1.20 1.00 4.66 7.50 + + + +

1.25 0.84 5.12 10.11 + + + +

1.30 0.78 5.66 13.76 + + + +

1.35 0.76 6.16 + + + + +

1.40 0.74 7.46 + + + + +

1.45 0.81 9.20 + + + + +

1.50 0.92 10.65 + + + + +

1.60 1.23 16.10 + + + + +

1.70 1.80 30.10 + + + + +

1.80 2.60 67.05 + + + + +

1.90 3.55 73 78 + + + + +

Table 30. Relaxation factor (FV) vs. computing time*, h-1/20

Relaxation Reynolds number

factor 20 50 100 200 500 1000 2000

0.90 6.20 34.20 34.80 83.60 354.00 642.00 1878.00

1.00 5.01 26.60 26.83 67.30 282.20 504.00 1530.00

1.05 4.94 24.30 24.04 80.30 + + +

1.10 4.88 22.05 20.33 99.20 + + +

1.15 4.39 19.80 19.02 + + + +

1.20 4.15 17.66 20.90 + + + +

1.25 3.77 15.55 26.54 + + + +

1.30 3.40 13.60 35.10 + + + +

1.35 2.92 17.38 + + + + +

1.40 2.66 23.05 + + + + +

1.45 2.48 26.90 + + + + +

1.50 2.35 30.00 + + + + +

1.60 3.01 34.50 + + + + +

1.70 4.50 40.50 + + + + +

1.80 8.01 50.00 + + + + +

1.90 8.60 52.90 + + + + +

 

* Computing time is measured in minutes.

‘¥ The numerical solution did not converge for these entries.
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Table 31. Weighting factor (KS) vs. computing time*, h-1/15

weighting Reynolds number

factor 20 50 100 200 500 1000 2000

0.00 0.80 4.30 4.60 19.75 72.60 184.20 408.00

0.05 0.81 4.50 4.83 17.89 70.80 172.80 390.00

0.10 0.82 4.60 5.13 18.05 69.00 152.40 381.00

0.15 0.84 4.82 5.28 18.30 72.60 129.60 376.80

0.25 0.86 5.05 5.46 18.90 75.60 135.65 367.80

0.25 0.87 5.29 5.59 20.02 76.82 147.58 301.80

0.30 0.88 5.42 5.70 21.00 79.80 180.00 325.80

0.40 0.95 5.78 6.62 22.00 91.85 252.60 367.80

0.50 0.99 6.00 7.02 24.35 99.60 304.80 444.00

0.60 1.05 6.46 7.76 26.52 105.55 + +

0.70 1.30 7.86 8.70 34.55 + + +

0.80 1.75 10.03 11.76 43.65 + + +

0.90 1.91 16.25 17.10 60.66 + + +

1.00 2.35 24.89 26.90 89.20 + + +

Table 32. Weighting factor (KS) vs. computing time*, h-1/20

Weighting Reynolds numbers

factor 20 50 100 200 500 1000 2000

0.00 2.25 14.90 32.70 60.00 291.00 1251.00 1974.00

0.05 1.79 14.30 25.41 49.20 288.60 1024.80 1850.40

0.10 1.20 14.00 20.91 46.30 283.80 922.20 1746.00

0.15 1.32 14.80 21 80 49.80 276.60 643.20 1679.40

0.20 1.50 16.00 22.38 57.00 319.80 564.00 1637.40

0.25 1.55 16.30 22 72 58.20 330.60 829.80 1590.00

0.30 1.65 16.80 23 26 59.40 349.20 1143.60 1573.20

0.40 2.05 20.95 23 56 63.00 381.70 1645.80 2430.60

0.50 2.50 21.00 26.70 64.80 469.20 2412.00 3133.80

0.60 3.10 21.66 31.23 67.20 580.20 + +

0.70 3.47 25.98 36.03 69.60 + + +

0.80 4.15 34.90 42.31 93.00 + + +

0.90 4.96 52.33 59.95 115.20 + + +

1.00 6.05 73.55 80.70 138.90 + + +

 

'* Computing time is measured in minutes.

-+ The run wasn't attempted, because the trend was obvious.



MC :0'

Table 3

"
\
I

M

'
9

J

O
n

C
)

f
,

‘
,
n

I
)

.
_
'

O
e
f
‘
.
C
3

«
n
O

r
x
0

I
r
‘
-
0
,
n

(
j

t
n
0

a
n

¢
1

i
n
0

r
3

2
I
u

i
f
.
"

”
‘
9

r
.
"
"

7
’

'
C
:

u
'

r
n

.
—

4
c
4

¢
‘
{

(
-
4

r
-
‘

.
I

—
’

r
1

:
1

\
\
(
7

.
.
c
v

.
_
F

v
i
)

a
t
)

L
?
"

L
.
)

a
:

'
9
‘
“
:
0

r
-

l
r
‘

0
r
d

1
“
)

(
L
?
!

"
r
.

:
f

.
1

i
‘
I

:
1
v

1
1
.
1
!

1
1
“
»
,
-

r
.

«
:
3
?

.
‘
h

.
.

"
-

-
-

I
-

“
’
1
‘

'
l

‘
2
‘

'
7

'
-

—
—

“
‘

J
.

.
.
J

t
A
.

r
.

,
.
3

«
:
3

f
;

:
3
1
?

I
J

«
r
‘
p

I...
,
‘
p

1
:

-
—
o

.
f
x
—
I

-
.
f

1
.
)

v
j
v

v
'

m
-

.
.
-

d
—
L
i
u

.
'
v

v
—
_
\

«
1
"

-
r
m

4
'
-

«
:
"

-
w

v
4
"
“
)
.

~
"

'
L

3

I
o

g
'
3
,

«
V
!

-
~

I
~

-'
'

C
—
i

I
'

'
'
7
’

I
‘
7

‘
"

,
1
‘
»

,
—
,
r
_
—
‘
)
¢
-
C
"
_
"



9S

 

 

 

 

 

Table 33. Weighting factor (KV) vs. computing time*, h-l/15

Weighting Reynolds number

factor 20 50 100 200 500 1000 2000

0.10 + + + + + + +

0.15 + + + + + + +

0.20 + + + + + + +

0.25 + + + + + + +

0.30 1.48 6.20 + + + + +

0.35 1.15 5.90 + + + + +

0.40 0.60 5.50 8.42 20.36 + + +

0.45 0.62 3.31 7.38 18.27 + + +

0.50 0.65 3.57 6.26 17.51 72.60 219.60 429.00

0.55 0.77 3.72 7.71 16.90 66.60 174.00 385.20

0.60 0.86 3.93 8.98 17.71 58.20 135.00 303 00

0.65 0.87 4.14 9.20 17.92 61.20 139.20 438.00

0.70 0.88 4.38 9.60 18.03 64.80 147.00 492.00

0.75 0.91 5.21 10.10 20.56 70.80 160.80 543.00

0.80 0.93 5.96 10.50 23.66 75.00 169.80 618.00

0.85 1.40 6.87 10.80 27.72 106.80 225.60 756.00

0.90 1.80 7.55 11.05 33.30 150.00 289.80 948.00

1.00 2.52 8.78 14.05 39.24 215.80 390.40 1205.00

Table 34. Weighting factor (KV) vs. computing time*, h-1/20

Weighting Reynolds number

factor 20 50 100 200 500 1000 2000

0.10 + + + + + + +

0.15 + + + + + +' +

0.20 + + + + + + +

0.25 + + + + + + +

0.30 + + + + + + +

0.35 + + + + + + +

0.40 2.30 14.05 + + + + +

0.45 2.01 10.20 + + + + +

0.50 2.19 6.05 17.35 49.20 + + +

0.55 2.25 7.90 13.41 40.25 + + +

0.60 2.30 10.01 14.80 34.80 252.00 1173.00 1536.00

0.65 2.33 11.40 15.20 37.20 238.20 822.00 1422.00

0.70 3.37 12.05 17.03 39.00 223.80 564.00 1344.00

0.75 4.70 14.81 19.15 43.80 276.00 912.00 1506.00

0.80 5.41 18 52 20.83 46.80 348.00 1251.60 1782.00

0.85 7.90 25.70 34.50 66.00 363.00 1362.00 1968.00

(3.90 9.25 32.80 46.40 73.80 385.80 1494.00 2232.00

1.00 14.70 40.15 60.05 86.92 412.70 1710.00 2668.00

 

* Computing time is measured in minutes.

‘9 1flae numerical solution did not converge for these entries.



me .

U -'

.33.

5.23

",h



96

 

 

Table 35. Factors of reduction in the computing time

Mesh Reynolds number

size 20 50 100 200 500 1000 2000

h

1/15 3.0 4.0 3.5 2.5 1.5 2.5 3.6

1/20 6.6 6.6 2.0 4.6 2.8 2.0 2.5
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Backward step in the inviscid region

H-Dawnstrean channel heidst. a-Stsp height
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Backward step in the inviscid core region
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Appendix A

Computer program for entrance region of the channel

15

534

REAL*8 F(601.51).Fs(601.51).Q(601.s1),Qs(601.51)

2.U(601,51),Y(51),X(601),PF(601.51),PC(601,51)

REAL*8 ERF,ERQ.EFF,EQQ

OPEN(UNIT=1,FILB='OUTPRE',STATUS='NEW',FORM=

2'FORMATTED')

OPEN(UNIT=2,NAME=INLET,TYPE='OLD')

F.Fs ARE THE CALCULATED STREAM FUNCTION AND

VORTICITY

FS.QS ARE THE STORED STREAM FUNCTION AND

VORTICITY

U IS A STREAMWISE VELOCITY

Y IS A NORMAL COORDINATE

x IS A STREAMWISE COORDINATE

PF IS A STREAMWISE PRESSURE GRADIENT AT THE WALL

PC IS A STREAMWISE PRESSURE GRADIENT AT CENTER

ERF.ERQ ARE THE MAXIMUM RELATIVE ERRORS

IN STREAM FUNCTION AND VORTICITY

FOR INNER ITERATIONS

EFF,EQQ ARE THE MAXIMUM RELATIVE ERRORS

IN STREAM FUNCTION AND VORTICITY

FOR OUTER ITERATIONS

READ(2,15)ITMAX,M,N,H,RE,AKS,AKV

FORMAT(3110,F5.2,F10.2,2F4.2/)

ITMAX IS A PRESELECTED NO. OF ITERATIONS

M IS A NO. OF GRID POINTS IN STREAMWISE DIRECTION

N IS A NO. OF GRID POINTS IN NORMAL DIRECTION

H IS A MESH SIZE EQUAL-IN X-AND-Y DIRECTIONS

RE IS REYNOLDS NUMBER BASED ON THE CHANNEL HEIGHT

FS IS OVER-RELAXATION FACTOR FOR POISSON EQ.

Fv IS OVER-RELAXATION FACTOR FOR N.S. EQS.

AKS IS A WEIGHTING FACTOR FOR STREAM FUNCTION

ARV IS A WEIGHTING FACTOR FOR VORTICITY

ITERF IS A NO. OF INEER ITER. FOR STREAM FUNCTION

ITERQ IS A NO. OF INEER ITER. FOR VORTICITY

ITER IS A NO. OF OUTER ITERATIONS FOR-STREAM

FUNCTION AND VORTICITY

COMPUTE OVER-RELAXATION FACTOR

******************************

PI=4.*ATAN(1.)

MM1=M-1

NM1=N-1

ALPHA=COS(PI/M)+COS(PI/N)

FS=(8.-4.*SQRT(4.-ALPHA**2))/ALPHA**2

WRITE(1.534)N,M,FS

FORMAT(10X.'TOTAL GRID Y-DIR.=',15,10X,
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Z'TOTAL GRID X-DIR.=',IS,'FS=',F10.7/)

COMPUTE COORDINATES FOR GRID POINTS

***t*****t'k************************

x(1)=0.

DO 1 I=2,M

X(I)=x(I-1)+H

Y(1)=0.

DO 2 J=2,N

Y(J)=Y(J-l)+H

A. STREAM FUNCTION BOUNDARY CONDITIONS

F(I,1)=o.

F(I,N)=1.

2. DOWNSTREAM CONDITION

DO 4 J=2,NM1

F(M;J)=3.*Y(J)**2-2.*Y(J)**3

3. UPSTREAM CONDITION (ACTUAL PROFILE)

3120.055

Y1(S)=0.17

F(1,2)=0.03

F(1,3)=0.0725

F(1,4)=0.1175

F(1,5)=Y1(5)

DO 888 J=6,17

Y1(J)=Y1(J-1)+BI

DO 814 J=6,17

F(1,J)=Y1(J)

F(1,18)=0.8825

F(1,19)=0.9275

F(1,20)=o.97

3. UPSTREAM CONDITION (UNIFORM PROFILE)

DO 5 J=2,NM1

F(1,J)=Y(J-1)+H

4. INTERIOR REGION (LINEAR INTERPOLATION)

--------------—-----------“-------------

DO 6 J=2,NM1

F(I.J)=Y(J)

VORTICITY BOUNDARY CONDITIONS

Q(1,2)=-0.225

Q(1,3)=-0.4

Q(1,4)=-0.5
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Q(1,5)=—1.5

DO 331 J=6,16

Q(1,J)=o.

Q(1,17)=-Q(1,5)

Q(1,18)=-Q(1,4)

Q(1,19)=-Q(1,3)

Q(1,20)=-Q(1,2)

1. UPSTREAM CONDITION (UNIFORM PROFILE)

DO 34 J=2,NM1

Q(1,J)=0.

2. DOWNSTREAM CONDITION

DO 35 J=2,NM1

Q(M,J)=12.*Y(J)-6.

3. INTERIOR REGION CONDITION

DO 400 I=2,MM1

DO 400 J=2,NM1

Q(I,J)=o.

STORING STREAM FUNCTION AND VORTICITY

DO 15 I=2,MM1

DO 15 J=2,NM1

Fs(I,J)=F(I,J)

QS(I,J)=Q(I,J)

BEGIN OUTER ITERATION FOR STREAM FUNCTION

AND VROTICITY---------------------------

ITER=0

ITER=ITER+1

SOLVING POISSON EQUATION FOR STREAM FUNCTION

ITERF=0

ITERF=ITERF+1

ERF=0.

COMPUTE STREAM FUNCTION FOR INNER REGION

****************************************

DO 20 I=2,MMI

DO 20 J=2,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+ FS/(2./H**2+2./H**2)*((F(I+1,J)

2+P(I-1,J))/H**2+(F(I,J+1)+F(I,J-1))/H**2+Q(I,J)

3-(2./H**2+2./H**2)*F(I,J))

EEEF=F(I,J)+0.00001

ERF=DMAX1(ERF,DABS((F(I,J)-FOLDF)/EEEF))

TEST STREAM FUNCTION FOR CONVERGENCE

IF(ERF.LE.0.000001) GO TO 75



0
0
0
0

0
0
0
0

a
n

0
M
1

75

48

175

32

500

600

700

800

900

21

138

IF(ITERF.GT.5000 ) GO TO 999

GO TO 80

END OF INNER ITER. FOR STREAM FUNCTION

RECALCULATE F(I,J) USING WEIGHTING FACTOR

*tttt************************************

DO 48 I=2,MM1

DO 48 J=2,NM1

P(I,J)=AKS*FS(I,J)+(1-AKS)*F(I,J)

SOLVING NAVIER-STOKES EQUATIONS FOR VORTICITY

ITERQ=0

ITERQ=ITERQ+1

ERQ=0.

4. LOWER AND UPPER WALLS CONDITIONS

DO 32 I=2,MM1

Q(I,1)=(F(I,1)-F(I,2))*3./H**2-(0.5*Q(I,2))

Q(I,N)=(F(I,N)-F(I,NM1))*3./H**2-(0.5*Q(I,NM1))

DO 21 I=2,MM1

DO 21 J=2,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I—1,J)

B=F(I.J+1)-F(I.J-1)

REA=0.5*A*RE

REB=0.5*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 500

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 600

IF((A.LT.0.).AND.(B.GE.0.)) GO TO 700

IF((A.LT.0.).AND.(B.LT.0.)) GO TO 800

Q(I,J)=(1-FV)*Q(I,J)+FV*((Q(I+1,J)+(1.+REB)*

20(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA+REB))

GO TO 900

Q(I,J)=(I-FV)*Q(I,J)+FV*((Q(I+1,J)*(1.-REB)+

20(1-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA-REB))

GO TO 900

Q(I.J)=(l—FV)*Q(I,J)+FV*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+O(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA+REB))

GO TO 900

Q(I,J)=(1-Fv)*Q(I,J)+Fv*(((1.-REB)*Q(I+1,J)+

20(1-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-l))/(4.-REA-REB))

EEEQ=Q(I,J)+0.00001

ER0=DMAx1(ERQ,DABS((Q(I,J)-FOLDQ)/EEEQ))

CONTINUE

TEST VORTICITY FOR CONVERGENCE

IF (ERQ.LE.0.000001) GO TO 85

IF(ITERQ.GT.5000 ) GO TO 998

GO TO 175
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END OF INNER ITERATION FOR VORTICITY

RECALCULATE Q(I,J) USING WEIGHTING FACTOR

*****************************************

DO 111 I=2,MM1

DO 111 J=2,NM1

Q(I,J)=ARV*QS(I,J)+(1—ARV)*O(I,J)

EFF=0.

EQQ=0.

DO 93 I=2,MM1

Do 93 J=2,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-Fs(I,J))/EEEFF))

EQQ=DMAx1(EQQ, DABs((Q(LJ)-QS(I ,J))/EEEQQ))

TEST RECALCULATED VALUES FOR CONVERGENCE

ETA=0.000001

IF((EFF.LE.ETA).AND.(EQQ.LE.ETA)) GO TO 105

IF(ITER.GT.ITMAx) GO TO 205

D0 94 I=2,MM1

DO 94 J=2,NM1

FS(IIJ)=F(IPJ)

QS(I.J)=Q(I,J)

GO TO 18 .

END OF OUTER ITERATION

DO 777 I=2,MM1

Do 777 J=2,NM1

U(I,J)=(F(I,J+l)-F(I,J-1))/(2.*H)

WRITE(1, 2002)

2002 FORMAT(3x, 'X' 5x, 'X/RE', 6x, 'dP/dx(W)', 3x,

C

C

0
(
1

2' dP/dX. RE/12',,3X, 'dP/dX(C)', 'dP/dX. RE/12' /)

COMPUTE PRESSURE GRADIENT AT THE WALL

*************************************

DO 2101 I=2,MM1

X(I)=X(I-l)+H

XF=X(I)

XD=XF/RE

RESl=1./(RE*H)

RESZ=1./(RE*B**2)

RES3= 1. /(RE*H**3)

PU(I, 1)=RESZ*( —U(I, 4)+4*U(I, 3)--5*U(I, 2)+2*U(I, 1))

PDUZ=PU(I,1)*RE/12

PF(L 1)=. 5*RES3*(- 3*F(I, 5)+14*F(I, 4)--24*F(I, 3)+

218*F(L 2)-5*F(I,1))

PDF2=PF(I,1)*RE/12

COMPUTE PRESSURE GRADIENT AT THE CENTERLINE

*******************************************
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Pc(I,11)=RE52*(-U(I+3,11)+4*U(I+2,11)-5*

20(I+1,11)+2*U(I,11))+RESZ*(-U(I,14)+

34*U(I,13)-5.*U(I,12)+2.*U(I,11))-0.S*U(I,ll)/H

4*(-U(I+2,11)+4*U(I+l,11)-3.*U(I,11))

PDC2=Pc(I,11)*RE/12

WRITE(1,9888)XF,XD,PF2,PDF2,PC2,PDC2

9888 FORMAT(2x,F5.3,2x,F5.3,4F13.4/)

2010 CONTINUE

WRITE(1,666)ITER,EFF,EQQ,RE

666 FORMAT('NO. OF ITER.=',IS,'EFF=',E14.7,10x,'

zEQQ=',E14.7,10x,'RE=',F10.2//)

WRITE(1,808)ITERF,ITERQ

808 FORMAT(10x,'ITERF=',15,10x,'ITERQ=',15//)

WRITE(1,180)

180 FORMAT(10x,' STREAM FUNCTION VALUES'/)

DO 620 J=1,N

620 WRITE(1,621)(F(I,J),I=1,MM1)

621 FORMAT(1x,'F(I,J)=',12F10.8//)

WRITE(1,190)

190 FORMAT(on,'VORTICITY VALUES '/)

DO 535 J=1,N

535 WRITE(1,536)(Q(I,J),I=1,MM1)

536 FORMAT(1X,'Q(I,J)=',12F10.6//)

WRITE(1,170)

170 FORMAT(15x,'VELOCITY DISTRIBUTION ')

DO 445 J=1,NM1

445 WRITE(1,446)(U(I,J),I=1,MM1)

446 FORMAT(1x,'U(I,J)=',12F10.6//)

WRITE(1,729)

729 FORMAT(10X,'CHCEK VELOCITY FROM 99 PER.

20F DEVELOPED VELOCITY'//)

DO 730 I=2,MM1

IF(U(I,11)-1.485) 731,732,732

732 WRITE(1,733) X(I),U(I,11)

733 FORMAT(10x,'PARABOLIC VELOCITY PROFILE

2AT DISTANCE =',F10.5//,10x,'VALUE OF

3CENTERLINE VELOCITY IS =',F10.5//)

731 XXI=0.

730 CONTINUE

GO TO 333

999 WRITE(1,555)

555 FORMAT(10x,'POISSON EQUATION PROBLEM')

GO TO 333

998 WRITE(1,656)

656 FORMAT('NAVIER-STOKES EQUATIONS PROBLEM')

205 WRITE(1,767)

767 FORMAT(10x,'OUTER ITERATIONS PROBLEM')

CLOSE(UNIT=2)

333 CLOSE(UNIT=1)

STOP

END



 

SE

Q
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FLOW CHART FOR ITERATIVE PROCEDURE
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Appendix B

Computer program for the forward step

REAL*8 F(2601,21),FS(2601,21),Q(2601,21),

2QS(2601,21),U(2601,21),Y(21),X(2601),Z(21)

REAL*8 ERF,ERQ,EFF,EQQ

OPEN(UNIT=1,FILE='OUTCON',STATUS='NEW',FORM=

2'FORMATTED')

OPEN(UNIT=2,NAME=CONDATA,TYPE='OLD')

F,Q ARE THE CALCULATED STREAM FUNCTION

AND VORTICITY

FS,QS ARE THE STORED STREAM FUNCTION

AND VORTICITY

ERF,ERQ ARE THE MAXIMUM RELATIVE ERRORS IN

STREAM FUNCTION AND VORTICITY

FOR INNER ITERATION

EFF ARE THE MAXIMUM RELATIVE ERRORS IN

STREAM FUNCTION AND VORTICITY

FOR OUTER ITERATION

U IS A STREAMWISE VELOCITY

X IS A STREAMWISE DIRECTION

Y IS A NORMAL DIRECTION

2 IS A DISTANCE FROM THE TOP OF THE STEP

READ (2,88) ITMAX,M,N,L,MA,H,RE,AXS,AXV

FORMAT (5I5,4F10.5)

ITMAX Is A PRESELECTED NO. OF ITERATIONS

M IS A NO. OF GRID POINTS IN STREAMWISE DIRECTION

N IS A NO. OF GRID POINTS IN NORMAL DIRECTION

L IS A STEP POSITION

MA IS A STEP HEIGHT

H IS A MESH SIZE EQUAL IN X-AND Y-DIRECTION

RE IS REYNOLDS NUMBER BASED ON CHANNEL HEIGHT

AKS IS A WEIGHTING FACTOR FOR STREAM FUNCTION

AXV IS A WEIGHTING FACTOR FOR VORTICITY

FS IS AN OVER-RELAXATION FACTOR FOR POISSON EQ.

Fv Is AN OVER-RELAXATION FACTOR FOR N.S.EQS.

ITERF IS A NO. OF INNER ITER. FOR STREAM FUNCTION

ITERQ Is A NO. OF INNER ITER. FOR VORTICITY

INER IS A NO. OF OUTER ITER. FOR STREAM

FUNCTION AND VORTICITY

NM1=N-1

MM1=M—1

LL=L-1

LR=L+1

MA1=MA+1

MA2=MA~1
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COMPUTE OVER-RELAXATION FACTOR

******************************

PI=4.*ATAN(1.)

ALPHA=Cos(PI/M)+COS(PI/N)

FS=(8.-4.*SQRT(4.-ALPHA**2))/ALPHA**2

PRINT 534,N,M,FS

534 FORMAT(10X,'TOTAL GRID Y-DIR.=',IS,10X,

Z'TOTAL GRID X-DIR.=',IS,'FS=',F10.7/)

PRINT 3333,L,MA,RE

3333 FORMAT('L=',I3,'MA=',I2,10X,'RE=',F8.1//)

l

2

3

4

5

40

6

7

8

9

10

COMPUTE COORDINATE FOR GRID POINTS

**********************************

x(1)=0.

DO 1 I=2,M

X(I)=X(I-1)+H

Y(1)=0.

DO 2 J=2,N

Y(J)=Y(J-1)+H

z(MA)=0.

DO 3 J=MA1,N

z(J)=z(J-1)+1./(N-MA)

A. STREAM FUNCTION BOUNDARY CONDITIONS

DO 4 I=1,L

F(I,1)=0.

DO 5 J=2,MA

F(L,J)=0.

DO 40 I=LR,M

F(I,MA)=0.

2. UPPER WALL CONDITION

DO 6 I=1,M

F(I,N)=1.

3. UPSTREAM CONDITION

DO 7 J=2,NM1

F(1,J)=Y(J-1)+H

4. INTERIOR REGION CONDITION

-------_---------—p---------.

DO 8 J=2,NM1

F(I,J)=Y(J)

DO 9 I=L,MM1

DO 9 J=MA1,NM1

F(I,J)=z(J)

5. DOWNSTREAM CONDITION

DO 10 J=MA1,NM1

F(M,J)=3.*Z(J)**2-2.*Z(J)**3
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B. VORTICITY BOUNDARY CONDITIONS

1. INTERIOR REGION CONDITION

DO 11 I=2,LL

DO 11 J=2,NM1

Q(I,J)=o.

DO 12 I=L,MM1

DO 12 J=MA1,NM1

Q(I.J)=0.

2. UPSTERAM CONDITION

DO 13 J=2,NM1

Q(1,J)=0.

3. DOWNSTREAM CONDITION

DO 14 J=MA1,NM1

Q(M,J)=12.*z(J)—6.

STORING STREAM FUNCTION AND VORTICITY

DO 15 I=2,LL

DO 15 J=2,NM1

Fs(I,J)=F(I,J)

os(I.J)=Q(I,J)

DO 16 I=L,MM1

DO 16 J=MA1,NM1

Fs(I.J)=F(I.J)

QS(I.J)=Q(I.J)

BEGIN OUTER ITERATIONS FOR STREAM FUNCTION

AND VORTICITY-----------------------------

ITER=0

ITER=ITER+1

BEGIN INNER ITERATION FOR STREAM FUNCTION

ITERF=0

ITERF=ITERF+1

ERF=0.

SOLVING POISSON EQUATION FOR STREAM FUNCTION

COMPUTE STREAM FUNCTION ON THE LEFT OF STEP

*******************************************

DO 17 I=2,LL

DO 17 J82,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I-1,J)+F(I+1,J)+

2F(I,J-l)+F(I,J+l)-4.*F(I,J)+H*H*Q(I,J))

EEEF=F(I,J)+0.00001)

ERF=DMAX1<ERF,DA85((F(I,J)-FOLDF)/EEEF))

COMPUTE STREAM FUNCTIONS ON THE TOP OF STEP

*******************************************
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DO 18 I=L,MM1

DO 18 J=MALNM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I—1,J)+F(I+1,J)+

2F(I,J—1)+F(I,J+1)-4.*F(I,J)+H*H*Q(I,J))

EEEF=F(I,J)+0.00001

ERF=DMAX1(ERF,DABs((F(I,J)-FOLDF)/EEEF))

CHECK STREAM FUNCTION FOR CONVERGENCE

IF(ERF.LE.0.00001) GO TO 75

IF(ITERF.GT.2000 ) GO TO 999

GO TO 80

END OF INNER ITERATION FOR STREAM FUNCTION

DO 19 J=2,NM1

F(I,J)=AXS*Fs(I,J)+(1-AXS)*F(I,J)

DO 20 I=L,MM1

DO 20 J=MA1,NM1

F(I,J)=AXS*FS(I,J)+(1-AXS)*F(I,J)

BEGIN INNER ITERATION FOR VROTICITY

ITERQ=0

ITERQ=ITERQ+1

ERQ=0.

4. UPPER WALL CONDITION

DO 21 I=2,MM1

Q(I,N)=(F(I,N)-F(I,NM1))*3./H**2-(0.5*Q(I,NM1))

5. LOWER WALLS CONDITIONS

DO 23 J=2,MA2

Q(L,J)=(F(L,J)-F(LL,J))*3./H**2-(0.5*Q(LL,J))

DO 24 I=LR,MM1.

Q(I,MA)=(F(I,MA)-F(I,MA1))*3./H**2-(0.5*Q(I,MA1))

Q(L,1)=0.

DO 244 I=2,LL

Q(I,1)=(F(I,l)-F(I,2))*3./H**2-(0.5*Q(I,2))

Q(L,MA)=-(1/H**2)*(F(L,MA1)+F(LL,MA))

COMPUTE VORTICITY ON THE LEFT OF THE STEP

*************_**********.******************

DO 26 I=2,LL

DO 26 J=2,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I-1,J)

B=F(I,J+1)-F(I.J-1)

REA=0.5*A*RE

REB=0.5*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 500

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 600

IF((A.LT.0.).AND.(B.GE.0.)) GO TO 700

T
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IF((A.LT.0.).AND.(B.LT.0.)) GO TO 800

500 Q(I,J)=(1-FV)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

20(1-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA+REB))

GO TO 900

600 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)*(1.-REB)+

ZQ(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA-REB))

GO TO 900

700 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA+REB))

GO TO 900

800 Q(I,J)=(1-Fv)*Q(I,J)+Fv*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+O(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA-REB))

900 EEEQ=Q(I,J)+0.00001

ERQ=DMAX1(ERQ,DABs((Q(I,J)-FOLDQ)/EEEQ))

26 CONTINUE

COMPUTE VORTICITY ON THE TOP OF THE STEP

*****************************************

DO 27 I=L,MM1

DO 27 J=MA1,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I-1,J)

B=F(I,J+1)-F(I,J-1)

REA=0.5*A*RE

REB=0.S*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 5000

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 6000

IF((A. LT. o. ). AND. (B.GE.0.)) GO TO 7000

IF((A. LT. 0. ). AND. (B. LT. 0. )) GO TO 8000

5000 Q(I, J)= (1--FV)*Q(I, J)+FV*((Q(I+1,J)+(1. +REB)*

2Q(I——1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-—1))/(4.+REA+REB))

GO TO 1900

6000 Q(I,J)=(l-FV)*Q(I,J)+FV*((Q(I+l,J)*(1.-REB)+

2Q(I-1,J)+(1.+REA)*O(I,J+1)+Q(I,J-1))/(4.+REA—REB))

GO TO 1900

7000 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA+REB))

GO TO 1900

8000 Q(I,J)=(1-Fv)*Q(I,J)+FV*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA—REB))

1900 EEEQ=Q(I,J)+0.00001

ERQ=DMAX1(ERQ,DABS((Q(I,J)-FOLDQ)/EEEQ))

27 CONTINUE

CHECK VORTICITY FOR CONVERGENCE

IF (ERQ.LE.0.000001) GO TO 85

IF(ITERQ.GT.5000 ) GO TO 998

GO TO 175

END OF INNER ITERATION FOR VORTICITY

85 DO 28 I=2,LL

DO 28 J=2,NM1
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0(I,J)=AKV*QS(I.J)+(1-AKV)*F(I,J)

DO 29 I=L,MM1

DO 29 J=MA1,NM1

Q(I,J)=AKV*QS(I.J)+(1-AKV)*F(I,J)

EFF=0.

BQQ=O.

DO 30 I=2,LL

DO 30 J=2,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-Fs(I,J))/EEEFF))

EQQ=DMAX1(EQQ,DABS((Q(I,J)-QS(I,J))/EEEQQ))

DO 31 I=L,MM1

DO 31 J=MA1,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-FS(I,J))/EEEFF))

EQQ=DMAX1(EQQ,DABs((Q(I,J)-Qs(I,J))/EEEQQ))

CHECK FOR OUTER CONVERGANCE

ETA=0.000001

IF((EFF.LE.ETA).AND.(EQQ.LE.ETA)) GO TO 105

IF(ITER.GT.ITMAX) GO TO 205

D0 32 I=2,LL

Do 32 J=2,NM1

FS(I,J)=F(I,J)

Qs(I.J)=Q(I.J)

DO 33 I=L,MM1

DO 33 J=MA1,NM1

QS(I.J)=Q(I,J)

GO TO 300

END OF OUTER ITERATION

DO 38 I=2,LL

DO 38 J=2,NM1

U(I,J)=(F(I,J+1)-F(I,J-1))/(2.*H)

DO 39 I=L,MM1

DO 39 J=MA1,NM1

U(I.J)=(F(I,J+1)-F(I,J-l))/(2.*H)

WRITE(1,666)ITER,EFF,EQQ

FORMAT(10X,'NO. OF ITER.=',15,10X,'EFF=',E14.7,

2'EQQ=',El4.7//)

WRITE(1,170)

FORMAT(15X,'VELOCITY DISTRIBUTION ')

DO 445 I=2,LL

WRITE(1,446)(U(I,J),J=2,NM1)

FORMAT(1X,'U(I,J)=',10F11.8//)

DO 447 I=L,MM1

WRITE(1,448)(U(I,J),J=MA1,NM1)

FORMAT(1X,'U(I,J)='.15F7.4//)
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WRITE(1,180)

FORMAT(10x,' STREAM FUNCTION VALUES'l)

DO 620 I=2,LL

WRITE(1,621)(F(I,J),J=2,NM1)

FORMAT(1X,'F(I,J)=',10F11.8//)

DO 622 I=L,MM1

WRITE(1,623)(F(I,J),J=MA1,NM1)

FORMAT(1X,'F(I,J)=',10F11.8//)

WRITE(1,190)

FORMAT(10X,'VORTICITY VALUES '/)

DO 533 I=2,LL

WRITE(1,538)(Q(I,J),J=1,N)

FORMAT(1X,'Q(I,J)=',10F11.5//)

DO 535 I=L,MM1

WRITE(1,536)(Q(I,J),J=MA,N)

FORMAT(1X,'Q(I,J)=',10F11.5//)

GO TO 333 -

WRITE(1,555)

FORMAT(10X,'POISSON EQUATION PROBLEM')

Go To 333

WRITE(1,656)

FORMAT(10X,'NAVIER-STOKES EQUATIONS PROBLEM')

WRITE(1,767)

FORMAT(10X,'OUTER ITERATIONS PROBLEM')

CLOSE(UNIT=2)

CLOSE(UNIT=1)

STOP

END
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Appendix C

Computer program for the backward Step

RBAL*8 F(3201,21),FS(3201,21).Q(3201,21),

20$(3201,21),U(3201,21),Y(21),X(3201),Z(21)

REAL*8 ERF,ERQ,EFF,EQQ

OPEN(UNIT=1,FILE='OUTMOD',STATUS='NEW',FORM=

2'FORMATTED')

OPEN(UNIT=2,NAME=MODDATA,TYPE='OLD')

ALL PARAMETERS HAVE THE SAME DEFINATIONS AS

IN FORWARD STEP PROGRAM

READ (2,88)ITMAX,M,N,,MA,L,RE,H,AKS,AKV

FORMAT(5I10,4F10.4/)

NM1=N-1

MM1=M-1

LL=L~1

LR=L+1

MA1=MA+1

MA2=MA-1

COMPUTE OVER-RELAXATION FACTOR

******************************

PI=4.*ATAN(1.)

ALPHA=COS(PI/M)+Cos(PI/N)

FS=(8.-4.*SQRT(4.-ALPHA**2))/ALPHA**2

PRINT 534,N,M,Fs

534 FORMAT(10X,'TOTAL GRID Y-DIR.=',15,10X,

C

C

1

2

<10

2'TOTAL GRID X-DIR.=',I5,'Fs=',F10.7/)

COMPUTE COORDINATE FOR GRID POINTS

**********************************

x(1)-0.

DO 1 I=2,M

x(I)=X(I-1)+H

Y(1)=0.

DO 2 J=2,N

Y(J)=Y(J-1)+H

z(MA)=0.

DO 3 J=MA1,N

Z(J)=Z(J-1)+1./(N—MA)

A. STREAM FUNCTION BOUNDARY CONDITIONS

DO 40 I=LR,M

F(I,1)=0.
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2. UPPER WALL CONDITION

DO 7 J=MA1,NM1

F(1,J)=z(J)

4. INTERIOR REGION CONDITION

DO 8 J=MA1,NM1

F(I,J)=z(J)

DO 9 I=LR,MM1

DO 9IJ=2,NM1

F(I,J)=Y(J)

5. DOWNSTREAM CONDITION

DO 10 J=2,NM1

F(M“J)=3.*Y(J)**2-2.*Y(J)**3

B.VORTICITY BOUNDARY CONDITIONS

1. INTERIOR REGION CONDITION

DO 11 I=2,L

DO 11 J=MA1,NM1

Q(I,J)=0.

DO 12 I=LR,MM1

DO 12 J=2,NM1

Q(I,J)=0.

2. UPSTERAM CONDITION

DO 13 J=MA1,NM1

Q(1,J)=0.

3. DOWNSTREAM CONDITION

DO 14 J=2,NM1

Q(M,J)=12.*Y(J)-6.

STORING THE VALUES

DO 15 I=2,L

DO 15 J=MA1,NM1

FS(I,J)=F(I,J)

QS(I,J)=Q(I,J)

DO 16 I=LR,MM1

DO 16 J=2,NM1

Fs(I,J)=F(I,J)

QS(I,J)=Q(I,J)

BEGIN OUTER ITERATION FOR STREAM FUNCTION

AND VORTICITY----------------------------
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ITER=0

ITER=ITER+1

SOLVING POISSON EQUATION FOR STREAM FUNCTION

ITERF=0

ITERF=ITERF+1

ERF=0.

COMPUTE STREAM FUNCTION ON THE TOP OF STEP
******************************************

DO 17 I=2,L

DO 17 J=MA1,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I-1,J)+F(I+1,J)

2+F(I,J-1)+F(I,J+1)-4.*F(I,J)+H*H*Q(I,J))

EEEF=F(I,J)+0.00001

ERF=DMAX1(ERF,DABs((F(I,J)-FOLDF)/EEEF))

COMPUTE STREAM FUNCTIONS ON THE RIGHT OF STEP
*********************************************

DO 18 I=LR,MM1

DO 18 J=2,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I-1,J)+F(I+1,J)+

2F(I,J-1)+F(I,J+1)-4.*F(I,J)+H*H*Q(I,J))

EEEF=F(I,J)+0.00001

ERF=DMAX1(ERF,DABs((F(I,J)-FOLDF)/EEEF))

CHECK STREAM FUNCTION FOR CONVERGENCE

IF(ERF.LE.0.0001) GO TO 75

IF(ITERF.GT.5000) GO TO 999

GO TO 80

END OF INNER ITERATION FOR STREAM FUNCTION

DO 19 I=2,L

DO 19 J=MA1,NM1

F(I,J)=AKS*Fs(I,J)+(1-AKs)*F(I,J)

DO 20 I=LR,MM1

DO 20 J=2,NM1

F(I,J)=AKS*Fs(I.J)+(1-AKS)*F(I,J)

SOLVING NAVIER STOKES EQUATIONS FOR VORTICITY

ITERQ=0

ITERQ=ITERQ+1

ERQ=0.

4. UPPER WALL CONDITION

DO 21 I=2,MM1

Q(I,N)=(F(I,N)-F(I,NM1))*3./H**2-(0.5*Q(I,NM1))
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C 5. LOWER WALLS CONDITIONS

DO 23 J=2,MA2

23 Q(L,J)=(F(L,J)-F(LR,J))*3./H**2-(0.5*Q(LR,J))

DO 24 I=LR,MM1

24 Q(I,1)=(F(I,1)—F(I,2))*3./H**2—(0.5*Q(I,2))

Q(L,1)=0.

DO 244 I=2,LL

244 Q(I,MA)=(F(I,MA)—F(I,MA1))*3./H**2-(0.5*Q(I,MA1))

Q(L,MA)=-(1/H**2)*(F(L,MA1)+F(LR,MA))

C COMPUTE VORTICITY ON THE TOP OF THE STEP

C **************t*************************

DO 26 I=2,L

DO 26 J=MA1,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I-1,J)

B=F(I,J+1)-F(I,J-1)

REA=0.S*A*RE

REB=0.5*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 500

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 600

IF((A.LT.0.).AND.(B.GE.0.)) GO TO 700

IF((A.LT.0.).AND.(B.LT.0.)) GO TO 800

500 Q(I ,J)=(l-FV) *Q( I ,J)+FV*( (Q( I+1,J)+(1.+REB)*

20(1-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-l))/(4.+REA+REB))

GO TO 900

600 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)*(1.-REB)+

2Q(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-I))/(4.+REA-REB))

GO TO 900

700 Q(I,J)=(l-FV)*Q(I,J)+FV*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-l))/(4.-REA+REB))

GO TO 900

800 Q(I,J)=(1-Fv)*O(I,J)+Fv*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.—REA-REB))

900 EEEQ=Q(I,J)+0.00001

ERQ=DMAX1(ERQ,DABs((Q(I,J)-FOLDQ)/EEEQ))

26 CONTINUE

C COMPUTE VORTICITY ON THE RIGHT OF THE STEP

C *************that****************************

DO 27 I=LR,MM1

DO 27 J=2,NM1-

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I-1,J)

B=F( I 1J+1)-F( I pJ'l)

REA=0.S*A*RE

REB=0.5*B*RE

IF((A.GE.0.).AND.(B.GE.0

IF((A.GE.0.).AND.(B.LT.0

IF((A.LT.0.).AND.(B.GE.0

IF((A.LT.0.).AND.(B.LT.0

£5000 Q(I,J)=(1-FV)*Q(I,J)+FV*

) GO TO 5000

) GO TO 6000

) GO TO 7000

) GO TO 8000

Q(I+1,J)+(1.+REB)*A
.
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20(1-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA+REB))

GO TO 1900

6000 Q(I,J)=(l-FV)*Q(I,J)+FV*((Q(I+1,J)*(1.-REB)+

2Q(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA-REB))

GO TO 1900

7000 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

20(1-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-l))/(4.—REA+REB))

GO To 1900

8000 Q(I,J)=(1-Fv)*Q(I,J)+Fv*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA-REB))

1900 EEEQ=F(I,J)+0.00001

ERQ=DMAX1(ERQ,DABS((Q(I,J)-FOLDQ)/EEEQ))

27 CONTINUE

C CHECK VORTICITY FOR CONVERGENCE

C ...............................

IF (ERQ.LE.0.00001) GO TO 85

IF(ITERQ.GT.5000 ) GO TO 998

GO TO 175

C END OF INNER ITERATION FOR VORTICITY

85 DO 28 I=2,L

DO 28 J=MA1,NM1

28 Q(I,J)=AKV*QS(I,J)+(l-AKV)*F(I,J)

DO 29 I=LR,MM1

DO 29 J=2,NM1

29 Q(I,J)=AKV*FS(I,J)+(1-AKv)*Q(I,J)

EFF=0.

EQQ=0 .

DO 30 I=2,L

DO 30 J=MA1,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-Fs(I,J))/EEEFF))

30 EQQ=DMAX1(EQQ,DABs((Q(I,J)-QS(I,J))/EEEQQ))

DO 31 I=LR,MM1

DO 31 J=2,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-Fs(I,J))/EEEFF))

31 EQQ=DMAX1(EQQ,DABS((Q(I,J)-Qs(I,J))/EEEQQ))

CHECK OUTER ITERATION FOR CONVERGANCE

ETA=0.000001

IF((EFF.LE.ETA).AND.(EQQ.LE.ETA)) GO TO 105

IF(ITER.GT.ITMAX) GO TO 205

D0 32 I=2,L

DO 32 J=MA1,NM1

FS(I,J)=F(I,J)

32 QS(I,J)=Q(I,J)

DO 33 I=LR,MM1

DO 33 J=2,NM1

0
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Fs(I,J)=F(I,J)

Qs(I.J)=Q(I,J)

GO TO 300

END OF OUTER ITERATION

DO 38 I=2,L

DO 38 J=MA1,NM1

U(I,J)=(F(I,J+1)-F(I,J-1))/(2.*H)

DO 39 I=LR,MM1

DO 39 J=2,NM1

u(I,J)=(F(I,J+1)-F(I,J-1))/(2.*H)

WRITE(1,666)ITER,EFF,EQQ,RE,AKS,AKV,L

FORMAT(‘N0.0F ITER.=',I5,'EFF=',E14.7,'EQQ='.El

24.7,'RE=',F10.2,'AKS='F4.2,'AKV=',F4.2,15//)

WRITE(1,170)

FORMAT(lSX,'VELOCITY DISTRIBUTION ')

DO 445 I=2,L -

WRITE(1,446)(U(I,J),J=MA1,NM1)

FORMAT(lx,'U(I,J)=',12F8.4//)

DO 447 I=LR,M

WRITE(1,448)(U(I,J),J=2.NM1)

FORMAT(1X,'U(I,J)=',10F10.4//)

WRITE(1,180)

FORMAT(10X,' STREAM FUNCTION VALUES'/)

DO 620 I=1,L

WRITE(1,621)(F(I,J),J=MA,NM1)

FORMAT(IX,'F(I,J)=',13F8.4//)

DO 622 I=LR,M

WRITE(1,623)(F(I,J),J=2,NM1)

FORMAT(1X,'F(I,J)=',10F10.4//)

WRITE(1,190)

FORMAT(10X,'VORTICITY VALUES '/)

DO 533 I=1,L

WRITE(1,538)(Q(I,J),J=MA,N)

FORMAT(IX,'Q(I,J)=',13F9.4//)

DO 535 I=LR,M

WRITE(1,536)(Q(I,J),J=1,N)

FORMAT(IX,'Q(I,J)=',10F10.4//)

GO TO 333

WRITE(1,555)

FORMAT(‘POISSON EQUATION PROBLEM')

GO To 333

WRITE(1,656)

FORMAT(‘NAVIER—STOKES EQUATIONS PROBLEM')

WRITE(1,767)

FORMAT(lox,'OUTER ITERATION PROBLEM')

CLOSE(UNIT=2)

CLOSE(UNIT=1)

STOP

END
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Appendix D

Computer program for the finite step

REAL*8 F(1580, 21), Fs(1580, 21) ,Q(1580, 21),

2QS(1580, 21), U(1580, 21) ,X(1580) ,Y(21), z(21)

REAL*8 ERF ,ERQ, EFF ,EQQ

OPEN(UNIT=1,FILE='OUTSTEP' ,STATUS='NEW' ,

2FORM= ' FORMATTED' )

OPEN ( UNIT=2 , NAME=STEPDATA , TYPE= ' OLD ' )

READ(2,88)ITMAX,M,N,L,K,MA,RE,H,AKS,AKV

88 FORMAT(6I6,4F10.5/)

K IS THE END OF THE STEP

ALL OTHER PARAMETERS HAVE THE SAME

DEFINATINS AS IN FORWARD STEP PROGRAM

MMI=M-1

NM1=N-1

LL=L-1

LR=L+1

KL=K-1

KR=K+1

MA1=MA+1

MA2=MA-1

COMPUTE OVER-RELAXATION FACTOR

******************************

PI=4.*ATAN( 1.)

ALPHA=C08(PI/M)+COS(PI/N)

FS=(8 . -4 . *SQRT( 4 . -ALPHA**2) )/ALPHA**2

PRINT 4444,RE,L,K,MA

4444 FORMAT(‘RE=',F5.1,'L=',I3,'K=',IS,'MA=',I2/)

PRINT 4445,AKS,AKV

4445 FORMAT(10L 'AKS=' ,F10.4,'AKV=',F10.4/)

WRITE(L 534)N, M, FS

534 FORMAT(IOX, 'TOTAL GRID Y-DIR. =' ,,15 10X,

2' TOTAL GRID X-DIR. = ,,I5 'FS=', F10. 7/)

COMPUTE COORDINATES FOR GRID POINTS

**********************************

x(1)=0.

DO 1 I=2,M

1 x(1)=x(I-—l)+H

Y(1)=0.

Do 2 J=2,N

2 Y(J)=Y(J-l)+H

z(MA)=0.

DO 3 J=MA1,N

3 z(J)=z(J-1)+1./(N-MA)

A. STREAM FUNCTION BOUNDARY CONDITIONS

155



 

40

41

42

91

0
0

10

0
0
0
0

11

12

121

156

1. LOWER WALLS CONDITIONS

DO 5 J=2,MA

F(L,J)=0.

DO 40 I=LR,KL

P(I,MA)=0.

DO 41 J=2,MA

F(K,J)=0.

DO 42 I=KR,M

F(I,1)=0.

2. UPPER WALL CONDITION

D0 7 J=2,NM1

F(1,J)=Y(J-1)+H

4. INTERIOR REGION CONDITION

DO 8 I-2,LL

DO 8 J=2,NM1

F(I,J)=Y(J)

DO 9 I=L,K

DO 9 J=MA1,NM1

F(I,J)=z(J)

DO 91 I=KR,MM1

DO 91 J=2,NM1

F(I,J)=Y(J-1)+H

DO 10 J=2,NM1

F(M,J)=3.*Y(J)**2-2.*Y(J)**3

B. VORTICITY BOUNDARY CONDITIONS

DO 11 I=2,LL

DO 11 J=2,NM1

Q(I,J)=0.

DO 12 I=L,K

DO 12 J=MA1,NM1

Q(I,J)=0.

DO 121 I=KR,MM1

DO 121 J=2,NM1

Q(I,J)=0.

2. UPSTERAM CONDITION
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0
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0
0
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no 13 J=2,NM1

Q(1,J)=0.0

3. DOWNSTREAM CONDITION

DO 14 J=2,NM1

Q(M,J)=12.*Y(J)-6

STORING STREAM FUNCTION AND VORTICITY

DO 15 I=2,LL

Do 15 J=2,NM1

FS(IIJ)=F(IIJ)

QS(I.J)=Q(I,J)

DO 16 I=L,K

DO 16 J=MA1,NM1

Fs(I,J)=F(I,J)

Qs(I.J)=Q(I,J)

DO 161 I=KR,MM1

DO 161 J=2,NM1

Fs(I,J)=F(I,J)

QS(I.J)=Q(I,J)

BEGIN OUTER ITERATION FOR STREAM FUNCTION

AND VORTICITY----------------------------

ITER=0

ITER=ITER+1

SOLVING POSSISON EQUATION FOR STREAM FUNCTION

ITERF=0

ITERF=ITERF+1

ERF=0.

COMPUTE STREAM FUNCTION ON THE LEFT OF STEP

************tt*****t***********************

DO 17 I=2,LL

Do 17 J=2,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I-1,J)+F(I+1,J)+

2F(I,J-1)+F(I,J+1)-4.*F(I,J)+H*H*Q(I,J))

EEEF:F(I,J)+0.00001

ERF=DMAX1(ERF,DABS((F(I,J)-FOLDF)/EEEF))

COMPUTE STREAM FUNCTION ON THE TOP OF THE STEP

**********************************************

DO 18 I=L,K

DO 18 J=MA1,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I-1,J)+F(I+1,J)+

2F(I,J-1)+F(I,J+1)-4.*F(I,J)+H*H*Q(I,J))

BEEF=F(I,J)+0.00001

ERF=DMAX1(ERF,DABS((F(I,J)-FOLDF)/EEEF))
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COMPUTE STREAM FUNCTION ON THE RIGHT OF THE STEP
************************************************

DO 181 I=KR,MM1

DO 181 J=2,NM1

FOLDF=F(I,J)

F(I,J)=F(I,J)+0.25*FS*(F(I-1,J)+F(I+1,J)+

2F(I,J-1)+F(I,J+1)-4.*F(I,J)+H*H*Q(I,J)1

EEEF=F(I,J)+0.00001

ERF=DMAX1(ERF,DABs((F(I,J)-FOLDF)/EEEF))

CHECK STREAM FUNCTION FOR CONVERGENCE

IF(ERF.LE.0.000001) GO TO 75

IF(ITERF.GT.5000 ) GO To 999

GO TO 80

END OF INNER ITERATION FOR STREAM FUNCTION

RECALCULATE F(I,J) USING WEIGHTING FACTOR

*****************************************

DO 19 I=2,LL

DO 19 J=2,NM1

F(I,J)=AKS*FS(I,J)+(1-AKS)*F(I,J)

DO 20 I=L,K

DO 20 J=MA1,NM1

F(I,J)=AKS*Fs(I,J)+(1-AKS)*F(I,J)

DO 120 I=KR,MM1

DO 120 J=2,NM1

F(I,J)=AKS*Fs(I,J)+(1-AKS)*F(I,J)

BEGIN INNER ITERATION FOR VORTICITY

ITERQ=0

ITERQ=ITERQ+1

ERQ=0.

4. UPPER WALL CONDITION

DO 21 I=2,MM1

Q(I,N)=(F(I,N)-F(I,NM1))*3./H**2-(0.5*Q(I,NM1))

5. LOWER WALLS CONDITIONS

DO 23 J=2,MA2

Q(L,J)=(F(L,J)-F(LL,J))*3./H**2-(0.5*Q(LL,J))

Q(K,1)=0.

Q(L,1)=0.

DO 24 I=LR,KL

Q(I,MA)=(F(I,MA)-F(I,MA1))*3./H**2-(0.5*Q(I,MA1))

DO 244 I=2,LL

Q(I,1)=(F(I,l)-F(I,2))*3.0/H**2-(0.5*Q(I,2))

DO 242 J=2,MA2

Q(K,J)=(F(K,J)-F(KR,J))*3./H**2-(0.5*Q(KR,J))

DO 245 I=KR,MM1

Q(I,1)=((F(I,1)-F(I,2))*3./H**2-(0.5*Q(I,2))
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Q(L,MA)=-(1./H**2)*(F(L,MA1)+F(LL,MA))

Q(K,MA)=-(1./H**2)*(F(K,MA1)+F(KR,MA))

C COMPUTE VORTICITY ON THE LEFT OF THE STEP

C *****************************************

DO 26 I=2,LL

DO 26 J:2,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)—F(I-1,J)

B=F(I,J+1)-F(I,J-1)

REA=0.5*A*RE

REB=0.5*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 500

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 600

IF((A.LT.0.).AND.(B.GE.0.)) GO TO 700

IF((A.LT.0.).AND.(B.LT.0.)) GO TO 800

500 Q(I,J)=(1-FV)*Q(I,J)+FV*((Q(I+1,J)+(l.+REB)*

2Q(I—1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA+REB))

GO TO 900

600 Q(I,J)=(1-Fv)*Q(I,J)+FV*((Q(I+1,J)*(1.-REB)+

2Q(I—1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA-REB))

GO TO 900

700 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA+REB)

GO TO 900

800 Q(I,J)=(1-FV)*Q(I,J)+FV*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.—REA-REB))

EEEQ=Q(I,J)+0.00001

900 ERQ=DMAX1(ERQ,DABS((Q(I,J)-FOLDQ)/EEEQ))

26 . CONTINUE

C COMPUTE VORTICITY ON THE TOP OF THE STEP

*****************************************

DO 27 I=L,K

DO 27 J=MA1,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I-1,J)

B=F(I'J+l)-F(IIJ‘1)

REA=0.5*A*RE

REB=0.5*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 5000

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 6000

IF((A.LT.0.).AND.(B.GE.0.)) GO TO 7000

IF((A.LT.0.).AND.(B.LT.0.)) GO TO 8000

5000 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA+REB))

GO TO 1900

6000 Q(I,J)=(1-Fv)*Q(I,J)+FV*((Q(I+1,J)*(1.-REB)+

2Q(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA-REB))

Go To 1900

7000 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+Q(I,J+l)+(1.-REA)*Q(I,J-1))/(4.-REA+REB))
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GO TO 1900

8000 Q(I,J)=(1-Fv)*Q(I,J)+FV*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA-REB))

EEEQ=Q(I,J)+0.00001

1900 ERQ=DMAX1(ERQ,DABs((Q(I,J)-FOLDQ)/EEEQ))

27 CONTINUE

C COMPUTE VORTICITY ON THE RIGHT OF THE STEP

C ******************************************

DO 272 I=MER,MM1

DO 272 J=2,NM1

FOLDQ=Q(I,J)

A=F(I+1,J)-F(I-1,J)

B=F(I,J+1)-F(I,J-1)

REA=0.5*A*RE

REB=O.5*B*RE

IF((A.GE.0.).AND.(B.GE.0.)) GO TO 5001

IF((A.GE.0.).AND.(B.LT.0.)) GO TO 6001

IF((A.LT.0.).AND.(B.GE.0.)) GO TO 7001

IF((A.LT.0.).AND.(B.LT.0.)) GO TO 8001

5001 Q(I,J)=(1-Fv)*Q(I,J)+FV*((Q(I+1,J)+(1.+REB)*

20(1-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J41))/(4.+REA+REB))

GO TO 2900

6001 Q(I,J)=(1-FV)*Q(I,J)+Fv*((Q(I+1,J)*(1.-REB)+

2Q(I-1,J)+(1.+REA)*Q(I,J+1)+Q(I,J-1))/(4.+REA-REB))

GO TO 2900

7001 Q(I,J)=(1-Fv)*Q(I,J)+Fv*((Q(I+1,J)+(1.+REB)*

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA+REB))

, GO TO 2900

8001 Q(I,J)=(1-Fv)*Q(I,J)+Fv*(((1.-REB)*Q(I+1,J)+

2Q(I-1,J)+Q(I,J+1)+(1.-REA)*Q(I,J-1))/(4.-REA—REB))

EEEQ=Q(I,J)+0.00001

2900 ERQ=DMAX1(ERQ,DA85((Q(I,J)4FOLDQ)/EEEQ))

272 CONTINUE

‘ C CHECK VORTICITY FOR CONVERGENCE

I C -------------------------------

‘ IF (ERQ.LE.0.00001) GO TO 85

‘ IF(ITERQ.GT.5000 ) GO TO 998

i GO TO 175

C END OF INNER ITERATION FOR VORTICITY

C . ------------------------------------

C RECALCULATE Q(I,J) USING WEIGHTING FACTOR

C ***t*************************************

85 DO 28 I=2,LL

DO 28 J=2,NM1

28 Q(I,J)=AKV*QS(I,J)+(1-AKv)*Q(I,J)

DO 29 I=L,K

DO 29 J=MA1,NM1

29 Q(I,J)=AKV*QS(I.J)+(1-AKv)*Q(I,J)

DO 129 I=KR,MM1

DO 129 J=2,NM1
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Q(I,J)=AKV*QS(I,J)+(1-AKV)*Q(I,J)

EFF=0.

EQQ=0.

DO 30 I=2,LL

DO 30 J=2,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-Fs(I,J))/EEEFF))

EQQ=DMAX1(EQQ,DABS((Q(I,J)-QS(I,J))/EEEQQ))

DO 31 I=L,K

DO 31 J=MA1,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-Fs(I,J))/EEEFF))

EQQ=DMAX1(EQQ,DABS((Q(I,J)-QS(I,J))/EEEQQ))

DO 131 I=KR,MM1

‘DO 131 J=2,NM1

EEEFF=F(I,J)+0.00001

EEEQQ=Q(I,J)+0.00001

EFF=DMAX1(EFF,DABS((F(I,J)-FS(I,J))/EEEFF))

EQQ=DMAX1(EQQ,DABs((Q(I.J)-QS(I,J))/EEEQQ))

CHECK OUTER ITERATION FOR CONVERGENCE

ETA=0.000001

IF((EFF.LE.ETA).AND.(EQQ.LE.ETA)) GO TO 105

IF(ITER.GT.ITMAx) GO TO 205

D0 32 I=2,LL

DO 32 J=2,NM1

FS(I,J)=F(I,J)

QS(I.J)=Q(I.J)

DO 33 I=L,K

DO 33 J=MA1,NM1

FS(I,J)=F(I,J)

QS(I.J)=Q(I.J)

DO 133 I=KR,MM1

DO 133 J=2,NM1

Fs(I,J)=F(I,J)

Qs(I,J)=Q(I.J)

GO TO 300

END OF OUTER ITERATION

.---b-----------------

COMPUTE STREAMWISE VELOCITY

***************************

DO 38 I=2,LL

DO 38 J=2,NM1

LHI,J)=(F(I,J+1)-F(I,J-1))/(2.*H)

DO 39 I=L,K

DO 39 J=MA1,NM1

U(I,J)=(F(I,J+1)-F(I,J-1))/(2.*H)

DO 139 I=KR,MM1
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DO 139 J=2,NM1

U(I,J)=(F(I,J+1)-F(I,J-l))/(2.*H)

WRITE(1,666)ITER,EFF,EQQ,RE

FORMAT(on,'NO. OF ITER.=',I5,10X,'EFF=',E14.7

2,10X,'EQQ=',E14.7,10x,'RE=',F10.2//)

WRITE(1,170)

FORMAT(15X,'VELOCITY DISTRIBUTION ')

DO 445 I=2,LL

WRITE(1,446)(U(I,J),J=2,NM1)

FORMAT(IX,'U(I,J)=',10F10.3//)

DO 447 I=L,K

WRITE(1,448)(U(I,J),J=MA1,NM1)

FORMAT(IX,'U(I,J)=',10F10.4//)

DO 449 I=KR,MM1

WRITE(1,450)(U(I,J),J=2,NM1)

FORMAT(IX,'U(I,J)=',10F10.3//)

WRITE(1,180)

FORMAT(lOX,‘ STREAM FUNCTION VALUES'/)

DO 620 I=2,LL

WRITE(1,621)(F(I,J),J=2,N)

FORMAT(1X,'F(I,J)=',10F10.6//)

DO 622 I=L,K

WRITE(1,623)(F(I,J),J=MA,N)

FORMAT(IX,'F (I,J)=',11F9.6//)

DO 664 I=KR,M

WRITE(1,665)(F(I,J),J=2,N)

FORMAT(IX,'F(I,J)=',10F10.6//)

WRITE(1,190)

FORMAT(loX,'VORTICITY VALUES'/)

DO 533 I=1,LL

WRITE(1,681)(Q(I,J),J=1,N)

FORMAT(IX,'Q(I,J)=',10F10.3//)

DO 535 I=L,K

WRITE(1,536)(Q(I.J),J=MA,N)

FORMAT(IX,'Q(I,J)=',11F9.3//)

DO 537 I=KR,M

WRITE(1,538)(Q(I,J),J=1,N)

FORMAT(IX,'Q(I,J)=',10F10.3)

GO TO 333

WRITE(1,555)

FORMAT(‘POISSON EQUATION PROBLEM')

GO TO 333

WRITE(1,656)

FORMAT(‘NAVIER-STOKES EQUATIONS PROBLEM')

WRITE(1,767)

FORMAT(10X,'OUTER ITERATION PROBLEM')

CLOSE(UNIT=2)

CLOSE(UNIT=1)

STOP

END


